-
Notifications
You must be signed in to change notification settings - Fork 14
/
deepstream_YOLOv7-Pose_YoloLayer.py
executable file
·569 lines (479 loc) · 22.3 KB
/
deepstream_YOLOv7-Pose_YoloLayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
#!/usr/bin/env python3
################################################################################
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import argparse
import os
import sys
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # Set cuda sync for debug
# sys.path.append("/opt/nvidia/deepstream/deepstream/sources/deepstream_python_apps/apps")
import numpy as np
from datetime import datetime
import time
import configparser
import math
import platform
import cv2
import pyds
import ctypes
# from common.bus_call import bus_call
from utils.bus_call import bus_call
# from common.is_aarch_64 import is_aarch64
from utils.is_aarch_64 import is_aarch64
# from common.FPS import PERF_DATA
from utils.FPS import PERF_DATA
from utils.utils import make_element, create_source_bin, set_tracker_config
from utils.utils import map_to_zero_one, postprocess
from utils.display import dispaly_frame_pose, add_obj_meta
import gi
gi.require_version("Gst", "1.0")
gi.require_version("GstRtspServer", "1.0")
from gi.repository import Gst, GstRtspServer, GLib
# Setting for YOLO-POSE -----------------------------------------------------------------------------
# n_keypoints = 17
# [Optional] yolov8s-pose.engine。(https://github.com/triple-Mu/YOLOv8-TensorRT/tree/triplemu/pose-infer)
# shape_label_pose = 56 # bbox(4) + confidence(1) + keypoints(3 x 17) = 4 + 1 + 0 + 51 = 56
# max_output = 8400
# OUT_SHAPE = (batch_size, shape_label_pose, max_output) # (batch, 56, 8400)
# [Optional] YOLOv7-pose with YoloLayer_TRT_v7.0 (https://github.com/nanmi/yolov7-pose/)。
# shape_label_pose = 57 # bbox(4) + confidence(1) + cls(1) + keypoints(3 x 17) = 4 + 1 + 1 + 51 = 57
# max_output = 1000
# dim_outputs = n_maxoutput * shape_label_pose + 1 # 57001
# OUT_SHAPE = (batch_size, dim_outputs , 1, 1)
# CONF_THRES = 0.25 # default : 0.25。detect sensitivity. larger, more.
# IOU_THRES = 0.35 # 0.65。detect bboxes overlay tolerance sensitivity. larger, more.
conf_thres = None
iou_thres = None
# ----------------------------------------------------------------------------------------------------
# Setting for DeepStream -----------------------------------------------------------------------------
MAX_DISPLAY_LEN = 64
MAX_TIME_STAMP_LEN = 32
MUXER_OUTPUT_WIDTH = 960 # stream input
MUXER_OUTPUT_HEIGHT = 480 # stream input
# MUXER_BATCH_TIMEOUT_USEC = 4000000
TILED_OUTPUT_WIDTH = 1280 # stream output
TILED_OUTPUT_HEIGHT = 720 # stream output
GST_CAPS_FEATURES_NVMM = "memory:NVMM"
OSD_PROCESS_MODE = 0
OSD_DISPLAY_TEXT = 1
data_type_map = {pyds.NvDsInferDataType.FLOAT: ctypes.c_float,
pyds.NvDsInferDataType.INT8: ctypes.c_int8,
pyds.NvDsInferDataType.INT32: ctypes.c_int32}
file_loop = False
perf_data = None
# ----------------------------------------------------------------------------------------------------
def pose_src_pad_buffer_probe(pad, info, u_data):
t = time.time()
frame_number = 0
num_rects = 0
gst_buffer = info.get_buffer()
if not gst_buffer:
print("Unable to get GstBuffer ")
return
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
try:
frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
except StopIteration:
break
frame_number = frame_meta.frame_num
num_rects = frame_meta.num_obj_meta
pad_index = frame_meta.pad_index
l_usr = frame_meta.frame_user_meta_list
while l_usr is not None:
try:
# Casting l_obj.data to pyds.NvDsUserMeta
user_meta = pyds.NvDsUserMeta.cast(l_usr.data)
except StopIteration:
break
# get tensor output
if (user_meta.base_meta.meta_type !=
pyds.NvDsMetaType.NVDSINFER_TENSOR_OUTPUT_META): # NVDSINFER_TENSOR_OUTPUT_META
try:
l_usr = l_usr.next
except StopIteration:
break
continue
try:
tensor_meta = pyds.NvDsInferTensorMeta.cast(
user_meta.user_meta_data)
# layers_info = []
# for i in range(tensor_meta.num_output_layers):
# layer = pyds.get_nvds_LayerInfo(tensor_meta, i)
# # print(i, layer.layerName)
# layers_info.append(layer)
assert tensor_meta.num_output_layers == 1, f'Check number of model output layer : {tensor_meta.num_output_layers}'
# layer_output_info = layers_info[0]
layer_output_info = pyds.get_nvds_LayerInfo(tensor_meta, 0) # as num_output_layers == 1
network_info = tensor_meta.network_info
input_shape = (network_info.width, network_info.height)
if frame_number == 0 :
print(f'\tmodel input_shape : {input_shape}')
# print("Network Input : w=%d, h=%d, c=%d"%(network_info.width, network_info.height, network_info.channels))
# remove zeros from both ends of the array. 'b' : 'both'
dims = np.trim_zeros(layer_output_info.inferDims.d, 'b')
if frame_number == 0 :
print(f'\tModel output dimension from LayerInfo: {dims}')
output_message = f'\tCheck model output shape: {layer_output_info.inferDims.numElements}, '
output_message += f'given OUT_SHAPE : {dims}'
assert layer_output_info.inferDims.numElements == np.prod(dims), output_message
# load float* buffer to python
cdata_type = data_type_map[layer_output_info.dataType]
ptr = ctypes.cast(pyds.get_ptr(layer_output_info.buffer),
ctypes.POINTER(cdata_type))
# Determine the size of the array
out = np.ctypeslib.as_array(ptr, shape=dims)
if frame_number == 0 :
print(f'\tLoad Model Output From LayerInfo. Output Shape : {out.shape}')
# [Optional] Postprocess for YOLOv7-pose(with YoloLayer_TRT_v7.0 Layer) prediction tensor
# (https://github.com/nanmi/yolov7-pose/)
# (57001, 1, 1) > (57000, 1, 1) > (1000, 57)。
out = out[1:, ...].reshape(-1 , 57) # or out.squeeze()[1:].reshape(-1 , 57)
# ----------------------------------------------------------------------------------------------------------------------
# Explicitly specify batch dimensions
if np.ndim(out) < 3:
out = out[np.newaxis, :]
# print(f'add axis 0 for model output : {out.shape}')
# [Optional] Postprocess for yolov8s-pose prediction tensor
# (https://github.com/triple-Mu/YOLOv8-TensorRT/tree/triplemu/pose-infer)
# (batch, 56, 8400) >(batch, 8400, 56) for yolov8
# out = out.transpose((0, 2, 1))
# # make pseudo class prob
# cls_prob = np.ones((out.shape[0], out.shape[1], 1), dtype=np.uint8)
# out[..., :4] = map_to_zero_one(out[..., :4]) # scalar prob to [0, 1]
# # insert pseudo class prob into predictions
# out = np.concatenate((out[..., :5], cls_prob, out[..., 5:]), axis=-1)
# out[..., [0, 2]] = out[..., [0, 2]] * network_info.width # scale to screen width
# out[..., [1, 3]] = out[..., [1, 3]] * network_info.height # scale to screen height
# ----------------------------------------------------------------------------------------------------------------------
output_shape = (MUXER_OUTPUT_HEIGHT, MUXER_OUTPUT_WIDTH)
if frame_number == 0 :
print(f'\tModel output : {out.shape}, The coordinates of the keypoint are rescaled to (h, w) : {output_shape}')
pred = postprocess(out, output_shape, input_shape,
conf_thres=conf_thres, iou_thres=iou_thres)
boxes, confs, kpts = pred
if len(boxes) > 0 and len(confs) > 0 and len(kpts) > 0:
add_obj_meta(frame_meta, batch_meta, boxes[0], confs[0])
dispaly_frame_pose(frame_meta, batch_meta,
boxes[0], confs[0], kpts[0])
except StopIteration:
break
try:
l_usr = l_usr.next
except StopIteration:
break
# update frame rate through this probe
stream_index = "stream{0}".format(frame_meta.pad_index)
global perf_data
perf_data.update_fps(stream_index)
try:
# indicate inference is performed on the frame
frame_meta.bInferDone = True
l_frame = l_frame.next
except StopIteration:
break
# pyds.nvds_acquire_meta_lock(batch_meta)
# frame_meta.bInferDone = True
# pyds.nvds_release_meta_lock(batch_meta)
return Gst.PadProbeReturn.OK
# tiler_sink_pad_buffer_probe will extract metadata received on OSD sink pad
# and update params for drawing rectangle, object information etc.
# Callback function for deep-copying an NvDsEventMsgMeta struct
# def osd_sink_pad_buffer_probe(pad, info, u_data):
# buffer = info.get_buffer()
# batch = pyds.gst_buffer_get_nvds_batch_meta(hash(buffer))
# l_frame = batch.frame_meta_list
# while l_frame:
# frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
# l_obj = frame_meta.obj_meta_list
# while l_obj:
# obj_meta = pyds.NvDsObjectMeta.cast(l_obj.data)
# obj_meta.text_params.display_text = "person{}: {:.2f}".format(obj_meta.object_id ,obj_meta.tracker_confidence)
# obj_meta.text_params.set_bg_clr = 1 # Set boolean indicating that text has bg color to true.
# obj_meta.text_params.text_bg_clr.set(0.2, 0.2, 0.2, 0.3) # set(red, green, blue, alpha);
# # track_box = obj_meta.tracker_bbox_info.org_bbox_coords
# # print(track_box.left,track_box.top,track_box.height,track_box.width)
# # rect_params = obj_meta.rect_params
# # rect_params.left = track_box.left
# # rect_params.top = track_box.top
# # rect_params.width = track_box.width
# # rect_params.height = track_box.height
# l_obj = l_obj.next
# l_frame = l_frame.next
# return Gst.PadProbeReturn.OK
def main(args):
global perf_data
# Check input arguments
number_sources = len(args)
perf_data = PERF_DATA(number_sources)
# Standard GStreamer initialization
Gst.init(None)
# Create gstreamer elements */
# Create Pipeline element that will form a connection of other elements
print("Creating Pipeline \n ")
pipeline = Gst.Pipeline()
is_live = False
if not pipeline:
sys.stderr.write(" Unable to create Pipeline \n")
print("Creating streamux \n ")
# Create nvstreammux instance to form batches from one or more sources.
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
sys.stderr.write(" Unable to create NvStreamMux \n")
pipeline.add(streammux)
for i in range(number_sources):
print("Creating source_bin ", i, " \n ")
uri_name = args[i]
if uri_name.find("rtsp://") == 0:
is_live = True
source_bin = create_source_bin(i, uri_name, file_loop=file_loop)
if not source_bin:
sys.stderr.write("Unable to create source bin \n")
pipeline.add(source_bin)
padname = "sink_%u" % i
sinkpad = streammux.get_request_pad(padname)
if not sinkpad:
sys.stderr.write("Unable to create sink pad bin \n")
srcpad = source_bin.get_static_pad("src")
if not srcpad:
sys.stderr.write("Unable to create src pad bin \n")
srcpad.link(sinkpad)
print("Creating Pgie \n ")
if gie == "nvinfer":
pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
else:
pgie = Gst.ElementFactory.make("nvinferserver", "primary-inference")
if not pgie:
sys.stderr.write(" Unable to create pgie \n")
# Add nvvidconv1 and filter1 to convert the frames to RGBA
# which is easier to work with in Python.
# print("Creating nvvidconv1 \n ")
# nvvidconv1 = Gst.ElementFactory.make("nvvideoconvert", "convertor1")
# if not nvvidconv1:
# sys.stderr.write(" Unable to create nvvidconv1 \n")
# print("Creating filter1 \n ")
# caps = Gst.Caps.from_string("video/x-raw(memory:NVMM), format=RGBA")
# filter = Gst.ElementFactory.make("capsfilter", "filter1")
# if not filter:
# sys.stderr.write(" Unable to get the caps filter \n")
# filter.set_property("caps", caps)
print("Creating tiler \n ")
tiler = Gst.ElementFactory.make("nvmultistreamtiler", "nvtiler")
if not tiler:
sys.stderr.write(" Unable to create tiler \n")
print("Creating nvvidconv \n ")
nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
if not nvvidconv:
sys.stderr.write(" Unable to create nvvidconv \n")
print("Creating nvosd \n ")
nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
if not nvosd:
sys.stderr.write(" Unable to create nvosd \n")
nvosd.set_property('process-mode', OSD_PROCESS_MODE)
nvosd.set_property('display-text', OSD_DISPLAY_TEXT)
nvvidconv_postosd = Gst.ElementFactory.make(
"nvvideoconvert", "convertor_postosd")
if not nvvidconv_postosd:
sys.stderr.write(" Unable to create nvvidconv_postosd \n")
# Create a caps filter
caps = Gst.ElementFactory.make("capsfilter", "filter")
caps.set_property(
"caps", Gst.Caps.from_string("video/x-raw(memory:NVMM), format=I420")
)
# Make the encoder
if codec == "H264":
encoder = Gst.ElementFactory.make("nvv4l2h264enc", "encoder")
print("Creating H264 Encoder")
elif codec == "H265":
encoder = Gst.ElementFactory.make("nvv4l2h265enc", "encoder")
print("Creating H265 Encoder")
if not encoder:
sys.stderr.write(" Unable to create encoder")
encoder.set_property("bitrate", bitrate)
if is_aarch64():
encoder.set_property("preset-level", 1)
encoder.set_property("insert-sps-pps", 1)
# encoder.set_property("bufapi-version", 1)
# Make the payload-encode video into RTP packets
if codec == "H264":
rtppay = Gst.ElementFactory.make("rtph264pay", "rtppay")
print("Creating H264 rtppay")
elif codec == "H265":
rtppay = Gst.ElementFactory.make("rtph265pay", "rtppay")
print("Creating H265 rtppay")
if not rtppay:
sys.stderr.write(" Unable to create rtppay")
# Make the UDP sink
updsink_port_num = 5400
sink = Gst.ElementFactory.make("udpsink", "udpsink")
if not sink:
sys.stderr.write(" Unable to create udpsink")
if file_loop:
if is_aarch64():
# Set nvbuf-memory-type=4 for aarch64 for file-loop (nvurisrcbin case)
streammux.set_property('nvbuf-memory-type', 4)
else:
# Set nvbuf-memory-type=2 for x86 for file-loop (nvurisrcbin case)
streammux.set_property('nvbuf-memory-type', 2)
sink.set_property("host", "224.224.255.255")
sink.set_property("port", updsink_port_num)
sink.set_property("async", False)
sink.set_property("sync", 1)
streammux.set_property("width", MUXER_OUTPUT_WIDTH)
streammux.set_property("height", MUXER_OUTPUT_HEIGHT)
streammux.set_property("batch-size", number_sources) # 1 or number_sources
streammux.set_property("batched-push-timeout", 4000000)
if gie == "nvinfer":
pgie.set_property("config-file-path", config_file_path)
else:
pgie.set_property("config-file-path",
"dstest1_pgie_inferserver_config.txt")
tracker = make_element("nvtracker", "tracker")
set_tracker_config("configs/config_tracker.txt", tracker)
pgie_batch_size = pgie.get_property("batch-size")
if pgie_batch_size != number_sources:
print(
"WARNING: Overriding infer-config batch-size",
pgie_batch_size,
" with number of sources ",
number_sources,
" \n",
)
pgie.set_property("batch-size", number_sources)
print("Adding elements to Pipeline \n")
tiler_rows = int(math.sqrt(number_sources))
tiler_columns = int(math.ceil((1.0 * number_sources) / tiler_rows))
tiler.set_property("rows", tiler_rows)
tiler.set_property("columns", tiler_columns)
tiler.set_property("width", TILED_OUTPUT_WIDTH)
tiler.set_property("height", TILED_OUTPUT_HEIGHT)
sink.set_property("qos", 0)
pipeline.add(pgie)
pipeline.add(tracker)
pipeline.add(tiler)
pipeline.add(nvvidconv)
pipeline.add(nvosd)
pipeline.add(nvvidconv_postosd)
pipeline.add(caps)
pipeline.add(encoder)
pipeline.add(rtppay)
pipeline.add(sink)
streammux.link(pgie)
pgie.link(tracker)
tracker.link(nvvidconv)
nvvidconv.link(tiler)
tiler.link(nvosd)
nvosd.link(nvvidconv_postosd)
nvvidconv_postosd.link(caps)
caps.link(encoder)
encoder.link(rtppay)
rtppay.link(sink)
# create an event loop and feed gstreamer bus mesages to it
loop = GLib.MainLoop()
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect("message", bus_call, loop)
# Start streaming
rtsp_port_num = 8554
server = GstRtspServer.RTSPServer.new()
server.props.service = "%d" % rtsp_port_num
server.attach(None)
factory = GstRtspServer.RTSPMediaFactory.new()
factory.set_launch(
'( udpsrc name=pay0 port=%d buffer-size=524288 caps="application/x-rtp, media=video, clock-rate=90000, encoding-name=(string)%s, payload=96 " )'
% (updsink_port_num, codec)
)
factory.set_shared(True)
server.get_mount_points().add_factory("/ds-test", factory)
print(
"\n *** DeepStream: Launched RTSP Streaming at rtsp://localhost:%d/ds-test ***\n\n"
% rtsp_port_num
)
# Add probe to get informed of the meta data generated, we add probe to
# the sink pad of the osd element, since by that time, the buffer would have
# had got all the metadata.
# either nvosd.get_static_pad("sink") or pgie.get_static_pad("src") works
pgiepad = pgie.get_static_pad("src")
if not pgiepad:
sys.stderr.write(" Unable to get pgiepad src pad of tracker \n")
pgiepad.add_probe(Gst.PadProbeType.BUFFER, pose_src_pad_buffer_probe, 0)
# osdpad = nvosd.get_static_pad("sink")
# if not osdpad:
# sys.stderr.write(" Unable to get osdpad sink pad of tracker \n")
# osdpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0)
pgie_src_pad = pgie.get_static_pad("src")
if not pgie_src_pad:
sys.stderr.write(" Unable to get src pad \n")
else:
pgie_src_pad.add_probe(Gst.PadProbeType.BUFFER, pose_src_pad_buffer_probe, 0)
# perf callback function to print fps every 5 sec
GLib.timeout_add(5000, perf_data.perf_print_callback)
# start play back and listen to events
print("Starting pipeline \n")
pipeline.set_state(Gst.State.PLAYING)
# start play back and listed to events
try:
loop.run()
except :
pass
# cleanup
pipeline.set_state(Gst.State.NULL)
def parse_args():
parser = argparse.ArgumentParser(
description='RTSP Output Sample Application Help ')
parser.add_argument("-i", "--input",
help="Path to input H264 elementry stream", nargs="+", default=["a"], required=True)
parser.add_argument("-g", "--gie", default="nvinfer",
help="choose GPU inference engine type nvinfer or nvinferserver , default=nvinfer", choices=['nvinfer', 'nvinferserver'])
parser.add_argument("-c", "--codec", default="H264",
help="RTSP Streaming Codec H264/H265 , default=H264", choices=['H264', 'H265'])
parser.add_argument("-b", "--bitrate", default=4000000,
help="Set the encoding bitrate ", type=int)
parser.add_argument("-config", "--config-file", default='./configs/dstest1_pgie_YOLOv7-Pose-YOLOLAYER_config.txt',
help="Set the config file path", type=str)
parser.add_argument("--file-loop", action="store_true", default=False, dest='file_loop',
help="Loop the input file sources after EOS",)
parser.add_argument("--conf-thres", default=0.25,
help='object confidence threshold', type=float)
parser.add_argument("--iou-thres", default=0.45,
help='IOU threshold for NMS', type=float)
# Check input arguments
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
sys.exit(1)
args = parser.parse_args()
global codec
global bitrate
global stream_path
global gie
global config_file_path
global file_loop
global conf_thres
global iou_thres
gie = args.gie
codec = args.codec
bitrate = args.bitrate
stream_path = args.input
config_file_path = args.config_file
file_loop = args.file_loop
conf_thres = args.conf_thres
iou_thres = args.iou_thres
print(f'Args : {args}' )
return stream_path
if __name__ == '__main__':
stream_path = parse_args()
sys.exit(main(stream_path))