forked from DmesonAnalysers/DmesonAnalysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ProjectSignifNtuple.py
84 lines (77 loc) · 3.66 KB
/
ProjectSignifNtuple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
'''
python script for the projection of the Tuple generated by ScanSelections.py
run: python ProjectSignifNtuple.py cfgFileName.yml cutSetFileName.yml outFileName.root
'''
import argparse
import yaml
import numpy as np
from ROOT import TFile, TH1F, TCanvas, kGreen, kOpenCrossX # pylint: disable=import-error,no-name-in-module
from utils.StyleFormatter import SetObjectStyle
from utils.DfUtils import LoadDfFromRootOrParquet
parser = argparse.ArgumentParser(description='Arguments to pass')
parser.add_argument('cfgFileName', metavar='text', default='cfgFileName.yml',
help='config file name with root input files')
parser.add_argument('cutSetFileName', metavar='text', default='cutSetFileName.yml',
help='input file with cut set')
parser.add_argument('outFileName', metavar='text', default='outFileName.root',
help='output root file name')
args = parser.parse_args()
#config input file and df definition
with open(args.cfgFileName, 'r') as ymlCfgFile:
inputCfg = yaml.load(ymlCfgFile, yaml.FullLoader)
inFileNames = inputCfg['infiles']['name']
dfSignif = LoadDfFromRootOrParquet(inputCfg['infiles']['name'], inputCfg['infiles']['dirname'],
inputCfg['infiles']['treename'])
dfSignif['Pt'] = dfSignif.apply(lambda row: (row.PtMin + row.PtMax) / 2, axis=1)
VarDrawList = inputCfg['VarDrawList']
if not isinstance(VarDrawList, list):
VarDrawList = [VarDrawList]
#selections to be applied
with open(args.cutSetFileName, 'r') as ymlCutSetFile:
cutSetCfg = yaml.load(ymlCutSetFile, yaml.FullLoader)
cutVars = cutSetCfg['cutvars']
if not 'ML_output_Bkg' or not 'ML_output_FD' in cutVars:
print('\t\t---Warning: no ML Bkg or FD output cut was provided. Are you sure you want to continue?---\n')
selToApply = []
counter = 0
for iPt, (ptMin, ptMax) in enumerate(zip(cutVars['Pt']['min'], cutVars['Pt']['max'])):
selToApply.append('')
for iVar, varName in enumerate(cutVars):
if selToApply[counter] != '':
selToApply[counter] += ' & '
selToApply[counter] += (f"{cutVars[varName]['min'][counter]} < {cutVars[varName]['name']} <="
f" {cutVars[varName]['max'][counter]}")
counter += 1
#output file preparation
outFile = TFile(args.outFileName, 'RECREATE')
outFile.cd()
TProject = TCanvas('DsNtupleProjOverPt', '', 1920, 1080)
TProject.Divide(2, round(len(VarDrawList)/2))
hProject = []
#output histos
nbins = len(cutVars['Pt']['max'])
xbins = cutVars['Pt']['min'] + list(set(cutVars['Pt']['max']) - set(cutVars['Pt']['min']))
for iVar, VartoDraw in enumerate(VarDrawList):
hProject.append(TH1F(f'hProject{VartoDraw}', f'{VartoDraw} over p''_{T}'f'; p''_{T}'' [GeV/c] ;'f'{VartoDraw}',
nbins, np.asarray(xbins, float)))
SetObjectStyle(hProject[iVar], color=kGreen-iVar, markerstyle=kOpenCrossX, markersize=1.5, linewidh=2, linestyle=7)
for iPt, _ in enumerate(cutVars['Pt']['min']):
dfSignifSel = dfSignif.query(selToApply[iPt])
hProject[iVar].SetBinContent(iPt+1, dfSignifSel[f'{VartoDraw}'])
if VartoDraw in ('EffAccFD', 'EffAccPrompt'):
hProject[iVar].SetBinError(iPt+1, dfSignifSel[f'{VartoDraw}Error'])
if VartoDraw == 'S':
hProject[iVar].SetBinError(iPt+1, dfSignifSel['S'] / dfSignifSel['Signif'])
if VartoDraw == 'B':
hProject[iVar].SetBinError(iPt+1, np.sqrt(dfSignifSel['B']))
TProject.cd(iVar+1)
hProject[iVar].DrawCopy()
TProject.Update()
TProject.Modified()
TProject.Write()
if inputCfg['saveaspdf']:
TProject.SaveAs('DsNtupleProjOverPt.pdf')
#saving output and closing
outFile.Write()
outFile.Close()
input('Press enter to exit')