-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
369 lines (314 loc) · 16.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from datasets import dataset_dict
from datasets.utils import save_pfm, read_pfm
import cv2
import torch
import os, shutil
import numpy as np
from tqdm import tqdm
from argparse import ArgumentParser
# for depth prediction
from models.mvsnet import CascadeMVSNet
from utils import load_ckpt
from inplace_abn import ABN
# for point cloud fusion
from numba import jit
from plyfile import PlyData, PlyElement
torch.backends.cudnn.benchmark = True # this increases inference speed a little
def get_opts():
parser = ArgumentParser()
parser.add_argument('--root_dir', type=str,
default='/dataset_low_res',
help='root directory of dtu dataset')
parser.add_argument('--dataset_name', type=str, default='dtu',
choices=['dtu', 'tanks', 'blendedmvs'],
help='which dataset to train/val')
parser.add_argument('--split', type=str, default='test',
help='which split to evaluate')
parser.add_argument('--scan', type=str, default='',
help='specify scan to evaluate (must be in the split)')
parser.add_argument('--cpu', default=False, action='store_true',
help='''use cpu to do depth inference.
WARNING: It is going to be EXTREMELY SLOW!
about 37s/view, so in total 30min/scan.
''')
# for depth prediction
parser.add_argument('--n_views', type=int, default=5,
help='number of views (including ref) to be used in testing')
parser.add_argument('--depth_interval', type=float, default=2.65,
help='depth interval unit in mm')
parser.add_argument('--n_depths', nargs='+', type=int, default=[8,32,48],
help='number of depths in each level')
parser.add_argument('--interval_ratios', nargs='+', type=float, default=[1.0,2.0,4.0],
help='depth interval ratio to multiply with --depth_interval in each level')
parser.add_argument('--num_groups', type=int, default=1, choices=[1, 2, 4, 8],
help='number of groups in groupwise correlation, must be a divisor of 8')
parser.add_argument('--img_wh', nargs="+", type=int, default=[1152, 864],
help='resolution (img_w, img_h) of the image, must be multiples of 32')
parser.add_argument('--ckpt_path', type=str, default='ckpts/exp2/_ckpt_epoch_10.ckpt',
help='pretrained checkpoint path to load')
parser.add_argument('--save_visual', default=False, action='store_true',
help='save depth and proba visualization or not')
# for point cloud fusion
parser.add_argument('--conf', type=float, default=0.999,
help='min confidence for pixel to be valid')
parser.add_argument('--min_geo_consistent', type=int, default=5,
help='min number of consistent views for pixel to be valid')
parser.add_argument('--max_ref_views', type=int, default=400,
help='max number of ref views (to limit RAM usage)')
parser.add_argument('--skip', type=int, default=1,
help='''how many points to skip when creating the point cloud.
Larger = fewer points and smaller file size.
Ref: skip=10 creates ~= 3M points = 50MB file
skip=1 creates ~= 30M points = 500MB file
''')
parser.add_argument('--gpu', type = int, default = 0, help='whirch gpu to run this code')
# model param
parser.add_argument('--deform_conv', nargs='+', type=int, default=[1,0,0,0,0,1,0,1],
help='define which FPN layer use DCNv2')
return parser.parse_args()
def decode_batch(batch):
imgs = batch['imgs']
proj_mats = batch['proj_mats']
init_depth_min = batch['init_depth_min'].item()
depth_interval = batch['depth_interval'].item()
scan, vid = batch['scan_vid']
return imgs, proj_mats, init_depth_min, depth_interval, \
scan, vid
# define read_image and read_proj_mat for each dataset
def read_image(dataset_name, split, root_dir, scan, vid):
if dataset_name == 'dtu':
return cv2.imread(os.path.join(root_dir,
f'Rectified/{scan}/images/{vid:08d}.jpg'))
# f'Rectified/{scan}/rect_{vid+1:03d}_3_r5000.png'))
if dataset_name == 'tanks':
return cv2.imread(os.path.join(root_dir, split, scan,
f'images/{vid:08d}.jpg'))
if dataset_name == 'blendedmvs':
return cv2.imread(os.path.join(root_dir, scan,
f'blended_images/{vid:08d}.jpg'))
def read_refined_image(dataset_name, scan, vid):
return cv2.imread(f'results/{dataset_name}/image_refined/{scan}/{vid:08d}.png')
def save_refined_image(image_refined, dataset_name, scan, vid):
cv2.imwrite(f'results/{dataset_name}/image_refined/{scan}/{vid:08d}.png',
image_refined)
def read_proj_mat(dataset_name, dataset, scan, vid):
if dataset_name == 'dtu':
return dataset.proj_mats[vid][0][0].numpy()
if dataset_name in ['tanks', 'blendedmvs']:
return dataset.proj_mats[scan][vid][0][0].numpy()
# @jit(nopython=True, fastmath=True)
def xy_ref2src(xy_ref, depth_ref, P_world2ref,
depth_src, P_world2src, img_wh):
# create ref grid and project to ref 3d coordinate using depth_ref
xyz_ref = np.vstack((xy_ref, np.ones_like(xy_ref[:1]))) * depth_ref
xyz_ref_h = np.vstack((xyz_ref, np.ones_like(xy_ref[:1])))
P = (P_world2src @ np.ascontiguousarray(np.linalg.inv(P_world2ref)))[:3]
# project to src 3d coordinate using P_world2ref and P_world2src
xyz_src_h = P @ xyz_ref_h.reshape(4,-1)
xy_src = xyz_src_h[:2]/xyz_src_h[2:3]
xy_src = xy_src.reshape(2, img_wh[1], img_wh[0])
return xy_src
# @jit(nopython=True, fastmath=True)
def xy_src2ref(xy_ref, xy_src, depth_ref, P_world2ref,
depth_src2ref, P_world2src, img_wh):
# project xy_src back to ref view using the sampled depth
xyz_src = np.vstack((xy_src, np.ones_like(xy_src[:1]))) * depth_src2ref
xyz_src_h = np.vstack((xyz_src, np.ones_like(xy_src[:1])))
P = (P_world2ref @ np.ascontiguousarray(np.linalg.inv(P_world2src)))[:3]
xyz_ref_h = P @ xyz_src_h.reshape(4,-1)
depth_ref_reproj = xyz_ref_h[2].reshape(img_wh[1], img_wh[0])
xy_ref_reproj = xyz_ref_h[:2]/xyz_ref_h[2:3]
xy_ref_reproj = xy_ref_reproj.reshape(2, img_wh[1], img_wh[0])
# check |p_reproj-p_1| < 1
pixel_diff = xy_ref_reproj - xy_ref
mask_pixel_reproj = (pixel_diff[0]**2+pixel_diff[1]**2)<1
# check |d_reproj-d_1| / d_1 < 0.01
mask_depth_reproj = np.abs((depth_ref_reproj-depth_ref)/depth_ref)<0.01
mask_geo = mask_pixel_reproj & mask_depth_reproj
return depth_ref_reproj, mask_geo
def check_geo_consistency(depth_ref, P_world2ref,
depth_src, P_world2src,
image_ref, image_src,
img_wh):
"""
Check the geometric consistency between ref and src views.
"""
xy_ref = np.mgrid[:img_wh[1],:img_wh[0]][::-1].astype(np.float32)
xy_src = xy_ref2src(xy_ref, depth_ref, P_world2ref,
depth_src, P_world2src, img_wh)
# Sample the depth of xy_src using bilinear interpolation
depth_src2ref = cv2.remap(depth_src,
xy_src[0].astype(np.float32),
xy_src[1].astype(np.float32),
interpolation=cv2.INTER_LINEAR)
image_src2ref = cv2.remap(image_src,
xy_src[0].astype(np.float32),
xy_src[1].astype(np.float32),
interpolation=cv2.INTER_LINEAR)
depth_ref_reproj, mask_geo = \
xy_src2ref(xy_ref, xy_src, depth_ref, P_world2ref,
depth_src2ref, P_world2src, img_wh)
depth_ref_reproj[~mask_geo] = 0
image_src2ref[~mask_geo] = 0
return depth_ref_reproj, mask_geo, image_src2ref
if __name__ == "__main__":
args = get_opts()
dataset = dataset_dict[args.dataset_name] \
(args.root_dir, args.split,
n_views=args.n_views, depth_interval=args.depth_interval,
img_wh=tuple(args.img_wh))
if args.scan:
scans = [args.scan]
else: # evaluate on all scans in dataset
scans = dataset.scans
# Step 1. Create depth estimation and probability for each scan
# TODO: modify model parameters
model = CascadeMVSNet(n_depths=args.n_depths,
interval_ratios=args.interval_ratios,
num_groups=args.num_groups,
deformConv=args.deform_conv,
norm_act=ABN)
device = 'cpu' if args.cpu else 'cuda:0'
model.to(device)
load_ckpt(model, args.ckpt_path)
model.eval()
depth_dir = f'results/{args.dataset_name}/depth'
print('Creating depth and confidence predictions...')
if args.scan:
data_range = [i for i, x in enumerate(dataset.metas) if x[0] == args.scan]
else:
data_range = range(len(dataset))
for i in tqdm(data_range):
imgs, proj_mats, init_depth_min, depth_interval, scan, vid = decode_batch(dataset[i])
os.makedirs(os.path.join(depth_dir, scan), exist_ok=True)
with torch.no_grad():
imgs = imgs.unsqueeze(0).to(device)
proj_mats = proj_mats.unsqueeze(0).to(device)
results, _ = model(imgs, proj_mats, init_depth_min, depth_interval)
depth = results['depth_0'][0].cpu().numpy()
depth = np.nan_to_num(depth) # change nan to 0
proba_2 = results['confidence_2'][0].cpu().numpy() # NOTE: this is 1/4 scale!
proba_2 = np.nan_to_num(proba_2) # change nan to 0
proba = cv2.resize(proba_2, None, fx=4, fy=4,
interpolation=cv2.INTER_LINEAR)
proba_1 = results['confidence_1'][0].cpu().numpy() # NOTE: this is 1/2 scale!
proba_1 = np.nan_to_num(proba_1) # change nan to 0
proba = proba * cv2.resize(proba_1, None, fx=2, fy=2,
interpolation=cv2.INTER_LINEAR)
proba_0 = results['confidence_0'][0].cpu().numpy() # NOTE: this is 1 scale!
proba_0 = np.nan_to_num(proba_0) # change nan to 0
proba = proba * proba_0
save_pfm(os.path.join(depth_dir, f'{scan}/depth_{vid:04d}.pfm'), depth)
save_pfm(os.path.join(depth_dir, f'{scan}/proba_{vid:04d}.pfm'), proba)
if args.save_visual:
mi = np.min(depth[depth>0])
ma = np.max(depth)
depth = (depth-mi)/(ma-mi+1e-8)
depth = (255*depth).astype(np.uint8)
depth_img = cv2.applyColorMap(depth, cv2.COLORMAP_JET)
cv2.imwrite(os.path.join(depth_dir, f'{scan}/depth_visual_{vid:04d}.jpg'),
depth_img)
cv2.imwrite(os.path.join(depth_dir, f'{scan}/proba_visual_{vid:04d}.jpg'),
(255*(proba>args.conf)).astype(np.uint8))
del imgs, proj_mats, results
del model
torch.cuda.empty_cache()
###################################################################################
# Step 2. Perform depth filtering and fusion
point_dir = f'results/{args.dataset_name}/points'
os.makedirs(point_dir, exist_ok=True)
print('Fusing point clouds...')
for scan in scans:
print(f'Processing {scan} ...')
# buffers for the final vertices of this scan
vs = []
v_colors = []
# buffers storing the refined data of each ref view
os.makedirs(f'results/{args.dataset_name}/image_refined/{scan}', exist_ok=True)
image_refined = set()
depth_refined = {}
for meta in tqdm(list(filter(lambda x: x[0] == scan, dataset.metas))[:args.max_ref_views]):
try:
ref_vid = meta[2]
if ref_vid in image_refined: # not yet refined actually
image_ref = read_refined_image(args.dataset_name, scan, ref_vid)
depth_ref = depth_refined[ref_vid]
else:
image_ref = read_image(args.dataset_name, args.split, args.root_dir, scan, ref_vid)
image_ref = cv2.resize(image_ref, tuple(args.img_wh),
interpolation=cv2.INTER_LINEAR)[:, :, ::-1] # to RGB
depth_ref = read_pfm(f'results/{args.dataset_name}/depth/' \
f'{scan}/depth_{ref_vid:04d}.pfm')[0]
proba_ref = read_pfm(f'results/{args.dataset_name}/depth/' \
f'{scan}/proba_{ref_vid:04d}.pfm')[0]
mask_conf = proba_ref > args.conf # confidence mask
P_world2ref = read_proj_mat(args.dataset_name, dataset, scan, ref_vid)
src_vids = meta[3]
mask_geos = []
depth_ref_reprojs = [depth_ref]
image_src2refs = [image_ref]
# for each src view, check the consistency and refine depth
for src_vid in src_vids:
if src_vid in image_refined: # use refined data of previous runs
image_src = read_refined_image(args.dataset_name, scan, src_vid)
depth_src = depth_refined[src_vid]
else:
image_src = read_image(args.dataset_name, args.split, args.root_dir, scan, src_vid)
image_src = cv2.resize(image_src, tuple(args.img_wh),
interpolation=cv2.INTER_LINEAR)[:, :, ::-1] # to RGB
depth_src = read_pfm(f'results/{args.dataset_name}/depth/' \
f'{scan}/depth_{src_vid:04d}.pfm')[0]
depth_refined[src_vid] = depth_src
P_world2src = read_proj_mat(args.dataset_name, dataset, scan, src_vid)
depth_ref_reproj, mask_geo, image_src2ref = \
check_geo_consistency(depth_ref, P_world2ref,
depth_src, P_world2src,
image_ref, image_src, tuple(args.img_wh))
depth_ref_reprojs += [depth_ref_reproj]
image_src2refs += [image_src2ref]
mask_geos += [mask_geo]
mask_geo_sum = np.sum(mask_geos, 0)
mask_geo_final = mask_geo_sum >= args.min_geo_consistent
depth_refined[ref_vid] = \
(np.sum(depth_ref_reprojs, 0) / (mask_geo_sum + 1)).astype(np.float32)
image_refined_ = \
np.sum(image_src2refs, 0) / np.expand_dims((mask_geo_sum + 1), -1)
image_refined.add(ref_vid)
save_refined_image(image_refined_, args.dataset_name, scan, ref_vid)
mask_final = mask_conf & mask_geo_final
# create the final points
xy_ref = np.mgrid[:args.img_wh[1], :args.img_wh[0]][::-1]
xyz_ref = np.vstack((xy_ref, np.ones_like(xy_ref[:1]))) * depth_refined[ref_vid]
xyz_ref = xyz_ref.transpose(1, 2, 0)[mask_final].T # (3, N)
color = image_refined_[mask_final] # (N, 3)
xyz_ref_h = np.vstack((xyz_ref, np.ones_like(xyz_ref[:1])))
xyz_world = (np.linalg.inv(P_world2ref) @ xyz_ref_h).T # (N, 4)
xyz_world = xyz_world[::args.skip, :3]
color = color[::args.skip]
# append to buffers
vs += [xyz_world]
v_colors += [color]
except FileNotFoundError:
# some scenes might not have depth prediction due to too few valid src views
print(f'Skipping view {ref_vid} due to too few valid source views...')
continue
# clear refined buffer
image_refined.clear()
depth_refined.clear()
shutil.rmtree(f'results/{args.dataset_name}/image_refined/{scan}')
# process all points in the buffers
vs = np.ascontiguousarray(np.vstack(vs).astype(np.float32))
v_colors = np.vstack(v_colors).astype(np.uint8)
print(f'{scan} contains {len(vs) / 1e6:.2f} M points')
vs.dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4')]
v_colors.dtype = [('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]
vertex_all = np.empty(len(vs), vs.dtype.descr + v_colors.dtype.descr)
for prop in vs.dtype.names:
vertex_all[prop] = vs[prop][:, 0]
for prop in v_colors.dtype.names:
vertex_all[prop] = v_colors[prop][:, 0]
el = PlyElement.describe(vertex_all, 'vertex')
PlyData([el]).write(f'{point_dir}/{scan}.ply')
del vertex_all, vs, v_colors
shutil.rmtree(f'results/{args.dataset_name}/image_refined')
print('Done!')