- Linux or macOS (Windows is in experimental support)
- Python 3.6+
- PyTorch 1.3+
- CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
- GCC 5+
- MMCV
The required versions of MMCV, MMDetection and MMSegmentation for different versions of MMDetection3D are as below. Please install the correct version of MMCV, MMDetection and MMSegmentation to avoid installation issues.
MMDetection3D version | MMDetection version | MMSegmentation version | MMCV version |
---|---|---|---|
master | mmdet>=2.19.0, <=3.0.0 | mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.4.8, <=1.7.0 |
v1.0.0rc2 | mmdet>=2.19.0, <=3.0.0 | mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.4.8, <=1.7.0 |
v1.0.0rc1 | mmdet>=2.19.0, <=3.0.0 | mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.4.8, <=1.5.0 |
v1.0.0rc0 | mmdet>=2.19.0, <=3.0.0 | mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.17, <=1.5.0 |
0.18.1 | mmdet>=2.19.0, <=3.0.0 | mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.17, <=1.5.0 |
0.18.0 | mmdet>=2.19.0, <=3.0.0 | mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.17, <=1.5.0 |
0.17.3 | mmdet>=2.14.0, <=3.0.0 | mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0 |
0.17.2 | mmdet>=2.14.0, <=3.0.0 | mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0 |
0.17.1 | mmdet>=2.14.0, <=3.0.0 | mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0 |
0.17.0 | mmdet>=2.14.0, <=3.0.0 | mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0 |
0.16.0 | mmdet>=2.14.0, <=3.0.0 | mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0 |
0.15.0 | mmdet>=2.14.0, <=3.0.0 | mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0 |
0.14.0 | mmdet>=2.10.0, <=2.11.0 | mmseg==0.14.0 | mmcv-full>=1.3.1, <=1.4.0 |
0.13.0 | mmdet>=2.10.0, <=2.11.0 | Not required | mmcv-full>=1.2.4, <=1.4.0 |
0.12.0 | mmdet>=2.5.0, <=2.11.0 | Not required | mmcv-full>=1.2.4, <=1.4.0 |
0.11.0 | mmdet>=2.5.0, <=2.11.0 | Not required | mmcv-full>=1.2.4, <=1.3.0 |
0.10.0 | mmdet>=2.5.0, <=2.11.0 | Not required | mmcv-full>=1.2.4, <=1.3.0 |
0.9.0 | mmdet>=2.5.0, <=2.11.0 | Not required | mmcv-full>=1.2.4, <=1.3.0 |
0.8.0 | mmdet>=2.5.0, <=2.11.0 | Not required | mmcv-full>=1.1.5, <=1.3.0 |
0.7.0 | mmdet>=2.5.0, <=2.11.0 | Not required | mmcv-full>=1.1.5, <=1.3.0 |
0.6.0 | mmdet>=2.4.0, <=2.11.0 | Not required | mmcv-full>=1.1.3, <=1.2.0 |
0.5.0 | 2.3.0 | Not required | mmcv-full==1.0.5 |
Assuming that you already have CUDA 11.0 installed, here is a full script for quick installation of MMDetection3D with conda. Otherwise, you should refer to the step-by-step installation instructions in the next section.
conda create -n open-mmlab python=3.7 pytorch=1.9 cudatoolkit=11.0 torchvision -c pytorch -y
conda activate open-mmlab
pip3 install openmim
mim install mmcv-full
mim install mmdet
mim install mmsegmentation
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip3 install -e .
a. Create a conda virtual environment and activate it.
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
b. Install PyTorch and torchvision following the official instructions.
conda install pytorch torchvision -c pytorch
Note: Make sure that your compilation CUDA version and runtime CUDA version match. You can check the supported CUDA version for precompiled packages on the PyTorch website.
E.g. 1
If you have CUDA 10.1 installed under /usr/local/cuda
and would like to install
PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.
conda install pytorch==1.5.0 cudatoolkit=10.1 torchvision==0.6.0 -c pytorch
E.g. 2
If you have CUDA 9.2 installed under /usr/local/cuda
and would like to install
PyTorch 1.3.1., you need to install the prebuilt PyTorch with CUDA 9.2.
conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch
If you build PyTorch from source instead of installing the prebuilt package, you can use more CUDA versions such as 9.0.
c. Install MMCV. mmcv-full is necessary since MMDetection3D relies on MMDetection, CUDA ops in mmcv-full are required.
e.g.
The pre-build mmcv-full could be installed by running: (available versions could be found here)
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
Please replace {cu_version}
and {torch_version}
in the url to your desired one. For example, to install the latest mmcv-full
with CUDA 11
and PyTorch 1.7.0
, use the following command:
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well.
# We can ignore the micro version of PyTorch
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7/index.html
See here for different versions of MMCV compatible to different PyTorch and CUDA versions. Optionally, you could also build the full version from source:
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
MMCV_WITH_OPS=1 pip install -e . # package mmcv-full will be installed after this step
cd ..
Or directly run
pip install mmcv-full
d. Install MMDetection.
pip install mmdet
Optionally, you could also build MMDetection from source in case you want to modify the code:
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
git checkout v2.19.0 # switch to v2.19.0 branch
pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"
e. Install MMSegmentation.
pip install mmsegmentation
Optionally, you could also build MMSegmentation from source in case you want to modify the code:
git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
git checkout v0.20.0 # switch to v0.20.0 branch
pip install -e . # or "python setup.py develop"
f. Clone the MMDetection3D repository.
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
g.Install build requirements and then install MMDetection3D.
pip install -v -e . # or "python setup.py develop"
Note:
-
The git commit id will be written to the version number with step d, e.g. 0.6.0+2e7045c. The version will also be saved in trained models. It is recommended that you run step d each time you pull some updates from github. If C++/CUDA codes are modified, then this step is compulsory.
Important: Be sure to remove the
./build
folder if you reinstall mmdet with a different CUDA/PyTorch version.pip uninstall mmdet3d rm -rf ./build find . -name "*.so" | xargs rm
-
Following the above instructions, MMDetection3D is installed on
dev
mode, any local modifications made to the code will take effect without the need to reinstall it (unless you submit some commits and want to update the version number). -
If you would like to use
opencv-python-headless
instead ofopencv-python
, you can install it before installing MMCV. -
Some dependencies are optional. Simply running
pip install -v -e .
will only install the minimum runtime requirements. To use optional dependencies likealbumentations
andimagecorruptions
either install them manually withpip install -r requirements/optional.txt
or specify desired extras when callingpip
(e.g.pip install -v -e .[optional]
). Valid keys for the extras field are:all
,tests
,build
, andoptional
.We have supported spconv2.0. If the user has installed spconv2.0, the code will use spconv2.0 first, which will take up less GPU memory than using the default mmcv spconv. Users can use the following commands to install spconv2.0:
pip install cumm-cuxxx pip install spconv-cuxxx
Where xxx is the CUDA version in the environment.
For example, using CUDA 10.2, the command will be
pip install cumm-cu102 && pip install spconv-cu102
.Supported CUDA versions include 10.2, 11.1, 11.3, and 11.4. Users can also install it by building from the source. For more details please refer to spconv v2.x.
We also support Minkowski Engine as a sparse convolution backend. If necessary please follow original installation guide or use
pip
:conda install openblas-devel -c anaconda pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps --install-option="--blas_include_dirs=/opt/conda/include" --install-option="--blas=openblas"
-
The code can not be built for CPU only environment (where CUDA isn't available) for now.
We provide a Dockerfile to build an image.
# build an image with PyTorch 1.6, CUDA 10.1
docker build -t mmdetection3d -f docker/Dockerfile .
Run it with
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection3d/data mmdetection3d
Here is a full script for setting up MMdetection3D with conda.
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
# install latest PyTorch prebuilt with the default prebuilt CUDA version (usually the latest)
conda install -c pytorch pytorch torchvision -y
# install mmcv
pip install mmcv-full
# install mmdetection
pip install git+https://github.com/open-mmlab/mmdetection.git
# install mmsegmentation
pip install git+https://github.com/open-mmlab/mmsegmentation.git
# install mmdetection3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip install -v -e .
The train and test scripts already modify the PYTHONPATH
to ensure the script use the MMDetection3D in the current directory.
To use the default MMDetection3D installed in the environment rather than that you are working with, you can remove the following line in those scripts
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
We provide several demo scripts to test a single sample. Pre-trained models can be downloaded from model zoo. To test a single-modality 3D detection on point cloud scenes:
python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}]
Examples:
python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
If you want to input a ply
file, you can use the following function and convert it to bin
format. Then you can use the converted bin
file to generate demo.
Note that you need to install pandas
and plyfile
before using this script. This function can also be used for data preprocessing for training ply data
.
import numpy as np
import pandas as pd
from plyfile import PlyData
def convert_ply(input_path, output_path):
plydata = PlyData.read(input_path) # read file
data = plydata.elements[0].data # read data
data_pd = pd.DataFrame(data) # convert to DataFrame
data_np = np.zeros(data_pd.shape, dtype=np.float) # initialize array to store data
property_names = data[0].dtype.names # read names of properties
for i, name in enumerate(
property_names): # read data by property
data_np[:, i] = data_pd[name]
data_np.astype(np.float32).tofile(output_path)
Examples:
convert_ply('./test.ply', './test.bin')
If you have point clouds in other format (off
, obj
, etc.), you can use trimesh
to convert them into ply
.
import trimesh
def to_ply(input_path, output_path, original_type):
mesh = trimesh.load(input_path, file_type=original_type) # read file
mesh.export(output_path, file_type='ply') # convert to ply
Examples:
to_ply('./test.obj', './test.ply', 'obj')
More demos about single/multi-modality and indoor/outdoor 3D detection can be found in demo.
Here is an example of building the model and test given point clouds.
from mmdet3d.apis import init_model, inference_detector
config_file = 'configs/votenet/votenet_8x8_scannet-3d-18class.py'
checkpoint_file = 'checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth'
# build the model from a config file and a checkpoint file
model = init_model(config_file, checkpoint_file, device='cuda:0')
# test a single image and show the results
point_cloud = 'test.bin'
result, data = inference_detector(model, point_cloud)
# visualize the results and save the results in 'results' folder
model.show_results(data, result, out_dir='results')