-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsettings.py
44 lines (34 loc) · 2.07 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python
# -*- coding: utf-8 -*-
class settings:
def __init__(self):
# General Settings
self.len = 2 ** 14 # Input Size (len = 16384)
self.device_id = 0 # GPU ID (init:0)
self.random_seed = 0
self.halfprec = False # 16Bit or not
# Parameters
self.batch_size = 50 # Batch size
self.epoch = 100 # Epoch
self.learning_rate = 0.0002 # Learning Rate
# Retrain
self.epoch_from = 0 # Epoch No. from that Retraining starts (init:0)
# Save path
self.model_save_path = 'params' # Network model path
self.model_save_cycle = 2 # Epoch cycle for saving model (init:2)
# Save wav path
self.wav_save_path = ('pred_%d'%(self.epoch))
# Wave files
self.clean_train_path = 'data/clean_trainset_wav' # Folder containing clean wav (train)
self.noisy_train_path = 'data/noisy_trainset_wav' # Folder containing noisy wav (train)
self.clean_test_path = 'data/clean_testset_wav' # Folder containing clean wav (test)
self.noisy_test_path = 'data/noisy_testset_wav' # Folder containing noisy wav (test)
# Pkl files for train
self.train_pkl_path = 'pkl' # Folder of pkl files for train
self.train_pkl_clean = 'train_clean.pkl' # File name of "Clean" pkl for train
self.train_pkl_noisy = 'train_noisy.pkl' # File name of "Noisy" pkl for train
# Pkl files for test
self.test_pkl_path = 'pkl' # Folder of pkl files for test
self.test_pkl_clean = 'test_clean.pkl' # File name of "Clean" pkl for test
self.test_pkl_noisy = 'test_noisy.pkl' # File name of "Noisy" pkl for test
self.test_pkl_length = 'test_length.pkl' # File name of "Length" pkl for test