-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcreate_mixtures.py
129 lines (108 loc) · 4.65 KB
/
create_mixtures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import numpy as np
import soundfile as sf
from activlev import activlev
import argparse
import tqdm
import logging
def GenerateMixAudio(dataPath, state, useActive=True):
if state.upper() == 'TRAIN':
dataType = ['tr', 'cv']
else:
dataType = ['tt']
print(dataType)
for i_type in dataType:
audio_path = os.path.join(dataPath, 'audio', i_type)
if not os.path.exists(os.path.join(audio_path)):
os.makedirs(os.path.join(audio_path))
outS1 = os.path.join(audio_path, 's1')
outS2 = os.path.join(audio_path, 's2')
outMix = os.path.join(audio_path, 'mix')
if not os.path.exists(outS1):
os.mkdir(outS1)
if not os.path.exists(outS2):
os.mkdir(outS2)
if not os.path.exists(outMix):
os.mkdir(outMix)
taskFile = os.path.join(dataPath, 'mix_files', "{}.txt".format(i_type))
if not os.path.exists(os.path.join(dataPath, 'text')):
os.mkdir(os.path.join(dataPath, 'text'))
sourceFile1 = os.path.join(dataPath, 'text', "{}_1".format(i_type))
sourceFile2 = os.path.join(dataPath, 'text', "{}_2".format(i_type))
mixFile = os.path.join(dataPath, 'text', "{}_mix".format(i_type))
f1 = open(sourceFile1, 'w')
f2 = open(sourceFile2, 'w')
f3 = open(mixFile, 'w')
logging.info("Processing {}".format(i_type))
with open(taskFile, 'r') as f:
for line in tqdm.tqdm(f.readlines()):
line = line.split()
s1_tr = line[0]
s2_tr = line[2]
s1WavName = "{}_{}".format(line[0].split('/')[-2], line[0].split('/')[-1][:-4])
s2WavName = "{}_{}".format(line[2].split('/')[-2], line[2].split('/')[-1][:-4])
s1Snr = round(float(line[1]), 4)
s2Snr = round(float(line[-1]), 4)
mixName = "{}_{}_{}_{}".format(s1WavName, s1Snr, s2WavName, s2Snr)
f1.write(s1_tr)
f1.write('\n')
f2.write(s2_tr)
f2.write('\n')
f3.write(mixName)
f3.write('\n')
s1_16k, fs = sf.read(line[0])
s2_16k, _ = sf.read(line[2])
'''
In original create_mixtures.m, activlev must be done, which I think it may degrade the performance since it nonlinearly filters the signal
However, most of experiments did that parts because this it's essential to control variable for publishing papers.
'''
if useActive:
s1_16k, lev1 = activlev(s1_16k, fs, 'n')
s2_16k, lev2 = activlev(s2_16k, fs, 'n')
weight_1 = pow(10, s1Snr / 20)
weight_2 = pow(10, s2Snr / 20)
s1_16k = weight_1 * s1_16k
s2_16k = weight_2 * s2_16k
mix_16k_length = min(len(s1_16k), len(s2_16k))
s1_16k = s1_16k[:mix_16k_length]
s2_16k = s2_16k[:mix_16k_length]
mix_16k = s1_16k + s2_16k
max_amp_16k = max(np.concatenate(( np.abs(mix_16k), np.abs(s1_16k), np.abs(s2_16k))))
mix_scaling_16k = 1 / max_amp_16k * 0.9
s1_16k = mix_scaling_16k * s1_16k
s2_16k = mix_scaling_16k * s2_16k
mix_16k = mix_scaling_16k * mix_16k
s1_out = os.path.join(outS1, "{}.wav".format(mixName))
s2_out = os.path.join(outS2, "{}.wav".format(mixName))
mix_out = os.path.join(outMix, "{}.wav".format(mixName))
sf.write(s1_out, s1_16k, fs, format='WAV', subtype='PCM_16')
sf.write(s2_out, s2_16k, fs, format='WAV', subtype='PCM_16')
sf.write(mix_out, mix_16k, fs, format='WAV', subtype='PCM_16')
def main(args):
logging.basicConfig(level=logging.INFO)
dataPath = args.data_dir
state = args.state
useActive = args.use_active
GenerateMixAudio(dataPath, state, useActive)
logging.info("Finish generating mixture audio and mixture files")
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Command to generate mixture audio and mixutre files'
)
parser.add_argument(
"--data_dir",
type=str,
help='Input mixtures sources information data_dir as well as output data directory'
)
parser.add_argument(
"--state",
type=str,
help='Define Generating train or test data '
)
parser.add_argument(
"--use_active",
type=str,
help='Measure active speech level '
)
args = parser.parse_args()
main(args)