-
Notifications
You must be signed in to change notification settings - Fork 0
/
small_models.py
115 lines (96 loc) · 4.53 KB
/
small_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from models import *
class SmallResNet(nn.Module):
def __init__(self, block, layers, num_classes=10, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, norm_moment=0.9, split=False):
super(SmallResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.split = split
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False]
if len(replace_stride_with_dilation) != 1:
raise ValueError("replace_stride_with_dilation should be None "
"or a 1-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
# using cifar so I change the first 4 layer!
self.conv1 = nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
self.bn1 = norm_layer(self.inplanes, momentum=norm_moment)
self.relu = nn.ReLU(inplace=True)
# self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
# bias=False)
# self.bn1 = norm_layer(self.inplanes, momentum=norm_moment)
# self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
# self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion, momentum=0.9),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x):
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
# x = self.maxpool(x)
if self.split:
f = self.avgpool(x)
f = f.view(f.size(0), -1)
x = self.layer1(x)
x = self.layer2(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
# x = self.fc(x)
if self.split:
return f, x
else:
return x
def forward(self, x):
return self._forward_impl(x)
def _small_resnet(arch, block, layers, **kwargs):
model = SmallResNet(block, layers, **kwargs)
return model
def SmallResnet(**kwargs):
return _small_resnet('smallresnet', BasicBlock, [1, 1], **kwargs)