-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
260 lines (228 loc) · 8.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import torch.optim as optim
import torch
import torch.nn as nn
import json
import os
from dataset import ImageDataset
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
from config import args
from models import Resnet18, Projector, Linear_Classifier
from small_models import SmallResnet
from criterions import NTXEntLoss
from helper import visualize, adjust_lr, adjust_linear_lr, LARC
def Train_CNN():
model.train()
train_loss = 0.0
opt_cnn.zero_grad()
for ix, (sample1, sample2) in enumerate(trainloader):
data_i, data_j = sample1["image"], sample2["image"]
data_i, data_j = data_i.to(device), data_j.to(device)
h_i = model(data_i)
h_j = model(data_j)
z_i = g(h_i)
z_j = g(h_j)
loss = criterion1(z_i, z_j) # NT-Xent Loss in the paper
loss = loss / accum
loss.backward()
train_loss += loss.item()
if (ix + 1) % accum == 0:
opt_cnn.step()
opt_cnn.zero_grad()
if ((ix + 1) % (5 * accum)) == 0:
print("L-train loss:{}".format(train_loss * accum / (ix + 1)))
if ix == 99: break # TODO: fast training
record_cnn["train_loss"].append(train_loss * accum / (ix + 1))
def Train_CLF():
model.eval()
linear_clf.train()
train_loss = 0.0
correct = 0
total = 0
for ix, (sample1, sample2) in enumerate(Linear_trainloader):
opt_clf.zero_grad()
data, label = sample1["image"], sample1["label"]
data, label = data.to(device), label.to(device)
feature = model(data)
output = linear_clf(feature.detach())
loss = criterion2(output, label)
loss.backward()
opt_clf.step()
train_loss += loss.item()
_, predict = output.max(1)
total += label.size(0)
correct += predict.eq(label).sum().item()
if (ix + 1) % 100 == 0:
print("L-train loss:{} / L-acc:{}".format(train_loss / (ix + 1),
100 * correct / total))
if ix == 99: break # TODO: fast training
record_clf["train_loss"].append(train_loss / (ix + 1))
record_clf["train_acc"].append(100 * correct / total)
def Test_CLF():
model.eval()
linear_clf.eval()
total = 0
correct = 0
test_loss = 0.0
global best_acc
with torch.no_grad():
for ix, (sample1, sample2) in enumerate(Linear_testloader):
data, label = sample1["image"], sample1["label"]
data, label = data.to(device), label.to(device)
feature = model(data)
output = linear_clf(feature.detach())
loss = criterion2(output, label)
test_loss += loss.item()
_, predict = output.max(1)
total += label.size(0)
correct += predict.eq(label).sum().item()
if ix == 99: break # TODO: fast training
print("L-test loss:{} / L-acc:{}".format(test_loss / (ix + 1),
100 * correct / total))
record_clf["test_loss"].append(test_loss / (ix + 1))
record_clf["test_acc"].append(100 * correct / total)
return 100 * correct / total
def record_saver(record, path):
with open(path, 'w') as f:
json.dump(record, f)
if __name__ == "__main__":
# ========== [param] ==========
for arg in vars(args):
print(arg, '===>', getattr(args, arg))
lr = args.lr
clf_lr = args.clf_lr
batch_size = args.batch
epoch = args.epoch
clf_epoch = args.clf_epoch
classNum = args.classNum
temp = args.temperature
data_root = args.data_root
num_worker = args.workers
dir_ckpt = args.dir_ckpt
dir_log = args.dir_log
os.makedirs(dir_log, exist_ok=True)
os.makedirs(dir_ckpt, exist_ok=True)
accum = args.accumulate
aug_s = args.strength
useLARS = args.useLARS
decay = args.weight_decay
momentnum = args.momentnum
warm = args.warmup
project_in = args.pro_in
project_hidden = args.pro_hidden
project_out = args.pro_out
linear_in = args.linear_in
eval_routine = args.eval_routine
record_cnn = {"train_loss": []}
record_clf = {"train_loss": [],
"train_acc": [],
"test_loss": [],
"test_acc": []}
# ========== [data] ==========
train_aug = transforms.Compose([
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomResizedCrop(size=32),
transforms.RandomApply([transforms.ColorJitter(brightness=0.8 * aug_s,
contrast=0.8 * aug_s,
saturation=0.8 * aug_s,
hue=0.2 * aug_s)], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor()]
)
traindata = torchvision.datasets.CIFAR10(
root=data_root,
train=True,
download=True
)
trainset = ImageDataset(traindata, transform=train_aug)
trainloader = DataLoader(
trainset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
num_workers=num_worker
)
Linear_train_aug = transforms.Compose([
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomResizedCrop(size=32),
transforms.ToTensor()]
)
Linear_traindata = torchvision.datasets.CIFAR10(
root=data_root,
train=True,
download=True
)
Linear_trainset = ImageDataset(Linear_traindata, transform=Linear_train_aug)
Linear_trainloader = DataLoader(
Linear_trainset,
batch_size=256,
shuffle=True,
num_workers=num_worker
)
Linear_test_aug = transforms.Compose([
transforms.ToTensor()]
)
Linear_testdata = torchvision.datasets.CIFAR10(
root=data_root,
train=False,
download=True,
)
Linear_testset = ImageDataset(Linear_testdata, transform=Linear_test_aug)
Linear_testloader = DataLoader(
Linear_testset,
batch_size=256,
shuffle=False,
num_workers=num_worker
)
# ========== [visualize] ==========
if batch_size >= 64:
visualize(trainloader, dir_log + '/' + 'visual.png')
# ========== [device] =============
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# ========== [cnn model] ==========
model = SmallResnet()
model.to(device)
g = Projector(input_size=project_in, hidden_size=project_hidden, output_size=project_out)
g.to(device)
# ========== [optim for cnn] ==========
opt_cnn = optim.SGD(
list(model.parameters()) + list(g.parameters()),
lr=lr,
momentum=momentnum,
weight_decay=decay
)
criterion1 = NTXEntLoss(temp=temp)
criterion2 = nn.CrossEntropyLoss()
if useLARS:
opt_cnn = LARC(opt_cnn) # LARS on SGD optimizer
best_acc = 0.0
for i in range(1, epoch + 1):
print("========== [Unsupervised Training] ==========")
print("[epoch {}/{}]".format(i, epoch))
print("[lr {}]".format(adjust_lr(opt=opt_cnn, epoch=i, lr_init=lr, T=epoch, warmup=warm)))
Train_CNN()
record_saver(record_cnn, dir_log + '/' + "cnn.txt")
if (i % eval_routine) == 0:
linear_clf = Linear_Classifier(input_size=linear_in, classNum=classNum)
linear_clf.to(device)
opt_clf = optim.SGD(linear_clf.parameters(),
lr=clf_lr,
momentum=momentnum,
)
if useLARS:
opt_clf = LARC(opt_clf)
for j in range(1, clf_epoch + 1):
print("========== [Supervised Training] ==========")
print("[epoch {}/{}]".format(j, clf_epoch))
print("[lr {}]".format(adjust_linear_lr(opt=opt_clf, epoch=j, lr_init=clf_lr, T=clf_epoch)))
Train_CLF()
print("========== [Supervised Testing] ==========")
test_acc = Test_CLF()
print("save the last model: {} || best model: {}".format(test_acc, best_acc))
torch.save({"cnn": model.state_dict(), "clf": linear_clf.state_dict(), "epoch": j}, dir_ckpt + '/' + "last.pt")
record_saver(record_clf, dir_log + '/' + "clf.txt")
if test_acc > best_acc:
best_acc = test_acc
print("save the best model: {}".format(best_acc))
torch.save({"cnn": model.state_dict(), "clf": linear_clf.state_dict(), "epoch": j}, dir_ckpt + '/' + "best.pt")