-
Notifications
You must be signed in to change notification settings - Fork 1
/
nlp_functions.py
902 lines (748 loc) · 38.3 KB
/
nlp_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
# NLP functions
#
# this file contains reusable Natural Language Processing functions
# the file is separate to prevent unnecessary loading of NLP packages and isolate issues when they occur
#from static import PATH_START, PATH_START_PERSONAL
#from static import PATH_START_SERVER , PATH_START_PERSONAL_SERVER
import pandas as pd
import numpy as np
import editdistance # third-party, I need a checker for this to default to regular or local levenschtein (care 0=best)
import nltk
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
from nltk.stem.snowball import SnowballStemmer
import re
import html
nltk.download('punkt', quiet=True) # check for punkt silently
class SoftTitleMatcher:
"""
this class encompasses all functions related to soft-title-matching
it has multiple layers
on lowest layer, it computes a jaccard score for every 2 titles
above that, it searches the match with highest score
above that, it loops all left titles
above that, uses these matches and the chosen condition to backmerge
the variant is non-multipool for now, but should wrap 10kx10k in <5 minutes
example code:
stm = soft_title_matcher(silent=False)
many conditions on columnnames...
careful: cross-language title matching is not present
looks fantastic, only some issues with 'response/correction to', but we can pick that up from the pure fields later
"""
def __init__(self, silent=True):
self.silent = silent
# remember we have multiple routines here, including nlp4
def preprocess_and_find_best_matches(self,
left_raw,
right_raw,
out_path=None,
do_save=False):
"""
Here I want a nonfork version of nlp4 so I can integrate easily
with the rest of the pipeline
"""
if not(set(right_raw.aggregationType.unique()).issubset(set(['Journal', 'Book', 'Conference Proceeding', 'Book Series', np.nan]))):
print('hey! scopus returned some aggregation types we do not recognize and will mess up our type categorization!')
if not(set(left_raw.Type.unique()).issubset(set(['Contribution to Journal - Article',
'Contribution to Journal - Review article',
'Chapter in Book / Report / Conference proceeding - Conference contribution',
'Chapter in Book / Report / Conference proceeding - Chapter',
'Book / Report - Book',
'Book / Report - Report',
'Contribution to Conference - Paper']))):
print('hey! pure returned some aggregation types we do not recognize and will mess up our type categorization!')
# preprocess
right_raw['is_journal_type'] = right_raw.aggregationType.isin(['Journal'])
left_raw['is_journal_type'] = left_raw.Type.isin(['Contribution to Journal - Article',
'Contribution to Journal - Review article'])
#
# get left and right
left = left_raw[['Title of the contribution in original language',
'Subtitle of the contribution in original language',
'pub_uuid',
'post_merge_id',
'is_journal_type',
'pure_year']] \
.dropna(subset=['Title of the contribution in original language'])
right = right_raw[['title', 'eid', 'post_merge_id', 'is_journal_type', 'scopus_year']].dropna(subset=['title'])
#
# process the text
do_fill_empty = False
do_remove_html = True
left['txt_raw'] = left.apply(stack_titles, axis=1)
left['txt'] = pre_process(text=left.txt_raw,
do_fill_empty=do_fill_empty, # for nlp2 always
do_remove_html=do_remove_html)
right['txt'] = pre_process(right['title'],
do_fill_empty=do_fill_empty, # for nlp2 always
do_remove_html=do_remove_html)
print('starting core STM routine')
# wrapper
list_x = list(np.arange(0, len(left)))
df_winners = pd.DataFrame()
for cur_x in list_x:
left_title = left.txt.iloc[cur_x] # one left title per worker # SUBOPTIMAL!
left_title_raw = left.txt_raw.iloc[cur_x]
left_post_merge_id = left['post_merge_id'].iloc[cur_x]
left_pure_year = left['pure_year'].iloc[cur_x]
df_winners = df_winners.append(self.find_best_match(left_title,
left_title_raw,
left_post_merge_id,
left_pure_year,
right
), ignore_index=True)
# save to csv
# df_winners.to_excel(out_path + '.xlsx') # save time and mbs
if do_save:
if pd.notnull(out_path):
df_winners.to_csv(out_path + '.csv')
print('wrapping core STM routine')
return df_winners
def find_best_match(self,
left_title,
left_title_raw,
left_post_merge_id,
left_pure_year,
right # can be cut?
):
# maybe you can vectorize this across the left rows??
# you should at least be able to stack the pre-processing
#init
winner = {}
# no type-matching, legacy dissolver
right_subset = right
left_cur_is_journal_type = None
right_cur_is_journal_type = None
best_score = -1 # will overwrite immediately as intended
for right_index, right_title in zip(right_subset.index, right_subset.txt):
score = get_jaccard_sim(left_title.split(' '), right_title.split(' '))
if score > best_score:
# new best score
best_score = score
# overwrite results
best_left_title_raw = left_title_raw
best_left_title = left_title
best_right_title = right_title
best_right_title_raw = right_subset.loc[right_index, 'title']
best_left_post_merge_id = left_post_merge_id
best_right_post_merge_id = right_subset.loc[right_index, 'post_merge_id']
best_left_cur_is_journal_type = left_cur_is_journal_type
best_right_cur_is_journal_type = right_subset.loc[right_index, 'is_journal_type']
best_left_pure_year = left_pure_year
best_right_scopus_year = right_subset.loc[right_index, 'scopus_year']
winner = {'pure_title_raw': best_left_title_raw,
'pure_title': best_left_title,
'scopus_title': best_right_title,
'scopus_title_raw': best_right_title_raw,
'score': best_score,
'left_post_merge_id': best_left_post_merge_id,
'right_post_merge_id': best_right_post_merge_id,
'left_journal': best_left_cur_is_journal_type,
'right_journal': best_right_cur_is_journal_type,
'pure_year': best_left_pure_year,
'scopus_year': best_right_scopus_year
}
return winner
def improve_merged_table_using_STM_results(self,
df_total,
chosen_year,
out_path=None,
do_save=False,
cond_len=4,
cond_score=0.6):
"""
This function looks good
Careful with the 2 dataframes: they are different
chosen_year routine is not ideal but OK
"""
left_raw = df_total[df_total.merge_source == 'pure']
right_raw = df_total[df_total.merge_source == 'scopus']
df_core_stm = self.preprocess_and_find_best_matches(left_raw=left_raw,
right_raw=right_raw,
out_path=None,
do_save=False)
# make minlen
df_core_stm['minlen'] = df_core_stm.apply(lambda x: np.min([len(x.pure_title_raw.split(' ')), len(x.scopus_title_raw.split(' '))]), axis=1)
# step 1: filter down on the accepted matches
df_a = df_core_stm[(df_core_stm.minlen > cond_len) & (df_core_stm.score > cond_score)]
if df_a['pure_title_raw'].value_counts().max() > 1:
print('there are duplicate raw pure titles: this is unexpected')
# culprit is here: there are some accepted multi right matches...
# let's apply our fix higher up and then redo
df_a = (df_a
.sort_values(['right_post_merge_id', 'score'], ascending=False)
.drop_duplicates(subset='right_post_merge_id', keep='first'))
# first define a new ID which is equal left and right
#df_a.left_post_merge_id
#df_a.right_post_merge_id
df_a.loc[:, 'to_merge_id'] = 1
df_a.loc[:, 'to_merge_id'] = df_a.loc[:, 'to_merge_id'].cumsum()
# now merge this information back into df_total
# first split merged/unmerged to avoid double merges
df_merged = df_total[df_total.merge_source=='both']
df_unmerged = df_total[~(df_total.merge_source=='both')]
df_unmerged_p = df_unmerged[df_unmerged.merge_source=='pure']
df_unmerged_s = df_unmerged[df_unmerged.merge_source=='scopus']
#
# print(len(df_unmerged_p))
# print(len(df_unmerged_s))
df_unmerged_p = df_unmerged_p.merge(df_a[['left_post_merge_id','to_merge_id']],
left_on='post_merge_id',
right_on='left_post_merge_id',
how='left')
df_unmerged_s = df_unmerged_s.merge(df_a[['right_post_merge_id','to_merge_id']],
left_on='post_merge_id',
right_on='right_post_merge_id',
how='left')
# print(len(df_unmerged_p))
# print(len(df_unmerged_s))
#
# now remove the columns we do not want
# I am not happy with the hardcode, but OK for now
# print('debug here, the pure_cols have prolly changed with amsoc, build a case/swap here')
# check finished: we only have 1 extra: own_doi_lowercase and we do not care about that one
pure_cols = ['Unnamed: 0',
'Title of the contribution in original language',
'Current publication status > Date',
'Subtitle of the contribution in original language',
'Type',
'Workflow > Step',
'Original language',
'Electronic version(s) of this work > DOI (Digital Object Identifier)[1]',
'Organisations > Organisational unit[1]',
'Organisations > Organisational unit[2]',
'Organisations > Organisational unit[3]',
'Organisations > Organisational unit[4]',
'Organisations > Organisational unit[5]',
'Organisations > Organisational unit[6]',
'Organisations > Organisational unit[7]',
'Organisations > Organisational unit[8]',
'Organisations > Organisational unit[9]',
'Organisations > Organisational unit[10]',
'Journal > Journal[1]:Titles',
'Journal > Journal[1]:ISSNs',
'UUID',
'DOI',
'orig_doi',
'upw_doi',
'upw_doi_lowercase',
'upw_error',
'upw_error_message',
'upw_free_fulltext_url',
'upw_is_boai_license',
'upw_is_free_to_read',
'upw_is_subscription_journal',
'upw_license',
'upw_oa_color_x',
'upw_oa_color_verbose',
'ff',
'ff_provided_organization_string',
'ff_match',
'ff_score',
'ff_terms',
'ff_message',
'ff_match_subgroup',
'DOI_isnull',
'pub_uuid',
'pure_year',
'eid',
'has_eid',
'type_contains_book',
'do_not_merge_on_DOI',
'is_dupe_based_on_long_title_dupe',
'do_not_merge_on_title',
'merge_source',
'post_merge_id',
'to_merge_id']
scopus_cols = ['Unnamed: 0.1',
'Unnamed: 0.1.1',
'abstract_text_clean',
'aggregationType',
'corresponding_author_affiliation_id_(matched)',
'corresponding_author_author_id_(matched)',
'corresponding_author_indexed_name_(matched)',
'corresponding_author_surname',
'corresponding_author_surname_(matched)',
'deal_discount',
'deal_discount_verbose',
'deal_name',
'deal_owner_raw',
'deal_scope',
'diagnostics: ff matching words',
'diagnostics: ff message',
'diagnostics: ff raw input ',
'diagnostics: ff score',
'diagnostics:corresponding_author_match_score',
'doi',
'eIssn',
'faculty_(matched)',
'first_VU_author',
'first_VU_author_raw_organization_info',
'fulltext_free_url',
'fund_sponsor',
'is_a_boai_license',
'is_a_subscription_journal',
'is_corresponding_author_a_ukb_author',
'is_corresponding_author_a_vu_author',
'is_free_to_read',
'issn',
'journal_name',
'license',
'open_access_color',
'subgroup_(matched)',
'title',
'upw_oa_color_y',
'upw_oa_color_category',
'vu_contact_person',
'year',
'scopus_year',
'upw_oa_color',
'right_post_merge_id',
'merge_source',
'post_merge_id',
'to_merge_id',
'eid',]
# cut cols for safe merging, some columns are double ('merge_source', 'post_merge_id', 'to_merge_id')
df_unmerged_p = df_unmerged_p[pure_cols]
df_unmerged_s = df_unmerged_s[scopus_cols]
# construct the merged part
df_STM_merged = (df_unmerged_p[~(df_unmerged_p.to_merge_id.isnull())]
.merge(df_unmerged_s[~(df_unmerged_s.to_merge_id.isnull())],
left_on='to_merge_id',
right_on='to_merge_id',
how='inner'))
df_STM_merged['merge_source'] = 'both'
df_STM_merged.loc[:,'post_merge_id'] = df_STM_merged.right_post_merge_id # save back
df_STM_merged.loc[:,'post_merge_id'].isnull().max() # should be false
df_STM_merged = df_STM_merged.drop(columns=['post_merge_id_x', 'post_merge_id_y', 'merge_source_x', 'merge_source_y',
'right_post_merge_id']) # 'left_post_merge_id',
#
# construct the unmerged part
df_STM_unmerged = (df_unmerged_p[(df_unmerged_p.to_merge_id.isnull())]
.append(df_unmerged_s[(df_unmerged_s.to_merge_id.isnull())])
)
# so now we basically did the following
# the original stable df is df_total
# df_total = df_merged + df_unmerged
# we basically merge using STM within df_unmerged
# such that we can replace df_unmerged with df_STM_merged + df_STM_unmerged
#
# so our final result is df_total_with_STM = df_merged + df_STM_merged + df_STM_unmerged
df_total_with_STM = df_merged.append(df_STM_merged).append(df_STM_unmerged)
# now isolate 2018 on a rich rule and save that as well
# because we now the data is only proper for the middle years
### !!! 2018 in var-name: check its entire lifecycle !!!
# ! this is hardcode must be variabilized with year_range[1:-1]
df_total_with_STM_rich_2018 = df_total_with_STM[(df_total_with_STM.scopus_year == chosen_year) |
(df_total_with_STM.pure_year == chosen_year)]
# save it
if do_save:
df_total_with_STM.to_csv(out_path + '/df_total_with_STM.csv')
df_total_with_STM_rich_2018.to_csv(out_path + '/df_total_with_STM_2018.csv')
return df_total_with_STM, df_total_with_STM_rich_2018
class faculty_finder:
"""
This class is a faculty_finder
It takes in an organizational chart and provides methods to guess faculties from provided organization strings
These organization strings can be human-written organizational information
Multiple parts separated by commas are also allowed
organizational chart: a dataframe with column 'faculteit' containing the faculties,
a column 'naam' containing the groups that fall under it, with one row per group.
"""
# option to add levenschtein or something else to allow correction for typos,
def __init__(self, organizational_chart, allow_faculty_matching=True, silent=True):
self.organizational_chart = organizational_chart
df_n = pd.DataFrame(organizational_chart.faculteit.unique()).rename(columns={0:'fac_orig'})
df_n['fac_clean'] = df_n['fac_orig'].str.lower().str.strip(' ')
df_n['fac_alternative'] = df_n['fac_clean'].apply(lambda x: x+'s' if x[-7::] == 'science' else x)
# improvement idea: add 'humanity' or stem as alternative too or a general alias list
self.faculty_matrix = df_n
self.allow_faculty_matching = allow_faculty_matching # does prevent all faculty-matching
def match(self, organization_string):
"""
This function can be improved by using levenschtein to correct for typos
:param organization_string:
:return:
"""
if (organization_string is None) | (pd.isnull(organization_string)):
score = np.nan # 0-1
winner = np.nan
terms = np.nan
result_message = 'organization string is empty'
winner_subgroup = np.nan
else:
# init
df_n = self.faculty_matrix
score = np.nan # 0-1
winner = np.nan
terms = np.nan
result_message = 'no faculty name match and bag of words only has trivial words'
winner_subgroup = np.nan
# find the interesting part
# first do a check if faculty is simply in there
# iterate over parts of the cur_org spit by commas
# ! This loop overwrites the winner if two comma-split parts both have matches, disregarding match quality
#
for cur_org_part in organization_string.split(','): # split by comma, remove spaces
# clean spaces, brackets, upper-casing
cur_org_part_clean = cur_org_part.strip(' ').lower().replace('(', '').replace(')', '')
if self.allow_faculty_matching & ((cur_org_part_clean in df_n.fac_clean.unique())
| (cur_org_part_clean in df_n.fac_alternative.unique())):
# find the fac_orig that belongs to this and report that
winner = df_n.loc[df_n[df_n == cur_org_part_clean].dropna(how='all').index, 'fac_orig'].iloc[0]
score = 1 # prevents new entries
terms = np.nan
result_message = 'matched on faculty name'
winner_subgroup = np.nan
else:
# match with bag of words
# first clean and prepare the provided organization string argument
org_words = nltk.word_tokenize(cur_org_part_clean)
remove_words_org = ['vu', 'amsterdam', 'vrije', 'universiteit', 'free', 'university', 'department', 'of', 'the',
'in', 'and', 'a', '@',
'center', 'centre', 'instituut', 'institute', '&', 'for', '(', ')', 'insitute', 'research']
org_words_c = [word for word in org_words if word not in remove_words_org]
if len(org_words_c) > 0: # only continue if there are words left
# now for the organizational_chart use
# loop over all rows of the organizational chart
# subgroep = organizational_chart.naam // cur_organizational_chart
for cntr, cur_organizational_chart in enumerate(self.organizational_chart.naam.tolist()):
# clean the entry under sub-organization
cur_orgname = cur_organizational_chart.strip(' ').lower().replace('(', '').replace(')', '')
# next tokenize it for bag of words
cur_orgname = nltk.word_tokenize(cur_orgname)
# remove words which add no distinguishing value (for example, the word 'university')
cur_orgname = [word for word in cur_orgname if word not in remove_words_org]
# remove commas
cur_orgname = [word for word in cur_orgname if word not in [',']]
# on purpose, no stemming is done
# compute the score through jaccard similarity
cur_score = get_jaccard_sim(org_words_c, cur_orgname)
# store the highest score across the loop
if (np.isnan(score)) | (cur_score > score):
score = cur_score
winner = self.organizational_chart.loc[cntr,'faculteit']
#print([cntr, score, winner, winner_subgroup])
#print([winner, cntr])
terms = cur_orgname # comes from organizational_chart
result_message = 'matched on bag of words similarity'
winner_subgroup = cur_organizational_chart
else:
try:
if (score == 1) & (cur_score == score) & (len(cur_orgname) >= (len(terms))):
###print('v1')
# tie-breaker
###print([cur_orgname, terms])
###print(len(cur_orgname) >= (len(terms)))
if (org_words_c == cur_orgname):
###print( org_words_c, cur_orgname , terms)
# if this exact equality holds, then you win and overwrite, otherwise not
score = cur_score
winner = self.organizational_chart.loc[cntr, 'faculteit']
# print([cntr, score, winner, winner_subgroup])
# print([winner, cntr])
terms = cur_orgname # comes from organizational_chart
result_message = 'matched on bag of words similarity'
winner_subgroup = cur_organizational_chart
except:
pass # do nothing
if score == 0:
# this means there were usable words, but no match
# hence there is no winner, and we can't appoint the top row as winner either
score = np.nan
winner = np.nan
terms = np.nan
result_message = 'no faculty name match and no bag of words match despite non-trivial words'
winner_subgroup = np.nan
# alternatively, we can return zeros as score instead of nans, right now they are interchangeable
dict_results = {'ff_provided_organization_string': organization_string,
'ff_match': winner,
'ff_score': score,
'ff_terms': terms,
'ff_message': result_message,
'ff_match_subgroup': winner_subgroup}
return dict_results
def match_nan(self):
return {'ff_provided_organization_string': np.nan,
'ff_match': np.nan,
'ff_score': np.nan,
'ff_terms': np.nan,
'ff_message': np.nan,
'ff_match_subgroup': np.nan}
def match_inexact(self, organization_string):
"""
[under construction]
"""
def levenshtein(s, t):
"""
Computes the levenschtein distance between two strings of text
This is borrowed code and has been checked, but stay careful
:param s: first string of text
:param t: second string of text
:return: a distance measure, not normalized
"""
if s == "":
return len(t)
if t == "":
return len(s)
if s[-1] == t[-1]:
cost = 0
else:
cost = 1
res = min([levenshtein(s[:-1], t) + 1,
levenshtein(s, t[:-1]) + 1,
levenshtein(s[:-1], t[:-1]) + cost])
return res
def get_dist(str1, str2):
"""
Computes the normalized levenschtein distance between two strings of text
:param s: first string of text
:param t: second string of text
:return: a distance measure, normalized
"""
maxlen = np.max([len(str1), len(str2)])
return levenshtein(str1, str2) / maxlen # normalize by len of longest string, 0 = perfect match, 1 = no match
def get_dist_fast(str1,str2):
"""
A faster Cython implementation for levenshtein. Use 'pip install editdistance' to make it work.
:param str1: first string
:param str2: second string
:return: levenshtein or edit distance, 0 is closest and best match, 1 is furthest
Copyright information for this specific function editdistance.eval() used in this get_dist_fast():
edit distance
Copyright (c) 2013 Hiroyuki Tanaka
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen
tation files (the "Software"), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of
the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
return editdistance.eval(str1, str2) / np.max([len(str1), len(str2)])
def get_jaccard_sim(str1, str2):
"""
Computes the jaccard similarity value
:param str1: first string of text
:param str2: second string of text
:return: jaccard similarity value between the two
example: get_jaccard_sim(['clino','developmental','a'],['clinical', 'neuro-', 'developmental', 'psychology'])
"""
a = set(str1)
b = set(str2)
c = a.intersection(b)
return float(len(c)) / float(len(a) + len(b) - len(c))
class corresponding_author_functions():
def __init__(self):
pass
@staticmethod
def match_aut(row):
# because surnames are short (usually <10~20 characters) and a few words, we can use levenshtein to get some scoring
# Assumption 1: the corresponding author always appears in the authorgoup list if both fields are not empty
# such that one of them is the corresponding author
# Assumption 2: the corresponding author is the author with the highest levenshtein score
# we need to check this, but for now it seems like a reasonable approximation and we can start getting numbers
# speed-up: idea: corr_author is prolly in front 3, so we should build a zero-stoppe
# update: it sped it up 1000x or so
# print('beep')
if (row.has_correspondence_surname) and (row.has_authorgroup_surnames):
left_aut = row['corresponding_author_surname']
lowest_res = np.Inf
best_author = np.nan
multiple_winners = False
# print(left_aut)
df_aut = pd.DataFrame(row.abstract_object.authorgroup)[['affiliation_id', 'surname', 'indexed_name',
'auid']]
do_try_new_aut = True
right_aut_auid_list = list(df_aut.auid.unique())
right_aut_auid_list = [x for x in right_aut_auid_list if x is not None] # remove auids of None
for right_aut_auid in right_aut_auid_list: # ASSUME UNIQUE, we will use this as a key here: LATER: TO .APPLY
# print(1)
# print(right_aut_auid)
if do_try_new_aut:
# print('in')
right_aut_rows = df_aut[df_aut.auid == right_aut_auid] # .surname.iloc[0]
right_aut = df_aut[df_aut.auid == right_aut_auid].surname.iloc[0]
# print('in2')
# print(left_aut,right_aut)
res = get_dist_fast(left_aut, right_aut) # get_dist_fast ipv get_dist
# print('in3')
if res < lowest_res:
lowest_res = res
best_aut = right_aut
best_aut_rows = right_aut_rows
out = list(best_aut_rows[['affiliation_id', 'surname', 'indexed_name',
'auid']].iloc[0])
winner_surname = best_aut_rows[['affiliation_id', 'surname', 'indexed_name',
'auid']].iloc[0].surname
out.append(lowest_res)
elif res == lowest_res:
######print('equal levenshtein value, keeping previous') ### for later testing
pass
if res == 0:
do_try_new_aut = False
my_return = out
# print('res is ' + str(res))
else:
pass
# print(2)
df_mw = pd.DataFrame(row.abstract_object.authorgroup)
multiple_exact_matches = len(df_mw[df_mw.surname == winner_surname]) > 1
my_return.append(multiple_exact_matches) # not out.append here
else:
my_return = [None, None, None,
None, None,
None] #np.nan
return my_return
@staticmethod
def check_if_corresponding_author_is_chosen_affil_author(row, afids):
# is the matched corresponding author (to get afid) a vu/ukb/we-author?
try:
if not (set(row.match_affiliation_id.split(', ')).isdisjoint(set(afids))):
res = True
else:
res = False
except:
res = np.nan
return res
def add_corresponding_author_info(self,df,vu_afids,ukb_afids):
# df must have column abstract_object with in it a correspondence field (may require re-running abstract yourself)
try:
df.abstract_object
except:
print('dataframe has no column named abstract_object')
try:
df.abstract_object.iloc[0].correspondence
except:
print('dataframe abstract object has no field named correspondence. This only checks first row.')
# debugging results
df['has_abstract_info'] = ~df.abstract_object.isnull()
def check_if_it_has_correspondence(row):
if row.has_abstract_info == False:
result = False
elif row.abstract_object.correspondence is None: # does not accoun for nans
result = False
else:
result = True
return result
def check_if_it_has_authorgroup(row):
if row.has_abstract_info == False:
result = False
elif row.abstract_object.authorgroup is None: # does not accoun for nans
result = False
else:
result = True
return result
# do we have correspondence info
df['has_correspondence'] = df.apply(check_if_it_has_correspondence, axis=1)
# what is the surname?
df['corresponding_author_surname'] = df.apply(
lambda x: np.nan if x.has_correspondence is False else x.abstract_object.correspondence.surname,
axis=1)
df['has_correspondence_surname'] = ~df.corresponding_author_surname.isnull()
df.at[df[df.issn.apply(lambda x: True if isinstance(x, list) else False)].index.tolist(), 'issn'] = None
# this part is senstive: please make an automated test here or rewrite it thoroughly !
df['has_authorgroup'] = df.apply(check_if_it_has_authorgroup, axis=1)
df['has_authorgroup_surnames'] = ~df.apply(
lambda x: np.nan if x.has_authorgroup is False else x.abstract_object.authorgroup[0][9], axis=1).isnull()
df[['match_affiliation_id', 'match_surname', 'match_indexed_name',
'match_auid', 'match_aut_score',
'has_multiple_exact_matches']] = df.apply(
self.match_aut, axis=1, result_type="expand")
df['is_corresponding_author_a_vu_author'] = df.apply(self.check_if_corresponding_author_is_chosen_affil_author,
afids=vu_afids, axis=1)
df['is_corresponding_author_a_ukb_author'] = df.apply(self.check_if_corresponding_author_is_chosen_affil_author,
afids=ukb_afids, axis=1)
return df
def stack_titles(row):
notnulls = 0
if pd.notnull(row['Subtitle of the contribution in original language']):
part2 = row['Subtitle of the contribution in original language']
part2_null = False
else:
part2 = ''
part2_null = True
if pd.notnull(row['Title of the contribution in original language']):
part1 = row['Title of the contribution in original language']
part1_null = False
else:
part1 = ''
part1_null = True
if part1_null | part2_null :
return part1 + part2
else:
return part1 + ': ' + part2
# let's prepare the preprocessing
def remove_punctuation(text):
'''a function for removing punctuation'''
import string
# replacing the punctuations with no space,
# which in effect deletes the punctuation marks
translator = str.maketrans('', '', string.punctuation)
# return the text stripped of punctuation marks
return text.translate(translator)
def get_abstract_if_any(row):
# always run comma_space_fix first
try:
if row.abstract_object.abstract is None:
return ' '
else:
return row.abstract_object.abstract
except:
return ' '
def comma_space_fix(text):
return (text
.replace(", ", ",")
.replace(",", ", ")
.replace(". ", ".")
.replace(".", ". ")
.replace("; ", ";")
.replace(";", "; ")) # this makes both ",x" and ", x" ", x"
def remove_html_unsafe(text):
"""
This removes html stuff in order to avoid issues with subsequent NLP tools
This is not a sanitation procedure and will not help with malicious html parts
:param text: any text as string
:return: processed text as string
"""
tag_re = re.compile(r'(<!--.*?-->|<[^>]*>)')
# Remove well-formed tags, fixing mistakes by legitimate users
no_tags = tag_re.sub('', text)
# Clean up anything else by escaping
return html.escape(no_tags)
def pre_process(text, do_fill_empty=True, do_remove_html=False):
"""
Just a method-chain turned into a function on vectorized level
:param text: must be series of text
:param do_fill_empty: whether you want to fill empty
:param do_remove_html: whether you want to remove html (unsafe)
:return:
"""
if do_fill_empty:
text = text.apply(do_fill_empty)
if do_remove_html:
text = text.apply(remove_html_unsafe)
text = (text
.apply(comma_space_fix)
.apply(remove_punctuation)
.apply(remove_numbers)
.apply(remove_stopwords_and_lower)
)
return text
def remove_numbers(text):
translator = str.maketrans('', '', '0123456789')
return text.translate(translator)
def remove_stopwords_and_lower(text):
'''a function for removing the stopword'''
# extracting the stopwords from nltk library
sw = stopwords.words('english')
# displaying the stopwords
np.array(sw)
# we know more stuff no one needs at all like 'department' but let's keep them for now
# removing the stop words and lowercasing the selected words
text = [word.lower() for word in text.split() if word.lower() not in sw]
# joining the list of words with space separator
return " ".join(text)