-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy patha.py
128 lines (105 loc) · 4.32 KB
/
a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# https://contest.yandex.ru/contest/28069/problems/A/
# Ниже представлено три способа добавления нового элемента в дерево, все рабочие:
# insert_recursive – рекурсивная вставка с вызовом функцией самой себя
# insert_with_loop – цикл вместо рекурсии
# insert_with_loop_optimized – цикл вместо рекурсии с сохранением родителя на каждой итерации
# Первый способ самый простой для понимания, третий самый быстрый.
# BST = Binary Search Tree
class BSTNode:
def __init__(self, key=None, level=1):
self.key = key
self.level = level
self.left = None
self.right = None
def insert_recursive(self, key):
if self.key is None:
self.key = key
return self
if key == self.key:
return self
if key < self.key:
if self.left:
return self.left.insert_recursive(key)
self.left = BSTNode(key=key, level=self.level + 1)
return self.left
if self.right:
return self.right.insert_recursive(key)
self.right = BSTNode(key=key, level=self.level + 1)
return self.right
# Используем цикл вместо рекурсии
def insert_with_loop(self, key):
if self.key is None:
self.key = key
return self
current_node = self
while True:
if key == current_node.key:
return current_node
if key < current_node.key:
if current_node.left:
current_node = current_node.left
else:
current_node.left = BSTNode(key=key, level=current_node.level + 1)
return current_node.left
else:
if current_node.right:
current_node = current_node.right
else:
current_node.right = BSTNode(key=key, level=current_node.level + 1)
return current_node.right
# Используем цикл вместо рекурсии и храним родителя на каждом шаге итерации
def insert_with_loop_optimized(self, key):
if self.key is None:
self.key = key
return self
current_node = self
previous_node = None
while current_node is not None:
if key == current_node.key:
return current_node
previous_node = current_node
if key < current_node.key:
current_node = current_node.left
else:
current_node = current_node.right
new_node = BSTNode(key=key, level=previous_node.level + 1)
if key < previous_node.key:
previous_node.left = new_node
else:
previous_node.right = new_node
return new_node
def __iter__(self):
if self.left:
for node in self.left:
yield node
yield self
if self.right:
for node in self.right:
yield node
def __str__(self):
return f'({self.key} l={self.left}, r={self.right})'
def tree_height(keys):
bst = BSTNode()
max_level = 0
for key in keys:
new_node = bst.insert_with_loop_optimized(key)
if new_node.level > max_level:
max_level = new_node.level
return max_level
assert tree_height([7, 3, 2, 1, 9, 5, 4, 6, 8]) == 4
assert tree_height([7, 3, 3, 3, 2, 1, 9, 5, 4, 6, 8]) == 4
assert tree_height([9, 4, 2, 1]) == 4
assert tree_height([1, 6, 8, 2]) == 3
assert tree_height([1, 7]) == 2
assert tree_height([7, 1]) == 2
assert tree_height([3, 1, 2]) == 3
assert tree_height([3, 1, 2, 0]) == 3
assert tree_height([5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5]) == 11
assert tree_height([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]) == 11
assert tree_height([4, 2, 4, 6, 2, 4, 1, 6, 2, 4, 3, 1, 6, 2, 4, 5, 3, 1, 6, 2, 4, 7, 5, 3, 1, 6, 2, 4]) == 3
assert tree_height([7, 3, 2, 1, 9, 5, 7, 3, 2, 1, 5, 7, 2, 3, 1, 5, 4, 6, 8]) == 4
def main():
keys = list(map(int, input().split()))[:-1]
print(tree_height(keys))
if __name__ == '__main__':
main()