-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
321 lines (269 loc) · 12.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from model import U_Net
from model3D import UNet
from dataset import *
from modules import *
from utils import *
from save_history import *
import torch
import os
import numpy as np
import torch.nn as nn
from util3d import *
os.environ['CUDA_VISIBLE_DEVICES'] = '4, 5'
# np.set_printoptions(threshold=sys.maxsize)
def multiModel(SLICES_COLLECT, dataset):
models = []
for SLICE in SLICES_COLLECT:
models.append(U_Net(in_channels=SLICE, out_channels = 32, dataset=dataset)) #out_channels = 32
return models
def pre_train():
if device.type == "cuda":
print("GPU: ", torch.cuda.device_count())
for i in range(len(models)):
models[i] = torch.nn.DataParallel(models[i], device_ids=list(
range(torch.cuda.device_count()))).cuda()
loss_fun = nn.CrossEntropyLoss()
optimizers = []
for i in range(len(models)):
optimizers.append(torch.optim.RMSprop(models[i].parameters(), lr=LR)) #
# Train
print("Initializing Training!")
for i in range(0, pretrain_epoch):
train_multi_models(models,
train_load,
loss_fun,
optimizers,
device,
SLICES_COLLECT)
# just for print loss
train_acc, train_loss = get_loss_train(models,
train_load,
loss_fun,
device,
SLICES_COLLECT)
print('Epoch', str(i + 1), 'Train loss:', train_loss, "Train acc", train_acc)
# Validation every 5 epoch
if (i + 1) % 5 == 0:
val_acc, val_loss = validate_model(
models,
val_load,
loss_fun,
i + 1,
True,
image_save_path,
device,
SLICES_COLLECT)
print('Val loss:', val_loss, "val acc:", val_acc)
values = [i + 1, train_loss, train_acc, val_loss, val_acc]
export_history(header, values, save_dir, save_file_name)
if (i + 1) % 10 == 0: # save model every 10 epoch
save_models(models, model_save_dir, i + 1, SLICES_COLLECT)
def topo_train(models):
if device.type == "cuda":
print("GPU: ", torch.cuda.device_count())
for i in range(len(models)):
# models[i].to(device)
models[i] = torch.nn.DataParallel(models[i], device_ids=list(
range(torch.cuda.device_count()))).cuda()
loss_fun = nn.CrossEntropyLoss()
optimizers = []
for i in range(len(models)):
optimizers.append(torch.optim.RMSprop(models[i].parameters(), lr=LR))
# Train
print("Initializing Topo Training!")
for i in range(pretrain_epoch, topo_epoch):
train_topo_multi_models(models,
train_load,
loss_fun,
optimizers,
device,
SLICES_COLLECT,
i,
save_dir)
# just for print loss
train_acc, train_loss = get_loss_train(models,
train_load,
loss_fun,
device,
SLICES_COLLECT)
print('Epoch', str(i + 1), 'Train loss:', train_loss, "Train acc", train_acc)
# Validation every 5 epoch
if (i + 1) % 1 == 0:
val_acc, val_loss = validate_model(
models,
val_load,
loss_fun,
i + 1,
True,
image_save_path,
device,
SLICES_COLLECT)
print('Val loss:', val_loss, "val acc:", val_acc)
values = [i + 1, train_loss, train_acc, val_loss, val_acc]
export_history(header, values, save_dir, save_file_name)
if (i + 1) % 1 == 0: # save model every 10 epoch
save_models(models, model_save_dir, i + 1, SLICES_COLLECT)
def train():
if device.type == "cuda":
print("GPU: ", torch.cuda.device_count())
for i in range(len(models)):
models[i] = torch.nn.DataParallel(models[i], device_ids=list(
range(torch.cuda.device_count()))).cuda()
loss_fun = nn.CrossEntropyLoss()
optimizers = []
for i in range(len(models)):
optimizers.append(torch.optim.RMSprop(models[i].parameters(), lr=LR))
# Train
print("Initializing Training!")
for i in range(0, topo_epoch):
if (i == pretrain_epoch):
print("Initializing Topo Training!")
train_topo_multi_models(models,
train_load,
loss_fun,
optimizers,
device,
SLICES_COLLECT,
i,
pretrain_epoch,
save_dir)
# just for print loss
train_acc, train_loss = get_loss_train(models,
train_load,
loss_fun,
device,
SLICES_COLLECT)
print('Epoch', str(i + 1), 'Train loss:', train_loss, "Train acc", train_acc)
# Validation every 5 epoch
every = 5
every_model = 10
if i >= pretrain_epoch:
every = 1
every_model = 1
if (i + 1) % every == 0:
val_acc, val_loss = validate_model(
models,
val_load,
loss_fun,
i + 1,
True,
image_save_path,
device,
SLICES_COLLECT)
print('Val loss:', val_loss, "val acc:", val_acc)
values = [i + 1, train_loss, train_acc, val_loss, val_acc]
export_history(header, values, save_dir, save_file_name)
if (i + 1) % every_model == 0: # save model every 10 epoch
save_models(models, model_save_dir, i + 1, SLICES_COLLECT)
def train3D(dataset):
model = UNet(in_dim=1, out_dim=2, num_filters=32, dataset=dataset)
if device.type == "cuda":
print("GPU: ", torch.cuda.device_count())
model = torch.nn.DataParallel(model, device_ids=list(
range(torch.cuda.device_count()))).cuda()
loss_fun = nn.CrossEntropyLoss()
optimizer = torch.optim.RMSprop(model.parameters(), lr=LR) #
print("Initializing Training!")
for i in range(0, pretrain_epoch):
softmax = nn.Softmax2d()
model.train()
loss = 0
for batch, (images, masks) in enumerate(train_load):
# print('model input shape: ', images.shape, masks.shape)
# model input shape: torch.Size([2, 1, 3, 1250, 1250]) torch.Size([2, 3, 1250, 1250])
predict_maps = model(images.to(device))
B,C,D,H,W=predict_maps.size()
predict_maps=predict_maps.view(B,C,D, -1)
masks = masks.view(B, D,-1)
# print(predict_maps.shape) #[4, 2, 3, 625, 625] #retain_graph=True
loss = loss_fun(predict_maps, masks.to(device))
# print(loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
total_acc = 0
total_loss = 0
for batch, (images, masks) in enumerate(train_load):
with torch.no_grad():
predict_maps = model(images.to(device))
B,C,D,H,W=predict_maps.size()
predict_maps=predict_maps.view(B,C,D, -1)
masks = masks.view(B, D,-1)
loss = loss_fun(predict_maps, masks.to(device))
pred_class = torch.argmax(predict_maps, dim=1).float()
acc = accuracy_check_for_batch(masks.cpu(), pred_class.cpu(), masks.size()[0])
total_acc += acc
total_loss += loss.cpu().item()
train_acc, train_loss = total_acc / (batch + 1), total_loss / (batch + 1)
print('Epoch', str(i + 1), 'Train loss:', train_loss, "Train acc", train_acc)
if (i + 1) % 5 == 0:
total_val_loss = 0
total_val_acc = 0
softmax = nn.Softmax2d()
for batch, (images, masks) in enumerate(val_load):
with torch.no_grad():
predict_maps = model(images.to(device))
B,C,D,H,W=predict_maps.size()
predict_maps=predict_maps.view(B,C,D, -1)
likelihoodMaps = predict_maps[:,1,:,:].view(B,D,H,W) # (1,2,3,*) -> (1, 3, 250, 250)
masks = masks.view(B, D,-1)
for lkh in range(likelihoodMaps.shape[1]):
save_prediction_likelihood(likelihoodMaps[:,lkh,:,:], str(batch)+'_{0}'.format(lkh), i, image_save_path)
save_gt(masks.view(B,D,H,W)[:,lkh,:,:], str(batch)+'_{0}'.format(lkh), i, image_save_path)
with torch.no_grad():
total_val_loss = total_val_loss + loss_fun(predict_maps, masks.to(device)).cpu().item()
# print('out', predict_map.shape) # (1, 2, 1250, 1250)
pred_class = torch.argmax(predict_maps, dim=1).float() # (1, 3, 1250 * 1250)
# pred_class = likelihoodMap > 0.8
acc_val = accuracy_check(masks.cpu(), pred_class.cpu())
for lkh in range(pred_class.shape[1]):
im_name = str(batch)+'_{0}'.format(lkh)
pred_msk = save_prediction_image(pred_class.view(B,D,H,W)[:,lkh,:,:], im_name, i, image_save_path)
total_val_acc += acc_val
val_acc, val_loss = total_val_acc / (batch + 1), total_val_loss / (batch + 1)
print('Val loss:', val_loss, "val acc:", val_acc)
values = [i + 1, train_loss, train_acc, val_loss, val_acc]
export_history(header, values, save_dir, save_file_name)
# if (i + 1) % 10 == 0: # save model every 10 epoch
# save_models(models, model_save_dir, i + 1, SLICES_COLLECT)
if __name__ == "__main__":
pretrain_epoch = 100 # 2000
topo_epoch = 110
COMPLETE_TRAIN = True
LR = 0.0001
DATASET = 'ISBI13'
SLICES_COLLECT = [5]
modelName = '5'
fileName = '_2d_cross5'
header = ['epoch', 'train loss', 'train acc', 'val loss', 'val acc']
save_file_name = DATASET + "{0}/history{1}/history_Valid.csv".format(fileName, modelName)
save_dir = DATASET + "{0}/history{1}/".format(fileName, modelName)
# Saving images and models directories
model_save_dir = DATASET + "{0}/history{1}/saved_models3".format(fileName, modelName)
image_save_path = DATASET + "{0}/history{1}/result_images3".format(fileName, modelName)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dataset_path = 'train_' + DATASET
# dataset_cache = 'data_cache/{0}_dataset_cache'.format(DATASET)
dataset_cache = 'data_cache/isbi13_fix_dataset_cache_5val'
trainDataset, validDataset = get_dataset(dataset_path, dataset_cache, SLICES_COLLECT)
# trainDataset, validDataset = get_3d_dataset(dataset_path, dataset_cache, SLICES_COLLECT)
train_load = torch.utils.data.DataLoader(dataset=trainDataset, num_workers=6, batch_size=4, shuffle=True)
val_load = torch.utils.data.DataLoader(dataset=validDataset, num_workers=6, batch_size=1, shuffle=False)
# train3D(DATASET)
if COMPLETE_TRAIN:
models = multiModel(SLICES_COLLECT, DATASET)
train()
# elif os.path.exists(save_dir):
# print('loading pre_train model from ' + model_save_dir)
# models = load_models(model_save_dir, SLICES_COLLECT)
# topo_train(models)
# else:
# models = multiModel(SLICES_COLLECT, DATASET)
# pre_train()
"""
# Test
print("generate test prediction")
test_model("../history/RMS/saved_models/model_epoch_440.pwf",
test_load, 440, "../history/RMS/result_images_test")
"""