forked from liuyuemaicha/simple_faster_rcnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
217 lines (172 loc) · 12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#coding:utf8
import torch
import torchvision
from PIL import Image, ImageDraw
import numpy as np
from model import VGG
import utils
# 大体流程:
# 1. 图像通过vgg获得特征图,
# 2. 特征图通过RPN获得有效anchor的置信度(foreground)和转为预测框的坐标系数
# 3. 特征图和预测框通过ROI Pooling获取固定尺寸的预测目标特征图,即利用预测框,从特征图中把目标抠出来,
# 因为目标尺寸不一,再通过ROI Pooling的方法把目标转为统一的固定尺寸(7*7),这样就可以方便做目标的分类和预测框的修正处理。
# 4. 固定尺寸的预测目标特征图通过类别分类模型(self.score)获取预测框所属的类别,
# 5. 固定尺寸的预测目标特征图通过坐标分类模型(self.cls_loc)获取置信度和预测框修正的坐标系数。
# 假设 图片中的两个目标框"ground-truth"
bbox = np.asarray([[20, 30, 400, 500], [300, 400, 500, 600]], dtype=np.float32) # [y1, x1, y2, x2] format
# 假设 图片中两个目标框分别对应的标签
labels = np.asarray([6, 8], dtype=np.int8) # 0 represents background
img_tensor = torch.zeros((1, 3, 800, 800)).float()
img_var = torch.autograd.Variable(img_tensor)
# ---------------------step_1: 获取目标anchor的置信度(anchor_conf)和平移缩放系数(anchor_locations)
# 初始化所有anchors, 并找出有效anchors和对应的index
# anchors: (22500, 4) valid_anchor_boxes: (8940, 4) valid_anchor_index:8940
anchors, valid_anchor_boxes, valid_anchor_index = utils.init_anchor()
# 计算有效anchors与所有目标框的IOU
# ious:(8940, 2) 每个有效anchor框与目标实体框的IOU
ious = utils.compute_iou(valid_anchor_boxes, bbox)
valid_anchor_len = len(valid_anchor_boxes)
# 在有效框中找到一定比例的正例和负例
label, argmax_ious = utils.get_pos_neg_sample(ious, valid_anchor_len, pos_iou_threshold=0.7,
neg_iou_threshold=0.3, pos_ratio=0.5, n_sample=256)
# print np.sum(label == 1) # 18个正例
# print np.sum(label == 0) # 256-18=238个负例
# 现在让我们用具有最大iou的ground truth对象为每个anchor box分配位置。
# 注意,我们将为所有有效的anchor box分配anchor locs,而不考虑其标签,稍后在计算损失时,我们可以使用简单的过滤器删除它们。
# 每个有效anchor对应的目标框bbox
max_iou_bbox = bbox[argmax_ious] # 有效anchor框对应的目标框坐标 (8940, 4)
# print max_iou_bbox.shape # (8940, 4),共有8940个有效anchor框,每个anchor有坐标值(y1, x1, y2, x2)
# 为所有有效的anchor_box分配anchor_locs,anchor_locs是每个有效的anchors转为对应目标框(bbox)的平移缩放系数
anchor_locs = utils.get_coefficient(valid_anchor_boxes, max_iou_bbox)
# print(anchor_locs.shape) # (8940, 4) 4维参数(平移参数:dy, dx; 缩放参数:dh, dw)
# anchor_conf : 所有anchor框对应的label(-1:无效anchor,0:负例有效anchor,1:正例有效anchor)
anchor_conf = np.empty((len(anchors),), dtype=label.dtype)
anchor_conf.fill(-1)
anchor_conf[valid_anchor_index] = label
print anchor_conf.shape # 所有anchor对应的label(feature_size*feature_size*9)=》 (22500,)
# anchor_locations: 所有anchor框转为目标实体框的系数,无效anchor系数全部为0,有效anchor有有效系数
anchor_locations = np.empty((len(anchors),) + anchors.shape[1:], dtype=anchor_locs.dtype)
anchor_locations.fill(0)
anchor_locations[valid_anchor_index, :] = anchor_locs
print anchor_locations.shape # 所有anchor对应的平移缩放系数(feature_size*feature_size*9,4)=》(22500, 4)
# 这里通过候选anchor与目标实体框计算得到anchor框的置信度(anchor_conf)和平移缩放系数(anchor_locations)
# ----------------------
# --------------------step_2: VGG 和 RPN 模型: RPN 预测的是anchor转为目标框的平移缩放系数
vgg = VGG()
# out_map 特征图, # pred_anchor_locs 预测anchor框到目标框转化的系数, pred_anchor_conf 预测anchor框的分数
out_map, pred_anchor_locs, pred_anchor_conf = vgg.forward(img_var)
print out_map.data.shape # (batch_size, num, feature_size, feature_size) => (1, 512, 50, 50)
# 1. pred_anchor_locs 预测每个anchor框到目标框转化的系数(平移缩放),与 anchor_locations对应
pred_anchor_locs = pred_anchor_locs.permute(0, 2, 3, 1).contiguous().view(1, -1, 4)
print(pred_anchor_locs.shape) # Out: torch.Size([1, 22500, 4])
# 2. 预测anchor框的置信度,每个anchor框都会对应一个置信度,与 anchor_conf对应
pred_anchor_conf = pred_anchor_conf.permute(0, 2, 3, 1).contiguous()
print(pred_anchor_conf.shape) # Out torch.Size([1, 50, 50, 18])
objectness_score = pred_anchor_conf.view(1, 50, 50, 9, 2)[:, :, :, :, 1].contiguous().view(1, -1)
print(objectness_score.shape) # Out torch.Size([1, 22500])
pred_anchor_conf = pred_anchor_conf.view(1, -1, 2)
print(pred_anchor_conf.shape) # Out torch.size([1, 22500, 2])
# ---------------------
# ---------------------step_3: RPN 损失 (有效anchor与预测anchor之间的损失--坐标系数损失与置信度损失)
# 从上面step_1中,我们得到了目标anchor信息:
# 目标anchor坐标系数:anchor_locations (22500, 4)
# 目标anchor置信度:anchor_conf (22500,)
# 从上面step_2中,我们得到了预测anchor信息:
# RPN网络预测anchor的坐标系数:pred_anchor_locs (1, 22500, 4)
# RPN网络预测anchor的置信度: pred_anchor_conf (1, 22500, 2)
# 我们将会从新排列,将输入和输出排成一行
rpn_anchor_loc = pred_anchor_locs[0]
rpn_anchor_conf = pred_anchor_conf[0]
anchor_locations = torch.from_numpy(anchor_locations)
anchor_conf = torch.from_numpy(anchor_conf)
print(rpn_anchor_loc.shape, rpn_anchor_conf.shape, anchor_locations.shape, anchor_conf.shape)
# torch.Size([22500, 4]) torch.Size([22500, 2]) torch.Size([22500, 4]) torch.Size([22500])
rpn_loss = vgg.roi_loss(rpn_anchor_loc, rpn_anchor_conf, anchor_locations, anchor_conf, weight=10.0)
print("rpn_loss: {}".format(rpn_loss)) # 1.33919
# ---------------------
# ---------------------step_4: 根据anchor和预测anchor系数,计算预测框(roi)和预测框的坐标系数(roi_locs),
# ---------------------并得到每个预测框的所属类别label(roi_labels)
# 通过anchors框和模型预测的平移缩放系数,得到预测框ROI;再通过预测的分值和阈值进行过滤精简
roi, score, order = utils.get_predict_bbox(anchors, pred_anchor_locs, objectness_score,
n_train_pre_nms=12000, min_size=16)
# 得到的预测框(ROI)还会有大量重叠,再通过NMS(非极大抑制)做进一步的过滤精简
roi = utils.nms(roi, score, order, nms_thresh=0.7, n_train_post_nms=2000)
# 根据预测框ROI与目标框BBox的IOU,得到每个预测框所要预测的目标框(预测框与哪个目标框的IOU大,就代表预测哪个目标);
# 并根据IOU对ROI做进一步过滤,并划分正负样例。
sample_roi, keep_index, gt_assignment, roi_labels = utils.get_propose_target(roi, bbox, labels,
n_sample=128,
pos_ratio=0.25,
pos_iou_thresh=0.5,
neg_iou_thresh_hi=0.5,
neg_iou_thresh_lo=0.0)
# print(sample_roi.shape) # (128, 4)
# 预测框对应的目标框 bbox_for_sampled_roi
bbox_for_sampled_roi = bbox[gt_assignment[keep_index]] # 目标框
print(bbox_for_sampled_roi.shape) # (128, 4)
# 预测框(ROI)转目标框的真实系数
roi_locs = utils.get_coefficient(sample_roi, bbox_for_sampled_roi)
# ---------------------
# ---------------------step_5: ROI Pooling:
# 这一步做了两件事:
# 一是从特征图中根据ROI把相应的预测目标框抠出来(im)
# 二是将抠出来的预测目标框通过adaptive_max_pool方法,输出为固定尺寸(512, 7, 7),方便后续的批处理
# 这样的特点:
# 一是并没有在输入图像上预测,而是在VGG模型的输出特征图上进行预测,这样减少了计算量;
# 二是因为目标实体尺寸多种多样,通过ROI Pooling方法将输出统一为固定尺寸(512, 7, 7),方便进行批处理,
# sample_roi:预测的有效框 (128, 4)
rois = torch.from_numpy(sample_roi).float()
# roi_indices:添加图像的索引[这里我们只有一个图像,其索引号为0]
roi_indices = 0 * np.ones((len(rois),), dtype=np.int32)
roi_indices = torch.from_numpy(roi_indices).float()
print(rois.shape, roi_indices.shape) # torch.Size([128, 4]) torch.Size([128])
# 将图像的索引号和预测的有效框进行合并, 这样我们将会得到维度是[N, 5] 5=>(index, x1, y1, x2, y2)的张量
indices_and_rois = torch.cat([roi_indices[:, None], rois], dim=1) # torch.Size([128, 5])
output = []
rois = indices_and_rois.float()
rois[:, 1:].mul_(1/16.0) # 对预测框进行下采样,匹配特征图out_map
rois = rois.long()
num_rois = rois.size(0)
# out_map: (batch_size, num, feature_size, feature_size) => (1, 512, 50, 50)
for i in range(num_rois):
roi = rois[i]
im_idx = roi[0] # 图片的索引号
# 取出索引号是im_idx的图片特征图=》(1, 512, 50, 50),因为本实例就一张图片,所以操作完后shape并不变
out_map = out_map.narrow(0, im_idx, 1)
# 这一步是根据预测框的的x1,y1, x2,y2坐标,从特征图out_map中把目标实体抠出来
im = out_map[..., roi[2]:(roi[4]+1), roi[1]:(roi[3]+1)]
# print im.shape
# 将抠出来的目标实体im,做adaptive_max_pool计算,最后得到一个固定的尺寸(7,7)== > (512, 7, 7),方便后面进行批处理
output.append(vgg.adaptive_max_pool(im)[0].data)
# ---------------------ROI Pooling
# ---------------------step_6: Classification 线性分类,预测预测框的类别,置信度和转为目标框的平移缩放系数(要与RPN区分)
# note: if your pytorch version is 0.3.1, you must run this:
# output = torch.stack(output)
output = torch.cat(output, 0) # torch.Size([128, 512, 7, 7])
k = output.view(output.size(0), -1) # [128, 25088]
k = torch.autograd.Variable(k)
k = vgg.roi_head_classifier(k) # (128, 4096)
# torch.Size([128, 84]) 84 ==> (20+1)*4,表示每个框有20个候选类别和一个置信度(假设为VOC数据集,共20分类),4表示坐标信息
pred_roi_locs = vgg.cls_loc(k)
# pred_roi_labels: [128, 21] 表示每个框的类别和置信度
pred_roi_labels = vgg.score(k)
print(pred_roi_locs.data.shape, pred_roi_labels.data.shape) # torch.Size([128, 84]), torch.Size([128, 21])
# ---------------------Classification
# ---------------------step_7: 分类损失 (有效预测框真实系数与有效预测框的预测系数间损失,其中系数是转为目标框的坐标系数)
# 从上面step_4中,我们得到了预测框转为目标框的目标信息:
# 预测框的坐标系数(roi_locs): (128, 4)
# 预测框的所属类别(roi_labels):(128, )
# 从上面step_6中,我们得到了预测框转为目标框的预测信息:
# 预测框的坐标系数:pred_roi_locs (128, 84)
# 预测框的所属类别和置信度: pred_roi_labels (128, 21)
gt_roi_loc = torch.from_numpy(roi_locs)
gt_roi_label = torch.from_numpy(np.float32(roi_labels)).long()
print(gt_roi_loc.shape, gt_roi_label.shape) # torch.Size([128, 4]) torch.Size([128])
n_sample = pred_roi_locs.shape[0]
roi_loc = pred_roi_locs.view(n_sample, -1, 4) # (128L, 21L, 4L)
roi_loc = roi_loc[torch.arange(0, n_sample).long(), gt_roi_label] # 根据预测框的真实类别,找到真实类别所对应的坐标系数
# print(roi_loc.shape) # torch.Size([128, 4])
roi_loss = vgg.roi_loss(roi_loc, pred_roi_labels, gt_roi_loc, gt_roi_label, weight=10.0)
print(roi_loss) # 3.810348778963089
# 整体损失函数
total_loss = rpn_loss + roi_loss
print total_loss # 5.149546355009079