-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss.py
37 lines (27 loc) · 925 Bytes
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import torch.nn as nn
class DiceLoss(nn.Module):
def __init__(self):
super(DiceLoss, self).__init__()
def forward(self, pred, true, eps=0.0001):
pred = torch.sigmoid(pred)
# pred = (pred > thr)
# true = true
pred_flat = pred.flatten(2)
true_flat = true.flatten(2)
inter = torch.sum(true_flat * pred_flat, -1)
dice = (2.0 * inter + eps) / (
torch.sum(true_flat, -1) + torch.sum(pred_flat, -1) + eps
)
return 1 - dice.mean()
class IoULoss(nn.Module):
def __init__(self):
super(IoULoss, self).__init__()
def forward(self, pred, true, eps=0.0001):
pred = torch.sigmoid(pred)
pred = pred.view(-1)
true = true.view(-1)
inter = (pred * true).sum()
union = (pred + true).sum() - inter
iou = (inter + eps) / (union + eps)
return 1.0 - iou