forked from pkuxmq/Invertible-Image-Rescaling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
167 lines (140 loc) · 7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os.path as osp
import logging
import time
import argparse
from collections import OrderedDict
import numpy as np
import options.options as option
import utils.util as util
from data.util import bgr2ycbcr
from data import create_dataset, create_dataloader
from models import create_model
#### options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, required=True, help='Path to options YMAL file.')
opt = option.parse(parser.parse_args().opt, is_train=False)
opt = option.dict_to_nonedict(opt)
util.mkdirs(
(path for key, path in opt['path'].items()
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
#### Create test dataset and dataloader
test_loaders = []
for phase, dataset_opt in sorted(opt['datasets'].items()):
test_set = create_dataset(dataset_opt)
test_loader = create_dataloader(test_set, dataset_opt)
logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set)))
test_loaders.append(test_loader)
model = create_model(opt)
for test_loader in test_loaders:
test_set_name = test_loader.dataset.opt['name']
logger.info('\nTesting [{:s}]...'.format(test_set_name))
test_start_time = time.time()
dataset_dir = osp.join(opt['path']['results_root'], test_set_name)
util.mkdir(dataset_dir)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
test_results['psnr_lr'] = []
test_results['ssim_lr'] = []
test_results['psnr_y_lr'] = []
test_results['ssim_y_lr'] = []
for data in test_loader:
model.feed_data(data)
img_path = data['GT_path'][0]
img_name = osp.splitext(osp.basename(img_path))[0]
model.test()
visuals = model.get_current_visuals()
sr_img = util.tensor2img(visuals['SR']) # uint8
srgt_img = util.tensor2img(visuals['GT']) # uint8
lr_img = util.tensor2img(visuals['LR']) # uint8
lrgt_img = util.tensor2img(visuals['LR_ref']) # uint8
# save images
suffix = opt['suffix']
if suffix:
save_img_path = osp.join(dataset_dir, img_name + suffix + '.png')
else:
save_img_path = osp.join(dataset_dir, img_name + '.png')
util.save_img(sr_img, save_img_path)
if suffix:
save_img_path = osp.join(dataset_dir, img_name + suffix + '_GT.png')
else:
save_img_path = osp.join(dataset_dir, img_name + '_GT.png')
util.save_img(srgt_img, save_img_path)
if suffix:
save_img_path = osp.join(dataset_dir, img_name + suffix + '_LR.png')
else:
save_img_path = osp.join(dataset_dir, img_name + '_LR.png')
util.save_img(lr_img, save_img_path)
if suffix:
save_img_path = osp.join(dataset_dir, img_name + suffix + '_LR_ref.png')
else:
save_img_path = osp.join(dataset_dir, img_name + '_LR_ref.png')
util.save_img(lrgt_img, save_img_path)
# calculate PSNR and SSIM
gt_img = util.tensor2img(visuals['GT'])
gt_img = gt_img / 255.
sr_img = sr_img / 255.
lr_img = lr_img / 255.
lrgt_img = lrgt_img / 255.
crop_border = opt['crop_border'] if opt['crop_border'] else opt['scale']
if crop_border == 0:
cropped_sr_img = sr_img
cropped_gt_img = gt_img
else:
cropped_sr_img = sr_img[crop_border:-crop_border, crop_border:-crop_border, :]
cropped_gt_img = gt_img[crop_border:-crop_border, crop_border:-crop_border, :]
psnr = util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255)
ssim = util.calculate_ssim(cropped_sr_img * 255, cropped_gt_img * 255)
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
# PSNR and SSIM for LR
psnr_lr = util.calculate_psnr(lr_img * 255, lrgt_img * 255)
ssim_lr = util.calculate_ssim(lr_img * 255, lrgt_img * 255)
test_results['psnr_lr'].append(psnr_lr)
test_results['ssim_lr'].append(ssim_lr)
if gt_img.shape[2] == 3: # RGB image
sr_img_y = bgr2ycbcr(sr_img, only_y=True)
gt_img_y = bgr2ycbcr(gt_img, only_y=True)
if crop_border == 0:
cropped_sr_img_y = sr_img_y
cropped_gt_img_y = gt_img_y
else:
cropped_sr_img_y = sr_img_y[crop_border:-crop_border, crop_border:-crop_border]
cropped_gt_img_y = gt_img_y[crop_border:-crop_border, crop_border:-crop_border]
psnr_y = util.calculate_psnr(cropped_sr_img_y * 255, cropped_gt_img_y * 255)
ssim_y = util.calculate_ssim(cropped_sr_img_y * 255, cropped_gt_img_y * 255)
test_results['psnr_y'].append(psnr_y)
test_results['ssim_y'].append(ssim_y)
lr_img_y = bgr2ycbcr(lr_img, only_y=True)
lrgt_img_y = bgr2ycbcr(lrgt_img, only_y=True)
psnr_y_lr = util.calculate_psnr(lr_img_y * 255, lrgt_img_y * 255)
ssim_y_lr = util.calculate_ssim(lr_img_y * 255, lrgt_img_y * 255)
test_results['psnr_y_lr'].append(psnr_y_lr)
test_results['ssim_y_lr'].append(ssim_y_lr)
logger.info(
'{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}. LR PSNR: {:.6f} dB; SSIM: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}.'.
format(img_name, psnr, ssim, psnr_y, ssim_y, psnr_lr, ssim_lr, psnr_y_lr, ssim_y_lr))
else:
logger.info('{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}. LR PSNR: {:.6f} dB; SSIM: {:.6f}.'.format(img_name, psnr, ssim, psnr_lr, ssim_lr))
# Average PSNR/SSIM results
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
ave_psnr_lr = sum(test_results['psnr_lr']) / len(test_results['psnr_lr'])
ave_ssim_lr = sum(test_results['ssim_lr']) / len(test_results['ssim_lr'])
logger.info(
'----Average PSNR/SSIM results for {}----\n\tpsnr: {:.6f} db; ssim: {:.6f}. LR psnr: {:.6f} db; ssim: {:.6f}.\n'.format(
test_set_name, ave_psnr, ave_ssim, ave_psnr_lr, ave_ssim_lr))
if test_results['psnr_y'] and test_results['ssim_y']:
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
ave_psnr_y_lr = sum(test_results['psnr_y_lr']) / len(test_results['psnr_y_lr'])
ave_ssim_y_lr = sum(test_results['ssim_y_lr']) / len(test_results['ssim_y_lr'])
logger.info(
'----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}. LR PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}.\n'.
format(ave_psnr_y, ave_ssim_y, ave_psnr_y_lr, ave_ssim_y_lr))