-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvoc_label.py
75 lines (67 loc) · 2.38 KB
/
voc_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import xml.etree.ElementTree as ET
import os
from os import getcwd
# 运行该代码之前先运行makeTXT.py
sets = ['train', 'val', 'test']
classes = ['target'] # 写自己类别
abs_path = os.getcwd()
print(abs_path)
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[2] + box[0]) / 2.0 # 中心点
y = (box[3] + box[1]) / 2.0
w = box[2] - box[0] # 宽
h = box[3] - box[1] # 高
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
in_file = open('datasets/Annotations/%s.xml' % (image_id), encoding='UTF-8')
out_file = open('datasets/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = 0
if obj.find('difficult') != None:
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (int(float(xmlbox.find('xmin').text)), int(float(xmlbox.find('ymin').text)), # 左上角
int(float(xmlbox.find('xmax').text)), int(float(xmlbox.find('ymax').text))) # 右下角
b1, b2, b3, b4 = b # (x1,y1,x2,y2)
'''
(x1,y1)
--------------------
| |
| |
| |
| |
| |
--------------------(x2,y2)
'''
if b3 > w: # 防止越界
b3 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b) # x1,y1,x2,y2 --> center_x, center_y, w, h
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('datasets/labels/'):
os.makedirs('datasets/labels/')
image_ids = open('datasets/ImageSets/%s.txt' % (image_set)).read().strip().split()
list_file = open('datasets/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write(abs_path + '/datasets/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()