-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictor_v.py
149 lines (122 loc) · 5.95 KB
/
predictor_v.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import os
from set.ds3d import HaN_OAR_v2 as ProbSet
import random
from models.vnet import VNet
from tqdm import tqdm
from metrics import *
import time
import matplotlib.pyplot as plt
import numpy as np
from torch.utils.data import DataLoader
import torch
@torch.no_grad()
def predict(config):
if config.model_type not in ['VNet',]:
print('ERROR!! model_type should be selected in VNet/')
print('Your input for model_type was %s' % config.model_type)
return
#train_set = ProbSet(config.train_path)
valid_set = ProbSet(config.valid_path,is_train=False)
test_set = ProbSet(config.test_path,is_train=False,fold=5)
# print(len(valid_set), len(test_set))
#train_loader = DataLoader(train_set, batch_size=config.batch_size)
valid_loader = DataLoader(valid_set, batch_size=config.batch_size)
test_loader = DataLoader(test_set, batch_size=config.batch_size)
net = VNet()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net.to(device)
print(config.model_type, net)
net.load_state_dict(torch.load(config.net_path))
net.eval()
DC = 0. # Dice Coefficient
length = 0
iou = 0
for i, (imgs, gts) in enumerate(test_loader):
#path = path[0] # 因为经过了loader被wrap进了元组 又因为batchsize=1
imgs = imgs.to(device)
gts = gts.round().long().to(device)
outputs = net(imgs)
print(gts.cpu().shape, imgs.shape, outputs.shape)
# torch.Size([1, 1, 128, 128, 128]) torch.Size([1, 1, 128, 128, 128]) torch.Size([1, 14, 128, 128, 128])
#print(path)
ious = IoU(gts.detach().cpu().squeeze().numpy().reshape(-1),
outputs.detach().cpu().squeeze().argmax(dim=0).numpy().reshape(-1), num_classes=14)
print(ious)
print(np.array(ious).mean())
iou += np.array(ious).mean()
#print(path)
#output_id = path.split('/')[-1]
#np.save('/mnt/HDD/datasets/competitions/vnet/output/fold1/output{}.npy'.format(output_id), outputs.detach().cpu().squeeze().numpy())
for j in range(70,128):
plt.figure()
plt.subplot(2,2,1)
# plt.imshow(np.array(imgs.cpu().squeeze()[j,0]))
plt.imshow(np.array(imgs.cpu().squeeze()[j]))
plt.colorbar()
plt.subplot(2, 2, 2)
plt.title(np.unique(np.array(gts.cpu().detach().numpy().squeeze()[j])))
plt.imshow(np.array(gts.cpu().detach().numpy().squeeze()[j]))
plt.colorbar()
plt.subplot(2, 2, 3)
plt.title(np.unique(outputs.cpu().detach().numpy().squeeze().argmax(axis=0)[j]))
plt.imshow(outputs.cpu().detach().numpy().squeeze().argmax(axis=0)[j].reshape(128,128))
#plt.imshow(outputs.cpu().detach().numpy().squeeze()[8,j].reshape(128, 128))
plt.colorbar()
plt.show()
time.sleep(2)
print('######', iou/10)
# np.save('/mnt/HDD/datasets/HaN_OAR/image70.npy', np.array(imgs.cpu().squeeze()[i]))
# np.save('/mnt/HDD/datasets/HaN_OAR/prediction70.npy', np.array(torch.sigmoid(outputs.cpu().detach()).numpy().squeeze()[i]))
# if config.output_ch == 1:
# outputs = torch.sigmoid(outputs)
#
# acc += get_accuracy(outputs, gts) * imgs.size(0)
# SE += get_sensitivity(outputs, gts) * imgs.size(0)
# SP += get_specificity(outputs, gts) * imgs.size(0)
# PC += get_precision(outputs, gts) * imgs.size(0)
# F1 += get_F1(outputs, gts) * imgs.size(0)
# JS += get_JS(outputs, gts) * imgs.size(0)
# DC += get_DC(outputs, gts) * imgs.size(0)
# length += imgs.size(0)
#
# acc = acc / length
# SE = SE / length
# SP = SP / length
# PC = PC / length
# F1 = F1 / length
# JS = JS / length
# DC = DC / length
# score = JS + DC
# print('[Validation] Acc: %.4f, SE: %.4f, SP: %.4f, PC: %.4f, F1: %.4f, JS: %.4f, DC: %.4f'
# % (acc, SE, SP, PC, F1, JS, DC))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model hyper-parameters
# training hyper-parameters
parser.add_argument('--num_epochs', type=int, default=100)
parser.add_argument('--num_epochs_decay', type=int, default=70)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--lr', type=float, default=0.0002)
parser.add_argument('--beta1', type=float, default=0.5) # momentum1 in Adam
parser.add_argument('--beta2', type=float, default=0.999) # momentum2 in Adam
parser.add_argument('--augmentation_prob', type=float, default=0.4)
parser.add_argument('--log_step', type=int, default=2)
parser.add_argument('--val_step', type=int, default=2)
# misc
data_root = '/mnt/HDD/datasets/competitions/aug/'
save_root = '/mnt/HDD/datasets/competitions/vnet/'
parser.add_argument('--model_type', type=str, default='VNet', help='VNet/')
parser.add_argument('--model_path', type=str, default=save_root + 'models_for_cls')
parser.add_argument('--train_path', type=str, default=data_root)
parser.add_argument('--valid_path', type=str, default=data_root)
parser.add_argument('--test_path', type=str, default=data_root)
parser.add_argument('--result_path', type=str, default=save_root + 'result_for_cls/')
# /mnt/HDD/datasets/competitions/candidate/vnet/VNet-400-0.0001000-100-0.5000-vv-fold1-1-ce+dice.pkl
# /mnt/HDD/datasets/competitions/vnet/models_for_cls/VNet-100-0.0001000-50-0.5000-vv-fold1-1-ce+dice-then-gdice+ce-1.pkl
# '/mnt/HDD/datasets/competitions/candidate/vnet/VNet-400-0.0001000-100-0.5000-vv-fold2-1-ce+dice.pkl'
parser.add_argument('--net_path', type=str, default='/mnt/HDD/datasets/competitions/vnet/models_for_cls/VNet-60-0.0001000-25-0.5000-vv-fold5-d19-ce+dice-then-gdice+ce.pkl')
parser.add_argument('--cuda_idx', type =int, default=1)
config = parser.parse_args()
predict(config)