-
Notifications
You must be signed in to change notification settings - Fork 116
/
partition.py
146 lines (125 loc) · 5.53 KB
/
partition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import logging
import numpy as np
import random
import argparse
import csv
from utils import mkdirs
def partition_data(dataset, class_id, K, partition, n_parties, beta, seed):
np.random.seed(seed)
random.seed(seed)
n_train = dataset.shape[0]
y_train = dataset[:,class_id]
if partition == "homo":
idxs = np.random.permutation(n_train)
batch_idxs = np.array_split(idxs, n_parties)
net_dataidx_map = {i: batch_idxs[i] for i in range(n_parties)}
elif partition == "noniid-labeldir":
min_size = 0
min_require_size = 10
N = dataset.shape[0]
net_dataidx_map = {}
while min_size < min_require_size:
idx_batch = [[] for _ in range(n_parties)]
for k in range(K):
idx_k = np.where(y_train == k)[0]
np.random.shuffle(idx_k)
proportions = np.random.dirichlet(np.repeat(beta, n_parties))
# logger.info("proportions1: ", proportions)
# logger.info("sum pro1:", np.sum(proportions))
## Balance
proportions = np.array([p * (len(idx_j) < N / n_parties) for p, idx_j in zip(proportions, idx_batch)])
# logger.info("proportions2: ", proportions)
proportions = proportions / proportions.sum()
# logger.info("proportions3: ", proportions)
proportions = (np.cumsum(proportions) * len(idx_k)).astype(int)[:-1]
# logger.info("proportions4: ", proportions)
idx_batch = [idx_j + idx.tolist() for idx_j, idx in zip(idx_batch, np.split(idx_k, proportions))]
min_size = min([len(idx_j) for idx_j in idx_batch])
# if K == 2 and n_parties <= 10:
# if np.min(proportions) < 200:
# min_size = 0
# break
for j in range(n_parties):
np.random.shuffle(idx_batch[j])
net_dataidx_map[j] = idx_batch[j]
elif partition > "noniid-#label0" and partition <= "noniid-#label9":
num = eval(partition[13:])
times=[0 for i in range(K)]
contain=[]
for i in range(n_parties):
current=[i%K]
times[i%K]+=1
j=1
while (j<num):
ind=random.randint(0,K-1)
if (ind not in current):
j=j+1
current.append(ind)
times[ind]+=1
contain.append(current)
net_dataidx_map ={i:np.ndarray(0,dtype=np.int64) for i in range(n_parties)}
for i in range(K):
idx_k = np.where(y_train==i)[0]
np.random.shuffle(idx_k)
split = np.array_split(idx_k,times[i])
ids=0
for j in range(n_parties):
if i in contain[j]:
net_dataidx_map[j]=np.append(net_dataidx_map[j],split[ids])
ids+=1
for i in range(n_parties):
net_dataidx_map[i] = net_dataidx_map[i].tolist()
elif partition == "iid-diff-quantity":
idxs = np.random.permutation(n_train)
min_size = 0
while min_size < 10:
proportions = np.random.dirichlet(np.repeat(beta, n_parties))
proportions = proportions/proportions.sum()
min_size = np.min(proportions*len(idxs))
proportions = (np.cumsum(proportions)*len(idxs)).astype(int)[:-1]
batch_idxs = np.split(idxs,proportions)
net_dataidx_map = {i: batch_idxs[i] for i in range(n_parties)}
for i in range(n_parties):
net_dataidx_map[i] = net_dataidx_map[i].tolist()
return net_dataidx_map
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--partition', type=str, default='homo', help='the data partitioning strategy')
parser.add_argument('--n_parties', type=int, default=10, help='number of workers in a distributed cluster')
parser.add_argument('--init_seed', type=int, default=0, help="Random seed")
parser.add_argument('--datadir', type=str, required=False, default="./data/creditcard.csv", help="Data directory")
parser.add_argument('--outputdir', type=str, required=False, default="./data/creditcard/", help="Output directory")
parser.add_argument('--beta', type=float, default=0.5, help='The parameter for the dirichlet distribution for data partitioning')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = get_args()
num = -1
dataset = []
with open(args.datadir, newline='') as csvfile:
reader = csv.reader(csvfile, delimiter=',', quotechar='"')
for row in reader:
if num == -1:
header = row
else:
dataset.append(row)
for i in range(len(dataset[-1])):
dataset[-1][i] = eval(dataset[-1][i])
num += 1
class_id = 0
for i in range(len(header)):
if header[i] == "Class":
class_id = i
break
dataset = np.array(dataset)
num_class = int(np.max(dataset[:,class_id])) + 1
net_dataidx_map = partition_data(dataset, class_id, num_class, args.partition, args.n_parties, args.beta, args.init_seed)
mkdirs(args.outputdir)
for i in range(args.n_parties):
file_name = args.outputdir+str(i)+'.csv'
os.system("touch "+file_name)
with open(file_name, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(header)
writer.writerows(dataset[net_dataidx_map[i]])