-
Notifications
You must be signed in to change notification settings - Fork 58
/
train.py
235 lines (203 loc) · 9.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#encoding = utf-8
#训练脚本
import tensorflow as tf
import numpy as np
import os
import time
import datetime
import data_helper
from TextCNN import TextCNN
from tensorflow.contrib import learn
# Parameters参数设置
# ==================================================
# Data loading params 数据加载参数
tf.flags.DEFINE_float("dev_sample_percentage", .1,
"Percentage of the training data to use for validation")
tf.flags.DEFINE_string("positive_data_file", "./data/rt-polarity.pos",
"Data source for the positive data.")
tf.flags.DEFINE_string("negative_data_file", "./data/rt-polarity.neg",
"Data source for the negative data.")
# Model Hyperparameters 超参数设置
tf.flags.DEFINE_integer(
"embedding_dim", 128,
"Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_string("filter_sizes", "3,4,5",
"Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 128,
"Number of filters per filter size (default: 128)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5,
"Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0,
"L2 regularization lambda (default: 0.0)")
# Training parameters 训练参数
tf.flags.DEFINE_integer("batch_size", 16, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 10,
"Number of training epochs (default: 200)")
tf.flags.DEFINE_integer(
"evaluate_every", 100,
"Evaluate model on dev set after this many steps (default: 100)")
#每一百轮便保存模型
tf.flags.DEFINE_integer("checkpoint_every", 100,
"Save model after this many steps (default: 100)")
#仅保存最近五次模型
tf.flags.DEFINE_integer("num_checkpoints", 5,
"Number of checkpoints to store (default: 5)")
# Misc Parameters 设备参数
#当指定的设备不存在时,自动分配(默认为TRUE)
tf.flags.DEFINE_boolean("allow_soft_placement", True,
"Allow device soft device placement")
#打印日志
tf.flags.DEFINE_boolean("log_device_placement", False,
"Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
# 定义一个训练步骤
# ==================================================
def train_step(x_batch, y_batch, train_op):
"""
A single training step
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
}
_, step, summaries, loss, accuracy = sess.run(
[train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss,
accuracy))
train_summary_writer.add_summary(summaries, step)
def dev_step(x_batch, y_batch, writer=None):
"""
Evaluates model on a dev set
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: 1.0
}
step, summaries, loss, accuracy = sess.run(
[global_step, dev_summary_op, cnn.loss, cnn.accuracy], feed_dict)
time_str = datetime.datetime.now().isoformat()
print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss,
accuracy))
if writer:
writer.add_summary(summaries, step)
with tf.Graph().as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
cnn = TextCNN(
sequence_length=x_train.
shape[1], #我们的句子的长度。请记住,我们填充了所有句子的长度(我们的数据集为59)
num_classes=y_train.shape[1], #分类数,在我们的例子中是两个(正数和负数)。
vocab_size=len(vocab_processor.vocabulary_), #邮件字典不重复单词数目
embedding_size=FLAGS.embedding_dim, #中间层维度
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))), #过滤器大小
num_filters=FLAGS.num_filters, #过滤器数目
l2_reg_lambda=FLAGS.l2_reg_lambda) #l2惩罚项大小
# Define Training procedure 定义训练过程
global_step = tf.Variable(0, name="global_step", trainable=False)
#指定优化器
optimizer = tf.train.AdamOptimizer(1e-3)
grads_and_vars = optimizer.compute_gradients(cnn.loss)
train_op = optimizer.apply_gradients(grads_and_vars,
global_step=global_step)
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram(
"{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar(
"{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.summary.merge(grad_summaries)
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(
os.path.join(os.path.curdir, "runs", timestamp))
print("Writing to {}\n".format(out_dir))
# Summaries for loss and accuracy
loss_summary = tf.summary.scalar("loss", cnn.loss)
acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)
# Train Summaries
train_summary_op = tf.summary.merge(
[loss_summary, acc_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir,
sess.graph)
# Dev summaries
dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(),
max_to_keep=FLAGS.num_checkpoints)
# Write vocabulary
vocab_processor.save(os.path.join(out_dir, "vocab"))
# Initialize all variables
#全局初始化
sess.run(tf.global_variables_initializer())
# Generate batches
batches = data_helper.batch_iter(list(zip(x_train, y_train)),
FLAGS.batch_size, FLAGS.num_epochs)
# Training loop. For each batch...开始训练了
for batch in batches:
x_batch, y_batch = zip(*batch)
train_step(x_batch, y_batch, train_op)
current_step = tf.train.global_step(sess, global_step)
if current_step % FLAGS.evaluate_every == 0:
print("\nEvaluation:")
dev_step(x_dev, y_dev, writer=dev_summary_writer)
print("")
if current_step % FLAGS.checkpoint_every == 0:
path = saver.save(sess,
checkpoint_prefix,
global_step=current_step)
print("Saved model checkpoint to {}\n".format(path))
def main(argv=None):
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
print("{}={}".format(attr.upper(), value))
print("")
# Data Preparation
# ==================================================
# Load data加载数据,返回数据集和标签
print("Loading data...")
x_text, y = data_helper.load_data_and_labels(FLAGS.positive_data_file,
FLAGS.negative_data_file)
# Build vocabulary生成单词字典
#得到最大邮件长度(单词个数),不足的用0填充
max_document_length = max([len(x.split(" ")) for x in x_text])
vocab_processor = learn.preprocessing.VocabularyProcessor(
max_document_length)
x = np.array(list(vocab_processor.fit_transform(x_text)))
# Randomly shuffle data打乱数据集
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(y)))
x_shuffled = x[shuffle_indices]
y_shuffled = y[shuffle_indices]
# Split train/test set
# TODO: This is very crude, should use cross-validation
#负数:从后往前取
dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))
x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[
dev_sample_index:]
y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[
dev_sample_index:]
print("Vocabulary Size: {:d}".format(len(
vocab_processor.vocabulary_))) #Vocabulary Size: 18758
print("Train/Dev split: {:d}/{:d}".format(
len(y_train), len(y_dev))) #Train/Dev split: 9596/1066
if __name__ == '__main__':
tf.app.run()