-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathconvert_to_deit.py
33 lines (27 loc) · 1.21 KB
/
convert_to_deit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import argparse
import os
import torch
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Convert MoCo Pre-Traind Model to DEiT')
parser.add_argument('--input', default='', type=str, metavar='PATH', required=True,
help='path to moco pre-trained checkpoint')
parser.add_argument('--output', default='', type=str, metavar='PATH', required=True,
help='path to output checkpoint in DEiT format')
args = parser.parse_args()
print(args)
# load input
checkpoint = torch.load(args.input, map_location="cpu")
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
# retain only base_encoder up to before the embedding layer
if k.startswith('module.base_encoder') and not k.startswith('module.base_encoder.head'):
# remove prefix
state_dict[k[len("module.base_encoder."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
# make output directory if necessary
output_dir = os.path.dirname(args.output)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
# save to output
torch.save({'model': state_dict}, args.output)