-
Notifications
You must be signed in to change notification settings - Fork 148
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Quantizing yolov4 error #62
Comments
Same issue, I am using tensorflow = 1.15.2 and running everything fine until this point. |
I solved this issue by using the exact docker image provided here in my case I used VitisAI 1.4.1. |
when running the requirements.txt of keras-yolov3-modelset -i 'm getting error for coremltools.it is showing like "couldn't find a version that satisfies the requirement tensorflow<=1.14 and tensorflow >=1.5(from tfcoremltools -r requirements.txt).(from version :2.2.0,2.2..1, 2.2.2, ...2.7.0rc0,2.7.0.rc1............) like this .can someone help me regarding this. |
Traceback (most recent call last):
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/tensorflow_core/python/framework/importer.py", line 501, in _import_graph_def_internal
graph._c_graph, serialized, options) # pylint: disable=protected-access
tensorflow.python.framework.errors_impl.InvalidArgumentError: NodeDef mentions attr 'exponential_avg_factor' not in Op<name=FusedBatchNormV3; signature=x:T, scale:U, offset:U, mean:U, variance:U -> y:T, batch_mean:U, batch_variance:U, reserve_space_1:U, reserve_space_2:U, reserve_space_3:U; attr=T:type,allowed=[DT_HALF, DT_BFLOAT16, DT_FLOAT]; attr=U:type,allowed=[DT_FLOAT]; attr=epsilon:float,default=0.0001; attr=data_format:string,default="NHWC",allowed=["NHWC", "NCHW"]; attr=is_training:bool,default=true>; NodeDef: {{node batch_normalization/FusedBatchNormV3}}. (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.).
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/bin/vai_q_tensorflow", line 11, in
sys.exit(run_main())
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/tensorflow_core/contrib/decent_q/python/decent_q.py", line 1061, in run_main
app.run(main=my_main, argv=[sys.argv[0]] + unparsed)
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/tensorflow_core/python/platform/app.py", line 40, in run
_run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/absl/app.py", line 312, in run
_run_main(main, args)
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/absl/app.py", line 258, in _run_main
sys.exit(main(argv))
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/tensorflow_core/contrib/decent_q/python/decent_q.py", line 1060, in
my_main = lambda unused_args: main(unused_args, FLAGS)
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/tensorflow_core/contrib/decent_q/python/decent_q.py", line 676, in main
flags.skip_check, flags.dump_as_xir)
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/tensorflow_core/contrib/decent_q/python/decent_q.py", line 375, in quantize_frozen
check_float_graph(input_graph_def, input_fn, q_config, s_config)
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/tensorflow_core/contrib/decent_q/python/decent_q.py", line 275, in check_float_graph
importer.import_graph_def(input_graph_def, name='')
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/tensorflow_core/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/tensorflow_core/python/framework/importer.py", line 405, in import_graph_def
producer_op_list=producer_op_list)
File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow/lib/python3.6/site-packages/tensorflow_core/python/framework/importer.py", line 505, in import_graph_def_internal
raise ValueError(str(e))
ValueError: NodeDef mentions attr 'exponential_avg_factor' not in Op<name=FusedBatchNormV3; signature=x:T, scale:U, offset:U, mean:U, variance:U -> y:T, batch_mean:U, batch_variance:U, reserve_space_1:U, reserve_space_2:U, reserve_space_3:U; attr=T:type,allowed=[DT_HALF, DT
The text was updated successfully, but these errors were encountered: