-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathQLambda.cpp
401 lines (350 loc) · 12.2 KB
/
QLambda.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#include "QLambda.h"
QLambda::QLambda(void)
{
}
QLambda::~QLambda(void)
{
}
void QLambda::QLamdaSearch(VectorXd ambfloat, MatrixXd Q_mat, MatrixXd &amb_fix, double *ratio, int out_fixamb_num)
{
int n = 0, m = 0;
double *a = NULL, *Q = NULL, *F = NULL, *s = NULL;
n = Q_mat.rows();
m = out_fixamb_num;
a = (double *)malloc(sizeof(double) *n);
Q = (double *)malloc(sizeof(double) *n * n);
F = (double *)malloc(sizeof(double) *n * m);
s = (double *)malloc(sizeof(double) *m);
// transation Matrix to double *
for(int i = 0;i < n; i++)
a[i] = ambfloat[i];
for(int i = 0;i < n;i++)
for(int j = 0;j < n;j++)
Q[i * n + j] = Q_mat(i, j);
// use RTKLIB search
lambda(n, m, a, Q, F,s);
// transation double * to matrix
amb_fix.resize(n, m);
amb_fix.setZero();
for(int i = 0;i < n;i++)
for(int j = 0;j < m;j++)
amb_fix(i,j) = F[i * n + j];
if(ratio) *ratio = s[2]/ s[1];
}
/* lambda/mlambda integer least-square estimation ------------------------------
* integer least-square estimation. reduction is performed by lambda (ref.[1]),
* and search by mlambda (ref.[2]).
* args : int n I number of float parameters
* int m I number of fixed solutions
* double *a I float parameters (n x 1)
* double *Q I covariance matrix of float parameters (n x n)
* double *F O fixed solutions (n x m)
* double *s O sum of squared residulas of fixed solutions (1 x m)
* return : status (0:ok,other:error)
* notes : matrix stored by column-major order (fortran convension)
*-----------------------------------------------------------------------------*/
int QLambda::lambda(int n, int m, const double *a, const double *Q, double *F,
double *s)
{
int info;
double *L,*D,*Z,*z,*E;
if (n<=0||m<=0) return -1;
L=zeros(n,n); D=mat(n,1); Z=eye(n); z=mat(n,1),E=mat(n,m);
/* LD factorization */
if (!(info=LD(n,Q,L,D))) {
/* lambda reduction */
reduction(n,L,D,Z);
matmul("TN",n,1,n,1.0,Z,a,0.0,z); /* z=Z'*a */
/* mlambda search */
if (!(info=search(n,m,L,D,z,E,s))) {
info=solve("T",Z,E,n,m,F); /* F=Z'\E */
}
}
free(L); free(D); free(Z); free(z); free(E);
return info;
}
/* LD factorization (Q=L'*diag(D)*L) -----------------------------------------*/
int QLambda::LD(int n, const double *Q, double *L, double *D)
{
int i,j,k,info=0;
double a,*A=mat(n,n);
memcpy(A,Q,sizeof(double)*n*n);
for (i=n-1;i>=0;i--) {
if ((D[i]=A[i+i*n])<=0.0) {info=-1; break;}
a=sqrt(D[i]);
for (j=0;j<=i;j++) L[i+j*n]=A[i+j*n]/a;
for (j=0;j<=i-1;j++) for (k=0;k<=j;k++) A[j+k*n]-=L[i+k*n]*L[i+j*n];
for (j=0;j<=i;j++) L[i+j*n]/=L[i+i*n];
}
free(A);
if (info) fprintf(stderr,"%s : LD factorization error\n",__FILE__);
return info;
}
/* integer gauss transformation ----------------------------------------------*/
void QLambda::gauss(int n, double *L, double *Z, int i, int j)
{
int k,mu;
if ((mu=(int)ROUND_RTKLIB(L[i+j*n]))!=0) {
for (k=i;k<n;k++) L[k+n*j]-=(double)mu*L[k+i*n];
for (k=0;k<n;k++) Z[k+n*j]-=(double)mu*Z[k+i*n];
}
}
/* permutations --------------------------------------------------------------*/
void QLambda::perm(int n, double *L, double *D, int j, double del, double *Z)
{
int k;
double eta,lam,a0,a1;
eta=D[j]/del;
lam=D[j+1]*L[j+1+j*n]/del;
D[j]=eta*D[j+1]; D[j+1]=del;
for (k=0;k<=j-1;k++) {
a0=L[j+k*n]; a1=L[j+1+k*n];
L[j+k*n]=-L[j+1+j*n]*a0+a1;
L[j+1+k*n]=eta*a0+lam*a1;
}
L[j+1+j*n]=lam;
for (k=j+2;k<n;k++) SWAP(L[k+j*n],L[k+(j+1)*n]);
for (k=0;k<n;k++) SWAP(Z[k+j*n],Z[k+(j+1)*n]);
}
/* lambda reduction (z=Z'*a, Qz=Z'*Q*Z=L'*diag(D)*L) (ref.[1]) ---------------*/
void QLambda::reduction(int n, double *L, double *D, double *Z)
{
int i,j,k;
double del;
j=n-2; k=n-2;
while (j>=0) {
if (j<=k) for (i=j+1;i<n;i++) gauss(n,L,Z,i,j);
del=D[j]+L[j+1+j*n]*L[j+1+j*n]*D[j+1];
if (del+1E-6<D[j+1]) { /* compared considering numerical error */
perm(n,L,D,j,del,Z);
k=j; j=n-2;
}
else j--;
}
}
/* modified lambda (mlambda) search (ref. [2]) -------------------------------*/
int QLambda::search(int n, int m, const double *L, const double *D,
const double *zs, double *zn, double *s)
{
int i,j,k,c,nn=0,imax=0;
double newdist,maxdist=1E99,y;
double *S=zeros(n,n),*dist=mat(n,1),*zb=mat(n,1),*z=mat(n,1),*step=mat(n,1);
k=n-1; dist[k]=0.0;
zb[k]=zs[k];
z[k]=ROUND_RTKLIB(zb[k]); y=zb[k]-z[k]; step[k]=SGN(y);
for (c=0;c<LOOPMAX;c++) {
newdist=dist[k]+y*y/D[k];
if (newdist<maxdist) {
if (k!=0) {
dist[--k]=newdist;
for (i=0;i<=k;i++)
S[k+i*n]=S[k+1+i*n]+(z[k+1]-zb[k+1])*L[k+1+i*n];
zb[k]=zs[k]+S[k+k*n];
z[k]=ROUND_RTKLIB(zb[k]); y=zb[k]-z[k]; step[k]=SGN(y);
}
else {
if (nn<m) {
if (nn==0||newdist>s[imax]) imax=nn;
for (i=0;i<n;i++) zn[i+nn*n]=z[i];
s[nn++]=newdist;
}
else {
if (newdist<s[imax]) {
for (i=0;i<n;i++) zn[i+imax*n]=z[i];
s[imax]=newdist;
for (i=imax=0;i<m;i++) if (s[imax]<s[i]) imax=i;
}
maxdist=s[imax];
}
z[0]+=step[0]; y=zb[0]-z[0]; step[0]=-step[0]-SGN(step[0]);
}
}
else {
if (k==n-1) break;
else {
k++;
z[k]+=step[k]; y=zb[k]-z[k]; step[k]=-step[k]-SGN(step[k]);
}
}
}
for (i=0;i<m-1;i++) { /* sort by s */
for (j=i+1;j<m;j++) {
if (s[i]<s[j]) continue;
SWAP(s[i],s[j]);
for (k=0;k<n;k++) SWAP(zn[k+i*n],zn[k+j*n]);
}
}
free(S); free(dist); free(zb); free(z); free(step);
if (c>=LOOPMAX) {
fprintf(stderr,"%s : search loop count overflow\n",__FILE__);
return -1;
}
return 0;
}
// ***************other fuctions***********************
/* fatal error ---------------------------------------------------------------*/
void QLambda::fatalerr(const char *format, ...)
{
va_list ap;
va_start(ap,format); vfprintf(stderr,format,ap); va_end(ap);
exit(-9);
}
/* new matrix ------------------------------------------------------------------
* allocate memory of matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n<=0 or m<=0, return NULL)
*-----------------------------------------------------------------------------*/
double *QLambda::mat(int n, int m)
{
double *p;
if (n<=0||m<=0) return NULL;
if (!(p=(double *)malloc(sizeof(double)*n*m))) {
fatalerr("matrix memory allocation error: n=%d,m=%d\n",n,m);
}
return p;
}
/* zero matrix -----------------------------------------------------------------
* generate new zero matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n<=0 or m<=0, return NULL)
*-----------------------------------------------------------------------------*/
double *QLambda::zeros(int n, int m)
{
double *p;
#if NOCALLOC
if ((p=mat(n,m))) for (n=n*m-1;n>=0;n--) p[n]=0.0;
#else
if (n<=0||m<=0) return NULL;
if (!(p=(double *)calloc(sizeof(double),n*m))) {
fatalerr("matrix memory allocation error: n=%d,m=%d\n",n,m);
}
#endif
return p;
}
/* identity matrix -------------------------------------------------------------
* generate new identity matrix
* args : int n I number of rows and columns of matrix
* return : matrix pointer (if n<=0, return NULL)
*-----------------------------------------------------------------------------*/
double *QLambda::eye(int n)
{
double *p;
int i;
if ((p=zeros(n,n))) for (i=0;i<n;i++) p[i+i*n]=1.0;
return p;
}
/* new integer matrix ----------------------------------------------------------
* allocate memory of integer matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n<=0 or m<=0, return NULL)
*-----------------------------------------------------------------------------*/
int *QLambda::imat(int n, int m)
{
int *p;
if (n<=0||m<=0) return NULL;
if (!(p=(int *)malloc(sizeof(int)*n*m))) {
fatalerr("integer matrix memory allocation error: n=%d,m=%d\n",n,m);
}
return p;
}
/* copy matrix -----------------------------------------------------------------
* copy matrix
* args : double *A O destination matrix A (n x m)
* double *B I source matrix B (n x m)
* int n,m I number of rows and columns of matrix
* return : none
*-----------------------------------------------------------------------------*/
void QLambda::matcpy(double *A, const double *B, int n, int m)
{
memcpy(A,B,sizeof(double)*n*m);
}
/* inverse of matrix ---------------------------------------------------------*/
int QLambda::matinv(double *A, int n)
{
double d,*B;
int i,j,*indx;
indx=imat(n,1); B=mat(n,n); matcpy(B,A,n,n);
if (ludcmp(B,n,indx,&d)) {free(indx); free(B); return -1;}
for (j=0;j<n;j++) {
for (i=0;i<n;i++) A[i+j*n]=0.0; A[j+j*n]=1.0;
lubksb(B,n,indx,A+j*n);
}
free(indx); free(B);
return 0;
}
/* LU decomposition ----------------------------------------------------------*/
int QLambda::ludcmp(double *A, int n, int *indx, double *d)
{
double big,s,tmp,*vv=mat(n,1);
int i,imax=0,j,k;
*d=1.0;
for (i=0;i<n;i++) {
big=0.0; for (j=0;j<n;j++) if ((tmp=fabs(A[i+j*n]))>big) big=tmp;
if (big>0.0) vv[i]=1.0/big; else {free(vv); return -1;}
}
for (j=0;j<n;j++) {
for (i=0;i<j;i++) {
s=A[i+j*n]; for (k=0;k<i;k++) s-=A[i+k*n]*A[k+j*n]; A[i+j*n]=s;
}
big=0.0;
for (i=j;i<n;i++) {
s=A[i+j*n]; for (k=0;k<j;k++) s-=A[i+k*n]*A[k+j*n]; A[i+j*n]=s;
if ((tmp=vv[i]*fabs(s))>=big) {big=tmp; imax=i;}
}
if (j!=imax) {
for (k=0;k<n;k++) {
tmp=A[imax+k*n]; A[imax+k*n]=A[j+k*n]; A[j+k*n]=tmp;
}
*d=-(*d); vv[imax]=vv[j];
}
indx[j]=imax;
if (A[j+j*n]==0.0) {free(vv); return -1;}
if (j!=n-1) {
tmp=1.0/A[j+j*n]; for (i=j+1;i<n;i++) A[i+j*n]*=tmp;
}
}
free(vv);
return 0;
}
/* LU back-substitution ------------------------------------------------------*/
void QLambda::lubksb(const double *A, int n, const int *indx, double *b)
{
double s;
int i,ii=-1,ip,j;
for (i=0;i<n;i++) {
ip=indx[i]; s=b[ip]; b[ip]=b[i];
if (ii>=0) for (j=ii;j<i;j++) s-=A[i+j*n]*b[j]; else if (s) ii=i;
b[i]=s;
}
for (i=n-1;i>=0;i--) {
s=b[i]; for (j=i+1;j<n;j++) s-=A[i+j*n]*b[j]; b[i]=s/A[i+i*n];
}
}
/* solve linear equation -----------------------------------------------------*/
int QLambda::solve(const char *tr, const double *A, const double *Y, int n,
int m, double *X)
{
double *B=mat(n,n);
int info;
matcpy(B,A,n,n);
if (!(info=matinv(B,n))) matmul(tr[0]=='N'?"NN":"TN",n,m,n,1.0,B,Y,0.0,X);
free(B);
return info;
}
/* multiply matrix -----------------------------------------------------------*/
void QLambda::matmul(const char *tr, int n, int k, int m, double alpha,
const double *A, const double *B, double beta, double *C)
{
double d;
int i,j,x,f=tr[0]=='N'?(tr[1]=='N'?1:2):(tr[1]=='N'?3:4);
for (i=0;i<n;i++) for (j=0;j<k;j++) {
d=0.0;
switch (f) {
case 1: for (x=0;x<m;x++) d+=A[i+x*n]*B[x+j*m]; break;
case 2: for (x=0;x<m;x++) d+=A[i+x*n]*B[j+x*k]; break;
case 3: for (x=0;x<m;x++) d+=A[x+i*m]*B[x+j*m]; break;
case 4: for (x=0;x<m;x++) d+=A[x+i*m]*B[j+x*k]; break;
}
if (beta==0.0) C[i+j*n]=alpha*d; else C[i+j*n]=alpha*d+beta*C[i+j*n];
}
}