forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
superResNet.cu
138 lines (104 loc) · 4.88 KB
/
superResNet.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "cudaUtility.h"
// clip float to [min,max]
static inline __device__ float clip( const float x, float min, float max )
{
return x > max ? max : x < min ? min : x;
}
// clip vector to [min,max]
static inline __device__ float4 clip( const float4& px, float min, float max )
{
return make_float4(clip(px.x, min, max),
clip(px.y, min, max),
clip(px.z, min, max),
clip(px.w, min, max));
}
// gpuPreSuperResNet
template<typename T>
__global__ void gpuPreSuperResNet( T* input, int iWidth, float* output, int oWidth, int oHeight, float2 res_scale, float pixel_scale )
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int n = oWidth * oHeight;
if( x >= oWidth || y >= oHeight )
return;
const int dx = ((float)x * res_scale.x);
const int dy = ((float)y * res_scale.y);
const T px = input[ dy * iWidth + dx ];
const float3 rgb = make_float3(px.x * pixel_scale, px.y * pixel_scale, px.z * pixel_scale);
output[n * 0 + y * oWidth + x] = rgb.x;
output[n * 1 + y * oWidth + x] = rgb.y;
output[n * 2 + y * oWidth + x] = rgb.z;
}
// cudaPreSuperResNet
cudaError_t cudaPreSuperResNet( float4* input, size_t inputWidth, size_t inputHeight,
float* output, size_t outputWidth, size_t outputHeight,
float maxPixelValue, cudaStream_t stream )
{
if( !input || !output )
return cudaErrorInvalidDevicePointer;
if( inputWidth == 0 || outputWidth == 0 || inputHeight == 0 || outputHeight == 0 )
return cudaErrorInvalidValue;
const float2 res_scale = make_float2( float(inputWidth) / float(outputWidth),
float(inputHeight) / float(outputHeight) );
const float pixel_scale = 1.0f / maxPixelValue;
// launch kernel
const dim3 blockDim(8, 8);
const dim3 gridDim(iDivUp(outputWidth,blockDim.x), iDivUp(outputHeight,blockDim.y));
gpuPreSuperResNet<float4><<<gridDim, blockDim, 0, stream>>>(input, inputWidth, output, outputWidth, outputHeight, res_scale, pixel_scale);
return CUDA(cudaGetLastError());
}
// gpuPostSuperResNet
template<typename T>
__global__ void gpuPostSuperResNet( float* input, int iWidth, int iHeight, T* output, int oWidth, int oHeight, float2 res_scale, float pixel_scale )
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int n = iWidth * iHeight;
if( x >= oWidth || y >= oHeight )
return;
const int dx = ((float)x * res_scale.x);
const int dy = ((float)y * res_scale.y);
const float4 rgb = clip(make_float4(input[n * 0 + dy * iWidth + dx] * pixel_scale,
input[n * 1 + dy * iWidth + dx] * pixel_scale,
input[n * 2 + dy * iWidth + dx] * pixel_scale,
pixel_scale), 0.0f, pixel_scale);
output[y * oWidth + x] = rgb;
}
// cudaPostSuperResNet
cudaError_t cudaPostSuperResNet( float* input, size_t inputWidth, size_t inputHeight,
float4* output, size_t outputWidth, size_t outputHeight,
float maxPixelValue, cudaStream_t stream )
{
if( !input || !output )
return cudaErrorInvalidDevicePointer;
if( inputWidth == 0 || outputWidth == 0 || inputHeight == 0 || outputHeight == 0 )
return cudaErrorInvalidValue;
const float2 res_scale = make_float2( float(inputWidth) / float(outputWidth),
float(inputHeight) / float(outputHeight) );
// launch kernel
const dim3 blockDim(8, 8);
const dim3 gridDim(iDivUp(outputWidth,blockDim.x), iDivUp(outputHeight,blockDim.y));
gpuPostSuperResNet<float4><<<gridDim, blockDim, 0, stream>>>(input, inputWidth, inputHeight, output, outputWidth, outputHeight, res_scale, maxPixelValue);
return CUDA(cudaGetLastError());
}