-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain copy.py
467 lines (398 loc) · 21.7 KB
/
train copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# -*- coding: utf-8 -*-
# file: train.py
# author: songyouwei <[email protected]>
# Copyright (C) 2018. All Rights Reserved.
import logging
import argparse
import math
import os
import sys
from time import strftime, localtime
import random
import numpy
import numpy as np
from pytorch_transformers import BertModel,BertForTokenClassification,BertConfig
# from transformers import BertModel,BertForTokenClassification,BertConfig
# from models.knowledge_bert import BertForTokenClassification
from sklearn import metrics
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, random_split
from data_utils import build_tokenizer, build_embedding_matrix, Tokenizer4Bert, ABSADataset
from models import LSTM, IAN, MemNet, RAM, TD_LSTM, Cabasc, ATAE_LSTM, TNet_LF, AOA, MGAN, LCF_BERT
from models.aen import CrossEntropyLoss_LSR, AEN_BERT
from models.bert_spc import BERT_SPC
from models.bert_raw import BERT_RAW
from models.bert_label import BERT_LABEL
from models.bert_aspect import BERT_ASPECT
from models.bert_target import BERT_TARGET
from models.bert_multi_target import BERT_MULTI_TARGET
from models.bert_kg import BERT_KG
from models.bert_compete import BERT_COMPETE
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(sys.stdout))
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
from torch.autograd import Variable, grad
reg_list=['bert_compete','bert_multi_target']
last_model_path=None
class Instructor:
def __init__(self, opt):
self.opt = opt
if 'bert' in opt.model_name:
if opt.model_name == 'bert_kg':
tokenizer = Tokenizer4Bert(opt.max_seq_len, opt.pretrained_bert_name)
bert = BertForTokenClassification.from_pretrained('ernie_base')
self.model = opt.model_class(bert, opt).to(opt.device)
self.model.to(opt.device)
elif opt.model_name == 'bert_spc' :
tokenizer = Tokenizer4Bert(opt.max_seq_len, opt.pretrained_bert_name)
config = BertConfig.from_pretrained(opt.pretrained_bert_name, output_attentions=True)
bert = BertModel.from_pretrained(opt.pretrained_bert_name,config=config)
self.model = opt.model_class(bert, opt).to(opt.device)
# self.model.load_state_dict(torch.load('./state_dict/bert_multi_target_val_acc0.7714'))
elif opt.model_name == 'bert_label' :
tokenizer = Tokenizer4Bert(opt.max_seq_len, opt.pretrained_bert_name)
config = BertConfig.from_pretrained(opt.pretrained_bert_name, output_attentions=True)
bert = BertModel.from_pretrained(opt.pretrained_bert_name,config=config)
self.model = opt.model_class(bert, opt).to(opt.device)
elif opt.model_name == 'bert_compete' :
tokenizer = Tokenizer4Bert(opt.max_seq_len, opt.pretrained_bert_name)
config = BertConfig.from_pretrained(opt.pretrained_bert_name, output_attentions=True)
bert = BertModel.from_pretrained(opt.pretrained_bert_name,config=config)
num_added_tokens = tokenizer.add_tokens(['[aspect_b]','[aspect_e]'])
bert.resize_token_embeddings(len(tokenizer.tokenizer))
self.model = opt.model_class(bert, opt).to(opt.device)
else:
# bert_mulit_target
tokenizer = Tokenizer4Bert(opt.max_seq_len, opt.pretrained_bert_name)
config = BertConfig.from_pretrained(opt.pretrained_bert_name, output_attentions=True)
bert = BertModel.from_pretrained(opt.pretrained_bert_name,config=config)
if opt.domain=='pt':
bert = BertModel.from_pretrained('./bert_models/pt_bert-base-uncased_amazon_yelp')
if opt.domain=='joint':
bert = BertModel.from_pretrained('./bert_models/laptops_and_restaurants_2mio_ep15')
if opt.domain=='res':
bert = BertModel.from_pretrained('./bert_models/restaurants_10mio_ep3')
if opt.domain=='laptop':
bert = BertModel.from_pretrained('./bert_models/laptops_1mio_ep30')
num_added_tokens = tokenizer.add_tokens(['[target_b]','[target_e]'])
num_added_tokens = tokenizer.add_tokens(['[aspect_b]','[aspect_e]'])
for i in range(20):
b='['+str(i)+'b]'
e='['+str(i)+'e]'
num_added_tokens = tokenizer.add_tokens([b,e])
bert.resize_token_embeddings(len(tokenizer.tokenizer))
self.model = opt.model_class(bert, opt).to(opt.device)
# self.model.load_state_dict(torch.load('./state_dict/state_dict/bert_multi_target_restaurant_doamin-res_can0_adv0_aux1.0_val_acc0.8688'))
else:
tokenizer = build_tokenizer(
fnames=[opt.dataset_file['train'], opt.dataset_file['test']],
max_seq_len=opt.max_seq_len,
dat_fname='{0}_tokenizer.dat'.format(opt.dataset))
embedding_matrix = build_embedding_matrix(
word2idx=tokenizer.word2idx,
embed_dim=opt.embed_dim,
dat_fname='{0}_{1}_embedding_matrix.dat'.format(str(opt.embed_dim), opt.dataset))
self.model = opt.model_class(embedding_matrix, opt).to(opt.device)
self.trainset = ABSADataset(opt.dataset_file['train'], tokenizer,'train',opt)
self.testset = ABSADataset(opt.dataset_file['test'], tokenizer,'test',opt)
assert 0 <= opt.valset_ratio < 1
if opt.valset_ratio > 0:
valset_len = int(len(self.trainset) * opt.valset_ratio)
self.trainset, self.valset = random_split(self.trainset, (len(self.trainset)-valset_len, valset_len))
else:
self.valset = self.testset
if opt.device.type == 'cuda':
logger.info('cuda memory allocated: {}'.format(torch.cuda.memory_allocated(device=opt.device.index)))
# if opt.load_mode == 1:
# self.model.load_state_dict(torch.load('/home/nus/temp/ABSA-PyTorch/state_dict/bert_spc_twitter_val_acc0.7384'))
# find the highese
# model.load_state_dict(torch.load(PATH))
self._print_args()
def _print_args(self):
n_trainable_params, n_nontrainable_params = 0, 0
for p in self.model.parameters():
n_params = torch.prod(torch.tensor(p.shape))
if p.requires_grad:
n_trainable_params += n_params
else:
n_nontrainable_params += n_params
logger.info('n_trainable_params: {0}, n_nontrainable_params: {1}'.format(n_trainable_params, n_nontrainable_params))
logger.info('> training arguments:')
for arg in vars(self.opt):
logger.info('>>> {0}: {1}'.format(arg, getattr(self.opt, arg)))
def _reset_params(self):
for child in self.model.children():
if type(child) != BertModel: # skip bert params
for p in child.parameters():
if p.requires_grad:
if len(p.shape) > 1:
self.opt.initializer(p)
else:
stdv = 1. / math.sqrt(p.shape[0])
torch.nn.init.uniform_(p, a=-stdv, b=stdv)
def _l2_normalize(self,d):
if isinstance(d, Variable):
d = d.data.cpu().numpy()
elif isinstance(d, torch.FloatTensor) or isinstance(d, torch.cuda.FloatTensor):
d = d.cpu().numpy()
d /= (np.sqrt(np.sum(d ** 2, axis=(1, 2))).reshape((-1, 1, 1)) + 1e-16)
return torch.from_numpy(d)
def _loss_adv(self,loss,emb,criterion,inputs,targets,p_mult):
emb_grad = grad(loss, emb, retain_graph=True)
p_adv = torch.FloatTensor(p_mult * self._l2_normalize(emb_grad[0].data))
p_adv=p_adv.cuda(non_blocking=False)
p_adv = Variable(p_adv)
outputs,reg,bert_word_output = self.model(inputs,p_adv)
adv_loss = criterion(outputs, targets)
# loss += adv_loss
return adv_loss
def _train(self, criterion, optimizer, train_data_loader, val_data_loader):
max_val_acc = 0
max_val_f1 = 0
global_step = 0
last_model_path = None
path=None
for epoch in range(self.opt.num_epoch):
logger.info('>' * 100)
logger.info('epoch: {}'.format(epoch))
n_correct, n_total, loss_total = 0, 0, 0
# switch model to training mode
self.model.train()
for i_batch, sample_batched in enumerate(train_data_loader):
global_step += 1
# clear gradient accumulators
optimizer.zero_grad()
inputs = [sample_batched[col].to(self.opt.device) for col in self.opt.inputs_cols]
if self.opt.model_name=='bert_multi_target':
targets = sample_batched['polarity'].to(self.opt.device)
# print(targets.shape)
else:
targets = sample_batched['polarity'].to(self.opt.device)
if self.opt.model_name in reg_list:
aux_cls_logeits,outputs,reg_can_loss,reg_aux_loss,bert_word_output = self.model(inputs,None)
else:
outputs=self.model(inputs)
reg_loss=0
# print('outputs',outputs.shape)
# print('targets',targets.shape)
loss_1 = criterion(outputs, targets)
loss_2 = reg_can_loss
loss_3 = reg_aux_loss
weighted_loss_2 = loss_2 * self.opt.can
weighted_loss_3 = loss_3 * self.opt.aux
loss= 0*loss_1 + weighted_loss_2 + weighted_loss_3
if self.opt.adv > 0:
# print(inputs.shape)
loss_adv = self._loss_adv(loss,bert_word_output,criterion,inputs,targets,p_mult=self.opt.adv)
loss+=loss_adv
else:
loss_adv=0
loss.backward()
optimizer.step()
# n_correct += (torch.argmax(outputs, -1) == targets).sum().item()
n_correct += (torch.argmax(aux_cls_logeits, -1) == 4*t_targets).sum().item()
n_total += len(outputs)
loss_total += loss.item() * len(outputs)
if global_step % self.opt.log_step == 0:
train_acc = n_correct / n_total
train_loss = loss_total / n_total
logger.info('loss_total: {:.4f}, acc: {:.4f},loss_main: {:.4f},loss_reg2: {:.4f},loss_adv: {:.4f},loss_reg3 {:.4f}'.format(train_loss, train_acc,loss_1,weighted_loss_2,loss_adv,weighted_loss_3))
val_acc, val_f1 = self._evaluate_acc_f1(val_data_loader)
logger.info('> val_acc: {:.4f}, val_f1: {:.4f}'.format(val_acc, val_f1))
if val_acc > max_val_acc:
max_val_acc = val_acc
if not os.path.exists('state_dict'):
os.mkdir('state_dict')
model_path = 'state_dict/{0}_{1}_doamin-{2}_can{3}_adv{4}_aux{5}_val_acc{6}'.format(self.opt.model_name,self.opt.dataset,self.opt.domain,self.opt.can,self.opt.adv,self.opt.aux,round(val_acc, 4))
bert_path = 'state_dict/{0}_{1}_doamin-{2}_can{3}_adv{4}_aux{5}_val_acc{6}_bert'.format(self.opt.model_name, self.opt.dataset,self.opt.domain,self.opt.can,self.opt.adv,self.opt.aux,round(val_acc, 4))
if last_model_path!=None:
os.remove(last_model_path)
os.remove(last_bert_path)
last_model_path=model_path
last_bert_path=bert_path
torch.save(self.model.state_dict(), model_path)
torch.save(self.model.bert.state_dict(), bert_path)
logger.info('>> saved: {}'.format(model_path))
if val_f1 > max_val_f1:
max_val_f1 = val_f1
return model_path
def _evaluate_acc_f1(self, data_loader):
n_correct, n_total = 0, 0
t_targets_all, t_outputs_all = None, None
# switch model to evaluation mode
self.model.eval()
with torch.no_grad():
for t_batch, t_sample_batched in enumerate(data_loader):
# print('t_sample_batched',t_sample_batched)
t_inputs = [t_sample_batched[col].to(self.opt.device) for col in self.opt.inputs_cols]
t_targets = t_sample_batched['polarity'].to(self.opt.device)
if self.opt.model_name in reg_list:
# t_outputs,reg_less,emb = self.model(t_inputs,None)
aux_cls_logeits,t_outputs,reg_can_loss,reg_aux_loss,bert_word_output = self.model(t_inputs,None)
else:
t_outputs= self.model(t_inputs)
if 1:
n_correct += (torch.argmax(aux_cls_logeits, -1) == 4*t_targets).sum().item()
n_total += len(t_outputs)
else:
n_correct += (torch.argmax(t_outputs, -1) == t_targets).sum().item()
n_total += len(t_outputs)
if t_targets_all is None:
t_targets_all = t_targets
t_outputs_all = t_outputs
else:
t_targets_all = torch.cat((t_targets_all, t_targets), dim=0)
t_outputs_all = torch.cat((t_outputs_all, t_outputs), dim=0)
acc = n_correct / n_total
f1 = metrics.f1_score(t_targets_all.cpu(), torch.argmax(t_outputs_all, -1).cpu(), labels=[0, 1, 2], average='macro')
return acc, f1
def run(self):
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
_params = filter(lambda p: p.requires_grad, self.model.parameters())
optimizer = self.opt.optimizer(_params, lr=self.opt.learning_rate, weight_decay=self.opt.l2reg)
train_data_loader = DataLoader(dataset=self.trainset, batch_size=self.opt.batch_size, shuffle=True)
test_data_loader = DataLoader(dataset=self.testset, batch_size=self.opt.batch_size, shuffle=False)
val_data_loader = DataLoader(dataset=self.valset, batch_size=self.opt.batch_size, shuffle=False)
# self._reset_params()
# self.model.load_state_dict(torch.load('./state_dict/bert_spc_restaurant_val_acc0.7893'))
best_model_path = self._train(criterion, optimizer, train_data_loader, val_data_loader)
self.model.load_state_dict(torch.load(best_model_path))
# self.model.load_state_dict(torch.load('state_dict/bert_spc_restaurant_val_acc0.6491'))
self.model.eval()
test_acc, test_f1 = self._evaluate_acc_f1(test_data_loader)
logger.info('>> test_acc: {:.4f}, test_f1: {:.4f}'.format(test_acc, test_f1))
def main():
# Hyper Parameters
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='bert_spc', type=str)
parser.add_argument('--dataset', default='laptop', type=str, help='twitter, restaurant, laptop')
parser.add_argument('--optimizer', default='adam', type=str)
parser.add_argument('--initializer', default='xavier_uniform_', type=str)
parser.add_argument('--learning_rate', default=2e-5, type=float, help='try 5e-5, 2e-5 for BERT, 1e-3 for others')
parser.add_argument('--dropout', default=0.1, type=float)
parser.add_argument('--l2reg', default=0.01, type=float)
parser.add_argument('--num_epoch', default=10, type=int, help='try larger number for non-BERT models')
parser.add_argument('--batch_size', default=16, type=int, help='try 16, 32, 64 for BERT models')
parser.add_argument('--log_step', default=5, type=int)
parser.add_argument('--embed_dim', default=300, type=int)
parser.add_argument('--hidden_dim', default=300, type=int)
parser.add_argument('--bert_dim', default=768, type=int)
parser.add_argument('--pretrained_bert_name', default='bert-base-uncased', type=str)
parser.add_argument('--max_seq_len', default=128, type=int)
parser.add_argument('--polarities_dim', default=3, type=int)
# parser.add_argument('--hops', default=3, type=int)
parser.add_argument('--device', default='cuda:1', type=str, help='e.g. cuda:0')
parser.add_argument('--seed', default=None, type=int, help='set seed for reproducibility')
parser.add_argument('--valset_ratio', default=0, type=float, help='set ratio between 0 and 1 for validation support')
parser.add_argument('--load_mode', default=0, type=int, help='load existed model')
parser.add_argument('--can', default=0, type=float, help='using tfm')
parser.add_argument('--adv', default=0, type=float, help='using adv training')
parser.add_argument('--aux', default=0, type=float, help='using aux training')
parser.add_argument('--domain', default=0, type=str, help='using domain bert')
# The following parameters are only valid for the lcf-bert model
parser.add_argument('--local_context_focus', default='cdm', type=str, help='local context focus mode, cdw or cdm')
parser.add_argument('--SRD', default=3, type=int, help='semantic-relative-distance, see the paper of LCF-BERT model')
opt = parser.parse_args()
torch.cuda.set_device(opt.device)
if opt.seed is not None:
random.seed(opt.seed)
numpy.random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.cuda.manual_seed(opt.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
model_classes = {
'lstm': LSTM,
'td_lstm': TD_LSTM,
'atae_lstm': ATAE_LSTM,
'ian': IAN,
'memnet': MemNet,
'ram': RAM,
'cabasc': Cabasc,
'tnet_lf': TNet_LF,
'aoa': AOA,
'mgan': MGAN,
'bert_spc': BERT_SPC,
'aen_bert': AEN_BERT,
'lcf_bert': LCF_BERT,
'bert_raw': BERT_RAW,
'bert_label': BERT_LABEL,
'bert_aspect': BERT_ASPECT,
'bert_kg': BERT_KG,
'bert_compete': BERT_COMPETE,
'bert_multi_target':BERT_MULTI_TARGET,
'bert_target':BERT_TARGET,
# default hyper-parameters for LCF-BERT model is as follws:
# lr: 2e-5
# l2: 1e-5
# batch size: 16
# num epochs: 5
}
dataset_files = {
'twitter': {
'train': './datasets/acl-14-short-data/train.raw',
'test': './datasets/acl-14-short-data/test.raw'
},
'restaurant': {
'train': './datasets/semeval14/Restaurants_Train.xml.seg',
'test': './datasets/semeval14/Restaurants_Test_Gold.xml.seg'
},
'laptop': {
'train': './datasets/semeval14/Laptops_Train.xml.seg',
'test': './datasets/semeval14/Laptops_Test_Gold.xml.seg'
}
}
input_colses = {
'lstm': ['text_raw_indices'],
'td_lstm': ['text_left_with_aspect_indices', 'text_right_with_aspect_indices'],
'atae_lstm': ['text_raw_indices', 'aspect_indices'],
'ian': ['text_raw_indices', 'aspect_indices'],
'memnet': ['text_raw_without_aspect_indices', 'aspect_indices'],
'ram': ['text_raw_indices', 'aspect_indices', 'text_left_indices'],
'cabasc': ['text_raw_indices', 'aspect_indices', 'text_left_with_aspect_indices', 'text_right_with_aspect_indices'],
'tnet_lf': ['text_raw_indices', 'aspect_indices', 'aspect_in_text'],
'aoa': ['text_raw_indices', 'aspect_indices'],
'mgan': ['text_raw_indices', 'aspect_indices', 'text_left_indices'],
'bert_spc': ['text_bert_indices', 'bert_segments_ids'],
'aen_bert': ['text_raw_bert_indices', 'aspect_bert_indices'],
'lcf_bert': ['text_bert_indices', 'bert_segments_ids', 'text_raw_bert_indices', 'aspect_bert_indices'],
'bert_raw': ['text_raw_bert_indices', 'bert_raw_segments_ids'],
'bert_label': ['text_raw_bert_indices', 'bert_segments_ids','polarity'],
# 'bert_aspect': ['bert_aspect_indices','bert_aspect_segments_ids','aspect_in_text','aspect_len'],
'bert_aspect': ['text_raw_bert_indices','bert_raw_segments_ids','aspect_in_text','aspect_len'],
'bert_target': ['text_target_indices', 'text_target_segments_ids','target_begin'],
'bert_multi_target': ['multi_target_indices','multi_target_segments_ids','target_pos','poss','polarity_list','polarity'],
'bert_kg': ['text_bert_indices', 'bert_segments_ids','input_mask'],
'bert_compete':['bert_compete_cls_pos','bert_compete_indices','bert_compete_segments_ids','bert_compete_cls_poss']
# 'bert_kg': ['text_bert_indices', 'bert_segments_ids','input_mask'],
}
initializers = {
'xavier_uniform_': torch.nn.init.xavier_uniform_,
'xavier_normal_': torch.nn.init.xavier_normal,
'orthogonal_': torch.nn.init.orthogonal_,
}
optimizers = {
'adadelta': torch.optim.Adadelta, # default lr=1.0
'adagrad': torch.optim.Adagrad, # default lr=0.01
'adam': torch.optim.Adam, # default lr=0.001
'adamax': torch.optim.Adamax, # default lr=0.002
'asgd': torch.optim.ASGD, # default lr=0.01
'rmsprop': torch.optim.RMSprop, # default lr=0.01
'sgd': torch.optim.SGD,
}
opt.model_class = model_classes[opt.model_name]
opt.dataset_file = dataset_files[opt.dataset]
opt.inputs_cols = input_colses[opt.model_name]
opt.initializer = initializers[opt.initializer]
opt.optimizer = optimizers[opt.optimizer]
opt.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') \
if opt.device is None else torch.device(opt.device)
log_file = './log/{}-{}-{}.log'.format(opt.model_name, opt.dataset, strftime("%y%m%d-%H%M", localtime()))
logger.addHandler(logging.FileHandler(log_file))
ins = Instructor(opt)
ins.run()
if __name__ == '__main__':
main()