Style transfer is the task of producing a pastiche image 'p' that shares the content of a content image 'c' and the style of a style image 's'. This code implements the paper "A Learned Representation for Artistic Style":
A Learned Representation for Artistic Style. Vincent Dumoulin, Jon Shlens, Manjunath Kudlur.
Whether you want to stylize an image with one of our pre-trained models or train your own model, you need to set up your Magenta environment.
There is a Jupyter notebook Image_Stylization.ipynb in our Magenta Demos repository showing how to apply style transfer from a trained model.
First, download one of our pre-trained models:
(You can also train your own model, but if you're just getting started we recommend using a pre-trained model first.)
Then, run the following command:
$ image_stylization_transform \
--num_styles=<NUMBER_OF_STYLES> \
--checkpoint=/path/to/model.ckpt \
--input_image=/path/to/image.jpg \
--which_styles="[0,1,2,5,14]" \
--output_dir=/tmp/image_stylization/output \
--output_basename="stylized"
You'll have to specify the correct number of styles for the model you're using. For the Monet model this is 10 and for the varied model this is 32. The which_styles
argument should be a Python list of integer style indices.
which_styles
can also be used to specify a linear combination of styles to
combine in a single image. Use a Python dictionary that maps the style index to
the weights for each style. If the style index is unspecified then it will have
a zero weight. Note that the weights are not normalized.
Here's an example that produces a stylization that is an average of all of the monet styles.
$ image_stylization_transform \
--num_styles=10 \
--checkpoint=multistyle-pastiche-generator-monet.ckpt \
--input_image=photo.jpg \
--which_styles="{0:0.1,1:0.1,2:0.1,3:0.1,4:0.1,5:0.1,6:0.1,7:0.1,8:0.1,9:0.1}" \
--output_dir=/tmp/image_stylization/output \
--output_basename="all_monet_styles"
To train your own model, you'll need three things:
- A directory of images to use as styles.
- A trained VGG model checkpoint.
- The ImageNet dataset. Instructions for downloading the dataset can be found here.
First, you need to prepare your style images:
$ image_stylization_create_dataset \
--vgg_checkpoint=/path/to/vgg_16.ckpt \
--style_files=/path/to/style/images/*.jpg \
--output_file=/tmp/image_stylization/style_images.tfrecord
Then, to train a model:
$ image_stylization_train \
--train_dir=/tmp/image_stylization/run1/train
--style_dataset_file=/tmp/image_stylization/style_images.tfrecord \
--num_styles=<NUMBER_OF_STYLES> \
--vgg_checkpoint=/path/to/vgg_16.ckpt \
--imagenet_data_dir=/path/to/imagenet-2012-tfrecord
To evaluate the model:
$ image_stylization_evaluate \
--style_dataset_file=/tmp/image_stylization/style_images.tfrecord \
--train_dir=/tmp/image_stylization/run1/train \
--eval_dir=/tmp/image_stylization/run1/eval \
--num_styles=<NUMBER_OF_STYLES> \
--vgg_checkpoint=/path/to/vgg_16.ckpt \
--imagenet_data_dir=/path/to/imagenet-2012-tfrecord \
--style_grid
You can also finetune a pre-trained model for new styles:
$ image_stylization_finetune \
--checkpoint=/path/to/model.ckpt \
--train_dir=/tmp/image_stylization/run2/train
--style_dataset_file=/tmp/image_stylization/style_images.tfrecord \
--num_styles=<NUMBER_OF_STYLES> \
--vgg_checkpoint=/path/to/vgg_16.ckpt \
--imagenet_data_dir=/path/to/imagenet-2012-tfrecord
For better performance on mobile, you should train a slimmed down version of the model by specifying an alpha multiplier at training. This is an output sample of the models trained with different alpha values.
Here are the steps to train and convert the model to TensorFlow Lite to run on mobile:
- (Optional but Recommended) Train a slimmed down version of the model by specifying an alpha multiplier:
$ image_stylization_train \
--train_dir=/tmp/image_stylization/run1/train
--style_dataset_file=/tmp/image_stylization/style_images.tfrecord \
--num_styles=<NUMBER_OF_STYLES> \
--alpha=0.25 \
--vgg_checkpoint=/path/to/vgg_16.ckpt \
--imagenet_data_dir=/path/to/imagenet-2012-tfrecord
- Convert the trained model to TensorFlow Lite:
$ image_stylization_convert_tflite \
--checkpoint=/tmp/image_stylization/run1/train \
--num_styles=<NUMBER_OF_STYLES> \
--alpha=0.25 \
--output_model='/tmp/image_stylization/model.tflite'