-
Notifications
You must be signed in to change notification settings - Fork 0
/
resnet50_finetune.py
286 lines (236 loc) · 9.87 KB
/
resnet50_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import torch
import torch.nn as nn
import math
from torch.nn import DataParallel
import os
from PIL import Image
import random
from torchvision import datasets, transforms
import torch.utils.data as data
from torch.autograd import Variable
kwargs = {'num_workers': 1, 'pin_memory': True}
batch_size=32
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
# load the data
def random_choose_data(label_path):
random.seed(1)
file = open(label_path)
lines = file.readlines()
slice = random.sample(lines, 200000)
random.shuffle(slice)
train_label = slice[:150000]
test_label = slice[150000:200000]
return train_label, test_label
# def my data loader, return the data and corresponding label
def default_loader(path):
return Image.open(path).convert('RGB')
class myImageFloder(data.Dataset): # Class inheritance
def __init__(self, root, label, transform=None, target_transform=None, loader=default_loader):
#fh = open(label)
c = 0
imgs = []
class_names = ['regression']
for line in label: # label is a list
cls = line.split() # cls is a list
fn = cls.pop(0)
if os.path.isfile(os.path.join(root, fn)):
imgs.append((fn, tuple([float(v) for v in cls[len(cls)-2:len(cls)-1]])))
# access the last label
# images is the list,and the content is the tuple, every image corresponds to a label
# despite the label's dimension
# we can use the append way to append the element for list
c = c + 1
print('the total image is',c)
print(class_names)
self.root = root
self.imgs = imgs
self.classes = class_names
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
fn, label = self.imgs[index] # even though the imgs is just a list, it can return the elements of is
# in a proper way
img = self.loader(os.path.join(self.root, fn))
if self.transform is not None:
img = self.transform(img)
return img, torch.Tensor(label)
def __len__(self):
return len(self.imgs)
def getName(self):
return self.classes
mytransform = transforms.Compose([transforms.ToTensor()]) # almost don't do any operation
train_data_root="/home/ying/data/google_streetview_train_test1"
test_data_root="/home/ying/data/google_streetview_train_test1"
data_label="/home/ying/data/google_streetview_train_test1/label.txt"
# test_label="/home/ying/data/google_streetview_train_test1/label.txt"
train_label,test_label = random_choose_data(data_label)
train_loader = torch.utils.data.DataLoader(
myImageFloder(root=train_data_root, label=train_label, transform=mytransform),batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
myImageFloder(root=test_data_root, label=test_label, transform=mytransform),batch_size=batch_size, shuffle=True, **kwargs)
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) # decrease the channel, does't change size
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False) # the size become 1/2
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # the size become 1/2
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
# block: object, planes: output channel, blocks: the num of blocks
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion # the input channel num become 4 times
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet50(pretrained=False):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3])
# model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
model.load_state_dict(torch.load('./resnet50-19c8e357.pth'))
return model
# cnn = DataParallel(resnet50(pretrained=True))
cnn = resnet50(pretrained=True) # load the pretrained weight to initialize the weight
#for param in cnn.parameters():
# param.requires_grad=False
cnn.fc=nn.Linear(2048,1)
cnn.cuda()
# print(cnn)
# print(cnn.fc)
#cnn=DataParallel(cnn.cuda())
# print(cnn2)
# print(cnn2.module.fc)
criterion = nn.MSELoss().cuda()
lr = 0.001
optimizer = torch.optim.Adam(cnn.parameters(), lr=lr)
print('resnet_finetune')
for epoch in (range(100)):
for i, (images, labels) in enumerate(train_loader):
# run all the image in the dataloader, and the data is all different
# print(i, images, labels)
images = Variable(images.cuda())
labels = Variable(labels.cuda())
# Forward + Backward + Optimize
optimizer.zero_grad()
outputs = cnn(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print(i)
if (i + 1) % 5 == 0: # every 5 iteration will output a train loss
print("Epoch [%d/%d], Iter [%d/%d] Train_Loss: %.4f" % (epoch + 1, 80, i + 1, 2343, loss.data[0]))
# test the data
for i, (test_images, test_labels) in enumerate(test_loader):
test_images = Variable(test_images.cuda())
test_labels = Variable(test_labels.cuda())
outputs = cnn(test_images)
loss=criterion(outputs, test_labels)
print("Epoch [%d/%d], Iter [%d/%d] Test_Loss: %.4f" % (epoch + 1, 80, i + 1, 781, loss.data[0]))
break
# Decaying Learning Rate
if (epoch + 1) % 20 == 0:
lr /= 3
optimizer = torch.optim.Adam(cnn.parameters(), lr=lr)