forked from AnantharamanLab/VIBRANT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
VIBRANT_run.py
998 lines (920 loc) · 55.1 KB
/
VIBRANT_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
#! /usr/bin/env python3
# Author: Kristopher Kieft, UW-Madison
# VIBRANT v1.2.1
# Virus Identification By iteRative ANnoTation
# Release date: March 13 2020
# Update date: December 2 2020
# Usage: $ python3 VIBRANT_run.py -i <input_file> [options]
############################### Imports #######################################
import warnings
warnings.filterwarnings("ignore")
import sys
from Bio.SeqIO.FastaIO import SimpleFastaParser
from datetime import date
import datetime
import argparse
import subprocess
import math
import time
import logging
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import os
import sklearn
from sklearn.decomposition import PCA
import math
import matplotlib.patches as mpatches
from matplotlib.lines import Line2D
vibrant_path = str(os.path.dirname(os.path.abspath(__file__)))
working_path = str(os.getcwd())
starting_time = time.time()
start_time = str(datetime.datetime.now().time()).rsplit(".",1)[0]
vibrant = argparse.ArgumentParser(description='Usage: python3 VIBRANT_run.py -i <input_file> [options].\n VIBRANT identifies bacterial and archaeal viruses (phages) from assembled metagenomic scaffolds or whole genomes, including the excision of integrated proviruses. VIBRANT also performs curation of identified viral scaffolds, estimation of viral genome completeness and analysis of viral metabolic capabilities.')
vibrant.add_argument('--version', action='version', version='VIBRANT v1.2.1')
####### Required
vibrant.add_argument('-i', type=str, nargs=1, required=True, help='input fasta file')
####### Optional
vibrant.add_argument('-f', type=str, nargs=1, default='nucl', choices=['prot','nucl'], help='format of input [default="nucl"]')
vibrant.add_argument('-folder', type=str, nargs=1, default=str(working_path)+"/", help="path to deposit output folder and temporary files, will create if doesn't exist [default= working directory]")
vibrant.add_argument('-t', type=str, nargs=1, default='1', help='number of parallel VIBRANT runs, each occupies 1 CPU [default=1, max of 1 CPU per scaffold]')
vibrant.add_argument('-l', type=str, nargs=1, default='1000', help='length in basepairs to limit input sequences [default=1000, can increase but not decrease]')
vibrant.add_argument('-o', type=str, nargs=1, default='4', help='number of ORFs per scaffold to limit input sequences [default=4, can increase but not decrease]')
vibrant.add_argument('-virome', action='store_true', help='use this setting if dataset is known to be comprised mainly of viruses. More sensitive to viruses, less sensitive to false identifications [default=off]')
vibrant.add_argument('-no_plot', action='store_true', help='suppress the generation of summary plots [default=off]')
vibrant.add_argument('-d', type=str, nargs=1, default=str(vibrant_path) + '/databases/', help='path to original "databases" directory that contains .HMM files (if moved from default location)')
vibrant.add_argument('-m', type=str, nargs=1, default=str(vibrant_path) + '/files/', help='path to original "files" directory that contains .tsv and model files (if moved from default location)')
args = vibrant.parse_args()
if type(args.f) == str:
format = args.f
else:
format = "".join(args.f[0])
if args.folder == str(working_path)+'/':
out_folder = args.folder
elif args.folder != str(working_path)+'/':
out_folder = args.folder[0]
if str(out_folder[-1]) != "/":
out_folder += "/"
if args.virome == False:
virome = ''
elif args.virome == True:
virome = ' -virome'
suppress = args.no_plot
if str(args.d) == str(vibrant_path) + '/databases/':
databases = str(args.d)
else:
databases = str(args.d[0])
if databases[-1] != '/':
databases += '/'
if str(args.m) == str(vibrant_path) + '/files/':
files = str(args.m)
else:
files = str(args.m[0])
if files[-1] != '/':
files += '/'
if args.l == '1000':
lim_low = args.l
if args.l != '1000':
lim_low = args.l[0]
if args.t == '1':
threads = int(args.t)
if args.t != '1':
threads = int(args.t[0])
if args.o == '4':
orf_low = args.o
if args.o != '4':
orf_low = args.o[0]
try:
filename = str(args.i[0].rsplit('/')[-1])
filepath = str(args.i[0].rsplit('/')[0])
except Exception:
filename = str(args.i[0])
base = str(filename.rsplit(".",1)[0])
if not os.path.exists(str(out_folder)):
subprocess.run('mkdir ' + str(out_folder) + ' 2>/dev/null', shell=True)
subprocess.run('mkdir ' + str(out_folder) + 'VIBRANT_' + base + ' 2>/dev/null', shell=True)
elif os.path.exists(str(out_folder)):
subprocess.run('mkdir ' + str(out_folder) + 'VIBRANT_' + base + ' 2>/dev/null', shell=True)
logging.basicConfig(filename=str(out_folder)+'VIBRANT_log_run_' + base + '.log', level=logging.INFO, format='%(message)s')
try:
if not os.path.exists(databases + 'KEGG_profiles_prokaryotes.HMM.h3f'):
logging.info("VIBRANT error: could not identify KEGG HMM files in database directory. Please run VIBRANT_setup.py.")
exit()
if not os.path.exists(databases + 'Pfam-A_v32.HMM.h3f'):
logging.info("VIBRANT error: could not identify Pfam HMM files in database directory. Please run VIBRANT_setup.py.")
exit()
if not os.path.exists(databases + 'VOGDB94_phage.HMM.h3f'):
logging.info("VIBRANT error: could not identify VOG HMM files in database directory. Please run VIBRANT_setup.py.")
exit()
if not os.path.exists(files + 'VIBRANT_categories.tsv'):
logging.info("VIBRANT error: could not identify VIBRANT_categories.tsv in files directory.")
exit()
if not os.path.exists(files + 'VIBRANT_AMGs.tsv'):
logging.info("VIBRANT error: could not identify VIBRANT_AMGs.tsv in files directory.")
exit()
if not os.path.exists(files + 'VIBRANT_names.tsv'):
logging.info("VIBRANT error: could not identify VIBRANT_names.tsv in files directory.")
exit()
if not os.path.exists(files + 'VIBRANT_machine_model.sav'):
logging.info("VIBRANT error: could not identify VIBRANT_machine_model.sav in files directory.")
exit()
#######
if int(orf_low) < 4 or int(lim_low) < 1000:
logging.info("VIBRANT error: minimum ORFs is 4 and minimum sequence length is 1kb. These variables can only increase. Exiting." + "\n")
exit()
command = ' -f ' + str(format) + ' -d ' + str(databases) + ' -m ' + str(files) + ' -l ' + str(lim_low) + ' -o ' + str(orf_low) + str(virome)
subprocess.run("echo '' > " + str(out_folder)+base + "_four-orf-count.txt", shell=True)
#######
if format == "prot":
input_sequences = []
with open(str(args.i[0]),'r') as infile:
with open(str(out_folder)+str(base)+'.parallel-runs.txt', 'w') as outfile:
for name, seq in SimpleFastaParser(infile):
if " # " not in name:
subprocess.run('rm ' + str(out_folder)+str(base)+'.parallel-runs* 2>/dev/null', shell=True)
subprocess.run('rm ' + str(out_folder)+str(base)+'_four-orf-count.txt 2>/dev/null', shell=True)
logging.info("VIBRANT Error: either the wrong format (-f) was set or proteins are not in Prodigal format. Check input file (-i) and format (-f).")
logging.info("See example data file 'Microviridae_ctch16_MH552510.2.faa' for Prodigal format.")
exit()
protein = name.split(" # ",1)[0]
genome = protein.rsplit("_",1)[0]
input_sequences.append(genome)
outfile.write(str(genome) + '\n')
subprocess.run('cat ' + str(out_folder)+str(base)+'.parallel-runs.txt | uniq -d > ' + str(out_folder)+str(base)+'.parallel-runs.temp', shell=True)
listing = 'wc -l ' + str(out_folder)+str(base)+'.parallel-runs.temp'
listing_shell = subprocess.check_output(listing, shell=True)
listing1 = str(listing_shell.strip()).split("'")[1]
sequences = str(listing1.split("\\n")[0].split(" ",1)[0])
if format == "nucl":
sequences = 0
with open(str(args.i[0]),'r') as infile:
with open(str(out_folder)+str(base)+'.parallel-runs.temp', 'w') as outfile:
for name, seq in SimpleFastaParser(infile):
outfile.write(str(name) + '\n')
sequences += 1
shuffle = 'sort -R ' + str(out_folder)+str(base)+'.parallel-runs.temp > ' + str(out_folder)+str(base)+'.parallel-runs.txt'
s2 = subprocess.Popen(shuffle, shell=True)
s2.wait()
subprocess.Popen('rm ' + str(out_folder)+base + '.parallel-runs.temp', shell=True)
time.sleep(0.1)
lines = math.ceil(int(sequences)/int(threads))
parallel = 'split -l ' + str(lines) + ' ' + str(out_folder)+str(base)+'.parallel-runs.txt' + ' ' + str(out_folder)+str(base)+'.parallel-runs_'
subprocess.run(parallel, shell=True)
time.sleep(0.1)
move = 'for file in ' + str(out_folder)+str(base) + '.parallel-runs_*; do mv $file ${file}.txt; done'
s1 = subprocess.Popen(move, shell=True)
s1.wait()
time.sleep(0.1)
parallels = 'ls ' + str(out_folder)+str(base) + '.parallel-runs_*.txt'
parallels_shell = subprocess.check_output(parallels, shell=True)
parallels1 = str(parallels_shell.strip()).split("'")[1]
parallels2 = parallels1.split("\\n")
n = 0
p_list = []
while n < len(parallels2):
if format == "nucl":
execute = str(vibrant_path) + '/scripts/VIBRANT_extract_nucleotide.py ' + str(parallels2[n]) + " " + str(parallels2[n]).rsplit(".",1)[0] + ".fna " + str(args.i[0]) + " " + str(lim_low)
elif format == "prot":
execute = str(vibrant_path) + '/scripts/VIBRANT_extract_protein.py ' + str(parallels2[n]) + " " + str(parallels2[n]).rsplit(".",1)[0] + ".faa " + str(args.i[0])
p = subprocess.Popen(execute, shell=True)
p_list.append(p)
n += 1
for item in p_list:
item.wait()
time.sleep(0.1)
if format == "nucl":
try:
listing = 'ls ' + str(out_folder)+str(base) + '.parallel-runs_*.fna 2>/dev/null'
listing_shell = subprocess.check_output(listing, shell=True)
listing1 = str(listing_shell.strip()).split("'")[1]
listing2 = listing1.split("\\n")
except Exception:
subprocess.run('rm ' + str(out_folder)+str(base)+'.parallel-runs* 2>/dev/null', shell=True)
subprocess.run('rm ' + str(out_folder)+str(base)+'_four-orf-count.txt 2>/dev/null', shell=True)
logging.info('No phages found. There were either no scaffolds at least ' + str(lim_low) + 'bp or ' + str(orf_low) + ' ORFs (set minimum size), or the input file (-i) format (-f) was not FASTA nucleotide. Exiting.')
exit()
if format == "prot":
try:
listing = 'ls ' + str(out_folder)+str(base) + '.parallel-runs_*.faa 2>/dev/null'
listing_shell = subprocess.check_output(listing, shell=True)
listing1 = str(listing_shell.strip()).split("'")[1]
listing2 = listing1.split("\\n")
except Exception:
subprocess.run('rm ' + str(out_folder)+str(base)+'.parallel-runs* 2>/dev/null', shell=True)
subprocess.run('rm ' + str(out_folder)+str(base)+'_four-orf-count.txt 2>/dev/null', shell=True)
logging.info("No phages found. There were either no scaffolds at least " + str(orf_low) + " ORFs (set minimum size) or VIBRANT never found any proteins. Verify input file (-i) format (-f) is FASTA protein. Exiting.")
exit()
remove = 'rm ' + str(out_folder)+str(base) + '.parallel-runs_*.txt'
subprocess.run(remove, shell=True)
time.sleep(0.1)
n = 0
p_list = []
while n < len(listing2):
execute = str(vibrant_path) + '/scripts/VIBRANT_annotation.py -x ' + str(out_folder) + ' -y ' + str(base) + ' -i ' + str(listing2[n]) + str(command)
p = subprocess.Popen(execute, shell=True)
p_list.append(p)
n += 1
for item in p_list:
item.wait()
time.sleep(0.1)
try:
grep = "grep -c '1' " + str(out_folder)+str(base) + "_four-orf-count.txt 2>/dev/null"
grep_shell = subprocess.check_output(grep, shell=True)
grep_out_count = str(grep_shell.strip()).split("'")[1]
time.sleep(0.1)
except Exception:
logging.info('No phages found. There were no scaffolds at least ' + str(orf_low) + ' ORFs (set minimum size). Exiting.')
subprocess.run('rm ' + str(out_folder)+str(base)+'.parallel-runs* 2>/dev/null', shell=True)
subprocess.run('rm ' + str(out_folder)+str(base)+'_four-orf-count.txt 2>/dev/null', shell=True)
exit()
if format == "nucl":
cat_combo_ffn = 'cat ' + str(out_folder)+base + '*parallel-runs*.phages_combined.ffn 1> ' + str(out_folder)+str(base) + '.phages_combined.ffn 2>/dev/null'
subprocess.Popen(cat_combo_ffn, shell=True)
cat_combo_fna = 'cat ' + str(out_folder)+base + '*parallel-runs*.phages_combined.fna 1> ' + str(out_folder)+str(base) + '.phages_combined.fna 2>/dev/null'
subprocess.Popen(cat_combo_fna, shell=True)
cat_lytic_ffn = 'cat ' + str(out_folder)+base + '*parallel-runs*.phages_lytic.ffn 1> ' + str(out_folder)+str(base) + '.phages_lytic.ffn 2>/dev/null'
subprocess.Popen(cat_lytic_ffn, shell=True)
cat_lytic_fna = 'cat ' + str(out_folder)+base + '*parallel-runs*.phages_lytic.fna 1> ' + str(out_folder)+str(base) + '.phages_lytic.fna 2>/dev/null'
r1 = subprocess.Popen(cat_lytic_fna, shell=True)
cat_lysogenic_ffn = 'cat ' + str(out_folder)+base + '*parallel-runs*.phages_lysogenic.ffn 1> ' + str(out_folder)+str(base) + '.phages_lysogenic.ffn 2>/dev/null'
subprocess.Popen(cat_lysogenic_ffn, shell=True)
cat_lysogenic_fna = 'cat ' + str(out_folder)+base + '*parallel-runs*.phages_lysogenic.fna 1> ' + str(out_folder)+str(base) + '.phages_lysogenic.fna 2>/dev/null'
r2 = subprocess.Popen(cat_lysogenic_fna, shell=True)
r1.wait()
r2.wait()
cat_combo_faa = 'cat ' + str(out_folder)+base + '*parallel-runs*.phages_combined.faa 1> ' + str(out_folder)+str(base) + '.phages_combined.faa 2>/dev/null'
r3 = subprocess.Popen(cat_combo_faa, shell=True)
cat_lytic_faa = 'cat ' + str(out_folder)+base + '*parallel-runs*.phages_lytic.faa 1> ' + str(out_folder)+str(base) + '.phages_lytic.faa 2>/dev/null'
r4 = subprocess.Popen(cat_lytic_faa, shell=True)
cat_lysogenic_faa = 'cat ' + str(out_folder)+base + '*parallel-runs*.phages_lysogenic.faa 1> ' + str(out_folder)+str(base) + '.phages_lysogenic.faa 2>/dev/null'
r5 = subprocess.Popen(cat_lysogenic_faa, shell=True)
r3.wait()
r4.wait()
r5.wait()
time.sleep(0.1)
if format == "nucl":
db_dict_circ = {}
circular_list = []
with open(str(out_folder)+str(base) + '.phages_lysogenic.fna', 'r') as lysogenic_phages:
with open(str(out_folder)+str(base) + '.phages_lytic.fna', 'r') as lytic_phages:
with open(str(out_folder)+'VIBRANT_complete_circular_' + base + '.tsv', 'w') as circular_phages:
for name, seq in SimpleFastaParser(lysogenic_phages):
save = seq
if "fragment" not in name:
seq = list(seq)
seq_start = "".join(seq[0:20])
n = int(len(seq))-900
while n <= len(seq):
seq_end = "".join(seq[n:n+20])
if str(seq_start) == str(seq_end):
circular_phages.write(str(name) + '\t' + 'lysogenic' + '\t' + 'complete circular' + '\n')
db_dict_circ.update({name:save})
circular_list.append(name)
n += 900
else:
n += 1
for item, sequence in SimpleFastaParser(lytic_phages):
save = sequence
sequence = list(sequence)
sequence_start = "".join(sequence[0:20])
n = int(len(sequence))-900
while n <= len(sequence):
sequence_end = "".join(sequence[n:n+20])
if str(sequence_start) == str(sequence_end):
circular_phages.write(str(item) + '\t' + 'lytic' + '\t' + 'complete circular' + '\n')
db_dict_circ.update({item:save})
circular_list.append(item)
n += 900
else:
n += 1
with open(str(out_folder)+base + '.phages_circular.fna', 'w') as circ_fna:
for item in db_dict_circ.keys():
circ_fna.write(">" + str(item) + "\n" + db_dict_circ[item] + "\n")
with open(str(out_folder)+'VIBRANT_complete_circular_' + base + '.tsv', 'r') as circular:
circular_database = circular.read().replace('\n','\t').split('\t')
subprocess.run('rm ' + str(out_folder)+base + '*parallel-runs*phages_*.faa 2>/dev/null', shell=True)
subprocess.Popen('rm ' + str(out_folder)+base + '*parallel-runs*phages_*.ffn 2>/dev/null', shell=True)
subprocess.Popen('rm ' + str(out_folder)+base + '*parallel-runs*phages_*.fna 2>/dev/null', shell=True)
if format == 'nucl':
cat_ffn = 'cat ' + str(out_folder)+base + '.parallel-runs_*.ffn > ' + str(out_folder)+base + '.prodigal.ffn 2>/dev/null'
subprocess.Popen(cat_ffn, shell=True)
cat_faa = 'cat ' + str(out_folder)+base + '.parallel-runs_*.faa > ' + str(out_folder)+base + '.prodigal.faa 2>/dev/null'
subprocess.Popen(cat_faa, shell=True)
cat_annotations = 'cat '+str(out_folder)+'VIBRANT_annotations*' + base + '* > '+str(out_folder)+'temp_VIBRANT_annotations_' + str(base) + '.txt 2>/dev/null'
p6 = subprocess.Popen(cat_annotations, shell=True)
cat_results = 'cat '+str(out_folder)+'VIBRANT_results*' + base + '* > '+str(out_folder)+'temp_VIBRANT_results_' + str(base) + '.txt 2>/dev/null'
p7 = subprocess.Popen(cat_results, shell=True)
cat_norm = 'cat '+str(out_folder)+'VIBRANT_normalized*' + base + '* > '+str(out_folder)+'temp_VIBRANT_normalized_' + str(base) + '.txt 2>/dev/null'
p12 = subprocess.Popen(cat_norm, shell=True)
cat_amg = 'cat '+str(out_folder)+'VIBRANT_AMGs*' + base + '* 1> '+str(out_folder)+'temp_VIBRANT_AMGs_' + str(base) + '.txt 2>/dev/null'
p10 = subprocess.Popen(cat_amg, shell=True)
cat_gb = 'cat '+str(out_folder)+'VIBRANT_genbank_table*' + base + '* 1> '+str(out_folder)+'temp_VIBRANT_genbank_table_' + str(base) + '.txt 2>/dev/null'
p11 = subprocess.Popen(cat_gb, shell=True)
cat_machine = 'cat '+str(out_folder)+'temp_VIBRANT_machine.*' + base + '* 1> '+str(out_folder)+'temp2_VIBRANT_machine_' + str(base) + '.txt 2>/dev/null'
p8 = subprocess.Popen(cat_machine, shell=True)
rm_unmod = 'rm '+str(out_folder)+'unmodified_VIBRANT_results*' + base + '* 2>/dev/null'
p9 = subprocess.Popen(rm_unmod, shell=True)
cat_quality = 'cat ' + str(out_folder)+base + '*genome_quality.out 1> '+str(out_folder)+'temp_VIBRANT_genome_quality_' + base + '.tsv 2>/dev/null'
y11 = subprocess.Popen(cat_quality, shell=True)
cat_names = 'cat ' + str(out_folder)+base + '.parallel-runs_*.phages_combined.out 1> ' + str(out_folder)+base + '.phages_combined.txt 2>/dev/null'
y12 = subprocess.Popen(cat_names, shell=True)
y11.wait()
y12.wait()
p6.wait()
p7.wait()
p8.wait()
p9.wait()
p10.wait()
p11.wait()
p12.wait()
time.sleep(0.1)
header_quality = 'echo "scaffold\ttype\tQuality" | cat - ' + str(out_folder)+'temp_VIBRANT_genome_quality_' + base + '.tsv 1> ' + str(out_folder)+'VIBRANT_genome_quality_' + base + '.tsv 2>/dev/null'
p7 = subprocess.Popen(header_quality, shell=True)
p7.wait()
time.sleep(0.1)
if format == "nucl":
subprocess.run('mv '+str(out_folder)+'VIBRANT_genome_quality_' + base + '.tsv ' +str(out_folder)+'temp_VIBRANT_genome_quality_' + base + '.tsv', shell=True)
subprocess.run('cat '+str(out_folder)+'temp_VIBRANT_genome_quality_' + base + '.tsv '+str(out_folder)+ 'VIBRANT_complete_circular_' + base + '.tsv > '+str(out_folder)+'VIBRANT_genome_quality_' + base + '.tsv', shell=True)
subprocess.Popen('rm '+str(out_folder)+'VIBRANT_annotations*' + base + '* 2>/dev/null', shell=True)
subprocess.Popen('rm '+str(out_folder)+'VIBRANT_results*' + base + '* 2>/dev/null', shell=True)
subprocess.Popen('rm '+str(out_folder)+'VIBRANT_normalized*' + base + '* 2>/dev/null', shell=True)
subprocess.Popen('rm '+str(out_folder)+'VIBRANT_AMG*' + base + '* 2>/dev/null', shell=True)
subprocess.Popen('rm '+str(out_folder)+'VIBRANT_genbank_table*' + base + '* 2>/dev/null', shell=True)
subprocess.Popen('rm '+str(out_folder)+'temp_VIBRANT_machine.*' + base + '* 2>/dev/null', shell=True)
header_anno = 'echo "protein\tscaffold\tKO\tAMG\tKO name\tKO evalue\tKO score\tKO v-score\tPfam\tPfam name\tPfam evalue\tPfam score\tPfam v-score\tVOG\tVOG name\tVOG evalue\tVOG score\tVOG v-score" | cat - ' + str(out_folder)+'temp_VIBRANT_annotations_' + str(base) + '.txt > ' + str(out_folder)+'VIBRANT_annotations_' + str(base) + '.tsv'
p1 = subprocess.Popen(header_anno, shell=True)
header_results ='echo "scaffold\ttotal genes\tall KEGG\tKEGG v-score\tall Pfam\tPfam v-score\tall VOG\tVOG v-score\tKEGG int-rep\tKEGG zero\tPfam int-rep\tPfam zero\tVOG redoxin\tVOG rec-tran\tVOG int\tVOG RnR\tVOG DNA\tKEGG restriction check\tKEGG toxin check\tVOG special\tannotation check\tp_v check\tp_k check\tk_v check\tk check\tp check\tv check\th check" | cat - ' + str(out_folder)+'temp_VIBRANT_results_' + str(base) + '.txt > ' + str(out_folder)+'VIBRANT_summary_results_' + str(base) + '.tsv'
p2 = subprocess.Popen(header_results, shell=True)
header_norm ='echo "scaffold\ttotal genes\tall KEGG\tKEGG v-score\tall Pfam\tPfam v-score\tall VOG\tVOG v-score\tKEGG int-rep\tKEGG zero\tPfam int-rep\tPfam zero\tVOG redoxin\tVOG rec-tran\tVOG int\tVOG RnR\tVOG DNA\tKEGG restriction check\tKEGG toxin check\tVOG special\tannotation check\tp_v check\tp_k check\tk_v check\tk check\tp check\tv check\th check" | cat - ' + str(out_folder)+'temp_VIBRANT_normalized_' + str(base) + '.txt > ' + str(out_folder)+'VIBRANT_summary_normalized_' + str(base) + '.tsv'
p7 = subprocess.Popen(header_norm, shell=True)
header_amg = 'echo "protein\tscaffold\tAMG KO\tAMG KO name\tPfam\tPfam name" | cat - ' + str(out_folder)+'temp_VIBRANT_AMGs_' + str(base) + '.txt 1> ' + str(out_folder)+'VIBRANT_AMG_individuals_' + str(base) + '.tsv 2>/dev/null'
p4 = subprocess.Popen(header_amg, shell=True)
header_gb = 'echo "protein\tscaffold\taccession\tname" | cat - ' + str(out_folder)+'temp_VIBRANT_genbank_table_' + str(base) + '.txt 1> ' + str(out_folder)+'VIBRANT_genbank_table_' + str(base) + '.tsv 2>/dev/null'
p6 = subprocess.Popen(header_gb, shell=True)
for1 = 'for f in ' + str(out_folder)+base + '*parse.txt; do sed "1d" $f > ${f%.*}.out; done'
p3 = subprocess.Popen(for1, shell=True)
header_machine = 'echo "scaffold\tprediction" | cat - ' + str(out_folder)+'temp2_VIBRANT_machine_' + str(base) + '.txt 1> ' + str(out_folder)+'VIBRANT_machine_' + str(base) + '.tsv 2>/dev/null'
p5 = subprocess.Popen(header_machine, shell=True)
if format == "nucl":
for2 = 'for f in ' + str(out_folder)+base + '*parallel-runs*temp; do sed "1d" $f 1> ${f%.*}.temp.gff 2>/dev/null; done'
subprocess.run(for2, shell=True)
p1.wait()
p2.wait()
p3.wait()
p4.wait()
p5.wait()
p6.wait()
p7.wait()
time.sleep(0.1)
subprocess.Popen('rm '+str(out_folder)+'temp_VIBRANT_annotations*' + base + '* 2>/dev/null', shell=True)
subprocess.Popen('rm '+str(out_folder)+'temp_VIBRANT_results*' + base + '* 2>/dev/null', shell=True)
subprocess.Popen('rm '+str(out_folder)+'temp_VIBRANT_normalized*' + base + '* 2>/dev/null', shell=True)
subprocess.Popen('rm '+str(out_folder)+'temp2_VIBRANT_machine*' + base + '* 2>/dev/null', shell=True)
subprocess.Popen('rm '+str(out_folder)+'temp_VIBRANT_AMGs_*' + base + '* 2>/dev/null', shell=True)
subprocess.Popen('rm '+str(out_folder)+'temp_VIBRANT_genbank_table_*' + base + '* 2>/dev/null', shell=True)
subprocess.Popen('rm '+str(out_folder)+'temp_VIBRANT_genome_quality_' + base + '.tsv 2>/dev/null', shell=True)
subprocess.Popen(['mkdir', str(out_folder)+'VIBRANT_HMM_tables_unformatted_'+base])
subprocess.Popen(['mkdir', str(out_folder)+'VIBRANT_HMM_tables_parsed_'+base])
subprocess.Popen(['mkdir', str(out_folder)+'VIBRANT_phages_'+base])
subprocess.Popen(['mkdir', str(out_folder)+'VIBRANT_results_'+base])
kegg_cat = 'cat ' + str(out_folder)+base + '*KEGG.hmmtbl.parse.out 1> ' + str(out_folder)+base + '.KEGG_hmmtbl_parse.txt 2>/dev/null'
x1 = subprocess.Popen(kegg_cat, shell=True)
kegg_table = 'cat ' + str(out_folder)+base + '*KEGG.hmmtbl 1> ' + str(out_folder)+base + '_unformatted_KEGG.hmmtbl 2>/dev/null'
y1 = subprocess.Popen(kegg_table, shell=True)
pfam_cat = 'cat ' + str(out_folder)+base + '*Pfam.hmmtbl.parse.out 1> ' + str(out_folder)+base + '.Pfam_hmmtbl_parse.txt 2>/dev/null'
x2 = subprocess.Popen(pfam_cat, shell=True)
pfam_table = 'cat ' + str(out_folder)+base + '*Pfam.hmmtbl 1> ' + str(out_folder)+base + '_unformatted_Pfam.hmmtbl 2>/dev/null'
y2 = subprocess.Popen(pfam_table, shell=True)
vog_cat = 'cat ' + str(out_folder)+base + '*VOG.hmmtbl.parse.out 1> ' + str(out_folder)+base + '.VOG_hmmtbl_parse.txt 2>/dev/null'
x3 = subprocess.Popen(vog_cat, shell=True)
vog_table = 'cat ' + str(out_folder)+base + '*VOG.hmmtbl 1> ' + str(out_folder)+base + '_unformatted_VOG.hmmtbl 2>/dev/null'
y3 = subprocess.Popen(vog_table, shell=True)
x1.wait()
x2.wait()
x3.wait()
y1.wait()
y2.wait()
y3.wait()
time.sleep(0.1)
move_parse = 'mv ' + str(out_folder)+base + '*_hmmtbl_parse.txt ' + str(out_folder)+'VIBRANT_HMM_tables_parsed_'+base + ' 2>/dev/null'
x6 = subprocess.Popen(move_parse, shell=True)
move_table = 'mv ' + str(out_folder)+base + '*_unformatted_*.hmmtbl ' + str(out_folder)+'VIBRANT_HMM_tables_unformatted_'+base + ' 2>/dev/null'
y6 = subprocess.Popen(move_table, shell=True)
x6.wait()
y6.wait()
time.sleep(0.1)
for2 = 'for f in '+str(out_folder)+'VIBRANT_HMM_tables_parsed_' + base + '/*.txt; do echo "protein\tid\tevalue\tscore" | cat - $f > ${f%.*}.tsv; done'
z1 = subprocess.Popen(for2, shell=True)
z1.wait()
rm_parsed = 'rm '+str(out_folder)+'VIBRANT_HMM_tables_parsed_' + base + '/*.txt 2>/dev/null'
z2 = subprocess.Popen(rm_parsed, shell=True)
z2.wait()
time.sleep(0.1)
rm_faa = 'rm ' + str(out_folder)+base + '*parallel-runs*faa 2>/dev/null'
rm_fna = 'rm ' + str(out_folder)+base + '*parallel-runs*fna 2>/dev/null'
rm_ffn = 'rm ' + str(out_folder)+base + '*parallel-runs*ffn 2>/dev/null'
rm_list = 'rm ' + str(out_folder)+base + '*parallel-runs_*txt 2>/dev/null'
rm_names = 'rm ' + str(out_folder)+base + '*parallel-runs_*out 2>/dev/null'
rm_temp = 'rm ' + str(out_folder)+base + '*parallel-runs_*temp 2>/dev/null'
subprocess.Popen(rm_faa, shell=True)
subprocess.Popen(rm_fna, shell=True)
subprocess.Popen(rm_ffn, shell=True)
subprocess.Popen(rm_list, shell=True)
subprocess.Popen(rm_temp, shell=True)
subprocess.Popen(rm_names, shell=True)
if format == "nucl":
cat1_faa = "cat " + str(out_folder)+base + ".prodigal.faa | sed 's/$~&/ /g' 1> " + str(out_folder)+base + ".temp.faa 2>/dev/null"
cat2_faa = "cat " + str(out_folder)+base + ".temp.faa | sed 's/^@%/\"/g' 1> " + str(out_folder)+base + ".prodigal.faa 2>/dev/null"
rm1 = 'rm ' + str(out_folder)+base + '.prodigal.faa 2>/dev/null'
subprocess.run(cat1_faa, shell=True)
subprocess.run(rm1, shell=True)
subprocess.run(cat2_faa, shell=True)
subprocess.run("rm " + str(out_folder)+base + ".temp.faa 2>/dev/null", shell=True)
time.sleep(0.1)
cat1_ffn = "cat " + str(out_folder)+base + ".prodigal.ffn | sed 's/$~&/ /g' 1> " + str(out_folder)+base + ".temp.ffn 2>/dev/null"
cat2_ffn = "cat " + str(out_folder)+base + ".temp.ffn | sed 's/^@%/\"/g' 1> " + str(out_folder)+base + ".prodigal.ffn 2>/dev/null"
cat_gff = "cat " + str(out_folder)+base + "*temp.gff 1> " + str(out_folder)+base + ".all.gff 2>/dev/null"
c2 = subprocess.Popen(cat1_ffn, shell=True)
c7 = subprocess.Popen(cat_gff, shell=True)
c2.wait()
c7.wait()
time.sleep(0.1)
cat1_gff = "cat " + str(out_folder)+base + ".all.gff | sed 's/$~&/ /g' 1> " + str(out_folder)+base + ".temp.gff 2>/dev/null"
cat2_gff = "cat " + str(out_folder)+base + ".temp.gff | sed 's/^@%/\"/g' 1> " + str(out_folder)+base + ".all.gff 2>/dev/null"
c10 = subprocess.Popen(cat1_gff, shell=True)
c11 = subprocess.Popen(cat2_gff, shell=True)
c10.wait()
c11.wait()
time.sleep(0.1)
rm2 = 'rm ' + str(out_folder)+base + '.prodigal.ffn 2>/dev/null'
rm3 = 'rm ' + str(out_folder)+base + '*temp.gff'
c6 = subprocess.Popen(rm2, shell=True)
c8 = subprocess.Popen(rm3, shell=True)
c6.wait()
c8.wait()
c4 = subprocess.Popen(cat2_ffn, shell=True)
header_gff = 'echo "##gff-version 3" | cat - ' + str(out_folder)+base + '.all.gff 1> ' + str(out_folder)+base + '.prodigal.gff 2>/dev/null'
c9 = subprocess.Popen(header_gff, shell=True)
c4.wait()
c9.wait()
subprocess.Popen("rm " + str(out_folder)+base + ".temp.ffn 2>/dev/null", shell=True)
subprocess.Popen("rm " + str(out_folder)+base + ".all.gff 2>/dev/null", shell=True)
with open(str(out_folder)+'VIBRANT_summary_results_'+base+'.tsv') as results:
out_phages = -1
for line in results:
out_phages += 1
remove_run1 = str('rm ' + str(out_folder)+base + '.parallel-runs*hmmtbl 2>/dev/null')
subprocess.Popen(remove_run1, shell=True)
remove_run2 = str('rm ' + str(out_folder)+base + '.parallel-runs*hmmtbl.parse* 2>/dev/null')
subprocess.Popen(remove_run2, shell=True)
genbank_database = []
master_coords = []
with open(str(out_folder)+base + '.phages_combined.faa', 'r') as fasta:
with open(str(out_folder)+'VIBRANT_integrated_prophage_coordinates_' + base + '.tsv', 'w') as coord_file:
coord_file.write("scaffold\tfragment\tprotein start\tprotein stop\tprotein length\tnucleotide start\tnucleotide stop\tnucleotide length\n")
for name, seq in SimpleFastaParser(fasta):
sequence = ''
if len(seq) > 44:
sequence += str(seq[0:44])+"\n"
for group in range(44,len(seq),58):
sequence += ' ' + str(seq[group:group+58]) + '\n'
sequence = sequence.rstrip("\n")
elif len(seq) <= 44:
sequence = seq
protein = str(name.split("\t")[0])
genome = str(protein.rsplit("_",1)[0])
location = str(name.split("\t")[1])
strand = str(name.split("\t")[2])
accession = str(name.split("\t")[3])
name_split = str(name.split("\t")[4])
genbank_database.extend((protein,genome,location,strand,accession,name_split,sequence))
#
if "_fragment_" in name:
rename = name.split("\t",1)[0]
coords = name.split("\t",2)[1]
master_coords.append(str(rename.rsplit("_",1)[0]))
master_coords.append(str(coords.split("..")[0])[1:])
master_coords.append(str(coords.split("..")[1])[0:-1])
master_coords.append(str(rename.rsplit("_",1)[1]))
master_coords.append('')
genbank_database.extend(('',''))
n = 0
first = True
while master_coords[n] != '':
if master_coords[n] == master_coords[n+4]:
if first == True:
start = master_coords[n+1]
prot = master_coords[n+3]
first = False
else:
coord_file.write(str(master_coords[n]).rsplit("_",2)[0] + "\t" + str(master_coords[n]) + "\t" + str(prot) + "\t" + str(master_coords[n+3]) + "\t" + str(int(master_coords[n+3])-int(prot)+1) + "\t" + str(start) + "\t" + str(master_coords[n+2]) + "\t" + str(int(master_coords[n+2])-int(start)+1) + "\n")
first = True
n += 4
if format == "nucl":
length_database = {}
sequence_database = {}
length_list = []
db_dict_circ = {}
with open(str(out_folder)+base + '.phages_combined.fna', 'r') as fasta:
for name, seq in SimpleFastaParser(fasta):
length_database.update({name:len(seq)})
length_list.append(int(len(seq)))
n = 0
count = 0
i = 61
spaces_database = ' '
sequence = ' 1 '
for group in range(0,len(seq),10):
sequence += str(seq[group:group+10]) + ' '
count += 1
if count == 6:
length = list(str(i))
size = 8-len(length)
spaces = str(spaces_database[0:size+1])
sequence += '\n' + str(spaces) + str(i) + ' '
i += 60
count = 0
sequence_database.update({name:str(sequence)})
db_dict_circ.update({name:seq})
with open(str(out_folder)+base + '.phages_combined.temp.gbk', 'w') as genbank:
n = 1
check = False
while n < len(genbank_database)-1:
if check == False:
start_site = int(str(genbank_database[n+1][1:-1]).split(".",1)[0])-1
if str(genbank_database[n]) in circular_database:
form = "circular"
else:
form = "linear"
genbank.write('//\nLOCUS ' + str(genbank_database[n]) + ' ' + str(length_database[genbank_database[n]]) + ' bp DNA ' + str(form) + ' VRL ' + str(date.today().strftime("%d-%b-%Y")) + '\nDEFINITION ' + str(genbank_database[n]) + '.\nCOMMENT Annotated using VIBRANT v1.2.1\nFEATURES Location/Qualifiers\n source 1..' + str(length_database[genbank_database[n]]) + '\n /organism="' + str(genbank_database[n]) + '"\n')
check = True
if "fragment" in str(genbank_database[n]):
if check == True:
location_A = int(str(genbank_database[n+1][1:-1]).split("..")[0])-start_site
location_B = int(str(genbank_database[n+1][1:-1]).split("..")[1])-start_site
location = str(location_A) + ".." + str(location_B)
if str(genbank_database[n+2]) == "-1":
if str(genbank_database[n]) == str(genbank_database[n+7]):
genbank.write(' CDS complement(' + str(location) + ')' + '\n /locus_tag="' + str(genbank_database[n-1]).replace('"','') + '"\n /protein_id="' + str(genbank_database[n+3]).replace('"','') + '"\n /product="' + str(genbank_database[n+4]).replace('"','') + '"\n /translation="' + str(genbank_database[n+5]).replace('"','') + '"\n')
if str(genbank_database[n]) != str(genbank_database[n+7]):
genbank.write(' CDS complement(' + str(location) + ')' + '\n /locus_tag="' + str(genbank_database[n-1]).replace('"','') + '"\n /protein_id="' + str(genbank_database[n+3]).replace('"','') + '"\n /product="' + str(genbank_database[n+4]).replace('"','') + '"\n /translation="' + str(genbank_database[n+5]).replace('"','') + '"\n')
genbank.write('ORIGIN\n' + str(sequence_database[genbank_database[n]]) + '\n')
check = False
start_site = 0
elif str(genbank_database[n+2]) == "1":
if str(genbank_database[n]) == str(genbank_database[n+7]):
genbank.write(' CDS ' + str(location) + '\n /locus_tag="' + str(genbank_database[n-1]).replace('"','') + '"\n /protein_id="' + str(genbank_database[n+3]).replace('"','') + '"\n /product="' + str(genbank_database[n+4]).replace('"','') + '"\n /translation="' + str(genbank_database[n+5]).replace('"','') + '"\n')
if str(genbank_database[n]) != str(genbank_database[n+7]):
genbank.write(' CDS ' + str(location) + '\n /locus_tag="' + str(genbank_database[n-1]).replace('"','') + '"\n /protein_id="' + str(genbank_database[n+3]).replace('"','') + '"\n /product="' + str(genbank_database[n+4]).replace('"','') + '"\n /translation="' + str(genbank_database[n+5]).replace('"','') + '"\n')
genbank.write('ORIGIN\n' + str(sequence_database[genbank_database[n]]) + '\n')
check = False
start_site = 0
elif "fragment" not in str(genbank_database[n]):
if check == True:
if str(genbank_database[n+2]) == "-1":
if str(genbank_database[n]) == str(genbank_database[n+7]):
genbank.write(' CDS complement' + str(genbank_database[n+1]) + '\n /locus_tag="' + str(genbank_database[n-1]).replace('"','') + '"\n /protein_id="' + str(genbank_database[n+3]).replace('"','') + '"\n /product="' + str(genbank_database[n+4]).replace('"','') + '"\n /translation="' + str(genbank_database[n+5]).replace('"','') + '"\n')
if str(genbank_database[n]) != str(genbank_database[n+7]):
genbank.write(' CDS complement' + str(genbank_database[n+1]) + '\n /locus_tag="' + str(genbank_database[n-1]).replace('"','') + '"\n /protein_id="' + str(genbank_database[n+3]).replace('"','') + '"\n /product="' + str(genbank_database[n+4]).replace('"','') + '"\n /translation="' + str(genbank_database[n+5]).replace('"','') + '"\n')
genbank.write('ORIGIN\n' + str(sequence_database[genbank_database[n]]) + '\n')
check = False
elif str(genbank_database[n+2]) == "1":
if str(genbank_database[n]) == str(genbank_database[n+7]):
genbank.write(' CDS ' + str(genbank_database[n+1][1:-1]) + '\n /locus_tag="' + str(genbank_database[n-1]).replace('"','') + '"\n /protein_id="' + str(genbank_database[n+3]).replace('"','') + '"\n /product="' + str(genbank_database[n+4]).replace('"','') + '"\n /translation="' + str(genbank_database[n+5]).replace('"','') + '"\n')
if str(genbank_database[n]) != str(genbank_database[n+7]):
genbank.write(' CDS ' + str(genbank_database[n+1][1:-1]) + '\n /locus_tag="' + str(genbank_database[n-1]).replace('"','') + '"\n /protein_id="' + str(genbank_database[n+3]).replace('"','') + '"\n /product="' + str(genbank_database[n+4]).replace('"','') + '"\n /translation="' + str(genbank_database[n+5]).replace('"','') + '"\n')
genbank.write('ORIGIN\n' + str(sequence_database[genbank_database[n]]) + '\n')
check = False
n += 7
genbank.write('//')
with open(str(files)+'VIBRANT_names.tsv', 'r') as names:
names = names.read().replace('\n','\t').split('\t')
names_dict = {}
n = 0
while n < len(names):
names_dict.update({names[n]:names[n+1]})
n += 2
with open(str(files)+'VIBRANT_KEGG_pathways_summary.tsv', 'r') as summary:
with open(str(out_folder)+'VIBRANT_AMG_individuals_' + str(base) + '.tsv', 'r') as annotations:
with open(str(out_folder)+'VIBRANT_AMG_counts_' + str(base) + '.tsv', 'w') as count_file:
with open(str(out_folder)+'VIBRANT_AMG_pathways_' + str(base) + '.tsv', 'w') as path_file:
count_file.write('AMG count\tAMG KO\tAMG KO name\n')
summary = summary.read().replace('\n','\t').split('\t')
annotations = pd.read_csv(annotations, sep='\t', header=0)
annotations = pd.DataFrame(annotations)
temp_anno = list(annotations['AMG KO'])
kegg_anno = []
count_dict = {}
for item in temp_anno:
if str(item).startswith('K'):
kegg_anno.append(item)
kegg_set = list(set(kegg_anno))
for item in kegg_set:
count = kegg_anno.count(item)
count_dict.update({str(item):str(count)})
count_file.write(str(count) + "\t" + str(item) + "\t" + str(names_dict[item]) + "\n")
n = 4
sum_count = 0
present = []
path_file.write("KEGG Entry\tMetabolism\tPathway\tTotal AMGs\tPresent AMG KOs\n")
while n < len(summary):
KOs = summary[n+3].split("~")
for item in KOs:
if item in count_dict.keys():
sum_count += int(count_dict[item])
present.append(item)
if sum_count > 0:
path_file.write(str(summary[n]) + "\t" + str(summary[n+1]) + "\t" + str(summary[n+2]) + "\t" + str(sum_count) + "\t" + str(",".join(present)) + "\n")
sum_count = 0
present = []
n += 4
sed_gb = 'sed "1d" ' + str(out_folder)+base + '.phages_combined.temp.gbk 1> ' + str(out_folder)+base + '.phages_combined.gbk 2>/dev/null'
y12 = subprocess.Popen(sed_gb, shell=True)
y12.wait()
subprocess.run('rm ' + str(out_folder)+base + '.phages_combined.temp.gbk 2>/dev/null',shell=True)
####### Visualization
if suppress == False and int(out_phages) > 0:
plt.figure()
carbohydrate = ['map00010', 'map00020', 'map00030', 'map00040', 'map00051', 'map00052', 'map00053', 'map00500', 'map00520', 'map00620', 'map00630', 'map00640', 'map00650', 'map00660', 'map00562']
energy = ['map00190', 'map00195', 'map00196', 'map00710', 'map00720', 'map00680', 'map00910', 'map00920']
lipid = ['map00061', 'map00062', 'map00071', 'map00072', 'map00073', 'map00100', 'map00120', 'map00121', 'map00140', 'map00561', 'map00564', 'map00565', 'map00600', 'map00590', 'map00591', 'map00592', 'map01040']
nucleotide = ['map00230', 'map00240']
amino = ['map00250', 'map00260', 'map00270', 'map00280', 'map00290', 'map00300', 'map00310', 'map00220', 'map00330', 'map00340', 'map00350', 'map00360', 'map00380', 'map00400', 'map00410', 'map00430', 'map00440', 'map00450', 'map00460', 'map00471', 'map00472', 'map00473', 'map00480']
glycan = ['map00510', 'map00513', 'map00512', 'map00515', 'map00514', 'map00532', 'map00534', 'map00533', 'map00531', 'map00563', 'map00601', 'map00603', 'map00604', 'map00540', 'map00550', 'map00511', 'map00571', 'map00572']
cofactor = ['map00730', 'map00740', 'map00750', 'map00760', 'map00770', 'map00780', 'map00785', 'map00790', 'map00670', 'map00830', 'map00860', 'map00130']
terpenoid = ['map00900', 'map00902', 'map00909', 'map00904', 'map00906', 'map00905', 'map00981', 'map00908', 'map00903', 'map00281', 'map01052', 'map00522', 'map01051', 'map01059', 'map01056', 'map01057', 'map00253', 'map00523', 'map01054', 'map01053', 'map01055']
secondary = ['map00940', 'map00945', 'map00941', 'map00944', 'map00942', 'map00943', 'map00901', 'map00403', 'map00950', 'map00960', 'map01058', 'map00232', 'map00965', 'map00966', 'map00402', 'map00311', 'map00332', 'map00261', 'map00331', 'map00521', 'map00524', 'map00525', 'map00231', 'map00401', 'map00404', 'map00405', 'map00333', 'map00254', 'map00998', 'map00999']
aromatic = ['map00362', 'map00627', 'map00364', 'map00625', 'map00361', 'map00623', 'map00622', 'map00633', 'map00642', 'map00643', 'map00791', 'map00930', 'map00363', 'map00621', 'map00626', 'map00624', 'map00365', 'map00984', 'map00980', 'map00982', 'map00983']
relay = ['map04122']
with open(str(out_folder)+'VIBRANT_AMG_pathways_' + str(base) + '.tsv', 'r') as pathways:
pathways = pathways.read().replace('\n','\t').split('\t')
if len(pathways) > 6:
carbohydrate_count = 0
energy_count = 0
lipid_count = 0
nucleotide_count = 0
amino_count = 0
glycan_count = 0
cofactor_count = 0
terpenoid_count = 0
secondary_count = 0
aromatic_count = 0
relay_count = 0
n = 5
while n < len(pathways):
if str(pathways[n]) in carbohydrate:
carbohydrate_count += int(pathways[n+3])
elif str(pathways[n]) in energy:
energy_count += int(pathways[n+3])
elif str(pathways[n]) in lipid:
lipid_count += int(pathways[n+3])
elif str(pathways[n]) in nucleotide:
nucleotide_count += int(pathways[n+3])
elif str(pathways[n]) in amino:
amino_count += int(pathways[n+3])
elif str(pathways[n]) in glycan:
glycan_count += int(pathways[n+3])
elif str(pathways[n]) in cofactor:
cofactor_count += int(pathways[n+3])
elif str(pathways[n]) in terpenoid:
terpenoid_count += int(pathways[n+3])
elif str(pathways[n]) in secondary:
secondary_count += int(pathways[n+3])
elif str(pathways[n]) in aromatic:
aromatic_count += int(pathways[n+3])
elif str(pathways[n]) in relay:
relay_count += int(pathways[n+3])
n += 5
dataframe = pd.DataFrame({"AMG Metabolism Category": ['carbohydrates', 'energy metabolism', 'lipids', 'nucleotides', 'amino acids', 'glycan', 'cofactors/vitamins', 'terpenoids/polyketides', 'secondary metabolites', 'aromatic compounds', 'sulfur relay'], "Number of AMGs": [carbohydrate_count, energy_count, lipid_count, nucleotide_count, amino_count, glycan_count, cofactor_count, terpenoid_count, secondary_count, aromatic_count, relay_count]})
figure = sns.barplot(x="AMG Metabolism Category", y="Number of AMGs", data=dataframe, palette=sns.color_palette("pastel"), edgecolor=sns.color_palette("bright"))
sns.set(style="white")
plt.ylim(0, None)
plt.xticks(rotation=90)
plt.tight_layout()
plt.savefig(str(out_folder)+'VIBRANT_figure_pathways_' + str(base) + '.pdf', format='pdf')
if suppress == False and int(out_phages) > 0:
plt.figure()
sns.set(style="white")
with open(str(out_folder)+'VIBRANT_genome_quality_' + base + '.tsv', 'r') as qual_file:
data_frame = pd.read_csv(qual_file, sep='\t', header=0)
data_frame = pd.DataFrame(data_frame)
qualities = data_frame['Quality'].tolist()
lowqual = qualities.count("low quality draft")
mediumqual = qualities.count("medium quality draft")
highqual = qualities.count("high quality draft")
if format == 'nucl':
circqual = qualities.count("complete circular")
data = [lowqual, mediumqual, highqual, circqual]
names = ['low quality\n(' + str(data[0]) + ')', 'medium quality\n(' + str(data[1]) + ')', 'high quality\n(' + str(data[2]) + ')', 'circular\n(' + str(data[3]) + ')']
if format == 'prot':
data = [lowqual, mediumqual, highqual]
names = ['low quality\n(' + str(data[0]) + ')', 'medium quality\n(' + str(data[1]) + ')', 'high quality\n(' + str(data[2]) + ')']
qual_fig = sns.barplot(x=names, y=data, alpha=0.6, palette=sns.color_palette("pastel"), edgecolor=sns.color_palette("bright"))
plt.ylabel('Count')
plt.tight_layout()
plt.savefig(str(out_folder)+'VIBRANT_figure_quality_' + str(base) + '.pdf', format='pdf')
if suppress == False and format == "nucl" and int(out_phages) > 0:
plt.figure()
size = int(len(length_list)*0.1+1)
if len(length_list) <= 10:
size = int(len(length_list))
if len(length_list) > 10 and len(length_list) <= 50:
size = int(len(length_list)/2)
if size > 50:
size = 50
if size < 1:
size = 1
sns.set(style="white")
figure = sns.distplot(length_list, bins=size, kde=False, rug=False, color='green')
plt.xlabel("Scaffold size")
plt.ylabel("Count")
plt.tight_layout()
plt.savefig(str(out_folder)+'VIBRANT_figure_sizes_' + str(base) + '.pdf', format='pdf')
if suppress == False:
if int(sequences) >= 10:
plt.figure()
proportions = [int(sequences),int(grep_out_count),int(out_phages)]
names = ["total sequences\n"+str(sequences), "correct size\n"+str(grep_out_count), "total phages\n"+str(out_phages)]
sns.set(style="white", font_scale=0.75)
chart = sns.color_palette('Blues', 3)
fig, figure = plt.subplots()
for n, p in enumerate(proportions):
circle = plt.Circle((1, p), radius=p, facecolor=chart[n], edgecolor="black")
figure.add_artist(circle)
if n == 0:
figure.text(p+(p/3), p*1.25, names[n], color=chart[n], horizontalalignment='center')
save = float(p)
if n == 1:
figure.text(save+(save/3), save, names[n], color=chart[n], horizontalalignment='center')
if n == 2:
figure.text(save+(save/3), save*0.75, names[n], color=chart[n], horizontalalignment='center')
figure.set_xlim(-int(sequences)-(save*0.1), int(sequences)+(save*0.1))
figure.set_ylim(-(save*0.1), 2*int(sequences)+(save*0.1))
figure.set_aspect('equal')
plt.tight_layout()
figure.set_xticks([])
figure.set_yticks([])
sns.despine(fig=None, top=True, right=True, left=True, bottom=True, offset=None, trim=True)
plt.savefig(str(out_folder)+'VIBRANT_figure_phages_' + str(base) + '.pdf', format='pdf')
if suppress == False and int(out_phages) > 2:
plt.figure()
lifestyle_list = []
quality_list = []
circ_list = []
label_list = []
with open(str(out_folder)+'VIBRANT_genome_quality_' + base + '.tsv', 'r') as qual_file:
qual_file = qual_file.read().replace("\n","\t").split("\t")
x = 3
lq = 0
hq = 0
mq = 0
circ = 0
lin = 0
lyt = 0
lyso = 0
try:
cl = len(circular_list)
except Exception:
cl = 0
while x < len(qual_file)-1-(cl*3):
if str(qual_file[x+2]) == 'low quality draft':
quality_list.append((0.9,0,0.1,0.5))
label_list.append('low quality draft')
lq += 1
elif str(qual_file[x+2]) == 'medium quality draft':
quality_list.append((0,0.2,0.9,0.5))
label_list.append('medium quality draft')
mq += 1
elif str(qual_file[x+2]) == 'high quality draft':
quality_list.append((0.2,0.9,0,0.5))
label_list.append('high quality draft')
hq += 1
if format == 'nucl':
if str(qual_file[x]) in circular_list:
circ_list.append('dotted')
circ += 1
else:
circ_list.append('solid')
lin += 1
if str(qual_file[x+1]) == 'lytic':
lifestyle_list.append((0,0,0,1))
lyt += 1
elif str(qual_file[x+1]) == 'lysogenic':
lifestyle_list.append((0.85,0.85,0.85,1))
lyso += 1
x += 3
annotations = pd.read_csv(str(out_folder)+'VIBRANT_summary_normalized_'+base+'.tsv', sep='\t', header=0)
anno = pd.DataFrame(annotations, columns=['total genes', 'all KEGG' , 'KEGG v-score' , 'all Pfam' , 'Pfam v-score' , 'all VOG' , 'VOG v-score' , 'KEGG int-rep' , 'KEGG zero' , 'Pfam int-rep' , 'Pfam zero' , 'VOG redoxin' , 'VOG rec-tran' , 'VOG int' , 'VOG RnR' , 'VOG DNA' , 'KEGG restriction check', 'KEGG toxin check', 'VOG special', 'annotation check' , 'p_v check' , 'p_k check' , 'k_v check' , 'k check' , 'p check' , 'v check' , 'h check'])
size_list = anno['total genes'].tolist()
size_list = [10**i for i in size_list]
anno[['scaffold']] = annotations[['scaffold']]
anno_cols = anno.drop(['scaffold', 'total genes'], axis='columns')
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(anno_cols)
principalDf = pd.DataFrame(data = principalComponents, columns = ['principal component 1', 'principal component 2'])
finalDf = pd.concat([principalDf, anno[['scaffold']]], axis = 1)
coordsDf = pd.concat([principalDf, anno[['scaffold']]], axis = 1)
coordsDf.to_csv(str(out_folder)+'VIBRANT_figure_PCA_' + str(base) + '.tsv', index=False, sep="\t")
x_list = principalDf['principal component 1'].tolist()
y_list = principalDf['principal component 2'].tolist()
indicesToKeep = finalDf['scaffold']
fig, ax = plt.subplots()
plt.style.use('seaborn-white')
ax.set_xlabel('Principal Component 1', fontsize = 15)
ax.set_ylabel('Principal Component 2', fontsize = 15)
if format == "nucl":
plot = ax.scatter(x_list, y_list, s = size_list, marker = 'h', c = quality_list, label=label_list, edgecolors=lifestyle_list, linestyle=circ_list, linewidth=0.4)
if format == "prot":
plot = ax.scatter(x_list, y_list, s = size_list, marker = 'h', c = quality_list, label=label_list, edgecolors=lifestyle_list, linewidth=0.4)
a = mpatches.Patch(color=(0.9,0,0.1,0.5), label='low quality ('+str(lq)+')')
b = mpatches.Patch(color=(0,0.2,0.9,0.5), label='medium quality ('+str(mq)+')')
c = mpatches.Patch(color=(0.2,0.9,0,0.5), label='high quality ('+str(hq)+')')
legend1 = plt.legend(handles=[a,b,c], title='Scaffold quality', bbox_to_anchor=(1.0, 0.9), loc='upper left', borderaxespad=0)
ax.add_artist(legend1)
a = mpatches.Patch(color=(0,0,0,1), label='lytic ('+str(lyt)+')')
b = mpatches.Patch(color=(0.85,0.85,0.85,1), label='lysogenic ('+str(lyso)+')')
legend3 = plt.legend(handles=[a,b], title='Outline color', bbox_to_anchor=(1.0, 0.6), loc='center left', borderaxespad=0)
ax.add_artist(legend3)
lines = [Line2D([0], [0], color="darkgray", marker='h',markersize=3, markerfacecolor="darkgray", label='10', alpha=0.6, markeredgecolor='white', markeredgewidth='1', lw=0), Line2D([0], [0], color="darkgray", marker='h',markersize=6, markerfacecolor="darkgray", label='25', alpha=0.6, markeredgecolor='white', lw=0), Line2D([0], [0], color="darkgray", marker='h',markersize=8.2, markerfacecolor="darkgray", label='50', alpha=0.6, markeredgecolor='white', lw=0), Line2D([0], [0], color="darkgray", marker='h',markersize=9.7,markerfacecolor="darkgray", label='75', alpha=0.6, markeredgecolor='white', lw=0)]
legend2 = plt.legend(handles=lines, title='Size (ORFs)', bbox_to_anchor=(1.0, 0.25), loc='upper left', borderaxespad=0)
ax.add_artist(legend2)
if format == "nucl":
legend4 = [Line2D([0], [0], color='black', lw=2, label='circular ('+str(circ)+')', linestyle='dotted'), Line2D([0], [0], lw=2, color='black', label='linear ('+str(lin)+')')]
ax.legend(handles=legend4, loc='center left', bbox_to_anchor=(1.0, 0.4), borderaxespad=0, title='Outline style')
fig.set_size_inches(12, 8)
plt.savefig(str(out_folder)+'VIBRANT_figure_PCA_' + str(base) + '.pdf', format='pdf', bbox_inches='tight')
if suppress == False:
subprocess.run('mkdir '+str(out_folder)+'VIBRANT_figures_'+base, shell=True)
subprocess.run("rm " + str(out_folder)+base + "_four-orf-count.txt 2>/dev/null", shell=True)
subprocess.run("rm " + str(out_folder)+base + "*parallel-runs* 2>/dev/null", shell=True)
if format == "prot":
subprocess.run('rm ' + str(out_folder)+base + '.phages_combined.gbk 2>/dev/null', shell=True)
move_phages = 'mv ' + str(out_folder)+base + '.phages_* ' + str(out_folder)+'VIBRANT_phages_'+base + ' 2>/dev/null'
move_run4 = str('mv '+str(out_folder)+'VIBRANT*' + base + '.tsv ' + str(out_folder)+'VIBRANT_results_' +base + ' 2>/dev/null')
move_figs = str('mv '+str(out_folder)+'VIBRANT_figure_*' + base + '.pdf ' + str(out_folder)+'VIBRANT_figures_' +base + ' 2>/dev/null')
y8 = subprocess.Popen(move_run4, shell=True)
y7 = subprocess.Popen(move_phages, shell=True)
y9 = subprocess.Popen(move_figs, shell=True)
y7.wait()
y8.wait()
y9.wait()
time.sleep(0.1)
#
#
#
note = ''
if str(sklearn.__version__) != '0.21.3':
if int(str(sklearn.__version__).split(".")[1]) > 21 or int(str(sklearn.__version__).split(".")[2]) > 3:
note = 'CAUTION: running a version of Scikit-Learn higher than v0.21.3 may cause issues. With pip you can update by running "pip install --upgrade scikit-learn==0.21.3".'
elif int(str(sklearn.__version__).split(".")[1]) < 21 or int(str(sklearn.__version__).split(".")[2]) < 3:
note = 'CAUTION: running a version of Scikit-Learn lower than v0.21.3 will likely cause issues. With pip you can update by running "pip install --upgrade scikit-learn==0.21.3".'
if str(np.version.version) != '1.17.0':
if int(str(np.version.version).split(".")[0]) < 1 or int(str(np.version.version).split(".")[1]) < 17:
note = 'CAUTION: running a version of Numpy lower than v1.17.0 will likely cause issues. With pip you can update by running "pip install --upgrade numpy==1.17.0".'
log_command = sys.argv
logging.info("Command: " + str(" ".join(log_command)))
logging.info("Date: " + str(date.today()))
logging.info("Start: " + str(start_time))
logging.info("End: " + str(datetime.datetime.now().time()).rsplit(".",1)[0])
logging.info("Runtime: " + str(round((time.time() - float(starting_time))/60,1)) + " minutes")
logging.info("Program: VIBRANT v1.2.1")
logging.info("\n")
logging.info(str(sequences) + " scaffolds were read in.")
if format == "nucl":
logging.info(str(grep_out_count) + " scaffolds met minimum requirements: at least " + str(lim_low) + "bp and " + str(orf_low) + " ORFs.")
if format == "prot":
logging.info(str(grep_out_count) + " scaffolds met the minimum requirement: at least " + str(orf_low) + " ORFs.")
logging.info(str(out_phages) + " putative phages were identified.")
logging.info("\n")
logging.info(str(note))
logging.info(' ##')
logging.info(' ## ##')
logging.info(' ## ##')
logging.info('###### ## ## ## ####### ###### ##### ## ##')
logging.info('## ## ## ## ## ## ## ## ## ## ##')
logging.info('###### ###### ###### ## ### ###### ### ##')
logging.info('## ## ## ## ## ## ## ## ## ##')
logging.info('## ## ## ## ## ####### ###### ##### ##')
logging.info(' # ## #')
logging.info(' # # ## # #')
logging.info(' # # # #')
logging.info(' # #')
logging.info("\n")
#
#
#
if format == "nucl":
subprocess.run('mv ' + str(out_folder)+base + '.prodigal.ffn ' + str(out_folder) + 'VIBRANT_' + base +' 2>/dev/null', shell=True)
subprocess.run('mv ' + str(out_folder)+base + '.prodigal.gff ' + str(out_folder) + 'VIBRANT_' + base +' 2>/dev/null', shell=True)
subprocess.run('mv ' + str(out_folder)+base + '.prodigal.faa ' + str(out_folder) + 'VIBRANT_' + base +' 2>/dev/null', shell=True)
subprocess.run('mv '+str(out_folder)+'VIBRANT*' + base + ' ' + str(out_folder) + 'VIBRANT_' + base +' 2>/dev/null', shell=True)
subprocess.run('mv '+str(out_folder)+'VIBRANT*' + base + '.log ' + str(out_folder) + 'VIBRANT_' + base +' 2>/dev/null', shell=True)
time.sleep(0.1)
#
#
#
except Exception as e:
logging.exception(e)