-
Notifications
You must be signed in to change notification settings - Fork 0
/
modeling_tf_utils.py
2349 lines (1990 loc) · 98 KB
/
modeling_tf_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF general model utils."""
import functools
import inspect
import logging
import os
import pickle
import re
import warnings
from typing import Dict, List, Optional, Union
import h5py
import numpy as np
import tensorflow as tf
from activations_tf import get_tf_activation
from fast_tokenizer.tokenization_utils_base import BatchEncoding
from huggingface_hub import Repository, list_repo_files
from modeling_tf_outputs import TFSeq2SeqLMOutput
from requests import HTTPError
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.engine import data_adapter
# from tensorflow.python.keras.engine.keras_tensor import KerasTensor
from tensorflow.python.keras.saving import hdf5_format
from tf_utils import shape_list
# from configuration_utils import PretrainedConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.dynamic_module_utils import custom_object_save
from transformers.file_utils import (
DUMMY_INPUTS,
TF2_WEIGHTS_NAME,
WEIGHTS_NAME,
EntryNotFoundError,
ModelOutput,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
cached_path,
copy_func,
has_file,
hf_bucket_url,
is_offline_mode,
is_remote_url,
)
from transformers.generation_tf_utils import TFGenerationMixin
logger = logging.getLogger(__name__)
tf_logger = tf.get_logger()
tf_logger.propagate = False
TFModelInputType = Union[
List[tf.Tensor],
List[np.ndarray],
# List[KerasTensor],
Dict[str, tf.Tensor],
Dict[str, np.ndarray],
# Dict[str, KerasTensor],
tf.Tensor,
np.ndarray,
# KerasTensor,
]
def dummy_loss(y_true, y_pred):
return tf.reduce_mean(y_pred)
class TFModelUtilsMixin:
"""
A few utilities for `tf.keras.Model`, to be used as a mixin.
"""
def num_parameters(self, only_trainable: bool = False) -> int:
"""
Get the number of (optionally, trainable) parameters in the model.
Args:
only_trainable (`bool`, *optional*, defaults to `False`):
Whether or not to return only the number of trainable parameters
Returns:
`int`: The number of parameters.
"""
if only_trainable:
return int(
sum(np.prod(w.shape.as_list()) for w in self.trainable_variables)
)
else:
return self.count_params()
def keras_serializable(cls):
"""
Decorate a Keras Layer class to support Keras serialization.
This is done by:
1. Adding a `transformers_config` dict to the Keras config dictionary in `get_config` (called by Keras at
serialization time.
2. Wrapping `__init__` to accept that `transformers_config` dict (passed by Keras at deserialization time) and
convert it to a config object for the actual layer initializer.
3. Registering the class as a custom object in Keras (if the Tensorflow version supports this), so that it does not
need to be supplied in `custom_objects` in the call to `tf.keras.models.load_model`.
Args:
cls (a `tf.keras.layers.Layers subclass`):
Typically a `TF.MainLayer` class in this project, in general must accept a `config` argument to its
initializer.
Returns:
The same class object, with modifications for Keras deserialization.
"""
initializer = cls.__init__
config_class = getattr(cls, "config_class", None)
if config_class is None:
raise AttributeError("Must set `config_class` to use @keras_serializable")
@functools.wraps(initializer)
def wrapped_init(self, *args, **kwargs):
config = (
args[0]
if args and isinstance(args[0], PretrainedConfig)
else kwargs.pop("config", None)
)
if isinstance(config, dict):
config = config_class.from_dict(config)
initializer(self, config, *args, **kwargs)
elif isinstance(config, PretrainedConfig):
if len(args) > 0:
initializer(self, *args, **kwargs)
else:
initializer(self, config, *args, **kwargs)
else:
raise ValueError(
"Must pass either `config` (PretrainedConfig) or `config` (dict)"
)
self._config = config
self._kwargs = kwargs
cls.__init__ = wrapped_init
if not hasattr(cls, "get_config"):
raise TypeError(
"Only use @keras_serializable on tf.keras.layers.Layer subclasses"
)
if hasattr(cls.get_config, "_is_default"):
def get_config(self):
cfg = super(cls, self).get_config()
cfg["config"] = self._config.to_dict()
cfg.update(self._kwargs)
return cfg
cls.get_config = get_config
cls._keras_serializable = True
if hasattr(tf.keras.utils, "register_keras_serializable"):
cls = tf.keras.utils.register_keras_serializable()(cls)
return cls
class TFCausalLanguageModelingLoss:
"""
Loss function suitable for causal language modeling (CLM), that is, the task of guessing the next token.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
def hf_compute_loss(self, labels, logits):
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
# make sure only labels that are not equal to -100 affect the loss
active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
reduced_logits = tf.boolean_mask(
tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss
)
labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)
return loss_fn(labels, reduced_logits)
class TFQuestionAnsweringLoss:
"""
Loss function suitable for question answering.
"""
def hf_compute_loss(self, labels, logits):
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
start_loss = loss_fn(labels["start_position"], logits[0])
end_loss = loss_fn(labels["end_position"], logits[1])
return (start_loss + end_loss) / 2.0
class TFTokenClassificationLoss:
"""
Loss function suitable for token classification.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
def hf_compute_loss(self, labels, logits):
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
# make sure only labels that are not equal to -100
# are taken into account as loss
if tf.math.reduce_any(labels == -1):
tf.print(
"Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead."
)
active_loss = tf.reshape(labels, (-1,)) != -1
else:
active_loss = tf.reshape(labels, (-1,)) != -100
reduced_logits = tf.boolean_mask(
tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss
)
labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)
return loss_fn(labels, reduced_logits)
class TFSequenceClassificationLoss:
"""
Loss function suitable for sequence classification.
"""
def hf_compute_loss(self, labels, logits):
if len(shape_list(logits)) == 1 or shape_list(logits)[1] == 1:
loss_fn = tf.keras.losses.MeanSquaredError(
reduction=tf.keras.losses.Reduction.NONE
)
else:
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
return loss_fn(labels, logits)
class TFMultipleChoiceLoss:
"""Loss function suitable for multiple choice tasks."""
def hf_compute_loss(self, labels, logits):
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
return loss_fn(labels, logits)
class TFMaskedLanguageModelingLoss(TFCausalLanguageModelingLoss):
"""
Loss function suitable for masked language modeling (MLM), that is, the task of guessing the masked tokens.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
class TFNextSentencePredictionLoss:
"""
Loss function suitable for next sentence prediction (NSP), that is, the task of guessing the next sentence.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
def hf_compute_loss(self, labels, logits):
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
# make sure only labels that are not equal to -100
# are taken into account as loss
next_sentence_active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
next_sentence_reduced_logits = tf.boolean_mask(
tf.reshape(logits, (-1, 2)), next_sentence_active_loss
)
next_sentence_label = tf.boolean_mask(
tf.reshape(labels, (-1,)), next_sentence_active_loss
)
return loss_fn(next_sentence_label, next_sentence_reduced_logits)
def booleans_processing(config, **kwargs):
"""
Process the input booleans of each model in order to be sure they are compliant with the execution mode (eager or
graph)
Args:
config ([`PretrainedConfig`]):
The config of the running model.
**kwargs:
The boolean parameters
Returns:
A dictionary with the proper values for each boolean
"""
final_booleans = {}
if tf.executing_eagerly():
# Pure conv models (such as ConvNext) do not have `output_attentions`
final_booleans["output_attentions"] = kwargs.get("output_attentions", None)
if final_booleans["output_attentions"] is None:
final_booleans["output_attentions"] = config.output_attentions
final_booleans["output_hidden_states"] = (
kwargs["output_hidden_states"]
if kwargs["output_hidden_states"] is not None
else config.output_hidden_states
)
final_booleans["return_dict"] = (
kwargs["return_dict"]
if kwargs["return_dict"] is not None
else config.return_dict
)
if "use_cache" in kwargs:
final_booleans["use_cache"] = (
kwargs["use_cache"]
if kwargs["use_cache"] is not None
else getattr(config, "use_cache", None)
)
else:
final_booleans["output_attentions"] = config.output_attentions
final_booleans["output_hidden_states"] = config.output_hidden_states
if kwargs.get("return_dict", None) not in (None, True):
tf_logger.warning(
"The parameter `return_dict` cannot be set in graph mode and will always be set to `True`."
)
final_booleans["return_dict"] = True
if "use_cache" in kwargs:
final_booleans["use_cache"] = getattr(config, "use_cache", None)
return final_booleans
def unpack_inputs(func):
"""
Decorator that processes the inputs to a Keras layer, passing them to the layer as keyword arguments. This enables
downstream use of the inputs by their variable name, even if they arrive packed as a dictionary in the first input
(common case in Keras).
Args:
func (`callable`):
The callable function of the TensorFlow model.
Returns:
A callable that wraps the original `func` with the behavior described above.
"""
original_signature = inspect.signature(func)
@functools.wraps(func)
def run_call_with_unpacked_inputs(self, *args, **kwargs):
# isolates the actual `**kwargs` for the decorated function
kwargs_call = {
key: val
for key, val in kwargs.items()
if key not in dict(original_signature.parameters)
}
fn_args_and_kwargs = {
key: val for key, val in kwargs.items() if key not in kwargs_call
}
fn_args_and_kwargs.update({"kwargs_call": kwargs_call})
# move any arg into kwargs, if they exist
fn_args_and_kwargs.update(dict(zip(func.__code__.co_varnames[1:], args)))
# process the inputs and call the wrapped function
main_input_name = getattr(self, "main_input_name", func.__code__.co_varnames[1])
main_input = fn_args_and_kwargs.pop(main_input_name)
unpacked_inputs = input_processing(
func, self.config, main_input, **fn_args_and_kwargs
)
return func(self, **unpacked_inputs)
# Keras enforces the first layer argument to be passed, and checks it through `inspect.getfullargspec()`. This
# function does not follow wrapper chains (i.e. ignores `functools.wraps()`), meaning that without the line below
# Keras would attempt to check the first argument against the literal signature of the wrapper.
run_call_with_unpacked_inputs.__signature__ = original_signature
return run_call_with_unpacked_inputs
def input_processing(func, config, input_ids, **kwargs):
"""
Process the input of each TensorFlow model including the booleans. In case of a list of symbolic inputs, each input
has to be named accordingly to the parameters name, i.e. `input_ids = tf.keras.Input(shape=(128,), dtype='int32',
name="input_ids")` otherwise the order of the tensors will not be guaranteed during the training.
Args:
func (`callable`):
The callable function of the TensorFlow model.
config ([`PretrainedConfig`]):
The config of the running model.
**kwargs:
The inputs of the model.
Returns:
Two lists, one for the missing layers, and another one for the unexpected layers.
"""
signature = dict(inspect.signature(func).parameters)
signature.pop("kwargs", None)
signature.pop("self", None)
parameter_names = list(signature.keys())
output = {}
allowed_types = (
tf.Tensor,
bool,
int,
ModelOutput,
tuple,
list,
dict,
np.ndarray,
# KerasTensor,
)
if "inputs" in kwargs["kwargs_call"]:
warnings.warn(
"The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
FutureWarning,
)
output["input_ids"] = kwargs["kwargs_call"].pop("inputs")
if "decoder_cached_states" in kwargs["kwargs_call"]:
warnings.warn(
"The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
FutureWarning,
)
output["past_key_values"] = kwargs["kwargs_call"].pop("decoder_cached_states")
if "past" in kwargs["kwargs_call"] and "past_key_values" in kwargs:
warnings.warn(
"The `past` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
FutureWarning,
)
kwargs["past_key_values"] = kwargs["kwargs_call"].pop("past")
elif "past_key_values" in kwargs["kwargs_call"] and "past" in kwargs:
kwargs["past"] = kwargs["kwargs_call"].pop("past_key_values")
if len(kwargs["kwargs_call"]) > 0:
raise ValueError(
f"The following keyword arguments are not supported by this model: {list(kwargs['kwargs_call'].keys())}."
)
kwargs.pop("kwargs_call")
for k, v in kwargs.items():
if isinstance(v, allowed_types) or v is None:
output[k] = v
else:
raise ValueError(
f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}."
)
if isinstance(input_ids, (tuple, list)):
for i, input in enumerate(input_ids):
# EagerTensors don't allow to use the .name property so we check for a real Tensor
if type(input) == tf.Tensor:
# Tensor names have always the pattern `name:id` then we check only the
# `name` part
tensor_name = input.name.split(":")[0]
if tensor_name in parameter_names:
output[tensor_name] = input
else:
output[parameter_names[i]] = input
elif isinstance(input, allowed_types) or input is None:
output[parameter_names[i]] = input
else:
raise ValueError(
f"Data of type {type(input)} is not allowed only {allowed_types} is accepted for {parameter_names[i]}."
)
elif isinstance(input_ids, (dict, BatchEncoding)):
if "inputs" in input_ids:
warnings.warn(
"The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
FutureWarning,
)
output["input_ids"] = input_ids.pop("inputs")
if "decoder_cached_states" in input_ids:
warnings.warn(
"The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
FutureWarning,
)
output["past_key_values"] = input_ids.pop("decoder_cached_states")
for k, v in dict(input_ids).items():
if isinstance(v, allowed_types) or v is None:
output[k] = v
elif k not in parameter_names and "args" not in parameter_names:
logger.warning(
f"The parameter {k} does not belongs to the parameter list {parameter_names} and will be ignored."
)
continue
else:
raise ValueError(
f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}."
)
else:
if isinstance(input_ids, tf.Tensor) or input_ids is None:
output[parameter_names[0]] = input_ids
else:
raise ValueError(
f"Data of type {type(input_ids)} is not allowed only {allowed_types} is accepted for {parameter_names[0]}."
)
for name in parameter_names:
if name not in list(output.keys()) and name != "args":
output[name] = kwargs.pop(name, signature[name].default)
# When creating a SavedModel TF calls the method with LayerCall.__call__(args, **kwargs)
# So to respect the proper output we have to add this exception
if "args" in output:
if output["args"] is not None and type(output["args"]) == tf.Tensor:
tensor_name = output["args"].name.split(":")[0]
output[tensor_name] = output["args"]
else:
# `args` in this case is always the first parameter, then `input_ids`
output["input_ids"] = output["args"]
del output["args"]
if "kwargs" in output:
del output["kwargs"]
boolean_dict = {
k: v
for k, v in output.items()
if k
in ["return_dict", "output_attentions", "output_hidden_states", "use_cache"]
}
output.update(
booleans_processing(
config=config,
**boolean_dict,
)
)
return output
def load_tf_weights(
model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None
):
"""
Detect missing and unexpected layers and load the TF weights accordingly to their names and shapes.
Args:
model (`tf.keras.models.Model`):
The model to load the weights into.
resolved_archive_file (`str`):
The location of the H5 file.
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
Whether or not to ignore weights with shapes that don't match between the checkpoint of the model.
Returns:
Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the
mismatched layers.
"""
missing_layers = []
unexpected_layers = []
mismatched_layers = []
# Read the H5 file
with h5py.File(resolved_archive_file, "r") as f:
# Retrieve the name of each layer from the H5 file
saved_h5_model_layers_name = set(
hdf5_format.load_attributes_from_hdf5_group(f, "layer_names")
)
# Find the missing layers from the high level list of layers
missing_layers = list(
set([layer.name for layer in model.layers]) - saved_h5_model_layers_name
)
# Find the unexpected layers from the high level list of layers
unexpected_layers = list(
saved_h5_model_layers_name - set([layer.name for layer in model.layers])
)
saved_weight_names_set = set()
symbolic_weights_names = set()
weight_value_tuples = []
# Compute missing and unexpected sub layers
# Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...]
for layer in model.layers:
# if layer_name from the H5 file belongs to the layers from the instantiated model
if layer.name in saved_h5_model_layers_name:
# Get the H5 layer object from its name
h5_layer_object = f[layer.name]
# Get all the weights as a list from the layer object
symbolic_weights = layer.trainable_weights + layer.non_trainable_weights
saved_weights = {}
# Create a dict from the H5 saved model that looks like {"weight_name": weight_value}
# And a set with only the names
for weight_name in hdf5_format.load_attributes_from_hdf5_group(
h5_layer_object, "weight_names"
):
# TF names always start with the model name so we ignore it
name = "/".join(weight_name.split("/")[1:])
if _prefix is not None:
name = _prefix + "/" + name
saved_weights[name] = np.asarray(h5_layer_object[weight_name])
# Add the updated name to the final list for computing missing/unexpected values
saved_weight_names_set.add(name)
# Loop over each weights from the instantiated model and compare with the weights from the H5 file
for symbolic_weight in symbolic_weights:
# TF names always start with the model name so we ignore it
if _prefix is not None:
delimeter = len(_prefix.split("/"))
symbolic_weight_name = "/".join(
symbolic_weight.name.split("/")[:delimeter]
+ symbolic_weight.name.split("/")[delimeter + 1 :]
)
else:
symbolic_weight_name = "/".join(
symbolic_weight.name.split("/")[1:]
)
# here we check if the current weight is among the weights from the H5 file
# If yes, get the weight_value of the corresponding weight from the H5 file
# If not, make the value to None
saved_weight_value = saved_weights.get(symbolic_weight_name, None)
# Add the updated name to the final list for computing missing/unexpected values
symbolic_weights_names.add(symbolic_weight_name)
# If the current weight is found
if saved_weight_value is not None:
# Check if the shape of the current weight and the one from the H5 file are different
if K.int_shape(symbolic_weight) != saved_weight_value.shape:
# If yes we reshape the weight from the H5 file accordingly to the current weight
# If the two shapes are not compatible we raise an issue
try:
array = np.reshape(
saved_weight_value, K.int_shape(symbolic_weight)
)
except ValueError as e:
if ignore_mismatched_sizes:
mismatched_layers.append(
(
symbolic_weight_name,
saved_weight_value.shape,
K.int_shape(symbolic_weight),
)
)
continue
else:
raise e
else:
array = saved_weight_value
# We create the tuple that will be loaded and add it to the final list
weight_value_tuples.append((symbolic_weight, array))
# Load all the weights
K.batch_set_value(weight_value_tuples)
# Compute the missing and unexpected layers
missing_layers.extend(list(symbolic_weights_names - saved_weight_names_set))
unexpected_layers.extend(list(saved_weight_names_set - symbolic_weights_names))
return missing_layers, unexpected_layers, mismatched_layers
def init_copy_embeddings(old_embeddings, new_num_tokens):
r"""
This function aims to reduce the embeddings in case new_num_tokens < old_num_tokens or to pad with -1 in case
new_num_tokens > old_num_tokens. A mask is also computed in order to know which weight in the embeddings should be
kept or not. Example:
- if new_num_tokens=5 and old_num_tokens=4 and old_embeddings=[w1,w2,w3,w4]
- mask=[True,True,True,True,False] and current_weights=[w1,w2,w3,w4,-1]
- if new_num_tokens=4 and old_num_tokens=5 and old_embeddings=[w1,w2,w3,w4,w5]
- mask=[True,True,True,True] and current_weights=[w1,w2,w3,w4]
"""
old_num_tokens, old_embedding_dim = shape_list(old_embeddings)
size_diff = new_num_tokens - old_num_tokens
# initialize new embeddings
# Copy token embeddings from the previous ones
if tf.math.greater(size_diff, 0):
# if the new size is greater than the old one, we extend the current embeddings with a padding until getting new size
# and we create a mask to properly identify the padded values and be replaced by the values of the newly created
# embeddings
current_weights = tf.pad(
old_embeddings.value(),
tf.convert_to_tensor([[0, size_diff], [0, 0]]),
constant_values=-1,
)
num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
mask = tf.fill(tf.convert_to_tensor([num_tokens_to_copy, 1]), True)
mask = tf.pad(
mask, tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=False
)
else:
# if the new size if lower than the old one, we take the current embeddings until the new size
current_weights = tf.slice(
old_embeddings.value(),
tf.convert_to_tensor([0, 0]),
tf.convert_to_tensor([new_num_tokens, old_embedding_dim]),
)
mask = tf.fill(tf.convert_to_tensor([new_num_tokens, 1]), True)
return mask, current_weights
class TFPreTrainedModel(
tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushToHubMixin
):
r"""
Base class for all TF models.
[`TFPreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
downloading and saving models as well as a few methods common to all models to:
- resize the input embeddings,
- prune heads in the self-attention heads.
Class attributes (overridden by derived classes):
- **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
for this model architecture.
- **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
classes of the same architecture adding modules on top of the base model.
- **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
models, `pixel_values` for vision models and `input_values` for speech models).
"""
config_class = None
base_model_prefix = ""
main_input_name = "input_ids"
_auto_class = None
# a list of re pattern of tensor names to ignore from the model when loading the model weights
# (and avoid unnecessary warnings).
_keys_to_ignore_on_load_missing = None
# a list of re pattern of tensor names to ignore from the weights when loading the model weights
# (and avoid unnecessary warnings).
_keys_to_ignore_on_load_unexpected = None
_requires_load_weight_prefix = False
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
return {
"input_ids": tf.constant(DUMMY_INPUTS),
}
@property
def framework(self) -> str:
"""
:str: Identifies that this is a TensorFlow model.
"""
return "tf"
def __init__(self, config, *inputs, **kwargs):
poped_kwargs = kwargs.pop("shared_embeddings", None)
poped_kwargs = kwargs.pop("input_embeddings", None)
super().__init__(*inputs, **kwargs)
if not isinstance(config, PretrainedConfig):
raise ValueError(
f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
"`PretrainedConfig`. To create a model from a pretrained model use "
f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
# Save config and origin of the pretrained weights if given in model
self.config = config
self.name_or_path = config.name_or_path
def get_config(self):
return self.config.to_dict()
@classmethod
def from_config(cls, config, **kwargs):
if isinstance(config, PretrainedConfig):
return cls._from_config(config, **kwargs)
return cls._from_config(cls.config_class.from_dict(config, **kwargs))
@classmethod
def _from_config(cls, config, **kwargs):
"""
All context managers that the model should be initialized under go here.
"""
return cls(config, **kwargs)
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec(
(None, None), tf.int32, name="attention_mask"
),
"token_type_ids": tf.TensorSpec(
(None, None), tf.int32, name="token_type_ids"
),
}
]
)
def serving(self, inputs):
"""
Method used for serving the model.
Args:
inputs (`Dict[str, tf.Tensor]`):
The input of the saved model as a dictionary of tensors.
"""
output = self.call(inputs)
return self.serving_output(output)
def serving_output(output):
"""
Prepare the output of the saved model. Each model must implement this function.
Args:
output ([`TFBaseModelOutput`]):
The output returned by the model.
"""
raise NotImplementedError
def get_input_embeddings(self) -> tf.keras.layers.Layer:
"""
Returns the model's input embeddings layer.
Returns:
`tf.Variable`: The embeddings layer mapping vocabulary to hidden states.
"""
main_layer = getattr(self, self.base_model_prefix, self)
if main_layer is not self:
return main_layer.get_input_embeddings()
else:
raise NotImplementedError
def _save_checkpoint(self, checkpoint_dir, epoch):
if not os.path.isdir(checkpoint_dir):
os.mkdir(checkpoint_dir)
# We avoid tf.train.checkpoint or saving weights in TF format, even though that includes optimizer
# state for us, because it requires special handling for objects like custom losses, which we use
# internally and which users are likely to use too
weights_path = os.path.join(checkpoint_dir, "weights.h5")
self.save_weights(weights_path)
extra_data = {"epoch": epoch, "optimizer_state": self.optimizer.get_weights()}
extra_data_path = os.path.join(checkpoint_dir, "extra_data.pickle")
with open(extra_data_path, "wb") as f:
pickle.dump(extra_data, f)
def load_repo_checkpoint(self, repo_path_or_name):
"""
Loads a saved checkpoint (model weights and optimizer state) from a repo. Returns the current epoch count when
the checkpoint was made.
Args:
repo_path_or_name (`str`):
Can either be a repository name for your {object} in the Hub or a path to a local folder (in which case
the repository will have the name of that local folder).
Returns:
`dict`: A dictionary of extra metadata from the checkpoint, most commonly an "epoch" count.
"""
if getattr(self, "optimizer", None) is None:
raise RuntimeError(
"Checkpoint loading failed as no optimizer is attached to the model. "
"This is most likely caused by the model not being compiled."
)
if not os.path.isdir(repo_path_or_name):
# If this isn't a local path, check that the remote repo exists and has a checkpoint in it
repo_files = list_repo_files(repo_path_or_name)
for file in ("checkpoint/weights.h5", "checkpoint/extra_data.pickle"):
if file not in repo_files:
raise FileNotFoundError(
f"Repo {repo_path_or_name} does not contain checkpoint file {file}!"
)
if "/" not in repo_path_or_name:
model_id = repo_path_or_name
repo_path_or_name = self.get_full_repo_name(repo_path_or_name)
else:
model_id = repo_path_or_name.split("/")[-1]
repo = Repository(
model_id, clone_from=f"https://huggingface.co/{repo_path_or_name}"
)
local_dir = repo.local_dir
else:
local_dir = repo_path_or_name
# Now make sure the repo actually has a checkpoint in it.
checkpoint_dir = os.path.join(local_dir, "checkpoint")
weights_file = os.path.join(checkpoint_dir, "weights.h5")
if not os.path.isfile(weights_file):
raise FileNotFoundError(
f"Could not find checkpoint file weights.h5 in repo {repo_path_or_name}!"
)
extra_data_file = os.path.join(checkpoint_dir, "extra_data.pickle")
if not os.path.isfile(extra_data_file):
raise FileNotFoundError(
f"Could not find checkpoint file extra_data.pickle in repo {repo_path_or_name}!"
)
# Assuming the repo is real and we got a checkpoint, load the weights and the optimizer state into the model.
# The optimizer state includes the iteration count, so learning rate schedules should resume as normal too.
self.load_weights(weights_file)
with open(extra_data_file, "rb") as f:
extra_data = pickle.load(f)
self.optimizer.set_weights(extra_data["optimizer_state"])
# Finally, return the epoch number from the checkpoint. This isn't a property of the model, so we can't
# set it directly, but the user can pass it to fit().
return {"epoch": extra_data["epoch"]}
def compile(
self,
optimizer="rmsprop",
loss="passthrough",
metrics=None,
loss_weights=None,
weighted_metrics=None,
run_eagerly=None,
steps_per_execution=None,
**kwargs,
):
"""
This is a thin wrapper that sets the model's loss output head as the loss if the user does not specify a loss
function themselves.
"""
if loss == "passthrough":
logger.warning(
"No loss specified in compile() - the model's internal loss computation will be used as the "
"loss. Don't panic - this is a common way to train TensorFlow models in Transformers! "
"Please ensure your labels are passed as keys in the input dict so that they are "
"accessible to the model during the forward pass. To disable this behaviour, please pass a "
"loss argument, or explicitly pass loss=None if you do not want your model to compute a loss."
)
loss = {"loss": dummy_loss}
super().compile(
optimizer=optimizer,
loss=loss,
metrics=metrics,
loss_weights=loss_weights,
weighted_metrics=weighted_metrics,
run_eagerly=run_eagerly,
steps_per_execution=steps_per_execution,
**kwargs,
)
def compute_loss(self, *args, **kwargs):