-
Notifications
You must be signed in to change notification settings - Fork 0
/
kap3.tex
311 lines (299 loc) · 16.6 KB
/
kap3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
\chapter{Electrodynamics of spinless particles}
\begin{enumerate}[1)]
\item Introduction of charged particle in potential
\item Potential provided by the other scattering matter
\end{enumerate}
\section{Covariant electrodynamics}
From electrodynamics recall Maxwell's equation:
\begin{align*}
\vec \grad \vec E & = \rho & \vec \grad \times \vec E & = - \pa_t \vec B \\
\vec \grad \vec B & = 0 & \vec \grad \times \vec B & = \vec j + \pa_t \vec E
\end{align*}
Express the fields $\vec E$, $\vec B$ by potentials $\phi$, $\vec A$:
\begin{align}
\vec B = \vec \grad \times \vec A, \qquad \vec E = - \vec \grad \phi - \pa_t \vec A
\end{align}
Gauge freedom: Choose Coulomb gauge? $\vec \grad \vec A = 0$\\
Here: We will use the Lorentz gauge $\boxed{\vec \grad \vec A + \pa_t \phi = 0}$
\begin{align}
& \Ra \quad \Lap \vec A - \pa_t^2 \vec A = - \vec j, \qquad \Lap \phi - \pa_t^2 \phi = - \rho
\end{align}
With $A^\mu \ra \qty(-\phi, \vec A)$ and $j^\mu \ra \qty(\rho, \vec j)$, we get Maxwell's equations in covariant form
\begin{align}
\boxed{ \pa_\mu \pa^\mu A^\nu = j^\nu }\,.
\end{align}
Not that the Lorentz gauge can also be written as $\boxed{\pa_\mu A^\mu = 0 = \pa^\mu A_\mu}$.
\section{The spinless electron in the electromagnetic field}
In classical electrodynamics the canonical momentum is
\begin{align}
\begin{rcases} E \ra E - Q \phi \\ \vec p \ra \vec p - Q \vec A \end{rcases} \qquad p^\mu \ra p^\mu - Q A^\mu\,.
\end{align}
We will substitute by operators:
\begin{align}
\begin{rcases} E - Q \phi \ra \ti \pa_t - Q \phi \\ \vec p - Q \vec A \ra - \ti \vec \grad - Q \vec A \end{rcases} \qquad \ti \pa^\mu - Q A^\mu
\end{align}
In total, for electrons of charge $Q= -\mr e$:
\begin{align}
\boxed{p^\mu \ra \ti \pa^\mu + \mr e A^\mu}
\end{align}
By insertion into Klein-Gordon equation (see \cref{eq:KGe}):
\begin{align}\begin{split}
& \qty(\ti \pa_\mu + \mr e A_\mu) \qty(\ti \pa^\mu + \mr e A^\mu) \phi\qty(\fvec x) - m^2 \phi \qty(\fvec x) = 0 \\
& H_0 \ra H_0 + V \\
& \Ra \quad \bigg( \pa_\mu\pa^\mu \underbrace{- \ti \mr e \qty(A_\mu \pa^\mu + \pa_\mu A^\mu ) - \mr e^2 A^2 + m^2}_{V_\mr{EM}} \bigg) \phi \qty(\fvec x) = 0
\end{split}\end{align}
Perturbation of free particle Hamiltonian $H_0$ due to the coupling of electron to $A^\mu$. We are only interested in the leading order contribution $\ra$ neglect the term $\propto \mr e^2$
\begin{align}
\boxed{ V_\mr{EM} \qty(\fvec x) = - \ti \mr e \qty(\pa_\mu A^\mu + A_\mu \pa^\mu) }
\end{align}
with this the charge current density is
\begin{align}
j^\mu = - \ti \mr e \qty( \phi_\mr{f}^* \pa^\mu \phi_\mr{i} - \qty( \pa_\mu \phi_\mr{f}^*) \phi_\mr{i} )
\end{align}
\begin{center}
\begin{tikzpicture}
\begin{feynman}
\vertex (b1);
\vertex [above left = 1.5cm of b1] (a1) {$\phi_\mr{i}$};
\vertex [above right = 1.5cm of b1] (a2) {$\phi_\mr{f}$};
\vertex [below = 1cm of b1] (c1) {$V\qty(\fvec x)$};
\vertex [right = 1cm of a1] (j1);
\vertex [left = 1cm of a2] (j2);
\diagram*{
(a1) -- [fermion] (b1) -- [fermion] (a2);
(b1) -- [photon] (c1);
(j1) -- [draw = none, momentum' = $\ $, edge label = $j^\mu$, half right] (j2);
};
\end{feynman}
\end{tikzpicture}
\end{center}
\begin{align}\begin{split}
T_\mr{fi} & = - \ti \int \phi_\mr{f}^* \qty(\fvec x) V_\mr{EM} \qty(\fvec x) \phi_\mr{i}\qty(\fvec x) \dd[4]{x} \\
& = - \ti \int \qty(-\ti \mr e) \phi_\mr{f}^* \qty(\pa_\mu A^\mu + A_\mu \pa^\mu) \phi_\mr{i} \dd[4]{x}
\end{split}\end{align}
with integration by parts
\begin{align}
\int\limits_{-\infty}^{\infty} \phi_\mr{f}^* \pa_\mu A^\mu \phi_\mr{i} \dd[4]{x} = \underbrace{\qty[\phi_\mr{f}^* \sum_\mu A^\mu \phi_\mr{i}]_{-\infty}^{\infty}}_{=0} - \int\limits_{-\infty}^{\infty} \qty(\pa_\mu \phi_\mr{f}^*) A^\mu \phi_\mr{i} \dd[4]{x}
\end{align}
hence
\begin{align}\begin{split}\label{eq:transition_amplitude_tree}
T_\mr{fi} & = -\ti \int \qty(-\ti \mr e) \qty[ - \qty(\pa_\mu \phi_\mr{f}^*) A^\mu \phi_\mr{i} + \phi_\mr{f}^* A^\mu \pa_\mu \phi_\mr{i} ] \dd[4]{x} \\
& = - \ti \int \underbrace{\overbrace{\qty(-\ti\mr e)}^{\substack{\text{coupling}\\\text{constant}}} \qty[ \phi_\mr{f}^* \pa_\mu \phi_\mr{i} - \qty(\pa_\mu \phi_\mr{f}^*) \phi_\mr{i} ]}_{\substack{\text{four vector current of} \\ \text{an electron (see \cref{eq:four_density_KGe}}}} \underbrace{\ A^\mu\ }_{\mathrlap{\substack{\text{interaction} \\ \text{four potential}}}} \dd[4]{x}\\
\Aboxed{ T_\mr{fi} & = -\ti \int j_\mu^G A^\mu \dd[4]{x}}
\end{split}\end{align}
The boxed equation gives us the coupling between electron charge current and electromagnetic potential with coupling strenth $\mr e$.\\
$\ra$ The Feynman diagram can be extended with new information:
\begin{center}
\begin{tikzpicture}
\begin{feynman}
\vertex (b1);
\vertex [above left = 2cm of b1] (a1) {$\mr e^-$};
\vertex [above right = 2cm of b1] (a2) {$\mr e^-$};
\vertex [below = 1cm of b1] (c1) {$A^\mu$};
\vertex [right = 1cm of a1] (j1);
\vertex [left = 1cm of a2] (j2);
\diagram*{
(a1) [particle = $\mr e^-$] -- [fermion] (b1) -- [fermion] (a2);
(b1) -- [photon] (c1);
(j1) -- [draw = none, momentum' = $\ $, edge label = $j_\mu^G \qty(\mr e^-)$, half right] (j2);
};
\end{feynman}
\end{tikzpicture}
\end{center}
Free-particle approximation:\todo[color = none]{Similar calculation can be done for $u,c,t \ra \frac 23 \mr e$ and $d,s,b \ra - \frac 13 \mr e$}
\begin{align}\begin{split}
& \phi_\mr{i}\qty(\fvec x) = N_\mr{i} \exp(- \ti \fvec p_\mr{i} \fvec x), \qquad \phi_\mr{f} \qty(\fvec x) = N_\mr{f} \exp(- \ti \fvec p_\mr{f} \fvec x) \\
& \Ra \quad \boxed{ j_\mu^\mr{fi} \qty(\fvec x) = - \mr e N_\mr{i} N_\mr{f} \qty(\fvec p_\mr{i} + \fvec p_\mr{f})_\mu \exp(-\ti \qty(\fvec p_\mr{i} - \fvec p_\mr{f}) \fvec x) }
\end{split}\end{align}
This denotes the charge density current of scattering an electron in free-particle approximation.
\pagebreak
\section{Spinless electron-muon scattering}
The electromagnetic potential $A^\mu$ now is provided by a $\mu$-current. Thus the Feynman diagram is
\begin{center}
\begin{tikzpicture}
\begin{feynman}
\vertex (b1);
\vertex [above left = 2cm of b1] (a1) {$\mr e^-$};
\vertex [above right = 2cm of b1] (a2) {$\mr e^-$};
\vertex [below = 1cm of b1] (c1) {$A^\mu$};
\vertex [right = 1cm of a1] (j1);
\vertex [left = 1cm of a2] (j2);
\diagram*{
(a1) [particle = $\mr e^-$] -- [fermion] (b1) -- [fermion] (a2);
(b1) -- [photon] (c1);
(j1) -- [draw = none, momentum' = $\ $, edge label = $j_\mu^G \qty(\mr e^-)$, half right] (j2);
};
\vertex [right = 6cm of a1] (z1) {$\mr e^-$};
\vertex [below right = 2.5cm of z1] (y1);
\vertex [above right = 2cm of y1] (z2) {$\mr e^-$};
\vertex [below = 1.5cm of y1] (x1);
\vertex [below left = 2cm of x1] (w1) {$\upmu^-$};
\vertex [below right = 2cm of x1] (w2) {$\upmu^-$};
\vertex [right = 1cm of w1] (k1);
\vertex [left = 1cm of w2] (k2);
\vertex [right = 1cm of z1] (l1);
\vertex [left = 1cm of z2] (l2);
\diagram*{
(z1) -- [fermion, momentum' = $\fvec p_A$] (y1) -- [fermion, momentum' = $\fvec p_C$] (z2);
(y1) -- [photon, edge label' = $\upgamma$] (x1);
(w1) -- [fermion, momentum = $\fvec p_B$] (x1) -- [fermion, momentum = $\fvec p_D$] (w2);
(l1) -- [draw = none, half right, momentum' = $\ $, edge label = $j_\nu^{(1)}$] (l2);
(k2) -- [draw = none, half right, rmomentum' = $\ $, edge label = $j_\nu^{(2)}$] (k1);
};
\end{feynman}
\end{tikzpicture}
\end{center}
Connection between potential $A^\mu$ and $\mu$-current $j_\mu^{(2)}$ vie Maxwell relation
\begin{align}
\pa_\mu \pa^\mu A^\nu = j_{(2)}^\nu
\end{align}
where
\todo[color=none]{Note that this is the charge density current of a muon in the free-particle approximation.}
\begin{align}
j_{(2)}^\nu = - \mr e N_B N_D \qty( \fvec p_B + \fvec p_D)^\nu \exp( - \ti \qty(\fvec p_B - \fvec p_D) \fvec x)\\
\ra \quad \pa_\mu \pa^\mu A^\nu = - \mr e N_B N_D \qty(\fvec p_B + \fvec p_D)^\nu \exp(\ti \fvec q \fvec x)
\end{align}
since $q^\mu = \qty(\fvec p_A - \fvec p_C)^\mu = \qty(\fvec p_B - \fvec p_D)^\mu$.
The solution for the four potential is
\begin{align}
\boxed{A^\mu \qty(\fvec x) = - \frac{1}{\fvec q^2} j_{(2)}^\mu \qty(\fvec x)}\,,
\end{align}
which is the electromagnetic potential due to fly-by muon.
Transition amplitude on tree level (see \cref{eq:transition_amplitude_tree}):
\begin{align}
T_\mr{fi} = -\ti \int j_\mu^{(1)} \qty(\fvec x) A^\mu \qty(\fvec x) \dd[4]{x} = -\ti \int j_\mu^{(1)} \qty(\fvec x) \qty(-\frac{1}{\fvec q^2}) j_{(2)}^\mu \qty(\fvec x) \dd[4]{x}
\end{align}
Integration similiar to \cref{sec:Interaction_particle_potential}:
\begin{align}
T_\mr{fi} = - \ti \underbrace{N_A N_B N_C N_D}_{\substack{\text{wave functions} \\ \text{normalisation}}} \qty(2\pi)^4 \underbrace{\delta^4 \qty(\fvec p_D + \fvec p_C - \fvec p_B - \fvec p_A)}_{\substack{\text{component-wise}\\ \text{energy-momentum conservation}}} m
\end{align}
With the \tb{invariant amplitude $m$} being
\begin{align}
-\ti m = \underbrace{\ti \mr{e} \qty(\fvec p_A + \fvec p_C)^\mu}_{\substack{\text{electron current} \\ \text{(coupling const. $\mr e$)}}} \underbrace{\qty(- \frac{\ti}{\fvec q^2} \tensor{g}{_\mu_\nu})}_{\substack{\text{photon} \\ \text{propagator}}} \underbrace{\ti \mr e \qty(\fvec p_B + \fvec p_D)^\nu}_{\substack{\text{muon current} \\ \text{(coupling const. $\mr e$)}}} \,.
\end{align}
$m$ describes the physics of the process:
\begin{center}
\begin{tikzpicture}
\begin{feynman}
\vertex (y1);
\vertex [above left = 2cm of y1] (z1) {$\mr e^-$};
\vertex [above right = 2cm of y1] (z2) {$\mr e^-$};
\vertex [below = 1.5cm of y1] (x1);
\vertex [below left = 2cm of x1] (w1) {$\upmu^-$};
\vertex [below right = 2cm of x1] (w2) {$\upmu^-$};
\vertex [right = 1cm of w1] (k1);
\vertex [left = 1cm of w2] (k2);
\vertex [right = 1cm of z1] (l1);
\vertex [left = 1cm of z2] (l2);
\diagram*{
(z1) -- [fermion, momentum' = $\fvec p_A$] (y1) -- [fermion, momentum' = $\fvec p_C$] (z2);
(y1) -- [photon, edge label' = $\upgamma$] (x1);
(w1) -- [fermion, momentum = $\fvec p_B$] (x1) -- [fermion, momentum = $\fvec p_D$] (w2);
(l1) -- [draw = none, half right, momentum' = $\ $, edge label = \scriptsize{$\mqty{j^\nu_{(1)} = \\ \ti \mr e \qty(\fvec p_A + \fvec p_C)^\nu}$}] (l2);
(k2) -- [draw = none, half right, rmomentum' = $\ $, edge label = \scriptsize{$\mqty{j^\nu_{(2)} = \\ \ti \mr e \qty(\fvec p_B + \fvec p_D)^\nu}$}] (k1);
};
\end{feynman}
\end{tikzpicture}
\end{center}
FOr some processes many realisations are possible, e.g.
\begin{align}
\feynmandiagram[vertical = b to d, baseline = -1.4cm, small]{
a [particle = $\mr e^-$] -- [fermion] b -- [fermion] c [particle = $\mr e^-$],
b -- [photon] d,
e [particle = $\mr e^+$] -- [anti fermion] d -- [anti fermion] f [particle = $\mr e^+$],
};
+
\feynmandiagram[horizontal = b to d, baseline =(b.base),small]{
a [particle = $\mr e^+$] -- [anti fermion] b -- [anti fermion] c [particle = $\mr e^-$],
b -- [photon] d,
e [particle = $\mr e^+$] -- [fermion] d -- [fermion] f [particle = $\mr e^-$],
};
\quad \longrightarrow \quad \qty|T_\mr{fi}^{(1)} + T_\mr{fi}^{(2)}|^2
\end{align}
\section{Towards the \texorpdfstring{$\mr e^- \upmu^- \ra \mr e^- \upmu^-$}{} cross section}
Wave function: $hi \qty(\fvec x) = N \exp(-\ti \fvec p \fvec x)$; Probability density: $\rho = 2E \qty|N|^2$
The probability to find a particle in arbitrary (large) volume $V$: $\int_V \rho \dd[e]{x} \overset{!}{=} 1$
\begin{align}
\ra \quad N = \frac{1}{\sqrt{2EV}}\,,
\end{align}
which is the covariant normalisation. Accordingly, the transition rate is:
\begin{align}
W_\mr{fi} = \Gamma_\mr{fi} = \frac{\qty| T_\mr{fi}|^2}{TV} = \qty(16 V^4 E_A E_B E_C E_D) \qty(2\pi)^4 \delta^4 \qty(\fvec p_D + \fvec p_B - \fvec p_A - \fvec p_C) \qty|m|^2
\end{align}
In the next step, we want to calculate the cross section. This resembles the effective area that a particle sees from a target when undergoing scattering.
\begin{align}
\qty[\sigma] = \si{\square\meter}, \qquad \SI{1}{\barn} = \SI{e-28}{\square\meter}
\end{align}
So what is the cross section for a process $AB \ra CD$?
In the laboratory system:
\begin{center}
\begin{tikzpicture}
\draw[thick, -latex] (0,0) node [left] {$N_A$} -- node [above] {$\vec v_A$} (3,0);
\draw (3.1,-1.5) rectangle (3.3,1.5);
\draw[thick, -latex] (3.4,0.15) -- (6.4,1.55) node [right] {$\dd{N_C} = \dd{N_A}$};
\draw[thick, dashed,-latex] (3.4,0) -- (6.4,0) node [right] {$N_A - \dd{N_A}$};
\node [below] at (3.2,-1.5) {$n_B$};
\node [above] at (3.2,1.5) {$\rightarrow \dd{x} \leftarrow$};
\end{tikzpicture}
\end{center}
absorption:
\begin{align}
\dd{N_A} = - N_A \frac{\dd{x}}{\lambda} = -N_A \dd{x} n_B \sigma
\end{align}
\begin{compactitem}
\item[with] $\lambda$: scattering length
\item[] $\sigma$: cross section
\item[] $n_B$: target density
\end{compactitem}
\begin{align}
\ra \quad N_A \qty(\Delta x) = N_A \qty(0) \mr e^{-n_B \sigma \Delta x} \approx N_A\qty(0) \qty(1-n_B \sigma \Delta x)
\end{align}
From the setup it is clear that the number of absorbed particles is the same as the number of scattered particles. Thus:
\begin{align}
N_C \qty(\Delta x) = N_A\qty(0) n_B \Delta x \cdot \sigma = L \cdot \sigma
\end{align}
Here we define the \tb{integrated luminsity} $L$ ($\qty[L] = \si{\per\square\meter}$). It covers beam and target-related properties.
\paragraph{Connection to the transition rate $W_\mr{fi}$?}
Consider the interaction of particles $A$ and $B$ in volume $V$:
\begin{center}
\begin{tikzpicture}
\draw[thick, -latex] (0,0) node [left] {$A$} -- node [above left] {$\vec v_A$} (2,0);
\draw[fill=black] (2.25,0) circle (0.1) node [above right] {$B$};
\draw (1.25,-0.5) rectangle (3.25,0.5);
\draw[latex-latex] (1.25,-0.75) -- node [below] {$\Delta x$} (3.25,-0.75);
\draw[dashed] (2.5,0) -- (4.5,0);
\end{tikzpicture}
\end{center}
The interaction time (particle $A$ is in $V$):
\begin{align}
\Delta T & = \frac{\Delta x}{\qty|\vec v_A|} \nonumber \\
\sigma & = \frac{N_C}{L} = \frac{N_C}{\Delta T\, V}\frac{\Delta T \, V}{N_A \Delta x \, n_B} = W_\mr{fi} \frac{1}{n_A} \frac{1}{\qty|\vec v_A|} \frac{1}{n_B} \qty(\# \text{final states}) \nonumber \\
& \ra \quad \boxed{\sigma = \frac{W_\mr{fi}}{n_A \qty|\vec v_A| n_B} \qty(\# \text{final states}) }
\end{align}
\begin{compactitem}
\item[with] $n_A \qty|\vec v_A|$: flux density of particles A (dimension: \si{\per \square \meter \per \second})
\item[] $n_A = n_B = \nicefrac 1V$: one particle each in the volume
\end{compactitem}
\paragraph{What is the number of final states?}
Assuming fermions, each final state particle occupies phase volume $\mr h^3 = \qty(2\pi \hbar)^3$ in 6-dimensional phase space
\begin{align}
\# \text{states} = \frac{V \dd[3]{p}}{\qty(2\pi \hbar)^3} \cdot \underbrace{\frac{1}{\# \text{particles in } V}}_{\substack{\equiv 1 \text{ (wave} \\ \text{function normalisation)}}}\,.
\end{align}
The cross section $\dd{\sigma}$ for scattering final states into momentum elements $\dd[3]{p_C} \dd[3]{p_D}$
\begin{align}
\dd{\sigma} & = \frac{W_\mr{fi} V^2}{\qty|\vec v_A|} \cdot \frac{V \dd[3]{p_C}}{\qty(2\pi)^3}\frac{V \dd[3]{p_D}}{\qty(2\pi)^3} \nonumber \\
& = \underbrace{\frac{1}{\qty|\vec v_A| 2 E_A 2 E_B}}_{\text{flux factor } \mc F} \qty|m|^2 \underbrace{\qty(2\pi)^4 \delta^4 \qty(\fvec p_C + \fvec p_D - \fvec p_A - \fvec p_B) \frac{\dd[3]{p_C} \dd[3]{p_D}}{\qty(2\pi)^6} \frac{1}{E_C E_D}}_\text{Lorentz-invariant phase space factor}
\end{align}
The flux factor transfers all properties of incoming particles. In short the above expression is
\begin{align}
\dd{\sigma} = \frac{\qty|m|^2}{\mc F} \dd{Q}\,.
\end{align}
For general colinear collisions:
\begin{align}
\mc F = 4 \sqrt{\qty(\fvec p_A \fvec p_B)^2 - m_A^2 m_B^2}
\end{align}
This factor additionally is Lorentz-invariant. In the centre-of-mass system (CMS):
\begin{align}
\boxed{\mc F = 4 \qty| \vec p_A| \sqrt s = 4 \qty|\vec p_i| \sqrt s}\\
(\text{for } \vec p_A = - \vec p_B, \ \qty|\vec p_A| = \qty|\vec p_B| = \qty|\vec p_i|)\nonumber
\end{align}