-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
lm glm.R
847 lines (615 loc) · 25.6 KB
/
lm glm.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
> ### Examples from: "An Introduction to Statistical Modelling"
> ### By Annette Dobson
> ###
> ### == with some additions ==
>
> # Copyright (C) 1997-2015 The R Core Team
>
> require(stats); require(graphics)
> ## Plant Weight Data (Page 9)
> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
> group <- gl(2,10, labels=c("Ctl","Trt"))
> weight <- c(ctl,trt)
> anova (lm(weight~group))
Analysis of Variance Table
Response: weight
Df Sum Sq Mean Sq F value Pr(>F)
group 1 0.6882 0.68820 1.4191 0.249
Residuals 18 8.7292 0.48496
> summary(lm(weight~group -1))
Call:
lm(formula = weight ~ group - 1)
Residuals:
Min 1Q Median 3Q Max
-1.0710 -0.4938 0.0685 0.2462 1.3690
Coefficients:
Estimate Std. Error t value Pr(>|t|)
groupCtl 5.0320 0.2202 22.85 9.55e-15 ***
groupTrt 4.6610 0.2202 21.16 3.62e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.9818, Adjusted R-squared: 0.9798
F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16
> ## Birth Weight Data (Page 14)
> age <- c(40, 38, 40, 35, 36, 37, 41, 40, 37, 38, 40, 38,
+ 40, 36, 40, 38, 42, 39, 40, 37, 36, 38, 39, 40)
> birthw <- c(2968, 2795, 3163, 2925, 2625, 2847, 3292, 3473, 2628, 3176,
+ 3421, 2975, 3317, 2729, 2935, 2754, 3210, 2817, 3126, 2539,
+ 2412, 2991, 2875, 3231)
> sex <- gl(2,12, labels=c("M","F"))
> plot(age, birthw, col=as.numeric(sex), pch=3*as.numeric(sex),
+ main="Dobson's Birth Weight Data")
Hit <Return> to see next plot:
> lines(lowess(age[sex=='M'], birthw[sex=='M']), col=1)
> lines(lowess(age[sex=='F'], birthw[sex=='F']), col=2)
> legend("topleft", levels(sex), col=1:2, pch=3*(1:2), lty=1, bty="n")
> summary(l1 <- lm(birthw ~ sex + age), correlation=TRUE)
Call:
lm(formula = birthw ~ sex + age)
Residuals:
Min 1Q Median 3Q Max
-257.49 -125.28 -58.44 169.00 303.98
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1610.28 786.08 -2.049 0.0532 .
sexF -163.04 72.81 -2.239 0.0361 *
age 120.89 20.46 5.908 7.28e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 177.1 on 21 degrees of freedom
Multiple R-squared: 0.64, Adjusted R-squared: 0.6057
F-statistic: 18.67 on 2 and 21 DF, p-value: 2.194e-05
Correlation of Coefficients:
(Intercept) sexF
sexF 0.07
age -1.00 -0.12
> summary(l0 <- lm(birthw ~ sex + age -1), correlation=TRUE)
Call:
lm(formula = birthw ~ sex + age - 1)
Residuals:
Min 1Q Median 3Q Max
-257.49 -125.28 -58.44 169.00 303.98
Coefficients:
Estimate Std. Error t value Pr(>|t|)
sexM -1610.28 786.08 -2.049 0.0532 .
sexF -1773.32 794.59 -2.232 0.0367 *
age 120.89 20.46 5.908 7.28e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 177.1 on 21 degrees of freedom
Multiple R-squared: 0.9969, Adjusted R-squared: 0.9965
F-statistic: 2258 on 3 and 21 DF, p-value: < 2.2e-16
Correlation of Coefficients:
sexM sexF
sexF 1.00
age -1.00 -1.00
> anova(l1,l0)
Analysis of Variance Table
Model 1: birthw ~ sex + age
Model 2: birthw ~ sex + age - 1
Res.Df RSS Df Sum of Sq F Pr(>F)
1 21 658771
2 21 658771 0 -4.191e-09
> summary(li <- lm(birthw ~ sex + sex:age -1), correlation=TRUE)
Call:
lm(formula = birthw ~ sex + sex:age - 1)
Residuals:
Min 1Q Median 3Q Max
-246.69 -138.11 -39.13 176.57 274.28
Coefficients:
Estimate Std. Error t value Pr(>|t|)
sexM -1268.67 1114.64 -1.138 0.268492
sexF -2141.67 1163.60 -1.841 0.080574 .
sexM:age 111.98 29.05 3.855 0.000986 ***
sexF:age 130.40 30.00 4.347 0.000313 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 180.6 on 20 degrees of freedom
Multiple R-squared: 0.9969, Adjusted R-squared: 0.9963
F-statistic: 1629 on 4 and 20 DF, p-value: < 2.2e-16
Correlation of Coefficients:
sexM sexF sexM:age
sexF 0.00
sexM:age -1.00 0.00
sexF:age 0.00 -1.00 0.00
> anova(li,l0)
Analysis of Variance Table
Model 1: birthw ~ sex + sex:age - 1
Model 2: birthw ~ sex + age - 1
Res.Df RSS Df Sum of Sq F Pr(>F)
1 20 652425
2 21 658771 -1 -6346.2 0.1945 0.6639
> summary(zi <- glm(birthw ~ sex + age, family=gaussian()))
Call:
glm(formula = birthw ~ sex + age, family = gaussian())
Deviance Residuals:
Min 1Q Median 3Q Max
-257.49 -125.28 -58.44 169.00 303.98
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1610.28 786.08 -2.049 0.0532 .
sexF -163.04 72.81 -2.239 0.0361 *
age 120.89 20.46 5.908 7.28e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 31370.04)
Null deviance: 1829873 on 23 degrees of freedom
Residual deviance: 658771 on 21 degrees of freedom
AIC: 321.39
Number of Fisher Scoring iterations: 2
> summary(z0 <- glm(birthw ~ sex + age - 1, family=gaussian()))
Call:
glm(formula = birthw ~ sex + age - 1, family = gaussian())
Deviance Residuals:
Min 1Q Median 3Q Max
-257.49 -125.28 -58.44 169.00 303.98
Coefficients:
Estimate Std. Error t value Pr(>|t|)
sexM -1610.28 786.08 -2.049 0.0532 .
sexF -1773.32 794.59 -2.232 0.0367 *
age 120.89 20.46 5.908 7.28e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 31370.04)
Null deviance: 213198964 on 24 degrees of freedom
Residual deviance: 658771 on 21 degrees of freedom
AIC: 321.39
Number of Fisher Scoring iterations: 2
> anova(zi, z0)
Analysis of Deviance Table
Model 1: birthw ~ sex + age
Model 2: birthw ~ sex + age - 1
Resid. Df Resid. Dev Df Deviance
1 21 658771
2 21 658771 0 5.8208e-10
> summary(z.o4 <- update(z0, subset = -4))
Call:
glm(formula = birthw ~ sex + age - 1, family = gaussian(), subset = -4)
Deviance Residuals:
Min 1Q Median 3Q Max
-253.86 -129.46 -53.46 165.04 251.14
Coefficients:
Estimate Std. Error t value Pr(>|t|)
sexM -2318.03 801.57 -2.892 0.00902 **
sexF -2455.44 803.79 -3.055 0.00625 **
age 138.50 20.71 6.688 1.65e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 26925.39)
Null deviance: 204643339 on 23 degrees of freedom
Residual deviance: 538508 on 20 degrees of freedom
AIC: 304.68
Number of Fisher Scoring iterations: 2
> summary(zz <- update(z0, birthw ~ sex+age-1 + sex:age))
Call:
glm(formula = birthw ~ sex + age + sex:age - 1, family = gaussian())
Deviance Residuals:
Min 1Q Median 3Q Max
-246.69 -138.11 -39.13 176.57 274.28
Coefficients:
Estimate Std. Error t value Pr(>|t|)
sexM -1268.67 1114.64 -1.138 0.268492
sexF -2141.67 1163.60 -1.841 0.080574 .
age 111.98 29.05 3.855 0.000986 ***
sexF:age 18.42 41.76 0.441 0.663893
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 32621.23)
Null deviance: 213198964 on 24 degrees of freedom
Residual deviance: 652425 on 20 degrees of freedom
AIC: 323.16
Number of Fisher Scoring iterations: 2
> anova(z0,zz)
Analysis of Deviance Table
Model 1: birthw ~ sex + age - 1
Model 2: birthw ~ sex + age + sex:age - 1
Resid. Df Resid. Dev Df Deviance
1 21 658771
2 20 652425 1 6346.2
> ## Poisson Regression Data (Page 42)
> x <- c(-1,-1,0,0,0,0,1,1,1)
> y <- c(2,3,6,7,8,9,10,12,15)
> summary(glm(y~x, family=poisson(link="identity")))
Call:
glm(formula = y ~ x, family = poisson(link = "identity"))
Deviance Residuals:
Min 1Q Median 3Q Max
-0.7019 -0.3377 -0.1105 0.2958 0.7184
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.4516 0.8841 8.428 < 2e-16 ***
x 4.9353 1.0892 4.531 5.86e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 18.4206 on 8 degrees of freedom
Residual deviance: 1.8947 on 7 degrees of freedom
AIC: 40.008
Number of Fisher Scoring iterations: 3
> ## Calorie Data (Page 45)
> calorie <- data.frame(
+ carb = c(33,40,37,27,30,43,34,48,30,38,
+ 50,51,30,36,41,42,46,24,35,37),
+ age = c(33,47,49,35,46,52,62,23,32,42,
+ 31,61,63,40,50,64,56,61,48,28),
+ wgt = c(100, 92,135,144,140,101, 95,101, 98,105,
+ 108, 85,130,127,109,107,117,100,118,102),
+ prot = c(14,15,18,12,15,15,14,17,15,14,
+ 17,19,19,20,15,16,18,13,18,14))
> summary(lmcal <- lm(carb~age+wgt+prot, data= calorie))
Call:
lm(formula = carb ~ age + wgt + prot, data = calorie)
Residuals:
Min 1Q Median 3Q Max
-10.3424 -4.8203 0.9897 3.8553 7.9087
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.96006 13.07128 2.828 0.01213 *
age -0.11368 0.10933 -1.040 0.31389
wgt -0.22802 0.08329 -2.738 0.01460 *
prot 1.95771 0.63489 3.084 0.00712 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.956 on 16 degrees of freedom
Multiple R-squared: 0.4805, Adjusted R-squared: 0.3831
F-statistic: 4.934 on 3 and 16 DF, p-value: 0.01297
> ## Extended Plant Data (Page 59)
> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
> trtA <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
> trtB <- c(6.31,5.12,5.54,5.50,5.37,5.29,4.92,6.15,5.80,5.26)
> group <- gl(3, length(ctl), labels=c("Ctl","A","B"))
> weight <- c(ctl,trtA,trtB)
> anova(lmwg <- lm(weight~group))
Analysis of Variance Table
Response: weight
Df Sum Sq Mean Sq F value Pr(>F)
group 2 3.7663 1.8832 4.8461 0.01591 *
Residuals 27 10.4921 0.3886
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> summary(lmwg)
Call:
lm(formula = weight ~ group)
Residuals:
Min 1Q Median 3Q Max
-1.0710 -0.4180 -0.0060 0.2627 1.3690
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0320 0.1971 25.527 <2e-16 ***
groupA -0.3710 0.2788 -1.331 0.1944
groupB 0.4940 0.2788 1.772 0.0877 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6234 on 27 degrees of freedom
Multiple R-squared: 0.2641, Adjusted R-squared: 0.2096
F-statistic: 4.846 on 2 and 27 DF, p-value: 0.01591
> coef(lmwg)
(Intercept) groupA groupB
5.032 -0.371 0.494
> coef(summary(lmwg))#- incl. std.err, t- and P- values.
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.032 0.1971284 25.526514 1.936575e-20
groupA -0.371 0.2787816 -1.330791 1.943879e-01
groupB 0.494 0.2787816 1.771996 8.768168e-02
> ## Fictitious Anova Data (Page 64)
> y <- c(6.8,6.6,5.3,6.1,7.5,7.4,7.2,6.5,7.8,9.1,8.8,9.1)
> a <- gl(3,4)
> b <- gl(2,2, length(a))
> anova(z <- lm(y~a*b))
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
a 2 12.7400 6.3700 25.8243 0.001127 **
b 1 0.4033 0.4033 1.6351 0.248225
a:b 2 1.2067 0.6033 2.4459 0.167164
Residuals 6 1.4800 0.2467
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> ## Achievement Scores (Page 70)
> y <- c(6,4,5,3,4,3,6, 8,9,7,9,8,5,7, 6,7,7,7,8,5,7)
> x <- c(3,1,3,1,2,1,4, 4,5,5,4,3,1,2, 3,2,2,3,4,1,4)
> m <- gl(3,7)
> anova(z <- lm(y~x+m))
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
x 1 36.575 36.575 60.355 5.428e-07 ***
m 2 16.932 8.466 13.970 0.0002579 ***
Residuals 17 10.302 0.606
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> ## Beetle Data (Page 78)
> dose <- c(1.6907, 1.7242, 1.7552, 1.7842, 1.8113, 1.8369, 1.861, 1.8839)
> x <- c( 6, 13, 18, 28, 52, 53, 61, 60)
> n <- c(59, 60, 62, 56, 63, 59, 62, 60)
> dead <- cbind(x, n-x)
> summary( glm(dead ~ dose, family=binomial(link=logit)))
Call:
glm(formula = dead ~ dose, family = binomial(link = logit))
Deviance Residuals:
Min 1Q Median 3Q Max
-1.5941 -0.3944 0.8329 1.2592 1.5940
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -60.717 5.181 -11.72 <2e-16 ***
dose 34.270 2.912 11.77 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 284.202 on 7 degrees of freedom
Residual deviance: 11.232 on 6 degrees of freedom
AIC: 41.43
Number of Fisher Scoring iterations: 4
> summary( glm(dead ~ dose, family=binomial(link=probit)))
Call:
glm(formula = dead ~ dose, family = binomial(link = probit))
Deviance Residuals:
Min 1Q Median 3Q Max
-1.5714 -0.4703 0.7501 1.0632 1.3449
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -34.935 2.648 -13.19 <2e-16 ***
dose 19.728 1.487 13.27 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 284.20 on 7 degrees of freedom
Residual deviance: 10.12 on 6 degrees of freedom
AIC: 40.318
Number of Fisher Scoring iterations: 4
> summary(z <- glm(dead ~ dose, family=binomial(link=cloglog)))
Call:
glm(formula = dead ~ dose, family = binomial(link = cloglog))
Deviance Residuals:
Min 1Q Median 3Q Max
-0.80329 -0.55135 0.03089 0.38315 1.28883
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -39.572 3.240 -12.21 <2e-16 ***
dose 22.041 1.799 12.25 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 284.2024 on 7 degrees of freedom
Residual deviance: 3.4464 on 6 degrees of freedom
AIC: 33.644
Number of Fisher Scoring iterations: 4
> anova(z, update(z, dead ~ dose -1))
Analysis of Deviance Table
Model 1: dead ~ dose
Model 2: dead ~ dose - 1
Resid. Df Resid. Dev Df Deviance
1 6 3.446
2 7 285.222 -1 -281.78
> ## Anther Data (Page 84)
> ## Note that the proportions below are not exactly
> ## in accord with the sample sizes quoted below.
> ## In particular, the last value, 5/9, should have been 0.556 instead of 0.555:
> n <- c(102, 99, 108, 76, 81, 90)
> p <- c(0.539,0.525,0.528,0.724,0.617,0.555)
> x <- round(n*p)
> ## x <- n*p
> y <- cbind(x,n-x)
> f <- rep(c(40,150,350),2)
> (g <- gl(2,3))
[1] 1 1 1 2 2 2
Levels: 1 2
> summary(glm(y ~ g*f, family=binomial(link="logit")))
Call:
glm(formula = y ~ g * f, family = binomial(link = "logit"))
Deviance Residuals:
1 2 3 4 5 6
0.08269 -0.12998 0.04414 0.42320 -0.60082 0.19522
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1456719 0.1975451 0.737 0.4609
g2 0.7963143 0.3125046 2.548 0.0108 *
f -0.0001227 0.0008782 -0.140 0.8889
g2:f -0.0020493 0.0013483 -1.520 0.1285
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 10.45197 on 5 degrees of freedom
Residual deviance: 0.60387 on 2 degrees of freedom
AIC: 38.172
Number of Fisher Scoring iterations: 3
> summary(glm(y ~ g + f, family=binomial(link="logit")))
Call:
glm(formula = y ~ g + f, family = binomial(link = "logit"))
Deviance Residuals:
1 2 3 4 5 6
-0.5507 -0.2781 0.7973 1.1558 -0.3688 -0.6584
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.306643 0.167629 1.829 0.0674 .
g2 0.405554 0.174560 2.323 0.0202 *
f -0.000997 0.000665 -1.499 0.1338
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 10.4520 on 5 degrees of freedom
Residual deviance: 2.9218 on 3 degrees of freedom
AIC: 38.49
Number of Fisher Scoring iterations: 3
> ## The "final model"
> summary(glm.p84 <- glm(y~g, family=binomial(link="logit")))
Call:
glm(formula = y ~ g, family = binomial(link = "logit"))
Deviance Residuals:
1 2 3 4 5 6
0.17150 -0.10947 -0.06177 1.77208 -0.19040 -1.39686
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1231 0.1140 1.080 0.2801
g2 0.3985 0.1741 2.289 0.0221 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 10.452 on 5 degrees of freedom
Residual deviance: 5.173 on 4 degrees of freedom
AIC: 38.741
Number of Fisher Scoring iterations: 3
> op <- par(mfrow = c(2,2), oma = c(0,0,1,0))
> plot(glm.p84) # well ?
Hit <Return> to see next plot:
> par(op)
> ## Tumour Data (Page 92)
> counts <- c(22,2,10,16,54,115,19,33,73,11,17,28)
> type <- gl(4,3,12,labels=c("freckle","superficial","nodular","indeterminate"))
> site <- gl(3,1,12,labels=c("head/neck","trunk","extremities"))
> data.frame(counts,type,site)
counts type site
1 22 freckle head/neck
2 2 freckle trunk
3 10 freckle extremities
4 16 superficial head/neck
5 54 superficial trunk
6 115 superficial extremities
7 19 nodular head/neck
8 33 nodular trunk
9 73 nodular extremities
10 11 indeterminate head/neck
11 17 indeterminate trunk
12 28 indeterminate extremities
> summary(z <- glm(counts ~ type + site, family=poisson()))
Call:
glm(formula = counts ~ type + site, family = poisson())
Deviance Residuals:
Min 1Q Median 3Q Max
-3.0453 -1.0741 0.1297 0.5857 5.1354
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.7544 0.2040 8.600 < 2e-16 ***
typesuperficial 1.6940 0.1866 9.079 < 2e-16 ***
typenodular 1.3020 0.1934 6.731 1.68e-11 ***
typeindeterminate 0.4990 0.2174 2.295 0.02173 *
sitetrunk 0.4439 0.1554 2.857 0.00427 **
siteextremities 1.2010 0.1383 8.683 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 295.203 on 11 degrees of freedom
Residual deviance: 51.795 on 6 degrees of freedom
AIC: 122.91
Number of Fisher Scoring iterations: 5
> ## Randomized Controlled Trial (Page 93)
> counts <- c(18,17,15, 20,10,20, 25,13,12)
> outcome <- gl(3, 1, length(counts))
> treatment <- gl(3, 3)
> summary(z <- glm(counts ~ outcome + treatment, family=poisson()))
Call:
glm(formula = counts ~ outcome + treatment, family = poisson())
Deviance Residuals:
1 2 3 4 5 6 7 8
-0.67125 0.96272 -0.16965 -0.21999 -0.95552 1.04939 0.84715 -0.09167
9
-0.96656
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.045e+00 1.709e-01 17.815 <2e-16 ***
outcome2 -4.543e-01 2.022e-01 -2.247 0.0246 *
outcome3 -2.930e-01 1.927e-01 -1.520 0.1285
treatment2 1.338e-15 2.000e-01 0.000 1.0000
treatment3 1.421e-15 2.000e-01 0.000 1.0000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 10.5814 on 8 degrees of freedom
Residual deviance: 5.1291 on 4 degrees of freedom
AIC: 56.761
Number of Fisher Scoring iterations: 4
> ## Peptic Ulcers and Blood Groups
> counts <- c(579, 4219, 911, 4578, 246, 3775, 361, 4532, 291, 5261, 396, 6598)
> group <- gl(2, 1, 12, labels=c("cases","controls"))
> blood <- gl(2, 2, 12, labels=c("A","O"))
> city <- gl(3, 4, 12, labels=c("London","Manchester","Newcastle"))
> cbind(group, blood, city, counts) # gives internal codes for the factors
group blood city counts
[1,] 1 1 1 579
[2,] 2 1 1 4219
[3,] 1 2 1 911
[4,] 2 2 1 4578
[5,] 1 1 2 246
[6,] 2 1 2 3775
[7,] 1 2 2 361
[8,] 2 2 2 4532
[9,] 1 1 3 291
[10,] 2 1 3 5261
[11,] 1 2 3 396
[12,] 2 2 3 6598
> summary(z1 <- glm(counts ~ group*(city + blood), family=poisson()))
Call:
glm(formula = counts ~ group * (city + blood), family = poisson())
Deviance Residuals:
1 2 3 4 5 6 7 8
-0.7520 3.0183 0.6099 -2.8137 0.1713 -0.4339 -0.1405 0.3977
9 10 11 12
0.9318 -2.2691 -0.7742 2.0648
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.39239 0.03476 183.92 < 2e-16 ***
groupcontrols 1.90813 0.03691 51.69 < 2e-16 ***
cityManchester -0.89800 0.04815 -18.65 < 2e-16 ***
cityNewcastle -0.77420 0.04612 -16.79 < 2e-16 ***
bloodO 0.40187 0.03867 10.39 < 2e-16 ***
groupcontrols:cityManchester 0.84069 0.05052 16.64 < 2e-16 ***
groupcontrols:cityNewcastle 1.07287 0.04822 22.25 < 2e-16 ***
groupcontrols:bloodO -0.23208 0.04043 -5.74 9.46e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 26717.157 on 11 degrees of freedom
Residual deviance: 29.241 on 4 degrees of freedom
AIC: 154.32
Number of Fisher Scoring iterations: 3
> summary(z2 <- glm(counts ~ group*city + blood, family=poisson()),
+ correlation = TRUE)
Call:
glm(formula = counts ~ group * city + blood, family = poisson())
Deviance Residuals:
1 2 3 4 5 6 7 8
-3.7688 3.7168 3.2813 -3.4418 -1.7675 0.2387 1.5565 -0.2174
9 10 11 12
-1.1458 -1.4687 1.0218 1.3275
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.51395 0.02663 244.60 <2e-16 ***
groupcontrols 1.77563 0.02801 63.38 <2e-16 ***
cityManchester -0.89800 0.04815 -18.65 <2e-16 ***
cityNewcastle -0.77420 0.04612 -16.79 <2e-16 ***
bloodO 0.18988 0.01128 16.84 <2e-16 ***
groupcontrols:cityManchester 0.84069 0.05052 16.64 <2e-16 ***
groupcontrols:cityNewcastle 1.07287 0.04822 22.25 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 26717.157 on 11 degrees of freedom
Residual deviance: 62.558 on 5 degrees of freedom
AIC: 185.63
Number of Fisher Scoring iterations: 4
Correlation of Coefficients:
(Intercept) groupcontrols cityManchester
groupcontrols -0.90
cityManchester -0.52 0.50
cityNewcastle -0.55 0.52 0.30
bloodO -0.23 0.00 0.00
groupcontrols:cityManchester 0.50 -0.55 -0.95
groupcontrols:cityNewcastle 0.52 -0.58 -0.29
cityNewcastle bloodO groupcontrols:cityManchester
groupcontrols
cityManchester
cityNewcastle
bloodO 0.00
groupcontrols:cityManchester -0.29 0.00
groupcontrols:cityNewcastle -0.96 0.00 0.32
> anova(z2, z1, test = "Chisq")
Analysis of Deviance Table
Model 1: counts ~ group * city + blood
Model 2: counts ~ group * (city + blood)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 5 62.558
2 4 29.241 1 33.318 7.827e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1