-
Notifications
You must be signed in to change notification settings - Fork 93
/
utils.py
55 lines (41 loc) · 1.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy
import torch.utils.data
class Dataset(torch.utils.data.Dataset):
"""
PyTorch wrapper for a numpy dataset.
@param dataset Numpy array representing the dataset.
"""
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return numpy.shape(self.dataset)[0]
def __getitem__(self, index):
return self.dataset[index]
class LabelledDataset(torch.utils.data.Dataset):
"""
PyTorch wrapper for a numpy dataset and its associated labels.
@param dataset Numpy array representing the dataset.
@param labels One-dimensional array of the same length as dataset with
non-negative int values.
"""
def __init__(self, dataset, labels):
self.dataset = dataset
self.labels = labels
def __len__(self):
return numpy.shape(self.dataset)[0]
def __getitem__(self, index):
return self.dataset[index], self.labels[index]