-
Notifications
You must be signed in to change notification settings - Fork 0
/
attack_iter.py
261 lines (194 loc) · 10.2 KB
/
attack_iter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""Implementation of affine-invariant attack."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import time
start_time = time.time()
import numpy as np
from scipy.misc import imread
from scipy.misc import imsave
from scipy.misc import imresize
from PIL import Image
import csv
import tensorflow as tf
from nets import inception_v3, inception_v4, inception_resnet_v2, resnet_v2
from polar_transform import polar_to_cartesian, polar_transform
slim = tf.contrib.slim
tf.flags.DEFINE_string('master', '', 'The address of the TensorFlow master to use.')
tf.flags.DEFINE_string('checkpoint_path_inception_v3', '', 'Path to checkpoint for inception network.')
tf.flags.DEFINE_string('checkpoint_path_inception_v4', '', 'Path to checkpoint for inception network.')
tf.flags.DEFINE_string('checkpoint_path_inception_resnet_v2', '', 'Path to checkpoint for inception network.')
tf.flags.DEFINE_string('checkpoint_path_resnet', '', 'Path to checkpoint for inception network.')
tf.flags.DEFINE_string('input_dir', '', 'Input directory with images.')
tf.flags.DEFINE_string('output_dir', '', 'Output directory with images.')
tf.flags.DEFINE_float('max_epsilon', 32.0, 'Maximum size of adversarial perturbation.')
tf.flags.DEFINE_integer('num_iter', 10, 'Number of iterations.')
tf.flags.DEFINE_integer('image_width', 299, 'Width of each input images.')
tf.flags.DEFINE_integer('image_height', 299, 'Height of each input images.')
tf.flags.DEFINE_integer('image_resize', 330, 'Height of each input images.')
tf.flags.DEFINE_integer('batch_size', 10, 'How many images process at one time.')
tf.flags.DEFINE_float('momentum', 1.0, 'Momentum.')
tf.flags.DEFINE_float('prob', 0.4, 'probability of using diverse inputs.')
FLAGS = tf.flags.FLAGS
def gkern(kernlen=21, nsig=3):
"""Returns a 2D Gaussian kernel array."""
import scipy.stats as st
x = np.linspace(-nsig, nsig, kernlen)
kern1d = st.norm.pdf(x)
kernel_raw = np.outer(kern1d, kern1d)
kernel = kernel_raw / kernel_raw.sum()
return kernel
kernel_polar = gkern(15, 6).astype(np.float32) # polar
stack_kernel_polar = np.stack([kernel_polar, kernel_polar, kernel_polar]).swapaxes(2, 0)
stack_kernel_polar = np.expand_dims(stack_kernel_polar, 3)
kernel_ti = gkern(15, 6).astype(np.float32) # ti
stack_kernel_ti = np.stack([kernel_ti, kernel_ti, kernel_ti]).swapaxes(2, 0)
stack_kernel_ti = np.expand_dims(stack_kernel_ti, 3)
def load_images(input_dir, batch_shape):
"""Read png images from input directory in batches.
Args:
input_dir: input directory
batch_shape: shape of minibatch array, i.e. [batch_size, height, width, 3]
Yields:
filenames: list file names without path of each image
Lenght of this list could be less than batch_size, in this case only
first few images of the result are elements of the minibatch.
images: array with all images from this batch
"""
images = np.zeros(batch_shape)
filenames = []
idx = 0
batch_size = batch_shape[0]
labels = np.zeros([batch_size], np.int32)
with open('./dataset/dev_dataset.csv') as f:
reader = csv.reader(f)
header = next(reader)
for row in reader:
filepath = os.path.join(input_dir, row[0]+'.png')
image = imresize(imread(filepath, mode='RGB'), [FLAGS.image_height, FLAGS.image_width]).astype(np.float) / 255.0
# Images for inception classifier are normalized to be in [-1, 1] interval.
images[idx, :, :, :] = image * 2.0 - 1.0
labels[idx] = int(row[6])
filenames.append(os.path.basename(filepath))
idx += 1
if idx == batch_size:
yield filenames, images, labels
filenames = []
images = np.zeros(batch_shape)
labels = np.zeros([batch_size], np.int32)
idx = 0
if idx > 0:
yield filenames, images, labels
def save_images(images, filenames, output_dir):
"""Saves images to the output directory.
Args:
images: array with minibatch of images
filenames: list of filenames without path
If number of file names in this list less than number of images in
the minibatch then only first len(filenames) images will be saved.
output_dir: directory where to save images
"""
for i, filename in enumerate(filenames):
# Images for inception classifier are normalized to be in [-1, 1] interval,
# so rescale them back to [0, 1].
with tf.gfile.Open(os.path.join(output_dir, filename), 'w') as f:
imsave(f, (images[i, :, :, :] + 1.0) * 0.5, format='png')
def graph(x, y, i, x_max, x_min, grad):
eps = 2.0 * FLAGS.max_epsilon / 255.0
num_iter = FLAGS.num_iter
alpha = eps / num_iter * 5
momentum = FLAGS.momentum
num_classes = 1001
# should keep original x here for output
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
logits_v3, end_points_v3 = inception_v3.inception_v3(
input_diversity(x), num_classes=num_classes, is_training=False)
# with slim.arg_scope(inception_v4.inception_v4_arg_scope()):
# logits_v4, end_points_v4 = inception_v4.inception_v4(
# input_diversity(x), num_classes=num_classes, is_training=False)
# with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
# logits_res_v2, end_points_res_v2 = inception_resnet_v2.inception_resnet_v2(
# input_diversity(x), num_classes=num_classes, is_training=False, reuse=True)
# with slim.arg_scope(resnet_v2.resnet_arg_scope()):
# logits_resnet, end_points_resnet = resnet_v2.resnet_v2_152(
# input_diversity(x), num_classes=num_classes, is_training=False)
logits = logits_v3
auxlogits = end_points_v3['AuxLogits']
# logits = (logits_v3 + logits_v4 + logits_res_v2 + logits_resnet) / 4
# auxlogits = end_points_v3['AuxLogits'] + end_points_v4['AuxLogits'] + end_points_res_v2['AuxLogits']) / 3
cross_entropy = tf.losses.softmax_cross_entropy(y,
logits,
label_smoothing=0.0,
weights=1.0)
cross_entropy += tf.losses.softmax_cross_entropy(y,
auxlogits,
label_smoothing=0.0,
weights=0.4)
noise = tf.gradients(cross_entropy, x)[0]
noise = tf.nn.depthwise_conv2d(noise, stack_kernel_ti, strides=[1, 1, 1, 1], padding='SAME')
noise = tf.pad(noise, [[0,0],[62,62],[62,62],[0,0]])
noise = polar_to_cartesian(noise, FLAGS.image_height, FLAGS.image_width)
noise = tf.nn.depthwise_conv2d(noise, stack_kernel_polar, strides=[1, 1, 1, 1], padding='SAME')
noise = polar_transform(noise, 423)
noise = noise / tf.reduce_mean(tf.abs(noise), [1, 2, 3], keep_dims=True)
noise = momentum * grad + noise
x = x + alpha * tf.sign(noise)
x = tf.clip_by_value(x, x_min, x_max)
i = tf.add(i, 1)
return x, y, i, x_max, x_min, noise
def stop(x, y, i, x_max, x_min, grad):
num_iter = FLAGS.num_iter
return tf.less(i, num_iter)
def input_diversity(input_tensor):
rnd = tf.random_uniform((), FLAGS.image_width, FLAGS.image_resize, dtype=tf.int32)
rescaled = tf.image.resize_images(input_tensor, [rnd, rnd], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
h_rem = FLAGS.image_resize - rnd
w_rem = FLAGS.image_resize - rnd
pad_top = tf.random_uniform((), 0, h_rem, dtype=tf.int32)
pad_bottom = h_rem - pad_top
pad_left = tf.random_uniform((), 0, w_rem, dtype=tf.int32)
pad_right = w_rem - pad_left
padded = tf.pad(rescaled, [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]], constant_values=0.)
padded.set_shape((input_tensor.shape[0], FLAGS.image_resize, FLAGS.image_resize, 3))
return tf.cond(tf.random_uniform(shape=[1])[0] < tf.constant(FLAGS.prob), lambda: padded, lambda: input_tensor)
def main(_):
# Images for inception classifier are normalized to be in [-1, 1] interval,
# eps is a difference between pixels so it should be in [0, 2] interval.
# Renormalizing epsilon from [0, 255] to [0, 2].
eps = 2.0 * FLAGS.max_epsilon / 255.0
num_classes = 1001
batch_shape = [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, 3]
tf.logging.set_verbosity(tf.logging.INFO)
print(time.time() - start_time)
with tf.Graph().as_default():
# Prepare graph
x_input = tf.placeholder(tf.float32, shape=batch_shape)
x_max = tf.clip_by_value(x_input + eps, -1.0, 1.0)
x_min = tf.clip_by_value(x_input - eps, -1.0, 1.0)
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
_, end_points = inception_resnet_v2.inception_resnet_v2(
x_input, num_classes=num_classes, is_training=False)
predicted_labels = tf.argmax(end_points['Predictions'], 1)
y = tf.one_hot(predicted_labels, num_classes)
i = tf.constant(0)
grad = tf.zeros(shape=batch_shape)
x_adv, _, _, _, _, _ = tf.while_loop(stop, graph, [x_input, y, i, x_max, x_min, grad])
# Run computation
s1 = tf.train.Saver(slim.get_model_variables(scope='InceptionV3'))
# s5 = tf.train.Saver(slim.get_model_variables(scope='InceptionV4'))
s6 = tf.train.Saver(slim.get_model_variables(scope='InceptionResnetV2'))
# s8 = tf.train.Saver(slim.get_model_variables(scope='resnet_v2'))
with tf.Session() as sess:
s1.restore(sess, FLAGS.checkpoint_path_inception_v3)
# s5.restore(sess, FLAGS.checkpoint_path_inception_v4)
s6.restore(sess, FLAGS.checkpoint_path_inception_resnet_v2)
# s8.restore(sess, FLAGS.checkpoint_path_resnet)
print(time.time() - start_time)
for filenames, images, labels in load_images(FLAGS.input_dir, batch_shape):
adv_images = sess.run(x_adv, feed_dict={x_input: images})
save_images(adv_images, filenames, FLAGS.output_dir)
print(time.time() - start_time)
if __name__ == '__main__':
tf.app.run()