From eed33c981d2f29eae1e8ec83a6d11ed820d7e98c Mon Sep 17 00:00:00 2001 From: Wenjie Du Date: Sun, 8 Sep 2024 22:03:17 +0800 Subject: [PATCH] refactor: adjust code and docs of TEFN; --- README.md | 6 +- README_zh.md | 5 +- docs/index.rst | 2 + pypots/imputation/__init__.py | 2 +- pypots/imputation/tefn/core.py | 10 +- pypots/imputation/tefn/data.py | 12 +- pypots/imputation/tefn/model.py | 177 ++++++++++++++--------------- pypots/nn/modules/tefn/backbone.py | 16 +-- pypots/nn/modules/tefn/layers.py | 13 +-- 9 files changed, 118 insertions(+), 125 deletions(-) diff --git a/README.md b/README.md index 58ff8bfd..ab8b860c 100644 --- a/README.md +++ b/README.md @@ -124,7 +124,7 @@ The paper references and links are all listed at the bottom of this file. | **Type** | **Algo** | **IMPU** | **FORE** | **CLAS** | **CLUS** | **ANOD** | **Year - Venue** | |:--------------|:---------------------------------------------------------------------------------------------------------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:-------------------| | LLM | Time-Series.AI [^36] | ✅ | ✅ | ✅ | ✅ | ✅ | `Later in 2024` | -| Neural Net | TEFN[^39] | ✅ | | | | | `2024 - arXiv` | +| Neural Net | TEFN🧑‍🔧[^39] | ✅ | | | | | `2024 - arXiv` | | Neural Net | TimeMixer[^37] | ✅ | | | | | `2024 - ICLR` | | Neural Net | iTransformer🧑‍🔧[^24] | ✅ | | | | | `2024 - ICLR` | | Neural Net | ModernTCN[^38] | ✅ | | | | | `2024 - ICLR` | @@ -161,7 +161,7 @@ The paper references and links are all listed at the bottom of this file. | Neural Net | GRU-D[^4] | ✅ | | ✅ | | | `2018 - Sci. Rep.` | | Neural Net | TCN🧑‍🔧[^35] | ✅ | | | | | `2018 - arXiv` | | Neural Net | Transformer🧑‍🔧[^2] | ✅ | | | | | `2017 - NeurIPS` | -| Naive | Lerp | ✅ | | | | | | +| Naive | Lerp[^40] | ✅ | | | | | | | Naive | LOCF/NOCB | ✅ | | | | | | | Naive | Mean | ✅ | | | | | | | Naive | Median | ✅ | | | | | | @@ -508,4 +508,4 @@ Time-Series.AI [^39]: Zhan, T., He, Y., Li, Z., & Deng, Y. ( 2024). [Time Evidence Fusion Network: Multi-source View in Long-Term Time Series Forecasting](https://arxiv.org/abs/2405.06419). *arXiv 2024* - +[^40]: [Wikipedia: Linear interpolation](https://en.wikipedia.org/wiki/Linear_interpolation) \ No newline at end of file diff --git a/README_zh.md b/README_zh.md index d43b5e83..1812ae1e 100644 --- a/README_zh.md +++ b/README_zh.md @@ -105,7 +105,7 @@ PyPOTS当前支持多变量POTS数据的插补,预测,分类,聚类以及 | **类型** | **算法** | **插补** | **预测** | **分类** | **聚类** | **异常检测** | **年份 - 刊物** | |:--------------|:---------------------------------------------------------------------------------------------------------------------------------|:------:|:------:|:------:|:------:|:--------:|:-------------------| | LLM | Time-Series.AI [^36] | ✅ | ✅ | ✅ | ✅ | ✅ | `Later in 2024` | -| Neural Net | TEFN[^39] | ✅ | | | | | `2024 - arXiv` | +| Neural Net | TEFN🧑‍🔧[^39] | ✅ | | | | | `2024 - arXiv` | | Neural Net | TimeMixer[^37] | ✅ | | | | | `2024 - ICLR` | | Neural Net | iTransformer🧑‍🔧[^24] | ✅ | | | | | `2024 - ICLR` | | Neural Net | ModernTCN[^38] | ✅ | | | | | `2024 - ICLR` | @@ -142,7 +142,7 @@ PyPOTS当前支持多变量POTS数据的插补,预测,分类,聚类以及 | Neural Net | GRU-D[^4] | ✅ | | ✅ | | | `2018 - Sci. Rep.` | | Neural Net | TCN🧑‍🔧[^35] | ✅ | | | | | `2018 - arXiv` | | Neural Net | Transformer🧑‍🔧[^2] | ✅ | | | | | `2017 - NeurIPS` | -| Naive | Lerp | ✅ | | | | | | +| Naive | Lerp[^40] | ✅ | | | | | | | Naive | LOCF/NOCB | ✅ | | | | | | | Naive | Mean | ✅ | | | | | | | Naive | Median | ✅ | | | | | | @@ -468,3 +468,4 @@ Time-Series.AI [^39]: Zhan, T., He, Y., Li, Z., & Deng, Y. ( 2024). [Time Evidence Fusion Network: Multi-source View in Long-Term Time Series Forecasting](https://arxiv.org/abs/2405.06419). *arXiv 2024* +[^40]: [Wikipedia: Linear interpolation](https://en.wikipedia.org/wiki/Linear_interpolation) \ No newline at end of file diff --git a/docs/index.rst b/docs/index.rst index 113fbb65..c64c9196 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -133,6 +133,8 @@ The paper references are all listed at the bottom of this readme file. +----------------+-----------------------------------------------------------+------+------+------+------+------+-----------------------+ | Type | Algorithm | IMPU | FORE | CLAS | CLUS | ANOD | Year - Venue | +================+===========================================================+======+======+======+======+======+=======================+ +| Neural Net | TEFN🧑‍🔧 :cite:`zhan2024tefn` | ✅ | | | | | ``2024 - arXiv`` | ++----------------+-----------------------------------------------------------+------+------+------+------+------+-----------------------+ | Neural Net | TimeMixer :cite:`wang2024timemixer` | ✅ | | | | | ``2024 - ICLR`` | +----------------+-----------------------------------------------------------+------+------+------+------+------+-----------------------+ | Neural Net | iTransformer🧑‍🔧 :cite:`liu2024itransformer` | ✅ | | | | | ``2024 - ICLR`` | diff --git a/pypots/imputation/__init__.py b/pypots/imputation/__init__.py index 4ae883f8..19a7e2c6 100644 --- a/pypots/imputation/__init__.py +++ b/pypots/imputation/__init__.py @@ -84,5 +84,5 @@ "Mean", "Median", "Lerp", - "TEFN" + "TEFN", ] diff --git a/pypots/imputation/tefn/core.py b/pypots/imputation/tefn/core.py index c6dc6d8b..f71927a6 100644 --- a/pypots/imputation/tefn/core.py +++ b/pypots/imputation/tefn/core.py @@ -14,11 +14,11 @@ class _TEFN(nn.Module): def __init__( - self, - n_steps, - n_features, - n_fod, - apply_nonstationary_norm, + self, + n_steps, + n_features, + n_fod, + apply_nonstationary_norm, ): super().__init__() diff --git a/pypots/imputation/tefn/data.py b/pypots/imputation/tefn/data.py index 3239a6e2..e8aa19a2 100644 --- a/pypots/imputation/tefn/data.py +++ b/pypots/imputation/tefn/data.py @@ -14,11 +14,11 @@ class DatasetForTEFN(DatasetForSAITS): """Actually TEFN uses the same data strategy as SAITS, needs MIT for training.""" def __init__( - self, - data: Union[dict, str], - return_X_ori: bool, - return_y: bool, - file_type: str = "hdf5", - rate: float = 0.2, + self, + data: Union[dict, str], + return_X_ori: bool, + return_y: bool, + file_type: str = "hdf5", + rate: float = 0.2, ): super().__init__(data, return_X_ori, return_y, file_type, rate) diff --git a/pypots/imputation/tefn/model.py b/pypots/imputation/tefn/model.py index c7912164..02024f28 100644 --- a/pypots/imputation/tefn/model.py +++ b/pypots/imputation/tefn/model.py @@ -23,83 +23,83 @@ class TEFN(BaseNNImputer): """The PyTorch implementation of the TEFN model. - TEFN is originally proposed by Zhan et al. in :cite:`zhan2024tefn`. - - Parameters - ---------- - n_steps : - The number of time steps in the time-series data sample. - - n_features : - The number of features in the time-series data sample. - - n_fod : - The number of frame of discernment in the TEFN model. - - apply_nonstationary_norm : - Whether to apply non-stationary normalization to the input data for TimesNet. - Please refer to :cite:`liu2022nonstationary` for details about non-stationary normalization, - which is not the idea of the original TimesNet paper. Hence, we make it optional - and default not to use here. - - batch_size : - The batch size for training and evaluating the model. - - epochs : - The number of epochs for training the model. - - patience : - The patience for the early-stopping mechanism. Given a positive integer, the training process will be - stopped when the model does not perform better after that number of epochs. - Leaving it default as None will disable the early-stopping. - - optimizer : - The optimizer for model training. - If not given, will use a default Adam optimizer. - - num_workers : - The number of subprocesses to use for data loading. - `0` means data loading will be in the main process, i.e. there won't be subprocesses. - - device : - The device for the model to run on. It can be a string, a :class:`torch.device` object, or a list of them. - If not given, will try to use CUDA devices first (will use the default CUDA device if there are multiple), - then CPUs, considering CUDA and CPU are so far the main devices for people to train ML models. - If given a list of devices, e.g. ['cuda:0', 'cuda:1'], or [torch.device('cuda:0'), torch.device('cuda:1')] , - the model will be parallely trained on the multiple devices (so far only support parallel training on CUDA - devices). Other devices like Google TPU and Apple Silicon accelerator MPS may be added in the future. - - saving_path : - The path for automatically saving model checkpoints and tensorboard files (i.e. loss values recorded during - training into a tensorboard file). Will not save if not given. - - model_saving_strategy : - The strategy to save model checkpoints. It has to be one of [None, "best", "better", "all"]. - No model will be saved when it is set as None. - The "best" strategy will only automatically save the best model after the training finished. - The "better" strategy will automatically save the model during training whenever the model performs - better than in previous epochs. - The "all" strategy will save every model after each epoch training. - - verbose : - Whether to print out the training logs during the training process. - """ + TEFN is originally proposed by Zhan et al. in :cite:`zhan2024tefn`. + + Parameters + ---------- + n_steps : + The number of time steps in the time-series data sample. + + n_features : + The number of features in the time-series data sample. + + n_fod : + The number of frame of discernment in the TEFN model. + + apply_nonstationary_norm : + Whether to apply non-stationary normalization to the input data for TimesNet. + Please refer to :cite:`liu2022nonstationary` for details about non-stationary normalization, + which is not the idea of the original TimesNet paper. Hence, we make it optional + and default not to use here. + + batch_size : + The batch size for training and evaluating the model. + + epochs : + The number of epochs for training the model. + + patience : + The patience for the early-stopping mechanism. Given a positive integer, the training process will be + stopped when the model does not perform better after that number of epochs. + Leaving it default as None will disable the early-stopping. + + optimizer : + The optimizer for model training. + If not given, will use a default Adam optimizer. + + num_workers : + The number of subprocesses to use for data loading. + `0` means data loading will be in the main process, i.e. there won't be subprocesses. + + device : + The device for the model to run on. It can be a string, a :class:`torch.device` object, or a list of them. + If not given, will try to use CUDA devices first (will use the default CUDA device if there are multiple), + then CPUs, considering CUDA and CPU are so far the main devices for people to train ML models. + If given a list of devices, e.g. ['cuda:0', 'cuda:1'], or [torch.device('cuda:0'), torch.device('cuda:1')] , + the model will be parallely trained on the multiple devices (so far only support parallel training on CUDA + devices). Other devices like Google TPU and Apple Silicon accelerator MPS may be added in the future. + + saving_path : + The path for automatically saving model checkpoints and tensorboard files (i.e. loss values recorded during + training into a tensorboard file). Will not save if not given. + + model_saving_strategy : + The strategy to save model checkpoints. It has to be one of [None, "best", "better", "all"]. + No model will be saved when it is set as None. + The "best" strategy will only automatically save the best model after the training finished. + The "better" strategy will automatically save the model during training whenever the model performs + better than in previous epochs. + The "all" strategy will save every model after each epoch training. + + verbose : + Whether to print out the training logs during the training process. + """ def __init__( - self, - n_steps: int, - n_features: int, - n_fod: int = 2, - apply_nonstationary_norm: bool = True, - batch_size: int = 32, - epochs: int = 100, - patience: int = None, - optimizer: Optional[Optimizer] = Adam(), - num_workers: int = 0, - device: Optional[Union[str, torch.device, list]] = None, - saving_path: str = None, - model_saving_strategy: Optional[str] = "best", - verbose: bool = True, + self, + n_steps: int, + n_features: int, + n_fod: int = 2, + apply_nonstationary_norm: bool = True, + batch_size: int = 32, + epochs: int = 100, + patience: int = None, + optimizer: Optional[Optimizer] = Adam(), + num_workers: int = 0, + device: Optional[Union[str, torch.device, list]] = None, + saving_path: str = None, + model_saving_strategy: Optional[str] = "best", + verbose: bool = True, ): super().__init__( batch_size, @@ -119,12 +119,7 @@ def __init__( self.n_fod = n_fod # set up the model - self.model = _TEFN( - n_steps, - n_features, - n_fod, - self.apply_nonstationary_norm - ) + self.model = _TEFN(n_steps, n_features, n_fod, self.apply_nonstationary_norm) self._send_model_to_given_device() self._print_model_size() @@ -164,10 +159,10 @@ def _assemble_input_for_testing(self, data: list) -> dict: return inputs def fit( - self, - train_set: Union[dict, str], - val_set: Optional[Union[dict, str]] = None, - file_type: str = "hdf5", + self, + train_set: Union[dict, str], + val_set: Optional[Union[dict, str]] = None, + file_type: str = "hdf5", ) -> None: # Step 1: wrap the input data with classes Dataset and DataLoader training_set = DatasetForTEFN( @@ -202,9 +197,9 @@ def fit( self._auto_save_model_if_necessary(confirm_saving=True) def predict( - self, - test_set: Union[dict, str], - file_type: str = "hdf5", + self, + test_set: Union[dict, str], + file_type: str = "hdf5", ) -> dict: """Make predictions for the input data with the trained model. @@ -260,9 +255,9 @@ def predict( return result_dict def impute( - self, - test_set: Union[dict, str], - file_type: str = "hdf5", + self, + test_set: Union[dict, str], + file_type: str = "hdf5", ) -> np.ndarray: """Impute missing values in the given data with the trained model. diff --git a/pypots/nn/modules/tefn/backbone.py b/pypots/nn/modules/tefn/backbone.py index 78708a62..22dd7c88 100644 --- a/pypots/nn/modules/tefn/backbone.py +++ b/pypots/nn/modules/tefn/backbone.py @@ -1,22 +1,18 @@ """ """ + +# Created by Tianxiang Zhan +# License: BSD-3-Clause + import torch import torch.nn as nn from .layers import EvidenceMachineKernel -# Created by Tianxiang Zhan > -# License: BSD-3-Clause - - class BackboneTEFN(nn.Module): - - def __init__(self, - n_steps, - n_features, - n_fod): + def __init__(self, n_steps, n_features, n_fod): super().__init__() self.n_steps = n_steps @@ -28,5 +24,5 @@ def __init__(self, def forward(self, X) -> torch.Tensor: X = self.T_model(X.permute(0, 2, 1)).permute(0, 2, 1, 3) + self.C_model(X) - X = torch.einsum('btcf->btc', X) + X = torch.einsum("btcf->btc", X) return X diff --git a/pypots/nn/modules/tefn/layers.py b/pypots/nn/modules/tefn/layers.py index f0b8fa0f..5f2e5934 100644 --- a/pypots/nn/modules/tefn/layers.py +++ b/pypots/nn/modules/tefn/layers.py @@ -2,22 +2,21 @@ """ +# Created by Tianxiang Zhan +# License: BSD-3-Clause + import torch import torch.nn as nn -# Created by Tianxiang Zhan > -# License: BSD-3-Clause - - class EvidenceMachineKernel(nn.Module): def __init__(self, C, F): - super(EvidenceMachineKernel, self).__init__() + super().__init__() self.C = C - self.F = 2 ** F + self.F = 2**F self.C_weight = nn.Parameter(torch.randn(self.C, self.F)) self.C_bias = nn.Parameter(torch.randn(self.C, self.F)) def forward(self, x): - x = torch.einsum('btc,cf->btcf', x, self.C_weight) + self.C_bias + x = torch.einsum("btc,cf->btcf", x, self.C_weight) + self.C_bias return x