-
Notifications
You must be signed in to change notification settings - Fork 22
/
utils.py
180 lines (136 loc) · 5.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np
import cv2
import matplotlib.pyplot as plt
from settings import TITLE_TOP_LEFT_CORNER_WIDTH, TITLE_TOP_LEFT_CORNER_HEIGTH
from imutils import auto_canny
def order_points(pts):
"""4边形4点排序函数
Args:
pts ([type]): 4边形任意顺序的4个顶点
Returns:
[type]: 按照一定顺序的4个顶点
"""
rect = np.zeros((4, 2), dtype="float32") # 按照左上、右上、右下、左下顺序初始化坐标
s = pts.sum(axis=1) # 计算点xy的和
rect[0] = pts[np.argmin(s)] # 左上角的点的和最小
rect[2] = pts[np.argmax(s)] # 右下角的点的和最大
diff = np.diff(pts, axis=1) # 计算点xy之间的差
rect[1] = pts[np.argmin(diff)] # 右上角的差最小
rect[3] = pts[np.argmax(diff)] # 左下角的差最小
return rect # 返回4个顶点的顺序
def four_point_transform(image, pts):
"""4点变换
Args:
image ([type]): 原始图像
pts ([type]): 4个顶点
Returns:
[type]: 变换后的图像
"""
rect = order_points(pts) # 获得一致的顺序的点并分别解包他们
(tl, tr, br, bl) = rect
# 计算新图像的宽度(x)
widthA = np.sqrt(((br[0] - bl[0])**2) + ((br[1] - bl[1])**2)) # 右下和左下之间距离
widthB = np.sqrt(((tr[0] - tl[0])**2) + ((tr[1] - tl[1])**2)) # 右上和左上之间距离
maxWidth = max(int(widthA), int(widthB)) # 取大者
# 计算新图像的高度(y)
heightA = np.sqrt(((tr[0] - br[0])**2) + ((tr[1] - br[1])**2)) # 右上和右下之间距离
heightB = np.sqrt(((tl[0] - bl[0])**2) + ((tl[1] - bl[1])**2)) # 左上和左下之间距离
maxHeight = max(int(heightA), int(heightB))
# 有了新图像的尺寸, 构造透视变换后的顶点集合
dst = np.array(
[
[0, 0], # -------------------------左上
[maxWidth - 1, 0], # --------------右上
[maxWidth - 1, maxHeight - 1], # --右下
[0, maxHeight - 1]
], # ------------左下
dtype="float32")
M = cv2.getPerspectiveTransform(rect, dst) # 计算透视变换矩阵
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) # 执行透视变换
return warped # 返回透视变换后的图像
def sort_contours(cnts, method="left-to-right"):
"""轮廓排序
Args:
cnts ([type]): 轮廓
method (str, optional): 排序方式. Defaults to "left-to-right".
Returns:
[type]: 排序好的轮廓
"""
if cnts is None or len(cnts) == 0:
return [], []
# 初始化逆序标志和排序索引
reverse = False
i = 0
# 是否需逆序处理
if method == "right-to-left" or method == "bottom-to-top":
reverse = True
# 是否需要按照y坐标函数
if method == "top-to-bottom" or method == "bottom-to-top":
i = 1
# 构造包围框列表,并从上到下对它们进行排序
boundingBoxes = [cv2.boundingRect(c) for c in cnts]
(cnts, boundingBoxes) = zip(*sorted(
zip(cnts, boundingBoxes), key=lambda b: b[1][i], reverse=reverse))
# 返回已排序的轮廓线和边框列表
return cnts, boundingBoxes
def get_init_process_img(img_path):
"""
对图片进行初始化处理,包括灰度,高斯模糊,腐蚀,膨胀和边缘检测等
:param roi_img: ndarray
:return: ndarray
"""
image = cv2.imread(img_path)
# 转灰度
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 高斯模糊
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# 腐蚀erode与膨胀dilate
# kernel = np.ones((3, 3), np.uint8)
# blurred = cv2.erode(blurred, kernel, iterations=1) # 腐蚀
# blurred = cv2.dilate(blurred, kernel, iterations=2) # 膨胀
# blurred = cv2.erode(blurred, kernel, iterations=1) # 腐蚀
# blurred = cv2.dilate(blurred, kernel, iterations=2) # 膨胀
# 边缘检测
# edged = cv2.Canny(blurred, 75, 200)
edged = auto_canny(blurred)
return edged
def capture_img(origin_image_path, target_image_path, contour):
"""根据轮廓截取图片
Args:
origin_image_path ([type]): 原始图片路径
target_image_path ([type]): 目标图片路径
contour ([type]): 截取轮廓
Returns:
[type]: [description]
"""
# 根据轮廓或者坐标
x, y, w, h = cv2.boundingRect(contour)
# 截图
image = cv2.imread(origin_image_path)
cv2.imwrite(target_image_path, image[y:y + h, x:x + w])
def save_img_by_cnts(save_image_path, image_size, cnts):
"""通过提取的轮廓绘制图片并保存
Args:
save_image_path ([type]): 图片存储路径
image ([type]): 绘制的图片尺寸, 长与宽
cnts ([type]): 轮廓列表
"""
black_background = np.ones(image_size, np.uint8) * 0
cv2.drawContours(black_background, cnts, -1, (255, 255, 255), 2)
plt.figure(figsize=(10, 5))
plt.imshow(black_background)
plt.axis('off')
plt.savefig(save_image_path)
def ocr_single_line_img(image_path, ocr):
"""ocr识别图片
Args:
origin_image_path ([type]): 原始图片路径
ocr ([type]): ocr
Returns:
[type]: [description]
"""
image = cv2.imread(image_path)
res = ocr.ocr_for_single_line(image[0:TITLE_TOP_LEFT_CORNER_WIDTH, 0:TITLE_TOP_LEFT_CORNER_HEIGTH])
if len(res) > 0 and res[0] == '-':
res[0] = '一'
return res