Skip to content

Latest commit

 

History

History
14 lines (9 loc) · 1.93 KB

README.md

File metadata and controls

14 lines (9 loc) · 1.93 KB

Backtracking Algorithms

Backtracking is a general algorithm for finding all (or some) solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution. The backtracking algorithm enumerates a set of partial candidates that, in principle, could be completed in various ways to give all the possible solutions to the given problem. The completion is done incrementally, by a sequence of candidate extension steps.

Conceptually, the partial candidates are represented as the nodes of a tree structure, the potential search tree. Each partial candidate is the parent of the candidates that differ from it by a single extension step; the leaves of the tree are the partial candidates that cannot be extended any further.

The backtracking algorithm traverses this search tree recursively, from the root down, in depth-first order. At each node c, the algorithm checks whether c can be completed to a valid solution. If it cannot, the whole sub-tree rooted at c is skipped (pruned). Otherwise, the algorithm (1) checks whether c itself is a valid solution, and if so reports it to the user; and (2) recursively enumerates all sub-trees of c. The two tests and the children of each node are defined by user-given procedures.

Therefore, the actual search tree that is traversed by the algorithm is only a part of the potential tree. The total cost of the algorithm is the number of nodes of the actual tree times the cost of obtaining and processing each node. This fact should be considered when choosing the potential search tree and implementing the pruning test.

Sudoku solved by backtracking

Further reading: Wikipedia