-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
246 lines (213 loc) · 9.92 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import nltk
import numpy as np
import string
import torch
from collections import defaultdict
from tqdm import tqdm
from scipy.stats import entropy
from sklearn.cross_decomposition import CCA
from sklearn.cluster import AffinityPropagation
from pytorch_pretrained_bert import BertTokenizer, BertForMaskedLM
from read_data import read_embedding
print('Initialize BERT vocabulary...')
bert_tokenizer = BertTokenizer(vocab_file='data/bert_models/bert-base-uncased-vocab.txt')
print('Initialize BERT model...')
bert_model = BertForMaskedLM.from_pretrained('data/bert_models/bert-base-uncased.tar.gz')
word_embedding = read_embedding('./data/glove.6B.50d.txt')
''' Module 1: Clustering '''
def extract_skip_grams(all_text, seed):
skip_grams = []
skip_n = 4
for i in tqdm(all_text):
temp = nltk.word_tokenize(i)
if seed not in temp:
continue
temp_index = temp.index(seed)
for l in range(2, skip_n):
skip_grams.append(' '.join(temp[max(0, temp_index-l): temp_index]) + ' [MASK] ' + ' '.join(temp[temp_index+1: temp_index+l+1]))
return skip_grams
def get_sentence_embedding(skip_grams):
sentence_embedding = []
for sg in skip_grams:
temp_embedding = np.array([1e-3 for i in range(50)])
for i in sg.split():
if i in nltk.corpus.stopwords.words('english'):
continue
if i in word_embedding:
temp_embedding += np.array(word_embedding[i])
# if np.linalg.norm(temp_embedding) != 0:
temp_embedding /= np.linalg.norm(temp_embedding)
sentence_embedding.append(temp_embedding)
return sentence_embedding
def clustering(text, text_embeddings, preference):
print('Start Clustering...')
clustering_labels = AffinityPropagation(preference=preference).fit_predict(text_embeddings)
clusters = defaultdict(list)
for idx, label in enumerate(clustering_labels):
clusters[label].append(text[idx])
to_delete = [i for i in clusters if len(clusters[i]) <= 10]
for i in to_delete:
del clusters[i]
clusters = [clusters[x] for x in clusters]
return clusters
def get_cluster_skip_grams(clusters):
for i in range(len(clusters)):
temp_fq = defaultdict(int)
for w in clusters[i]:
temp_fq[w] += 1
temp_fq = [(i, temp_fq[i]) for i in sorted(temp_fq, key=lambda x: temp_fq[x], reverse=True)]
print(f'Cluster {i} ({len(temp_fq)}): ')
for j in temp_fq[:10]:
print('\t', end="")
print(j)
def clustering_skipgrams(seeds, all_text, preference):
""" Clustering the skip-grams of a list of words """
print('[utils.py] Clustering skip-grams...')
clusters_all = []
for seed in seeds:
skip_grams = extract_skip_grams(all_text, seed)
if skip_grams == []:
print(seed + ' is not appeared in the corpus.')
continue
skip_gram_embeddings = get_sentence_embedding(skip_grams)
clusters = clustering(skip_grams, skip_gram_embeddings, preference=preference)
clusters_all.append(clusters)
get_cluster_skip_grams(clusters)
print()
return clusters_all
''' Module 2: Fusing Semantic Facets of Multiple Seeds '''
def fuse_clusters_all(clusters_all):
"""
Function:
1) Combine different skipgrams clusters of different seeds;
2) Denoise skipgrams for each cluster.
:param clusters_all: A list of (list of skipgram clusters), e.g. [[F1, F2, F3], [F2, F3, F4, F5]],
where F1 indicates a semantic facets, represented by a list of skip-grams.
:return: A list of skipgram clusters, e.g. [F2, F3]
"""
def evalClusterSim(set_a, set_b):
"""
:param set_a: set of skip-gram embeddings
:param set_b: set of skip-gram embeddings
:return: corr: scalar value quantifying the correlation between set_a and set_b
"""
def normVec(vecs):
norm_vecs = []
for vec in vecs:
n_vec = np.array(vec) / np.linalg.norm(vec)
norm_vecs.append(list(n_vec)[:])
return np.array(norm_vecs)
model = CCA(n_components=1)
arr_a = np.transpose(normVec(list(set_a))) # arr_a: dim, size_a
arr_b = np.transpose(normVec(list(set_b))) # arr_b: dim, size_b
model.fit(arr_a, arr_b)
sense_vec_a = np.dot(arr_a, model.x_weights_)
sense_vec_b = np.dot(arr_b, model.y_weights_)
corr = np.dot(sense_vec_a.reshape((-1,)), sense_vec_b.reshape((-1,)))
return corr
def softmax(a):
a = np.exp(a)
sum_a = np.sum(a)
return a / sum_a
def fuse(sgs_cluster_a, sgs_cluster_b, sgs_embeddings_cluster_a, sgs_embeddings_cluster_b, final_sgs_clusters, final_sgs_embeddings_clusters):
final_sgs_clusters.append(sgs_cluster_a + sgs_cluster_b)
final_sgs_embeddings_clusters.append(sgs_embeddings_cluster_a + sgs_embeddings_cluster_b)
return final_sgs_clusters, final_sgs_embeddings_clusters
def fuse_common_clusters_of_two(sgs_embeddings_clusters_a, sgs_embeddings_clusters_b, sgs_clusters_a, sgs_clusters_b):
final_sgs_clusters = []
final_sgs_embeddings_clusters = []
divergence = []
best_index = []
all_score = []
for i in range(len(sgs_embeddings_clusters_a)):
score = []
for j in range(len(sgs_embeddings_clusters_b)):
score.append(evalClusterSim(sgs_embeddings_clusters_a[i], sgs_embeddings_clusters_b[j]))
score = softmax(score)
all_score.append(score)
best_index.append(np.argmax(score))
print('the scores are: ')
print(score)
divergence.append(entropy(score, [1/float(len(score))] * len(score)))
print(divergence[i])
if divergence[i] > 0.25: # smaller value means closer to uniform
final_sgs_clusters, final_sgs_embeddings_clusters = fuse(sgs_clusters_a[i], sgs_clusters_b[best_index[i]], sgs_embeddings_clusters_a[i], sgs_embeddings_clusters_b[best_index[i]], final_sgs_clusters, final_sgs_embeddings_clusters)
# If there is no cluster.
if not final_sgs_clusters:
# Find the best match index
best_i_value = []
for i in all_score:
best_i_value.append(np.max(i))
i = np.argmax(best_i_value)
final_sgs_clusters, final_sgs_embeddings_clusters = fuse(sgs_clusters_a[i], sgs_clusters_b[best_index[i]],
sgs_embeddings_clusters_a[i],
sgs_embeddings_clusters_b[best_index[i]],
final_sgs_clusters, final_sgs_embeddings_clusters)
return final_sgs_clusters, final_sgs_embeddings_clusters
print('[utils.py] Fusing skip-gram clusters...')
if len(clusters_all) == 1:
print('[utils.py] After fusion, there are ' + str(len(clusters_all[0])) + ' skip-gram clusters.')
return clusters_all[0]
sgs_embeddings_clusters = [[get_sentence_embedding(i) for i in clusters] for clusters in clusters_all]
final_sgs_clusters = clusters_all[0]
final_sgs_embeddings_clusters = sgs_embeddings_clusters[0]
for num in range(1, len(clusters_all)):
final_sgs_clusters, final_sgs_embeddings_clusters = fuse_common_clusters_of_two(final_sgs_embeddings_clusters, sgs_embeddings_clusters[num], final_sgs_clusters, clusters_all[num])
print('[utils.py] After fusion, there are ' + str(len(final_sgs_clusters)) + ' skip-gram clusters.')
return final_sgs_clusters
''' Module 3: Entity Expansion by Masked Language Model (MLM) '''
def MLM(sgs, seeds):
def to_bert_input(tokens, bert_tokenizer):
token_idx = torch.tensor(bert_tokenizer.convert_tokens_to_ids(tokens))
sep_idx = tokens.index('[SEP]')
segment_idx = token_idx * 0
segment_idx[(sep_idx + 1):] = 1
mask = (token_idx != 0)
return token_idx.unsqueeze(0), segment_idx.unsqueeze(0), mask.unsqueeze(0)
def single_MLM(message):
MLM_k = 20
tokens = bert_tokenizer.tokenize(message)
if len(tokens) == 0:
return []
if tokens[0] != CLS:
tokens = [CLS] + tokens
if tokens[-1] != SEP:
tokens.append(SEP)
token_idx, segment_idx, mask = to_bert_input(tokens, bert_tokenizer)
with torch.no_grad():
logits = bert_model(token_idx, segment_idx, mask, masked_lm_labels=None)
logits = logits.squeeze(0)
probs = torch.softmax(logits, dim=-1)
for idx, token in enumerate(tokens):
if token == MASK:
topk_prob, topk_indices = torch.topk(probs[idx, :], MLM_k)
topk_tokens = bert_tokenizer.convert_ids_to_tokens(topk_indices.cpu().numpy())
out = [[topk_tokens[i], float(topk_prob[i])] for i in range(MLM_k)]
return out
PAD, MASK, CLS, SEP = '[PAD]', '[MASK]', '[CLS]', '[SEP]'
MLM_score = defaultdict(float)
for sgs_i in tqdm(sgs):
top_words = single_MLM(sgs_i)
skip = 1
for seed in seeds:
if seed in [x[0] for x in top_words]:
skip = 0
if skip == 1:
continue
for j in top_words:
if j[0] in string.punctuation:
continue
if j[0] in nltk.corpus.stopwords.words('english'):
continue
MLM_score[j[0]] += j[1]
out = sorted(MLM_score, key=lambda x: MLM_score[x], reverse=True)
out_tuple = [[x, MLM_score[x]] for x in out]
return out, out_tuple
def entity_expansion(clusters, seeds):
""" Get words that fit in the cluster skip-grams well. """
print('[utils.py] Entity Expansion ...')
print(seeds)
for i in range(len(clusters)):
top_words, top_words_tuple = MLM(clusters[i], seeds)
print(f'Cluster {i}: ', end="")
print(top_words[:50])