We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
这部分代码片段中,sigmoid()连续使用了2次,似乎存在容易,其他二值图像分割模型的测试代码大多只使用一次sigmoid(),这里您使用两次是特意使用的一个trick还是属于疏忽的错误? res, _, _ = model(image) res = torch.sigmoid(res) res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False) res = res.sigmoid().data.cpu() res = res.numpy().squeeze() res = (res - res.min()) / (res.max() - res.min() + 1e-8) res = (res * 255).astype(np.uint8)
res, _, _ = model(image) res = torch.sigmoid(res) res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False) res = res.sigmoid().data.cpu() res = res.numpy().squeeze() res = (res - res.min()) / (res.max() - res.min() + 1e-8) res = (res * 255).astype(np.uint8)
The text was updated successfully, but these errors were encountered:
Hi, thank you for the correction. This is a mistake, but its impact on the quantitative result is very small. We have updated the correct code.
Sorry, something went wrong.
No branches or pull requests
这部分代码片段中,sigmoid()连续使用了2次,似乎存在容易,其他二值图像分割模型的测试代码大多只使用一次sigmoid(),这里您使用两次是特意使用的一个trick还是属于疏忽的错误?
res, _, _ = model(image) res = torch.sigmoid(res) res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False) res = res.sigmoid().data.cpu() res = res.numpy().squeeze() res = (res - res.min()) / (res.max() - res.min() + 1e-8) res = (res * 255).astype(np.uint8)
The text was updated successfully, but these errors were encountered: