forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
70 lines (69 loc) · 2.55 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
Collections:
- Name: Res2Net
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- Batch Normalization
- Convolution
- Global Average Pooling
- ReLU
- Res2Net Block
Paper:
Title: 'Res2Net: A New Multi-scale Backbone Architecture'
URL: https://arxiv.org/abs/1904.01169
README: configs/res2net/README.md
Code:
URL: https://github.com/open-mmlab/mmpretrain/blob/v0.17.0/mmcls/models/backbones/res2net.py
Version: v0.17.0
Models:
- Name: res2net50-w14-s8_3rdparty_8xb32_in1k
Metadata:
FLOPs: 4220000000
Parameters: 25060000
In Collection: Res2Net
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.14
Top 5 Accuracy: 93.85
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w14-s8_3rdparty_8xb32_in1k_20210927-bc967bf1.pth
Converted From:
Weights: https://1drv.ms/u/s!AkxDDnOtroRPdOTqhF8ne_aakDI?e=EVb8Ri
Code: https://github.com/Res2Net/Res2Net-PretrainedModels/blob/master/res2net.py#L221
Config: configs/res2net/res2net50-w14-s8_8xb32_in1k.py
- Name: res2net50-w26-s8_3rdparty_8xb32_in1k
Metadata:
FLOPs: 8390000000
Parameters: 48400000
In Collection: Res2Net
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 79.20
Top 5 Accuracy: 94.36
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w26-s8_3rdparty_8xb32_in1k_20210927-f547a94b.pth
Converted From:
Weights: https://1drv.ms/u/s!AkxDDnOtroRPdTrAd_Afzc26Z7Q?e=slYqsR
Code: https://github.com/Res2Net/Res2Net-PretrainedModels/blob/master/res2net.py#L201
Config: configs/res2net/res2net50-w26-s8_8xb32_in1k.py
- Name: res2net101-w26-s4_3rdparty_8xb32_in1k
Metadata:
FLOPs: 8120000000
Parameters: 45210000
In Collection: Res2Net
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 79.19
Top 5 Accuracy: 94.44
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/res2net/res2net101-w26-s4_3rdparty_8xb32_in1k_20210927-870b6c36.pth
Converted From:
Weights: https://1drv.ms/u/s!AkxDDnOtroRPcJRgTLkahL0cFYw?e=nwbnic
Code: https://github.com/Res2Net/Res2Net-PretrainedModels/blob/master/res2net.py#L181
Config: configs/res2net/res2net101-w26-s4_8xb32_in1k.py