forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbarlowtwins_resnet50_8xb256-coslr-1000e_in1k.py
70 lines (65 loc) · 1.92 KB
/
barlowtwins_resnet50_8xb256-coslr-1000e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
_base_ = [
'../_base_/datasets/imagenet_bs32_byol.py',
'../_base_/default_runtime.py',
]
# datasets
train_dataloader = dict(batch_size=256)
# model settings
model = dict(
type='BarlowTwins',
backbone=dict(
type='ResNet',
depth=50,
norm_cfg=dict(type='SyncBN'),
zero_init_residual=True),
neck=dict(
type='NonLinearNeck',
in_channels=2048,
hid_channels=8192,
out_channels=8192,
num_layers=3,
with_last_bn=False,
with_last_bn_affine=False,
with_avg_pool=True,
init_cfg=dict(
type='Kaiming', distribution='uniform', layer=['Linear'])),
head=dict(
type='LatentCrossCorrelationHead',
in_channels=8192,
loss=dict(type='CrossCorrelationLoss')))
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='LARS', lr=1.6, momentum=0.9, weight_decay=1e-6),
paramwise_cfg=dict(
custom_keys={
'bn': dict(decay_mult=0, lr_mult=0.024, lars_exclude=True),
'bias': dict(decay_mult=0, lr_mult=0.024, lars_exclude=True),
# bn layer in ResNet block downsample module
'downsample.1': dict(
decay_mult=0, lr_mult=0.024, lars_exclude=True),
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.6e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=990,
eta_min=0.0016,
by_epoch=True,
begin=10,
end=1000,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1000)
default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=2048)