-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRF.py
200 lines (161 loc) · 6.83 KB
/
RF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn import metrics
from sklearn.metrics import precision_recall_fscore_support
from numpy import savetxt
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
import seaborn as sns
def readData(filename):
"read data from resistome"
#'resistome.type.rf.data.txt'
data = pd.read_csv(filename, sep ='\\\t')
# data = data.drop(['SampleID'],axis=1)
grp = pd.unique(data['EnvSeason'])
X = data[data.columns[2:]]
label = data[data.columns[1]]
return grp,X, label
def clf_model():
#'criterion': 'entropy', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_leaf': 1,
# 'min_samples_split': 10, 'n_estimators': 20
clf = RandomForestClassifier(
n_estimators=20,
criterion='entropy',
max_depth=30,
max_features='sqrt',
min_samples_split=5,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
bootstrap=True,
oob_score=False,
n_jobs=-1,
random_state=0,
verbose=0,
warm_start=False,
class_weight='balanced'
)
return clf
def main():
grp, X, label = readData('ML.table.txt')
clf = clf_model()
X_train,X_test,y_train,y_test = train_test_split(X, label, test_size=0.2, random_state=42)
Mtrcs = []
#set each env as positive label in turn
Mtrcs_t = []
colornames = ["red","blue","yellow","green"]
for (g,colorname) in zip(grp,colornames):
y = np.zeros(y_train.shape)
y[y_train!=g] = 0
y[y_train==g] = 1
y = np.array(y, dtype=int)
y_t = np.zeros(y_test.shape)
y_t[y_test!=g] = 0
y_t[y_test==g] = 1
y_t = np.array(y_t, dtype=int)
#cross validation
cv = StratifiedKFold(n_splits=5, random_state=123, shuffle=True)
Pred = []
Pred_p = []
Real = []
Mtrcs_each_g = []
Test_Pred = []
Test_Pred_p = []
Test_Real = []
Test_Mtrcs_each_g = []
for (Train, Valid), i in zip(cv.split(X_train, y), range(5)):
clf.fit(X_train.iloc[Train], y[Train])
y_pred = clf.predict(X_train.iloc[Valid])
y_pred_proba = clf.predict_proba(X_train.iloc[Valid])
mtrcs = precision_recall_fscore_support(y[Valid], y_pred,pos_label=1,average='macro')
acc = accuracy_score(y[Valid], y_pred)
Mtrcs_each_g.append([acc]+list(mtrcs[:-1]))
Pred = Pred + y_pred.tolist()
Pred_p = Pred_p + y_pred_proba.tolist()
Real = Real + y[Valid].tolist()
Test_y_pred = clf.predict(X_test)
Test_y_pred_proba = clf.predict_proba(X_test)
mtrcs_t = precision_recall_fscore_support(y_t, Test_y_pred, pos_label=1, average='macro')
acc_t = accuracy_score(y_t, Test_y_pred)
Test_Mtrcs_each_g.append([acc_t] + list(mtrcs_t[:-1]))
Test_Pred = Test_Pred + Test_y_pred.tolist()
Test_Pred_p = Test_Pred_p + Test_y_pred_proba.tolist()
Test_Real = Test_Real + y_t.tolist()
Mtrcs.append(Mtrcs_each_g)
# Pred = np.asarray(Pred)
Real = np.asarray(Real)
Pred_p = np.asarray(Pred_p)
cm = confusion_matrix(Real, Pred)
print("{}:".format(g), cm)
Mtrcs_t.append(Test_Mtrcs_each_g)
Test_Real = np.asarray(Test_Real)
Test_Pred_p = np.asarray(Test_Pred_p)
# #ROC plot for each env
# metrics.RocCurveDisplay.from_predictions(
# Real,
# Pred_p[:,1],
# name=f"{g} vs the rest1",
# color="darkorange",
# )
#
# plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
# plt.axis("square")
# plt.xlabel("False Positive Rate")
# plt.ylabel("True Positive Rate")
# plt.title(f"One-vs-Rest ROC curves:\n{g} vs (Other groups)")
# plt.legend()
# # plt.savefig(f"RF_ROC_figure/12/{g}_ROC_12.png",dpi=600)
# plt.show()
# Plot the confusion matrix.
# sns.heatmap(cm,
# annot=True,
# fmt='g',
# xticklabels=['Not {}'.format(g), '{}'.format(g)],
# yticklabels=['Not {}'.format(g), '{}'.format(g)])
# plt.ylabel('Predicted Label', fontsize=13)
# plt.xlabel('Actual Label', fontsize=13)
# plt.title('Confusion Matrix of {}'.format(g), fontsize=17)
# plt.savefig("confusion_matrix_{}_plot.pdf".format(g))
# acc = accuracy_score(Real, Pred)
# # plt.text(1, 1, "Accuracy: {:.2f}".format(acc), ha="center")
# plt.show()
#ROC plot for all envs
fpr, tpr,thresholds = metrics.roc_curve(Test_Real,Test_Pred_p[:,1], pos_label =1)
plt.plot(fpr, tpr, lw =2, label = '{}(AUC={:.3f})'.format(g,metrics.auc(fpr,tpr)),
color=colorname )
plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
plt.axis('square')
plt.xlim([-0.01,1.02])
plt.ylim([-0.01,1.02])
plt.xlabel("False Positive Rate",fontsize=14)
plt.ylabel("True Positive Rate",fontsize=14)
plt.title("ROC Curve",fontsize=14)
plt.legend(loc='lower right',fontsize=9)
plt.savefig("./ML_Air_Swab_Sum_Win/RF/ROC_curve.pdf", dpi=600)
plt.show()
# # feature importance for each env
# ft = clf.feature_importances_
# ft_pandas = pd.DataFrame(ft, index=list(X.columns.values),columns=["feature importance"])
# ft_pandas.to_csv(f'RF_Feature importance/12/{g}_feature_rank_12.csv')
#save envaluation metrics for each env
# Mtrcs = np.asarray(Mtrcs)
# final_score = np.mean(Mtrcs,1)
# # final_score_std = np.std(Mtrcs,1)
# panda_Mtrcs = pd.DataFrame(data = final_score, index=grp.tolist(),
# columns = ["Accuracy","Precision","Recall", "F1score"])
# panda_Mtrcs.to_csv('./Air_Swab_Sum_Win/RF_Precision_Recall_F1.csv')
Mtrcs_t = np.asarray(Mtrcs_t)
final_score_test = np.mean(Mtrcs_t,1)
# final_score_std = np.std(Mtrcs,1)
panda_Mtrcs_test = pd.DataFrame(data = final_score_test, index=grp.tolist(),
columns = ["Accuracy","Precision","Recall", "F1score"])
panda_Mtrcs_test.to_csv('./ML_Air_Swab_Sum_Win/RF/RF_Precision_Recall_F1_test.csv')
if __name__ == "__main__":
main()
print('end')