-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLP.py
214 lines (169 loc) · 7.71 KB
/
MLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
from sklearn import metrics
import shap
import pickle
from sklearn.preprocessing import StandardScaler
def readData(filename):
"read data from resistome"
#'resistome.type.rf.data.txt'
data = pd.read_csv(filename, sep ='\\\t')
# data = data.drop(['SampleID'],axis=1)
grp = pd.unique(data['EnvSeason'])
X = data[data.columns[2:]]
label = data[data.columns[1]]
return grp,X, label
def clf_model():
# {'activation': 'tanh', 'alpha': 0.01, 'hidden_layer_sizes': (100,), 'learning_rate_init': 0.1}
clf = MLPClassifier(activation="identity",solver='lbfgs',alpha=0.01,learning_rate_init=0.01,
hidden_layer_sizes=(100,50,25 ), max_iter=2000,
random_state=42)
# clf = MLPClassifier(activation="relu",solver='lbfgs',alpha=0.01,learning_rate_init=0.01,
# hidden_layer_sizes=(100,), max_iter=2000,
# random_state=42)
# clf = MLPClassifier(hidden_layer_sizes=(100,), max_iter=2000, random_state=42)
return clf
def main():
grp, X, label = readData('ML.table.txt')
clf = clf_model()
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_scaled = pd.DataFrame(X_scaled,columns=X.columns)
X_train,X_test,y_train,y_test = train_test_split(X_scaled, label, test_size=0.2, random_state=42)
Mtrcs = []
#set each env as positive label in turn
Mtrcs_t = []
colornames = ["red","blue","yellow","green"]
for (g,colorname) in zip(grp,colornames):
y = np.zeros(y_train.shape)
y[y_train!=g] = 0
y[y_train==g] = 1
y = np.array(y, dtype=int)
y_t = np.zeros(y_test.shape)
y_t[y_test!=g] = 0
y_t[y_test==g] = 1
y_t = np.array(y_t, dtype=int)
#cross validation
cv = StratifiedKFold(n_splits=5, random_state=123, shuffle=True)
Pred = []
Pred_p = []
Real = []
Mtrcs_each_g = []
Test_Pred = []
Test_Pred_p = []
Test_Real = []
Test_Mtrcs_each_g = []
best =0
for (Train, Valid), i in zip(cv.split(X_train, y), range(5)):
model = clf.fit(X_train.iloc[Train], y[Train])
y_pred = clf.predict(X_train.iloc[Valid])
y_pred_proba = clf.predict_proba(X_train.iloc[Valid])
mtrcs = precision_recall_fscore_support(y[Valid], y_pred,pos_label=1,average='macro')
acc = accuracy_score(y[Valid], y_pred)
Mtrcs_each_g.append([acc]+list(mtrcs[:-1]))
Pred = Pred + y_pred.tolist()
Pred_p = Pred_p + y_pred_proba.tolist()
Real = Real + y[Valid].tolist()
Test_y_pred = clf.predict(X_test)
Test_y_pred_proba = clf.predict_proba(X_test)
mtrcs_t = precision_recall_fscore_support(y_t, Test_y_pred, pos_label=1, average='macro')
acc_t = accuracy_score(y_t, Test_y_pred)
if acc_t>best:
best = acc_t
with open('./ML_Air_Swab_Sum_Win/MLP/best_model_{}.pkl'.format(g), 'wb') as file:
pickle.dump(model, file)
Test_Mtrcs_each_g.append([acc_t] + list(mtrcs_t[:-1]))
Test_Pred = Test_Pred + Test_y_pred.tolist()
Test_Pred_p = Test_Pred_p + Test_y_pred_proba.tolist()
Test_Real = Test_Real + y_t.tolist()
Mtrcs.append(Mtrcs_each_g)
# Pred = np.asarray(Pred)
Real = np.asarray(Real)
Pred_p = np.asarray(Pred_p)
cm = confusion_matrix(Real, Pred)
print("{}:".format(g), cm)
Mtrcs_t.append(Test_Mtrcs_each_g)
Test_Real = np.asarray(Test_Real)
Test_Pred_p = np.asarray(Test_Pred_p)
# with open('./ML_Air_Swab_Sum_Win/MLP/best_model_{}.pkl'.format(g), 'rb') as file:
# model = pickle.load(file)
# def f(x):
# return model.fit(X_train.iloc[Train], y[Train]).predict_proba(x)[:, 1]
#
# explainer = shap.Explainer(f, X_train)
# shap_values = explainer(X_test)
# shap.summary_plot(shap_values, X_test)
# plt.savefig('./ML_Air_Swab_Sum_Win/MLP/{}_shap_summary_plot.pdf'.format(g)) # Saves the current figure
# plt.close()
#
# #ROC plot for each env
# metrics.RocCurveDisplay.from_predictions(
# Real,
# Pred_p[:,1],
# name=f"{g} vs the rest1",
# color="darkorange",
# )
#
# plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
# plt.axis("square")
# plt.xlabel("False Positive Rate")
# plt.ylabel("True Positive Rate")
# plt.title(f"One-vs-Rest ROC curves:\n{g} vs (Other groups)")
# plt.legend()
# # plt.savefig(f"RF_ROC_figure/12/{g}_ROC_12.png",dpi=600)
# plt.show()
# Plot the confusion matrix.
# sns.heatmap(cm,
# annot=True,
# fmt='g',
# xticklabels=['Not {}'.format(g), '{}'.format(g)],
# yticklabels=['Not {}'.format(g), '{}'.format(g)])
# plt.ylabel('Predicted Label', fontsize=13)
# plt.xlabel('Actual Label', fontsize=13)
# plt.title('Confusion Matrix of {}'.format(g), fontsize=17)
# plt.savefig("confusion_matrix_{}_plot.pdf".format(g))
# acc = accuracy_score(Real, Pred)
# # plt.text(1, 1, "Accuracy: {:.2f}".format(acc), ha="center")
# plt.show()
#ROC plot for all envs
fpr, tpr,thresholds = metrics.roc_curve(Test_Real,Test_Pred_p[:,1], pos_label =1)
plt.plot(fpr, tpr, lw =2, label = '{}(AUC={:.3f})'.format(g,metrics.auc(fpr,tpr)),
color=colorname )
plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
plt.axis('square')
plt.xlim([-0.01,1.02])
plt.ylim([-0.01,1.02])
plt.xlabel("False Positive Rate",fontsize=14)
plt.ylabel("True Positive Rate",fontsize=14)
plt.title("ROC Curve",fontsize=14)
plt.legend(loc='lower right',fontsize=9)
plt.savefig("./ML_Air_Swab_Sum_Win/MLP/ROC_curve.pdf", dpi=600)
plt.show()
# # feature importance for each env
# ft = clf.feature_importances_
# ft_pandas = pd.DataFrame(ft, index=list(X.columns.values),columns=["feature importance"])
# ft_pandas.to_csv(f'RF_Feature importance/12/{g}_feature_rank_12.csv')
#save envaluation metrics for each env
# Mtrcs = np.asarray(Mtrcs)
# final_score = np.mean(Mtrcs,1)
# # final_score_std = np.std(Mtrcs,1)
# panda_Mtrcs = pd.DataFrame(data = final_score, index=grp.tolist(),
# columns = ["Accuracy","Precision","Recall", "F1score"])
# panda_Mtrcs.to_csv('./Air_Swab_Sum_Win/RF_Precision_Recall_F1.csv')
Mtrcs_t = np.asarray(Mtrcs_t)
final_score_test = np.mean(Mtrcs_t,1)
# final_score_std = np.std(Mtrcs,1)
panda_Mtrcs_test = pd.DataFrame(data = final_score_test, index=grp.tolist(),
columns = ["Accuracy","Precision","Recall", "F1score"])
panda_Mtrcs_test.to_csv('./ML_Air_Swab_Sum_Win/MLP/MLP_Precision_Recall_F1_test.csv')
if __name__ == "__main__":
main()
print('end')