diff --git a/.editorconfig b/.editorconfig new file mode 100644 index 0000000..0776c14 --- /dev/null +++ b/.editorconfig @@ -0,0 +1,15 @@ +root = true + +[*.py] +charset = utf-8 +trim_trailing_whitespace = true +end_of_line = lf +insert_final_newline = true +indent_style = space +indent_size = 4 + +[*.md] +trim_trailing_whitespace = false + +[*.yaml] +indent_size = 2 diff --git a/.github/workflows/pre-commit.yaml b/.github/workflows/pre-commit.yaml new file mode 100644 index 0000000..1790b3e --- /dev/null +++ b/.github/workflows/pre-commit.yaml @@ -0,0 +1,22 @@ +name: pre-commit +on: [push, pull_request] + +concurrency: + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: true + +jobs: + pre-commit: + runs-on: ubuntu-22.04 + steps: + - uses: actions/checkout@v3 + - name: Set up Python 3.8 + uses: actions/setup-python@v4 + with: + python-version: '3.8' + - name: Install pre-commit + run: | + pip install pre-commit + pre-commit install + - name: Run pre-commit + run: pre-commit run --all-files diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..c0cb4bf --- /dev/null +++ b/.gitignore @@ -0,0 +1,198 @@ +# Created by https://www.toptal.com/developers/gitignore/api/python +# Edit at https://www.toptal.com/developers/gitignore?templates=python + +### Python ### +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Slurm logs +slurm* +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# poetry +# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. +# This is especially recommended for binary packages to ensure reproducibility, and is more +# commonly ignored for libraries. +# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control +#poetry.lock + +# pdm +# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. +#pdm.lock +# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it +# in version control. +# https://pdm.fming.dev/#use-with-ide +.pdm.toml + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + +# PyCharm +# JetBrains specific template is maintained in a separate JetBrains.gitignore that can +# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore +# and can be added to the global gitignore or merged into this file. For a more nuclear +# option (not recommended) you can uncomment the following to ignore the entire idea folder. +#.idea/ + +### Python Patch ### +# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration +poetry.toml + +# ruff +.ruff_cache/ + +# LSP config files +pyrightconfig.json + +# End of https://www.toptal.com/developers/gitignore/api/python + +.vscode/ +.threestudio_cache/ +outputs/ +outputs-gradio/ + +# pretrained model weights +*.ckpt +*.pt +*.pth + +# wandb +wandb/ + +# vscode +.code-workspace + +# custom/* + +load/tets/256_tets.npz diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 0000000..4687d3c --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,34 @@ +default_language_version: + python: python3 + +repos: + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.4.0 + hooks: + - id: trailing-whitespace + - id: check-ast + - id: check-merge-conflict + - id: check-yaml + - id: end-of-file-fixer + - id: trailing-whitespace + args: [--markdown-linebreak-ext=md] + + - repo: https://github.com/psf/black + rev: 23.3.0 + hooks: + - id: black + language_version: python3 + + - repo: https://github.com/pycqa/isort + rev: 5.12.0 + hooks: + - id: isort + exclude: README.md + args: ["--profile", "black"] + + # temporarily disable static type checking + # - repo: https://github.com/pre-commit/mirrors-mypy + # rev: v1.2.0 + # hooks: + # - id: mypy + # args: ["--ignore-missing-imports", "--scripts-are-modules", "--pretty"] diff --git a/.pylintrc b/.pylintrc new file mode 100644 index 0000000..9580ea5 --- /dev/null +++ b/.pylintrc @@ -0,0 +1,7 @@ +disable=R,C + +[TYPECHECK] +# List of members which are set dynamically and missed by pylint inference +# system, and so shouldn't trigger E1101 when accessed. Python regular +# expressions are accepted. +generated-members=numpy.*,torch.*,cv2.* diff --git a/2dplayground.ipynb b/2dplayground.ipynb new file mode 100644 index 0000000..7cc97d9 --- /dev/null +++ b/2dplayground.ipynb @@ -0,0 +1,308 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Generate 2D Images using SDS\n", + "\n", + "This notebook demonstrates how to generate 2D images using SDS. It is a good way to test the guidance techniques." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import math\n", + "from tqdm import tqdm\n", + "import numpy as np\n", + "import random\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "from torch.optim.lr_scheduler import LambdaLR\n", + "import threestudio\n", + "import gc\n", + "import time\n", + "import io\n", + "\n", + "import matplotlib.pyplot as plt\n", + "from ipywidgets import interact, IntSlider, Output\n", + "from IPython.display import display, clear_output\n", + "from PIL import Image\n", + "\n", + "def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles: float = 0.5):\n", + "\n", + " def lr_lambda(current_step):\n", + " if current_step < num_warmup_steps:\n", + " return float(current_step) / float(max(1, num_warmup_steps))\n", + " progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))\n", + " return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))\n", + "\n", + " return LambdaLR(optimizer, lr_lambda, -1)\n", + "\n", + "def seed_everything(seed):\n", + " random.seed(seed)\n", + " os.environ['PYTHONHASHSEED'] = str(seed)\n", + " np.random.seed(seed)\n", + " torch.manual_seed(seed)\n", + " torch.cuda.manual_seed(seed)\n", + " \n", + "# To specify the gpu you want to use, we recommend to start the jupyter server with CUDA_VISIBLE_DEVICES=.\n", + "# threestudio.utils.base.get_device = lambda: torch.device('cuda:0') # hack the cuda device" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "prompt = \"An astronaut riding a horse in space\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# stable diffusion \n", + "config = {\n", + " 'max_iters': 1000,\n", + " 'seed': 42,\n", + " 'scheduler': 'cosine',\n", + " 'mode': 'latent',\n", + " 'prompt_processor_type': 'stable-diffusion-prompt-processor',\n", + " 'prompt_processor': {\n", + " 'prompt': prompt,\n", + " },\n", + " 'guidance_type': 'stable-diffusion-guidance',\n", + " 'guidance': {\n", + " 'half_precision_weights': False,\n", + " 'guidance_scale': 100.,\n", + " 'pretrained_model_name_or_path': 'runwayml/stable-diffusion-v1-5',\n", + " 'grad_clip': None,\n", + " 'view_dependent_prompting': False,\n", + " },\n", + " 'image': {\n", + " 'width': 64,\n", + " 'height': 64,\n", + " }\n", + "}\n", + "\n", + "# deepfloyd\n", + "\n", + "# config = {\n", + "# 'max_iters': 1000,\n", + "# 'seed': 42,\n", + "# 'scheduler': 'cosine',\n", + "# 'mode': 'rgb', # deepfloyd does not support latent optimization\n", + "# 'prompt_processor_type': 'deep-floyd-prompt-processor',\n", + "# 'prompt_processor': {\n", + "# 'prompt': prompt,\n", + "# },\n", + "# 'guidance_type': 'deep-floyd-guidance',\n", + "# 'guidance': {\n", + "# 'half_precision_weights': True,\n", + "# 'guidance_scale': 7.,\n", + "# 'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0',\n", + "# 'grad_clip': None,\n", + "# \"view_dependent_prompting\": False,\n", + "# },\n", + "# 'image': {\n", + "# 'width': 64,\n", + "# 'height': 64,\n", + "# }\n", + "# }\n", + "\n", + "seed_everything(config['seed'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# just need to rerun the cell when you change guidance or prompt_processor\n", + "guidance = None\n", + "prompt_processor = None\n", + "gc.collect()\n", + "with torch.no_grad():\n", + " torch.cuda.empty_cache()\n", + "\n", + "guidance = threestudio.find(config['guidance_type'])(config['guidance'])\n", + "prompt_processor = threestudio.find(config['prompt_processor_type'])(config['prompt_processor'])\n", + "prompt_processor.configure_text_encoder()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def figure2image(fig):\n", + " buf = io.BytesIO()\n", + " fig.savefig(buf)\n", + " buf.seek(0)\n", + " img = Image.open(buf)\n", + " return img\n", + "\n", + "def configure_other_guidance_params_manually(guidance, config):\n", + " # avoid reloading guidance every time change these params\n", + " guidance.cfg.grad_clip = config['guidance']['grad_clip']\n", + " guidance.cfg.guidance_scale = config['guidance']['guidance_scale']\n", + "\n", + "def run(config):\n", + " # clear gpu memory\n", + " rgb = None\n", + " grad = None\n", + " vis_grad = None\n", + " vis_grad_norm = None\n", + " loss = None\n", + " optimizer = None\n", + " target = None\n", + "\n", + " gc.collect()\n", + " with torch.no_grad():\n", + " torch.cuda.empty_cache()\n", + " \n", + " configure_other_guidance_params_manually(guidance, config)\n", + "\n", + " mode = config['mode']\n", + " \n", + " w, h = config['image']['width'], config['image']['height']\n", + " if mode == 'rgb':\n", + " target = nn.Parameter(torch.rand(1, h, w, 3, device=guidance.device))\n", + " else:\n", + " target = nn.Parameter(torch.randn(1, h, w, 4, device=guidance.device))\n", + "\n", + " optimizer = torch.optim.AdamW([target], lr=1e-1, weight_decay=0)\n", + " num_steps = config['max_iters']\n", + " scheduler = get_cosine_schedule_with_warmup(optimizer, 100, int(num_steps*1.5)) if config['scheduler'] == 'cosine' else None\n", + "\n", + " rgb = None\n", + " plt.axis('off')\n", + "\n", + " img_array = []\n", + "\n", + " try:\n", + " for step in tqdm(range(num_steps + 1)):\n", + " optimizer.zero_grad()\n", + "\n", + " batch = {\n", + " 'elevation': torch.Tensor([0]),\n", + " 'azimuth': torch.Tensor([0]),\n", + " 'camera_distances': torch.Tensor([1]),\n", + " }\n", + "\n", + " loss = guidance(target, prompt_processor(), **batch, rgb_as_latents=(mode != 'rgb'))\n", + " loss['loss_sds'].backward()\n", + "\n", + " grad = target.grad\n", + " optimizer.step()\n", + " if scheduler is not None:\n", + " scheduler.step()\n", + " \n", + " guidance.update_step(epoch=0, global_step=step)\n", + "\n", + " if step % 5 == 0:\n", + " if mode == 'rgb':\n", + " rgb = target\n", + " vis_grad = grad[..., :3]\n", + " vis_grad_norm = grad.norm(dim=-1)\n", + " else:\n", + " rgb = guidance.decode_latents(target.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)\n", + " vis_grad = grad\n", + " vis_grad_norm = grad.norm(dim=-1)\n", + " \n", + " vis_grad_norm = vis_grad_norm / vis_grad_norm.max()\n", + " vis_grad = vis_grad / vis_grad.max()\n", + " img_rgb = rgb.clamp(0, 1).detach().squeeze(0).cpu().numpy()\n", + " img_grad = vis_grad.clamp(0, 1).detach().squeeze(0).cpu().numpy()\n", + " img_grad_norm = vis_grad_norm.clamp(0, 1).detach().squeeze(0).cpu().numpy()\n", + "\n", + " fig, ax = plt.subplots(1, 3, figsize=(15, 5))\n", + " ax[0].imshow(img_rgb)\n", + " ax[1].imshow(img_grad)\n", + " ax[2].imshow(img_grad_norm)\n", + " ax[0].axis('off')\n", + " ax[1].axis('off')\n", + " ax[2].axis('off')\n", + " clear_output(wait=True)\n", + " plt.show()\n", + " img_array.append(figure2image(fig))\n", + " except KeyboardInterrupt:\n", + " pass\n", + " finally:\n", + " # browse the result\n", + " print(\"Optimizing process:\")\n", + " images = img_array\n", + " \n", + " if len(images) > 0:\n", + " # Set up the widgets\n", + " slider = IntSlider(min=0, max=len(images)-1, step=1, value=1)\n", + " output = Output()\n", + "\n", + " def display_image(index):\n", + " with output:\n", + " output.clear_output(wait=True)\n", + " display(images[index])\n", + "\n", + " # Link the slider to the display function\n", + " interact(display_image, index=slider)\n", + "\n", + " # Display the widgets\n", + " # display(slider)\n", + " display(output)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "config['mode'] = 'latent'\n", + "run(config)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "config['mode'] = 'rgb'\n", + "run(config)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/CHANGELOG.md b/CHANGELOG.md new file mode 100644 index 0000000..edd3510 --- /dev/null +++ b/CHANGELOG.md @@ -0,0 +1,54 @@ +# Changelog + +All notable changes to this project will be documented in this file. + +The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), +and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). + +### Types of changes + +- `Added` for new features. +- `Changed` for changes in existing functionality. +- `Deprecated` for soon-to-be removed features. +- `Removed` for now removed features. +- `Fixed` for any bug fixes. +- `Security` in case of vulnerabilities. + +## [Unreleased] + +### Added + +- A simple jupyter notebook (#55). +- `sdf_bias` as an alternative way for SDF initialization in `implicit-volume` (#57). +- Automatically remove outliers with a small number of faces when extracting surfaces (#61). +- The implementation of ProlificDreamer (#74, #105). +- An experimental implementation of using Zero-1-to-3 for 3D generation from a single image (#71). +- Support mesh initialization for `implicit-sdf` (#90). +- Easy-to-use geometry conversion by `system.geometry_convert_from`. This is used in the Magic3D and ProlificDreamer system and may inspire applications connecting multiple systems/algorithms (#105). +- Support prompt debiasing and manual assignment of view-dependent prompts (#98). +- The implementation of Perp-Neg (#98). +- Support patch-based renderer (#154). +- Support 3D reconstruction from multi-view images and 3D editing based on InstructNeRF2NeRF/ControlNet (#119). +- Support NeuS/VolSDF volume renderer and the coarse stage of TextMesh (#162,#121). +- Gradio web interface (#183). + +### Changed + +- Remove `trainer` from the constructor arguments of prompt processors (#56). +- Use a reparametrization trick for the SDS loss (#57). +- Make Magic3D coarse stage use analytic normal and orientation loss. +- Move the logic of getting text embeddings according to camera settings from prompt processors to guidance (#77). +- Remove `from_coarse` from the Magic3D system. Use `system.geometry_convert_from` instead (#105). + +### Fixed + +- Fix errors caused by empty rays (#152). + +## [v0.1.0] + +### Added + +- Implementation of DreamFusion, Magic3D, SJC, Latent-NeRF and Sketch-Shape. +- Implementation of the geometry stage of Fantasia3D. +- Multi-GPU training support (#33). +- Mesh export, supporting obj with mtl and obj with vertex colors (#44). diff --git a/DOCUMENTATION.md b/DOCUMENTATION.md new file mode 100644 index 0000000..e006754 --- /dev/null +++ b/DOCUMENTATION.md @@ -0,0 +1,493 @@ +## Common Configurations + +| name | type | description | +| ------------- | ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| name | str | Name of the experiment. Default: "default" | +| description | str | Description of the experiment. Default: "" | +| tag | str | Tag of the experiment. Default: "" | +| seed | str | Global seed of the experiment. Used by `seed_everything` of PyTorch-Lightning. Default: 0 | +| use_timestamp | bool | Whether to use the current timestamp as the suffix of the tag. Default: True | +| timestamp | Optional[str] | The timestamp as the suffix of the tag. DO NOT set this manually. Default: None | +| exp_root_dir | str | The root directory for outputs of all the experiments. Default: "outputs" | +| exp_dir | str | The directory for outputs of the current experiment. DO NOT set this manually. It will be automatically set to `[exp_root_dir]/[name]`. | +| trial_name | str | Name of the trial. DO NOT set this manually. It will be automatically set to `[tag]@[timestamp]`. | +| trial_dir | str | The directory for outputs for the current trial. DO NOT set this manually. It will be automatically set to `[exp_root_dir]/[name]/[trial_name].` | +| resume | Optional[str] | The path to the checkpoint file to resume from. Default: None | +| data_type | str | Type of the data module used. See [here](https://github.com/threestudio-project/threestudio/blob/main/DOCUMENTATION.md#data) for supported data modules. Default: "" | +| data | dict | Configurations of the data module. Default: {} | +| system_type | str | Type of the system used. See [here](https://github.com/threestudio-project/threestudio/blob/main/DOCUMENTATION.md#systems) for supported systems. Default: "" | +| system | dict | Configurations of the system. Defaut: {} | +| trainer | dict | Configurations of PyTorch-Lightning Trainer. See https://lightning.ai/docs/pytorch/stable/common/trainer.html#trainer-class-api for supported arguments. Exceptions: `logger` and `callbacks` are set in `launch.py`. Default: {} | +| checkpoint | dict | Configurations of PyTorch-Lightning ModelCheckpoint callback, which defines when the checkpoint will be saved. See https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.callbacks.ModelCheckpoint.html#modelcheckpoint for supported arguments. Default: {} | + +## Data + +### random-camera-datamodule + +| name | type | description | +| ---------------------- | --------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| height | Union[int, List[int]] | Height of the rendered image in training, should be an integer or a list of integers. If a list of integers, the training height will change according to `resolution_milestones`. Default: 64 | +| width | Union[int, List[int]] | Width of the rendered image in training, should be an integer or a list of integers. If a list of integers, the training width will change according to `resolution_milestones`. Default: 64 | +| batch_size | Union[int, List[int]] | Number of images per batch in training. If a list of integers, the batch_size will change according to `resolution_milestones`. Default: 1 | +| resolution_milestones | List[int] | The steps where the training resolution will change, must be in ascending order and in the length of `len(height) - 1`. Default: [] | +| eval_height | int | Height of the rendered image in validation/testing. Default: 512 | +| eval_width | int | Width of the rendered image in validation/testing. Default: 512 | +| eval_batch_size | int | Number of images per batch in validation/testing. DO NOT change this. Default: 1 | +| elevation_range | Tuple[float,float] | Camera elevation angle range to sample from in training, in degrees. Default: (-10,90) | +| azimuth_range | Tuple[float,float] | Camera azimuth angle range to sample from in training, in degrees. Default: (-180,180) | +| camera_distance_range | Tuple[float,float] | Camera distance range to sample from in training. Default: (1,1.5) | +| fovy_range | Tuple[float,float] | Camera field of view (FoV) range along the y direction (vertical direction) to sample from in training, in degrees. Default: (40,70) | +| camera_perturb | float | Random perturbation ratio for the sampled camera positions in training. The sampled camera positions will be perturbed by `N(0,1) * camera_perturb`. Default: 0.1 | +| center_perturb | float | Random perturbation ratio for the look-at point of the cameras in training. The look-at point wil be `N(0,1) * center_perturb`. Default: 0.2 | +| up_perturb | float | Random pertubation ratio for the up direction of the cameras in training. The up direction will be `[0,0,1] + N(0,1) * up_perturb`. Default: 0.02 | +| light_position_perturb | float | Used to get random light directions from camera positions, only used when `light_sample_strategy="dreamfusion"`. The camera positions will be perturbed by `N(0,1) * light_position_perturb`, then the perturbed positions are used to determine the light directions. Default: 1.0 | +| light_distance_range | Tuple[float,float] | Point light distance range to sample from in training. Default: (0.8,1.5) | +| eval_elevation_deg | float | Camera elevation angle in validation/testing, in degrees. Default: 150 | +| eval_camera_distance | float | Camera distance in validation/testing. Default: 15 | +| eval_fovy_deg | float | Camera field of view (FoV) along the y direction (vertical direction) in validation/testing, in degrees. Default: 70 | +| light_sample_strategy | str | Strategy to sample point light positions in training, in ["dreamfusion", "magic3d"]. "dreamfusion" uses strategy described in the DreamFusion paper; "magic3d" uses strategy decribed in the Magic3D paper. Default: "dreamfusion" | +| batch_uniform_azimuth | bool | Whether to ensure the uniformity of sampled azimuth angles in training as described in the Fantasia3D paper. If True, the `azimuth_range` is equally divided into `batch_size` bins and the azimuth angles are sampled from every bins. Default: True | +| progressive_until | int | Number of iterations until which to progressively (linearly) increase elevation_range and azimuth_range from [`eval_elevation_deg`, `eval_elevation_deg`] and `[0.0, 0.0]`, to those values specified in `elevation_range` and `azimuth_range`. 0 means the range does not linearly increase. Default: 0 | + +## Systems + +Systems contain implementation of training/validation/testing logic for different methods. + +**Common configurations for systems** + +| name | type | description | +| ----------------------------- | ------------------- | ---------------------------------------------------------------------------------------------------------------------------- | +| loss | dict | Dict that contains loss-related configurations. Default: {} | +| optimizer | dict | Optimizer configurations. Default: {} | +| scheduler | Optional[dict] | Learning rate scheduler configurations. If None, does not use a scheduler. Default: None | +| weights | Optional[str] | Path to the weights to be loaded. This is different from `resume` in that this does not resume training state. Default: None | +| weights_ignore_modules | Optional[List[str]] | List of modules that should be ignored when loading weights. Default: None | +| cleanup_after_validation_step | bool | Whether to empty cache after each validation step. This will slow down validation. Default: False | +| cleanup_after_test_step | bool | Whether to empty cache after each test step. This will slow down testing. Default: False | + +Currently all implemented systems inherit to `BaseLift3DSystem`, which has the following common configurations: + +| name | type | description | +| -------------------------------- | ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| geometry_type | str | Type of the geometry used in the system. See [here](https://github.com/threestudio-project/threestudio/blob/main/DOCUMENTATION.md#geometry) for supported geometry. | +| geometry | dict | Configurations of the geometry. | +| geometry_convert_from | Optional[str] | The path to a checkpoint from which the geometry is converted. If not None, initialize the geometry from the specified source model. Default: None | +| geometry_convert_override | dict | Configurations to override when initializing from a source geometry, only used when `geometry_convert_from` is specified. A typical use case is to specify an isosurface threshold value. Default: {} | +| geometry_convert_inherit_texture | bool | Whether to load the encoding and feature network from the source geometry during conversion, only used when `geometry_convert_from` is specified. Default: False | +| material_type | str | Type of the material used in the system. See [here](https://github.com/threestudio-project/threestudio/blob/main/DOCUMENTATION.md#material) for supported materials. | +| matrial | dict | Configurations of the material. | +| background_type | str | Type of the background used in the system. See [here](https://github.com/threestudio-project/threestudio/blob/main/DOCUMENTATION.md#background) for supported background. | +| background | dict | Configurations of the background. | +| renderer_type | str | Type of the renderer used in the system. See [here](https://github.com/threestudio-project/threestudio/blob/main/DOCUMENTATION.md#renderers) for supported renderers. | +| renderer | dict | Configurations of the renderer. | +| guidance_type | str | Type of the guidance used in the system. See [here](https://github.com/threestudio-project/threestudio/blob/main/DOCUMENTATION.md#guidance) for supported guidance. | +| guidance | dict | Configurations of the guidance. | +| prompt_processor_type | str | Type of the prompt processor used in the system. See [here](https://github.com/threestudio-project/threestudio/blob/main/DOCUMENTATION.md#prompt-processors) for supported prompt processors. | +| prompt_processor | dict | Configurations of the prompt processor. | +| exporter_type | str | Type of the exporter used in the system. Only used in export stage. See [here](https://github.com/threestudio-project/threestudio/blob/main/DOCUMENTATION.md#prompt-processors) for supported exporters. Default: "mesh-exporter" | +| exporter | dict | Configurations of the exporter. | + +### dreamfusion-system + +This system has all the common configurations. + +### magic3d-system + +This system has all the common configurations, along with the following unique configurations: + +| name | type | description | +| ---------- | ---- | --------------------------------------------------------------------------------- | +| refinement | bool | Whether to perform refinement (second stage in the Magic3D paper). Default: False | + +### sjc-system + +This system has all the common configurations, along with the following unique configurations: +| name | type | description | +| ------------------ | ---- | ------------------------------------------------------------------------------------------------------------------------------------------- | +| subpixel_rendering | bool | Whether to perform subpixel rendering in validation/testing, which decodes a `128x128` latent feature map instead of `64x64`. Default: True | + +### latentnerf-system + +This system has all the common configurations, along with the following unique configurations: + +| name | type | description | +| ----------- | ------------- | -------------------------------------------------------------------------------- | +| refinement | bool | Whether to perform RGB space refinement. Default: False | +| guide_shape | Optional[str] | Path to the .obj file as the shape guidance, used in Sketch-Shape. Default: None | + +### fantasia3d-system + +This system has all the common configurations, along with the following unique configurations: + +| name | type | description | +| ------------ | ---- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| latent_steps | int | Number of steps for geometry optimization in latent space. In the first `latent_steps` steps, low resolution normal and mask are concatenated and fed to the latent diffusion model. After this high resolution normal is used to perform RGB space optimziation. Details are described in the Fantasia3D paper. Default: 2500 | +| texture | bool | Whether to perform texture training. Default: False | + +### prolificdreamer-system + +This system has all the common configurations, along with the following unique configurations: + +| name | type | description | +| ----------------- | ---- | ------------------------------------------------------------------------------------------------------ | +| stage | str | The training stage, in ["coarse", "geometry", "texture"]. Default: "coarse" | +| visualize_samples | bool | Whether to visualize samples of the pretrained and LoRA diffusion models in validation. Default: False | + +## Geometry + +Geometry models properties for locations in space, including density, SDF, feature and normal. + +**Common configurations for implicit geometry** + +| name | type | description | +| ------------------------------------ | ----------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| radius | float | Half side length of the scene bounding box. Default: 1.0 | +| isosurface | bool | Whether to enable surface extraction. Default: True | +| isosusrface_method | str | Method for surface extraction, in ["mc", "mt"]. "mc" uses the marching cubes algorithm, not differentiable; "mt" uses the marching tetrahedra algorithm, differentiable. Default: "mt" | +| isosurface_resolution | int | Grid resolution for surface extraction. Default: 128 | +| isosurface_threshold | Union[float,str] | The threshold value to determine the surface location of the implicit field, in [float, "auto"]. If "auto", use the mean value of the field as the threshold. Default: 0 | +| isosurface_chunk | int | Chunk size when computing the field value on grid vertices, used to prevent OOM. If 0, does not use chunking. Default: 0 | +| isosurface_coarse_to_fine | bool | Whether to extract the surface in a coarse-to-fine manner. If True, will first extract a coarse surface to get a tight bounding box, which is then used to extract a fine surface. Default: True | +| isosurface_deformable_grid | bool | Whether to optimize positions of grid vertices for surface extraction. Only support `isosurface_method=mt`. Default: False | +| isosurface_remove_outliers | bool | Whether to remove outlier components according to the number of faces. Only remove if the isosurface process does not require gradient. Default: True | +| isosurface_outlier_n_faces_threshold | Union[int, float] | Extracted mesh components with number of faces less than this threshold will be removed if `isosurface_remove_outliers=True`. If `int`, direcly used as the threshold number of faces; if `float`, used as the ratio of all face numbers to compute the threshold. Default: 0.01 | + +### implicit-volume + +| name | type | description | +| ---------------------------- | ---------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| n_input_dims | int | Number of input dimensions. Default: 3 (xyz) | +| n_feature_dims | int | Number of dimensions for the output features. Note that this should be aligned with the material used. Default: 3 (albedo) | +| density_activation | str | Density activation function. See `get_activation` in `utils/ops.py` for all supported activation functions. Default: "softplus" | +| density_bias | Union[float,str] | Offset value to be added to the pre-activated density, in [float, "blob_dreamfusion", "blob_magic3d"]. If "blob_dreamfusion", uses the blob density bias proposed in DreamFusion; if "blob_magic3d", uses the blob density bias proposed in Magic3D. Default: "blob_magic3d" | +| density_blob_scale | float | Controls the magnitude of the blob density if `density_bias` in ["blob_dreamfusion", "blob_magic3d"]. Default: 10 | +| density_blob_std | float | Controls the divergence of the blob density if `density_bias` in ["blob_dreamfusion", "blob_magic3d"]. Default: 0.5 | +| pos_encoding_config | dict | Configurations for the positional encoding. See https://github.com/NVlabs/tiny-cuda-nn/blob/master/DOCUMENTATION.md#encodings for supported arguments. Default: {} | +| mlp_network_config | dict | Configurations for the MLP head for geometry attribute prediction (density, feature ...). See https://github.com/NVlabs/tiny-cuda-nn/blob/master/DOCUMENTATION.md#networks for supported arguments. Default: {} | +| normal_type | str | How the normal is computed, in ["analytic", "finite_difference", "pred"]. If "analytic", uses PyTorch auto-differentiation to compute the analytic normal; if "finite_difference", uses finite difference to compute the approximate normal; if "pred", uses an MLP network to predict the normal. Default: "finite_difference" | +| finite_difference_normal_eps | float | The small epsilon value in finite difference to estimate the normal, used when `normal_type="finite_difference"`. Default: 0.01 | +| isosurface_threshold | Union[float,str] | Inherit from common configurations, but default to "auto". Default: "auto" | + +### implicit-sdf + +| name | type | description | +| ---------------------------- | ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| n_input_dims | int | Number of input dimensions. Default: 3 (xyz) | +| n_feature_dims | int | Number of dimensions for the output features. Note that this should be aligned with the material used. Default: 3 (albedo) | +| pos_encoding_config | dict | Configurations for the positional encoding. See https://github.com/NVlabs/tiny-cuda-nn/blob/master/DOCUMENTATION.md#encodings for supported arguments. Default: {} | +| mlp_network_config | dict | Configurations for the MLP head for geometry attribute prediction (sdf, feature ...). See https://github.com/NVlabs/tiny-cuda-nn/blob/master/DOCUMENTATION.md#networks for supported arguments. Default: {} | +| normal_type | str | How the normal is computed, in ["finite_difference", "pred"]. If "finite_difference", uses finite difference to compute the approximate normal; if "pred", uses an MLP network to predict the normal. Default: "finite_difference" | +| finite_difference_normal_eps | float | The small epsilon value in finite difference to estimate the normal, used when `normal_type="finite_difference"`. Default: 0.01 | +| shape_init | Optional[str] | The shape to initializa the SDF as, in [None, "sphere", "ellipsoid"]. If None, does not initialize; if "sphere", initialized as a sphere; if "ellipsoid", initialized as an ellipsoid. Default: None | +| shape_init_params | Optional[Any] | Parameters to specify the SDF initialization. If `shape_init="sphere"`, a float is used for the sphere radius; if `shape_init="ellipsoid"`, a tuple of three floats is used for the radius along x/y/z axis. Default: None | +| force_shape_init | bool | Whether to force initialization of the SDf even if weights are provided. Default:False | +| sdf_bias | Optional[float,str] | Bias value to be added to the network output SDF, in [float, "sphere", "ellipsoid"]. If "sphere", the SDF of a sphere is added; if "ellipsoid", the pseudo SDF of an ellipsoid is added. This can be used for SDF initialization as an alternative to `shape_init`. Default: 0.0 | +| sdf_bias_params | Optional[Any] | Parameters to specify the SDF initialization based on `sdf_bias`. If `sdf_bias="sphere"`, a float is used for the sphere radius; if `sdf_bias="ellipsoid"`, a tuple of three floats is used for the radius along x/y/z axis. Default: None | + +### volume-grid + +An explicit geometry parameterized with a feature volume. The feature volume has a shape of `(n_feature_dims + 1) x grid_size`, one channel for density and the rest for material. The density is first scaled, then biased and finally activated. + +| name | type | description | +| -------------------- | -------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| grid_size | tuple[int, int, int] | The resolution of the feature volume. Default: (100, 100, 100) | +| n_feature_dims | int | The feature dimensions for its material. Default: 3 | +| density_activation | Optional[str] | The activation to get the density value. Default: "softplus" | +| density_bias | Union[float, str] | The initialization of the density. A float value indicates uniform initialization and `blob` indicates a ball centered at the center. Default: "blob" | +| density_blob_scale | float | The parameter for blob initialization. Default: 5.0 | +| density_blob_std | float | The parameter for blob initialization. Default: 0.5 | +| normal_type | Optional[str] | The way to compute the normal from density. If set to "pred", the normal is produced with another volume in the shape of `3 x grid_size`. Default: "finite_difference" | +| isosurface_threshold | Union[float,str] | Inherit from common configurations, but default to "auto". Default: "auto" | + +**Common configurations for explicit geometry** + +| name | type | description | +| ------------------- | ---- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| pos_encoding_config | dict | Configurations for the positional encoding. See https://github.com/NVlabs/tiny-cuda-nn/blob/master/DOCUMENTATION.md#encodings for supported arguments. Default: {} | +| mlp_network_config | dict | Configurations for the MLP head for feature prediction. See https://github.com/NVlabs/tiny-cuda-nn/blob/master/DOCUMENTATION.md#networks for supported arguments. Default: {} | +### tetrahedra-sdf-grid + +| name | type | description | +| ------------------------------------ | ----------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| isosurface_resolution | int | Tetrahedra grid resolution for surface extraction. Default: 128 | +| isosurface_deformable_grid | bool | Whether to optimize positions of tetrahedra grid vertices for surface extraction. Default: True | +| isosurface_remove_outliers | bool | Whether to remove outlier components according to the number of faces. Only remove if the isosurface process does not require gradient. Default: False | +| isosurface_outlier_n_faces_threshold | Union[int, float] | Extracted mesh components with number of faces less than this threshold will be removed if `isosurface_remove_outliers=True`. If `int`, direcly used as the threshold number of faces; if `float`, used as the ratio of all face numbers to compute the threshold. Default: 0.01 | +| geometry_only | bool | Whether to only model the SDF. If True, the feature prediction is ommited. Default:False | +| fix_geometry | bool | Whether to optimize the geometry. If True, the SDF (and grid vertices if `isosurface_deformable_grid=True`) is fixed. Default: False | + +### Custom mesh + +| shape_init | str | The shape to initializa the SDF as. Should be formatted as "mesh:path", where `path` points to the custom mesh. Default: "" | +| shape_init_params | Optional[Any] | Parameters to specify the SDF initialization. A single float is used for uniform scaling; a tuple of three floats is used for scalings along x/y/z axis. Default: None | + +## Material + +The material module outputs colors or color latents conditioned on the sampled positions, view directions, and sometimes light directions and normals. + +### neural-radiance-material + +A material with view dependent effects, parameterized with a network(MLP), similar with that in NeRF. + +| name | type | description | +| ------------------- | ---- | ----------------------------------------------------------------------------------------------------------------------------- | +| input_feature_dims | int | The dimensions of the input feature. Default: 8 | +| color_activation | str | The activation mapping the network output to the color. Default: "sigmoid" | +| dir_encoding_config | dict | The config of the positional encoding applied on the ray direction. Default: {"otype": "SphericalHarmonics", "degree": 3} | +| mlp_network_config | dict | The config of the MLP network. Default: { "otype": "VanillaMLP", "activation": "ReLU", "n_neurons": 16, "n_hidden_layers": 2} | + +### pbr-material + +A physically-based rendering (PBR) material. +Currently we support learning albedo, metallic, and roughness. (normal is not supported currently.) + +| name | type | description | +| ------------------- | ----- | ---------------------------------------------------------------------------------------------------------------- | +| material_activation | str | The activation mapping the network output to the materials (albedo, metallic, and roughness). Default: "sigmoid" | +| environment_texture | str | Path to the environment light map file (`*.hdr`). Default: "load/lights/aerodynamics_workshop_2k.hdr" | +| environment_scale | float | Scale of the environment light pixel values. Default: 2.0 | +| min_metallic | float | Minimum value for metallic. Default: 0.0 | +| max_metallic | float | Maximum value for metallic. Default: 0.9 | +| min_roughness | float | Minimum value for roughness. Default: 0.08 | +| max_roughness | float | Maximum value for roughness. Default: 0.9 | +| use_bump | bool | Whether to train with tangent-space normal perturbation. Default: True | + +### no-material + +A material without view dependet effects, just map features to colors. + +| name | type | description | +| ------------------ | -------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| n_output_dims | int | The dimensions of the material color, e.g. 3 for RGB and 4 for latent. Default: 3 | +| color_activation | str | The activation mapping the network output or the feature to the color. Default: "sigmoid" | +| mlp_network_config | Optional[dict] | The config of the MLP network. Set to `None` to directly map the input feature to the color with `color_activation`, otherwise the feature first goes through an MLP. Default: None | +| input_feature_dims | Optional[int] | The dimensions of the input feature. Required when use an MLP. Default: None | + +### diffuse-with-point-light-material + +| name | type | description | +| ------------------- | ------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| ambient_light_color | Tuple[float,float,float] | The ambient light color for lambertian shading, used when `soft_shading=False`. Default: (0.1,0.1,0.1) | +| diffuse_light_color | Tuple[float,float,float] | The diffuse light color for lambertian shading, used when `soft_shading=False`. Default: (0.9,0.9,0.9) | +| ambient_only_steps | int | Number of steps that use albedo color as input to the guidance. Default: 1000 | +| diffuse_prob | float | Use shaded color with a probability of `diffuse_prob` and albedo color with a probability of `1-diffuse_prob` after `ambient_only_steps`. Default: 0.75 | +| textureless_prob | float | Use textureless shaded color with a probability of `textureless_prob` and lambertian shaded color with a probability of `1-textureless_prob`when using shaded color. Default: 0.5 | +| albedo_activation | str | Activation function for the albedo color. Default: "sigmoid" | +| soft_shading | bool | If True, uses a soft version of lambertian shading in training, which randomly samples the ambient light color and diffuse light color. Proposed in the Magic3D paper. Default: False | + +### sd-latent-adapter-material + +No specific configuration. + +## Background + +The background should output colors or color latents conditioned on the ray directions. + +**Common configurations for background** + +| name | type | description | +| ------------- | ---- | ---------------------------------------------------------------------------------- | +| n_output_dims | int | The dimension of the background color, e.g. 3 for RGB and 4 for latent. Default: 3 | + +### solid-color-background + +A background with a solid color. + +| name | type | description | +| ------- | ----- | ------------------------------------------------------------------------------------------------------------------------ | +| color | tuple | The initialized color of the background with each value in [0,1], should match `n_output_dims`. Default: (1.0, 1.0, 1.0) | +| learned | bool | Whether to optimize the background. Default: True | + +### textured-background + +A background with colors parameterized with a texture map. + +| name | type | description | +| ---------------- | ---- | --------------------------------------------------------------------------- | +| height | int | The height of the texture map. Default: 64 | +| width | int | The width of the texture map. Default: 64 | +| color_activation | str | The activation mapping the texture feature to the color. Default: "sigmoid" | + +### neural-environment-map-background + +A background parameterized with a neural network (MLP). + +| name | type | description | +| ------------------- | ---------------------------------- | ----------------------------------------------------------------------------------------------------------------------------- | +| color_activation | str | The activation mapping the network output to the color. Default: "sigmoid" | +| dir_encoding_config | dict | The config of the positional encoding applied on the ray direction. Default: {"otype": "SphericalHarmonics", "degree": 3} | +| mlp_network_config | dict | The config of the MLP network. Default: { "otype": "VanillaMLP", "activation": "ReLU", "n_neurons": 16, "n_hidden_layers": 2} | +| random_aug | bool | Whether to use random color augmentation. May be able to improve the correctness of the model. Default: False | +| random_aug_prob | float | The probability to use random color augmentation. Default: 0.5. | +| eval_color | Optional[Tuple[float,float,float]] | The color used in validation/testing. Default: None | + +## Renderers + +Renderers takes geometry, material, and background to produce images given camera and light specifications. + +**Common configurations for renderers** + +| name | type | description | +| ------ | ----- | --------------------------------------------------------------------------------------------------------------------------- | +| radius | float | Half side length of the scene bounding box. This should be the same as `radius` of the geometry in most cases. Default: 1.0 | + +### nerf-volume-renderer + +| name | type | description | +| ----------------------------------------------------------------- | ----- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| num_samples_per_ray | float | Number of sample points along each ray. Default: 1.0 | +| randomized | bool | Whether to randomly perturb the sample points in training. Default: True | +| eval_chunk_size | int | Number of sample points per chunk in validation/testing, to prevent OOM. Default: 160000 | +| estimator | str | The type of sampling estimator. Shoule be one of [occgrid, proposal, importance]. Default: occgrid. | +| grid_prune (applicable when using occgrid) | bool | Whether to maintain an occupancy grid and prune sample points in empty space using NeRFAcc. Default: True | +| prune_alpha_threshold (applicable when using occgrid) | bool | Whether to prune sample points with lower density, only effective when `grid_prune=true`. Default: True | +| proposal_network_config (applicable when using proposal) | dict | The proposal network configuration, used for density estimation. Default: None | +| prop_optimizer_config (applicable when using proposal) | dict | The optimizer configuration for the proposal network. Note that the renderer is not a part of the system's trainable parameters. So the optimizer should be manually specified here, and the optimization is take by Nerfacc. | +| prop_scheduler_config (applicable when using proposal) | dict | The learning scheduler for the above optimizer. Default: None | +| num_samples_per_ray_proposal (applicable when using proposal) | int | Number of sample points along each ray for proposal network. Will sample `num_samples_per_ray` points according to the proposal sampling. Default: 64 | +| num_samples_per_ray_importance (applicable when using importance) | int | Number of sample points in NeRF coarse sampling and `num_samples_per_ray` is for fine sampling Default: 64 | + + + +### neus-volume-renderer + +| name | type | description | +| ----------------------------------------------------------------- | ----- | ---------------------------------------------------------------------------------------------------------- | +| num_samples_per_ray | float | Number of sample points along each ray. Default: 1.0 | +| randomized | bool | Whether to randomly perturb the sample points in training. Default: True | +| eval_chunk_size | int | Number of sample points per chunk in validation/testing, to prevent OOM. Default: 160000 | +| estimator | str | The type of sampling estimator. Shoule be one of [occgrid, importance]. Default: occgrid. | +| grid_prune (applicable when using occgrid) | bool | Whether to maintain an occupancy grid and prune sample points in empty space using NeRFAcc. Default: True | +| prune_alpha_threshold (applicable when using occgrid) | bool | Whether to prune sample points with lower density, only effective when `grid_prune=true`. Default: True | +| num_samples_per_ray_importance (applicable when using importance) | int | Number of sample points in NeRF coarse sampling and `num_samples_per_ray` is for fine sampling Default: 64 | +| learned_variance_init | float | Initialized value for the learned surface variance. Default: 0.3 | +| cos_anneal_end_steps | int | End steps for the linear cosine annealing technique proposed in the NeuS paper. Default: 0 | +| use_volsdf | bool | Whether to use the VolSDF formulation for SDF-to-alpha conversion. Default: False | +| near_plane | float | Distance from camera to the near plane. Default: 0.0 | +| far_plane | float | Distance from camera to the far plane. Default: 1e10 | + +### nvdiff-rasterizer + +| name | type | description | +| ------------ | ---- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| context_type | str | Rasterization context type used by nvdiffrast, in ["gl", "cuda"]. See the [nvdiffrast documentation](https://nvlabs.github.io/nvdiffrast/#rasterizing-with-cuda-vs-opengl-new) for more details. | + +### patch-renderer + +The patch-renderer first renders a full low-resolution downsampled image and then randomly renders a local patch at the original resolution level, which can significantly reduce memory usage during high-resolution training. +| name | type | description | +| ------------------ | --------------------- | ----------------------------------------------------------------------- | +| patch_size | int | The size of the local patch. Default: 128 | +| global_downsample | int | Downsample scale of the original rendering size. Default: 4 | +| global_detach | bool | Whether to detach the gradient of the downsampled image. Default: False | +| base_renderer_type | str | The type of base renderer. | +| base_renderer | VolumeRenderer.Config | The configuration of the base renderer. | + +## Guidance + +Given an image or its latent input, the guide should provide its gradient conditioned on a text input so that the image can be optimized with gradient descent to better match the text. + +**Common configurations for guidance** + +| name | type | description | +| --------------------------------- | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| enable_memory_efficient_attention | bool | Whether to enable memory efficient attention in xformers. This will lead to lower GPU memory usage and a potential speed up at inference. Speed up at training time is not guaranteed. Default: false | +| enable_sequential_cpu_offload | bool | Whether to offload all models to CPU. This will use `accelerate`, significantly reducing memory usage but slower. Default: False | +| enable_attention_slicing | bool | Whether to use sliced attention computation. This will save some memory in exchange for a small speed decrease. Default: False | +| enable_channels_last_format | bool | Whether to use Channels Last format for the unet. Default: False (Stable Diffusion) / True (DeepFloyd) | +| pretrained_model_name_or_path | str | The pretrained model path in huggingface. Default: "runwayml/stable-diffusion-v1-5" (for `stable-diffusion-guidance`) / "DeepFloyd/IF-I-XL-v1.0" (for `deep-floyd-guidance`) / "stabilityai/stable-diffusion-2-1-base" (for `stable-diffusion-vsd-guidance`) | +| guidance_scale | float | The classifier free guidance scale. Default: 100.0 (for `stable-diffusion-guidance`) / 20.0 (for `deep-floyd-guidance`) | +| grad_clip | Optional[Any] | The gradient clip value. None or float or a list in the form of [start_step, start_value, end_value, end_step]. Default: None | +| half_precision_weights | bool | Whether to use float16 for the diffusion model. Default: True | +| min_step_percent | float | The precent range (min value) of the random timesteps to add noise and denoise. Default: 0.02 | +| max_step_percent | float | The precent range (max value) of the random timesteps to add noise and denoise. Default: 0.98 | +| weighting_strategy | str | The choice of w(t) of the sds loss, in ["sds", "uniform", "fantasia3d"]. Default: "sds" | +| view_dependent_prompting | bool | Whether to use view dependent prompt, i.e. add front/side/back/overhead view to the original prompt. Default: True | + +For the first three options, you can check more details in [pipe_stable_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py) and [pipeline_if.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if.py) in diffusers. + +### stable-diffusion-guidance + +| name | type | description | +| ------------------------- | -------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- | +| use_sjc | bool | Whether to use score jacobian chaining (SJC) instead of SDS. Default: False | +| var_red | bool | Whether to use Eq. 16 in [SJC paper](https://arxiv.org/pdf/2212.00774.pdf). Default: True | +| token_merging | bool | Whether to use token merging. This will speed up the unet forward and slightly affect the performance. Default: False | +| token_merging_params | Optional[dict] | The config for token merging. See [here](https://github.com/dbolya/tomesd/blob/main/tomesd/patch.py#L183-L213) for supported arguments. Default: {} | +| anneal_start_step | Optional[int] | If specified, denotes at which step to perform t annealing. Default: None | + +### deep-floyd-guidance + +No specific configuration. + +## stable-diffusion-vsd-guidance + +| name | type | description | +| ---------------------------------- | ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| pretrained_model_name_or_path_lora | str | The pretrained base model path for the LoRA model. Default: "stabilityai/stable-diffusion-2-1" | +| guidance_scale_lora | float | The classifier free guidance scale for the LoRA model. Default: 1. | +| lora_cfg_training | bool | Whether to adopt classifier free guidance training strategy in LoRA training. If True, will zero out the camera condition with a probability 0.1. Default: True | +| camera_condition_type | str | Which to use as the camera condition for the LoRA model, in ["extrinsics", "mvp"]. Default: "extrinsics" | + +## Prompt Processors + +Prompt processors take a user prompt and compute text embeddings for training. The type of the prompt processor should match that of the guidance. + +**Common configurations for prompt processors** + +| name | type | description | +| ---------------------------------------------- | ------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| prompt | str | The text prompt. Default: "a hamburger" | +| prompt_front | str | Manually assigned prompt for the front view. If `None`, use the same as `prompt`. Default: None | +| prompt_side | str | Manually assigned prompt for the side view. If `None`, use the same as `prompt`. Default: None | +| prompt_back | str | Manually assigned prompt for the back view. If `None`, use the same as `prompt`. Default: None | +| prompt_overhead | str | Manually assigned prompt for the overhead view. If `None`, use the same as `prompt`. Default: None | +| negative_prompt | str | The uncondition text input in Classifier Free Guidance. Default: "" | +| pretrained_model_name_or_path | str | The pretrained model path in huggingface. Default: "runwayml/stable-diffusion-v1-5" (for `stable-diffusion-prompt-processor`) / "DeepFloyd/IF-I-XL-v1.0" (fpr `deep-floyd-prompt-processor`) | +| overhead_threshold | float | Consider the view as overhead when the elevation degree > overhead_threshold. Default: 60.0 | +| front_threshold | float | Consider the view as front when the azimuth degree in [-front_threshold, front_threshold]. Default: 45.0 | +| back_threshold | float | Consider the view as back when the azimuth degree > 180 - back_threshold or < -180 + back_threshold. Default: 45.0 | +| view_dependent_prompt_front | bool | Whether to put the vide dependent prompt in front of the original prompt. If set to True, the final prompt will be `a front/back/side/overhead view of [prompt]`, otherwise it will be `[prompt], front/back/side/overhead view`. Default: False | +| use_cache | bool | Whether to cache computed text embeddings. If True, will use cached text embeddings if available. Default: True | +| spawn | bool | Whether to spawn a new process to compute text embeddings. Must set to True if using multiple GPUs and DeepFloyd-IF guidance. Default: True | +| use_perp_neg | bool | Whether to use the Perp-Neg algorithm to alleviate the multi-face problem. Default: False | +| perp_neg_f_sb | Tuple[float,float,float] | | +| perp_neg_f_fsb | Tuple[float,float,float] | | +| perp_neg_f_fs | Tuple[float,float,float] | | +| perp_neg_f_sf | Tuple[float,float,float] | | +| use_prompt_debiasing | bool | Whether to use the prompt debiasing algorithm to compute debiased view-dependent prompts. Default: False | +| pretrained_model_name_or_path_prompt_debiasing | str | The pretrained model path for prompt debiasing. Default: "bert-base-uncased" | +| prompt_debiasing_mask_ids | Optional[List[int]] | Index of words that can potentially be removed in prompt debiasing. If `None`, all words can be removed. Default: None | + +### stable-diffusion-prompt-processor + +No specific configuration. + +### deep-floyd-prompt-processor + +No specific configuration. + +## Exporters + +Exporters output assets like textured meshes, which can be used for further processing. + +**Common configurations for exporters** + +| name | type | description | +| ---------- | ---- | ------------------------------------------- | +| save_video | bool | Whether to save a 360 video. default: False | + +### mesh-exporter + +| name | type | description | +| -------------------- | ---- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| fmt | str | The format to save, in ["obj-mtl", "obj"]. If "obj-mtl", save to an obj file with mtl material specification; if "obj", save to an obj file with vertex colors. Default: "obj-mtl" | +| save_name | str | Filename of the saved mesh model, without extension. Default: "model" | +| save_normal | bool | Whether to save vertex normal. Default: False | +| save_uv | bool | Whether to save texture coordinates. If True, will use xatlas to perform UV unwrapping. Default: True | +| save_texture | bool | Whether to save texture information. If True, will save texture maps if `fmt="obj-mtl"`, and will save vertex colors if `fmt="obj"`. Note that `save_uv` must be True for `save_texture=True` and `fmt="obj-mtl"`. Default: True | +| texture_size | int | Texture map size, used when `save_texture=True` and `fmt="obj-mtl"`. Default: 1024 | +| texture_format | str | Texture map file format, used when `save_texture=True` and `fmt="obj-mtl"`. Default: "jpg" | +| xatlas_chart_options | dict | Chart options for xatlas UV unwrapping, used when `save_uv=True`. See [here](https://github.com/MozillaReality/xatlas-web/blob/master/xatlas.h#L169) for supported options. Default: {} | +| xatlas_pack_options | dict | Pack options for xatlas UV unwrapping, used when `save_uv=True`. See [here](https://github.com/MozillaReality/xatlas-web/blob/master/xatlas.h#L201) for supported options. Default: {} | +| context_type | str | Rasterization context type used by nvdiffrast, in ["gl", "cuda"], used when `save_texture=True` and `fmt="obj-mtl"`. See the [nvdiffrast documentation](https://nvlabs.github.io/nvdiffrast/#rasterizing-with-cuda-vs-opengl-new) for more details. Default: "gl" | diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..261eeb9 --- /dev/null +++ b/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/README.md b/README.md new file mode 100644 index 0000000..053e45e --- /dev/null +++ b/README.md @@ -0,0 +1,117 @@ +

DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation

+ +

NeurIPS 2024

+ +
+ +[![arXiv](https://img.shields.io/badge/ArXiv-2410.06756-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2410.06756) +[![Project page](https://img.shields.io/badge/Project-Page-brightgreen)](https://lizhiqi49.github.io/DreamMesh4D/) + +
+ + +

+ +

+ +This as an official implementation of our NeurIPS 2024 paper [DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation](https://arxiv.org/abs/2410.06756), based on the [threestudio](https://github.com/threestudio-project/threestudio) framework. + + +## 🔧Installation +DreamMesh4D is implemented based on [threestudio](https://github.com/threestudio-project/threestudio). We modify the code of threestudio base repository to support fp16 inference for Zero123, and the main part of our method is under `custom/threestudio-dreammesh4d`. + +* Install `PyTorch >= 1.12`. We test our code on `torch2.2.1+cu118`, but other versions should also work fine. +``` +# torch2.2.1+cu118 +pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu118 +``` +* (Optional, Recommended) Install ninja to speed up the compilation of CUDA extensions: +``` +pip install ninja +``` +* Install dependencies: +``` +# install 3D Gaussian modules +git clone --recursive https://github.com/ashawkey/diff-gaussian-rasterization +git clone https://github.com/DSaurus/simple-knn.git +# install +pip install -r requirements.txt +``` + + +## 🚀Quick Start + +### 1. Prepare the data +We follow the same data structure as [Consistent4D](https://github.com/yanqinJiang/Consistent4D). You can download the test dataset [here](https://drive.google.com/file/d/1jn18kA2FfKMnyQ6fisIn8rhBI0dr3NFk/view). + +If you'd like to use your own data, please preprocess it as follows: + +1. Split the video into individual frames and name each frame using the format `{id}.png`. +2. Segment the foreground object in each frame. (We use [rembg](https://github.com/danielgatis/rembg) for background removal.) + +Your input data should follow this structure: +``` +-image_seq_name + - 0.png + - 1.png + - 2.png + ... +``` + +### 2. Training + +#### 2.1 Static stage +For static 3D model generation and mesh export, we use Stable Zero123 in sds manner. You can follow the instructions provided in [threestudio](https://github.com/threestudio-project/threestudio) to generate 3D objects and export the coarse mesh. The example command: +``` +# 3d model generation with stable zero123 +python launch.py --config configs/stable-zero123.yaml --train data.image_path=path/to/ref/img + +# mesh export +python launch.py --config path/to/trial/dir/configs/parsed.yaml --export resume=path/to/trial/dir/ckpts/last.ckpt system.exporter_type=mesh-exporter system.exporter.fmt=obj system.geometry.isosurface_method=mc-cpu system.geometry.isosurface_resolution=256 +``` +**Note**: +* The argument `system.exporter.fmt=obj` is required, as we need vertex colors for initializing the colors of the Gaussians. +* Since marching-cubes always produces very dense faces, we suggest simplifying the exported mesh with following command to avoid too large computation overhead and "CUDA-out-of-memory" problem: + ``` + python custom/threestudio-dreammesh4d/scripts/mesh_simplification.py --mesh_path path/to/export/mesh --scale simplify_scale --output path/to/output/dir + ``` + +After getting coarse mesh, we attach the Gaussians and refine it: +``` +python launch.py --config custom/threestudio-dreammesh4d/configs/sugar_static_refine.yaml --train data.image_path=path/to/ref/img system.geometry.surface_mesh_to_bind_path=path/to/coarse/mesh +``` + + +#### 2.2 Dynamic stage +Run dynamic stage: +``` +python launch.py --config custom/threestudio-dreammesh4d/configs/sugar_dynamic_dg.yaml --train data.image_path=path/to/ref/img data.video_frames_dir=path/to/video system.data.video_length=video_frame_num system.geometry.surface_mesh_to_bind_path=path/to/refine/mesh system.weights=path/to/trial/dir/ckpts/last.ckpt +``` + +Then the deformed mesh under each timestamp can be exported with: +``` +python launch.py --config path/to/dynamic/dir/configs/parsed.yaml --export resume=path/to/dynamic/dir/ckpts/last.ckpt +``` + + + +## 📋News +- **[2024/10/09]** Code will be released soon! + + +## Credits +This project is built upon the awesome project [threestudio](https://github.com/threestudio-project) and thanks to the open-source of these works: [3D Gaussian Splatting](https://github.com/graphdeco-inria/gaussian-splatting) and [SuGaR](https://github.com/Anttwo/SuGaR). + + + +## 📌Citation +If you find our paper and code useful in your research, please consider giving a star and citation. + +``` +@inproceedings{li2024dreammesh4d, + title={DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation}, + author={Zhiqi Li and Yiming Chen and Peidong Liu}, + booktitle={Advances in Neural Information Processing Systems (NeurIPS)}, + year={2024} +} +``` diff --git a/configs/control4d-static.yaml b/configs/control4d-static.yaml new file mode 100644 index 0000000..572127d --- /dev/null +++ b/configs/control4d-static.yaml @@ -0,0 +1,118 @@ +name: "control4d-static" +tag: "${basename:${data.dataroot}}_${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "multiview-camera-datamodule" +data: + train_downsample_resolution: 2 + eval_downsample_resolution: 2 + dataroot: ??? + +system_type: "control4d-multiview-system" +system: + start_editing_step: 2000 + + geometry_type: "implicit-volume" + geometry: + radius: 2. + n_feature_dims: 11 + normal_type: analytic + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.4472692374403782 # max resolution 4096 + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + isosurface_resolution: 128 + isosurface_threshold: auto + isosurface_coarse_to_fine: true + + material_type: "hybrid-rgb-latent-material" + material: + n_output_dims: 11 + requires_normal: true + + background_type: "solid-color-background" + background: + n_output_dims: 11 + color: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + + renderer_type: "gan-volume-renderer" + renderer: + base_renderer_type: "nerf-volume-renderer" + base_renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + guidance_type: "stable-diffusion-controlnet-guidance" + guidance: + control_type: "normal" + min_step_percent: 0.05 + max_step_percent: 0.8 + condition_scale: 1.0 + fixed_size: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + + loggers: + wandb: + enable: false + project: 'threestudio' + + loss: + lambda_sds: 0. + lambda_orient: [0, 10.0, 1000., 5000.0] + lambda_sparsity: 1.0 + lambda_opaque: 1.0 + lambda_l1: 10. + lambda_p: 10. + lambda_kl: 0.000001 + lambda_G: 0.01 + lambda_D: 1. + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry: + lr: 0.01 + background: + lr: 0.001 + renderer.generator: + lr: 0.0001 + renderer.local_encoder: + lr: 0.0001 + renderer.global_encoder: + lr: 0.0001 + optimizer_dis: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + renderer.discriminator: + lr: 0.00001 + +trainer: + max_steps: 50000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/debugging/controlnet-canny.yaml b/configs/debugging/controlnet-canny.yaml new file mode 100644 index 0000000..1f3beff --- /dev/null +++ b/configs/debugging/controlnet-canny.yaml @@ -0,0 +1,13 @@ +system: + guidance_type: "controlnet-guidance" + guidance: + control_type: "canny" + min_step_percent: 0.8 + max_step_percent: 0.98 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + prompt: "Elon Musk, RAW photo, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3" + # negative_prompt: "(overexposed, underexposed, out of focus, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck" + negative_prompt: "(overexposed, underexposed, out of focus, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4)" diff --git a/configs/debugging/controlnet-normal.yaml b/configs/debugging/controlnet-normal.yaml new file mode 100644 index 0000000..4a0ba4e --- /dev/null +++ b/configs/debugging/controlnet-normal.yaml @@ -0,0 +1,12 @@ +system: + guidance_type: "stable-diffusion-controlnet-guidance" + guidance: + control_type: "normal" + min_step_percent: 0.05 + max_step_percent: 0.8 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "SG161222/Realistic_Vision_V2.0" + prompt: "Elon Musk, RAW photo, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3" + negative_prompt: "(overexposed, underexposed, out of focus, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4)" diff --git a/configs/debugging/instructpix2pix.yaml b/configs/debugging/instructpix2pix.yaml new file mode 100644 index 0000000..0ff9cdc --- /dev/null +++ b/configs/debugging/instructpix2pix.yaml @@ -0,0 +1,10 @@ +system: + guidance_type: "stable-diffusion-instructpix2pix-guidance" + guidance: + min_step_percent: 0.8 + max_step_percent: 0.98 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + prompt: "Turn him into Elon Musk" diff --git a/configs/debugging/stablediffusion.yaml b/configs/debugging/stablediffusion.yaml new file mode 100644 index 0000000..4ab38a8 --- /dev/null +++ b/configs/debugging/stablediffusion.yaml @@ -0,0 +1,15 @@ +system: + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: "A cute panda" + front_threshold: 30. + back_threshold: 30. + + guidance_type: "stable-diffusion-vsd-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + pretrained_model_name_or_path_lora: "stabilityai/stable-diffusion-2-1" + guidance_scale: 7.5 + min_step_percent: 0.02 + max_step_percent: 0.98 diff --git a/configs/dreamfusion-if.yaml b/configs/dreamfusion-if.yaml new file mode 100644 index 0000000..393f71f --- /dev/null +++ b/configs/dreamfusion-if.yaml @@ -0,0 +1,112 @@ +name: "dreamfusion-if" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 64 + height: 64 + camera_distance_range: [1.5, 2.0] + fovy_range: [40, 70] + elevation_range: [-10, 90] + light_sample_strategy: "dreamfusion" + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "dreamfusion-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 2.0 + normal_type: "analytic" + + # the density initialization proposed in the DreamFusion paper + # does not work very well + # density_bias: "blob_dreamfusion" + # density_activation: exp + # density_blob_scale: 5. + # density_blob_std: 0.2 + + # use Magic3D density initialization instead + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + # coarse to fine hash grid encoding + # to ensure smooth analytic normals + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + start_level: 8 # resolution ~200 + start_step: 2000 + update_steps: 500 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 2001 + albedo_activation: scale_-11_01 + + background_type: "neural-environment-map-background" + background: + color_activation: scale_-11_01 + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "deep-floyd-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + prompt: ??? + + guidance_type: "deep-floyd-guidance" + guidance: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + guidance_scale: 20. + weighting_strategy: sds + min_step_percent: 0.02 + max_step_percent: 0.98 + + loggers: + wandb: + enable: false + project: 'threestudio' + name: None + + loss: + lambda_sds: 1. + lambda_orient: [0, 10., 1000., 5000] + lambda_sparsity: 1. + lambda_opaque: 0.0 + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry: + lr: 0.01 + background: + lr: 0.001 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/dreamfusion-sd-eff.yaml b/configs/dreamfusion-sd-eff.yaml new file mode 100644 index 0000000..88a23aa --- /dev/null +++ b/configs/dreamfusion-sd-eff.yaml @@ -0,0 +1,115 @@ +name: "dreamfusion-sd" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "eff-random-camera-datamodule" +data: + batch_size: 1 + width: 128 + height: 128 + sample_width: 64 + sample_height: 64 + camera_distance_range: [1.5, 2.0] + fovy_range: [40, 70] + elevation_range: [-10, 45] + light_sample_strategy: "dreamfusion" + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "efficient-dreamfusion-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 2.0 + normal_type: "analytic" + + # the density initialization proposed in the DreamFusion paper + # does not work very well + # density_bias: "blob_dreamfusion" + # density_activation: exp + # density_blob_scale: 5. + # density_blob_std: 0.2 + + # use Magic3D density initialization instead + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + # coarse to fine hash grid encoding + # to ensure smooth analytic normals + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + start_level: 8 # resolution ~200 + start_step: 2000 + update_steps: 500 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 2001 + albedo_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + weighting_strategy: sds + min_step_percent: 0.02 + max_step_percent: 0.98 + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_orient: [0, 10., 1000., 5000] + lambda_sparsity: 1. + lambda_opaque: 0. + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry: + lr: 0.01 + background: + lr: 0.001 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/dreamfusion-sd.yaml b/configs/dreamfusion-sd.yaml new file mode 100644 index 0000000..c6a0f8f --- /dev/null +++ b/configs/dreamfusion-sd.yaml @@ -0,0 +1,113 @@ +name: "dreamfusion-sd" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 64 + height: 64 + camera_distance_range: [1.5, 2.0] + fovy_range: [40, 70] + elevation_range: [-10, 45] + light_sample_strategy: "dreamfusion" + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "dreamfusion-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 2.0 + normal_type: "analytic" + + # the density initialization proposed in the DreamFusion paper + # does not work very well + # density_bias: "blob_dreamfusion" + # density_activation: exp + # density_blob_scale: 5. + # density_blob_std: 0.2 + + # use Magic3D density initialization instead + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + # coarse to fine hash grid encoding + # to ensure smooth analytic normals + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + start_level: 8 # resolution ~200 + start_step: 2000 + update_steps: 500 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 2001 + albedo_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + weighting_strategy: sds + min_step_percent: 0.02 + max_step_percent: 0.98 + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_orient: [0, 10., 1000., 5000] + lambda_sparsity: 1. + lambda_opaque: 0. + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry: + lr: 0.01 + background: + lr: 0.001 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/experimental/co3d-imagecondition.yaml b/configs/experimental/co3d-imagecondition.yaml new file mode 100644 index 0000000..c095073 --- /dev/null +++ b/configs/experimental/co3d-imagecondition.yaml @@ -0,0 +1,133 @@ +name: "co3d-imagecondition" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "co3d-datamodule" +data: + root_dir: ??? + height: 256 + width: 256 + scale_radius: 3.0 + load_preprocessed: false + cam_scale_factor: 0.95 # inherited from plenoxels + max_num_frames: 300 # use less frames for debugging + v2_mode: true + use_mask: true + box_crop: true + box_crop_mask_thr: 0.4 + box_crop_context: 0.1 # The amount of additional padding added to each dimention of the cropping bounding box, relative to vox size. + train_num_rays: 4096 + train_split: "train" + val_split: "val" + test_split: "test" + render_path: "circle" + train_views: [0, 50, 100] + random_camera: + eval_height: 256 + eval_width: 256 + eval_elevation_deg: 0. + eval_camera_distance: 1.2 + eval_fovy_deg: 60. + +system_type: "image-condition-dreamfusion-system" +system: + geometry_type: "implicit-volume" + geometry: + isosurface_method: "mc-cpu" + isosurface_resolution: 128 + isosurface_threshold: 0.0 + normal_type: "finite_difference" + finite_difference_normal_eps: 0.004 + n_feature_dims: 32 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + + material_type: "diffuse-with-point-light-material" + material: + diffuse_prob: 1.0 + textureless_prob: 0.2 + ambient_light_color: [1.0, 1.0, 1.0] + diffuse_light_color: [0.0, 0.0, 0.0] + ambient_only_steps: ${system.freq.ref_only_steps} + + background_type: "neural-environment-map-background" + background: + dir_encoding_config: + otype: ProgressiveBandFrequency + n_frequencies: 6 + mlp_network_config: + otype: VanillaMLP + n_neurons: 32 + n_hidden_layers: 1 + activation: "ReLU" + + renderer_type: "nerf-volume-renderer" + renderer: + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + guidance_scale: 100. + weighting_strategy: sds + + freq: + n_ref: 2 + ref_only_steps: 1000 + + loggers: + wandb: + enable: false + project: 'threestudio' + name: None + + loss: + lambda_sds: 0.1 + lambda_rgb: 10. + lambda_mask: 1. + lambda_depth: 0. + # lambda_depth: [0.0, 0.0, 1.0, 10000] + lambda_normal_smooth: 0.0 + lambda_orient: 1.0 + # lambda_orient: [1000, 0.0, 10, 6000] + lambda_sparsity: 0.0 + lambda_opaque: 0.01 + + optimizer: + name: Adan + args: + eps: 1.0e-8 + weight_decay: 2.0e-5 + max_grad_norm: 5.0 + foreach: False + params: + geometry.encoding: + lr: 0.05 + geometry.network: + lr: 0.005 + background.network: + lr: 0.005 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 500 + limit_val_batches: 6 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/experimental/imagecondition.yaml b/configs/experimental/imagecondition.yaml new file mode 100644 index 0000000..8e923c8 --- /dev/null +++ b/configs/experimental/imagecondition.yaml @@ -0,0 +1,136 @@ +name: "imagecondition" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "single-image-datamodule" +data: + image_path: ./load/images/hamburger_rgba.png + requires_depth: ${cmaxgt0orcmaxgt0:${system.loss.lambda_depth},${system.loss.lambda_depth_rel}} + requires_normal: ${cmaxgt0:${system.loss.lambda_normal}} + random_camera: + batch_size: 4 + eval_height: 256 + eval_width: 256 + eval_elevation_deg: 0. + eval_camera_distance: 1.2 + eval_fovy_deg: 60. + n_val_views: 30 + n_test_views: 120 + +system_type: "image-condition-dreamfusion-system" +system: + geometry_type: "implicit-volume" + geometry: + isosurface_method: "mc-cpu" + isosurface_resolution: 128 + isosurface_threshold: 5.0 + normal_type: "finite_difference" + finite_difference_normal_eps: 0.004 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + + material_type: "diffuse-with-point-light-material" + material: + diffuse_prob: 1.0 + textureless_prob: 0.2 + ambient_light_color: [1.0, 1.0, 1.0] + diffuse_light_color: [0.0, 0.0, 0.0] + ambient_only_steps: ${system.freq.ref_only_steps} + + background_type: "neural-environment-map-background" + background: + dir_encoding_config: + otype: ProgressiveBandFrequency + n_frequencies: 6 + mlp_network_config: + otype: VanillaMLP + n_neurons: 32 + n_hidden_layers: 1 + activation: "ReLU" + + renderer_type: "nerf-volume-renderer" + renderer: + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + prompt: "a DSLR photo of a delicious hamburger" + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + guidance_scale: 100. + weighting_strategy: sds # sds, uniform, fantasia3d + + # prompt_processor_type: "deep-floyd-prompt-processor" + # prompt_processor: + # pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + # prompt: "a DSLR photo of a delicious hamburger" + + # guidance_type: "deep-floyd-guidance" + # guidance: + # pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + # guidance_scale: 20. + # weighting_strategy: sds # sds, uniform, fantasia3d + + freq: + n_ref: 2 + ref_only_steps: 100 + guidance_eval: 0 + + loggers: + wandb: + enable: false + project: 'threestudio' + name: None + + loss: + lambda_sds: 0.1 + lambda_rgb: 10. + lambda_mask: 1. + lambda_depth: [0.0, 0.0, 1.0, 10000] + lambda_depth_rel: [0.0, 0.0, 1.0, 10000] + lambda_normal: 0. # [0, 0, 0.05, 100] + lambda_normal_smooth: 0.0 + lambda_3d_normal_smooth: 0.0 + lambda_orient: 0.0 + lambda_sparsity: 0.0 + lambda_opaque: 0.0 + + + optimizer: + name: Adan + args: + eps: 1.0e-8 + weight_decay: 2.0e-5 + max_grad_norm: 5.0 + foreach: False + params: + geometry.encoding: + lr: 0.05 + geometry.density_network: + lr: 0.005 + geometry.feature_network: + lr: 0.005 + background.network: + lr: 0.005 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 100 + limit_val_batches: 6 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/experimental/imagecondition_zero123nerf.yaml b/configs/experimental/imagecondition_zero123nerf.yaml new file mode 100644 index 0000000..c172c47 --- /dev/null +++ b/configs/experimental/imagecondition_zero123nerf.yaml @@ -0,0 +1,166 @@ +name: "imagecondition" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "single-image-datamodule" +data: + image_path: ./load/images/hamburger_rgba.png + height: 256 + width: 256 + default_elevation_deg: 0.0 + default_azimuth_deg: 0.0 + default_camera_distance: 3.8 + default_fovy_deg: 20.0 + requires_depth: ${cmaxgt0orcmaxgt0:${system.loss.lambda_depth},${system.loss.lambda_depth_rel}} + requires_normal: ${cmaxgt0:${system.loss.lambda_normal}} + random_camera: + height: 128 + width: 128 + batch_size: 12 + resolution_milestones: [] + eval_height: 256 + eval_width: 256 + eval_batch_size: 1 + elevation_range: [-10, 80] + azimuth_range: [-180, 180] + camera_distance_range: [3.8, 3.8] + fovy_range: [20.0, 20.0] # Zero123 has fixed fovy + progressive_until: 0 + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + light_position_perturb: 1.0 + light_distance_range: [7.5, 10.0] + eval_elevation_deg: ${data.default_elevation_deg} + eval_camera_distance: ${data.default_camera_distance} + eval_fovy_deg: ${data.default_fovy_deg} + light_sample_strategy: "dreamfusion" + batch_uniform_azimuth: False + n_val_views: 30 + n_test_views: 120 + +system_type: "image-condition-dreamfusion-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 2.0 + normal_type: "analytic" + + # the density initialization proposed in the DreamFusion paper + # does not work very well + # density_bias: "blob_dreamfusion" + # density_activation: exp + # density_blob_scale: 5. + # density_blob_std: 0.2 + + # use Magic3D density initialization instead + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + # coarse to fine hash grid encoding + # to ensure smooth analytic normals + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 100000 + textureless_prob: 0.05 + albedo_activation: sigmoid + + # background_type: "neural-environment-map-background" + # background: + # color_activation: sigmoid + + background_type: "solid-color-background" + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + return_comp_normal: ${gt0:${system.loss.lambda_normal_smooth}} + return_normal_perturb: ${gt0:${system.loss.lambda_3d_normal_smooth}} + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + guidance_scale: 100 + min_step_percent: [0, 0.4, 0.2, 200] # (start_iter, start_val, end_val, end_iter) + max_step_percent: [0, 0.85, 0.5, 200] + + # prompt_processor_type: "deep-floyd-prompt-processor" + # prompt_processor: + # pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + # prompt: "a DSLR photo of a delicious hamburger" + + # guidance_type: "deep-floyd-guidance" + # guidance: + # pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + # guidance_scale: 7.5 + # min_step_percent: 0.2 + # # min_step_percent: [0, 0.66, 0.33, 2000] # (start_iter, start_val, end_val, end_iter) + # max_step_percent: 0.6 + # # max_step_percent: [0, 0.98, 0.66, 2000] + + freq: + ref_only_steps: 0 + guidance_eval: 0 + + loggers: + wandb: + enable: false + project: 'threestudio' + name: None + + loss: + lambda_sds: 10.0 + lambda_rgb: 0. + lambda_mask: 0. + lambda_depth: 0. + lambda_depth_rel: 0. # [0.0, 0.0, 1.0, 10000] + lambda_normal: 0. # [0, 0, 0.05, 100] + lambda_normal_smooth: 10.0 + lambda_3d_normal_smooth: 10.0 + lambda_orient: 1.0 + lambda_sparsity: 0.1 + lambda_opaque: 0.1 + + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-8 + +trainer: + max_steps: 200 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 20 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: 20 # ${trainer.max_steps} diff --git a/configs/experimental/imagecondition_zero123nerf_refine.yaml b/configs/experimental/imagecondition_zero123nerf_refine.yaml new file mode 100644 index 0000000..bbeb4d6 --- /dev/null +++ b/configs/experimental/imagecondition_zero123nerf_refine.yaml @@ -0,0 +1,160 @@ +name: "imagecondition" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +# data_type: "single-image-datamodule" +# data: +# image_path: ./load/images/hamburger_rgba.png +# height: 512 +# width: 512 +# default_elevation_deg: 0.0 +# default_azimuth_deg: 0.0 +# default_camera_distance: 3.8 +# default_fovy_deg: 20.0 +# requires_depth: ${cmaxgt0orcmaxgt0:${system.loss.lambda_depth},${system.loss.lambda_depth_rel}} +# requires_normal: ${cmaxgt0:${system.loss.lambda_normal}} +# random_camera: + +data_type: "random-camera-datamodule" +data: + height: 512 + width: 512 + batch_size: 2 + resolution_milestones: [] + eval_height: 512 + eval_width: 512 + eval_batch_size: 1 + elevation_range: [-10, 45] + azimuth_range: [-180, 180] + camera_distance_range: [3.2, 3.8] + fovy_range: [10.0, 15.0] # Zero123 has fixed fovy + progressive_until: 0 + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + light_position_perturb: 1.0 + light_distance_range: [7.5, 10.0] + eval_elevation_deg: ${data.default_elevation_deg} + eval_camera_distance: ${data.default_camera_distance} + eval_fovy_deg: ${data.default_fovy_deg} + light_sample_strategy: "dreamfusion" + batch_uniform_azimuth: False + n_val_views: 30 + n_test_views: 120 + +system_type: "image-condition-dreamfusion-system" +system: + refinement: true + geometry_convert_from: ??? + geometry_convert_inherit_texture: true + geometry_type: "tetrahedra-sdf-grid" + geometry: + radius: 2.0 # consistent with coarse + isosurface_resolution: 128 + isosurface_deformable_grid: true + pos_encoding_config: # consistent with coarse, no progressive band + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.4472692374403782 # max resolution 4096 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + fix_geometry: false # optimize grid sdf and deformation + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 0 + soft_shading: true + + # background_type: "neural-environment-map-background" + background_type: "solid-color-background" + + # renderer_type: "nerf-volume-renderer" + # renderer: + # radius: ${system.geometry.radius} + # num_samples_per_ray: 512 + # return_comp_normal: ${gt0:${system.loss.lambda_normal_smooth}} + # return_normal_perturb: ${gt0:${system.loss.lambda_3d_normal_smooth}} + + renderer_type: "nvdiff-rasterizer" + renderer: + context_type: cuda + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 50 + min_step_percent: [0, 0.4, 0.1, 200] # (start_iter, start_val, end_val, end_iter) + max_step_percent: [0, 0.7, 0.4, 200] + + # prompt_processor_type: "deep-floyd-prompt-processor" + # prompt_processor: + # pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + # prompt: "a DSLR photo of a delicious hamburger" + + # guidance_type: "deep-floyd-guidance" + # guidance: + # pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + # guidance_scale: 7.5 + # min_step_percent: 0.2 + # # min_step_percent: [0, 0.66, 0.33, 2000] # (start_iter, start_val, end_val, end_iter) + # max_step_percent: 0.6 + # # max_step_percent: [0, 0.98, 0.66, 2000] + + freq: + ref_only_steps: 0 + guidance_eval: 0 + + loggers: + wandb: + enable: false + project: 'threestudio' + name: None + + loss: + lambda_sds: 5.0 + lambda_rgb: 0.0 + lambda_mask: 0.0 + lambda_depth: 0. + lambda_depth_rel: 0. # [0.0, 0.0, 1.0, 10000] + lambda_normal: 0. # [0, 0, 0.05, 100] + lambda_normal_smooth: 0. + lambda_3d_normal_smooth: 0. + lambda_normal_consistency: 100000. + lambda_laplacian_smoothness: 0. + lambda_orient: 0. + lambda_sparsity: 0. + lambda_opaque: 0. + + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-8 + +trainer: + max_steps: 200 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 5 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: 20 # ${trainer.max_steps} diff --git a/configs/experimental/prolificdreamer-importance.yaml b/configs/experimental/prolificdreamer-importance.yaml new file mode 100644 index 0000000..a1209d2 --- /dev/null +++ b/configs/experimental/prolificdreamer-importance.yaml @@ -0,0 +1,115 @@ +name: "prolificdreamer-importance" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 512 + height: 512 + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: coarse + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: null + + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + + material_type: "no-material" + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + random_aug: true + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + estimator: importance + num_samples_per_ray: 64 + num_samples_per_ray_importance: 32 + near_plane: 0.1 + far_plane: 4.0 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + front_threshold: 30. + back_threshold: 30. + + guidance_type: "stable-diffusion-vsd-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + pretrained_model_name_or_path_lora: "stabilityai/stable-diffusion-2-1" + guidance_scale: 7.5 + min_step_percent: 0.02 + max_step_percent: [5000, 0.98, 0.5, 5001] # annealed to 0.5 after 5000 steps + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_vsd: 1. + lambda_lora: 1. + lambda_orient: 0. + lambda_sparsity: 10. + lambda_opaque: [10000, 0.0, 1000.0, 10001] + optimizer: + name: AdamW + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + guidance: + lr: 0.0001 + +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/experimental/prolificdreamer-neus-importance.yaml b/configs/experimental/prolificdreamer-neus-importance.yaml new file mode 100644 index 0000000..08ba0b6 --- /dev/null +++ b/configs/experimental/prolificdreamer-neus-importance.yaml @@ -0,0 +1,127 @@ +name: "prolificdreamer-neus-importance" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: [1, 1] + # 0-4999: 64x64, >=5000: 512x512 + # this drastically reduces VRAM usage as empty space is pruned in early training + width: [64, 128] + height: [64, 128] + resolution_milestones: [5000] + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: coarse + geometry_type: "implicit-sdf" + geometry: + radius: 2.0 + normal_type: finite_difference + # progressive eps from Neuralangelo + finite_difference_normal_eps: progressive + + sdf_bias: sphere + sdf_bias_params: 0.5 + + # coarse to fine hash grid encoding + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.381912879967776 # max resolution 2048 + start_level: 8 # resolution ~200 + start_step: 2000 + update_steps: 500 + + material_type: no-material + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "solid-color-background" + background: + n_output_dims: 3 + color: [0, 0, 0] + + renderer_type: neus-volume-renderer + renderer: + radius: ${system.geometry.radius} + use_volsdf: true + + estimator: importance + num_samples_per_ray: 64 + num_samples_per_ray_importance: 128 + near_plane: 0.1 + far_plane: 4.0 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + front_threshold: 30. + back_threshold: 30. + + guidance_type: "stable-diffusion-vsd-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + pretrained_model_name_or_path_lora: "stabilityai/stable-diffusion-2-1" + guidance_scale: 7.5 + min_step_percent: 0.02 + max_step_percent: [5000, 0.98, 0.5, 5001] # annealed to 0.5 after 5000 steps + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_vsd: 1. + lambda_lora: 1. + lambda_orient: 0. + lambda_sparsity: 0. + lambda_opaque: 0 + lambda_eikonal: 100. + optimizer: + name: AdamW + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.sdf_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + renderer: + lr: 0.001 + guidance: + lr: 0.0001 + +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/experimental/prolificdreamer-propnet.yaml b/configs/experimental/prolificdreamer-propnet.yaml new file mode 100644 index 0000000..2f795b6 --- /dev/null +++ b/configs/experimental/prolificdreamer-propnet.yaml @@ -0,0 +1,156 @@ +name: "prolificdreamer-propnet" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: [1, 1] + # 0-4999: 64x64, >=5000: 512x512 + # this drastically reduces VRAM usage as empty space is pruned in early training + width: [64, 512] + height: [64, 512] + resolution_milestones: [5000] + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: coarse + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: null + + density_bias: blob_magic3d + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + + material_type: no-material + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: neural-environment-map-background + background: + color_activation: sigmoid + random_aug: true + + renderer_type: nerf-volume-renderer + renderer: + radius: ${system.geometry.radius} + estimator: proposal + num_samples_per_ray: 32 + num_samples_per_ray_proposal: 64 + near_plane: 0.1 + far_plane: 4.0 + proposal_network_config: + n_input_dims: 3 + n_output_dims: 1 + encoding_config: + otype: HashGrid + n_levels: 5 + n_features_per_level: 2 + log2_hashmap_size: 17 + base_resolution: 16 + per_level_scale: 1.681792830507429 # max_resolution: 128 + network_config: + otype: VanillaMLP + activation: ReLU + output_activation: none + n_neurons: 64 + n_hidden_layers: 1 + prop_optimizer_config: + name: Adam + args: + lr: 1.0e-2 + eps: 1.0e-15 + weight_decay: 1.0e-6 + prop_scheduler_config: + name: ChainedScheduler + schedulers: + - name: LinearLR + args: + start_factor: 0.01 + total_iters: 100 + # - + # name: MultiStepLR + # args: + # milestones: + # - ${idiv:${trainer.max_steps},2} + # - ${idiv:${mul:${trainer.max_steps},3},4} + # - ${idiv:${mul:${trainer.max_steps},9},10} + # gamma: 0.33 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + front_threshold: 30. + back_threshold: 30. + + guidance_type: "stable-diffusion-vsd-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + pretrained_model_name_or_path_lora: "stabilityai/stable-diffusion-2-1" + guidance_scale: 7.5 + min_step_percent: 0.02 + max_step_percent: [5000, 0.98, 0.5, 5001] # annealed to 0.5 after 5000 steps + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_vsd: 1. + lambda_lora: 1. + lambda_orient: 0. + lambda_sparsity: 10. + lambda_opaque: [10000, 0.0, 1000.0, 10001] + lambda_z_variance: 0. + optimizer: + name: AdamW + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + guidance: + lr: 0.0001 + +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/experimental/textmesh-if-importance.yaml b/configs/experimental/textmesh-if-importance.yaml new file mode 100644 index 0000000..75f7227 --- /dev/null +++ b/configs/experimental/textmesh-if-importance.yaml @@ -0,0 +1,111 @@ +name: "textmesh-if-importance" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 64 + height: 64 + camera_distance_range: [1.5, 2.0] + fovy_range: [40, 70] + elevation_range: [-10, 90] + light_sample_strategy: "dreamfusion" + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "textmesh-system" +system: + geometry_type: "implicit-sdf" + geometry: + radius: 2.0 + normal_type: finite_difference + # progressive eps from Neuralangelo + finite_difference_normal_eps: progressive + + sdf_bias: sphere + sdf_bias_params: 0.5 + + # coarse to fine hash grid encoding + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.381912879967776 # max resolution 2048 + start_level: 8 # resolution ~200 + start_step: 2000 + update_steps: 500 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 200100 + albedo_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + + renderer_type: "neus-volume-renderer" + renderer: + radius: ${system.geometry.radius} + cos_anneal_end_steps: ${trainer.max_steps} + use_volsdf: true + eval_chunk_size: 8192 + + estimator: importance + num_samples_per_ray: 64 + num_samples_per_ray_importance: 128 + near_plane: 0.1 + far_plane: 4.0 + + prompt_processor_type: "deep-floyd-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + prompt: ??? + + guidance_type: "deep-floyd-guidance" + guidance: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + guidance_scale: 20. + weighting_strategy: sds + min_step_percent: 0.02 + max_step_percent: 0.98 + + loss: + lambda_sds: 1. + lambda_orient: 0.0 + lambda_sparsity: 0.0 + lambda_opaque: 0.0 + lambda_eikonal: 10. + optimizer: + name: Adam + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.sdf_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + renderer: + lr: 0.0001 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/experimental/unified-guidance/dreamfusion-sd.yaml b/configs/experimental/unified-guidance/dreamfusion-sd.yaml new file mode 100644 index 0000000..2468eca --- /dev/null +++ b/configs/experimental/unified-guidance/dreamfusion-sd.yaml @@ -0,0 +1,115 @@ +name: "dreamfusion-sd" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 64 + height: 64 + camera_distance_range: [1.5, 2.0] + fovy_range: [40, 70] + elevation_range: [-10, 45] + light_sample_strategy: "dreamfusion" + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "dreamfusion-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 2.0 + normal_type: "analytic" + + # the density initialization proposed in the DreamFusion paper + # does not work very well + # density_bias: "blob_dreamfusion" + # density_activation: exp + # density_blob_scale: 5. + # density_blob_std: 0.2 + + # use Magic3D density initialization instead + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + # coarse to fine hash grid encoding + # to ensure smooth analytic normals + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + start_level: 8 # resolution ~200 + start_step: 2000 + update_steps: 500 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 2001 + albedo_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-unified-guidance" + guidance: + guidance_type: "sds" + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + weighting_strategy: dreamfusion + min_step_percent: 0.02 + max_step_percent: 0.98 + use_img_loss: false + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sd: 1. + lambda_orient: [0, 10., 1000., 5000] + lambda_sparsity: 1. + lambda_opaque: 0. + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry: + lr: 0.01 + background: + lr: 0.001 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/experimental/unified-guidance/hifa.yaml b/configs/experimental/unified-guidance/hifa.yaml new file mode 100644 index 0000000..9a42ee9 --- /dev/null +++ b/configs/experimental/unified-guidance/hifa.yaml @@ -0,0 +1,112 @@ +name: "hifa-unified" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 512 + height: 512 + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "dreamfusion-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: null + + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + + material_type: "no-material" + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + random_aug: true + + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-unified-guidance" + guidance: + guidance_type: "sds" + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + weighting_strategy: dreamfusion + min_step_percent: 0.3 + max_step_percent: 0.98 + use_img_loss: true + sqrt_anneal: true + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sd: 1. + lambda_sd_img: 0.01 + lambda_orient: 0. + lambda_sparsity: 1. + lambda_opaque: 0. + lambda_z_variance: 100. + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/experimental/unified-guidance/prolificdreamer-hifa.yaml b/configs/experimental/unified-guidance/prolificdreamer-hifa.yaml new file mode 100644 index 0000000..512ae7e --- /dev/null +++ b/configs/experimental/unified-guidance/prolificdreamer-hifa.yaml @@ -0,0 +1,120 @@ +name: "prolificdreamer-hifa-unified" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: [1, 1] + # 0-4999: 64x64, >=5000: 512x512 + # this drastically reduces VRAM usage as empty space is pruned in early training + width: [64, 512] + height: [64, 512] + resolution_milestones: [5000] + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: coarse + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: null + + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + + material_type: "no-material" + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + random_aug: true + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + front_threshold: 30. + back_threshold: 30. + + guidance_type: "stable-diffusion-unified-guidance" + guidance: + guidance_type: "vsd" + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 7.5 + weighting_strategy: dreamfusion + min_step_percent: 0.3 + max_step_percent: 0.98 + vsd_phi_model_name_or_path: "stabilityai/stable-diffusion-2-1" + sqrt_anneal: true + use_img_loss: true + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sd: 1. + lambda_sd_img: 0.01 + lambda_train_phi: 1. + lambda_orient: 0. + lambda_sparsity: 10. + lambda_opaque: [10000, 0.0, 1000.0, 10001] + lambda_z_variance: 300. + optimizer: + name: AdamW + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + guidance: + lr: 0.0001 + +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/experimental/unified-guidance/prolificdreamer.yaml b/configs/experimental/unified-guidance/prolificdreamer.yaml new file mode 100644 index 0000000..aeedc2d --- /dev/null +++ b/configs/experimental/unified-guidance/prolificdreamer.yaml @@ -0,0 +1,120 @@ +name: "prolificdreamer" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: [1, 1] + # 0-4999: 64x64, >=5000: 512x512 + # this drastically reduces VRAM usage as empty space is pruned in early training + width: [256, 256] + height: [256, 256] + resolution_milestones: [2000] + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: coarse + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: null + + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + + material_type: "no-material" + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + random_aug: true + random_aug_prob: 0.1 + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + front_threshold: 30. + back_threshold: 30. + + guidance_type: "stable-diffusion-unified-guidance" + guidance: + guidance_type: "vsd" + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 7.5 + weighting_strategy: dreamfusion + min_step_percent: 0.02 + max_step_percent: [5000, 0.98, 0.5, 5001] # annealed to 0.5 after 5000 steps + vsd_phi_model_name_or_path: "stabilityai/stable-diffusion-2-1" + use_img_loss: false + sqrt_anneal: false + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sd: 1. + lambda_train_phi: 1. + lambda_orient: 0. + lambda_sparsity: 10. + lambda_opaque: [10000, 0.0, 1000.0, 10001] + lambda_z_variance: 0. + optimizer: + name: AdamW + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + guidance: + lr: 0.0001 + +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/experimental/unified-guidance/zero123-simple.yaml b/configs/experimental/unified-guidance/zero123-simple.yaml new file mode 100644 index 0000000..3375b80 --- /dev/null +++ b/configs/experimental/unified-guidance/zero123-simple.yaml @@ -0,0 +1,141 @@ +name: "zero123-simple" +tag: "${system.guidance.guidance_type}_${data.random_camera.height}_${rmspace:${basename:${data.image_path}},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "single-image-datamodule" +data: + image_path: ??? + height: 256 + width: 256 + default_elevation_deg: 0.0 + default_azimuth_deg: 0.0 + default_camera_distance: 2.5 + default_fovy_deg: 40.0 + random_camera: + batch_size: 1 + height: 256 + width: 256 + elevation_range: [-45, 45] + azimuth_range: [-180, 180] + camera_distance_range: [2.5, 2.5] + fovy_range: [40.0, 40.0] + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + eval_height: 512 + eval_width: 512 + eval_elevation_deg: ${data.default_elevation_deg} + eval_camera_distance: ${data.default_camera_distance} + eval_fovy_deg: ${data.default_fovy_deg} + n_val_views: 4 + n_test_views: 120 + +system_type: "zero123-simple-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: analytic + + # use Magic3D density initialization + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + start_level: 8 # resolution ~200 + start_step: 2000 + update_steps: 300 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + + material_type: "no-material" + material: + requires_normal: true + + background_type: "solid-color-background" + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 256 + return_comp_normal: true + + guidance_type: "zero123-unified-guidance" + guidance: + guidance_type: "sds" + # guidance_type: "vsd" # switch to this line to use vsd + pretrained_model_name_or_path: "bennyguo/zero123-diffusers" + guidance_scale: 5.0 + # empirical timestep annealing + min_step_percent: 0.1 + max_step_percent: [5000, 0.9, 0.5, 5001] + + cond_image_path: ${data.image_path} + cond_elevation_deg: ${data.default_elevation_deg} + cond_azimuth_deg: ${data.default_azimuth_deg} + cond_camera_distance: ${data.default_camera_distance} + + # debug use, may slowdown training + return_rgb_1step_orig: true + + # for vsd + vsd_phi_model_name_or_path: null + vsd_use_camera_condition: false + use_img_loss: false + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sd: 1.0 + lambda_train_phi: 1.0 # for vsd + lambda_orient: 0. + lambda_normal_smoothness_2d: 1000. + lambda_sparsity: 0. + lambda_opaque: 0. + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-8 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + # for vsd + guidance: + lr: 0.0001 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 1 + val_check_interval: 100 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/fantasia3d-texture.yaml b/configs/fantasia3d-texture.yaml new file mode 100644 index 0000000..3c48dd4 --- /dev/null +++ b/configs/fantasia3d-texture.yaml @@ -0,0 +1,129 @@ +name: "fantasia3d-texture" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 512 + height: 512 + camera_distance_range: [3, 3] + fovy_range: [25, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + elevation_range: [-10, 45] + azimuth_range: [-180, 180] + batch_uniform_azimuth: true + eval_camera_distance: 3. + eval_fovy_deg: 45. + +system_type: "fantasia3d-system" +system: + # do texture training + texture: true + + # If using geometry from previous training + geometry_convert_from: ??? + geometry_convert_inherit_texture: false + geometry_type: "tetrahedra-sdf-grid" + geometry: + radius: 1.0 # consistent with coarse + isosurface_resolution: 128 + isosurface_deformable_grid: true + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.4472692374403782 # max resolution 4096 + n_feature_dims: 8 # albedo3 + roughness1 + metallic1 + bump3 + fix_geometry: true + + # If using custom mesh + # geometry_type: "custom-mesh" + # geometry: + # shape_init: ??? + # radius: 1.0 # consistent with coarse + # pos_encoding_config: + # otype: HashGrid + # n_levels: 16 + # n_features_per_level: 2 + # log2_hashmap_size: 19 + # base_resolution: 16 + # per_level_scale: 1.4472692374403782 # max resolution 4096 + # n_feature_dims: 8 # albedo3 + roughness1 + metallic1 + bump3 + + material_type: "pbr-material" + material: + material_activation: sigmoid + environment_texture: "load/lights/mud_road_puresky_1k.hdr" + environment_scale: 2.0 + min_metallic: 0.0 + max_metallic: 0.9 + min_roughness: 0.08 + max_roughness: 0.9 + use_bump: true + + background_type: "solid-color-background" + + renderer_type: "nvdiff-rasterizer" + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100 + weighting_strategy: sds + min_step_percent: 0.02 + max_step_percent: 0.50 + + # If using controlnet guidance: +# prompt_processor_type: "stable-diffusion-prompt-processor" +# prompt_processor: +# pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + +# guidance_type: "stable-diffusion-controlnet-guidance" +# guidance: +# control_type: "normal" +# min_step_percent: 0.02 +# max_step_percent: 0.50 +# condition_scale: 1.0 +# guidance_scale: 100 +# use_sds: true + + + loggers: + wandb: + enable: false + project: "threestudio" + + loss: + lambda_sds: 1. + lambda_normal_consistency: 0. + + optimizer: + name: AdamW + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + +trainer: + max_steps: 5000 + log_every_n_steps: 1 + num_sanity_val_steps: 1 + val_check_interval: 500 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/fantasia3d.yaml b/configs/fantasia3d.yaml new file mode 100644 index 0000000..858b4b9 --- /dev/null +++ b/configs/fantasia3d.yaml @@ -0,0 +1,98 @@ +name: "fantasia3d" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 512 + height: 512 + camera_distance_range: [3, 3] + fovy_range: [25, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + elevation_range: [-10, 45] + azimuth_range: [-180, 180] + batch_uniform_azimuth: true + eval_camera_distance: 3. + eval_fovy_deg: 45. + +system_type: "fantasia3d-system" +system: + latent_steps: 1000 + geometry_type: "implicit-sdf" + geometry: + radius: 1.0 + n_feature_dims: 0 + isosurface_resolution: 128 + isosurface_deformable_grid: true + isosurface_coarse_to_fine: false + + # initialize SDF by optimization + shape_init: sphere + shape_init_params: 0.5 + + # or you can initialize SDF using a guide mesh + # shape_init: mesh:load/shapes/human.obj + # shape_init_params: 0.9 + # shape_init_mesh_up: +y + # shape_init_mesh_front: +z + + # an alternative initialization implementation: + # you can initialize SDF to sphere/ellipsoid by adding a bias value + # which leads to more smooth initialized shape + # sdf_bias: sphere + # sdf_bias_params: 0.5 + # DO NOT use the two initialization methods together + + material_type: "no-material" # unused + material: + n_output_dims: 0 + + background_type: "solid-color-background" # unused + + renderer_type: "nvdiff-rasterizer" + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + max_step_percent: 0.5 + weighting_strategy: fantasia3d + + loggers: + wandb: + enable: false + project: 'threestudio' + name: None + + loss: + lambda_sds: 1. + lambda_normal_consistency: 0. + + optimizer: + name: AdamW + args: + lr: 0.001 + betas: [0.9, 0.99] + eps: 1.e-15 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 1 + val_check_interval: 500 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/gradio/dreamfusion-if.yaml b/configs/gradio/dreamfusion-if.yaml new file mode 100644 index 0000000..ac88a32 --- /dev/null +++ b/configs/gradio/dreamfusion-if.yaml @@ -0,0 +1,119 @@ +name: "dreamfusion-if" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs-gradio" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 64 + height: 64 + camera_distance_range: [1.5, 2.0] + fovy_range: [40, 70] + elevation_range: [-10, 90] + light_sample_strategy: "dreamfusion" + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "dreamfusion-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 2.0 + normal_type: "analytic" + + # the density initialization proposed in the DreamFusion paper + # does not work very well + # density_bias: "blob_dreamfusion" + # density_activation: exp + # density_blob_scale: 5. + # density_blob_std: 0.2 + + # use Magic3D density initialization instead + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + # coarse to fine hash grid encoding + # to ensure smooth analytic normals + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.381912879967776 # max resolution 2048 + start_level: 10 # resolution ~300 + start_step: 2000 + update_steps: 400 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 2001 + albedo_activation: scale_-11_01 + + background_type: "neural-environment-map-background" + background: + color_activation: scale_-11_01 + random_aug: true + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "deep-floyd-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + prompt: ??? + + guidance_type: "deep-floyd-guidance" + guidance: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + guidance_scale: 20. + weighting_strategy: sds + min_step_percent: 0.02 + max_step_percent: 0.98 + + exporter_type: "mesh-exporter" + exporter: + fmt: obj + save_uv: false + context_type: cuda + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_orient: [0, 10., 1000., 5000] + lambda_sparsity: 1. + lambda_opaque: 0.0 + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry: + lr: 0.01 + background: + lr: 0.001 + +trainer: + max_steps: 5000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 100 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: false + save_top_k: -1 + every_n_train_steps: 0 # do not save checkpoints during training diff --git a/configs/gradio/dreamfusion-sd.yaml b/configs/gradio/dreamfusion-sd.yaml new file mode 100644 index 0000000..afd70f3 --- /dev/null +++ b/configs/gradio/dreamfusion-sd.yaml @@ -0,0 +1,121 @@ +name: "dreamfusion-sd" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs-gradio" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 64 + height: 64 + camera_distance_range: [1.5, 2.0] + fovy_range: [40, 70] + elevation_range: [-10, 45] + light_sample_strategy: "dreamfusion" + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "dreamfusion-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 2.0 + normal_type: "analytic" + + # the density initialization proposed in the DreamFusion paper + # does not work very well + # density_bias: "blob_dreamfusion" + # density_activation: exp + # density_blob_scale: 5. + # density_blob_std: 0.2 + + # use Magic3D density initialization instead + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + # coarse to fine hash grid encoding + # to ensure smooth analytic normals + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.381912879967776 # max resolution 2048 + start_level: 10 # resolution ~300 + start_step: 2000 + update_steps: 400 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 2001 + albedo_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + random_aug: true + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + weighting_strategy: sds + min_step_percent: 0.02 + max_step_percent: 0.98 + grad_clip: [0, 0.5, 2.0, 5000] + + exporter_type: "mesh-exporter" + exporter: + fmt: obj + save_uv: false + context_type: cuda + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_orient: [0, 10., 1000., 5000] + lambda_sparsity: 1. + lambda_opaque: 0. + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry: + lr: 0.01 + background: + lr: 0.001 + +trainer: + max_steps: 5000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 100 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: false + save_top_k: -1 + every_n_train_steps: 0 # do not save checkpoints during training diff --git a/configs/gradio/fantasia3d.yaml b/configs/gradio/fantasia3d.yaml new file mode 100644 index 0000000..6b962f8 --- /dev/null +++ b/configs/gradio/fantasia3d.yaml @@ -0,0 +1,107 @@ +name: "fantasia3d" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs-gradio" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 512 + height: 512 + camera_distance_range: [3, 3] + fovy_range: [25, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + elevation_range: [-10, 45] + azimuth_range: [-180, 180] + batch_uniform_azimuth: true + eval_camera_distance: 3. + eval_fovy_deg: 45. + +system_type: "fantasia3d-system" +system: + latent_steps: 1000 + geometry_type: "implicit-sdf" + geometry: + radius: 1.0 + n_feature_dims: 0 + isosurface_resolution: 128 + isosurface_deformable_grid: true + isosurface_coarse_to_fine: false + + # initialize SDF by optimization + shape_init: sphere + shape_init_params: 0.5 + + # or you can initialize SDF using a guide mesh + # shape_init: mesh:load/shapes/human.obj + # shape_init_params: 0.9 + # shape_init_mesh_up: +y + # shape_init_mesh_front: +z + + # an alternative initialization implementation: + # you can initialize SDF to sphere/ellipsoid by adding a bias value + # which leads to more smooth initialized shape + # sdf_bias: sphere + # sdf_bias_params: 0.5 + # DO NOT use the two initialization methods together + + material_type: "no-material" # unused + material: + n_output_dims: 0 + + background_type: "solid-color-background" # unused + + renderer_type: "nvdiff-rasterizer" + renderer: + context_type: cuda + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + max_step_percent: 0.5 + weighting_strategy: fantasia3d + + exporter_type: "mesh-exporter" + exporter: + fmt: obj + save_uv: false + save_texture: false + context_type: cuda + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_normal_consistency: 0. + + optimizer: + name: AdamW + args: + lr: 0.001 + betas: [0.9, 0.99] + eps: 1.e-15 + +trainer: + max_steps: 5000 + log_every_n_steps: 1 + num_sanity_val_steps: 1 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: false + save_top_k: -1 + every_n_train_steps: 0 # do not save checkpoints during training diff --git a/configs/gradio/latentnerf.yaml b/configs/gradio/latentnerf.yaml new file mode 100644 index 0000000..b9d7087 --- /dev/null +++ b/configs/gradio/latentnerf.yaml @@ -0,0 +1,103 @@ +name: "latentnerf" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs-gradio" +seed: 0 + +data_type: "random-camera-datamodule" +data: + elevation_range: [-10, 45] + +system_type: "latentnerf-system" +system: + geometry_type: "implicit-volume" + geometry: + n_feature_dims: 4 + normal_type: null + + density_bias: "blob_dreamfusion" + density_activation: trunc_exp + density_blob_scale: 5. + density_blob_std: 0.2 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.381912879967776 # max resolution 2048 + + material_type: "no-material" + material: + n_output_dims: 4 + color_activation: none + + background_type: "neural-environment-map-background" + background: + n_output_dims: 4 + color_activation: none + + renderer_type: "nerf-volume-renderer" + renderer: + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + weighting_strategy: sds + grad_clip: [0, 2.0, 8.0, 5000] + + exporter_type: "dummy-exporter" + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_sparsity: 5.e-4 + lambda_opaque: 0.0 + lambda_orient: 0.0 + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + scheduler: + name: SequentialLR + interval: step + warmup_steps: 100 + milestones: + - ${system.scheduler.warmup_steps} + schedulers: + - name: LinearLR # linear warm-up in the first system.warmup_steps steps + args: + start_factor: 0.1 + end_factor: 1.0 + total_iters: ${system.scheduler.warmup_steps} + - name: ExponentialLR + args: + gamma: ${calc_exp_lr_decay_rate:0.1,${sub:${trainer.max_steps},${system.scheduler.warmup_steps}}} + +trainer: + max_steps: 5000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: false + save_top_k: -1 + every_n_train_steps: 0 # do not save checkpoints during training diff --git a/configs/gradio/sjc.yaml b/configs/gradio/sjc.yaml new file mode 100644 index 0000000..8471270 --- /dev/null +++ b/configs/gradio/sjc.yaml @@ -0,0 +1,96 @@ +name: sjc +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs-gradio" +seed: 0 + +data_type: random-camera-datamodule +data: + camera_distance_range: [1.50, 1.50] + elevation_range: [-10, 45] + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + light_position_perturb: 0.0 + eval_elevation_deg: 20.0 + +system_type: sjc-system +system: + subpixel_rendering: false + + geometry_type: volume-grid + geometry: + normal_type: null + grid_size: [100, 100, 100] + density_bias: -1.0 + n_feature_dims: 4 + + material_type: no-material + material: + n_output_dims: 4 + color_activation: none + + background_type: textured-background + background: + n_output_dims: 4 + color_activation: none + height: 4 + width: 4 + + renderer_type: nerf-volume-renderer + renderer: + num_samples_per_ray: 512 + grid_prune: false + + prompt_processor_type: stable-diffusion-prompt-processor + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + view_dependent_prompt_front: true + + guidance_type: stable-diffusion-guidance + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + use_sjc: true + var_red: true + min_step_percent: 0.01 + max_step_percent: 0.97 + grad_clip: [0, 2.0, 8.0, 5000] + + exporter_type: "dummy-exporter" + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + center_ratio: 0.78125 # = 50 / 64 + lambda_depth: 0 # or try 10 + lambda_emptiness: [5000, 1.e+4, 2.e+5, 5001] + emptiness_scale: 10 + + optimizer: + name: Adamax + args: + lr: 0.05 + params: + geometry: + lr: 0.05 + background: + lr: 0.0001 # maybe 0.001/0.01 is better + +trainer: + max_steps: 5000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: false + save_top_k: -1 + every_n_train_steps: 0 # do not save checkpoints during training diff --git a/configs/gradio/textmesh-if.yaml b/configs/gradio/textmesh-if.yaml new file mode 100644 index 0000000..7ea69a7 --- /dev/null +++ b/configs/gradio/textmesh-if.yaml @@ -0,0 +1,112 @@ +name: "textmesh-if" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs-gradio" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 64 + height: 64 + camera_distance_range: [1.5, 2.0] + fovy_range: [40, 70] + elevation_range: [-10, 90] + light_sample_strategy: "dreamfusion" + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "textmesh-system" +system: + geometry_type: "implicit-sdf" + geometry: + radius: 2.0 + normal_type: finite_difference + # progressive eps from Neuralangelo + finite_difference_normal_eps: progressive + + sdf_bias: sphere + sdf_bias_params: 0.5 + + # coarse to fine hash grid encoding + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.381912879967776 # max resolution 2048 + start_level: 10 # resolution ~300 + start_step: 2000 + update_steps: 400 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 2001 + albedo_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + random_aug: true + + renderer_type: "neus-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + cos_anneal_end_steps: ${trainer.max_steps} + eval_chunk_size: 8192 + + prompt_processor_type: "deep-floyd-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + prompt: ??? + + guidance_type: "deep-floyd-guidance" + guidance: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + guidance_scale: 20. + weighting_strategy: sds + min_step_percent: 0.02 + max_step_percent: 0.98 + + exporter_type: "mesh-exporter" + exporter: + fmt: obj + save_uv: false + context_type: cuda + + loss: + lambda_sds: 1. + lambda_orient: 0.0 + lambda_sparsity: 0.0 + lambda_opaque: 0.0 + lambda_eikonal: 1000. + optimizer: + name: Adam + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.sdf_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + renderer: + lr: 0.001 + +trainer: + max_steps: 5000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 100 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: false + save_top_k: -1 + every_n_train_steps: 0 # do not save checkpoints during training diff --git a/configs/hifa.yaml b/configs/hifa.yaml new file mode 100644 index 0000000..a5c32ab --- /dev/null +++ b/configs/hifa.yaml @@ -0,0 +1,111 @@ +name: "hifa" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 512 + height: 512 + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "dreamfusion-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: null + + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + + material_type: "no-material" + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + random_aug: true + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + weighting_strategy: sds + min_step_percent: 0.3 + max_step_percent: 0.98 + sqrt_anneal: true + use_img_loss: true + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_sds_img: 0.01 + lambda_orient: 0. + lambda_sparsity: 1. + lambda_opaque: 0. + lambda_z_variance: 100 + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/instructnerf2nerf.yaml b/configs/instructnerf2nerf.yaml new file mode 100644 index 0000000..2339ccc --- /dev/null +++ b/configs/instructnerf2nerf.yaml @@ -0,0 +1,99 @@ +name: "instructnerf2nerf" +tag: "${basename:${data.dataroot}}_${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "multiview-camera-datamodule" +data: + train_downsample_resolution: 2 + eval_downsample_resolution: 2 + dataroot: ??? + +system_type: "instructnerf2nerf-system" +system: + start_editing_step: 600 + per_editing_step: 10 + + geometry_type: "implicit-volume" + geometry: + radius: 1. + normal_type: analytic + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.4472692374403782 # max resolution 4096 + + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 9999999 + albedo_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + random_aug: false + + renderer_type: "patch-renderer" + renderer: + base_renderer_type: "nerf-volume-renderer" + base_renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 384 + patch_size: 128 + + guidance_type: "stable-diffusion-instructpix2pix-guidance" + guidance: + min_step_percent: 0.02 + max_step_percent: 0.98 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + prompt: "Turn him into Elon Musk" + + loggers: + wandb: + enable: false + project: 'threestudio' + + loss: + lambda_sds: 0. + lambda_orient: [0, 10.0, 1000., 5000.0] + lambda_sparsity: 1.0 + lambda_opaque: 1.0 + lambda_l1: 10. + lambda_p: 10. + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry: + lr: 0.01 + background: + lr: 0.001 + +trainer: + max_steps: 20000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 600 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/latentnerf-refine.yaml b/configs/latentnerf-refine.yaml new file mode 100644 index 0000000..2f2f5df --- /dev/null +++ b/configs/latentnerf-refine.yaml @@ -0,0 +1,90 @@ +name: "latentnerf-refine" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + elevation_range: [-10, 45] + +system_type: "latentnerf-system" +system: + refinement: true + weights: ??? + weights_ignore_modules: ["material", "background"] + + geometry_type: "implicit-volume" + geometry: + n_feature_dims: 4 + normal_type: null + + density_bias: "blob_dreamfusion" + density_activation: trunc_exp + density_blob_scale: 5. + density_blob_std: 0.2 + + material_type: "sd-latent-adapter-material" + + background_type: "neural-environment-map-background" + + renderer_type: "nerf-volume-renderer" + renderer: + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + weighting_strategy: sds + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_sparsity: 5.e-4 + lambda_opaque: 0.0 + lambda_orient: 0.0 + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + scheduler: + name: SequentialLR + interval: step + warmup_steps: 100 + milestones: + - ${system.scheduler.warmup_steps} + schedulers: + - name: LinearLR # linear warm-up in the first system.warmup_steps steps + args: + start_factor: 0.1 + end_factor: 1.0 + total_iters: ${system.scheduler.warmup_steps} + - name: ExponentialLR + args: + gamma: ${calc_exp_lr_decay_rate:0.1,${sub:${trainer.max_steps},${system.scheduler.warmup_steps}}} + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 1 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/latentnerf.yaml b/configs/latentnerf.yaml new file mode 100644 index 0000000..ecafb0f --- /dev/null +++ b/configs/latentnerf.yaml @@ -0,0 +1,92 @@ +name: "latentnerf" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + elevation_range: [-10, 45] + +system_type: "latentnerf-system" +system: + geometry_type: "implicit-volume" + geometry: + n_feature_dims: 4 + normal_type: null + + density_bias: "blob_dreamfusion" + density_activation: trunc_exp + density_blob_scale: 5. + density_blob_std: 0.2 + + material_type: "no-material" + material: + n_output_dims: 4 + color_activation: none + + background_type: "neural-environment-map-background" + background: + n_output_dims: 4 + color_activation: none + + renderer_type: "nerf-volume-renderer" + renderer: + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + weighting_strategy: sds + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_sparsity: 5.e-4 + lambda_opaque: 0.0 + lambda_orient: 0.0 + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + scheduler: + name: SequentialLR + interval: step + warmup_steps: 100 + milestones: + - ${system.scheduler.warmup_steps} + schedulers: + - name: LinearLR # linear warm-up in the first system.warmup_steps steps + args: + start_factor: 0.1 + end_factor: 1.0 + total_iters: ${system.scheduler.warmup_steps} + - name: ExponentialLR + args: + gamma: ${calc_exp_lr_decay_rate:0.1,${sub:${trainer.max_steps},${system.scheduler.warmup_steps}}} + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/magic123-coarse-sd.yaml b/configs/magic123-coarse-sd.yaml new file mode 100644 index 0000000..5fd06fa --- /dev/null +++ b/configs/magic123-coarse-sd.yaml @@ -0,0 +1,147 @@ +name: "magic123-coarse-sd" +tag: "${rmspace:${basename:${data.image_path}},_}-${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "single-image-datamodule" +data: + image_path: ??? + height: 128 + width: 128 + default_elevation_deg: 0.0 + default_azimuth_deg: 0.0 + default_camera_distance: 2.5 + default_fovy_deg: 40.0 + random_camera: + batch_size: 1 + height: 128 + width: 128 + elevation_range: [-45, 45] + azimuth_range: [-180, 180] + camera_distance_range: [2.5, 2.5] + fovy_range: [40.0, 40.0] + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + eval_height: 512 + eval_width: 512 + eval_elevation_deg: ${data.default_elevation_deg} + eval_camera_distance: ${data.default_camera_distance} + eval_fovy_deg: ${data.default_fovy_deg} + n_val_views: 4 + n_test_views: 120 + +system_type: "magic123-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: analytic + + # use Magic3D density initialization + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + # coarse to fine hash grid encoding + # to ensure smooth analytic normals + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + start_level: 8 # resolution ~200 + start_step: 2000 + update_steps: 300 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + + material_type: "no-material" + material: + requires_normal: true + + background_type: "solid-color-background" + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + estimator: occgrid + num_samples_per_ray: 256 + return_comp_normal: true + + guidance_3d_type: "zero123-unified-guidance" + guidance_3d: + guidance_type: "sds" + guidance_scale: 5.0 + min_step_percent: 0.2 + max_step_percent: 0.6 + + cond_image_path: ${data.image_path} + cond_elevation_deg: ${data.default_elevation_deg} + cond_azimuth_deg: ${data.default_azimuth_deg} + cond_camera_distance: ${data.default_camera_distance} + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + prompt: ??? + + guidance_type: "stable-diffusion-unified-guidance" + guidance: + guidance_type: "sds" + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + guidance_scale: 100. + min_step_percent: 0.2 + max_step_percent: 0.6 + use_img_loss: false + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_rgb: 1000. + lambda_mask: 100. + lambda_sd: 0.025 + lambda_3d_sd: 1. + lambda_sd_img: 0. + lambda_orient: 0. + lambda_normal_smoothness_2d: 1000. + lambda_sparsity: 0. + lambda_opaque: 0. + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-8 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 100 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/magic123-hifa-coarse-sd.yaml b/configs/magic123-hifa-coarse-sd.yaml new file mode 100644 index 0000000..fb96eab --- /dev/null +++ b/configs/magic123-hifa-coarse-sd.yaml @@ -0,0 +1,148 @@ +name: "magic123-hifa-coarse-sd" +tag: "${rmspace:${basename:${data.image_path}},_}-${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "single-image-datamodule" +data: + image_path: ??? + height: 128 + width: 128 + default_elevation_deg: 0.0 + default_azimuth_deg: 0.0 + default_camera_distance: 2.5 + default_fovy_deg: 40.0 + random_camera: + batch_size: 1 + height: 128 + width: 128 + elevation_range: [-45, 45] + azimuth_range: [-180, 180] + camera_distance_range: [2.5, 2.5] + fovy_range: [40.0, 40.0] + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + eval_height: 512 + eval_width: 512 + eval_elevation_deg: ${data.default_elevation_deg} + eval_camera_distance: ${data.default_camera_distance} + eval_fovy_deg: ${data.default_fovy_deg} + n_val_views: 4 + n_test_views: 120 + +system_type: "magic123-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: analytic + + # use Magic3D density initialization + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + # coarse to fine hash grid encoding + # to ensure smooth analytic normals + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + start_level: 8 # resolution ~200 + start_step: 2000 + update_steps: 300 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + + material_type: "no-material" + material: + requires_normal: true + + background_type: "solid-color-background" + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + estimator: occgrid + num_samples_per_ray: 256 + return_comp_normal: true + + guidance_3d_type: "zero123-unified-guidance" + guidance_3d: + guidance_type: "sds" + guidance_scale: 5.0 + min_step_percent: 0.2 + max_step_percent: 0.6 + + cond_image_path: ${data.image_path} + cond_elevation_deg: ${data.default_elevation_deg} + cond_azimuth_deg: ${data.default_azimuth_deg} + cond_camera_distance: ${data.default_camera_distance} + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + prompt: ??? + + guidance_type: "stable-diffusion-unified-guidance" + guidance: + guidance_type: "sds" + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + guidance_scale: 100. + min_step_percent: 0.2 + max_step_percent: 0.6 + use_img_loss: true + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_rgb: 1000. + lambda_mask: 100. + lambda_sd: 0.025 + lambda_3d_sd: 1. + lambda_sd_img: 0.00025 + lambda_orient: 0. + lambda_normal_smoothness_2d: 1000. + lambda_sparsity: 0. + lambda_opaque: 0. + lambda_z_variance: 100. + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-8 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 100 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/magic123-hifa-refine-sd.yaml b/configs/magic123-hifa-refine-sd.yaml new file mode 100644 index 0000000..2e41f34 --- /dev/null +++ b/configs/magic123-hifa-refine-sd.yaml @@ -0,0 +1,126 @@ +name: "magic123-hifa-refine-sd" +tag: "${rmspace:${basename:${data.image_path}},_}-${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "single-image-datamodule" +data: + image_path: ??? + height: 512 + width: 512 + default_elevation_deg: 0.0 + default_azimuth_deg: 0.0 + default_camera_distance: 2.5 + default_fovy_deg: 40.0 + random_camera: + batch_size: 1 + height: 512 + width: 512 + elevation_range: [-45, 45] + azimuth_range: [-180, 180] + camera_distance_range: [2.5, 2.5] + fovy_range: [40.0, 40.0] + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + eval_height: 512 + eval_width: 512 + eval_elevation_deg: ${data.default_elevation_deg} + eval_camera_distance: ${data.default_camera_distance} + eval_fovy_deg: ${data.default_fovy_deg} + n_val_views: 4 + n_test_views: 120 + +system_type: "magic123-system" +system: + refinement: true + geometry_convert_from: ??? + geometry_convert_inherit_texture: true + geometry_type: "tetrahedra-sdf-grid" + geometry: + radius: 1.0 # consistent with coarse + isosurface_resolution: 128 + isosurface_deformable_grid: true + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + fix_geometry: false # optimize grid sdf and deformation + + material_type: "no-material" + + background_type: "solid-color-background" + + renderer_type: "nvdiff-rasterizer" + renderer: + context_type: gl + + guidance_3d_type: "zero123-unified-guidance" + guidance_3d: + guidance_type: "sds" + guidance_scale: 5.0 + min_step_percent: 0.2 + max_step_percent: 0.6 + + cond_image_path: ${data.image_path} + cond_elevation_deg: ${data.default_elevation_deg} + cond_azimuth_deg: ${data.default_azimuth_deg} + cond_camera_distance: ${data.default_camera_distance} + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + prompt: ??? + + guidance_type: "stable-diffusion-unified-guidance" + guidance: + guidance_type: "sds" + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + guidance_scale: 100. + min_step_percent: 0.2 + max_step_percent: 0.6 + use_img_loss: true + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_rgb: 1000. + lambda_mask: 100. + lambda_sd: 0.025 + lambda_3d_sd: 1. + lambda_sd_img: 0.00025 + lambda_normal_consistency: 1000. + lambda_laplacian_smoothness: 0. + + optimizer: + name: Adam + args: + lr: 0.001 + betas: [0.9, 0.99] + eps: 1.e-8 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 1 + val_check_interval: 100 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/magic123-refine-sd.yaml b/configs/magic123-refine-sd.yaml new file mode 100644 index 0000000..984be46 --- /dev/null +++ b/configs/magic123-refine-sd.yaml @@ -0,0 +1,126 @@ +name: "magic123-refine-sd" +tag: "${rmspace:${basename:${data.image_path}},_}-${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "single-image-datamodule" +data: + image_path: ??? + height: 512 + width: 512 + default_elevation_deg: 0.0 + default_azimuth_deg: 0.0 + default_camera_distance: 2.5 + default_fovy_deg: 40.0 + random_camera: + batch_size: 1 + height: 512 + width: 512 + elevation_range: [-45, 45] + azimuth_range: [-180, 180] + camera_distance_range: [2.5, 2.5] + fovy_range: [40.0, 40.0] + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + eval_height: 512 + eval_width: 512 + eval_elevation_deg: ${data.default_elevation_deg} + eval_camera_distance: ${data.default_camera_distance} + eval_fovy_deg: ${data.default_fovy_deg} + n_val_views: 4 + n_test_views: 120 + +system_type: "magic123-system" +system: + refinement: true + geometry_convert_from: ??? + geometry_convert_inherit_texture: true + geometry_type: "tetrahedra-sdf-grid" + geometry: + radius: 1.0 # consistent with coarse + isosurface_resolution: 128 + isosurface_deformable_grid: true + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + fix_geometry: false # optimize grid sdf and deformation + + material_type: "no-material" + + background_type: "solid-color-background" + + renderer_type: "nvdiff-rasterizer" + renderer: + context_type: gl + + guidance_3d_type: "zero123-unified-guidance" + guidance_3d: + guidance_type: "sds" + guidance_scale: 5.0 + min_step_percent: 0.2 + max_step_percent: 0.6 + + cond_image_path: ${data.image_path} + cond_elevation_deg: ${data.default_elevation_deg} + cond_azimuth_deg: ${data.default_azimuth_deg} + cond_camera_distance: ${data.default_camera_distance} + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + prompt: ??? + + guidance_type: "stable-diffusion-unified-guidance" + guidance: + guidance_type: "sds" + pretrained_model_name_or_path: "runwayml/stable-diffusion-v1-5" + guidance_scale: 100. + min_step_percent: 0.2 + max_step_percent: 0.6 + use_img_loss: false + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_rgb: 1000. + lambda_mask: 100. + lambda_sd: 0.025 + lambda_3d_sd: 1. + lambda_sd_img: 0. + lambda_normal_consistency: 1000. + lambda_laplacian_smoothness: 0. + + optimizer: + name: Adam + args: + lr: 0.001 + betas: [0.9, 0.99] + eps: 1.e-8 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 1 + val_check_interval: 100 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/magic3d-coarse-if.yaml b/configs/magic3d-coarse-if.yaml new file mode 100644 index 0000000..1660191 --- /dev/null +++ b/configs/magic3d-coarse-if.yaml @@ -0,0 +1,95 @@ +name: "magic3d-coarse-if" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + width: 64 + height: 64 + camera_distance_range: [1.5, 2.0] + light_sample_strategy: "magic3d" + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "magic3d-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 2. + normal_type: analytic + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.4472692374403782 # max resolution 4096 + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + isosurface_resolution: 128 + isosurface_threshold: auto + isosurface_coarse_to_fine: true + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 2001 + soft_shading: true + + background_type: "neural-environment-map-background" + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "deep-floyd-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + prompt: ??? + + guidance_type: "deep-floyd-guidance" + guidance: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + weighting_strategy: uniform + guidance_scale: 20. + min_step_percent: 0.02 + max_step_percent: 0.98 + + loggers: + wandb: + enable: false + project: 'threestudio' + name: None + + loss: + lambda_sds: 1. + lambda_orient: [0, 10., 1000., 5000] + lambda_sparsity: 1. + lambda_opaque: 0. + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry: + lr: 0.01 + background: + lr: 0.001 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/magic3d-coarse-sd.yaml b/configs/magic3d-coarse-sd.yaml new file mode 100644 index 0000000..566acbc --- /dev/null +++ b/configs/magic3d-coarse-sd.yaml @@ -0,0 +1,97 @@ +name: "magic3d-coarse-sd" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + width: 64 + height: 64 + camera_distance_range: [1.5, 2.0] + elevation_range: [-10, 45] + light_sample_strategy: "magic3d" + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "magic3d-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 2. + normal_type: analytic + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.4472692374403782 # max resolution 4096 + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + isosurface_resolution: 128 + isosurface_threshold: auto + isosurface_coarse_to_fine: true + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 2001 + soft_shading: true + + background_type: "neural-environment-map-background" + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + weighting_strategy: uniform + guidance_scale: 100. + min_step_percent: 0.02 + max_step_percent: 0.98 + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_orient: [0, 10., 1000., 5000] + lambda_sparsity: 1. + lambda_opaque: 0. + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry: + lr: 0.01 + background: + lr: 0.001 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/magic3d-refine-sd.yaml b/configs/magic3d-refine-sd.yaml new file mode 100644 index 0000000..c60038a --- /dev/null +++ b/configs/magic3d-refine-sd.yaml @@ -0,0 +1,88 @@ +name: "magic3d-refine-sd" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + width: 512 + height: 512 + camera_distance_range: [1.5, 2.0] + elevation_range: [-10, 45] + light_sample_strategy: "magic3d" + fovy_range: [30, 45] + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "magic3d-system" +system: + refinement: true + geometry_convert_from: ??? + geometry_convert_inherit_texture: true + geometry_type: "tetrahedra-sdf-grid" + geometry: + radius: 2.0 # consistent with coarse + isosurface_resolution: 128 + isosurface_deformable_grid: true + pos_encoding_config: # consistent with coarse, no progressive band + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.4472692374403782 # max resolution 4096 + fix_geometry: false # optimize grid sdf and deformation + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 0 + soft_shading: true + + background_type: "neural-environment-map-background" + + renderer_type: "nvdiff-rasterizer" + renderer: + context_type: gl + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + weighting_strategy: sds + guidance_scale: 100. + min_step_percent: 0.02 + max_step_percent: 0.5 + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_normal_consistency: 10000. + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + +trainer: + max_steps: 5000 + log_every_n_steps: 1 + num_sanity_val_steps: 1 + val_check_interval: 100 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/prolificdreamer-geometry.yaml b/configs/prolificdreamer-geometry.yaml new file mode 100644 index 0000000..928dcf3 --- /dev/null +++ b/configs/prolificdreamer-geometry.yaml @@ -0,0 +1,84 @@ +name: "prolificdreamer-geometry" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 512 + height: 512 + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: geometry + geometry_convert_from: ??? + geometry_type: "tetrahedra-sdf-grid" + geometry: + radius: 1.0 # consistent with coarse + isosurface_resolution: 128 + isosurface_deformable_grid: true + geometry_only: true + + material_type: "no-material" # unused + material: + n_output_dims: 0 + + background_type: "solid-color-background" # unused + + renderer_type: "nvdiff-rasterizer" + renderer: + context_type: gl + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + min_step_percent: 0.02 + max_step_percent: [5000, 0.98, 0.5, 5001] # annealed to 0.5 after 5000 steps + weighting_strategy: sds + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_normal_consistency: 10000. + lambda_laplacian_smoothness: 10000. + lambda_z_variance: 0. + + optimizer: + name: Adam + args: + lr: 0.005 + betas: [0.9, 0.99] + eps: 1.e-15 + +trainer: + max_steps: 15000 + log_every_n_steps: 1 + num_sanity_val_steps: 1 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/prolificdreamer-hifa.yaml b/configs/prolificdreamer-hifa.yaml new file mode 100644 index 0000000..6f189b5 --- /dev/null +++ b/configs/prolificdreamer-hifa.yaml @@ -0,0 +1,118 @@ +name: "prolificdreamer-hifa" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: [1, 1] + # 0-4999: 64x64, >=5000: 512x512 + # this drastically reduces VRAM usage as empty space is pruned in early training + width: [64, 512] + height: [64, 512] + resolution_milestones: [5000] + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: coarse + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: null + + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + + material_type: "no-material" + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + random_aug: true + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + front_threshold: 30. + back_threshold: 30. + + guidance_type: "stable-diffusion-vsd-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + pretrained_model_name_or_path_lora: "stabilityai/stable-diffusion-2-1" + guidance_scale: 7.5 + min_step_percent: 0.3 + max_step_percent: 0.98 # annealed to 0.5 after 5000 steps + sqrt_anneal: true # sqrt anneal proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + use_img_loss: true # image-space SDS proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_vsd: 1. + lambda_vsd_img: 0.01 + lambda_lora: 1. + lambda_orient: 0. + lambda_sparsity: 10. + lambda_opaque: [10000, 0.0, 1000.0, 10001] + lambda_z_variance: 300. + optimizer: + name: AdamW + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + guidance: + lr: 0.0001 + +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/prolificdreamer-patch.yaml b/configs/prolificdreamer-patch.yaml new file mode 100644 index 0000000..1a2f026 --- /dev/null +++ b/configs/prolificdreamer-patch.yaml @@ -0,0 +1,114 @@ +name: "prolificdreamer-patch" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 512 + height: 512 + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: coarse + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: null + + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + + material_type: "no-material" + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + random_aug: true + + renderer_type: "patch-renderer" + renderer: + base_renderer_type: "nerf-volume-renderer" + base_renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + patch_size: 128 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + front_threshold: 30. + back_threshold: 30. + + guidance_type: "stable-diffusion-vsd-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + pretrained_model_name_or_path_lora: "stabilityai/stable-diffusion-2-1" + guidance_scale: 7.5 + min_step_percent: 0.02 + max_step_percent: [5000, 0.98, 0.5, 5001] # annealed to 0.5 after 5000 steps + + loggers: + wandb: + enable: false + project: "threestudio" + + loss: + lambda_vsd: 1. + lambda_lora: 1. + lambda_orient: 0. + lambda_sparsity: 10. + lambda_opaque: [10000, 0.0, 1000.0, 10001] + lambda_z_variance: 0. + optimizer: + name: AdamW + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + guidance: + lr: 0.0001 + +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/prolificdreamer-scene-hifa.yaml b/configs/prolificdreamer-scene-hifa.yaml new file mode 100644 index 0000000..d9d3424 --- /dev/null +++ b/configs/prolificdreamer-scene-hifa.yaml @@ -0,0 +1,116 @@ +name: "prolificdreamer-hifa" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: [1, 1] + # 0-4999: 64x64, >=5000: 512x512 + # this drastically reduces VRAM usage as empty space is pruned in early training + width: [64, 512] + height: [64, 512] + resolution_milestones: [5000] + camera_distance_range: [0.1, 2.3] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: coarse + geometry_type: "implicit-volume" + geometry: + radius: 5.0 + normal_type: null + + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: -10. + density_blob_std: 2.5 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + + material_type: "no-material" + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-vsd-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + pretrained_model_name_or_path_lora: "stabilityai/stable-diffusion-2-1" + guidance_scale: 7.5 + min_step_percent: 0.3 + max_step_percent: [10000, 0.98, 0.5, 10001] # annealed to 0.5 after 10000 steps + view_dependent_prompting: false + sqrt_anneal: true # sqrt anneal proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + use_img_loss: true # image-space SDS proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_vsd: 1. + lambda_vsd_img: 0.01 + lambda_lora: 1. + lambda_orient: 0. + lambda_sparsity: 0. + lambda_opaque: 0. + lambda_z_variance: 300. + optimizer: + name: AdamW + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + guidance: + lr: 0.0001 + +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/prolificdreamer-scene.yaml b/configs/prolificdreamer-scene.yaml new file mode 100644 index 0000000..816718d --- /dev/null +++ b/configs/prolificdreamer-scene.yaml @@ -0,0 +1,114 @@ +name: "prolificdreamer" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: [1, 1] + # 0-4999: 64x64, >=5000: 512x512 + # this drastically reduces VRAM usage as empty space is pruned in early training + width: [64, 512] + height: [64, 512] + resolution_milestones: [5000] + camera_distance_range: [0.1, 2.3] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: coarse + geometry_type: "implicit-volume" + geometry: + radius: 5.0 + normal_type: null + + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: -10. + density_blob_std: 2.5 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + + material_type: "no-material" + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-vsd-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + pretrained_model_name_or_path_lora: "stabilityai/stable-diffusion-2-1" + guidance_scale: 7.5 + min_step_percent: 0.02 + max_step_percent: [10000, 0.98, 0.5, 10001] # annealed to 0.5 after 10000 steps + view_dependent_prompting: false + sqrt_anneal: false + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_vsd: 1. + lambda_lora: 1. + lambda_orient: 0. + lambda_sparsity: 0. + lambda_opaque: 0. + lambda_z_variance: 1. + optimizer: + name: AdamW + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + guidance: + lr: 0.0001 + +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/prolificdreamer-texture.yaml b/configs/prolificdreamer-texture.yaml new file mode 100644 index 0000000..a6f77d5 --- /dev/null +++ b/configs/prolificdreamer-texture.yaml @@ -0,0 +1,102 @@ +name: "prolificdreamer-texture" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 512 + height: 512 + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: texture + geometry_convert_from: ??? + geometry_type: "tetrahedra-sdf-grid" + geometry: + radius: 1.0 # consistent with last stage + isosurface_resolution: 128 # consistent with last stage + isosurface_deformable_grid: true + isosurface_remove_outliers: true + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + fix_geometry: true + + material_type: "no-material" + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + + renderer_type: "nvdiff-rasterizer" + renderer: + context_type: gl + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + front_threshold: 30. + back_threshold: 30. + + guidance_type: "stable-diffusion-vsd-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + pretrained_model_name_or_path_lora: "stabilityai/stable-diffusion-2-1" + guidance_scale: 7.5 + min_step_percent: 0.02 + max_step_percent: [5000, 0.98, 0.5, 5001] # annealed to 0.5 after 5000 steps + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_vsd: 1. + lambda_lora: 1. + optimizer: + name: AdamW + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + guidance: + lr: 0.0001 + +trainer: + max_steps: 30000 + log_every_n_steps: 1 + num_sanity_val_steps: 1 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/prolificdreamer.yaml b/configs/prolificdreamer.yaml new file mode 100644 index 0000000..43ae3d5 --- /dev/null +++ b/configs/prolificdreamer.yaml @@ -0,0 +1,116 @@ +name: "prolificdreamer" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: [1, 1] + # 0-4999: 64x64, >=5000: 512x512 + # this drastically reduces VRAM usage as empty space is pruned in early training + width: [64, 512] + height: [64, 512] + resolution_milestones: [5000] + camera_distance_range: [1.0, 1.5] + fovy_range: [40, 70] + elevation_range: [-10, 45] + camera_perturb: 0. + center_perturb: 0. + up_perturb: 0. + eval_camera_distance: 1.5 + eval_fovy_deg: 70. + +system_type: "prolificdreamer-system" +system: + stage: coarse + geometry_type: "implicit-volume" + geometry: + radius: 1.0 + normal_type: null + + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + + material_type: "no-material" + material: + n_output_dims: 3 + color_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + random_aug: true + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + front_threshold: 30. + back_threshold: 30. + + guidance_type: "stable-diffusion-vsd-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + pretrained_model_name_or_path_lora: "stabilityai/stable-diffusion-2-1" + guidance_scale: 7.5 + min_step_percent: 0.02 + max_step_percent: [5000, 0.98, 0.5, 5001] # annealed to 0.5 after 5000 steps + sqrt_anneal: false + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_vsd: 1. + lambda_lora: 1. + lambda_orient: 0. + lambda_sparsity: 10. + lambda_opaque: [10000, 0.0, 1000.0, 10001] + lambda_z_variance: 0. + optimizer: + name: AdamW + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.density_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + guidance: + lr: 0.0001 + +trainer: + max_steps: 25000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/sjc.yaml b/configs/sjc.yaml new file mode 100644 index 0000000..494493d --- /dev/null +++ b/configs/sjc.yaml @@ -0,0 +1,91 @@ +name: sjc +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: outputs +seed: 0 + +data_type: random-camera-datamodule +data: + camera_distance_range: [1.50, 1.50] + elevation_range: [-10, 45] + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + light_position_perturb: 0.0 + eval_elevation_deg: 20.0 + +system_type: sjc-system +system: + geometry_type: volume-grid + geometry: + normal_type: null + grid_size: [100, 100, 100] + density_bias: -1.0 + n_feature_dims: 4 + + material_type: no-material + material: + n_output_dims: 4 + color_activation: none + + background_type: textured-background + background: + n_output_dims: 4 + color_activation: none + height: 4 + width: 4 + + renderer_type: nerf-volume-renderer + renderer: + num_samples_per_ray: 512 + grid_prune: false + + prompt_processor_type: stable-diffusion-prompt-processor + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + view_dependent_prompt_front: true + + guidance_type: stable-diffusion-guidance + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + use_sjc: true + var_red: true + min_step_percent: 0.01 + max_step_percent: 0.97 + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + center_ratio: 0.78125 # = 50 / 64 + lambda_depth: 0 # or try 10 + lambda_emptiness: [5000, 1.e+4, 2.e+5, 5001] + emptiness_scale: 10 + + optimizer: + name: Adamax + args: + lr: 0.05 + params: + geometry: + lr: 0.05 + background: + lr: 0.0001 # maybe 0.001/0.01 is better + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation tim + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/sketchshape-refine.yaml b/configs/sketchshape-refine.yaml new file mode 100644 index 0000000..d4728ce --- /dev/null +++ b/configs/sketchshape-refine.yaml @@ -0,0 +1,87 @@ +name: "sketchshape-refine" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + elevation_range: [-10, 45] + +system_type: "latentnerf-system" +system: + refinement: true + weights: ??? + weights_ignore_modules: ["material", "background"] + guide_shape: ??? + + geometry_type: "implicit-volume" + geometry: + n_feature_dims: 4 + normal_type: null + + material_type: "sd-latent-adapter-material" + + background_type: "neural-environment-map-background" + + renderer_type: "nerf-volume-renderer" + renderer: + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + weighting_strategy: sds + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1. + lambda_sparsity: 0.0 + lambda_shape: 1. + lambda_opaque: 0.0 + lambda_orient: 0.0 + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + scheduler: + name: SequentialLR + interval: step + warmup_steps: 100 + milestones: + - ${system.scheduler.warmup_steps} + schedulers: + - name: LinearLR # linear warm-up in the first system.warmup_steps steps + args: + start_factor: 0.1 + end_factor: 1.0 + total_iters: ${system.scheduler.warmup_steps} + - name: ExponentialLR + args: + gamma: ${calc_exp_lr_decay_rate:0.1,${sub:${trainer.max_steps},${system.scheduler.warmup_steps}}} + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 1 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/sketchshape.yaml b/configs/sketchshape.yaml new file mode 100644 index 0000000..9acbd6c --- /dev/null +++ b/configs/sketchshape.yaml @@ -0,0 +1,90 @@ +name: "sketchshape" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + elevation_range: [-10, 45] + +system_type: "latentnerf-system" +system: + guide_shape: ??? + + geometry_type: "implicit-volume" + geometry: + n_feature_dims: 4 + normal_type: null + + material_type: "no-material" + material: + n_output_dims: 4 + color_activation: none + + background_type: "neural-environment-map-background" + background: + n_output_dims: 4 + color_activation: none + + renderer_type: "nerf-volume-renderer" + renderer: + num_samples_per_ray: 512 + + prompt_processor_type: "stable-diffusion-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + prompt: ??? + + guidance_type: "stable-diffusion-guidance" + guidance: + pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-1-base" + guidance_scale: 100. + weighting_strategy: sds + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1.0 + lambda_sparsity: 0.0 + lambda_shape: 1.0 + lambda_opaque: 0.0 + lambda_orient: 0.0 + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-15 + scheduler: + name: SequentialLR + interval: step + warmup_steps: 100 + milestones: + - ${system.scheduler.warmup_steps} + schedulers: + - name: LinearLR # linear warm-up in the first system.warmup_steps steps + args: + start_factor: 0.1 + end_factor: 1.0 + total_iters: ${system.scheduler.warmup_steps} + - name: ExponentialLR + args: + gamma: ${calc_exp_lr_decay_rate:0.1,${sub:${trainer.max_steps},${system.scheduler.warmup_steps}}} + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/stable-zero123.yaml b/configs/stable-zero123.yaml new file mode 100644 index 0000000..3f27555 --- /dev/null +++ b/configs/stable-zero123.yaml @@ -0,0 +1,147 @@ +name: "zero123-sai" +tag: "${data.random_camera.height}_${rmspace:${basename:${data.image_path}},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "single-image-datamodule" +data: # threestudio/data/image.py -> SingleImageDataModuleConfig + image_path: ./load/images/hamburger_rgba.png + height: [128, 256, 512] + width: [128, 256, 512] + resolution_milestones: [200, 300] + default_elevation_deg: 5.0 + default_azimuth_deg: 0.0 + default_camera_distance: 3.8 + default_fovy_deg: 20.0 + requires_depth: ${cmaxgt0orcmaxgt0:${system.loss.lambda_depth},${system.loss.lambda_depth_rel}} + requires_normal: ${cmaxgt0:${system.loss.lambda_normal}} + random_camera: # threestudio/data/uncond.py -> RandomCameraDataModuleConfig + height: [64, 128, 256] + width: [64, 128, 256] + batch_size: [8, 4, 2] + resolution_milestones: [200, 300] + eval_height: 512 + eval_width: 512 + eval_batch_size: 1 + elevation_range: [-10, 80] + azimuth_range: [-180, 180] + camera_distance_range: [3.8, 3.8] + fovy_range: [20.0, 20.0] # Zero123 has fixed fovy + progressive_until: 0 + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + light_position_perturb: 1.0 + light_distance_range: [7.5, 10.0] + eval_elevation_deg: ${data.default_elevation_deg} + eval_camera_distance: ${data.default_camera_distance} + eval_fovy_deg: ${data.default_fovy_deg} + light_sample_strategy: "dreamfusion" + batch_uniform_azimuth: False + n_val_views: 30 + n_test_views: 120 + +system_type: "zero123-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 2.0 + normal_type: "analytic" + + # use Magic3D density initialization instead + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + # coarse to fine hash grid encoding + # to ensure smooth analytic normals + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 100000 + textureless_prob: 0.05 + albedo_activation: sigmoid + + background_type: "solid-color-background" # unused + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 256 + return_comp_normal: ${cmaxgt0:${system.loss.lambda_normal_smooth}} + return_normal_perturb: ${cmaxgt0:${system.loss.lambda_3d_normal_smooth}} + + prompt_processor_type: "dummy-prompt-processor" # Zero123 doesn't use prompts + prompt_processor: + pretrained_model_name_or_path: "" + prompt: "" + + guidance_type: "stable-zero123-guidance" + guidance: + pretrained_config: "./load/zero123/sd-objaverse-finetune-c_concat-256.yaml" + pretrained_model_name_or_path: "./load/zero123/stable_zero123.ckpt" + vram_O: ${not:${gt0:${system.freq.guidance_eval}}} + cond_image_path: ${data.image_path} + cond_elevation_deg: ${data.default_elevation_deg} + cond_azimuth_deg: ${data.default_azimuth_deg} + cond_camera_distance: ${data.default_camera_distance} + guidance_scale: 3.0 + min_step_percent: [50, 0.7, 0.3, 200] # (start_iter, start_val, end_val, end_iter) + max_step_percent: [50, 0.98, 0.8, 200] + + freq: + ref_only_steps: 0 + guidance_eval: 0 + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 0.1 + lambda_rgb: [100, 500., 1000., 400] + lambda_mask: 50. + lambda_depth: 0. # 0.05 + lambda_depth_rel: 0. # [0, 0, 0.05, 100] + lambda_normal: 0. # [0, 0, 0.05, 100] + lambda_normal_smooth: [100, 7.0, 5.0, 150, 10.0, 200] + lambda_3d_normal_smooth: [100, 7.0, 5.0, 150, 10.0, 200] + lambda_orient: 1.0 + lambda_sparsity: 0.5 # should be tweaked for every model + lambda_opaque: 0.5 + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-8 + +trainer: + max_steps: 600 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 100 + enable_progress_bar: true + precision: 32 + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: 100 # ${trainer.max_steps} diff --git a/configs/textmesh-if.yaml b/configs/textmesh-if.yaml new file mode 100644 index 0000000..8aadff8 --- /dev/null +++ b/configs/textmesh-if.yaml @@ -0,0 +1,105 @@ +name: "textmesh-if" +tag: "${rmspace:${system.prompt_processor.prompt},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "random-camera-datamodule" +data: + batch_size: 1 + width: 64 + height: 64 + camera_distance_range: [1.5, 2.0] + fovy_range: [40, 70] + elevation_range: [-10, 90] + light_sample_strategy: "dreamfusion" + eval_camera_distance: 2.0 + eval_fovy_deg: 70. + +system_type: "textmesh-system" +system: + geometry_type: "implicit-sdf" + geometry: + radius: 2.0 + normal_type: finite_difference + # progressive eps from Neuralangelo + finite_difference_normal_eps: progressive + + sdf_bias: sphere + sdf_bias_params: 0.5 + + # coarse to fine hash grid encoding + pos_encoding_config: + otype: ProgressiveBandHashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.381912879967776 # max resolution 2048 + start_level: 8 # resolution ~200 + start_step: 2000 + update_steps: 500 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 2001 + albedo_activation: sigmoid + + background_type: "neural-environment-map-background" + background: + color_activation: sigmoid + + renderer_type: "neus-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + cos_anneal_end_steps: ${trainer.max_steps} + eval_chunk_size: 8192 + + prompt_processor_type: "deep-floyd-prompt-processor" + prompt_processor: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + prompt: ??? + + guidance_type: "deep-floyd-guidance" + guidance: + pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" + guidance_scale: 20. + weighting_strategy: sds + min_step_percent: 0.02 + max_step_percent: 0.98 + + loss: + lambda_sds: 1. + lambda_orient: 0.0 + lambda_sparsity: 0.0 + lambda_opaque: 0.0 + lambda_eikonal: 1000. + optimizer: + name: Adam + args: + betas: [0.9, 0.99] + eps: 1.e-15 + params: + geometry.encoding: + lr: 0.01 + geometry.sdf_network: + lr: 0.001 + geometry.feature_network: + lr: 0.001 + background: + lr: 0.001 + renderer: + lr: 0.001 + +trainer: + max_steps: 10000 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 200 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/zero123-geometry.yaml b/configs/zero123-geometry.yaml new file mode 100644 index 0000000..3590976 --- /dev/null +++ b/configs/zero123-geometry.yaml @@ -0,0 +1,153 @@ +name: "zero123_geom" +tag: "${data.random_camera.height}_${rmspace:${basename:${data.image_path}},_}_prog${data.random_camera.progressive_until}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "single-image-datamodule" +data: # threestudio/data/image.py -> SingleImageDataModuleConfig + image_path: ./load/images/hamburger_rgba.png + height: 512 + width: 512 + default_elevation_deg: 0.0 + default_azimuth_deg: 0.0 + default_camera_distance: 3.8 + default_fovy_deg: 20.0 + requires_depth: ${cmaxgt0orcmaxgt0:${system.loss.lambda_depth},${system.loss.lambda_depth_rel}} + requires_normal: ${cmaxgt0:${system.loss.lambda_normal}} + random_camera: # threestudio/data/uncond.py -> RandomCameraDataModuleConfig + height: 256 # Zero123 operates at 256x256 + width: 256 + batch_size: 8 + resolution_milestones: [] + eval_height: 512 + eval_width: 512 + eval_batch_size: 1 + elevation_range: [-10, 45] + azimuth_range: [-180, 180] + camera_distance_range: [3.8, 3.8] + fovy_range: [20.0, 20.0] # Zero123 has fixed fovy + progressive_until: 0 + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + light_position_perturb: 1.0 + light_distance_range: [7.5, 10.0] + eval_elevation_deg: ${data.default_elevation_deg} + eval_camera_distance: ${data.default_camera_distance} + eval_fovy_deg: ${data.default_fovy_deg} + light_sample_strategy: "dreamfusion" + batch_uniform_azimuth: False + n_val_views: 30 + n_test_views: 120 + +system_type: "zero123-system" +system: + refinement: true + geometry_convert_from: ??? + geometry_convert_inherit_texture: true + geometry_type: "tetrahedra-sdf-grid" + geometry: + radius: 2.0 # consistent with coarse + isosurface_resolution: 128 + isosurface_deformable_grid: true + pos_encoding_config: # consistent with coarse, no progressive band + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.4472692374403782 # max resolution 4096 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + fix_geometry: false # optimize grid sdf and deformation + + # material_type: "no-material" # unused + # material: + # n_output_dims: 0 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 10000 + textureless_prob: 0. + + background_type: "solid-color-background" # unused + + # renderer_type: "nerf-volume-renderer" + # renderer: + # radius: ${system.geometry.radius} + # num_samples_per_ray: 512 + # return_comp_normal: ${gt0:${system.loss.lambda_normal_smooth}} + # return_normal_perturb: ${gt0:${system.loss.lambda_3d_normal_smooth}} + + renderer_type: "nvdiff-rasterizer" + renderer: + context_type: cuda + + prompt_processor_type: "dummy-prompt-processor" # Zero123 doesn't use prompts + prompt_processor: + pretrained_model_name_or_path: "" + prompt: "" + + guidance_type: "zero123-guidance" + guidance: + pretrained_model_name_or_path: "./load/zero123/zero123-xl.ckpt" + pretrained_config: "./load/zero123/sd-objaverse-finetune-c_concat-256.yaml" + vram_O: ${not:${gt0:${system.freq.guidance_eval}}} + cond_image_path: ${data.image_path} + cond_elevation_deg: ${data.default_elevation_deg} + cond_azimuth_deg: ${data.default_azimuth_deg} + cond_camera_distance: ${data.default_camera_distance} + guidance_scale: 3.0 + min_step_percent: 0.02 + # min_step_percent: [0, 0.4, 0.02, 2000] # (start_iter, start_val, end_val, end_iter) + max_step_percent: 0.5 + # max_step_percent: [0, 0.85, 0.85, 2000] + + freq: + ref_only_steps: 0 + guidance_eval: 0 # if "alternate", this must not be a multiple of system.freq.n_ref + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 1.0 + lambda_rgb: 10000.0 + lambda_mask: 100.0 + lambda_depth: 0. + lambda_depth_rel: 0. # [0.0, 0.0, 1.0, 10000] + lambda_normal: 0. # [0, 0, 0.05, 100] + lambda_normal_smooth: 0. + lambda_3d_normal_smooth: 0. + lambda_normal_consistency: [50, 10000.0, 1000.0, 51] # 10000. + lambda_laplacian_smoothness: 0. + lambda_orient: 0. + lambda_sparsity: 0. + lambda_opaque: 0. + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-8 + +trainer: + max_steps: 200 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 50 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: ${trainer.max_steps} diff --git a/configs/zero123.yaml b/configs/zero123.yaml new file mode 100644 index 0000000..0f6ade9 --- /dev/null +++ b/configs/zero123.yaml @@ -0,0 +1,158 @@ +name: "zero123" +tag: "${data.random_camera.height}_${rmspace:${basename:${data.image_path}},_}" +exp_root_dir: "outputs" +seed: 0 + +data_type: "single-image-datamodule" +data: # threestudio/data/image.py -> SingleImageDataModuleConfig + image_path: ./load/images/hamburger_rgba.png + height: [128, 256, 512] + width: [128, 256, 512] + resolution_milestones: [200, 300] + default_elevation_deg: 5.0 + default_azimuth_deg: 0.0 + default_camera_distance: 3.8 + default_fovy_deg: 20.0 + requires_depth: ${cmaxgt0orcmaxgt0:${system.loss.lambda_depth},${system.loss.lambda_depth_rel}} + requires_normal: ${cmaxgt0:${system.loss.lambda_normal}} + random_camera: # threestudio/data/uncond.py -> RandomCameraDataModuleConfig + height: [64, 128, 256] + width: [64, 128, 256] + batch_size: [12, 4, 2] + resolution_milestones: [200, 300] + eval_height: 512 + eval_width: 512 + eval_batch_size: 1 + elevation_range: [-10, 80] + azimuth_range: [-180, 180] + camera_distance_range: [3.8, 3.8] + fovy_range: [20.0, 20.0] # Zero123 has fixed fovy + progressive_until: 0 + camera_perturb: 0.0 + center_perturb: 0.0 + up_perturb: 0.0 + light_position_perturb: 1.0 + light_distance_range: [7.5, 10.0] + eval_elevation_deg: ${data.default_elevation_deg} + eval_camera_distance: ${data.default_camera_distance} + eval_fovy_deg: ${data.default_fovy_deg} + light_sample_strategy: "dreamfusion" + batch_uniform_azimuth: False + n_val_views: 30 + n_test_views: 120 + +system_type: "zero123-system" +system: + geometry_type: "implicit-volume" + geometry: + radius: 2.0 + normal_type: "analytic" + + # the density initialization proposed in the DreamFusion paper + # does not work very well + # density_bias: "blob_dreamfusion" + # density_activation: exp + # density_blob_scale: 5. + # density_blob_std: 0.2 + + # use Magic3D density initialization instead + density_bias: "blob_magic3d" + density_activation: softplus + density_blob_scale: 10. + density_blob_std: 0.5 + + # coarse to fine hash grid encoding + # to ensure smooth analytic normals + pos_encoding_config: + otype: HashGrid + n_levels: 16 + n_features_per_level: 2 + log2_hashmap_size: 19 + base_resolution: 16 + per_level_scale: 1.447269237440378 # max resolution 4096 + mlp_network_config: + otype: "VanillaMLP" + activation: "ReLU" + output_activation: "none" + n_neurons: 64 + n_hidden_layers: 2 + + material_type: "diffuse-with-point-light-material" + material: + ambient_only_steps: 100000 + textureless_prob: 0.05 + albedo_activation: sigmoid + + # background_type: "neural-environment-map-background" + # background: + # color_activation: sigmoid + + background_type: "solid-color-background" # unused + + renderer_type: "nerf-volume-renderer" + renderer: + radius: ${system.geometry.radius} + num_samples_per_ray: 512 + return_comp_normal: ${gt0:${system.loss.lambda_normal_smooth}} + return_normal_perturb: ${gt0:${system.loss.lambda_3d_normal_smooth}} + + prompt_processor_type: "dummy-prompt-processor" # Zero123 doesn't use prompts + prompt_processor: + pretrained_model_name_or_path: "" + prompt: "" + + guidance_type: "zero123-guidance" + guidance: + pretrained_model_name_or_path: "./load/zero123/zero123-xl.ckpt" + pretrained_config: "./load/zero123/sd-objaverse-finetune-c_concat-256.yaml" + vram_O: ${not:${gt0:${system.freq.guidance_eval}}} + cond_image_path: ${data.image_path} + cond_elevation_deg: ${data.default_elevation_deg} + cond_azimuth_deg: ${data.default_azimuth_deg} + cond_camera_distance: ${data.default_camera_distance} + guidance_scale: 3.0 + min_step_percent: [0, 0.4, 0.2, 200] # (start_iter, start_val, end_val, end_iter) + max_step_percent: [0, 0.85, 0.5, 200] + + freq: + ref_only_steps: 0 + guidance_eval: 0 + + loggers: + wandb: + enable: false + project: "threestudio" + name: None + + loss: + lambda_sds: 0.1 + lambda_rgb: 500. + lambda_mask: 50. + lambda_depth: 0. # 0.05 + lambda_depth_rel: 0. # [0, 0, 0.05, 100] + lambda_normal: 0. # [0, 0, 0.05, 100] + lambda_normal_smooth: 8.0 + lambda_3d_normal_smooth: 8.0 + lambda_orient: 1.0 + lambda_sparsity: 0.1 # should be tweaked for every model + lambda_opaque: 0.1 + + optimizer: + name: Adam + args: + lr: 0.01 + betas: [0.9, 0.99] + eps: 1.e-8 + +trainer: + max_steps: 600 + log_every_n_steps: 1 + num_sanity_val_steps: 0 + val_check_interval: 100 + enable_progress_bar: true + precision: 16-mixed + +checkpoint: + save_last: true # save at each validation time + save_top_k: -1 + every_n_train_steps: 100 # ${trainer.max_steps} diff --git a/custom/put_custom_extensions_here b/custom/put_custom_extensions_here new file mode 100644 index 0000000..e69de29 diff --git a/custom/threestudio-dreammesh4d b/custom/threestudio-dreammesh4d new file mode 160000 index 0000000..ce2ac5a --- /dev/null +++ b/custom/threestudio-dreammesh4d @@ -0,0 +1 @@ +Subproject commit ce2ac5a0ac3dff358729f1e43120c98fc10cd3b9 diff --git a/docker/Dockerfile b/docker/Dockerfile new file mode 100644 index 0000000..8c090f9 --- /dev/null +++ b/docker/Dockerfile @@ -0,0 +1,60 @@ +# Reference: +# https://github.com/cvpaperchallenge/Ascender +# https://github.com/nerfstudio-project/nerfstudio + +FROM nvidia/cuda:11.8.0-devel-ubuntu22.04 + +ARG USER_NAME=dreamer +ARG GROUP_NAME=dreamers +ARG UID=1000 +ARG GID=1000 + +# Set compute capability for nerfacc and tiny-cuda-nn +# See https://developer.nvidia.com/cuda-gpus and limit number to speed-up build +ENV TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0 7.5 8.0 8.6 8.9 9.0+PTX" +ENV TCNN_CUDA_ARCHITECTURES=90;89;86;80;75;70;61;60 +# Speed-up build for RTX 30xx +# ENV TORCH_CUDA_ARCH_LIST="8.6" +# ENV TCNN_CUDA_ARCHITECTURES=86 +# Speed-up build for RTX 40xx +# ENV TORCH_CUDA_ARCH_LIST="8.9" +# ENV TCNN_CUDA_ARCHITECTURES=89 + +ENV CUDA_HOME=/usr/local/cuda +ENV PATH=${CUDA_HOME}/bin:/home/${USER_NAME}/.local/bin:${PATH} +ENV LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${LD_LIBRARY_PATH} +ENV LIBRARY_PATH=${CUDA_HOME}/lib64/stubs:${LIBRARY_PATH} + +# apt install by root user +RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ + build-essential \ + curl \ + git \ + libegl1-mesa-dev \ + libgl1-mesa-dev \ + libgles2-mesa-dev \ + libglib2.0-0 \ + libsm6 \ + libxext6 \ + libxrender1 \ + python-is-python3 \ + python3.10-dev \ + python3-pip \ + wget \ + && rm -rf /var/lib/apt/lists/* + +# Change user to non-root user +RUN groupadd -g ${GID} ${GROUP_NAME} \ + && useradd -ms /bin/sh -u ${UID} -g ${GID} ${USER_NAME} +USER ${USER_NAME} + +RUN pip install --upgrade pip setuptools==69.5.1 ninja +RUN pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 --index-url https://download.pytorch.org/whl/cu118 +# Install nerfacc and tiny-cuda-nn before installing requirements.txt +# because these two installations are time consuming and error prone +RUN pip install git+https://github.com/KAIR-BAIR/nerfacc.git@v0.5.2 +RUN pip install git+https://github.com/NVlabs/tiny-cuda-nn.git#subdirectory=bindings/torch + +COPY requirements.txt /tmp +RUN cd /tmp && pip install -r requirements.txt +WORKDIR /home/${USER_NAME}/threestudio diff --git a/docker/compose.yaml b/docker/compose.yaml new file mode 100644 index 0000000..b15559a --- /dev/null +++ b/docker/compose.yaml @@ -0,0 +1,23 @@ +services: + threestudio: + build: + context: ../ + dockerfile: docker/Dockerfile + args: + # you can set environment variables, otherwise default values will be used + USER_NAME: ${HOST_USER_NAME:-dreamer} # export HOST_USER_NAME=$USER + GROUP_NAME: ${HOST_GROUP_NAME:-dreamers} + UID: ${HOST_UID:-1000} # export HOST_UID=$(id -u) + GID: ${HOST_GID:-1000} # export HOST_GID=$(id -g) + shm_size: '4gb' + environment: + NVIDIA_DISABLE_REQUIRE: 1 # avoid wrong `nvidia-container-cli: requirement error` + tty: true + volumes: + - ../:/home/${HOST_USER_NAME:-dreamer}/threestudio + deploy: + resources: + reservations: + devices: + - driver: nvidia + capabilities: [gpu] diff --git a/docs/installation.md b/docs/installation.md new file mode 100644 index 0000000..177221c --- /dev/null +++ b/docs/installation.md @@ -0,0 +1,59 @@ +# Installation + +## Prerequisite + +- NVIDIA GPU with at least 6GB VRAM. The more memory you have, the more methods and higher resolutions you can try. +- [NVIDIA Driver](https://www.nvidia.com/Download/index.aspx) whose version is higher than the [Minimum Required Driver Version](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html) of CUDA Toolkit you want to use. + +## Install CUDA Toolkit + +You can skip this step if you have installed sufficiently new version or you use Docker. + +Install [CUDA Toolkit](https://developer.nvidia.com/cuda-toolkit-archive). + +- Example for Ubuntu 22.04: + - Run [command for CUDA 11.8 Ubuntu 22.04](https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_local) +- Example for Ubuntu on WSL2: + - `sudo apt-key del 7fa2af80` + - Run [command for CUDA 11.8 WSL-Ubuntu](https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_local) + +## Git Clone + +```bash +git clone https://github.com/threestudio-project/threestudio.git +cd threestudio/ +``` + +## Install threestudio via Docker + +1. [Install Docker Engine](https://docs.docker.com/engine/install/). + This document assumes you [install Docker Engine on Ubuntu](https://docs.docker.com/engine/install/ubuntu/). +2. [Create `docker` group](https://docs.docker.com/engine/install/linux-postinstall/). + Otherwise, you need to type `sudo docker` instead of `docker`. +3. [Install NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#setting-up-nvidia-container-toolkit). +4. If you use WSL2, [enable systemd](https://learn.microsoft.com/en-us/windows/wsl/wsl-config#systemd-support). +5. Edit [Dockerfile](../docker/Dockerfile) for your GPU to speed-up build. + The default Dockerfile takes into account many types of GPUs. +6. Run Docker via `docker compose`. + +```bash +cd docker/ +docker compose build # build Docker image +docker compose up -d # create and start a container in background +docker compose exec threestudio bash # run bash in the container + +# Enjoy threestudio! + +exit # or Ctrl+D +docker compose stop # stop the container +docker compose start # start the container +docker compose down # stop and remove the container +``` + +Note: The current Dockerfile will cause errors when using the OpenGL-based rasterizer of nvdiffrast. +You can use the CUDA-based rasterizer by adding commands or editing configs. + +- `system.renderer.context_type=cuda` for training +- `system.exporter.context_type=cuda` for exporting meshes + +[This comment by the nvdiffrast author](https://github.com/NVlabs/nvdiffrast/issues/94#issuecomment-1288566038) could be a guide to resolve this limitation. diff --git a/extern/__init__.py b/extern/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/extern/ldm_zero123/extras.py b/extern/ldm_zero123/extras.py new file mode 100755 index 0000000..1646d46 --- /dev/null +++ b/extern/ldm_zero123/extras.py @@ -0,0 +1,78 @@ +import logging +from contextlib import contextmanager +from pathlib import Path + +import torch +from omegaconf import OmegaConf + +from extern.ldm_zero123.util import instantiate_from_config + + +@contextmanager +def all_logging_disabled(highest_level=logging.CRITICAL): + """ + A context manager that will prevent any logging messages + triggered during the body from being processed. + + :param highest_level: the maximum logging level in use. + This would only need to be changed if a custom level greater than CRITICAL + is defined. + + https://gist.github.com/simon-weber/7853144 + """ + # two kind-of hacks here: + # * can't get the highest logging level in effect => delegate to the user + # * can't get the current module-level override => use an undocumented + # (but non-private!) interface + + previous_level = logging.root.manager.disable + + logging.disable(highest_level) + + try: + yield + finally: + logging.disable(previous_level) + + +def load_training_dir(train_dir, device, epoch="last"): + """Load a checkpoint and config from training directory""" + train_dir = Path(train_dir) + ckpt = list(train_dir.rglob(f"*{epoch}.ckpt")) + assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files" + config = list(train_dir.rglob(f"*-project.yaml")) + assert len(ckpt) > 0, f"didn't find any config in {train_dir}" + if len(config) > 1: + print(f"found {len(config)} matching config files") + config = sorted(config)[-1] + print(f"selecting {config}") + else: + config = config[0] + + config = OmegaConf.load(config) + return load_model_from_config(config, ckpt[0], device) + + +def load_model_from_config(config, ckpt, device="cpu", verbose=False): + """Loads a model from config and a ckpt + if config is a path will use omegaconf to load + """ + if isinstance(config, (str, Path)): + config = OmegaConf.load(config) + + with all_logging_disabled(): + print(f"Loading model from {ckpt}") + pl_sd = torch.load(ckpt, map_location="cpu") + global_step = pl_sd["global_step"] + sd = pl_sd["state_dict"] + model = instantiate_from_config(config.model) + m, u = model.load_state_dict(sd, strict=False) + if len(m) > 0 and verbose: + print("missing keys:") + print(m) + if len(u) > 0 and verbose: + print("unexpected keys:") + model.to(device) + model.eval() + model.cond_stage_model.device = device + return model diff --git a/extern/ldm_zero123/guidance.py b/extern/ldm_zero123/guidance.py new file mode 100755 index 0000000..a52a755 --- /dev/null +++ b/extern/ldm_zero123/guidance.py @@ -0,0 +1,110 @@ +import abc +from typing import List, Tuple + +import matplotlib.pyplot as plt +import numpy as np +import torch +from IPython.display import clear_output +from scipy import interpolate + + +class GuideModel(torch.nn.Module, abc.ABC): + def __init__(self) -> None: + super().__init__() + + @abc.abstractmethod + def preprocess(self, x_img): + pass + + @abc.abstractmethod + def compute_loss(self, inp): + pass + + +class Guider(torch.nn.Module): + def __init__(self, sampler, guide_model, scale=1.0, verbose=False): + """Apply classifier guidance + + Specify a guidance scale as either a scalar + Or a schedule as a list of tuples t = 0->1 and scale, e.g. + [(0, 10), (0.5, 20), (1, 50)] + """ + super().__init__() + self.sampler = sampler + self.index = 0 + self.show = verbose + self.guide_model = guide_model + self.history = [] + + if isinstance(scale, (Tuple, List)): + times = np.array([x[0] for x in scale]) + values = np.array([x[1] for x in scale]) + self.scale_schedule = {"times": times, "values": values} + else: + self.scale_schedule = float(scale) + + self.ddim_timesteps = sampler.ddim_timesteps + self.ddpm_num_timesteps = sampler.ddpm_num_timesteps + + def get_scales(self): + if isinstance(self.scale_schedule, float): + return len(self.ddim_timesteps) * [self.scale_schedule] + + interpolater = interpolate.interp1d( + self.scale_schedule["times"], self.scale_schedule["values"] + ) + fractional_steps = np.array(self.ddim_timesteps) / self.ddpm_num_timesteps + return interpolater(fractional_steps) + + def modify_score(self, model, e_t, x, t, c): + # TODO look up index by t + scale = self.get_scales()[self.index] + + if scale == 0: + return e_t + + sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device) + with torch.enable_grad(): + x_in = x.detach().requires_grad_(True) + pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t) + x_img = model.first_stage_model.decode((1 / 0.18215) * pred_x0) + + inp = self.guide_model.preprocess(x_img) + loss = self.guide_model.compute_loss(inp) + grads = torch.autograd.grad(loss.sum(), x_in)[0] + correction = grads * scale + + if self.show: + clear_output(wait=True) + print( + loss.item(), + scale, + correction.abs().max().item(), + e_t.abs().max().item(), + ) + self.history.append( + [ + loss.item(), + scale, + correction.min().item(), + correction.max().item(), + ] + ) + plt.imshow( + (inp[0].detach().permute(1, 2, 0).clamp(-1, 1).cpu() + 1) / 2 + ) + plt.axis("off") + plt.show() + plt.imshow(correction[0][0].detach().cpu()) + plt.axis("off") + plt.show() + + e_t_mod = e_t - sqrt_1ma * correction + if self.show: + fig, axs = plt.subplots(1, 3) + axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2) + axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2) + axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2) + plt.show() + self.index += 1 + return e_t_mod diff --git a/extern/ldm_zero123/lr_scheduler.py b/extern/ldm_zero123/lr_scheduler.py new file mode 100755 index 0000000..b2f4d38 --- /dev/null +++ b/extern/ldm_zero123/lr_scheduler.py @@ -0,0 +1,135 @@ +import numpy as np + + +class LambdaWarmUpCosineScheduler: + """ + note: use with a base_lr of 1.0 + """ + + def __init__( + self, + warm_up_steps, + lr_min, + lr_max, + lr_start, + max_decay_steps, + verbosity_interval=0, + ): + self.lr_warm_up_steps = warm_up_steps + self.lr_start = lr_start + self.lr_min = lr_min + self.lr_max = lr_max + self.lr_max_decay_steps = max_decay_steps + self.last_lr = 0.0 + self.verbosity_interval = verbosity_interval + + def schedule(self, n, **kwargs): + if self.verbosity_interval > 0: + if n % self.verbosity_interval == 0: + print(f"current step: {n}, recent lr-multiplier: {self.last_lr}") + if n < self.lr_warm_up_steps: + lr = ( + self.lr_max - self.lr_start + ) / self.lr_warm_up_steps * n + self.lr_start + self.last_lr = lr + return lr + else: + t = (n - self.lr_warm_up_steps) / ( + self.lr_max_decay_steps - self.lr_warm_up_steps + ) + t = min(t, 1.0) + lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * ( + 1 + np.cos(t * np.pi) + ) + self.last_lr = lr + return lr + + def __call__(self, n, **kwargs): + return self.schedule(n, **kwargs) + + +class LambdaWarmUpCosineScheduler2: + """ + supports repeated iterations, configurable via lists + note: use with a base_lr of 1.0. + """ + + def __init__( + self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0 + ): + assert ( + len(warm_up_steps) + == len(f_min) + == len(f_max) + == len(f_start) + == len(cycle_lengths) + ) + self.lr_warm_up_steps = warm_up_steps + self.f_start = f_start + self.f_min = f_min + self.f_max = f_max + self.cycle_lengths = cycle_lengths + self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths)) + self.last_f = 0.0 + self.verbosity_interval = verbosity_interval + + def find_in_interval(self, n): + interval = 0 + for cl in self.cum_cycles[1:]: + if n <= cl: + return interval + interval += 1 + + def schedule(self, n, **kwargs): + cycle = self.find_in_interval(n) + n = n - self.cum_cycles[cycle] + if self.verbosity_interval > 0: + if n % self.verbosity_interval == 0: + print( + f"current step: {n}, recent lr-multiplier: {self.last_f}, " + f"current cycle {cycle}" + ) + if n < self.lr_warm_up_steps[cycle]: + f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[ + cycle + ] * n + self.f_start[cycle] + self.last_f = f + return f + else: + t = (n - self.lr_warm_up_steps[cycle]) / ( + self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle] + ) + t = min(t, 1.0) + f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * ( + 1 + np.cos(t * np.pi) + ) + self.last_f = f + return f + + def __call__(self, n, **kwargs): + return self.schedule(n, **kwargs) + + +class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2): + def schedule(self, n, **kwargs): + cycle = self.find_in_interval(n) + n = n - self.cum_cycles[cycle] + if self.verbosity_interval > 0: + if n % self.verbosity_interval == 0: + print( + f"current step: {n}, recent lr-multiplier: {self.last_f}, " + f"current cycle {cycle}" + ) + + if n < self.lr_warm_up_steps[cycle]: + f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[ + cycle + ] * n + self.f_start[cycle] + self.last_f = f + return f + else: + f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * ( + self.cycle_lengths[cycle] - n + ) / (self.cycle_lengths[cycle]) + self.last_f = f + return f diff --git a/extern/ldm_zero123/models/autoencoder.py b/extern/ldm_zero123/models/autoencoder.py new file mode 100755 index 0000000..a6c16b3 --- /dev/null +++ b/extern/ldm_zero123/models/autoencoder.py @@ -0,0 +1,551 @@ +from contextlib import contextmanager + +import pytorch_lightning as pl +import torch +import torch.nn.functional as F +from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer + +from extern.ldm_zero123.modules.diffusionmodules.model import Decoder, Encoder +from extern.ldm_zero123.modules.distributions.distributions import ( + DiagonalGaussianDistribution, +) +from extern.ldm_zero123.util import instantiate_from_config + + +class VQModel(pl.LightningModule): + def __init__( + self, + ddconfig, + lossconfig, + n_embed, + embed_dim, + ckpt_path=None, + ignore_keys=[], + image_key="image", + colorize_nlabels=None, + monitor=None, + batch_resize_range=None, + scheduler_config=None, + lr_g_factor=1.0, + remap=None, + sane_index_shape=False, # tell vector quantizer to return indices as bhw + use_ema=False, + ): + super().__init__() + self.embed_dim = embed_dim + self.n_embed = n_embed + self.image_key = image_key + self.encoder = Encoder(**ddconfig) + self.decoder = Decoder(**ddconfig) + self.loss = instantiate_from_config(lossconfig) + self.quantize = VectorQuantizer( + n_embed, + embed_dim, + beta=0.25, + remap=remap, + sane_index_shape=sane_index_shape, + ) + self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) + self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) + if colorize_nlabels is not None: + assert type(colorize_nlabels) == int + self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) + if monitor is not None: + self.monitor = monitor + self.batch_resize_range = batch_resize_range + if self.batch_resize_range is not None: + print( + f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}." + ) + + self.use_ema = use_ema + if self.use_ema: + self.model_ema = LitEma(self) + print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) + self.scheduler_config = scheduler_config + self.lr_g_factor = lr_g_factor + + @contextmanager + def ema_scope(self, context=None): + if self.use_ema: + self.model_ema.store(self.parameters()) + self.model_ema.copy_to(self) + if context is not None: + print(f"{context}: Switched to EMA weights") + try: + yield None + finally: + if self.use_ema: + self.model_ema.restore(self.parameters()) + if context is not None: + print(f"{context}: Restored training weights") + + def init_from_ckpt(self, path, ignore_keys=list()): + sd = torch.load(path, map_location="cpu")["state_dict"] + keys = list(sd.keys()) + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + print("Deleting key {} from state_dict.".format(k)) + del sd[k] + missing, unexpected = self.load_state_dict(sd, strict=False) + print( + f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" + ) + if len(missing) > 0: + print(f"Missing Keys: {missing}") + print(f"Unexpected Keys: {unexpected}") + + def on_train_batch_end(self, *args, **kwargs): + if self.use_ema: + self.model_ema(self) + + def encode(self, x): + h = self.encoder(x) + h = self.quant_conv(h) + quant, emb_loss, info = self.quantize(h) + return quant, emb_loss, info + + def encode_to_prequant(self, x): + h = self.encoder(x) + h = self.quant_conv(h) + return h + + def decode(self, quant): + quant = self.post_quant_conv(quant) + dec = self.decoder(quant) + return dec + + def decode_code(self, code_b): + quant_b = self.quantize.embed_code(code_b) + dec = self.decode(quant_b) + return dec + + def forward(self, input, return_pred_indices=False): + quant, diff, (_, _, ind) = self.encode(input) + dec = self.decode(quant) + if return_pred_indices: + return dec, diff, ind + return dec, diff + + def get_input(self, batch, k): + x = batch[k] + if len(x.shape) == 3: + x = x[..., None] + x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() + if self.batch_resize_range is not None: + lower_size = self.batch_resize_range[0] + upper_size = self.batch_resize_range[1] + if self.global_step <= 4: + # do the first few batches with max size to avoid later oom + new_resize = upper_size + else: + new_resize = np.random.choice( + np.arange(lower_size, upper_size + 16, 16) + ) + if new_resize != x.shape[2]: + x = F.interpolate(x, size=new_resize, mode="bicubic") + x = x.detach() + return x + + def training_step(self, batch, batch_idx, optimizer_idx): + # https://github.com/pytorch/pytorch/issues/37142 + # try not to fool the heuristics + x = self.get_input(batch, self.image_key) + xrec, qloss, ind = self(x, return_pred_indices=True) + + if optimizer_idx == 0: + # autoencode + aeloss, log_dict_ae = self.loss( + qloss, + x, + xrec, + optimizer_idx, + self.global_step, + last_layer=self.get_last_layer(), + split="train", + predicted_indices=ind, + ) + + self.log_dict( + log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True + ) + return aeloss + + if optimizer_idx == 1: + # discriminator + discloss, log_dict_disc = self.loss( + qloss, + x, + xrec, + optimizer_idx, + self.global_step, + last_layer=self.get_last_layer(), + split="train", + ) + self.log_dict( + log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True + ) + return discloss + + def validation_step(self, batch, batch_idx): + log_dict = self._validation_step(batch, batch_idx) + with self.ema_scope(): + log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema") + return log_dict + + def _validation_step(self, batch, batch_idx, suffix=""): + x = self.get_input(batch, self.image_key) + xrec, qloss, ind = self(x, return_pred_indices=True) + aeloss, log_dict_ae = self.loss( + qloss, + x, + xrec, + 0, + self.global_step, + last_layer=self.get_last_layer(), + split="val" + suffix, + predicted_indices=ind, + ) + + discloss, log_dict_disc = self.loss( + qloss, + x, + xrec, + 1, + self.global_step, + last_layer=self.get_last_layer(), + split="val" + suffix, + predicted_indices=ind, + ) + rec_loss = log_dict_ae[f"val{suffix}/rec_loss"] + self.log( + f"val{suffix}/rec_loss", + rec_loss, + prog_bar=True, + logger=True, + on_step=False, + on_epoch=True, + sync_dist=True, + ) + self.log( + f"val{suffix}/aeloss", + aeloss, + prog_bar=True, + logger=True, + on_step=False, + on_epoch=True, + sync_dist=True, + ) + if version.parse(pl.__version__) >= version.parse("1.4.0"): + del log_dict_ae[f"val{suffix}/rec_loss"] + self.log_dict(log_dict_ae) + self.log_dict(log_dict_disc) + return self.log_dict + + def configure_optimizers(self): + lr_d = self.learning_rate + lr_g = self.lr_g_factor * self.learning_rate + print("lr_d", lr_d) + print("lr_g", lr_g) + opt_ae = torch.optim.Adam( + list(self.encoder.parameters()) + + list(self.decoder.parameters()) + + list(self.quantize.parameters()) + + list(self.quant_conv.parameters()) + + list(self.post_quant_conv.parameters()), + lr=lr_g, + betas=(0.5, 0.9), + ) + opt_disc = torch.optim.Adam( + self.loss.discriminator.parameters(), lr=lr_d, betas=(0.5, 0.9) + ) + + if self.scheduler_config is not None: + scheduler = instantiate_from_config(self.scheduler_config) + + print("Setting up LambdaLR scheduler...") + scheduler = [ + { + "scheduler": LambdaLR(opt_ae, lr_lambda=scheduler.schedule), + "interval": "step", + "frequency": 1, + }, + { + "scheduler": LambdaLR(opt_disc, lr_lambda=scheduler.schedule), + "interval": "step", + "frequency": 1, + }, + ] + return [opt_ae, opt_disc], scheduler + return [opt_ae, opt_disc], [] + + def get_last_layer(self): + return self.decoder.conv_out.weight + + def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): + log = dict() + x = self.get_input(batch, self.image_key) + x = x.to(self.device) + if only_inputs: + log["inputs"] = x + return log + xrec, _ = self(x) + if x.shape[1] > 3: + # colorize with random projection + assert xrec.shape[1] > 3 + x = self.to_rgb(x) + xrec = self.to_rgb(xrec) + log["inputs"] = x + log["reconstructions"] = xrec + if plot_ema: + with self.ema_scope(): + xrec_ema, _ = self(x) + if x.shape[1] > 3: + xrec_ema = self.to_rgb(xrec_ema) + log["reconstructions_ema"] = xrec_ema + return log + + def to_rgb(self, x): + assert self.image_key == "segmentation" + if not hasattr(self, "colorize"): + self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) + x = F.conv2d(x, weight=self.colorize) + x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 + return x + + +class VQModelInterface(VQModel): + def __init__(self, embed_dim, *args, **kwargs): + super().__init__(embed_dim=embed_dim, *args, **kwargs) + self.embed_dim = embed_dim + + def encode(self, x): + h = self.encoder(x) + h = self.quant_conv(h) + return h + + def decode(self, h, force_not_quantize=False): + # also go through quantization layer + if not force_not_quantize: + quant, emb_loss, info = self.quantize(h) + else: + quant = h + quant = self.post_quant_conv(quant) + dec = self.decoder(quant) + return dec + + +class AutoencoderKL(pl.LightningModule): + def __init__( + self, + ddconfig, + lossconfig, + embed_dim, + ckpt_path=None, + ignore_keys=[], + image_key="image", + colorize_nlabels=None, + monitor=None, + ): + super().__init__() + self.image_key = image_key + self.encoder = Encoder(**ddconfig) + self.decoder = Decoder(**ddconfig) + self.loss = instantiate_from_config(lossconfig) + assert ddconfig["double_z"] + self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1) + self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) + self.embed_dim = embed_dim + if colorize_nlabels is not None: + assert type(colorize_nlabels) == int + self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) + if monitor is not None: + self.monitor = monitor + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) + + def init_from_ckpt(self, path, ignore_keys=list()): + sd = torch.load(path, map_location="cpu")["state_dict"] + keys = list(sd.keys()) + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + print("Deleting key {} from state_dict.".format(k)) + del sd[k] + self.load_state_dict(sd, strict=False) + print(f"Restored from {path}") + + def encode(self, x): + h = self.encoder(x) + moments = self.quant_conv(h) + posterior = DiagonalGaussianDistribution(moments) + return posterior + + def decode(self, z): + z = self.post_quant_conv(z) + dec = self.decoder(z) + return dec + + def forward(self, input, sample_posterior=True): + posterior = self.encode(input) + if sample_posterior: + z = posterior.sample() + else: + z = posterior.mode() + dec = self.decode(z) + return dec, posterior + + def get_input(self, batch, k): + x = batch[k] + if len(x.shape) == 3: + x = x[..., None] + x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() + return x + + def training_step(self, batch, batch_idx, optimizer_idx): + inputs = self.get_input(batch, self.image_key) + reconstructions, posterior = self(inputs) + + if optimizer_idx == 0: + # train encoder+decoder+logvar + aeloss, log_dict_ae = self.loss( + inputs, + reconstructions, + posterior, + optimizer_idx, + self.global_step, + last_layer=self.get_last_layer(), + split="train", + ) + self.log( + "aeloss", + aeloss, + prog_bar=True, + logger=True, + on_step=True, + on_epoch=True, + ) + self.log_dict( + log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False + ) + return aeloss + + if optimizer_idx == 1: + # train the discriminator + discloss, log_dict_disc = self.loss( + inputs, + reconstructions, + posterior, + optimizer_idx, + self.global_step, + last_layer=self.get_last_layer(), + split="train", + ) + + self.log( + "discloss", + discloss, + prog_bar=True, + logger=True, + on_step=True, + on_epoch=True, + ) + self.log_dict( + log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False + ) + return discloss + + def validation_step(self, batch, batch_idx): + inputs = self.get_input(batch, self.image_key) + reconstructions, posterior = self(inputs) + aeloss, log_dict_ae = self.loss( + inputs, + reconstructions, + posterior, + 0, + self.global_step, + last_layer=self.get_last_layer(), + split="val", + ) + + discloss, log_dict_disc = self.loss( + inputs, + reconstructions, + posterior, + 1, + self.global_step, + last_layer=self.get_last_layer(), + split="val", + ) + + self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) + self.log_dict(log_dict_ae) + self.log_dict(log_dict_disc) + return self.log_dict + + def configure_optimizers(self): + lr = self.learning_rate + opt_ae = torch.optim.Adam( + list(self.encoder.parameters()) + + list(self.decoder.parameters()) + + list(self.quant_conv.parameters()) + + list(self.post_quant_conv.parameters()), + lr=lr, + betas=(0.5, 0.9), + ) + opt_disc = torch.optim.Adam( + self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9) + ) + return [opt_ae, opt_disc], [] + + def get_last_layer(self): + return self.decoder.conv_out.weight + + @torch.no_grad() + def log_images(self, batch, only_inputs=False, **kwargs): + log = dict() + x = self.get_input(batch, self.image_key) + x = x.to(self.device) + if not only_inputs: + xrec, posterior = self(x) + if x.shape[1] > 3: + # colorize with random projection + assert xrec.shape[1] > 3 + x = self.to_rgb(x) + xrec = self.to_rgb(xrec) + log["samples"] = self.decode(torch.randn_like(posterior.sample())) + log["reconstructions"] = xrec + log["inputs"] = x + return log + + def to_rgb(self, x): + assert self.image_key == "segmentation" + if not hasattr(self, "colorize"): + self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) + x = F.conv2d(x, weight=self.colorize) + x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 + return x + + +class IdentityFirstStage(torch.nn.Module): + def __init__(self, *args, vq_interface=False, **kwargs): + self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff + super().__init__() + + def encode(self, x, *args, **kwargs): + return x + + def decode(self, x, *args, **kwargs): + return x + + def quantize(self, x, *args, **kwargs): + if self.vq_interface: + return x, None, [None, None, None] + return x + + def forward(self, x, *args, **kwargs): + return x diff --git a/extern/ldm_zero123/models/diffusion/__init__.py b/extern/ldm_zero123/models/diffusion/__init__.py new file mode 100755 index 0000000..e69de29 diff --git a/extern/ldm_zero123/models/diffusion/classifier.py b/extern/ldm_zero123/models/diffusion/classifier.py new file mode 100755 index 0000000..40467e9 --- /dev/null +++ b/extern/ldm_zero123/models/diffusion/classifier.py @@ -0,0 +1,319 @@ +import os +from copy import deepcopy +from glob import glob + +import pytorch_lightning as pl +import torch +from einops import rearrange +from natsort import natsorted +from omegaconf import OmegaConf +from torch.nn import functional as F +from torch.optim import AdamW +from torch.optim.lr_scheduler import LambdaLR + +from extern.ldm_zero123.modules.diffusionmodules.openaimodel import ( + EncoderUNetModel, + UNetModel, +) +from extern.ldm_zero123.util import ( + default, + instantiate_from_config, + ismap, + log_txt_as_img, +) + +__models__ = {"class_label": EncoderUNetModel, "segmentation": UNetModel} + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +class NoisyLatentImageClassifier(pl.LightningModule): + def __init__( + self, + diffusion_path, + num_classes, + ckpt_path=None, + pool="attention", + label_key=None, + diffusion_ckpt_path=None, + scheduler_config=None, + weight_decay=1.0e-2, + log_steps=10, + monitor="val/loss", + *args, + **kwargs, + ): + super().__init__(*args, **kwargs) + self.num_classes = num_classes + # get latest config of diffusion model + diffusion_config = natsorted( + glob(os.path.join(diffusion_path, "configs", "*-project.yaml")) + )[-1] + self.diffusion_config = OmegaConf.load(diffusion_config).model + self.diffusion_config.params.ckpt_path = diffusion_ckpt_path + self.load_diffusion() + + self.monitor = monitor + self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1 + self.log_time_interval = self.diffusion_model.num_timesteps // log_steps + self.log_steps = log_steps + + self.label_key = ( + label_key + if not hasattr(self.diffusion_model, "cond_stage_key") + else self.diffusion_model.cond_stage_key + ) + + assert ( + self.label_key is not None + ), "label_key neither in diffusion model nor in model.params" + + if self.label_key not in __models__: + raise NotImplementedError() + + self.load_classifier(ckpt_path, pool) + + self.scheduler_config = scheduler_config + self.use_scheduler = self.scheduler_config is not None + self.weight_decay = weight_decay + + def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + sd = torch.load(path, map_location="cpu") + if "state_dict" in list(sd.keys()): + sd = sd["state_dict"] + keys = list(sd.keys()) + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + print("Deleting key {} from state_dict.".format(k)) + del sd[k] + missing, unexpected = ( + self.load_state_dict(sd, strict=False) + if not only_model + else self.model.load_state_dict(sd, strict=False) + ) + print( + f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" + ) + if len(missing) > 0: + print(f"Missing Keys: {missing}") + if len(unexpected) > 0: + print(f"Unexpected Keys: {unexpected}") + + def load_diffusion(self): + model = instantiate_from_config(self.diffusion_config) + self.diffusion_model = model.eval() + self.diffusion_model.train = disabled_train + for param in self.diffusion_model.parameters(): + param.requires_grad = False + + def load_classifier(self, ckpt_path, pool): + model_config = deepcopy(self.diffusion_config.params.unet_config.params) + model_config.in_channels = ( + self.diffusion_config.params.unet_config.params.out_channels + ) + model_config.out_channels = self.num_classes + if self.label_key == "class_label": + model_config.pool = pool + + self.model = __models__[self.label_key](**model_config) + if ckpt_path is not None: + print( + "#####################################################################" + ) + print(f'load from ckpt "{ckpt_path}"') + print( + "#####################################################################" + ) + self.init_from_ckpt(ckpt_path) + + @torch.no_grad() + def get_x_noisy(self, x, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x)) + continuous_sqrt_alpha_cumprod = None + if self.diffusion_model.use_continuous_noise: + continuous_sqrt_alpha_cumprod = ( + self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1) + ) + # todo: make sure t+1 is correct here + + return self.diffusion_model.q_sample( + x_start=x, + t=t, + noise=noise, + continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod, + ) + + def forward(self, x_noisy, t, *args, **kwargs): + return self.model(x_noisy, t) + + @torch.no_grad() + def get_input(self, batch, k): + x = batch[k] + if len(x.shape) == 3: + x = x[..., None] + x = rearrange(x, "b h w c -> b c h w") + x = x.to(memory_format=torch.contiguous_format).float() + return x + + @torch.no_grad() + def get_conditioning(self, batch, k=None): + if k is None: + k = self.label_key + assert k is not None, "Needs to provide label key" + + targets = batch[k].to(self.device) + + if self.label_key == "segmentation": + targets = rearrange(targets, "b h w c -> b c h w") + for down in range(self.numd): + h, w = targets.shape[-2:] + targets = F.interpolate(targets, size=(h // 2, w // 2), mode="nearest") + + # targets = rearrange(targets,'b c h w -> b h w c') + + return targets + + def compute_top_k(self, logits, labels, k, reduction="mean"): + _, top_ks = torch.topk(logits, k, dim=1) + if reduction == "mean": + return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item() + elif reduction == "none": + return (top_ks == labels[:, None]).float().sum(dim=-1) + + def on_train_epoch_start(self): + # save some memory + self.diffusion_model.model.to("cpu") + + @torch.no_grad() + def write_logs(self, loss, logits, targets): + log_prefix = "train" if self.training else "val" + log = {} + log[f"{log_prefix}/loss"] = loss.mean() + log[f"{log_prefix}/acc@1"] = self.compute_top_k( + logits, targets, k=1, reduction="mean" + ) + log[f"{log_prefix}/acc@5"] = self.compute_top_k( + logits, targets, k=5, reduction="mean" + ) + + self.log_dict( + log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True + ) + self.log("loss", log[f"{log_prefix}/loss"], prog_bar=True, logger=False) + self.log( + "global_step", self.global_step, logger=False, on_epoch=False, prog_bar=True + ) + lr = self.optimizers().param_groups[0]["lr"] + self.log("lr_abs", lr, on_step=True, logger=True, on_epoch=False, prog_bar=True) + + def shared_step(self, batch, t=None): + x, *_ = self.diffusion_model.get_input( + batch, k=self.diffusion_model.first_stage_key + ) + targets = self.get_conditioning(batch) + if targets.dim() == 4: + targets = targets.argmax(dim=1) + if t is None: + t = torch.randint( + 0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device + ).long() + else: + t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long() + x_noisy = self.get_x_noisy(x, t) + logits = self(x_noisy, t) + + loss = F.cross_entropy(logits, targets, reduction="none") + + self.write_logs(loss.detach(), logits.detach(), targets.detach()) + + loss = loss.mean() + return loss, logits, x_noisy, targets + + def training_step(self, batch, batch_idx): + loss, *_ = self.shared_step(batch) + return loss + + def reset_noise_accs(self): + self.noisy_acc = { + t: {"acc@1": [], "acc@5": []} + for t in range( + 0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t + ) + } + + def on_validation_start(self): + self.reset_noise_accs() + + @torch.no_grad() + def validation_step(self, batch, batch_idx): + loss, *_ = self.shared_step(batch) + + for t in self.noisy_acc: + _, logits, _, targets = self.shared_step(batch, t) + self.noisy_acc[t]["acc@1"].append( + self.compute_top_k(logits, targets, k=1, reduction="mean") + ) + self.noisy_acc[t]["acc@5"].append( + self.compute_top_k(logits, targets, k=5, reduction="mean") + ) + + return loss + + def configure_optimizers(self): + optimizer = AdamW( + self.model.parameters(), + lr=self.learning_rate, + weight_decay=self.weight_decay, + ) + + if self.use_scheduler: + scheduler = instantiate_from_config(self.scheduler_config) + + print("Setting up LambdaLR scheduler...") + scheduler = [ + { + "scheduler": LambdaLR(optimizer, lr_lambda=scheduler.schedule), + "interval": "step", + "frequency": 1, + } + ] + return [optimizer], scheduler + + return optimizer + + @torch.no_grad() + def log_images(self, batch, N=8, *args, **kwargs): + log = dict() + x = self.get_input(batch, self.diffusion_model.first_stage_key) + log["inputs"] = x + + y = self.get_conditioning(batch) + + if self.label_key == "class_label": + y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) + log["labels"] = y + + if ismap(y): + log["labels"] = self.diffusion_model.to_rgb(y) + + for step in range(self.log_steps): + current_time = step * self.log_time_interval + + _, logits, x_noisy, _ = self.shared_step(batch, t=current_time) + + log[f"inputs@t{current_time}"] = x_noisy + + pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes) + pred = rearrange(pred, "b h w c -> b c h w") + + log[f"pred@t{current_time}"] = self.diffusion_model.to_rgb(pred) + + for key in log: + log[key] = log[key][:N] + + return log diff --git a/extern/ldm_zero123/models/diffusion/ddim.py b/extern/ldm_zero123/models/diffusion/ddim.py new file mode 100755 index 0000000..d6b6e96 --- /dev/null +++ b/extern/ldm_zero123/models/diffusion/ddim.py @@ -0,0 +1,489 @@ +"""SAMPLING ONLY.""" + +from functools import partial + +import numpy as np +import torch +from einops import rearrange +from tqdm import tqdm + +from extern.ldm_zero123.models.diffusion.sampling_util import ( + norm_thresholding, + renorm_thresholding, + spatial_norm_thresholding, +) +from extern.ldm_zero123.modules.diffusionmodules.util import ( + extract_into_tensor, + make_ddim_sampling_parameters, + make_ddim_timesteps, + noise_like, +) + + +class DDIMSampler(object): + def __init__(self, model, schedule="linear", **kwargs): + super().__init__() + self.model = model + self.ddpm_num_timesteps = model.num_timesteps + self.schedule = schedule + + def to(self, device): + """Same as to in torch module + Don't really underestand why this isn't a module in the first place""" + for k, v in self.__dict__.items(): + if isinstance(v, torch.Tensor): + new_v = getattr(self, k).to(device) + setattr(self, k, new_v) + + def register_buffer(self, name, attr): + if type(attr) == torch.Tensor: + if attr.device != torch.device("cuda"): + attr = attr.to(torch.device("cuda")) + setattr(self, name, attr) + + def make_schedule( + self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True + ): + self.ddim_timesteps = make_ddim_timesteps( + ddim_discr_method=ddim_discretize, + num_ddim_timesteps=ddim_num_steps, + num_ddpm_timesteps=self.ddpm_num_timesteps, + verbose=verbose, + ) + alphas_cumprod = self.model.alphas_cumprod + assert ( + alphas_cumprod.shape[0] == self.ddpm_num_timesteps + ), "alphas have to be defined for each timestep" + to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) + + self.register_buffer("betas", to_torch(self.model.betas)) + self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) + self.register_buffer( + "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev) + ) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer( + "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_one_minus_alphas_cumprod", + to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())), + ) + self.register_buffer( + "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_recipm1_alphas_cumprod", + to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)), + ) + + # ddim sampling parameters + ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters( + alphacums=alphas_cumprod.cpu(), + ddim_timesteps=self.ddim_timesteps, + eta=ddim_eta, + verbose=verbose, + ) + self.register_buffer("ddim_sigmas", ddim_sigmas) + self.register_buffer("ddim_alphas", ddim_alphas) + self.register_buffer("ddim_alphas_prev", ddim_alphas_prev) + self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas)) + sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( + (1 - self.alphas_cumprod_prev) + / (1 - self.alphas_cumprod) + * (1 - self.alphas_cumprod / self.alphas_cumprod_prev) + ) + self.register_buffer( + "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps + ) + + @torch.no_grad() + def sample( + self, + S, + batch_size, + shape, + conditioning=None, + callback=None, + normals_sequence=None, + img_callback=None, + quantize_x0=False, + eta=0.0, + mask=None, + x0=None, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + verbose=True, + x_T=None, + log_every_t=100, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... + dynamic_threshold=None, + **kwargs, + ): + if conditioning is not None: + if isinstance(conditioning, dict): + ctmp = conditioning[list(conditioning.keys())[0]] + while isinstance(ctmp, list): + ctmp = ctmp[0] + cbs = ctmp.shape[0] + if cbs != batch_size: + print( + f"Warning: Got {cbs} conditionings but batch-size is {batch_size}" + ) + + else: + if conditioning.shape[0] != batch_size: + print( + f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}" + ) + + self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) + # sampling + C, H, W = shape + size = (batch_size, C, H, W) + # print(f'Data shape for DDIM sampling is {size}, eta {eta}') + + samples, intermediates = self.ddim_sampling( + conditioning, + size, + callback=callback, + img_callback=img_callback, + quantize_denoised=quantize_x0, + mask=mask, + x0=x0, + ddim_use_original_steps=False, + noise_dropout=noise_dropout, + temperature=temperature, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + x_T=x_T, + log_every_t=log_every_t, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + dynamic_threshold=dynamic_threshold, + ) + return samples, intermediates + + @torch.no_grad() + def ddim_sampling( + self, + cond, + shape, + x_T=None, + ddim_use_original_steps=False, + callback=None, + timesteps=None, + quantize_denoised=False, + mask=None, + x0=None, + img_callback=None, + log_every_t=100, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + dynamic_threshold=None, + t_start=-1, + ): + device = self.model.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + if timesteps is None: + timesteps = ( + self.ddpm_num_timesteps + if ddim_use_original_steps + else self.ddim_timesteps + ) + elif timesteps is not None and not ddim_use_original_steps: + subset_end = ( + int( + min(timesteps / self.ddim_timesteps.shape[0], 1) + * self.ddim_timesteps.shape[0] + ) + - 1 + ) + timesteps = self.ddim_timesteps[:subset_end] + + timesteps = timesteps[:t_start] + + intermediates = {"x_inter": [img], "pred_x0": [img]} + time_range = ( + reversed(range(0, timesteps)) + if ddim_use_original_steps + else np.flip(timesteps) + ) + total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] + # print(f"Running DDIM Sampling with {total_steps} timesteps") + + iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps) + + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full((b,), step, device=device, dtype=torch.long) + + if mask is not None: + assert x0 is not None + img_orig = self.model.q_sample( + x0, ts + ) # TODO: deterministic forward pass? + img = img_orig * mask + (1.0 - mask) * img + + outs = self.p_sample_ddim( + img, + cond, + ts, + index=index, + use_original_steps=ddim_use_original_steps, + quantize_denoised=quantize_denoised, + temperature=temperature, + noise_dropout=noise_dropout, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + dynamic_threshold=dynamic_threshold, + ) + img, pred_x0 = outs + if callback: + img = callback(i, img, pred_x0) + if img_callback: + img_callback(pred_x0, i) + + if index % log_every_t == 0 or index == total_steps - 1: + intermediates["x_inter"].append(img) + intermediates["pred_x0"].append(pred_x0) + + return img, intermediates + + @torch.no_grad() + def p_sample_ddim( + self, + x, + c, + t, + index, + repeat_noise=False, + use_original_steps=False, + quantize_denoised=False, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + dynamic_threshold=None, + ): + b, *_, device = *x.shape, x.device + + if unconditional_conditioning is None or unconditional_guidance_scale == 1.0: + e_t = self.model.apply_model(x, t, c) + else: + x_in = torch.cat([x] * 2) + t_in = torch.cat([t] * 2) + if isinstance(c, dict): + assert isinstance(unconditional_conditioning, dict) + c_in = dict() + for k in c: + if isinstance(c[k], list): + c_in[k] = [ + torch.cat([unconditional_conditioning[k][i], c[k][i]]) + for i in range(len(c[k])) + ] + else: + c_in[k] = torch.cat([unconditional_conditioning[k], c[k]]) + else: + c_in = torch.cat([unconditional_conditioning, c]) + e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) + e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) + + if score_corrector is not None: + assert self.model.parameterization == "eps" + e_t = score_corrector.modify_score( + self.model, e_t, x, t, c, **corrector_kwargs + ) + + alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas + alphas_prev = ( + self.model.alphas_cumprod_prev + if use_original_steps + else self.ddim_alphas_prev + ) + sqrt_one_minus_alphas = ( + self.model.sqrt_one_minus_alphas_cumprod + if use_original_steps + else self.ddim_sqrt_one_minus_alphas + ) + sigmas = ( + self.model.ddim_sigmas_for_original_num_steps + if use_original_steps + else self.ddim_sigmas + ) + # select parameters corresponding to the currently considered timestep + a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) + a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) + sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) + sqrt_one_minus_at = torch.full( + (b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device + ) + + # current prediction for x_0 + pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() + + print(t, sqrt_one_minus_at, a_t) + + if quantize_denoised: + pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) + + if dynamic_threshold is not None: + pred_x0 = norm_thresholding(pred_x0, dynamic_threshold) + + # direction pointing to x_t + dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t + noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.0: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise + return x_prev, pred_x0 + + @torch.no_grad() + def encode( + self, + x0, + c, + t_enc, + use_original_steps=False, + return_intermediates=None, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + ): + num_reference_steps = ( + self.ddpm_num_timesteps + if use_original_steps + else self.ddim_timesteps.shape[0] + ) + + assert t_enc <= num_reference_steps + num_steps = t_enc + + if use_original_steps: + alphas_next = self.alphas_cumprod[:num_steps] + alphas = self.alphas_cumprod_prev[:num_steps] + else: + alphas_next = self.ddim_alphas[:num_steps] + alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) + + x_next = x0 + intermediates = [] + inter_steps = [] + for i in tqdm(range(num_steps), desc="Encoding Image"): + t = torch.full( + (x0.shape[0],), i, device=self.model.device, dtype=torch.long + ) + if unconditional_guidance_scale == 1.0: + noise_pred = self.model.apply_model(x_next, t, c) + else: + assert unconditional_conditioning is not None + e_t_uncond, noise_pred = torch.chunk( + self.model.apply_model( + torch.cat((x_next, x_next)), + torch.cat((t, t)), + torch.cat((unconditional_conditioning, c)), + ), + 2, + ) + noise_pred = e_t_uncond + unconditional_guidance_scale * ( + noise_pred - e_t_uncond + ) + + xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next + weighted_noise_pred = ( + alphas_next[i].sqrt() + * ((1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) + * noise_pred + ) + x_next = xt_weighted + weighted_noise_pred + if ( + return_intermediates + and i % (num_steps // return_intermediates) == 0 + and i < num_steps - 1 + ): + intermediates.append(x_next) + inter_steps.append(i) + elif return_intermediates and i >= num_steps - 2: + intermediates.append(x_next) + inter_steps.append(i) + + out = {"x_encoded": x_next, "intermediate_steps": inter_steps} + if return_intermediates: + out.update({"intermediates": intermediates}) + return x_next, out + + @torch.no_grad() + def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): + # fast, but does not allow for exact reconstruction + # t serves as an index to gather the correct alphas + if use_original_steps: + sqrt_alphas_cumprod = self.sqrt_alphas_cumprod + sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod + else: + sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) + sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas + + if noise is None: + noise = torch.randn_like(x0) + return ( + extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise + ) + + @torch.no_grad() + def decode( + self, + x_latent, + cond, + t_start, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + use_original_steps=False, + ): + timesteps = ( + np.arange(self.ddpm_num_timesteps) + if use_original_steps + else self.ddim_timesteps + ) + timesteps = timesteps[:t_start] + + time_range = np.flip(timesteps) + total_steps = timesteps.shape[0] + # print(f"Running DDIM Sampling with {total_steps} timesteps") + + iterator = tqdm(time_range, desc="Decoding image", total=total_steps) + x_dec = x_latent + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full( + (x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long + ) + x_dec, _ = self.p_sample_ddim( + x_dec, + cond, + ts, + index=index, + use_original_steps=use_original_steps, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + ) + return x_dec diff --git a/extern/ldm_zero123/models/diffusion/ddpm.py b/extern/ldm_zero123/models/diffusion/ddpm.py new file mode 100755 index 0000000..590b692 --- /dev/null +++ b/extern/ldm_zero123/models/diffusion/ddpm.py @@ -0,0 +1,2689 @@ +""" +wild mixture of +https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py +https://github.com/CompVis/taming-transformers +-- merci +""" + +import itertools +from contextlib import contextmanager, nullcontext +from functools import partial + +import numpy as np +import pytorch_lightning as pl +import torch +import torch.nn as nn +from einops import rearrange, repeat +from omegaconf import ListConfig +from pytorch_lightning.utilities.rank_zero import rank_zero_only +from torch.optim.lr_scheduler import LambdaLR +from torchvision.utils import make_grid +from tqdm import tqdm + +from extern.ldm_zero123.models.autoencoder import ( + AutoencoderKL, + IdentityFirstStage, + VQModelInterface, +) +from extern.ldm_zero123.models.diffusion.ddim import DDIMSampler +from extern.ldm_zero123.modules.attention import CrossAttention +from extern.ldm_zero123.modules.diffusionmodules.util import ( + extract_into_tensor, + make_beta_schedule, + noise_like, +) +from extern.ldm_zero123.modules.distributions.distributions import ( + DiagonalGaussianDistribution, + normal_kl, +) +from extern.ldm_zero123.modules.ema import LitEma +from extern.ldm_zero123.util import ( + count_params, + default, + exists, + instantiate_from_config, + isimage, + ismap, + log_txt_as_img, + mean_flat, +) + +__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"} + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +def uniform_on_device(r1, r2, shape, device): + return (r1 - r2) * torch.rand(*shape, device=device) + r2 + + +class DDPM(pl.LightningModule): + # classic DDPM with Gaussian diffusion, in image space + def __init__( + self, + unet_config, + timesteps=1000, + beta_schedule="linear", + loss_type="l2", + ckpt_path=None, + ignore_keys=[], + load_only_unet=False, + monitor="val/loss", + use_ema=True, + first_stage_key="image", + image_size=256, + channels=3, + log_every_t=100, + clip_denoised=True, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + given_betas=None, + original_elbo_weight=0.0, + v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta + l_simple_weight=1.0, + conditioning_key=None, + parameterization="eps", # all assuming fixed variance schedules + scheduler_config=None, + use_positional_encodings=False, + learn_logvar=False, + logvar_init=0.0, + make_it_fit=False, + ucg_training=None, + ): + super().__init__() + assert parameterization in [ + "eps", + "x0", + ], 'currently only supporting "eps" and "x0"' + self.parameterization = parameterization + print( + f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode" + ) + self.cond_stage_model = None + self.clip_denoised = clip_denoised + self.log_every_t = log_every_t + self.first_stage_key = first_stage_key + self.image_size = image_size # try conv? + self.channels = channels + self.use_positional_encodings = use_positional_encodings + self.model = DiffusionWrapper(unet_config, conditioning_key) + count_params(self.model, verbose=True) + self.use_ema = use_ema + if self.use_ema: + self.model_ema = LitEma(self.model) + print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + self.use_scheduler = scheduler_config is not None + if self.use_scheduler: + self.scheduler_config = scheduler_config + + self.v_posterior = v_posterior + self.original_elbo_weight = original_elbo_weight + self.l_simple_weight = l_simple_weight + + if monitor is not None: + self.monitor = monitor + self.make_it_fit = make_it_fit + if ckpt_path is not None: + self.init_from_ckpt( + ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet + ) + + self.register_schedule( + given_betas=given_betas, + beta_schedule=beta_schedule, + timesteps=timesteps, + linear_start=linear_start, + linear_end=linear_end, + cosine_s=cosine_s, + ) + + self.loss_type = loss_type + + self.learn_logvar = learn_logvar + self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) + if self.learn_logvar: + self.logvar = nn.Parameter(self.logvar, requires_grad=True) + + self.ucg_training = ucg_training or dict() + if self.ucg_training: + self.ucg_prng = np.random.RandomState() + + def register_schedule( + self, + given_betas=None, + beta_schedule="linear", + timesteps=1000, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + ): + if exists(given_betas): + betas = given_betas + else: + betas = make_beta_schedule( + beta_schedule, + timesteps, + linear_start=linear_start, + linear_end=linear_end, + cosine_s=cosine_s, + ) + alphas = 1.0 - betas + alphas_cumprod = np.cumprod(alphas, axis=0) + alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1]) + + (timesteps,) = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + assert ( + alphas_cumprod.shape[0] == self.num_timesteps + ), "alphas have to be defined for each timestep" + + to_torch = partial(torch.tensor, dtype=torch.float32) + + self.register_buffer("betas", to_torch(betas)) + self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) + self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod))) + self.register_buffer( + "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod)) + ) + self.register_buffer( + "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod)) + ) + self.register_buffer( + "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod)) + ) + self.register_buffer( + "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1)) + ) + + # calculations for posterior q(x_{t-1} | x_t, x_0) + posterior_variance = (1 - self.v_posterior) * betas * ( + 1.0 - alphas_cumprod_prev + ) / (1.0 - alphas_cumprod) + self.v_posterior * betas + # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) + self.register_buffer("posterior_variance", to_torch(posterior_variance)) + # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain + self.register_buffer( + "posterior_log_variance_clipped", + to_torch(np.log(np.maximum(posterior_variance, 1e-20))), + ) + self.register_buffer( + "posterior_mean_coef1", + to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)), + ) + self.register_buffer( + "posterior_mean_coef2", + to_torch( + (1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod) + ), + ) + + if self.parameterization == "eps": + lvlb_weights = self.betas**2 / ( + 2 + * self.posterior_variance + * to_torch(alphas) + * (1 - self.alphas_cumprod) + ) + elif self.parameterization == "x0": + lvlb_weights = ( + 0.5 + * np.sqrt(torch.Tensor(alphas_cumprod)) + / (2.0 * 1 - torch.Tensor(alphas_cumprod)) + ) + else: + raise NotImplementedError("mu not supported") + # TODO how to choose this term + lvlb_weights[0] = lvlb_weights[1] + self.register_buffer("lvlb_weights", lvlb_weights, persistent=False) + assert not torch.isnan(self.lvlb_weights).all() + + @contextmanager + def ema_scope(self, context=None): + if self.use_ema: + self.model_ema.store(self.model.parameters()) + self.model_ema.copy_to(self.model) + if context is not None: + print(f"{context}: Switched to EMA weights") + try: + yield None + finally: + if self.use_ema: + self.model_ema.restore(self.model.parameters()) + if context is not None: + print(f"{context}: Restored training weights") + + @torch.no_grad() + def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + sd = torch.load(path, map_location="cpu") + if "state_dict" in list(sd.keys()): + sd = sd["state_dict"] + keys = list(sd.keys()) + + if self.make_it_fit: + n_params = len( + [ + name + for name, _ in itertools.chain( + self.named_parameters(), self.named_buffers() + ) + ] + ) + for name, param in tqdm( + itertools.chain(self.named_parameters(), self.named_buffers()), + desc="Fitting old weights to new weights", + total=n_params, + ): + if not name in sd: + continue + old_shape = sd[name].shape + new_shape = param.shape + assert len(old_shape) == len(new_shape) + if len(new_shape) > 2: + # we only modify first two axes + assert new_shape[2:] == old_shape[2:] + # assumes first axis corresponds to output dim + if not new_shape == old_shape: + new_param = param.clone() + old_param = sd[name] + if len(new_shape) == 1: + for i in range(new_param.shape[0]): + new_param[i] = old_param[i % old_shape[0]] + elif len(new_shape) >= 2: + for i in range(new_param.shape[0]): + for j in range(new_param.shape[1]): + new_param[i, j] = old_param[ + i % old_shape[0], j % old_shape[1] + ] + + n_used_old = torch.ones(old_shape[1]) + for j in range(new_param.shape[1]): + n_used_old[j % old_shape[1]] += 1 + n_used_new = torch.zeros(new_shape[1]) + for j in range(new_param.shape[1]): + n_used_new[j] = n_used_old[j % old_shape[1]] + + n_used_new = n_used_new[None, :] + while len(n_used_new.shape) < len(new_shape): + n_used_new = n_used_new.unsqueeze(-1) + new_param /= n_used_new + + sd[name] = new_param + + missing, unexpected = ( + self.load_state_dict(sd, strict=False) + if not only_model + else self.model.load_state_dict(sd, strict=False) + ) + print( + f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" + ) + if len(missing) > 0: + print(f"Missing Keys: {missing}") + if len(unexpected) > 0: + print(f"Unexpected Keys: {unexpected}") + + def q_mean_variance(self, x_start, t): + """ + Get the distribution q(x_t | x_0). + :param x_start: the [N x C x ...] tensor of noiseless inputs. + :param t: the number of diffusion steps (minus 1). Here, 0 means one step. + :return: A tuple (mean, variance, log_variance), all of x_start's shape. + """ + mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) + log_variance = extract_into_tensor( + self.log_one_minus_alphas_cumprod, t, x_start.shape + ) + return mean, variance, log_variance + + def predict_start_from_noise(self, x_t, t, noise): + return ( + extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t + - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) + * noise + ) + + def q_posterior(self, x_start, x_t, t): + posterior_mean = ( + extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t + ) + posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) + posterior_log_variance_clipped = extract_into_tensor( + self.posterior_log_variance_clipped, t, x_t.shape + ) + return posterior_mean, posterior_variance, posterior_log_variance_clipped + + def p_mean_variance(self, x, t, clip_denoised: bool): + model_out = self.model(x, t) + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + if clip_denoised: + x_recon.clamp_(-1.0, 1.0) + + model_mean, posterior_variance, posterior_log_variance = self.q_posterior( + x_start=x_recon, x_t=x, t=t + ) + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): + b, *_, device = *x.shape, x.device + model_mean, _, model_log_variance = self.p_mean_variance( + x=x, t=t, clip_denoised=clip_denoised + ) + noise = noise_like(x.shape, device, repeat_noise) + # no noise when t == 0 + nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def p_sample_loop(self, shape, return_intermediates=False): + device = self.betas.device + b = shape[0] + img = torch.randn(shape, device=device) + intermediates = [img] + for i in tqdm( + reversed(range(0, self.num_timesteps)), + desc="Sampling t", + total=self.num_timesteps, + ): + img = self.p_sample( + img, + torch.full((b,), i, device=device, dtype=torch.long), + clip_denoised=self.clip_denoised, + ) + if i % self.log_every_t == 0 or i == self.num_timesteps - 1: + intermediates.append(img) + if return_intermediates: + return img, intermediates + return img + + @torch.no_grad() + def sample(self, batch_size=16, return_intermediates=False): + image_size = self.image_size + channels = self.channels + return self.p_sample_loop( + (batch_size, channels, image_size, image_size), + return_intermediates=return_intermediates, + ) + + def q_sample(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + return ( + extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) + * noise + ) + + def get_loss(self, pred, target, mean=True): + if self.loss_type == "l1": + loss = (target - pred).abs() + if mean: + loss = loss.mean() + elif self.loss_type == "l2": + if mean: + loss = torch.nn.functional.mse_loss(target, pred) + else: + loss = torch.nn.functional.mse_loss(target, pred, reduction="none") + else: + raise NotImplementedError("unknown loss type '{loss_type}'") + + return loss + + def p_losses(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + model_out = self.model(x_noisy, t) + + loss_dict = {} + if self.parameterization == "eps": + target = noise + elif self.parameterization == "x0": + target = x_start + else: + raise NotImplementedError( + f"Paramterization {self.parameterization} not yet supported" + ) + + loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) + + log_prefix = "train" if self.training else "val" + + loss_dict.update({f"{log_prefix}/loss_simple": loss.mean()}) + loss_simple = loss.mean() * self.l_simple_weight + + loss_vlb = (self.lvlb_weights[t] * loss).mean() + loss_dict.update({f"{log_prefix}/loss_vlb": loss_vlb}) + + loss = loss_simple + self.original_elbo_weight * loss_vlb + + loss_dict.update({f"{log_prefix}/loss": loss}) + + return loss, loss_dict + + def forward(self, x, *args, **kwargs): + # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size + # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' + t = torch.randint( + 0, self.num_timesteps, (x.shape[0],), device=self.device + ).long() + return self.p_losses(x, t, *args, **kwargs) + + def get_input(self, batch, k): + x = batch[k] + if len(x.shape) == 3: + x = x[..., None] + x = rearrange(x, "b h w c -> b c h w") + x = x.to(memory_format=torch.contiguous_format).float() + return x + + def shared_step(self, batch): + x = self.get_input(batch, self.first_stage_key) + loss, loss_dict = self(x) + return loss, loss_dict + + def training_step(self, batch, batch_idx): + for k in self.ucg_training: + p = self.ucg_training[k]["p"] + val = self.ucg_training[k]["val"] + if val is None: + val = "" + for i in range(len(batch[k])): + if self.ucg_prng.choice(2, p=[1 - p, p]): + batch[k][i] = val + + loss, loss_dict = self.shared_step(batch) + + self.log_dict( + loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True + ) + + self.log( + "global_step", + self.global_step, + prog_bar=True, + logger=True, + on_step=True, + on_epoch=False, + ) + + if self.use_scheduler: + lr = self.optimizers().param_groups[0]["lr"] + self.log( + "lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False + ) + + return loss + + @torch.no_grad() + def validation_step(self, batch, batch_idx): + _, loss_dict_no_ema = self.shared_step(batch) + with self.ema_scope(): + _, loss_dict_ema = self.shared_step(batch) + loss_dict_ema = {key + "_ema": loss_dict_ema[key] for key in loss_dict_ema} + self.log_dict( + loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True + ) + self.log_dict( + loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True + ) + + def on_train_batch_end(self, *args, **kwargs): + if self.use_ema: + self.model_ema(self.model) + + def _get_rows_from_list(self, samples): + n_imgs_per_row = len(samples) + denoise_grid = rearrange(samples, "n b c h w -> b n c h w") + denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w") + denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) + return denoise_grid + + @torch.no_grad() + def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): + log = dict() + x = self.get_input(batch, self.first_stage_key) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + x = x.to(self.device)[:N] + log["inputs"] = x + + # get diffusion row + diffusion_row = list() + x_start = x[:n_row] + + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), "1 -> b", b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(x_start) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + diffusion_row.append(x_noisy) + + log["diffusion_row"] = self._get_rows_from_list(diffusion_row) + + if sample: + # get denoise row + with self.ema_scope("Plotting"): + samples, denoise_row = self.sample( + batch_size=N, return_intermediates=True + ) + + log["samples"] = samples + log["denoise_row"] = self._get_rows_from_list(denoise_row) + + if return_keys: + if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: + return log + else: + return {key: log[key] for key in return_keys} + return log + + def configure_optimizers(self): + lr = self.learning_rate + params = list(self.model.parameters()) + if self.learn_logvar: + params = params + [self.logvar] + opt = torch.optim.AdamW(params, lr=lr) + return opt + + +class LatentDiffusion(DDPM): + """main class""" + + def __init__( + self, + first_stage_config, + cond_stage_config, + num_timesteps_cond=None, + cond_stage_key="image", + cond_stage_trainable=False, + concat_mode=True, + cond_stage_forward=None, + conditioning_key=None, + scale_factor=1.0, + scale_by_std=False, + unet_trainable=True, + *args, + **kwargs, + ): + self.num_timesteps_cond = default(num_timesteps_cond, 1) + self.scale_by_std = scale_by_std + assert self.num_timesteps_cond <= kwargs["timesteps"] + # for backwards compatibility after implementation of DiffusionWrapper + if conditioning_key is None: + conditioning_key = "concat" if concat_mode else "crossattn" + if cond_stage_config == "__is_unconditional__": + conditioning_key = None + ckpt_path = kwargs.pop("ckpt_path", None) + ignore_keys = kwargs.pop("ignore_keys", []) + super().__init__(conditioning_key=conditioning_key, *args, **kwargs) + self.concat_mode = concat_mode + self.cond_stage_trainable = cond_stage_trainable + self.unet_trainable = unet_trainable + self.cond_stage_key = cond_stage_key + try: + self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 + except: + self.num_downs = 0 + if not scale_by_std: + self.scale_factor = scale_factor + else: + self.register_buffer("scale_factor", torch.tensor(scale_factor)) + self.instantiate_first_stage(first_stage_config) + self.instantiate_cond_stage(cond_stage_config) + self.cond_stage_forward = cond_stage_forward + + # construct linear projection layer for concatenating image CLIP embedding and RT + self.cc_projection = nn.Linear(772, 768) + nn.init.eye_(list(self.cc_projection.parameters())[0][:768, :768]) + nn.init.zeros_(list(self.cc_projection.parameters())[1]) + self.cc_projection.requires_grad_(True) + + self.clip_denoised = False + self.bbox_tokenizer = None + + self.restarted_from_ckpt = False + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys) + self.restarted_from_ckpt = True + + def make_cond_schedule( + self, + ): + self.cond_ids = torch.full( + size=(self.num_timesteps,), + fill_value=self.num_timesteps - 1, + dtype=torch.long, + ) + ids = torch.round( + torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond) + ).long() + self.cond_ids[: self.num_timesteps_cond] = ids + + @rank_zero_only + @torch.no_grad() + def on_train_batch_start(self, batch, batch_idx, dataloader_idx): + # only for very first batch + if ( + self.scale_by_std + and self.current_epoch == 0 + and self.global_step == 0 + and batch_idx == 0 + and not self.restarted_from_ckpt + ): + assert ( + self.scale_factor == 1.0 + ), "rather not use custom rescaling and std-rescaling simultaneously" + # set rescale weight to 1./std of encodings + print("### USING STD-RESCALING ###") + x = super().get_input(batch, self.first_stage_key) + x = x.to(self.device) + encoder_posterior = self.encode_first_stage(x) + z = self.get_first_stage_encoding(encoder_posterior).detach() + del self.scale_factor + self.register_buffer("scale_factor", 1.0 / z.flatten().std()) + print(f"setting self.scale_factor to {self.scale_factor}") + print("### USING STD-RESCALING ###") + + def register_schedule( + self, + given_betas=None, + beta_schedule="linear", + timesteps=1000, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + ): + super().register_schedule( + given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s + ) + + self.shorten_cond_schedule = self.num_timesteps_cond > 1 + if self.shorten_cond_schedule: + self.make_cond_schedule() + + def instantiate_first_stage(self, config): + model = instantiate_from_config(config) + self.first_stage_model = model.eval() + self.first_stage_model.train = disabled_train + for param in self.first_stage_model.parameters(): + param.requires_grad = False + + def instantiate_cond_stage(self, config): + if not self.cond_stage_trainable: + if config == "__is_first_stage__": + print("Using first stage also as cond stage.") + self.cond_stage_model = self.first_stage_model + elif config == "__is_unconditional__": + print(f"Training {self.__class__.__name__} as an unconditional model.") + self.cond_stage_model = None + # self.be_unconditional = True + else: + model = instantiate_from_config(config) + self.cond_stage_model = model.eval() + self.cond_stage_model.train = disabled_train + for param in self.cond_stage_model.parameters(): + param.requires_grad = False + else: + assert config != "__is_first_stage__" + assert config != "__is_unconditional__" + model = instantiate_from_config(config) + self.cond_stage_model = model + + def _get_denoise_row_from_list( + self, samples, desc="", force_no_decoder_quantization=False + ): + denoise_row = [] + for zd in tqdm(samples, desc=desc): + denoise_row.append( + self.decode_first_stage( + zd.to(self.device), force_not_quantize=force_no_decoder_quantization + ) + ) + n_imgs_per_row = len(denoise_row) + denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W + denoise_grid = rearrange(denoise_row, "n b c h w -> b n c h w") + denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w") + denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) + return denoise_grid + + def get_first_stage_encoding(self, encoder_posterior): + if isinstance(encoder_posterior, DiagonalGaussianDistribution): + z = encoder_posterior.sample() + elif isinstance(encoder_posterior, torch.Tensor): + z = encoder_posterior + else: + raise NotImplementedError( + f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented" + ) + return self.scale_factor * z + + def get_learned_conditioning(self, c): + if self.cond_stage_forward is None: + if hasattr(self.cond_stage_model, "encode") and callable( + self.cond_stage_model.encode + ): + c = self.cond_stage_model.encode(c) + if isinstance(c, DiagonalGaussianDistribution): + c = c.mode() + else: + c = self.cond_stage_model(c) + else: + assert hasattr(self.cond_stage_model, self.cond_stage_forward) + c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) + return c + + def meshgrid(self, h, w): + y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) + x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) + + arr = torch.cat([y, x], dim=-1) + return arr + + def delta_border(self, h, w): + """ + :param h: height + :param w: width + :return: normalized distance to image border, + wtith min distance = 0 at border and max dist = 0.5 at image center + """ + lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) + arr = self.meshgrid(h, w) / lower_right_corner + dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] + dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] + edge_dist = torch.min( + torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1 + )[0] + return edge_dist + + def get_weighting(self, h, w, Ly, Lx, device): + weighting = self.delta_border(h, w) + weighting = torch.clip( + weighting, + self.split_input_params["clip_min_weight"], + self.split_input_params["clip_max_weight"], + ) + weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) + + if self.split_input_params["tie_braker"]: + L_weighting = self.delta_border(Ly, Lx) + L_weighting = torch.clip( + L_weighting, + self.split_input_params["clip_min_tie_weight"], + self.split_input_params["clip_max_tie_weight"], + ) + + L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) + weighting = weighting * L_weighting + return weighting + + def get_fold_unfold( + self, x, kernel_size, stride, uf=1, df=1 + ): # todo load once not every time, shorten code + """ + :param x: img of size (bs, c, h, w) + :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) + """ + bs, nc, h, w = x.shape + + # number of crops in image + Ly = (h - kernel_size[0]) // stride[0] + 1 + Lx = (w - kernel_size[1]) // stride[1] + 1 + + if uf == 1 and df == 1: + fold_params = dict( + kernel_size=kernel_size, dilation=1, padding=0, stride=stride + ) + unfold = torch.nn.Unfold(**fold_params) + + fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) + + weighting = self.get_weighting( + kernel_size[0], kernel_size[1], Ly, Lx, x.device + ).to(x.dtype) + normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap + weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) + + elif uf > 1 and df == 1: + fold_params = dict( + kernel_size=kernel_size, dilation=1, padding=0, stride=stride + ) + unfold = torch.nn.Unfold(**fold_params) + + fold_params2 = dict( + kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), + dilation=1, + padding=0, + stride=(stride[0] * uf, stride[1] * uf), + ) + fold = torch.nn.Fold( + output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2 + ) + + weighting = self.get_weighting( + kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device + ).to(x.dtype) + normalization = fold(weighting).view( + 1, 1, h * uf, w * uf + ) # normalizes the overlap + weighting = weighting.view( + (1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx) + ) + + elif df > 1 and uf == 1: + fold_params = dict( + kernel_size=kernel_size, dilation=1, padding=0, stride=stride + ) + unfold = torch.nn.Unfold(**fold_params) + + fold_params2 = dict( + kernel_size=(kernel_size[0] // df, kernel_size[0] // df), + dilation=1, + padding=0, + stride=(stride[0] // df, stride[1] // df), + ) + fold = torch.nn.Fold( + output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2 + ) + + weighting = self.get_weighting( + kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device + ).to(x.dtype) + normalization = fold(weighting).view( + 1, 1, h // df, w // df + ) # normalizes the overlap + weighting = weighting.view( + (1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx) + ) + + else: + raise NotImplementedError + + return fold, unfold, normalization, weighting + + @torch.no_grad() + def get_input( + self, + batch, + k, + return_first_stage_outputs=False, + force_c_encode=False, + cond_key=None, + return_original_cond=False, + bs=None, + uncond=0.05, + ): + x = super().get_input(batch, k) + T = batch["T"].to(memory_format=torch.contiguous_format).float() + + if bs is not None: + x = x[:bs] + T = T[:bs].to(self.device) + + x = x.to(self.device) + encoder_posterior = self.encode_first_stage(x) + z = self.get_first_stage_encoding(encoder_posterior).detach() + cond_key = cond_key or self.cond_stage_key + xc = super().get_input(batch, cond_key).to(self.device) + if bs is not None: + xc = xc[:bs] + cond = {} + + # To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%. + random = torch.rand(x.size(0), device=x.device) + prompt_mask = rearrange(random < 2 * uncond, "n -> n 1 1") + input_mask = 1 - rearrange( + (random >= uncond).float() * (random < 3 * uncond).float(), "n -> n 1 1 1" + ) + null_prompt = self.get_learned_conditioning([""]) + + # z.shape: [8, 4, 64, 64]; c.shape: [8, 1, 768] + # print('=========== xc shape ===========', xc.shape) + with torch.enable_grad(): + clip_emb = self.get_learned_conditioning(xc).detach() + null_prompt = self.get_learned_conditioning([""]).detach() + cond["c_crossattn"] = [ + self.cc_projection( + torch.cat( + [ + torch.where(prompt_mask, null_prompt, clip_emb), + T[:, None, :], + ], + dim=-1, + ) + ) + ] + cond["c_concat"] = [ + input_mask * self.encode_first_stage((xc.to(self.device))).mode().detach() + ] + out = [z, cond] + if return_first_stage_outputs: + xrec = self.decode_first_stage(z) + out.extend([x, xrec]) + if return_original_cond: + out.append(xc) + return out + + # @torch.no_grad() + def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): + if predict_cids: + if z.dim() == 4: + z = torch.argmax(z.exp(), dim=1).long() + z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) + z = rearrange(z, "b h w c -> b c h w").contiguous() + + z = 1.0 / self.scale_factor * z + + if hasattr(self, "split_input_params"): + if self.split_input_params["patch_distributed_vq"]: + ks = self.split_input_params["ks"] # eg. (128, 128) + stride = self.split_input_params["stride"] # eg. (64, 64) + uf = self.split_input_params["vqf"] + bs, nc, h, w = z.shape + if ks[0] > h or ks[1] > w: + ks = (min(ks[0], h), min(ks[1], w)) + print("reducing Kernel") + + if stride[0] > h or stride[1] > w: + stride = (min(stride[0], h), min(stride[1], w)) + print("reducing stride") + + fold, unfold, normalization, weighting = self.get_fold_unfold( + z, ks, stride, uf=uf + ) + + z = unfold(z) # (bn, nc * prod(**ks), L) + # 1. Reshape to img shape + z = z.view( + (z.shape[0], -1, ks[0], ks[1], z.shape[-1]) + ) # (bn, nc, ks[0], ks[1], L ) + + # 2. apply model loop over last dim + if isinstance(self.first_stage_model, VQModelInterface): + output_list = [ + self.first_stage_model.decode( + z[:, :, :, :, i], + force_not_quantize=predict_cids or force_not_quantize, + ) + for i in range(z.shape[-1]) + ] + else: + output_list = [ + self.first_stage_model.decode(z[:, :, :, :, i]) + for i in range(z.shape[-1]) + ] + + o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) + o = o * weighting + # Reverse 1. reshape to img shape + o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) + # stitch crops together + decoded = fold(o) + decoded = decoded / normalization # norm is shape (1, 1, h, w) + return decoded + else: + if isinstance(self.first_stage_model, VQModelInterface): + return self.first_stage_model.decode( + z, force_not_quantize=predict_cids or force_not_quantize + ) + else: + return self.first_stage_model.decode(z) + + else: + if isinstance(self.first_stage_model, VQModelInterface): + return self.first_stage_model.decode( + z, force_not_quantize=predict_cids or force_not_quantize + ) + else: + return self.first_stage_model.decode(z) + + # @torch.no_grad() # wasted two hours to find this bug... why no grad here! + def encode_first_stage(self, x): + if hasattr(self, "split_input_params"): + if self.split_input_params["patch_distributed_vq"]: + ks = self.split_input_params["ks"] # eg. (128, 128) + stride = self.split_input_params["stride"] # eg. (64, 64) + df = self.split_input_params["vqf"] + self.split_input_params["original_image_size"] = x.shape[-2:] + bs, nc, h, w = x.shape + if ks[0] > h or ks[1] > w: + ks = (min(ks[0], h), min(ks[1], w)) + print("reducing Kernel") + + if stride[0] > h or stride[1] > w: + stride = (min(stride[0], h), min(stride[1], w)) + print("reducing stride") + + fold, unfold, normalization, weighting = self.get_fold_unfold( + x, ks, stride, df=df + ) + z = unfold(x) # (bn, nc * prod(**ks), L) + # Reshape to img shape + z = z.view( + (z.shape[0], -1, ks[0], ks[1], z.shape[-1]) + ) # (bn, nc, ks[0], ks[1], L ) + + output_list = [ + self.first_stage_model.encode(z[:, :, :, :, i]) + for i in range(z.shape[-1]) + ] + + o = torch.stack(output_list, axis=-1) + o = o * weighting + + # Reverse reshape to img shape + o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) + # stitch crops together + decoded = fold(o) + decoded = decoded / normalization + return decoded + + else: + return self.first_stage_model.encode(x) + else: + return self.first_stage_model.encode(x) + + def shared_step(self, batch, **kwargs): + x, c = self.get_input(batch, self.first_stage_key) + loss = self(x, c) + return loss + + def forward(self, x, c, *args, **kwargs): + t = torch.randint( + 0, self.num_timesteps, (x.shape[0],), device=self.device + ).long() + if self.model.conditioning_key is not None: + assert c is not None + # if self.cond_stage_trainable: + # c = self.get_learned_conditioning(c) + if self.shorten_cond_schedule: # TODO: drop this option + tc = self.cond_ids[t].to(self.device) + c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) + return self.p_losses(x, c, t, *args, **kwargs) + + def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset + def rescale_bbox(bbox): + x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) + y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) + w = min(bbox[2] / crop_coordinates[2], 1 - x0) + h = min(bbox[3] / crop_coordinates[3], 1 - y0) + return x0, y0, w, h + + return [rescale_bbox(b) for b in bboxes] + + def apply_model(self, x_noisy, t, cond, return_ids=False): + if isinstance(cond, dict): + # hybrid case, cond is exptected to be a dict + pass + else: + if not isinstance(cond, list): + cond = [cond] + key = ( + "c_concat" if self.model.conditioning_key == "concat" else "c_crossattn" + ) + cond = {key: cond} + + if hasattr(self, "split_input_params"): + assert len(cond) == 1 # todo can only deal with one conditioning atm + assert not return_ids + ks = self.split_input_params["ks"] # eg. (128, 128) + stride = self.split_input_params["stride"] # eg. (64, 64) + + h, w = x_noisy.shape[-2:] + + fold, unfold, normalization, weighting = self.get_fold_unfold( + x_noisy, ks, stride + ) + + z = unfold(x_noisy) # (bn, nc * prod(**ks), L) + # Reshape to img shape + z = z.view( + (z.shape[0], -1, ks[0], ks[1], z.shape[-1]) + ) # (bn, nc, ks[0], ks[1], L ) + z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] + + if ( + self.cond_stage_key in ["image", "LR_image", "segmentation", "bbox_img"] + and self.model.conditioning_key + ): # todo check for completeness + c_key = next(iter(cond.keys())) # get key + c = next(iter(cond.values())) # get value + assert len(c) == 1 # todo extend to list with more than one elem + c = c[0] # get element + + c = unfold(c) + c = c.view( + (c.shape[0], -1, ks[0], ks[1], c.shape[-1]) + ) # (bn, nc, ks[0], ks[1], L ) + + cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] + + elif self.cond_stage_key == "coordinates_bbox": + assert ( + "original_image_size" in self.split_input_params + ), "BoudingBoxRescaling is missing original_image_size" + + # assuming padding of unfold is always 0 and its dilation is always 1 + n_patches_per_row = int((w - ks[0]) / stride[0] + 1) + full_img_h, full_img_w = self.split_input_params["original_image_size"] + # as we are operating on latents, we need the factor from the original image size to the + # spatial latent size to properly rescale the crops for regenerating the bbox annotations + num_downs = self.first_stage_model.encoder.num_resolutions - 1 + rescale_latent = 2 ** (num_downs) + + # get top left postions of patches as conforming for the bbbox tokenizer, therefore we + # need to rescale the tl patch coordinates to be in between (0,1) + tl_patch_coordinates = [ + ( + rescale_latent + * stride[0] + * (patch_nr % n_patches_per_row) + / full_img_w, + rescale_latent + * stride[1] + * (patch_nr // n_patches_per_row) + / full_img_h, + ) + for patch_nr in range(z.shape[-1]) + ] + + # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) + patch_limits = [ + ( + x_tl, + y_tl, + rescale_latent * ks[0] / full_img_w, + rescale_latent * ks[1] / full_img_h, + ) + for x_tl, y_tl in tl_patch_coordinates + ] + # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] + + # tokenize crop coordinates for the bounding boxes of the respective patches + patch_limits_tknzd = [ + torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to( + self.device + ) + for bbox in patch_limits + ] # list of length l with tensors of shape (1, 2) + # cut tknzd crop position from conditioning + assert isinstance(cond, dict), "cond must be dict to be fed into model" + cut_cond = cond["c_crossattn"][0][..., :-2].to(self.device) + + adapted_cond = torch.stack( + [torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd] + ) + adapted_cond = rearrange(adapted_cond, "l b n -> (l b) n") + adapted_cond = self.get_learned_conditioning(adapted_cond) + adapted_cond = rearrange( + adapted_cond, "(l b) n d -> l b n d", l=z.shape[-1] + ) + + cond_list = [{"c_crossattn": [e]} for e in adapted_cond] + + else: + cond_list = [ + cond for i in range(z.shape[-1]) + ] # Todo make this more efficient + + # apply model by loop over crops + output_list = [ + self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1]) + ] + assert not isinstance( + output_list[0], tuple + ) # todo cant deal with multiple model outputs check this never happens + + o = torch.stack(output_list, axis=-1) + o = o * weighting + # Reverse reshape to img shape + o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) + # stitch crops together + x_recon = fold(o) / normalization + + else: + x_recon = self.model(x_noisy, t, **cond) + + if isinstance(x_recon, tuple) and not return_ids: + return x_recon[0] + else: + return x_recon + + def _predict_eps_from_xstart(self, x_t, t, pred_xstart): + return ( + extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t + - pred_xstart + ) / extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) + + def _prior_bpd(self, x_start): + """ + Get the prior KL term for the variational lower-bound, measured in + bits-per-dim. + This term can't be optimized, as it only depends on the encoder. + :param x_start: the [N x C x ...] tensor of inputs. + :return: a batch of [N] KL values (in bits), one per batch element. + """ + batch_size = x_start.shape[0] + t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) + qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) + kl_prior = normal_kl( + mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 + ) + return mean_flat(kl_prior) / np.log(2.0) + + def p_losses(self, x_start, cond, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + model_output = self.apply_model(x_noisy, t, cond) + + loss_dict = {} + prefix = "train" if self.training else "val" + + if self.parameterization == "x0": + target = x_start + elif self.parameterization == "eps": + target = noise + else: + raise NotImplementedError() + + loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) + loss_dict.update({f"{prefix}/loss_simple": loss_simple.mean()}) + + logvar_t = self.logvar[t].to(self.device) + loss = loss_simple / torch.exp(logvar_t) + logvar_t + # loss = loss_simple / torch.exp(self.logvar) + self.logvar + if self.learn_logvar: + loss_dict.update({f"{prefix}/loss_gamma": loss.mean()}) + loss_dict.update({"logvar": self.logvar.data.mean()}) + + loss = self.l_simple_weight * loss.mean() + + loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) + loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() + loss_dict.update({f"{prefix}/loss_vlb": loss_vlb}) + loss += self.original_elbo_weight * loss_vlb + loss_dict.update({f"{prefix}/loss": loss}) + + return loss, loss_dict + + def p_mean_variance( + self, + x, + c, + t, + clip_denoised: bool, + return_codebook_ids=False, + quantize_denoised=False, + return_x0=False, + score_corrector=None, + corrector_kwargs=None, + ): + t_in = t + model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) + + if score_corrector is not None: + assert self.parameterization == "eps" + model_out = score_corrector.modify_score( + self, model_out, x, t, c, **corrector_kwargs + ) + + if return_codebook_ids: + model_out, logits = model_out + + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + else: + raise NotImplementedError() + + if clip_denoised: + x_recon.clamp_(-1.0, 1.0) + if quantize_denoised: + x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) + model_mean, posterior_variance, posterior_log_variance = self.q_posterior( + x_start=x_recon, x_t=x, t=t + ) + if return_codebook_ids: + return model_mean, posterior_variance, posterior_log_variance, logits + elif return_x0: + return model_mean, posterior_variance, posterior_log_variance, x_recon + else: + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample( + self, + x, + c, + t, + clip_denoised=False, + repeat_noise=False, + return_codebook_ids=False, + quantize_denoised=False, + return_x0=False, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + ): + b, *_, device = *x.shape, x.device + outputs = self.p_mean_variance( + x=x, + c=c, + t=t, + clip_denoised=clip_denoised, + return_codebook_ids=return_codebook_ids, + quantize_denoised=quantize_denoised, + return_x0=return_x0, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + ) + if return_codebook_ids: + raise DeprecationWarning("Support dropped.") + model_mean, _, model_log_variance, logits = outputs + elif return_x0: + model_mean, _, model_log_variance, x0 = outputs + else: + model_mean, _, model_log_variance = outputs + + noise = noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.0: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + # no noise when t == 0 + nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) + + if return_codebook_ids: + return model_mean + nonzero_mask * ( + 0.5 * model_log_variance + ).exp() * noise, logits.argmax(dim=1) + if return_x0: + return ( + model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, + x0, + ) + else: + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def progressive_denoising( + self, + cond, + shape, + verbose=True, + callback=None, + quantize_denoised=False, + img_callback=None, + mask=None, + x0=None, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + batch_size=None, + x_T=None, + start_T=None, + log_every_t=None, + ): + if not log_every_t: + log_every_t = self.log_every_t + timesteps = self.num_timesteps + if batch_size is not None: + b = batch_size if batch_size is not None else shape[0] + shape = [batch_size] + list(shape) + else: + b = batch_size = shape[0] + if x_T is None: + img = torch.randn(shape, device=self.device) + else: + img = x_T + intermediates = [] + if cond is not None: + if isinstance(cond, dict): + cond = { + key: cond[key][:batch_size] + if not isinstance(cond[key], list) + else list(map(lambda x: x[:batch_size], cond[key])) + for key in cond + } + else: + cond = ( + [c[:batch_size] for c in cond] + if isinstance(cond, list) + else cond[:batch_size] + ) + + if start_T is not None: + timesteps = min(timesteps, start_T) + iterator = ( + tqdm( + reversed(range(0, timesteps)), + desc="Progressive Generation", + total=timesteps, + ) + if verbose + else reversed(range(0, timesteps)) + ) + if type(temperature) == float: + temperature = [temperature] * timesteps + + for i in iterator: + ts = torch.full((b,), i, device=self.device, dtype=torch.long) + if self.shorten_cond_schedule: + assert self.model.conditioning_key != "hybrid" + tc = self.cond_ids[ts].to(cond.device) + cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) + + img, x0_partial = self.p_sample( + img, + cond, + ts, + clip_denoised=self.clip_denoised, + quantize_denoised=quantize_denoised, + return_x0=True, + temperature=temperature[i], + noise_dropout=noise_dropout, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + ) + if mask is not None: + assert x0 is not None + img_orig = self.q_sample(x0, ts) + img = img_orig * mask + (1.0 - mask) * img + + if i % log_every_t == 0 or i == timesteps - 1: + intermediates.append(x0_partial) + if callback: + callback(i) + if img_callback: + img_callback(img, i) + return img, intermediates + + @torch.no_grad() + def p_sample_loop( + self, + cond, + shape, + return_intermediates=False, + x_T=None, + verbose=True, + callback=None, + timesteps=None, + quantize_denoised=False, + mask=None, + x0=None, + img_callback=None, + start_T=None, + log_every_t=None, + ): + if not log_every_t: + log_every_t = self.log_every_t + device = self.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + intermediates = [img] + if timesteps is None: + timesteps = self.num_timesteps + + if start_T is not None: + timesteps = min(timesteps, start_T) + iterator = ( + tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps) + if verbose + else reversed(range(0, timesteps)) + ) + + if mask is not None: + assert x0 is not None + assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match + + for i in iterator: + ts = torch.full((b,), i, device=device, dtype=torch.long) + if self.shorten_cond_schedule: + assert self.model.conditioning_key != "hybrid" + tc = self.cond_ids[ts].to(cond.device) + cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) + + img = self.p_sample( + img, + cond, + ts, + clip_denoised=self.clip_denoised, + quantize_denoised=quantize_denoised, + ) + if mask is not None: + img_orig = self.q_sample(x0, ts) + img = img_orig * mask + (1.0 - mask) * img + + if i % log_every_t == 0 or i == timesteps - 1: + intermediates.append(img) + if callback: + callback(i) + if img_callback: + img_callback(img, i) + + if return_intermediates: + return img, intermediates + return img + + @torch.no_grad() + def sample( + self, + cond, + batch_size=16, + return_intermediates=False, + x_T=None, + verbose=True, + timesteps=None, + quantize_denoised=False, + mask=None, + x0=None, + shape=None, + **kwargs, + ): + if shape is None: + shape = (batch_size, self.channels, self.image_size, self.image_size) + if cond is not None: + if isinstance(cond, dict): + cond = { + key: cond[key][:batch_size] + if not isinstance(cond[key], list) + else list(map(lambda x: x[:batch_size], cond[key])) + for key in cond + } + else: + cond = ( + [c[:batch_size] for c in cond] + if isinstance(cond, list) + else cond[:batch_size] + ) + return self.p_sample_loop( + cond, + shape, + return_intermediates=return_intermediates, + x_T=x_T, + verbose=verbose, + timesteps=timesteps, + quantize_denoised=quantize_denoised, + mask=mask, + x0=x0, + ) + + @torch.no_grad() + def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): + if ddim: + ddim_sampler = DDIMSampler(self) + shape = (self.channels, self.image_size, self.image_size) + samples, intermediates = ddim_sampler.sample( + ddim_steps, batch_size, shape, cond, verbose=False, **kwargs + ) + + else: + samples, intermediates = self.sample( + cond=cond, batch_size=batch_size, return_intermediates=True, **kwargs + ) + + return samples, intermediates + + @torch.no_grad() + def get_unconditional_conditioning( + self, batch_size, null_label=None, image_size=512 + ): + if null_label is not None: + xc = null_label + if isinstance(xc, ListConfig): + xc = list(xc) + if isinstance(xc, dict) or isinstance(xc, list): + c = self.get_learned_conditioning(xc) + else: + if hasattr(xc, "to"): + xc = xc.to(self.device) + c = self.get_learned_conditioning(xc) + else: + # todo: get null label from cond_stage_model + raise NotImplementedError() + c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device) + cond = {} + cond["c_crossattn"] = [c] + cond["c_concat"] = [ + torch.zeros([batch_size, 4, image_size // 8, image_size // 8]).to( + self.device + ) + ] + return cond + + @torch.no_grad() + def log_images( + self, + batch, + N=8, + n_row=4, + sample=True, + ddim_steps=200, + ddim_eta=1.0, + return_keys=None, + quantize_denoised=True, + inpaint=True, + plot_denoise_rows=False, + plot_progressive_rows=True, + plot_diffusion_rows=True, + unconditional_guidance_scale=1.0, + unconditional_guidance_label=None, + use_ema_scope=True, + **kwargs, + ): + ema_scope = self.ema_scope if use_ema_scope else nullcontext + use_ddim = ddim_steps is not None + + log = dict() + z, c, x, xrec, xc = self.get_input( + batch, + self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=N, + ) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + log["inputs"] = x + log["reconstruction"] = xrec + if self.model.conditioning_key is not None: + if hasattr(self.cond_stage_model, "decode"): + xc = self.cond_stage_model.decode(c) + log["conditioning"] = xc + elif self.cond_stage_key in ["caption", "txt"]: + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch[self.cond_stage_key], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif self.cond_stage_key == "class_label": + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch["human_label"], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif isimage(xc): + log["conditioning"] = xc + if ismap(xc): + log["original_conditioning"] = self.to_rgb(xc) + + if plot_diffusion_rows: + # get diffusion row + diffusion_row = list() + z_start = z[:n_row] + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), "1 -> b", b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(z_start) + z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) + diffusion_row.append(self.decode_first_stage(z_noisy)) + + diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W + diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w") + diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w") + diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) + log["diffusion_row"] = diffusion_grid + + if sample: + # get denoise row + with ema_scope("Sampling"): + samples, z_denoise_row = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + ) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) + x_samples = self.decode_first_stage(samples) + log["samples"] = x_samples + if plot_denoise_rows: + denoise_grid = self._get_denoise_row_from_list(z_denoise_row) + log["denoise_row"] = denoise_grid + + if ( + quantize_denoised + and not isinstance(self.first_stage_model, AutoencoderKL) + and not isinstance(self.first_stage_model, IdentityFirstStage) + ): + # also display when quantizing x0 while sampling + with ema_scope("Plotting Quantized Denoised"): + samples, z_denoise_row = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + quantize_denoised=True, + ) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, + # quantize_denoised=True) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_x0_quantized"] = x_samples + + if unconditional_guidance_scale > 1.0: + uc = self.get_unconditional_conditioning( + N, unconditional_guidance_label, image_size=x.shape[-1] + ) + # uc = torch.zeros_like(c) + with ema_scope("Sampling with classifier-free guidance"): + samples_cfg, _ = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=uc, + ) + x_samples_cfg = self.decode_first_stage(samples_cfg) + log[ + f"samples_cfg_scale_{unconditional_guidance_scale:.2f}" + ] = x_samples_cfg + + if inpaint: + # make a simple center square + b, h, w = z.shape[0], z.shape[2], z.shape[3] + mask = torch.ones(N, h, w).to(self.device) + # zeros will be filled in + mask[:, h // 4 : 3 * h // 4, w // 4 : 3 * w // 4] = 0.0 + mask = mask[:, None, ...] + with ema_scope("Plotting Inpaint"): + samples, _ = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + eta=ddim_eta, + ddim_steps=ddim_steps, + x0=z[:N], + mask=mask, + ) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_inpainting"] = x_samples + log["mask"] = mask + + # outpaint + mask = 1.0 - mask + with ema_scope("Plotting Outpaint"): + samples, _ = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + eta=ddim_eta, + ddim_steps=ddim_steps, + x0=z[:N], + mask=mask, + ) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_outpainting"] = x_samples + + if plot_progressive_rows: + with ema_scope("Plotting Progressives"): + img, progressives = self.progressive_denoising( + c, + shape=(self.channels, self.image_size, self.image_size), + batch_size=N, + ) + prog_row = self._get_denoise_row_from_list( + progressives, desc="Progressive Generation" + ) + log["progressive_row"] = prog_row + + if return_keys: + if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: + return log + else: + return {key: log[key] for key in return_keys} + return log + + def configure_optimizers(self): + lr = self.learning_rate + params = [] + if self.unet_trainable == "attn": + print("Training only unet attention layers") + for n, m in self.model.named_modules(): + if isinstance(m, CrossAttention) and n.endswith("attn2"): + params.extend(m.parameters()) + if self.unet_trainable == "conv_in": + print("Training only unet input conv layers") + params = list(self.model.diffusion_model.input_blocks[0][0].parameters()) + elif self.unet_trainable is True or self.unet_trainable == "all": + print("Training the full unet") + params = list(self.model.parameters()) + else: + raise ValueError( + f"Unrecognised setting for unet_trainable: {self.unet_trainable}" + ) + + if self.cond_stage_trainable: + print(f"{self.__class__.__name__}: Also optimizing conditioner params!") + params = params + list(self.cond_stage_model.parameters()) + if self.learn_logvar: + print("Diffusion model optimizing logvar") + params.append(self.logvar) + + if self.cc_projection is not None: + params = params + list(self.cc_projection.parameters()) + print("========== optimizing for cc projection weight ==========") + + opt = torch.optim.AdamW( + [ + {"params": self.model.parameters(), "lr": lr}, + {"params": self.cc_projection.parameters(), "lr": 10.0 * lr}, + ], + lr=lr, + ) + if self.use_scheduler: + assert "target" in self.scheduler_config + scheduler = instantiate_from_config(self.scheduler_config) + + print("Setting up LambdaLR scheduler...") + scheduler = [ + { + "scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule), + "interval": "step", + "frequency": 1, + } + ] + return [opt], scheduler + return opt + + @torch.no_grad() + def to_rgb(self, x): + x = x.float() + if not hasattr(self, "colorize"): + self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) + x = nn.functional.conv2d(x, weight=self.colorize) + x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 + return x + + +class DiffusionWrapper(pl.LightningModule): + def __init__(self, diff_model_config, conditioning_key): + super().__init__() + self.diffusion_model = instantiate_from_config(diff_model_config) + self.conditioning_key = conditioning_key + assert self.conditioning_key in [ + None, + "concat", + "crossattn", + "hybrid", + "adm", + "hybrid-adm", + ] + + def forward( + self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None + ): + if self.conditioning_key is None: + out = self.diffusion_model(x, t) + elif self.conditioning_key == "concat": + xc = torch.cat([x] + c_concat, dim=1) + out = self.diffusion_model(xc, t) + elif self.conditioning_key == "crossattn": + # c_crossattn dimension: torch.Size([8, 1, 768]) 1 + # cc dimension: torch.Size([8, 1, 768] + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(x, t, context=cc) + elif self.conditioning_key == "hybrid": + xc = torch.cat([x] + c_concat, dim=1) + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(xc, t, context=cc) + elif self.conditioning_key == "hybrid-adm": + assert c_adm is not None + xc = torch.cat([x] + c_concat, dim=1) + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(xc, t, context=cc, y=c_adm) + elif self.conditioning_key == "adm": + cc = c_crossattn[0] + out = self.diffusion_model(x, t, y=cc) + else: + raise NotImplementedError() + + return out + + +class LatentUpscaleDiffusion(LatentDiffusion): + def __init__(self, *args, low_scale_config, low_scale_key="LR", **kwargs): + super().__init__(*args, **kwargs) + # assumes that neither the cond_stage nor the low_scale_model contain trainable params + assert not self.cond_stage_trainable + self.instantiate_low_stage(low_scale_config) + self.low_scale_key = low_scale_key + + def instantiate_low_stage(self, config): + model = instantiate_from_config(config) + self.low_scale_model = model.eval() + self.low_scale_model.train = disabled_train + for param in self.low_scale_model.parameters(): + param.requires_grad = False + + @torch.no_grad() + def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False): + if not log_mode: + z, c = super().get_input(batch, k, force_c_encode=True, bs=bs) + else: + z, c, x, xrec, xc = super().get_input( + batch, + self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=bs, + ) + x_low = batch[self.low_scale_key][:bs] + x_low = rearrange(x_low, "b h w c -> b c h w") + x_low = x_low.to(memory_format=torch.contiguous_format).float() + zx, noise_level = self.low_scale_model(x_low) + all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level} + # import pudb; pu.db + if log_mode: + # TODO: maybe disable if too expensive + interpretability = False + if interpretability: + zx = zx[:, :, ::2, ::2] + x_low_rec = self.low_scale_model.decode(zx) + return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level + return z, all_conds + + @torch.no_grad() + def log_images( + self, + batch, + N=8, + n_row=4, + sample=True, + ddim_steps=200, + ddim_eta=1.0, + return_keys=None, + plot_denoise_rows=False, + plot_progressive_rows=True, + plot_diffusion_rows=True, + unconditional_guidance_scale=1.0, + unconditional_guidance_label=None, + use_ema_scope=True, + **kwargs, + ): + ema_scope = self.ema_scope if use_ema_scope else nullcontext + use_ddim = ddim_steps is not None + + log = dict() + z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input( + batch, self.first_stage_key, bs=N, log_mode=True + ) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + log["inputs"] = x + log["reconstruction"] = xrec + log["x_lr"] = x_low + log[ + f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}" + ] = x_low_rec + if self.model.conditioning_key is not None: + if hasattr(self.cond_stage_model, "decode"): + xc = self.cond_stage_model.decode(c) + log["conditioning"] = xc + elif self.cond_stage_key in ["caption", "txt"]: + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch[self.cond_stage_key], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif self.cond_stage_key == "class_label": + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch["human_label"], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif isimage(xc): + log["conditioning"] = xc + if ismap(xc): + log["original_conditioning"] = self.to_rgb(xc) + + if plot_diffusion_rows: + # get diffusion row + diffusion_row = list() + z_start = z[:n_row] + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), "1 -> b", b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(z_start) + z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) + diffusion_row.append(self.decode_first_stage(z_noisy)) + + diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W + diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w") + diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w") + diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) + log["diffusion_row"] = diffusion_grid + + if sample: + # get denoise row + with ema_scope("Sampling"): + samples, z_denoise_row = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + ) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) + x_samples = self.decode_first_stage(samples) + log["samples"] = x_samples + if plot_denoise_rows: + denoise_grid = self._get_denoise_row_from_list(z_denoise_row) + log["denoise_row"] = denoise_grid + + if unconditional_guidance_scale > 1.0: + uc_tmp = self.get_unconditional_conditioning( + N, unconditional_guidance_label + ) + # TODO explore better "unconditional" choices for the other keys + # maybe guide away from empty text label and highest noise level and maximally degraded zx? + uc = dict() + for k in c: + if k == "c_crossattn": + assert isinstance(c[k], list) and len(c[k]) == 1 + uc[k] = [uc_tmp] + elif k == "c_adm": # todo: only run with text-based guidance? + assert isinstance(c[k], torch.Tensor) + uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level + elif isinstance(c[k], list): + uc[k] = [c[k][i] for i in range(len(c[k]))] + else: + uc[k] = c[k] + + with ema_scope("Sampling with classifier-free guidance"): + samples_cfg, _ = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=uc, + ) + x_samples_cfg = self.decode_first_stage(samples_cfg) + log[ + f"samples_cfg_scale_{unconditional_guidance_scale:.2f}" + ] = x_samples_cfg + + if plot_progressive_rows: + with ema_scope("Plotting Progressives"): + img, progressives = self.progressive_denoising( + c, + shape=(self.channels, self.image_size, self.image_size), + batch_size=N, + ) + prog_row = self._get_denoise_row_from_list( + progressives, desc="Progressive Generation" + ) + log["progressive_row"] = prog_row + + return log + + +class LatentInpaintDiffusion(LatentDiffusion): + """ + can either run as pure inpainting model (only concat mode) or with mixed conditionings, + e.g. mask as concat and text via cross-attn. + To disable finetuning mode, set finetune_keys to None + """ + + def __init__( + self, + finetune_keys=( + "model.diffusion_model.input_blocks.0.0.weight", + "model_ema.diffusion_modelinput_blocks00weight", + ), + concat_keys=("mask", "masked_image"), + masked_image_key="masked_image", + keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels + c_concat_log_start=None, # to log reconstruction of c_concat codes + c_concat_log_end=None, + *args, + **kwargs, + ): + ckpt_path = kwargs.pop("ckpt_path", None) + ignore_keys = kwargs.pop("ignore_keys", list()) + super().__init__(*args, **kwargs) + self.masked_image_key = masked_image_key + assert self.masked_image_key in concat_keys + self.finetune_keys = finetune_keys + self.concat_keys = concat_keys + self.keep_dims = keep_finetune_dims + self.c_concat_log_start = c_concat_log_start + self.c_concat_log_end = c_concat_log_end + if exists(self.finetune_keys): + assert exists(ckpt_path), "can only finetune from a given checkpoint" + if exists(ckpt_path): + self.init_from_ckpt(ckpt_path, ignore_keys) + + def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + sd = torch.load(path, map_location="cpu") + if "state_dict" in list(sd.keys()): + sd = sd["state_dict"] + keys = list(sd.keys()) + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + print("Deleting key {} from state_dict.".format(k)) + del sd[k] + + # make it explicit, finetune by including extra input channels + if exists(self.finetune_keys) and k in self.finetune_keys: + new_entry = None + for name, param in self.named_parameters(): + if name in self.finetune_keys: + print( + f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only" + ) + new_entry = torch.zeros_like(param) # zero init + assert exists(new_entry), "did not find matching parameter to modify" + new_entry[:, : self.keep_dims, ...] = sd[k] + sd[k] = new_entry + + missing, unexpected = ( + self.load_state_dict(sd, strict=False) + if not only_model + else self.model.load_state_dict(sd, strict=False) + ) + print( + f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" + ) + if len(missing) > 0: + print(f"Missing Keys: {missing}") + if len(unexpected) > 0: + print(f"Unexpected Keys: {unexpected}") + + @torch.no_grad() + def get_input( + self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False + ): + # note: restricted to non-trainable encoders currently + assert ( + not self.cond_stage_trainable + ), "trainable cond stages not yet supported for inpainting" + z, c, x, xrec, xc = super().get_input( + batch, + self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=bs, + ) + + assert exists(self.concat_keys) + c_cat = list() + for ck in self.concat_keys: + cc = ( + rearrange(batch[ck], "b h w c -> b c h w") + .to(memory_format=torch.contiguous_format) + .float() + ) + if bs is not None: + cc = cc[:bs] + cc = cc.to(self.device) + bchw = z.shape + if ck != self.masked_image_key: + cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) + else: + cc = self.get_first_stage_encoding(self.encode_first_stage(cc)) + c_cat.append(cc) + c_cat = torch.cat(c_cat, dim=1) + all_conds = {"c_concat": [c_cat], "c_crossattn": [c]} + if return_first_stage_outputs: + return z, all_conds, x, xrec, xc + return z, all_conds + + @torch.no_grad() + def log_images( + self, + batch, + N=8, + n_row=4, + sample=True, + ddim_steps=200, + ddim_eta=1.0, + return_keys=None, + quantize_denoised=True, + inpaint=True, + plot_denoise_rows=False, + plot_progressive_rows=True, + plot_diffusion_rows=True, + unconditional_guidance_scale=1.0, + unconditional_guidance_label=None, + use_ema_scope=True, + **kwargs, + ): + ema_scope = self.ema_scope if use_ema_scope else nullcontext + use_ddim = ddim_steps is not None + + log = dict() + z, c, x, xrec, xc = self.get_input( + batch, self.first_stage_key, bs=N, return_first_stage_outputs=True + ) + c_cat, c = c["c_concat"][0], c["c_crossattn"][0] + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + log["inputs"] = x + log["reconstruction"] = xrec + if self.model.conditioning_key is not None: + if hasattr(self.cond_stage_model, "decode"): + xc = self.cond_stage_model.decode(c) + log["conditioning"] = xc + elif self.cond_stage_key in ["caption", "txt"]: + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch[self.cond_stage_key], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif self.cond_stage_key == "class_label": + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch["human_label"], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif isimage(xc): + log["conditioning"] = xc + if ismap(xc): + log["original_conditioning"] = self.to_rgb(xc) + + if not (self.c_concat_log_start is None and self.c_concat_log_end is None): + log["c_concat_decoded"] = self.decode_first_stage( + c_cat[:, self.c_concat_log_start : self.c_concat_log_end] + ) + + if plot_diffusion_rows: + # get diffusion row + diffusion_row = list() + z_start = z[:n_row] + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), "1 -> b", b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(z_start) + z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) + diffusion_row.append(self.decode_first_stage(z_noisy)) + + diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W + diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w") + diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w") + diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) + log["diffusion_row"] = diffusion_grid + + if sample: + # get denoise row + with ema_scope("Sampling"): + samples, z_denoise_row = self.sample_log( + cond={"c_concat": [c_cat], "c_crossattn": [c]}, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + ) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) + x_samples = self.decode_first_stage(samples) + log["samples"] = x_samples + if plot_denoise_rows: + denoise_grid = self._get_denoise_row_from_list(z_denoise_row) + log["denoise_row"] = denoise_grid + + if unconditional_guidance_scale > 1.0: + uc_cross = self.get_unconditional_conditioning( + N, unconditional_guidance_label + ) + uc_cat = c_cat + uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} + with ema_scope("Sampling with classifier-free guidance"): + samples_cfg, _ = self.sample_log( + cond={"c_concat": [c_cat], "c_crossattn": [c]}, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=uc_full, + ) + x_samples_cfg = self.decode_first_stage(samples_cfg) + log[ + f"samples_cfg_scale_{unconditional_guidance_scale:.2f}" + ] = x_samples_cfg + + log["masked_image"] = ( + rearrange(batch["masked_image"], "b h w c -> b c h w") + .to(memory_format=torch.contiguous_format) + .float() + ) + return log + + +class Layout2ImgDiffusion(LatentDiffusion): + # TODO: move all layout-specific hacks to this class + def __init__(self, cond_stage_key, *args, **kwargs): + assert ( + cond_stage_key == "coordinates_bbox" + ), 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' + super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) + + def log_images(self, batch, N=8, *args, **kwargs): + logs = super().log_images(batch=batch, N=N, *args, **kwargs) + + key = "train" if self.training else "validation" + dset = self.trainer.datamodule.datasets[key] + mapper = dset.conditional_builders[self.cond_stage_key] + + bbox_imgs = [] + map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) + for tknzd_bbox in batch[self.cond_stage_key][:N]: + bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) + bbox_imgs.append(bboximg) + + cond_img = torch.stack(bbox_imgs, dim=0) + logs["bbox_image"] = cond_img + return logs + + +class SimpleUpscaleDiffusion(LatentDiffusion): + def __init__(self, *args, low_scale_key="LR", **kwargs): + super().__init__(*args, **kwargs) + # assumes that neither the cond_stage nor the low_scale_model contain trainable params + assert not self.cond_stage_trainable + self.low_scale_key = low_scale_key + + @torch.no_grad() + def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False): + if not log_mode: + z, c = super().get_input(batch, k, force_c_encode=True, bs=bs) + else: + z, c, x, xrec, xc = super().get_input( + batch, + self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=bs, + ) + x_low = batch[self.low_scale_key][:bs] + x_low = rearrange(x_low, "b h w c -> b c h w") + x_low = x_low.to(memory_format=torch.contiguous_format).float() + + encoder_posterior = self.encode_first_stage(x_low) + zx = self.get_first_stage_encoding(encoder_posterior).detach() + all_conds = {"c_concat": [zx], "c_crossattn": [c]} + + if log_mode: + # TODO: maybe disable if too expensive + interpretability = False + if interpretability: + zx = zx[:, :, ::2, ::2] + return z, all_conds, x, xrec, xc, x_low + return z, all_conds + + @torch.no_grad() + def log_images( + self, + batch, + N=8, + n_row=4, + sample=True, + ddim_steps=200, + ddim_eta=1.0, + return_keys=None, + plot_denoise_rows=False, + plot_progressive_rows=True, + plot_diffusion_rows=True, + unconditional_guidance_scale=1.0, + unconditional_guidance_label=None, + use_ema_scope=True, + **kwargs, + ): + ema_scope = self.ema_scope if use_ema_scope else nullcontext + use_ddim = ddim_steps is not None + + log = dict() + z, c, x, xrec, xc, x_low = self.get_input( + batch, self.first_stage_key, bs=N, log_mode=True + ) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + log["inputs"] = x + log["reconstruction"] = xrec + log["x_lr"] = x_low + + if self.model.conditioning_key is not None: + if hasattr(self.cond_stage_model, "decode"): + xc = self.cond_stage_model.decode(c) + log["conditioning"] = xc + elif self.cond_stage_key in ["caption", "txt"]: + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch[self.cond_stage_key], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif self.cond_stage_key == "class_label": + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch["human_label"], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif isimage(xc): + log["conditioning"] = xc + if ismap(xc): + log["original_conditioning"] = self.to_rgb(xc) + + if sample: + # get denoise row + with ema_scope("Sampling"): + samples, z_denoise_row = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + ) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) + x_samples = self.decode_first_stage(samples) + log["samples"] = x_samples + + if unconditional_guidance_scale > 1.0: + uc_tmp = self.get_unconditional_conditioning( + N, unconditional_guidance_label + ) + uc = dict() + for k in c: + if k == "c_crossattn": + assert isinstance(c[k], list) and len(c[k]) == 1 + uc[k] = [uc_tmp] + elif isinstance(c[k], list): + uc[k] = [c[k][i] for i in range(len(c[k]))] + else: + uc[k] = c[k] + + with ema_scope("Sampling with classifier-free guidance"): + samples_cfg, _ = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=uc, + ) + x_samples_cfg = self.decode_first_stage(samples_cfg) + log[ + f"samples_cfg_scale_{unconditional_guidance_scale:.2f}" + ] = x_samples_cfg + return log + + +class MultiCatFrameDiffusion(LatentDiffusion): + def __init__(self, *args, low_scale_key="LR", **kwargs): + super().__init__(*args, **kwargs) + # assumes that neither the cond_stage nor the low_scale_model contain trainable params + assert not self.cond_stage_trainable + self.low_scale_key = low_scale_key + + @torch.no_grad() + def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False): + n = 2 + if not log_mode: + z, c = super().get_input(batch, k, force_c_encode=True, bs=bs) + else: + z, c, x, xrec, xc = super().get_input( + batch, + self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=bs, + ) + cat_conds = batch[self.low_scale_key][:bs] + cats = [] + for i in range(n): + x_low = cat_conds[:, :, :, 3 * i : 3 * (i + 1)] + x_low = rearrange(x_low, "b h w c -> b c h w") + x_low = x_low.to(memory_format=torch.contiguous_format).float() + encoder_posterior = self.encode_first_stage(x_low) + zx = self.get_first_stage_encoding(encoder_posterior).detach() + cats.append(zx) + + all_conds = {"c_concat": [torch.cat(cats, dim=1)], "c_crossattn": [c]} + + if log_mode: + # TODO: maybe disable if too expensive + interpretability = False + if interpretability: + zx = zx[:, :, ::2, ::2] + return z, all_conds, x, xrec, xc, x_low + return z, all_conds + + @torch.no_grad() + def log_images( + self, + batch, + N=8, + n_row=4, + sample=True, + ddim_steps=200, + ddim_eta=1.0, + return_keys=None, + plot_denoise_rows=False, + plot_progressive_rows=True, + plot_diffusion_rows=True, + unconditional_guidance_scale=1.0, + unconditional_guidance_label=None, + use_ema_scope=True, + **kwargs, + ): + ema_scope = self.ema_scope if use_ema_scope else nullcontext + use_ddim = ddim_steps is not None + + log = dict() + z, c, x, xrec, xc, x_low = self.get_input( + batch, self.first_stage_key, bs=N, log_mode=True + ) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + log["inputs"] = x + log["reconstruction"] = xrec + log["x_lr"] = x_low + + if self.model.conditioning_key is not None: + if hasattr(self.cond_stage_model, "decode"): + xc = self.cond_stage_model.decode(c) + log["conditioning"] = xc + elif self.cond_stage_key in ["caption", "txt"]: + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch[self.cond_stage_key], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif self.cond_stage_key == "class_label": + xc = log_txt_as_img( + (x.shape[2], x.shape[3]), + batch["human_label"], + size=x.shape[2] // 25, + ) + log["conditioning"] = xc + elif isimage(xc): + log["conditioning"] = xc + if ismap(xc): + log["original_conditioning"] = self.to_rgb(xc) + + if sample: + # get denoise row + with ema_scope("Sampling"): + samples, z_denoise_row = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + ) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) + x_samples = self.decode_first_stage(samples) + log["samples"] = x_samples + + if unconditional_guidance_scale > 1.0: + uc_tmp = self.get_unconditional_conditioning( + N, unconditional_guidance_label + ) + uc = dict() + for k in c: + if k == "c_crossattn": + assert isinstance(c[k], list) and len(c[k]) == 1 + uc[k] = [uc_tmp] + elif isinstance(c[k], list): + uc[k] = [c[k][i] for i in range(len(c[k]))] + else: + uc[k] = c[k] + + with ema_scope("Sampling with classifier-free guidance"): + samples_cfg, _ = self.sample_log( + cond=c, + batch_size=N, + ddim=use_ddim, + ddim_steps=ddim_steps, + eta=ddim_eta, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=uc, + ) + x_samples_cfg = self.decode_first_stage(samples_cfg) + log[ + f"samples_cfg_scale_{unconditional_guidance_scale:.2f}" + ] = x_samples_cfg + return log diff --git a/extern/ldm_zero123/models/diffusion/plms.py b/extern/ldm_zero123/models/diffusion/plms.py new file mode 100755 index 0000000..4e61886 --- /dev/null +++ b/extern/ldm_zero123/models/diffusion/plms.py @@ -0,0 +1,383 @@ +"""SAMPLING ONLY.""" + +from functools import partial + +import numpy as np +import torch +from tqdm import tqdm + +from extern.ldm_zero123.models.diffusion.sampling_util import norm_thresholding +from extern.ldm_zero123.modules.diffusionmodules.util import ( + make_ddim_sampling_parameters, + make_ddim_timesteps, + noise_like, +) + + +class PLMSSampler(object): + def __init__(self, model, schedule="linear", **kwargs): + super().__init__() + self.model = model + self.ddpm_num_timesteps = model.num_timesteps + self.schedule = schedule + + def register_buffer(self, name, attr): + if type(attr) == torch.Tensor: + if attr.device != torch.device("cuda"): + attr = attr.to(torch.device("cuda")) + setattr(self, name, attr) + + def make_schedule( + self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True + ): + if ddim_eta != 0: + raise ValueError("ddim_eta must be 0 for PLMS") + self.ddim_timesteps = make_ddim_timesteps( + ddim_discr_method=ddim_discretize, + num_ddim_timesteps=ddim_num_steps, + num_ddpm_timesteps=self.ddpm_num_timesteps, + verbose=verbose, + ) + alphas_cumprod = self.model.alphas_cumprod + assert ( + alphas_cumprod.shape[0] == self.ddpm_num_timesteps + ), "alphas have to be defined for each timestep" + to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) + + self.register_buffer("betas", to_torch(self.model.betas)) + self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) + self.register_buffer( + "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev) + ) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer( + "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_one_minus_alphas_cumprod", + to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())), + ) + self.register_buffer( + "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())) + ) + self.register_buffer( + "sqrt_recipm1_alphas_cumprod", + to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)), + ) + + # ddim sampling parameters + ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters( + alphacums=alphas_cumprod.cpu(), + ddim_timesteps=self.ddim_timesteps, + eta=ddim_eta, + verbose=verbose, + ) + self.register_buffer("ddim_sigmas", ddim_sigmas) + self.register_buffer("ddim_alphas", ddim_alphas) + self.register_buffer("ddim_alphas_prev", ddim_alphas_prev) + self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas)) + sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( + (1 - self.alphas_cumprod_prev) + / (1 - self.alphas_cumprod) + * (1 - self.alphas_cumprod / self.alphas_cumprod_prev) + ) + self.register_buffer( + "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps + ) + + @torch.no_grad() + def sample( + self, + S, + batch_size, + shape, + conditioning=None, + callback=None, + normals_sequence=None, + img_callback=None, + quantize_x0=False, + eta=0.0, + mask=None, + x0=None, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + verbose=True, + x_T=None, + log_every_t=100, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... + dynamic_threshold=None, + **kwargs, + ): + if conditioning is not None: + if isinstance(conditioning, dict): + ctmp = conditioning[list(conditioning.keys())[0]] + while isinstance(ctmp, list): + ctmp = ctmp[0] + cbs = ctmp.shape[0] + if cbs != batch_size: + print( + f"Warning: Got {cbs} conditionings but batch-size is {batch_size}" + ) + else: + if conditioning.shape[0] != batch_size: + print( + f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}" + ) + + self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) + # sampling + C, H, W = shape + size = (batch_size, C, H, W) + print(f"Data shape for PLMS sampling is {size}") + + samples, intermediates = self.plms_sampling( + conditioning, + size, + callback=callback, + img_callback=img_callback, + quantize_denoised=quantize_x0, + mask=mask, + x0=x0, + ddim_use_original_steps=False, + noise_dropout=noise_dropout, + temperature=temperature, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + x_T=x_T, + log_every_t=log_every_t, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + dynamic_threshold=dynamic_threshold, + ) + return samples, intermediates + + @torch.no_grad() + def plms_sampling( + self, + cond, + shape, + x_T=None, + ddim_use_original_steps=False, + callback=None, + timesteps=None, + quantize_denoised=False, + mask=None, + x0=None, + img_callback=None, + log_every_t=100, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + dynamic_threshold=None, + ): + device = self.model.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + if timesteps is None: + timesteps = ( + self.ddpm_num_timesteps + if ddim_use_original_steps + else self.ddim_timesteps + ) + elif timesteps is not None and not ddim_use_original_steps: + subset_end = ( + int( + min(timesteps / self.ddim_timesteps.shape[0], 1) + * self.ddim_timesteps.shape[0] + ) + - 1 + ) + timesteps = self.ddim_timesteps[:subset_end] + + intermediates = {"x_inter": [img], "pred_x0": [img]} + time_range = ( + list(reversed(range(0, timesteps))) + if ddim_use_original_steps + else np.flip(timesteps) + ) + total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] + print(f"Running PLMS Sampling with {total_steps} timesteps") + + iterator = tqdm(time_range, desc="PLMS Sampler", total=total_steps) + old_eps = [] + + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full((b,), step, device=device, dtype=torch.long) + ts_next = torch.full( + (b,), + time_range[min(i + 1, len(time_range) - 1)], + device=device, + dtype=torch.long, + ) + + if mask is not None: + assert x0 is not None + img_orig = self.model.q_sample( + x0, ts + ) # TODO: deterministic forward pass? + img = img_orig * mask + (1.0 - mask) * img + + outs = self.p_sample_plms( + img, + cond, + ts, + index=index, + use_original_steps=ddim_use_original_steps, + quantize_denoised=quantize_denoised, + temperature=temperature, + noise_dropout=noise_dropout, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + old_eps=old_eps, + t_next=ts_next, + dynamic_threshold=dynamic_threshold, + ) + img, pred_x0, e_t = outs + old_eps.append(e_t) + if len(old_eps) >= 4: + old_eps.pop(0) + if callback: + callback(i) + if img_callback: + img_callback(pred_x0, i) + + if index % log_every_t == 0 or index == total_steps - 1: + intermediates["x_inter"].append(img) + intermediates["pred_x0"].append(pred_x0) + + return img, intermediates + + @torch.no_grad() + def p_sample_plms( + self, + x, + c, + t, + index, + repeat_noise=False, + use_original_steps=False, + quantize_denoised=False, + temperature=1.0, + noise_dropout=0.0, + score_corrector=None, + corrector_kwargs=None, + unconditional_guidance_scale=1.0, + unconditional_conditioning=None, + old_eps=None, + t_next=None, + dynamic_threshold=None, + ): + b, *_, device = *x.shape, x.device + + def get_model_output(x, t): + if ( + unconditional_conditioning is None + or unconditional_guidance_scale == 1.0 + ): + e_t = self.model.apply_model(x, t, c) + else: + x_in = torch.cat([x] * 2) + t_in = torch.cat([t] * 2) + if isinstance(c, dict): + assert isinstance(unconditional_conditioning, dict) + c_in = dict() + for k in c: + if isinstance(c[k], list): + c_in[k] = [ + torch.cat([unconditional_conditioning[k][i], c[k][i]]) + for i in range(len(c[k])) + ] + else: + c_in[k] = torch.cat([unconditional_conditioning[k], c[k]]) + else: + c_in = torch.cat([unconditional_conditioning, c]) + e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) + e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) + + if score_corrector is not None: + assert self.model.parameterization == "eps" + e_t = score_corrector.modify_score( + self.model, e_t, x, t, c, **corrector_kwargs + ) + + return e_t + + alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas + alphas_prev = ( + self.model.alphas_cumprod_prev + if use_original_steps + else self.ddim_alphas_prev + ) + sqrt_one_minus_alphas = ( + self.model.sqrt_one_minus_alphas_cumprod + if use_original_steps + else self.ddim_sqrt_one_minus_alphas + ) + sigmas = ( + self.model.ddim_sigmas_for_original_num_steps + if use_original_steps + else self.ddim_sigmas + ) + + def get_x_prev_and_pred_x0(e_t, index): + # select parameters corresponding to the currently considered timestep + a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) + a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) + sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) + sqrt_one_minus_at = torch.full( + (b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device + ) + + # current prediction for x_0 + pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() + if quantize_denoised: + pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) + if dynamic_threshold is not None: + pred_x0 = norm_thresholding(pred_x0, dynamic_threshold) + # direction pointing to x_t + dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t + noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.0: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise + return x_prev, pred_x0 + + e_t = get_model_output(x, t) + if len(old_eps) == 0: + # Pseudo Improved Euler (2nd order) + x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) + e_t_next = get_model_output(x_prev, t_next) + e_t_prime = (e_t + e_t_next) / 2 + elif len(old_eps) == 1: + # 2nd order Pseudo Linear Multistep (Adams-Bashforth) + e_t_prime = (3 * e_t - old_eps[-1]) / 2 + elif len(old_eps) == 2: + # 3nd order Pseudo Linear Multistep (Adams-Bashforth) + e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 + elif len(old_eps) >= 3: + # 4nd order Pseudo Linear Multistep (Adams-Bashforth) + e_t_prime = ( + 55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3] + ) / 24 + + x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) + + return x_prev, pred_x0, e_t diff --git a/extern/ldm_zero123/models/diffusion/sampling_util.py b/extern/ldm_zero123/models/diffusion/sampling_util.py new file mode 100755 index 0000000..1d0df15 --- /dev/null +++ b/extern/ldm_zero123/models/diffusion/sampling_util.py @@ -0,0 +1,51 @@ +import numpy as np +import torch + + +def append_dims(x, target_dims): + """Appends dimensions to the end of a tensor until it has target_dims dimensions. + From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py""" + dims_to_append = target_dims - x.ndim + if dims_to_append < 0: + raise ValueError( + f"input has {x.ndim} dims but target_dims is {target_dims}, which is less" + ) + return x[(...,) + (None,) * dims_to_append] + + +def renorm_thresholding(x0, value): + # renorm + pred_max = x0.max() + pred_min = x0.min() + pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1 + pred_x0 = 2 * pred_x0 - 1.0 # -1 ... 1 + + s = torch.quantile(rearrange(pred_x0, "b ... -> b (...)").abs(), value, dim=-1) + s.clamp_(min=1.0) + s = s.view(-1, *((1,) * (pred_x0.ndim - 1))) + + # clip by threshold + # pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max + + # temporary hack: numpy on cpu + pred_x0 = ( + np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) + / s.cpu().numpy() + ) + pred_x0 = torch.tensor(pred_x0).to(self.model.device) + + # re.renorm + pred_x0 = (pred_x0 + 1.0) / 2.0 # 0 ... 1 + pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range + return pred_x0 + + +def norm_thresholding(x0, value): + s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim) + return x0 * (value / s) + + +def spatial_norm_thresholding(x0, value): + # b c h w + s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value) + return x0 * (value / s) diff --git a/extern/ldm_zero123/modules/attention.py b/extern/ldm_zero123/modules/attention.py new file mode 100755 index 0000000..e2a1c9e --- /dev/null +++ b/extern/ldm_zero123/modules/attention.py @@ -0,0 +1,301 @@ +import math +from inspect import isfunction + +import torch +import torch.nn.functional as F +from einops import rearrange, repeat +from torch import einsum, nn + +from extern.ldm_zero123.modules.diffusionmodules.util import checkpoint + + +def exists(val): + return val is not None + + +def uniq(arr): + return {el: True for el in arr}.keys() + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + + +def init_(tensor): + dim = tensor.shape[-1] + std = 1 / math.sqrt(dim) + tensor.uniform_(-std, std) + return tensor + + +# feedforward +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = ( + nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) + if not glu + else GEGLU(dim, inner_dim) + ) + + self.net = nn.Sequential( + project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def Normalize(in_channels): + return torch.nn.GroupNorm( + num_groups=32, num_channels=in_channels, eps=1e-6, affine=True + ) + + +class LinearAttention(nn.Module): + def __init__(self, dim, heads=4, dim_head=32): + super().__init__() + self.heads = heads + hidden_dim = dim_head * heads + self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) + self.to_out = nn.Conv2d(hidden_dim, dim, 1) + + def forward(self, x): + b, c, h, w = x.shape + qkv = self.to_qkv(x) + q, k, v = rearrange( + qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 + ) + k = k.softmax(dim=-1) + context = torch.einsum("bhdn,bhen->bhde", k, v) + out = torch.einsum("bhde,bhdn->bhen", context, q) + out = rearrange( + out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w + ) + return self.to_out(out) + + +class SpatialSelfAttention(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = rearrange(q, "b c h w -> b (h w) c") + k = rearrange(k, "b c h w -> b c (h w)") + w_ = torch.einsum("bij,bjk->bik", q, k) + + w_ = w_ * (int(c) ** (-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = rearrange(v, "b c h w -> b c (h w)") + w_ = rearrange(w_, "b i j -> b j i") + h_ = torch.einsum("bij,bjk->bik", v, w_) + h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) + h_ = self.proj_out(h_) + + return x + h_ + + +class CrossAttention(nn.Module): + def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): + super().__init__() + inner_dim = dim_head * heads + context_dim = default(context_dim, query_dim) + + self.scale = dim_head**-0.5 + self.heads = heads + + self.to_q = nn.Linear(query_dim, inner_dim, bias=False) + self.to_k = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + + self.to_out = nn.Sequential( + nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) + ) + + def forward(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + k = self.to_k(context) + v = self.to_v(context) + + q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) + + sim = einsum("b i d, b j d -> b i j", q, k) * self.scale + + if exists(mask): + mask = rearrange(mask, "b ... -> b (...)") + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, "b j -> (b h) () j", h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + attn = sim.softmax(dim=-1) + + out = einsum("b i j, b j d -> b i d", attn, v) + out = rearrange(out, "(b h) n d -> b n (h d)", h=h) + return self.to_out(out) + + +class BasicTransformerBlock(nn.Module): + def __init__( + self, + dim, + n_heads, + d_head, + dropout=0.0, + context_dim=None, + gated_ff=True, + checkpoint=True, + disable_self_attn=False, + ): + super().__init__() + self.disable_self_attn = disable_self_attn + self.attn1 = CrossAttention( + query_dim=dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + context_dim=context_dim if self.disable_self_attn else None, + ) # is a self-attention if not self.disable_self_attn + self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) + self.attn2 = CrossAttention( + query_dim=dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + ) # is self-attn if context is none + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + self.checkpoint = checkpoint + + def forward(self, x, context=None): + return checkpoint( + self._forward, (x, context), self.parameters(), self.checkpoint + ) + + def _forward(self, x, context=None): + x = ( + self.attn1( + self.norm1(x), context=context if self.disable_self_attn else None + ) + + x + ) + x = self.attn2(self.norm2(x), context=context) + x + x = self.ff(self.norm3(x)) + x + return x + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data. + First, project the input (aka embedding) + and reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + """ + + def __init__( + self, + in_channels, + n_heads, + d_head, + depth=1, + dropout=0.0, + context_dim=None, + disable_self_attn=False, + ): + super().__init__() + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = Normalize(in_channels) + + self.proj_in = nn.Conv2d( + in_channels, inner_dim, kernel_size=1, stride=1, padding=0 + ) + + self.transformer_blocks = nn.ModuleList( + [ + BasicTransformerBlock( + inner_dim, + n_heads, + d_head, + dropout=dropout, + context_dim=context_dim, + disable_self_attn=disable_self_attn, + ) + for d in range(depth) + ] + ) + + self.proj_out = zero_module( + nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) + ) + + def forward(self, x, context=None): + # note: if no context is given, cross-attention defaults to self-attention + b, c, h, w = x.shape + x_in = x + x = self.norm(x) + x = self.proj_in(x) + x = rearrange(x, "b c h w -> b (h w) c").contiguous() + for block in self.transformer_blocks: + x = block(x, context=context) + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() + x = self.proj_out(x) + return x + x_in diff --git a/extern/ldm_zero123/modules/diffusionmodules/__init__.py b/extern/ldm_zero123/modules/diffusionmodules/__init__.py new file mode 100755 index 0000000..e69de29 diff --git a/extern/ldm_zero123/modules/diffusionmodules/model.py b/extern/ldm_zero123/modules/diffusionmodules/model.py new file mode 100755 index 0000000..5aaefb4 --- /dev/null +++ b/extern/ldm_zero123/modules/diffusionmodules/model.py @@ -0,0 +1,1009 @@ +# pytorch_diffusion + derived encoder decoder +import math + +import numpy as np +import torch +import torch.nn as nn +from einops import rearrange + +from extern.ldm_zero123.modules.attention import LinearAttention +from extern.ldm_zero123.util import instantiate_from_config + + +def get_timestep_embedding(timesteps, embedding_dim): + """ + This matches the implementation in Denoising Diffusion Probabilistic Models: + From Fairseq. + Build sinusoidal embeddings. + This matches the implementation in tensor2tensor, but differs slightly + from the description in Section 3.5 of "Attention Is All You Need". + """ + assert len(timesteps.shape) == 1 + + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) + emb = emb.to(device=timesteps.device) + emb = timesteps.float()[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) + return emb + + +def nonlinearity(x): + # swish + return x * torch.sigmoid(x) + + +def Normalize(in_channels, num_groups=32): + return torch.nn.GroupNorm( + num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True + ) + + +class Upsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + if self.with_conv: + x = self.conv(x) + return x + + +class Downsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=2, padding=0 + ) + + def forward(self, x): + if self.with_conv: + pad = (0, 1, 0, 1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) + return x + + +class ResnetBlock(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout, + temb_channels=512, + ): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.norm1 = Normalize(in_channels) + self.conv1 = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if temb_channels > 0: + self.temb_proj = torch.nn.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d( + out_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + else: + self.nin_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = nonlinearity(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] + + h = self.norm2(h) + h = nonlinearity(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +class LinAttnBlock(LinearAttention): + """to match AttnBlock usage""" + + def __init__(self, in_channels): + super().__init__(dim=in_channels, heads=1, dim_head=in_channels) + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = q.reshape(b, c, h * w) + q = q.permute(0, 2, 1) # b,hw,c + k = k.reshape(b, c, h * w) # b,c,hw + w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] + w_ = w_ * (int(c) ** (-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = v.reshape(b, c, h * w) + w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) + h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] + h_ = h_.reshape(b, c, h, w) + + h_ = self.proj_out(h_) + + return x + h_ + + +def make_attn(in_channels, attn_type="vanilla"): + assert attn_type in ["vanilla", "linear", "none"], f"attn_type {attn_type} unknown" + print(f"making attention of type '{attn_type}' with {in_channels} in_channels") + if attn_type == "vanilla": + return AttnBlock(in_channels) + elif attn_type == "none": + return nn.Identity(in_channels) + else: + return LinAttnBlock(in_channels) + + +class Model(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + use_timestep=True, + use_linear_attn=False, + attn_type="vanilla", + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = self.ch * 4 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + self.use_timestep = use_timestep + if self.use_timestep: + # timestep embedding + self.temb = nn.Module() + self.temb.dense = nn.ModuleList( + [ + torch.nn.Linear(self.ch, self.temb_ch), + torch.nn.Linear(self.temb_ch, self.temb_ch), + ] + ) + + # downsampling + self.conv_in = torch.nn.Conv2d( + in_channels, self.ch, kernel_size=3, stride=1, padding=1 + ) + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + skip_in = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + if i_block == self.num_res_blocks: + skip_in = ch * in_ch_mult[i_level] + block.append( + ResnetBlock( + in_channels=block_in + skip_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_ch, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x, t=None, context=None): + # assert x.shape[2] == x.shape[3] == self.resolution + if context is not None: + # assume aligned context, cat along channel axis + x = torch.cat((x, context), dim=1) + if self.use_timestep: + # timestep embedding + assert t is not None + temb = get_timestep_embedding(t, self.ch) + temb = self.temb.dense[0](temb) + temb = nonlinearity(temb) + temb = self.temb.dense[1](temb) + else: + temb = None + + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions - 1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block]( + torch.cat([h, hs.pop()], dim=1), temb + ) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + def get_last_layer(self): + return self.conv_out.weight + + +class Encoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + double_z=True, + use_linear_attn=False, + attn_type="vanilla", + **ignore_kwargs, + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + # downsampling + self.conv_in = torch.nn.Conv2d( + in_channels, self.ch, kernel_size=3, stride=1, padding=1 + ) + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.in_ch_mult = in_ch_mult + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, + 2 * z_channels if double_z else z_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + def forward(self, x): + # timestep embedding + temb = None + + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions - 1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class Decoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + give_pre_end=False, + tanh_out=False, + use_linear_attn=False, + attn_type="vanilla", + **ignorekwargs, + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.give_pre_end = give_pre_end + self.tanh_out = tanh_out + + # compute in_ch_mult, block_in and curr_res at lowest res + in_ch_mult = (1,) + tuple(ch_mult) + block_in = ch * ch_mult[self.num_resolutions - 1] + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.z_shape = (1, z_channels, curr_res, curr_res) + print( + "Working with z of shape {} = {} dimensions.".format( + self.z_shape, np.prod(self.z_shape) + ) + ) + + # z to block_in + self.conv_in = torch.nn.Conv2d( + z_channels, block_in, kernel_size=3, stride=1, padding=1 + ) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_ch, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, z): + # assert z.shape[1:] == self.z_shape[1:] + self.last_z_shape = z.shape + + # timestep embedding + temb = None + + # z to block_in + h = self.conv_in(z) + + # middle + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block](h, temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + if self.give_pre_end: + return h + + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + if self.tanh_out: + h = torch.tanh(h) + return h + + +class SimpleDecoder(nn.Module): + def __init__(self, in_channels, out_channels, *args, **kwargs): + super().__init__() + self.model = nn.ModuleList( + [ + nn.Conv2d(in_channels, in_channels, 1), + ResnetBlock( + in_channels=in_channels, + out_channels=2 * in_channels, + temb_channels=0, + dropout=0.0, + ), + ResnetBlock( + in_channels=2 * in_channels, + out_channels=4 * in_channels, + temb_channels=0, + dropout=0.0, + ), + ResnetBlock( + in_channels=4 * in_channels, + out_channels=2 * in_channels, + temb_channels=0, + dropout=0.0, + ), + nn.Conv2d(2 * in_channels, in_channels, 1), + Upsample(in_channels, with_conv=True), + ] + ) + # end + self.norm_out = Normalize(in_channels) + self.conv_out = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + for i, layer in enumerate(self.model): + if i in [1, 2, 3]: + x = layer(x, None) + else: + x = layer(x) + + h = self.norm_out(x) + h = nonlinearity(h) + x = self.conv_out(h) + return x + + +class UpsampleDecoder(nn.Module): + def __init__( + self, + in_channels, + out_channels, + ch, + num_res_blocks, + resolution, + ch_mult=(2, 2), + dropout=0.0, + ): + super().__init__() + # upsampling + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + block_in = in_channels + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.res_blocks = nn.ModuleList() + self.upsample_blocks = nn.ModuleList() + for i_level in range(self.num_resolutions): + res_block = [] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + res_block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + self.res_blocks.append(nn.ModuleList(res_block)) + if i_level != self.num_resolutions - 1: + self.upsample_blocks.append(Upsample(block_in, True)) + curr_res = curr_res * 2 + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + # upsampling + h = x + for k, i_level in enumerate(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.res_blocks[i_level][i_block](h, None) + if i_level != self.num_resolutions - 1: + h = self.upsample_blocks[k](h) + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class LatentRescaler(nn.Module): + def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): + super().__init__() + # residual block, interpolate, residual block + self.factor = factor + self.conv_in = nn.Conv2d( + in_channels, mid_channels, kernel_size=3, stride=1, padding=1 + ) + self.res_block1 = nn.ModuleList( + [ + ResnetBlock( + in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0, + ) + for _ in range(depth) + ] + ) + self.attn = AttnBlock(mid_channels) + self.res_block2 = nn.ModuleList( + [ + ResnetBlock( + in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0, + ) + for _ in range(depth) + ] + ) + + self.conv_out = nn.Conv2d( + mid_channels, + out_channels, + kernel_size=1, + ) + + def forward(self, x): + x = self.conv_in(x) + for block in self.res_block1: + x = block(x, None) + x = torch.nn.functional.interpolate( + x, + size=( + int(round(x.shape[2] * self.factor)), + int(round(x.shape[3] * self.factor)), + ), + ) + x = self.attn(x) + for block in self.res_block2: + x = block(x, None) + x = self.conv_out(x) + return x + + +class MergedRescaleEncoder(nn.Module): + def __init__( + self, + in_channels, + ch, + resolution, + out_ch, + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + ch_mult=(1, 2, 4, 8), + rescale_factor=1.0, + rescale_module_depth=1, + ): + super().__init__() + intermediate_chn = ch * ch_mult[-1] + self.encoder = Encoder( + in_channels=in_channels, + num_res_blocks=num_res_blocks, + ch=ch, + ch_mult=ch_mult, + z_channels=intermediate_chn, + double_z=False, + resolution=resolution, + attn_resolutions=attn_resolutions, + dropout=dropout, + resamp_with_conv=resamp_with_conv, + out_ch=None, + ) + self.rescaler = LatentRescaler( + factor=rescale_factor, + in_channels=intermediate_chn, + mid_channels=intermediate_chn, + out_channels=out_ch, + depth=rescale_module_depth, + ) + + def forward(self, x): + x = self.encoder(x) + x = self.rescaler(x) + return x + + +class MergedRescaleDecoder(nn.Module): + def __init__( + self, + z_channels, + out_ch, + resolution, + num_res_blocks, + attn_resolutions, + ch, + ch_mult=(1, 2, 4, 8), + dropout=0.0, + resamp_with_conv=True, + rescale_factor=1.0, + rescale_module_depth=1, + ): + super().__init__() + tmp_chn = z_channels * ch_mult[-1] + self.decoder = Decoder( + out_ch=out_ch, + z_channels=tmp_chn, + attn_resolutions=attn_resolutions, + dropout=dropout, + resamp_with_conv=resamp_with_conv, + in_channels=None, + num_res_blocks=num_res_blocks, + ch_mult=ch_mult, + resolution=resolution, + ch=ch, + ) + self.rescaler = LatentRescaler( + factor=rescale_factor, + in_channels=z_channels, + mid_channels=tmp_chn, + out_channels=tmp_chn, + depth=rescale_module_depth, + ) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Upsampler(nn.Module): + def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): + super().__init__() + assert out_size >= in_size + num_blocks = int(np.log2(out_size // in_size)) + 1 + factor_up = 1.0 + (out_size % in_size) + print( + f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}" + ) + self.rescaler = LatentRescaler( + factor=factor_up, + in_channels=in_channels, + mid_channels=2 * in_channels, + out_channels=in_channels, + ) + self.decoder = Decoder( + out_ch=out_channels, + resolution=out_size, + z_channels=in_channels, + num_res_blocks=2, + attn_resolutions=[], + in_channels=None, + ch=in_channels, + ch_mult=[ch_mult for _ in range(num_blocks)], + ) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Resize(nn.Module): + def __init__(self, in_channels=None, learned=False, mode="bilinear"): + super().__init__() + self.with_conv = learned + self.mode = mode + if self.with_conv: + print( + f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode" + ) + raise NotImplementedError() + assert in_channels is not None + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=4, stride=2, padding=1 + ) + + def forward(self, x, scale_factor=1.0): + if scale_factor == 1.0: + return x + else: + x = torch.nn.functional.interpolate( + x, mode=self.mode, align_corners=False, scale_factor=scale_factor + ) + return x + + +class FirstStagePostProcessor(nn.Module): + def __init__( + self, + ch_mult: list, + in_channels, + pretrained_model: nn.Module = None, + reshape=False, + n_channels=None, + dropout=0.0, + pretrained_config=None, + ): + super().__init__() + if pretrained_config is None: + assert ( + pretrained_model is not None + ), 'Either "pretrained_model" or "pretrained_config" must not be None' + self.pretrained_model = pretrained_model + else: + assert ( + pretrained_config is not None + ), 'Either "pretrained_model" or "pretrained_config" must not be None' + self.instantiate_pretrained(pretrained_config) + + self.do_reshape = reshape + + if n_channels is None: + n_channels = self.pretrained_model.encoder.ch + + self.proj_norm = Normalize(in_channels, num_groups=in_channels // 2) + self.proj = nn.Conv2d( + in_channels, n_channels, kernel_size=3, stride=1, padding=1 + ) + + blocks = [] + downs = [] + ch_in = n_channels + for m in ch_mult: + blocks.append( + ResnetBlock( + in_channels=ch_in, out_channels=m * n_channels, dropout=dropout + ) + ) + ch_in = m * n_channels + downs.append(Downsample(ch_in, with_conv=False)) + + self.model = nn.ModuleList(blocks) + self.downsampler = nn.ModuleList(downs) + + def instantiate_pretrained(self, config): + model = instantiate_from_config(config) + self.pretrained_model = model.eval() + # self.pretrained_model.train = False + for param in self.pretrained_model.parameters(): + param.requires_grad = False + + @torch.no_grad() + def encode_with_pretrained(self, x): + c = self.pretrained_model.encode(x) + if isinstance(c, DiagonalGaussianDistribution): + c = c.mode() + return c + + def forward(self, x): + z_fs = self.encode_with_pretrained(x) + z = self.proj_norm(z_fs) + z = self.proj(z) + z = nonlinearity(z) + + for submodel, downmodel in zip(self.model, self.downsampler): + z = submodel(z, temb=None) + z = downmodel(z) + + if self.do_reshape: + z = rearrange(z, "b c h w -> b (h w) c") + return z diff --git a/extern/ldm_zero123/modules/diffusionmodules/openaimodel.py b/extern/ldm_zero123/modules/diffusionmodules/openaimodel.py new file mode 100755 index 0000000..ed9c1cd --- /dev/null +++ b/extern/ldm_zero123/modules/diffusionmodules/openaimodel.py @@ -0,0 +1,1060 @@ +import math +from abc import abstractmethod +from functools import partial +from typing import Iterable + +import numpy as np +import torch as th +import torch.nn as nn +import torch.nn.functional as F + +from extern.ldm_zero123.modules.attention import SpatialTransformer +from extern.ldm_zero123.modules.diffusionmodules.util import ( + avg_pool_nd, + checkpoint, + conv_nd, + linear, + normalization, + timestep_embedding, + zero_module, +) +from extern.ldm_zero123.util import exists + + +# dummy replace +def convert_module_to_f16(x): + pass + + +def convert_module_to_f32(x): + pass + + +## go +class AttentionPool2d(nn.Module): + """ + Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py + """ + + def __init__( + self, + spacial_dim: int, + embed_dim: int, + num_heads_channels: int, + output_dim: int = None, + ): + super().__init__() + self.positional_embedding = nn.Parameter( + th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5 + ) + self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) + self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) + self.num_heads = embed_dim // num_heads_channels + self.attention = QKVAttention(self.num_heads) + + def forward(self, x): + b, c, *_spatial = x.shape + x = x.reshape(b, c, -1) # NC(HW) + x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) + x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) + x = self.qkv_proj(x) + x = self.attention(x) + x = self.c_proj(x) + return x[:, :, 0] + + +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + + +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + """ + A sequential module that passes timestep embeddings to the children that + support it as an extra input. + """ + + def forward(self, x, emb, context=None): + for layer in self: + if isinstance(layer, TimestepBlock): + x = layer(x, emb) + elif isinstance(layer, SpatialTransformer): + x = layer(x, context) + else: + x = layer(x) + return x + + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + if use_conv: + self.conv = conv_nd( + dims, self.channels, self.out_channels, 3, padding=padding + ) + + def forward(self, x): + assert x.shape[1] == self.channels + if self.dims == 3: + x = F.interpolate( + x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" + ) + else: + x = F.interpolate(x, scale_factor=2, mode="nearest") + if self.use_conv: + x = self.conv(x) + return x + + +class TransposedUpsample(nn.Module): + "Learned 2x upsampling without padding" + + def __init__(self, channels, out_channels=None, ks=5): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + + self.up = nn.ConvTranspose2d( + self.channels, self.out_channels, kernel_size=ks, stride=2 + ) + + def forward(self, x): + return self.up(x) + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = conv_nd( + dims, + self.channels, + self.out_channels, + 3, + stride=stride, + padding=padding, + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + return self.op(x) + + +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + :param channels: the number of input channels. + :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. + :param out_channels: if specified, the number of out channels. + :param use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the + channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param use_checkpoint: if True, use gradient checkpointing on this module. + :param up: if True, use this block for upsampling. + :param down: if True, use this block for downsampling. + """ + + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + use_conv=False, + use_scale_shift_norm=False, + dims=2, + use_checkpoint=False, + up=False, + down=False, + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_scale_shift_norm = use_scale_shift_norm + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + conv_nd(dims, channels, self.out_channels, 3, padding=1), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims) + self.x_upd = Upsample(channels, False, dims) + elif down: + self.h_upd = Downsample(channels, False, dims) + self.x_upd = Downsample(channels, False, dims) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.emb_layers = nn.Sequential( + nn.SiLU(), + linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, + ), + ) + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module( + conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) + ), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = conv_nd( + dims, channels, self.out_channels, 3, padding=1 + ) + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) + + def forward(self, x, emb): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + :param x: an [N x C x ...] Tensor of features. + :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + return checkpoint( + self._forward, (x, emb), self.parameters(), self.use_checkpoint + ) + + def _forward(self, x, emb): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = th.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class AttentionBlock(nn.Module): + """ + An attention block that allows spatial positions to attend to each other. + Originally ported from here, but adapted to the N-d case. + https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. + """ + + def __init__( + self, + channels, + num_heads=1, + num_head_channels=-1, + use_checkpoint=False, + use_new_attention_order=False, + ): + super().__init__() + self.channels = channels + if num_head_channels == -1: + self.num_heads = num_heads + else: + assert ( + channels % num_head_channels == 0 + ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" + self.num_heads = channels // num_head_channels + self.use_checkpoint = use_checkpoint + self.norm = normalization(channels) + self.qkv = conv_nd(1, channels, channels * 3, 1) + if use_new_attention_order: + # split qkv before split heads + self.attention = QKVAttention(self.num_heads) + else: + # split heads before split qkv + self.attention = QKVAttentionLegacy(self.num_heads) + + self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) + + def forward(self, x): + return checkpoint( + self._forward, (x,), self.parameters(), True + ) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! + # return pt_checkpoint(self._forward, x) # pytorch + + def _forward(self, x): + b, c, *spatial = x.shape + x = x.reshape(b, c, -1) + qkv = self.qkv(self.norm(x)) + h = self.attention(qkv) + h = self.proj_out(h) + return (x + h).reshape(b, c, *spatial) + + +def count_flops_attn(model, _x, y): + """ + A counter for the `thop` package to count the operations in an + attention operation. + Meant to be used like: + macs, params = thop.profile( + model, + inputs=(inputs, timestamps), + custom_ops={QKVAttention: QKVAttention.count_flops}, + ) + """ + b, c, *spatial = y[0].shape + num_spatial = int(np.prod(spatial)) + # We perform two matmuls with the same number of ops. + # The first computes the weight matrix, the second computes + # the combination of the value vectors. + matmul_ops = 2 * b * (num_spatial**2) * c + model.total_ops += th.DoubleTensor([matmul_ops]) + + +class QKVAttentionLegacy(nn.Module): + """ + A module which performs QKV attention. Matches legacy QKVAttention + input/output heads shaping + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = th.einsum( + "bct,bcs->bts", q * scale, k * scale + ) # More stable with f16 than dividing afterwards + weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) + a = th.einsum("bts,bcs->bct", weight, v) + return a.reshape(bs, -1, length) + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +class QKVAttention(nn.Module): + """ + A module which performs QKV attention and splits in a different order. + """ + + def __init__(self, n_heads): + super().__init__() + self.n_heads = n_heads + + def forward(self, qkv): + """ + Apply QKV attention. + :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. + :return: an [N x (H * C) x T] tensor after attention. + """ + bs, width, length = qkv.shape + assert width % (3 * self.n_heads) == 0 + ch = width // (3 * self.n_heads) + q, k, v = qkv.chunk(3, dim=1) + scale = 1 / math.sqrt(math.sqrt(ch)) + weight = th.einsum( + "bct,bcs->bts", + (q * scale).view(bs * self.n_heads, ch, length), + (k * scale).view(bs * self.n_heads, ch, length), + ) # More stable with f16 than dividing afterwards + weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) + a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) + return a.reshape(bs, -1, length) + + @staticmethod + def count_flops(model, _x, y): + return count_flops_attn(model, _x, y) + + +class UNetModel(nn.Module): + """ + The full UNet model with attention and timestep embedding. + :param in_channels: channels in the input Tensor. + :param model_channels: base channel count for the model. + :param out_channels: channels in the output Tensor. + :param num_res_blocks: number of residual blocks per downsample. + :param attention_resolutions: a collection of downsample rates at which + attention will take place. May be a set, list, or tuple. + For example, if this contains 4, then at 4x downsampling, attention + will be used. + :param dropout: the dropout probability. + :param channel_mult: channel multiplier for each level of the UNet. + :param conv_resample: if True, use learned convolutions for upsampling and + downsampling. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param num_classes: if specified (as an int), then this model will be + class-conditional with `num_classes` classes. + :param use_checkpoint: use gradient checkpointing to reduce memory usage. + :param num_heads: the number of attention heads in each attention layer. + :param num_heads_channels: if specified, ignore num_heads and instead use + a fixed channel width per attention head. + :param num_heads_upsample: works with num_heads to set a different number + of heads for upsampling. Deprecated. + :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. + :param resblock_updown: use residual blocks for up/downsampling. + :param use_new_attention_order: use a different attention pattern for potentially + increased efficiency. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + num_classes=None, + use_checkpoint=False, + use_fp16=False, + num_heads=-1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + use_spatial_transformer=False, # custom transformer support + transformer_depth=1, # custom transformer support + context_dim=None, # custom transformer support + n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model + legacy=True, + disable_self_attentions=None, + num_attention_blocks=None, + ): + super().__init__() + if use_spatial_transformer: + assert ( + context_dim is not None + ), "Fool!! You forgot to include the dimension of your cross-attention conditioning..." + + if context_dim is not None: + assert ( + use_spatial_transformer + ), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..." + from omegaconf.listconfig import ListConfig + + if type(context_dim) == ListConfig: + context_dim = list(context_dim) + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + if num_heads == -1: + assert ( + num_head_channels != -1 + ), "Either num_heads or num_head_channels has to be set" + + if num_head_channels == -1: + assert ( + num_heads != -1 + ), "Either num_heads or num_head_channels has to be set" + + self.image_size = image_size + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + if isinstance(num_res_blocks, int): + self.num_res_blocks = len(channel_mult) * [num_res_blocks] + else: + if len(num_res_blocks) != len(channel_mult): + raise ValueError( + "provide num_res_blocks either as an int (globally constant) or " + "as a list/tuple (per-level) with the same length as channel_mult" + ) + self.num_res_blocks = num_res_blocks + # self.num_res_blocks = num_res_blocks + if disable_self_attentions is not None: + # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not + assert len(disable_self_attentions) == len(channel_mult) + if num_attention_blocks is not None: + assert len(num_attention_blocks) == len(self.num_res_blocks) + assert all( + map( + lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], + range(len(num_attention_blocks)), + ) + ) + print( + f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " + f"This option has LESS priority than attention_resolutions {attention_resolutions}, " + f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " + f"attention will still not be set." + ) # todo: convert to warning + + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.num_classes = num_classes + self.use_checkpoint = use_checkpoint + self.dtype = th.float16 if use_fp16 else th.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + self.predict_codebook_ids = n_embed is not None + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + if self.num_classes is not None: + self.label_emb = nn.Embedding(num_classes, time_embed_dim) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for nr in range(self.num_res_blocks[level]): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + # num_heads = 1 + dim_head = ( + ch // num_heads + if use_spatial_transformer + else num_head_channels + ) + if exists(disable_self_attentions): + disabled_sa = disable_self_attentions[level] + else: + disabled_sa = False + + if ( + not exists(num_attention_blocks) + or nr < num_attention_blocks[level] + ): + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) + if not use_spatial_transformer + else SpatialTransformer( + ch, + num_heads, + dim_head, + depth=transformer_depth, + context_dim=context_dim, + disable_self_attn=disabled_sa, + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + # num_heads = 1 + dim_head = ch // num_heads if use_spatial_transformer else num_head_channels + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) + if not use_spatial_transformer + else SpatialTransformer( # always uses a self-attn + ch, + num_heads, + dim_head, + depth=transformer_depth, + context_dim=context_dim, + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + + self.output_blocks = nn.ModuleList([]) + for level, mult in list(enumerate(channel_mult))[::-1]: + for i in range(self.num_res_blocks[level] + 1): + ich = input_block_chans.pop() + layers = [ + ResBlock( + ch + ich, + time_embed_dim, + dropout, + out_channels=model_channels * mult, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = model_channels * mult + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + if legacy: + # num_heads = 1 + dim_head = ( + ch // num_heads + if use_spatial_transformer + else num_head_channels + ) + if exists(disable_self_attentions): + disabled_sa = disable_self_attentions[level] + else: + disabled_sa = False + + if ( + not exists(num_attention_blocks) + or i < num_attention_blocks[level] + ): + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads_upsample, + num_head_channels=dim_head, + use_new_attention_order=use_new_attention_order, + ) + if not use_spatial_transformer + else SpatialTransformer( + ch, + num_heads, + dim_head, + depth=transformer_depth, + context_dim=context_dim, + disable_self_attn=disabled_sa, + ) + ) + if level and i == self.num_res_blocks[level]: + out_ch = ch + layers.append( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + up=True, + ) + if resblock_updown + else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ds //= 2 + self.output_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), + ) + if self.predict_codebook_ids: + self.id_predictor = nn.Sequential( + normalization(ch), + conv_nd(dims, model_channels, n_embed, 1), + # nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits + ) + + def convert_to_fp16(self): + """ + Convert the torso of the model to float16. + """ + self.input_blocks.apply(convert_module_to_f16) + self.middle_block.apply(convert_module_to_f16) + self.output_blocks.apply(convert_module_to_f16) + + def convert_to_fp32(self): + """ + Convert the torso of the model to float32. + """ + self.input_blocks.apply(convert_module_to_f32) + self.middle_block.apply(convert_module_to_f32) + self.output_blocks.apply(convert_module_to_f32) + + def forward(self, x, timesteps=None, context=None, y=None, **kwargs): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :param context: conditioning plugged in via crossattn + :param y: an [N] Tensor of labels, if class-conditional. + :return: an [N x C x ...] Tensor of outputs. + """ + assert (y is not None) == ( + self.num_classes is not None + ), "must specify y if and only if the model is class-conditional" + hs = [] + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype) + emb = self.time_embed(t_emb) + + if self.num_classes is not None: + assert y.shape == (x.shape[0],) + emb = emb + self.label_emb(y) + + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb, context) + hs.append(h) + h = self.middle_block(h, emb, context) + for module in self.output_blocks: + h = th.cat([h, hs.pop()], dim=1) + h = module(h, emb, context) + h = h.type(x.dtype) + if self.predict_codebook_ids: + return self.id_predictor(h) + else: + return self.out(h) + + +class EncoderUNetModel(nn.Module): + """ + The half UNet model with attention and timestep embedding. + For usage, see UNet. + """ + + def __init__( + self, + image_size, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + use_checkpoint=False, + use_fp16=False, + num_heads=1, + num_head_channels=-1, + num_heads_upsample=-1, + use_scale_shift_norm=False, + resblock_updown=False, + use_new_attention_order=False, + pool="adaptive", + *args, + **kwargs, + ): + super().__init__() + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.use_checkpoint = use_checkpoint + self.dtype = th.float16 if use_fp16 else th.float32 + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + + time_embed_dim = model_channels * 4 + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, 3, padding=1) + ) + ] + ) + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=mult * model_channels, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + layers.append( + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=out_ch, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True, + ) + if resblock_updown + else Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + AttentionBlock( + ch, + use_checkpoint=use_checkpoint, + num_heads=num_heads, + num_head_channels=num_head_channels, + use_new_attention_order=use_new_attention_order, + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + self.pool = pool + if pool == "adaptive": + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + nn.AdaptiveAvgPool2d((1, 1)), + zero_module(conv_nd(dims, ch, out_channels, 1)), + nn.Flatten(), + ) + elif pool == "attention": + assert num_head_channels != -1 + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + AttentionPool2d( + (image_size // ds), ch, num_head_channels, out_channels + ), + ) + elif pool == "spatial": + self.out = nn.Sequential( + nn.Linear(self._feature_size, 2048), + nn.ReLU(), + nn.Linear(2048, self.out_channels), + ) + elif pool == "spatial_v2": + self.out = nn.Sequential( + nn.Linear(self._feature_size, 2048), + normalization(2048), + nn.SiLU(), + nn.Linear(2048, self.out_channels), + ) + else: + raise NotImplementedError(f"Unexpected {pool} pooling") + + def convert_to_fp16(self): + """ + Convert the torso of the model to float16. + """ + self.input_blocks.apply(convert_module_to_f16) + self.middle_block.apply(convert_module_to_f16) + + def convert_to_fp32(self): + """ + Convert the torso of the model to float32. + """ + self.input_blocks.apply(convert_module_to_f32) + self.middle_block.apply(convert_module_to_f32) + + def forward(self, x, timesteps): + """ + Apply the model to an input batch. + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :return: an [N x K] Tensor of outputs. + """ + emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + + results = [] + h = x.type(self.dtype) + for module in self.input_blocks: + h = module(h, emb) + if self.pool.startswith("spatial"): + results.append(h.type(x.dtype).mean(dim=(2, 3))) + h = self.middle_block(h, emb) + if self.pool.startswith("spatial"): + results.append(h.type(x.dtype).mean(dim=(2, 3))) + h = th.cat(results, axis=-1) + return self.out(h) + else: + h = h.type(x.dtype) + return self.out(h) diff --git a/extern/ldm_zero123/modules/diffusionmodules/util.py b/extern/ldm_zero123/modules/diffusionmodules/util.py new file mode 100755 index 0000000..c707b65 --- /dev/null +++ b/extern/ldm_zero123/modules/diffusionmodules/util.py @@ -0,0 +1,297 @@ +# adopted from +# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py +# and +# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +# and +# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py +# +# thanks! + + +import math +import os + +import numpy as np +import torch +import torch.nn as nn +from einops import repeat + +from extern.ldm_zero123.util import instantiate_from_config + + +def make_beta_schedule( + schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3 +): + if schedule == "linear": + betas = ( + torch.linspace( + linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64 + ) + ** 2 + ) + + elif schedule == "cosine": + timesteps = ( + torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s + ) + alphas = timesteps / (1 + cosine_s) * np.pi / 2 + alphas = torch.cos(alphas).pow(2) + alphas = alphas / alphas[0] + betas = 1 - alphas[1:] / alphas[:-1] + betas = np.clip(betas, a_min=0, a_max=0.999) + + elif schedule == "sqrt_linear": + betas = torch.linspace( + linear_start, linear_end, n_timestep, dtype=torch.float64 + ) + elif schedule == "sqrt": + betas = ( + torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) + ** 0.5 + ) + else: + raise ValueError(f"schedule '{schedule}' unknown.") + return betas.numpy() + + +def make_ddim_timesteps( + ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True +): + if ddim_discr_method == "uniform": + c = num_ddpm_timesteps // num_ddim_timesteps + ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) + elif ddim_discr_method == "quad": + ddim_timesteps = ( + (np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2 + ).astype(int) + else: + raise NotImplementedError( + f'There is no ddim discretization method called "{ddim_discr_method}"' + ) + + # assert ddim_timesteps.shape[0] == num_ddim_timesteps + # add one to get the final alpha values right (the ones from first scale to data during sampling) + steps_out = ddim_timesteps + 1 + if verbose: + print(f"Selected timesteps for ddim sampler: {steps_out}") + return steps_out + + +def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): + # select alphas for computing the variance schedule + alphas = alphacums[ddim_timesteps] + alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) + + # according the the formula provided in https://arxiv.org/abs/2010.02502 + sigmas = eta * np.sqrt( + (1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev) + ) + if verbose: + print( + f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}" + ) + print( + f"For the chosen value of eta, which is {eta}, " + f"this results in the following sigma_t schedule for ddim sampler {sigmas}" + ) + return sigmas, alphas, alphas_prev + + +def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, + which defines the cumulative product of (1-beta) over time from t = [0,1]. + :param num_diffusion_timesteps: the number of betas to produce. + :param alpha_bar: a lambda that takes an argument t from 0 to 1 and + produces the cumulative product of (1-beta) up to that + part of the diffusion process. + :param max_beta: the maximum beta to use; use values lower than 1 to + prevent singularities. + """ + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return np.array(betas) + + +def extract_into_tensor(a, t, x_shape): + b, *_ = t.shape + out = a.gather(-1, t) + return out.reshape(b, *((1,) * (len(x_shape) - 1))) + + +def checkpoint(func, inputs, params, flag): + """ + Evaluate a function without caching intermediate activations, allowing for + reduced memory at the expense of extra compute in the backward pass. + :param func: the function to evaluate. + :param inputs: the argument sequence to pass to `func`. + :param params: a sequence of parameters `func` depends on but does not + explicitly take as arguments. + :param flag: if False, disable gradient checkpointing. + """ + if flag: + args = tuple(inputs) + tuple(params) + return CheckpointFunction.apply(func, len(inputs), *args) + else: + return func(*inputs) + + +class CheckpointFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, run_function, length, *args): + ctx.run_function = run_function + ctx.input_tensors = list(args[:length]) + ctx.input_params = list(args[length:]) + + with torch.no_grad(): + output_tensors = ctx.run_function(*ctx.input_tensors) + return output_tensors + + @staticmethod + def backward(ctx, *output_grads): + ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] + with torch.enable_grad(): + # Fixes a bug where the first op in run_function modifies the + # Tensor storage in place, which is not allowed for detach()'d + # Tensors. + shallow_copies = [x.view_as(x) for x in ctx.input_tensors] + output_tensors = ctx.run_function(*shallow_copies) + input_grads = torch.autograd.grad( + output_tensors, + ctx.input_tensors + ctx.input_params, + output_grads, + allow_unused=True, + ) + del ctx.input_tensors + del ctx.input_params + del output_tensors + return (None, None) + input_grads + + +def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): + """ + Create sinusoidal timestep embeddings. + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an [N x dim] Tensor of positional embeddings. + """ + if not repeat_only: + half = dim // 2 + freqs = torch.exp( + -math.log(max_period) + * torch.arange(start=0, end=half, dtype=torch.float32) + / half + ).to(device=timesteps.device) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat( + [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 + ) + else: + embedding = repeat(timesteps, "b -> b d", d=dim) + return embedding + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def scale_module(module, scale): + """ + Scale the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().mul_(scale) + return module + + +def mean_flat(tensor): + """ + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def normalization(channels): + """ + Make a standard normalization layer. + :param channels: number of input channels. + :return: an nn.Module for normalization. + """ + # return GroupNorm32(32, channels) + return nn.GroupNorm(32, channels) + + +# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. +class SiLU(nn.Module): + def forward(self, x): + return x * torch.sigmoid(x) + + +class GroupNorm32(nn.GroupNorm): + def forward(self, x): + return super().forward(x.float()).type(x.dtype) + + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def linear(*args, **kwargs): + """ + Create a linear module. + """ + return nn.Linear(*args, **kwargs) + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +class HybridConditioner(nn.Module): + def __init__(self, c_concat_config, c_crossattn_config): + super().__init__() + self.concat_conditioner = instantiate_from_config(c_concat_config) + self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) + + def forward(self, c_concat, c_crossattn): + c_concat = self.concat_conditioner(c_concat) + c_crossattn = self.crossattn_conditioner(c_crossattn) + return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]} + + +def noise_like(shape, device, repeat=False): + repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat( + shape[0], *((1,) * (len(shape) - 1)) + ) + noise = lambda: torch.randn(shape, device=device) + return repeat_noise() if repeat else noise() diff --git a/extern/ldm_zero123/modules/distributions/__init__.py b/extern/ldm_zero123/modules/distributions/__init__.py new file mode 100755 index 0000000..e69de29 diff --git a/extern/ldm_zero123/modules/distributions/distributions.py b/extern/ldm_zero123/modules/distributions/distributions.py new file mode 100755 index 0000000..016be35 --- /dev/null +++ b/extern/ldm_zero123/modules/distributions/distributions.py @@ -0,0 +1,102 @@ +import numpy as np +import torch + + +class AbstractDistribution: + def sample(self): + raise NotImplementedError() + + def mode(self): + raise NotImplementedError() + + +class DiracDistribution(AbstractDistribution): + def __init__(self, value): + self.value = value + + def sample(self): + return self.value + + def mode(self): + return self.value + + +class DiagonalGaussianDistribution(object): + def __init__(self, parameters, deterministic=False): + self.parameters = parameters + self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) + self.logvar = torch.clamp(self.logvar, -30.0, 20.0) + self.deterministic = deterministic + self.std = torch.exp(0.5 * self.logvar) + self.var = torch.exp(self.logvar) + if self.deterministic: + self.var = self.std = torch.zeros_like(self.mean).to( + device=self.parameters.device + ) + + def sample(self): + x = self.mean + self.std * torch.randn(self.mean.shape).to( + device=self.parameters.device + ) + return x + + def kl(self, other=None): + if self.deterministic: + return torch.Tensor([0.0]) + else: + if other is None: + return 0.5 * torch.sum( + torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, + dim=[1, 2, 3], + ) + else: + return 0.5 * torch.sum( + torch.pow(self.mean - other.mean, 2) / other.var + + self.var / other.var + - 1.0 + - self.logvar + + other.logvar, + dim=[1, 2, 3], + ) + + def nll(self, sample, dims=[1, 2, 3]): + if self.deterministic: + return torch.Tensor([0.0]) + logtwopi = np.log(2.0 * np.pi) + return 0.5 * torch.sum( + logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, + dim=dims, + ) + + def mode(self): + return self.mean + + +def normal_kl(mean1, logvar1, mean2, logvar2): + """ + source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 + Compute the KL divergence between two gaussians. + Shapes are automatically broadcasted, so batches can be compared to + scalars, among other use cases. + """ + tensor = None + for obj in (mean1, logvar1, mean2, logvar2): + if isinstance(obj, torch.Tensor): + tensor = obj + break + assert tensor is not None, "at least one argument must be a Tensor" + + # Force variances to be Tensors. Broadcasting helps convert scalars to + # Tensors, but it does not work for torch.exp(). + logvar1, logvar2 = [ + x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) + for x in (logvar1, logvar2) + ] + + return 0.5 * ( + -1.0 + + logvar2 + - logvar1 + + torch.exp(logvar1 - logvar2) + + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) + ) diff --git a/extern/ldm_zero123/modules/ema.py b/extern/ldm_zero123/modules/ema.py new file mode 100755 index 0000000..880ca3d --- /dev/null +++ b/extern/ldm_zero123/modules/ema.py @@ -0,0 +1,82 @@ +import torch +from torch import nn + + +class LitEma(nn.Module): + def __init__(self, model, decay=0.9999, use_num_upates=True): + super().__init__() + if decay < 0.0 or decay > 1.0: + raise ValueError("Decay must be between 0 and 1") + + self.m_name2s_name = {} + self.register_buffer("decay", torch.tensor(decay, dtype=torch.float32)) + self.register_buffer( + "num_updates", + torch.tensor(0, dtype=torch.int) + if use_num_upates + else torch.tensor(-1, dtype=torch.int), + ) + + for name, p in model.named_parameters(): + if p.requires_grad: + # remove as '.'-character is not allowed in buffers + s_name = name.replace(".", "") + self.m_name2s_name.update({name: s_name}) + self.register_buffer(s_name, p.clone().detach().data) + + self.collected_params = [] + + def forward(self, model): + decay = self.decay + + if self.num_updates >= 0: + self.num_updates += 1 + decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates)) + + one_minus_decay = 1.0 - decay + + with torch.no_grad(): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + + for key in m_param: + if m_param[key].requires_grad: + sname = self.m_name2s_name[key] + shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) + shadow_params[sname].sub_( + one_minus_decay * (shadow_params[sname] - m_param[key]) + ) + else: + assert not key in self.m_name2s_name + + def copy_to(self, model): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + for key in m_param: + if m_param[key].requires_grad: + m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) + else: + assert not key in self.m_name2s_name + + def store(self, parameters): + """ + Save the current parameters for restoring later. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + temporarily stored. + """ + self.collected_params = [param.clone() for param in parameters] + + def restore(self, parameters): + """ + Restore the parameters stored with the `store` method. + Useful to validate the model with EMA parameters without affecting the + original optimization process. Store the parameters before the + `copy_to` method. After validation (or model saving), use this to + restore the former parameters. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + updated with the stored parameters. + """ + for c_param, param in zip(self.collected_params, parameters): + param.data.copy_(c_param.data) diff --git a/extern/ldm_zero123/modules/encoders/__init__.py b/extern/ldm_zero123/modules/encoders/__init__.py new file mode 100755 index 0000000..e69de29 diff --git a/extern/ldm_zero123/modules/encoders/modules.py b/extern/ldm_zero123/modules/encoders/modules.py new file mode 100755 index 0000000..a88c36a --- /dev/null +++ b/extern/ldm_zero123/modules/encoders/modules.py @@ -0,0 +1,712 @@ +from functools import partial + +import clip +import kornia +import numpy as np +import torch +import torch.nn as nn + +from extern.ldm_zero123.modules.x_transformer import ( # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test + Encoder, + TransformerWrapper, +) +from extern.ldm_zero123.util import default + + +class AbstractEncoder(nn.Module): + def __init__(self): + super().__init__() + + def encode(self, *args, **kwargs): + raise NotImplementedError + + +class IdentityEncoder(AbstractEncoder): + def encode(self, x): + return x + + +class FaceClipEncoder(AbstractEncoder): + def __init__(self, augment=True, retreival_key=None): + super().__init__() + self.encoder = FrozenCLIPImageEmbedder() + self.augment = augment + self.retreival_key = retreival_key + + def forward(self, img): + encodings = [] + with torch.no_grad(): + x_offset = 125 + if self.retreival_key: + # Assumes retrieved image are packed into the second half of channels + face = img[:, 3:, 190:440, x_offset : (512 - x_offset)] + other = img[:, :3, ...].clone() + else: + face = img[:, :, 190:440, x_offset : (512 - x_offset)] + other = img.clone() + + if self.augment: + face = K.RandomHorizontalFlip()(face) + + other[:, :, 190:440, x_offset : (512 - x_offset)] *= 0 + encodings = [ + self.encoder.encode(face), + self.encoder.encode(other), + ] + + return torch.cat(encodings, dim=1) + + def encode(self, img): + if isinstance(img, list): + # Uncondition + return torch.zeros( + (1, 2, 768), device=self.encoder.model.visual.conv1.weight.device + ) + + return self(img) + + +class FaceIdClipEncoder(AbstractEncoder): + def __init__(self): + super().__init__() + self.encoder = FrozenCLIPImageEmbedder() + for p in self.encoder.parameters(): + p.requires_grad = False + self.id = FrozenFaceEncoder( + "/home/jpinkney/code/stable-diffusion/model_ir_se50.pth", augment=True + ) + + def forward(self, img): + encodings = [] + with torch.no_grad(): + face = kornia.geometry.resize( + img, (256, 256), interpolation="bilinear", align_corners=True + ) + + other = img.clone() + other[:, :, 184:452, 122:396] *= 0 + encodings = [ + self.id.encode(face), + self.encoder.encode(other), + ] + + return torch.cat(encodings, dim=1) + + def encode(self, img): + if isinstance(img, list): + # Uncondition + return torch.zeros( + (1, 2, 768), device=self.encoder.model.visual.conv1.weight.device + ) + + return self(img) + + +class ClassEmbedder(nn.Module): + def __init__(self, embed_dim, n_classes=1000, key="class"): + super().__init__() + self.key = key + self.embedding = nn.Embedding(n_classes, embed_dim) + + def forward(self, batch, key=None): + if key is None: + key = self.key + # this is for use in crossattn + c = batch[key][:, None] + c = self.embedding(c) + return c + + +class TransformerEmbedder(AbstractEncoder): + """Some transformer encoder layers""" + + def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): + super().__init__() + self.device = device + self.transformer = TransformerWrapper( + num_tokens=vocab_size, + max_seq_len=max_seq_len, + attn_layers=Encoder(dim=n_embed, depth=n_layer), + ) + + def forward(self, tokens): + tokens = tokens.to(self.device) # meh + z = self.transformer(tokens, return_embeddings=True) + return z + + def encode(self, x): + return self(x) + + +class BERTTokenizer(AbstractEncoder): + """Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" + + def __init__(self, device="cuda", vq_interface=True, max_length=77): + super().__init__() + from transformers import BertTokenizerFast # TODO: add to reuquirements + + self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") + self.device = device + self.vq_interface = vq_interface + self.max_length = max_length + + def forward(self, text): + batch_encoding = self.tokenizer( + text, + truncation=True, + max_length=self.max_length, + return_length=True, + return_overflowing_tokens=False, + padding="max_length", + return_tensors="pt", + ) + tokens = batch_encoding["input_ids"].to(self.device) + return tokens + + @torch.no_grad() + def encode(self, text): + tokens = self(text) + if not self.vq_interface: + return tokens + return None, None, [None, None, tokens] + + def decode(self, text): + return text + + +class BERTEmbedder(AbstractEncoder): + """Uses the BERT tokenizr model and add some transformer encoder layers""" + + def __init__( + self, + n_embed, + n_layer, + vocab_size=30522, + max_seq_len=77, + device="cuda", + use_tokenizer=True, + embedding_dropout=0.0, + ): + super().__init__() + self.use_tknz_fn = use_tokenizer + if self.use_tknz_fn: + self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) + self.device = device + self.transformer = TransformerWrapper( + num_tokens=vocab_size, + max_seq_len=max_seq_len, + attn_layers=Encoder(dim=n_embed, depth=n_layer), + emb_dropout=embedding_dropout, + ) + + def forward(self, text): + if self.use_tknz_fn: + tokens = self.tknz_fn(text) # .to(self.device) + else: + tokens = text + z = self.transformer(tokens, return_embeddings=True) + return z + + def encode(self, text): + # output of length 77 + return self(text) + + +from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +class FrozenT5Embedder(AbstractEncoder): + """Uses the T5 transformer encoder for text""" + + def __init__( + self, version="google/t5-v1_1-large", device="cuda", max_length=77 + ): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl + super().__init__() + self.tokenizer = T5Tokenizer.from_pretrained(version) + self.transformer = T5EncoderModel.from_pretrained(version) + self.device = device + self.max_length = max_length # TODO: typical value? + self.freeze() + + def freeze(self): + self.transformer = self.transformer.eval() + # self.train = disabled_train + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + batch_encoding = self.tokenizer( + text, + truncation=True, + max_length=self.max_length, + return_length=True, + return_overflowing_tokens=False, + padding="max_length", + return_tensors="pt", + ) + tokens = batch_encoding["input_ids"].to(self.device) + outputs = self.transformer(input_ids=tokens) + + z = outputs.last_hidden_state + return z + + def encode(self, text): + return self(text) + + +import kornia.augmentation as K + +from extern.ldm_zero123.thirdp.psp.id_loss import IDFeatures + + +class FrozenFaceEncoder(AbstractEncoder): + def __init__(self, model_path, augment=False): + super().__init__() + self.loss_fn = IDFeatures(model_path) + # face encoder is frozen + for p in self.loss_fn.parameters(): + p.requires_grad = False + # Mapper is trainable + self.mapper = torch.nn.Linear(512, 768) + p = 0.25 + if augment: + self.augment = K.AugmentationSequential( + K.RandomHorizontalFlip(p=0.5), + K.RandomEqualize(p=p), + # K.RandomPlanckianJitter(p=p), + # K.RandomPlasmaBrightness(p=p), + # K.RandomPlasmaContrast(p=p), + # K.ColorJiggle(0.02, 0.2, 0.2, p=p), + ) + else: + self.augment = False + + def forward(self, img): + if isinstance(img, list): + # Uncondition + return torch.zeros((1, 1, 768), device=self.mapper.weight.device) + + if self.augment is not None: + # Transforms require 0-1 + img = self.augment((img + 1) / 2) + img = 2 * img - 1 + + feat = self.loss_fn(img, crop=True) + feat = self.mapper(feat.unsqueeze(1)) + return feat + + def encode(self, img): + return self(img) + + +class FrozenCLIPEmbedder(AbstractEncoder): + """Uses the CLIP transformer encoder for text (from huggingface)""" + + def __init__( + self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77 + ): # clip-vit-base-patch32 + super().__init__() + self.tokenizer = CLIPTokenizer.from_pretrained(version) + self.transformer = CLIPTextModel.from_pretrained(version) + self.device = device + self.max_length = max_length # TODO: typical value? + self.freeze() + + def freeze(self): + self.transformer = self.transformer.eval() + # self.train = disabled_train + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + batch_encoding = self.tokenizer( + text, + truncation=True, + max_length=self.max_length, + return_length=True, + return_overflowing_tokens=False, + padding="max_length", + return_tensors="pt", + ) + tokens = batch_encoding["input_ids"].to(self.device) + outputs = self.transformer(input_ids=tokens) + + z = outputs.last_hidden_state + return z + + def encode(self, text): + return self(text) + + +import torch.nn.functional as F +from transformers import CLIPVisionModel + + +class ClipImageProjector(AbstractEncoder): + """ + Uses the CLIP image encoder. + """ + + def __init__( + self, version="openai/clip-vit-large-patch14", max_length=77 + ): # clip-vit-base-patch32 + super().__init__() + self.model = CLIPVisionModel.from_pretrained(version) + self.model.train() + self.max_length = max_length # TODO: typical value? + self.antialias = True + self.mapper = torch.nn.Linear(1024, 768) + self.register_buffer( + "mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False + ) + self.register_buffer( + "std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False + ) + null_cond = self.get_null_cond(version, max_length) + self.register_buffer("null_cond", null_cond) + + @torch.no_grad() + def get_null_cond(self, version, max_length): + device = self.mean.device + embedder = FrozenCLIPEmbedder( + version=version, device=device, max_length=max_length + ) + null_cond = embedder([""]) + return null_cond + + def preprocess(self, x): + # Expects inputs in the range -1, 1 + x = kornia.geometry.resize( + x, + (224, 224), + interpolation="bicubic", + align_corners=True, + antialias=self.antialias, + ) + x = (x + 1.0) / 2.0 + # renormalize according to clip + x = kornia.enhance.normalize(x, self.mean, self.std) + return x + + def forward(self, x): + if isinstance(x, list): + return self.null_cond + # x is assumed to be in range [-1,1] + x = self.preprocess(x) + outputs = self.model(pixel_values=x) + last_hidden_state = outputs.last_hidden_state + last_hidden_state = self.mapper(last_hidden_state) + return F.pad( + last_hidden_state, + [0, 0, 0, self.max_length - last_hidden_state.shape[1], 0, 0], + ) + + def encode(self, im): + return self(im) + + +class ProjectedFrozenCLIPEmbedder(AbstractEncoder): + def __init__( + self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77 + ): # clip-vit-base-patch32 + super().__init__() + self.embedder = FrozenCLIPEmbedder( + version=version, device=device, max_length=max_length + ) + self.projection = torch.nn.Linear(768, 768) + + def forward(self, text): + z = self.embedder(text) + return self.projection(z) + + def encode(self, text): + return self(text) + + +class FrozenCLIPImageEmbedder(AbstractEncoder): + """ + Uses the CLIP image encoder. + Not actually frozen... If you want that set cond_stage_trainable=False in cfg + """ + + def __init__( + self, + model="ViT-L/14", + jit=False, + device="cpu", + antialias=False, + ): + super().__init__() + self.model, _ = clip.load(name=model, device=device, jit=jit) + # We don't use the text part so delete it + del self.model.transformer + self.antialias = antialias + self.register_buffer( + "mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False + ) + self.register_buffer( + "std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False + ) + + def preprocess(self, x): + # Expects inputs in the range -1, 1 + x = kornia.geometry.resize( + x, + (224, 224), + interpolation="bicubic", + align_corners=True, + antialias=self.antialias, + ) + x = (x + 1.0) / 2.0 + # renormalize according to clip + x = kornia.enhance.normalize(x, self.mean, self.std) + return x + + def forward(self, x): + # x is assumed to be in range [-1,1] + if isinstance(x, list): + # [""] denotes condition dropout for ucg + device = self.model.visual.conv1.weight.device + return torch.zeros(1, 768, device=device) + return self.model.encode_image(self.preprocess(x)).float() + + def encode(self, im): + return self(im).unsqueeze(1) + + +import random + +from torchvision import transforms + + +class FrozenCLIPImageMutliEmbedder(AbstractEncoder): + """ + Uses the CLIP image encoder. + Not actually frozen... If you want that set cond_stage_trainable=False in cfg + """ + + def __init__( + self, + model="ViT-L/14", + jit=False, + device="cpu", + antialias=True, + max_crops=5, + ): + super().__init__() + self.model, _ = clip.load(name=model, device=device, jit=jit) + # We don't use the text part so delete it + del self.model.transformer + self.antialias = antialias + self.register_buffer( + "mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False + ) + self.register_buffer( + "std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False + ) + self.max_crops = max_crops + + def preprocess(self, x): + # Expects inputs in the range -1, 1 + randcrop = transforms.RandomResizedCrop(224, scale=(0.085, 1.0), ratio=(1, 1)) + max_crops = self.max_crops + patches = [] + crops = [randcrop(x) for _ in range(max_crops)] + patches.extend(crops) + x = torch.cat(patches, dim=0) + x = (x + 1.0) / 2.0 + # renormalize according to clip + x = kornia.enhance.normalize(x, self.mean, self.std) + return x + + def forward(self, x): + # x is assumed to be in range [-1,1] + if isinstance(x, list): + # [""] denotes condition dropout for ucg + device = self.model.visual.conv1.weight.device + return torch.zeros(1, self.max_crops, 768, device=device) + batch_tokens = [] + for im in x: + patches = self.preprocess(im.unsqueeze(0)) + tokens = self.model.encode_image(patches).float() + for t in tokens: + if random.random() < 0.1: + t *= 0 + batch_tokens.append(tokens.unsqueeze(0)) + + return torch.cat(batch_tokens, dim=0) + + def encode(self, im): + return self(im) + + +class SpatialRescaler(nn.Module): + def __init__( + self, + n_stages=1, + method="bilinear", + multiplier=0.5, + in_channels=3, + out_channels=None, + bias=False, + ): + super().__init__() + self.n_stages = n_stages + assert self.n_stages >= 0 + assert method in [ + "nearest", + "linear", + "bilinear", + "trilinear", + "bicubic", + "area", + ] + self.multiplier = multiplier + self.interpolator = partial(torch.nn.functional.interpolate, mode=method) + self.remap_output = out_channels is not None + if self.remap_output: + print( + f"Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing." + ) + self.channel_mapper = nn.Conv2d(in_channels, out_channels, 1, bias=bias) + + def forward(self, x): + for stage in range(self.n_stages): + x = self.interpolator(x, scale_factor=self.multiplier) + + if self.remap_output: + x = self.channel_mapper(x) + return x + + def encode(self, x): + return self(x) + + +from extern.ldm_zero123.modules.diffusionmodules.util import ( + extract_into_tensor, + make_beta_schedule, + noise_like, +) +from extern.ldm_zero123.util import instantiate_from_config + + +class LowScaleEncoder(nn.Module): + def __init__( + self, + model_config, + linear_start, + linear_end, + timesteps=1000, + max_noise_level=250, + output_size=64, + scale_factor=1.0, + ): + super().__init__() + self.max_noise_level = max_noise_level + self.model = instantiate_from_config(model_config) + self.augmentation_schedule = self.register_schedule( + timesteps=timesteps, linear_start=linear_start, linear_end=linear_end + ) + self.out_size = output_size + self.scale_factor = scale_factor + + def register_schedule( + self, + beta_schedule="linear", + timesteps=1000, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + ): + betas = make_beta_schedule( + beta_schedule, + timesteps, + linear_start=linear_start, + linear_end=linear_end, + cosine_s=cosine_s, + ) + alphas = 1.0 - betas + alphas_cumprod = np.cumprod(alphas, axis=0) + alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1]) + + (timesteps,) = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + assert ( + alphas_cumprod.shape[0] == self.num_timesteps + ), "alphas have to be defined for each timestep" + + to_torch = partial(torch.tensor, dtype=torch.float32) + + self.register_buffer("betas", to_torch(betas)) + self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) + self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod))) + self.register_buffer( + "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod)) + ) + self.register_buffer( + "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod)) + ) + self.register_buffer( + "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod)) + ) + self.register_buffer( + "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1)) + ) + + def q_sample(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + return ( + extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) + * noise + ) + + def forward(self, x): + z = self.model.encode(x).sample() + z = z * self.scale_factor + noise_level = torch.randint( + 0, self.max_noise_level, (x.shape[0],), device=x.device + ).long() + z = self.q_sample(z, noise_level) + if self.out_size is not None: + z = torch.nn.functional.interpolate( + z, size=self.out_size, mode="nearest" + ) # TODO: experiment with mode + # z = z.repeat_interleave(2, -2).repeat_interleave(2, -1) + return z, noise_level + + def decode(self, z): + z = z / self.scale_factor + return self.model.decode(z) + + +if __name__ == "__main__": + from extern.ldm_zero123.util import count_params + + sentences = [ + "a hedgehog drinking a whiskey", + "der mond ist aufgegangen", + "Ein Satz mit vielen Sonderzeichen: äöü ß ?! : 'xx-y/@s'", + ] + model = FrozenT5Embedder(version="google/t5-v1_1-xl").cuda() + count_params(model, True) + z = model(sentences) + print(z.shape) + + model = FrozenCLIPEmbedder().cuda() + count_params(model, True) + z = model(sentences) + print(z.shape) + + print("done.") diff --git a/extern/ldm_zero123/modules/evaluate/adm_evaluator.py b/extern/ldm_zero123/modules/evaluate/adm_evaluator.py new file mode 100755 index 0000000..6b70eda --- /dev/null +++ b/extern/ldm_zero123/modules/evaluate/adm_evaluator.py @@ -0,0 +1,703 @@ +import argparse +import io +import os +import random +import warnings +import zipfile +from abc import ABC, abstractmethod +from contextlib import contextmanager +from functools import partial +from multiprocessing import cpu_count +from multiprocessing.pool import ThreadPool +from typing import Iterable, Optional, Tuple + +import numpy as np +import requests +import tensorflow.compat.v1 as tf +import yaml +from scipy import linalg +from tqdm.auto import tqdm + +INCEPTION_V3_URL = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb" +INCEPTION_V3_PATH = "classify_image_graph_def.pb" + +FID_POOL_NAME = "pool_3:0" +FID_SPATIAL_NAME = "mixed_6/conv:0" + +REQUIREMENTS = ( + f"This script has the following requirements: \n" + "tensorflow-gpu>=2.0" + "\n" + "scipy" + "\n" + "requests" + "\n" + "tqdm" +) + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument("--ref_batch", help="path to reference batch npz file") + parser.add_argument("--sample_batch", help="path to sample batch npz file") + args = parser.parse_args() + + config = tf.ConfigProto( + allow_soft_placement=True # allows DecodeJpeg to run on CPU in Inception graph + ) + config.gpu_options.allow_growth = True + evaluator = Evaluator(tf.Session(config=config)) + + print("warming up TensorFlow...") + # This will cause TF to print a bunch of verbose stuff now rather + # than after the next print(), to help prevent confusion. + evaluator.warmup() + + print("computing reference batch activations...") + ref_acts = evaluator.read_activations(args.ref_batch) + print("computing/reading reference batch statistics...") + ref_stats, ref_stats_spatial = evaluator.read_statistics(args.ref_batch, ref_acts) + + print("computing sample batch activations...") + sample_acts = evaluator.read_activations(args.sample_batch) + print("computing/reading sample batch statistics...") + sample_stats, sample_stats_spatial = evaluator.read_statistics( + args.sample_batch, sample_acts + ) + + print("Computing evaluations...") + is_ = evaluator.compute_inception_score(sample_acts[0]) + print("Inception Score:", is_) + fid = sample_stats.frechet_distance(ref_stats) + print("FID:", fid) + sfid = sample_stats_spatial.frechet_distance(ref_stats_spatial) + print("sFID:", sfid) + prec, recall = evaluator.compute_prec_recall(ref_acts[0], sample_acts[0]) + print("Precision:", prec) + print("Recall:", recall) + + savepath = "/".join(args.sample_batch.split("/")[:-1]) + results_file = os.path.join(savepath, "evaluation_metrics.yaml") + print(f'Saving evaluation results to "{results_file}"') + + results = { + "IS": is_, + "FID": fid, + "sFID": sfid, + "Precision:": prec, + "Recall": recall, + } + + with open(results_file, "w") as f: + yaml.dump(results, f, default_flow_style=False) + + +class InvalidFIDException(Exception): + pass + + +class FIDStatistics: + def __init__(self, mu: np.ndarray, sigma: np.ndarray): + self.mu = mu + self.sigma = sigma + + def frechet_distance(self, other, eps=1e-6): + """ + Compute the Frechet distance between two sets of statistics. + """ + # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L132 + mu1, sigma1 = self.mu, self.sigma + mu2, sigma2 = other.mu, other.sigma + + mu1 = np.atleast_1d(mu1) + mu2 = np.atleast_1d(mu2) + + sigma1 = np.atleast_2d(sigma1) + sigma2 = np.atleast_2d(sigma2) + + assert ( + mu1.shape == mu2.shape + ), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}" + assert ( + sigma1.shape == sigma2.shape + ), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}" + + diff = mu1 - mu2 + + # product might be almost singular + covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) + if not np.isfinite(covmean).all(): + msg = ( + "fid calculation produces singular product; adding %s to diagonal of cov estimates" + % eps + ) + warnings.warn(msg) + offset = np.eye(sigma1.shape[0]) * eps + covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) + + # numerical error might give slight imaginary component + if np.iscomplexobj(covmean): + if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): + m = np.max(np.abs(covmean.imag)) + raise ValueError("Imaginary component {}".format(m)) + covmean = covmean.real + + tr_covmean = np.trace(covmean) + + return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean + + +class Evaluator: + def __init__( + self, + session, + batch_size=64, + softmax_batch_size=512, + ): + self.sess = session + self.batch_size = batch_size + self.softmax_batch_size = softmax_batch_size + self.manifold_estimator = ManifoldEstimator(session) + with self.sess.graph.as_default(): + self.image_input = tf.placeholder(tf.float32, shape=[None, None, None, 3]) + self.softmax_input = tf.placeholder(tf.float32, shape=[None, 2048]) + self.pool_features, self.spatial_features = _create_feature_graph( + self.image_input + ) + self.softmax = _create_softmax_graph(self.softmax_input) + + def warmup(self): + self.compute_activations(np.zeros([1, 8, 64, 64, 3])) + + def read_activations(self, npz_path: str) -> Tuple[np.ndarray, np.ndarray]: + with open_npz_array(npz_path, "arr_0") as reader: + return self.compute_activations(reader.read_batches(self.batch_size)) + + def compute_activations( + self, batches: Iterable[np.ndarray], silent=False + ) -> Tuple[np.ndarray, np.ndarray]: + """ + Compute image features for downstream evals. + + :param batches: a iterator over NHWC numpy arrays in [0, 255]. + :return: a tuple of numpy arrays of shape [N x X], where X is a feature + dimension. The tuple is (pool_3, spatial). + """ + preds = [] + spatial_preds = [] + it = batches if silent else tqdm(batches) + for batch in it: + batch = batch.astype(np.float32) + pred, spatial_pred = self.sess.run( + [self.pool_features, self.spatial_features], {self.image_input: batch} + ) + preds.append(pred.reshape([pred.shape[0], -1])) + spatial_preds.append(spatial_pred.reshape([spatial_pred.shape[0], -1])) + return ( + np.concatenate(preds, axis=0), + np.concatenate(spatial_preds, axis=0), + ) + + def read_statistics( + self, npz_path: str, activations: Tuple[np.ndarray, np.ndarray] + ) -> Tuple[FIDStatistics, FIDStatistics]: + obj = np.load(npz_path) + if "mu" in list(obj.keys()): + return FIDStatistics(obj["mu"], obj["sigma"]), FIDStatistics( + obj["mu_s"], obj["sigma_s"] + ) + return tuple(self.compute_statistics(x) for x in activations) + + def compute_statistics(self, activations: np.ndarray) -> FIDStatistics: + mu = np.mean(activations, axis=0) + sigma = np.cov(activations, rowvar=False) + return FIDStatistics(mu, sigma) + + def compute_inception_score( + self, activations: np.ndarray, split_size: int = 5000 + ) -> float: + softmax_out = [] + for i in range(0, len(activations), self.softmax_batch_size): + acts = activations[i : i + self.softmax_batch_size] + softmax_out.append( + self.sess.run(self.softmax, feed_dict={self.softmax_input: acts}) + ) + preds = np.concatenate(softmax_out, axis=0) + # https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46 + scores = [] + for i in range(0, len(preds), split_size): + part = preds[i : i + split_size] + kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) + kl = np.mean(np.sum(kl, 1)) + scores.append(np.exp(kl)) + return float(np.mean(scores)) + + def compute_prec_recall( + self, activations_ref: np.ndarray, activations_sample: np.ndarray + ) -> Tuple[float, float]: + radii_1 = self.manifold_estimator.manifold_radii(activations_ref) + radii_2 = self.manifold_estimator.manifold_radii(activations_sample) + pr = self.manifold_estimator.evaluate_pr( + activations_ref, radii_1, activations_sample, radii_2 + ) + return (float(pr[0][0]), float(pr[1][0])) + + +class ManifoldEstimator: + """ + A helper for comparing manifolds of feature vectors. + + Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L57 + """ + + def __init__( + self, + session, + row_batch_size=10000, + col_batch_size=10000, + nhood_sizes=(3,), + clamp_to_percentile=None, + eps=1e-5, + ): + """ + Estimate the manifold of given feature vectors. + + :param session: the TensorFlow session. + :param row_batch_size: row batch size to compute pairwise distances + (parameter to trade-off between memory usage and performance). + :param col_batch_size: column batch size to compute pairwise distances. + :param nhood_sizes: number of neighbors used to estimate the manifold. + :param clamp_to_percentile: prune hyperspheres that have radius larger than + the given percentile. + :param eps: small number for numerical stability. + """ + self.distance_block = DistanceBlock(session) + self.row_batch_size = row_batch_size + self.col_batch_size = col_batch_size + self.nhood_sizes = nhood_sizes + self.num_nhoods = len(nhood_sizes) + self.clamp_to_percentile = clamp_to_percentile + self.eps = eps + + def warmup(self): + feats, radii = ( + np.zeros([1, 2048], dtype=np.float32), + np.zeros([1, 1], dtype=np.float32), + ) + self.evaluate_pr(feats, radii, feats, radii) + + def manifold_radii(self, features: np.ndarray) -> np.ndarray: + num_images = len(features) + + # Estimate manifold of features by calculating distances to k-NN of each sample. + radii = np.zeros([num_images, self.num_nhoods], dtype=np.float32) + distance_batch = np.zeros([self.row_batch_size, num_images], dtype=np.float32) + seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32) + + for begin1 in range(0, num_images, self.row_batch_size): + end1 = min(begin1 + self.row_batch_size, num_images) + row_batch = features[begin1:end1] + + for begin2 in range(0, num_images, self.col_batch_size): + end2 = min(begin2 + self.col_batch_size, num_images) + col_batch = features[begin2:end2] + + # Compute distances between batches. + distance_batch[ + 0 : end1 - begin1, begin2:end2 + ] = self.distance_block.pairwise_distances(row_batch, col_batch) + + # Find the k-nearest neighbor from the current batch. + radii[begin1:end1, :] = np.concatenate( + [ + x[:, self.nhood_sizes] + for x in _numpy_partition( + distance_batch[0 : end1 - begin1, :], seq, axis=1 + ) + ], + axis=0, + ) + + if self.clamp_to_percentile is not None: + max_distances = np.percentile(radii, self.clamp_to_percentile, axis=0) + radii[radii > max_distances] = 0 + return radii + + def evaluate( + self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray + ): + """ + Evaluate if new feature vectors are at the manifold. + """ + num_eval_images = eval_features.shape[0] + num_ref_images = radii.shape[0] + distance_batch = np.zeros( + [self.row_batch_size, num_ref_images], dtype=np.float32 + ) + batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32) + max_realism_score = np.zeros([num_eval_images], dtype=np.float32) + nearest_indices = np.zeros([num_eval_images], dtype=np.int32) + + for begin1 in range(0, num_eval_images, self.row_batch_size): + end1 = min(begin1 + self.row_batch_size, num_eval_images) + feature_batch = eval_features[begin1:end1] + + for begin2 in range(0, num_ref_images, self.col_batch_size): + end2 = min(begin2 + self.col_batch_size, num_ref_images) + ref_batch = features[begin2:end2] + + distance_batch[ + 0 : end1 - begin1, begin2:end2 + ] = self.distance_block.pairwise_distances(feature_batch, ref_batch) + + # From the minibatch of new feature vectors, determine if they are in the estimated manifold. + # If a feature vector is inside a hypersphere of some reference sample, then + # the new sample lies at the estimated manifold. + # The radii of the hyperspheres are determined from distances of neighborhood size k. + samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii + batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype( + np.int32 + ) + + max_realism_score[begin1:end1] = np.max( + radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1 + ) + nearest_indices[begin1:end1] = np.argmin( + distance_batch[0 : end1 - begin1, :], axis=1 + ) + + return { + "fraction": float(np.mean(batch_predictions)), + "batch_predictions": batch_predictions, + "max_realisim_score": max_realism_score, + "nearest_indices": nearest_indices, + } + + def evaluate_pr( + self, + features_1: np.ndarray, + radii_1: np.ndarray, + features_2: np.ndarray, + radii_2: np.ndarray, + ) -> Tuple[np.ndarray, np.ndarray]: + """ + Evaluate precision and recall efficiently. + + :param features_1: [N1 x D] feature vectors for reference batch. + :param radii_1: [N1 x K1] radii for reference vectors. + :param features_2: [N2 x D] feature vectors for the other batch. + :param radii_2: [N x K2] radii for other vectors. + :return: a tuple of arrays for (precision, recall): + - precision: an np.ndarray of length K1 + - recall: an np.ndarray of length K2 + """ + features_1_status = np.zeros([len(features_1), radii_2.shape[1]], dtype=np.bool) + features_2_status = np.zeros([len(features_2), radii_1.shape[1]], dtype=np.bool) + for begin_1 in range(0, len(features_1), self.row_batch_size): + end_1 = begin_1 + self.row_batch_size + batch_1 = features_1[begin_1:end_1] + for begin_2 in range(0, len(features_2), self.col_batch_size): + end_2 = begin_2 + self.col_batch_size + batch_2 = features_2[begin_2:end_2] + batch_1_in, batch_2_in = self.distance_block.less_thans( + batch_1, radii_1[begin_1:end_1], batch_2, radii_2[begin_2:end_2] + ) + features_1_status[begin_1:end_1] |= batch_1_in + features_2_status[begin_2:end_2] |= batch_2_in + return ( + np.mean(features_2_status.astype(np.float64), axis=0), + np.mean(features_1_status.astype(np.float64), axis=0), + ) + + +class DistanceBlock: + """ + Calculate pairwise distances between vectors. + + Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L34 + """ + + def __init__(self, session): + self.session = session + + # Initialize TF graph to calculate pairwise distances. + with session.graph.as_default(): + self._features_batch1 = tf.placeholder(tf.float32, shape=[None, None]) + self._features_batch2 = tf.placeholder(tf.float32, shape=[None, None]) + distance_block_16 = _batch_pairwise_distances( + tf.cast(self._features_batch1, tf.float16), + tf.cast(self._features_batch2, tf.float16), + ) + self.distance_block = tf.cond( + tf.reduce_all(tf.math.is_finite(distance_block_16)), + lambda: tf.cast(distance_block_16, tf.float32), + lambda: _batch_pairwise_distances( + self._features_batch1, self._features_batch2 + ), + ) + + # Extra logic for less thans. + self._radii1 = tf.placeholder(tf.float32, shape=[None, None]) + self._radii2 = tf.placeholder(tf.float32, shape=[None, None]) + dist32 = tf.cast(self.distance_block, tf.float32)[..., None] + self._batch_1_in = tf.math.reduce_any(dist32 <= self._radii2, axis=1) + self._batch_2_in = tf.math.reduce_any( + dist32 <= self._radii1[:, None], axis=0 + ) + + def pairwise_distances(self, U, V): + """ + Evaluate pairwise distances between two batches of feature vectors. + """ + return self.session.run( + self.distance_block, + feed_dict={self._features_batch1: U, self._features_batch2: V}, + ) + + def less_thans(self, batch_1, radii_1, batch_2, radii_2): + return self.session.run( + [self._batch_1_in, self._batch_2_in], + feed_dict={ + self._features_batch1: batch_1, + self._features_batch2: batch_2, + self._radii1: radii_1, + self._radii2: radii_2, + }, + ) + + +def _batch_pairwise_distances(U, V): + """ + Compute pairwise distances between two batches of feature vectors. + """ + with tf.variable_scope("pairwise_dist_block"): + # Squared norms of each row in U and V. + norm_u = tf.reduce_sum(tf.square(U), 1) + norm_v = tf.reduce_sum(tf.square(V), 1) + + # norm_u as a column and norm_v as a row vectors. + norm_u = tf.reshape(norm_u, [-1, 1]) + norm_v = tf.reshape(norm_v, [1, -1]) + + # Pairwise squared Euclidean distances. + D = tf.maximum(norm_u - 2 * tf.matmul(U, V, False, True) + norm_v, 0.0) + + return D + + +class NpzArrayReader(ABC): + @abstractmethod + def read_batch(self, batch_size: int) -> Optional[np.ndarray]: + pass + + @abstractmethod + def remaining(self) -> int: + pass + + def read_batches(self, batch_size: int) -> Iterable[np.ndarray]: + def gen_fn(): + while True: + batch = self.read_batch(batch_size) + if batch is None: + break + yield batch + + rem = self.remaining() + num_batches = rem // batch_size + int(rem % batch_size != 0) + return BatchIterator(gen_fn, num_batches) + + +class BatchIterator: + def __init__(self, gen_fn, length): + self.gen_fn = gen_fn + self.length = length + + def __len__(self): + return self.length + + def __iter__(self): + return self.gen_fn() + + +class StreamingNpzArrayReader(NpzArrayReader): + def __init__(self, arr_f, shape, dtype): + self.arr_f = arr_f + self.shape = shape + self.dtype = dtype + self.idx = 0 + + def read_batch(self, batch_size: int) -> Optional[np.ndarray]: + if self.idx >= self.shape[0]: + return None + + bs = min(batch_size, self.shape[0] - self.idx) + self.idx += bs + + if self.dtype.itemsize == 0: + return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype) + + read_count = bs * np.prod(self.shape[1:]) + read_size = int(read_count * self.dtype.itemsize) + data = _read_bytes(self.arr_f, read_size, "array data") + return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]]) + + def remaining(self) -> int: + return max(0, self.shape[0] - self.idx) + + +class MemoryNpzArrayReader(NpzArrayReader): + def __init__(self, arr): + self.arr = arr + self.idx = 0 + + @classmethod + def load(cls, path: str, arr_name: str): + with open(path, "rb") as f: + arr = np.load(f)[arr_name] + return cls(arr) + + def read_batch(self, batch_size: int) -> Optional[np.ndarray]: + if self.idx >= self.arr.shape[0]: + return None + + res = self.arr[self.idx : self.idx + batch_size] + self.idx += batch_size + return res + + def remaining(self) -> int: + return max(0, self.arr.shape[0] - self.idx) + + +@contextmanager +def open_npz_array(path: str, arr_name: str) -> NpzArrayReader: + with _open_npy_file(path, arr_name) as arr_f: + version = np.lib.format.read_magic(arr_f) + if version == (1, 0): + header = np.lib.format.read_array_header_1_0(arr_f) + elif version == (2, 0): + header = np.lib.format.read_array_header_2_0(arr_f) + else: + yield MemoryNpzArrayReader.load(path, arr_name) + return + shape, fortran, dtype = header + if fortran or dtype.hasobject: + yield MemoryNpzArrayReader.load(path, arr_name) + else: + yield StreamingNpzArrayReader(arr_f, shape, dtype) + + +def _read_bytes(fp, size, error_template="ran out of data"): + """ + Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886 + + Read from file-like object until size bytes are read. + Raises ValueError if not EOF is encountered before size bytes are read. + Non-blocking objects only supported if they derive from io objects. + Required as e.g. ZipExtFile in python 2.6 can return less data than + requested. + """ + data = bytes() + while True: + # io files (default in python3) return None or raise on + # would-block, python2 file will truncate, probably nothing can be + # done about that. note that regular files can't be non-blocking + try: + r = fp.read(size - len(data)) + data += r + if len(r) == 0 or len(data) == size: + break + except io.BlockingIOError: + pass + if len(data) != size: + msg = "EOF: reading %s, expected %d bytes got %d" + raise ValueError(msg % (error_template, size, len(data))) + else: + return data + + +@contextmanager +def _open_npy_file(path: str, arr_name: str): + with open(path, "rb") as f: + with zipfile.ZipFile(f, "r") as zip_f: + if f"{arr_name}.npy" not in zip_f.namelist(): + raise ValueError(f"missing {arr_name} in npz file") + with zip_f.open(f"{arr_name}.npy", "r") as arr_f: + yield arr_f + + +def _download_inception_model(): + if os.path.exists(INCEPTION_V3_PATH): + return + print("downloading InceptionV3 model...") + with requests.get(INCEPTION_V3_URL, stream=True) as r: + r.raise_for_status() + tmp_path = INCEPTION_V3_PATH + ".tmp" + with open(tmp_path, "wb") as f: + for chunk in tqdm(r.iter_content(chunk_size=8192)): + f.write(chunk) + os.rename(tmp_path, INCEPTION_V3_PATH) + + +def _create_feature_graph(input_batch): + _download_inception_model() + prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}" + with open(INCEPTION_V3_PATH, "rb") as f: + graph_def = tf.GraphDef() + graph_def.ParseFromString(f.read()) + pool3, spatial = tf.import_graph_def( + graph_def, + input_map={f"ExpandDims:0": input_batch}, + return_elements=[FID_POOL_NAME, FID_SPATIAL_NAME], + name=prefix, + ) + _update_shapes(pool3) + spatial = spatial[..., :7] + return pool3, spatial + + +def _create_softmax_graph(input_batch): + _download_inception_model() + prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}" + with open(INCEPTION_V3_PATH, "rb") as f: + graph_def = tf.GraphDef() + graph_def.ParseFromString(f.read()) + (matmul,) = tf.import_graph_def( + graph_def, return_elements=[f"softmax/logits/MatMul"], name=prefix + ) + w = matmul.inputs[1] + logits = tf.matmul(input_batch, w) + return tf.nn.softmax(logits) + + +def _update_shapes(pool3): + # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L50-L63 + ops = pool3.graph.get_operations() + for op in ops: + for o in op.outputs: + shape = o.get_shape() + if shape._dims is not None: # pylint: disable=protected-access + # shape = [s.value for s in shape] TF 1.x + shape = [s for s in shape] # TF 2.x + new_shape = [] + for j, s in enumerate(shape): + if s == 1 and j == 0: + new_shape.append(None) + else: + new_shape.append(s) + o.__dict__["_shape_val"] = tf.TensorShape(new_shape) + return pool3 + + +def _numpy_partition(arr, kth, **kwargs): + num_workers = min(cpu_count(), len(arr)) + chunk_size = len(arr) // num_workers + extra = len(arr) % num_workers + + start_idx = 0 + batches = [] + for i in range(num_workers): + size = chunk_size + (1 if i < extra else 0) + batches.append(arr[start_idx : start_idx + size]) + start_idx += size + + with ThreadPool(num_workers) as pool: + return list(pool.map(partial(np.partition, kth=kth, **kwargs), batches)) + + +if __name__ == "__main__": + print(REQUIREMENTS) + main() diff --git a/extern/ldm_zero123/modules/evaluate/evaluate_perceptualsim.py b/extern/ldm_zero123/modules/evaluate/evaluate_perceptualsim.py new file mode 100755 index 0000000..023f8c3 --- /dev/null +++ b/extern/ldm_zero123/modules/evaluate/evaluate_perceptualsim.py @@ -0,0 +1,606 @@ +import argparse +import glob +import os +from collections import namedtuple + +import numpy as np +import torch +import torchvision.transforms as transforms +from PIL import Image +from torchvision import models +from tqdm import tqdm + +from extern.ldm_zero123.modules.evaluate.ssim import ssim + +transform = transforms.Compose([transforms.ToTensor()]) + + +def normalize_tensor(in_feat, eps=1e-10): + norm_factor = torch.sqrt(torch.sum(in_feat**2, dim=1)).view( + in_feat.size()[0], 1, in_feat.size()[2], in_feat.size()[3] + ) + return in_feat / (norm_factor.expand_as(in_feat) + eps) + + +def cos_sim(in0, in1): + in0_norm = normalize_tensor(in0) + in1_norm = normalize_tensor(in1) + N = in0.size()[0] + X = in0.size()[2] + Y = in0.size()[3] + + return torch.mean( + torch.mean(torch.sum(in0_norm * in1_norm, dim=1).view(N, 1, X, Y), dim=2).view( + N, 1, 1, Y + ), + dim=3, + ).view(N) + + +class squeezenet(torch.nn.Module): + def __init__(self, requires_grad=False, pretrained=True): + super(squeezenet, self).__init__() + pretrained_features = models.squeezenet1_1(pretrained=pretrained).features + self.slice1 = torch.nn.Sequential() + self.slice2 = torch.nn.Sequential() + self.slice3 = torch.nn.Sequential() + self.slice4 = torch.nn.Sequential() + self.slice5 = torch.nn.Sequential() + self.slice6 = torch.nn.Sequential() + self.slice7 = torch.nn.Sequential() + self.N_slices = 7 + for x in range(2): + self.slice1.add_module(str(x), pretrained_features[x]) + for x in range(2, 5): + self.slice2.add_module(str(x), pretrained_features[x]) + for x in range(5, 8): + self.slice3.add_module(str(x), pretrained_features[x]) + for x in range(8, 10): + self.slice4.add_module(str(x), pretrained_features[x]) + for x in range(10, 11): + self.slice5.add_module(str(x), pretrained_features[x]) + for x in range(11, 12): + self.slice6.add_module(str(x), pretrained_features[x]) + for x in range(12, 13): + self.slice7.add_module(str(x), pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h = self.slice1(X) + h_relu1 = h + h = self.slice2(h) + h_relu2 = h + h = self.slice3(h) + h_relu3 = h + h = self.slice4(h) + h_relu4 = h + h = self.slice5(h) + h_relu5 = h + h = self.slice6(h) + h_relu6 = h + h = self.slice7(h) + h_relu7 = h + vgg_outputs = namedtuple( + "SqueezeOutputs", + ["relu1", "relu2", "relu3", "relu4", "relu5", "relu6", "relu7"], + ) + out = vgg_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7) + + return out + + +class alexnet(torch.nn.Module): + def __init__(self, requires_grad=False, pretrained=True): + super(alexnet, self).__init__() + alexnet_pretrained_features = models.alexnet(pretrained=pretrained).features + self.slice1 = torch.nn.Sequential() + self.slice2 = torch.nn.Sequential() + self.slice3 = torch.nn.Sequential() + self.slice4 = torch.nn.Sequential() + self.slice5 = torch.nn.Sequential() + self.N_slices = 5 + for x in range(2): + self.slice1.add_module(str(x), alexnet_pretrained_features[x]) + for x in range(2, 5): + self.slice2.add_module(str(x), alexnet_pretrained_features[x]) + for x in range(5, 8): + self.slice3.add_module(str(x), alexnet_pretrained_features[x]) + for x in range(8, 10): + self.slice4.add_module(str(x), alexnet_pretrained_features[x]) + for x in range(10, 12): + self.slice5.add_module(str(x), alexnet_pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h = self.slice1(X) + h_relu1 = h + h = self.slice2(h) + h_relu2 = h + h = self.slice3(h) + h_relu3 = h + h = self.slice4(h) + h_relu4 = h + h = self.slice5(h) + h_relu5 = h + alexnet_outputs = namedtuple( + "AlexnetOutputs", ["relu1", "relu2", "relu3", "relu4", "relu5"] + ) + out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5) + + return out + + +class vgg16(torch.nn.Module): + def __init__(self, requires_grad=False, pretrained=True): + super(vgg16, self).__init__() + vgg_pretrained_features = models.vgg16(pretrained=pretrained).features + self.slice1 = torch.nn.Sequential() + self.slice2 = torch.nn.Sequential() + self.slice3 = torch.nn.Sequential() + self.slice4 = torch.nn.Sequential() + self.slice5 = torch.nn.Sequential() + self.N_slices = 5 + for x in range(4): + self.slice1.add_module(str(x), vgg_pretrained_features[x]) + for x in range(4, 9): + self.slice2.add_module(str(x), vgg_pretrained_features[x]) + for x in range(9, 16): + self.slice3.add_module(str(x), vgg_pretrained_features[x]) + for x in range(16, 23): + self.slice4.add_module(str(x), vgg_pretrained_features[x]) + for x in range(23, 30): + self.slice5.add_module(str(x), vgg_pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h = self.slice1(X) + h_relu1_2 = h + h = self.slice2(h) + h_relu2_2 = h + h = self.slice3(h) + h_relu3_3 = h + h = self.slice4(h) + h_relu4_3 = h + h = self.slice5(h) + h_relu5_3 = h + vgg_outputs = namedtuple( + "VggOutputs", + ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"], + ) + out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) + + return out + + +class resnet(torch.nn.Module): + def __init__(self, requires_grad=False, pretrained=True, num=18): + super(resnet, self).__init__() + if num == 18: + self.net = models.resnet18(pretrained=pretrained) + elif num == 34: + self.net = models.resnet34(pretrained=pretrained) + elif num == 50: + self.net = models.resnet50(pretrained=pretrained) + elif num == 101: + self.net = models.resnet101(pretrained=pretrained) + elif num == 152: + self.net = models.resnet152(pretrained=pretrained) + self.N_slices = 5 + + self.conv1 = self.net.conv1 + self.bn1 = self.net.bn1 + self.relu = self.net.relu + self.maxpool = self.net.maxpool + self.layer1 = self.net.layer1 + self.layer2 = self.net.layer2 + self.layer3 = self.net.layer3 + self.layer4 = self.net.layer4 + + def forward(self, X): + h = self.conv1(X) + h = self.bn1(h) + h = self.relu(h) + h_relu1 = h + h = self.maxpool(h) + h = self.layer1(h) + h_conv2 = h + h = self.layer2(h) + h_conv3 = h + h = self.layer3(h) + h_conv4 = h + h = self.layer4(h) + h_conv5 = h + + outputs = namedtuple("Outputs", ["relu1", "conv2", "conv3", "conv4", "conv5"]) + out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5) + + return out + + +# Off-the-shelf deep network +class PNet(torch.nn.Module): + """Pre-trained network with all channels equally weighted by default""" + + def __init__(self, pnet_type="vgg", pnet_rand=False, use_gpu=True): + super(PNet, self).__init__() + + self.use_gpu = use_gpu + + self.pnet_type = pnet_type + self.pnet_rand = pnet_rand + + self.shift = torch.Tensor([-0.030, -0.088, -0.188]).view(1, 3, 1, 1) + self.scale = torch.Tensor([0.458, 0.448, 0.450]).view(1, 3, 1, 1) + + if self.pnet_type in ["vgg", "vgg16"]: + self.net = vgg16(pretrained=not self.pnet_rand, requires_grad=False) + elif self.pnet_type == "alex": + self.net = alexnet(pretrained=not self.pnet_rand, requires_grad=False) + elif self.pnet_type[:-2] == "resnet": + self.net = resnet( + pretrained=not self.pnet_rand, + requires_grad=False, + num=int(self.pnet_type[-2:]), + ) + elif self.pnet_type == "squeeze": + self.net = squeezenet(pretrained=not self.pnet_rand, requires_grad=False) + + self.L = self.net.N_slices + + if use_gpu: + self.net.cuda() + self.shift = self.shift.cuda() + self.scale = self.scale.cuda() + + def forward(self, in0, in1, retPerLayer=False): + in0_sc = (in0 - self.shift.expand_as(in0)) / self.scale.expand_as(in0) + in1_sc = (in1 - self.shift.expand_as(in0)) / self.scale.expand_as(in0) + + outs0 = self.net.forward(in0_sc) + outs1 = self.net.forward(in1_sc) + + if retPerLayer: + all_scores = [] + for kk, out0 in enumerate(outs0): + cur_score = 1.0 - cos_sim(outs0[kk], outs1[kk]) + if kk == 0: + val = 1.0 * cur_score + else: + val = val + cur_score + if retPerLayer: + all_scores += [cur_score] + + if retPerLayer: + return (val, all_scores) + else: + return val + + +# The SSIM metric +def ssim_metric(img1, img2, mask=None): + return ssim(img1, img2, mask=mask, size_average=False) + + +# The PSNR metric +def psnr(img1, img2, mask=None, reshape=False): + b = img1.size(0) + if not (mask is None): + b = img1.size(0) + mse_err = (img1 - img2).pow(2) * mask + if reshape: + mse_err = mse_err.reshape(b, -1).sum(dim=1) / ( + 3 * mask.reshape(b, -1).sum(dim=1).clamp(min=1) + ) + else: + mse_err = mse_err.view(b, -1).sum(dim=1) / ( + 3 * mask.view(b, -1).sum(dim=1).clamp(min=1) + ) + else: + if reshape: + mse_err = (img1 - img2).pow(2).reshape(b, -1).mean(dim=1) + else: + mse_err = (img1 - img2).pow(2).view(b, -1).mean(dim=1) + + psnr = 10 * (1 / mse_err).log10() + return psnr + + +# The perceptual similarity metric +def perceptual_sim(img1, img2, vgg16): + # First extract features + dist = vgg16(img1 * 2 - 1, img2 * 2 - 1) + + return dist + + +def load_img(img_name, size=None): + try: + img = Image.open(img_name) + + if type(size) == int: + img = img.resize((size, size)) + elif size is not None: + img = img.resize((size[1], size[0])) + + img = transform(img).cuda() + img = img.unsqueeze(0) + except Exception as e: + print("Failed at loading %s " % img_name) + print(e) + img = torch.zeros(1, 3, 256, 256).cuda() + raise + return img + + +def compute_perceptual_similarity(folder, pred_img, tgt_img, take_every_other): + # Load VGG16 for feature similarity + vgg16 = PNet().to("cuda") + vgg16.eval() + vgg16.cuda() + + values_percsim = [] + values_ssim = [] + values_psnr = [] + folders = os.listdir(folder) + for i, f in tqdm(enumerate(sorted(folders))): + pred_imgs = glob.glob(folder + f + "/" + pred_img) + tgt_imgs = glob.glob(folder + f + "/" + tgt_img) + assert len(tgt_imgs) == 1 + + perc_sim = 10000 + ssim_sim = -10 + psnr_sim = -10 + for p_img in pred_imgs: + t_img = load_img(tgt_imgs[0]) + p_img = load_img(p_img, size=t_img.shape[2:]) + t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item() + perc_sim = min(perc_sim, t_perc_sim) + + ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item()) + psnr_sim = max(psnr_sim, psnr(p_img, t_img).item()) + + values_percsim += [perc_sim] + values_ssim += [ssim_sim] + values_psnr += [psnr_sim] + + if take_every_other: + n_valuespercsim = [] + n_valuesssim = [] + n_valuespsnr = [] + for i in range(0, len(values_percsim) // 2): + n_valuespercsim += [min(values_percsim[2 * i], values_percsim[2 * i + 1])] + n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])] + n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])] + + values_percsim = n_valuespercsim + values_ssim = n_valuesssim + values_psnr = n_valuespsnr + + avg_percsim = np.mean(np.array(values_percsim)) + std_percsim = np.std(np.array(values_percsim)) + + avg_psnr = np.mean(np.array(values_psnr)) + std_psnr = np.std(np.array(values_psnr)) + + avg_ssim = np.mean(np.array(values_ssim)) + std_ssim = np.std(np.array(values_ssim)) + + return { + "Perceptual similarity": (avg_percsim, std_percsim), + "PSNR": (avg_psnr, std_psnr), + "SSIM": (avg_ssim, std_ssim), + } + + +def compute_perceptual_similarity_from_list( + pred_imgs_list, tgt_imgs_list, take_every_other, simple_format=True +): + # Load VGG16 for feature similarity + vgg16 = PNet().to("cuda") + vgg16.eval() + vgg16.cuda() + + values_percsim = [] + values_ssim = [] + values_psnr = [] + equal_count = 0 + ambig_count = 0 + for i, tgt_img in enumerate(tqdm(tgt_imgs_list)): + pred_imgs = pred_imgs_list[i] + tgt_imgs = [tgt_img] + assert len(tgt_imgs) == 1 + + if type(pred_imgs) != list: + pred_imgs = [pred_imgs] + + perc_sim = 10000 + ssim_sim = -10 + psnr_sim = -10 + assert len(pred_imgs) > 0 + for p_img in pred_imgs: + t_img = load_img(tgt_imgs[0]) + p_img = load_img(p_img, size=t_img.shape[2:]) + t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item() + perc_sim = min(perc_sim, t_perc_sim) + + ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item()) + psnr_sim = max(psnr_sim, psnr(p_img, t_img).item()) + + values_percsim += [perc_sim] + values_ssim += [ssim_sim] + if psnr_sim != np.float("inf"): + values_psnr += [psnr_sim] + else: + if torch.allclose(p_img, t_img): + equal_count += 1 + print("{} equal src and wrp images.".format(equal_count)) + else: + ambig_count += 1 + print("{} ambiguous src and wrp images.".format(ambig_count)) + + if take_every_other: + n_valuespercsim = [] + n_valuesssim = [] + n_valuespsnr = [] + for i in range(0, len(values_percsim) // 2): + n_valuespercsim += [min(values_percsim[2 * i], values_percsim[2 * i + 1])] + n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])] + n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])] + + values_percsim = n_valuespercsim + values_ssim = n_valuesssim + values_psnr = n_valuespsnr + + avg_percsim = np.mean(np.array(values_percsim)) + std_percsim = np.std(np.array(values_percsim)) + + avg_psnr = np.mean(np.array(values_psnr)) + std_psnr = np.std(np.array(values_psnr)) + + avg_ssim = np.mean(np.array(values_ssim)) + std_ssim = np.std(np.array(values_ssim)) + + if simple_format: + # just to make yaml formatting readable + return { + "Perceptual similarity": [float(avg_percsim), float(std_percsim)], + "PSNR": [float(avg_psnr), float(std_psnr)], + "SSIM": [float(avg_ssim), float(std_ssim)], + } + else: + return { + "Perceptual similarity": (avg_percsim, std_percsim), + "PSNR": (avg_psnr, std_psnr), + "SSIM": (avg_ssim, std_ssim), + } + + +def compute_perceptual_similarity_from_list_topk( + pred_imgs_list, tgt_imgs_list, take_every_other, resize=False +): + # Load VGG16 for feature similarity + vgg16 = PNet().to("cuda") + vgg16.eval() + vgg16.cuda() + + values_percsim = [] + values_ssim = [] + values_psnr = [] + individual_percsim = [] + individual_ssim = [] + individual_psnr = [] + for i, tgt_img in enumerate(tqdm(tgt_imgs_list)): + pred_imgs = pred_imgs_list[i] + tgt_imgs = [tgt_img] + assert len(tgt_imgs) == 1 + + if type(pred_imgs) != list: + assert False + pred_imgs = [pred_imgs] + + perc_sim = 10000 + ssim_sim = -10 + psnr_sim = -10 + sample_percsim = list() + sample_ssim = list() + sample_psnr = list() + for p_img in pred_imgs: + if resize: + t_img = load_img(tgt_imgs[0], size=(256, 256)) + else: + t_img = load_img(tgt_imgs[0]) + p_img = load_img(p_img, size=t_img.shape[2:]) + + t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item() + sample_percsim.append(t_perc_sim) + perc_sim = min(perc_sim, t_perc_sim) + + t_ssim = ssim_metric(p_img, t_img).item() + sample_ssim.append(t_ssim) + ssim_sim = max(ssim_sim, t_ssim) + + t_psnr = psnr(p_img, t_img).item() + sample_psnr.append(t_psnr) + psnr_sim = max(psnr_sim, t_psnr) + + values_percsim += [perc_sim] + values_ssim += [ssim_sim] + values_psnr += [psnr_sim] + individual_percsim.append(sample_percsim) + individual_ssim.append(sample_ssim) + individual_psnr.append(sample_psnr) + + if take_every_other: + assert False, "Do this later, after specifying topk to get proper results" + n_valuespercsim = [] + n_valuesssim = [] + n_valuespsnr = [] + for i in range(0, len(values_percsim) // 2): + n_valuespercsim += [min(values_percsim[2 * i], values_percsim[2 * i + 1])] + n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])] + n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])] + + values_percsim = n_valuespercsim + values_ssim = n_valuesssim + values_psnr = n_valuespsnr + + avg_percsim = np.mean(np.array(values_percsim)) + std_percsim = np.std(np.array(values_percsim)) + + avg_psnr = np.mean(np.array(values_psnr)) + std_psnr = np.std(np.array(values_psnr)) + + avg_ssim = np.mean(np.array(values_ssim)) + std_ssim = np.std(np.array(values_ssim)) + + individual_percsim = np.array(individual_percsim) + individual_psnr = np.array(individual_psnr) + individual_ssim = np.array(individual_ssim) + + return { + "avg_of_best": { + "Perceptual similarity": [float(avg_percsim), float(std_percsim)], + "PSNR": [float(avg_psnr), float(std_psnr)], + "SSIM": [float(avg_ssim), float(std_ssim)], + }, + "individual": { + "PSIM": individual_percsim, + "PSNR": individual_psnr, + "SSIM": individual_ssim, + }, + } + + +if __name__ == "__main__": + args = argparse.ArgumentParser() + args.add_argument("--folder", type=str, default="") + args.add_argument("--pred_image", type=str, default="") + args.add_argument("--target_image", type=str, default="") + args.add_argument("--take_every_other", action="store_true", default=False) + args.add_argument("--output_file", type=str, default="") + + opts = args.parse_args() + + folder = opts.folder + pred_img = opts.pred_image + tgt_img = opts.target_image + + results = compute_perceptual_similarity( + folder, pred_img, tgt_img, opts.take_every_other + ) + + f = open(opts.output_file, "w") + for key in results: + print("%s for %s: \n" % (key, opts.folder)) + print("\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])) + + f.write("%s for %s: \n" % (key, opts.folder)) + f.write("\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])) + + f.close() diff --git a/extern/ldm_zero123/modules/evaluate/frechet_video_distance.py b/extern/ldm_zero123/modules/evaluate/frechet_video_distance.py new file mode 100755 index 0000000..61688d0 --- /dev/null +++ b/extern/ldm_zero123/modules/evaluate/frechet_video_distance.py @@ -0,0 +1,147 @@ +# coding=utf-8 +# Copyright 2022 The Google Research Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Lint as: python2, python3 +"""Minimal Reference implementation for the Frechet Video Distance (FVD). + +FVD is a metric for the quality of video generation models. It is inspired by +the FID (Frechet Inception Distance) used for images, but uses a different +embedding to be better suitable for videos. +""" + +from __future__ import absolute_import, division, print_function + +import six +import tensorflow.compat.v1 as tf +import tensorflow_gan as tfgan +import tensorflow_hub as hub + + +def preprocess(videos, target_resolution): + """Runs some preprocessing on the videos for I3D model. + + Args: + videos: [batch_size, num_frames, height, width, depth] The videos to be + preprocessed. We don't care about the specific dtype of the videos, it can + be anything that tf.image.resize_bilinear accepts. Values are expected to + be in the range 0-255. + target_resolution: (width, height): target video resolution + + Returns: + videos: [batch_size, num_frames, height, width, depth] + """ + videos_shape = list(videos.shape) + all_frames = tf.reshape(videos, [-1] + videos_shape[-3:]) + resized_videos = tf.image.resize_bilinear(all_frames, size=target_resolution) + target_shape = [videos_shape[0], -1] + list(target_resolution) + [3] + output_videos = tf.reshape(resized_videos, target_shape) + scaled_videos = 2.0 * tf.cast(output_videos, tf.float32) / 255.0 - 1 + return scaled_videos + + +def _is_in_graph(tensor_name): + """Checks whether a given tensor does exists in the graph.""" + try: + tf.get_default_graph().get_tensor_by_name(tensor_name) + except KeyError: + return False + return True + + +def create_id3_embedding(videos, warmup=False, batch_size=16): + """Embeds the given videos using the Inflated 3D Convolution ne twork. + + Downloads the graph of the I3D from tf.hub and adds it to the graph on the + first call. + + Args: + videos: [batch_size, num_frames, height=224, width=224, depth=3]. + Expected range is [-1, 1]. + + Returns: + embedding: [batch_size, embedding_size]. embedding_size depends + on the model used. + + Raises: + ValueError: when a provided embedding_layer is not supported. + """ + + # batch_size = 16 + module_spec = "https://tfhub.dev/deepmind/i3d-kinetics-400/1" + + # Making sure that we import the graph separately for + # each different input video tensor. + module_name = "fvd_kinetics-400_id3_module_" + six.ensure_str(videos.name).replace( + ":", "_" + ) + + assert_ops = [ + tf.Assert( + tf.reduce_max(videos) <= 1.001, ["max value in frame is > 1", videos] + ), + tf.Assert( + tf.reduce_min(videos) >= -1.001, ["min value in frame is < -1", videos] + ), + tf.assert_equal( + tf.shape(videos)[0], + batch_size, + ["invalid frame batch size: ", tf.shape(videos)], + summarize=6, + ), + ] + with tf.control_dependencies(assert_ops): + videos = tf.identity(videos) + + module_scope = "%s_apply_default/" % module_name + + # To check whether the module has already been loaded into the graph, we look + # for a given tensor name. If this tensor name exists, we assume the function + # has been called before and the graph was imported. Otherwise we import it. + # Note: in theory, the tensor could exist, but have wrong shapes. + # This will happen if create_id3_embedding is called with a frames_placehoder + # of wrong size/batch size, because even though that will throw a tf.Assert + # on graph-execution time, it will insert the tensor (with wrong shape) into + # the graph. This is why we need the following assert. + if warmup: + video_batch_size = int(videos.shape[0]) + assert video_batch_size in [ + batch_size, + -1, + None, + ], f"Invalid batch size {video_batch_size}" + tensor_name = module_scope + "RGB/inception_i3d/Mean:0" + if not _is_in_graph(tensor_name): + i3d_model = hub.Module(module_spec, name=module_name) + i3d_model(videos) + + # gets the kinetics-i3d-400-logits layer + tensor_name = module_scope + "RGB/inception_i3d/Mean:0" + tensor = tf.get_default_graph().get_tensor_by_name(tensor_name) + return tensor + + +def calculate_fvd(real_activations, generated_activations): + """Returns a list of ops that compute metrics as funcs of activations. + + Args: + real_activations: [num_samples, embedding_size] + generated_activations: [num_samples, embedding_size] + + Returns: + A scalar that contains the requested FVD. + """ + return tfgan.eval.frechet_classifier_distance_from_activations( + real_activations, generated_activations + ) diff --git a/extern/ldm_zero123/modules/evaluate/ssim.py b/extern/ldm_zero123/modules/evaluate/ssim.py new file mode 100755 index 0000000..b640df0 --- /dev/null +++ b/extern/ldm_zero123/modules/evaluate/ssim.py @@ -0,0 +1,118 @@ +# MIT Licence + +# Methods to predict the SSIM, taken from +# https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py + +from math import exp + +import torch +import torch.nn.functional as F +from torch.autograd import Variable + + +def gaussian(window_size, sigma): + gauss = torch.Tensor( + [ + exp(-((x - window_size // 2) ** 2) / float(2 * sigma**2)) + for x in range(window_size) + ] + ) + return gauss / gauss.sum() + + +def create_window(window_size, channel): + _1D_window = gaussian(window_size, 1.5).unsqueeze(1) + _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) + window = Variable( + _2D_window.expand(channel, 1, window_size, window_size).contiguous() + ) + return window + + +def _ssim(img1, img2, window, window_size, channel, mask=None, size_average=True): + mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) + mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) + + mu1_sq = mu1.pow(2) + mu2_sq = mu2.pow(2) + mu1_mu2 = mu1 * mu2 + + sigma1_sq = ( + F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq + ) + sigma2_sq = ( + F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq + ) + sigma12 = ( + F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) + - mu1_mu2 + ) + + C1 = (0.01) ** 2 + C2 = (0.03) ** 2 + + ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ( + (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2) + ) + + if not (mask is None): + b = mask.size(0) + ssim_map = ssim_map.mean(dim=1, keepdim=True) * mask + ssim_map = ssim_map.view(b, -1).sum(dim=1) / mask.view(b, -1).sum(dim=1).clamp( + min=1 + ) + return ssim_map + + import pdb + + pdb.set_trace + + if size_average: + return ssim_map.mean() + else: + return ssim_map.mean(1).mean(1).mean(1) + + +class SSIM(torch.nn.Module): + def __init__(self, window_size=11, size_average=True): + super(SSIM, self).__init__() + self.window_size = window_size + self.size_average = size_average + self.channel = 1 + self.window = create_window(window_size, self.channel) + + def forward(self, img1, img2, mask=None): + (_, channel, _, _) = img1.size() + + if channel == self.channel and self.window.data.type() == img1.data.type(): + window = self.window + else: + window = create_window(self.window_size, channel) + + if img1.is_cuda: + window = window.cuda(img1.get_device()) + window = window.type_as(img1) + + self.window = window + self.channel = channel + + return _ssim( + img1, + img2, + window, + self.window_size, + channel, + mask, + self.size_average, + ) + + +def ssim(img1, img2, window_size=11, mask=None, size_average=True): + (_, channel, _, _) = img1.size() + window = create_window(window_size, channel) + + if img1.is_cuda: + window = window.cuda(img1.get_device()) + window = window.type_as(img1) + + return _ssim(img1, img2, window, window_size, channel, mask, size_average) diff --git a/extern/ldm_zero123/modules/evaluate/torch_frechet_video_distance.py b/extern/ldm_zero123/modules/evaluate/torch_frechet_video_distance.py new file mode 100755 index 0000000..c4cd40f --- /dev/null +++ b/extern/ldm_zero123/modules/evaluate/torch_frechet_video_distance.py @@ -0,0 +1,331 @@ +# based on https://github.com/universome/fvd-comparison/blob/master/compare_models.py; huge thanks! +import glob +import hashlib +import html +import io +import multiprocessing as mp +import os +import re +import urllib +import urllib.request +from typing import Any, Callable, Dict, List, Tuple, Union + +import numpy as np +import requests +import scipy.linalg +import torch +from torchvision.io import read_video +from tqdm import tqdm + +torch.set_grad_enabled(False) +from einops import rearrange +from nitro.util import isvideo + + +def compute_frechet_distance(mu_sample, sigma_sample, mu_ref, sigma_ref) -> float: + print("Calculate frechet distance...") + m = np.square(mu_sample - mu_ref).sum() + s, _ = scipy.linalg.sqrtm( + np.dot(sigma_sample, sigma_ref), disp=False + ) # pylint: disable=no-member + fid = np.real(m + np.trace(sigma_sample + sigma_ref - s * 2)) + + return float(fid) + + +def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: + mu = feats.mean(axis=0) # [d] + sigma = np.cov(feats, rowvar=False) # [d, d] + + return mu, sigma + + +def open_url( + url: str, + num_attempts: int = 10, + verbose: bool = True, + return_filename: bool = False, +) -> Any: + """Download the given URL and return a binary-mode file object to access the data.""" + assert num_attempts >= 1 + + # Doesn't look like an URL scheme so interpret it as a local filename. + if not re.match("^[a-z]+://", url): + return url if return_filename else open(url, "rb") + + # Handle file URLs. This code handles unusual file:// patterns that + # arise on Windows: + # + # file:///c:/foo.txt + # + # which would translate to a local '/c:/foo.txt' filename that's + # invalid. Drop the forward slash for such pathnames. + # + # If you touch this code path, you should test it on both Linux and + # Windows. + # + # Some internet resources suggest using urllib.request.url2pathname() but + # but that converts forward slashes to backslashes and this causes + # its own set of problems. + if url.startswith("file://"): + filename = urllib.parse.urlparse(url).path + if re.match(r"^/[a-zA-Z]:", filename): + filename = filename[1:] + return filename if return_filename else open(filename, "rb") + + url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest() + + # Download. + url_name = None + url_data = None + with requests.Session() as session: + if verbose: + print("Downloading %s ..." % url, end="", flush=True) + for attempts_left in reversed(range(num_attempts)): + try: + with session.get(url) as res: + res.raise_for_status() + if len(res.content) == 0: + raise IOError("No data received") + + if len(res.content) < 8192: + content_str = res.content.decode("utf-8") + if "download_warning" in res.headers.get("Set-Cookie", ""): + links = [ + html.unescape(link) + for link in content_str.split('"') + if "export=download" in link + ] + if len(links) == 1: + url = requests.compat.urljoin(url, links[0]) + raise IOError("Google Drive virus checker nag") + if "Google Drive - Quota exceeded" in content_str: + raise IOError( + "Google Drive download quota exceeded -- please try again later" + ) + + match = re.search( + r'filename="([^"]*)"', + res.headers.get("Content-Disposition", ""), + ) + url_name = match[1] if match else url + url_data = res.content + if verbose: + print(" done") + break + except KeyboardInterrupt: + raise + except: + if not attempts_left: + if verbose: + print(" failed") + raise + if verbose: + print(".", end="", flush=True) + + # Return data as file object. + assert not return_filename + return io.BytesIO(url_data) + + +def load_video(ip): + vid, *_ = read_video(ip) + vid = rearrange(vid, "t h w c -> t c h w").to(torch.uint8) + return vid + + +def get_data_from_str(input_str, nprc=None): + assert os.path.isdir( + input_str + ), f'Specified input folder "{input_str}" is not a directory' + vid_filelist = glob.glob(os.path.join(input_str, "*.mp4")) + print(f"Found {len(vid_filelist)} videos in dir {input_str}") + + if nprc is None: + try: + nprc = mp.cpu_count() + except NotImplementedError: + print( + "WARNING: cpu_count() not avlailable, using only 1 cpu for video loading" + ) + nprc = 1 + + pool = mp.Pool(processes=nprc) + + vids = [] + for v in tqdm( + pool.imap_unordered(load_video, vid_filelist), + total=len(vid_filelist), + desc="Loading videos...", + ): + vids.append(v) + + vids = torch.stack(vids, dim=0).float() + + return vids + + +def get_stats(stats): + assert os.path.isfile(stats) and stats.endswith( + ".npz" + ), f"no stats found under {stats}" + + print(f"Using precomputed statistics under {stats}") + stats = np.load(stats) + stats = {key: stats[key] for key in stats.files} + + return stats + + +@torch.no_grad() +def compute_fvd( + ref_input, sample_input, bs=32, ref_stats=None, sample_stats=None, nprc_load=None +): + calc_stats = ref_stats is None or sample_stats is None + + if calc_stats: + only_ref = sample_stats is not None + only_sample = ref_stats is not None + + if isinstance(ref_input, str) and not only_sample: + ref_input = get_data_from_str(ref_input, nprc_load) + + if isinstance(sample_input, str) and not only_ref: + sample_input = get_data_from_str(sample_input, nprc_load) + + stats = compute_statistics( + sample_input, + ref_input, + device="cuda" if torch.cuda.is_available() else "cpu", + bs=bs, + only_ref=only_ref, + only_sample=only_sample, + ) + + if only_ref: + stats.update(get_stats(sample_stats)) + elif only_sample: + stats.update(get_stats(ref_stats)) + + else: + stats = get_stats(sample_stats) + stats.update(get_stats(ref_stats)) + + fvd = compute_frechet_distance(**stats) + + return { + "FVD": fvd, + } + + +@torch.no_grad() +def compute_statistics( + videos_fake, + videos_real, + device: str = "cuda", + bs=32, + only_ref=False, + only_sample=False, +) -> Dict: + detector_url = "https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1" + detector_kwargs = dict( + rescale=True, resize=True, return_features=True + ) # Return raw features before the softmax layer. + + with open_url(detector_url, verbose=False) as f: + detector = torch.jit.load(f).eval().to(device) + + assert not ( + only_sample and only_ref + ), "only_ref and only_sample arguments are mutually exclusive" + + ref_embed, sample_embed = [], [] + + info = f"Computing I3D activations for FVD score with batch size {bs}" + + if only_ref: + if not isvideo(videos_real): + # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255] + videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float() + print(videos_real.shape) + + if videos_real.shape[0] % bs == 0: + n_secs = videos_real.shape[0] // bs + else: + n_secs = videos_real.shape[0] // bs + 1 + + videos_real = torch.tensor_split(videos_real, n_secs, dim=0) + + for ref_v in tqdm(videos_real, total=len(videos_real), desc=info): + feats_ref = ( + detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy() + ) + ref_embed.append(feats_ref) + + elif only_sample: + if not isvideo(videos_fake): + # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255] + videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float() + print(videos_fake.shape) + + if videos_fake.shape[0] % bs == 0: + n_secs = videos_fake.shape[0] // bs + else: + n_secs = videos_fake.shape[0] // bs + 1 + + videos_real = torch.tensor_split(videos_real, n_secs, dim=0) + + for sample_v in tqdm(videos_fake, total=len(videos_real), desc=info): + feats_sample = ( + detector(sample_v.to(device).contiguous(), **detector_kwargs) + .cpu() + .numpy() + ) + sample_embed.append(feats_sample) + + else: + if not isvideo(videos_real): + # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255] + videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float() + + if not isvideo(videos_fake): + videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float() + + if videos_fake.shape[0] % bs == 0: + n_secs = videos_fake.shape[0] // bs + else: + n_secs = videos_fake.shape[0] // bs + 1 + + videos_real = torch.tensor_split(videos_real, n_secs, dim=0) + videos_fake = torch.tensor_split(videos_fake, n_secs, dim=0) + + for ref_v, sample_v in tqdm( + zip(videos_real, videos_fake), total=len(videos_fake), desc=info + ): + # print(ref_v.shape) + # ref_v = torch.nn.functional.interpolate(ref_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False) + # sample_v = torch.nn.functional.interpolate(sample_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False) + + feats_sample = ( + detector(sample_v.to(device).contiguous(), **detector_kwargs) + .cpu() + .numpy() + ) + feats_ref = ( + detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy() + ) + sample_embed.append(feats_sample) + ref_embed.append(feats_ref) + + out = dict() + if len(sample_embed) > 0: + sample_embed = np.concatenate(sample_embed, axis=0) + mu_sample, sigma_sample = compute_stats(sample_embed) + out.update({"mu_sample": mu_sample, "sigma_sample": sigma_sample}) + + if len(ref_embed) > 0: + ref_embed = np.concatenate(ref_embed, axis=0) + mu_ref, sigma_ref = compute_stats(ref_embed) + out.update({"mu_ref": mu_ref, "sigma_ref": sigma_ref}) + + return out diff --git a/extern/ldm_zero123/modules/image_degradation/__init__.py b/extern/ldm_zero123/modules/image_degradation/__init__.py new file mode 100755 index 0000000..1143c44 --- /dev/null +++ b/extern/ldm_zero123/modules/image_degradation/__init__.py @@ -0,0 +1,6 @@ +from extern.ldm_zero123.modules.image_degradation.bsrgan import ( + degradation_bsrgan_variant as degradation_fn_bsr, +) +from extern.ldm_zero123.modules.image_degradation.bsrgan_light import ( + degradation_bsrgan_variant as degradation_fn_bsr_light, +) diff --git a/extern/ldm_zero123/modules/image_degradation/bsrgan.py b/extern/ldm_zero123/modules/image_degradation/bsrgan.py new file mode 100755 index 0000000..3b2e534 --- /dev/null +++ b/extern/ldm_zero123/modules/image_degradation/bsrgan.py @@ -0,0 +1,809 @@ +# -*- coding: utf-8 -*- +""" +# -------------------------------------------- +# Super-Resolution +# -------------------------------------------- +# +# Kai Zhang (cskaizhang@gmail.com) +# https://github.com/cszn +# From 2019/03--2021/08 +# -------------------------------------------- +""" + +import random +from functools import partial + +import albumentations +import cv2 +import numpy as np +import scipy +import scipy.stats as ss +import torch +from scipy import ndimage +from scipy.interpolate import interp2d +from scipy.linalg import orth + +import extern.ldm_zero123.modules.image_degradation.utils_image as util + + +def modcrop_np(img, sf): + """ + Args: + img: numpy image, WxH or WxHxC + sf: scale factor + Return: + cropped image + """ + w, h = img.shape[:2] + im = np.copy(img) + return im[: w - w % sf, : h - h % sf, ...] + + +""" +# -------------------------------------------- +# anisotropic Gaussian kernels +# -------------------------------------------- +""" + + +def analytic_kernel(k): + """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" + k_size = k.shape[0] + # Calculate the big kernels size + big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) + # Loop over the small kernel to fill the big one + for r in range(k_size): + for c in range(k_size): + big_k[2 * r : 2 * r + k_size, 2 * c : 2 * c + k_size] += k[r, c] * k + # Crop the edges of the big kernel to ignore very small values and increase run time of SR + crop = k_size // 2 + cropped_big_k = big_k[crop:-crop, crop:-crop] + # Normalize to 1 + return cropped_big_k / cropped_big_k.sum() + + +def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): + """generate an anisotropic Gaussian kernel + Args: + ksize : e.g., 15, kernel size + theta : [0, pi], rotation angle range + l1 : [0.1,50], scaling of eigenvalues + l2 : [0.1,l1], scaling of eigenvalues + If l1 = l2, will get an isotropic Gaussian kernel. + Returns: + k : kernel + """ + + v = np.dot( + np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), + np.array([1.0, 0.0]), + ) + V = np.array([[v[0], v[1]], [v[1], -v[0]]]) + D = np.array([[l1, 0], [0, l2]]) + Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) + k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) + + return k + + +def gm_blur_kernel(mean, cov, size=15): + center = size / 2.0 + 0.5 + k = np.zeros([size, size]) + for y in range(size): + for x in range(size): + cy = y - center + 1 + cx = x - center + 1 + k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) + + k = k / np.sum(k) + return k + + +def shift_pixel(x, sf, upper_left=True): + """shift pixel for super-resolution with different scale factors + Args: + x: WxHxC or WxH + sf: scale factor + upper_left: shift direction + """ + h, w = x.shape[:2] + shift = (sf - 1) * 0.5 + xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) + if upper_left: + x1 = xv + shift + y1 = yv + shift + else: + x1 = xv - shift + y1 = yv - shift + + x1 = np.clip(x1, 0, w - 1) + y1 = np.clip(y1, 0, h - 1) + + if x.ndim == 2: + x = interp2d(xv, yv, x)(x1, y1) + if x.ndim == 3: + for i in range(x.shape[-1]): + x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) + + return x + + +def blur(x, k): + """ + x: image, NxcxHxW + k: kernel, Nx1xhxw + """ + n, c = x.shape[:2] + p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 + x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode="replicate") + k = k.repeat(1, c, 1, 1) + k = k.view(-1, 1, k.shape[2], k.shape[3]) + x = x.view(1, -1, x.shape[2], x.shape[3]) + x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) + x = x.view(n, c, x.shape[2], x.shape[3]) + + return x + + +def gen_kernel( + k_size=np.array([15, 15]), + scale_factor=np.array([4, 4]), + min_var=0.6, + max_var=10.0, + noise_level=0, +): + """ " + # modified version of https://github.com/assafshocher/BlindSR_dataset_generator + # Kai Zhang + # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var + # max_var = 2.5 * sf + """ + # Set random eigen-vals (lambdas) and angle (theta) for COV matrix + lambda_1 = min_var + np.random.rand() * (max_var - min_var) + lambda_2 = min_var + np.random.rand() * (max_var - min_var) + theta = np.random.rand() * np.pi # random theta + noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 + + # Set COV matrix using Lambdas and Theta + LAMBDA = np.diag([lambda_1, lambda_2]) + Q = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) + SIGMA = Q @ LAMBDA @ Q.T + INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] + + # Set expectation position (shifting kernel for aligned image) + MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) + MU = MU[None, None, :, None] + + # Create meshgrid for Gaussian + [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) + Z = np.stack([X, Y], 2)[:, :, :, None] + + # Calcualte Gaussian for every pixel of the kernel + ZZ = Z - MU + ZZ_t = ZZ.transpose(0, 1, 3, 2) + raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) + + # shift the kernel so it will be centered + # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) + + # Normalize the kernel and return + # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) + kernel = raw_kernel / np.sum(raw_kernel) + return kernel + + +def fspecial_gaussian(hsize, sigma): + hsize = [hsize, hsize] + siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] + std = sigma + [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) + arg = -(x * x + y * y) / (2 * std * std) + h = np.exp(arg) + h[h < scipy.finfo(float).eps * h.max()] = 0 + sumh = h.sum() + if sumh != 0: + h = h / sumh + return h + + +def fspecial_laplacian(alpha): + alpha = max([0, min([alpha, 1])]) + h1 = alpha / (alpha + 1) + h2 = (1 - alpha) / (alpha + 1) + h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] + h = np.array(h) + return h + + +def fspecial(filter_type, *args, **kwargs): + """ + python code from: + https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py + """ + if filter_type == "gaussian": + return fspecial_gaussian(*args, **kwargs) + if filter_type == "laplacian": + return fspecial_laplacian(*args, **kwargs) + + +""" +# -------------------------------------------- +# degradation models +# -------------------------------------------- +""" + + +def bicubic_degradation(x, sf=3): + """ + Args: + x: HxWxC image, [0, 1] + sf: down-scale factor + Return: + bicubicly downsampled LR image + """ + x = util.imresize_np(x, scale=1 / sf) + return x + + +def srmd_degradation(x, k, sf=3): + """blur + bicubic downsampling + Args: + x: HxWxC image, [0, 1] + k: hxw, double + sf: down-scale factor + Return: + downsampled LR image + Reference: + @inproceedings{zhang2018learning, + title={Learning a single convolutional super-resolution network for multiple degradations}, + author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, + booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, + pages={3262--3271}, + year={2018} + } + """ + x = ndimage.filters.convolve( + x, np.expand_dims(k, axis=2), mode="wrap" + ) # 'nearest' | 'mirror' + x = bicubic_degradation(x, sf=sf) + return x + + +def dpsr_degradation(x, k, sf=3): + """bicubic downsampling + blur + Args: + x: HxWxC image, [0, 1] + k: hxw, double + sf: down-scale factor + Return: + downsampled LR image + Reference: + @inproceedings{zhang2019deep, + title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, + author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, + booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, + pages={1671--1681}, + year={2019} + } + """ + x = bicubic_degradation(x, sf=sf) + x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode="wrap") + return x + + +def classical_degradation(x, k, sf=3): + """blur + downsampling + Args: + x: HxWxC image, [0, 1]/[0, 255] + k: hxw, double + sf: down-scale factor + Return: + downsampled LR image + """ + x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode="wrap") + # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) + st = 0 + return x[st::sf, st::sf, ...] + + +def add_sharpening(img, weight=0.5, radius=50, threshold=10): + """USM sharpening. borrowed from real-ESRGAN + Input image: I; Blurry image: B. + 1. K = I + weight * (I - B) + 2. Mask = 1 if abs(I - B) > threshold, else: 0 + 3. Blur mask: + 4. Out = Mask * K + (1 - Mask) * I + Args: + img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. + weight (float): Sharp weight. Default: 1. + radius (float): Kernel size of Gaussian blur. Default: 50. + threshold (int): + """ + if radius % 2 == 0: + radius += 1 + blur = cv2.GaussianBlur(img, (radius, radius), 0) + residual = img - blur + mask = np.abs(residual) * 255 > threshold + mask = mask.astype("float32") + soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) + + K = img + weight * residual + K = np.clip(K, 0, 1) + return soft_mask * K + (1 - soft_mask) * img + + +def add_blur(img, sf=4): + wd2 = 4.0 + sf + wd = 2.0 + 0.2 * sf + if random.random() < 0.5: + l1 = wd2 * random.random() + l2 = wd2 * random.random() + k = anisotropic_Gaussian( + ksize=2 * random.randint(2, 11) + 3, + theta=random.random() * np.pi, + l1=l1, + l2=l2, + ) + else: + k = fspecial("gaussian", 2 * random.randint(2, 11) + 3, wd * random.random()) + img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode="mirror") + + return img + + +def add_resize(img, sf=4): + rnum = np.random.rand() + if rnum > 0.8: # up + sf1 = random.uniform(1, 2) + elif rnum < 0.7: # down + sf1 = random.uniform(0.5 / sf, 1) + else: + sf1 = 1.0 + img = cv2.resize( + img, + (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), + interpolation=random.choice([1, 2, 3]), + ) + img = np.clip(img, 0.0, 1.0) + + return img + + +# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): +# noise_level = random.randint(noise_level1, noise_level2) +# rnum = np.random.rand() +# if rnum > 0.6: # add color Gaussian noise +# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) +# elif rnum < 0.4: # add grayscale Gaussian noise +# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) +# else: # add noise +# L = noise_level2 / 255. +# D = np.diag(np.random.rand(3)) +# U = orth(np.random.rand(3, 3)) +# conv = np.dot(np.dot(np.transpose(U), D), U) +# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) +# img = np.clip(img, 0.0, 1.0) +# return img + + +def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): + noise_level = random.randint(noise_level1, noise_level2) + rnum = np.random.rand() + if rnum > 0.6: # add color Gaussian noise + img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype( + np.float32 + ) + elif rnum < 0.4: # add grayscale Gaussian noise + img = img + np.random.normal( + 0, noise_level / 255.0, (*img.shape[:2], 1) + ).astype(np.float32) + else: # add noise + L = noise_level2 / 255.0 + D = np.diag(np.random.rand(3)) + U = orth(np.random.rand(3, 3)) + conv = np.dot(np.dot(np.transpose(U), D), U) + img = img + np.random.multivariate_normal( + [0, 0, 0], np.abs(L**2 * conv), img.shape[:2] + ).astype(np.float32) + img = np.clip(img, 0.0, 1.0) + return img + + +def add_speckle_noise(img, noise_level1=2, noise_level2=25): + noise_level = random.randint(noise_level1, noise_level2) + img = np.clip(img, 0.0, 1.0) + rnum = random.random() + if rnum > 0.6: + img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype( + np.float32 + ) + elif rnum < 0.4: + img += img * np.random.normal( + 0, noise_level / 255.0, (*img.shape[:2], 1) + ).astype(np.float32) + else: + L = noise_level2 / 255.0 + D = np.diag(np.random.rand(3)) + U = orth(np.random.rand(3, 3)) + conv = np.dot(np.dot(np.transpose(U), D), U) + img += img * np.random.multivariate_normal( + [0, 0, 0], np.abs(L**2 * conv), img.shape[:2] + ).astype(np.float32) + img = np.clip(img, 0.0, 1.0) + return img + + +def add_Poisson_noise(img): + img = np.clip((img * 255.0).round(), 0, 255) / 255.0 + vals = 10 ** (2 * random.random() + 2.0) # [2, 4] + if random.random() < 0.5: + img = np.random.poisson(img * vals).astype(np.float32) / vals + else: + img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) + img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.0 + noise_gray = ( + np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray + ) + img += noise_gray[:, :, np.newaxis] + img = np.clip(img, 0.0, 1.0) + return img + + +def add_JPEG_noise(img): + quality_factor = random.randint(30, 95) + img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) + result, encimg = cv2.imencode( + ".jpg", img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor] + ) + img = cv2.imdecode(encimg, 1) + img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) + return img + + +def random_crop(lq, hq, sf=4, lq_patchsize=64): + h, w = lq.shape[:2] + rnd_h = random.randint(0, h - lq_patchsize) + rnd_w = random.randint(0, w - lq_patchsize) + lq = lq[rnd_h : rnd_h + lq_patchsize, rnd_w : rnd_w + lq_patchsize, :] + + rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) + hq = hq[ + rnd_h_H : rnd_h_H + lq_patchsize * sf, rnd_w_H : rnd_w_H + lq_patchsize * sf, : + ] + return lq, hq + + +def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): + """ + This is the degradation model of BSRGAN from the paper + "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" + ---------- + img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) + sf: scale factor + isp_model: camera ISP model + Returns + ------- + img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] + hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] + """ + isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 + sf_ori = sf + + h1, w1 = img.shape[:2] + img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop + h, w = img.shape[:2] + + if h < lq_patchsize * sf or w < lq_patchsize * sf: + raise ValueError(f"img size ({h1}X{w1}) is too small!") + + hq = img.copy() + + if sf == 4 and random.random() < scale2_prob: # downsample1 + if np.random.rand() < 0.5: + img = cv2.resize( + img, + (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), + interpolation=random.choice([1, 2, 3]), + ) + else: + img = util.imresize_np(img, 1 / 2, True) + img = np.clip(img, 0.0, 1.0) + sf = 2 + + shuffle_order = random.sample(range(7), 7) + idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) + if idx1 > idx2: # keep downsample3 last + shuffle_order[idx1], shuffle_order[idx2] = ( + shuffle_order[idx2], + shuffle_order[idx1], + ) + + for i in shuffle_order: + if i == 0: + img = add_blur(img, sf=sf) + + elif i == 1: + img = add_blur(img, sf=sf) + + elif i == 2: + a, b = img.shape[1], img.shape[0] + # downsample2 + if random.random() < 0.75: + sf1 = random.uniform(1, 2 * sf) + img = cv2.resize( + img, + (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), + interpolation=random.choice([1, 2, 3]), + ) + else: + k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf)) + k_shifted = shift_pixel(k, sf) + k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel + img = ndimage.filters.convolve( + img, np.expand_dims(k_shifted, axis=2), mode="mirror" + ) + img = img[0::sf, 0::sf, ...] # nearest downsampling + img = np.clip(img, 0.0, 1.0) + + elif i == 3: + # downsample3 + img = cv2.resize( + img, + (int(1 / sf * a), int(1 / sf * b)), + interpolation=random.choice([1, 2, 3]), + ) + img = np.clip(img, 0.0, 1.0) + + elif i == 4: + # add Gaussian noise + img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) + + elif i == 5: + # add JPEG noise + if random.random() < jpeg_prob: + img = add_JPEG_noise(img) + + elif i == 6: + # add processed camera sensor noise + if random.random() < isp_prob and isp_model is not None: + with torch.no_grad(): + img, hq = isp_model.forward(img.copy(), hq) + + # add final JPEG compression noise + img = add_JPEG_noise(img) + + # random crop + img, hq = random_crop(img, hq, sf_ori, lq_patchsize) + + return img, hq + + +# todo no isp_model? +def degradation_bsrgan_variant(image, sf=4, isp_model=None): + """ + This is the degradation model of BSRGAN from the paper + "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" + ---------- + sf: scale factor + isp_model: camera ISP model + Returns + ------- + img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] + hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] + """ + image = util.uint2single(image) + isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 + sf_ori = sf + + h1, w1 = image.shape[:2] + image = image.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop + h, w = image.shape[:2] + + hq = image.copy() + + if sf == 4 and random.random() < scale2_prob: # downsample1 + if np.random.rand() < 0.5: + image = cv2.resize( + image, + (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), + interpolation=random.choice([1, 2, 3]), + ) + else: + image = util.imresize_np(image, 1 / 2, True) + image = np.clip(image, 0.0, 1.0) + sf = 2 + + shuffle_order = random.sample(range(7), 7) + idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) + if idx1 > idx2: # keep downsample3 last + shuffle_order[idx1], shuffle_order[idx2] = ( + shuffle_order[idx2], + shuffle_order[idx1], + ) + + for i in shuffle_order: + if i == 0: + image = add_blur(image, sf=sf) + + elif i == 1: + image = add_blur(image, sf=sf) + + elif i == 2: + a, b = image.shape[1], image.shape[0] + # downsample2 + if random.random() < 0.75: + sf1 = random.uniform(1, 2 * sf) + image = cv2.resize( + image, + (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), + interpolation=random.choice([1, 2, 3]), + ) + else: + k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf)) + k_shifted = shift_pixel(k, sf) + k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel + image = ndimage.filters.convolve( + image, np.expand_dims(k_shifted, axis=2), mode="mirror" + ) + image = image[0::sf, 0::sf, ...] # nearest downsampling + image = np.clip(image, 0.0, 1.0) + + elif i == 3: + # downsample3 + image = cv2.resize( + image, + (int(1 / sf * a), int(1 / sf * b)), + interpolation=random.choice([1, 2, 3]), + ) + image = np.clip(image, 0.0, 1.0) + + elif i == 4: + # add Gaussian noise + image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25) + + elif i == 5: + # add JPEG noise + if random.random() < jpeg_prob: + image = add_JPEG_noise(image) + + # elif i == 6: + # # add processed camera sensor noise + # if random.random() < isp_prob and isp_model is not None: + # with torch.no_grad(): + # img, hq = isp_model.forward(img.copy(), hq) + + # add final JPEG compression noise + image = add_JPEG_noise(image) + image = util.single2uint(image) + example = {"image": image} + return example + + +# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc... +def degradation_bsrgan_plus( + img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None +): + """ + This is an extended degradation model by combining + the degradation models of BSRGAN and Real-ESRGAN + ---------- + img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) + sf: scale factor + use_shuffle: the degradation shuffle + use_sharp: sharpening the img + Returns + ------- + img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] + hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] + """ + + h1, w1 = img.shape[:2] + img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop + h, w = img.shape[:2] + + if h < lq_patchsize * sf or w < lq_patchsize * sf: + raise ValueError(f"img size ({h1}X{w1}) is too small!") + + if use_sharp: + img = add_sharpening(img) + hq = img.copy() + + if random.random() < shuffle_prob: + shuffle_order = random.sample(range(13), 13) + else: + shuffle_order = list(range(13)) + # local shuffle for noise, JPEG is always the last one + shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6))) + shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13))) + + poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1 + + for i in shuffle_order: + if i == 0: + img = add_blur(img, sf=sf) + elif i == 1: + img = add_resize(img, sf=sf) + elif i == 2: + img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) + elif i == 3: + if random.random() < poisson_prob: + img = add_Poisson_noise(img) + elif i == 4: + if random.random() < speckle_prob: + img = add_speckle_noise(img) + elif i == 5: + if random.random() < isp_prob and isp_model is not None: + with torch.no_grad(): + img, hq = isp_model.forward(img.copy(), hq) + elif i == 6: + img = add_JPEG_noise(img) + elif i == 7: + img = add_blur(img, sf=sf) + elif i == 8: + img = add_resize(img, sf=sf) + elif i == 9: + img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) + elif i == 10: + if random.random() < poisson_prob: + img = add_Poisson_noise(img) + elif i == 11: + if random.random() < speckle_prob: + img = add_speckle_noise(img) + elif i == 12: + if random.random() < isp_prob and isp_model is not None: + with torch.no_grad(): + img, hq = isp_model.forward(img.copy(), hq) + else: + print("check the shuffle!") + + # resize to desired size + img = cv2.resize( + img, + (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])), + interpolation=random.choice([1, 2, 3]), + ) + + # add final JPEG compression noise + img = add_JPEG_noise(img) + + # random crop + img, hq = random_crop(img, hq, sf, lq_patchsize) + + return img, hq + + +if __name__ == "__main__": + print("hey") + img = util.imread_uint("utils/test.png", 3) + print(img) + img = util.uint2single(img) + print(img) + img = img[:448, :448] + h = img.shape[0] // 4 + print("resizing to", h) + sf = 4 + deg_fn = partial(degradation_bsrgan_variant, sf=sf) + for i in range(20): + print(i) + img_lq = deg_fn(img) + print(img_lq) + img_lq_bicubic = albumentations.SmallestMaxSize( + max_size=h, interpolation=cv2.INTER_CUBIC + )(image=img)["image"] + print(img_lq.shape) + print("bicubic", img_lq_bicubic.shape) + print(img_hq.shape) + lq_nearest = cv2.resize( + util.single2uint(img_lq), + (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), + interpolation=0, + ) + lq_bicubic_nearest = cv2.resize( + util.single2uint(img_lq_bicubic), + (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), + interpolation=0, + ) + img_concat = np.concatenate( + [lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1 + ) + util.imsave(img_concat, str(i) + ".png") diff --git a/extern/ldm_zero123/modules/image_degradation/bsrgan_light.py b/extern/ldm_zero123/modules/image_degradation/bsrgan_light.py new file mode 100755 index 0000000..84318a7 --- /dev/null +++ b/extern/ldm_zero123/modules/image_degradation/bsrgan_light.py @@ -0,0 +1,720 @@ +# -*- coding: utf-8 -*- +import random +from functools import partial + +import albumentations +import cv2 +import numpy as np +import scipy +import scipy.stats as ss +import torch +from scipy import ndimage +from scipy.interpolate import interp2d +from scipy.linalg import orth + +import extern.ldm_zero123.modules.image_degradation.utils_image as util + +""" +# -------------------------------------------- +# Super-Resolution +# -------------------------------------------- +# +# Kai Zhang (cskaizhang@gmail.com) +# https://github.com/cszn +# From 2019/03--2021/08 +# -------------------------------------------- +""" + + +def modcrop_np(img, sf): + """ + Args: + img: numpy image, WxH or WxHxC + sf: scale factor + Return: + cropped image + """ + w, h = img.shape[:2] + im = np.copy(img) + return im[: w - w % sf, : h - h % sf, ...] + + +""" +# -------------------------------------------- +# anisotropic Gaussian kernels +# -------------------------------------------- +""" + + +def analytic_kernel(k): + """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" + k_size = k.shape[0] + # Calculate the big kernels size + big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) + # Loop over the small kernel to fill the big one + for r in range(k_size): + for c in range(k_size): + big_k[2 * r : 2 * r + k_size, 2 * c : 2 * c + k_size] += k[r, c] * k + # Crop the edges of the big kernel to ignore very small values and increase run time of SR + crop = k_size // 2 + cropped_big_k = big_k[crop:-crop, crop:-crop] + # Normalize to 1 + return cropped_big_k / cropped_big_k.sum() + + +def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): + """generate an anisotropic Gaussian kernel + Args: + ksize : e.g., 15, kernel size + theta : [0, pi], rotation angle range + l1 : [0.1,50], scaling of eigenvalues + l2 : [0.1,l1], scaling of eigenvalues + If l1 = l2, will get an isotropic Gaussian kernel. + Returns: + k : kernel + """ + + v = np.dot( + np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), + np.array([1.0, 0.0]), + ) + V = np.array([[v[0], v[1]], [v[1], -v[0]]]) + D = np.array([[l1, 0], [0, l2]]) + Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) + k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) + + return k + + +def gm_blur_kernel(mean, cov, size=15): + center = size / 2.0 + 0.5 + k = np.zeros([size, size]) + for y in range(size): + for x in range(size): + cy = y - center + 1 + cx = x - center + 1 + k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) + + k = k / np.sum(k) + return k + + +def shift_pixel(x, sf, upper_left=True): + """shift pixel for super-resolution with different scale factors + Args: + x: WxHxC or WxH + sf: scale factor + upper_left: shift direction + """ + h, w = x.shape[:2] + shift = (sf - 1) * 0.5 + xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) + if upper_left: + x1 = xv + shift + y1 = yv + shift + else: + x1 = xv - shift + y1 = yv - shift + + x1 = np.clip(x1, 0, w - 1) + y1 = np.clip(y1, 0, h - 1) + + if x.ndim == 2: + x = interp2d(xv, yv, x)(x1, y1) + if x.ndim == 3: + for i in range(x.shape[-1]): + x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) + + return x + + +def blur(x, k): + """ + x: image, NxcxHxW + k: kernel, Nx1xhxw + """ + n, c = x.shape[:2] + p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 + x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode="replicate") + k = k.repeat(1, c, 1, 1) + k = k.view(-1, 1, k.shape[2], k.shape[3]) + x = x.view(1, -1, x.shape[2], x.shape[3]) + x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) + x = x.view(n, c, x.shape[2], x.shape[3]) + + return x + + +def gen_kernel( + k_size=np.array([15, 15]), + scale_factor=np.array([4, 4]), + min_var=0.6, + max_var=10.0, + noise_level=0, +): + """ " + # modified version of https://github.com/assafshocher/BlindSR_dataset_generator + # Kai Zhang + # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var + # max_var = 2.5 * sf + """ + # Set random eigen-vals (lambdas) and angle (theta) for COV matrix + lambda_1 = min_var + np.random.rand() * (max_var - min_var) + lambda_2 = min_var + np.random.rand() * (max_var - min_var) + theta = np.random.rand() * np.pi # random theta + noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 + + # Set COV matrix using Lambdas and Theta + LAMBDA = np.diag([lambda_1, lambda_2]) + Q = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) + SIGMA = Q @ LAMBDA @ Q.T + INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] + + # Set expectation position (shifting kernel for aligned image) + MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) + MU = MU[None, None, :, None] + + # Create meshgrid for Gaussian + [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) + Z = np.stack([X, Y], 2)[:, :, :, None] + + # Calcualte Gaussian for every pixel of the kernel + ZZ = Z - MU + ZZ_t = ZZ.transpose(0, 1, 3, 2) + raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) + + # shift the kernel so it will be centered + # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) + + # Normalize the kernel and return + # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) + kernel = raw_kernel / np.sum(raw_kernel) + return kernel + + +def fspecial_gaussian(hsize, sigma): + hsize = [hsize, hsize] + siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] + std = sigma + [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) + arg = -(x * x + y * y) / (2 * std * std) + h = np.exp(arg) + h[h < scipy.finfo(float).eps * h.max()] = 0 + sumh = h.sum() + if sumh != 0: + h = h / sumh + return h + + +def fspecial_laplacian(alpha): + alpha = max([0, min([alpha, 1])]) + h1 = alpha / (alpha + 1) + h2 = (1 - alpha) / (alpha + 1) + h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] + h = np.array(h) + return h + + +def fspecial(filter_type, *args, **kwargs): + """ + python code from: + https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py + """ + if filter_type == "gaussian": + return fspecial_gaussian(*args, **kwargs) + if filter_type == "laplacian": + return fspecial_laplacian(*args, **kwargs) + + +""" +# -------------------------------------------- +# degradation models +# -------------------------------------------- +""" + + +def bicubic_degradation(x, sf=3): + """ + Args: + x: HxWxC image, [0, 1] + sf: down-scale factor + Return: + bicubicly downsampled LR image + """ + x = util.imresize_np(x, scale=1 / sf) + return x + + +def srmd_degradation(x, k, sf=3): + """blur + bicubic downsampling + Args: + x: HxWxC image, [0, 1] + k: hxw, double + sf: down-scale factor + Return: + downsampled LR image + Reference: + @inproceedings{zhang2018learning, + title={Learning a single convolutional super-resolution network for multiple degradations}, + author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, + booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, + pages={3262--3271}, + year={2018} + } + """ + x = ndimage.convolve( + x, np.expand_dims(k, axis=2), mode="wrap" + ) # 'nearest' | 'mirror' + x = bicubic_degradation(x, sf=sf) + return x + + +def dpsr_degradation(x, k, sf=3): + """bicubic downsampling + blur + Args: + x: HxWxC image, [0, 1] + k: hxw, double + sf: down-scale factor + Return: + downsampled LR image + Reference: + @inproceedings{zhang2019deep, + title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, + author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, + booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, + pages={1671--1681}, + year={2019} + } + """ + x = bicubic_degradation(x, sf=sf) + x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode="wrap") + return x + + +def classical_degradation(x, k, sf=3): + """blur + downsampling + Args: + x: HxWxC image, [0, 1]/[0, 255] + k: hxw, double + sf: down-scale factor + Return: + downsampled LR image + """ + x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode="wrap") + # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) + st = 0 + return x[st::sf, st::sf, ...] + + +def add_sharpening(img, weight=0.5, radius=50, threshold=10): + """USM sharpening. borrowed from real-ESRGAN + Input image: I; Blurry image: B. + 1. K = I + weight * (I - B) + 2. Mask = 1 if abs(I - B) > threshold, else: 0 + 3. Blur mask: + 4. Out = Mask * K + (1 - Mask) * I + Args: + img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. + weight (float): Sharp weight. Default: 1. + radius (float): Kernel size of Gaussian blur. Default: 50. + threshold (int): + """ + if radius % 2 == 0: + radius += 1 + blur = cv2.GaussianBlur(img, (radius, radius), 0) + residual = img - blur + mask = np.abs(residual) * 255 > threshold + mask = mask.astype("float32") + soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) + + K = img + weight * residual + K = np.clip(K, 0, 1) + return soft_mask * K + (1 - soft_mask) * img + + +def add_blur(img, sf=4): + wd2 = 4.0 + sf + wd = 2.0 + 0.2 * sf + + wd2 = wd2 / 4 + wd = wd / 4 + + if random.random() < 0.5: + l1 = wd2 * random.random() + l2 = wd2 * random.random() + k = anisotropic_Gaussian( + ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2 + ) + else: + k = fspecial("gaussian", random.randint(2, 4) + 3, wd * random.random()) + img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode="mirror") + + return img + + +def add_resize(img, sf=4): + rnum = np.random.rand() + if rnum > 0.8: # up + sf1 = random.uniform(1, 2) + elif rnum < 0.7: # down + sf1 = random.uniform(0.5 / sf, 1) + else: + sf1 = 1.0 + img = cv2.resize( + img, + (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), + interpolation=random.choice([1, 2, 3]), + ) + img = np.clip(img, 0.0, 1.0) + + return img + + +# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): +# noise_level = random.randint(noise_level1, noise_level2) +# rnum = np.random.rand() +# if rnum > 0.6: # add color Gaussian noise +# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) +# elif rnum < 0.4: # add grayscale Gaussian noise +# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) +# else: # add noise +# L = noise_level2 / 255. +# D = np.diag(np.random.rand(3)) +# U = orth(np.random.rand(3, 3)) +# conv = np.dot(np.dot(np.transpose(U), D), U) +# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) +# img = np.clip(img, 0.0, 1.0) +# return img + + +def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): + noise_level = random.randint(noise_level1, noise_level2) + rnum = np.random.rand() + if rnum > 0.6: # add color Gaussian noise + img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype( + np.float32 + ) + elif rnum < 0.4: # add grayscale Gaussian noise + img = img + np.random.normal( + 0, noise_level / 255.0, (*img.shape[:2], 1) + ).astype(np.float32) + else: # add noise + L = noise_level2 / 255.0 + D = np.diag(np.random.rand(3)) + U = orth(np.random.rand(3, 3)) + conv = np.dot(np.dot(np.transpose(U), D), U) + img = img + np.random.multivariate_normal( + [0, 0, 0], np.abs(L**2 * conv), img.shape[:2] + ).astype(np.float32) + img = np.clip(img, 0.0, 1.0) + return img + + +def add_speckle_noise(img, noise_level1=2, noise_level2=25): + noise_level = random.randint(noise_level1, noise_level2) + img = np.clip(img, 0.0, 1.0) + rnum = random.random() + if rnum > 0.6: + img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype( + np.float32 + ) + elif rnum < 0.4: + img += img * np.random.normal( + 0, noise_level / 255.0, (*img.shape[:2], 1) + ).astype(np.float32) + else: + L = noise_level2 / 255.0 + D = np.diag(np.random.rand(3)) + U = orth(np.random.rand(3, 3)) + conv = np.dot(np.dot(np.transpose(U), D), U) + img += img * np.random.multivariate_normal( + [0, 0, 0], np.abs(L**2 * conv), img.shape[:2] + ).astype(np.float32) + img = np.clip(img, 0.0, 1.0) + return img + + +def add_Poisson_noise(img): + img = np.clip((img * 255.0).round(), 0, 255) / 255.0 + vals = 10 ** (2 * random.random() + 2.0) # [2, 4] + if random.random() < 0.5: + img = np.random.poisson(img * vals).astype(np.float32) / vals + else: + img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) + img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.0 + noise_gray = ( + np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray + ) + img += noise_gray[:, :, np.newaxis] + img = np.clip(img, 0.0, 1.0) + return img + + +def add_JPEG_noise(img): + quality_factor = random.randint(80, 95) + img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) + result, encimg = cv2.imencode( + ".jpg", img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor] + ) + img = cv2.imdecode(encimg, 1) + img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) + return img + + +def random_crop(lq, hq, sf=4, lq_patchsize=64): + h, w = lq.shape[:2] + rnd_h = random.randint(0, h - lq_patchsize) + rnd_w = random.randint(0, w - lq_patchsize) + lq = lq[rnd_h : rnd_h + lq_patchsize, rnd_w : rnd_w + lq_patchsize, :] + + rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) + hq = hq[ + rnd_h_H : rnd_h_H + lq_patchsize * sf, rnd_w_H : rnd_w_H + lq_patchsize * sf, : + ] + return lq, hq + + +def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): + """ + This is the degradation model of BSRGAN from the paper + "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" + ---------- + img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) + sf: scale factor + isp_model: camera ISP model + Returns + ------- + img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] + hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] + """ + isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 + sf_ori = sf + + h1, w1 = img.shape[:2] + img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop + h, w = img.shape[:2] + + if h < lq_patchsize * sf or w < lq_patchsize * sf: + raise ValueError(f"img size ({h1}X{w1}) is too small!") + + hq = img.copy() + + if sf == 4 and random.random() < scale2_prob: # downsample1 + if np.random.rand() < 0.5: + img = cv2.resize( + img, + (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), + interpolation=random.choice([1, 2, 3]), + ) + else: + img = util.imresize_np(img, 1 / 2, True) + img = np.clip(img, 0.0, 1.0) + sf = 2 + + shuffle_order = random.sample(range(7), 7) + idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) + if idx1 > idx2: # keep downsample3 last + shuffle_order[idx1], shuffle_order[idx2] = ( + shuffle_order[idx2], + shuffle_order[idx1], + ) + + for i in shuffle_order: + if i == 0: + img = add_blur(img, sf=sf) + + elif i == 1: + img = add_blur(img, sf=sf) + + elif i == 2: + a, b = img.shape[1], img.shape[0] + # downsample2 + if random.random() < 0.75: + sf1 = random.uniform(1, 2 * sf) + img = cv2.resize( + img, + (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), + interpolation=random.choice([1, 2, 3]), + ) + else: + k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf)) + k_shifted = shift_pixel(k, sf) + k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel + img = ndimage.convolve( + img, np.expand_dims(k_shifted, axis=2), mode="mirror" + ) + img = img[0::sf, 0::sf, ...] # nearest downsampling + img = np.clip(img, 0.0, 1.0) + + elif i == 3: + # downsample3 + img = cv2.resize( + img, + (int(1 / sf * a), int(1 / sf * b)), + interpolation=random.choice([1, 2, 3]), + ) + img = np.clip(img, 0.0, 1.0) + + elif i == 4: + # add Gaussian noise + img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8) + + elif i == 5: + # add JPEG noise + if random.random() < jpeg_prob: + img = add_JPEG_noise(img) + + elif i == 6: + # add processed camera sensor noise + if random.random() < isp_prob and isp_model is not None: + with torch.no_grad(): + img, hq = isp_model.forward(img.copy(), hq) + + # add final JPEG compression noise + img = add_JPEG_noise(img) + + # random crop + img, hq = random_crop(img, hq, sf_ori, lq_patchsize) + + return img, hq + + +# todo no isp_model? +def degradation_bsrgan_variant(image, sf=4, isp_model=None): + """ + This is the degradation model of BSRGAN from the paper + "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" + ---------- + sf: scale factor + isp_model: camera ISP model + Returns + ------- + img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] + hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] + """ + image = util.uint2single(image) + isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 + sf_ori = sf + + h1, w1 = image.shape[:2] + image = image.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop + h, w = image.shape[:2] + + hq = image.copy() + + if sf == 4 and random.random() < scale2_prob: # downsample1 + if np.random.rand() < 0.5: + image = cv2.resize( + image, + (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), + interpolation=random.choice([1, 2, 3]), + ) + else: + image = util.imresize_np(image, 1 / 2, True) + image = np.clip(image, 0.0, 1.0) + sf = 2 + + shuffle_order = random.sample(range(7), 7) + idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) + if idx1 > idx2: # keep downsample3 last + shuffle_order[idx1], shuffle_order[idx2] = ( + shuffle_order[idx2], + shuffle_order[idx1], + ) + + for i in shuffle_order: + if i == 0: + image = add_blur(image, sf=sf) + + # elif i == 1: + # image = add_blur(image, sf=sf) + + if i == 0: + pass + + elif i == 2: + a, b = image.shape[1], image.shape[0] + # downsample2 + if random.random() < 0.8: + sf1 = random.uniform(1, 2 * sf) + image = cv2.resize( + image, + (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), + interpolation=random.choice([1, 2, 3]), + ) + else: + k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf)) + k_shifted = shift_pixel(k, sf) + k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel + image = ndimage.convolve( + image, np.expand_dims(k_shifted, axis=2), mode="mirror" + ) + image = image[0::sf, 0::sf, ...] # nearest downsampling + + image = np.clip(image, 0.0, 1.0) + + elif i == 3: + # downsample3 + image = cv2.resize( + image, + (int(1 / sf * a), int(1 / sf * b)), + interpolation=random.choice([1, 2, 3]), + ) + image = np.clip(image, 0.0, 1.0) + + elif i == 4: + # add Gaussian noise + image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2) + + elif i == 5: + # add JPEG noise + if random.random() < jpeg_prob: + image = add_JPEG_noise(image) + # + # elif i == 6: + # # add processed camera sensor noise + # if random.random() < isp_prob and isp_model is not None: + # with torch.no_grad(): + # img, hq = isp_model.forward(img.copy(), hq) + + # add final JPEG compression noise + image = add_JPEG_noise(image) + image = util.single2uint(image) + example = {"image": image} + return example + + +if __name__ == "__main__": + print("hey") + img = util.imread_uint("utils/test.png", 3) + img = img[:448, :448] + h = img.shape[0] // 4 + print("resizing to", h) + sf = 4 + deg_fn = partial(degradation_bsrgan_variant, sf=sf) + for i in range(20): + print(i) + img_hq = img + img_lq = deg_fn(img)["image"] + img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq) + print(img_lq) + img_lq_bicubic = albumentations.SmallestMaxSize( + max_size=h, interpolation=cv2.INTER_CUBIC + )(image=img_hq)["image"] + print(img_lq.shape) + print("bicubic", img_lq_bicubic.shape) + print(img_hq.shape) + lq_nearest = cv2.resize( + util.single2uint(img_lq), + (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), + interpolation=0, + ) + lq_bicubic_nearest = cv2.resize( + util.single2uint(img_lq_bicubic), + (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), + interpolation=0, + ) + img_concat = np.concatenate( + [lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1 + ) + util.imsave(img_concat, str(i) + ".png") diff --git a/extern/ldm_zero123/modules/image_degradation/utils/test.png b/extern/ldm_zero123/modules/image_degradation/utils/test.png new file mode 100755 index 0000000..4249b43 Binary files /dev/null and b/extern/ldm_zero123/modules/image_degradation/utils/test.png differ diff --git a/extern/ldm_zero123/modules/image_degradation/utils_image.py b/extern/ldm_zero123/modules/image_degradation/utils_image.py new file mode 100755 index 0000000..c933af5 --- /dev/null +++ b/extern/ldm_zero123/modules/image_degradation/utils_image.py @@ -0,0 +1,988 @@ +import math +import os +import random +from datetime import datetime + +import cv2 +import numpy as np +import torch +from torchvision.utils import make_grid + +# import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py + + +os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" + + +""" +# -------------------------------------------- +# Kai Zhang (github: https://github.com/cszn) +# 03/Mar/2019 +# -------------------------------------------- +# https://github.com/twhui/SRGAN-pyTorch +# https://github.com/xinntao/BasicSR +# -------------------------------------------- +""" + + +IMG_EXTENSIONS = [ + ".jpg", + ".JPG", + ".jpeg", + ".JPEG", + ".png", + ".PNG", + ".ppm", + ".PPM", + ".bmp", + ".BMP", + ".tif", +] + + +def is_image_file(filename): + return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) + + +def get_timestamp(): + return datetime.now().strftime("%y%m%d-%H%M%S") + + +def imshow(x, title=None, cbar=False, figsize=None): + plt.figure(figsize=figsize) + plt.imshow(np.squeeze(x), interpolation="nearest", cmap="gray") + if title: + plt.title(title) + if cbar: + plt.colorbar() + plt.show() + + +def surf(Z, cmap="rainbow", figsize=None): + plt.figure(figsize=figsize) + ax3 = plt.axes(projection="3d") + + w, h = Z.shape[:2] + xx = np.arange(0, w, 1) + yy = np.arange(0, h, 1) + X, Y = np.meshgrid(xx, yy) + ax3.plot_surface(X, Y, Z, cmap=cmap) + # ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap) + plt.show() + + +""" +# -------------------------------------------- +# get image pathes +# -------------------------------------------- +""" + + +def get_image_paths(dataroot): + paths = None # return None if dataroot is None + if dataroot is not None: + paths = sorted(_get_paths_from_images(dataroot)) + return paths + + +def _get_paths_from_images(path): + assert os.path.isdir(path), "{:s} is not a valid directory".format(path) + images = [] + for dirpath, _, fnames in sorted(os.walk(path)): + for fname in sorted(fnames): + if is_image_file(fname): + img_path = os.path.join(dirpath, fname) + images.append(img_path) + assert images, "{:s} has no valid image file".format(path) + return images + + +""" +# -------------------------------------------- +# split large images into small images +# -------------------------------------------- +""" + + +def patches_from_image(img, p_size=512, p_overlap=64, p_max=800): + w, h = img.shape[:2] + patches = [] + if w > p_max and h > p_max: + w1 = list(np.arange(0, w - p_size, p_size - p_overlap, dtype=np.int)) + h1 = list(np.arange(0, h - p_size, p_size - p_overlap, dtype=np.int)) + w1.append(w - p_size) + h1.append(h - p_size) + # print(w1) + # print(h1) + for i in w1: + for j in h1: + patches.append(img[i : i + p_size, j : j + p_size, :]) + else: + patches.append(img) + + return patches + + +def imssave(imgs, img_path): + """ + imgs: list, N images of size WxHxC + """ + img_name, ext = os.path.splitext(os.path.basename(img_path)) + + for i, img in enumerate(imgs): + if img.ndim == 3: + img = img[:, :, [2, 1, 0]] + new_path = os.path.join( + os.path.dirname(img_path), img_name + str("_s{:04d}".format(i)) + ".png" + ) + cv2.imwrite(new_path, img) + + +def split_imageset( + original_dataroot, + taget_dataroot, + n_channels=3, + p_size=800, + p_overlap=96, + p_max=1000, +): + """ + split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size), + and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max) + will be splitted. + Args: + original_dataroot: + taget_dataroot: + p_size: size of small images + p_overlap: patch size in training is a good choice + p_max: images with smaller size than (p_max)x(p_max) keep unchanged. + """ + paths = get_image_paths(original_dataroot) + for img_path in paths: + # img_name, ext = os.path.splitext(os.path.basename(img_path)) + img = imread_uint(img_path, n_channels=n_channels) + patches = patches_from_image(img, p_size, p_overlap, p_max) + imssave(patches, os.path.join(taget_dataroot, os.path.basename(img_path))) + # if original_dataroot == taget_dataroot: + # del img_path + + +""" +# -------------------------------------------- +# makedir +# -------------------------------------------- +""" + + +def mkdir(path): + if not os.path.exists(path): + os.makedirs(path) + + +def mkdirs(paths): + if isinstance(paths, str): + mkdir(paths) + else: + for path in paths: + mkdir(path) + + +def mkdir_and_rename(path): + if os.path.exists(path): + new_name = path + "_archived_" + get_timestamp() + print("Path already exists. Rename it to [{:s}]".format(new_name)) + os.rename(path, new_name) + os.makedirs(path) + + +""" +# -------------------------------------------- +# read image from path +# opencv is fast, but read BGR numpy image +# -------------------------------------------- +""" + + +# -------------------------------------------- +# get uint8 image of size HxWxn_channles (RGB) +# -------------------------------------------- +def imread_uint(path, n_channels=3): + # input: path + # output: HxWx3(RGB or GGG), or HxWx1 (G) + if n_channels == 1: + img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE + img = np.expand_dims(img, axis=2) # HxWx1 + elif n_channels == 3: + img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G + if img.ndim == 2: + img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG + else: + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB + return img + + +# -------------------------------------------- +# matlab's imwrite +# -------------------------------------------- +def imsave(img, img_path): + img = np.squeeze(img) + if img.ndim == 3: + img = img[:, :, [2, 1, 0]] + cv2.imwrite(img_path, img) + + +def imwrite(img, img_path): + img = np.squeeze(img) + if img.ndim == 3: + img = img[:, :, [2, 1, 0]] + cv2.imwrite(img_path, img) + + +# -------------------------------------------- +# get single image of size HxWxn_channles (BGR) +# -------------------------------------------- +def read_img(path): + # read image by cv2 + # return: Numpy float32, HWC, BGR, [0,1] + img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE + img = img.astype(np.float32) / 255.0 + if img.ndim == 2: + img = np.expand_dims(img, axis=2) + # some images have 4 channels + if img.shape[2] > 3: + img = img[:, :, :3] + return img + + +""" +# -------------------------------------------- +# image format conversion +# -------------------------------------------- +# numpy(single) <---> numpy(unit) +# numpy(single) <---> tensor +# numpy(unit) <---> tensor +# -------------------------------------------- +""" + + +# -------------------------------------------- +# numpy(single) [0, 1] <---> numpy(unit) +# -------------------------------------------- + + +def uint2single(img): + return np.float32(img / 255.0) + + +def single2uint(img): + return np.uint8((img.clip(0, 1) * 255.0).round()) + + +def uint162single(img): + return np.float32(img / 65535.0) + + +def single2uint16(img): + return np.uint16((img.clip(0, 1) * 65535.0).round()) + + +# -------------------------------------------- +# numpy(unit) (HxWxC or HxW) <---> tensor +# -------------------------------------------- + + +# convert uint to 4-dimensional torch tensor +def uint2tensor4(img): + if img.ndim == 2: + img = np.expand_dims(img, axis=2) + return ( + torch.from_numpy(np.ascontiguousarray(img)) + .permute(2, 0, 1) + .float() + .div(255.0) + .unsqueeze(0) + ) + + +# convert uint to 3-dimensional torch tensor +def uint2tensor3(img): + if img.ndim == 2: + img = np.expand_dims(img, axis=2) + return ( + torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.0) + ) + + +# convert 2/3/4-dimensional torch tensor to uint +def tensor2uint(img): + img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy() + if img.ndim == 3: + img = np.transpose(img, (1, 2, 0)) + return np.uint8((img * 255.0).round()) + + +# -------------------------------------------- +# numpy(single) (HxWxC) <---> tensor +# -------------------------------------------- + + +# convert single (HxWxC) to 3-dimensional torch tensor +def single2tensor3(img): + return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float() + + +# convert single (HxWxC) to 4-dimensional torch tensor +def single2tensor4(img): + return ( + torch.from_numpy(np.ascontiguousarray(img)) + .permute(2, 0, 1) + .float() + .unsqueeze(0) + ) + + +# convert torch tensor to single +def tensor2single(img): + img = img.data.squeeze().float().cpu().numpy() + if img.ndim == 3: + img = np.transpose(img, (1, 2, 0)) + + return img + + +# convert torch tensor to single +def tensor2single3(img): + img = img.data.squeeze().float().cpu().numpy() + if img.ndim == 3: + img = np.transpose(img, (1, 2, 0)) + elif img.ndim == 2: + img = np.expand_dims(img, axis=2) + return img + + +def single2tensor5(img): + return ( + torch.from_numpy(np.ascontiguousarray(img)) + .permute(2, 0, 1, 3) + .float() + .unsqueeze(0) + ) + + +def single32tensor5(img): + return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0) + + +def single42tensor4(img): + return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float() + + +# from skimage.io import imread, imsave +def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): + """ + Converts a torch Tensor into an image Numpy array of BGR channel order + Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order + Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) + """ + tensor = ( + tensor.squeeze().float().cpu().clamp_(*min_max) + ) # squeeze first, then clamp + tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] + n_dim = tensor.dim() + if n_dim == 4: + n_img = len(tensor) + img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() + img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR + elif n_dim == 3: + img_np = tensor.numpy() + img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR + elif n_dim == 2: + img_np = tensor.numpy() + else: + raise TypeError( + "Only support 4D, 3D and 2D tensor. But received with dimension: {:d}".format( + n_dim + ) + ) + if out_type == np.uint8: + img_np = (img_np * 255.0).round() + # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. + return img_np.astype(out_type) + + +""" +# -------------------------------------------- +# Augmentation, flipe and/or rotate +# -------------------------------------------- +# The following two are enough. +# (1) augmet_img: numpy image of WxHxC or WxH +# (2) augment_img_tensor4: tensor image 1xCxWxH +# -------------------------------------------- +""" + + +def augment_img(img, mode=0): + """Kai Zhang (github: https://github.com/cszn)""" + if mode == 0: + return img + elif mode == 1: + return np.flipud(np.rot90(img)) + elif mode == 2: + return np.flipud(img) + elif mode == 3: + return np.rot90(img, k=3) + elif mode == 4: + return np.flipud(np.rot90(img, k=2)) + elif mode == 5: + return np.rot90(img) + elif mode == 6: + return np.rot90(img, k=2) + elif mode == 7: + return np.flipud(np.rot90(img, k=3)) + + +def augment_img_tensor4(img, mode=0): + """Kai Zhang (github: https://github.com/cszn)""" + if mode == 0: + return img + elif mode == 1: + return img.rot90(1, [2, 3]).flip([2]) + elif mode == 2: + return img.flip([2]) + elif mode == 3: + return img.rot90(3, [2, 3]) + elif mode == 4: + return img.rot90(2, [2, 3]).flip([2]) + elif mode == 5: + return img.rot90(1, [2, 3]) + elif mode == 6: + return img.rot90(2, [2, 3]) + elif mode == 7: + return img.rot90(3, [2, 3]).flip([2]) + + +def augment_img_tensor(img, mode=0): + """Kai Zhang (github: https://github.com/cszn)""" + img_size = img.size() + img_np = img.data.cpu().numpy() + if len(img_size) == 3: + img_np = np.transpose(img_np, (1, 2, 0)) + elif len(img_size) == 4: + img_np = np.transpose(img_np, (2, 3, 1, 0)) + img_np = augment_img(img_np, mode=mode) + img_tensor = torch.from_numpy(np.ascontiguousarray(img_np)) + if len(img_size) == 3: + img_tensor = img_tensor.permute(2, 0, 1) + elif len(img_size) == 4: + img_tensor = img_tensor.permute(3, 2, 0, 1) + + return img_tensor.type_as(img) + + +def augment_img_np3(img, mode=0): + if mode == 0: + return img + elif mode == 1: + return img.transpose(1, 0, 2) + elif mode == 2: + return img[::-1, :, :] + elif mode == 3: + img = img[::-1, :, :] + img = img.transpose(1, 0, 2) + return img + elif mode == 4: + return img[:, ::-1, :] + elif mode == 5: + img = img[:, ::-1, :] + img = img.transpose(1, 0, 2) + return img + elif mode == 6: + img = img[:, ::-1, :] + img = img[::-1, :, :] + return img + elif mode == 7: + img = img[:, ::-1, :] + img = img[::-1, :, :] + img = img.transpose(1, 0, 2) + return img + + +def augment_imgs(img_list, hflip=True, rot=True): + # horizontal flip OR rotate + hflip = hflip and random.random() < 0.5 + vflip = rot and random.random() < 0.5 + rot90 = rot and random.random() < 0.5 + + def _augment(img): + if hflip: + img = img[:, ::-1, :] + if vflip: + img = img[::-1, :, :] + if rot90: + img = img.transpose(1, 0, 2) + return img + + return [_augment(img) for img in img_list] + + +""" +# -------------------------------------------- +# modcrop and shave +# -------------------------------------------- +""" + + +def modcrop(img_in, scale): + # img_in: Numpy, HWC or HW + img = np.copy(img_in) + if img.ndim == 2: + H, W = img.shape + H_r, W_r = H % scale, W % scale + img = img[: H - H_r, : W - W_r] + elif img.ndim == 3: + H, W, C = img.shape + H_r, W_r = H % scale, W % scale + img = img[: H - H_r, : W - W_r, :] + else: + raise ValueError("Wrong img ndim: [{:d}].".format(img.ndim)) + return img + + +def shave(img_in, border=0): + # img_in: Numpy, HWC or HW + img = np.copy(img_in) + h, w = img.shape[:2] + img = img[border : h - border, border : w - border] + return img + + +""" +# -------------------------------------------- +# image processing process on numpy image +# channel_convert(in_c, tar_type, img_list): +# rgb2ycbcr(img, only_y=True): +# bgr2ycbcr(img, only_y=True): +# ycbcr2rgb(img): +# -------------------------------------------- +""" + + +def rgb2ycbcr(img, only_y=True): + """same as matlab rgb2ycbcr + only_y: only return Y channel + Input: + uint8, [0, 255] + float, [0, 1] + """ + in_img_type = img.dtype + img.astype(np.float32) + if in_img_type != np.uint8: + img *= 255.0 + # convert + if only_y: + rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0 + else: + rlt = np.matmul( + img, + [ + [65.481, -37.797, 112.0], + [128.553, -74.203, -93.786], + [24.966, 112.0, -18.214], + ], + ) / 255.0 + [16, 128, 128] + if in_img_type == np.uint8: + rlt = rlt.round() + else: + rlt /= 255.0 + return rlt.astype(in_img_type) + + +def ycbcr2rgb(img): + """same as matlab ycbcr2rgb + Input: + uint8, [0, 255] + float, [0, 1] + """ + in_img_type = img.dtype + img.astype(np.float32) + if in_img_type != np.uint8: + img *= 255.0 + # convert + rlt = np.matmul( + img, + [ + [0.00456621, 0.00456621, 0.00456621], + [0, -0.00153632, 0.00791071], + [0.00625893, -0.00318811, 0], + ], + ) * 255.0 + [-222.921, 135.576, -276.836] + if in_img_type == np.uint8: + rlt = rlt.round() + else: + rlt /= 255.0 + return rlt.astype(in_img_type) + + +def bgr2ycbcr(img, only_y=True): + """bgr version of rgb2ycbcr + only_y: only return Y channel + Input: + uint8, [0, 255] + float, [0, 1] + """ + in_img_type = img.dtype + img.astype(np.float32) + if in_img_type != np.uint8: + img *= 255.0 + # convert + if only_y: + rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0 + else: + rlt = np.matmul( + img, + [ + [24.966, 112.0, -18.214], + [128.553, -74.203, -93.786], + [65.481, -37.797, 112.0], + ], + ) / 255.0 + [16, 128, 128] + if in_img_type == np.uint8: + rlt = rlt.round() + else: + rlt /= 255.0 + return rlt.astype(in_img_type) + + +def channel_convert(in_c, tar_type, img_list): + # conversion among BGR, gray and y + if in_c == 3 and tar_type == "gray": # BGR to gray + gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] + return [np.expand_dims(img, axis=2) for img in gray_list] + elif in_c == 3 and tar_type == "y": # BGR to y + y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] + return [np.expand_dims(img, axis=2) for img in y_list] + elif in_c == 1 and tar_type == "RGB": # gray/y to BGR + return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] + else: + return img_list + + +""" +# -------------------------------------------- +# metric, PSNR and SSIM +# -------------------------------------------- +""" + + +# -------------------------------------------- +# PSNR +# -------------------------------------------- +def calculate_psnr(img1, img2, border=0): + # img1 and img2 have range [0, 255] + # img1 = img1.squeeze() + # img2 = img2.squeeze() + if not img1.shape == img2.shape: + raise ValueError("Input images must have the same dimensions.") + h, w = img1.shape[:2] + img1 = img1[border : h - border, border : w - border] + img2 = img2[border : h - border, border : w - border] + + img1 = img1.astype(np.float64) + img2 = img2.astype(np.float64) + mse = np.mean((img1 - img2) ** 2) + if mse == 0: + return float("inf") + return 20 * math.log10(255.0 / math.sqrt(mse)) + + +# -------------------------------------------- +# SSIM +# -------------------------------------------- +def calculate_ssim(img1, img2, border=0): + """calculate SSIM + the same outputs as MATLAB's + img1, img2: [0, 255] + """ + # img1 = img1.squeeze() + # img2 = img2.squeeze() + if not img1.shape == img2.shape: + raise ValueError("Input images must have the same dimensions.") + h, w = img1.shape[:2] + img1 = img1[border : h - border, border : w - border] + img2 = img2[border : h - border, border : w - border] + + if img1.ndim == 2: + return ssim(img1, img2) + elif img1.ndim == 3: + if img1.shape[2] == 3: + ssims = [] + for i in range(3): + ssims.append(ssim(img1[:, :, i], img2[:, :, i])) + return np.array(ssims).mean() + elif img1.shape[2] == 1: + return ssim(np.squeeze(img1), np.squeeze(img2)) + else: + raise ValueError("Wrong input image dimensions.") + + +def ssim(img1, img2): + C1 = (0.01 * 255) ** 2 + C2 = (0.03 * 255) ** 2 + + img1 = img1.astype(np.float64) + img2 = img2.astype(np.float64) + kernel = cv2.getGaussianKernel(11, 1.5) + window = np.outer(kernel, kernel.transpose()) + + mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid + mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] + mu1_sq = mu1**2 + mu2_sq = mu2**2 + mu1_mu2 = mu1 * mu2 + sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq + sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq + sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 + + ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ( + (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2) + ) + return ssim_map.mean() + + +""" +# -------------------------------------------- +# matlab's bicubic imresize (numpy and torch) [0, 1] +# -------------------------------------------- +""" + + +# matlab 'imresize' function, now only support 'bicubic' +def cubic(x): + absx = torch.abs(x) + absx2 = absx**2 + absx3 = absx**3 + return (1.5 * absx3 - 2.5 * absx2 + 1) * ((absx <= 1).type_as(absx)) + ( + -0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2 + ) * (((absx > 1) * (absx <= 2)).type_as(absx)) + + +def calculate_weights_indices( + in_length, out_length, scale, kernel, kernel_width, antialiasing +): + if (scale < 1) and (antialiasing): + # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width + kernel_width = kernel_width / scale + + # Output-space coordinates + x = torch.linspace(1, out_length, out_length) + + # Input-space coordinates. Calculate the inverse mapping such that 0.5 + # in output space maps to 0.5 in input space, and 0.5+scale in output + # space maps to 1.5 in input space. + u = x / scale + 0.5 * (1 - 1 / scale) + + # What is the left-most pixel that can be involved in the computation? + left = torch.floor(u - kernel_width / 2) + + # What is the maximum number of pixels that can be involved in the + # computation? Note: it's OK to use an extra pixel here; if the + # corresponding weights are all zero, it will be eliminated at the end + # of this function. + P = math.ceil(kernel_width) + 2 + + # The indices of the input pixels involved in computing the k-th output + # pixel are in row k of the indices matrix. + indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace( + 0, P - 1, P + ).view(1, P).expand(out_length, P) + + # The weights used to compute the k-th output pixel are in row k of the + # weights matrix. + distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices + # apply cubic kernel + if (scale < 1) and (antialiasing): + weights = scale * cubic(distance_to_center * scale) + else: + weights = cubic(distance_to_center) + # Normalize the weights matrix so that each row sums to 1. + weights_sum = torch.sum(weights, 1).view(out_length, 1) + weights = weights / weights_sum.expand(out_length, P) + + # If a column in weights is all zero, get rid of it. only consider the first and last column. + weights_zero_tmp = torch.sum((weights == 0), 0) + if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): + indices = indices.narrow(1, 1, P - 2) + weights = weights.narrow(1, 1, P - 2) + if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): + indices = indices.narrow(1, 0, P - 2) + weights = weights.narrow(1, 0, P - 2) + weights = weights.contiguous() + indices = indices.contiguous() + sym_len_s = -indices.min() + 1 + sym_len_e = indices.max() - in_length + indices = indices + sym_len_s - 1 + return weights, indices, int(sym_len_s), int(sym_len_e) + + +# -------------------------------------------- +# imresize for tensor image [0, 1] +# -------------------------------------------- +def imresize(img, scale, antialiasing=True): + # Now the scale should be the same for H and W + # input: img: pytorch tensor, CHW or HW [0,1] + # output: CHW or HW [0,1] w/o round + need_squeeze = True if img.dim() == 2 else False + if need_squeeze: + img.unsqueeze_(0) + in_C, in_H, in_W = img.size() + out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) + kernel_width = 4 + kernel = "cubic" + + # Return the desired dimension order for performing the resize. The + # strategy is to perform the resize first along the dimension with the + # smallest scale factor. + # Now we do not support this. + + # get weights and indices + weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( + in_H, out_H, scale, kernel, kernel_width, antialiasing + ) + weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( + in_W, out_W, scale, kernel, kernel_width, antialiasing + ) + # process H dimension + # symmetric copying + img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) + img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) + + sym_patch = img[:, :sym_len_Hs, :] + inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() + sym_patch_inv = sym_patch.index_select(1, inv_idx) + img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) + + sym_patch = img[:, -sym_len_He:, :] + inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() + sym_patch_inv = sym_patch.index_select(1, inv_idx) + img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) + + out_1 = torch.FloatTensor(in_C, out_H, in_W) + kernel_width = weights_H.size(1) + for i in range(out_H): + idx = int(indices_H[i][0]) + for j in range(out_C): + out_1[j, i, :] = ( + img_aug[j, idx : idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) + ) + + # process W dimension + # symmetric copying + out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) + out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) + + sym_patch = out_1[:, :, :sym_len_Ws] + inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() + sym_patch_inv = sym_patch.index_select(2, inv_idx) + out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) + + sym_patch = out_1[:, :, -sym_len_We:] + inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() + sym_patch_inv = sym_patch.index_select(2, inv_idx) + out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) + + out_2 = torch.FloatTensor(in_C, out_H, out_W) + kernel_width = weights_W.size(1) + for i in range(out_W): + idx = int(indices_W[i][0]) + for j in range(out_C): + out_2[j, :, i] = out_1_aug[j, :, idx : idx + kernel_width].mv(weights_W[i]) + if need_squeeze: + out_2.squeeze_() + return out_2 + + +# -------------------------------------------- +# imresize for numpy image [0, 1] +# -------------------------------------------- +def imresize_np(img, scale, antialiasing=True): + # Now the scale should be the same for H and W + # input: img: Numpy, HWC or HW [0,1] + # output: HWC or HW [0,1] w/o round + img = torch.from_numpy(img) + need_squeeze = True if img.dim() == 2 else False + if need_squeeze: + img.unsqueeze_(2) + + in_H, in_W, in_C = img.size() + out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) + kernel_width = 4 + kernel = "cubic" + + # Return the desired dimension order for performing the resize. The + # strategy is to perform the resize first along the dimension with the + # smallest scale factor. + # Now we do not support this. + + # get weights and indices + weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( + in_H, out_H, scale, kernel, kernel_width, antialiasing + ) + weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( + in_W, out_W, scale, kernel, kernel_width, antialiasing + ) + # process H dimension + # symmetric copying + img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) + img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) + + sym_patch = img[:sym_len_Hs, :, :] + inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() + sym_patch_inv = sym_patch.index_select(0, inv_idx) + img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) + + sym_patch = img[-sym_len_He:, :, :] + inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() + sym_patch_inv = sym_patch.index_select(0, inv_idx) + img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) + + out_1 = torch.FloatTensor(out_H, in_W, in_C) + kernel_width = weights_H.size(1) + for i in range(out_H): + idx = int(indices_H[i][0]) + for j in range(out_C): + out_1[i, :, j] = ( + img_aug[idx : idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i]) + ) + + # process W dimension + # symmetric copying + out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) + out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) + + sym_patch = out_1[:, :sym_len_Ws, :] + inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() + sym_patch_inv = sym_patch.index_select(1, inv_idx) + out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) + + sym_patch = out_1[:, -sym_len_We:, :] + inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() + sym_patch_inv = sym_patch.index_select(1, inv_idx) + out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) + + out_2 = torch.FloatTensor(out_H, out_W, in_C) + kernel_width = weights_W.size(1) + for i in range(out_W): + idx = int(indices_W[i][0]) + for j in range(out_C): + out_2[:, i, j] = out_1_aug[:, idx : idx + kernel_width, j].mv(weights_W[i]) + if need_squeeze: + out_2.squeeze_() + + return out_2.numpy() + + +if __name__ == "__main__": + print("---") +# img = imread_uint('test.bmp', 3) +# img = uint2single(img) +# img_bicubic = imresize_np(img, 1/4) diff --git a/extern/ldm_zero123/modules/losses/__init__.py b/extern/ldm_zero123/modules/losses/__init__.py new file mode 100755 index 0000000..15c99be --- /dev/null +++ b/extern/ldm_zero123/modules/losses/__init__.py @@ -0,0 +1 @@ +from extern.ldm_zero123.modules.losses.contperceptual import LPIPSWithDiscriminator diff --git a/extern/ldm_zero123/modules/losses/contperceptual.py b/extern/ldm_zero123/modules/losses/contperceptual.py new file mode 100755 index 0000000..422f749 --- /dev/null +++ b/extern/ldm_zero123/modules/losses/contperceptual.py @@ -0,0 +1,153 @@ +import torch +import torch.nn as nn +from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no? + + +class LPIPSWithDiscriminator(nn.Module): + def __init__( + self, + disc_start, + logvar_init=0.0, + kl_weight=1.0, + pixelloss_weight=1.0, + disc_num_layers=3, + disc_in_channels=3, + disc_factor=1.0, + disc_weight=1.0, + perceptual_weight=1.0, + use_actnorm=False, + disc_conditional=False, + disc_loss="hinge", + ): + super().__init__() + assert disc_loss in ["hinge", "vanilla"] + self.kl_weight = kl_weight + self.pixel_weight = pixelloss_weight + self.perceptual_loss = LPIPS().eval() + self.perceptual_weight = perceptual_weight + # output log variance + self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) + + self.discriminator = NLayerDiscriminator( + input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm + ).apply(weights_init) + self.discriminator_iter_start = disc_start + self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss + self.disc_factor = disc_factor + self.discriminator_weight = disc_weight + self.disc_conditional = disc_conditional + + def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): + if last_layer is not None: + nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] + g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] + else: + nll_grads = torch.autograd.grad( + nll_loss, self.last_layer[0], retain_graph=True + )[0] + g_grads = torch.autograd.grad( + g_loss, self.last_layer[0], retain_graph=True + )[0] + + d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) + d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() + d_weight = d_weight * self.discriminator_weight + return d_weight + + def forward( + self, + inputs, + reconstructions, + posteriors, + optimizer_idx, + global_step, + last_layer=None, + cond=None, + split="train", + weights=None, + ): + rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) + if self.perceptual_weight > 0: + p_loss = self.perceptual_loss( + inputs.contiguous(), reconstructions.contiguous() + ) + rec_loss = rec_loss + self.perceptual_weight * p_loss + + nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar + weighted_nll_loss = nll_loss + if weights is not None: + weighted_nll_loss = weights * nll_loss + weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] + nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] + kl_loss = posteriors.kl() + kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] + + # now the GAN part + if optimizer_idx == 0: + # generator update + if cond is None: + assert not self.disc_conditional + logits_fake = self.discriminator(reconstructions.contiguous()) + else: + assert self.disc_conditional + logits_fake = self.discriminator( + torch.cat((reconstructions.contiguous(), cond), dim=1) + ) + g_loss = -torch.mean(logits_fake) + + if self.disc_factor > 0.0: + try: + d_weight = self.calculate_adaptive_weight( + nll_loss, g_loss, last_layer=last_layer + ) + except RuntimeError: + assert not self.training + d_weight = torch.tensor(0.0) + else: + d_weight = torch.tensor(0.0) + + disc_factor = adopt_weight( + self.disc_factor, global_step, threshold=self.discriminator_iter_start + ) + loss = ( + weighted_nll_loss + + self.kl_weight * kl_loss + + d_weight * disc_factor * g_loss + ) + + log = { + "{}/total_loss".format(split): loss.clone().detach().mean(), + "{}/logvar".format(split): self.logvar.detach(), + "{}/kl_loss".format(split): kl_loss.detach().mean(), + "{}/nll_loss".format(split): nll_loss.detach().mean(), + "{}/rec_loss".format(split): rec_loss.detach().mean(), + "{}/d_weight".format(split): d_weight.detach(), + "{}/disc_factor".format(split): torch.tensor(disc_factor), + "{}/g_loss".format(split): g_loss.detach().mean(), + } + return loss, log + + if optimizer_idx == 1: + # second pass for discriminator update + if cond is None: + logits_real = self.discriminator(inputs.contiguous().detach()) + logits_fake = self.discriminator(reconstructions.contiguous().detach()) + else: + logits_real = self.discriminator( + torch.cat((inputs.contiguous().detach(), cond), dim=1) + ) + logits_fake = self.discriminator( + torch.cat((reconstructions.contiguous().detach(), cond), dim=1) + ) + + disc_factor = adopt_weight( + self.disc_factor, global_step, threshold=self.discriminator_iter_start + ) + d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) + + log = { + "{}/disc_loss".format(split): d_loss.clone().detach().mean(), + "{}/logits_real".format(split): logits_real.detach().mean(), + "{}/logits_fake".format(split): logits_fake.detach().mean(), + } + return d_loss, log diff --git a/extern/ldm_zero123/modules/losses/vqperceptual.py b/extern/ldm_zero123/modules/losses/vqperceptual.py new file mode 100755 index 0000000..feb5885 --- /dev/null +++ b/extern/ldm_zero123/modules/losses/vqperceptual.py @@ -0,0 +1,218 @@ +import torch +import torch.nn.functional as F +from einops import repeat +from taming.modules.discriminator.model import NLayerDiscriminator, weights_init +from taming.modules.losses.lpips import LPIPS +from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss +from torch import nn + + +def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights): + assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0] + loss_real = torch.mean(F.relu(1.0 - logits_real), dim=[1, 2, 3]) + loss_fake = torch.mean(F.relu(1.0 + logits_fake), dim=[1, 2, 3]) + loss_real = (weights * loss_real).sum() / weights.sum() + loss_fake = (weights * loss_fake).sum() / weights.sum() + d_loss = 0.5 * (loss_real + loss_fake) + return d_loss + + +def adopt_weight(weight, global_step, threshold=0, value=0.0): + if global_step < threshold: + weight = value + return weight + + +def measure_perplexity(predicted_indices, n_embed): + # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py + # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally + encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed) + avg_probs = encodings.mean(0) + perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() + cluster_use = torch.sum(avg_probs > 0) + return perplexity, cluster_use + + +def l1(x, y): + return torch.abs(x - y) + + +def l2(x, y): + return torch.pow((x - y), 2) + + +class VQLPIPSWithDiscriminator(nn.Module): + def __init__( + self, + disc_start, + codebook_weight=1.0, + pixelloss_weight=1.0, + disc_num_layers=3, + disc_in_channels=3, + disc_factor=1.0, + disc_weight=1.0, + perceptual_weight=1.0, + use_actnorm=False, + disc_conditional=False, + disc_ndf=64, + disc_loss="hinge", + n_classes=None, + perceptual_loss="lpips", + pixel_loss="l1", + ): + super().__init__() + assert disc_loss in ["hinge", "vanilla"] + assert perceptual_loss in ["lpips", "clips", "dists"] + assert pixel_loss in ["l1", "l2"] + self.codebook_weight = codebook_weight + self.pixel_weight = pixelloss_weight + if perceptual_loss == "lpips": + print(f"{self.__class__.__name__}: Running with LPIPS.") + self.perceptual_loss = LPIPS().eval() + else: + raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<") + self.perceptual_weight = perceptual_weight + + if pixel_loss == "l1": + self.pixel_loss = l1 + else: + self.pixel_loss = l2 + + self.discriminator = NLayerDiscriminator( + input_nc=disc_in_channels, + n_layers=disc_num_layers, + use_actnorm=use_actnorm, + ndf=disc_ndf, + ).apply(weights_init) + self.discriminator_iter_start = disc_start + if disc_loss == "hinge": + self.disc_loss = hinge_d_loss + elif disc_loss == "vanilla": + self.disc_loss = vanilla_d_loss + else: + raise ValueError(f"Unknown GAN loss '{disc_loss}'.") + print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.") + self.disc_factor = disc_factor + self.discriminator_weight = disc_weight + self.disc_conditional = disc_conditional + self.n_classes = n_classes + + def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): + if last_layer is not None: + nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] + g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] + else: + nll_grads = torch.autograd.grad( + nll_loss, self.last_layer[0], retain_graph=True + )[0] + g_grads = torch.autograd.grad( + g_loss, self.last_layer[0], retain_graph=True + )[0] + + d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) + d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() + d_weight = d_weight * self.discriminator_weight + return d_weight + + def forward( + self, + codebook_loss, + inputs, + reconstructions, + optimizer_idx, + global_step, + last_layer=None, + cond=None, + split="train", + predicted_indices=None, + ): + if not exists(codebook_loss): + codebook_loss = torch.tensor([0.0]).to(inputs.device) + # rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) + rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous()) + if self.perceptual_weight > 0: + p_loss = self.perceptual_loss( + inputs.contiguous(), reconstructions.contiguous() + ) + rec_loss = rec_loss + self.perceptual_weight * p_loss + else: + p_loss = torch.tensor([0.0]) + + nll_loss = rec_loss + # nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] + nll_loss = torch.mean(nll_loss) + + # now the GAN part + if optimizer_idx == 0: + # generator update + if cond is None: + assert not self.disc_conditional + logits_fake = self.discriminator(reconstructions.contiguous()) + else: + assert self.disc_conditional + logits_fake = self.discriminator( + torch.cat((reconstructions.contiguous(), cond), dim=1) + ) + g_loss = -torch.mean(logits_fake) + + try: + d_weight = self.calculate_adaptive_weight( + nll_loss, g_loss, last_layer=last_layer + ) + except RuntimeError: + assert not self.training + d_weight = torch.tensor(0.0) + + disc_factor = adopt_weight( + self.disc_factor, global_step, threshold=self.discriminator_iter_start + ) + loss = ( + nll_loss + + d_weight * disc_factor * g_loss + + self.codebook_weight * codebook_loss.mean() + ) + + log = { + "{}/total_loss".format(split): loss.clone().detach().mean(), + "{}/quant_loss".format(split): codebook_loss.detach().mean(), + "{}/nll_loss".format(split): nll_loss.detach().mean(), + "{}/rec_loss".format(split): rec_loss.detach().mean(), + "{}/p_loss".format(split): p_loss.detach().mean(), + "{}/d_weight".format(split): d_weight.detach(), + "{}/disc_factor".format(split): torch.tensor(disc_factor), + "{}/g_loss".format(split): g_loss.detach().mean(), + } + if predicted_indices is not None: + assert self.n_classes is not None + with torch.no_grad(): + perplexity, cluster_usage = measure_perplexity( + predicted_indices, self.n_classes + ) + log[f"{split}/perplexity"] = perplexity + log[f"{split}/cluster_usage"] = cluster_usage + return loss, log + + if optimizer_idx == 1: + # second pass for discriminator update + if cond is None: + logits_real = self.discriminator(inputs.contiguous().detach()) + logits_fake = self.discriminator(reconstructions.contiguous().detach()) + else: + logits_real = self.discriminator( + torch.cat((inputs.contiguous().detach(), cond), dim=1) + ) + logits_fake = self.discriminator( + torch.cat((reconstructions.contiguous().detach(), cond), dim=1) + ) + + disc_factor = adopt_weight( + self.disc_factor, global_step, threshold=self.discriminator_iter_start + ) + d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) + + log = { + "{}/disc_loss".format(split): d_loss.clone().detach().mean(), + "{}/logits_real".format(split): logits_real.detach().mean(), + "{}/logits_fake".format(split): logits_fake.detach().mean(), + } + return d_loss, log diff --git a/extern/ldm_zero123/modules/x_transformer.py b/extern/ldm_zero123/modules/x_transformer.py new file mode 100755 index 0000000..ab8fab2 --- /dev/null +++ b/extern/ldm_zero123/modules/x_transformer.py @@ -0,0 +1,705 @@ +"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers""" +from collections import namedtuple +from functools import partial +from inspect import isfunction + +import torch +import torch.nn.functional as F +from einops import rearrange, reduce, repeat +from torch import einsum, nn + +# constants + +DEFAULT_DIM_HEAD = 64 + +Intermediates = namedtuple("Intermediates", ["pre_softmax_attn", "post_softmax_attn"]) + +LayerIntermediates = namedtuple("Intermediates", ["hiddens", "attn_intermediates"]) + + +class AbsolutePositionalEmbedding(nn.Module): + def __init__(self, dim, max_seq_len): + super().__init__() + self.emb = nn.Embedding(max_seq_len, dim) + self.init_() + + def init_(self): + nn.init.normal_(self.emb.weight, std=0.02) + + def forward(self, x): + n = torch.arange(x.shape[1], device=x.device) + return self.emb(n)[None, :, :] + + +class FixedPositionalEmbedding(nn.Module): + def __init__(self, dim): + super().__init__() + inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) + self.register_buffer("inv_freq", inv_freq) + + def forward(self, x, seq_dim=1, offset=0): + t = ( + torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + + offset + ) + sinusoid_inp = torch.einsum("i , j -> i j", t, self.inv_freq) + emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) + return emb[None, :, :] + + +# helpers + + +def exists(val): + return val is not None + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def always(val): + def inner(*args, **kwargs): + return val + + return inner + + +def not_equals(val): + def inner(x): + return x != val + + return inner + + +def equals(val): + def inner(x): + return x == val + + return inner + + +def max_neg_value(tensor): + return -torch.finfo(tensor.dtype).max + + +# keyword argument helpers + + +def pick_and_pop(keys, d): + values = list(map(lambda key: d.pop(key), keys)) + return dict(zip(keys, values)) + + +def group_dict_by_key(cond, d): + return_val = [dict(), dict()] + for key in d.keys(): + match = bool(cond(key)) + ind = int(not match) + return_val[ind][key] = d[key] + return (*return_val,) + + +def string_begins_with(prefix, str): + return str.startswith(prefix) + + +def group_by_key_prefix(prefix, d): + return group_dict_by_key(partial(string_begins_with, prefix), d) + + +def groupby_prefix_and_trim(prefix, d): + kwargs_with_prefix, kwargs = group_dict_by_key( + partial(string_begins_with, prefix), d + ) + kwargs_without_prefix = dict( + map(lambda x: (x[0][len(prefix) :], x[1]), tuple(kwargs_with_prefix.items())) + ) + return kwargs_without_prefix, kwargs + + +# classes +class Scale(nn.Module): + def __init__(self, value, fn): + super().__init__() + self.value = value + self.fn = fn + + def forward(self, x, **kwargs): + x, *rest = self.fn(x, **kwargs) + return (x * self.value, *rest) + + +class Rezero(nn.Module): + def __init__(self, fn): + super().__init__() + self.fn = fn + self.g = nn.Parameter(torch.zeros(1)) + + def forward(self, x, **kwargs): + x, *rest = self.fn(x, **kwargs) + return (x * self.g, *rest) + + +class ScaleNorm(nn.Module): + def __init__(self, dim, eps=1e-5): + super().__init__() + self.scale = dim**-0.5 + self.eps = eps + self.g = nn.Parameter(torch.ones(1)) + + def forward(self, x): + norm = torch.norm(x, dim=-1, keepdim=True) * self.scale + return x / norm.clamp(min=self.eps) * self.g + + +class RMSNorm(nn.Module): + def __init__(self, dim, eps=1e-8): + super().__init__() + self.scale = dim**-0.5 + self.eps = eps + self.g = nn.Parameter(torch.ones(dim)) + + def forward(self, x): + norm = torch.norm(x, dim=-1, keepdim=True) * self.scale + return x / norm.clamp(min=self.eps) * self.g + + +class Residual(nn.Module): + def forward(self, x, residual): + return x + residual + + +class GRUGating(nn.Module): + def __init__(self, dim): + super().__init__() + self.gru = nn.GRUCell(dim, dim) + + def forward(self, x, residual): + gated_output = self.gru( + rearrange(x, "b n d -> (b n) d"), rearrange(residual, "b n d -> (b n) d") + ) + + return gated_output.reshape_as(x) + + +# feedforward + + +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = ( + nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) + if not glu + else GEGLU(dim, inner_dim) + ) + + self.net = nn.Sequential( + project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +# attention. +class Attention(nn.Module): + def __init__( + self, + dim, + dim_head=DEFAULT_DIM_HEAD, + heads=8, + causal=False, + mask=None, + talking_heads=False, + sparse_topk=None, + use_entmax15=False, + num_mem_kv=0, + dropout=0.0, + on_attn=False, + ): + super().__init__() + if use_entmax15: + raise NotImplementedError( + "Check out entmax activation instead of softmax activation!" + ) + self.scale = dim_head**-0.5 + self.heads = heads + self.causal = causal + self.mask = mask + + inner_dim = dim_head * heads + + self.to_q = nn.Linear(dim, inner_dim, bias=False) + self.to_k = nn.Linear(dim, inner_dim, bias=False) + self.to_v = nn.Linear(dim, inner_dim, bias=False) + self.dropout = nn.Dropout(dropout) + + # talking heads + self.talking_heads = talking_heads + if talking_heads: + self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) + self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) + + # explicit topk sparse attention + self.sparse_topk = sparse_topk + + # entmax + # self.attn_fn = entmax15 if use_entmax15 else F.softmax + self.attn_fn = F.softmax + + # add memory key / values + self.num_mem_kv = num_mem_kv + if num_mem_kv > 0: + self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) + self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) + + # attention on attention + self.attn_on_attn = on_attn + self.to_out = ( + nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) + if on_attn + else nn.Linear(inner_dim, dim) + ) + + def forward( + self, + x, + context=None, + mask=None, + context_mask=None, + rel_pos=None, + sinusoidal_emb=None, + prev_attn=None, + mem=None, + ): + b, n, _, h, talking_heads, device = ( + *x.shape, + self.heads, + self.talking_heads, + x.device, + ) + kv_input = default(context, x) + + q_input = x + k_input = kv_input + v_input = kv_input + + if exists(mem): + k_input = torch.cat((mem, k_input), dim=-2) + v_input = torch.cat((mem, v_input), dim=-2) + + if exists(sinusoidal_emb): + # in shortformer, the query would start at a position offset depending on the past cached memory + offset = k_input.shape[-2] - q_input.shape[-2] + q_input = q_input + sinusoidal_emb(q_input, offset=offset) + k_input = k_input + sinusoidal_emb(k_input) + + q = self.to_q(q_input) + k = self.to_k(k_input) + v = self.to_v(v_input) + + q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) + + input_mask = None + if any(map(exists, (mask, context_mask))): + q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) + k_mask = q_mask if not exists(context) else context_mask + k_mask = default( + k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool() + ) + q_mask = rearrange(q_mask, "b i -> b () i ()") + k_mask = rearrange(k_mask, "b j -> b () () j") + input_mask = q_mask * k_mask + + if self.num_mem_kv > 0: + mem_k, mem_v = map( + lambda t: repeat(t, "h n d -> b h n d", b=b), (self.mem_k, self.mem_v) + ) + k = torch.cat((mem_k, k), dim=-2) + v = torch.cat((mem_v, v), dim=-2) + if exists(input_mask): + input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) + + dots = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale + mask_value = max_neg_value(dots) + + if exists(prev_attn): + dots = dots + prev_attn + + pre_softmax_attn = dots + + if talking_heads: + dots = einsum( + "b h i j, h k -> b k i j", dots, self.pre_softmax_proj + ).contiguous() + + if exists(rel_pos): + dots = rel_pos(dots) + + if exists(input_mask): + dots.masked_fill_(~input_mask, mask_value) + del input_mask + + if self.causal: + i, j = dots.shape[-2:] + r = torch.arange(i, device=device) + mask = rearrange(r, "i -> () () i ()") < rearrange(r, "j -> () () () j") + mask = F.pad(mask, (j - i, 0), value=False) + dots.masked_fill_(mask, mask_value) + del mask + + if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: + top, _ = dots.topk(self.sparse_topk, dim=-1) + vk = top[..., -1].unsqueeze(-1).expand_as(dots) + mask = dots < vk + dots.masked_fill_(mask, mask_value) + del mask + + attn = self.attn_fn(dots, dim=-1) + post_softmax_attn = attn + + attn = self.dropout(attn) + + if talking_heads: + attn = einsum( + "b h i j, h k -> b k i j", attn, self.post_softmax_proj + ).contiguous() + + out = einsum("b h i j, b h j d -> b h i d", attn, v) + out = rearrange(out, "b h n d -> b n (h d)") + + intermediates = Intermediates( + pre_softmax_attn=pre_softmax_attn, post_softmax_attn=post_softmax_attn + ) + + return self.to_out(out), intermediates + + +class AttentionLayers(nn.Module): + def __init__( + self, + dim, + depth, + heads=8, + causal=False, + cross_attend=False, + only_cross=False, + use_scalenorm=False, + use_rmsnorm=False, + use_rezero=False, + rel_pos_num_buckets=32, + rel_pos_max_distance=128, + position_infused_attn=False, + custom_layers=None, + sandwich_coef=None, + par_ratio=None, + residual_attn=False, + cross_residual_attn=False, + macaron=False, + pre_norm=True, + gate_residual=False, + **kwargs, + ): + super().__init__() + ff_kwargs, kwargs = groupby_prefix_and_trim("ff_", kwargs) + attn_kwargs, _ = groupby_prefix_and_trim("attn_", kwargs) + + dim_head = attn_kwargs.get("dim_head", DEFAULT_DIM_HEAD) + + self.dim = dim + self.depth = depth + self.layers = nn.ModuleList([]) + + self.has_pos_emb = position_infused_attn + self.pia_pos_emb = ( + FixedPositionalEmbedding(dim) if position_infused_attn else None + ) + self.rotary_pos_emb = always(None) + + assert ( + rel_pos_num_buckets <= rel_pos_max_distance + ), "number of relative position buckets must be less than the relative position max distance" + self.rel_pos = None + + self.pre_norm = pre_norm + + self.residual_attn = residual_attn + self.cross_residual_attn = cross_residual_attn + + norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm + norm_class = RMSNorm if use_rmsnorm else norm_class + norm_fn = partial(norm_class, dim) + + norm_fn = nn.Identity if use_rezero else norm_fn + branch_fn = Rezero if use_rezero else None + + if cross_attend and not only_cross: + default_block = ("a", "c", "f") + elif cross_attend and only_cross: + default_block = ("c", "f") + else: + default_block = ("a", "f") + + if macaron: + default_block = ("f",) + default_block + + if exists(custom_layers): + layer_types = custom_layers + elif exists(par_ratio): + par_depth = depth * len(default_block) + assert 1 < par_ratio <= par_depth, "par ratio out of range" + default_block = tuple(filter(not_equals("f"), default_block)) + par_attn = par_depth // par_ratio + depth_cut = ( + par_depth * 2 // 3 + ) # 2 / 3 attention layer cutoff suggested by PAR paper + par_width = (depth_cut + depth_cut // par_attn) // par_attn + assert ( + len(default_block) <= par_width + ), "default block is too large for par_ratio" + par_block = default_block + ("f",) * (par_width - len(default_block)) + par_head = par_block * par_attn + layer_types = par_head + ("f",) * (par_depth - len(par_head)) + elif exists(sandwich_coef): + assert ( + sandwich_coef > 0 and sandwich_coef <= depth + ), "sandwich coefficient should be less than the depth" + layer_types = ( + ("a",) * sandwich_coef + + default_block * (depth - sandwich_coef) + + ("f",) * sandwich_coef + ) + else: + layer_types = default_block * depth + + self.layer_types = layer_types + self.num_attn_layers = len(list(filter(equals("a"), layer_types))) + + for layer_type in self.layer_types: + if layer_type == "a": + layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) + elif layer_type == "c": + layer = Attention(dim, heads=heads, **attn_kwargs) + elif layer_type == "f": + layer = FeedForward(dim, **ff_kwargs) + layer = layer if not macaron else Scale(0.5, layer) + else: + raise Exception(f"invalid layer type {layer_type}") + + if isinstance(layer, Attention) and exists(branch_fn): + layer = branch_fn(layer) + + if gate_residual: + residual_fn = GRUGating(dim) + else: + residual_fn = Residual() + + self.layers.append(nn.ModuleList([norm_fn(), layer, residual_fn])) + + def forward( + self, + x, + context=None, + mask=None, + context_mask=None, + mems=None, + return_hiddens=False, + ): + hiddens = [] + intermediates = [] + prev_attn = None + prev_cross_attn = None + + mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers + + for ind, (layer_type, (norm, block, residual_fn)) in enumerate( + zip(self.layer_types, self.layers) + ): + is_last = ind == (len(self.layers) - 1) + + if layer_type == "a": + hiddens.append(x) + layer_mem = mems.pop(0) + + residual = x + + if self.pre_norm: + x = norm(x) + + if layer_type == "a": + out, inter = block( + x, + mask=mask, + sinusoidal_emb=self.pia_pos_emb, + rel_pos=self.rel_pos, + prev_attn=prev_attn, + mem=layer_mem, + ) + elif layer_type == "c": + out, inter = block( + x, + context=context, + mask=mask, + context_mask=context_mask, + prev_attn=prev_cross_attn, + ) + elif layer_type == "f": + out = block(x) + + x = residual_fn(out, residual) + + if layer_type in ("a", "c"): + intermediates.append(inter) + + if layer_type == "a" and self.residual_attn: + prev_attn = inter.pre_softmax_attn + elif layer_type == "c" and self.cross_residual_attn: + prev_cross_attn = inter.pre_softmax_attn + + if not self.pre_norm and not is_last: + x = norm(x) + + if return_hiddens: + intermediates = LayerIntermediates( + hiddens=hiddens, attn_intermediates=intermediates + ) + + return x, intermediates + + return x + + +class Encoder(AttentionLayers): + def __init__(self, **kwargs): + assert "causal" not in kwargs, "cannot set causality on encoder" + super().__init__(causal=False, **kwargs) + + +class TransformerWrapper(nn.Module): + def __init__( + self, + *, + num_tokens, + max_seq_len, + attn_layers, + emb_dim=None, + max_mem_len=0.0, + emb_dropout=0.0, + num_memory_tokens=None, + tie_embedding=False, + use_pos_emb=True, + ): + super().__init__() + assert isinstance( + attn_layers, AttentionLayers + ), "attention layers must be one of Encoder or Decoder" + + dim = attn_layers.dim + emb_dim = default(emb_dim, dim) + + self.max_seq_len = max_seq_len + self.max_mem_len = max_mem_len + self.num_tokens = num_tokens + + self.token_emb = nn.Embedding(num_tokens, emb_dim) + self.pos_emb = ( + AbsolutePositionalEmbedding(emb_dim, max_seq_len) + if (use_pos_emb and not attn_layers.has_pos_emb) + else always(0) + ) + self.emb_dropout = nn.Dropout(emb_dropout) + + self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() + self.attn_layers = attn_layers + self.norm = nn.LayerNorm(dim) + + self.init_() + + self.to_logits = ( + nn.Linear(dim, num_tokens) + if not tie_embedding + else lambda t: t @ self.token_emb.weight.t() + ) + + # memory tokens (like [cls]) from Memory Transformers paper + num_memory_tokens = default(num_memory_tokens, 0) + self.num_memory_tokens = num_memory_tokens + if num_memory_tokens > 0: + self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) + + # let funnel encoder know number of memory tokens, if specified + if hasattr(attn_layers, "num_memory_tokens"): + attn_layers.num_memory_tokens = num_memory_tokens + + def init_(self): + nn.init.normal_(self.token_emb.weight, std=0.02) + + def forward( + self, + x, + return_embeddings=False, + mask=None, + return_mems=False, + return_attn=False, + mems=None, + **kwargs, + ): + b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens + x = self.token_emb(x) + x += self.pos_emb(x) + x = self.emb_dropout(x) + + x = self.project_emb(x) + + if num_mem > 0: + mem = repeat(self.memory_tokens, "n d -> b n d", b=b) + x = torch.cat((mem, x), dim=1) + + # auto-handle masking after appending memory tokens + if exists(mask): + mask = F.pad(mask, (num_mem, 0), value=True) + + x, intermediates = self.attn_layers( + x, mask=mask, mems=mems, return_hiddens=True, **kwargs + ) + x = self.norm(x) + + mem, x = x[:, :num_mem], x[:, num_mem:] + + out = self.to_logits(x) if not return_embeddings else x + + if return_mems: + hiddens = intermediates.hiddens + new_mems = ( + list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) + if exists(mems) + else hiddens + ) + new_mems = list( + map(lambda t: t[..., -self.max_mem_len :, :].detach(), new_mems) + ) + return out, new_mems + + if return_attn: + attn_maps = list( + map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates) + ) + return out, attn_maps + + return out diff --git a/extern/ldm_zero123/thirdp/psp/helpers.py b/extern/ldm_zero123/thirdp/psp/helpers.py new file mode 100755 index 0000000..fc0de4d --- /dev/null +++ b/extern/ldm_zero123/thirdp/psp/helpers.py @@ -0,0 +1,144 @@ +# https://github.com/eladrich/pixel2style2pixel + +from collections import namedtuple + +import torch +from torch.nn import ( + AdaptiveAvgPool2d, + BatchNorm2d, + Conv2d, + MaxPool2d, + Module, + PReLU, + ReLU, + Sequential, + Sigmoid, +) + +""" +ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch) +""" + + +class Flatten(Module): + def forward(self, input): + return input.view(input.size(0), -1) + + +def l2_norm(input, axis=1): + norm = torch.norm(input, 2, axis, True) + output = torch.div(input, norm) + return output + + +class Bottleneck(namedtuple("Block", ["in_channel", "depth", "stride"])): + """A named tuple describing a ResNet block.""" + + +def get_block(in_channel, depth, num_units, stride=2): + return [Bottleneck(in_channel, depth, stride)] + [ + Bottleneck(depth, depth, 1) for i in range(num_units - 1) + ] + + +def get_blocks(num_layers): + if num_layers == 50: + blocks = [ + get_block(in_channel=64, depth=64, num_units=3), + get_block(in_channel=64, depth=128, num_units=4), + get_block(in_channel=128, depth=256, num_units=14), + get_block(in_channel=256, depth=512, num_units=3), + ] + elif num_layers == 100: + blocks = [ + get_block(in_channel=64, depth=64, num_units=3), + get_block(in_channel=64, depth=128, num_units=13), + get_block(in_channel=128, depth=256, num_units=30), + get_block(in_channel=256, depth=512, num_units=3), + ] + elif num_layers == 152: + blocks = [ + get_block(in_channel=64, depth=64, num_units=3), + get_block(in_channel=64, depth=128, num_units=8), + get_block(in_channel=128, depth=256, num_units=36), + get_block(in_channel=256, depth=512, num_units=3), + ] + else: + raise ValueError( + "Invalid number of layers: {}. Must be one of [50, 100, 152]".format( + num_layers + ) + ) + return blocks + + +class SEModule(Module): + def __init__(self, channels, reduction): + super(SEModule, self).__init__() + self.avg_pool = AdaptiveAvgPool2d(1) + self.fc1 = Conv2d( + channels, channels // reduction, kernel_size=1, padding=0, bias=False + ) + self.relu = ReLU(inplace=True) + self.fc2 = Conv2d( + channels // reduction, channels, kernel_size=1, padding=0, bias=False + ) + self.sigmoid = Sigmoid() + + def forward(self, x): + module_input = x + x = self.avg_pool(x) + x = self.fc1(x) + x = self.relu(x) + x = self.fc2(x) + x = self.sigmoid(x) + return module_input * x + + +class bottleneck_IR(Module): + def __init__(self, in_channel, depth, stride): + super(bottleneck_IR, self).__init__() + if in_channel == depth: + self.shortcut_layer = MaxPool2d(1, stride) + else: + self.shortcut_layer = Sequential( + Conv2d(in_channel, depth, (1, 1), stride, bias=False), + BatchNorm2d(depth), + ) + self.res_layer = Sequential( + BatchNorm2d(in_channel), + Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), + PReLU(depth), + Conv2d(depth, depth, (3, 3), stride, 1, bias=False), + BatchNorm2d(depth), + ) + + def forward(self, x): + shortcut = self.shortcut_layer(x) + res = self.res_layer(x) + return res + shortcut + + +class bottleneck_IR_SE(Module): + def __init__(self, in_channel, depth, stride): + super(bottleneck_IR_SE, self).__init__() + if in_channel == depth: + self.shortcut_layer = MaxPool2d(1, stride) + else: + self.shortcut_layer = Sequential( + Conv2d(in_channel, depth, (1, 1), stride, bias=False), + BatchNorm2d(depth), + ) + self.res_layer = Sequential( + BatchNorm2d(in_channel), + Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), + PReLU(depth), + Conv2d(depth, depth, (3, 3), stride, 1, bias=False), + BatchNorm2d(depth), + SEModule(depth, 16), + ) + + def forward(self, x): + shortcut = self.shortcut_layer(x) + res = self.res_layer(x) + return res + shortcut diff --git a/extern/ldm_zero123/thirdp/psp/id_loss.py b/extern/ldm_zero123/thirdp/psp/id_loss.py new file mode 100755 index 0000000..76ab9eb --- /dev/null +++ b/extern/ldm_zero123/thirdp/psp/id_loss.py @@ -0,0 +1,26 @@ +# https://github.com/eladrich/pixel2style2pixel +import torch +from torch import nn + +from extern.ldm_zero123.thirdp.psp.model_irse import Backbone + + +class IDFeatures(nn.Module): + def __init__(self, model_path): + super(IDFeatures, self).__init__() + print("Loading ResNet ArcFace") + self.facenet = Backbone( + input_size=112, num_layers=50, drop_ratio=0.6, mode="ir_se" + ) + self.facenet.load_state_dict(torch.load(model_path, map_location="cpu")) + self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) + self.facenet.eval() + + def forward(self, x, crop=False): + # Not sure of the image range here + if crop: + x = torch.nn.functional.interpolate(x, (256, 256), mode="area") + x = x[:, :, 35:223, 32:220] + x = self.face_pool(x) + x_feats = self.facenet(x) + return x_feats diff --git a/extern/ldm_zero123/thirdp/psp/model_irse.py b/extern/ldm_zero123/thirdp/psp/model_irse.py new file mode 100755 index 0000000..50174ab --- /dev/null +++ b/extern/ldm_zero123/thirdp/psp/model_irse.py @@ -0,0 +1,118 @@ +# https://github.com/eladrich/pixel2style2pixel + +from torch.nn import ( + BatchNorm1d, + BatchNorm2d, + Conv2d, + Dropout, + Linear, + Module, + PReLU, + Sequential, +) + +from extern.ldm_zero123.thirdp.psp.helpers import ( + Flatten, + bottleneck_IR, + bottleneck_IR_SE, + get_blocks, + l2_norm, +) + +""" +Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch) +""" + + +class Backbone(Module): + def __init__(self, input_size, num_layers, mode="ir", drop_ratio=0.4, affine=True): + super(Backbone, self).__init__() + assert input_size in [112, 224], "input_size should be 112 or 224" + assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152" + assert mode in ["ir", "ir_se"], "mode should be ir or ir_se" + blocks = get_blocks(num_layers) + if mode == "ir": + unit_module = bottleneck_IR + elif mode == "ir_se": + unit_module = bottleneck_IR_SE + self.input_layer = Sequential( + Conv2d(3, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64) + ) + if input_size == 112: + self.output_layer = Sequential( + BatchNorm2d(512), + Dropout(drop_ratio), + Flatten(), + Linear(512 * 7 * 7, 512), + BatchNorm1d(512, affine=affine), + ) + else: + self.output_layer = Sequential( + BatchNorm2d(512), + Dropout(drop_ratio), + Flatten(), + Linear(512 * 14 * 14, 512), + BatchNorm1d(512, affine=affine), + ) + + modules = [] + for block in blocks: + for bottleneck in block: + modules.append( + unit_module( + bottleneck.in_channel, bottleneck.depth, bottleneck.stride + ) + ) + self.body = Sequential(*modules) + + def forward(self, x): + x = self.input_layer(x) + x = self.body(x) + x = self.output_layer(x) + return l2_norm(x) + + +def IR_50(input_size): + """Constructs a ir-50 model.""" + model = Backbone(input_size, num_layers=50, mode="ir", drop_ratio=0.4, affine=False) + return model + + +def IR_101(input_size): + """Constructs a ir-101 model.""" + model = Backbone( + input_size, num_layers=100, mode="ir", drop_ratio=0.4, affine=False + ) + return model + + +def IR_152(input_size): + """Constructs a ir-152 model.""" + model = Backbone( + input_size, num_layers=152, mode="ir", drop_ratio=0.4, affine=False + ) + return model + + +def IR_SE_50(input_size): + """Constructs a ir_se-50 model.""" + model = Backbone( + input_size, num_layers=50, mode="ir_se", drop_ratio=0.4, affine=False + ) + return model + + +def IR_SE_101(input_size): + """Constructs a ir_se-101 model.""" + model = Backbone( + input_size, num_layers=100, mode="ir_se", drop_ratio=0.4, affine=False + ) + return model + + +def IR_SE_152(input_size): + """Constructs a ir_se-152 model.""" + model = Backbone( + input_size, num_layers=152, mode="ir_se", drop_ratio=0.4, affine=False + ) + return model diff --git a/extern/ldm_zero123/util.py b/extern/ldm_zero123/util.py new file mode 100755 index 0000000..4664798 --- /dev/null +++ b/extern/ldm_zero123/util.py @@ -0,0 +1,249 @@ +import importlib +import os +import time +from inspect import isfunction + +import cv2 +import matplotlib.pyplot as plt +import numpy as np +import PIL +import torch +import torchvision +from PIL import Image, ImageDraw, ImageFont +from torch import optim + + +def pil_rectangle_crop(im): + width, height = im.size # Get dimensions + + if width <= height: + left = 0 + right = width + top = (height - width) / 2 + bottom = (height + width) / 2 + else: + top = 0 + bottom = height + left = (width - height) / 2 + bottom = (width + height) / 2 + + # Crop the center of the image + im = im.crop((left, top, right, bottom)) + return im + + +def log_txt_as_img(wh, xc, size=10): + # wh a tuple of (width, height) + # xc a list of captions to plot + b = len(xc) + txts = list() + for bi in range(b): + txt = Image.new("RGB", wh, color="white") + draw = ImageDraw.Draw(txt) + font = ImageFont.truetype("data/DejaVuSans.ttf", size=size) + nc = int(40 * (wh[0] / 256)) + lines = "\n".join( + xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc) + ) + + try: + draw.text((0, 0), lines, fill="black", font=font) + except UnicodeEncodeError: + print("Cant encode string for logging. Skipping.") + + txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 + txts.append(txt) + txts = np.stack(txts) + txts = torch.tensor(txts) + return txts + + +def ismap(x): + if not isinstance(x, torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] > 3) + + +def isimage(x): + if not isinstance(x, torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) + + +def exists(x): + return x is not None + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def mean_flat(tensor): + """ + https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def count_params(model, verbose=False): + total_params = sum(p.numel() for p in model.parameters()) + if verbose: + print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") + return total_params + + +def instantiate_from_config(config): + if not "target" in config: + if config == "__is_first_stage__": + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +class AdamWwithEMAandWings(optim.Optimizer): + # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298 + def __init__( + self, + params, + lr=1.0e-3, + betas=(0.9, 0.999), + eps=1.0e-8, # TODO: check hyperparameters before using + weight_decay=1.0e-2, + amsgrad=False, + ema_decay=0.9999, # ema decay to match previous code + ema_power=1.0, + param_names=(), + ): + """AdamW that saves EMA versions of the parameters.""" + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + if not 0.0 <= weight_decay: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + if not 0.0 <= ema_decay <= 1.0: + raise ValueError("Invalid ema_decay value: {}".format(ema_decay)) + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + amsgrad=amsgrad, + ema_decay=ema_decay, + ema_power=ema_power, + param_names=param_names, + ) + super().__init__(params, defaults) + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault("amsgrad", False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + Args: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad = [] + grads = [] + exp_avgs = [] + exp_avg_sqs = [] + ema_params_with_grad = [] + state_sums = [] + max_exp_avg_sqs = [] + state_steps = [] + amsgrad = group["amsgrad"] + beta1, beta2 = group["betas"] + ema_decay = group["ema_decay"] + ema_power = group["ema_power"] + + for p in group["params"]: + if p.grad is None: + continue + params_with_grad.append(p) + if p.grad.is_sparse: + raise RuntimeError("AdamW does not support sparse gradients") + grads.append(p.grad) + + state = self.state[p] + + # State initialization + if len(state) == 0: + state["step"] = 0 + # Exponential moving average of gradient values + state["exp_avg"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + # Exponential moving average of squared gradient values + state["exp_avg_sq"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + if amsgrad: + # Maintains max of all exp. moving avg. of sq. grad. values + state["max_exp_avg_sq"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + # Exponential moving average of parameter values + state["param_exp_avg"] = p.detach().float().clone() + + exp_avgs.append(state["exp_avg"]) + exp_avg_sqs.append(state["exp_avg_sq"]) + ema_params_with_grad.append(state["param_exp_avg"]) + + if amsgrad: + max_exp_avg_sqs.append(state["max_exp_avg_sq"]) + + # update the steps for each param group update + state["step"] += 1 + # record the step after step update + state_steps.append(state["step"]) + + optim._functional.adamw( + params_with_grad, + grads, + exp_avgs, + exp_avg_sqs, + max_exp_avg_sqs, + state_steps, + amsgrad=amsgrad, + beta1=beta1, + beta2=beta2, + lr=group["lr"], + weight_decay=group["weight_decay"], + eps=group["eps"], + maximize=False, + ) + + cur_ema_decay = min(ema_decay, 1 - state["step"] ** -ema_power) + for param, ema_param in zip(params_with_grad, ema_params_with_grad): + ema_param.mul_(cur_ema_decay).add_( + param.float(), alpha=1 - cur_ema_decay + ) + + return loss diff --git a/extern/zero123.py b/extern/zero123.py new file mode 100644 index 0000000..2ee4343 --- /dev/null +++ b/extern/zero123.py @@ -0,0 +1,666 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +import math +import warnings +from typing import Any, Callable, Dict, List, Optional, Union + +import PIL +import torch +import torchvision.transforms.functional as TF +from diffusers.configuration_utils import ConfigMixin, FrozenDict, register_to_config +from diffusers.image_processor import VaeImageProcessor +from diffusers.models import AutoencoderKL, UNet2DConditionModel +from diffusers.models.modeling_utils import ModelMixin +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput +from diffusers.pipelines.stable_diffusion.safety_checker import ( + StableDiffusionSafetyChecker, +) +from diffusers.schedulers import KarrasDiffusionSchedulers +from diffusers.utils import deprecate, is_accelerate_available, logging +from diffusers.utils.torch_utils import randn_tensor +from packaging import version +from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +class CLIPCameraProjection(ModelMixin, ConfigMixin): + """ + A Projection layer for CLIP embedding and camera embedding. + + Parameters: + embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `clip_embed` + additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the + projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings + + additional_embeddings`. + """ + + @register_to_config + def __init__(self, embedding_dim: int = 768, additional_embeddings: int = 4): + super().__init__() + self.embedding_dim = embedding_dim + self.additional_embeddings = additional_embeddings + + self.input_dim = self.embedding_dim + self.additional_embeddings + self.output_dim = self.embedding_dim + + self.proj = torch.nn.Linear(self.input_dim, self.output_dim) + + def forward( + self, + embedding: torch.FloatTensor, + ): + """ + The [`PriorTransformer`] forward method. + + Args: + hidden_states (`torch.FloatTensor` of shape `(batch_size, input_dim)`): + The currently input embeddings. + + Returns: + The output embedding projection (`torch.FloatTensor` of shape `(batch_size, output_dim)`). + """ + proj_embedding = self.proj(embedding) + return proj_embedding + + +class Zero123Pipeline(DiffusionPipeline): + r""" + Pipeline to generate variations from an input image using Stable Diffusion. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the + library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + image_encoder ([`CLIPVisionModelWithProjection`]): + Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), + specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + safety_checker ([`StableDiffusionSafetyChecker`]): + Classification module that estimates whether generated images could be considered offensive or harmful. + Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. + feature_extractor ([`CLIPImageProcessor`]): + Model that extracts features from generated images to be used as inputs for the `safety_checker`. + """ + # TODO: feature_extractor is required to encode images (if they are in PIL format), + # we should give a descriptive message if the pipeline doesn't have one. + _optional_components = ["safety_checker"] + + def __init__( + self, + vae: AutoencoderKL, + image_encoder: CLIPVisionModelWithProjection, + unet: UNet2DConditionModel, + scheduler: KarrasDiffusionSchedulers, + safety_checker: StableDiffusionSafetyChecker, + feature_extractor: CLIPImageProcessor, + clip_camera_projection: CLIPCameraProjection, + requires_safety_checker: bool = True, + ): + super().__init__() + + if safety_checker is None and requires_safety_checker: + logger.warn( + f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" + " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" + " results in services or applications open to the public. Both the diffusers team and Hugging Face" + " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" + " it only for use-cases that involve analyzing network behavior or auditing its results. For more" + " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." + ) + + if safety_checker is not None and feature_extractor is None: + raise ValueError( + "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" + " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." + ) + + is_unet_version_less_0_9_0 = hasattr( + unet.config, "_diffusers_version" + ) and version.parse( + version.parse(unet.config._diffusers_version).base_version + ) < version.parse( + "0.9.0.dev0" + ) + is_unet_sample_size_less_64 = ( + hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 + ) + if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: + deprecation_message = ( + "The configuration file of the unet has set the default `sample_size` to smaller than" + " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" + " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" + " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" + " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" + " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" + " in the config might lead to incorrect results in future versions. If you have downloaded this" + " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" + " the `unet/config.json` file" + ) + deprecate( + "sample_size<64", "1.0.0", deprecation_message, standard_warn=False + ) + new_config = dict(unet.config) + new_config["sample_size"] = 64 + unet._internal_dict = FrozenDict(new_config) + + self.register_modules( + vae=vae, + image_encoder=image_encoder, + unet=unet, + scheduler=scheduler, + safety_checker=safety_checker, + feature_extractor=feature_extractor, + clip_camera_projection=clip_camera_projection, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + def enable_sequential_cpu_offload(self, gpu_id=0): + r""" + Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, + text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a + `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. + """ + if is_accelerate_available(): + from accelerate import cpu_offload + else: + raise ImportError("Please install accelerate via `pip install accelerate`") + + device = torch.device(f"cuda:{gpu_id}") + + for cpu_offloaded_model in [ + self.unet, + self.image_encoder, + self.vae, + self.safety_checker, + ]: + if cpu_offloaded_model is not None: + cpu_offload(cpu_offloaded_model, device) + + @property + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device + def _execution_device(self): + r""" + Returns the device on which the pipeline's models will be executed. After calling + `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module + hooks. + """ + if not hasattr(self.unet, "_hf_hook"): + return self.device + for module in self.unet.modules(): + if ( + hasattr(module, "_hf_hook") + and hasattr(module._hf_hook, "execution_device") + and module._hf_hook.execution_device is not None + ): + return torch.device(module._hf_hook.execution_device) + return self.device + + def _encode_image( + self, + image, + elevation, + azimuth, + distance, + device, + num_images_per_prompt, + do_classifier_free_guidance, + clip_image_embeddings=None, + image_camera_embeddings=None, + ): + dtype = next(self.image_encoder.parameters()).dtype + + if image_camera_embeddings is None: + if image is None: + assert clip_image_embeddings is not None + image_embeddings = clip_image_embeddings.to(device=device, dtype=dtype) + else: + if not isinstance(image, torch.Tensor): + image = self.feature_extractor( + images=image, return_tensors="pt" + ).pixel_values + + image = image.to(device=device, dtype=dtype) + image_embeddings = self.image_encoder(image).image_embeds + image_embeddings = image_embeddings.unsqueeze(1) + + bs_embed, seq_len, _ = image_embeddings.shape + + if isinstance(elevation, float): + elevation = torch.as_tensor( + [elevation] * bs_embed, dtype=dtype, device=device + ) + if isinstance(azimuth, float): + azimuth = torch.as_tensor( + [azimuth] * bs_embed, dtype=dtype, device=device + ) + if isinstance(distance, float): + distance = torch.as_tensor( + [distance] * bs_embed, dtype=dtype, device=device + ) + + camera_embeddings = torch.stack( + [ + torch.deg2rad(elevation), + torch.sin(torch.deg2rad(azimuth)), + torch.cos(torch.deg2rad(azimuth)), + distance, + ], + dim=-1, + )[:, None, :] + + image_embeddings = torch.cat([image_embeddings, camera_embeddings], dim=-1) + + # project (image, camera) embeddings to the same dimension as clip embeddings + image_embeddings = self.clip_camera_projection(image_embeddings) + else: + image_embeddings = image_camera_embeddings.to(device=device, dtype=dtype) + bs_embed, seq_len, _ = image_embeddings.shape + + # duplicate image embeddings for each generation per prompt, using mps friendly method + image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) + image_embeddings = image_embeddings.view( + bs_embed * num_images_per_prompt, seq_len, -1 + ) + + if do_classifier_free_guidance: + negative_prompt_embeds = torch.zeros_like(image_embeddings) + + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) + + return image_embeddings + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess( + image, output_type="pil" + ) + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor( + feature_extractor_input, return_tensors="pt" + ).to(device) + image, has_nsfw_concept = self.safety_checker( + images=image, clip_input=safety_checker_input.pixel_values.to(dtype) + ) + return image, has_nsfw_concept + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents + def decode_latents(self, latents): + warnings.warn( + "The decode_latents method is deprecated and will be removed in a future version. Please" + " use VaeImageProcessor instead", + FutureWarning, + ) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set( + inspect.signature(self.scheduler.step).parameters.keys() + ) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set( + inspect.signature(self.scheduler.step).parameters.keys() + ) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs(self, image, height, width, callback_steps): + # TODO: check image size or adjust image size to (height, width) + + if height % 8 != 0 or width % 8 != 0: + raise ValueError( + f"`height` and `width` have to be divisible by 8 but are {height} and {width}." + ) + + if (callback_steps is None) or ( + callback_steps is not None + and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents( + self, + batch_size, + num_channels_latents, + height, + width, + dtype, + device, + generator, + latents=None, + ): + shape = ( + batch_size, + num_channels_latents, + height // self.vae_scale_factor, + width // self.vae_scale_factor, + ) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor( + shape, generator=generator, device=device, dtype=dtype + ) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + def _get_latent_model_input( + self, + latents: torch.FloatTensor, + image: Optional[ + Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor] + ], + num_images_per_prompt: int, + do_classifier_free_guidance: bool, + image_latents: Optional[torch.FloatTensor] = None, + ): + if isinstance(image, PIL.Image.Image): + image_pt = TF.to_tensor(image).unsqueeze(0).to(latents) + elif isinstance(image, list): + image_pt = torch.stack([TF.to_tensor(img) for img in image], dim=0).to( + latents + ) + elif isinstance(image, torch.Tensor): + image_pt = image + else: + image_pt = None + + if image_pt is None: + assert image_latents is not None + image_pt = image_latents.repeat_interleave(num_images_per_prompt, dim=0) + else: + image_pt = image_pt * 2.0 - 1.0 # scale to [-1, 1] + # FIXME: encoded latents should be multiplied with self.vae.config.scaling_factor + # but zero123 was not trained this way + image_pt = self.vae.encode(image_pt).latent_dist.mode() + image_pt = image_pt.repeat_interleave(num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + latent_model_input = torch.cat( + [ + torch.cat([latents, latents], dim=0), + torch.cat([torch.zeros_like(image_pt), image_pt], dim=0), + ], + dim=1, + ) + else: + latent_model_input = torch.cat([latents, image_pt], dim=1) + + return latent_model_input + + @torch.no_grad() + def __call__( + self, + image: Optional[ + Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor] + ] = None, + elevation: Optional[Union[float, torch.FloatTensor]] = None, + azimuth: Optional[Union[float, torch.FloatTensor]] = None, + distance: Optional[Union[float, torch.FloatTensor]] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + guidance_scale: float = 3.0, + num_images_per_prompt: int = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + clip_image_embeddings: Optional[torch.FloatTensor] = None, + image_camera_embeddings: Optional[torch.FloatTensor] = None, + image_latents: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + ): + r""" + Function invoked when calling the pipeline for generation. + + Args: + image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): + The image or images to guide the image generation. If you provide a tensor, it needs to comply with the + configuration of + [this](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json) + `CLIPImageProcessor` + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + guidance_scale (`float`, *optional*, defaults to 7.5): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to + [`schedulers.DDIMScheduler`], will be ignored for others. + generator (`torch.Generator`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + callback (`Callable`, *optional*): + A function that will be called every `callback_steps` steps during inference. The function will be + called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function will be called. If not specified, the callback will be + called at every step. + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. + When returning a tuple, the first element is a list with the generated images, and the second element is a + list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" + (nsfw) content, according to the `safety_checker`. + """ + # 0. Default height and width to unet + height = height or self.unet.config.sample_size * self.vae_scale_factor + width = width or self.unet.config.sample_size * self.vae_scale_factor + + # 1. Check inputs. Raise error if not correct + # TODO: check input elevation, azimuth, and distance + # TODO: check image, clip_image_embeddings, image_latents + self.check_inputs(image, height, width, callback_steps) + + # 2. Define call parameters + if isinstance(image, PIL.Image.Image): + batch_size = 1 + elif isinstance(image, list): + batch_size = len(image) + elif isinstance(image, torch.Tensor): + batch_size = image.shape[0] + else: + assert image_latents is not None + assert ( + clip_image_embeddings is not None or image_camera_embeddings is not None + ) + batch_size = image_latents.shape[0] + + device = self._execution_device + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input image + if isinstance(image, PIL.Image.Image) or isinstance(image, list): + pil_image = image + elif isinstance(image, torch.Tensor): + pil_image = [TF.to_pil_image(image[i]) for i in range(image.shape[0])] + else: + pil_image = None + image_embeddings = self._encode_image( + pil_image, + elevation, + azimuth, + distance, + device, + num_images_per_prompt, + do_classifier_free_guidance, + clip_image_embeddings, + image_camera_embeddings, + ) + + # 4. Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + + # 5. Prepare latent variables + # num_channels_latents = self.unet.config.in_channels + num_channels_latents = 4 # FIXME: hard-coded + latents = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + image_embeddings.dtype, + device, + generator, + latents, + ) + + # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7. Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = self._get_latent_model_input( + latents, + image, + num_images_per_prompt, + do_classifier_free_guidance, + image_latents, + ) + latent_model_input = self.scheduler.scale_model_input( + latent_model_input, t + ) + + # predict the noise residual + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=image_embeddings, + cross_attention_kwargs=cross_attention_kwargs, + ).sample + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * ( + noise_pred_text - noise_pred_uncond + ) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step( + noise_pred, t, latents, **extra_step_kwargs + ).prev_sample + + # call the callback, if provided + if i == len(timesteps) - 1 or ( + (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 + ): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + callback(i, t, latents) + + if not output_type == "latent": + image = self.vae.decode( + latents / self.vae.config.scaling_factor, return_dict=False + )[0] + image, has_nsfw_concept = self.run_safety_checker( + image, device, image_embeddings.dtype + ) + else: + image = latents + has_nsfw_concept = None + + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + + image = self.image_processor.postprocess( + image, output_type=output_type, do_denormalize=do_denormalize + ) + + if not return_dict: + return (image, has_nsfw_concept) + + return StableDiffusionPipelineOutput( + images=image, nsfw_content_detected=has_nsfw_concept + ) diff --git a/gradio_app.py b/gradio_app.py new file mode 100644 index 0000000..0d921d9 --- /dev/null +++ b/gradio_app.py @@ -0,0 +1,544 @@ +import argparse +import glob +import os +import re +import signal +import subprocess +import tempfile +import time +from dataclasses import dataclass +from datetime import datetime +from typing import Optional + +import gradio as gr +import numpy as np +import psutil +import trimesh + +from threestudio.utils.config import load_config +from threestudio.utils.typing import * + + +def tail(f, window=20): + # Returns the last `window` lines of file `f`. + if window == 0: + return [] + + BUFSIZ = 1024 + f.seek(0, 2) + remaining_bytes = f.tell() + size = window + 1 + block = -1 + data = [] + + while size > 0 and remaining_bytes > 0: + if remaining_bytes - BUFSIZ > 0: + # Seek back one whole BUFSIZ + f.seek(block * BUFSIZ, 2) + # read BUFFER + bunch = f.read(BUFSIZ) + else: + # file too small, start from beginning + f.seek(0, 0) + # only read what was not read + bunch = f.read(remaining_bytes) + + bunch = bunch.decode("utf-8") + data.insert(0, bunch) + size -= bunch.count("\n") + remaining_bytes -= BUFSIZ + block -= 1 + + return "\n".join("".join(data).splitlines()[-window:]) + + +@dataclass +class ExperimentStatus: + pid: Optional[int] = None + progress: str = "" + log: str = "" + output_image: Optional[str] = None + output_video: Optional[str] = None + output_mesh: Optional[str] = None + + def tolist(self): + return [ + self.pid, + self.progress, + self.log, + self.output_image, + self.output_video, + self.output_mesh, + ] + + +EXP_ROOT_DIR = "outputs-gradio" +DEFAULT_PROMPT = "a delicious hamburger" +model_name_config = [ + ("SJC (Stable Diffusion)", "configs/gradio/sjc.yaml"), + ("DreamFusion (DeepFloyd-IF)", "configs/gradio/dreamfusion-if.yaml"), + ("DreamFusion (Stable Diffusion)", "configs/gradio/dreamfusion-sd.yaml"), + ("TextMesh (DeepFloyd-IF)", "configs/gradio/textmesh-if.yaml"), + ("Latent-NeRF (Stable Diffusion)", "configs/gradio/latentnerf.yaml"), + ("Fantasia3D (Stable Diffusion, Geometry Only)", "configs/gradio/fantasia3d.yaml"), +] +model_list = [m[0] for m in model_name_config] +model_config: Dict[str, Dict[str, Any]] = {} + +for model_name, config_path in model_name_config: + config = {"path": config_path} + with open(config_path) as f: + config["yaml"] = f.read() + config["obj"] = load_config( + config["yaml"], + # set name and tag to dummy values to avoid creating new directories + cli_args=[ + "name=dummy", + "tag=dummy", + "use_timestamp=false", + f"exp_root_dir={EXP_ROOT_DIR}", + "system.prompt_processor.prompt=placeholder", + ], + from_string=True, + ) + model_config[model_name] = config + + +def on_model_selector_change(model_name): + return [ + model_config[model_name]["yaml"], + model_config[model_name]["obj"].system.guidance.guidance_scale, + ] + + +def get_current_status(process, trial_dir, alive_path): + status = ExperimentStatus() + + status.pid = process.pid + + # write the current timestamp to the alive file + # the watcher will know the last active time of this process from this timestamp + if os.path.exists(os.path.dirname(alive_path)): + alive_fp = open(alive_path, "w") + alive_fp.seek(0) + alive_fp.write(str(time.time())) + alive_fp.flush() + + log_path = os.path.join(trial_dir, "logs") + progress_path = os.path.join(trial_dir, "progress") + save_path = os.path.join(trial_dir, "save") + + # read current progress from the progress file + # the progress file is created by GradioCallback + if os.path.exists(progress_path): + status.progress = open(progress_path).read() + else: + status.progress = "Setting up everything ..." + + # read the last 10 lines of the log file + if os.path.exists(log_path): + status.log = tail(open(log_path, "rb"), window=10) + else: + status.log = "" + + # get the validation image and testing video if they exist + if os.path.exists(save_path): + images = glob.glob(os.path.join(save_path, "*.png")) + steps = [ + int(re.match(r"it(\d+)-0\.png", os.path.basename(f)).group(1)) + for f in images + ] + images = sorted(list(zip(images, steps)), key=lambda x: x[1]) + if len(images) > 0: + status.output_image = images[-1][0] + + videos = glob.glob(os.path.join(save_path, "*.mp4")) + steps = [ + int(re.match(r"it(\d+)-test\.mp4", os.path.basename(f)).group(1)) + for f in videos + ] + videos = sorted(list(zip(videos, steps)), key=lambda x: x[1]) + if len(videos) > 0: + status.output_video = videos[-1][0] + + export_dirs = glob.glob(os.path.join(save_path, "*export")) + steps = [ + int(re.match(r"it(\d+)-export", os.path.basename(f)).group(1)) + for f in export_dirs + ] + export_dirs = sorted(list(zip(export_dirs, steps)), key=lambda x: x[1]) + if len(export_dirs) > 0: + obj = glob.glob(os.path.join(export_dirs[-1][0], "*.obj")) + if len(obj) > 0: + # FIXME + # seems the gr.Model3D cannot load our manually saved obj file + # here we load the obj and save it to a temporary file using trimesh + mesh_path = tempfile.NamedTemporaryFile(suffix=".obj", delete=False) + trimesh.load(obj[0]).export(mesh_path.name) + status.output_mesh = mesh_path.name + + return status + + +def run( + model_name: str, + config: str, + prompt: str, + guidance_scale: float, + seed: int, + max_steps: int, + save_ckpt: bool, + save_root: str, +): + # update status every 1 second + status_update_interval = 1 + + # save the config to a temporary file + config_file = tempfile.NamedTemporaryFile() + + with open(config_file.name, "w") as f: + f.write(config) + + # manually assign the output directory, name and tag so that we know the trial directory + name = os.path.basename(model_config[model_name]["path"]).split(".")[0] + tag = datetime.now().strftime("%Y%m%d-%H%M%S") + trial_dir = os.path.join(save_root, EXP_ROOT_DIR, name, tag) + alive_path = os.path.join(trial_dir, "alive") + + # spawn the training process + gpu = os.environ.get("CUDA_VISIBLE_DEVICES", "0") + process = subprocess.Popen( + f"python launch.py --config {config_file.name} --train --gpu {gpu} --gradio trainer.enable_progress_bar=false".split() + + [ + f'name="{name}"', + f'tag="{tag}"', + f"exp_root_dir={os.path.join(save_root, EXP_ROOT_DIR)}", + "use_timestamp=false", + f'system.prompt_processor.prompt="{prompt}"', + f"system.guidance.guidance_scale={guidance_scale}", + f"seed={seed}", + f"trainer.max_steps={max_steps}", + ] + + ( + ["checkpoint.every_n_train_steps=${trainer.max_steps}"] if save_ckpt else [] + ), + ) + + # spawn the watcher process + watch_process = subprocess.Popen( + "python gradio_app.py watch".split() + + ["--pid", f"{process.pid}", "--trial-dir", f"{trial_dir}"] + ) + + # update status (progress, log, image, video) every status_update_interval senconds + # button status: Run -> Stop + while process.poll() is None: + time.sleep(status_update_interval) + yield get_current_status(process, trial_dir, alive_path).tolist() + [ + gr.update(visible=False), + gr.update(value="Stop", variant="stop", visible=True), + ] + + # wait for the processes to finish + process.wait() + watch_process.wait() + + # update status one last time + # button status: Stop / Reset -> Run + status = get_current_status(process, trial_dir, alive_path) + status.progress = "Finished." + yield status.tolist() + [ + gr.update(value="Run", variant="primary", visible=True), + gr.update(visible=False), + ] + + +def stop_run(pid): + # kill the process + print(f"Trying to kill process {pid} ...") + try: + os.kill(pid, signal.SIGKILL) + except: + print(f"Exception when killing process {pid}.") + # button status: Stop -> Reset + return [ + # gr.update( + # value="Reset (refresh the page if in queue)", + # variant="secondary", + # visible=True, + # just ask the user to refresh the page + # ), + gr.update( + value="Please Refresh the Page", + variant="secondary", + visible=True, + interactive=False, + ), + gr.update(visible=False), + ] + + +def launch( + port, + listen=False, + hf_space=False, + self_deploy=False, + save_ckpt=False, + save_root=".", +): + self_deploy = self_deploy or "TS_SELF_DEPLOY" in os.environ + + css = """ + #config-accordion, #logs-accordion {color: black !important;} + .dark #config-accordion, .dark #logs-accordion {color: white !important;} + .stop {background: darkred !important;} + """ + + with gr.Blocks( + title="threestudio - Web Demo", + theme=gr.themes.Monochrome(), + css=css, + ) as demo: + with gr.Row(equal_height=True): + if hf_space: + header = """ + # threestudio Text-to-3D Web Demo + +
+ + Duplicate Space +
+ + ### Usage + - Select a model from the dropdown menu. If you duplicate this space and would like to use models based on DeepFloyd-IF, you need to [accept the license](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0) and set `HUGGING_FACE_HUB_TOKEN` in `Repository secrets` in your space setting. You may also set `TS_SELF_DEPLOY` to enable changing arbitrary configurations. + - Input a text prompt and hit the `Run` button to start. + - Video and mesh export (not supported for SJC and Latent-NeRF) are available after the training process is finished. + - **IMPORTANT NOTE: Keep this tab active when running the model.** + """ + else: + header = """ + # threestudio Text-to-3D Web Demo + + ### Usage + - Select a model from the dropdown menu. + - Input a text prompt and hit the `Run` button to start. + - Video and mesh export (not supported for SJC and Latent-NeRF) are available after the training process is finished. + - **IMPORTANT NOTE: Keep this tab active when running the model.** + """ + gr.Markdown(header) + + with gr.Row(equal_height=False): + pid = gr.State() + with gr.Column(scale=1): + # generation status + status = gr.Textbox( + value="Hit the Run button to start.", + label="Status", + lines=1, + max_lines=1, + ) + + # model selection dropdown + model_selector = gr.Dropdown( + value=model_list[0], + choices=model_list, + label="Select a model", + ) + + # prompt input + prompt_input = gr.Textbox(value=DEFAULT_PROMPT, label="Input prompt") + + # guidance scale slider + guidance_scale_input = gr.Slider( + minimum=0.0, + maximum=100.0, + value=model_config[model_selector.value][ + "obj" + ].system.guidance.guidance_scale, + step=0.5, + label="Guidance scale", + ) + + # seed slider + seed_input = gr.Slider( + minimum=0, maximum=2147483647, value=0, step=1, label="Seed" + ) + + max_steps_input = gr.Slider( + minimum=1, + maximum=20000 if self_deploy else 5000, + value=10000 if self_deploy else 5000, + step=1, + label="Number of training steps", + ) + + save_ckpt_checkbox = gr.Checkbox( + value=save_ckpt, + label="Save Checkpoints", + visible=False, + interactive=False, + ) + + save_root_state = gr.State(value=save_root) + + # full config viewer + with gr.Accordion( + "See full configurations", open=False, elem_id="config-accordion" + ): + config_editor = gr.Code( + value=model_config[model_selector.value]["yaml"], + language="yaml", + lines=10, + interactive=self_deploy, # disable editing if in HF space + ) + + # load config on model selection change + model_selector.change( + fn=on_model_selector_change, + inputs=model_selector, + outputs=[config_editor, guidance_scale_input], + queue=False, + ) + + run_btn = gr.Button(value="Run", variant="primary") + stop_btn = gr.Button(value="Stop", variant="stop", visible=False) + + with gr.Column(scale=1): + with gr.Accordion( + "See terminal logs", open=False, elem_id="logs-accordion" + ): + # logs + logs = gr.Textbox(label="Logs", lines=10) + + # validation image display + output_image = gr.Image(value=None, label="Image") + + # testing video display + output_video = gr.Video(value=None, label="Video") + + # export mesh display + output_mesh = gr.Model3D(value=None, label="3D Mesh") + + run_event = run_btn.click( + fn=run, + inputs=[ + model_selector, + config_editor, + prompt_input, + guidance_scale_input, + seed_input, + max_steps_input, + save_ckpt_checkbox, + save_root_state, + ], + outputs=[ + pid, + status, + logs, + output_image, + output_video, + output_mesh, + run_btn, + stop_btn, + ], + concurrency_limit=1, + ) + stop_btn.click( + fn=stop_run, + inputs=[pid], + outputs=[run_btn, stop_btn], + cancels=[run_event], + queue=False, + ) + + launch_args = {"server_port": port} + if listen: + launch_args["server_name"] = "0.0.0.0" + demo.queue().launch(**launch_args) + + +def watch( + pid: int, + trial_dir: str, + alive_timeout: int, + wait_timeout: int, + check_interval: int, +) -> None: + print(f"Spawn watcher for process {pid}") + + def timeout_handler(signum, frame): + exit(1) + + alive_path = os.path.join(trial_dir, "alive") + signal.signal(signal.SIGALRM, timeout_handler) + signal.alarm(wait_timeout) + + def loop_find_progress_file(): + while True: + if not os.path.exists(alive_path): + time.sleep(check_interval) + else: + signal.alarm(0) + return + + def loop_check_alive(): + while True: + if not psutil.pid_exists(pid): + print(f"Process {pid} not exists, watcher exits.") + cleanup_and_exit() + try: + alive_timestamp = float(open(alive_path).read()) + except: + continue + if time.time() - alive_timestamp > alive_timeout: + print(f"Alive timeout for process {pid}, killed.") + try: + os.kill(pid, signal.SIGKILL) + except: + print(f"Exception when killing process {pid}.") + cleanup_and_exit() + time.sleep(check_interval) + + def cleanup_and_exit(): + exit(0) + + # loop until alive file is found, or alive_timeout is reached + loop_find_progress_file() + # kill the process if it is not accessed for alive_timeout seconds + loop_check_alive() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("operation", type=str, choices=["launch", "watch"]) + args, extra = parser.parse_known_args() + if args.operation == "launch": + parser.add_argument("--listen", action="store_true") + parser.add_argument("--hf-space", action="store_true") + parser.add_argument("--self-deploy", action="store_true") + parser.add_argument("--save-ckpt", action="store_true") # unused + parser.add_argument("--save-root", type=str, default=".") + parser.add_argument("--port", type=int, default=7860) + args = parser.parse_args() + launch( + args.port, + listen=args.listen, + hf_space=args.hf_space, + self_deploy=args.self_deploy, + save_ckpt=args.save_ckpt, + save_root=args.save_root, + ) + if args.operation == "watch": + parser.add_argument("--pid", type=int) + parser.add_argument("--trial-dir", type=str) + parser.add_argument("--alive-timeout", type=int, default=10) + parser.add_argument("--wait-timeout", type=int, default=10) + parser.add_argument("--check-interval", type=int, default=1) + args = parser.parse_args() + watch( + args.pid, + args.trial_dir, + alive_timeout=args.alive_timeout, + wait_timeout=args.wait_timeout, + check_interval=args.check_interval, + ) diff --git a/launch.py b/launch.py new file mode 100644 index 0000000..bca4ae1 --- /dev/null +++ b/launch.py @@ -0,0 +1,301 @@ +import argparse +import contextlib +import importlib +import logging +import os +import sys +import time +import traceback + + +class ColoredFilter(logging.Filter): + """ + A logging filter to add color to certain log levels. + """ + + RESET = "\033[0m" + RED = "\033[31m" + GREEN = "\033[32m" + YELLOW = "\033[33m" + BLUE = "\033[34m" + MAGENTA = "\033[35m" + CYAN = "\033[36m" + + COLORS = { + "WARNING": YELLOW, + "INFO": GREEN, + "DEBUG": BLUE, + "CRITICAL": MAGENTA, + "ERROR": RED, + } + + RESET = "\x1b[0m" + + def __init__(self): + super().__init__() + + def filter(self, record): + if record.levelname in self.COLORS: + color_start = self.COLORS[record.levelname] + record.levelname = f"{color_start}[{record.levelname}]" + record.msg = f"{record.msg}{self.RESET}" + return True + + +def load_custom_module(module_path): + module_name = os.path.basename(module_path) + if os.path.isfile(module_path): + sp = os.path.splitext(module_path) + module_name = sp[0] + try: + if os.path.isfile(module_path): + module_spec = importlib.util.spec_from_file_location( + module_name, module_path + ) + else: + module_spec = importlib.util.spec_from_file_location( + module_name, os.path.join(module_path, "__init__.py") + ) + + module = importlib.util.module_from_spec(module_spec) + sys.modules[module_name] = module + module_spec.loader.exec_module(module) + return True + except Exception as e: + print(traceback.format_exc()) + print(f"Cannot import {module_path} module for custom nodes:", e) + return False + + +def load_custom_modules(): + node_paths = ["custom"] + node_import_times = [] + for custom_node_path in node_paths: + possible_modules = os.listdir(custom_node_path) + if "__pycache__" in possible_modules: + possible_modules.remove("__pycache__") + + for possible_module in possible_modules: + module_path = os.path.join(custom_node_path, possible_module) + if ( + os.path.isfile(module_path) + and os.path.splitext(module_path)[1] != ".py" + ): + continue + if module_path.endswith("_disabled"): + continue + time_before = time.perf_counter() + success = load_custom_module(module_path) + node_import_times.append( + (time.perf_counter() - time_before, module_path, success) + ) + + if len(node_import_times) > 0: + print("\nImport times for custom modules:") + for n in sorted(node_import_times): + if n[2]: + import_message = "" + else: + import_message = " (IMPORT FAILED)" + print("{:6.1f} seconds{}:".format(n[0], import_message), n[1]) + print() + + +def main(args, extras) -> None: + # set CUDA_VISIBLE_DEVICES if needed, then import pytorch-lightning + os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" + env_gpus_str = os.environ.get("CUDA_VISIBLE_DEVICES", None) + env_gpus = list(env_gpus_str.split(",")) if env_gpus_str else [] + selected_gpus = [0] + + # Always rely on CUDA_VISIBLE_DEVICES if specific GPU ID(s) are specified. + # As far as Pytorch Lightning is concerned, we always use all available GPUs + # (possibly filtered by CUDA_VISIBLE_DEVICES). + devices = -1 + if len(env_gpus) > 0: + # CUDA_VISIBLE_DEVICES was set already, e.g. within SLURM srun or higher-level script. + n_gpus = len(env_gpus) + else: + selected_gpus = list(args.gpu.split(",")) + n_gpus = len(selected_gpus) + os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu + + import pytorch_lightning as pl + import torch + from pytorch_lightning import Trainer + from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint + from pytorch_lightning.loggers import CSVLogger, TensorBoardLogger + from pytorch_lightning.utilities.rank_zero import rank_zero_only + + if args.typecheck: + from jaxtyping import install_import_hook + + install_import_hook("threestudio", "typeguard.typechecked") + + import threestudio + from threestudio.systems.base import BaseSystem + from threestudio.utils.callbacks import ( + CodeSnapshotCallback, + ConfigSnapshotCallback, + CustomProgressBar, + ProgressCallback, + ) + from threestudio.utils.config import ExperimentConfig, load_config + from threestudio.utils.misc import get_rank + from threestudio.utils.typing import Optional + + logger = logging.getLogger("pytorch_lightning") + if args.verbose: + logger.setLevel(logging.DEBUG) + + for handler in logger.handlers: + if handler.stream == sys.stderr: # type: ignore + if not args.gradio: + handler.setFormatter(logging.Formatter("%(levelname)s %(message)s")) + handler.addFilter(ColoredFilter()) + else: + handler.setFormatter(logging.Formatter("[%(levelname)s] %(message)s")) + + load_custom_modules() + + # parse YAML config to OmegaConf + cfg: ExperimentConfig + cfg = load_config(args.config, cli_args=extras, n_gpus=n_gpus) + + # set a different seed for each device + pl.seed_everything(cfg.seed + get_rank(), workers=True) + + dm = threestudio.find(cfg.data_type)(cfg.data) + system: BaseSystem = threestudio.find(cfg.system_type)( + cfg.system, resumed=cfg.resume is not None + ) + system.set_save_dir(os.path.join(cfg.trial_dir, "save")) + + if args.gradio: + fh = logging.FileHandler(os.path.join(cfg.trial_dir, "logs")) + fh.setLevel(logging.INFO) + if args.verbose: + fh.setLevel(logging.DEBUG) + fh.setFormatter(logging.Formatter("[%(levelname)s] %(message)s")) + logger.addHandler(fh) + + callbacks = [] + if args.train: + callbacks += [ + ModelCheckpoint( + dirpath=os.path.join(cfg.trial_dir, "ckpts"), **cfg.checkpoint + ), + LearningRateMonitor(logging_interval="step"), + CodeSnapshotCallback( + os.path.join(cfg.trial_dir, "code"), use_version=False + ), + ConfigSnapshotCallback( + args.config, + cfg, + os.path.join(cfg.trial_dir, "configs"), + use_version=False, + ), + ] + if args.gradio: + callbacks += [ + ProgressCallback(save_path=os.path.join(cfg.trial_dir, "progress")) + ] + else: + callbacks += [CustomProgressBar(refresh_rate=1)] + + def write_to_text(file, lines): + with open(file, "w") as f: + for line in lines: + f.write(line + "\n") + + loggers = [] + if args.train: + # make tensorboard logging dir to suppress warning + rank_zero_only( + lambda: os.makedirs(os.path.join(cfg.trial_dir, "tb_logs"), exist_ok=True) + )() + loggers += [ + TensorBoardLogger(cfg.trial_dir, name="tb_logs"), + CSVLogger(cfg.trial_dir, name="csv_logs"), + ] + system.get_loggers() + rank_zero_only( + lambda: write_to_text( + os.path.join(cfg.trial_dir, "cmd.txt"), + ["python " + " ".join(sys.argv), str(args)], + ) + )() + + trainer = Trainer( + callbacks=callbacks, + logger=loggers, + inference_mode=False, + accelerator="gpu", + devices=devices, + **cfg.trainer, + ) + + def set_system_status(system: BaseSystem, ckpt_path: Optional[str]): + if ckpt_path is None: + return + ckpt = torch.load(ckpt_path, map_location="cpu") + system.set_resume_status(ckpt["epoch"], ckpt["global_step"]) + + if args.train: + trainer.fit(system, datamodule=dm, ckpt_path=cfg.resume) + trainer.test(system, datamodule=dm) + if args.gradio: + # also export assets if in gradio mode + trainer.predict(system, datamodule=dm) + elif args.validate: + # manually set epoch and global_step as they cannot be automatically resumed + set_system_status(system, cfg.resume) + trainer.validate(system, datamodule=dm, ckpt_path=cfg.resume) + elif args.test: + # manually set epoch and global_step as they cannot be automatically resumed + set_system_status(system, cfg.resume) + trainer.test(system, datamodule=dm, ckpt_path=cfg.resume) + elif args.export: + set_system_status(system, cfg.resume) + trainer.predict(system, datamodule=dm, ckpt_path=cfg.resume) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--config", required=True, help="path to config file") + parser.add_argument( + "--gpu", + default="0", + help="GPU(s) to be used. 0 means use the 1st available GPU. " + "1,2 means use the 2nd and 3rd available GPU. " + "If CUDA_VISIBLE_DEVICES is set before calling `launch.py`, " + "this argument is ignored and all available GPUs are always used.", + ) + + group = parser.add_mutually_exclusive_group(required=True) + group.add_argument("--train", action="store_true") + group.add_argument("--validate", action="store_true") + group.add_argument("--test", action="store_true") + group.add_argument("--export", action="store_true") + + parser.add_argument( + "--gradio", action="store_true", help="if true, run in gradio mode" + ) + + parser.add_argument( + "--verbose", action="store_true", help="if true, set logging level to DEBUG" + ) + + parser.add_argument( + "--typecheck", + action="store_true", + help="whether to enable dynamic type checking", + ) + + args, extras = parser.parse_known_args() + + if args.gradio: + # FIXME: no effect, stdout is not captured + with contextlib.redirect_stdout(sys.stderr): + main(args, extras) + else: + main(args, extras) diff --git a/load/images/anya_front.png b/load/images/anya_front.png new file mode 100644 index 0000000..276bd41 Binary files /dev/null and b/load/images/anya_front.png differ diff --git a/load/images/anya_front_depth.png b/load/images/anya_front_depth.png new file mode 100644 index 0000000..315250a Binary files /dev/null and b/load/images/anya_front_depth.png differ diff --git a/load/images/anya_front_normal.png b/load/images/anya_front_normal.png new file mode 100644 index 0000000..8ca9ad3 Binary files /dev/null and b/load/images/anya_front_normal.png differ diff --git a/load/images/anya_front_rgba.png b/load/images/anya_front_rgba.png new file mode 100644 index 0000000..1798fdb Binary files /dev/null and b/load/images/anya_front_rgba.png differ diff --git a/load/images/baby_phoenix_on_ice.png b/load/images/baby_phoenix_on_ice.png new file mode 100644 index 0000000..02a15cf Binary files /dev/null and b/load/images/baby_phoenix_on_ice.png differ diff --git a/load/images/baby_phoenix_on_ice_depth.png b/load/images/baby_phoenix_on_ice_depth.png new file mode 100644 index 0000000..196b752 Binary files /dev/null and b/load/images/baby_phoenix_on_ice_depth.png differ diff --git a/load/images/baby_phoenix_on_ice_normal.png b/load/images/baby_phoenix_on_ice_normal.png new file mode 100644 index 0000000..f9eb191 Binary files /dev/null and b/load/images/baby_phoenix_on_ice_normal.png differ diff --git a/load/images/baby_phoenix_on_ice_rgba.png b/load/images/baby_phoenix_on_ice_rgba.png new file mode 100644 index 0000000..e46885a Binary files /dev/null and b/load/images/baby_phoenix_on_ice_rgba.png differ diff --git a/load/images/beach_house_1.png b/load/images/beach_house_1.png new file mode 100644 index 0000000..cfde250 Binary files /dev/null and b/load/images/beach_house_1.png differ diff --git a/load/images/beach_house_1_depth.png b/load/images/beach_house_1_depth.png new file mode 100644 index 0000000..2608c50 Binary files /dev/null and b/load/images/beach_house_1_depth.png differ diff --git a/load/images/beach_house_1_normal.png b/load/images/beach_house_1_normal.png new file mode 100644 index 0000000..d94b836 Binary files /dev/null and b/load/images/beach_house_1_normal.png differ diff --git a/load/images/beach_house_1_rgba.png b/load/images/beach_house_1_rgba.png new file mode 100644 index 0000000..4f661c4 Binary files /dev/null and b/load/images/beach_house_1_rgba.png differ diff --git a/load/images/beach_house_2.png b/load/images/beach_house_2.png new file mode 100644 index 0000000..5a33e50 Binary files /dev/null and b/load/images/beach_house_2.png differ diff --git a/load/images/beach_house_2_depth.png b/load/images/beach_house_2_depth.png new file mode 100644 index 0000000..348b0dd Binary files /dev/null and b/load/images/beach_house_2_depth.png differ diff --git a/load/images/beach_house_2_normal.png b/load/images/beach_house_2_normal.png new file mode 100644 index 0000000..bc254c5 Binary files /dev/null and b/load/images/beach_house_2_normal.png differ diff --git a/load/images/beach_house_2_rgba.png b/load/images/beach_house_2_rgba.png new file mode 100644 index 0000000..73a0af9 Binary files /dev/null and b/load/images/beach_house_2_rgba.png differ diff --git a/load/images/bollywood_actress.png b/load/images/bollywood_actress.png new file mode 100644 index 0000000..4316be3 Binary files /dev/null and b/load/images/bollywood_actress.png differ diff --git a/load/images/bollywood_actress_depth.png b/load/images/bollywood_actress_depth.png new file mode 100644 index 0000000..2b795c3 Binary files /dev/null and b/load/images/bollywood_actress_depth.png differ diff --git a/load/images/bollywood_actress_normal.png b/load/images/bollywood_actress_normal.png new file mode 100644 index 0000000..8f6cf13 Binary files /dev/null and b/load/images/bollywood_actress_normal.png differ diff --git a/load/images/bollywood_actress_rgba.png b/load/images/bollywood_actress_rgba.png new file mode 100644 index 0000000..cddfbc7 Binary files /dev/null and b/load/images/bollywood_actress_rgba.png differ diff --git a/load/images/cactus.png b/load/images/cactus.png new file mode 100644 index 0000000..1f89ba8 Binary files /dev/null and b/load/images/cactus.png differ diff --git a/load/images/cactus_depth.png b/load/images/cactus_depth.png new file mode 100644 index 0000000..f086e99 Binary files /dev/null and b/load/images/cactus_depth.png differ diff --git a/load/images/cactus_normal.png b/load/images/cactus_normal.png new file mode 100644 index 0000000..f420869 Binary files /dev/null and b/load/images/cactus_normal.png differ diff --git a/load/images/cactus_rgba.png b/load/images/cactus_rgba.png new file mode 100644 index 0000000..1936f75 Binary files /dev/null and b/load/images/cactus_rgba.png differ diff --git a/load/images/catstatue.png b/load/images/catstatue.png new file mode 100644 index 0000000..7f58741 Binary files /dev/null and b/load/images/catstatue.png differ diff --git a/load/images/catstatue_depth.png b/load/images/catstatue_depth.png new file mode 100644 index 0000000..a22c328 Binary files /dev/null and b/load/images/catstatue_depth.png differ diff --git a/load/images/catstatue_normal.png b/load/images/catstatue_normal.png new file mode 100644 index 0000000..3baf000 Binary files /dev/null and b/load/images/catstatue_normal.png differ diff --git a/load/images/catstatue_rgba.png b/load/images/catstatue_rgba.png new file mode 100644 index 0000000..3b44eb5 Binary files /dev/null and b/load/images/catstatue_rgba.png differ diff --git a/load/images/church_ruins.png b/load/images/church_ruins.png new file mode 100644 index 0000000..951eccf Binary files /dev/null and b/load/images/church_ruins.png differ diff --git a/load/images/church_ruins_depth.png b/load/images/church_ruins_depth.png new file mode 100644 index 0000000..2d35d2c Binary files /dev/null and b/load/images/church_ruins_depth.png differ diff --git a/load/images/church_ruins_normal.png b/load/images/church_ruins_normal.png new file mode 100644 index 0000000..dbb1bce Binary files /dev/null and b/load/images/church_ruins_normal.png differ diff --git a/load/images/church_ruins_rgba.png b/load/images/church_ruins_rgba.png new file mode 100644 index 0000000..9cd1fcd Binary files /dev/null and b/load/images/church_ruins_rgba.png differ diff --git a/load/images/dog1_rgba.png b/load/images/dog1_rgba.png new file mode 100644 index 0000000..cec2f8f Binary files /dev/null and b/load/images/dog1_rgba.png differ diff --git a/load/images/dragon2_rgba.png b/load/images/dragon2_rgba.png new file mode 100644 index 0000000..9cf1f6d Binary files /dev/null and b/load/images/dragon2_rgba.png differ diff --git a/load/images/firekeeper.jpg b/load/images/firekeeper.jpg new file mode 100644 index 0000000..9e57d14 Binary files /dev/null and b/load/images/firekeeper.jpg differ diff --git a/load/images/firekeeper_depth.png b/load/images/firekeeper_depth.png new file mode 100644 index 0000000..7d56a1f Binary files /dev/null and b/load/images/firekeeper_depth.png differ diff --git a/load/images/firekeeper_normal.png b/load/images/firekeeper_normal.png new file mode 100644 index 0000000..614f8ac Binary files /dev/null and b/load/images/firekeeper_normal.png differ diff --git a/load/images/firekeeper_rgba.png b/load/images/firekeeper_rgba.png new file mode 100644 index 0000000..73430de Binary files /dev/null and b/load/images/firekeeper_rgba.png differ diff --git a/load/images/futuristic_car.png b/load/images/futuristic_car.png new file mode 100644 index 0000000..0cfc78f Binary files /dev/null and b/load/images/futuristic_car.png differ diff --git a/load/images/futuristic_car_depth.png b/load/images/futuristic_car_depth.png new file mode 100644 index 0000000..85dc531 Binary files /dev/null and b/load/images/futuristic_car_depth.png differ diff --git a/load/images/futuristic_car_normal.png b/load/images/futuristic_car_normal.png new file mode 100644 index 0000000..510654f Binary files /dev/null and b/load/images/futuristic_car_normal.png differ diff --git a/load/images/futuristic_car_rgba.png b/load/images/futuristic_car_rgba.png new file mode 100644 index 0000000..53965c9 Binary files /dev/null and b/load/images/futuristic_car_rgba.png differ diff --git a/load/images/grootplant_rgba.png b/load/images/grootplant_rgba.png new file mode 100644 index 0000000..25f8177 Binary files /dev/null and b/load/images/grootplant_rgba.png differ diff --git a/load/images/hamburger.png b/load/images/hamburger.png new file mode 100644 index 0000000..2dc1268 Binary files /dev/null and b/load/images/hamburger.png differ diff --git a/load/images/hamburger_depth.png b/load/images/hamburger_depth.png new file mode 100644 index 0000000..941e689 Binary files /dev/null and b/load/images/hamburger_depth.png differ diff --git a/load/images/hamburger_rgba.png b/load/images/hamburger_rgba.png new file mode 100644 index 0000000..31135b3 Binary files /dev/null and b/load/images/hamburger_rgba.png differ diff --git a/load/images/mona_lisa.png b/load/images/mona_lisa.png new file mode 100644 index 0000000..51f8371 Binary files /dev/null and b/load/images/mona_lisa.png differ diff --git a/load/images/mona_lisa_depth.png b/load/images/mona_lisa_depth.png new file mode 100644 index 0000000..713f059 Binary files /dev/null and b/load/images/mona_lisa_depth.png differ diff --git a/load/images/mona_lisa_normal.png b/load/images/mona_lisa_normal.png new file mode 100644 index 0000000..4ef97b0 Binary files /dev/null and b/load/images/mona_lisa_normal.png differ diff --git a/load/images/mona_lisa_rgba.png b/load/images/mona_lisa_rgba.png new file mode 100644 index 0000000..41a33e1 Binary files /dev/null and b/load/images/mona_lisa_rgba.png differ diff --git a/load/images/robot_rgba.png b/load/images/robot_rgba.png new file mode 100644 index 0000000..31ce968 Binary files /dev/null and b/load/images/robot_rgba.png differ diff --git a/load/images/teddy.png b/load/images/teddy.png new file mode 100644 index 0000000..7bb3a96 Binary files /dev/null and b/load/images/teddy.png differ diff --git a/load/images/teddy_depth.png b/load/images/teddy_depth.png new file mode 100644 index 0000000..70a35b0 Binary files /dev/null and b/load/images/teddy_depth.png differ diff --git a/load/images/teddy_normal.png b/load/images/teddy_normal.png new file mode 100644 index 0000000..75d08b2 Binary files /dev/null and b/load/images/teddy_normal.png differ diff --git a/load/images/teddy_rgba.png b/load/images/teddy_rgba.png new file mode 100644 index 0000000..d3dbf5f Binary files /dev/null and b/load/images/teddy_rgba.png differ diff --git a/load/images/thorhammer_rgba.png b/load/images/thorhammer_rgba.png new file mode 100644 index 0000000..6a26c41 Binary files /dev/null and b/load/images/thorhammer_rgba.png differ diff --git a/load/lights/LICENSE.txt b/load/lights/LICENSE.txt new file mode 100644 index 0000000..3c0acfc --- /dev/null +++ b/load/lights/LICENSE.txt @@ -0,0 +1,2 @@ +The mud_road_puresky.hdr HDR probe is from https://polyhaven.com/a/mud_road_puresky +CC0 License. diff --git a/load/lights/bsdf_256_256.bin b/load/lights/bsdf_256_256.bin new file mode 100644 index 0000000..feb212d Binary files /dev/null and b/load/lights/bsdf_256_256.bin differ diff --git a/load/lights/mud_road_puresky_1k.hdr b/load/lights/mud_road_puresky_1k.hdr new file mode 100644 index 0000000..3574b7f Binary files /dev/null and b/load/lights/mud_road_puresky_1k.hdr differ diff --git a/load/make_prompt_library.py b/load/make_prompt_library.py new file mode 100644 index 0000000..c142004 --- /dev/null +++ b/load/make_prompt_library.py @@ -0,0 +1,434 @@ +import json + +dreamfusion_gallery_video_names = [ + "a_20-sided_die_made_out_of_glass.mp4", + "a_bald_eagle_carved_out_of_wood.mp4", + "a_banana_peeling_itself.mp4", + "a_beagle_in_a_detective's_outfit.mp4", + "a_beautiful_dress_made_out_of_fruit,_on_a_mannequin._Studio_lighting,_high_quality,_high_resolution.mp4", + "a_beautiful_dress_made_out_of_garbage_bags,_on_a_mannequin._Studio_lighting,_high_quality,_high_resolution.mp4", + "a_beautiful_rainbow_fish.mp4", + "a_bichon_frise_wearing_academic_regalia.mp4", + "a_blue_motorcycle.mp4", + "a_blue_poison-dart_frog_sitting_on_a_water_lily.mp4", + "a_brightly_colored_mushroom_growing_on_a_log.mp4", + "a_bumblebee_sitting_on_a_pink_flower.mp4", + "a_bunch_of_colorful_marbles_spilling_out_of_a_red_velvet_bag.mp4", + "a_capybara_wearing_a_top_hat,_low_poly.mp4", + "a_cat_with_a_mullet.mp4", + "a_ceramic_lion.mp4", + "a_ceramic_upside_down_yellow_octopus_holding_a_blue_green_ceramic_cup.mp4", + "a_chihuahua_wearing_a_tutu.mp4", + "a_chimpanzee_holding_a_peeled_banana.mp4", + "a_chimpanzee_looking_through_a_telescope.mp4", + "a_chimpanzee_stirring_a_bubbling_purple_potion_in_a_cauldron.mp4", + "a_chimpanzee_with_a_big_grin.mp4", + "a_completely_destroyed_car.mp4", + "a_confused_beagle_sitting_at_a_desk_working_on_homework.mp4", + "a_corgi_taking_a_selfie.mp4", + "a_crab,_low_poly.mp4", + "a_crocodile_playing_a_drum_set.mp4", + "a_cute_steampunk_elephant.mp4", + "a_dachsund_dressed_up_in_a_hotdog_costume.mp4", + "a_delicious_hamburger.mp4", + "a_dragon-cat_hybrid.mp4", + "a_DSLR_photo_of_a_baby_dragon_drinking_boba.mp4", + "a_DSLR_photo_of_a_baby_dragon_hatching_out_of_a_stone_egg.mp4", + "a_DSLR_photo_of_a_baby_grand_piano_viewed_from_far_away.mp4", + "a_DSLR_photo_of_a_bagel_filled_with_cream_cheese_and_lox.mp4", + "a_DSLR_photo_of_a_bald_eagle.mp4", + "a_DSLR_photo_of_a_barbecue_grill_cooking_sausages_and_burger_patties.mp4", + "a_DSLR_photo_of_a_basil_plant.mp4", + "a_DSLR_photo_of_a_bear_dancing_ballet.mp4", + "a_DSLR_photo_of_a_bear_dressed_as_a_lumberjack.mp4", + "a_DSLR_photo_of_a_bear_dressed_in_medieval_armor.mp4", + "a_DSLR_photo_of_a_beautiful_violin_sitting_flat_on_a_table.mp4", + "a_DSLR_photo_of_a_blue_jay_standing_on_a_large_basket_of_rainbow_macarons.mp4", + "a_DSLR_photo_of_a_bulldozer_clearing_away_a_pile_of_snow.mp4", + "a_DSLR_photo_of_a_bulldozer.mp4", + "a_DSLR_photo_of_a_cake_covered_in_colorful_frosting_with_a_slice_being_taken_out,_high_resolution.mp4", + "a_DSLR_photo_of_a_candelabra_with_many_candles_on_a_red_velvet_tablecloth.mp4", + "a_DSLR_photo_of_a_car_made_out_of_cheese.mp4", + "a_DSLR_photo_of_A_car_made_out_of_sushi.mp4", + "a_DSLR_photo_of_a_car_made_out_pizza.mp4", + "a_DSLR_photo_of_a_cat_lying_on_its_side_batting_at_a_ball_of_yarn.mp4", + "a_DSLR_photo_of_a_cat_magician_making_a_white_dove_appear.mp4", + "a_DSLR_photo_of_a_cat_wearing_a_bee_costume.mp4", + "a_DSLR_photo_of_a_cat_wearing_a_lion_costume.mp4", + "a_DSLR_photo_of_a_cauldron_full_of_gold_coins.mp4", + "a_DSLR_photo_of_a_chimpanzee_dressed_like_Henry_VIII_king_of_England.mp4", + "a_DSLR_photo_of_a_chimpanzee_dressed_like_Napoleon_Bonaparte.mp4", + "a_DSLR_photo_of_a_chow_chow_puppy.mp4", + "a_DSLR_photo_of_a_Christmas_tree_with_donuts_as_decorations.mp4", + "a_DSLR_photo_of_a_chrome-plated_duck_with_a_golden_beak_arguing_with_an_angry_turtle_in_a_forest.mp4", + "a_DSLR_photo_of_a_classic_Packard_car.mp4", + "a_DSLR_photo_of_a_cocker_spaniel_wearing_a_crown.mp4", + "a_DSLR_photo_of_a_corgi_lying_on_its_back_with_its_tongue_lolling_out.mp4", + "a_DSLR_photo_of_a_corgi_puppy.mp4", + "a_DSLR_photo_of_a_corgi_sneezing.mp4", + "a_DSLR_photo_of_a_corgi_standing_up_drinking_boba.mp4", + "a_DSLR_photo_of_a_corgi_taking_a_selfie.mp4", + "a_DSLR_photo_of_a_corgi_wearing_a_beret_and_holding_a_baguette,_standing_up_on_two_hind_legs.mp4", + "a_DSLR_photo_of_a_covered_wagon.mp4", + "a_DSLR_photo_of_a_cracked_egg_with_the_yolk_spilling_out_on_a_wooden_table.mp4", + "a_DSLR_photo_of_a_cup_full_of_pens_and_pencils.mp4", + "a_DSLR_photo_of_a_dalmation_wearing_a_fireman's_hat.mp4", + "a_DSLR_photo_of_a_delicious_chocolate_brownie_dessert_with_ice_cream_on_the_side.mp4", + "a_DSLR_photo_of_a_delicious_croissant.mp4", + "a_DSLR_photo_of_A_DMC_Delorean_car.mp4", + "a_DSLR_photo_of_a_dog_made_out_of_salad.mp4", + "a_DSLR_photo_of_a_drum_set_made_of_cheese.mp4", + "a_DSLR_photo_of_a_drying_rack_covered_in_clothes.mp4", + "a_DSLR_photo_of_aerial_view_of_a_ruined_castle.mp4", + "a_DSLR_photo_of_a_football_helmet.mp4", + "a_DSLR_photo_of_a_fox_holding_a_videogame_controller.mp4", + "a_DSLR_photo_of_a_fox_taking_a_photograph_using_a_DSLR.mp4", + "a_DSLR_photo_of_a_frazer_nash_super_sport_car.mp4", + "a_DSLR_photo_of_a_frog_wearing_a_sweater.mp4", + "a_DSLR_photo_of_a_ghost_eating_a_hamburger.mp4", + "a_DSLR_photo_of_a_giant_worm_emerging_from_the_sand_in_the_middle_of_the_desert.mp4", + "a_DSLR_photo_of_a_goose_made_out_of_gold.mp4", + "a_DSLR_photo_of_a_green_monster_truck.mp4", + "a_DSLR_photo_of_a_group_of_dogs_eating_pizza.mp4", + "a_DSLR_photo_of_a_group_of_dogs_playing_poker.mp4", + "a_DSLR_photo_of_a_gummy_bear_playing_the_saxophone.mp4", + "a_DSLR_photo_of_a_hippo_wearing_a_sweater.mp4", + "a_DSLR_photo_of_a_humanoid_robot_holding_a_human_brain.mp4", + "a_DSLR_photo_of_a_humanoid_robot_playing_solitaire.mp4", + "a_DSLR_photo_of_a_humanoid_robot_playing_the_cello.mp4", + "a_DSLR_photo_of_a_humanoid_robot_using_a_laptop.mp4", + "a_DSLR_photo_of_a_humanoid_robot_using_a_rolling_pin_to_roll_out_dough.mp4", + "a_DSLR_photo_of_a_human_skull.mp4", + "a_DSLR_photo_of_a_kitten_standing_on_top_of_a_giant_tortoise.mp4", + "a_DSLR_photo_of_a_knight_chopping_wood.mp4", + "a_DSLR_photo_of_a_knight_holding_a_lance_and_sitting_on_an_armored_horse.mp4", + "a_DSLR_photo_of_a_koala_wearing_a_party_hat_and_blowing_out_birthday_candles_on_a_cake.mp4", + "a_DSLR_photo_of_a_lemur_taking_notes_in_a_journal.mp4", + "a_DSLR_photo_of_a_lion_reading_the_newspaper.mp4", + "a_DSLR_photo_of_a_mandarin_duck_swimming_in_a_pond.mp4", + "a_DSLR_photo_of_a_model_of_the_eiffel_tower_made_out_of_toothpicks.mp4", + "a_DSLR_photo_of_a_mouse_playing_the_tuba.mp4", + "a_DSLR_photo_of_a_mug_of_hot_chocolate_with_whipped_cream_and_marshmallows.mp4", + "a_DSLR_photo_of_an_adorable_piglet_in_a_field.mp4", + "a_DSLR_photo_of_an_airplane_taking_off_from_the_runway.mp4", + "a_DSLR_photo_of_an_astronaut_standing_on_the_surface_of_mars.mp4", + "a_DSLR_photo_of_an_eggshell_broken_in_two_with_an_adorable_chick_standing_next_to_it.mp4", + "a_DSLR_photo_of_an_elephant_skull.mp4", + "a_DSLR_photo_of_an_exercise_bike_in_a_well_lit_room.mp4", + "a_DSLR_photo_of_an_extravagant_mansion,_aerial_view.mp4", + "a_DSLR_photo_of_an_ice_cream_sundae.mp4", + "a_DSLR_photo_of_an_iguana_holding_a_balloon.mp4", + "a_DSLR_photo_of_an_intricate_and_complex_dish_from_a_michelin_star_restaurant.mp4", + "a_DSLR_photo_of_An_iridescent_steampunk_patterned_millipede_with_bison_horns.mp4", + "a_DSLR_photo_of_an_octopus_playing_the_piano.mp4", + "a_DSLR_photo_of_an_old_car_overgrown_by_vines_and_weeds.mp4", + "a_DSLR_photo_of_an_old_vintage_car.mp4", + "a_DSLR_photo_of_an_orangutan_making_a_clay_bowl_on_a_throwing_wheel.mp4", + "a_DSLR_photo_of_an_orc_forging_a_hammer_on_an_anvil.mp4", + "a_DSLR_photo_of_an_origami_motorcycle.mp4", + "a_DSLR_photo_of_an_ornate_silver_gravy_boat_sitting_on_a_patterned_tablecloth.mp4", + "a_DSLR_photo_of_an_overstuffed_pastrami_sandwich.mp4", + "a_DSLR_photo_of_an_unstable_rock_cairn_in_the_middle_of_a_stream.mp4", + "a_DSLR_photo_of_a_pair_of_headphones_sitting_on_a_desk.mp4", + "a_DSLR_photo_of_a_pair_of_tan_cowboy_boots,_studio_lighting,_product_photography.mp4", + "a_DSLR_photo_of_a_peacock_on_a_surfboard.mp4", + "a_DSLR_photo_of_a_pigeon_reading_a_book.mp4", + "a_DSLR_photo_of_a_piglet_sitting_in_a_teacup.mp4", + "a_DSLR_photo_of_a_pig_playing_a_drum_set.mp4", + "a_DSLR_photo_of_a_pile_of_dice_on_a_green_tabletop_next_to_some_playing_cards.mp4", + "a_DSLR_photo_of_a_pirate_collie_dog,_high_resolution.mp4", + "a_DSLR_photo_of_a_plate_of_fried_chicken_and_waffles_with_maple_syrup_on_them.mp4", + "a_DSLR_photo_of_a_plate_piled_high_with_chocolate_chip_cookies.mp4", + "a_DSLR_photo_of_a_plush_t-rex_dinosaur_toy,_studio_lighting,_high_resolution.mp4", + "a_DSLR_photo_of_a_plush_triceratops_toy,_studio_lighting,_high_resolution.mp4", + "a_DSLR_photo_of_a_pomeranian_dog.mp4", + "a_DSLR_photo_of_a_porcelain_dragon.mp4", + "a_DSLR_photo_of_a_praying_mantis_wearing_roller_skates.mp4", + "a_DSLR_photo_of_a_puffin_standing_on_a_rock.mp4", + "a_DSLR_photo_of_a_pug_made_out_of_metal.mp4", + "a_DSLR_photo_of_a_pug_wearing_a_bee_costume.mp4", + "a_DSLR_photo_of_a_quill_and_ink_sitting_on_a_desk.mp4", + "a_DSLR_photo_of_a_raccoon_stealing_a_pie.mp4", + "a_DSLR_photo_of_a_red_cardinal_bird_singing.mp4", + "a_DSLR_photo_of_a_red_convertible_car_with_the_top_down.mp4", + "a_DSLR_photo_of_a_red-eyed_tree_frog.mp4", + "a_DSLR_photo_of_a_red_pickup_truck_driving_across_a_stream.mp4", + "a_DSLR_photo_of_a_red_wheelbarrow_with_a_shovel_in_it.mp4", + "a_DSLR_photo_of_a_roast_turkey_on_a_platter.mp4", + "a_DSLR_photo_of_a_robot_and_dinosaur_playing_chess,_high_resolution.mp4", + "a_DSLR_photo_of_a_robot_arm_picking_up_a_colorful_block_from_a_table.mp4", + "a_DSLR_photo_of_a_robot_cat_knocking_over_a_chess_piece_on_a_board.mp4", + "a_DSLR_photo_of_a_robot_dinosaur.mp4", + "a_DSLR_photo_of_a_robot_made_out_of_vegetables.mp4", + "a_DSLR_photo_of_a_robot_stegosaurus.mp4", + "a_DSLR_photo_of_a_robot_tiger.mp4", + "a_DSLR_photo_of_a_rolling_pin_on_top_of_bread_dough.mp4", + "a_DSLR_photo_of_a_sheepdog_running.mp4", + "a_DSLR_photo_of_a_shiba_inu_playing_golf_wearing_tartan_golf_clothes_and_hat.mp4", + "a_DSLR_photo_of_a_shiny_silver_robot_cat.mp4", + "a_DSLR_photo_of_a_silverback_gorilla_holding_a_golden_trophy.mp4", + "a_DSLR_photo_of_a_silver_humanoid_robot_flipping_a_coin.mp4", + "a_DSLR_photo_of_a_small_cherry_tomato_plant_in_a_pot_with_a_few_red_tomatoes_growing_on_it.mp4", + "a_DSLR_photo_of_a_small_saguaro_cactus_planted_in_a_clay_pot.mp4", + "a_DSLR_photo_of_a_Space_Shuttle.mp4", + "a_DSLR_photo_of_a_squirrel_dressed_like_a_clown.mp4", + "a_DSLR_photo_of_a_squirrel_flying_a_biplane.mp4", + "a_DSLR_photo_of_a_squirrel_giving_a_lecture_writing_on_a_chalkboard.mp4", + "a_DSLR_photo_of_a_squirrel_holding_a_bowling_ball.mp4", + "a_DSLR_photo_of_a_squirrel-lizard_hybrid.mp4", + "a_DSLR_photo_of_a_squirrel_made_out_of_fruit.mp4", + "a_DSLR_photo_of_a_squirrel-octopus_hybrid.mp4", + "a_DSLR_photo_of_a_stack_of_pancakes_covered_in_maple_syrup.mp4", + "a_DSLR_photo_of_a_steam_engine_train,_high_resolution.mp4", + "a_DSLR_photo_of_a_steaming_basket_full_of_dumplings.mp4", + "a_DSLR_photo_of_a_steaming_hot_plate_piled_high_with_spaghetti_and_meatballs.mp4", + "a_DSLR_photo_of_a_steampunk_space_ship_designed_in_the_18th_century.mp4", + "a_DSLR_photo_of_a_straw_basket_with_a_cobra_coming_out_of_it.mp4", + "a_DSLR_photo_of_a_swan_and_its_cygnets_swimming_in_a_pond.mp4", + "a_DSLR_photo_of_a_tarantula,_highly_detailed.mp4", + "a_DSLR_photo_of_a_teal_moped.mp4", + "a_DSLR_photo_of_a_teapot_shaped_like_an_elephant_head_where_its_snout_acts_as_the_spout.mp4", + "a_DSLR_photo_of_a_teddy_bear_taking_a_selfie.mp4", + "a_DSLR_photo_of_a_terracotta_bunny.mp4", + "a_DSLR_photo_of_a_tiger_dressed_as_a_doctor.mp4", + "a_DSLR_photo_of_a_tiger_made_out_of_yarn.mp4", + "a_DSLR_photo_of_a_toilet_made_out_of_gold.mp4", + "a_DSLR_photo_of_a_toy_robot.mp4", + "a_DSLR_photo_of_a_train_engine_made_out_of_clay.mp4", + "a_DSLR_photo_of_a_tray_of_Sushi_containing_pugs.mp4", + "a_DSLR_photo_of_a_tree_stump_with_an_axe_buried_in_it.mp4", + "a_DSLR_photo_of_a_turtle_standing_on_its_hind_legs,_wearing_a_top_hat_and_holding_a_cane.mp4", + "a_DSLR_photo_of_a_very_beautiful_small_organic_sculpture_made_of_fine_clockwork_and_gears_with_tiny_ruby_bearings,_very_intricate,_caved,_curved._Studio_lighting,_High_resolution,_white_background.mp4", + "a_DSLR_photo_of_A_very_beautiful_tiny_human_heart_organic_sculpture_made_of_copper_wire_and_threaded_pipes,_very_intricate,_curved,_Studio_lighting,_high_resolution.mp4", + "a_DSLR_photo_of_a_very_cool_and_trendy_pair_of_sneakers,_studio_lighting.mp4", + "a_DSLR_photo_of_a_vintage_record_player.mp4", + "a_DSLR_photo_of_a_wine_bottle_and_full_wine_glass_on_a_chessboard.mp4", + "a_DSLR_photo_of_a_wooden_desk_and_chair_from_an_elementary_school.mp4", + "a_DSLR_photo_of_a_yorkie_dog_eating_a_donut.mp4", + "a_DSLR_photo_of_a_yorkie_dog_wearing_extremely_cool_sneakers.mp4", + "a_DSLR_photo_of_baby_elephant_jumping_on_a_trampoline.mp4", + "a_DSLR_photo_of_cat_wearing_virtual_reality_headset_in_renaissance_oil_painting_high_detail_caravaggio.mp4", + "a_DSLR_photo_of_edible_typewriter_made_out_of_vegetables.mp4", + "a_DSLR_photo_of_Mont_Saint-Michel,_France,_aerial_view.mp4", + "a_DSLR_photo_of_Mount_Fuji,_aerial_view.mp4", + "a_DSLR_photo_of_Neuschwanstein_Castle,_aerial_view.mp4", + "A_DSLR_photo_of___pyramid_shaped_burrito_with_a_slice_cut_out_of_it.mp4", + "a_DSLR_photo_of_the_Imperial_State_Crown_of_England.mp4", + "a_DSLR_photo_of_the_leaning_tower_of_Pisa,_aerial_view.mp4", + "a_DSLR_photo_of_the_Statue_of_Liberty,_aerial_view.mp4", + "a_DSLR_photo_of_Two_locomotives_playing_tug_of_war.mp4", + "a_DSLR_photo_of_two_macaw_parrots_sharing_a_milkshake_with_two_straws.mp4", + "a_DSLR_photo_of_Westminster_Abbey,_aerial_view.mp4", + "a_ficus_planted_in_a_pot.mp4", + "a_flower_made_out_of_metal.mp4", + "a_fluffy_cat_lying_on_its_back_in_a_patch_of_sunlight.mp4", + "a_fox_and_a_hare_tangoing_together.mp4", + "a_fox_holding_a_videogame_controller.mp4", + "a_fox_playing_the_cello.mp4", + "a_frazer_nash_super_sport_car.mp4", + "a_freshly_baked_loaf_of_sourdough_bread_on_a_cutting_board.mp4", + "a_goat_drinking_beer.mp4", + "a_golden_goblet,_low_poly.mp4", + "a_green_dragon_breathing_fire.mp4", + "a_green_tractor_farming_corn_fields.mp4", + "a_highland_cow.mp4", + "a_hotdog_in_a_tutu_skirt.mp4", + "a_humanoid_robot_laying_on_the_couch_while_on_a_laptop.mp4", + "a_humanoid_robot_playing_the_violin.mp4", + "a_humanoid_robot_sitting_looking_at_a_Go_board_with_some_pieces_on_it.mp4", + "a_human_skeleton_drinking_a_glass_of_red_wine.mp4", + "a_human_skull_with_a_vine_growing_through_one_of_the_eye_sockets.mp4", + "a_kitten_looking_at_a_goldfish_in_a_bowl.mp4", + "a_lemur_drinking_boba.mp4", + "a_lemur_taking_notes_in_a_journal.mp4", + "a_lionfish.mp4", + "a_llama_wearing_a_suit.mp4", + "a_marble_bust_of_a_mouse.mp4", + "a_metal_sculpture_of_a_lion's_head,_highly_detailed.mp4", + "a_mojito_in_a_beach_chair.mp4", + "a_monkey-rabbit_hybrid.mp4", + "an_airplane_made_out_of_wood.mp4", + "an_amigurumi_bulldozer.mp4", + "An_anthropomorphic_tomato_eating_another_tomato.mp4", + "an_astronaut_playing_the_violin.mp4", + "an_astronaut_riding_a_kangaroo.mp4", + "an_English_castle,_aerial_view.mp4", + "an_erupting_volcano,_aerial_view.mp4", + "a_nest_with_a_few_white_eggs_and_one_golden_egg.mp4", + "an_exercise_bike.mp4", + "an_iridescent_metal_scorpion.mp4", + "An_octopus_and_a_giraffe_having_cheesecake.mp4", + "an_octopus_playing_the_harp.mp4", + "an_old_vintage_car.mp4", + "an_opulent_couch_from_the_palace_of_Versailles.mp4", + "an_orange_road_bike.mp4", + "an_orangutan_holding_a_paint_palette_in_one_hand_and_a_paintbrush_in_the_other.mp4", + "an_orangutan_playing_accordion_with_its_hands_spread_wide.mp4", + "an_orangutan_using_chopsticks_to_eat_ramen.mp4", + "an_orchid_flower_planted_in_a_clay_pot.mp4", + "a_palm_tree,_low_poly_3d_model.mp4", + "a_panda_rowing_a_boat_in_a_pond.mp4", + "a_panda_wearing_a_necktie_and_sitting_in_an_office_chair.mp4", + "A_Panther_De_Ville_car.mp4", + "a_pig_wearing_a_backpack.mp4", + "a_plate_of_delicious_tacos.mp4", + "a_plush_dragon_toy.mp4", + "a_plush_toy_of_a_corgi_nurse.mp4", + "a_rabbit,_animated_movie_character,_high_detail_3d_model.mp4", + "a_rabbit_cutting_grass_with_a_lawnmower.mp4", + "a_red_eyed_tree_frog,_low_poly.mp4", + "a_red_panda.mp4", + "a_ripe_strawberry.mp4", + "a_roulette_wheel.mp4", + "a_shiny_red_stand_mixer.mp4", + "a_silver_platter_piled_high_with_fruits.mp4", + "a_sliced_loaf_of_fresh_bread.mp4", + "a_snail_on_a_leaf.mp4", + "a_spanish_galleon_sailing_on_the_open_sea.mp4", + "a_squirrel_dressed_like_Henry_VIII_king_of_England.mp4", + "a_squirrel_gesturing_in_front_of_an_easel_showing_colorful_pie_charts.mp4", + "a_squirrel_wearing_a_tuxedo_and_holding_a_conductor's_baton.mp4", + "a_team_of_butterflies_playing_soccer_on_a_field.mp4", + "a_teddy_bear_pushing_a_shopping_cart_full_of_fruits_and_vegetables.mp4", + "a_tiger_dressed_as_a_military_general.mp4", + "a_tiger_karate_master.mp4", + "a_tiger_playing_the_violin.mp4", + "a_tiger_waiter_at_a_fancy_restaurant.mp4", + "a_tiger_wearing_a_tuxedo.mp4", + "a_t-rex_roaring_up_into_the_air.mp4", + "a_turtle_standing_on_its_hind_legs,_wearing_a_top_hat_and_holding_a_cane.mp4", + "a_typewriter.mp4", + "a_walrus_smoking_a_pipe.mp4", + "a_wedge_of_cheese_on_a_silver_platter.mp4", + "a_wide_angle_DSLR_photo_of_a_colorful_rooster.mp4", + "a_wide_angle_DSLR_photo_of_a_humanoid_banana_sitting_at_a_desk_doing_homework.mp4", + "a_wide_angle_DSLR_photo_of_a_mythical_troll_stirring_a_cauldron.mp4", + "a_wide_angle_DSLR_photo_of_a_squirrel_in_samurai_armor_wielding_a_katana.mp4", + "a_wide_angle_zoomed_out_DSLR_photo_of_A_red_dragon_dressed_in_a_tuxedo_and_playing_chess._The_chess_pieces_are_fashioned_after_robots.mp4", + "a_wide_angle_zoomed_out_DSLR_photo_of_a_skiing_penguin_wearing_a_puffy_jacket.mp4", + "a_wide_angle_zoomed_out_DSLR_photo_of_zoomed_out_view_of_Tower_Bridge_made_out_of_gingerbread_and_candy.mp4", + "a_woolly_mammoth_standing_on_ice.mp4", + "a_yellow_schoolbus.mp4", + "a_zoomed_out_DSLR_photo_of_a_3d_model_of_an_adorable_cottage_with_a_thatched_roof.mp4", + "a_zoomed_out_DSLR_photo_of_a_baby_bunny_sitting_on_top_of_a_stack_of_pancakes.mp4", + "a_zoomed_out_DSLR_photo_of_a_baby_dragon.mp4", + "a_zoomed_out_DSLR_photo_of_a_baby_monkey_riding_on_a_pig.mp4", + "a_zoomed_out_DSLR_photo_of_a_badger_wearing_a_party_hat_and_blowing_out_birthday_candles_on_a_cake.mp4", + "a_zoomed_out_DSLR_photo_of_a_beagle_eating_a_donut.mp4", + "a_zoomed_out_DSLR_photo_of_a_bear_playing_electric_bass.mp4", + "a_zoomed_out_DSLR_photo_of_a_beautifully_carved_wooden_knight_chess_piece.mp4", + "a_zoomed_out_DSLR_photo_of_a_beautiful_suit_made_out_of_moss,_on_a_mannequin._Studio_lighting,_high_quality,_high_resolution.mp4", + "a_zoomed_out_DSLR_photo_of_a_blue_lobster.mp4", + "a_zoomed_out_DSLR_photo_of_a_blue_tulip.mp4", + "a_zoomed_out_DSLR_photo_of_a_bowl_of_cereal_and_milk_with_a_spoon_in_it.mp4", + "a_zoomed_out_DSLR_photo_of_a_brain_in_a_jar.mp4", + "a_zoomed_out_DSLR_photo_of_a_bulldozer_made_out_of_toy_bricks.mp4", + "a_zoomed_out_DSLR_photo_of_a_cake_in_the_shape_of_a_train.mp4", + "a_zoomed_out_DSLR_photo_of_a_chihuahua_lying_in_a_pool_ring.mp4", + "a_zoomed_out_DSLR_photo_of_a_chimpanzee_dressed_as_a_football_player.mp4", + "a_zoomed_out_DSLR_photo_of_a_chimpanzee_holding_a_cup_of_hot_coffee.mp4", + "a_zoomed_out_DSLR_photo_of_a_chimpanzee_wearing_headphones.mp4", + "a_zoomed_out_DSLR_photo_of_a_colorful_camping_tent_in_a_patch_of_grass.mp4", + "a_zoomed_out_DSLR_photo_of_a_complex_movement_from_an_expensive_watch_with_many_shiny_gears,_sitting_on_a_table.mp4", + "a_zoomed_out_DSLR_photo_of_a_construction_excavator.mp4", + "a_zoomed_out_DSLR_photo_of_a_corgi_wearing_a_top_hat.mp4", + "a_zoomed_out_DSLR_photo_of_a_corn_cob_and_a_banana_playing_poker.mp4", + "a_zoomed_out_DSLR_photo_of_a_dachsund_riding_a_unicycle.mp4", + "a_zoomed_out_DSLR_photo_of_a_dachsund_wearing_a_boater_hat.mp4", + "a_zoomed_out_DSLR_photo_of_a_few_pool_balls_sitting_on_a_pool_table.mp4", + "a_zoomed_out_DSLR_photo_of_a_fox_working_on_a_jigsaw_puzzle.mp4", + "a_zoomed_out_DSLR_photo_of_a_fresh_cinnamon_roll_covered_in_glaze.mp4", + "a_zoomed_out_DSLR_photo_of_a_green_tractor.mp4", + "a_zoomed_out_DSLR_photo_of_a_greyhound_dog_racing_down_the_track.mp4", + "a_zoomed_out_DSLR_photo_of_a_group_of_squirrels_rowing_crew.mp4", + "a_zoomed_out_DSLR_photo_of_a_gummy_bear_driving_a_convertible.mp4", + "a_zoomed_out_DSLR_photo_of_a_hermit_crab_with_a_colorful_shell.mp4", + "a_zoomed_out_DSLR_photo_of_a_hippo_biting_through_a_watermelon.mp4", + "a_zoomed_out_DSLR_photo_of_a_hippo_made_out_of_chocolate.mp4", + "a_zoomed_out_DSLR_photo_of_a_humanoid_robot_lying_on_a_couch_using_a_laptop.mp4", + "a_zoomed_out_DSLR_photo_of_a_humanoid_robot_sitting_on_a_chair_drinking_a_cup_of_coffee.mp4", + "a_zoomed_out_DSLR_photo_of_a_human_skeleton_relaxing_in_a_lounge_chair.mp4", + "a_zoomed_out_DSLR_photo_of_a_kangaroo_sitting_on_a_bench_playing_the_accordion.mp4", + "a_zoomed_out_DSLR_photo_of_a_kingfisher_bird.mp4", + "a_zoomed_out_DSLR_photo_of_a_ladybug.mp4", + "a_zoomed_out_DSLR_photo_of_a_lion's_mane_jellyfish.mp4", + "a_zoomed_out_DSLR_photo_of_a_lobster_playing_the_saxophone.mp4", + "a_zoomed_out_DSLR_photo_of_a_majestic_sailboat.mp4", + "a_zoomed_out_DSLR_photo_of_a_marble_bust_of_a_cat,_a_real_mouse_is_sitting_on_its_head.mp4", + "a_zoomed_out_DSLR_photo_of_a_marble_bust_of_a_fox_head.mp4", + "a_zoomed_out_DSLR_photo_of_a_model_of_a_house_in_Tudor_style.mp4", + "a_zoomed_out_DSLR_photo_of_a_monkey-rabbit_hybrid.mp4", + "a_zoomed_out_DSLR_photo_of_a_monkey_riding_a_bike.mp4", + "a_zoomed_out_DSLR_photo_of_a_mountain_goat_standing_on_a_boulder.mp4", + "a_zoomed_out_DSLR_photo_of_a_mouse_holding_a_candlestick.mp4", + "a_zoomed_out_DSLR_photo_of_an_adorable_kitten_lying_next_to_a_flower.mp4", + "a_zoomed_out_DSLR_photo_of_an_all-utility_vehicle_driving_across_a_stream.mp4", + "a_zoomed_out_DSLR_photo_of_an_amigurumi_motorcycle.mp4", + "a_zoomed_out_DSLR_photo_of_an_astronaut_chopping_vegetables_in_a_sunlit_kitchen.mp4", + "a_zoomed_out_DSLR_photo_of_an_egg_cracked_open_with_a_newborn_chick_hatching_out_of_it.mp4", + "a_zoomed_out_DSLR_photo_of_an_expensive_office_chair.mp4", + "a_zoomed_out_DSLR_photo_of_an_origami_bulldozer_sitting_on_the_ground.mp4", + "a_zoomed_out_DSLR_photo_of_an_origami_crane.mp4", + "a_zoomed_out_DSLR_photo_of_an_origami_hippo_in_a_river.mp4", + "a_zoomed_out_DSLR_photo_of_an_otter_lying_on_its_back_in_the_water_holding_a_flower.mp4", + "a_zoomed_out_DSLR_photo_of_a_pair_of_floating_chopsticks_picking_up_noodles_out_of_a_bowl_of_ramen.mp4", + "a_zoomed_out_DSLR_photo_of_a_panda_throwing_wads_of_cash_into_the_air.mp4", + "a_zoomed_out_DSLR_photo_of_a_panda_wearing_a_chef's_hat_and_kneading_bread_dough_on_a_countertop.mp4", + "a_zoomed_out_DSLR_photo_of_a_pigeon_standing_on_a_manhole_cover.mp4", + "a_zoomed_out_DSLR_photo_of_a_pig_playing_the_saxophone.mp4", + "a_zoomed_out_DSLR_photo_of_a_pile_of_dice_on_a_green_tabletop.mp4", + "a_zoomed_out_DSLR_photo_of_a_pita_bread_full_of_hummus_and_falafel_and_vegetables.mp4", + "a_zoomed_out_DSLR_photo_of_a_pug_made_out_of_modeling_clay.mp4", + "a_zoomed_out_DSLR_photo_of_A_punk_rock_squirrel_in_a_studded_leather_jacket_shouting_into_a_microphone_while_standing_on_a_stump_and_holding_a_beer.mp4", + "a_zoomed_out_DSLR_photo_of_a_rabbit_cutting_grass_with_a_lawnmower.mp4", + "a_zoomed_out_DSLR_photo_of_a_rabbit_digging_a_hole_with_a_shovel.mp4", + "a_zoomed_out_DSLR_photo_of_a_raccoon_astronaut_holding_his_helmet.mp4", + "a_zoomed_out_DSLR_photo_of_a_rainforest_bird_mating_ritual_dance.mp4", + "a_zoomed_out_DSLR_photo_of_a_recliner_chair.mp4", + "a_zoomed_out_DSLR_photo_of_a_red_rotary_telephone.mp4", + "a_zoomed_out_DSLR_photo_of_a_robot_couple_fine_dining.mp4", + "a_zoomed_out_DSLR_photo_of_a_rotary_telephone_carved_out_of_wood.mp4", + "a_zoomed_out_DSLR_photo_of_a_shiny_beetle.mp4", + "a_zoomed_out_DSLR_photo_of_a_silver_candelabra_sitting_on_a_red_velvet_tablecloth,_only_one_candle_is_lit.mp4", + "a_zoomed_out_DSLR_photo_of_a_squirrel_DJing.mp4", + "a_zoomed_out_DSLR_photo_of_a_squirrel_dressed_up_like_a_Victorian_woman.mp4", + "a_zoomed_out_DSLR_photo_of_a_table_with_dim_sum_on_it.mp4", + "a_zoomed_out_DSLR_photo_of_a_tiger_dressed_as_a_maid.mp4", + "a_zoomed_out_DSLR_photo_of_a_tiger_dressed_as_a_military_general.mp4", + "a_zoomed_out_DSLR_photo_of_a_tiger_eating_an_ice_cream_cone.mp4", + "a_zoomed_out_DSLR_photo_of_a_tiger_wearing_sunglasses_and_a_leather_jacket,_riding_a_motorcycle.mp4", + "a_zoomed_out_DSLR_photo_of_a_toad_catching_a_fly_with_its_tongue.mp4", + "a_zoomed_out_DSLR_photo_of_a_wizard_raccoon_casting_a_spell.mp4", + "a_zoomed_out_DSLR_photo_of_a_yorkie_dog_dressed_as_a_maid.mp4", + "a_zoomed_out_DSLR_photo_of_cats_wearing_eyeglasses.mp4", + "a_zoomed_out_DSLR_photo_of_miniature_schnauzer_wooden_sculpture,_high_quality_studio_photo.mp4", + "A_zoomed_out_DSLR_photo_of___phoenix_made_of_splashing_water_.mp4", + "a_zoomed_out_DSLR_photo_of_Sydney_opera_house,_aerial_view.mp4", + "a_zoomed_out_DSLR_photo_of_two_foxes_tango_dancing.mp4", + "a_zoomed_out_DSLR_photo_of_two_raccoons_playing_poker.mp4", + "Chichen_Itza,_aerial_view.mp4", + "__Coffee_cup_with_many_holes.mp4", + "fries_and_a_hamburger.mp4", + "__Luminescent_wild_horses.mp4", + "Michelangelo_style_statue_of_an_astronaut.mp4", + "Michelangelo_style_statue_of_dog_reading_news_on_a_cellphone.mp4", + "the_titanic,_aerial_view.mp4", + "two_gummy_bears_playing_dominoes.mp4", + "two_macaw_parrots_playing_chess.mp4", + "Wedding_dress_made_of_tentacles.mp4", +] + + +def main(): + prompt_library = { + "dreamfusion": [ + p.replace(".mp4", "").replace("_", " ") + for p in dreamfusion_gallery_video_names + ] + } + with open("load/prompt_library.json", "w") as f: + json.dump(prompt_library, f, indent=2) + + +if __name__ == "__main__": + main() diff --git a/load/prompt_library.json b/load/prompt_library.json new file mode 100644 index 0000000..ef73987 --- /dev/null +++ b/load/prompt_library.json @@ -0,0 +1,419 @@ +{ + "dreamfusion": [ + "a 20-sided die made out of glass", + "a bald eagle carved out of wood", + "a banana peeling itself", + "a beagle in a detective's outfit", + "a beautiful dress made out of fruit, on a mannequin. Studio lighting, high quality, high resolution", + "a beautiful dress made out of garbage bags, on a mannequin. Studio lighting, high quality, high resolution", + "a beautiful rainbow fish", + "a bichon frise wearing academic regalia", + "a blue motorcycle", + "a blue poison-dart frog sitting on a water lily", + "a brightly colored mushroom growing on a log", + "a bumblebee sitting on a pink flower", + "a bunch of colorful marbles spilling out of a red velvet bag", + "a capybara wearing a top hat, low poly", + "a cat with a mullet", + "a ceramic lion", + "a ceramic upside down yellow octopus holding a blue green ceramic cup", + "a chihuahua wearing a tutu", + "a chimpanzee holding a peeled banana", + "a chimpanzee looking through a telescope", + "a chimpanzee stirring a bubbling purple potion in a cauldron", + "a chimpanzee with a big grin", + "a completely destroyed car", + "a confused beagle sitting at a desk working on homework", + "a corgi taking a selfie", + "a crab, low poly", + "a crocodile playing a drum set", + "a cute steampunk elephant", + "a dachsund dressed up in a hotdog costume", + "a delicious hamburger", + "a dragon-cat hybrid", + "a DSLR photo of a baby dragon drinking boba", + "a DSLR photo of a baby dragon hatching out of a stone egg", + "a DSLR photo of a baby grand piano viewed from far away", + "a DSLR photo of a bagel filled with cream cheese and lox", + "a DSLR photo of a bald eagle", + "a DSLR photo of a barbecue grill cooking sausages and burger patties", + "a DSLR photo of a basil plant", + "a DSLR photo of a bear dancing ballet", + "a DSLR photo of a bear dressed as a lumberjack", + "a DSLR photo of a bear dressed in medieval armor", + "a DSLR photo of a beautiful violin sitting flat on a table", + "a DSLR photo of a blue jay standing on a large basket of rainbow macarons", + "a DSLR photo of a bulldozer clearing away a pile of snow", + "a DSLR photo of a bulldozer", + "a DSLR photo of a cake covered in colorful frosting with a slice being taken out, high resolution", + "a DSLR photo of a candelabra with many candles on a red velvet tablecloth", + "a DSLR photo of a car made out of cheese", + "a DSLR photo of A car made out of sushi", + "a DSLR photo of a car made out pizza", + "a DSLR photo of a cat lying on its side batting at a ball of yarn", + "a DSLR photo of a cat magician making a white dove appear", + "a DSLR photo of a cat wearing a bee costume", + "a DSLR photo of a cat wearing a lion costume", + "a DSLR photo of a cauldron full of gold coins", + "a DSLR photo of a chimpanzee dressed like Henry VIII king of England", + "a DSLR photo of a chimpanzee dressed like Napoleon Bonaparte", + "a DSLR photo of a chow chow puppy", + "a DSLR photo of a Christmas tree with donuts as decorations", + "a DSLR photo of a chrome-plated duck with a golden beak arguing with an angry turtle in a forest", + "a DSLR photo of a classic Packard car", + "a DSLR photo of a cocker spaniel wearing a crown", + "a DSLR photo of a corgi lying on its back with its tongue lolling out", + "a DSLR photo of a corgi puppy", + "a DSLR photo of a corgi sneezing", + "a DSLR photo of a corgi standing up drinking boba", + "a DSLR photo of a corgi taking a selfie", + "a DSLR photo of a corgi wearing a beret and holding a baguette, standing up on two hind legs", + "a DSLR photo of a covered wagon", + "a DSLR photo of a cracked egg with the yolk spilling out on a wooden table", + "a DSLR photo of a cup full of pens and pencils", + "a DSLR photo of a dalmation wearing a fireman's hat", + "a DSLR photo of a delicious chocolate brownie dessert with ice cream on the side", + "a DSLR photo of a delicious croissant", + "a DSLR photo of A DMC Delorean car", + "a DSLR photo of a dog made out of salad", + "a DSLR photo of a drum set made of cheese", + "a DSLR photo of a drying rack covered in clothes", + "a DSLR photo of aerial view of a ruined castle", + "a DSLR photo of a football helmet", + "a DSLR photo of a fox holding a videogame controller", + "a DSLR photo of a fox taking a photograph using a DSLR", + "a DSLR photo of a frazer nash super sport car", + "a DSLR photo of a frog wearing a sweater", + "a DSLR photo of a ghost eating a hamburger", + "a DSLR photo of a giant worm emerging from the sand in the middle of the desert", + "a DSLR photo of a goose made out of gold", + "a DSLR photo of a green monster truck", + "a DSLR photo of a group of dogs eating pizza", + "a DSLR photo of a group of dogs playing poker", + "a DSLR photo of a gummy bear playing the saxophone", + "a DSLR photo of a hippo wearing a sweater", + "a DSLR photo of a humanoid robot holding a human brain", + "a DSLR photo of a humanoid robot playing solitaire", + "a DSLR photo of a humanoid robot playing the cello", + "a DSLR photo of a humanoid robot using a laptop", + "a DSLR photo of a humanoid robot using a rolling pin to roll out dough", + "a DSLR photo of a human skull", + "a DSLR photo of a kitten standing on top of a giant tortoise", + "a DSLR photo of a knight chopping wood", + "a DSLR photo of a knight holding a lance and sitting on an armored horse", + "a DSLR photo of a koala wearing a party hat and blowing out birthday candles on a cake", + "a DSLR photo of a lemur taking notes in a journal", + "a DSLR photo of a lion reading the newspaper", + "a DSLR photo of a mandarin duck swimming in a pond", + "a DSLR photo of a model of the eiffel tower made out of toothpicks", + "a DSLR photo of a mouse playing the tuba", + "a DSLR photo of a mug of hot chocolate with whipped cream and marshmallows", + "a DSLR photo of an adorable piglet in a field", + "a DSLR photo of an airplane taking off from the runway", + "a DSLR photo of an astronaut standing on the surface of mars", + "a DSLR photo of an eggshell broken in two with an adorable chick standing next to it", + "a DSLR photo of an elephant skull", + "a DSLR photo of an exercise bike in a well lit room", + "a DSLR photo of an extravagant mansion, aerial view", + "a DSLR photo of an ice cream sundae", + "a DSLR photo of an iguana holding a balloon", + "a DSLR photo of an intricate and complex dish from a michelin star restaurant", + "a DSLR photo of An iridescent steampunk patterned millipede with bison horns", + "a DSLR photo of an octopus playing the piano", + "a DSLR photo of an old car overgrown by vines and weeds", + "a DSLR photo of an old vintage car", + "a DSLR photo of an orangutan making a clay bowl on a throwing wheel", + "a DSLR photo of an orc forging a hammer on an anvil", + "a DSLR photo of an origami motorcycle", + "a DSLR photo of an ornate silver gravy boat sitting on a patterned tablecloth", + "a DSLR photo of an overstuffed pastrami sandwich", + "a DSLR photo of an unstable rock cairn in the middle of a stream", + "a DSLR photo of a pair of headphones sitting on a desk", + "a DSLR photo of a pair of tan cowboy boots, studio lighting, product photography", + "a DSLR photo of a peacock on a surfboard", + "a DSLR photo of a pigeon reading a book", + "a DSLR photo of a piglet sitting in a teacup", + "a DSLR photo of a pig playing a drum set", + "a DSLR photo of a pile of dice on a green tabletop next to some playing cards", + "a DSLR photo of a pirate collie dog, high resolution", + "a DSLR photo of a plate of fried chicken and waffles with maple syrup on them", + "a DSLR photo of a plate piled high with chocolate chip cookies", + "a DSLR photo of a plush t-rex dinosaur toy, studio lighting, high resolution", + "a DSLR photo of a plush triceratops toy, studio lighting, high resolution", + "a DSLR photo of a pomeranian dog", + "a DSLR photo of a porcelain dragon", + "a DSLR photo of a praying mantis wearing roller skates", + "a DSLR photo of a puffin standing on a rock", + "a DSLR photo of a pug made out of metal", + "a DSLR photo of a pug wearing a bee costume", + "a DSLR photo of a quill and ink sitting on a desk", + "a DSLR photo of a raccoon stealing a pie", + "a DSLR photo of a red cardinal bird singing", + "a DSLR photo of a red convertible car with the top down", + "a DSLR photo of a red-eyed tree frog", + "a DSLR photo of a red pickup truck driving across a stream", + "a DSLR photo of a red wheelbarrow with a shovel in it", + "a DSLR photo of a roast turkey on a platter", + "a DSLR photo of a robot and dinosaur playing chess, high resolution", + "a DSLR photo of a robot arm picking up a colorful block from a table", + "a DSLR photo of a robot cat knocking over a chess piece on a board", + "a DSLR photo of a robot dinosaur", + "a DSLR photo of a robot made out of vegetables", + "a DSLR photo of a robot stegosaurus", + "a DSLR photo of a robot tiger", + "a DSLR photo of a rolling pin on top of bread dough", + "a DSLR photo of a sheepdog running", + "a DSLR photo of a shiba inu playing golf wearing tartan golf clothes and hat", + "a DSLR photo of a shiny silver robot cat", + "a DSLR photo of a silverback gorilla holding a golden trophy", + "a DSLR photo of a silver humanoid robot flipping a coin", + "a DSLR photo of a small cherry tomato plant in a pot with a few red tomatoes growing on it", + "a DSLR photo of a small saguaro cactus planted in a clay pot", + "a DSLR photo of a Space Shuttle", + "a DSLR photo of a squirrel dressed like a clown", + "a DSLR photo of a squirrel flying a biplane", + "a DSLR photo of a squirrel giving a lecture writing on a chalkboard", + "a DSLR photo of a squirrel holding a bowling ball", + "a DSLR photo of a squirrel-lizard hybrid", + "a DSLR photo of a squirrel made out of fruit", + "a DSLR photo of a squirrel-octopus hybrid", + "a DSLR photo of a stack of pancakes covered in maple syrup", + "a DSLR photo of a steam engine train, high resolution", + "a DSLR photo of a steaming basket full of dumplings", + "a DSLR photo of a steaming hot plate piled high with spaghetti and meatballs", + "a DSLR photo of a steampunk space ship designed in the 18th century", + "a DSLR photo of a straw basket with a cobra coming out of it", + "a DSLR photo of a swan and its cygnets swimming in a pond", + "a DSLR photo of a tarantula, highly detailed", + "a DSLR photo of a teal moped", + "a DSLR photo of a teapot shaped like an elephant head where its snout acts as the spout", + "a DSLR photo of a teddy bear taking a selfie", + "a DSLR photo of a terracotta bunny", + "a DSLR photo of a tiger dressed as a doctor", + "a DSLR photo of a tiger made out of yarn", + "a DSLR photo of a toilet made out of gold", + "a DSLR photo of a toy robot", + "a DSLR photo of a train engine made out of clay", + "a DSLR photo of a tray of Sushi containing pugs", + "a DSLR photo of a tree stump with an axe buried in it", + "a DSLR photo of a turtle standing on its hind legs, wearing a top hat and holding a cane", + "a DSLR photo of a very beautiful small organic sculpture made of fine clockwork and gears with tiny ruby bearings, very intricate, caved, curved. Studio lighting, High resolution, white background", + "a DSLR photo of A very beautiful tiny human heart organic sculpture made of copper wire and threaded pipes, very intricate, curved, Studio lighting, high resolution", + "a DSLR photo of a very cool and trendy pair of sneakers, studio lighting", + "a DSLR photo of a vintage record player", + "a DSLR photo of a wine bottle and full wine glass on a chessboard", + "a DSLR photo of a wooden desk and chair from an elementary school", + "a DSLR photo of a yorkie dog eating a donut", + "a DSLR photo of a yorkie dog wearing extremely cool sneakers", + "a DSLR photo of baby elephant jumping on a trampoline", + "a DSLR photo of cat wearing virtual reality headset in renaissance oil painting high detail caravaggio", + "a DSLR photo of edible typewriter made out of vegetables", + "a DSLR photo of Mont Saint-Michel, France, aerial view", + "a DSLR photo of Mount Fuji, aerial view", + "a DSLR photo of Neuschwanstein Castle, aerial view", + "A DSLR photo of pyramid shaped burrito with a slice cut out of it", + "a DSLR photo of the Imperial State Crown of England", + "a DSLR photo of the leaning tower of Pisa, aerial view", + "a DSLR photo of the Statue of Liberty, aerial view", + "a DSLR photo of Two locomotives playing tug of war", + "a DSLR photo of two macaw parrots sharing a milkshake with two straws", + "a DSLR photo of Westminster Abbey, aerial view", + "a ficus planted in a pot", + "a flower made out of metal", + "a fluffy cat lying on its back in a patch of sunlight", + "a fox and a hare tangoing together", + "a fox holding a videogame controller", + "a fox playing the cello", + "a frazer nash super sport car", + "a freshly baked loaf of sourdough bread on a cutting board", + "a goat drinking beer", + "a golden goblet, low poly", + "a green dragon breathing fire", + "a green tractor farming corn fields", + "a highland cow", + "a hotdog in a tutu skirt", + "a humanoid robot laying on the couch while on a laptop", + "a humanoid robot playing the violin", + "a humanoid robot sitting looking at a Go board with some pieces on it", + "a human skeleton drinking a glass of red wine", + "a human skull with a vine growing through one of the eye sockets", + "a kitten looking at a goldfish in a bowl", + "a lemur drinking boba", + "a lemur taking notes in a journal", + "a lionfish", + "a llama wearing a suit", + "a marble bust of a mouse", + "a metal sculpture of a lion's head, highly detailed", + "a mojito in a beach chair", + "a monkey-rabbit hybrid", + "an airplane made out of wood", + "an amigurumi bulldozer", + "An anthropomorphic tomato eating another tomato", + "an astronaut playing the violin", + "an astronaut riding a kangaroo", + "an English castle, aerial view", + "an erupting volcano, aerial view", + "a nest with a few white eggs and one golden egg", + "an exercise bike", + "an iridescent metal scorpion", + "An octopus and a giraffe having cheesecake", + "an octopus playing the harp", + "an old vintage car", + "an opulent couch from the palace of Versailles", + "an orange road bike", + "an orangutan holding a paint palette in one hand and a paintbrush in the other", + "an orangutan playing accordion with its hands spread wide", + "an orangutan using chopsticks to eat ramen", + "an orchid flower planted in a clay pot", + "a palm tree, low poly 3d model", + "a panda rowing a boat in a pond", + "a panda wearing a necktie and sitting in an office chair", + "A Panther De Ville car", + "a pig wearing a backpack", + "a plate of delicious tacos", + "a plush dragon toy", + "a plush toy of a corgi nurse", + "a rabbit, animated movie character, high detail 3d model", + "a rabbit cutting grass with a lawnmower", + "a red eyed tree frog, low poly", + "a red panda", + "a ripe strawberry", + "a roulette wheel", + "a shiny red stand mixer", + "a silver platter piled high with fruits", + "a sliced loaf of fresh bread", + "a snail on a leaf", + "a spanish galleon sailing on the open sea", + "a squirrel dressed like Henry VIII king of England", + "a squirrel gesturing in front of an easel showing colorful pie charts", + "a squirrel wearing a tuxedo and holding a conductor's baton", + "a team of butterflies playing soccer on a field", + "a teddy bear pushing a shopping cart full of fruits and vegetables", + "a tiger dressed as a military general", + "a tiger karate master", + "a tiger playing the violin", + "a tiger waiter at a fancy restaurant", + "a tiger wearing a tuxedo", + "a t-rex roaring up into the air", + "a turtle standing on its hind legs, wearing a top hat and holding a cane", + "a typewriter", + "a walrus smoking a pipe", + "a wedge of cheese on a silver platter", + "a wide angle DSLR photo of a colorful rooster", + "a wide angle DSLR photo of a humanoid banana sitting at a desk doing homework", + "a wide angle DSLR photo of a mythical troll stirring a cauldron", + "a wide angle DSLR photo of a squirrel in samurai armor wielding a katana", + "a wide angle zoomed out DSLR photo of A red dragon dressed in a tuxedo and playing chess. The chess pieces are fashioned after robots", + "a wide angle zoomed out DSLR photo of a skiing penguin wearing a puffy jacket", + "a wide angle zoomed out DSLR photo of zoomed out view of Tower Bridge made out of gingerbread and candy", + "a woolly mammoth standing on ice", + "a yellow schoolbus", + "a zoomed out DSLR photo of a 3d model of an adorable cottage with a thatched roof", + "a zoomed out DSLR photo of a baby bunny sitting on top of a stack of pancakes", + "a zoomed out DSLR photo of a baby dragon", + "a zoomed out DSLR photo of a baby monkey riding on a pig", + "a zoomed out DSLR photo of a badger wearing a party hat and blowing out birthday candles on a cake", + "a zoomed out DSLR photo of a beagle eating a donut", + "a zoomed out DSLR photo of a bear playing electric bass", + "a zoomed out DSLR photo of a beautifully carved wooden knight chess piece", + "a zoomed out DSLR photo of a beautiful suit made out of moss, on a mannequin. Studio lighting, high quality, high resolution", + "a zoomed out DSLR photo of a blue lobster", + "a zoomed out DSLR photo of a blue tulip", + "a zoomed out DSLR photo of a bowl of cereal and milk with a spoon in it", + "a zoomed out DSLR photo of a brain in a jar", + "a zoomed out DSLR photo of a bulldozer made out of toy bricks", + "a zoomed out DSLR photo of a cake in the shape of a train", + "a zoomed out DSLR photo of a chihuahua lying in a pool ring", + "a zoomed out DSLR photo of a chimpanzee dressed as a football player", + "a zoomed out DSLR photo of a chimpanzee holding a cup of hot coffee", + "a zoomed out DSLR photo of a chimpanzee wearing headphones", + "a zoomed out DSLR photo of a colorful camping tent in a patch of grass", + "a zoomed out DSLR photo of a complex movement from an expensive watch with many shiny gears, sitting on a table", + "a zoomed out DSLR photo of a construction excavator", + "a zoomed out DSLR photo of a corgi wearing a top hat", + "a zoomed out DSLR photo of a corn cob and a banana playing poker", + "a zoomed out DSLR photo of a dachsund riding a unicycle", + "a zoomed out DSLR photo of a dachsund wearing a boater hat", + "a zoomed out DSLR photo of a few pool balls sitting on a pool table", + "a zoomed out DSLR photo of a fox working on a jigsaw puzzle", + "a zoomed out DSLR photo of a fresh cinnamon roll covered in glaze", + "a zoomed out DSLR photo of a green tractor", + "a zoomed out DSLR photo of a greyhound dog racing down the track", + "a zoomed out DSLR photo of a group of squirrels rowing crew", + "a zoomed out DSLR photo of a gummy bear driving a convertible", + "a zoomed out DSLR photo of a hermit crab with a colorful shell", + "a zoomed out DSLR photo of a hippo biting through a watermelon", + "a zoomed out DSLR photo of a hippo made out of chocolate", + "a zoomed out DSLR photo of a humanoid robot lying on a couch using a laptop", + "a zoomed out DSLR photo of a humanoid robot sitting on a chair drinking a cup of coffee", + "a zoomed out DSLR photo of a human skeleton relaxing in a lounge chair", + "a zoomed out DSLR photo of a kangaroo sitting on a bench playing the accordion", + "a zoomed out DSLR photo of a kingfisher bird", + "a zoomed out DSLR photo of a ladybug", + "a zoomed out DSLR photo of a lion's mane jellyfish", + "a zoomed out DSLR photo of a lobster playing the saxophone", + "a zoomed out DSLR photo of a majestic sailboat", + "a zoomed out DSLR photo of a marble bust of a cat, a real mouse is sitting on its head", + "a zoomed out DSLR photo of a marble bust of a fox head", + "a zoomed out DSLR photo of a model of a house in Tudor style", + "a zoomed out DSLR photo of a monkey-rabbit hybrid", + "a zoomed out DSLR photo of a monkey riding a bike", + "a zoomed out DSLR photo of a mountain goat standing on a boulder", + "a zoomed out DSLR photo of a mouse holding a candlestick", + "a zoomed out DSLR photo of an adorable kitten lying next to a flower", + "a zoomed out DSLR photo of an all-utility vehicle driving across a stream", + "a zoomed out DSLR photo of an amigurumi motorcycle", + "a zoomed out DSLR photo of an astronaut chopping vegetables in a sunlit kitchen", + "a zoomed out DSLR photo of an egg cracked open with a newborn chick hatching out of it", + "a zoomed out DSLR photo of an expensive office chair", + "a zoomed out DSLR photo of an origami bulldozer sitting on the ground", + "a zoomed out DSLR photo of an origami crane", + "a zoomed out DSLR photo of an origami hippo in a river", + "a zoomed out DSLR photo of an otter lying on its back in the water holding a flower", + "a zoomed out DSLR photo of a pair of floating chopsticks picking up noodles out of a bowl of ramen", + "a zoomed out DSLR photo of a panda throwing wads of cash into the air", + "a zoomed out DSLR photo of a panda wearing a chef's hat and kneading bread dough on a countertop", + "a zoomed out DSLR photo of a pigeon standing on a manhole cover", + "a zoomed out DSLR photo of a pig playing the saxophone", + "a zoomed out DSLR photo of a pile of dice on a green tabletop", + "a zoomed out DSLR photo of a pita bread full of hummus and falafel and vegetables", + "a zoomed out DSLR photo of a pug made out of modeling clay", + "a zoomed out DSLR photo of A punk rock squirrel in a studded leather jacket shouting into a microphone while standing on a stump and holding a beer", + "a zoomed out DSLR photo of a rabbit cutting grass with a lawnmower", + "a zoomed out DSLR photo of a rabbit digging a hole with a shovel", + "a zoomed out DSLR photo of a raccoon astronaut holding his helmet", + "a zoomed out DSLR photo of a rainforest bird mating ritual dance", + "a zoomed out DSLR photo of a recliner chair", + "a zoomed out DSLR photo of a red rotary telephone", + "a zoomed out DSLR photo of a robot couple fine dining", + "a zoomed out DSLR photo of a rotary telephone carved out of wood", + "a zoomed out DSLR photo of a shiny beetle", + "a zoomed out DSLR photo of a silver candelabra sitting on a red velvet tablecloth, only one candle is lit", + "a zoomed out DSLR photo of a squirrel DJing", + "a zoomed out DSLR photo of a squirrel dressed up like a Victorian woman", + "a zoomed out DSLR photo of a table with dim sum on it", + "a zoomed out DSLR photo of a tiger dressed as a maid", + "a zoomed out DSLR photo of a tiger dressed as a military general", + "a zoomed out DSLR photo of a tiger eating an ice cream cone", + "a zoomed out DSLR photo of a tiger wearing sunglasses and a leather jacket, riding a motorcycle", + "a zoomed out DSLR photo of a toad catching a fly with its tongue", + "a zoomed out DSLR photo of a wizard raccoon casting a spell", + "a zoomed out DSLR photo of a yorkie dog dressed as a maid", + "a zoomed out DSLR photo of cats wearing eyeglasses", + "a zoomed out DSLR photo of miniature schnauzer wooden sculpture, high quality studio photo", + "A zoomed out DSLR photo of phoenix made of splashing water ", + "a zoomed out DSLR photo of Sydney opera house, aerial view", + "a zoomed out DSLR photo of two foxes tango dancing", + "a zoomed out DSLR photo of two raccoons playing poker", + "Chichen Itza, aerial view", + " Coffee cup with many holes", + "fries and a hamburger", + " Luminescent wild horses", + "Michelangelo style statue of an astronaut", + "Michelangelo style statue of dog reading news on a cellphone", + "the titanic, aerial view", + "two gummy bears playing dominoes", + "two macaw parrots playing chess", + "Wedding dress made of tentacles" + ] +} diff --git a/load/shapes/README.md b/load/shapes/README.md new file mode 100644 index 0000000..f886f1f --- /dev/null +++ b/load/shapes/README.md @@ -0,0 +1,10 @@ +# Shape Credits + +- `animal.obj` - Ido Richardson +- `hand_prismatic.obj` - Ido Richardson +- `potion.obj` - Ido Richardson +- `blub.obj` - [Keenan's 3D Model Repository](https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/) +- `nascar.obj` - [Princeton ModelNet](https://modelnet.cs.princeton.edu/) +- `cabin.obj` - [Princeton ModelNet](https://modelnet.cs.princeton.edu/) +- `teddy.obj` - [Gal Metzer](https://galmetzer.github.io/) +- `human.obj` - [TurboSquid](https://www.turbosquid.com/3d-models/3d-model-character-base/524860) diff --git a/load/shapes/animal.obj b/load/shapes/animal.obj new file mode 100644 index 0000000..9d4e199 --- /dev/null +++ b/load/shapes/animal.obj @@ -0,0 +1,8909 @@ +#### +# +# OBJ File Generated by Meshlab +# +#### +# Object animal_legs_head.obj +# +# Vertices: 1536 +# Faces: 3068 +# +#### +mtllib ./animal_legs_head.obj.mtl + +vn -0.037566 0.880458 -0.472633 +v 9.999994 49.041206 -42.944695 +vn -0.715259 0.532976 -0.452042 +v 9.999994 48.646877 -43.444782 +vn -0.716542 0.495637 -0.490828 +v 9.999994 48.261967 -43.867054 +vn -0.717102 0.451769 -0.530726 +v 9.999994 47.874546 -44.227222 +vn -0.717793 0.401355 -0.568935 +v 9.999994 47.469975 -44.542099 +vn -0.718191 0.344641 -0.604504 +v 9.999994 47.026360 -44.824703 +vn -0.718058 0.283944 -0.635428 +v 9.999994 46.535217 -45.073555 +vn -0.717495 0.222382 -0.660112 +v 9.999994 45.989674 -45.286037 +vn -0.716685 0.162663 -0.678162 +v 9.999994 45.382099 -45.459721 +vn -0.715773 0.106663 -0.690139 +v 9.999994 44.699299 -45.592724 +vn -0.714822 0.055588 -0.697094 +v 9.999994 43.931980 -45.680847 +vn -0.713905 0.010049 -0.700171 +v 9.999994 43.072033 -45.719482 +vn -0.713071 -0.029961 -0.700451 +v 9.999994 42.110180 -45.704025 +vn -0.712545 -0.065448 -0.698567 +v 9.999994 41.020355 -45.628292 +vn -0.710879 -0.093246 -0.697106 +v 9.999994 39.780952 -45.482559 +vn -0.709369 -0.111445 -0.695972 +v 9.999994 39.099632 -45.380280 +vn -0.709357 -0.125023 -0.693673 +v 9.999994 38.374283 -45.256695 +vn -0.709238 -0.136940 -0.691541 +v 9.999994 37.602699 -45.110538 +vn -0.041933 -0.362528 -0.931029 +v 9.999994 36.782665 -44.940544 +vn -0.688592 -0.196727 -0.697954 +v -0.000006 36.782665 -44.940544 +vn -0.700884 -0.113013 -0.704265 +v -0.000006 38.939480 -45.353718 +vn -0.700280 -0.068149 -0.710608 +v -0.000006 41.153679 -45.639793 +vn -0.700821 -0.024999 -0.712899 +v -0.000006 42.237087 -45.709007 +vn -0.699595 0.020340 -0.714250 +v -0.000006 43.272068 -45.715389 +vn -0.698467 0.073765 -0.711830 +v -0.000006 44.196259 -45.656879 +vn -0.697365 0.134359 -0.704010 +v -0.000006 45.009594 -45.539471 +vn -0.696395 0.200742 -0.689011 +v -0.000006 45.723118 -45.369526 +vn -0.695654 0.270555 -0.665482 +v -0.000006 46.348988 -45.152943 +vn -0.695302 0.340466 -0.632960 +v -0.000006 46.907177 -44.890789 +vn -0.695553 0.406157 -0.592657 +v -0.000006 47.408821 -44.584728 +vn -0.696443 0.463501 -0.547845 +v -0.000006 47.862633 -44.237129 +vn -0.694298 0.521175 -0.496313 +v -0.000006 48.278328 -43.849361 +vn -0.678963 0.619032 -0.394726 +v -0.000006 49.041206 -42.944695 +vn 0.041933 -0.362528 -0.931029 +v 19.999994 36.782665 -44.940544 +vn 0.709042 -0.137202 -0.691689 +v 19.999994 37.602699 -45.110538 +vn 0.709176 -0.124825 -0.693894 +v 19.999994 38.374283 -45.256695 +vn 0.709320 -0.111526 -0.696008 +v 19.999994 39.099632 -45.380280 +vn 0.710620 -0.093428 -0.697346 +v 19.999994 39.780952 -45.482559 +vn 0.712347 -0.065292 -0.698784 +v 19.999994 41.020355 -45.628292 +vn 0.713004 -0.029975 -0.700519 +v 19.999994 42.110180 -45.704025 +vn 0.713850 0.010081 -0.700226 +v 19.999994 43.072033 -45.719482 +vn 0.714809 0.055616 -0.697105 +v 19.999994 43.931980 -45.680847 +vn 0.715790 0.106674 -0.690120 +v 19.999994 44.699299 -45.592724 +vn 0.716713 0.162656 -0.678134 +v 19.999994 45.382099 -45.459721 +vn 0.717516 0.222366 -0.660094 +v 19.999994 45.989674 -45.286037 +vn 0.718056 0.283925 -0.635439 +v 19.999994 46.535217 -45.073555 +vn 0.718146 0.344633 -0.604561 +v 19.999994 47.026360 -44.824703 +vn 0.717688 0.401379 -0.569050 +v 19.999994 47.469975 -44.542099 +vn 0.717159 0.451908 -0.530531 +v 19.999994 47.874546 -44.227222 +vn 0.716601 0.495449 -0.490931 +v 19.999994 48.261967 -43.867054 +vn 0.715201 0.533063 -0.452030 +v 19.999994 48.646877 -43.444782 +vn 0.037604 0.880551 -0.472458 +v 19.999994 49.041206 -42.944695 +vn 0.679540 0.619772 -0.392565 +v 29.999994 49.041206 -42.944695 +vn 0.691521 0.519586 -0.501826 +v 29.999994 48.348183 -43.777119 +vn 0.692694 0.442713 -0.569369 +v 29.999994 47.585117 -44.458385 +vn 0.696519 0.372233 -0.613436 +v 29.999994 47.154171 -44.749405 +vn 0.696522 0.310967 -0.646650 +v 29.999994 46.680916 -45.006001 +vn 0.696925 0.247832 -0.672960 +v 29.999994 46.159019 -45.226433 +vn 0.697542 0.185639 -0.692080 +v 29.999994 45.576836 -45.410397 +vn 0.698322 0.126453 -0.704526 +v 29.999994 44.917595 -45.556469 +vn 0.699230 0.071952 -0.711267 +v 29.999994 44.172188 -45.659336 +vn 0.700100 0.022956 -0.713676 +v 29.999994 43.331646 -45.713631 +vn 0.700841 -0.020794 -0.713014 +v 29.999994 42.369610 -45.713448 +vn 0.702878 -0.055212 -0.709164 +v 29.999994 41.250793 -45.648365 +vn 0.704392 -0.077449 -0.705574 +v 29.999994 40.627243 -45.587639 +vn 0.704565 -0.093769 -0.703417 +v 29.999994 39.958080 -45.506065 +vn 0.704790 -0.109268 -0.700951 +v 29.999994 39.241177 -45.402111 +vn 0.704926 -0.123640 -0.698421 +v 29.999994 38.474396 -45.274231 +vn 0.705050 -0.137029 -0.695792 +v 29.999994 37.655605 -45.120888 +vn 0.689849 -0.201262 -0.695415 +v 29.999994 36.782665 -44.940544 +vn 0.038032 0.995301 0.089050 +v 22.000000 58.057266 5.561405 +vn 0.716134 0.665935 0.209002 +v 22.000000 57.816811 6.449402 +vn 0.717298 0.644796 0.264048 +v 22.000000 57.499245 7.336279 +vn 0.717869 0.617043 0.322371 +v 22.000000 57.090443 8.219446 +vn 0.717830 0.582554 0.381249 +v 22.000000 56.576279 9.096297 +vn 0.717115 0.544598 0.434925 +v 22.000000 55.971092 9.929281 +vn 0.715991 0.505834 0.481132 +v 22.000000 55.324966 10.666539 +vn 0.714924 0.468517 0.519014 +v 22.000000 54.658588 11.312586 +vn 0.713804 0.434041 0.549630 +v 22.000000 53.992245 11.872548 +vn 0.712735 0.403171 0.573988 +v 22.000000 53.346222 12.351551 +vn 0.714478 0.367454 0.595398 +v 22.000000 52.728939 12.761940 +vn 0.716305 0.319466 0.620361 +v 22.000000 51.433067 13.500792 +vn 0.715694 0.269044 0.644514 +v 22.000000 50.047176 14.143022 +vn 0.714922 0.220027 0.663682 +v 22.000000 48.586147 14.686825 +vn 0.714485 0.172507 0.678050 +v 22.000000 47.064857 15.130394 +vn 0.714404 0.125711 0.688348 +v 22.000000 45.496616 15.472218 +vn 0.714699 0.078589 0.695003 +v 22.000000 43.869396 15.713192 +vn 0.715077 0.030594 0.698376 +v 22.000000 42.186924 15.846107 +vn 0.715166 -0.018820 0.698701 +v 22.000000 40.462143 15.861362 +vn 0.715132 -0.070797 0.695395 +v 22.000000 38.707996 15.749357 +vn 0.713294 -0.118010 0.690858 +v 22.000000 36.941570 15.501235 +vn 0.711347 -0.151245 0.686374 +v 22.000000 36.095028 15.331611 +vn 0.043304 -0.416571 0.908071 +v 22.000000 35.292015 15.138749 +vn 0.678614 -0.256243 0.688348 +v 30.000000 35.292015 15.138749 +vn 0.700700 -0.136245 0.700326 +v 30.000000 36.673241 15.451460 +vn 0.701227 -0.095819 0.706469 +v 30.000000 37.960979 15.661963 +vn 0.701735 -0.059108 0.709982 +v 30.000000 39.141129 15.789329 +vn 0.700080 -0.020412 0.713772 +v 30.000000 40.200653 15.852660 +vn 0.698427 0.031940 0.714968 +v 30.000000 42.208824 15.844935 +vn 0.698699 0.089560 0.709788 +v 30.000000 44.180241 15.675954 +vn 0.698819 0.146569 0.700121 +v 30.000000 46.093781 15.355386 +vn 0.698572 0.203777 0.685910 +v 30.000000 47.928318 14.892900 +vn 0.697736 0.263030 0.666318 +v 30.000000 49.671326 14.294765 +vn 0.699082 0.316934 0.640965 +v 30.000000 51.356880 13.539785 +vn 0.701073 0.356583 0.617531 +v 30.000000 52.169632 13.099705 +vn 0.700752 0.391502 0.596383 +v 30.000000 52.955074 12.616725 +vn 0.700290 0.427802 0.571471 +v 30.000000 53.707741 12.089963 +vn 0.699893 0.464779 0.542338 +v 30.000000 54.422157 11.518541 +vn 0.699747 0.500869 0.509395 +v 30.000000 55.073273 10.921085 +vn 0.699770 0.534565 0.473880 +v 30.000000 55.630398 10.334198 +vn 0.699728 0.565176 0.436987 +v 30.000000 56.101540 9.765021 +vn 0.700102 0.591244 0.400359 +v 30.000000 56.495308 9.220168 +vn 0.700821 0.613454 0.364039 +v 30.000000 56.820316 8.706254 +vn 0.699038 0.637148 0.324635 +v 30.000000 57.085175 8.229894 +vn 0.697218 0.662948 0.272741 +v 30.000000 57.491562 7.355235 +vn 0.698208 0.682761 0.215275 +v 30.000000 57.810844 6.468513 +vn 0.682319 0.722736 0.109967 +v 30.000000 58.057266 5.561404 +vn -0.044067 -0.417806 0.907467 +v 8.000003 35.292015 15.138752 +vn -0.711558 -0.150968 0.686218 +v 8.000003 36.095028 15.331614 +vn -0.713664 -0.117898 0.690496 +v 8.000003 36.941570 15.501238 +vn -0.715423 -0.070994 0.695075 +v 8.000003 38.707996 15.749360 +vn -0.714957 -0.019279 0.698902 +v 8.000003 40.462143 15.861364 +vn -0.714579 0.030615 0.698884 +v 8.000003 42.186924 15.846110 +vn -0.714346 0.078863 0.695335 +v 8.000003 43.869396 15.713195 +vn -0.714317 0.125909 0.688403 +v 8.000003 45.496616 15.472220 +vn -0.714589 0.172594 0.677919 +v 8.000003 47.064857 15.130397 +vn -0.715156 0.220028 0.663430 +v 8.000003 48.586147 14.686828 +vn -0.715966 0.268916 0.644265 +v 8.000003 50.047176 14.143024 +vn -0.716671 0.319362 0.619992 +v 8.000003 51.433067 13.500794 +vn -0.714742 0.367067 0.595320 +v 8.000003 52.728939 12.761943 +vn -0.712756 0.403185 0.573952 +v 8.000003 53.346222 12.351554 +vn -0.713830 0.434006 0.549623 +v 8.000003 53.992245 11.872551 +vn -0.714913 0.468505 0.519041 +v 8.000003 54.658588 11.312589 +vn -0.715982 0.505859 0.481121 +v 8.000000 55.324966 10.666542 +vn -0.717162 0.544587 0.434860 +v 8.000000 55.971092 9.929284 +vn -0.717890 0.582485 0.381241 +v 8.000000 56.576279 9.096300 +vn -0.717728 0.617066 0.322639 +v 8.000000 57.090443 8.219449 +vn -0.717009 0.645058 0.264194 +v 8.000000 57.499245 7.336280 +vn -0.715980 0.666159 0.208819 +v 8.000000 57.816811 6.449404 +vn -0.038001 0.995297 0.089106 +v 8.000000 58.057266 5.561407 +vn -0.681128 0.723082 0.114964 +v 0.000001 58.057266 5.561408 +vn -0.695063 0.678491 0.237776 +v 0.000001 57.702892 6.795747 +vn -0.696959 0.647652 0.307887 +v 0.000001 57.195858 8.011716 +vn -0.699770 0.618154 0.358061 +v 0.000001 56.874542 8.612262 +vn -0.699531 0.592666 0.399253 +v 0.000001 56.502613 9.207300 +vn -0.699537 0.564627 0.438001 +v 0.000001 56.078911 9.792962 +vn -0.699855 0.533483 0.474972 +v 0.000001 55.601017 10.367282 +vn -0.700068 0.500661 0.509159 +v 0.000001 55.065716 10.929310 +vn -0.700307 0.466715 0.540136 +v 0.000002 54.469799 11.478095 +vn -0.700615 0.432258 0.567707 +v 0.000002 53.810055 12.012688 +vn -0.698248 0.391599 0.599249 +v 0.000002 53.095020 12.523724 +vn -0.696470 0.334878 0.634654 +v 0.000002 51.573853 13.427677 +vn -0.697598 0.273375 0.662286 +v 0.000002 49.962353 14.177936 +vn -0.698598 0.215929 0.682155 +v 0.000002 48.296322 14.780287 +vn -0.699105 0.161125 0.696628 +v 0.000002 46.570908 15.250257 +vn -0.699250 0.106912 0.706837 +v 0.000002 44.764725 15.594750 +vn -0.699174 0.052044 0.713055 +v 0.000002 42.895981 15.804317 +vn -0.698896 -0.004207 0.715211 +v 0.000002 40.982910 15.869497 +vn -0.698514 -0.062099 0.712897 +v 0.000002 39.044220 15.780875 +vn -0.698372 -0.120773 0.705472 +v 0.000002 37.137413 15.535860 +vn -0.677706 -0.253089 0.690406 +v 0.000002 35.292015 15.138752 +vn -0.237122 -0.530354 0.813940 +v 25.000000 24.999994 9.572199 +vn 0.236928 -0.533617 0.811861 +v 5.000001 24.999994 9.572202 +vn 0.283495 -0.417438 -0.863352 +v 5.000000 24.999994 -1.984161 +vn -0.284452 -0.406707 -0.868146 +v 25.000000 24.999994 -1.984163 +vn 0.189460 -0.663173 -0.724090 +v 4.999994 24.999994 -40.456905 +vn -0.189265 -0.663429 -0.723907 +v 24.999994 24.999994 -40.456905 +vn -0.186518 -0.719727 0.668733 +v 24.999994 24.999994 -25.000006 +vn 0.183869 -0.714753 0.674774 +v 4.999997 24.999994 -25.000000 +vn 0.709998 0.070113 -0.700705 +v 4.999996 11.761100 -38.115604 +vn 0.712254 0.044853 -0.700487 +v 4.999996 13.613945 -37.954124 +vn 0.714201 0.003865 -0.699930 +v 4.999996 15.423278 -37.882206 +vn 0.716319 -0.052113 -0.695824 +v 4.999996 17.199190 -37.934822 +vn 0.715392 -0.112301 -0.689639 +v 4.999996 18.951782 -38.146946 +vn 0.713306 -0.159062 -0.682564 +v 4.999994 19.822487 -38.323750 +vn 0.713170 -0.197512 -0.672590 +v 4.999994 20.666368 -38.546070 +vn 0.712694 -0.233548 -0.661455 +v 4.999994 21.461468 -38.803925 +vn 0.713906 -0.270327 -0.645958 +v 4.999994 22.216190 -39.092468 +vn 0.712765 -0.309131 -0.629606 +v 4.999994 23.638245 -39.742302 +vn 0.730445 -0.262956 0.630320 +v 4.999997 24.632648 -25.200006 +vn 0.725258 -0.145497 0.672927 +v 4.999997 24.230774 -25.321075 +vn 0.719111 -0.056971 0.692556 +v 4.999997 23.788733 -25.380795 +vn 0.713978 0.001659 0.700166 +v 4.999997 23.298027 -25.394985 +vn 0.710378 0.033704 0.703013 +v 4.999997 22.752501 -25.376860 +vn 0.707640 0.045503 0.705106 +v 4.999997 22.147999 -25.339149 +vn 0.705601 0.042308 0.707346 +v 4.999997 21.480364 -25.294580 +vn 0.702679 0.022334 0.711157 +v 4.999997 20.745438 -25.255880 +vn 0.700518 -0.017152 0.713429 +v 4.999997 19.190577 -25.242184 +vn 0.700846 -0.061712 0.710638 +v 4.999997 17.576881 -25.333029 +vn 0.702913 -0.097913 0.704504 +v 4.999997 15.851218 -25.536446 +vn 0.704434 -0.119734 0.699597 +v 4.999997 14.929784 -25.682877 +vn 0.704807 -0.134899 0.696455 +v 4.999997 13.960424 -25.860464 +vn 0.705230 -0.148616 0.693228 +v 4.999997 12.936492 -26.070208 +vn 0.705488 -0.160265 0.690363 +v 4.999997 11.851344 -26.313114 +vn 0.705781 -0.169973 0.687737 +v 4.999997 10.698337 -26.590187 +vn 0.705680 -0.178995 0.685548 +v 4.999997 9.470823 -26.902428 +vn 0.705793 -0.184985 0.683839 +v 4.999997 8.162160 -27.250841 +vn 0.706471 -0.190472 0.681630 +v 4.999996 6.765705 -27.636431 +vn 0.706776 -0.193078 0.680579 +v 4.999996 6.032477 -27.843481 +vn 0.706941 -0.194454 0.680017 +v 4.999996 5.656652 -27.950651 +vn 0.706878 -0.195636 0.679743 +v 4.999996 5.234808 -28.071617 +vn 0.706733 -0.197321 0.679406 +v 4.999996 4.217318 -28.365477 +vn 0.706564 -0.199840 0.678845 +v 4.999996 3.103128 -28.690798 +vn 0.706432 -0.203538 0.677884 +v 4.999996 2.054284 -29.002253 +vn 0.706294 -0.208034 0.676661 +v 4.999996 1.605008 -29.138615 +vn 0.705711 -0.214888 0.675126 +v 4.999996 1.230790 -29.255152 +vn 0.704851 -0.226223 0.672315 +v 4.999996 0.924141 -29.354879 +vn 0.701081 -0.252672 0.666815 +v 4.999996 0.675273 -29.441452 +vn 0.694814 -0.310568 0.648676 +v 4.999996 0.323635 -29.586000 +vn 0.690759 -0.394848 0.605762 +v 4.999996 0.200512 -29.653708 +vn 0.687710 -0.490412 0.535304 +v 4.999996 0.103629 -29.727749 +vn 0.690920 -0.568296 0.446843 +v 4.999996 0.068456 -29.766258 +vn 0.689956 -0.630221 0.356065 +v 4.999996 0.042038 -29.805500 +vn 0.690656 -0.676520 0.255570 +v 4.999996 0.023054 -29.846239 +vn 0.687430 -0.712290 0.141714 +v 4.999996 0.010375 -29.889297 +vn 0.691348 -0.722090 0.024972 +v 4.999996 0.000143 -29.985144 +vn 0.701798 -0.711046 -0.043512 +v 4.999996 0.004464 -30.101032 +vn 0.716012 -0.697396 -0.031079 +v 4.999996 0.032311 -30.428709 +vn 0.714255 -0.699547 0.021774 +v 4.999996 0.034864 -31.342150 +vn 0.709051 -0.703343 0.050537 +v 4.999996 0.002947 -31.845482 +vn 0.706459 -0.705650 0.054536 +v 4.999996 -0.041295 -32.395313 +vn 0.700890 -0.712581 0.031319 +v 4.999996 -0.130382 -33.606750 +vn 0.697333 -0.716380 -0.022954 +v 4.999996 -0.147117 -34.816341 +vn 0.696670 -0.711894 -0.088640 +v 4.999996 -0.101083 -35.414734 +vn 0.691829 -0.701173 -0.172419 +v 4.999996 0.000000 -36.000000 +vn 0.685997 -0.666786 -0.291212 +v 4.999996 0.211554 -36.655914 +vn 0.682836 -0.590279 -0.430472 +v 4.999996 0.549616 -37.256489 +vn 0.683345 -0.474220 -0.555117 +v 4.999996 1.012095 -37.754852 +vn 0.687070 -0.344863 -0.639535 +v 4.999996 1.584753 -38.139488 +vn 0.691796 -0.230844 -0.684200 +v 4.999994 2.223330 -38.408249 +vn 0.695646 -0.141918 -0.704227 +v 4.999994 2.903082 -38.583950 +vn 0.698496 -0.074554 -0.711720 +v 4.999994 3.635547 -38.690884 +vn 0.700744 -0.024106 -0.713005 +v 4.999994 4.412277 -38.740578 +vn 0.702409 0.013187 -0.711652 +v 4.999994 5.224669 -38.743664 +vn 0.702593 0.044424 -0.710204 +v 4.999994 6.076509 -38.708942 +vn 0.704078 0.070773 -0.706588 +v 4.999994 7.883051 -38.555347 +vn 0.707098 0.079539 -0.702628 +v 4.999994 9.791864 -38.338131 +vn -0.697939 -0.715701 -0.025567 +v 24.999994 -0.147117 -34.816341 +vn -0.700609 -0.713101 0.025181 +v 24.999994 -0.141284 -33.815369 +vn -0.705257 -0.707059 0.051768 +v 24.999994 -0.076723 -32.819256 +vn -0.708931 -0.703398 0.051463 +v 24.999994 0.000716 -31.867691 +vn -0.710678 -0.702659 0.034753 +v 24.999994 0.029495 -31.426409 +vn -0.713652 -0.700497 0.002186 +v 24.999994 0.041841 -31.056400 +vn -0.710051 -0.703459 -0.031205 +v 24.999994 0.022757 -30.387638 +vn -0.693548 -0.720407 0.002142 +v 24.999994 0.000017 -29.999195 +vn -0.687220 -0.717685 0.112500 +v 24.999994 0.005308 -29.917118 +vn -0.680865 -0.683165 0.264024 +v 24.999994 0.023388 -29.845369 +vn -0.680819 -0.599094 0.421393 +v 24.999994 0.058681 -29.779324 +vn -0.679320 -0.475921 0.558590 +v 24.999994 0.114171 -29.717966 +vn -0.688791 -0.341114 0.639694 +v 24.999994 0.297914 -29.598825 +vn -0.699394 -0.257796 0.666625 +v 24.999994 0.600749 -29.469084 +vn -0.704387 -0.223769 0.673622 +v 24.999994 1.061505 -29.309494 +vn -0.706068 -0.211661 0.675772 +v 24.999994 1.363070 -29.213469 +vn -0.706492 -0.206443 0.676942 +v 24.999994 1.718205 -29.104074 +vn -0.706752 -0.203423 0.677584 +v 24.999994 2.129736 -28.979822 +vn -0.706683 -0.201230 0.678311 +v 24.999994 2.590803 -28.842157 +vn -0.706450 -0.198187 0.679448 +v 24.999994 3.628388 -28.536322 +vn -0.706426 -0.194085 0.680656 +v 24.999994 5.936840 -27.870344 +vn -0.706480 -0.190137 0.681714 +v 24.999994 7.077121 -27.548904 +vn -0.706045 -0.185649 0.683400 +v 24.999994 8.137035 -27.256487 +vn -0.705823 -0.181125 0.684841 +v 24.999994 9.140247 -26.987217 +vn -0.706026 -0.175035 0.686214 +v 24.999994 10.093677 -26.739492 +vn -0.705841 -0.168121 0.688131 +v 24.999994 11.000375 -26.512781 +vn -0.704849 -0.158470 0.691430 +v 24.999994 11.863399 -26.306551 +vn -0.703429 -0.142166 0.696403 +v 24.999994 13.470623 -25.953403 +vn -0.702709 -0.119713 0.701334 +v 24.999994 14.939770 -25.675781 +vn -0.702170 -0.092607 0.705961 +v 24.999994 16.295258 -25.469425 +vn -0.701834 -0.061798 0.709655 +v 24.999994 17.561510 -25.330070 +vn -0.701817 -0.028378 0.711792 +v 24.999994 18.762945 -25.253456 +vn -0.702246 0.004932 0.711917 +v 24.999994 19.923985 -25.235315 +vn -0.703727 0.032014 0.709748 +v 24.999994 21.014936 -25.267462 +vn -0.706577 0.044205 0.706254 +v 24.999994 21.955469 -25.324291 +vn -0.711298 0.031825 0.702170 +v 24.999994 22.763422 -25.376421 +vn -0.717934 -0.015630 0.695936 +v 24.999994 23.459042 -25.394526 +vn -0.726162 -0.106934 0.679157 +v 24.999994 24.055696 -25.351854 +vn -0.733946 -0.239744 0.635489 +v 24.999994 24.565554 -25.226120 +vn -0.712234 -0.311815 -0.628883 +v 24.999994 23.714045 -39.779976 +vn -0.715620 -0.268657 -0.644758 +v 24.999994 22.382565 -39.160889 +vn -0.715062 -0.216693 -0.664628 +v 24.999994 20.946503 -38.630741 +vn -0.713167 -0.174578 -0.678908 +v 24.999994 20.170801 -38.408737 +vn -0.713180 -0.137154 -0.687432 +v 24.999994 19.346807 -38.220631 +vn -0.713030 -0.099295 -0.694067 +v 24.999994 18.467142 -38.070305 +vn -0.714739 -0.055244 -0.697206 +v 24.999994 17.527441 -37.961914 +vn -0.714894 -0.001845 -0.699230 +v 24.999994 15.606934 -37.882214 +vn -0.712630 0.042984 -0.700222 +v 24.999994 13.680856 -37.949921 +vn -0.710100 0.069829 -0.700629 +v 24.999994 11.761100 -38.115604 +vn -0.707078 0.079516 -0.702651 +v 24.999994 9.782825 -38.339272 +vn -0.703998 0.070338 -0.706710 +v 24.999994 7.852611 -38.558609 +vn -0.702455 0.043039 -0.710426 +v 24.999994 6.022571 -38.712059 +vn -0.702240 0.010696 -0.711860 +v 24.999994 5.160625 -38.744881 +vn -0.700593 -0.027831 -0.713018 +v 24.999994 4.342332 -38.738194 +vn -0.698502 -0.079038 -0.711230 +v 24.999994 3.573898 -38.684319 +vn -0.695722 -0.146389 -0.703236 +v 24.999994 2.861524 -38.575584 +vn -0.691825 -0.235168 -0.682696 +v 24.999994 2.195804 -38.399067 +vn -0.687101 -0.348972 -0.637268 +v 24.999994 1.563588 -38.128181 +vn -0.683474 -0.477314 -0.552300 +v 24.999994 0.999137 -37.743797 +vn -0.683031 -0.591775 -0.428101 +v 24.999994 0.542971 -37.247295 +vn -0.686164 -0.667115 -0.290064 +v 24.999994 0.209633 -36.651432 +vn -0.691927 -0.701097 -0.172334 +v 24.999994 0.000000 -36.000000 +vn -0.696643 -0.711885 -0.088928 +v 24.999994 -0.100531 -35.419548 +vn 0.712495 -0.158892 0.683450 +v 30.000000 24.169331 9.355659 +vn 0.711609 -0.126911 0.691018 +v 30.000000 23.013584 9.117564 +vn 0.710383 -0.102329 0.696336 +v 30.000000 21.703257 8.905037 +vn 0.709327 -0.084974 0.699739 +v 30.000000 20.245955 8.713100 +vn 0.708586 -0.073718 0.701763 +v 30.000000 18.658257 8.536223 +vn 0.708014 -0.067372 0.702977 +v 30.000000 16.963675 8.368478 +vn 0.707306 -0.065990 0.703820 +v 30.000000 15.191051 8.203665 +vn 0.705956 -0.071752 0.704612 +v 30.000000 11.547770 7.857165 +vn 0.705524 -0.082482 0.703869 +v 30.000000 9.751814 7.662535 +vn 0.704474 -0.097597 0.702988 +v 30.000000 8.024162 7.445222 +vn 0.703396 -0.118949 0.700775 +v 30.000000 6.401947 7.199317 +vn 0.701972 -0.149915 0.696248 +v 30.000000 4.919433 6.919466 +vn 0.701698 -0.186314 0.687683 +v 30.000000 3.606273 6.601035 +vn 0.702383 -0.218687 0.677374 +v 30.000000 3.020778 6.426138 +vn 0.701402 -0.251761 0.666822 +v 30.000000 2.485797 6.240269 +vn 0.700174 -0.291110 0.651928 +v 30.000000 2.003040 6.043133 +vn 0.698664 -0.337584 0.630798 +v 30.000000 1.573659 5.834519 +vn 0.696871 -0.391564 0.600873 +v 30.000000 1.198197 5.614307 +vn 0.694894 -0.452315 0.559046 +v 30.000000 0.876506 5.382463 +vn 0.693004 -0.517070 0.502379 +v 30.000000 0.607663 5.139047 +vn 0.691719 -0.580438 0.429669 +v 30.000000 0.389889 4.884210 +vn 0.691422 -0.635696 0.343259 +v 30.000000 0.220493 4.618203 +vn 0.686139 -0.689465 0.232060 +v 30.000000 0.095884 4.341384 +vn 0.686520 -0.721271 0.091965 +v 30.000000 -0.037692 3.757416 +vn 0.696506 -0.717419 -0.013748 +v 30.000000 -0.056256 3.138010 +vn 0.715573 -0.698238 -0.020458 +v 30.000000 0.032658 1.827342 +vn 0.707918 -0.706156 0.013998 +v 30.000000 0.016877 0.504303 +vn 0.690189 -0.722561 -0.039314 +v 30.000000 0.001481 -0.115066 +vn 0.681988 -0.707472 -0.185407 +v 30.000000 0.078064 -0.676331 +vn 0.684880 -0.646362 -0.336385 +v 30.000000 0.177790 -0.929266 +vn 0.684502 -0.562246 -0.464043 +v 30.000000 0.331271 -1.161435 +vn 0.687269 -0.458142 -0.563708 +v 30.000000 0.545968 -1.371753 +vn 0.691301 -0.356282 -0.628622 +v 30.000000 0.826957 -1.559708 +vn 0.694995 -0.270664 -0.666125 +v 30.000000 1.176930 -1.725331 +vn 0.698044 -0.203539 -0.686517 +v 30.000000 1.596587 -1.869108 +vn 0.700356 -0.152084 -0.697404 +v 30.000000 2.085082 -1.991888 +vn 0.701992 -0.112928 -0.703175 +v 30.000000 2.640446 -2.094794 +vn 0.703171 -0.082985 -0.706162 +v 30.000000 3.259840 -2.179157 +vn 0.704044 -0.059956 -0.707621 +v 30.000000 3.939609 -2.246477 +vn 0.704709 -0.042185 -0.708242 +v 30.000000 4.675291 -2.298395 +vn 0.704738 -0.026724 -0.708964 +v 30.000000 5.461628 -2.336658 +vn 0.705194 -0.011882 -0.708914 +v 30.000000 7.005451 -2.377252 +vn 0.705759 -0.000373 -0.708452 +v 30.000000 8.656768 -2.389464 +vn 0.706529 0.007155 -0.707648 +v 30.000000 12.110321 -2.366466 +vn 0.706807 0.010251 -0.707332 +v 30.000000 13.831272 -2.344055 +vn 0.706546 0.012824 -0.707551 +v 30.000000 15.501485 -2.317515 +vn 0.706145 0.016458 -0.707876 +v 30.000000 17.092804 -2.285722 +vn 0.705802 0.021978 -0.708068 +v 30.000000 18.582697 -2.246343 +vn 0.705665 0.029135 -0.707947 +v 30.000000 19.954018 -2.197438 +vn 0.705872 0.036986 -0.707373 +v 30.000000 21.194740 -2.139177 +vn 0.706538 0.042798 -0.706380 +v 30.000000 22.297642 -2.075361 +vn 0.708213 0.040913 -0.704812 +v 30.000000 23.259989 -2.014541 +vn 0.712261 0.020111 -0.701627 +v 30.000000 24.083271 -1.971274 +vn 0.721255 -0.041400 -0.691431 +v 30.000000 24.773029 -1.968328 +vn 0.727997 -0.147994 -0.669416 +v 30.000000 25.338749 -2.039175 +vn 0.727295 -0.265412 -0.632928 +v 30.000000 25.579050 -2.115934 +vn 0.730457 -0.377832 -0.568925 +v 30.000000 25.793484 -2.228932 +vn 0.730195 -0.484219 -0.482024 +v 30.000000 25.984135 -2.385484 +vn 0.726759 -0.567959 -0.386321 +v 30.000000 26.153200 -2.593288 +vn 0.722164 -0.624171 -0.298145 +v 30.000000 26.302895 -2.859857 +vn 0.718037 -0.658143 -0.226430 +v 30.000000 26.435345 -3.191852 +vn 0.714912 -0.677732 -0.171989 +v 30.000000 26.552481 -3.594429 +vn 0.712721 -0.688965 -0.131741 +v 30.000000 26.655941 -4.070642 +vn 0.711229 -0.695527 -0.101963 +v 30.000000 26.747044 -4.621290 +vn 0.710215 -0.699473 -0.079578 +v 30.000000 26.826820 -5.245183 +vn 0.709522 -0.701920 -0.062345 +v 30.000000 26.896059 -5.939472 +vn 0.709041 -0.703483 -0.048709 +v 30.000000 26.955338 -6.699978 +vn 0.708709 -0.704499 -0.037591 +v 30.000000 27.005081 -7.521472 +vn 0.709056 -0.704661 -0.026306 +v 30.000000 27.045547 -8.397826 +vn 0.709301 -0.704790 -0.012758 +v 30.000000 27.099003 -10.286575 +vn 0.709221 -0.704985 0.001356 +v 30.000000 27.114952 -12.301959 +vn 0.709462 -0.704562 0.016012 +v 30.000000 27.090588 -14.370722 +vn 0.710032 -0.703383 0.033272 +v 30.000000 27.021626 -16.415909 +vn 0.709985 -0.702285 0.052129 +v 30.000000 26.902948 -18.362595 +vn 0.709549 -0.701297 0.068727 +v 30.000000 26.823242 -19.277197 +vn 0.710035 -0.698966 0.085421 +v 30.000000 26.729000 -20.142057 +vn 0.710709 -0.695506 0.105657 +v 30.000000 26.619505 -20.950077 +vn 0.711602 -0.690350 0.130539 +v 30.000000 26.494045 -21.695021 +vn 0.712789 -0.682551 0.161420 +v 29.999994 26.351965 -22.371765 +vn 0.714354 -0.670619 0.199919 +v 29.999994 26.192678 -22.976526 +vn 0.716389 -0.652230 0.247756 +v 29.999994 26.015711 -23.507105 +vn 0.718938 -0.623952 0.306286 +v 29.999994 25.820709 -23.963049 +vn 0.721892 -0.581301 0.375447 +v 29.999994 25.607433 -24.345648 +vn 0.724787 -0.519893 0.452100 +v 29.999994 25.375742 -24.657856 +vn 0.726525 -0.438737 0.528840 +v 29.999994 25.125559 -24.904205 +vn 0.726586 -0.342011 0.595903 +v 29.999994 24.856855 -25.090715 +vn 0.724618 -0.242932 0.644914 +v 29.999994 24.569620 -25.224630 +vn 0.726162 -0.136942 0.673747 +v 29.999994 24.263802 -25.313948 +vn 0.721207 -0.034988 0.691835 +v 29.999994 23.595713 -25.391237 +vn 0.712462 0.026419 0.701213 +v 29.999994 22.849535 -25.381523 +vn 0.707286 0.044027 0.705555 +v 29.999994 22.019657 -25.330265 +vn 0.704111 0.034582 0.709247 +v 29.999994 21.099363 -25.272505 +vn 0.702383 0.009211 0.711739 +v 29.999994 20.082497 -25.237167 +vn 0.701893 -0.023824 0.711884 +v 29.999994 18.964546 -25.247244 +vn 0.702223 -0.058216 0.709573 +v 29.999994 17.743507 -25.318377 +vn 0.702881 -0.090128 0.705574 +v 29.999994 16.420792 -25.458849 +vn 0.703463 -0.117982 0.700871 +v 29.999994 15.002238 -25.670876 +vn 0.703967 -0.140795 0.696137 +v 29.999994 13.499299 -25.951517 +vn 0.704700 -0.158661 0.691537 +v 29.999994 11.930531 -26.292789 +vn 0.704931 -0.174666 0.687433 +v 29.999994 10.322615 -26.681793 +vn 0.705786 -0.188115 0.682992 +v 29.999994 7.131649 -27.533689 +vn 0.706524 -0.194439 0.680453 +v 29.999994 5.631601 -27.957825 +vn 0.706746 -0.197222 0.679422 +v 29.999994 4.252389 -28.355757 +vn 0.706882 -0.199464 0.678625 +v 29.999994 3.033163 -28.712212 +vn 0.706824 -0.201331 0.678134 +v 29.999994 2.493956 -28.871456 +vn 0.706602 -0.203921 0.677592 +v 29.999994 2.006085 -29.017036 +vn 0.706224 -0.208355 0.676636 +v 29.999994 1.571959 -29.148796 +vn 0.705556 -0.216106 0.674900 +v 29.999994 1.193171 -29.267128 +vn 0.704318 -0.229762 0.671673 +v 29.999994 0.870415 -29.373018 +vn 0.702122 -0.253748 0.665309 +v 29.999994 0.603395 -29.468096 +vn 0.698218 -0.296414 0.651637 +v 29.999994 0.390730 -29.554689 +vn 0.691008 -0.372336 0.619576 +v 29.999994 0.229812 -29.635908 +vn 0.687621 -0.469678 0.553697 +v 29.999994 0.116645 -29.715757 +vn 0.690198 -0.552953 0.466765 +v 29.999994 0.076302 -29.756683 +vn 0.688369 -0.622883 0.371704 +v 29.999994 0.045688 -29.799221 +vn 0.688789 -0.676214 0.261352 +v 29.999994 0.023845 -29.844166 +vn 0.685712 -0.715205 0.135208 +v 29.999994 0.009712 -29.892368 +vn 0.689599 -0.724172 0.005317 +v 29.999994 0.000003 -30.002150 +vn 0.709749 -0.703016 -0.045004 +v 29.999994 0.022069 -30.299870 +vn 0.715484 -0.698521 -0.012337 +v 29.999994 0.045652 -30.739035 +vn 0.712396 -0.701126 0.030239 +v 29.999994 0.034202 -31.337605 +vn 0.708653 -0.703612 0.052353 +v 29.999994 -0.015867 -32.083118 +vn 0.705004 -0.707398 0.050567 +v 29.999994 -0.085704 -32.942577 +vn 0.700794 -0.712978 0.023454 +v 29.999994 -0.142915 -33.870865 +vn 0.698024 -0.715599 -0.026091 +v 29.999994 -0.147117 -34.816341 +vn 0.696647 -0.711856 -0.089130 +v 29.999994 -0.100106 -35.422859 +vn 0.692854 -0.701027 -0.168864 +v 29.999994 0.000000 -36.000000 +vn 0.688962 -0.671926 -0.271748 +v 29.999994 0.179744 -36.578987 +vn 0.686635 -0.614197 -0.388967 +v 29.999994 0.442257 -37.097832 +vn 0.686004 -0.526289 -0.502413 +v 29.999994 0.793139 -37.548550 +vn 0.687263 -0.417675 -0.594320 +v 29.999994 1.234926 -37.926460 +vn 0.689926 -0.305627 -0.656196 +v 29.999994 1.767458 -38.229805 +vn 0.693166 -0.204793 -0.691072 +v 29.999994 2.388186 -38.459412 +vn 0.696277 -0.121806 -0.707362 +v 29.999994 3.092455 -38.618412 +vn 0.698911 -0.057120 -0.712924 +v 29.999994 3.873777 -38.711926 +vn 0.701025 -0.008369 -0.713087 +v 29.999994 4.724135 -38.746750 +vn 0.702703 0.027365 -0.710957 +v 29.999994 5.634303 -38.731022 +vn 0.703793 0.052907 -0.708432 +v 29.999994 6.594163 -38.673870 +vn 0.704391 0.070955 -0.706257 +v 29.999994 7.593030 -38.585091 +vn 0.710364 0.068430 -0.700500 +v 29.999994 11.761100 -38.115604 +vn 0.712282 0.040378 -0.700731 +v 29.999994 14.082951 -37.926216 +vn 0.711800 0.011939 -0.702281 +v 29.999994 15.193675 -37.886158 +vn 0.712574 -0.019631 -0.701322 +v 29.999994 16.261566 -37.890358 +vn 0.713083 -0.052779 -0.699090 +v 29.999994 17.282484 -37.941776 +vn 0.713114 -0.090733 -0.695152 +v 29.999994 18.254372 -38.041256 +vn 0.713369 -0.129870 -0.688650 +v 29.999994 19.176991 -38.187836 +vn 0.713398 -0.169307 -0.679999 +v 29.999994 20.051655 -38.379009 +vn 0.713173 -0.207424 -0.669596 +v 29.999994 20.880999 -38.611008 +vn 0.714731 -0.248188 -0.653883 +v 29.999994 21.668764 -38.878994 +vn 0.714104 -0.294626 -0.635020 +v 29.999994 23.138731 -39.499779 +vn 0.709969 -0.326903 -0.623761 +v 29.999994 24.505194 -40.190739 +vn 0.705807 -0.333851 -0.624805 +v 29.999994 25.815012 -40.900002 +vn 0.702603 -0.318582 -0.636281 +v 29.999994 27.110714 -41.582569 +vn 0.700836 -0.287153 -0.652972 +v 29.999994 28.424744 -42.206398 +vn 0.700603 -0.248997 -0.668697 +v 29.999994 29.776484 -42.755276 +vn 0.701115 -0.210977 -0.681122 +v 29.999994 31.171547 -43.229073 +vn 0.708463 -0.193441 -0.678720 +v 29.999994 34.041954 -44.031784 +vn 0.715601 -0.219915 -0.662988 +v 29.999994 35.454117 -44.442280 +vn 0.707047 0.641076 -0.298507 +v 29.999994 49.882423 -41.139351 +vn 0.706865 0.641647 -0.297710 +v 29.999994 50.674103 -39.437923 +vn 0.706714 0.642640 -0.295920 +v 29.999994 51.413586 -37.839527 +vn 0.706583 0.643994 -0.293278 +v 29.999994 52.100494 -36.340706 +vn 0.706464 0.645664 -0.289872 +v 29.999994 52.736290 -34.935638 +vn 0.706345 0.647636 -0.285734 +v 29.999994 53.323872 -33.616405 +vn 0.706211 0.649930 -0.280814 +v 29.999994 53.867146 -32.373188 +vn 0.706046 0.652602 -0.274972 +v 29.999994 54.370609 -31.194521 +vn 0.705836 0.655736 -0.267968 +v 29.999994 54.838947 -30.067495 +vn 0.704646 0.661394 -0.256965 +v 29.999994 55.276649 -28.978027 +vn 0.702547 0.671604 -0.235320 +v 29.999994 56.074310 -26.850750 +vn 0.702667 0.681087 -0.205862 +v 29.999994 56.779934 -24.685108 +vn 0.703666 0.687286 -0.180255 +v 29.999994 57.097904 -23.547651 +vn 0.703519 0.692988 -0.157572 +v 29.999994 57.390564 -22.353683 +vn 0.703501 0.697919 -0.134144 +v 30.000000 57.655663 -21.089922 +vn 0.703597 0.701904 -0.110822 +v 30.000000 57.890682 -19.745119 +vn 0.703779 0.704906 -0.088332 +v 30.000000 58.093124 -18.310602 +vn 0.704020 0.706992 -0.067220 +v 30.000000 58.260780 -16.780792 +vn 0.704295 0.708293 -0.047854 +v 30.000000 58.392002 -15.153718 +vn 0.704592 0.708959 -0.030459 +v 30.000000 58.485950 -13.431509 +vn 0.704902 0.709143 -0.015169 +v 30.000000 58.542877 -11.620973 +vn 0.705221 0.708984 -0.002047 +v 30.000000 58.564388 -9.734053 +vn 0.705529 0.708624 0.008980 +v 30.000000 58.553474 -7.787474 +vn 0.705533 0.708419 0.019118 +v 30.000000 58.514431 -5.801847 +vn 0.706208 0.707440 0.028275 +v 30.000000 58.374775 -1.808913 +vn 0.706907 0.706581 0.032036 +v 30.000000 58.287941 0.147514 +vn 0.707330 0.706162 0.031926 +v 30.000000 58.200256 2.043410 +vn 0.707855 0.705776 0.028640 +v 30.000000 58.120346 3.855065 +vn 0.707822 -0.329980 0.624581 +v 30.000000 34.253681 14.585945 +vn 0.707057 -0.328471 0.626241 +v 30.000000 33.258583 14.064274 +vn 0.706293 -0.331271 0.625628 +v 30.000000 32.321003 13.572205 +vn 0.705510 -0.338351 0.622715 +v 30.000000 31.452284 13.108158 +vn 0.704803 -0.349493 0.617338 +v 30.000000 30.660385 12.670568 +vn 0.704335 -0.363831 0.609541 +v 30.000000 29.948956 12.257962 +vn 0.704396 -0.378780 0.600293 +v 30.000000 29.315687 11.869099 +vn 0.705565 -0.389406 0.592065 +v 30.000000 28.750889 11.503089 +vn 0.713375 -0.372470 0.593601 +v 30.000000 27.754021 10.837770 +vn 0.717584 -0.324518 0.616247 +v 30.000000 26.772318 10.260327 +vn 0.714901 -0.274553 0.643068 +v 30.000000 26.225433 10.004089 +vn 0.714144 -0.231684 0.660546 +v 30.000000 25.616301 9.768682 +vn 0.713081 -0.193223 0.673929 +v 30.000000 24.933372 9.553002 +vn -0.705101 -0.027728 -0.708565 +v 25.000000 5.461628 -2.336658 +vn -0.704877 -0.041130 -0.708136 +v 25.000000 4.718313 -2.300915 +vn -0.704373 -0.057008 -0.707537 +v 25.000000 4.037603 -2.254529 +vn -0.703769 -0.076657 -0.706281 +v 25.000000 3.416399 -2.196687 +vn -0.703014 -0.100916 -0.703980 +v 25.000000 2.852480 -2.126693 +vn -0.702061 -0.130792 -0.700003 +v 25.000000 2.349583 -2.044834 +vn -0.700817 -0.167538 -0.693388 +v 25.000000 1.905932 -1.951152 +vn -0.699176 -0.212661 -0.682589 +v 25.000000 1.518290 -1.845551 +vn -0.697362 -0.266923 -0.665160 +v 25.000000 1.183523 -1.727974 +vn -0.695595 -0.330418 -0.637944 +v 25.000000 0.904406 -1.601463 +vn -0.693971 -0.401203 -0.597863 +v 25.000000 0.678029 -1.468641 +vn -0.691937 -0.476509 -0.542368 +v 25.000000 0.496002 -1.329845 +vn -0.690026 -0.551917 -0.468244 +v 25.000000 0.344149 -1.176694 +vn -0.689503 -0.619497 -0.375246 +v 25.000000 0.220150 -1.005039 +vn -0.684772 -0.682398 -0.255774 +v 25.000000 0.126897 -0.818386 +vn -0.686643 -0.718147 -0.113076 +v 25.000000 0.026005 -0.427998 +vn -0.696564 -0.717452 -0.007856 +v 25.000000 0.001774 -0.026085 +vn -0.706788 -0.706820 0.029251 +v 25.000000 0.018798 0.418681 +vn -0.713140 -0.700880 0.014108 +v 25.000000 0.042942 0.960524 +vn -0.714024 -0.699730 -0.023407 +v 25.000000 0.040070 1.653669 +vn -0.706617 -0.706220 -0.044104 +v 25.000000 -0.013193 2.483971 +vn -0.693644 -0.720314 0.002427 +v 25.000000 -0.058650 3.244395 +vn -0.688179 -0.716688 0.112998 +v 25.000000 -0.011616 3.938171 +vn -0.690688 -0.687398 0.224577 +v 25.000000 0.068379 4.261773 +vn -0.690026 -0.645283 0.327833 +v 25.000000 0.195541 4.570431 +vn -0.690299 -0.586035 0.424322 +v 25.000000 0.375697 4.864818 +vn -0.691756 -0.516228 0.504958 +v 25.000000 0.614279 5.145807 +vn -0.693996 -0.444523 0.566364 +v 25.000000 0.917077 5.414547 +vn -0.696253 -0.377858 0.610292 +v 25.000000 1.288772 5.671477 +vn -0.698336 -0.319546 0.640482 +v 25.000000 1.733461 5.916631 +vn -0.700093 -0.270694 0.660753 +v 25.000000 2.246742 6.146926 +vn -0.701441 -0.230607 0.674389 +v 25.000000 2.820940 6.360440 +vn -0.702485 -0.197802 0.683658 +v 25.000000 3.454226 6.558497 +vn -0.703190 -0.170891 0.690160 +v 25.000000 4.144774 6.742424 +vn -0.703905 -0.148990 0.694492 +v 25.000000 4.890759 6.913545 +vn -0.704501 -0.130939 0.697519 +v 25.000000 5.690354 7.073185 +vn -0.704228 -0.113666 0.700816 +v 25.000000 6.538578 7.222241 +vn -0.704269 -0.095202 0.703521 +v 25.000000 8.329456 7.488325 +vn -0.704736 -0.078669 0.705095 +v 25.000000 10.212727 7.718843 +vn -0.705995 -0.067320 0.705010 +v 25.000000 14.110267 8.109507 +vn -0.707067 -0.065703 0.704087 +v 25.000000 16.051449 8.287814 +vn -0.707854 -0.070264 0.702856 +v 25.000000 17.938850 8.466883 +vn -0.708870 -0.080425 0.700740 +v 25.000000 19.735929 8.655793 +vn -0.710320 -0.097919 0.697035 +v 25.000000 21.406141 8.863626 +vn -0.710703 -0.120495 0.693096 +v 25.000000 22.911793 9.099218 +vn -0.710113 -0.141201 0.689785 +v 25.000000 23.574486 9.225678 +vn -0.711566 -0.163571 0.683315 +v 25.000000 24.169331 9.355659 +vn -0.714970 -0.001206 -0.699154 +v 25.000000 24.438347 -1.962803 +vn -0.709934 0.033395 -0.703476 +v 25.000000 23.735600 -1.986784 +vn -0.707447 0.043930 -0.705400 +v 25.000000 22.862825 -2.039587 +vn -0.706726 0.044052 -0.706115 +v 25.000000 22.310610 -2.074914 +vn -0.706571 0.041430 -0.706428 +v 25.000000 21.970036 -2.095620 +vn -0.706563 0.038505 -0.706602 +v 25.000000 21.576748 -2.117908 +vn -0.706643 0.034919 -0.706708 +v 25.000000 21.123453 -2.141442 +vn -0.706734 0.031587 -0.706774 +v 25.000000 20.602861 -2.165884 +vn -0.706885 0.028043 -0.706772 +v 25.000000 20.007687 -2.190897 +vn -0.706958 0.024829 -0.706820 +v 25.000000 19.330635 -2.216148 +vn -0.707035 0.021720 -0.706845 +v 25.000000 18.564419 -2.241297 +vn -0.707021 0.018839 -0.706942 +v 25.000000 17.701746 -2.266008 +vn -0.706924 0.016104 -0.707106 +v 25.000000 16.735329 -2.289945 +vn -0.706854 0.013836 -0.707224 +v 25.000000 15.657880 -2.312771 +vn -0.706841 0.011504 -0.707279 +v 25.000000 14.462104 -2.334149 +vn -0.706686 0.008999 -0.707470 +v 25.000000 13.140713 -2.353743 +vn -0.706305 0.004886 -0.707891 +v 25.000000 10.202907 -2.384398 +vn -0.706241 -0.000078 -0.707971 +v 25.000000 8.843874 -2.389395 +vn -0.705942 -0.006731 -0.708238 +v 25.000000 7.604637 -2.384336 +vn -0.705448 -0.016122 -0.708578 +v 25.000000 6.479214 -2.367373 +vn 0.708457 0.705605 0.014496 +v 22.000000 58.030144 6.583652 +vn 0.708866 0.705328 0.004692 +v 22.000000 58.016083 7.549005 +vn 0.709418 0.704737 -0.008452 +v 22.000000 58.017403 8.457397 +vn 0.710128 0.703624 -0.025116 +v 22.000000 58.036415 9.308758 +vn 0.710846 0.701823 -0.046292 +v 22.000000 58.075428 10.103023 +vn 0.711776 0.698611 -0.072920 +v 22.000000 58.136585 10.838724 +vn 0.712747 0.693612 -0.104378 +v 22.000000 58.220638 11.509662 +vn 0.713511 0.686262 -0.141235 +v 22.000000 58.328510 12.122121 +vn 0.714241 0.675657 -0.182614 +v 22.000000 58.461266 12.684445 +vn 0.718569 0.654014 -0.236483 +v 22.000000 58.619976 13.204982 +vn 0.721778 0.618841 -0.309956 +v 22.000000 59.020092 14.155158 +vn 0.718077 0.581888 -0.381800 +v 22.000000 59.542934 15.046820 +vn 0.712278 0.556334 -0.427962 +v 22.000000 60.203640 15.950969 +vn 0.709233 0.544069 -0.448305 +v 22.000000 60.590347 16.429655 +vn 0.708288 0.538231 -0.456766 +v 22.000000 61.017105 16.937782 +vn 0.707459 0.535627 -0.461091 +v 22.000000 61.485779 17.484121 +vn 0.706980 0.535483 -0.461993 +v 22.000000 61.998230 18.077444 +vn 0.706895 0.536176 -0.461319 +v 22.000000 62.271454 18.394464 +vn 0.706843 0.537040 -0.460392 +v 22.000000 62.418404 18.565527 +vn 0.706741 0.538376 -0.458986 +v 22.000000 62.612896 18.792904 +vn 0.706632 0.540197 -0.457010 +v 22.000000 62.857403 19.080679 +vn 0.706586 0.542190 -0.454715 +v 22.000000 63.146530 19.423840 +vn 0.706598 0.544514 -0.451911 +v 22.000000 63.474903 19.817362 +vn 0.706057 0.548359 -0.448092 +v 22.000000 63.837128 20.256235 +vn 0.705471 0.554069 -0.441949 +v 22.000000 64.641594 21.249949 +vn 0.704107 0.565018 -0.430102 +v 22.000006 65.516876 22.364841 +vn 0.702518 0.582851 -0.408353 +v 22.000006 67.305000 24.793970 +vn 0.702843 0.599554 -0.382813 +v 22.000006 68.089050 25.968634 +vn 0.702702 0.614551 -0.358521 +v 22.000006 68.417496 26.506306 +vn 0.700588 0.633596 -0.328227 +v 22.000006 68.691261 26.998262 +vn 0.697358 0.659098 -0.281570 +v 22.000006 68.900116 27.432602 +vn 0.692869 0.690186 -0.208748 +v 22.000006 69.033440 27.787722 +vn 0.686579 0.720647 -0.096320 +v 22.000006 69.099411 28.071886 +vn 0.685867 0.726375 0.044332 +v 22.000006 69.108032 28.301544 +vn 0.690108 0.703516 0.169755 +v 22.000006 69.091133 28.406912 +vn 0.688717 0.668172 0.281452 +v 22.000006 69.061646 28.497568 +vn 0.688285 0.611123 0.390887 +v 22.000006 69.014458 28.587576 +vn 0.683575 0.527020 0.504950 +v 22.000006 68.952744 28.667894 +vn 0.684734 0.407365 0.604312 +v 22.000006 68.792618 28.802044 +vn 0.693261 0.297351 0.656484 +v 22.000006 68.580025 28.915184 +vn 0.699342 0.229009 0.677108 +v 22.000006 68.314392 29.015676 +vn 0.703415 0.192308 0.684270 +v 22.000006 67.996368 29.110828 +vn 0.706173 0.177565 0.685412 +v 22.000006 67.626106 29.208334 +vn 0.709278 0.180774 0.681356 +v 22.000006 67.203766 29.315901 +vn 0.712511 0.203996 0.671353 +v 22.000006 66.236046 29.583530 +vn 0.712354 0.237668 0.660352 +v 22.000006 65.289825 29.897623 +vn 0.712116 0.269193 0.648402 +v 22.000006 64.400627 30.242781 +vn 0.711781 0.297317 0.636373 +v 22.000006 63.571789 30.609079 +vn 0.711417 0.323221 0.624031 +v 22.000006 62.806625 30.986589 +vn 0.711336 0.346349 0.611591 +v 22.000006 62.108482 31.365385 +vn 0.711040 0.366810 0.599894 +v 22.000006 61.480694 31.735537 +vn 0.710592 0.385832 0.588381 +v 22.000006 60.926598 32.087124 +vn 0.710274 0.402529 0.577478 +v 22.000006 60.449524 32.410206 +vn 0.709874 0.417497 0.567252 +v 22.000006 60.052811 32.694862 +vn 0.709573 0.430672 0.557699 +v 22.000006 59.739796 32.931164 +vn 0.711106 0.445631 0.543821 +v 22.000006 59.501995 33.119011 +vn 0.712491 0.467369 0.523376 +v 22.000006 59.133373 33.432388 +vn 0.708487 0.486198 0.511525 +v 22.000006 58.852356 33.695976 +vn 0.701540 0.480985 0.525828 +v 22.000006 58.315414 34.212601 +vn 0.705184 0.460685 0.538966 +v 22.000006 57.954933 34.526112 +vn 0.707796 0.456073 0.539466 +v 22.000006 57.516834 34.894142 +vn 0.709303 0.462160 0.532256 +v 22.000006 57.002266 35.331993 +vn 0.711507 0.476671 0.516277 +v 22.000006 56.422447 35.845860 +vn 0.714114 0.501906 0.487988 +v 22.000006 55.341324 36.887173 +vn 0.715337 0.533851 0.450883 +v 22.000006 54.403522 37.916649 +vn 0.716136 0.566549 0.407641 +v 22.000006 53.593170 38.951950 +vn 0.716149 0.597530 0.360678 +v 22.000006 52.894394 40.010735 +vn 0.714496 0.623753 0.316903 +v 22.000006 52.308357 41.076035 +vn 0.710827 0.642073 0.287173 +v 22.000006 51.852455 42.051373 +vn 0.705253 0.649551 0.284081 +v 22.000006 51.481533 42.919003 +vn 0.696834 0.640267 0.323235 +v 22.000006 51.146847 43.667000 +vn 0.691325 0.601718 0.400007 +v 22.000006 50.794754 44.289783 +vn 0.691455 0.538803 0.481228 +v 22.000006 50.593330 44.550331 +vn 0.688029 0.457141 0.563594 +v 22.000006 50.364811 44.771942 +vn 0.685736 0.344399 0.641214 +v 22.000006 50.100540 44.949936 +vn 0.685279 0.208757 0.697720 +v 22.000006 49.784283 45.081013 +vn 0.687834 0.071884 0.722300 +v 22.000006 49.394016 45.155510 +vn 0.687965 -0.056926 0.723508 +v 22.000006 48.962719 45.159988 +vn 0.691411 -0.174263 0.701129 +v 22.000006 48.163219 45.023655 +vn 0.696068 -0.259403 0.669477 +v 22.000006 47.394871 44.771000 +vn 0.697962 -0.321004 0.640161 +v 22.000006 46.603378 44.416061 +vn 0.698375 -0.373721 0.610414 +v 22.000006 45.817631 43.978592 +vn 0.697408 -0.426154 0.576207 +v 22.000006 45.022881 43.445549 +vn 0.695479 -0.483648 0.531406 +v 22.000006 44.241520 42.809826 +vn 0.692646 -0.548251 0.468682 +v 22.000006 43.521542 42.077209 +vn 0.693795 -0.604781 0.391009 +v 22.000006 42.910152 41.251762 +vn 0.696603 -0.641467 0.321348 +v 22.000006 42.657898 40.802849 +vn 0.696107 -0.669866 0.258292 +v 22.000006 42.447693 40.328823 +vn 0.695888 -0.692677 0.189577 +v 22.000006 42.287102 39.840656 +vn 0.691639 -0.714250 0.107155 +v 22.000006 42.176956 39.343815 +vn 0.690002 -0.723802 -0.002667 +v 22.000006 42.097694 38.318146 +vn 0.694155 -0.712397 -0.103154 +v 22.000006 42.187294 37.251759 +vn 0.698431 -0.694695 -0.172027 +v 22.000006 42.414307 36.150436 +vn 0.702251 -0.679261 -0.213185 +v 22.000006 42.744877 35.009968 +vn 0.706036 -0.669839 -0.229844 +v 22.000006 43.145161 33.826126 +vn 0.711826 -0.668398 -0.215750 +v 22.000006 44.016228 31.318041 +vn 0.714160 -0.676657 -0.179196 +v 22.000006 44.409451 30.003216 +vn 0.717111 -0.685480 -0.125975 +v 22.000006 44.720291 28.657116 +vn 0.720166 -0.691738 -0.053478 +v 22.000006 44.907887 27.288752 +vn 0.718706 -0.694881 0.024544 +v 22.000006 44.932152 25.918089 +vn 0.715662 -0.692863 0.088144 +v 22.000006 44.871979 25.233606 +vn 0.716057 -0.683262 0.142884 +v 22.000006 44.757854 24.550158 +vn 0.716147 -0.669205 0.198239 +v 22.000006 44.589249 23.881119 +vn 0.716009 -0.650945 0.252194 +v 22.000006 44.368275 23.234116 +vn 0.715720 -0.629066 0.303350 +v 22.000006 44.095997 22.607853 +vn 0.715304 -0.604397 0.350777 +v 22.000006 43.773483 22.001034 +vn 0.714769 -0.577941 0.393813 +v 22.000000 43.401810 21.412380 +vn 0.717306 -0.541946 0.437912 +v 22.000000 42.983273 20.842007 +vn 0.718703 -0.493875 0.489442 +v 22.000000 42.014183 19.753166 +vn 0.716396 -0.446588 0.536037 +v 22.000000 40.879742 18.723322 +vn 0.714303 -0.406415 0.569734 +v 22.000000 39.595478 17.742210 +vn 0.712392 -0.374592 0.593446 +v 22.000000 38.210049 16.820423 +vn 0.710715 -0.351230 0.609526 +v 22.000000 36.764164 15.955346 +vn -0.712743 -0.360499 0.601696 +v 8.000003 37.369370 16.307798 +vn -0.713710 -0.395694 0.577965 +v 8.000003 39.392490 17.599031 +vn -0.713149 -0.429301 0.554183 +v 8.000003 40.343590 18.294382 +vn -0.714861 -0.461681 0.525190 +v 8.000003 41.237865 19.027708 +vn -0.716342 -0.497383 0.489352 +v 8.000003 42.062946 19.802624 +vn -0.717538 -0.537780 0.442643 +v 8.000003 42.808376 20.625196 +vn -0.719278 -0.579352 0.383393 +v 8.000003 43.466557 21.508333 +vn -0.720778 -0.618967 0.312025 +v 8.000003 44.022545 22.459246 +vn -0.721485 -0.653286 0.229515 +v 8.000003 44.460545 23.483604 +vn -0.721320 -0.677869 0.142098 +v 8.000003 44.758064 24.551161 +vn -0.720253 -0.691412 0.056437 +v 8.000003 44.914463 25.647261 +vn -0.718567 -0.695097 -0.022389 +v 8.000003 44.938042 26.773104 +vn -0.716626 -0.691657 -0.089764 +v 8.000003 44.841690 27.903152 +vn -0.714758 -0.684423 -0.143829 +v 8.000003 44.646168 29.025244 +vn -0.712864 -0.676536 -0.184728 +v 8.000003 44.373032 30.135872 +vn -0.711592 -0.668651 -0.215738 +v 8.000003 44.044704 31.228455 +vn -0.706209 -0.669793 -0.229449 +v 8.000006 43.315678 33.335930 +vn -0.700699 -0.682311 -0.208499 +v 8.000006 42.637295 35.343121 +vn -0.699076 -0.696040 -0.163771 +v 8.000006 42.372211 36.310604 +vn -0.695764 -0.710888 -0.102715 +v 8.000006 42.185928 37.254818 +vn -0.692362 -0.721313 -0.018507 +v 8.000006 42.100494 38.176353 +vn -0.689658 -0.718800 0.087736 +v 8.000006 42.137608 39.072220 +vn -0.688442 -0.695372 0.206169 +v 8.000006 42.314651 39.937515 +vn -0.689290 -0.649969 0.320030 +v 8.000006 42.644630 40.776260 +vn -0.691795 -0.591319 0.414442 +v 8.000006 43.110935 41.553787 +vn -0.694510 -0.530838 0.485661 +v 8.000006 43.685726 42.261074 +vn -0.696765 -0.474501 0.537929 +v 8.000006 44.343044 42.899956 +vn -0.698286 -0.423405 0.577169 +v 8.000006 45.051559 43.466389 +vn -0.699049 -0.375840 0.608338 +v 8.000006 45.778252 43.954422 +vn -0.698755 -0.328113 0.635676 +v 8.000006 46.497486 44.361965 +vn -0.697131 -0.273856 0.662579 +v 8.000006 47.224743 44.702282 +vn -0.693940 -0.203759 0.690601 +v 8.000006 47.943161 44.961735 +vn -0.692779 -0.116702 0.711645 +v 8.000006 48.653233 45.126076 +vn -0.692552 -0.022132 0.721028 +v 8.000006 49.044903 45.164326 +vn -0.688412 0.088927 0.719848 +v 8.000006 49.448666 45.149700 +vn -0.686094 0.220711 0.693225 +v 8.000006 49.813156 45.072025 +vn -0.686432 0.350548 0.637124 +v 8.000006 50.114330 44.942383 +vn -0.688576 0.459020 0.561395 +v 8.000006 50.369591 44.767982 +vn -0.686502 0.554675 0.470160 +v 8.000006 50.592457 44.551319 +vn -0.691410 0.622926 0.365944 +v 8.000006 50.970547 44.005337 +vn -0.701460 0.647628 0.297545 +v 8.000006 51.304012 43.327801 +vn -0.708209 0.647669 0.281006 +v 8.000006 51.647846 42.524803 +vn -0.712607 0.634755 0.298794 +v 8.000006 52.052837 41.604774 +vn -0.715230 0.612168 0.337189 +v 8.000006 52.569019 40.577778 +vn -0.716023 0.582657 0.384476 +v 8.000006 53.232128 39.475487 +vn -0.715510 0.550137 0.430574 +v 8.000006 53.996887 38.415291 +vn -0.714511 0.517839 0.470443 +v 8.000006 54.858395 37.398743 +vn -0.713322 0.488047 0.502974 +v 8.000006 55.821838 36.408554 +vn -0.710758 0.466485 0.526512 +v 8.000006 56.889332 35.430126 +vn -0.708202 0.456587 0.538496 +v 8.000006 57.391529 34.999870 +vn -0.706121 0.457531 0.540424 +v 8.000006 57.824875 34.636189 +vn -0.703099 0.471588 0.532218 +v 8.000006 58.193501 34.321301 +vn -0.704187 0.487279 0.516410 +v 8.000006 58.500607 34.038975 +vn -0.713871 0.470972 0.518241 +v 8.000006 59.076809 33.481823 +vn -0.711534 0.445544 0.543332 +v 8.000006 59.494278 33.125191 +vn -0.710207 0.427701 0.559177 +v 8.000006 59.787537 32.894325 +vn -0.710712 0.410326 0.571420 +v 8.000003 60.215969 32.576031 +vn -0.711236 0.390068 0.584799 +v 8.000003 60.778362 32.185799 +vn -0.711863 0.366691 0.598991 +v 8.000003 61.467091 31.744354 +vn -0.712454 0.340121 0.613781 +v 8.000003 62.274513 31.272421 +vn -0.712846 0.309893 0.629140 +v 8.000003 63.193005 30.790728 +vn -0.713241 0.275017 0.644712 +v 8.000003 64.214920 30.320002 +vn -0.713888 0.235013 0.659646 +v 8.000003 65.332649 29.880966 +vn -0.712192 0.198224 0.673417 +v 8.000003 66.538551 29.494350 +vn -0.708602 0.178890 0.682555 +v 8.000003 67.132332 29.334404 +vn -0.705743 0.179179 0.685435 +v 8.000003 67.650749 29.202248 +vn -0.701276 0.202654 0.683479 +v 8.000003 68.093460 29.083607 +vn -0.693795 0.264386 0.669887 +v 8.000003 68.460312 28.964119 +vn -0.688905 0.360513 0.628840 +v 8.000003 68.748901 28.829308 +vn -0.689857 0.456323 0.562020 +v 8.000003 68.869667 28.746050 +vn -0.686009 0.550361 0.475914 +v 8.000003 68.958298 28.661701 +vn -0.682754 0.640283 0.351973 +v 8.000003 69.034424 28.554081 +vn -0.684882 0.698881 0.206161 +v 8.000003 69.084457 28.432217 +vn -0.687548 0.722907 0.068435 +v 8.000003 69.107277 28.309809 +vn -0.684377 0.725371 -0.073932 +v 8.000003 69.107964 28.149311 +vn -0.692013 0.694068 -0.198463 +v 8.000003 69.027786 27.769596 +vn -0.699654 0.662994 -0.266315 +v 8.000003 68.940834 27.529970 +vn -0.699349 0.643162 -0.311855 +v 8.000003 68.818100 27.252062 +vn -0.700689 0.620064 -0.352924 +v 8.000003 68.478783 26.611942 +vn -0.703073 0.600112 -0.381514 +v 8.000003 68.036140 25.885662 +vn -0.704333 0.586720 -0.399593 +v 8.000003 67.512863 25.095694 +vn -0.704177 0.576129 -0.414981 +v 8.000003 66.934822 24.269615 +vn -0.704471 0.563962 -0.430891 +v 8.000003 65.708122 22.617420 +vn -0.705621 0.553439 -0.442497 +v 8.000003 64.472801 21.046089 +vn -0.706395 0.547714 -0.448348 +v 8.000003 63.883293 20.320036 +vn -0.706542 0.543863 -0.452783 +v 8.000003 63.329262 19.649342 +vn -0.706576 0.540946 -0.456211 +v 8.000003 62.823269 19.045725 +vn -0.706639 0.538281 -0.459255 +v 8.000003 62.377869 18.520899 +vn -0.706728 0.536414 -0.461298 +v 8.000003 62.005608 18.086578 +vn -0.707103 0.535319 -0.461995 +v 8.000003 61.719032 17.754480 +vn -0.708351 0.536934 -0.458194 +v 8.000003 61.276104 17.241295 +vn -0.711505 0.546013 -0.442301 +v 8.000003 60.491131 16.310625 +vn -0.715348 0.567231 -0.408077 +v 8.000003 59.831959 15.462778 +vn -0.718962 0.598931 -0.352669 +v 8.000003 59.289814 14.645960 +vn -0.720965 0.634223 -0.279231 +v 8.000003 58.855713 13.807927 +vn -0.720451 0.664563 -0.198258 +v 8.000003 58.519215 12.889819 +vn -0.715548 0.686097 -0.131389 +v 8.000003 58.273296 11.833052 +vn -0.711971 0.696386 -0.090239 +v 8.000003 58.182392 11.234719 +vn -0.711218 0.700163 -0.062772 +v 8.000000 58.112049 10.582330 +vn -0.710371 0.702706 -0.039718 +v 8.000000 58.061954 9.879703 +vn -0.709730 0.704162 -0.020958 +v 8.000000 58.030514 9.125810 +vn -0.709180 0.705001 -0.006047 +v 8.000000 58.016029 8.318842 +vn -0.708723 0.705463 0.005853 +v 8.000000 58.016792 7.456990 +vn -0.708369 0.705683 0.014959 +v 8.000000 58.031105 6.538447 +vn -0.708536 0.643701 -0.289180 +v 9.999994 46.492378 -48.494801 +vn -0.708809 0.648093 -0.278505 +v 9.999994 45.277416 -51.254734 +vn -0.709353 0.653396 -0.264372 +v 9.999994 44.130238 -53.994118 +vn -0.710183 0.659795 -0.245583 +v 9.999991 43.071945 -56.705120 +vn -0.711202 0.667094 -0.221760 +v 9.999991 42.117199 -59.398155 +vn -0.711977 0.675524 -0.191720 +v 9.999991 41.286453 -62.074905 +vn -0.711612 0.684411 -0.158713 +v 9.999991 40.608196 -64.717796 +vn -0.711024 0.690619 -0.132247 +v 9.999991 40.335152 -66.021049 +vn -0.711281 0.694599 -0.107763 +v 9.999991 40.110912 -67.309258 +vn -0.711791 0.697930 -0.079040 +v 9.999991 39.939037 -68.580208 +vn -0.712417 0.700058 -0.048792 +v 9.999991 39.823090 -69.831711 +vn -0.712612 0.701411 -0.014356 +v 9.999991 39.766628 -71.061569 +vn -0.712940 0.700838 0.023299 +v 9.999991 39.773212 -72.267548 +vn -0.713322 0.697963 0.063400 +v 9.999991 39.843563 -73.416840 +vn -0.713675 0.692611 0.104681 +v 9.999991 39.972103 -74.485458 +vn -0.713969 0.684651 0.146632 +v 9.999991 40.152702 -75.477623 +vn -0.713887 0.674549 0.188012 +v 9.999989 40.379238 -76.397552 +vn -0.713789 0.661702 0.229466 +v 9.999989 40.645588 -77.249458 +vn -0.713635 0.647140 0.268208 +v 9.999989 40.945621 -78.037567 +vn -0.713388 0.630658 0.305529 +v 9.999989 41.273251 -78.766068 +vn -0.713043 0.613661 0.339102 +v 9.999989 41.622555 -79.438866 +vn -0.712368 0.596573 0.369638 +v 9.999989 41.987366 -80.059875 +vn -0.713454 0.575651 0.399510 +v 9.999989 42.361454 -80.633026 +vn -0.712493 0.554295 0.430246 +v 9.999989 43.112568 -81.651527 +vn -0.707406 0.546949 0.447687 +v 9.999989 43.825928 -82.525696 +vn -0.702354 0.560194 0.439184 +v 9.999989 44.443050 -83.278297 +vn -0.699855 0.585269 0.409466 +v 9.999989 44.694561 -83.613739 +vn -0.694979 0.623622 0.357910 +v 9.999989 44.896938 -83.924591 +vn -0.686539 0.678124 0.262320 +v 9.999989 45.043247 -84.216354 +vn -0.683056 0.720887 0.117290 +v 9.999989 45.123169 -84.501358 +vn -0.685239 0.727332 -0.037874 +v 9.999989 45.130173 -84.643044 +vn -0.682406 0.704760 -0.193997 +v 9.999989 45.108395 -84.783737 +vn -0.682978 0.642550 -0.347376 +v 9.999989 45.055546 -84.914726 +vn -0.686391 0.554367 -0.470686 +v 9.999989 44.973671 -85.032394 +vn -0.690594 0.463279 -0.555385 +v 9.999989 44.870239 -85.132889 +vn -0.689307 0.371164 -0.622168 +v 9.999989 44.751896 -85.217308 +vn -0.685328 0.252067 -0.683219 +v 9.999989 44.485989 -85.347687 +vn -0.688789 0.115929 -0.715633 +v 9.999989 43.876877 -85.502777 +vn -0.692792 0.002692 -0.721133 +v 9.999989 43.130840 -85.556778 +vn -0.693875 -0.090388 -0.714401 +v 9.999989 42.272392 -85.501991 +vn -0.693856 -0.179852 -0.697293 +v 9.999989 41.336506 -85.323318 +vn -0.696162 -0.259422 -0.669372 +v 9.999989 40.357059 -85.002136 +vn -0.698532 -0.317326 -0.641371 +v 9.999989 39.849380 -84.774986 +vn -0.697838 -0.368070 -0.614448 +v 9.999989 39.336567 -84.496140 +vn -0.697257 -0.419865 -0.580987 +v 9.999989 38.826000 -84.160629 +vn -0.696927 -0.470961 -0.540822 +v 9.999989 38.325138 -83.763565 +vn -0.696985 -0.518700 -0.495138 +v 9.999989 37.857029 -83.316284 +vn -0.697366 -0.561036 -0.446005 +v 9.999989 37.434689 -82.830956 +vn -0.697903 -0.597226 -0.395288 +v 9.999989 37.056770 -82.309410 +vn -0.698538 -0.627209 -0.344461 +v 9.999989 36.721935 -81.753479 +vn -0.699251 -0.651191 -0.294954 +v 9.999989 36.429649 -81.166771 +vn -0.697088 -0.675839 -0.239395 +v 9.999989 36.180866 -80.558723 +vn -0.696099 -0.698012 -0.168004 +v 9.999989 35.802814 -79.296165 +vn -0.698161 -0.709194 -0.098055 +v 9.999989 35.564125 -77.997871 +vn -0.699687 -0.713284 -0.040783 +v 9.999989 35.438755 -76.660416 +vn -0.701036 -0.713097 0.006366 +v 9.999991 35.409676 -75.275574 +vn -0.702043 -0.710686 0.045404 +v 9.999991 35.464859 -73.855949 +vn -0.702898 -0.707124 0.076874 +v 9.999991 35.592270 -72.414154 +vn -0.702577 -0.703480 0.107242 +v 9.999991 35.780159 -70.961060 +vn -0.703192 -0.697125 0.139775 +v 9.999991 36.304012 -68.008339 +vn -0.704730 -0.690376 0.163514 +v 9.999991 36.968098 -65.030716 +vn -0.706357 -0.686212 0.173703 +v 9.999991 37.702366 -62.084270 +vn -0.707812 -0.684735 0.173608 +v 9.999991 38.436749 -59.225098 +vn -0.708354 -0.685636 0.167744 +v 9.999991 38.782093 -57.845760 +vn -0.708915 -0.687355 0.158059 +v 9.999991 39.101200 -56.509277 +vn -0.709610 -0.689798 0.143638 +v 9.999991 39.385231 -55.223049 +vn -0.710613 -0.692643 0.123591 +v 9.999994 39.624916 -53.997478 +vn -0.711785 -0.695668 0.096999 +v 9.999994 39.812515 -52.836357 +vn -0.713124 -0.698311 0.061779 +v 9.999994 39.940662 -51.741646 +vn -0.715016 -0.698924 0.016036 +v 9.999994 40.001991 -50.715317 +vn -0.717170 -0.695669 -0.041382 +v 9.999994 39.989143 -49.759621 +vn -0.719528 -0.685200 -0.113049 +v 9.999994 39.896030 -48.885803 +vn -0.722087 -0.663097 -0.197214 +v 9.999994 39.718765 -48.096043 +vn -0.724250 -0.625139 -0.290970 +v 9.999994 39.453621 -47.386463 +vn -0.725551 -0.568886 -0.387226 +v 9.999994 39.094433 -46.750046 +vn -0.725429 -0.496809 -0.476376 +v 9.999994 38.633705 -46.182087 +vn -0.723595 -0.418825 -0.548631 +v 9.999994 38.075760 -45.688240 +vn -0.720127 -0.347836 -0.600356 +v 9.999994 37.453209 -45.279419 +vn 0.720126 -0.347836 -0.600357 +v 19.999994 37.453209 -45.279419 +vn 0.723595 -0.418825 -0.548631 +v 19.999994 38.075760 -45.688240 +vn 0.725428 -0.496809 -0.476376 +v 19.999994 38.633705 -46.182087 +vn 0.725551 -0.568886 -0.387226 +v 19.999994 39.094433 -46.750046 +vn 0.724250 -0.625139 -0.290970 +v 19.999994 39.453621 -47.386463 +vn 0.722087 -0.663097 -0.197214 +v 19.999994 39.718765 -48.096043 +vn 0.719528 -0.685200 -0.113049 +v 19.999994 39.896030 -48.885803 +vn 0.717170 -0.695669 -0.041382 +v 19.999994 39.989143 -49.759621 +vn 0.715016 -0.698924 0.016036 +v 19.999994 40.001991 -50.715317 +vn 0.713124 -0.698311 0.061779 +v 19.999994 39.940662 -51.741646 +vn 0.711785 -0.695668 0.096999 +v 19.999994 39.812515 -52.836357 +vn 0.710613 -0.692643 0.123591 +v 19.999994 39.624916 -53.997478 +vn 0.709610 -0.689798 0.143638 +v 19.999994 39.385231 -55.223049 +vn 0.708915 -0.687355 0.158059 +v 19.999994 39.101200 -56.509277 +vn 0.708354 -0.685636 0.167744 +v 19.999994 38.782093 -57.845760 +vn 0.707812 -0.684735 0.173608 +v 19.999994 38.436749 -59.225098 +vn 0.706357 -0.686212 0.173703 +v 19.999994 37.702366 -62.084270 +vn 0.704730 -0.690376 0.163514 +v 19.999994 36.968098 -65.030716 +vn 0.703192 -0.697125 0.139775 +v 19.999989 36.304012 -68.008339 +vn 0.702577 -0.703480 0.107241 +v 19.999989 35.780159 -70.961060 +vn 0.702898 -0.707124 0.076874 +v 19.999989 35.592270 -72.414154 +vn 0.702043 -0.710686 0.045404 +v 19.999989 35.464859 -73.855949 +vn 0.701036 -0.713097 0.006366 +v 19.999989 35.409676 -75.275574 +vn 0.699687 -0.713284 -0.040783 +v 19.999989 35.438755 -76.660416 +vn 0.698161 -0.709194 -0.098055 +v 19.999989 35.564125 -77.997871 +vn 0.696099 -0.698012 -0.168004 +v 19.999989 35.802814 -79.296165 +vn 0.697088 -0.675839 -0.239395 +v 19.999989 36.180866 -80.558723 +vn 0.699251 -0.651191 -0.294954 +v 19.999989 36.429649 -81.166771 +vn 0.698538 -0.627209 -0.344461 +v 19.999989 36.721935 -81.753479 +vn 0.697903 -0.597226 -0.395289 +v 19.999989 37.056770 -82.309410 +vn 0.697366 -0.561036 -0.446005 +v 19.999989 37.434689 -82.830956 +vn 0.696985 -0.518700 -0.495138 +v 19.999989 37.857029 -83.316284 +vn 0.696927 -0.470961 -0.540822 +v 19.999989 38.325138 -83.763565 +vn 0.697257 -0.419865 -0.580987 +v 19.999989 38.826000 -84.160629 +vn 0.697838 -0.368070 -0.614448 +v 19.999989 39.336567 -84.496140 +vn 0.698532 -0.317326 -0.641372 +v 19.999989 39.849380 -84.774986 +vn 0.696162 -0.259422 -0.669373 +v 19.999989 40.357059 -85.002136 +vn 0.693855 -0.179852 -0.697293 +v 19.999989 41.336506 -85.323318 +vn 0.693874 -0.090388 -0.714401 +v 19.999989 42.272392 -85.501991 +vn 0.692791 0.002692 -0.721133 +v 19.999989 43.130840 -85.556778 +vn 0.688789 0.115929 -0.715633 +v 19.999989 43.876877 -85.502777 +vn 0.685327 0.252067 -0.683219 +v 19.999989 44.485989 -85.347687 +vn 0.689307 0.371164 -0.622168 +v 19.999989 44.751896 -85.217308 +vn 0.690594 0.463279 -0.555386 +v 19.999989 44.870239 -85.132889 +vn 0.686391 0.554367 -0.470686 +v 19.999989 44.973671 -85.032394 +vn 0.682978 0.642550 -0.347377 +v 19.999989 45.055546 -84.914726 +vn 0.682406 0.704760 -0.193997 +v 19.999989 45.108395 -84.783737 +vn 0.685239 0.727332 -0.037874 +v 19.999989 45.130173 -84.643044 +vn 0.683056 0.720887 0.117290 +v 19.999989 45.123169 -84.501358 +vn 0.686539 0.678124 0.262320 +v 19.999989 45.043247 -84.216354 +vn 0.694979 0.623622 0.357910 +v 19.999989 44.896938 -83.924591 +vn 0.699856 0.585270 0.409465 +v 19.999989 44.694561 -83.613739 +vn 0.702354 0.560194 0.439183 +v 19.999989 44.443050 -83.278297 +vn 0.707406 0.546949 0.447686 +v 19.999989 43.825928 -82.525696 +vn 0.712493 0.554295 0.430246 +v 19.999989 43.112568 -81.651527 +vn 0.713454 0.575651 0.399510 +v 19.999989 42.361454 -80.633026 +vn 0.712368 0.596573 0.369638 +v 19.999989 41.987366 -80.059875 +vn 0.713043 0.613661 0.339102 +v 19.999989 41.622555 -79.438866 +vn 0.713388 0.630658 0.305529 +v 19.999989 41.273251 -78.766068 +vn 0.713635 0.647140 0.268208 +v 19.999989 40.945621 -78.037567 +vn 0.713789 0.661703 0.229466 +v 19.999989 40.645588 -77.249458 +vn 0.714051 0.674456 0.187724 +v 19.999989 40.379238 -76.397552 +vn 0.714164 0.684403 0.146842 +v 19.999989 40.152702 -75.477623 +vn 0.713675 0.692611 0.104681 +v 19.999989 39.972103 -74.485458 +vn 0.713322 0.697963 0.063399 +v 19.999989 39.843563 -73.416840 +vn 0.712940 0.700838 0.023299 +v 19.999989 39.773212 -72.267548 +vn 0.712612 0.701411 -0.014356 +v 19.999989 39.766628 -71.061569 +vn 0.712417 0.700058 -0.048792 +v 19.999989 39.823090 -69.831711 +vn 0.711791 0.697930 -0.079040 +v 19.999989 39.939037 -68.580208 +vn 0.711281 0.694599 -0.107763 +v 19.999989 40.110912 -67.309258 +vn 0.711024 0.690619 -0.132248 +v 19.999989 40.335152 -66.021049 +vn 0.711612 0.684411 -0.158713 +v 19.999994 40.608196 -64.717796 +vn 0.711977 0.675524 -0.191720 +v 19.999994 41.286453 -62.074905 +vn 0.711202 0.667094 -0.221760 +v 19.999994 42.117199 -59.398155 +vn 0.710183 0.659795 -0.245583 +v 19.999994 43.071945 -56.705120 +vn 0.709353 0.653396 -0.264372 +v 19.999994 44.130238 -53.994118 +vn 0.708809 0.648093 -0.278506 +v 19.999994 45.277416 -51.254734 +vn 0.708560 0.643656 -0.289224 +v 19.999994 46.492378 -48.494801 +vn -0.704711 -0.026727 -0.708991 +v -0.000000 5.461628 -2.336654 +vn -0.704663 -0.042151 -0.708289 +v -0.000000 4.675291 -2.298391 +vn -0.703958 -0.060117 -0.707693 +v -0.000000 3.939609 -2.246473 +vn -0.702817 -0.083102 -0.706500 +v -0.000000 3.259840 -2.179153 +vn -0.701758 -0.112850 -0.703420 +v -0.000000 2.640446 -2.094790 +vn -0.700269 -0.152004 -0.697509 +v -0.000000 2.085082 -1.991884 +vn -0.698035 -0.203515 -0.686534 +v -0.000000 1.596587 -1.869104 +vn -0.694621 -0.271303 -0.666256 +v -0.000000 1.176930 -1.725327 +vn -0.690864 -0.356039 -0.629240 +v -0.000000 0.826957 -1.559704 +vn -0.687347 -0.458004 -0.563726 +v -0.000000 0.545968 -1.371749 +vn -0.684593 -0.562245 -0.463911 +v -0.000000 0.331271 -1.161431 +vn -0.684785 -0.646508 -0.336300 +v -0.000000 0.177790 -0.929262 +vn -0.681964 -0.707442 -0.185607 +v -0.000000 0.078064 -0.676327 +vn -0.690578 -0.722168 -0.039700 +v -0.000000 0.001481 -0.115062 +vn -0.708479 -0.705588 0.014254 +v 0.000000 0.016877 0.504307 +vn -0.715844 -0.697962 -0.020395 +v 0.000000 0.032658 1.827346 +vn -0.696760 -0.717172 -0.013803 +v 0.000000 -0.056256 3.138014 +vn -0.686644 -0.721123 0.092204 +v 0.000000 -0.037692 3.757420 +vn -0.686197 -0.689457 0.231910 +v 0.000001 0.095884 4.341388 +vn -0.691634 -0.635553 0.343096 +v 0.000001 0.220493 4.618207 +vn -0.692048 -0.580234 0.429416 +v 0.000001 0.389889 4.884214 +vn -0.693312 -0.516783 0.502249 +v 0.000001 0.607663 5.139051 +vn -0.695001 -0.452123 0.559069 +v 0.000001 0.876506 5.382467 +vn -0.696732 -0.391493 0.601081 +v 0.000001 1.198197 5.614311 +vn -0.698413 -0.337714 0.631006 +v 0.000001 1.573659 5.834523 +vn -0.700004 -0.291264 0.652043 +v 0.000001 2.003040 6.043137 +vn -0.701339 -0.251840 0.666859 +v 0.000001 2.485797 6.240273 +vn -0.702379 -0.218713 0.677369 +v 0.000001 3.020778 6.426142 +vn -0.701697 -0.186290 0.687690 +v 0.000001 3.606273 6.601039 +vn -0.702015 -0.149983 0.696190 +v 0.000001 4.919433 6.919471 +vn -0.703550 -0.119093 0.700595 +v 0.000001 6.401947 7.199321 +vn -0.704652 -0.097339 0.702845 +v 0.000001 8.024162 7.445226 +vn -0.705433 -0.082296 0.703983 +v 0.000001 9.751814 7.662539 +vn -0.705895 -0.071817 0.704667 +v 0.000001 11.547770 7.857169 +vn -0.707125 -0.066054 0.703997 +v 0.000001 15.191051 8.203668 +vn -0.707810 -0.067318 0.703188 +v 0.000001 16.963675 8.368481 +vn -0.708371 -0.073775 0.701974 +v 0.000001 18.658257 8.536226 +vn -0.709148 -0.085045 0.699912 +v 0.000001 20.245955 8.713103 +vn -0.710201 -0.102280 0.696530 +v 0.000001 21.703257 8.905040 +vn -0.711517 -0.127065 0.691085 +v 0.000001 23.013584 9.117567 +vn -0.712499 -0.158886 0.683447 +v 0.000001 24.169331 9.355662 +vn -0.713081 -0.193223 0.673929 +v 0.000001 24.933372 9.553005 +vn -0.714032 -0.231548 0.660714 +v 0.000001 25.616301 9.768685 +vn -0.714680 -0.274685 0.643257 +v 0.000001 26.225433 10.004092 +vn -0.717058 -0.324316 0.616965 +v 0.000001 26.772318 10.260330 +vn -0.712846 -0.373238 0.593753 +v 0.000001 27.754021 10.837773 +vn -0.705474 -0.389492 0.592117 +v 0.000002 28.750889 11.503092 +vn -0.704482 -0.378908 0.600112 +v 0.000002 29.315687 11.869102 +vn -0.704592 -0.363769 0.609281 +v 0.000002 29.948956 12.257965 +vn -0.704964 -0.349188 0.617328 +v 0.000002 30.660385 12.670571 +vn -0.705505 -0.338384 0.622704 +v 0.000002 31.452284 13.108161 +vn -0.706369 -0.331328 0.625512 +v 0.000002 32.321003 13.572207 +vn -0.707071 -0.328278 0.626325 +v 0.000002 33.258583 14.064277 +vn -0.707729 -0.330172 0.624585 +v 0.000002 34.253681 14.585948 +vn -0.707879 0.705753 0.028626 +v 0.000001 58.120346 3.855069 +vn -0.707337 0.706155 0.031916 +v 0.000000 58.200256 2.043414 +vn -0.706903 0.706585 0.032029 +v 0.000000 58.287941 0.147518 +vn -0.706145 0.707506 0.028189 +v -0.000000 58.374775 -1.808909 +vn -0.705474 0.708475 0.019223 +v -0.000001 58.514431 -5.801842 +vn -0.705529 0.708624 0.008968 +v -0.000001 58.553474 -7.787470 +vn -0.705212 0.708993 -0.002050 +v -0.000001 58.564388 -9.734050 +vn -0.704885 0.709159 -0.015178 +v -0.000002 58.542877 -11.620970 +vn -0.704564 0.708986 -0.030468 +v -0.000002 58.485950 -13.431506 +vn -0.704256 0.708331 -0.047864 +v -0.000002 58.392002 -15.153715 +vn -0.703971 0.707040 -0.067230 +v -0.000002 58.260780 -16.780787 +vn -0.703722 0.704962 -0.088343 +v -0.000002 58.093124 -18.310596 +vn -0.703534 0.701966 -0.110834 +v -0.000003 57.890682 -19.745113 +vn -0.703435 0.697983 -0.134156 +v -0.000003 57.655663 -21.089916 +vn -0.703453 0.693052 -0.157584 +v -0.000003 57.390564 -22.353678 +vn -0.703604 0.687347 -0.180267 +v -0.000003 57.097904 -23.547646 +vn -0.702555 0.681173 -0.205962 +v -0.000003 56.779934 -24.685102 +vn -0.702423 0.671734 -0.235319 +v -0.000004 56.074310 -26.850744 +vn -0.704592 0.661463 -0.256937 +v -0.000004 55.276649 -28.978022 +vn -0.705816 0.655755 -0.267972 +v -0.000004 54.838947 -30.067490 +vn -0.706030 0.652618 -0.274976 +v -0.000004 54.370609 -31.194515 +vn -0.706199 0.649943 -0.280817 +v -0.000004 53.867146 -32.373188 +vn -0.706335 0.647646 -0.285736 +v -0.000004 53.323872 -33.616405 +vn -0.706457 0.645671 -0.289874 +v -0.000005 52.736290 -34.935638 +vn -0.706577 0.644000 -0.293279 +v -0.000005 52.100494 -36.340706 +vn -0.706711 0.642644 -0.295920 +v -0.000005 51.413586 -37.839527 +vn -0.706863 0.641649 -0.297709 +v -0.000005 50.674103 -39.437923 +vn -0.707047 0.641077 -0.298506 +v -0.000005 49.882423 -41.139351 +vn -0.715649 -0.220019 -0.662902 +v -0.000006 35.454117 -44.442280 +vn -0.708420 -0.193460 -0.678759 +v -0.000006 34.041954 -44.031784 +vn -0.701089 -0.210943 -0.681159 +v -0.000006 31.171547 -43.229073 +vn -0.700603 -0.249006 -0.668694 +v -0.000006 29.776484 -42.755276 +vn -0.700823 -0.287166 -0.652980 +v -0.000006 28.424744 -42.206398 +vn -0.702594 -0.318576 -0.636295 +v -0.000005 27.110714 -41.582569 +vn -0.705806 -0.333850 -0.624806 +v -0.000005 25.815012 -40.900002 +vn -0.709997 -0.326866 -0.623749 +v -0.000005 24.505194 -40.190739 +vn -0.714200 -0.294534 -0.634955 +v -0.000005 23.138731 -39.499779 +vn -0.714601 -0.248383 -0.653951 +v -0.000005 21.668764 -38.878994 +vn -0.713080 -0.207427 -0.669694 +v -0.000005 20.880999 -38.611008 +vn -0.713339 -0.169307 -0.680061 +v -0.000005 20.051655 -38.379009 +vn -0.713334 -0.129860 -0.688688 +v -0.000005 19.176991 -38.187836 +vn -0.713461 -0.090383 -0.694842 +v -0.000005 18.254372 -38.041256 +vn -0.712929 -0.053548 -0.699189 +v -0.000005 17.282484 -37.941776 +vn -0.712256 -0.019134 -0.701659 +v -0.000005 16.261566 -37.890358 +vn -0.711625 0.011692 -0.702462 +v -0.000005 15.193675 -37.886158 +vn -0.712104 0.040545 -0.700903 +v -0.000005 14.082951 -37.926216 +vn -0.710325 0.068483 -0.700535 +v -0.000005 11.761100 -38.115604 +vn -0.704369 0.070936 -0.706281 +v -0.000005 7.593030 -38.585091 +vn -0.703789 0.052937 -0.708434 +v -0.000005 6.594163 -38.673870 +vn -0.702704 0.027356 -0.710957 +v -0.000005 5.634303 -38.731022 +vn -0.701008 -0.008385 -0.713104 +v -0.000005 4.724135 -38.746750 +vn -0.698870 -0.057137 -0.712963 +v -0.000005 3.873777 -38.711926 +vn -0.696217 -0.121824 -0.707418 +v -0.000005 3.092455 -38.618412 +vn -0.693102 -0.204808 -0.691132 +v -0.000005 2.388186 -38.459412 +vn -0.689874 -0.305636 -0.656247 +v -0.000005 1.767458 -38.229805 +vn -0.687240 -0.417664 -0.594356 +v -0.000005 1.234926 -37.926460 +vn -0.686015 -0.526268 -0.502420 +v -0.000005 0.793139 -37.548550 +vn -0.686656 -0.614182 -0.388952 +v -0.000005 0.442257 -37.097832 +vn -0.688972 -0.671923 -0.271731 +v -0.000005 0.179744 -36.578987 +vn -0.692854 -0.701027 -0.168864 +v -0.000005 0.000000 -36.000000 +vn -0.696652 -0.711850 -0.089137 +v -0.000005 -0.100106 -35.422859 +vn -0.698030 -0.715593 -0.026083 +v -0.000005 -0.147117 -34.816341 +vn -0.700817 -0.712959 0.023361 +v -0.000004 -0.142915 -33.870865 +vn -0.705017 -0.707376 0.050698 +v -0.000004 -0.085704 -32.942577 +vn -0.708593 -0.703673 0.052347 +v -0.000004 -0.015867 -32.083118 +vn -0.712419 -0.701107 0.030138 +v -0.000004 0.034202 -31.337599 +vn -0.715301 -0.698714 -0.011945 +v -0.000004 0.045652 -30.739029 +vn -0.709386 -0.703367 -0.045224 +v -0.000004 0.022069 -30.299864 +vn -0.689471 -0.724294 0.005222 +v -0.000004 0.000003 -30.002144 +vn -0.685686 -0.715238 0.135168 +v -0.000004 0.009712 -29.892363 +vn -0.688815 -0.676199 0.261320 +v -0.000004 0.023845 -29.844160 +vn -0.688382 -0.622850 0.371736 +v -0.000004 0.045688 -29.799215 +vn -0.690211 -0.552971 0.466724 +v -0.000004 0.076302 -29.756678 +vn -0.687740 -0.469678 0.553549 +v -0.000004 0.116645 -29.715752 +vn -0.691105 -0.372175 0.619564 +v -0.000004 0.229812 -29.635902 +vn -0.698126 -0.296353 0.651763 +v -0.000004 0.390730 -29.554684 +vn -0.702068 -0.253918 0.665302 +v -0.000004 0.603395 -29.468090 +vn -0.704348 -0.229695 0.671665 +v -0.000004 0.870415 -29.373013 +vn -0.705533 -0.216111 0.674922 +v -0.000004 1.193171 -29.267122 +vn -0.706206 -0.208368 0.676651 +v -0.000004 1.571959 -29.148790 +vn -0.706598 -0.203932 0.677592 +v -0.000004 2.006085 -29.017031 +vn -0.706824 -0.201329 0.678134 +v -0.000004 2.493956 -28.871450 +vn -0.706845 -0.199417 0.678678 +v -0.000004 3.033163 -28.712206 +vn -0.706748 -0.197329 0.679388 +v -0.000004 4.252389 -28.355751 +vn -0.706553 -0.194359 0.680446 +v -0.000004 5.631601 -27.957819 +vn -0.705682 -0.188024 0.683125 +v -0.000004 7.131649 -27.533684 +vn -0.704677 -0.174689 0.687688 +v -0.000003 10.322615 -26.681787 +vn -0.704623 -0.158985 0.691542 +v -0.000003 11.930531 -26.292784 +vn -0.704057 -0.140722 0.696061 +v -0.000003 13.499299 -25.951511 +vn -0.703440 -0.117899 0.700908 +v -0.000003 15.002238 -25.670870 +vn -0.702604 -0.089983 0.705869 +v -0.000003 16.420792 -25.458843 +vn -0.701713 -0.057994 0.710095 +v -0.000003 17.743507 -25.318371 +vn -0.701518 -0.024305 0.712237 +v -0.000003 18.964546 -25.247238 +vn -0.702361 0.009093 0.711763 +v -0.000003 20.082497 -25.237162 +vn -0.704177 0.034683 0.709177 +v -0.000003 21.099363 -25.272499 +vn -0.707233 0.044076 0.705606 +v -0.000003 22.019657 -25.330259 +vn -0.712329 0.026490 0.701345 +v -0.000003 22.849535 -25.381517 +vn -0.721168 -0.035185 0.691866 +v -0.000003 23.595713 -25.391232 +vn -0.726300 -0.136945 0.673599 +v -0.000003 24.263802 -25.313942 +vn -0.724556 -0.242651 0.645088 +v -0.000003 24.569620 -25.224625 +vn -0.726420 -0.342277 0.595954 +v -0.000003 24.856855 -25.090710 +vn -0.726397 -0.438686 0.529057 +v -0.000003 25.125559 -24.904200 +vn -0.724536 -0.520103 0.452262 +v -0.000003 25.375742 -24.657850 +vn -0.721668 -0.581509 0.375556 +v -0.000003 25.607433 -24.345642 +vn -0.718746 -0.624141 0.306353 +v -0.000003 25.820709 -23.963043 +vn -0.716229 -0.652391 0.247794 +v -0.000003 26.015711 -23.507099 +vn -0.714225 -0.670752 0.199937 +v -0.000003 26.192678 -22.976521 +vn -0.712685 -0.682658 0.161427 +v -0.000003 26.351965 -22.371759 +vn -0.711521 -0.690433 0.130540 +v -0.000003 26.494045 -21.695015 +vn -0.710647 -0.695571 0.105654 +v -0.000003 26.619505 -20.950071 +vn -0.709988 -0.699014 0.085417 +v -0.000003 26.729000 -20.142052 +vn -0.709553 -0.701299 0.068663 +v -0.000003 26.823242 -19.277191 +vn -0.709923 -0.702328 0.052390 +v -0.000002 26.902948 -18.362589 +vn -0.709822 -0.703597 0.033242 +v -0.000002 27.021626 -16.415903 +vn -0.709289 -0.704736 0.015991 +v -0.000002 27.090588 -14.370719 +vn -0.709066 -0.705140 0.001346 +v -0.000002 27.114952 -12.301956 +vn -0.709144 -0.704948 -0.012755 +v -0.000001 27.099003 -10.286572 +vn -0.708942 -0.704771 -0.026444 +v -0.000001 27.045547 -8.397823 +vn -0.708682 -0.704526 -0.037587 +v -0.000001 27.005081 -7.521467 +vn -0.709006 -0.703519 -0.048705 +v -0.000001 26.955338 -6.699974 +vn -0.709477 -0.701966 -0.062340 +v -0.000001 26.896059 -5.939468 +vn -0.710157 -0.699532 -0.079573 +v -0.000001 26.826820 -5.245178 +vn -0.711153 -0.695604 -0.101960 +v -0.000001 26.747044 -4.621286 +vn -0.712623 -0.689066 -0.131742 +v -0.000001 26.655941 -4.070638 +vn -0.714786 -0.677862 -0.172000 +v -0.000000 26.552481 -3.594425 +vn -0.717878 -0.658307 -0.226460 +v -0.000000 26.435345 -3.191848 +vn -0.721969 -0.624365 -0.298211 +v -0.000000 26.302895 -2.859853 +vn -0.726531 -0.568169 -0.386440 +v -0.000000 26.153200 -2.593284 +vn -0.729948 -0.484411 -0.482206 +v -0.000000 25.984135 -2.385480 +vn -0.730212 -0.377969 -0.569148 +v -0.000000 25.793484 -2.228928 +vn -0.727074 -0.265483 -0.633153 +v -0.000000 25.579050 -2.115930 +vn -0.727911 -0.147880 -0.669535 +v -0.000000 25.338749 -2.039171 +vn -0.721179 -0.041509 -0.691504 +v -0.000000 24.773029 -1.968324 +vn -0.711910 0.019889 -0.701989 +v -0.000000 24.083271 -1.971270 +vn -0.707886 0.041238 -0.705122 +v -0.000000 23.259989 -2.014537 +vn -0.706485 0.042801 -0.706432 +v -0.000000 22.297642 -2.075357 +vn -0.705947 0.037139 -0.707291 +v -0.000000 21.194740 -2.139173 +vn -0.705856 0.029103 -0.707757 +v -0.000000 19.954018 -2.197434 +vn -0.706075 0.022091 -0.707792 +v -0.000000 18.582697 -2.246339 +vn -0.706484 0.016438 -0.707538 +v -0.000000 17.092804 -2.285718 +vn -0.706862 0.012798 -0.707235 +v -0.000000 15.501485 -2.317511 +vn -0.707200 0.010344 -0.706938 +v -0.000000 13.831272 -2.344051 +vn -0.707021 0.007180 -0.707156 +v -0.000000 12.110321 -2.366462 +vn -0.706053 -0.000592 -0.708159 +v -0.000000 8.656768 -2.389460 +vn -0.705246 -0.011984 -0.708862 +v -0.000000 7.005451 -2.377248 +vn 0.711680 -0.163201 0.683284 +v 5.000001 24.169331 9.355662 +vn 0.710224 -0.140115 0.689891 +v 5.000001 23.529009 9.216416 +vn 0.709740 -0.122401 0.693749 +v 5.000001 22.840113 9.086493 +vn 0.709290 -0.108258 0.696554 +v 5.000001 22.100109 8.964501 +vn 0.708861 -0.096017 0.698783 +v 5.000001 21.306463 8.849048 +vn 0.708527 -0.086636 0.700345 +v 5.000001 20.456642 8.738741 +vn 0.708478 -0.077695 0.701443 +v 5.000001 19.548326 8.632212 +vn 0.708163 -0.069131 0.702656 +v 5.000001 17.617817 8.431562 +vn 0.706449 -0.066953 0.704590 +v 5.000001 13.531624 8.051578 +vn 0.705609 -0.072842 0.704848 +v 5.000001 11.465350 7.850930 +vn 0.704747 -0.084784 0.704375 +v 5.000001 9.443234 7.628969 +vn 0.703681 -0.103865 0.702883 +v 5.000001 7.509982 7.375037 +vn 0.703377 -0.128001 0.699197 +v 5.000001 5.710298 7.078478 +vn 0.703663 -0.150209 0.694475 +v 5.000001 4.874514 6.910883 +vn 0.702931 -0.173378 0.689803 +v 5.000001 4.088888 6.728635 +vn 0.702152 -0.202562 0.682606 +v 5.000001 3.359006 6.530401 +vn 0.700833 -0.238828 0.672156 +v 5.000001 2.690458 6.314850 +vn 0.699187 -0.283544 0.656308 +v 5.000001 2.093282 6.082589 +vn 0.697317 -0.337012 0.632591 +v 5.000001 1.583965 5.840005 +vn 0.695334 -0.398934 0.597797 +v 5.000001 1.157793 5.587788 +vn 0.693401 -0.467706 0.548129 +v 5.000000 0.808447 5.326155 +vn 0.691755 -0.538540 0.481093 +v 5.000000 0.530766 5.056828 +vn 0.690911 -0.603966 0.397325 +v 5.000000 0.317268 4.780313 +vn 0.691005 -0.656711 0.302062 +v 5.000000 0.159398 4.495587 +vn 0.686356 -0.703145 0.185748 +v 5.000000 0.048461 4.197227 +vn 0.689049 -0.722793 0.052754 +v 5.000000 -0.053770 3.561141 +vn 0.701273 -0.712326 -0.028416 +v 5.000000 -0.045541 2.912870 +vn 0.714084 -0.699675 -0.023234 +v 5.000000 0.037125 1.645095 +vn 0.713838 -0.700071 0.018313 +v 5.000000 0.038878 1.001610 +vn 0.697604 -0.716413 0.010068 +v 5.000000 -0.000582 0.301530 +vn 0.686907 -0.721046 -0.090835 +v 5.000000 0.020720 -0.401156 +vn 0.684664 -0.690863 -0.232256 +v 5.000000 0.092915 -0.724786 +vn 0.681478 -0.623585 -0.383053 +v 5.000000 0.224923 -1.012884 +vn 0.684219 -0.518274 -0.513065 +v 5.000000 0.423367 -1.262233 +vn 0.683939 -0.395240 -0.613199 +v 5.000000 0.673566 -1.465602 +vn 0.689316 -0.265901 -0.673899 +v 5.000000 1.263043 -1.758763 +vn 0.697183 -0.172849 -0.695744 +v 5.000000 1.904241 -1.950720 +vn 0.698848 -0.112053 -0.706439 +v 5.000000 2.569763 -2.083395 +vn 0.701209 -0.061600 -0.710289 +v 5.000000 4.028828 -2.254292 +vn 0.704194 -0.030519 -0.709352 +v 5.000000 5.461628 -2.336655 +vn 0.705429 -0.015577 -0.708609 +v 5.000000 6.594911 -2.370039 +vn 0.705888 -0.006331 -0.708295 +v 5.000000 7.860910 -2.388187 +vn 0.705960 0.000079 -0.708252 +v 5.000000 9.226932 -2.393576 +vn 0.705718 0.005322 -0.708473 +v 5.000000 10.652895 -2.388412 +vn 0.706058 0.010240 -0.708080 +v 5.000000 13.524329 -2.355244 +vn 0.706523 0.013018 -0.707570 +v 5.000000 14.889638 -2.331651 +vn 0.706799 0.014820 -0.707260 +v 5.000000 16.154566 -2.306325 +vn 0.706698 0.016942 -0.707312 +v 5.000000 17.280861 -2.281382 +vn 0.705994 0.021665 -0.707886 +v 5.000000 18.302574 -2.255150 +vn 0.705677 0.030019 -0.707897 +v 5.000000 20.235346 -2.186004 +vn 0.706034 0.037983 -0.707159 +v 5.000000 21.221180 -2.137826 +vn 0.705939 0.045729 -0.706795 +v 5.000000 22.278402 -2.075841 +vn 0.708687 0.047479 -0.703924 +v 5.000000 22.937428 -2.028487 +vn 0.710985 0.033070 -0.702429 +v 5.000000 23.667223 -1.982751 +vn 0.714787 -0.002146 -0.699339 +v 5.000000 24.383005 -1.960640 +vn -0.000002 -0.470552 -0.882372 +v 14.999994 26.054104 -41.029148 +vn -0.000096 -0.624754 0.780822 +v 4.999997 25.042307 -24.969536 +vn -0.000599 -0.723163 0.690678 +v 4.999997 25.303440 -24.737572 +vn -0.000544 -0.819406 0.573213 +v 4.999997 25.545301 -24.438723 +vn -0.000472 -0.885145 0.465316 +v 4.999997 25.767952 -24.067701 +vn -0.000397 -0.927513 0.373791 +v 4.999997 25.971525 -23.620918 +vn -0.000326 -0.954132 0.299385 +v 4.999997 26.156242 -23.096558 +vn -0.000263 -0.970770 0.240013 +v 4.999997 26.322456 -22.494677 +vn -0.000210 -0.981231 0.192837 +v 4.999997 26.470642 -21.817245 +vn -0.000164 -0.987886 0.155182 +v 4.999997 26.601404 -21.067993 +vn -0.000127 -0.992179 0.124824 +v 4.999997 26.715431 -20.252153 +vn -0.000444 -0.995431 0.095487 +v 4.999997 26.813469 -19.376194 +vn -0.000608 -0.998006 0.063116 +v 4.999997 26.964645 -17.474482 +vn -0.000485 -0.999398 0.034699 +v 4.999999 27.060982 -15.430882 +vn -0.000414 -0.999929 0.011927 +v 4.999999 27.108194 -13.321997 +vn -0.000390 -0.999964 -0.008526 +v 4.999999 27.111357 -11.229203 +vn -0.000187 -0.999636 -0.026961 +v 4.999999 27.074301 -9.233037 +vn -0.000056 -0.999141 -0.041430 +v 4.999999 27.041363 -8.294517 +vn -0.000071 -0.998472 -0.055267 +v 4.999999 26.998886 -7.406775 +vn -0.000091 -0.997415 -0.071850 +v 4.999999 26.946722 -6.577092 +vn -0.000116 -0.995721 -0.092410 +v 4.999999 26.884563 -5.811843 +vn -0.000149 -0.992928 -0.118715 +v 5.000000 26.811939 -5.116416 +vn -0.000192 -0.988169 -0.153368 +v 5.000000 26.728193 -4.495014 +vn -0.000247 -0.979762 -0.200164 +v 5.000000 26.632439 -3.950328 +vn -0.000315 -0.964421 -0.264370 +v 5.000000 26.523514 -3.483166 +vn -0.000395 -0.935909 -0.352241 +v 5.000000 26.399933 -3.092100 +vn -0.000479 -0.883595 -0.468252 +v 5.000000 26.259865 -2.773241 +vn -0.000548 -0.793709 -0.608298 +v 5.000000 26.101185 -2.520576 +vn -0.000578 -0.658863 -0.752262 +v 5.000000 25.921593 -2.326669 +vn -0.000551 -0.492611 -0.870249 +v 5.000000 25.718731 -2.183398 +vn -0.000890 -0.302223 -0.953237 +v 5.000000 25.490294 -2.082668 +vn -0.001036 -0.351882 0.936044 +v 4.553555 25.882875 9.865958 +vn -0.000161 -0.450425 0.892814 +v 4.093897 26.664108 10.205852 +vn 0.000228 -0.441273 0.897373 +v 15.000000 26.664108 10.205849 +vn -0.000324 -0.509470 0.860488 +v 3.634240 27.354046 10.585947 +vn 0.000016 -0.553829 0.832630 +v 3.174582 28.010702 11.007141 +vn 0.000066 -0.548469 0.836171 +v 15.000003 28.010702 11.007138 +vn 0.000060 -0.550487 0.834844 +v 2.714926 28.700531 11.469684 +vn -0.000037 -0.527545 0.849527 +v 15.000003 29.483080 11.974115 +vn 0.000001 -0.499753 0.866168 +v 15.000003 30.399645 12.521910 +vn 0.000000 -0.477985 0.878368 +v 15.000003 31.466352 13.115782 +vn 0.000001 -0.466727 0.884401 +v 15.000003 32.676571 13.759402 +vn -0.000000 -0.466799 0.884363 +v 15.000003 34.008129 14.456804 +vn -0.000101 -0.464930 0.885347 +v 0.876296 32.676571 13.759405 +vn 0.000002 -0.477311 0.878735 +v 1.335953 31.466352 13.115785 +vn -0.000088 -0.500341 0.865829 +v 1.795611 30.399645 12.521913 +vn -0.000043 -0.525884 0.850557 +v 2.255267 29.483080 11.974118 +vn 0.000170 -0.357586 0.933880 +v 15.000000 25.882875 9.865955 +vn 0.000127 -0.511507 0.859279 +v 15.000000 27.354046 10.585944 +vn -0.000034 -0.549401 0.835559 +v 15.000003 28.700531 11.469681 +vn 0.000122 -0.478468 0.878105 +v 15.000003 35.427483 15.211983 +vn 0.000017 -0.501746 0.865015 +v 15.000003 36.891750 16.028637 +vn -0.000162 -0.538047 0.842915 +v 15.000003 38.351856 16.909815 +vn -0.000707 -0.583164 0.812354 +v 15.000003 39.756763 17.857542 +vn 0.000231 -0.658198 0.752845 +v 15.000003 41.057278 18.872421 +vn -0.000132 -0.714650 0.699482 +v 15.000003 42.209366 19.953299 +vn -0.000173 -0.763106 0.646273 +v 15.000003 42.718235 20.517557 +vn 0.000155 -0.804534 0.593906 +v 15.000003 43.177574 21.096903 +vn 0.000571 -0.845050 0.534686 +v 15.000003 43.584877 21.690540 +vn 0.000585 -0.882718 0.469903 +v 15.000003 43.938534 22.297512 +vn 0.000255 -0.917024 0.398832 +v 15.000003 44.237755 22.916718 +vn 0.000468 -0.945983 0.324215 +v 15.000003 44.482533 23.546930 +vn 0.000373 -0.968745 0.248057 +v 15.000003 44.673580 24.186813 +vn 0.000477 -0.985230 0.171236 +v 15.000003 44.812260 24.834936 +vn 0.000490 -0.995217 0.097692 +v 15.000003 44.900551 25.489792 +vn -0.000602 -0.999797 0.020146 +v 15.000003 44.940983 26.149815 +vn 0.000134 -0.979745 -0.200249 +v 15.000003 44.690807 28.809031 +vn -0.000124 -0.965100 -0.261881 +v 15.000003 44.375416 30.127266 +vn 0.000035 -0.951506 -0.307629 +v 15.000003 43.982403 31.421259 +vn 0.000156 -0.944356 -0.328926 +v 15.000003 43.551258 32.679840 +vn -0.000150 -0.945269 -0.326292 +v 15.000006 43.121418 33.893501 +vn 0.000099 -0.954415 -0.298483 +v 15.000006 42.730335 35.055046 +vn 0.000609 -0.970673 -0.240403 +v 15.000006 42.411671 36.160152 +vn 0.000325 -0.988801 -0.149238 +v 15.000006 42.194008 37.207397 +vn -0.000066 -0.999730 -0.023247 +v 15.000006 42.099899 38.197880 +vn -0.000327 -0.991287 0.131722 +v 15.000006 42.145386 39.134266 +vn -0.000664 -0.954246 0.299022 +v 15.000006 42.339680 40.019547 +vn -0.001000 -0.893887 0.448292 +v 15.000006 42.684959 40.856030 +vn -0.000271 -0.389742 0.920924 +v 15.000006 47.086979 44.643326 +vn -0.000462 -0.286452 0.958095 +v 15.000006 47.925892 44.956436 +vn -0.000381 -0.159314 0.987228 +v 15.000006 48.699345 45.132584 +vn 0.000291 0.086761 0.996229 +v 15.000006 49.381653 45.156639 +vn 0.000118 0.235420 0.971894 +v 15.000006 49.683746 45.108089 +vn 0.000009 0.390768 0.920489 +v 15.000006 49.959045 45.017998 +vn -0.000015 0.540908 0.841082 +v 15.000006 50.208374 44.886070 +vn -0.000005 0.663128 0.748506 +v 15.000006 50.433723 44.712521 +vn 0.000287 0.838289 0.545226 +v 15.000006 50.825516 44.243835 +vn 0.000415 0.895752 0.444554 +v 15.000006 51.168079 43.623016 +vn 0.000053 0.916751 0.399458 +v 15.000006 51.503120 42.867771 +vn -0.000270 0.912333 0.409448 +v 15.000006 51.874115 42.001598 +vn -0.000569 0.891253 0.453506 +v 15.000006 52.319897 41.052887 +vn -0.000665 0.857531 0.514432 +v 15.000006 52.868549 40.053825 +vn -0.000555 0.815285 0.579059 +v 15.000006 53.531307 39.039349 +vn -0.000012 0.775108 0.631828 +v 15.000006 54.296394 38.046547 +vn 0.000085 0.688204 0.725517 +v 15.000006 55.960934 36.275623 +vn 0.000301 0.666364 0.745627 +v 15.000006 56.742531 35.559017 +vn -0.000028 0.652453 0.757830 +v 15.000006 57.095745 35.251358 +vn -0.000014 0.645756 0.763543 +v 15.000006 57.416023 34.978748 +vn 0.000034 0.643315 0.765601 +v 15.000006 57.698795 34.741138 +vn 0.000077 0.649338 0.760500 +v 15.000006 57.941429 34.537254 +vn 0.000119 0.672468 0.740126 +v 15.000006 58.311047 34.216545 +vn -0.000102 0.697286 0.716793 +v 15.000006 58.574226 33.966209 +vn -0.000235 0.691904 0.721989 +v 15.000006 58.829071 33.712627 +vn -0.000095 0.662539 0.749027 +v 15.000006 59.176762 33.391903 +vn -0.000026 0.636273 0.771464 +v 15.000006 59.408813 33.195011 +vn -0.000017 0.614687 0.788771 +v 15.000006 59.687141 32.972054 +vn -0.000060 0.593862 0.804567 +v 15.000003 60.013958 32.724331 +vn -0.000125 0.574833 0.818270 +v 15.000003 60.388855 32.454971 +vn 0.000153 0.523331 0.852129 +v 15.000003 61.270790 31.870567 +vn 0.000317 0.489654 0.871917 +v 15.000003 62.293972 31.264885 +vn 0.000079 0.315241 0.949012 +v 15.000003 65.634850 29.773277 +vn 0.000073 0.274910 0.961470 +v 15.000003 66.637833 29.466509 +vn -0.000027 0.301213 0.953557 +v 15.000003 68.200439 29.051886 +vn -0.000238 0.368918 0.929462 +v 15.000003 68.478508 28.957125 +vn -0.000242 0.487875 0.872913 +v 15.000003 68.707092 28.853058 +vn -0.000080 0.629861 0.776708 +v 15.000003 68.884987 28.733335 +vn 0.000001 0.745847 0.666118 +v 15.000003 68.954712 28.665731 +vn 0.000072 0.837010 0.547188 +v 15.000003 69.011566 28.592039 +vn 0.000035 0.912595 0.408865 +v 15.000003 69.055580 28.511621 +vn -0.000077 0.964759 0.263135 +v 15.000003 69.086777 28.423895 +vn -0.000073 0.992370 0.123299 +v 15.000003 69.105247 28.328333 +vn -0.000004 0.999656 -0.026216 +v 15.000003 69.111092 28.224470 +vn -0.000031 0.982355 -0.187025 +v 15.000003 69.085472 27.990362 +vn 0.000065 0.949228 -0.314590 +v 15.000003 69.011322 27.719358 +vn 0.000215 0.917511 -0.397711 +v 15.000003 68.890495 27.410498 +vn 0.000010 0.891357 -0.453303 +v 15.000003 68.725204 27.063942 +vn -0.000134 0.870714 -0.491789 +v 15.000003 68.517998 26.680824 +vn -0.000075 0.855214 -0.518275 +v 15.000003 68.271751 26.263103 +vn 0.000296 0.812930 -0.582362 +v 15.000003 66.961784 24.307175 +vn 0.000388 0.801694 -0.597734 +v 15.000003 66.162224 23.213465 +vn 0.000008 0.761777 -0.647839 +v 15.000003 61.152481 17.097189 +vn 0.000173 0.776445 -0.630185 +v 15.000003 60.489441 16.308287 +vn -0.000039 0.801833 -0.597548 +v 15.000003 59.908329 15.566425 +vn 0.000028 0.850867 -0.525381 +v 15.000003 59.411900 14.845227 +vn -0.000660 0.896313 -0.443421 +v 15.000003 58.999733 14.114605 +vn -0.000297 0.934410 -0.356199 +v 15.000003 58.668766 13.343179 +vn -0.000018 0.999332 0.036549 +v 15.000000 58.075489 5.015674 +vn -0.000027 0.999100 0.042427 +v 15.000000 58.141869 3.347141 +vn -0.000004 0.998959 0.045608 +v 15.000000 58.221302 1.587054 +vn 0.000002 0.998984 0.045061 +v 15.000000 58.305897 -0.245307 +vn -0.000001 0.999923 0.012389 +v 15.000000 58.554409 -7.860299 +vn 0.000000 0.999996 -0.002782 +v 15.000000 58.564407 -9.725436 +vn 0.000014 0.999791 -0.020453 +v 14.999997 58.544624 -11.535811 +vn 0.000037 0.999163 -0.040907 +v 14.999997 58.492390 -13.276594 +vn 0.000061 0.997945 -0.064081 +v 14.999997 58.406212 -14.936960 +vn 0.000085 0.995958 -0.089818 +v 14.999997 58.285748 -16.510437 +vn 0.000105 0.993030 -0.117860 +v 14.999997 58.131611 -17.994581 +vn 0.000122 0.989017 -0.147798 +v 14.999997 57.945141 -19.390476 +vn 0.000133 0.983846 -0.179019 +v 14.999997 57.728188 -20.702335 +vn 0.000138 0.977551 -0.210697 +v 14.999997 57.482910 -21.937105 +vn 0.000136 0.970318 -0.241833 +v 14.999997 57.211544 -23.104027 +vn 0.000128 0.962482 -0.271346 +v 14.999997 56.916187 -24.214218 +vn 0.000044 0.952831 -0.303502 +v 14.999997 56.598587 -25.280243 +vn -0.000012 0.940481 -0.339846 +v 14.999997 55.900665 -27.334831 +vn 0.000023 0.930041 -0.367456 +v 14.999997 55.116528 -29.381390 +vn 0.000043 0.924231 -0.381833 +v 14.999997 54.687092 -30.436720 +vn 0.000035 0.920444 -0.390874 +v 14.999997 54.228195 -31.530968 +vn 0.000028 0.917168 -0.398500 +v 14.999997 53.735775 -32.676239 +vn 0.000022 0.914327 -0.404977 +v 14.999994 53.205719 -33.883575 +vn 0.000016 0.911879 -0.410459 +v 14.999994 52.634144 -35.162773 +vn 0.000010 0.909825 -0.414993 +v 14.999994 52.017754 -36.522175 +vn 0.000005 0.908199 -0.418538 +v 14.999994 51.354145 -37.968506 +vn 0.000001 0.907071 -0.420977 +v 14.999994 50.642174 -39.506687 +vn -0.000000 0.906532 -0.422137 +v 14.999994 49.882294 -41.139629 +vn 0.000000 0.906688 -0.421801 +v 14.999994 49.076881 -42.868065 +vn -0.000203 0.907905 -0.419175 +v 14.999994 48.230549 -44.690357 +vn -0.000211 0.909395 -0.415934 +v 14.999994 47.350494 -46.602337 +vn -0.000000 0.912805 -0.408395 +v 14.999994 46.446880 -48.597054 +vn -0.000000 0.916120 -0.400905 +v 14.999994 45.532997 -50.664715 +vn -0.000000 0.940641 -0.339404 +v 14.999991 42.899403 -57.170727 +vn -0.000000 0.948792 -0.315900 +v 14.999991 42.121323 -59.386219 +vn -0.000000 0.957114 -0.289711 +v 14.999991 41.425922 -61.594963 +vn 0.000000 0.999868 0.016241 +v 14.999991 39.763996 -71.881714 +vn 0.000000 0.998284 0.058560 +v 14.999991 39.796951 -72.788963 +vn 0.000000 0.994556 0.104204 +v 14.999991 39.868023 -73.666611 +vn 0.000000 0.988464 0.151454 +v 14.999991 39.976604 -74.513214 +vn -0.000370 0.979216 0.202819 +v 14.999991 40.121700 -75.327469 +vn 0.000000 0.823383 0.567485 +v 14.999989 42.330349 -80.587547 +vn 0.000000 0.792686 0.609630 +v 14.999989 43.035393 -81.553024 +vn 0.000000 0.772720 0.634747 +v 14.999989 43.713936 -82.391273 +vn 0.000000 0.839322 0.543635 +v 14.999989 44.776768 -83.733284 +vn 0.000000 0.882589 0.470145 +v 14.999989 44.943748 -84.007652 +vn 0.000000 0.940751 0.339099 +v 14.999989 45.060162 -84.260002 +vn 0.000000 0.985186 0.171486 +v 14.999989 45.121700 -84.491127 +vn 0.000000 0.999903 0.013914 +v 14.999989 45.130798 -84.598892 +vn -0.000000 0.990996 -0.133892 +v 14.999989 45.124989 -84.701508 +vn -0.000000 0.957210 -0.289394 +v 14.999989 45.104019 -84.798965 +vn -0.000000 0.898036 -0.439922 +v 14.999989 45.067707 -84.891235 +vn -0.000000 0.818248 -0.574865 +v 14.999989 45.015945 -84.978279 +vn -0.000000 0.705564 -0.708647 +v 14.999989 44.948711 -85.060005 +vn -0.000000 0.547407 -0.836867 +v 14.999989 44.768162 -85.207024 +vn -0.000000 0.388237 -0.921559 +v 14.999989 44.527580 -85.330994 +vn -0.000000 0.259094 -0.965852 +v 14.999989 44.229786 -85.430176 +vn -0.000000 0.154421 -0.988005 +v 14.999989 43.878731 -85.502441 +vn -0.000000 0.065975 -0.997821 +v 14.999989 43.479343 -85.545357 +vn -0.000000 -0.023262 -0.999729 +v 14.999989 43.037342 -85.556259 +vn -0.000000 -0.300716 -0.953714 +v 14.999989 40.978027 -85.222397 +vn -0.000000 -0.365850 -0.930674 +v 14.999989 40.427307 -85.030029 +vn -0.000000 -0.439416 -0.898284 +v 14.999989 39.877525 -84.788597 +vn -0.000000 -0.513546 -0.858062 +v 14.999989 39.336159 -84.495689 +vn -0.000000 -0.587497 -0.809226 +v 14.999989 38.810352 -84.149231 +vn -0.000000 -0.659520 -0.751687 +v 14.999989 38.306763 -83.747520 +vn -0.000000 -0.727489 -0.686119 +v 14.999989 37.831459 -83.289299 +vn -0.000000 -0.789336 -0.613961 +v 14.999989 37.389793 -82.773796 +vn -0.000000 -0.843334 -0.537390 +v 14.999989 36.986317 -82.200790 +vn -0.000000 -0.888457 -0.458960 +v 14.999989 36.624695 -81.570610 +vn -0.000000 -0.924512 -0.381153 +v 14.999989 36.307743 -80.884132 +vn -0.000000 -0.952170 -0.305568 +v 14.999989 36.037487 -80.142715 +vn -0.000000 -0.971824 -0.235707 +v 14.999989 35.815212 -79.348206 +vn -0.000000 -0.985385 -0.170340 +v 14.999989 35.641537 -78.502838 +vn -0.000000 -0.993948 -0.109852 +v 14.999989 35.516445 -77.609222 +vn -0.000000 -0.998406 -0.056438 +v 14.999989 35.439323 -76.670349 +vn -0.000000 -0.999964 -0.008536 +v 14.999991 35.408993 -75.689507 +vn 0.000000 -0.999397 0.034709 +v 14.999991 35.423767 -74.670280 +vn 0.000000 -0.997298 0.073459 +v 14.999991 35.481464 -73.616531 +vn 0.000000 -0.969432 0.245359 +v 14.999991 37.685822 -62.144455 +vn 0.000000 -0.968542 0.248849 +v 14.999991 38.267193 -59.885929 +vn 0.000000 -0.977280 0.211953 +v 14.999991 39.286366 -55.685371 +vn 0.000000 -0.981006 0.193979 +v 14.999991 39.487358 -54.722466 +vn 0.000000 -0.985353 0.170525 +v 14.999994 39.659576 -53.800594 +vn 0.000000 -0.989853 0.142096 +v 14.999994 39.799934 -52.922207 +vn 0.000000 -0.994269 0.106906 +v 14.999994 39.905727 -52.089371 +vn 0.000000 -0.997941 0.064139 +v 14.999994 39.974663 -51.303699 +vn 0.000000 -0.999916 0.012955 +v 14.999994 40.004917 -50.566353 +vn -0.000000 -0.998944 -0.045946 +v 14.999994 39.995186 -49.877964 +vn -0.000000 -0.993283 -0.115708 +v 14.999994 39.944725 -49.238636 +vn -0.000000 -0.980781 -0.195113 +v 14.999994 39.853336 -48.647938 +vn -0.000000 -0.959473 -0.281801 +v 14.999994 39.721344 -48.104931 +vn -0.000000 -0.927235 -0.374479 +v 14.999994 39.549545 -47.608231 +vn -0.000000 -0.882512 -0.470289 +v 14.999994 39.339172 -47.156044 +vn -0.000000 -0.826777 -0.562530 +v 14.999994 39.091839 -46.746201 +vn -0.000000 -0.768798 -0.639492 +v 14.999994 38.809498 -46.376217 +vn -0.000000 -0.612042 -0.790825 +v 14.999994 38.148941 -45.744617 +vn -0.000000 -0.498361 -0.866970 +v 14.999994 37.377838 -45.236938 +vn 0.000102 -0.369968 -0.929045 +v 14.999994 36.518669 -44.826927 +vn 0.000089 -0.313374 -0.949630 +v 14.999994 35.594532 -44.487858 +vn -0.000023 -0.289862 -0.957069 +v 14.999994 31.647556 -43.373325 +vn -0.000000 -0.346693 -0.937979 +v 14.999994 29.709986 -42.730476 +vn -0.000010 -0.427241 -0.904138 +v 14.999994 27.853359 -41.945564 +vn 0.000000 -0.971490 0.237082 +v 14.999991 38.812031 -57.722633 +vn 0.000000 -0.976404 0.215950 +v 14.999991 36.557880 -66.808601 +vn 0.000000 -0.984078 0.177735 +v 14.999991 36.083641 -69.140404 +vn 0.000000 -0.991317 0.131496 +v 14.999991 35.714783 -71.421936 +vn -0.000000 -0.171189 -0.985238 +v 14.999989 42.051563 -85.470688 +vn 0.000000 0.776510 0.630104 +v 14.999989 44.312138 -83.113960 +vn 0.000000 0.874251 0.485474 +v 14.999989 41.648525 -79.485641 +vn 0.000000 0.914616 0.404324 +v 14.999989 41.032398 -78.241753 +vn 0.000000 0.954138 0.299367 +v 14.999989 40.515343 -76.854691 +vn -0.000000 0.997806 -0.066202 +v 14.999991 39.812969 -69.985016 +vn -0.000000 0.991073 -0.133323 +v 14.999991 40.012657 -67.991058 +vn -0.000000 0.981854 -0.189637 +v 14.999991 40.355972 -65.916153 +vn -0.000000 0.969585 -0.244753 +v 14.999991 40.831844 -63.777943 +vn -0.000000 0.930844 -0.365418 +v 14.999991 43.740543 -54.967056 +vn -0.000000 0.922639 -0.385664 +v 14.999994 44.624863 -52.792923 +vn -0.000023 0.999406 0.034460 +v 15.000000 58.461105 -4.040622 +vn -0.000022 0.999784 0.020761 +v 15.000000 58.030327 6.576264 +vn -0.000010 1.000000 -0.001010 +v 15.000000 58.014725 8.016339 +vn -0.000200 0.999351 -0.036028 +v 15.000000 58.037071 9.328003 +vn 0.000260 0.996264 -0.086361 +v 15.000000 58.105679 10.508808 +vn -0.000370 0.988534 -0.150996 +v 15.000003 58.228676 11.562689 +vn 0.000388 0.972121 -0.234478 +v 15.000003 58.413914 12.501076 +vn -0.000066 0.757481 -0.652857 +v 15.000003 61.890984 17.953379 +vn -0.000229 0.762511 -0.646976 +v 15.000003 62.694042 18.887861 +vn -0.000380 0.770043 -0.637992 +v 15.000003 63.545670 19.899633 +vn -0.000260 0.788746 -0.614719 +v 15.000003 65.306572 22.090715 +vn 0.000128 0.831506 -0.555516 +v 15.000003 67.674812 25.334995 +vn 0.000065 0.249166 0.968461 +v 15.000003 67.503548 29.239632 +vn -0.000208 0.377862 0.925862 +v 15.000003 64.538261 30.181583 +vn 0.000022 0.430145 0.902760 +v 15.000003 63.403816 30.687649 +vn -0.000107 0.727358 0.686259 +v 15.000006 55.125313 37.113594 +vn 0.000043 -0.487457 0.873147 +v 15.000006 46.216484 44.211143 +vn 0.000061 -0.559901 0.828560 +v 15.000006 45.352943 43.678806 +vn 0.000046 -0.634057 0.773286 +v 15.000006 44.535561 43.064274 +vn -0.000017 -0.714387 0.699751 +v 15.000006 43.800117 42.382538 +vn -0.000150 -0.800784 0.598954 +v 15.000006 43.176098 41.644390 +vn -0.000350 -0.994602 -0.103759 +v 15.000003 44.890785 27.478884 +vn 0.000237 -0.464657 0.885491 +v 0.416638 34.008129 14.456807 +vn 0.000096 -0.301944 -0.953326 +v 15.000000 25.490294 -2.082669 +vn 0.000187 -0.492622 -0.870243 +v 15.000000 25.718731 -2.183399 +vn 0.000197 -0.658863 -0.752263 +v 15.000000 25.921593 -2.326670 +vn 0.000187 -0.793702 -0.608307 +v 15.000000 26.101185 -2.520577 +vn 0.000164 -0.883587 -0.468267 +v 15.000000 26.259865 -2.773242 +vn 0.000136 -0.935903 -0.352258 +v 15.000000 26.399933 -3.092101 +vn 0.000109 -0.964417 -0.264386 +v 15.000000 26.523514 -3.483167 +vn 0.000086 -0.979760 -0.200177 +v 15.000000 26.632439 -3.950329 +vn 0.000067 -0.988168 -0.153378 +v 15.000000 26.728193 -4.495016 +vn 0.000053 -0.992927 -0.118723 +v 15.000000 26.811939 -5.116417 +vn 0.000041 -0.995721 -0.092416 +v 15.000000 26.884563 -5.811844 +vn 0.000032 -0.997415 -0.071855 +v 15.000000 26.946722 -6.577094 +vn 0.000026 -0.998471 -0.055271 +v 15.000000 26.998886 -7.406776 +vn 0.000020 -0.999141 -0.041433 +v 15.000000 27.041363 -8.294519 +vn 0.000084 -0.999639 -0.026867 +v 15.000000 27.074301 -9.233040 +vn 0.000158 -0.999964 -0.008526 +v 14.999997 27.111357 -11.229206 +vn 0.000169 -0.999929 0.011940 +v 14.999997 27.108194 -13.322000 +vn 0.000198 -0.999397 0.034725 +v 14.999997 27.060982 -15.430885 +vn 0.000245 -0.998004 0.063156 +v 14.999997 26.964645 -17.474482 +vn 0.000162 -0.995446 0.095328 +v 14.999997 26.813469 -19.376194 +vn 0.000046 -0.992178 0.124831 +v 14.999997 26.715431 -20.252153 +vn 0.000059 -0.987885 0.155191 +v 14.999997 26.601404 -21.067993 +vn 0.000074 -0.981229 0.192848 +v 14.999997 26.470642 -21.817245 +vn 0.000093 -0.970767 0.240025 +v 14.999997 26.322456 -22.494677 +vn 0.000114 -0.954128 0.299399 +v 14.999997 26.156242 -23.096558 +vn 0.000138 -0.927507 0.373805 +v 14.999997 25.971525 -23.620918 +vn 0.000164 -0.885137 0.465330 +v 14.999997 25.767952 -24.067701 +vn 0.000188 -0.819398 0.573225 +v 14.999997 25.545301 -24.438723 +vn 0.000206 -0.723157 0.690683 +v 14.999997 25.303440 -24.737572 +vn 0.000107 -0.624969 0.780649 +v 14.999997 25.042307 -24.969536 +vn 0.000030 0.999332 0.036535 +v 21.979544 58.075489 5.015672 +vn 0.000047 0.999099 0.042434 +v 21.919636 58.141869 3.347140 +vn 0.000008 0.998959 0.045613 +v 21.859728 58.221302 1.587053 +vn -0.000003 0.998984 0.045060 +v 21.799820 58.305897 -0.245308 +vn 0.000002 0.999923 0.012388 +v 21.560188 58.554409 -7.860300 +vn -0.000000 0.999996 -0.002781 +v 21.500280 58.564407 -9.725436 +vn -0.000023 0.999791 -0.020446 +v 21.440372 58.544624 -11.535811 +vn -0.000061 0.999163 -0.040898 +v 21.380465 58.492390 -13.276594 +vn -0.000101 0.997945 -0.064070 +v 21.320557 58.406212 -14.936960 +vn -0.000138 0.995959 -0.089807 +v 21.260649 58.285748 -16.510437 +vn -0.000172 0.993032 -0.117848 +v 21.200741 58.131611 -17.994581 +vn -0.000198 0.989019 -0.147786 +v 21.140833 57.945141 -19.390476 +vn -0.000215 0.983848 -0.179007 +v 21.080925 57.728188 -20.702335 +vn -0.000222 0.977554 -0.210686 +v 21.021011 57.482910 -21.937105 +vn -0.000218 0.970320 -0.241823 +v 20.961103 57.211544 -23.104027 +vn -0.000203 0.962484 -0.271337 +v 20.901196 56.916187 -24.214218 +vn -0.000047 0.953564 -0.301189 +v 20.841288 56.598587 -25.280243 +vn -0.000035 0.927867 -0.372911 +v 20.601656 55.116528 -29.381390 +vn -0.000065 0.924232 -0.381832 +v 20.541748 54.687092 -30.436720 +vn -0.000052 0.920445 -0.390873 +v 20.481840 54.228195 -31.530968 +vn -0.000042 0.917169 -0.398499 +v 20.421932 53.735775 -32.676239 +vn -0.000032 0.914327 -0.404976 +v 20.362024 53.205719 -33.883575 +vn -0.000023 0.911879 -0.410459 +v 20.302116 52.634144 -35.162773 +vn -0.000015 0.909824 -0.414994 +v 20.242208 52.017754 -36.522175 +vn -0.000007 0.908199 -0.418539 +v 20.182301 51.354145 -37.968506 +vn -0.000002 0.907071 -0.420977 +v 20.122393 50.642174 -39.506687 +vn -0.000000 0.906532 -0.422137 +v 20.062485 49.882294 -41.139629 +vn -0.000000 0.906496 -0.422214 +v 20.002577 49.076881 -42.868065 +vn -0.000185 -0.369882 -0.929079 +v 19.880440 36.518669 -44.826927 +vn -0.000091 -0.313359 -0.949635 +v 19.479448 35.594532 -44.487858 +vn 0.000002 -0.470552 -0.882372 +v 15.469540 26.054104 -41.029148 +vn 0.000011 -0.427241 -0.904138 +v 16.271521 27.853359 -41.945564 +vn -0.000000 -0.350375 -0.936609 +v 17.073503 29.709986 -42.730476 +vn 0.000034 -0.277610 -0.960694 +v 17.875484 31.647556 -43.373325 +vn 0.000031 0.938106 -0.346347 +v 20.721472 55.900665 -27.334831 +vn 0.000075 0.999406 0.034461 +v 21.680004 58.461105 -4.040624 +# 1536 vertices, 0 vertices normals + + +usemtl material_0 +vt 1.380148 1.000000 +vt 1.305982 1.000000 +vt 1.380148 0.000000 +f 1/1/1 2/2/2 33/3/33 +vt 1.239947 0.000000 +f 33/3/33 2/2/2 32/4/32 +vt 1.237002 1.000000 +f 32/4/32 2/2/2 3/5/3 +vt 1.169829 0.000000 +f 32/4/32 3/5/3 31/6/31 +vt 1.171751 1.000000 +f 31/6/31 3/5/3 4/7/4 +vt 1.108102 1.000000 +f 31/6/31 4/7/4 5/8/5 +vt 1.098875 0.000000 +f 31/6/31 5/8/5 30/9/30 +vt 1.043412 1.000000 +f 30/9/30 5/8/5 6/10/6 +vt 1.026885 0.000000 +f 30/9/30 6/10/6 29/11/29 +vt 0.977440 1.000000 +f 29/11/29 6/10/6 7/12/7 +vt 0.953817 0.000000 +f 29/11/29 7/12/7 28/13/28 +vt 0.910176 1.000000 +f 28/13/28 7/12/7 8/14/8 +vt 0.879309 0.000000 +f 28/13/28 8/14/8 27/15/27 +vt 0.841503 1.000000 +f 27/15/27 8/14/8 9/16/9 +vt 0.802151 0.000000 +f 27/15/27 9/16/9 26/17/26 +vt 0.770761 1.000000 +f 26/17/26 9/16/9 10/18/10 +vt 0.722257 0.000000 +f 26/17/26 10/18/10 25/19/25 +vt 0.697839 1.000000 +f 25/19/25 10/18/10 11/20/11 +vt 0.639673 0.000000 +f 25/19/25 11/20/11 24/21/24 +vt 0.622760 1.000000 +f 24/21/24 11/20/11 12/22/12 +vt 0.555309 0.000000 +f 24/21/24 12/22/12 23/23/23 +vt 0.545463 1.000000 +f 23/23/23 12/22/12 13/24/13 +vt 0.474252 0.000000 +f 23/23/23 13/24/13 22/25/22 +vt 0.464718 1.000000 +f 22/25/22 13/24/13 14/26/14 +vt 0.379955 1.000000 +f 22/25/22 14/26/14 15/27/15 +vt 0.325930 -0.000000 +f 22/25/22 15/27/15 21/28/21 +vt 0.336020 1.000000 +f 21/28/21 15/27/15 16/29/16 +vt 0.291033 1.000000 +f 21/28/21 16/29/16 17/30/17 +vt 0.244986 1.000000 +f 17/30/17 18/31/18 21/28/21 +vt 0.197875 0.000000 +f 21/28/21 18/31/18 20/32/20 +vt 0.197875 1.000000 +f 20/32/20 18/31/18 19/33/19 +vt 0.197875 2.000000 +vt 0.244986 2.000000 +vt 0.197875 3.000000 +f 34/34/34 35/35/35 70/36/70 +vt 0.248087 3.000000 +f 70/36/70 35/35/35 69/37/69 +vt 0.291033 2.000000 +f 69/37/69 35/35/35 36/38/36 +vt 0.297136 3.000000 +f 69/37/69 36/38/36 68/39/68 +vt 0.336020 2.000000 +f 68/39/68 36/38/36 37/40/37 +vt 0.345002 3.000000 +f 68/39/68 37/40/37 67/41/67 +vt 0.379955 2.000000 +f 67/41/67 37/40/37 38/42/38 +vt 0.391661 3.000000 +f 67/41/67 38/42/38 66/43/66 +vt 0.437089 3.000000 +f 66/43/66 38/42/38 65/44/65 +vt 0.464718 2.000000 +f 65/44/65 38/42/38 39/45/39 +vt 0.481257 3.000000 +f 65/44/65 39/45/39 64/46/64 +vt 0.545463 2.000000 +f 64/46/64 39/45/39 40/47/40 +vt 0.565699 3.000000 +f 64/46/64 40/47/40 63/48/63 +vt 0.622760 2.000000 +f 63/48/63 40/47/40 41/49/41 +vt 0.644772 3.000000 +f 63/48/63 41/49/41 62/50/62 +vt 0.697839 2.000000 +f 62/50/62 41/49/41 42/51/42 +vt 0.720004 3.000000 +f 62/50/62 42/51/42 61/52/61 +vt 0.770761 2.000000 +f 61/52/61 42/51/42 43/53/43 +vt 0.792718 3.000000 +f 61/52/61 43/53/43 60/54/60 +vt 0.841503 2.000000 +f 60/54/60 43/53/43 44/55/44 +vt 0.862870 3.000000 +f 60/54/60 44/55/44 59/56/59 +vt 0.910176 2.000000 +f 59/56/59 44/55/44 45/57/45 +vt 0.930439 3.000000 +f 59/56/59 45/57/45 58/58/58 +vt 0.977440 2.000000 +f 58/58/58 45/57/45 46/59/46 +vt 0.996436 3.000000 +f 58/58/58 46/59/46 57/60/57 +vt 1.043412 2.000000 +f 57/60/57 46/59/46 47/61/47 +vt 1.061527 3.000000 +f 57/60/57 47/61/47 56/62/56 +vt 1.108102 2.000000 +f 56/62/56 47/61/47 48/63/48 +vt 1.125754 3.000000 +f 56/62/56 48/63/48 55/64/55 +vt 1.171751 2.000000 +f 55/64/55 48/63/48 49/65/49 +vt 1.252202 3.000000 +f 55/64/55 49/65/49 54/66/54 +vt 1.237002 2.000000 +f 54/66/54 49/65/49 50/67/50 +vt 1.305982 2.000000 +f 54/66/54 50/67/50 51/68/51 +vt 1.380148 2.000000 +vt 1.380148 3.000000 +f 52/69/52 53/70/53 51/68/51 +f 51/68/51 53/70/53 54/66/54 +vt 8.993573 2.200000 +vt 9.114844 2.200000 +vt 8.993573 3.000000 +f 71/71/71 72/72/72 117/73/117 +vt 9.117486 3.000000 +f 117/73/117 72/72/72 116/74/116 +vt 9.239022 2.200000 +f 116/74/116 72/72/72 73/75/73 +vt 9.241710 3.000000 +f 116/74/116 73/75/73 115/76/115 +vt 9.366311 2.200000 +f 115/76/115 73/75/73 74/77/74 +vt 9.367830 3.000000 +f 115/76/115 74/77/74 114/78/114 +vt 9.438247 3.000000 +f 114/78/114 74/77/74 113/79/113 +vt 9.497066 2.200000 +f 113/79/113 74/77/74 75/80/75 +vt 9.515846 3.000000 +f 113/79/113 75/80/75 112/81/112 +vt 9.600255 3.000000 +f 112/81/112 75/80/75 111/82/111 +vt 9.626265 2.200000 +f 111/82/111 75/80/75 76/83/76 +vt 9.691165 3.000000 +f 111/82/111 76/83/76 110/84/110 +vt 9.745674 2.200000 +f 110/84/110 76/83/76 77/85/77 +vt 9.788340 3.000000 +f 110/84/110 77/85/77 109/86/109 +vt 9.855281 2.200000 +f 109/86/109 77/85/77 78/87/78 +vt 9.891545 3.000000 +f 109/86/109 78/87/78 108/88/108 +vt 9.955029 2.200000 +f 108/88/108 78/87/78 79/89/79 +vt 9.995230 3.000000 +f 108/88/108 79/89/79 107/90/107 +vt 10.044676 2.200000 +f 107/90/107 79/89/79 80/91/80 +vt 10.096270 3.000000 +f 107/90/107 80/91/80 106/92/106 +vt 10.125270 2.200000 +f 106/92/106 80/91/80 81/93/81 +vt 10.194788 3.000000 +f 106/92/106 81/93/81 105/94/105 +vt 10.282086 2.200000 +f 105/94/105 81/93/81 82/95/82 +vt 10.290878 3.000000 +f 105/94/105 82/95/82 104/96/104 +vt 10.436093 2.200000 +f 104/96/104 82/95/82 83/97/83 +vt 10.475979 3.000000 +f 104/96/104 83/97/83 103/98/103 +vt 10.587590 2.200000 +f 103/98/103 83/97/83 84/99/84 +vt 10.653030 3.000000 +f 103/98/103 84/99/84 102/100/102 +vt 10.736841 2.200000 +f 102/100/102 84/99/84 85/101/85 +vt 10.828736 3.000000 +f 102/100/102 85/101/85 101/102/101 +vt 10.884200 2.200000 +f 101/102/101 85/101/85 86/103/86 +vt 11.004234 3.000000 +f 101/102/101 86/103/86 100/104/100 +vt 11.032199 2.200000 +f 100/104/100 86/103/86 87/105/87 +vt 11.179790 3.000000 +f 100/104/100 87/105/87 99/106/99 +vt 11.181721 2.200000 +f 99/106/99 87/105/87 88/107/88 +vt 11.332834 2.200000 +f 99/106/99 88/107/88 89/108/89 +vt 11.485640 2.200000 +vt 11.447922 3.000000 +f 90/109/90 97/110/97 89/108/89 +vt 11.355638 3.000000 +f 89/108/89 97/110/97 98/111/98 +f 89/108/89 98/111/98 99/106/99 +vt 11.550746 3.000000 +f 97/110/97 90/109/90 96/112/96 +vt 11.639873 2.200000 +f 96/112/96 90/109/90 91/113/91 +vt 11.663402 3.000000 +f 96/112/96 91/113/91 95/114/95 +vt 11.714261 2.200000 +f 95/114/95 91/113/91 92/115/92 +vt 11.785265 3.000000 +f 95/114/95 92/115/92 94/116/94 +vt 11.785265 2.200000 +f 94/116/94 92/115/92 93/117/93 +vt 11.785265 0.800000 +vt 11.714261 0.800000 +vt 11.785265 0.000000 +f 118/118/118 119/119/119 161/120/161 +vt 11.622716 -0.000000 +f 161/120/161 119/119/119 160/121/160 +vt 11.639873 0.800000 +f 160/121/160 119/119/119 120/122/120 +vt 11.485640 0.800000 +f 160/121/160 120/122/120 121/123/121 +vt 11.456361 -0.000000 +f 160/121/160 121/123/121 159/124/159 +vt 11.332834 0.800000 +f 159/124/159 121/123/121 122/125/122 +vt 11.287357 0.000000 +f 159/124/159 122/125/122 158/126/158 +vt 11.181721 0.800000 +f 158/126/158 122/125/122 123/127/123 +vt 11.119042 0.000000 +f 158/126/158 123/127/123 157/128/157 +vt 11.032199 0.800000 +f 157/128/157 123/127/123 124/129/124 +vt 10.951282 0.000000 +f 157/128/157 124/129/124 156/130/156 +vt 10.884200 0.800000 +f 156/130/156 124/129/124 125/131/125 +vt 10.783867 0.000000 +f 156/130/156 125/131/125 155/132/155 +vt 10.736841 0.800000 +f 155/132/155 125/131/125 126/133/126 +vt 10.616603 0.000000 +f 155/132/155 126/133/126 154/134/154 +vt 10.587590 0.800000 +f 154/134/154 126/133/126 127/135/127 +vt 10.445152 0.000000 +f 154/134/154 127/135/127 153/136/153 +vt 10.436093 0.800000 +f 153/136/153 127/135/127 128/137/128 +vt 10.282086 0.800000 +f 153/136/153 128/137/128 129/138/129 +vt 10.265734 0.000000 +f 153/136/153 129/138/129 152/139/152 +vt 10.125270 0.800000 +f 152/139/152 129/138/129 130/140/130 +vt 10.078014 0.000000 +f 152/139/152 130/140/130 151/141/151 +vt 10.044676 0.800000 +f 151/141/151 130/140/130 131/142/131 +vt 9.980889 0.000000 +f 151/141/151 131/142/131 150/143/150 +vt 9.955029 0.800000 +f 150/143/150 131/142/131 132/144/132 +vt 9.884347 0.000000 +f 150/143/150 132/144/132 149/145/149 +vt 9.855281 0.800000 +f 149/145/149 132/144/132 133/146/133 +vt 9.789661 0.000000 +f 149/145/149 133/146/133 148/147/148 +vt 9.745674 0.800000 +f 148/147/148 133/146/133 134/148/134 +vt 9.696542 0.000000 +f 148/147/148 134/148/134 147/149/147 +vt 9.626265 0.800000 +f 147/149/147 134/148/134 135/150/135 +vt 9.604724 0.000000 +f 147/149/147 135/150/135 146/151/146 +vt 9.497066 0.800000 +f 146/151/146 135/150/135 136/152/136 +vt 9.513977 0.000000 +f 146/151/146 136/152/136 145/153/145 +vt 9.424289 0.000000 +f 145/153/145 136/152/136 144/154/144 +vt 9.366311 0.800000 +f 144/154/144 136/152/136 137/155/137 +vt 9.336002 0.000000 +f 144/154/144 137/155/137 143/156/143 +vt 9.239022 0.800000 +f 143/156/143 137/155/137 138/157/138 +vt 9.162943 0.000000 +f 143/156/143 138/157/138 142/158/142 +vt 9.114844 0.800000 +f 142/158/142 138/157/138 139/159/139 +vt 8.993573 0.000000 +f 142/158/142 139/159/139 141/160/141 +vt 8.993573 0.800000 +f 141/160/141 139/159/139 140/161/140 +vt -1.000000 -4.707220 +vt 1.000000 -4.707220 +vt -1.000000 -3.551584 +f 162/162/162 163/163/163 165/164/165 +vt 1.000000 -3.551584 +f 165/164/165 163/163/163 164/165/164 +vt 1.000000 0.295691 +vt -1.000000 0.295691 +vt 1.000000 -1.250000 +f 166/166/166 167/167/167 169/168/169 +vt -1.000000 -1.250000 +f 169/168/169 167/167/167 168/169/168 +vt -0.111395 0.045412 +vt 0.433784 -1.024916 +vt 0.073890 0.061560 +f 171/170/171 197/171/197 170/172/170 +vt 0.573429 -0.986357 +f 170/172/170 197/171/197 198/173/198 +vt 0.646752 -0.965652 +f 170/172/170 198/173/198 199/174/199 +vt -0.292328 0.038221 +vt 0.180166 -1.090981 +f 172/175/172 195/176/195 171/170/171 +vt 0.302917 -1.059757 +f 171/170/171 195/176/195 196/177/196 +f 171/170/171 196/177/196 197/171/197 +vt -0.469920 0.043482 +vt -0.146043 -1.163954 +f 173/178/173 192/179/192 172/175/172 +vt -0.043649 -1.142979 +f 172/175/172 192/179/192 193/180/193 +vt 0.064865 -1.118689 +f 172/175/172 193/180/193 194/181/194 +vt -0.645179 0.064695 +vt -0.824544 -1.224412 +f 174/182/174 187/183/187 173/178/173 +vt -0.669058 -1.225782 +f 173/178/173 187/183/187 188/184/188 +vt -0.507689 -1.216697 +f 173/178/173 188/184/188 189/185/189 +vt -0.732249 0.082375 +vt -1.079803 -1.210502 +f 175/186/175 183/187/183 174/182/174 +vt -1.025251 -1.212314 +f 174/182/174 183/187/183 184/188/184 +vt -0.964800 -1.216085 +f 174/182/174 184/188/184 185/189/185 +vt -1.128874 -1.211921 +f 183/187/183 175/186/175 182/190/182 +vt -0.816637 0.104607 +f 182/190/182 175/186/175 176/191/176 +vt -0.896147 0.130392 +f 182/190/182 176/191/176 177/192/177 +vt -1.173078 -1.217893 +f 182/190/182 177/192/177 181/193/181 +vt -0.971620 0.159247 +f 181/193/181 177/192/177 178/194/178 +vt -1.213265 -1.229999 +f 181/193/181 178/194/178 180/195/180 +vt -1.113825 0.224230 +f 180/195/180 178/194/178 179/196/179 +vt -1.250000 0.295691 +f 180/195/180 179/196/179 166/197/166 +vt -1.250000 -1.250000 +f 166/197/166 169/198/169 180/195/180 +vt -0.898037 -1.220542 +f 185/189/185 186/199/186 174/182/174 +f 174/182/174 186/199/186 187/183/187 +vt -0.335122 -1.196356 +f 189/185/189 190/200/190 173/178/173 +vt -0.242979 -1.181712 +f 173/178/173 190/200/190 191/201/191 +f 173/178/173 191/201/191 192/179/192 +f 194/181/194 195/176/195 172/175/172 +vt 0.684335 -0.954935 +f 199/174/199 200/202/200 170/172/170 +vt 0.270813 0.083813 +f 170/172/170 200/202/200 237/203/237 +vt 0.726519 -0.942838 +f 237/203/237 200/202/200 201/204/201 +vt 1.254130 -0.510469 +f 237/203/237 201/204/201 221/205/221 +vt 0.828268 -0.913452 +f 221/205/221 201/204/201 202/206/202 +vt 1.249705 -0.565452 +f 221/205/221 202/206/202 220/207/220 +vt 0.939687 -0.880920 +f 220/207/220 202/206/202 203/208/203 +vt 1.246514 -0.615785 +f 220/207/220 203/208/203 219/209/219 +vt 1.044571 -0.849775 +f 219/209/219 203/208/203 204/210/204 +vt 1.089499 -0.836139 +f 219/209/219 204/210/204 205/211/205 +vt 1.246769 -0.707129 +f 219/209/219 205/211/205 218/212/218 +vt 1.126921 -0.824485 +f 218/212/218 205/211/205 206/213/206 +vt 1.157586 -0.814512 +f 218/212/218 206/213/206 207/214/207 +vt 1.182473 -0.805855 +f 207/214/207 208/215/208 218/212/218 +vt 1.249554 -0.739897 +f 218/212/218 208/215/208 217/216/217 +vt 1.217636 -0.791400 +f 217/216/217 208/215/208 209/217/209 +vt 1.249986 -0.751486 +f 217/216/217 209/217/209 216/218/216 +vt 1.229949 -0.784629 +f 216/218/216 209/217/209 210/219/210 +vt 1.248963 -0.761070 +f 216/218/216 210/219/210 215/220/215 +vt 1.247695 -0.765376 +f 215/220/215 210/219/210 214/221/214 +vt 1.245796 -0.769450 +f 214/221/214 210/219/210 213/222/213 +vt 1.243154 -0.773374 +f 213/222/213 210/219/210 212/223/212 +vt 1.239637 -0.777225 +f 212/223/212 210/219/210 211/224/211 +vt 1.263038 -0.389325 +f 221/205/221 222/225/222 237/203/237 +vt 0.461695 0.105535 +f 237/203/237 222/225/222 236/226/236 +vt 1.264712 -0.268366 +f 236/226/236 222/225/222 223/227/223 +vt 0.642349 0.120894 +f 236/226/236 223/227/223 235/228/235 +vt 1.260108 -0.208527 +f 235/228/235 223/227/223 224/229/224 +vt 1.250000 -0.150000 +f 235/228/235 224/229/224 225/230/225 +vt 1.228845 -0.084408 +vt 0.808772 0.124058 +f 226/231/226 233/232/233 225/230/225 +vt 0.727533 0.124366 +f 225/230/225 233/232/233 234/233/234 +f 225/230/225 234/233/234 235/228/235 +vt 0.886445 0.119088 +f 233/232/233 226/231/226 232/234/232 +vt 1.195038 -0.024351 +f 232/234/232 226/231/226 227/235/227 +vt 0.959692 0.108395 +f 232/234/232 227/235/227 231/236/231 +vt 1.027667 0.090825 +f 231/236/231 227/235/227 230/237/230 +vt 1.148791 0.025485 +f 230/237/230 227/235/227 228/238/228 +vt 1.091525 0.063949 +f 230/237/230 228/238/228 229/239/229 +vt -1.264128 -0.368463 +vt -0.464739 0.105861 +vt -1.264712 -0.268366 +f 239/240/239 288/241/288 238/242/238 +vt -0.647743 0.121206 +f 238/242/238 288/241/288 289/243/289 +vt -1.260053 -0.208045 +f 238/242/238 289/243/289 300/244/300 +vt -1.250000 -0.150000 +f 300/244/300 289/243/289 299/245/299 +vt -0.733937 0.124488 +f 299/245/299 289/243/289 290/246/290 +vt -0.815767 0.123819 +f 299/245/299 290/246/290 291/247/291 +vt -0.271717 0.083927 +f 288/241/288 239/240/239 287/248/287 +vt -1.257672 -0.468075 +f 287/248/287 239/240/239 240/249/240 +vt -0.887161 -0.896369 +f 287/248/287 240/249/240 257/250/257 +vt -1.249928 -0.563232 +f 257/250/257 240/249/240 241/251/241 +vt -1.247050 -0.607360 +f 257/250/257 241/251/241 242/252/242 +vt -0.990920 -0.865785 +f 257/250/257 242/252/242 256/253/256 +vt -1.245816 -0.644360 +f 256/253/256 242/252/242 243/254/243 +vt -1.037026 -0.852018 +f 256/253/256 243/254/243 255/255/255 +vt -1.078179 -0.839593 +f 255/255/255 243/254/243 254/256/254 +vt -1.113693 -0.828654 +f 254/256/254 243/254/243 253/257/253 +vt -1.247724 -0.711237 +f 253/257/253 243/254/243 244/258/244 +vt -1.143850 -0.819051 +f 253/257/253 244/258/244 252/259/252 +vt -1.189925 -0.803092 +f 252/259/252 244/258/244 251/260/251 +vt -1.249998 -0.750081 +f 251/260/251 244/258/244 245/261/245 +vt -1.220209 -0.790118 +f 251/260/251 245/261/245 250/262/250 +vt -1.249469 -0.758289 +f 250/262/250 245/261/245 246/263/246 +vt -1.247661 -0.765464 +f 250/262/250 246/263/246 247/264/247 +vt -1.244132 -0.772068 +f 247/264/247 248/265/248 250/262/250 +vt -1.238583 -0.778204 +f 250/262/250 248/265/248 249/266/249 +vt -0.656316 -0.962966 +f 257/250/257 258/267/258 287/248/287 +vt -0.073890 0.061560 +f 287/248/287 258/267/258 286/268/286 +vt -0.542288 -0.995110 +f 286/268/286 258/267/258 259/269/259 +vt -0.436296 -1.024352 +f 286/268/286 259/269/259 260/270/260 +vt 0.118086 0.044992 +f 286/268/286 260/270/260 285/271/285 +vt -0.335975 -1.051279 +f 285/271/285 260/270/260 261/272/261 +vt -0.240632 -1.076051 +f 285/271/285 261/272/261 262/273/262 +vt 0.310694 0.038222 +f 285/271/285 262/273/262 284/274/284 +vt -0.149962 -1.098722 +f 284/274/284 262/273/262 263/275/263 +vt -0.063660 -1.119345 +f 284/274/284 263/275/263 264/276/264 +vt 0.097063 -1.154660 +f 264/276/264 265/277/265 284/274/284 +vt 0.243977 -1.182422 +f 284/274/284 265/277/265 266/278/266 +vt 0.502745 0.046191 +f 284/274/284 266/278/266 283/279/283 +vt 0.379526 -1.203058 +f 283/279/283 266/278/266 267/280/267 +vt 0.506152 -1.216993 +f 283/279/283 267/280/267 268/281/268 +vt 0.626295 -1.224655 +f 268/281/268 269/282/269 283/279/283 +vt 0.742399 -1.226469 +f 283/279/283 269/282/269 270/283/270 +vt 0.596715 0.057030 +f 283/279/283 270/283/270 282/284/282 +vt 0.851494 -1.223254 +f 282/284/282 270/283/270 271/285/271 +vt 0.945548 -1.217571 +f 282/284/282 271/285/271 272/286/272 +vt 1.026343 -1.212358 +f 272/286/272 273/287/273 282/284/282 +vt 0.684681 0.072063 +f 282/284/282 273/287/273 281/288/281 +vt 1.095905 -1.210548 +f 281/288/281 273/287/273 274/289/274 +vt 0.767081 0.090874 +f 281/288/281 274/289/274 280/290/280 +vt 1.155570 -1.214815 +f 280/290/280 274/289/274 275/291/275 +vt 0.844651 0.113074 +f 280/290/280 275/291/275 279/292/279 +vt 0.988257 0.166089 +f 279/292/279 275/291/275 278/293/278 +vt 1.206556 -1.227388 +f 278/293/278 275/291/275 276/294/276 +vt 1.121405 0.227997 +f 278/293/278 276/294/276 277/295/277 +vt 1.250000 0.295691 +f 277/295/277 276/294/276 167/296/167 +vt 1.250000 -1.250000 +f 167/296/167 276/294/276 168/297/168 +vt -1.229037 -0.084857 +f 299/245/299 291/247/291 298/298/298 +vt -0.892610 0.118432 +f 298/298/298 291/247/291 292/299/292 +vt -1.195703 -0.025270 +f 298/298/298 292/299/292 297/300/297 +vt -0.963847 0.107558 +f 297/300/297 292/299/292 293/301/293 +vt -1.030419 0.089907 +f 297/300/297 293/301/293 294/302/294 +vt -1.093641 0.062818 +vt -1.150086 0.024380 +f 295/303/295 296/304/296 294/302/294 +f 294/302/294 296/304/296 297/300/297 +vt 2.930433 1.154718 +vt 1.821844 0.978773 +vt 2.954242 1.039143 +f 302/305/302 354/306/354 301/307/301 +vt 1.814759 0.922201 +f 301/307/301 354/306/354 355/308/355 +vt 2.973976 0.962739 +f 301/307/301 355/308/355 499/309/499 +vt 2.995544 0.894446 +f 499/309/499 355/308/355 498/310/498 +vt 1.807083 0.898171 +f 498/310/498 355/308/355 356/311/356 +vt 3.019085 0.833533 +f 498/310/498 356/311/356 497/312/497 +vt 1.795783 0.876728 +f 497/312/497 356/311/356 357/313/357 +vt 3.044709 0.778844 +f 497/312/497 357/313/357 496/314/496 +vt 1.780128 0.857663 +f 496/314/496 357/313/357 358/315/358 +vt 3.102453 0.680674 +f 496/314/496 358/315/358 495/316/495 +vt 1.759347 0.840756 +f 495/316/495 358/315/358 359/317/359 +vt 1.732691 0.825787 +f 495/316/495 359/317/359 360/318/360 +vt 2.909180 1.285750 +vt 1.817222 1.130077 +f 303/319/303 352/320/352 302/305/302 +vt 1.821549 1.047749 +f 302/305/302 352/320/352 353/321/353 +f 302/305/302 353/321/353 354/306/354 +vt 1.811140 1.226312 +f 352/320/352 303/319/303 351/322/351 +vt 2.889986 1.431481 +f 351/322/351 303/319/303 304/323/304 +vt 1.804759 1.336602 +f 351/322/351 304/323/304 350/324/350 +vt 1.798933 1.460674 +f 350/324/350 304/323/304 349/325/349 +vt 2.872299 1.590251 +f 349/325/349 304/323/304 305/326/305 +vt 1.794042 1.597807 +f 349/325/349 305/326/305 348/327/348 +vt 2.855524 1.759709 +f 348/327/348 305/326/305 306/328/306 +vt 1.790104 1.746796 +f 348/327/348 306/328/306 347/329/347 +vt 2.839043 1.936971 +f 347/329/347 306/328/306 307/330/307 +vt 1.786925 1.905928 +f 347/329/347 307/330/307 346/331/346 +vt 1.784271 2.072949 +f 346/331/346 307/330/307 345/332/345 +vt 2.804393 2.301299 +f 345/332/345 307/330/307 308/333/308 +vt 1.782030 2.245044 +f 345/332/345 308/333/308 344/334/344 +vt 2.784930 2.480895 +f 344/334/344 308/333/308 309/335/309 +vt 1.779730 2.590400 +f 344/334/344 309/335/309 343/336/343 +vt 2.763199 2.653660 +f 343/336/343 309/335/309 310/337/310 +vt 2.738608 2.815882 +f 343/336/343 310/337/310 311/338/311 +vt 1.780951 2.755531 +f 343/336/343 311/338/311 342/339/342 +vt 2.710623 2.964133 +f 342/339/342 311/338/311 312/340/312 +vt 1.785011 2.909914 +f 342/339/342 312/340/312 341/341/341 +vt 1.788837 2.988547 +f 341/341/341 312/340/312 340/342/340 +vt 2.678780 3.095449 +f 340/342/340 312/340/312 313/343/313 +vt 1.794029 3.062116 +f 340/342/340 313/343/313 339/344/339 +vt 2.661290 3.153999 +f 339/344/339 313/343/313 314/345/314 +vt 2.201410 3.452811 +f 339/344/339 314/345/314 326/346/326 +vt 2.642703 3.207497 +f 326/346/326 314/345/314 315/347/315 +vt 2.622990 3.255773 +f 326/346/326 315/347/315 316/348/316 +vt 2.332477 3.461702 +f 326/346/326 316/348/316 325/349/325 +vt 2.602128 3.298711 +f 325/349/325 316/348/316 317/350/317 +vt 2.580107 3.336257 +f 325/349/325 317/350/317 318/351/318 +vt 2.556923 3.368426 +f 318/351/318 319/352/319 325/349/325 +vt 2.532581 3.395310 +f 325/349/325 319/352/319 320/353/320 +vt 2.394418 3.459846 +f 325/349/325 320/353/320 324/354/324 +vt 2.507097 3.417088 +f 324/354/324 320/353/320 321/355/321 +vt 2.480497 3.434027 +f 324/354/324 321/355/321 322/356/322 +vt 2.452815 3.446488 +f 322/356/322 323/357/323 324/354/324 +vt 2.069107 3.454389 +vt 1.809197 3.192032 +f 327/358/327 337/359/337 326/346/326 +vt 1.800761 3.130093 +f 326/346/326 337/359/337 338/360/338 +f 326/346/326 338/360/338 339/344/339 +vt 2.007170 3.455929 +vt 1.846143 3.338384 +f 328/361/328 334/362/334 327/358/327 +vt 1.831766 3.296418 +f 327/358/327 334/362/334 335/363/335 +vt 1.819488 3.247568 +f 327/358/327 335/363/335 336/364/336 +vt 1.951043 3.448270 +vt 1.902533 3.422950 +f 329/365/329 331/366/331 328/361/328 +vt 1.881501 3.401480 +f 328/361/328 331/366/331 332/367/332 +vt 1.862706 3.373381 +f 328/361/328 332/367/332 333/368/333 +vt 1.925750 3.438298 +f 329/365/329 330/369/330 331/366/331 +f 333/368/333 334/362/334 328/361/328 +f 336/364/336 337/359/337 327/358/327 +vt 1.699491 0.812542 +f 360/318/360 361/370/361 495/316/495 +vt 1.659233 0.800828 +f 495/316/495 361/370/361 362/371/362 +vt 1.611612 0.790482 +f 495/316/495 362/371/362 363/372/363 +vt 3.168985 0.580987 +f 495/316/495 363/372/363 494/373/494 +vt 1.556547 0.781372 +f 494/373/494 363/372/363 364/374/364 +vt 1.494158 0.773394 +f 494/373/494 364/374/364 365/375/365 +vt 1.424729 0.766470 +f 365/375/365 366/376/366 494/373/494 +vt 1.348679 0.760542 +f 494/373/494 366/376/366 367/377/367 +vt 1.266529 0.755568 +f 494/373/494 367/377/367 368/378/368 +vt 1.178894 0.751521 +f 368/378/368 369/379/369 494/373/494 +vt 0.990019 0.746176 +f 494/373/494 369/379/369 370/380/370 +vt 3.205586 0.524507 +f 494/373/494 370/380/370 493/381/493 +vt 3.244472 0.461181 +f 493/381/493 370/380/370 492/382/492 +vt 3.285733 0.390038 +f 492/382/492 370/380/370 491/383/491 +vt 3.329492 0.310848 +f 491/383/491 370/380/370 490/384/490 +vt 3.375897 0.223975 +f 490/384/490 370/380/370 489/385/489 +vt 3.425104 0.130217 +f 489/385/489 370/380/370 488/386/488 +vt 3.597609 -0.458037 +f 488/386/488 370/380/370 97/387/97 +vt 3.584872 -0.340023 +f 488/386/488 97/387/97 96/388/96 +vt 0.788480 0.744581 +vt 0.856579 -2.398212 +f 371/389/371 479/390/479 370/380/370 +vt 1.045271 -2.400363 +f 370/380/370 479/390/479 480/391/480 +vt 1.239929 -2.399272 +f 370/380/370 480/391/480 481/392/481 +vt 0.581604 0.747017 +vt 0.503304 -2.383125 +f 372/393/372 477/394/477 371/389/371 +vt 0.675525 -2.392519 +f 371/389/371 477/394/477 478/395/478 +f 371/389/371 478/395/478 479/390/479 +vt 0.377085 0.753913 +vt 0.187616 -2.353237 +f 373/396/373 475/397/475 372/393/372 +vt 0.340597 -2.370003 +f 372/393/372 475/397/475 476/398/476 +f 372/393/372 476/398/476 477/394/477 +vt 0.182417 0.765781 +vt -0.216692 -2.282981 +f 374/399/374 472/400/472 373/396/373 +vt -0.090316 -2.309491 +f 373/396/373 472/400/472 473/401/473 +vt 0.044165 -2.332993 +f 373/396/373 473/401/473 474/402/474 +vt 0.090957 0.773752 +vt -0.449834 -2.221918 +f 375/403/375 470/404/470 374/399/374 +vt -0.336089 -2.253715 +f 374/399/374 470/404/470 471/405/471 +f 374/399/374 471/405/471 472/400/472 +vt -0.666399 -2.151355 +f 470/404/470 375/403/375 469/406/469 +vt 0.004471 0.783176 +f 469/406/469 375/403/375 376/407/376 +vt -0.879126 -2.071589 +f 469/406/469 376/407/376 468/408/468 +vt -0.076331 0.794126 +f 468/408/468 376/407/376 377/409/377 +vt -0.988073 -2.027819 +f 468/408/468 377/409/377 467/410/467 +vt -0.150826 0.806672 +f 467/410/467 377/409/377 378/411/378 +vt -1.100776 -1.980985 +f 467/410/467 378/411/378 466/412/466 +vt -0.218500 0.820880 +f 466/412/466 378/411/378 379/413/379 +vt -1.218643 -1.930639 +f 466/412/466 379/413/379 465/414/465 +vt -1.342964 -1.876312 +f 465/414/465 379/413/379 464/415/464 +vt -0.278976 0.836808 +f 464/415/464 379/413/379 380/416/380 +vt -1.474888 -1.817553 +f 464/415/464 380/416/380 463/417/463 +vt -0.332034 0.854505 +f 463/417/463 380/416/380 381/418/381 +vt -1.615395 -1.753974 +f 463/417/463 381/418/381 462/419/462 +vt -2.425552 -0.089336 +f 462/419/462 381/418/381 458/420/458 +vt -1.765277 -1.685283 +f 462/419/462 458/420/458 461/421/461 +vt -2.493413 -0.309485 +f 461/421/461 458/420/458 69/422/69 +vt -2.508747 -0.391364 +f 461/421/461 69/422/69 68/423/68 +vt -0.377628 0.874005 +f 381/418/381 382/424/382 458/420/458 +vt -2.384502 0.051880 +f 458/420/458 382/424/382 457/425/457 +vt -0.415888 0.895333 +f 457/425/457 382/424/382 383/426/383 +vt -2.304231 0.338921 +f 457/425/457 383/426/383 456/427/456 +vt -0.447109 0.918502 +f 456/427/456 383/426/383 384/428/384 +vt -2.256852 0.478428 +f 456/427/456 384/428/384 455/429/455 +vt -2.201964 0.613602 +f 455/429/455 384/428/384 454/430/454 +vt -0.471744 0.943520 +f 454/430/454 384/428/384 385/431/385 +vt -2.139581 0.745005 +f 454/430/454 385/431/385 453/432/453 +vt -2.071324 0.874575 +f 453/432/453 385/431/385 452/433/452 +vt -0.490395 0.970391 +f 452/433/452 385/431/385 386/434/386 +vt -2.000398 1.005557 +f 452/433/452 386/434/386 451/435/451 +vt -0.503787 0.999114 +f 451/435/451 386/434/386 387/436/387 +vt -1.931302 1.142203 +f 451/435/451 387/436/387 450/437/450 +vt -0.512718 1.029696 +f 450/437/450 387/436/387 388/438/388 +vt -1.869224 1.289200 +f 450/437/450 388/438/388 449/439/449 +vt -0.520447 1.096505 +f 449/439/449 388/438/388 389/440/389 +vt -1.842425 1.367976 +f 449/439/449 389/440/389 448/441/448 +vt -0.519476 1.171123 +f 448/441/448 389/440/389 390/442/390 +vt -1.819225 1.450911 +f 448/441/448 390/442/390 447/443/447 +vt -0.514350 1.254110 +f 447/443/447 390/442/390 391/444/391 +vt -0.508574 1.346140 +f 447/443/447 391/444/391 392/445/392 +vt -1.800107 1.538377 +f 447/443/447 392/445/392 446/446/446 +vt -0.505040 1.447826 +f 446/446/446 392/445/392 393/447/393 +vt -1.785450 1.630639 +f 446/446/446 393/447/393 445/448/445 +vt -0.506048 1.559621 +f 445/448/445 393/447/393 394/449/394 +vt -0.513161 1.681725 +f 445/448/445 394/449/394 395/450/395 +vt -1.775502 1.727828 +f 445/448/445 395/450/395 444/451/444 +vt -0.527208 1.813997 +f 444/451/444 395/450/395 396/452/396 +vt -1.770360 1.829920 +f 444/451/444 396/452/396 443/453/443 +vt -0.548411 1.955853 +f 443/453/443 396/452/396 397/454/397 +vt -1.769940 1.936709 +f 443/453/443 397/454/397 442/455/442 +vt -0.576475 2.106146 +f 442/455/442 397/454/397 398/456/398 +vt -1.773946 2.047781 +f 442/455/442 398/456/398 441/457/441 +vt -0.610602 2.263023 +f 441/457/441 398/456/398 399/458/399 +vt -1.792884 2.279966 +f 441/457/441 399/458/399 440/459/440 +vt -0.649503 2.423815 +f 440/459/440 399/458/399 400/460/400 +vt -0.734692 2.742912 +f 440/459/440 400/460/400 401/461/401 +vt -1.839833 2.696773 +f 440/459/440 401/461/401 439/462/439 +vt -0.777106 2.892916 +f 439/462/439 401/461/401 402/463/402 +vt -1.848711 2.796660 +f 439/462/439 402/463/402 438/464/438 +vt -0.816899 3.030838 +f 438/464/438 402/463/402 403/465/403 +vt -1.854426 2.892646 +f 438/464/438 403/465/403 437/466/437 +vt -1.855999 2.983663 +f 437/466/437 403/465/403 436/467/436 +vt -0.852545 3.152760 +f 436/467/436 403/465/403 404/468/404 +vt -1.275582 3.464647 +f 436/467/436 404/468/404 423/469/423 +vt -1.189636 3.457663 +f 423/469/423 404/468/404 422/470/422 +vt -0.868469 3.206681 +f 422/470/422 404/468/404 405/471/405 +vt -0.883027 3.255468 +f 422/470/422 405/471/405 406/472/406 +vt -1.115084 3.452656 +f 422/470/422 406/472/406 421/473/421 +vt -0.896203 3.298881 +f 421/473/421 406/472/406 407/474/407 +vt -0.908036 3.336760 +f 421/473/421 407/474/407 408/475/408 +vt -1.055227 3.451511 +f 421/473/421 408/475/408 420/476/420 +vt -0.918625 3.369035 +f 420/476/420 408/475/408 409/477/409 +vt -0.928133 3.395737 +f 420/476/420 409/477/409 410/478/410 +vt -1.011310 3.453870 +f 420/476/420 410/478/410 419/479/419 +vt -0.936792 3.417004 +f 419/479/419 410/478/410 411/480/411 +vt -0.944914 3.433096 +f 419/479/419 411/480/411 412/481/412 +vt -0.981538 3.456076 +f 419/479/419 412/481/412 418/482/418 +vt -0.952899 3.444412 +f 418/482/418 412/481/412 413/483/413 +vt -0.956992 3.448446 +f 418/482/418 413/483/413 414/484/414 +vt -0.961246 3.451508 +f 414/484/414 415/485/415 418/482/418 +vt -0.970560 3.455105 +f 418/482/418 415/485/415 417/486/417 +vt -0.965740 3.453692 +f 417/486/417 415/485/415 416/487/416 +vt -1.368410 3.470368 +f 423/469/423 424/488/424 436/467/436 +vt -1.852517 3.068699 +f 436/467/436 424/488/424 435/489/435 +vt -1.843165 3.146831 +f 435/489/435 424/488/424 434/490/434 +vt -1.462958 3.470788 +f 434/490/434 424/488/424 425/491/425 +vt -1.523610 3.466087 +f 434/490/434 425/491/425 426/492/426 +vt -1.827265 3.217258 +f 434/490/434 426/492/426 433/493/433 +vt -1.581324 3.456077 +f 433/493/433 426/492/426 427/494/427 +vt -1.804305 3.279331 +f 433/493/433 427/494/427 432/495/432 +vt -1.639223 3.438102 +f 432/495/432 427/494/427 428/496/428 +vt -1.773970 3.332584 +f 432/495/432 428/496/428 431/497/431 +vt -1.691107 3.411851 +f 431/497/431 428/496/428 429/498/429 +vt -1.736179 3.376763 +f 431/497/431 429/498/429 430/499/430 +vt -2.475379 -0.222191 +f 458/420/458 70/500/70 69/422/69 +vt -2.521535 -0.468042 +f 68/423/68 67/501/67 461/421/461 +vt -1.925116 -1.611335 +f 461/421/461 67/501/67 460/502/460 +vt -2.531931 -0.539733 +f 460/502/460 67/501/67 66/503/66 +vt -2.540088 -0.606649 +f 460/502/460 66/503/66 65/504/65 +vt -2.546161 -0.669004 +f 65/504/65 64/505/64 460/502/460 +vt -2.095259 -1.532167 +f 460/502/460 64/505/64 459/506/459 +vt -2.552669 -0.780885 +f 459/506/459 64/505/64 63/507/63 +vt -2.552687 -0.877089 +f 459/506/459 63/507/63 62/508/62 +vt -2.547258 -0.961143 +f 62/508/62 61/509/61 459/506/459 +vt -2.536971 -1.035684 +f 459/506/459 61/509/61 60/510/60 +vt -2.522364 -1.101608 +f 459/506/459 60/510/60 59/511/59 +vt -2.503967 -1.159826 +vt -2.456264 -1.259342 +f 58/512/58 56/513/56 59/511/59 +vt -2.427163 -1.302436 +f 59/511/59 56/513/56 55/514/55 +vt -2.359036 -1.378743 +f 59/511/59 55/514/55 54/515/54 +vt -2.481924 -1.212016 +f 58/512/58 57/516/57 56/513/56 +vt -2.275793 -1.448045 +f 53/517/53 459/506/459 54/515/54 +f 54/515/54 459/506/459 59/511/59 +f 474/402/474 475/397/475 373/396/373 +vt 1.438492 -2.395368 +f 481/392/481 482/518/482 370/380/370 +vt 1.837785 -2.381402 +f 370/380/370 482/518/482 483/519/483 +vt 2.033428 -2.372718 +f 370/380/370 483/519/483 484/520/484 +vt 2.223017 -2.363950 +vt 3.507966 -1.336756 +f 485/521/485 102/522/102 484/520/484 +vt 3.554215 -1.153302 +f 484/520/484 102/522/102 101/523/101 +vt 3.586272 -0.961948 +f 484/520/484 101/523/101 100/524/100 +vt 2.404183 -2.355959 +vt 3.328647 -1.760888 +f 486/525/486 105/526/105 485/521/485 +vt 3.372655 -1.679612 +f 485/521/485 105/526/105 104/527/104 +vt 3.448153 -1.511057 +f 485/521/485 104/527/104 103/528/103 +vt 2.574817 -2.349651 +vt 2.665528 -2.325009 +f 117/529/117 116/530/116 486/525/486 +vt 2.754200 -2.293081 +f 486/525/486 116/530/116 115/531/115 +vt 2.841666 -2.252442 +f 486/525/486 115/531/115 114/532/114 +vt 2.889302 -2.225956 +f 114/532/114 113/533/113 486/525/486 +vt 2.940693 -2.193455 +f 486/525/486 113/533/113 112/534/112 +vt 2.995178 -2.154078 +f 486/525/486 112/534/112 111/535/111 +vt 3.052096 -2.106964 +f 111/535/111 110/536/110 486/525/486 +vt 3.110785 -2.051252 +f 486/525/486 110/536/110 109/537/109 +vt 3.170530 -1.986140 +f 486/525/486 109/537/109 108/538/108 +vt 3.227673 -1.914698 +f 108/538/108 107/539/107 486/525/486 +vt 3.280349 -1.839432 +f 486/525/486 107/539/107 106/540/106 +f 486/525/486 106/540/106 105/526/105 +f 103/528/103 102/522/102 485/521/485 +vt 3.603170 -0.764807 +f 100/524/100 99/541/99 484/520/484 +f 484/520/484 99/541/99 370/380/370 +vt 3.603942 -0.563990 +f 99/541/99 98/542/98 370/380/370 +f 370/380/370 98/542/98 97/387/97 +vt 3.477271 0.030707 +f 488/386/488 96/388/96 487/543/487 +vt 3.563822 -0.211249 +f 487/543/487 96/388/96 95/544/95 +vt 3.532551 -0.073126 +f 487/543/487 95/544/95 94/545/94 +vt -0.602078 -3.513263 +vt -0.703837 -3.516335 +vt -1.245706 -3.846053 +f 566/546/566 500/547/500 518/548/518 +vt -0.778169 -3.519909 +f 518/548/518 500/547/500 501/549/501 +vt -0.846239 -3.524548 +f 518/548/518 501/549/501 502/550/502 +vt -0.908360 -3.530332 +f 502/550/502 503/551/503 518/548/518 +vt -0.964752 -3.537331 +f 518/548/518 503/551/503 504/552/504 +vt -1.015042 -3.545517 +f 518/548/518 504/552/504 505/553/505 +vt -1.059407 -3.554885 +f 505/553/505 506/554/506 518/548/518 +vt -1.248120 -3.791868 +f 518/548/518 506/554/506 517/555/517 +vt -1.249823 -3.747392 +f 517/555/517 506/554/506 516/556/516 +vt -1.247400 -3.707201 +f 516/556/516 506/554/506 515/557/515 +vt -1.237310 -3.668162 +f 515/557/515 506/554/506 514/558/514 +vt -1.227985 -3.649496 +f 514/558/514 506/554/506 513/559/513 +vt -1.215585 -3.632331 +f 513/559/513 506/554/506 512/560/512 +vt -1.098171 -3.565445 +f 512/560/512 506/554/506 507/561/507 +vt -1.200400 -3.617016 +f 512/560/512 507/561/507 511/562/511 +vt -1.182197 -3.603136 +f 511/562/511 507/561/507 510/563/510 +vt -1.131648 -3.577203 +f 510/563/510 507/561/507 508/564/508 +vt -1.159559 -3.589854 +f 510/563/510 508/564/508 509/565/509 +vt -1.245993 -3.915367 +vt 1.193835 -3.553720 +f 519/566/519 547/567/547 518/548/518 +vt 1.123561 -3.551322 +f 518/548/518 547/567/547 548/568/548 +vt 1.036283 -3.546042 +f 518/548/518 548/568/548 549/569/549 +vt -1.251319 -3.998397 +vt -0.417054 -4.498833 +f 520/570/520 537/571/537 519/566/519 +vt -0.228727 -4.521885 +f 519/566/519 537/571/537 538/572/538 +f 519/566/519 538/572/538 547/567/547 +vt 0.161027 -4.560951 +f 547/567/547 538/572/538 539/573/539 +vt 0.355145 -4.578782 +f 547/567/547 539/573/539 540/574/540 +vt -1.255865 -4.074440 +vt -0.680964 -4.457319 +f 521/575/521 535/576/535 520/570/520 +vt -0.596142 -4.472224 +f 520/570/520 535/576/535 536/577/536 +f 520/570/520 536/577/536 537/571/537 +vt -1.251162 -4.143817 +vt -0.835522 -4.424243 +f 522/578/522 533/579/533 521/575/521 +vt -0.760924 -4.441355 +f 521/575/521 533/579/533 534/580/534 +f 521/575/521 534/580/534 535/576/535 +vt -1.243162 -4.176178 +vt -0.967906 -4.386044 +f 523/581/523 531/582/531 522/578/522 +vt -0.904577 -4.405850 +f 522/578/522 531/582/531 532/583/532 +f 522/578/522 532/583/532 533/579/533 +vt -1.230446 -4.207043 +f 523/581/523 524/584/524 531/582/531 +vt -1.025326 -4.364693 +f 531/582/531 524/584/524 530/585/530 +vt -1.212430 -4.236482 +f 530/585/530 524/584/524 525/586/525 +vt -1.188572 -4.264581 +f 530/585/530 525/586/525 526/587/526 +vt -1.158292 -4.291455 +vt -1.121123 -4.317148 +f 527/588/527 528/589/528 526/587/526 +vt -1.076654 -4.341663 +f 526/587/526 528/589/528 529/590/529 +f 526/587/526 529/590/529 530/585/530 +vt 0.543886 -4.596689 +f 540/574/540 541/591/541 547/567/547 +vt 0.723594 -4.615580 +f 547/567/547 541/591/541 542/592/542 +vt 0.890615 -4.636363 +f 547/567/547 542/592/542 543/593/543 +vt 1.250000 -3.551584 +f 547/567/547 543/593/543 165/594/165 +vt 1.041180 -4.659922 +f 165/594/165 543/593/543 544/595/544 +vt 1.107449 -4.672568 +f 165/594/165 544/595/544 545/596/545 +vt 1.166934 -4.685566 +f 545/596/545 546/597/546 165/594/165 +vt 1.250000 -4.707220 +f 165/594/165 546/597/546 162/598/162 +vt 0.981062 -3.542509 +vt 0.683064 -3.528386 +f 550/599/550 556/600/556 549/569/549 +vt 0.606442 -3.525871 +f 549/569/549 556/600/556 557/601/557 +vt 0.520175 -3.523400 +f 549/569/549 557/601/557 558/602/558 +vt 0.947004 -3.540438 +f 550/599/550 551/603/551 556/600/556 +vt 0.907675 -3.538210 +f 556/600/556 551/603/551 552/604/552 +vt 0.862346 -3.535856 +f 556/600/556 552/604/552 553/605/553 +vt 0.810287 -3.533412 +vt 0.750769 -3.530911 +f 554/606/554 555/607/555 553/605/553 +f 553/605/553 555/607/555 556/600/556 +vt 0.423534 -3.521006 +f 558/602/558 559/608/559 549/569/549 +f 549/569/549 559/608/559 518/548/518 +vt 0.315788 -3.518723 +f 559/608/559 560/609/560 518/548/518 +vt 0.196211 -3.516586 +f 518/548/518 560/609/560 561/610/561 +vt 0.064072 -3.514626 +f 518/548/518 561/610/561 562/611/562 +vt -0.229709 -3.511561 +f 562/611/562 563/612/563 518/548/518 +vt -0.365612 -3.511061 +f 518/548/518 563/612/563 564/613/564 +vt -0.489536 -3.511567 +f 518/548/518 564/613/564 565/614/565 +f 565/614/565 566/546/566 518/548/518 +vt 3.551837 -0.153427 +vt 3.614211 -0.220341 +f 93/545/93 92/615/92 679/616/679 +vt 3.568800 -0.238081 +f 679/616/679 92/615/92 91/617/91 +vt 3.700719 -0.364929 +f 679/616/679 91/617/91 678/618/678 +vt 3.593612 -0.414724 +f 678/618/678 91/617/91 90/619/90 +vt 3.792898 -0.503472 +f 678/618/678 90/619/90 677/620/677 +vt 3.604812 -0.590139 +f 677/620/677 90/619/90 89/621/89 +vt 3.891009 -0.631899 +f 677/620/677 89/621/89 676/622/676 +vt 3.603287 -0.762617 +f 676/622/676 89/621/89 88/623/88 +vt 3.993993 -0.745343 +f 676/622/676 88/623/88 675/624/675 +vt 3.589995 -0.930864 +f 675/624/675 88/623/88 87/625/87 +vt 4.102877 -0.842252 +f 675/624/675 87/625/87 674/626/674 +vt 3.565898 -1.093586 +f 674/626/674 87/625/87 86/627/86 +vt 4.159915 -0.884105 +f 674/626/674 86/627/86 673/628/673 +vt 4.218780 -0.921273 +f 673/628/673 86/627/86 672/629/672 +vt 3.531716 -1.250410 +f 672/629/672 86/627/86 85/630/85 +vt 4.279462 -0.953524 +f 672/629/672 85/630/85 671/631/671 +vt 4.342088 -0.980752 +f 671/631/671 85/630/85 670/632/670 +vt 3.487359 -1.402539 +f 670/632/670 85/630/85 84/633/84 +vt 4.406788 -1.002849 +f 670/632/670 84/633/84 669/634/669 +vt 4.473692 -1.019710 +f 669/634/669 84/633/84 668/635/668 +vt 3.432978 -1.548642 +f 668/635/668 84/633/84 83/636/83 +vt 4.542037 -1.031122 +f 668/635/668 83/636/83 667/637/667 +vt 5.330577 -2.494124 +f 667/637/667 83/636/83 622/638/622 +vt 4.610485 -1.037140 +f 667/637/667 622/638/622 666/639/666 +vt 5.361915 -2.457262 +f 666/639/666 622/638/622 623/640/623 +vt 5.388273 -2.429160 +f 666/639/666 623/640/623 624/641/624 +vt 3.661642 -2.602959 +f 622/638/622 83/636/83 580/642/580 +vt 3.368755 -1.687231 +f 580/642/580 83/636/83 82/643/82 +vt 3.613773 -2.564288 +f 580/642/580 82/643/82 579/644/579 +vt 3.523358 -2.498218 +f 579/644/579 82/643/82 578/645/578 +vt 3.294870 -1.816819 +f 578/645/578 82/643/82 81/646/81 +vt 3.434192 -2.445934 +f 578/645/578 81/646/81 577/647/577 +vt 3.253831 -1.878547 +f 577/647/577 81/646/81 80/648/80 +vt 3.205931 -1.943149 +f 577/647/577 80/648/80 79/649/79 +vt 3.339174 -2.405922 +f 577/647/577 79/649/79 576/650/576 +vt 3.149935 -2.009783 +f 576/650/576 79/649/79 78/651/78 +vt 3.287121 -2.390051 +f 576/650/576 78/651/78 575/652/575 +vt 3.230888 -2.376775 +f 575/652/575 78/651/78 574/653/574 +vt 3.085330 -2.076421 +f 574/653/574 78/651/78 77/654/77 +vt 3.169642 -2.365988 +f 574/653/574 77/654/77 573/655/573 +vt 3.011604 -2.141034 +f 573/655/573 77/654/77 76/656/76 +vt 3.102549 -2.357583 +f 573/655/573 76/656/76 572/657/572 +vt 3.028978 -2.351467 +f 572/657/572 76/656/76 571/658/571 +vt 2.928306 -2.201552 +f 571/658/571 76/656/76 75/659/75 +vt 2.949552 -2.347566 +f 571/658/571 75/659/75 570/660/570 +vt 2.840621 -2.252969 +f 570/660/570 75/659/75 74/661/74 +vt 2.864416 -2.345665 +f 570/660/570 74/661/74 569/662/569 +vt 2.773577 -2.345533 +f 569/662/569 74/661/74 568/663/568 +vt 2.752304 -2.293849 +f 568/663/568 74/661/74 73/664/73 +vt 2.677041 -2.346939 +f 568/663/568 73/664/73 567/665/567 +vt 2.663616 -2.325605 +f 567/665/567 73/664/73 72/666/72 +f 567/665/567 72/666/72 71/529/71 +vt 3.712455 -2.645635 +f 580/642/580 581/667/581 622/638/622 +vt 5.311792 -2.517904 +f 622/638/622 581/667/581 621/668/621 +vt 3.767089 -2.692502 +f 621/668/621 581/667/581 582/669/582 +vt 5.288162 -2.549206 +f 621/668/621 582/669/582 620/670/620 +vt 5.259696 -2.588877 +f 620/670/620 582/669/582 619/671/619 +vt 3.826421 -2.743747 +f 619/671/619 582/669/582 583/672/583 +vt 3.858123 -2.771070 +f 619/671/619 583/672/583 584/673/584 +vt 5.227388 -2.636584 +f 619/671/619 584/673/584 618/674/618 +vt 3.875229 -2.785765 +f 618/674/618 584/673/584 585/675/585 +vt 3.897967 -2.805214 +f 618/674/618 585/675/585 586/676/586 +vt 3.926744 -2.829665 +f 586/676/586 587/677/587 618/674/618 +vt 5.192230 -2.691994 +f 618/674/618 587/677/587 617/678/617 +vt 3.961060 -2.858578 +f 617/678/617 587/677/587 588/679/588 +vt 4.000413 -2.891415 +f 617/678/617 588/679/588 589/680/589 +vt 5.155215 -2.754773 +f 617/678/617 589/680/589 616/681/616 +vt 4.044300 -2.927637 +f 616/681/616 589/680/589 590/682/590 +vt 5.117335 -2.824587 +f 616/681/616 590/682/590 615/683/615 +vt 4.143671 -3.008085 +f 615/683/615 590/682/590 591/684/591 +vt 5.079584 -2.901103 +f 615/683/615 591/684/591 614/685/614 +vt 4.255161 -3.095613 +f 614/685/614 591/684/591 592/686/592 +vt 5.042955 -2.983988 +f 614/685/614 592/686/592 613/687/613 +vt 5.008439 -3.072908 +f 613/687/613 592/686/592 612/688/612 +vt 4.498074 -3.274426 +f 612/688/612 592/686/592 593/689/593 +vt 4.977030 -3.167530 +f 612/688/612 593/689/593 611/690/611 +vt 4.615540 -3.352831 +f 611/690/611 593/689/593 594/691/594 +vt 4.950267 -3.264302 +f 611/690/611 594/691/594 610/692/610 +vt 4.669307 -3.385675 +f 610/692/610 594/691/594 595/693/595 +vt 4.939510 -3.306536 +f 610/692/610 595/693/595 609/694/609 +vt 4.718503 -3.413052 +f 609/694/609 595/693/595 596/695/596 +vt 4.929759 -3.343562 +f 609/694/609 596/695/596 608/696/608 +vt 4.920244 -3.375365 +f 608/696/608 596/695/596 607/697/607 +vt 4.761937 -3.433938 +f 607/697/607 596/695/596 597/698/597 +vt 4.910195 -3.401928 +f 607/697/607 597/698/597 606/699/606 +vt 4.797449 -3.447270 +f 606/699/606 597/698/597 598/700/598 +vt 4.898881 -3.423187 +f 606/699/606 598/700/598 605/701/605 +vt 4.825865 -3.453867 +f 605/701/605 598/700/598 599/702/599 +vt 4.885466 -3.439200 +f 605/701/605 599/702/599 604/703/604 +vt 4.877434 -3.445371 +f 604/703/604 599/702/599 603/704/603 +vt 4.868433 -3.450090 +f 603/704/603 599/702/599 602/705/602 +vt 4.859368 -3.453039 +f 602/705/602 599/702/599 601/706/601 +vt 4.848831 -3.454729 +f 601/706/601 599/702/599 600/707/600 +vt 5.439936 -2.375466 +f 624/641/624 625/708/625 666/639/666 +vt 5.471287 -2.339418 +f 666/639/666 625/708/625 626/709/626 +vt 4.747552 -1.034713 +f 666/639/666 626/709/626 665/710/665 +vt 5.508090 -2.295608 +f 665/710/665 626/709/626 627/711/627 +vt 5.551875 -2.244151 +f 665/710/665 627/711/627 628/712/628 +vt 5.603262 -2.186169 +f 628/712/628 629/713/629 665/710/665 +vt 4.884388 -1.015954 +f 665/710/665 629/713/629 664/714/664 +vt 5.707393 -2.078057 +f 664/714/664 629/713/629 630/715/630 +vt 5.018998 -0.984869 +f 664/714/664 630/715/630 663/716/663 +vt 5.810341 -1.984277 +f 663/716/663 630/715/630 631/717/631 +vt 5.150481 -0.945547 +f 663/716/663 631/717/631 662/718/662 +vt 5.913871 -1.903241 +f 662/718/662 631/717/631 632/719/632 +vt 5.401289 -0.858441 +f 662/718/662 632/719/632 661/720/661 +vt 6.019750 -1.833364 +f 661/720/661 632/719/632 633/721/633 +vt 5.519673 -0.818412 +f 661/720/661 633/721/633 660/722/660 +vt 6.126279 -1.774760 +f 660/722/660 633/721/633 634/723/634 +vt 5.633720 -0.785355 +f 660/722/660 634/723/634 659/724/659 +vt 6.299659 -0.968077 +f 659/724/659 634/723/634 650/725/650 +vt 6.226397 -0.896079 +f 659/724/659 650/725/650 651/726/651 +vt 6.223813 -1.729170 +vt 6.416535 -1.125688 +f 635/727/635 648/728/648 634/723/634 +vt 6.363231 -1.046213 +f 634/723/634 648/728/648 649/729/649 +f 634/723/634 649/729/649 650/725/650 +vt 6.460282 -1.204262 +f 648/728/648 635/727/635 647/730/647 +vt 6.310576 -1.692078 +f 647/730/647 635/727/635 636/731/636 +vt 6.495776 -1.283412 +f 647/730/647 636/731/636 646/732/646 +vt 6.521041 -1.360246 +f 646/732/646 636/731/636 645/733/645 +vt 6.385376 -1.658609 +f 645/733/645 636/731/636 637/734/637 +vt 6.534675 -1.440196 +f 645/733/645 637/734/637 644/735/644 +vt 6.534227 -1.483326 +f 644/735/644 637/734/637 643/736/643 +vt 6.447654 -1.623400 +f 643/736/643 637/734/637 638/737/638 +vt 6.473709 -1.603258 +f 643/736/643 638/737/638 639/738/639 +vt 6.495870 -1.580405 +f 639/738/639 640/739/640 643/736/643 +vt 6.526777 -1.522353 +f 643/736/643 640/739/640 642/740/642 +vt 6.513669 -1.553979 +f 642/740/642 640/739/640 641/741/641 +vt 5.743852 -0.762654 +f 659/724/659 651/726/651 658/742/658 +vt 6.143852 -0.834940 +f 658/742/658 651/726/651 652/743/652 +vt 6.098961 -0.809714 +f 658/742/658 652/743/652 653/744/653 +vt 6.051558 -0.788694 +f 653/744/653 654/745/654 658/742/658 +vt 6.002742 -0.772635 +f 658/742/658 654/745/654 655/746/655 +vt 5.953057 -0.761620 +f 658/742/658 655/746/655 656/747/656 +vt 5.850490 -0.753694 +f 656/747/656 657/748/657 658/742/658 +vt -2.574817 -2.349651 +vt -2.663616 -2.325605 +vt -2.672521 -2.347035 +f 140/749/140 139/750/139 783/751/783 +vt -2.752304 -2.293849 +f 783/751/783 139/750/139 138/752/138 +vt -2.764375 -2.345604 +f 783/751/783 138/752/138 782/753/782 +vt -2.850560 -2.345527 +f 782/753/782 138/752/138 781/754/781 +vt -2.840621 -2.252969 +f 781/754/781 138/752/138 137/755/137 +vt -2.931257 -2.346976 +f 781/754/781 137/755/137 780/756/780 +vt -2.928306 -2.201552 +f 780/756/780 137/755/137 136/757/136 +vt -3.006646 -2.350120 +f 780/756/780 136/757/136 779/758/779 +vt -3.011604 -2.141034 +f 779/758/779 136/757/136 135/759/135 +vt -3.076909 -2.355130 +f 779/758/779 135/759/135 778/760/778 +vt -3.142148 -2.362164 +f 778/760/778 135/759/135 777/761/777 +vt -3.085330 -2.076421 +f 777/761/777 135/759/135 134/762/134 +vt -3.201981 -2.371254 +f 777/761/777 134/762/134 776/763/776 +vt -3.307658 -2.395846 +f 776/763/776 134/762/134 775/764/775 +vt -3.149935 -2.009783 +f 775/764/775 134/762/134 133/765/133 +vt -3.205931 -1.943149 +f 775/764/775 133/765/133 132/766/132 +vt -3.399469 -2.429496 +f 775/764/775 132/766/132 774/767/774 +vt -3.253831 -1.878547 +f 774/767/774 132/766/132 131/768/131 +vt -3.483272 -2.472906 +f 774/767/774 131/768/131 773/769/773 +vt -3.294870 -1.816819 +f 773/769/773 131/768/131 130/770/130 +vt -3.564954 -2.527120 +f 773/769/773 130/770/130 772/771/772 +vt -3.368755 -1.687231 +f 772/771/772 130/770/130 129/772/129 +vt -3.649739 -2.593038 +f 772/771/772 129/772/129 771/773/771 +vt -3.432978 -1.548642 +f 771/773/771 129/772/129 128/774/128 +vt -5.331195 -2.493352 +f 771/773/771 128/774/128 734/775/734 +vt -4.583402 -1.035371 +f 734/775/734 128/774/128 690/776/690 +vt -5.366858 -2.451605 +f 734/775/734 690/776/690 733/777/733 +vt -4.695986 -1.037729 +f 733/777/733 690/776/690 691/778/691 +vt -5.422574 -2.393985 +f 733/777/733 691/778/691 732/779/732 +vt -5.450806 -2.363275 +f 732/779/732 691/778/691 731/780/731 +vt -5.482295 -2.326412 +f 731/780/731 691/778/691 730/781/730 +vt -5.518663 -2.283077 +f 730/781/730 691/778/691 729/782/729 +vt -5.561689 -2.232858 +f 729/782/729 691/778/691 728/783/728 +vt -4.808991 -1.028093 +f 728/783/728 691/778/691 692/784/692 +vt -5.659531 -2.126108 +f 728/783/728 692/784/692 727/785/727 +vt -4.921200 -1.008541 +f 727/785/727 692/784/692 693/786/693 +vt -5.758550 -2.029764 +f 727/785/727 693/786/693 726/787/726 +vt -5.032263 -0.981228 +f 726/787/726 693/786/693 694/788/694 +vt -5.860205 -1.943613 +f 726/787/726 694/788/694 725/789/725 +vt -5.141521 -0.948395 +f 725/789/725 694/788/694 695/790/695 +vt -5.966225 -1.867137 +f 725/789/725 695/790/695 724/791/724 +vt -5.352269 -0.875492 +f 724/791/724 695/790/695 696/792/696 +vt -6.076454 -1.800826 +f 724/791/724 696/792/696 723/793/723 +vt -5.552988 -0.807654 +f 723/793/723 696/792/696 697/794/697 +vt -5.649736 -0.781146 +f 723/793/723 697/794/697 698/795/698 +vt -4.473792 -1.019731 +f 690/776/690 128/774/128 689/796/689 +vt -3.487359 -1.402539 +f 689/796/689 128/774/128 127/797/127 +vt -4.367036 -0.989979 +f 689/796/689 127/797/127 688/798/688 +vt -3.531716 -1.250410 +f 688/798/688 127/797/127 126/799/126 +vt -4.264601 -0.946179 +f 688/798/688 126/799/126 687/800/687 +vt -3.565898 -1.093586 +f 687/800/687 126/799/126 125/801/125 +vt -4.169509 -0.890580 +f 687/800/687 125/801/125 686/802/686 +vt -4.081196 -0.824762 +f 686/802/686 125/801/125 685/803/685 +vt -3.589995 -0.930864 +f 685/803/685 125/801/125 124/804/124 +vt -3.998938 -0.750219 +f 685/803/685 124/804/124 684/805/684 +vt -3.603287 -0.762617 +f 684/805/684 124/804/124 123/806/123 +vt -3.921447 -0.667711 +f 684/805/684 123/806/123 683/807/683 +vt -3.848114 -0.578283 +f 683/807/683 123/806/123 682/808/682 +vt -3.604812 -0.590139 +f 682/808/682 123/806/123 122/809/122 +vt -3.778579 -0.483174 +f 682/808/682 122/809/122 681/810/681 +vt -3.593612 -0.414724 +f 681/810/681 122/809/122 121/811/121 +vt -3.649456 -0.280861 +f 681/810/681 121/811/121 680/812/680 +vt -3.568800 -0.238081 +f 680/812/680 121/811/121 120/813/120 +vt -3.551837 -0.153427 +f 680/812/680 120/813/120 119/814/119 +vt -3.532551 -0.073126 +f 119/814/119 118/815/118 680/812/680 +vt -5.744158 -0.762517 +vt -6.244783 -0.912497 +f 699/816/699 705/817/705 698/795/698 +vt -6.308671 -0.978229 +f 698/795/698 705/817/705 706/818/706 +vt -6.179153 -1.749208 +f 698/795/698 706/818/706 722/819/722 +vt -6.365315 -1.049081 +f 722/819/722 706/818/706 707/820/707 +vt -6.414118 -1.121750 +f 722/819/722 707/820/707 708/821/708 +vt -6.174055 -0.855018 +f 705/817/705 699/816/699 704/822/704 +vt -5.836311 -0.753974 +f 704/822/704 699/816/699 700/823/700 +vt -6.096302 -0.808387 +f 704/822/704 700/823/700 703/824/703 +vt -5.925898 -0.757685 +f 703/824/703 700/823/700 701/825/701 +vt -6.012428 -0.775390 +f 703/824/703 701/825/701 702/826/702 +vt -6.454873 -1.193673 +f 708/821/708 709/827/709 722/819/722 +vt -6.271156 -1.708709 +f 722/819/722 709/827/709 721/828/721 +vt -6.488904 -1.266399 +f 721/828/721 709/827/709 710/829/710 +vt -6.514849 -1.338241 +f 721/828/721 710/829/710 711/830/711 +vt -6.351456 -1.674326 +f 721/828/721 711/830/711 720/831/720 +vt -6.531284 -1.409248 +f 720/831/720 711/830/711 712/832/712 +vt -6.419209 -1.640979 +f 720/831/720 712/832/712 719/833/719 +vt -6.535109 -1.448415 +f 719/833/719 712/832/712 713/834/713 +vt -6.533646 -1.488791 +f 719/833/719 713/834/713 714/835/714 +vt -6.525878 -1.525240 +vt -6.495474 -1.580884 +f 715/836/715 717/837/717 714/835/714 +vt -6.473808 -1.603170 +f 714/835/714 717/837/717 718/838/718 +f 714/835/714 718/838/718 719/833/719 +vt -6.512914 -1.555357 +f 715/836/715 716/839/716 717/837/717 +f 722/819/722 723/793/723 698/795/698 +vt -3.742805 -2.671535 +f 771/773/771 734/775/734 770/840/770 +vt -5.308109 -2.522678 +f 770/840/770 734/775/734 735/841/735 +vt -5.276279 -2.565521 +f 770/840/770 735/841/735 736/842/736 +vt -5.237256 -2.621761 +vt -3.827334 -2.744485 +f 737/843/737 768/844/768 736/842/736 +vt -3.794124 -2.715828 +f 736/842/736 768/844/768 769/845/769 +f 736/842/736 769/845/769 770/840/770 +vt -5.193111 -2.690633 +vt -3.923248 -2.826252 +f 738/846/738 766/847/766 737/843/737 +vt -3.870766 -2.781711 +f 737/843/737 766/847/766 767/848/767 +f 737/843/737 767/848/767 768/844/768 +vt -3.983610 -2.876851 +f 766/847/766 738/846/738 765/849/765 +vt -5.145918 -2.771376 +f 765/849/765 738/846/738 739/850/739 +vt -4.050679 -2.932254 +f 765/849/765 739/850/739 764/851/764 +vt -4.123285 -2.991206 +f 764/851/764 739/850/739 763/852/763 +vt -5.097749 -2.863225 +f 763/852/763 739/850/739 740/853/740 +vt -4.280418 -3.114738 +f 763/852/763 740/853/740 762/854/762 +vt -5.050676 -2.965418 +f 762/854/762 740/853/740 741/855/741 +vt -5.006773 -3.077191 +f 762/854/762 741/855/741 742/856/742 +vt -4.968111 -3.197781 +vt -4.528245 -3.295212 +f 743/857/743 760/858/760 742/856/742 +vt -4.445637 -3.237408 +f 742/856/742 760/858/760 761/859/761 +f 742/856/742 761/859/761 762/854/762 +vt -4.607242 -3.347539 +f 760/858/760 743/857/743 759/860/759 +vt -4.952116 -3.257159 +f 759/860/759 743/857/743 744/861/744 +vt -4.679870 -3.391804 +f 759/860/759 744/861/744 758/862/758 +vt -4.938901 -3.309000 +f 758/862/758 744/861/744 745/863/745 +vt -4.927037 -3.353272 +f 758/862/758 745/863/745 746/864/746 +vt -4.915088 -3.389957 +vt -4.771673 -3.438009 +f 747/865/747 756/866/756 746/864/746 +vt -4.743882 -3.425736 +f 746/864/746 756/866/756 757/867/757 +f 746/864/746 757/867/757 758/862/758 +vt -4.795636 -3.446704 +f 756/866/756 747/865/747 755/868/755 +vt -4.901607 -3.418815 +f 755/868/755 747/865/747 748/869/748 +vt -4.833607 -3.454722 +f 755/868/755 748/869/748 754/870/754 +vt -4.893281 -3.430893 +f 754/870/754 748/869/748 749/871/749 +vt -4.884846 -3.439755 +f 754/870/754 749/871/749 750/872/750 +vt -4.874084 -3.447368 +vt -4.861898 -3.452371 +f 751/873/751 752/874/752 750/872/750 +vt -4.849657 -3.454653 +f 750/872/750 752/874/752 753/875/753 +f 750/872/750 753/875/753 754/870/754 +vt 2.475379 -0.222191 +vt 2.492378 -0.304194 +vt 2.509266 -0.289246 +f 19/876/19 18/877/18 861/878/861 +vt 2.550148 -0.351500 +f 861/878/861 18/877/18 860/879/860 +vt 2.506993 -0.381353 +f 860/879/860 18/877/18 17/880/17 +vt 2.599533 -0.407295 +f 860/879/860 17/880/17 859/881/859 +vt 2.519352 -0.453888 +f 859/881/859 17/880/17 16/882/16 +vt 2.656329 -0.453368 +f 859/881/859 16/882/16 858/883/858 +vt 2.529580 -0.522020 +f 858/883/858 16/882/16 15/884/15 +vt 2.719971 -0.489287 +f 858/883/858 15/884/15 857/885/857 +vt 2.790928 -0.515801 +f 857/885/857 15/884/15 856/886/856 +vt 2.544153 -0.645960 +f 856/886/856 15/884/15 14/887/14 +vt 2.869904 -0.533528 +f 856/886/856 14/887/14 855/888/855 +vt 2.957286 -0.542839 +f 855/888/855 14/887/14 854/889/854 +vt 3.052856 -0.544123 +f 854/889/854 14/887/14 853/890/853 +vt 2.551727 -0.754942 +f 853/890/853 14/887/14 13/891/13 +vt 3.651836 -0.851119 +f 853/890/853 13/891/13 787/892/787 +vt 2.553272 -0.851128 +f 787/892/787 13/891/13 12/893/12 +vt 3.380736 -0.956948 +f 787/892/787 12/893/12 786/894/786 +vt 2.549409 -0.937122 +f 786/894/786 12/893/12 11/895/11 +vt 3.106797 -1.071666 +f 786/894/786 11/895/11 785/896/785 +vt 2.540596 -1.013854 +f 785/896/785 11/895/11 10/897/10 +vt 2.527296 -1.082134 +f 785/896/785 10/897/10 9/898/9 +vt 2.830804 -1.193162 +f 785/896/785 9/898/9 784/899/784 +vt 2.509928 -1.142892 +f 784/899/784 9/898/9 8/900/8 +vt 2.488680 -1.197446 +f 784/899/784 8/900/8 7/901/7 +vt 2.463794 -1.246560 +f 7/901/7 6/902/6 784/899/784 +vt 2.435534 -1.290922 +f 784/899/784 6/902/6 5/903/5 +vt 2.404046 -1.331379 +f 784/899/784 5/903/5 4/904/4 +vt 2.368029 -1.370121 +f 4/904/4 3/905/3 784/899/784 +vt 2.325802 -1.408612 +f 784/899/784 3/905/3 2/906/2 +vt 2.275793 -1.448045 +f 784/899/784 2/906/2 1/907/1 +vt 3.921140 -0.755644 +vt 3.264960 -0.525176 +f 788/908/788 851/909/851 787/892/787 +vt 3.155489 -0.537991 +f 787/892/787 851/909/851 852/910/852 +f 787/892/787 852/910/852 853/890/853 +vt 4.188815 -0.672570 +vt 3.503629 -0.482448 +f 789/911/789 849/912/849 788/908/788 +vt 3.381072 -0.506416 +f 788/908/788 849/912/849 850/913/850 +f 788/908/788 850/913/850 851/909/851 +vt 4.453104 -0.604744 +vt 3.765900 -0.422134 +f 790/914/790 847/915/847 789/911/789 +vt 3.632252 -0.454044 +f 789/911/789 847/915/847 848/916/848 +f 789/911/789 848/916/848 849/912/849 +vt 3.903834 -0.387599 +f 847/915/847 790/914/790 846/917/846 +vt 4.583429 -0.577440 +f 846/917/846 790/914/790 791/918/791 +vt 4.189751 -0.314161 +f 846/917/846 791/918/791 845/919/845 +vt 4.712250 -0.555016 +f 845/919/845 791/918/791 792/920/792 +vt 4.839345 -0.537828 +f 845/919/845 792/920/792 793/921/793 +vt 4.484396 -0.240734 +f 845/919/845 793/921/793 844/922/844 +vt 4.964495 -0.526233 +f 844/922/844 793/921/793 794/923/794 +vt 4.782158 -0.174326 +f 844/922/844 794/923/794 843/924/843 +vt 5.087481 -0.520587 +f 843/924/843 794/923/794 795/925/795 +vt 5.208078 -0.521246 +f 843/924/843 795/925/795 796/926/796 +vt 5.077430 -0.121940 +f 843/924/843 796/926/796 842/927/842 +vt 5.323008 -0.528281 +f 842/927/842 796/926/796 797/928/797 +vt 5.222739 -0.103152 +f 842/927/842 797/928/797 841/929/841 +vt 5.366919 -0.090410 +f 841/929/841 797/928/797 840/930/840 +vt 6.037196 -0.162011 +f 840/930/840 797/928/797 835/931/835 +vt 5.508881 -0.084892 +f 840/930/840 835/931/835 839/932/839 +vt 5.647366 -0.087800 +f 839/932/839 835/931/835 838/933/838 +vt 5.910941 -0.124206 +f 838/933/838 835/931/835 836/934/836 +vt 5.781111 -0.100337 +f 838/933/838 836/934/836 837/935/837 +vt 5.429870 -0.541135 +vt 6.212265 -0.249602 +f 798/936/798 832/937/832 797/928/797 +vt 6.156672 -0.216118 +f 797/928/797 832/937/832 833/938/833 +vt 6.098001 -0.186889 +f 797/928/797 833/938/833 834/939/834 +vt 5.529087 -0.559195 +vt 6.312952 -0.329627 +f 799/940/799 830/941/830 798/936/798 +vt 6.264420 -0.287393 +f 798/936/798 830/941/830 831/942/831 +f 798/936/798 831/942/831 832/937/832 +vt 6.357681 -0.376438 +f 830/941/830 799/940/799 829/943/829 +vt 5.621079 -0.581848 +f 829/943/829 799/940/799 800/944/800 +vt 6.397387 -0.426525 +f 829/943/829 800/944/800 828/945/828 +vt 6.430938 -0.477581 +f 828/945/828 800/944/800 827/946/827 +vt 5.706270 -0.608483 +f 827/946/827 800/944/800 801/947/801 +vt 6.458823 -0.528862 +f 827/946/827 801/947/801 826/948/826 +vt 5.785081 -0.638487 +f 826/948/826 801/947/801 802/949/802 +vt 6.481538 -0.579630 +f 826/948/826 802/949/802 825/950/825 +vt 5.857931 -0.671250 +f 825/950/825 802/949/802 803/951/803 +vt 5.925211 -0.706180 +f 825/950/825 803/951/803 804/952/804 +vt 6.513656 -0.677575 +f 825/950/825 804/952/804 824/953/824 +vt 5.987312 -0.742661 +f 824/953/824 804/952/804 805/954/805 +vt 6.044627 -0.780070 +f 824/953/824 805/954/805 806/955/806 +vt 6.531523 -0.771164 +f 824/953/824 806/955/806 823/956/823 +vt 6.146477 -0.855181 +f 823/956/823 806/955/806 807/957/807 +vt 6.537002 -0.857008 +f 823/956/823 807/957/807 822/958/822 +vt 6.233893 -0.926517 +f 822/958/822 807/957/807 808/959/808 +vt 6.531602 -0.931612 +f 822/958/822 808/959/808 821/960/821 +vt 6.309154 -0.988229 +f 821/960/821 808/959/808 809/961/809 +vt 6.516093 -0.992523 +f 821/960/821 809/961/809 820/962/820 +vt 6.342698 -1.013381 +f 820/962/820 809/961/809 810/963/810 +vt 6.503055 -1.019114 +f 820/962/820 810/963/810 819/964/819 +vt 6.373783 -1.033618 +f 819/964/819 810/963/810 811/965/811 +vt 6.494613 -1.030948 +f 819/964/819 811/965/811 818/966/818 +vt 6.484564 -1.041292 +f 818/966/818 811/965/811 817/967/817 +vt 6.402959 -1.048249 +f 817/967/817 811/965/811 812/968/812 +vt 6.472797 -1.049479 +f 817/967/817 812/968/812 816/969/816 +vt 6.459698 -1.054764 +f 816/969/816 812/968/812 815/970/815 +vt 6.431460 -1.056241 +f 815/970/815 812/968/812 813/971/813 +vt 6.445628 -1.056942 +f 815/970/815 813/971/813 814/972/814 +f 834/939/834 835/931/835 797/928/797 +vt -2.325802 -1.408612 +vt -2.830804 -1.193162 +f 52/517/52 51/973/51 939/974/939 +vt -2.368029 -1.370121 +f 939/974/939 51/973/51 50/975/50 +vt -2.404046 -1.331379 +f 939/974/939 50/975/50 49/976/49 +vt -2.435534 -1.290922 +f 49/976/49 48/977/48 939/974/939 +vt -2.463794 -1.246560 +f 939/974/939 48/977/48 47/978/47 +vt -2.488680 -1.197446 +f 939/974/939 47/978/47 46/979/46 +vt -2.509928 -1.142892 +f 46/979/46 45/980/45 939/974/939 +vt -2.527296 -1.082134 +f 939/974/939 45/980/45 44/981/44 +vt -3.106797 -1.071666 +f 939/974/939 44/981/44 938/982/938 +vt -2.540596 -1.013854 +f 938/982/938 44/981/44 43/983/43 +vt -2.549409 -0.937122 +f 938/982/938 43/983/43 42/984/42 +vt -3.380736 -0.956948 +f 938/982/938 42/984/42 937/985/937 +vt -2.553272 -0.851128 +f 937/985/937 42/984/42 41/986/41 +vt -3.651836 -0.851119 +f 937/985/937 41/986/41 936/987/936 +vt -2.551727 -0.754942 +f 936/987/936 41/986/41 40/988/40 +vt -3.052856 -0.544123 +f 936/987/936 40/988/40 870/989/870 +vt -2.544153 -0.645960 +f 870/989/870 40/988/40 39/990/39 +vt -2.957286 -0.542839 +f 870/989/870 39/990/39 869/991/869 +vt -2.869904 -0.533528 +f 869/991/869 39/990/39 868/992/868 +vt -2.790928 -0.515801 +f 868/992/868 39/990/39 867/993/867 +vt -2.529580 -0.522020 +f 867/993/867 39/990/39 38/994/38 +vt -2.719971 -0.489287 +f 867/993/867 38/994/38 866/995/866 +vt -2.656329 -0.453368 +f 866/995/866 38/994/38 865/996/865 +vt -2.519352 -0.453888 +f 865/996/865 38/994/38 37/997/37 +vt -2.599533 -0.407295 +f 865/996/865 37/997/37 864/998/864 +vt -2.506993 -0.381353 +f 864/998/864 37/997/37 36/999/36 +vt -2.550148 -0.351500 +f 864/998/864 36/999/36 863/1000/863 +vt -2.492378 -0.304194 +f 863/1000/863 36/999/36 35/1001/35 +vt -2.509266 -0.289246 +f 863/1000/863 35/1001/35 862/1002/862 +f 862/1002/862 35/1001/35 34/500/34 +vt -3.155489 -0.537991 +f 870/989/870 871/1003/871 936/987/936 +vt -3.264960 -0.525176 +f 936/987/936 871/1003/871 872/1004/872 +vt -3.921140 -0.755644 +f 936/987/936 872/1004/872 935/1005/935 +vt -3.381072 -0.506416 +f 935/1005/935 872/1004/872 873/1006/873 +vt -3.503629 -0.482448 +f 935/1005/935 873/1006/873 874/1007/874 +vt -4.188815 -0.672570 +f 935/1005/935 874/1007/874 934/1008/934 +vt -3.632252 -0.454044 +f 934/1008/934 874/1007/874 875/1009/875 +vt -3.765900 -0.422134 +f 934/1008/934 875/1009/875 876/1010/876 +vt -4.453104 -0.604744 +f 934/1008/934 876/1010/876 933/1011/933 +vt -3.903834 -0.387599 +f 933/1011/933 876/1010/876 877/1012/877 +vt -4.583429 -0.577440 +f 933/1011/933 877/1012/877 932/1013/932 +vt -4.189751 -0.314161 +f 932/1013/932 877/1012/877 878/1014/878 +vt -4.712250 -0.555016 +f 932/1013/932 878/1014/878 931/1015/931 +vt -4.839345 -0.537828 +f 931/1015/931 878/1014/878 930/1016/930 +vt -4.484396 -0.240734 +f 930/1016/930 878/1014/878 879/1017/879 +vt -4.964495 -0.526233 +f 930/1016/930 879/1017/879 929/1018/929 +vt -4.782158 -0.174326 +f 929/1018/929 879/1017/879 880/1019/880 +vt -5.087481 -0.520587 +f 929/1018/929 880/1019/880 928/1020/928 +vt -5.208078 -0.521246 +f 928/1020/928 880/1019/880 927/1021/927 +vt -5.077430 -0.121940 +f 927/1021/927 880/1019/880 881/1022/881 +vt -5.323008 -0.528281 +f 927/1021/927 881/1022/881 926/1023/926 +vt -5.222739 -0.103152 +f 926/1023/926 881/1022/881 882/1024/882 +vt -5.366919 -0.090410 +f 926/1023/926 882/1024/882 883/1025/883 +vt -6.037196 -0.162011 +f 926/1023/926 883/1025/883 888/1026/888 +vt -5.508881 -0.084892 +f 888/1026/888 883/1025/883 884/1027/884 +vt -5.647366 -0.087800 +f 888/1026/888 884/1027/884 885/1028/885 +vt -5.781111 -0.100337 +vt -5.910941 -0.124206 +f 886/1029/886 887/1030/887 885/1028/885 +f 885/1028/885 887/1030/887 888/1026/888 +vt -6.098001 -0.186889 +f 888/1026/888 889/1031/889 926/1023/926 +vt -6.156672 -0.216118 +f 926/1023/926 889/1031/889 890/1032/890 +vt -6.212265 -0.249602 +f 926/1023/926 890/1032/890 891/1033/891 +vt -5.429870 -0.541135 +f 926/1023/926 891/1033/891 925/1034/925 +vt -6.264420 -0.287393 +f 925/1034/925 891/1033/891 892/1035/892 +vt -6.312952 -0.329627 +f 925/1034/925 892/1035/892 893/1036/893 +vt -5.529087 -0.559195 +f 925/1034/925 893/1036/893 924/1037/924 +vt -6.357681 -0.376438 +f 924/1037/924 893/1036/893 894/1038/894 +vt -5.621079 -0.581848 +f 924/1037/924 894/1038/894 923/1039/923 +vt -6.397387 -0.426525 +f 923/1039/923 894/1038/894 895/1040/895 +vt -6.430938 -0.477581 +f 923/1039/923 895/1040/895 896/1041/896 +vt -5.706270 -0.608483 +f 923/1039/923 896/1041/896 922/1042/922 +vt -6.458823 -0.528862 +f 922/1042/922 896/1041/896 897/1043/897 +vt -5.785081 -0.638487 +f 922/1042/922 897/1043/897 921/1044/921 +vt -6.481538 -0.579630 +f 921/1044/921 897/1043/897 898/1045/898 +vt -5.857931 -0.671250 +f 921/1044/921 898/1045/898 920/1046/920 +vt -5.925211 -0.706180 +f 920/1046/920 898/1045/898 919/1047/919 +vt -6.513656 -0.677575 +f 919/1047/919 898/1045/898 899/1048/899 +vt -5.987312 -0.742661 +f 919/1047/919 899/1048/899 918/1049/918 +vt -6.044627 -0.780070 +f 918/1049/918 899/1048/899 917/1050/917 +vt -6.531523 -0.771164 +f 917/1050/917 899/1048/899 900/1051/900 +vt -6.146477 -0.855181 +f 917/1050/917 900/1051/900 916/1052/916 +vt -6.537002 -0.857008 +f 916/1052/916 900/1051/900 901/1053/901 +vt -6.233893 -0.926517 +f 916/1052/916 901/1053/901 915/1054/915 +vt -6.531602 -0.931612 +f 915/1054/915 901/1053/901 902/1055/902 +vt -6.309154 -0.988229 +f 915/1054/915 902/1055/902 914/1056/914 +vt -6.516093 -0.992523 +f 914/1056/914 902/1055/902 903/1057/903 +vt -6.342698 -1.013381 +f 914/1056/914 903/1057/903 913/1058/913 +vt -6.503055 -1.019114 +f 913/1058/913 903/1057/903 904/1059/904 +vt -6.373783 -1.033618 +f 913/1058/913 904/1059/904 912/1060/912 +vt -6.494613 -1.030948 +f 912/1060/912 904/1059/904 905/1061/905 +vt -6.484564 -1.041292 +f 912/1060/912 905/1061/905 906/1062/906 +vt -6.402959 -1.048249 +f 912/1060/912 906/1062/906 911/1063/911 +vt -6.472797 -1.049479 +f 911/1063/911 906/1062/906 907/1064/907 +vt -6.459698 -1.054764 +f 911/1063/911 907/1064/907 908/1065/908 +vt -6.445628 -1.056942 +vt -6.431460 -1.056241 +f 909/1066/909 910/1067/910 908/1065/908 +f 908/1065/908 910/1067/910 911/1063/911 +vt -1.780951 2.755531 +vt -1.785011 2.909914 +vt -2.710623 2.964133 +f 1138/1068/1138 940/1069/940 969/1070/969 +vt -1.788837 2.988547 +f 969/1070/969 940/1069/940 941/1071/941 +vt -2.678780 3.095449 +f 969/1070/969 941/1071/941 968/1072/968 +vt -1.794029 3.062116 +f 968/1072/968 941/1071/941 942/1073/942 +vt -2.661290 3.153999 +f 968/1072/968 942/1073/942 967/1074/967 +vt -2.201410 3.452811 +f 967/1074/967 942/1073/942 955/1075/955 +vt -2.642703 3.207497 +f 967/1074/967 955/1075/955 966/1076/966 +vt -2.622990 3.255773 +f 966/1076/966 955/1075/955 965/1077/965 +vt -2.332477 3.461702 +f 965/1077/965 955/1075/955 956/1078/956 +vt -2.602128 3.298711 +f 965/1077/965 956/1078/956 964/1079/964 +vt -2.580107 3.336257 +f 964/1079/964 956/1078/956 963/1080/963 +vt -2.556923 3.368426 +f 963/1080/963 956/1078/956 962/1081/962 +vt -2.532581 3.395310 +f 962/1081/962 956/1078/956 961/1082/961 +vt -2.394418 3.459846 +f 961/1082/961 956/1078/956 957/1083/957 +vt -2.507097 3.417088 +f 961/1082/961 957/1083/957 960/1084/960 +vt -2.480497 3.434027 +f 960/1084/960 957/1083/957 959/1085/959 +vt -2.452815 3.446488 +f 959/1085/959 957/1083/957 958/1086/958 +vt -1.800761 3.130093 +f 942/1073/942 943/1087/943 955/1075/955 +vt -1.809197 3.192032 +f 955/1075/955 943/1087/943 944/1088/944 +vt -2.069107 3.454389 +f 955/1075/955 944/1088/944 954/1089/954 +vt -1.819488 3.247568 +f 954/1089/954 944/1088/944 945/1090/945 +vt -1.831766 3.296418 +f 954/1089/954 945/1090/945 946/1091/946 +vt -1.846143 3.338384 +f 946/1091/946 947/1092/947 954/1089/954 +vt -2.007170 3.455929 +f 954/1089/954 947/1092/947 953/1093/953 +vt -1.862706 3.373381 +f 953/1093/953 947/1092/947 948/1094/948 +vt -1.881501 3.401480 +f 953/1093/953 948/1094/948 949/1095/949 +vt -1.902533 3.422950 +f 949/1095/949 950/1096/950 953/1093/953 +vt -1.951043 3.448270 +f 953/1093/953 950/1096/950 952/1097/952 +vt -1.925750 3.438298 +f 952/1097/952 950/1096/950 951/1098/951 +vt -2.738608 2.815882 +f 969/1070/969 970/1099/970 1138/1068/1138 +vt -1.779730 2.590400 +f 1138/1068/1138 970/1099/970 1137/1100/1137 +vt -2.763199 2.653660 +f 1137/1100/1137 970/1099/970 971/1101/971 +vt -2.784930 2.480895 +f 1137/1100/1137 971/1101/971 972/1102/972 +vt -1.782030 2.245044 +f 1137/1100/1137 972/1102/972 1136/1103/1136 +vt -2.804393 2.301299 +f 1136/1103/1136 972/1102/972 973/1104/973 +vt -1.784271 2.072949 +f 1136/1103/1136 973/1104/973 1135/1105/1135 +vt -2.839043 1.936971 +f 1135/1105/1135 973/1104/973 974/1106/974 +vt -1.786925 1.905928 +f 1135/1105/1135 974/1106/974 1134/1107/1134 +vt -1.790104 1.746796 +f 1134/1107/1134 974/1106/974 1133/1108/1133 +vt -2.855524 1.759709 +f 1133/1108/1133 974/1106/974 975/1109/975 +vt -1.794042 1.597807 +f 1133/1108/1133 975/1109/975 1132/1110/1132 +vt -2.872299 1.590251 +f 1132/1110/1132 975/1109/975 976/1111/976 +vt -1.798933 1.460674 +f 1132/1110/1132 976/1111/976 1131/1112/1131 +vt -2.889986 1.431481 +f 1131/1112/1131 976/1111/976 977/1113/977 +vt -1.804759 1.336602 +f 1131/1112/1131 977/1113/977 1130/1114/1130 +vt -1.811140 1.226312 +f 1130/1114/1130 977/1113/977 1129/1115/1129 +vt -2.909180 1.285750 +f 1129/1115/1129 977/1113/977 978/1116/978 +vt -1.817222 1.130077 +f 1129/1115/1129 978/1116/978 1128/1117/1128 +vt -2.930433 1.154718 +f 1128/1117/1128 978/1116/978 979/1118/979 +vt -1.821549 1.047749 +f 1128/1117/1128 979/1118/979 1127/1119/1127 +vt -1.821844 0.978773 +f 1127/1119/1127 979/1118/979 1126/1120/1126 +vt -2.954242 1.039143 +f 1126/1120/1126 979/1118/979 980/1121/980 +vt -1.814759 0.922201 +f 1126/1120/1126 980/1121/980 1125/1122/1125 +vt -2.973976 0.962739 +f 1125/1122/1125 980/1121/980 981/1123/981 +vt -2.995544 0.894446 +f 1125/1122/1125 981/1123/981 982/1124/982 +vt -1.807083 0.898171 +f 1125/1122/1125 982/1124/982 1124/1125/1124 +vt -3.019085 0.833533 +f 1124/1125/1124 982/1124/982 983/1126/983 +vt -1.795783 0.876728 +f 1124/1125/1124 983/1126/983 1123/1127/1123 +vt -3.044709 0.778844 +f 1123/1127/1123 983/1126/983 984/1128/984 +vt -1.780128 0.857663 +f 1123/1127/1123 984/1128/984 1122/1129/1122 +vt -3.102453 0.680674 +f 1122/1129/1122 984/1128/984 985/1130/985 +vt -1.759347 0.840756 +f 1122/1129/1122 985/1130/985 1121/1131/1121 +vt -3.168985 0.580987 +f 1121/1131/1121 985/1130/985 986/1132/986 +vt -3.205586 0.524507 +f 1121/1131/1121 986/1132/986 987/1133/987 +vt -3.244472 0.461181 +f 987/1133/987 988/1134/988 1121/1131/1121 +vt -1.732691 0.825787 +f 1121/1131/1121 988/1134/988 1120/1135/1120 +vt -1.699491 0.812542 +f 1120/1135/1120 988/1134/988 1119/1136/1119 +vt -1.659233 0.800828 +f 1119/1136/1119 988/1134/988 1118/1137/1118 +vt -1.611612 0.790482 +f 1118/1137/1118 988/1134/988 1117/1138/1117 +vt -1.556547 0.781372 +f 1117/1138/1117 988/1134/988 1116/1139/1116 +vt -1.494158 0.773394 +f 1116/1139/1116 988/1134/988 1115/1140/1115 +vt -1.424729 0.766470 +f 1115/1140/1115 988/1134/988 1114/1141/1114 +vt -1.348679 0.760542 +f 1114/1141/1114 988/1134/988 1113/1142/1113 +vt -1.266529 0.755568 +f 1113/1142/1113 988/1134/988 1112/1143/1112 +vt -3.285733 0.390038 +f 1112/1143/1112 988/1134/988 989/1144/989 +vt -3.329492 0.310848 +f 1112/1143/1112 989/1144/989 990/1145/990 +vt -1.178894 0.751521 +f 1112/1143/1112 990/1145/990 1111/1146/1111 +vt -3.375897 0.223975 +f 1111/1146/1111 990/1145/990 991/1147/991 +vt -3.425104 0.130217 +f 1111/1146/1111 991/1147/991 992/1148/992 +vt -3.596763 -0.448347 +f 1111/1146/1111 992/1148/992 159/1149/159 +vt -3.477271 0.030707 +f 159/1149/159 992/1148/992 993/1150/993 +vt -3.572262 -0.257666 +f 159/1149/159 993/1150/993 160/1151/160 +f 160/1151/160 993/1150/993 161/815/161 +vt -3.605626 -0.642216 +f 159/1149/159 158/1152/158 1111/1146/1111 +vt -3.599108 -0.833522 +f 1111/1146/1111 158/1152/158 157/1153/157 +vt -2.033428 -2.372718 +f 1111/1146/1111 157/1153/157 996/1154/996 +vt -3.578151 -1.020397 +f 996/1154/996 157/1153/157 156/1155/156 +vt -3.543702 -1.201015 +f 996/1154/996 156/1155/156 155/1156/155 +vt -3.496705 -1.373557 +f 155/1156/155 154/1157/154 996/1154/996 +vt -2.223017 -2.363950 +f 996/1154/996 154/1157/154 995/1158/995 +vt -3.436470 -1.540160 +f 995/1158/995 154/1157/154 153/1159/153 +vt -3.361444 -1.701310 +f 995/1158/995 153/1159/153 152/1160/152 +vt -2.404183 -2.355959 +f 995/1158/995 152/1160/152 994/1161/994 +vt -3.271048 -1.853426 +f 994/1161/994 152/1160/152 151/1162/151 +vt -3.219945 -1.924930 +f 994/1161/994 151/1162/151 150/1163/150 +vt -3.166485 -1.990904 +f 150/1163/150 149/1164/149 994/1161/994 +vt -3.111607 -2.050496 +f 994/1161/994 149/1164/149 148/1165/148 +vt -3.055404 -2.104026 +f 994/1161/994 148/1165/148 147/1166/147 +vt -2.997972 -2.151816 +f 147/1166/147 146/1167/146 994/1161/994 +vt -2.939406 -2.194186 +f 994/1161/994 146/1167/146 145/1168/145 +vt -2.879902 -2.231379 +f 994/1161/994 145/1168/145 144/1169/144 +vt -2.819847 -2.263510 +f 144/1169/144 143/1170/143 994/1161/994 +vt -2.698251 -2.314214 +f 994/1161/994 143/1170/143 142/1171/142 +f 994/1161/994 142/1171/142 141/749/141 +vt -1.837785 -2.381402 +f 996/1154/996 997/1172/997 1111/1146/1111 +vt -1.438492 -2.395368 +f 1111/1146/1111 997/1172/997 998/1173/998 +vt -1.239929 -2.399272 +f 1111/1146/1111 998/1173/998 999/1174/999 +vt -0.990019 0.746176 +f 1111/1146/1111 999/1174/999 1110/1175/1110 +vt -1.045271 -2.400363 +f 1110/1175/1110 999/1174/999 1000/1176/1000 +vt -0.856579 -2.398212 +f 1110/1175/1110 1000/1176/1000 1001/1177/1001 +vt -0.788480 0.744581 +f 1110/1175/1110 1001/1177/1001 1109/1178/1109 +vt -0.675525 -2.392519 +f 1109/1178/1109 1001/1177/1001 1002/1179/1002 +vt -0.503304 -2.383125 +f 1109/1178/1109 1002/1179/1002 1003/1180/1003 +vt -0.581604 0.747017 +f 1109/1178/1109 1003/1180/1003 1108/1181/1108 +vt -0.340597 -2.370003 +f 1108/1181/1108 1003/1180/1003 1004/1182/1004 +vt -0.187616 -2.353237 +f 1108/1181/1108 1004/1182/1004 1005/1183/1005 +vt -0.377085 0.753913 +f 1108/1181/1108 1005/1183/1005 1107/1184/1107 +vt -0.044165 -2.332993 +f 1107/1184/1107 1005/1183/1005 1006/1185/1006 +vt 0.090316 -2.309491 +f 1107/1184/1107 1006/1185/1006 1007/1186/1007 +vt 0.216692 -2.282981 +f 1007/1186/1007 1008/1187/1008 1107/1184/1107 +vt -0.182417 0.765781 +f 1107/1184/1107 1008/1187/1008 1106/1188/1106 +vt 0.336089 -2.253715 +f 1106/1188/1106 1008/1187/1008 1009/1189/1009 +vt 0.449834 -2.221918 +f 1106/1188/1106 1009/1189/1009 1010/1190/1010 +vt -0.090957 0.773752 +f 1106/1188/1106 1010/1190/1010 1105/1191/1105 +vt 0.666399 -2.151355 +f 1105/1191/1105 1010/1190/1010 1011/1192/1011 +vt -0.004471 0.783176 +f 1105/1191/1105 1011/1192/1011 1104/1193/1104 +vt 0.879126 -2.071589 +f 1104/1193/1104 1011/1192/1011 1012/1194/1012 +vt 0.076331 0.794126 +f 1104/1193/1104 1012/1194/1012 1103/1195/1103 +vt 0.988073 -2.027819 +f 1103/1195/1103 1012/1194/1012 1013/1196/1013 +vt 0.150826 0.806672 +f 1103/1195/1103 1013/1196/1013 1102/1197/1102 +vt 1.100776 -1.980985 +f 1102/1197/1102 1013/1196/1013 1014/1198/1014 +vt 0.218500 0.820880 +f 1102/1197/1102 1014/1198/1014 1101/1199/1101 +vt 1.218643 -1.930639 +f 1101/1199/1101 1014/1198/1014 1015/1200/1015 +vt 1.342964 -1.876312 +f 1101/1199/1101 1015/1200/1015 1016/1201/1016 +vt 0.278976 0.836808 +f 1101/1199/1101 1016/1201/1016 1100/1202/1100 +vt 1.474888 -1.817553 +f 1100/1202/1100 1016/1201/1016 1017/1203/1017 +vt 0.332034 0.854505 +f 1100/1202/1100 1017/1203/1017 1099/1204/1099 +vt 1.615395 -1.753974 +f 1099/1204/1099 1017/1203/1017 1018/1205/1018 +vt 2.425552 -0.089336 +f 1099/1204/1099 1018/1205/1018 1022/1206/1022 +vt 1.765277 -1.685283 +f 1022/1206/1022 1018/1205/1018 1019/1207/1019 +f 1022/1206/1022 1019/1207/1019 20/876/20 +vt 2.516696 -0.437873 +f 20/876/20 1019/1207/1019 21/1208/21 +vt 1.925116 -1.611335 +f 21/1208/21 1019/1207/1019 1020/1209/1020 +vt 2.545304 -0.659292 +f 21/1208/21 1020/1209/1020 22/1210/22 +vt 2.095259 -1.532167 +f 22/1210/22 1020/1209/1020 1021/1211/1021 +vt 2.552225 -0.767633 +f 22/1210/22 1021/1211/1021 23/1212/23 +vt 2.552863 -0.871131 +f 23/1212/23 1021/1211/1021 24/1213/24 +vt 2.547012 -0.963550 +f 24/1213/24 1021/1211/1021 25/1214/25 +vt 2.535271 -1.044884 +f 25/1214/25 1021/1211/1021 26/1215/26 +f 26/1215/26 1021/1211/1021 33/907/33 +vt 2.366260 -1.371757 +f 26/1215/26 33/907/33 32/1216/32 +vt 2.405037 -1.330188 +f 32/1216/32 31/1217/31 26/1215/26 +vt 2.439797 -1.284806 +f 26/1215/26 31/1217/31 30/1218/30 +vt 2.470403 -1.234642 +f 26/1215/26 30/1218/30 29/1219/29 +vt 2.496618 -1.178823 +vt 2.518277 -1.116236 +f 28/1220/28 27/1221/27 29/1219/29 +f 29/1219/29 27/1221/27 26/1215/26 +vt 0.377628 0.874005 +f 1099/1204/1099 1022/1206/1022 1098/1222/1098 +vt 2.384502 0.051880 +f 1098/1222/1098 1022/1206/1022 1023/1223/1023 +vt 0.415888 0.895333 +f 1098/1222/1098 1023/1223/1023 1097/1224/1097 +vt 2.304231 0.338921 +f 1097/1224/1097 1023/1223/1023 1024/1225/1024 +vt 0.447109 0.918502 +f 1097/1224/1097 1024/1225/1024 1096/1226/1096 +vt 2.256852 0.478428 +f 1096/1226/1096 1024/1225/1024 1025/1227/1025 +vt 2.201964 0.613602 +f 1096/1226/1096 1025/1227/1025 1026/1228/1026 +vt 0.471744 0.943520 +f 1096/1226/1096 1026/1228/1026 1095/1229/1095 +vt 2.139581 0.745005 +f 1095/1229/1095 1026/1228/1026 1027/1230/1027 +vt 2.071324 0.874575 +f 1095/1229/1095 1027/1230/1027 1028/1231/1028 +vt 0.490395 0.970391 +f 1095/1229/1095 1028/1231/1028 1094/1232/1094 +vt 2.000398 1.005557 +f 1094/1232/1094 1028/1231/1028 1029/1233/1029 +vt 0.503787 0.999114 +f 1094/1232/1094 1029/1233/1029 1093/1234/1093 +vt 1.931302 1.142203 +f 1093/1234/1093 1029/1233/1029 1030/1235/1030 +vt 0.512718 1.029696 +f 1093/1234/1093 1030/1235/1030 1092/1236/1092 +vt 1.869224 1.289200 +f 1092/1236/1092 1030/1235/1030 1031/1237/1031 +vt 0.520447 1.096505 +f 1092/1236/1092 1031/1237/1031 1091/1238/1091 +vt 1.842425 1.367976 +f 1091/1238/1091 1031/1237/1031 1032/1239/1032 +vt 0.519476 1.171123 +f 1091/1238/1091 1032/1239/1032 1090/1240/1090 +vt 1.819225 1.450911 +f 1090/1240/1090 1032/1239/1032 1033/1241/1033 +vt 0.514350 1.254110 +f 1090/1240/1090 1033/1241/1033 1089/1242/1089 +vt 0.508574 1.346140 +f 1089/1242/1089 1033/1241/1033 1088/1243/1088 +vt 1.800107 1.538377 +f 1088/1243/1088 1033/1241/1033 1034/1244/1034 +vt 0.505040 1.447826 +f 1088/1243/1088 1034/1244/1034 1087/1245/1087 +vt 1.785450 1.630639 +f 1087/1245/1087 1034/1244/1034 1035/1246/1035 +vt 0.506048 1.559621 +f 1087/1245/1087 1035/1246/1035 1086/1247/1086 +vt 0.513161 1.681725 +f 1086/1247/1086 1035/1246/1035 1085/1248/1085 +vt 1.775502 1.727828 +f 1085/1248/1085 1035/1246/1035 1036/1249/1036 +vt 0.527208 1.813997 +f 1085/1248/1085 1036/1249/1036 1084/1250/1084 +vt 1.770360 1.829920 +f 1084/1250/1084 1036/1249/1036 1037/1251/1037 +vt 0.548411 1.955853 +f 1084/1250/1084 1037/1251/1037 1083/1252/1083 +vt 1.769940 1.936709 +f 1083/1252/1083 1037/1251/1037 1038/1253/1038 +vt 0.576475 2.106146 +f 1083/1252/1083 1038/1253/1038 1082/1254/1082 +vt 1.773946 2.047781 +f 1082/1254/1082 1038/1253/1038 1039/1255/1039 +vt 0.610602 2.263023 +f 1082/1254/1082 1039/1255/1039 1081/1256/1081 +vt 1.792884 2.279966 +f 1081/1256/1081 1039/1255/1039 1040/1257/1040 +vt 0.649503 2.423815 +f 1081/1256/1081 1040/1257/1040 1080/1258/1080 +vt 0.734692 2.742912 +f 1080/1258/1080 1040/1257/1040 1079/1259/1079 +vt 1.839833 2.696773 +f 1079/1259/1079 1040/1257/1040 1041/1260/1041 +vt 0.777106 2.892916 +f 1079/1259/1079 1041/1260/1041 1078/1261/1078 +vt 1.848711 2.796660 +f 1078/1261/1078 1041/1260/1041 1042/1262/1042 +vt 0.816899 3.030838 +f 1078/1261/1078 1042/1262/1042 1077/1263/1077 +vt 1.854426 2.892646 +f 1077/1263/1077 1042/1262/1042 1043/1264/1043 +vt 1.855999 2.983663 +f 1077/1263/1077 1043/1264/1043 1044/1265/1044 +vt 1.852517 3.068699 +vt 1.368410 3.470368 +f 1045/1266/1045 1056/1267/1056 1044/1265/1044 +vt 1.275582 3.464647 +f 1044/1265/1044 1056/1267/1056 1057/1268/1057 +vt 0.852545 3.152760 +f 1044/1265/1044 1057/1268/1057 1076/1269/1076 +vt 1.189636 3.457663 +f 1076/1269/1076 1057/1268/1057 1058/1270/1058 +vt 0.868469 3.206681 +f 1076/1269/1076 1058/1270/1058 1075/1271/1075 +vt 0.883027 3.255468 +f 1075/1271/1075 1058/1270/1058 1074/1272/1074 +vt 1.115084 3.452656 +f 1074/1272/1074 1058/1270/1058 1059/1273/1059 +vt 0.896203 3.298881 +f 1074/1272/1074 1059/1273/1059 1073/1274/1073 +vt 0.908036 3.336760 +f 1073/1274/1073 1059/1273/1059 1072/1275/1072 +vt 1.055227 3.451511 +f 1072/1275/1072 1059/1273/1059 1060/1276/1060 +vt 0.918625 3.369035 +f 1072/1275/1072 1060/1276/1060 1071/1277/1071 +vt 0.928133 3.395737 +f 1071/1277/1071 1060/1276/1060 1070/1278/1070 +vt 1.011310 3.453870 +f 1070/1278/1070 1060/1276/1060 1061/1279/1061 +vt 0.936792 3.417004 +f 1070/1278/1070 1061/1279/1061 1069/1280/1069 +vt 0.944914 3.433096 +f 1069/1280/1069 1061/1279/1061 1068/1281/1068 +vt 0.981538 3.456076 +f 1068/1281/1068 1061/1279/1061 1062/1282/1062 +vt 0.952899 3.444412 +f 1068/1281/1068 1062/1282/1062 1067/1283/1067 +vt 0.956992 3.448446 +f 1067/1283/1067 1062/1282/1062 1066/1284/1066 +vt 0.970560 3.455105 +f 1066/1284/1066 1062/1282/1062 1063/1285/1063 +vt 0.965740 3.453692 +f 1066/1284/1066 1063/1285/1063 1064/1286/1064 +vt 1.843165 3.146831 +f 1045/1266/1045 1046/1287/1046 1056/1267/1056 +vt 1.462958 3.470788 +f 1056/1267/1056 1046/1287/1046 1055/1288/1055 +vt 1.523610 3.466087 +f 1055/1288/1055 1046/1287/1046 1054/1289/1054 +vt 1.827265 3.217258 +f 1054/1289/1054 1046/1287/1046 1047/1290/1047 +vt 1.581324 3.456077 +f 1054/1289/1054 1047/1290/1047 1053/1291/1053 +vt 1.804305 3.279331 +f 1053/1291/1053 1047/1290/1047 1048/1292/1048 +vt 1.639223 3.438102 +f 1053/1291/1053 1048/1292/1048 1052/1293/1052 +vt 1.773970 3.332584 +f 1052/1293/1052 1048/1292/1048 1049/1294/1049 +vt 1.691107 3.411851 +f 1052/1293/1052 1049/1294/1049 1051/1295/1051 +vt 1.736179 3.376763 +f 1051/1295/1051 1049/1294/1049 1050/1296/1050 +vt 0.961246 3.451508 +f 1064/1286/1064 1065/1297/1065 1066/1284/1066 +f 1076/1269/1076 1077/1263/1077 1044/1265/1044 +vt -1.250000 -4.707220 +vt -1.166934 -4.685566 +vt -1.250000 -3.551584 +f 163/1298/163 1139/1299/1139 164/1300/164 +vt -1.102901 -4.671642 +f 164/1300/164 1139/1299/1139 1140/1301/1140 +vt -1.034012 -4.658649 +f 164/1300/164 1140/1301/1140 1141/1302/1141 +vt -0.960011 -4.646450 +f 1141/1302/1141 1142/1303/1142 164/1300/164 +vt -1.188301 -3.553936 +f 164/1300/164 1142/1303/1142 1193/1304/1193 +vt -0.880647 -4.634905 +f 1193/1304/1193 1142/1303/1142 1143/1305/1143 +vt -0.795665 -4.623874 +f 1193/1304/1193 1143/1305/1143 1144/1306/1144 +vt -1.116723 -3.551725 +f 1193/1304/1193 1144/1306/1144 1192/1307/1192 +vt -0.704833 -4.613221 +f 1192/1307/1192 1144/1306/1144 1145/1308/1145 +vt -0.511782 -4.593156 +f 1192/1307/1192 1145/1308/1145 1146/1309/1146 +vt -0.103163 -4.555158 +f 1146/1309/1146 1147/1310/1147 1192/1307/1192 +vt 0.103465 -4.535093 +f 1192/1307/1192 1147/1310/1147 1148/1311/1148 +vt 0.305676 -4.512897 +f 1192/1307/1192 1148/1311/1148 1149/1312/1149 +vt 1.246288 -3.914510 +f 1192/1307/1192 1149/1312/1149 1166/1313/1166 +vt 0.499002 -4.487504 +f 1166/1313/1166 1149/1312/1149 1150/1314/1150 +vt 1.254554 -4.041287 +f 1166/1313/1166 1150/1314/1150 1165/1315/1165 +vt 0.678970 -4.457848 +f 1165/1315/1165 1150/1314/1150 1151/1316/1151 +vt 0.762548 -4.441088 +f 1165/1315/1165 1151/1316/1151 1152/1317/1152 +vt 1.255377 -4.106114 +f 1165/1315/1165 1152/1317/1152 1164/1318/1164 +vt 0.841111 -4.422863 +f 1164/1318/1164 1152/1317/1152 1153/1319/1153 +vt 0.914099 -4.403040 +f 1164/1318/1164 1153/1319/1153 1154/1320/1154 +vt 1.245154 -4.169723 +f 1164/1318/1164 1154/1320/1154 1163/1321/1163 +vt 0.980954 -4.381485 +f 1163/1321/1163 1154/1320/1154 1155/1322/1155 +vt 1.234060 -4.199559 +f 1163/1321/1163 1155/1322/1155 1162/1323/1162 +vt 1.040672 -4.358259 +f 1162/1323/1162 1155/1322/1155 1156/1324/1156 +vt 1.218273 -4.228031 +f 1162/1323/1162 1156/1324/1156 1161/1325/1161 +vt 1.196923 -4.255683 +f 1161/1325/1161 1156/1324/1156 1160/1326/1160 +vt 1.169155 -4.282616 +f 1160/1326/1160 1156/1324/1156 1159/1327/1159 +vt 1.091603 -4.334000 +f 1159/1327/1159 1156/1324/1156 1157/1328/1157 +vt 1.134221 -4.308779 +f 1159/1327/1159 1157/1328/1157 1158/1329/1158 +vt 1.246112 -3.850161 +f 1166/1313/1166 1167/1330/1167 1192/1307/1192 +vt -1.043743 -3.547151 +f 1192/1307/1192 1167/1330/1167 1191/1331/1191 +vt -0.977841 -3.542416 +f 1191/1331/1191 1167/1330/1167 1190/1332/1190 +vt -0.872119 -3.536217 +f 1190/1332/1190 1167/1330/1167 1189/1333/1189 +vt -0.773535 -3.531400 +f 1189/1333/1189 1167/1330/1167 1188/1334/1188 +vt -0.580258 -3.524485 +f 1188/1334/1188 1167/1330/1167 1187/1335/1187 +vt -0.478087 -3.521862 +f 1187/1335/1187 1167/1330/1167 1186/1336/1186 +vt -0.365457 -3.519368 +f 1186/1336/1186 1167/1330/1167 1185/1337/1185 +vt -0.238964 -3.516835 +f 1185/1337/1185 1167/1330/1167 1184/1338/1184 +vt -0.102433 -3.514476 +f 1184/1338/1184 1167/1330/1167 1183/1339/1183 +vt 0.184710 -3.511159 +f 1183/1339/1183 1167/1330/1167 1182/1340/1182 +vt 0.327307 -3.510642 +f 1182/1340/1182 1167/1330/1167 1181/1341/1181 +vt 0.463909 -3.511181 +f 1181/1341/1181 1167/1330/1167 1180/1342/1180 +vt 0.590509 -3.512996 +f 1180/1342/1180 1167/1330/1167 1179/1343/1179 +vt 0.703837 -3.516335 +f 1179/1343/1179 1167/1330/1167 1178/1344/1178 +vt 1.250058 -3.780153 +f 1178/1344/1178 1167/1330/1167 1168/1345/1168 +vt 0.847117 -3.524571 +f 1178/1344/1178 1168/1345/1168 1177/1346/1177 +vt 1.247928 -3.709885 +f 1177/1346/1177 1168/1345/1168 1169/1347/1169 +vt 0.993024 -3.541661 +f 1177/1346/1177 1169/1347/1169 1176/1348/1176 +vt 1.240708 -3.677521 +f 1176/1348/1176 1169/1347/1169 1170/1349/1170 +vt 1.059576 -3.554928 +f 1176/1348/1176 1170/1349/1170 1175/1350/1175 +vt 1.227508 -3.648712 +f 1175/1350/1175 1170/1349/1170 1171/1351/1171 +vt 1.207663 -3.623777 +f 1175/1350/1175 1171/1351/1171 1172/1352/1172 +vt 1.182643 -3.603440 +f 1172/1352/1172 1173/1353/1173 1175/1350/1175 +vt 1.123696 -3.574124 +f 1175/1350/1175 1173/1353/1173 1174/1354/1174 +vt -7.429189 0.500000 +vt -7.375466 0.000000 +vt -7.314042 0.500000 +f 1177/1355/1177 941/1356/941 1178/1357/1178 +vt -7.314042 0.000000 +f 1178/1357/1178 941/1356/941 940/1358/940 +vt -7.230972 0.500000 +f 1178/1357/1178 940/1358/940 1179/1359/1179 +vt -7.202065 0.000000 +f 1179/1359/1179 940/1358/940 1138/1360/1138 +vt -7.143330 0.500000 +f 1179/1359/1179 1138/1360/1138 1180/1361/1180 +vt -7.090088 0.000000 +f 1180/1361/1180 1138/1360/1138 1137/1362/1137 +vt -7.052548 0.500000 +f 1180/1361/1180 1137/1362/1137 1181/1363/1181 +vt -6.960019 0.500000 +f 1181/1363/1181 1137/1362/1137 1182/1364/1182 +vt -6.866133 0.000000 +f 1182/1364/1182 1137/1362/1137 1136/1365/1136 +vt -6.774319 0.500000 +f 1182/1364/1182 1136/1365/1136 1183/1366/1183 +vt -6.754156 0.000000 +f 1183/1366/1183 1136/1365/1136 1135/1367/1135 +vt -6.683729 0.500000 +f 1183/1366/1183 1135/1367/1135 1184/1368/1184 +vt -6.642179 0.000000 +f 1184/1368/1184 1135/1367/1135 1134/1369/1134 +vt -6.596991 0.500000 +f 1184/1368/1184 1134/1369/1134 1185/1370/1185 +vt -6.530202 0.000000 +f 1185/1370/1185 1134/1369/1134 1133/1371/1133 +vt -6.516507 0.500000 +f 1185/1370/1185 1133/1371/1133 1186/1372/1186 +vt -6.439941 0.500000 +f 1186/1372/1186 1133/1371/1133 1187/1373/1187 +vt -6.418225 0.000000 +f 1187/1373/1187 1133/1371/1133 1132/1374/1132 +vt -6.306248 0.000000 +f 1187/1373/1187 1132/1374/1132 1131/1375/1131 +vt -7.567170 0.500000 +vt -7.498313 0.000000 +f 1176/1376/1176 943/1377/943 1177/1355/1177 +vt -7.436889 0.000000 +f 1177/1355/1177 943/1377/943 942/1378/942 +f 1177/1355/1177 942/1378/942 941/1356/941 +vt -7.642922 0.500000 +vt -7.621160 0.000000 +f 1175/1379/1175 945/1380/945 1176/1376/1176 +vt -7.559737 0.000000 +f 1176/1376/1176 945/1380/945 944/1381/944 +f 1176/1376/1176 944/1381/944 943/1377/943 +vt -7.682584 0.000000 +f 945/1380/945 1175/1379/1175 946/1382/946 +vt -7.730529 0.500000 +f 946/1382/946 1175/1379/1175 1174/1383/1174 +vt -7.744008 0.000000 +f 946/1382/946 1174/1383/1174 947/1384/947 +vt -7.805431 0.000000 +f 947/1384/947 1174/1383/1174 948/1385/948 +vt -7.837103 0.500000 +f 948/1385/948 1174/1383/1174 1173/1386/1173 +vt -7.866855 0.000000 +f 948/1385/948 1173/1386/1173 949/1387/949 +vt -7.899646 0.500000 +f 949/1387/949 1173/1386/1173 1172/1388/1172 +vt -7.928279 0.000000 +f 949/1387/949 1172/1388/1172 950/1389/950 +vt -7.968222 0.500000 +f 950/1389/950 1172/1388/1172 1171/1390/1171 +vt -7.989702 0.000000 +f 950/1389/950 1171/1390/1171 951/1391/951 +vt -8.039723 0.500000 +f 951/1391/951 1171/1390/1171 1170/1392/1170 +vt -8.051126 0.000000 +f 951/1391/951 1170/1392/1170 952/1393/952 +vt -8.113269 0.500000 +f 952/1393/952 1170/1392/1170 1169/1394/1169 +vt -8.173973 0.000000 +f 952/1393/952 1169/1394/1169 953/1395/953 +vt -8.257526 0.500000 +f 953/1395/953 1169/1394/1169 1168/1396/1168 +vt -8.296821 0.000000 +f 953/1395/953 1168/1396/1168 954/1397/954 +vt -8.390475 0.500000 +f 954/1397/954 1168/1396/1168 1167/1398/1167 +vt -8.542515 0.000000 +f 954/1397/954 1167/1398/1167 955/1399/955 +vt -8.509065 0.500000 +f 955/1399/955 1167/1398/1167 1166/1400/1166 +vt -8.744945 0.500000 +f 955/1399/955 1166/1400/1166 1165/1401/1165 +vt -8.788210 0.000000 +f 955/1399/955 1165/1401/1165 956/1402/956 +vt -8.871429 0.500000 +f 956/1402/956 1165/1401/1165 1164/1403/1164 +vt -8.911057 0.000000 +f 956/1402/956 1164/1403/1164 957/1404/957 +vt -9.002798 0.500000 +f 957/1404/957 1164/1403/1164 1163/1405/1163 +vt -9.033905 0.000000 +f 957/1404/957 1163/1405/1163 958/1406/958 +vt -9.067828 0.500000 +f 958/1406/958 1163/1405/1163 1162/1407/1162 +vt -9.095328 0.000000 +f 958/1406/958 1162/1407/1162 959/1408/959 +vt -9.132455 0.500000 +f 959/1408/959 1162/1407/1162 1161/1409/1161 +vt -9.156752 0.000000 +f 959/1408/959 1161/1409/1161 960/1410/960 +vt -9.198050 0.500000 +f 960/1410/960 1161/1409/1161 1160/1411/1160 +vt -9.218176 0.000000 +f 960/1410/960 1160/1411/1160 961/1412/961 +vt -9.265126 0.500000 +f 961/1412/961 1160/1411/1160 1159/1413/1159 +vt -9.279599 0.000000 +f 961/1412/961 1159/1413/1159 962/1414/962 +vt -9.333837 0.500000 +f 962/1414/962 1159/1413/1159 1158/1415/1158 +vt -9.341023 0.000000 +f 962/1414/962 1158/1415/1158 963/1416/963 +vt -9.404017 0.500000 +f 963/1416/963 1158/1415/1158 1157/1417/1157 +vt -9.402447 0.000000 +f 963/1416/963 1157/1417/1157 964/1418/964 +vt -9.463871 0.000000 +f 964/1418/964 1157/1417/1157 965/1419/965 +vt -9.475883 0.500000 +f 965/1419/965 1157/1417/1157 1156/1420/1156 +vt -9.525294 0.000000 +f 965/1419/965 1156/1420/1156 966/1421/966 +vt -9.549499 0.500000 +f 966/1421/966 1156/1420/1156 1155/1422/1155 +vt -9.586718 0.000000 +f 966/1421/966 1155/1422/1155 967/1423/967 +vt -9.622833 0.500000 +f 967/1423/967 1155/1422/1155 1154/1424/1154 +vt -9.648142 0.000000 +f 967/1423/967 1154/1424/1154 968/1425/968 +vt -9.695329 0.500000 +f 968/1425/968 1154/1424/1154 1153/1426/1153 +vt -9.770989 0.000000 +f 968/1425/968 1153/1426/1153 969/1427/969 +vt -9.767064 0.500000 +f 969/1427/969 1153/1426/1153 1152/1428/1152 +vt -9.838139 0.500000 +f 969/1427/969 1152/1428/1152 1151/1429/1151 +vt -9.893836 0.000000 +f 969/1427/969 1151/1429/1151 970/1430/970 +vt -9.978751 0.500000 +f 970/1430/970 1151/1429/1151 1150/1431/1150 +vt -10.016684 0.000000 +f 970/1430/970 1150/1431/1150 971/1432/971 +vt -10.118038 0.500000 +f 971/1432/971 1150/1431/1150 1149/1433/1149 +vt -10.139531 0.000000 +f 971/1432/971 1149/1433/1149 972/1434/972 +vt -10.256820 0.500000 +f 972/1434/972 1149/1433/1149 1148/1435/1148 +vt -10.262378 0.000000 +f 972/1434/972 1148/1435/1148 973/1436/973 +vt -10.395857 0.500000 +f 973/1436/973 1148/1435/1148 1147/1437/1147 +vt -10.508073 0.000000 +f 973/1436/973 1147/1437/1147 974/1438/974 +vt -10.677555 0.500000 +f 974/1438/974 1147/1437/1147 1146/1439/1146 +vt -10.630920 0.000000 +f 974/1438/974 1146/1439/1146 975/1440/975 +vt -10.753768 0.000000 +f 975/1440/975 1146/1439/1146 976/1441/976 +vt -10.821487 0.500000 +f 976/1441/976 1146/1439/1146 1145/1442/1145 +vt -10.876615 0.000000 +f 976/1441/976 1145/1442/1145 977/1443/977 +vt -10.893679 0.500000 +f 977/1443/977 1145/1442/1145 1144/1444/1144 +vt -10.964807 0.500000 +f 977/1443/977 1144/1444/1144 1143/1445/1143 +vt -10.999462 0.000000 +f 977/1443/977 1143/1445/1143 978/1446/978 +vt -11.035198 0.500000 +f 978/1446/978 1143/1445/1143 1142/1447/1142 +vt -11.122310 0.000000 +f 978/1446/978 1142/1447/1142 979/1448/979 +vt -11.105183 0.500000 +f 979/1448/979 1142/1447/1142 1141/1449/1141 +vt -11.175072 0.500000 +f 979/1448/979 1141/1449/1141 1140/1450/1140 +vt -11.245157 0.000000 +f 979/1448/979 1140/1450/1140 980/1451/980 +vt -11.245157 0.500000 +f 980/1451/980 1140/1450/1140 1139/1452/1139 +vt -11.337003 0.000000 +f 980/1451/980 1139/1452/1139 981/1453/981 +vt -11.345516 0.500000 +f 981/1453/981 1139/1452/1139 163/1454/163 +vt -11.428849 0.000000 +f 981/1453/981 163/1454/163 982/1455/982 +vt -11.467769 0.455355 +f 982/1455/982 163/1454/163 1225/1456/1225 +vt -11.520695 0.000000 +f 982/1455/982 1225/1456/1225 983/1457/983 +vt -11.593639 1.500000 +f 983/1457/983 1225/1456/1225 1227/1458/1227 +vt -11.593639 0.409390 +f 983/1457/983 1227/1458/1227 1226/1459/1226 +vt -11.719510 1.500000 +f 1226/1459/1226 1227/1458/1227 1242/1460/1242 +vt -11.719510 0.363424 +f 1226/1459/1226 1242/1460/1242 1228/1461/1228 +vt -11.845380 1.500000 +f 1228/1461/1228 1242/1460/1242 1230/1462/1230 +vt -11.796233 0.000000 +f 1228/1461/1228 1230/1462/1230 985/1463/985 +vt -11.845380 0.317458 +f 985/1463/985 1230/1462/1230 1229/1464/1229 +vt -11.979925 0.000000 +f 985/1463/985 1229/1464/1229 986/1465/986 +vt -11.971251 0.271492 +f 986/1465/986 1229/1464/1229 1231/1466/1231 +vt -12.071771 0.000000 +f 986/1465/986 1231/1466/1231 987/1467/987 +vt -12.097121 1.500000 +f 987/1467/987 1231/1466/1231 1232/1468/1232 +vt -12.097121 0.225527 +f 987/1467/987 1232/1468/1232 1240/1469/1240 +vt -12.163617 0.000000 +f 1240/1469/1240 1232/1468/1232 988/1470/988 +f 1240/1469/1240 988/1470/988 987/1467/987 +vt -11.467769 1.500000 +f 1225/1456/1225 163/1454/163 1241/1471/1241 +vt -11.345516 2.500000 +f 1241/1471/1241 163/1454/163 162/1472/162 +vt -11.428849 3.000000 +f 1241/1471/1241 162/1472/162 498/1473/498 +vt -11.337003 3.000000 +f 498/1473/498 162/1472/162 499/1474/499 +vt -11.245157 2.500000 +f 499/1474/499 162/1472/162 546/1475/546 +vt -11.245157 3.000000 +f 499/1474/499 546/1475/546 301/1476/301 +vt -11.179874 2.500000 +f 301/1476/301 546/1475/546 545/1477/545 +vt -11.122310 3.000000 +f 301/1476/301 545/1477/545 302/1478/302 +vt -11.112224 2.500000 +f 302/1478/302 545/1477/545 544/1479/544 +vt -10.999462 3.000000 +f 302/1478/302 544/1479/544 303/1480/303 +vt -10.973428 2.500000 +f 303/1480/303 544/1479/544 543/1481/543 +vt -10.876615 3.000000 +f 303/1480/303 543/1481/543 304/1482/304 +vt -10.836138 2.500000 +f 304/1482/304 543/1481/543 542/1483/542 +vt -10.753768 3.000000 +f 304/1482/304 542/1483/542 305/1484/305 +vt -10.700806 2.500000 +f 305/1484/305 542/1483/542 541/1485/541 +vt -10.630920 3.000000 +f 305/1484/305 541/1485/541 306/1486/306 +vt -10.567196 2.500000 +f 306/1486/306 541/1485/541 540/1487/540 +vt -10.508073 3.000000 +f 306/1486/306 540/1487/540 307/1488/307 +vt -10.434842 2.500000 +f 307/1488/307 540/1487/540 539/1489/539 +vt -10.262378 3.000000 +f 307/1488/307 539/1489/539 308/1490/308 +vt -10.171431 2.500000 +f 308/1490/308 539/1489/539 538/1491/538 +vt -10.139531 3.000000 +f 308/1490/308 538/1491/538 309/1492/309 +vt -10.038890 2.500000 +f 309/1492/309 538/1491/538 537/1493/537 +vt -10.016684 3.000000 +f 309/1492/309 537/1493/537 310/1494/310 +vt -9.904571 2.500000 +f 310/1494/310 537/1493/537 536/1495/536 +vt -9.893836 3.000000 +f 310/1494/310 536/1495/536 311/1496/311 +vt -9.836472 2.500000 +f 311/1496/311 536/1495/536 535/1497/535 +vt -9.770989 3.000000 +f 311/1496/311 535/1497/535 312/1498/312 +vt -9.768477 2.500000 +f 312/1498/312 535/1497/535 534/1499/534 +vt -9.700621 2.500000 +f 312/1498/312 534/1499/534 533/1500/533 +vt -9.648142 3.000000 +f 312/1498/312 533/1500/533 313/1501/313 +vt -9.632691 2.500000 +f 313/1501/313 533/1500/533 532/1502/532 +vt -9.586718 3.000000 +f 313/1501/313 532/1502/532 314/1503/314 +vt -9.564468 2.500000 +f 314/1503/314 532/1502/532 531/1504/531 +vt -9.525294 3.000000 +f 314/1503/314 531/1504/531 315/1505/315 +vt -9.495725 2.500000 +f 315/1505/315 531/1504/531 530/1506/530 +vt -9.463871 3.000000 +f 315/1505/315 530/1506/530 316/1507/316 +vt -9.426220 2.500000 +f 316/1507/316 530/1506/530 529/1508/529 +vt -9.402447 3.000000 +f 316/1507/316 529/1508/529 317/1509/317 +vt -9.356674 2.500000 +f 317/1509/317 529/1508/529 528/1510/528 +vt -9.341023 3.000000 +f 317/1509/317 528/1510/528 318/1511/318 +vt -9.287935 2.500000 +f 318/1511/318 528/1510/528 527/1512/527 +vt -9.279599 3.000000 +f 318/1511/318 527/1512/527 319/1513/319 +vt -9.219843 2.500000 +f 319/1513/319 527/1512/527 526/1514/526 +vt -9.218176 3.000000 +f 319/1513/319 526/1514/526 320/1515/320 +vt -9.156752 3.000000 +f 320/1515/320 526/1514/526 321/1516/321 +vt -9.152189 2.500000 +f 321/1516/321 526/1514/526 525/1517/525 +vt -9.095328 3.000000 +f 321/1516/321 525/1517/525 322/1518/322 +vt -9.084559 2.500000 +f 322/1518/322 525/1517/525 524/1519/524 +vt -9.033905 3.000000 +f 322/1518/322 524/1519/524 323/1520/323 +vt -9.016658 2.500000 +f 323/1520/323 524/1519/524 523/1521/523 +vt -8.948234 2.500000 +f 323/1520/323 523/1521/523 522/1522/522 +vt -8.911057 3.000000 +f 323/1520/323 522/1522/522 324/1523/324 +vt -8.808880 2.500000 +f 324/1523/324 522/1522/522 521/1524/521 +vt -8.788210 3.000000 +f 324/1523/324 521/1524/521 325/1525/325 +vt -8.663994 2.500000 +f 325/1525/325 521/1524/521 520/1526/520 +vt -8.542515 3.000000 +f 325/1525/325 520/1526/520 326/1527/326 +vt -8.510620 2.500000 +f 326/1527/326 520/1526/520 519/1528/519 +vt -8.382872 2.500000 +f 326/1527/326 519/1528/519 518/1529/518 +vt -8.296821 3.000000 +f 326/1527/326 518/1529/518 327/1530/327 +vt -8.280408 2.500000 +f 327/1530/327 518/1529/518 517/1531/517 +vt -8.192247 2.500000 +f 327/1530/327 517/1531/517 516/1532/516 +vt -8.173973 3.000000 +f 327/1530/327 516/1532/516 328/1533/328 +vt -8.107343 2.500000 +f 328/1533/328 516/1532/516 515/1534/515 +vt -8.051126 3.000000 +f 328/1533/328 515/1534/515 329/1535/329 +vt -8.017238 2.500000 +f 329/1535/329 515/1534/515 514/1536/514 +vt -7.989702 3.000000 +f 329/1535/329 514/1536/514 330/1537/330 +vt -7.970265 2.500000 +f 330/1537/330 514/1536/514 513/1538/513 +vt -7.928279 3.000000 +f 330/1537/330 513/1538/513 331/1539/331 +vt -7.924020 2.500000 +f 331/1539/331 513/1538/513 512/1540/512 +vt -7.879627 2.500000 +f 331/1539/331 512/1540/512 511/1541/511 +vt -7.866855 3.000000 +f 331/1539/331 511/1541/511 332/1542/332 +vt -7.836121 2.500000 +f 332/1542/332 511/1541/511 510/1543/510 +vt -7.805431 3.000000 +f 332/1542/332 510/1543/510 333/1544/333 +vt -7.790720 2.500000 +f 333/1544/333 510/1543/510 509/1545/509 +vt -7.744008 3.000000 +f 333/1544/333 509/1545/509 334/1546/334 +vt -7.742957 2.500000 +f 334/1546/334 509/1545/509 508/1547/508 +vt -7.693311 2.500000 +f 334/1546/334 508/1547/508 507/1548/507 +vt -7.682584 3.000000 +f 334/1546/334 507/1548/507 335/1549/335 +vt -7.642713 2.500000 +f 335/1549/335 507/1548/507 506/1550/506 +vt -7.621160 3.000000 +f 335/1549/335 506/1550/506 336/1551/336 +vt -7.590999 2.500000 +f 336/1551/336 506/1550/506 505/1552/505 +vt -7.559737 3.000000 +f 336/1551/336 505/1552/505 337/1553/337 +vt -7.538001 2.500000 +f 337/1553/337 505/1552/505 504/1554/504 +vt -7.498313 3.000000 +f 337/1553/337 504/1554/504 338/1555/338 +vt -7.483685 2.500000 +f 338/1555/338 504/1554/504 503/1556/503 +vt -7.436889 3.000000 +f 338/1555/338 503/1556/503 339/1557/339 +vt -7.428439 2.500000 +f 339/1557/339 503/1556/503 502/1558/502 +vt -7.375466 3.000000 +f 339/1557/339 502/1558/502 340/1559/340 +vt -7.372004 2.500000 +f 340/1559/340 502/1558/502 501/1560/501 +vt -7.314042 3.000000 +f 340/1559/340 501/1560/501 341/1561/341 +vt -7.314042 2.500000 +f 341/1561/341 501/1560/501 500/1562/500 +vt -7.239219 2.500000 +f 341/1561/341 500/1562/500 566/1563/566 +vt -7.202065 3.000000 +f 341/1561/341 566/1563/566 342/1564/342 +vt -7.160739 2.500000 +f 342/1564/342 566/1563/566 565/1565/565 +vt -7.090088 3.000000 +f 342/1564/342 565/1565/565 343/1566/343 +vt -7.077721 2.500000 +f 343/1566/343 565/1565/565 564/1567/564 +vt -6.989071 2.500000 +f 343/1566/343 564/1567/564 563/1568/563 +vt -6.866133 3.000000 +f 343/1566/343 563/1568/563 344/1569/344 +vt -6.799371 2.500000 +f 344/1569/344 563/1568/563 562/1570/562 +vt -6.754156 3.000000 +f 344/1569/344 562/1570/562 345/1571/345 +vt -6.712370 2.500000 +f 345/1571/345 562/1570/562 561/1572/561 +vt -6.642179 3.000000 +f 345/1571/345 561/1572/561 346/1573/346 +vt -6.631440 2.500000 +f 346/1573/346 561/1572/561 560/1574/560 +vt -6.555932 2.500000 +f 346/1573/346 560/1574/560 559/1575/559 +vt -6.530202 3.000000 +f 346/1573/346 559/1575/559 347/1576/347 +vt -6.485421 2.500000 +f 347/1576/347 559/1575/559 558/1577/558 +vt -6.418225 3.000000 +f 347/1576/347 558/1577/558 348/1578/348 +vt -6.419639 2.500000 +f 348/1578/348 558/1577/558 557/1579/557 +vt -6.358412 2.500000 +f 348/1578/348 557/1579/557 556/1580/556 +vt -6.306248 3.000000 +f 348/1578/348 556/1580/556 349/1581/349 +vt -6.301627 2.500000 +f 349/1581/349 556/1580/556 555/1582/555 +vt -6.249200 2.500000 +f 349/1581/349 555/1582/555 554/1583/554 +vt -6.194271 3.000000 +f 349/1581/349 554/1583/554 350/1584/350 +vt -6.201047 2.500000 +f 350/1584/350 554/1583/554 553/1585/553 +vt -6.157059 2.500000 +f 350/1584/350 553/1585/553 552/1586/552 +vt -6.082294 3.000000 +f 350/1584/350 552/1586/552 351/1587/351 +vt -6.117080 2.500000 +f 351/1587/351 552/1586/552 551/1588/551 +vt -6.080889 2.500000 +f 351/1587/351 551/1588/551 550/1589/550 +vt -6.018535 2.500000 +f 550/1589/550 549/1590/549 351/1587/351 +vt -5.970317 3.000000 +f 351/1587/351 549/1590/549 352/1591/352 +vt -5.907923 2.500000 +f 352/1591/352 549/1590/549 548/1592/548 +vt -5.858339 3.000000 +f 352/1591/352 548/1592/548 353/1593/353 +vt -5.803323 2.500000 +f 353/1593/353 548/1592/548 547/1594/547 +vt -5.746362 3.000000 +f 353/1593/353 547/1594/547 354/1595/354 +vt -5.704195 2.500000 +f 354/1595/354 547/1594/547 165/1596/165 +vt -5.634385 3.000000 +f 354/1595/354 165/1596/165 355/1597/355 +vt -5.599813 1.500000 +f 355/1597/355 165/1596/165 1471/1598/1471 +vt -5.578397 3.000000 +f 355/1597/355 1471/1598/1471 356/1599/356 +vt -5.542672 1.500000 +f 356/1599/356 1471/1598/1471 1472/1600/1472 +vt -5.522408 3.000000 +f 356/1599/356 1472/1600/1472 357/1601/357 +vt -5.485531 1.500000 +f 357/1601/357 1472/1600/1472 1473/1602/1473 +vt -5.466420 3.000000 +f 357/1601/357 1473/1602/1473 358/1603/358 +vt -5.428390 1.500000 +f 358/1603/358 1473/1602/1473 1474/1604/1474 +vt -5.410431 3.000000 +f 358/1603/358 1474/1604/1474 359/1605/359 +vt -5.371250 1.500000 +f 359/1605/359 1474/1604/1474 1475/1606/1475 +vt -5.354442 3.000000 +f 359/1605/359 1475/1606/1475 360/1607/360 +vt -5.314109 1.500000 +f 360/1607/360 1475/1606/1475 1476/1608/1476 +vt -5.298454 3.000000 +f 360/1607/360 1476/1608/1476 361/1609/361 +vt -5.256968 1.500000 +f 361/1609/361 1476/1608/1476 1477/1610/1477 +vt -5.242465 3.000000 +f 361/1609/361 1477/1610/1477 362/1611/362 +vt -5.199827 1.500000 +f 362/1611/362 1477/1610/1477 1478/1612/1478 +vt -5.186477 3.000000 +f 362/1611/362 1478/1612/1478 363/1613/363 +vt -5.142686 1.500000 +f 363/1613/363 1478/1612/1478 1479/1614/1479 +vt -5.130488 3.000000 +f 363/1613/363 1479/1614/1479 364/1615/364 +vt -5.085545 1.500000 +f 364/1615/364 1479/1614/1479 1480/1616/1480 +vt -5.074500 3.000000 +f 364/1615/364 1480/1616/1480 365/1617/365 +vt -5.028404 1.500000 +f 365/1617/365 1480/1616/1480 1481/1618/1481 +vt -5.018511 3.000000 +f 365/1617/365 1481/1618/1481 366/1619/366 +vt -4.971263 1.500000 +f 366/1619/366 1481/1618/1481 1482/1620/1482 +vt -4.962523 3.000000 +f 366/1619/366 1482/1620/1482 367/1621/367 +vt -4.914122 1.500000 +f 367/1621/367 1482/1620/1482 1483/1622/1483 +vt -4.906534 3.000000 +f 367/1621/367 1483/1622/1483 368/1623/368 +vt -4.856981 1.500000 +f 368/1623/368 1483/1622/1483 1484/1624/1484 +vt -4.850545 3.000000 +f 368/1623/368 1484/1624/1484 369/1625/369 +vt -4.799840 1.500000 +f 369/1625/369 1484/1624/1484 1485/1626/1485 +vt -4.738568 3.000000 +f 369/1625/369 1485/1626/1485 370/1627/370 +vt -4.685558 1.500000 +f 370/1627/370 1485/1626/1485 1486/1628/1486 +vt -4.626591 3.000000 +f 370/1627/370 1486/1628/1486 371/1629/371 +vt -4.571276 1.500000 +f 371/1629/371 1486/1628/1486 1487/1630/1487 +vt -4.514614 3.000000 +f 371/1629/371 1487/1630/1487 372/1631/372 +vt -4.456994 1.500000 +f 372/1631/372 1487/1630/1487 1488/1632/1488 +vt -4.402637 3.000000 +f 372/1631/372 1488/1632/1488 373/1633/373 +vt -4.342712 1.500000 +f 373/1633/373 1488/1632/1488 1489/1634/1489 +vt -4.290660 3.000000 +f 373/1633/373 1489/1634/1489 374/1635/374 +vt -4.228430 1.500000 +f 374/1635/374 1489/1634/1489 1490/1636/1490 +vt -4.234671 3.000000 +f 374/1635/374 1490/1636/1490 375/1637/375 +vt -4.178683 3.000000 +f 375/1637/375 1490/1636/1490 376/1638/376 +vt -4.171290 1.500000 +f 376/1638/376 1490/1636/1490 1491/1639/1491 +vt -4.122694 3.000000 +f 376/1638/376 1491/1639/1491 377/1640/377 +vt -4.114149 1.500000 +f 377/1640/377 1491/1639/1491 1492/1641/1492 +vt -4.066706 3.000000 +f 377/1640/377 1492/1641/1492 378/1642/378 +vt -4.057008 1.500000 +f 378/1642/378 1492/1641/1492 1493/1643/1493 +vt -4.010717 3.000000 +f 378/1642/378 1493/1643/1493 379/1644/379 +vt -3.999867 1.500000 +f 379/1644/379 1493/1643/1493 1494/1645/1494 +vt -3.954729 3.000000 +f 379/1644/379 1494/1645/1494 380/1646/380 +vt -3.942726 1.500000 +f 380/1646/380 1494/1645/1494 1495/1647/1495 +vt -3.898740 3.000000 +f 380/1646/380 1495/1647/1495 381/1648/381 +vt -3.885585 1.500000 +f 381/1648/381 1495/1647/1495 1496/1649/1496 +vt -3.842751 3.000000 +f 381/1648/381 1496/1649/1496 382/1650/382 +vt -3.828444 1.500000 +f 382/1650/382 1496/1649/1496 1497/1651/1497 +vt -3.786763 3.000000 +f 382/1650/382 1497/1651/1497 383/1652/383 +vt -3.771303 1.500000 +f 383/1652/383 1497/1651/1497 1498/1653/1498 +vt -3.730774 3.000000 +f 383/1652/383 1498/1653/1498 384/1654/384 +vt -3.714162 1.500000 +f 384/1654/384 1498/1653/1498 1499/1655/1499 +vt -3.674786 3.000000 +f 384/1654/384 1499/1655/1499 385/1656/385 +vt -3.657021 1.500000 +f 385/1656/385 1499/1655/1499 1500/1657/1500 +vt -3.648141 2.500000 +f 385/1656/385 1500/1657/1500 168/1658/168 +vt -3.648141 0.500000 +f 168/1658/168 1500/1657/1500 169/1659/169 +vt -3.657021 0.500000 +f 169/1659/169 1500/1657/1500 1195/1660/1195 +vt -3.674786 0.000000 +f 169/1659/169 1195/1660/1195 1095/1661/1095 +vt -3.714162 0.500000 +f 1095/1661/1095 1195/1660/1195 1196/1662/1196 +vt -3.730774 0.000000 +f 1095/1661/1095 1196/1662/1196 1096/1663/1096 +vt -3.771303 0.500000 +f 1096/1663/1096 1196/1662/1196 1197/1664/1197 +vt -3.786763 0.000000 +f 1096/1663/1096 1197/1664/1197 1097/1665/1097 +vt -3.828444 0.500000 +f 1097/1665/1097 1197/1664/1197 1198/1666/1198 +vt -3.842751 0.000000 +f 1097/1665/1097 1198/1666/1198 1098/1667/1098 +vt -3.885585 0.500000 +f 1098/1667/1098 1198/1666/1198 1199/1668/1199 +vt -3.898740 0.000000 +f 1098/1667/1098 1199/1668/1199 1099/1669/1099 +vt -3.942726 0.500000 +f 1099/1669/1099 1199/1668/1199 1200/1670/1200 +vt -3.954729 0.000000 +f 1099/1669/1099 1200/1670/1200 1100/1671/1100 +vt -3.999867 0.500000 +f 1100/1671/1100 1200/1670/1200 1201/1672/1201 +vt -4.010717 0.000000 +f 1100/1671/1100 1201/1672/1201 1101/1673/1101 +vt -4.057008 0.500000 +f 1101/1673/1101 1201/1672/1201 1202/1674/1202 +vt -4.066706 0.000000 +f 1101/1673/1101 1202/1674/1202 1102/1675/1102 +vt -4.114149 0.500000 +f 1102/1675/1102 1202/1674/1202 1203/1676/1203 +vt -4.122694 0.000000 +f 1102/1675/1102 1203/1676/1203 1103/1677/1103 +vt -4.171290 0.500000 +f 1103/1677/1103 1203/1676/1203 1204/1678/1204 +vt -4.178683 0.000000 +f 1103/1677/1103 1204/1678/1204 1104/1679/1104 +vt -4.228430 0.500000 +f 1104/1679/1104 1204/1678/1204 1205/1680/1205 +vt -4.234671 0.000000 +f 1104/1679/1104 1205/1680/1205 1105/1681/1105 +vt -4.290660 0.000000 +f 1105/1681/1105 1205/1680/1205 1106/1682/1106 +vt -4.342712 0.500000 +f 1106/1682/1106 1205/1680/1205 1206/1683/1206 +vt -4.402637 0.000000 +f 1106/1682/1106 1206/1683/1206 1107/1684/1107 +vt -4.456994 0.500000 +f 1107/1684/1107 1206/1683/1206 1207/1685/1207 +vt -4.514614 0.000000 +f 1107/1684/1107 1207/1685/1207 1108/1686/1108 +vt -4.571276 0.500000 +f 1108/1686/1108 1207/1685/1207 1208/1687/1208 +vt -4.626591 0.000000 +f 1108/1686/1108 1208/1687/1208 1109/1688/1109 +vt -4.685558 0.500000 +f 1109/1688/1109 1208/1687/1208 1209/1689/1209 +vt -4.738568 0.000000 +f 1109/1688/1109 1209/1689/1209 1110/1690/1110 +vt -4.799840 0.500000 +f 1110/1690/1110 1209/1689/1209 1210/1691/1210 +vt -4.850545 0.000000 +f 1110/1690/1110 1210/1691/1210 1111/1692/1111 +vt -4.856981 0.500000 +f 1111/1692/1111 1210/1691/1210 1211/1693/1211 +vt -4.906534 0.000000 +f 1111/1692/1111 1211/1693/1211 1112/1694/1112 +vt -4.914122 0.500000 +f 1112/1694/1112 1211/1693/1211 1212/1695/1212 +vt -4.962523 0.000000 +f 1112/1694/1112 1212/1695/1212 1113/1696/1113 +vt -4.971263 0.500000 +f 1113/1696/1113 1212/1695/1212 1213/1697/1213 +vt -5.018511 0.000000 +f 1113/1696/1113 1213/1697/1213 1114/1698/1114 +vt -5.028404 0.500000 +f 1114/1698/1114 1213/1697/1213 1214/1699/1214 +vt -5.074500 0.000000 +f 1114/1698/1114 1214/1699/1214 1115/1700/1115 +vt -5.085545 0.500000 +f 1115/1700/1115 1214/1699/1214 1215/1701/1215 +vt -5.130488 0.000000 +f 1115/1700/1115 1215/1701/1215 1116/1702/1116 +vt -5.142686 0.500000 +f 1116/1702/1116 1215/1701/1215 1216/1703/1216 +vt -5.186477 0.000000 +f 1116/1702/1116 1216/1703/1216 1117/1704/1117 +vt -5.199827 0.500000 +f 1117/1704/1117 1216/1703/1216 1217/1705/1217 +vt -5.242465 0.000000 +f 1117/1704/1117 1217/1705/1217 1118/1706/1118 +vt -5.256968 0.500000 +f 1118/1706/1118 1217/1705/1217 1218/1707/1218 +vt -5.298454 0.000000 +f 1118/1706/1118 1218/1707/1218 1119/1708/1119 +vt -5.314109 0.500000 +f 1119/1708/1119 1218/1707/1218 1219/1709/1219 +vt -5.354442 0.000000 +f 1119/1708/1119 1219/1709/1219 1120/1710/1120 +vt -5.371250 0.500000 +f 1120/1710/1120 1219/1709/1219 1220/1711/1220 +vt -5.410431 0.000000 +f 1120/1710/1120 1220/1711/1220 1121/1712/1121 +vt -5.428390 0.500000 +f 1121/1712/1121 1220/1711/1220 1221/1713/1221 +vt -5.466420 0.000000 +f 1121/1712/1121 1221/1713/1221 1122/1714/1122 +vt -5.485531 0.500000 +f 1122/1714/1122 1221/1713/1221 1222/1715/1222 +vt -5.522408 0.000000 +f 1122/1714/1122 1222/1715/1222 1123/1716/1123 +vt -5.542672 0.500000 +f 1123/1716/1123 1222/1715/1222 1223/1717/1223 +vt -5.578397 0.000000 +f 1123/1716/1123 1223/1717/1223 1124/1718/1124 +vt -5.599813 0.500000 +f 1124/1718/1124 1223/1717/1223 1224/1719/1224 +vt -5.634385 0.000000 +f 1124/1718/1124 1224/1719/1224 1125/1720/1125 +vt -5.704195 0.500000 +f 1125/1720/1125 1224/1719/1224 164/1721/164 +vt -5.746362 0.000000 +f 1125/1720/1125 164/1721/164 1126/1722/1126 +vt -5.812226 0.500000 +f 1126/1722/1126 164/1721/164 1193/1723/1193 +vt -5.858339 0.000000 +f 1126/1722/1126 1193/1723/1193 1127/1724/1127 +vt -5.917194 0.500000 +f 1127/1724/1127 1193/1723/1193 1192/1725/1192 +vt -5.970317 0.000000 +f 1127/1724/1127 1192/1725/1192 1128/1726/1128 +vt -6.009665 0.500000 +f 1128/1726/1128 1192/1725/1192 1191/1727/1191 +vt -6.084372 0.500000 +f 1128/1726/1128 1191/1727/1191 1190/1728/1190 +f 165/1596/165 164/1721/164 1471/1598/1471 +f 1471/1598/1471 164/1721/164 1224/1719/1224 +f 1471/1598/1471 1224/1719/1224 1223/1717/1223 +vt -6.082294 0.000000 +f 1128/1726/1128 1190/1728/1190 1129/1729/1129 +vt -6.191743 0.500000 +f 1129/1729/1129 1190/1728/1190 1189/1730/1189 +vt -6.194271 0.000000 +f 1129/1729/1129 1189/1730/1189 1130/1731/1130 +vt -6.281892 0.500000 +f 1130/1731/1130 1189/1730/1189 1188/1732/1188 +f 1130/1731/1130 1188/1732/1188 1131/1375/1131 +f 1131/1375/1131 1188/1732/1188 1187/1373/1187 +vt -3.618797 0.000000 +f 1095/1661/1095 1094/1733/1094 169/1659/169 +vt -3.574790 0.500000 +f 169/1659/169 1094/1733/1094 180/1734/180 +vt -3.562809 0.000000 +f 180/1734/180 1094/1733/1094 1093/1735/1093 +vt -3.500969 0.500000 +f 180/1734/180 1093/1735/1093 181/1736/181 +vt -3.506820 0.000000 +f 181/1736/181 1093/1735/1093 1092/1737/1092 +vt -3.425913 0.500000 +f 181/1736/181 1092/1737/1092 182/1738/182 +vt -3.394843 0.000000 +f 182/1738/182 1092/1737/1092 1091/1739/1091 +vt -3.348710 0.500000 +f 182/1738/182 1091/1739/1091 183/1740/183 +vt -3.282866 0.000000 +f 183/1740/183 1091/1739/1091 1090/1741/1090 +vt -3.269149 0.500000 +f 183/1740/183 1090/1741/1090 184/1742/184 +vt -3.170889 0.000000 +f 184/1742/184 1090/1741/1090 1089/1743/1089 +vt -3.187460 0.500000 +f 184/1742/184 1089/1743/1089 185/1744/185 +vt -3.103897 0.500000 +f 185/1744/185 1089/1743/1089 186/1745/186 +vt -3.058912 0.000000 +f 186/1745/186 1089/1743/1089 1088/1746/1088 +vt -3.018683 0.500000 +f 186/1745/186 1088/1746/1088 187/1747/187 +vt -2.946935 0.000000 +f 187/1747/187 1088/1746/1088 1087/1748/1087 +vt -2.856786 0.500000 +f 187/1747/187 1087/1748/1087 188/1749/188 +vt -2.834957 0.000000 +f 188/1749/188 1087/1748/1087 1086/1750/1086 +vt -2.708390 0.500000 +f 188/1749/188 1086/1750/1086 189/1751/189 +vt -2.722980 0.000000 +f 189/1751/189 1086/1750/1086 1085/1752/1085 +vt -2.611003 0.000000 +f 189/1751/189 1085/1752/1085 1084/1753/1084 +vt -2.565175 0.500000 +f 189/1751/189 1084/1753/1084 190/1754/190 +vt -2.499026 0.000000 +f 190/1754/190 1084/1753/1084 1083/1755/1083 +vt -2.493493 0.500000 +f 190/1754/190 1083/1755/1083 191/1756/191 +vt -2.420808 0.500000 +f 191/1756/191 1083/1755/1083 192/1757/192 +vt -2.387049 0.000000 +f 192/1757/192 1083/1755/1083 1082/1758/1082 +vt -2.346402 0.500000 +f 192/1757/192 1082/1758/1082 193/1759/193 +vt -2.275072 0.000000 +f 193/1759/193 1082/1758/1082 1081/1760/1081 +vt -2.269480 0.500000 +f 193/1759/193 1081/1760/1081 194/1761/194 +vt -2.189098 0.500000 +f 194/1761/194 1081/1760/1081 195/1762/195 +vt -2.163095 0.000000 +f 195/1762/195 1081/1760/1081 1080/1763/1080 +vt -2.104050 0.500000 +f 195/1762/195 1080/1763/1080 196/1764/196 +vt -1.939141 0.000000 +f 196/1764/196 1080/1763/1080 1079/1765/1079 +vt -2.012675 0.500000 +f 196/1764/196 1079/1765/1079 197/1766/197 +vt -1.912467 0.500000 +f 197/1766/197 1079/1765/1079 198/1767/198 +vt -1.827163 0.000000 +f 198/1767/198 1079/1765/1079 1078/1768/1078 +vt -1.857853 0.500000 +f 198/1767/198 1078/1768/1078 199/1769/199 +vt -1.829101 0.500000 +f 199/1769/199 1078/1768/1078 200/1770/200 +vt -1.796076 0.500000 +f 200/1770/200 1078/1768/1078 201/1771/201 +vt -1.715186 0.000000 +f 201/1771/201 1078/1768/1078 1077/1772/1077 +vt -1.712183 0.500000 +f 201/1771/201 1077/1772/1077 202/1773/202 +vt -1.603209 0.000000 +f 202/1773/202 1077/1772/1077 1076/1774/1076 +vt -1.610142 0.500000 +f 202/1773/202 1076/1774/1076 203/1775/203 +vt -1.547221 0.000000 +f 203/1775/203 1076/1774/1076 1075/1776/1075 +vt -1.497057 0.500000 +f 203/1775/203 1075/1776/1075 204/1777/204 +vt -1.491232 0.000000 +f 204/1777/204 1075/1776/1075 1074/1778/1074 +vt -1.439770 0.500000 +f 204/1777/204 1074/1778/1074 205/1779/205 +vt -1.435244 0.000000 +f 205/1779/205 1074/1778/1074 1073/1780/1073 +vt -1.385208 0.500000 +f 205/1779/205 1073/1780/1073 206/1781/206 +vt -1.379255 0.000000 +f 206/1781/206 1073/1780/1073 1072/1782/1072 +vt -1.333302 0.500000 +f 206/1781/206 1072/1782/1072 207/1783/207 +vt -1.323266 0.000000 +f 207/1783/207 1072/1782/1072 1071/1784/1071 +vt -1.283542 0.500000 +f 207/1783/207 1071/1784/1071 208/1785/208 +vt -1.267278 0.000000 +f 208/1785/208 1071/1784/1071 1070/1786/1070 +vt -1.211289 0.000000 +f 208/1785/208 1070/1786/1070 1069/1787/1069 +vt -1.190002 0.500000 +f 208/1785/208 1069/1787/1069 209/1788/209 +vt -1.155301 0.000000 +f 209/1788/209 1069/1787/1069 1068/1789/1068 +vt -1.142776 0.500000 +f 209/1788/209 1068/1789/1068 210/1790/210 +vt -1.099312 0.000000 +f 210/1790/210 1068/1789/1068 1067/1791/1067 +vt -1.091021 0.500000 +f 210/1790/210 1067/1791/1067 211/1792/211 +vt -1.071318 0.000000 +f 211/1792/211 1067/1791/1067 1066/1793/1066 +vt -1.064901 0.500000 +f 211/1792/211 1066/1793/1066 212/1794/212 +vt -1.043324 0.000000 +f 212/1794/212 1066/1793/1066 1065/1795/1065 +vt -1.039305 0.500000 +f 212/1794/212 1065/1795/1065 213/1796/213 +vt -1.015329 0.000000 +f 213/1796/213 1065/1795/1065 1064/1797/1064 +vt -1.014077 0.500000 +f 213/1796/213 1064/1797/1064 214/1798/214 +vt -0.989051 0.500000 +f 214/1798/214 1064/1797/1064 215/1799/215 +vt -0.987335 0.000000 +f 215/1799/215 1064/1797/1064 1063/1800/1063 +vt -0.939357 0.500000 +f 215/1799/215 1063/1800/1063 216/1801/216 +vt -0.931347 0.000000 +f 216/1801/216 1063/1800/1063 1062/1802/1062 +vt -0.888837 0.500000 +f 216/1801/216 1062/1802/1062 217/1803/217 +vt -0.819369 0.000000 +f 217/1803/217 1062/1802/1062 1061/1804/1061 +vt -0.782106 0.500000 +f 217/1803/217 1061/1804/1061 218/1805/218 +vt -0.707392 0.000000 +f 218/1805/218 1061/1804/1061 1060/1806/1060 +vt -0.594669 0.500000 +f 218/1805/218 1060/1806/1060 219/1807/219 +vt -0.595415 0.000000 +f 219/1807/219 1060/1806/1060 1059/1808/1059 +vt -0.517069 0.500000 +f 219/1807/219 1059/1808/1059 220/1809/220 +vt -0.483438 0.000000 +f 220/1809/220 1059/1808/1059 1058/1810/1058 +vt -0.441311 0.500000 +f 220/1809/220 1058/1810/1058 221/1811/221 +vt -0.371461 0.000000 +f 221/1811/221 1058/1810/1058 1057/1812/1057 +vt -0.290858 0.500000 +f 221/1811/221 1057/1812/1057 222/1813/222 +vt -0.259484 0.000000 +f 222/1813/222 1057/1812/1057 1056/1814/1056 +vt -0.147507 0.500000 +f 222/1813/222 1056/1814/1056 223/1815/223 +vt -0.147507 0.000000 +f 223/1815/223 1056/1814/1056 1055/1816/1055 +vt -0.074762 0.500000 +f 223/1815/223 1055/1816/1055 224/1817/224 +vt -0.073753 0.000000 +f 224/1817/224 1055/1816/1055 1054/1818/1054 +vt -0.000000 0.500000 +f 224/1817/224 1054/1818/1054 225/1819/225 +vt -0.000000 0.000000 +f 225/1819/225 1054/1818/1054 1053/1820/1053 +vt -3.618797 3.000000 +f 385/1656/385 168/1658/168 386/1821/386 +vt -3.562042 2.500000 +f 386/1821/386 168/1658/168 276/1822/276 +vt -3.562809 3.000000 +f 386/1821/386 276/1822/276 387/1823/387 +vt -3.506820 3.000000 +f 387/1823/387 276/1822/276 388/1824/388 +vt -3.470548 2.500000 +f 388/1824/388 276/1822/276 275/1825/275 +vt -3.394843 3.000000 +f 388/1824/388 275/1825/275 389/1826/389 +vt -3.373405 2.500000 +f 389/1826/389 275/1825/275 274/1827/274 +vt -3.282866 3.000000 +f 389/1826/389 274/1827/274 390/1828/390 +vt -3.270677 2.500000 +f 390/1828/390 274/1827/274 273/1829/273 +vt -3.170889 3.000000 +f 390/1828/390 273/1829/273 391/1830/391 +vt -3.162682 2.500000 +f 391/1830/391 273/1829/273 272/1831/272 +vt -3.058912 3.000000 +f 391/1830/391 272/1831/272 392/1832/392 +vt -3.049180 2.500000 +f 392/1832/392 272/1831/272 271/1833/271 +vt -2.946935 3.000000 +f 392/1832/392 271/1833/271 393/1834/393 +vt -2.930413 2.500000 +f 393/1834/393 271/1833/271 270/1835/270 +vt -2.834957 3.000000 +f 393/1834/393 270/1835/270 394/1836/394 +vt -2.815803 2.500000 +f 394/1836/394 270/1835/270 269/1837/269 +vt -2.722980 3.000000 +f 394/1836/394 269/1837/269 395/1838/395 +vt -2.707085 2.500000 +f 395/1838/395 269/1837/269 268/1839/268 +vt -2.611003 3.000000 +f 395/1838/395 268/1839/268 396/1840/396 +vt -2.600852 2.500000 +f 396/1840/396 268/1839/268 267/1841/267 +vt -2.499026 3.000000 +f 396/1840/396 267/1841/267 397/1842/397 +vt -2.494324 2.500000 +f 397/1842/397 267/1841/267 266/1843/266 +vt -2.385020 2.500000 +f 397/1842/397 266/1843/266 265/1844/265 +vt -2.387049 3.000000 +f 397/1842/397 265/1844/265 398/1845/398 +vt -2.270384 2.500000 +f 398/1845/398 265/1844/265 264/1846/264 +vt -2.275072 3.000000 +f 398/1845/398 264/1846/264 399/1847/399 +vt -2.210119 2.500000 +f 399/1847/399 264/1846/264 263/1848/263 +vt -2.163095 3.000000 +f 399/1847/399 263/1848/263 400/1849/400 +vt -2.147245 2.500000 +f 400/1849/400 263/1848/263 262/1850/262 +vt -2.081127 2.500000 +f 400/1849/400 262/1850/262 261/1851/261 +vt -1.939141 3.000000 +f 400/1849/400 261/1851/261 401/1852/401 +vt -2.010924 2.500000 +f 401/1852/401 261/1851/261 260/1853/260 +vt -1.935188 2.500000 +f 401/1852/401 260/1853/260 259/1854/259 +vt -1.850598 2.500000 +f 259/1854/259 258/1855/258 401/1852/401 +vt -1.827163 3.000000 +f 401/1852/401 258/1855/258 402/1856/402 +vt -1.715186 3.000000 +f 402/1856/402 258/1855/258 403/1857/403 +vt -1.659948 2.500000 +f 403/1857/403 258/1855/258 257/1858/257 +vt -1.603209 3.000000 +f 403/1857/403 257/1858/257 404/1859/404 +vt -1.557690 2.500000 +f 404/1859/404 257/1858/257 256/1860/256 +vt -1.547221 3.000000 +f 404/1859/404 256/1860/256 405/1861/405 +vt -1.506016 2.500000 +f 405/1861/405 256/1860/256 255/1862/255 +vt -1.491232 3.000000 +f 405/1861/405 255/1862/255 406/1863/406 +vt -1.454910 2.500000 +f 406/1863/406 255/1862/255 254/1864/254 +vt -1.435244 3.000000 +f 406/1863/406 254/1864/254 407/1865/407 +vt -1.405397 2.500000 +f 407/1865/407 254/1864/254 253/1866/253 +vt -1.379255 3.000000 +f 407/1865/407 253/1866/253 408/1867/408 +vt -1.357572 2.500000 +f 408/1867/408 253/1866/253 252/1868/252 +vt -1.323266 3.000000 +f 408/1867/408 252/1868/252 409/1869/409 +vt -1.266660 2.500000 +f 409/1869/409 252/1868/252 251/1870/251 +vt -1.267278 3.000000 +f 409/1869/409 251/1870/251 410/1871/410 +vt -1.211289 3.000000 +f 410/1871/410 251/1870/251 411/1872/411 +vt -1.181158 2.500000 +f 411/1872/411 251/1870/251 250/1873/250 +vt -1.155301 3.000000 +f 411/1872/411 250/1873/250 412/1874/412 +vt -1.097780 2.500000 +f 412/1874/412 250/1873/250 249/1875/249 +vt -1.099312 3.000000 +f 412/1874/412 249/1875/249 413/1876/413 +vt -1.071318 3.000000 +f 413/1876/413 249/1875/249 414/1877/414 +vt -1.056255 2.500000 +f 414/1877/414 249/1875/249 248/1878/248 +vt -1.043324 3.000000 +f 414/1877/414 248/1878/248 415/1879/415 +vt -1.014604 2.500000 +f 415/1879/415 248/1878/248 247/1880/247 +vt -1.015329 3.000000 +f 415/1879/415 247/1880/247 416/1881/416 +vt -0.987335 3.000000 +f 416/1881/416 247/1880/247 417/1882/417 +vt -0.973795 2.500000 +f 417/1882/417 247/1880/247 246/1883/246 +vt -0.931347 3.000000 +f 417/1882/417 246/1883/246 418/1884/418 +vt -0.932722 2.500000 +f 418/1884/418 246/1883/246 245/1885/245 +vt -0.793616 2.500000 +f 418/1884/418 245/1885/245 244/1886/244 +vt -0.644380 2.500000 +vt -0.707392 3.000000 +f 243/1887/243 420/1888/420 244/1886/244 +vt -0.819369 3.000000 +f 244/1886/244 420/1888/420 419/1889/419 +f 244/1886/244 419/1889/419 418/1884/418 +vt -0.595415 3.000000 +f 420/1888/420 243/1887/243 421/1890/421 +vt -0.580912 2.500000 +f 421/1890/421 243/1887/243 242/1891/242 +vt -0.513854 2.500000 +f 421/1890/421 242/1891/242 241/1892/241 +vt -0.483438 3.000000 +f 421/1890/421 241/1892/241 422/1893/422 +vt -0.386846 2.500000 +f 422/1893/422 241/1892/241 240/1894/240 +vt -0.371461 3.000000 +f 422/1893/422 240/1894/240 423/1895/423 +vt -0.266055 2.500000 +f 423/1895/423 240/1894/240 239/1896/239 +vt -0.259484 3.000000 +f 423/1895/423 239/1896/239 424/1897/424 +vt -0.147507 2.500000 +f 424/1897/424 239/1896/239 238/1898/238 +vt -0.147507 3.000000 +f 424/1897/424 238/1898/238 425/1899/425 +vt -0.074165 2.500000 +f 425/1899/425 238/1898/238 300/1900/300 +vt -0.073753 3.000000 +f 425/1899/425 300/1900/300 426/1901/426 +vt -0.000000 2.500000 +f 426/1901/426 300/1900/300 299/1902/299 +vt -0.000000 3.000000 +f 426/1901/426 299/1902/299 427/1903/427 +vt -11.520695 3.000000 +f 498/1473/498 497/1904/497 1241/1471/1241 +f 1241/1471/1241 497/1904/497 1227/1458/1227 +f 1241/1471/1241 1227/1458/1227 1225/1456/1225 +vt -11.612541 3.000000 +f 497/1904/497 496/1905/496 1227/1458/1227 +f 1227/1458/1227 496/1905/496 1242/1460/1242 +vt -11.796233 3.000000 +f 496/1905/496 495/1906/495 1242/1460/1242 +f 1242/1460/1242 495/1906/495 1230/1462/1230 +vt -11.979925 3.000000 +f 495/1906/495 494/1907/494 1230/1462/1230 +vt -11.971251 1.500000 +f 1230/1462/1230 494/1907/494 1243/1908/1243 +f 1230/1462/1230 1243/1908/1243 1229/1464/1229 +f 1229/1464/1229 1243/1908/1243 1231/1466/1231 +vt -12.071771 3.000000 +f 494/1907/494 493/1909/493 1243/1908/1243 +f 1243/1908/1243 493/1909/493 1232/1468/1232 +f 1243/1908/1243 1232/1468/1232 1231/1466/1231 +vt -12.163617 3.000000 +f 493/1909/493 492/1910/492 1232/1468/1232 +vt -12.222992 1.500000 +f 1232/1468/1232 492/1910/492 1233/1911/1233 +f 1232/1468/1232 1233/1911/1233 988/1470/988 +vt -12.222992 0.179561 +f 988/1470/988 1233/1911/1233 1239/1912/1239 +vt -12.255463 0.000000 +f 988/1470/988 1239/1912/1239 989/1913/989 +f 989/1913/989 1239/1912/1239 1233/1911/1233 +vt -12.348862 1.500000 +f 989/1913/989 1233/1911/1233 1234/1914/1234 +vt -12.255463 3.000000 +f 1234/1914/1234 1233/1911/1233 491/1915/491 +vt -12.347309 3.000000 +f 1234/1914/1234 491/1915/491 490/1916/490 +f 492/1910/492 491/1915/491 1233/1911/1233 +vt -12.439155 3.000000 +f 490/1916/490 489/1917/489 1234/1914/1234 +vt -12.474733 1.500000 +f 1234/1914/1234 489/1917/489 1235/1918/1235 +vt -12.439155 0.000000 +f 1234/1914/1234 1235/1918/1235 991/1919/991 +vt -12.474733 0.087629 +f 991/1919/991 1235/1918/1235 1237/1920/1237 +vt -12.531001 0.000000 +f 991/1919/991 1237/1920/1237 992/1921/992 +f 992/1921/992 1237/1920/1237 1235/1918/1235 +vt -12.600603 1.500000 +f 992/1921/992 1235/1918/1235 1236/1922/1236 +vt -12.531001 3.000000 +f 1236/1922/1236 1235/1918/1235 488/1923/488 +vt -12.622847 3.000000 +f 1236/1922/1236 488/1923/488 487/1924/487 +f 489/1917/489 488/1923/488 1235/1918/1235 +vt -12.714693 3.000000 +vt -12.714693 2.200000 +f 94/1925/94 93/1926/93 487/1924/487 +f 487/1924/487 93/1926/93 1236/1922/1236 +vt -12.726474 1.500000 +f 1236/1922/1236 93/1926/93 1244/1927/1244 +vt -12.841428 2.200000 +f 1244/1927/1244 93/1926/93 679/1928/679 +vt -12.852344 1.500000 +f 1244/1927/1244 679/1928/679 1245/1929/1245 +vt -12.965854 2.200000 +f 1245/1929/1245 679/1928/679 678/1930/678 +vt -12.978215 1.500000 +f 1245/1929/1245 678/1930/678 1246/1931/1246 +vt -13.089232 2.200000 +f 1246/1931/1246 678/1930/678 677/1932/677 +vt -13.104085 1.500000 +f 1246/1931/1246 677/1932/677 1247/1933/1247 +vt -13.211980 2.200000 +f 1247/1933/1247 677/1932/677 676/1934/676 +vt -13.159339 0.800000 +f 1247/1933/1247 676/1934/676 682/1935/682 +vt -13.229956 1.500000 +f 682/1935/682 676/1934/676 1248/1936/1248 +vt -13.248540 0.800000 +f 682/1935/682 1248/1936/1248 683/1937/683 +vt -13.355826 1.500000 +f 683/1937/683 1248/1936/1248 1249/1938/1249 +vt -13.338722 0.800000 +f 683/1937/683 1249/1938/1249 684/1939/684 +vt -13.430580 0.800000 +f 684/1939/684 1249/1938/1249 685/1940/685 +vt -13.418762 1.500000 +f 685/1940/685 1249/1938/1249 1250/1941/1250 +vt -13.481697 1.500000 +f 685/1940/685 1250/1941/1250 1251/1942/1251 +vt -13.454209 2.200000 +f 1251/1942/1251 1250/1941/1250 674/1943/674 +vt -13.515326 2.200000 +f 1251/1942/1251 674/1943/674 673/1944/673 +vt -13.333095 2.200000 +f 676/1934/676 675/1945/675 1248/1936/1248 +f 1248/1936/1248 675/1945/675 1249/1938/1249 +f 1249/1938/1249 675/1945/675 1250/1941/1250 +f 1250/1941/1250 675/1945/675 674/1943/674 +vt -13.544632 1.500000 +f 1251/1942/1251 673/1944/673 1252/1946/1252 +vt -13.576992 2.200000 +f 1252/1946/1252 673/1944/673 672/1947/672 +vt -13.607567 1.500000 +f 1252/1946/1252 672/1947/672 1253/1948/1253 +vt -13.639257 2.200000 +f 1253/1948/1253 672/1947/672 671/1949/671 +vt -13.670503 1.500000 +f 1253/1948/1253 671/1949/671 1254/1950/1254 +vt -13.702328 2.200000 +f 1254/1950/1254 671/1949/671 670/1951/670 +vt -13.733438 1.500000 +f 1254/1950/1254 670/1951/670 1255/1952/1255 +vt -13.766417 2.200000 +f 1255/1952/1255 670/1951/670 669/1953/669 +vt -13.796373 1.500000 +f 1255/1952/1255 669/1953/669 1256/1954/1256 +vt -13.831745 2.200000 +f 1256/1954/1256 669/1953/669 668/1955/668 +vt -13.859308 1.500000 +f 1256/1954/1256 668/1955/668 1257/1956/1257 +vt -13.897691 2.200000 +f 1257/1956/1257 668/1955/668 667/1957/667 +vt -13.922244 1.500000 +f 1257/1956/1257 667/1957/667 1258/1958/1258 +vt -13.963131 2.200000 +f 1258/1958/1258 667/1957/667 666/1959/666 +vt -13.985179 1.500000 +f 1258/1958/1258 666/1959/666 1259/1960/1259 +vt -14.093079 2.200000 +f 1259/1960/1259 666/1959/666 665/1961/665 +vt -14.044300 0.800000 +f 1259/1960/1259 665/1961/665 691/1962/691 +vt -14.111049 1.500000 +f 691/1962/691 665/1961/665 1469/1963/1469 +vt -14.151150 0.800000 +f 691/1962/691 1469/1963/1469 692/1964/692 +vt -14.222510 2.200000 +f 692/1964/692 1469/1963/1469 664/1965/664 +vt -14.236920 1.500000 +f 692/1964/692 664/1965/664 1260/1966/1260 +vt -14.350860 2.200000 +f 1260/1966/1260 664/1965/664 663/1967/663 +vt -14.362791 1.500000 +f 1260/1966/1260 663/1967/663 1261/1968/1261 +vt -14.478502 2.200000 +f 1261/1968/1261 663/1967/663 662/1969/662 +vt -14.488661 1.500000 +f 1261/1968/1261 662/1969/662 1262/1970/1262 +vt -14.614532 1.500000 +f 1262/1970/1262 662/1969/662 1263/1971/1263 +vt -14.469719 0.800000 +f 1262/1970/1262 1263/1971/1263 695/1972/695 +vt -14.682033 0.800000 +f 695/1972/695 1263/1971/1263 696/1973/696 +vt -14.740402 1.500000 +f 696/1973/696 1263/1971/1263 1264/1974/1264 +vt -14.866273 1.500000 +f 696/1973/696 1264/1974/1264 1265/1975/1265 +vt -14.861267 2.200000 +f 1265/1975/1265 1264/1974/1264 660/1976/660 +vt -14.991002 2.200000 +f 1265/1975/1265 660/1976/660 659/1977/659 +f 665/1961/665 664/1965/664 1469/1963/1469 +vt -14.733273 2.200000 +f 662/1969/662 661/1978/661 1263/1971/1263 +f 1263/1971/1263 661/1978/661 1264/1974/1264 +f 661/1978/661 660/1976/660 1264/1974/1264 +vt -15.123500 2.200000 +vt -15.118014 1.500000 +f 658/1979/658 1267/1980/1267 659/1977/659 +vt -14.992143 1.500000 +f 659/1977/659 1267/1980/1267 1266/1981/1266 +f 659/1977/659 1266/1981/1266 1265/1975/1265 +vt -14.898567 0.800000 +f 1265/1975/1265 1266/1981/1266 697/1982/697 +f 1265/1975/1265 697/1982/697 696/1973/696 +vt -15.243884 1.500000 +f 1267/1980/1267 658/1979/658 1268/1983/1268 +vt -15.259660 2.200000 +f 1268/1983/1268 658/1979/658 657/1984/657 +vt -15.369755 1.500000 +f 1268/1983/1268 657/1984/657 1269/1985/1269 +vt -15.398916 2.200000 +f 1269/1985/1269 657/1984/657 656/1986/656 +vt -15.495625 1.500000 +f 1269/1985/1269 656/1986/656 1270/1987/1270 +vt -15.469613 2.200000 +f 1270/1987/1270 656/1986/656 655/1988/655 +vt -15.541326 2.200000 +f 1270/1987/1270 655/1988/655 654/1989/654 +vt -15.621496 1.500000 +f 1270/1987/1270 654/1989/654 1271/1990/1271 +vt -15.613275 2.200000 +f 1271/1990/1271 654/1989/654 653/1991/653 +vt -15.683714 2.200000 +f 1271/1990/1271 653/1991/653 652/1992/652 +vt -15.820077 2.200000 +vt -15.747366 1.500000 +f 651/1993/651 1468/1994/1468 652/1992/652 +vt -15.732503 0.800000 +f 652/1992/652 1468/1994/1468 704/1995/704 +f 652/1992/652 704/1995/704 1271/1990/1271 +vt -15.609177 0.800000 +f 1271/1990/1271 704/1995/704 703/1996/703 +f 1271/1990/1271 703/1996/703 1270/1987/1270 +vt -15.483658 0.800000 +f 1270/1987/1270 703/1996/703 702/1997/702 +f 1270/1987/1270 702/1997/702 1269/1985/1269 +vt -15.361192 0.800000 +f 1269/1985/1269 702/1997/702 701/1998/701 +f 1269/1985/1269 701/1998/701 1268/1983/1268 +vt -15.241072 0.800000 +f 1268/1983/1268 701/1998/701 700/1999/700 +vt -15.123896 0.800000 +f 1268/1983/1268 700/1999/700 699/2000/699 +vt -15.950764 2.200000 +vt -15.873237 1.500000 +f 650/2001/650 1467/2002/1467 651/1993/651 +vt -15.851886 0.800000 +f 651/1993/651 1467/2002/1467 705/2003/705 +f 651/1993/651 705/2003/705 1468/1994/1468 +f 1468/1994/1468 705/2003/705 704/1995/704 +vt -16.075342 2.200000 +vt -15.999107 1.500000 +f 649/2004/649 1466/2005/1466 650/2001/650 +vt -15.967693 0.800000 +f 650/2001/650 1466/2005/1466 706/2006/706 +f 650/2001/650 706/2006/706 1467/2002/1467 +f 1467/2002/1467 706/2006/706 705/2003/705 +vt -16.193188 2.200000 +vt -16.124977 1.500000 +f 648/2007/648 1465/2008/1465 649/2004/649 +vt -16.079697 0.800000 +f 649/2004/649 1465/2008/1465 707/2009/707 +f 649/2004/649 707/2009/707 1466/2005/1466 +f 1466/2005/1466 707/2009/707 706/2006/706 +vt -16.306581 2.200000 +vt -16.250849 1.500000 +f 647/2010/647 1464/2011/1464 648/2007/648 +vt -16.187462 0.800000 +f 648/2007/648 1464/2011/1464 708/2012/708 +f 648/2007/648 708/2012/708 1465/2008/1465 +f 1465/2008/1465 708/2012/708 707/2009/707 +vt -16.422089 2.200000 +vt -16.376719 1.500000 +f 646/2013/646 1272/2014/1272 647/2010/647 +vt -16.291317 0.800000 +f 647/2010/647 1272/2014/1272 709/2015/709 +f 647/2010/647 709/2015/709 1464/2011/1464 +f 1464/2011/1464 709/2015/709 708/2012/708 +vt -16.502588 1.500000 +f 1272/2014/1272 646/2013/646 1273/2016/1273 +vt -16.539883 2.200000 +f 1273/2016/1273 646/2013/646 645/2017/645 +vt -16.628460 1.500000 +f 1273/2016/1273 645/2017/645 1274/2018/1274 +vt -16.674900 2.200000 +f 1274/2018/1274 645/2017/645 644/2019/644 +vt -16.689892 0.800000 +f 1274/2018/1274 644/2019/644 713/2020/713 +vt -16.754330 1.500000 +f 713/2020/713 644/2019/644 1275/2021/1275 +vt -16.767820 0.800000 +f 713/2020/713 1275/2021/1275 714/2022/714 +vt -16.817265 1.500000 +f 714/2022/714 1275/2021/1275 1276/2023/1276 +vt -16.846092 0.800000 +f 714/2022/714 1276/2023/1276 715/2024/715 +vt -16.880201 1.500000 +f 715/2024/715 1276/2023/1276 1277/2025/1277 +vt -16.918644 0.800000 +f 715/2024/715 1277/2025/1277 716/2026/716 +vt -16.943136 1.500000 +f 716/2026/716 1277/2025/1277 1278/2027/1278 +vt -16.987513 0.800000 +f 716/2026/716 1278/2027/1278 717/2028/717 +vt -17.006071 1.500000 +f 717/2028/717 1278/2027/1278 1279/2029/1279 +vt -17.054428 0.800000 +f 717/2028/717 1279/2029/1279 718/2030/718 +vt -17.054705 2.200000 +f 718/2030/718 1279/2029/1279 639/2031/639 +vt -17.131943 1.500000 +f 718/2030/718 639/2031/639 1280/2032/1280 +vt -17.121252 2.200000 +f 1280/2032/1280 639/2031/639 638/2033/638 +vt -17.249756 2.200000 +f 1280/2032/1280 638/2033/638 637/2034/637 +vt -16.756802 2.200000 +f 644/2019/644 643/2035/643 1275/2021/1275 +f 1275/2021/1275 643/2035/643 1276/2023/1276 +vt -16.839548 2.200000 +f 643/2035/643 642/2036/642 1276/2023/1276 +f 1276/2023/1276 642/2036/642 1277/2025/1277 +vt -16.915133 2.200000 +f 642/2036/642 641/2037/641 1277/2025/1277 +f 1277/2025/1277 641/2037/641 1278/2027/1278 +vt -16.986147 2.200000 +f 641/2037/641 640/2038/640 1278/2027/1278 +f 1278/2027/1278 640/2038/640 1279/2029/1279 +f 640/2038/640 639/2031/639 1279/2029/1279 +vt -17.257812 1.500000 +f 1280/2032/1280 637/2034/637 1281/2039/1281 +vt -17.375748 2.200000 +f 1281/2039/1281 637/2034/637 636/2040/636 +vt -17.383682 1.500000 +f 1281/2039/1281 636/2040/636 1282/2041/1282 +vt -17.502684 2.200000 +f 1282/2041/1282 636/2040/636 635/2042/635 +vt -17.509554 1.500000 +f 1282/2041/1282 635/2042/635 1283/2043/1283 +vt -17.632454 2.200000 +f 1283/2043/1283 635/2042/635 634/2044/634 +vt -17.635424 1.500000 +f 1283/2043/1283 634/2044/634 1284/2045/1284 +vt -17.761293 1.500000 +f 1284/2045/1284 634/2044/634 1285/2046/1285 +vt -17.695805 0.800000 +f 1284/2045/1284 1285/2046/1285 723/2047/723 +vt -17.832989 0.800000 +f 723/2047/723 1285/2046/1285 724/2048/724 +vt -17.887165 1.500000 +f 724/2048/724 1285/2046/1285 1286/2049/1286 +vt -17.965569 0.800000 +f 724/2048/724 1286/2049/1286 725/2050/725 +vt -18.013035 1.500000 +f 725/2050/725 1286/2049/1286 1287/2051/1287 +vt -18.099110 0.800000 +f 725/2050/725 1287/2051/1287 726/2052/726 +vt -18.029858 2.200000 +f 726/2052/726 1287/2051/1287 631/2053/631 +vt -18.138906 1.500000 +f 726/2052/726 631/2053/631 1463/2054/1463 +vt -18.171268 2.200000 +f 1463/2054/1463 631/2053/631 630/2055/630 +vt -18.243557 0.800000 +f 1463/2054/1463 630/2055/630 727/2056/727 +vt -18.264776 1.500000 +f 727/2056/727 630/2055/630 1288/2057/1288 +vt -18.390648 1.500000 +f 727/2056/727 1288/2057/1288 1289/2058/1289 +vt -18.337444 2.200000 +f 1289/2058/1289 1288/2057/1288 629/2059/629 +vt -18.436380 2.200000 +f 1289/2058/1289 629/2059/629 628/2060/628 +vt -17.766647 2.200000 +f 634/2044/634 633/2061/633 1285/2046/1285 +f 1285/2046/1285 633/2061/633 1286/2049/1286 +vt -17.898024 2.200000 +f 633/2061/633 632/2062/632 1286/2049/1286 +f 1286/2049/1286 632/2062/632 1287/2051/1287 +f 632/2062/632 631/2053/631 1287/2051/1287 +f 630/2055/630 629/2059/629 1288/2057/1288 +vt -18.453583 1.500000 +f 1289/2058/1289 628/2060/628 1290/2063/1290 +vt -18.537943 2.200000 +f 1290/2063/1290 628/2060/628 627/2064/627 +vt -18.516518 1.500000 +f 1290/2063/1290 627/2064/627 1291/2065/1291 +vt -18.579453 1.500000 +f 1291/2065/1291 627/2064/627 1292/2066/1292 +vt -18.511396 0.800000 +f 1291/2065/1291 1292/2066/1292 729/2067/729 +vt -18.610735 0.800000 +f 729/2067/729 1292/2066/1292 730/2068/730 +vt -18.642387 1.500000 +f 730/2068/730 1292/2066/1292 1293/2069/1293 +vt -18.722654 0.800000 +f 730/2068/730 1293/2069/1293 731/2070/731 +vt -18.768257 1.500000 +f 731/2070/731 1293/2069/1293 1294/2071/1294 +vt -18.856031 0.800000 +f 731/2070/731 1294/2071/1294 732/2072/732 +vt -18.894129 1.500000 +f 732/2072/732 1294/2071/1294 1295/2073/1295 +vt -19.019999 1.500000 +f 732/2072/732 1295/2073/1295 1296/2074/1296 +vt -19.028822 2.200000 +f 1296/2074/1296 1295/2073/1295 624/2075/624 +vt -19.132257 2.200000 +f 1296/2074/1296 624/2075/624 623/2076/623 +vt -18.646193 2.200000 +f 627/2064/627 626/2077/626 1292/2066/1292 +f 1292/2066/1292 626/2077/626 1293/2069/1293 +f 1293/2069/1293 626/2077/626 1294/2071/1294 +vt -18.770075 2.200000 +f 1294/2071/1294 626/2077/626 625/2078/625 +f 1294/2071/1294 625/2078/625 1295/2073/1295 +f 1295/2073/1295 625/2078/625 624/2075/624 +vt -19.231104 2.200000 +vt -19.208805 1.500000 +f 622/2079/622 1298/2080/1298 623/2076/623 +vt -19.145870 1.500000 +f 623/2076/623 1298/2080/1298 1297/2081/1297 +f 623/2076/623 1297/2081/1297 1296/2074/1296 +vt -19.114252 0.800000 +f 1296/2074/1296 1297/2081/1297 733/2082/733 +f 1296/2074/1296 733/2082/733 732/2072/732 +vt -19.271740 1.500000 +f 1298/2080/1298 622/2079/622 1299/2083/1299 +vt -19.282553 2.200000 +f 1299/2083/1299 622/2079/622 621/2084/621 +vt -19.334677 1.500000 +f 1299/2083/1299 621/2084/621 1300/2085/1300 +vt -19.341661 2.200000 +f 1300/2085/1300 621/2084/621 620/2086/620 +vt -19.397612 1.500000 +f 1300/2085/1300 620/2086/620 1301/2087/1301 +vt -19.407295 2.200000 +f 1301/2087/1301 620/2086/620 619/2088/619 +vt -19.477324 2.200000 +f 1301/2087/1301 619/2088/619 618/2089/618 +vt -19.550833 2.200000 +vt -19.523481 1.500000 +f 617/2090/617 1302/2091/1302 618/2089/618 +vt -19.456348 0.800000 +f 618/2089/618 1302/2091/1302 737/2092/737 +f 618/2089/618 737/2092/737 1301/2087/1301 +vt -19.369675 0.800000 +f 1301/2087/1301 737/2092/737 736/2093/736 +f 1301/2087/1301 736/2093/736 1300/2085/1300 +vt -19.292118 0.800000 +f 1300/2085/1300 736/2093/736 735/2094/735 +f 1300/2085/1300 735/2094/735 1299/2083/1299 +vt -19.229317 0.800000 +f 1299/2083/1299 735/2094/735 734/2095/734 +f 1299/2083/1299 734/2095/734 1298/2080/1298 +f 1298/2080/1298 734/2095/734 1297/2081/1297 +vt -19.649351 1.500000 +f 1302/2091/1302 617/2090/617 1303/2096/1303 +vt -19.627705 2.200000 +f 1303/2096/1303 617/2090/617 616/2097/616 +vt -19.708370 2.200000 +f 1303/2096/1303 616/2097/616 615/2098/615 +vt -19.793787 2.200000 +vt -19.775223 1.500000 +f 614/2099/614 1462/2100/1462 615/2098/615 +vt -19.751757 0.800000 +f 615/2098/615 1462/2100/1462 740/2101/740 +f 615/2098/615 740/2101/740 1303/2096/1303 +vt -19.647240 0.800000 +f 1303/2096/1303 740/2101/740 739/2102/739 +vt -19.549076 0.800000 +f 1303/2096/1303 739/2102/739 738/2103/738 +vt -19.885559 2.200000 +vt -19.901093 1.500000 +f 613/2104/613 1461/2105/1461 614/2099/614 +vt -19.864969 0.800000 +f 614/2099/614 1461/2105/1461 741/2106/741 +f 614/2099/614 741/2106/741 1462/2100/1462 +f 1462/2100/1462 741/2106/741 740/2101/740 +vt -19.986307 2.200000 +f 613/2104/613 612/2107/612 1461/2105/1461 +vt -19.991329 0.800000 +f 1461/2105/1461 612/2107/612 742/2108/742 +f 1461/2105/1461 742/2108/742 741/2106/741 +vt -20.026962 1.500000 +f 742/2108/742 612/2107/612 1304/2109/1304 +vt -20.100555 2.200000 +f 1304/2109/1304 612/2107/612 611/2110/611 +vt -20.152834 1.500000 +f 1304/2109/1304 611/2110/611 1305/2111/1305 +vt -20.232475 2.200000 +f 1305/2111/1305 611/2110/611 610/2112/610 +vt -20.221930 0.800000 +f 1305/2111/1305 610/2112/610 744/2113/744 +vt -20.278704 1.500000 +f 744/2113/744 610/2112/610 1460/2114/1460 +vt -20.302786 0.800000 +f 744/2113/744 1460/2114/1460 745/2115/745 +vt -20.364124 2.200000 +f 745/2115/745 1460/2114/1460 608/2116/608 +vt -20.382887 0.800000 +f 745/2115/745 608/2116/608 746/2117/746 +vt -20.404575 1.500000 +f 746/2117/746 608/2116/608 1306/2118/1306 +vt -20.463022 0.800000 +f 746/2117/746 1306/2118/1306 747/2119/747 +vt -20.467510 1.500000 +f 747/2119/747 1306/2118/1306 1307/2120/1307 +vt -20.530445 1.500000 +f 747/2119/747 1307/2120/1307 1308/2121/1308 +vt -20.493778 2.200000 +f 1308/2121/1308 1307/2120/1307 606/2122/606 +vt -20.558468 2.200000 +f 1308/2121/1308 606/2122/606 605/2123/605 +vt -20.298689 2.200000 +f 610/2112/610 609/2124/609 1460/2114/1460 +f 1460/2114/1460 609/2124/609 608/2116/608 +vt -20.429060 2.200000 +f 608/2116/608 607/2125/607 1306/2118/1306 +f 1306/2118/1306 607/2125/607 1307/2120/1307 +f 607/2125/607 606/2122/606 1307/2120/1307 +vt -20.593382 1.500000 +f 1308/2121/1308 605/2123/605 1309/2126/1309 +vt -20.623878 2.200000 +f 1309/2126/1309 605/2123/605 604/2127/604 +vt -20.624847 1.500000 +f 1309/2126/1309 604/2127/604 1310/2128/1310 +vt -20.656317 1.500000 +f 1310/2128/1310 604/2127/604 1311/2129/1311 +vt -20.626642 0.800000 +f 1310/2128/1310 1311/2129/1311 750/2130/750 +vt -20.671513 0.800000 +f 750/2130/750 1311/2129/1311 751/2131/751 +vt -20.687784 1.500000 +f 751/2131/751 1311/2129/1311 1312/2132/1312 +vt -20.716379 0.800000 +f 751/2131/751 1312/2132/1312 752/2133/752 +vt -20.719252 1.500000 +f 752/2133/752 1312/2132/1312 1313/2134/1313 +vt -20.750719 1.500000 +f 752/2133/752 1313/2134/1313 1314/2135/1314 +vt -20.725040 2.200000 +f 1314/2135/1314 1313/2134/1313 601/2136/601 +vt -20.759085 2.200000 +f 1314/2135/1314 601/2136/601 600/2137/600 +vt -20.658133 2.200000 +f 604/2127/604 603/2138/603 1311/2129/1311 +f 1311/2129/1311 603/2138/603 1312/2132/1312 +vt -20.693008 2.200000 +f 603/2138/603 602/2139/602 1312/2132/1312 +f 1312/2132/1312 602/2139/602 1313/2134/1313 +f 602/2139/602 601/2136/601 1313/2134/1313 +vt -20.782187 1.500000 +f 1314/2135/1314 600/2137/600 1315/2140/1315 +vt -20.824280 2.200000 +f 1315/2140/1315 600/2137/600 599/2141/599 +vt -20.845121 1.500000 +f 1315/2140/1315 599/2141/599 1316/2142/1316 +vt -20.892975 2.200000 +f 1316/2142/1316 599/2141/599 598/2143/598 +vt -20.908056 1.500000 +f 1316/2142/1316 598/2143/598 1317/2144/1317 +vt -20.966730 2.200000 +f 1317/2144/1317 598/2143/598 597/2145/597 +vt -20.970991 1.500000 +f 1317/2144/1317 597/2145/597 1318/2146/1318 +vt -21.033928 1.500000 +f 1318/2146/1318 597/2145/597 1319/2147/1319 +vt -21.000608 0.800000 +f 1318/2146/1318 1319/2147/1319 757/2148/757 +vt -21.107592 0.800000 +f 757/2148/757 1319/2147/1319 758/2149/758 +vt -21.096863 1.500000 +f 758/2149/758 1319/2147/1319 1320/2150/1320 +vt -21.159798 1.500000 +f 758/2149/758 1320/2150/1320 1321/2151/1321 +vt -21.123760 2.200000 +f 1321/2151/1321 1320/2150/1320 595/2152/595 +vt -21.201460 2.200000 +f 1321/2151/1321 595/2152/595 594/2153/594 +vt -21.045147 2.200000 +f 597/2145/597 596/2154/596 1319/2147/1319 +f 1319/2147/1319 596/2154/596 1320/2150/1320 +f 596/2154/596 595/2152/595 1320/2150/1320 +vt -21.353186 2.200000 +vt -21.285669 1.500000 +f 593/2155/593 1459/2156/1459 594/2153/594 +vt -21.212885 0.800000 +f 594/2153/594 1459/2156/1459 759/2157/759 +f 594/2153/594 759/2157/759 1321/2151/1321 +f 1321/2151/1321 759/2157/759 758/2149/758 +vt -21.632711 2.200000 +vt -21.537411 1.500000 +f 592/2158/592 1323/2159/1323 593/2155/593 +vt -21.411539 1.500000 +f 593/2155/593 1323/2159/1323 1322/2160/1322 +vt -21.315941 0.800000 +f 593/2155/593 1322/2160/1322 760/2161/760 +vt -21.415974 0.800000 +f 760/2161/760 1322/2160/1322 761/2162/761 +f 761/2162/761 1322/2160/1322 1323/2159/1323 +vt -21.604584 0.800000 +f 761/2162/761 1323/2159/1323 762/2163/762 +f 762/2163/762 1323/2159/1323 592/2158/592 +vt -21.663280 1.500000 +f 762/2163/762 592/2158/592 1458/2164/1458 +vt -21.758053 2.200000 +f 1458/2164/1458 592/2158/592 591/2165/591 +vt -21.781567 0.800000 +f 1458/2164/1458 591/2165/591 763/2166/763 +vt -21.872755 2.200000 +f 763/2166/763 591/2165/591 590/2167/590 +vt -21.865604 0.800000 +f 763/2166/763 590/2167/590 764/2168/764 +vt -21.915022 1.500000 +f 764/2168/764 590/2167/590 1457/2169/1457 +vt -21.945816 0.800000 +f 764/2168/764 1457/2169/1457 765/2170/765 +vt -21.973177 2.200000 +f 765/2170/765 1457/2169/1457 588/2171/588 +vt -22.020948 0.800000 +f 765/2170/765 588/2171/588 766/2172/766 +vt -22.040892 1.500000 +f 766/2172/766 588/2171/588 1456/2173/1456 +vt -22.089191 0.800000 +f 766/2172/766 1456/2173/1456 767/2174/767 +vt -22.106001 2.200000 +f 767/2174/767 1456/2173/1456 584/2175/584 +vt -22.166761 1.500000 +f 767/2174/767 584/2175/584 1455/2176/1455 +vt -22.149405 2.200000 +f 1455/2176/1455 584/2175/584 583/2177/583 +vt -22.234356 2.200000 +f 1455/2176/1455 583/2177/583 582/2178/582 +vt -21.925077 2.200000 +f 590/2167/590 589/2179/589 1457/2169/1457 +f 1457/2169/1457 589/2179/589 588/2171/588 +vt -22.016214 2.200000 +f 588/2171/588 587/2180/587 1456/2173/1456 +vt -22.053215 2.200000 +f 1456/2173/1456 587/2180/587 586/2181/586 +vt -22.083105 2.200000 +f 1456/2173/1456 586/2181/586 585/2182/585 +f 585/2182/585 584/2175/584 1456/2173/1456 +vt -22.317244 2.200000 +vt -22.292633 1.500000 +f 581/2183/581 1324/2184/1324 582/2178/582 +vt -22.270674 0.800000 +f 582/2178/582 1324/2184/1324 770/2185/770 +vt -22.195032 0.800000 +f 582/2178/582 770/2185/770 769/2186/769 +vt -22.398453 2.200000 +f 581/2183/581 580/2187/580 1324/2184/1324 +vt -22.418503 1.500000 +f 1324/2184/1324 580/2187/580 1325/2188/1325 +vt -22.418135 0.800000 +f 1324/2184/1324 1325/2188/1325 771/2189/771 +vt -22.544374 1.500000 +f 771/2189/771 1325/2188/1325 1326/2190/1326 +vt -22.562380 0.800000 +f 771/2189/771 1326/2190/1326 772/2191/772 +vt -22.634947 2.200000 +f 772/2191/772 1326/2190/1326 578/2192/578 +vt -22.670244 1.500000 +f 772/2191/772 578/2192/578 1327/2193/1327 +vt -22.789257 2.200000 +f 1327/2193/1327 578/2192/578 577/2194/577 +vt -22.796116 1.500000 +f 1327/2193/1327 577/2194/577 1328/2195/1328 +vt -22.921986 1.500000 +f 1328/2195/1328 577/2194/577 1329/2196/1329 +vt -22.847246 0.800000 +f 1328/2195/1328 1329/2196/1329 774/2197/774 +vt -22.991325 0.800000 +f 774/2197/774 1329/2196/1329 775/2198/775 +vt -22.943506 2.200000 +f 775/2198/775 1329/2196/1329 576/2199/576 +vt -23.021521 2.200000 +f 775/2198/775 576/2199/576 575/2200/575 +vt -22.478294 2.200000 +f 580/2187/580 579/2201/579 1325/2188/1325 +f 1325/2188/1325 579/2201/579 1326/2190/1326 +f 579/2201/579 578/2192/578 1326/2190/1326 +f 577/2194/577 576/2199/576 1329/2196/1329 +vt -23.047855 1.500000 +f 775/2198/775 575/2200/575 1454/2202/1454 +vt -23.100428 2.200000 +f 1454/2202/1454 575/2200/575 574/2203/574 +vt -23.138922 0.800000 +f 1454/2202/1454 574/2203/574 776/2204/776 +vt -23.173725 1.500000 +f 776/2204/776 574/2203/574 1453/2205/1453 +vt -23.214495 0.800000 +f 776/2204/776 1453/2205/1453 777/2206/777 +vt -23.261744 2.200000 +f 777/2206/777 1453/2205/1453 572/2207/572 +vt -23.299597 1.500000 +f 777/2206/777 572/2207/572 1452/2208/1452 +vt -23.344440 2.200000 +f 1452/2208/1452 572/2207/572 571/2209/571 +vt -23.368378 0.800000 +f 1452/2208/1452 571/2209/571 779/2210/779 +vt -23.425467 1.500000 +f 779/2210/779 571/2209/571 1451/2211/1451 +vt -23.445719 0.800000 +f 779/2210/779 1451/2211/1451 780/2212/780 +vt -23.510387 2.200000 +f 780/2212/780 1451/2211/1451 569/2213/569 +vt -23.523390 0.800000 +f 780/2212/780 569/2213/569 781/2214/781 +vt -23.551338 1.500000 +f 781/2214/781 569/2213/569 1450/2215/1450 +vt -23.601545 0.800000 +f 781/2214/781 1450/2215/1450 782/2216/782 +vt -23.593409 2.200000 +f 782/2216/782 1450/2215/1450 568/2217/568 +vt -23.677208 1.500000 +f 782/2216/782 568/2217/568 1449/2218/1449 +vt -23.676588 2.200000 +f 1449/2218/1449 568/2217/568 567/2219/567 +vt -23.760099 2.200000 +f 1449/2218/1449 567/2219/567 71/2220/71 +vt -23.180424 2.200000 +f 574/2203/574 573/2221/573 1453/2205/1453 +f 1453/2205/1453 573/2221/573 572/2207/572 +vt -23.427408 2.200000 +f 571/2209/571 570/2222/570 1451/2211/1451 +f 1451/2211/1451 570/2222/570 569/2213/569 +f 569/2213/569 568/2217/568 1450/2215/1450 +vt -23.760099 3.000000 +vt -23.803080 2.197954 +f 117/2223/117 1501/2224/1501 71/2220/71 +vt -23.803080 1.500000 +f 71/2220/71 1501/2224/1501 1330/2225/1330 +vt -23.760099 0.800000 +f 71/2220/71 1330/2225/1330 140/2226/140 +vt -23.760099 0.000000 +f 140/2226/140 1330/2225/1330 141/2227/141 +vt -23.891417 0.000000 +f 141/2227/141 1330/2225/1330 994/2228/994 +vt -23.928949 1.500000 +f 994/2228/994 1330/2225/1330 1331/2229/1331 +vt -24.022734 0.000000 +f 994/2228/994 1331/2229/1331 995/2230/995 +vt -24.054819 1.500000 +f 995/2230/995 1331/2229/1331 1332/2231/1332 +vt -24.154049 0.000000 +f 995/2230/995 1332/2231/1332 996/2232/996 +vt -24.180691 1.500000 +f 996/2232/996 1332/2231/1332 1333/2233/1333 +vt -24.285366 0.000000 +f 996/2232/996 1333/2233/1333 997/2234/997 +vt -24.285366 3.000000 +f 997/2234/997 1333/2233/1333 483/2235/483 +vt -24.432430 1.500000 +f 997/2234/997 483/2235/483 1448/2236/1448 +vt -24.432430 2.168000 +f 1448/2236/1448 483/2235/483 1536/2237/1536 +vt -24.547998 3.000000 +f 1448/2236/1448 1536/2237/1536 482/2238/482 +f 482/2238/482 1536/2237/1536 483/2235/483 +vt -23.891417 3.000000 +f 117/2223/117 486/2239/486 1501/2224/1501 +vt -23.928949 2.191964 +f 1501/2224/1501 486/2239/486 1502/2240/1502 +f 1501/2224/1501 1502/2240/1502 1330/2225/1330 +f 1330/2225/1330 1502/2240/1502 1331/2229/1331 +vt -24.022734 3.000000 +f 486/2239/486 485/2241/485 1502/2240/1502 +vt -24.054819 2.185973 +f 1502/2240/1502 485/2241/485 1503/2242/1503 +f 1502/2240/1502 1503/2242/1503 1331/2229/1331 +f 1331/2229/1331 1503/2242/1503 1332/2231/1332 +vt -24.154049 3.000000 +f 485/2241/485 484/2243/484 1503/2242/1503 +vt -24.180691 2.179982 +f 1503/2242/1503 484/2243/484 1504/2244/1504 +f 1503/2242/1503 1504/2244/1504 1332/2231/1332 +f 1332/2231/1332 1504/2244/1504 1333/2233/1333 +f 484/2243/484 483/2235/483 1504/2244/1504 +f 1504/2244/1504 483/2235/483 1333/2233/1333 +vt -24.679316 3.000000 +vt -24.684172 2.156019 +f 481/2245/481 1505/2246/1505 482/2238/482 +vt -24.684172 1.500000 +f 482/2238/482 1505/2246/1505 1334/2247/1334 +vt -24.547998 0.000000 +f 482/2238/482 1334/2247/1334 998/2248/998 +vt -24.679316 0.000000 +f 998/2248/998 1334/2247/1334 999/2249/999 +vt -24.810633 0.000000 +f 999/2249/999 1334/2247/1334 1000/2250/1000 +vt -24.810043 1.500000 +f 1000/2250/1000 1334/2247/1334 1335/2251/1335 +vt -24.935913 1.500000 +f 1000/2250/1000 1335/2251/1335 1336/2252/1336 +vt -24.935913 2.144037 +f 1336/2252/1336 1335/2251/1335 1507/2253/1507 +vt -25.061785 2.138046 +f 1336/2252/1336 1507/2253/1507 1508/2254/1508 +vt -24.941950 3.000000 +f 1508/2254/1508 1507/2253/1507 479/2255/479 +vt -25.073265 3.000000 +f 1508/2254/1508 479/2255/479 478/2256/478 +vt -24.810633 3.000000 +f 481/2245/481 480/2257/480 1505/2246/1505 +vt -24.810043 2.150028 +f 1505/2246/1505 480/2257/480 1506/2258/1506 +f 1505/2246/1505 1506/2258/1506 1334/2247/1334 +f 1334/2247/1334 1506/2258/1506 1335/2251/1335 +f 1506/2258/1506 480/2257/480 1507/2253/1507 +f 1507/2253/1507 480/2257/480 479/2255/479 +vt -25.187654 2.132056 +f 1508/2254/1508 478/2256/478 1509/2259/1509 +vt -25.204582 3.000000 +f 1509/2259/1509 478/2256/478 477/2260/477 +vt -25.313524 2.126065 +f 1509/2259/1509 477/2260/477 1510/2261/1510 +vt -25.335899 3.000000 +f 1510/2261/1510 477/2260/477 476/2262/476 +vt -25.439396 2.120074 +f 1510/2261/1510 476/2262/476 1511/2263/1511 +vt -25.467215 3.000000 +f 1511/2263/1511 476/2262/476 475/2264/475 +vt -25.565266 2.114083 +f 1511/2263/1511 475/2264/475 1512/2265/1512 +vt -25.598532 3.000000 +f 1512/2265/1512 475/2264/475 474/2266/474 +vt -25.691135 2.108092 +f 1512/2265/1512 474/2266/474 1513/2267/1513 +vt -25.729849 3.000000 +f 1513/2267/1513 474/2266/474 473/2268/473 +vt -25.817007 2.102102 +f 1513/2267/1513 473/2268/473 1514/2269/1514 +vt -25.861164 3.000000 +f 1514/2269/1514 473/2268/473 472/2270/472 +vt -25.942877 2.096111 +f 1514/2269/1514 472/2270/472 1515/2271/1515 +vt -25.992481 3.000000 +f 1515/2271/1515 472/2270/472 471/2272/471 +vt -26.068748 2.090120 +f 1515/2271/1515 471/2272/471 1516/2273/1516 +vt -26.123798 3.000000 +f 1516/2273/1516 471/2272/471 470/2274/470 +vt -26.194618 2.084129 +f 1516/2273/1516 470/2274/470 1517/2275/1517 +vt -26.386431 3.000000 +f 1517/2275/1517 470/2274/470 469/2276/469 +vt -26.194618 1.500000 +f 1517/2275/1517 469/2276/469 1346/2277/1346 +vt -26.446360 1.500000 +f 1346/2277/1346 469/2276/469 1347/2278/1347 +vt -26.386431 0.000000 +f 1346/2277/1346 1347/2278/1347 1011/2279/1011 +vt -26.649065 0.000000 +f 1011/2279/1011 1347/2278/1347 1012/2280/1012 +vt -26.698101 1.500000 +f 1012/2280/1012 1347/2278/1347 1348/2281/1348 +vt -26.780380 0.000000 +f 1012/2280/1012 1348/2281/1348 1013/2282/1013 +vt -26.823971 1.500000 +f 1013/2282/1013 1348/2281/1348 1349/2283/1349 +vt -26.911697 0.000000 +f 1013/2282/1013 1349/2283/1349 1014/2284/1014 +vt -26.949842 1.500000 +f 1014/2284/1014 1349/2283/1349 1350/2285/1350 +vt -27.043015 0.000000 +f 1014/2284/1014 1350/2285/1350 1015/2286/1015 +vt -27.075712 1.500000 +f 1015/2286/1015 1350/2285/1350 1351/2287/1351 +vt -27.174332 0.000000 +f 1015/2286/1015 1351/2287/1351 1016/2288/1016 +vt -27.201584 1.500000 +f 1016/2288/1016 1351/2287/1351 1352/2289/1352 +vt -27.305649 0.000000 +f 1016/2288/1016 1352/2289/1352 1017/2290/1017 +vt -27.327454 1.500000 +f 1017/2290/1017 1352/2289/1352 1353/2291/1353 +vt -27.436964 0.000000 +f 1017/2290/1017 1353/2291/1353 1018/2292/1018 +vt -27.453323 1.500000 +f 1018/2292/1018 1353/2291/1353 1354/2293/1354 +vt -27.568281 0.000000 +f 1018/2292/1018 1354/2293/1354 1019/2294/1019 +vt -27.579193 1.500000 +f 1019/2294/1019 1354/2293/1354 1355/2295/1355 +vt -27.699598 0.000000 +f 1019/2294/1019 1355/2295/1355 1020/2296/1020 +vt -27.705065 1.500000 +f 1020/2296/1020 1355/2295/1355 1356/2297/1356 +vt -27.830914 0.000000 +f 1020/2296/1020 1356/2297/1356 1021/2298/1021 +vt -27.830935 1.500000 +f 1021/2298/1021 1356/2297/1356 1357/2299/1357 +vt -27.956806 1.500000 +f 1021/2298/1021 1357/2299/1357 1358/2300/1358 +vt -27.956806 2.000258 +f 1358/2300/1358 1357/2299/1357 1528/2301/1528 +vt -27.962231 2.000000 +f 1358/2300/1358 1528/2301/1528 52/2302/52 +vt -27.962231 3.000000 +f 52/2302/52 1528/2301/1528 53/2303/53 +vt -27.830914 3.000000 +f 53/2303/53 1528/2301/1528 459/2304/459 +vt -27.830935 2.006249 +f 459/2304/459 1528/2301/1528 1527/2305/1527 +vt -27.705065 2.012240 +f 459/2304/459 1527/2305/1527 1526/2306/1526 +f 1526/2306/1526 1527/2305/1527 1356/2297/1356 +f 1526/2306/1526 1356/2297/1356 1355/2295/1355 +vt -26.446360 2.072148 +f 1347/2278/1347 469/2276/469 1535/2307/1535 +vt -26.649065 3.000000 +f 1535/2307/1535 469/2276/469 468/2308/468 +f 1535/2307/1535 468/2308/468 1347/2278/1347 +f 1347/2278/1347 468/2308/468 1348/2281/1348 +vt -26.698101 2.060166 +f 1348/2281/1348 468/2308/468 1518/2309/1518 +vt -26.780380 3.000000 +f 1518/2309/1518 468/2308/468 467/2310/467 +vt -26.823971 2.054175 +f 1518/2309/1518 467/2310/467 1519/2311/1519 +vt -26.911697 3.000000 +f 1519/2311/1519 467/2310/467 466/2312/466 +vt -26.949842 2.048185 +f 1519/2311/1519 466/2312/466 1520/2313/1520 +vt -27.043015 3.000000 +f 1520/2313/1520 466/2312/466 465/2314/465 +vt -27.075712 2.042194 +f 1520/2313/1520 465/2314/465 1521/2315/1521 +vt -27.174332 3.000000 +f 1521/2315/1521 465/2314/465 464/2316/464 +vt -27.201584 2.036203 +f 1521/2315/1521 464/2316/464 1522/2317/1522 +vt -27.305649 3.000000 +f 1522/2317/1522 464/2316/464 463/2318/463 +vt -27.327454 2.030212 +f 1522/2317/1522 463/2318/463 1523/2319/1523 +vt -27.436964 3.000000 +f 1523/2319/1523 463/2318/463 462/2320/462 +vt -27.453323 2.024221 +f 1523/2319/1523 462/2320/462 1524/2321/1524 +vt -27.568281 3.000000 +f 1524/2321/1524 462/2320/462 461/2322/461 +vt -27.579193 2.018231 +f 1524/2321/1524 461/2322/461 1525/2323/1525 +vt -27.699598 3.000000 +f 1525/2323/1525 461/2322/461 460/2324/460 +f 1525/2323/1525 460/2324/460 1526/2306/1526 +f 1526/2306/1526 460/2324/460 459/2304/459 +vt -28.082676 1.500000 +f 1358/2300/1358 52/2302/52 1359/2325/1359 +vt -28.328089 2.000000 +f 1359/2325/1359 52/2302/52 939/2326/939 +vt -28.208548 1.500000 +f 1359/2325/1359 939/2326/939 1360/2327/1360 +vt -28.334417 1.500000 +f 1360/2327/1360 939/2326/939 1361/2328/1361 +vt -28.328089 1.000000 +f 1360/2327/1360 1361/2328/1361 784/2329/784 +vt -28.460287 1.500000 +f 784/2329/784 1361/2328/1361 1362/2330/1362 +vt -28.495512 1.000000 +f 784/2329/784 1362/2330/1362 785/2331/785 +vt -28.495512 2.000000 +f 785/2331/785 1362/2330/1362 938/2332/938 +vt -28.586159 1.500000 +f 785/2331/785 938/2332/938 1447/2333/1447 +vt -28.655970 2.000000 +f 1447/2333/1447 938/2332/938 937/2334/937 +vt -28.655970 1.000000 +f 1447/2333/1447 937/2334/937 786/2335/786 +vt -28.712029 1.500000 +f 786/2335/786 937/2334/937 1446/2336/1446 +vt -28.811396 1.000000 +f 786/2335/786 1446/2336/1446 787/2337/787 +vt -28.811396 2.000000 +f 787/2337/787 1446/2336/1446 936/2338/936 +vt -28.837898 1.500000 +f 787/2337/787 936/2338/936 1363/2339/1363 +vt -28.964451 2.000000 +f 1363/2339/1363 936/2338/936 935/2340/935 +vt -28.963770 1.500000 +f 1363/2339/1363 935/2340/935 1364/2341/1364 +vt -29.089640 1.500000 +f 1364/2341/1364 935/2340/935 1365/2342/1365 +vt -28.964451 1.000000 +f 1364/2341/1364 1365/2342/1365 788/2343/788 +vt -29.117153 1.000000 +f 788/2343/788 1365/2342/1365 789/2344/789 +vt -29.117153 2.000000 +f 789/2344/789 1365/2342/1365 934/2345/934 +vt -29.215511 1.500000 +f 789/2344/789 934/2345/934 1445/2346/1445 +vt -29.270454 2.000000 +f 1445/2346/1445 934/2345/934 933/2347/933 +vt -29.270454 1.000000 +f 1445/2346/1445 933/2347/933 790/2348/790 +vt -29.341381 1.500000 +f 790/2348/790 933/2347/933 1444/2349/1444 +vt -29.347651 1.000000 +f 790/2348/790 1444/2349/1444 791/2350/791 +vt -29.425402 1.000000 +f 791/2350/791 1444/2349/1444 792/2351/792 +vt -29.425402 2.000000 +f 792/2351/792 1444/2349/1444 931/2352/931 +vt -29.467253 1.500000 +f 792/2351/792 931/2352/931 1443/2353/1443 +vt -29.503870 2.000000 +f 1443/2353/1443 931/2352/931 930/2354/930 +vt -29.503870 1.000000 +f 1443/2353/1443 930/2354/930 793/2355/793 +vt -29.593122 1.500000 +f 793/2355/793 930/2354/930 1442/2356/1442 +vt -29.583237 1.000000 +f 793/2355/793 1442/2356/1442 794/2357/794 +vt -29.663706 1.000000 +f 794/2357/794 1442/2356/1442 795/2358/795 +vt -29.663706 2.000000 +f 795/2358/795 1442/2356/1442 928/2359/928 +vt -29.718992 1.500000 +f 795/2358/795 928/2359/928 1366/2360/1366 +vt -29.745514 2.000000 +f 1366/2360/1366 928/2359/928 927/2361/927 +vt -29.781927 1.500000 +f 1366/2360/1366 927/2361/927 1367/2362/1367 +vt -29.826729 2.000000 +f 1367/2362/1367 927/2361/927 926/2363/926 +vt -29.844864 1.500000 +f 1367/2362/1367 926/2363/926 1368/2364/1368 +vt -29.905693 2.000000 +f 1368/2364/1368 926/2363/926 925/2365/925 +vt -29.907799 1.500000 +f 1368/2364/1368 925/2365/925 1369/2366/1369 +vt -29.970734 1.500000 +f 1369/2366/1369 925/2365/925 1370/2367/1370 +vt -29.905693 1.000000 +f 1369/2366/1369 1370/2367/1370 798/2368/798 +vt -29.982620 1.000000 +f 798/2368/798 1370/2367/1370 799/2369/799 +vt -30.057707 2.000000 +f 799/2369/799 1370/2367/1370 923/2370/923 +vt -30.057707 1.000000 +f 799/2369/799 923/2370/923 800/2371/800 +vt -30.096603 1.500000 +f 800/2371/800 923/2370/923 1441/2372/1441 +vt -30.131138 1.000000 +f 800/2371/800 1441/2372/1441 801/2373/801 +vt -30.131138 2.000000 +f 801/2373/801 1441/2372/1441 922/2374/922 +vt -30.203100 2.000000 +f 801/2373/801 922/2374/922 921/2375/921 +f 1361/2328/1361 939/2326/939 1362/2330/1362 +f 1362/2330/1362 939/2326/939 938/2332/938 +f 937/2334/937 936/2338/936 1446/2336/1446 +f 935/2340/935 934/2345/934 1365/2342/1365 +vt -29.347651 2.000000 +f 933/2347/933 932/2376/932 1444/2349/1444 +f 1444/2349/1444 932/2376/932 931/2352/931 +vt -29.583237 2.000000 +f 930/2354/930 929/2377/929 1442/2356/1442 +f 1442/2356/1442 929/2377/929 928/2359/928 +vt -29.982620 2.000000 +f 925/2365/925 924/2378/924 1370/2367/1370 +f 1370/2367/1370 924/2378/924 923/2370/923 +f 923/2370/923 922/2374/922 1441/2372/1441 +vt -30.273779 2.000000 +vt -30.222475 1.500000 +f 920/2379/920 1440/2380/1440 921/2375/921 +vt -30.203100 1.000000 +f 921/2375/921 1440/2380/1440 802/2381/802 +f 921/2375/921 802/2381/802 801/2373/801 +vt -30.343340 2.000000 +vt -30.348345 1.500000 +f 919/2382/919 1439/2383/1439 920/2379/920 +vt -30.273779 1.000000 +f 920/2379/920 1439/2383/1439 803/2384/803 +f 920/2379/920 803/2384/803 1440/2380/1440 +f 1440/2380/1440 803/2384/803 802/2381/802 +vt -30.411945 2.000000 +f 919/2382/919 918/2385/918 1439/2383/1439 +vt -30.411945 1.000000 +f 1439/2383/1439 918/2385/918 805/2386/805 +vt -30.343340 1.000000 +f 1439/2383/1439 805/2386/805 804/2387/804 +vt -30.474216 1.500000 +f 805/2386/805 918/2385/918 1371/2388/1371 +vt -30.479782 2.000000 +f 1371/2388/1371 918/2385/918 917/2389/917 +vt -30.600086 1.500000 +f 1371/2388/1371 917/2389/917 1372/2390/1372 +vt -30.613976 2.000000 +f 1372/2390/1372 917/2389/917 916/2391/916 +vt -30.725958 1.500000 +f 1372/2390/1372 916/2391/916 1373/2392/1373 +vt -30.747976 2.000000 +f 1373/2392/1373 916/2391/916 915/2393/915 +vt -30.747976 1.000000 +f 1373/2392/1373 915/2393/915 808/2394/808 +vt -30.851828 1.500000 +f 808/2394/808 915/2393/915 1438/2395/1438 +vt -30.883352 1.000000 +f 808/2394/808 1438/2395/1438 809/2396/809 +vt -30.883352 2.000000 +f 809/2396/809 1438/2395/1438 914/2397/914 +vt -30.951803 2.000000 +f 809/2396/809 914/2397/914 913/2398/913 +f 915/2393/915 914/2397/914 1438/2395/1438 +vt -31.021029 2.000000 +vt -30.977697 1.500000 +f 912/2399/912 1374/2400/1374 913/2398/913 +vt -30.951803 1.000000 +f 913/2398/913 1374/2400/1374 810/2401/810 +f 913/2398/913 810/2401/810 809/2396/809 +vt -31.040632 1.500000 +f 1374/2400/1374 912/2399/912 1375/2402/1375 +vt -31.092291 2.000000 +f 1375/2402/1375 912/2399/912 911/2403/911 +vt -31.103567 1.500000 +f 1375/2402/1375 911/2403/911 1376/2404/1376 +vt -31.169428 2.000000 +f 1376/2404/1376 911/2403/911 910/2405/910 +vt -31.166504 1.500000 +f 1376/2404/1376 910/2405/910 1377/2406/1377 +vt -31.197971 1.500000 +f 1377/2406/1377 910/2405/910 1378/2407/1378 +vt -31.169428 1.000000 +f 1377/2406/1377 1378/2407/1378 813/2408/813 +vt -31.211317 1.000000 +f 813/2408/813 1378/2407/1378 814/2409/814 +vt -31.229439 1.500000 +f 814/2409/814 1378/2407/1378 1379/2410/1379 +vt -31.255878 1.000000 +f 814/2409/814 1379/2410/1379 815/2411/815 +vt -31.260906 1.500000 +f 815/2411/815 1379/2410/1379 1380/2412/1380 +vt -31.292374 1.500000 +f 815/2411/815 1380/2412/1380 1381/2413/1381 +vt -31.255878 2.000000 +f 1381/2413/1381 1380/2412/1380 908/2414/908 +vt -31.300680 2.000000 +f 1381/2413/1381 908/2414/908 907/2415/907 +vt -31.211317 2.000000 +f 910/2405/910 909/2416/909 1378/2407/1378 +f 1378/2407/1378 909/2416/909 1379/2410/1379 +f 909/2416/909 908/2414/908 1379/2410/1379 +f 1379/2410/1379 908/2414/908 1380/2412/1380 +vt -31.323841 1.500000 +f 1381/2413/1381 907/2415/907 1382/2417/1382 +vt -31.344444 2.000000 +f 1382/2417/1382 907/2415/907 906/2418/906 +vt -31.355309 1.500000 +f 1382/2417/1382 906/2418/906 1383/2419/1383 +vt -31.385319 2.000000 +f 1383/2419/1383 906/2418/906 905/2420/905 +vt -31.418245 1.500000 +f 1383/2419/1383 905/2420/905 1384/2421/1384 +vt -31.423046 2.000000 +f 1384/2421/1384 905/2420/905 904/2422/904 +vt -31.481180 1.500000 +f 1384/2421/1384 904/2422/904 1385/2423/1385 +vt -31.490730 2.000000 +f 1385/2423/1385 904/2422/904 903/2424/903 +vt -31.544115 1.500000 +f 1385/2423/1385 903/2424/903 1386/2425/1386 +vt -31.607363 2.000000 +f 1386/2425/1386 903/2424/903 902/2426/902 +vt -31.607050 1.500000 +f 1386/2425/1386 902/2426/902 1387/2427/1387 +vt -31.669987 1.500000 +f 1387/2427/1387 902/2426/902 1388/2428/1388 +vt -31.607363 1.000000 +f 1387/2427/1387 1388/2428/1388 821/2429/821 +vt -31.720058 1.000000 +f 821/2429/821 1388/2428/1388 822/2430/822 +vt -31.732922 1.500000 +f 822/2430/822 1388/2428/1388 1389/2431/1389 +vt -31.831797 1.000000 +f 822/2430/822 1389/2431/1389 823/2432/823 +vt -31.831797 2.000000 +f 823/2432/823 1389/2431/1389 900/2433/900 +vt -31.858791 1.500000 +f 823/2432/823 900/2433/900 1437/2434/1437 +vt -31.943331 2.000000 +f 1437/2434/1437 900/2433/900 899/2435/899 +vt -31.943331 1.000000 +f 1437/2434/1437 899/2435/899 824/2436/824 +vt -31.984661 1.500000 +f 824/2436/824 899/2435/899 1390/2437/1390 +vt -32.055611 1.000000 +f 824/2436/824 1390/2437/1390 825/2438/825 +vt -32.047596 1.500000 +f 825/2438/825 1390/2437/1390 1391/2439/1391 +vt -32.110531 1.500000 +f 825/2438/825 1391/2439/1391 1392/2440/1392 +vt -32.055611 2.000000 +f 1392/2440/1392 1391/2439/1391 898/2441/898 +vt -32.113766 2.000000 +f 1392/2440/1392 898/2441/898 897/2442/897 +vt -31.720058 2.000000 +f 902/2426/902 901/2443/901 1388/2428/1388 +f 1388/2428/1388 901/2443/901 1389/2431/1389 +f 901/2443/901 900/2433/900 1389/2431/1389 +f 899/2435/899 898/2441/898 1390/2437/1390 +f 1390/2437/1390 898/2441/898 1391/2439/1391 +vt -32.173470 1.500000 +f 1392/2440/1392 897/2442/897 1393/2444/1393 +vt -32.173409 2.000000 +f 1393/2444/1393 897/2442/897 896/2445/896 +vt -32.234489 2.000000 +f 1393/2444/1393 896/2445/896 895/2446/895 +vt -32.236404 1.500000 +f 1393/2444/1393 895/2446/895 1394/2447/1394 +vt -32.296982 2.000000 +f 1394/2447/1394 895/2446/895 894/2448/894 +vt -32.299339 1.500000 +f 1394/2447/1394 894/2448/894 1395/2449/1395 +vt -32.358776 2.000000 +f 1395/2449/1395 894/2448/894 893/2450/893 +vt -32.362274 1.500000 +f 1395/2449/1395 893/2450/893 1396/2451/1396 +vt -32.418564 2.000000 +f 1396/2451/1396 893/2450/893 892/2452/892 +vt -32.425209 1.500000 +f 1396/2451/1396 892/2452/892 1397/2453/1397 +vt -32.476685 2.000000 +f 1397/2453/1397 892/2452/892 891/2454/891 +vt -32.488144 1.500000 +f 1397/2453/1397 891/2454/891 1398/2455/1398 +vt -32.533390 2.000000 +f 1398/2455/1398 891/2454/891 890/2456/890 +vt -32.551079 1.500000 +f 1398/2455/1398 890/2456/890 1399/2457/1399 +vt -32.588715 2.000000 +f 1399/2457/1399 890/2456/890 889/2458/889 +vt -32.614014 1.500000 +f 1399/2457/1399 889/2458/889 1400/2459/1400 +vt -32.642204 2.000000 +f 1400/2459/1400 889/2458/889 888/2460/888 +vt -32.676949 1.500000 +f 1400/2459/1400 888/2460/888 1401/2461/1401 +vt -32.743870 2.000000 +f 1401/2461/1401 888/2460/888 887/2462/887 +vt -32.739883 1.500000 +f 1401/2461/1401 887/2462/887 1402/2463/1402 +vt -32.802818 1.500000 +f 1402/2463/1402 887/2462/887 1403/2464/1403 +vt -32.743870 1.000000 +f 1402/2463/1402 1403/2464/1403 836/2465/836 +vt -32.838787 1.000000 +f 836/2465/836 1403/2464/1403 837/2466/837 +vt -32.865757 1.500000 +f 837/2466/837 1403/2464/1403 1404/2467/1404 +vt -32.929340 1.000000 +f 837/2466/837 1404/2467/1404 838/2468/838 +vt -32.928692 1.500000 +f 838/2468/838 1404/2467/1404 1405/2469/1405 +vt -32.991627 1.500000 +f 838/2468/838 1405/2469/1405 1406/2470/1406 +vt -32.929340 2.000000 +f 1406/2470/1406 1405/2469/1405 885/2471/885 +vt -33.017460 2.000000 +f 1406/2470/1406 885/2471/885 884/2472/884 +vt -32.838787 2.000000 +f 887/2462/887 886/2473/886 1403/2464/1403 +f 1403/2464/1403 886/2473/886 1404/2467/1404 +f 886/2473/886 885/2471/885 1404/2467/1404 +f 1404/2467/1404 885/2471/885 1405/2469/1405 +vt -33.054562 1.500000 +f 1406/2470/1406 884/2472/884 1407/2474/1407 +vt -33.103367 2.000000 +f 1407/2474/1407 884/2472/884 883/2475/883 +vt -33.117496 1.500000 +f 1407/2474/1407 883/2475/883 1408/2476/1408 +vt -33.187199 2.000000 +f 1408/2476/1408 883/2475/883 882/2477/882 +vt -33.187199 1.000000 +f 1408/2476/1408 882/2477/882 841/2478/841 +vt -33.243366 1.500000 +f 841/2478/841 882/2477/882 1436/2479/1436 +vt -33.269119 1.000000 +f 841/2478/841 1436/2479/1436 842/2480/842 +vt -33.269119 2.000000 +f 842/2480/842 1436/2479/1436 881/2481/881 +vt -33.369240 1.500000 +f 842/2480/842 881/2481/881 1435/2482/1435 +vt -33.430565 2.000000 +f 1435/2482/1435 881/2481/881 880/2483/880 +vt -33.430565 1.000000 +f 1435/2482/1435 880/2483/880 843/2484/843 +vt -33.495110 1.500000 +f 843/2484/843 880/2483/880 1434/2485/1434 +vt -33.590527 1.000000 +f 843/2484/843 1434/2485/1434 844/2486/844 +vt -33.590527 2.000000 +f 844/2486/844 1434/2485/1434 879/2487/879 +vt -33.746849 1.500000 +f 844/2486/844 879/2487/879 1409/2488/1409 +vt -33.750168 2.000000 +f 1409/2488/1409 879/2487/879 878/2489/878 +vt -33.872719 1.500000 +f 1409/2488/1409 878/2489/878 1410/2490/1410 +vt -33.910511 2.000000 +f 1410/2490/1410 878/2489/878 877/2491/877 +vt -33.910511 1.000000 +f 1410/2490/1410 877/2491/877 846/2492/846 +vt -33.998589 1.500000 +f 846/2492/846 877/2491/877 1433/2493/1433 +vt -33.991245 1.000000 +f 846/2492/846 1433/2493/1433 847/2494/847 +vt -34.072502 1.000000 +f 847/2494/847 1433/2493/1433 848/2495/848 +vt -34.072502 2.000000 +f 848/2495/848 1433/2493/1433 875/2496/875 +vt -34.124462 1.500000 +f 848/2495/848 875/2496/875 1411/2497/1411 +vt -34.154354 2.000000 +f 1411/2497/1411 875/2496/875 874/2498/874 +vt -34.187397 1.500000 +f 1411/2497/1411 874/2498/874 1412/2499/1412 +vt -34.236645 2.000000 +f 1412/2499/1412 874/2498/874 873/2500/873 +vt -34.250332 1.500000 +f 1412/2499/1412 873/2500/873 1413/2501/1413 +vt -34.319599 2.000000 +f 1413/2501/1413 873/2500/873 872/2502/872 +vt -34.313267 1.500000 +f 1413/2501/1413 872/2502/872 1414/2503/1414 +vt -34.376202 1.500000 +f 1414/2503/1414 872/2502/872 1415/2504/1415 +vt -34.319599 1.000000 +f 1414/2503/1414 1415/2504/1415 851/2505/851 +vt -34.403587 1.000000 +f 851/2505/851 1415/2504/1415 852/2506/852 +vt -34.439137 1.500000 +f 852/2506/852 1415/2504/1415 1416/2507/1416 +vt -34.489014 1.000000 +f 852/2506/852 1416/2507/1416 853/2508/853 +vt -34.502071 1.500000 +f 853/2508/853 1416/2507/1416 1417/2509/1417 +vt -34.576302 1.000000 +f 853/2508/853 1417/2509/1417 854/2510/854 +vt -34.565006 1.500000 +f 854/2510/854 1417/2509/1417 1418/2511/1418 +vt -34.627941 1.500000 +f 854/2510/854 1418/2511/1418 1419/2512/1419 +vt -34.576302 2.000000 +f 1419/2512/1419 1418/2511/1418 869/2513/869 +vt -34.664909 2.000000 +f 1419/2512/1419 869/2513/869 868/2514/868 +f 882/2477/882 881/2481/881 1436/2479/1436 +f 880/2483/880 879/2487/879 1434/2485/1434 +vt -33.991245 2.000000 +f 877/2491/877 876/2515/876 1433/2493/1433 +f 1433/2493/1433 876/2515/876 875/2496/875 +vt -34.403587 2.000000 +f 872/2502/872 871/2516/871 1415/2504/1415 +f 1415/2504/1415 871/2516/871 1416/2507/1416 +vt -34.489014 2.000000 +f 871/2516/871 870/2517/870 1416/2507/1416 +f 1416/2507/1416 870/2517/870 1417/2509/1417 +f 870/2517/870 869/2513/869 1417/2509/1417 +f 1417/2509/1417 869/2513/869 1418/2511/1418 +vt -34.690880 1.500000 +f 1419/2512/1419 868/2514/868 1420/2518/1420 +vt -34.754890 2.000000 +f 1420/2518/1420 868/2514/868 867/2519/867 +vt -34.753815 1.500000 +f 1420/2518/1420 867/2519/867 1421/2520/1421 +vt -34.816750 1.500000 +f 1421/2520/1421 867/2519/867 1422/2521/1422 +vt -34.754890 1.000000 +f 1421/2520/1421 1422/2521/1422 856/2522/856 +vt -34.846859 1.000000 +f 856/2522/856 1422/2521/1422 857/2523/857 +vt -34.879684 1.500000 +f 857/2523/857 1422/2521/1422 1423/2524/1423 +vt -34.941998 1.000000 +f 857/2523/857 1423/2524/1423 858/2525/858 +vt -34.942619 1.500000 +f 858/2525/858 1423/2524/1423 1424/2526/1424 +vt -35.005554 1.500000 +f 858/2525/858 1424/2526/1424 1425/2527/1425 +vt -34.941998 2.000000 +f 1425/2527/1425 1424/2526/1424 865/2528/865 +vt -35.041431 2.000000 +f 1425/2527/1425 865/2528/865 864/2529/864 +vt -34.846859 2.000000 +f 867/2519/867 866/2530/866 1422/2521/1422 +f 1422/2521/1422 866/2530/866 1423/2524/1423 +f 866/2530/866 865/2528/865 1423/2524/1423 +f 1423/2524/1423 865/2528/865 1424/2526/1424 +vt -35.144127 2.000000 +vt -35.131424 1.500000 +f 863/2531/863 1426/2532/1426 864/2529/864 +vt -35.041431 1.000000 +f 864/2529/864 1426/2532/1426 859/2533/859 +f 864/2529/864 859/2533/859 1425/2527/1425 +f 1425/2527/1425 859/2533/859 858/2525/858 +vt -35.257294 1.500000 +f 1426/2532/1426 863/2531/863 1427/2534/1427 +vt -35.245651 2.000000 +f 1427/2534/1427 863/2531/863 862/2535/862 +vt -35.345638 2.000000 +f 1427/2534/1427 862/2535/862 34/2536/34 +vt -35.345638 3.000000 +vt -35.383167 1.988045 +f 70/2537/70 1529/2538/1529 34/2536/34 +vt -35.383167 1.500000 +f 34/2536/34 1529/2538/1529 1428/2539/1428 +vt -35.345638 1.000000 +f 34/2536/34 1428/2539/1428 19/2540/19 +vt -35.345638 0.000000 +f 19/2540/19 1428/2539/1428 20/2541/20 +vt -35.527599 0.000000 +f 20/2541/20 1428/2539/1428 1022/2542/1022 +vt -35.509037 1.500000 +f 1022/2542/1022 1428/2539/1428 1429/2543/1429 +vt -35.709560 0.000000 +f 1022/2542/1022 1429/2543/1429 1023/2544/1023 +vt -35.709560 3.000000 +f 1023/2544/1023 1429/2543/1429 457/2545/457 +vt -36.012520 1.500000 +f 1023/2544/1023 457/2545/457 1430/2546/1430 +vt -36.012520 1.787549 +f 1430/2546/1430 457/2545/457 1534/2547/1534 +vt -36.073483 3.000000 +f 1430/2546/1430 1534/2547/1534 456/2548/456 +f 456/2548/456 1534/2547/1534 457/2545/457 +vt -35.527599 3.000000 +f 70/2537/70 458/2549/458 1529/2538/1529 +vt -35.509037 1.947945 +f 1529/2538/1529 458/2549/458 1530/2550/1530 +f 1529/2538/1529 1530/2550/1530 1428/2539/1428 +f 1428/2539/1428 1530/2550/1530 1429/2543/1429 +f 458/2549/458 457/2545/457 1530/2550/1530 +f 1530/2550/1530 457/2545/457 1429/2543/1429 +vt -36.255444 3.000000 +vt -36.264259 1.707351 +f 455/2551/455 1533/2552/1533 456/2548/456 +vt -36.264259 1.500000 +f 456/2548/456 1533/2552/1533 1431/2553/1431 +f 456/2548/456 1431/2553/1431 1430/2546/1430 +vt -36.073483 0.000000 +f 1430/2546/1430 1431/2553/1431 1024/2554/1024 +f 1430/2546/1430 1024/2554/1024 1023/2544/1023 +vt -36.437405 3.000000 +f 455/2551/455 454/2555/454 1533/2552/1533 +f 1533/2552/1533 454/2555/454 1431/2553/1431 +vt -36.619366 3.000000 +vt -36.515999 1.627153 +f 453/2556/453 1532/2557/1532 454/2555/454 +vt -36.515999 1.500000 +f 454/2555/454 1532/2557/1532 1432/2558/1432 +vt -36.437405 0.000000 +f 454/2555/454 1432/2558/1432 1026/2559/1026 +vt -36.619366 0.000000 +f 1026/2559/1026 1432/2558/1432 1027/2560/1027 +f 1027/2560/1027 1432/2558/1432 453/2556/453 +vt -36.767742 1.500000 +f 1027/2560/1027 453/2556/453 1194/2561/1194 +vt -36.767742 1.546955 +f 1194/2561/1194 453/2556/453 1531/2562/1531 +vt -36.915131 2.500000 +f 1194/2561/1194 1531/2562/1531 167/2563/167 +vt -36.801327 3.000000 +f 167/2563/167 1531/2562/1531 452/2564/452 +vt -36.983288 3.000000 +f 167/2563/167 452/2564/452 451/2565/451 +f 453/2556/453 452/2564/452 1531/2562/1531 +vt -37.089966 2.500000 +f 167/2563/167 451/2565/451 277/2566/277 +vt -37.165249 3.000000 +f 277/2566/277 451/2565/451 450/2567/450 +vt -37.260845 2.500000 +f 277/2566/277 450/2567/450 278/2568/278 +vt -37.347210 3.000000 +f 278/2568/278 450/2567/450 449/2569/449 +vt -37.430824 2.500000 +f 278/2568/278 449/2569/449 279/2570/279 +vt -37.438190 3.000000 +f 279/2570/279 449/2569/449 448/2571/448 +vt -37.516407 2.500000 +f 279/2570/279 448/2571/448 280/2572/280 +vt -37.529171 3.000000 +f 280/2572/280 448/2571/448 447/2573/447 +vt -37.602867 2.500000 +f 280/2572/280 447/2573/447 281/2574/281 +vt -37.620152 3.000000 +f 281/2574/281 447/2573/447 446/2575/446 +vt -37.690575 2.500000 +f 281/2574/281 446/2575/446 282/2576/282 +vt -37.711132 3.000000 +f 282/2576/282 446/2575/446 445/2577/445 +vt -37.779613 2.500000 +f 282/2576/282 445/2577/445 283/2578/283 +vt -37.802113 3.000000 +f 283/2578/283 445/2577/445 444/2579/444 +vt -37.893093 3.000000 +f 283/2578/283 444/2579/444 443/2580/443 +vt -37.949322 2.500000 +f 283/2578/283 443/2580/443 284/2581/284 +vt -37.984074 3.000000 +f 284/2581/284 443/2580/443 442/2582/442 +vt -38.107243 2.500000 +f 284/2581/284 442/2582/442 285/2583/285 +vt -38.075054 3.000000 +f 285/2583/285 442/2582/442 441/2584/441 +vt -38.257015 3.000000 +f 285/2583/285 441/2584/441 440/2585/440 +vt -38.576984 3.000000 +vt -38.407936 2.500000 +f 439/2586/439 287/2587/287 440/2585/440 +vt -38.257015 2.500000 +f 440/2585/440 287/2587/287 286/2588/286 +f 440/2585/440 286/2588/286 285/2583/285 +vt -38.556591 2.500000 +f 287/2587/287 439/2586/439 288/2589/288 +vt -38.656979 3.000000 +f 288/2589/288 439/2586/439 438/2590/438 +vt -38.704163 2.500000 +f 288/2589/288 438/2590/438 289/2591/289 +vt -38.736969 3.000000 +f 289/2591/289 438/2590/438 437/2592/437 +vt -38.777996 2.500000 +f 289/2591/289 437/2592/437 290/2593/290 +vt -38.816963 3.000000 +f 290/2593/290 437/2592/437 436/2594/436 +vt -38.852131 2.500000 +f 290/2593/290 436/2594/436 291/2595/291 +vt -38.896954 3.000000 +f 291/2595/291 436/2594/436 435/2596/435 +vt -38.926785 2.500000 +f 291/2595/291 435/2596/435 292/2597/292 +vt -38.976948 3.000000 +f 292/2597/292 435/2596/435 434/2598/434 +vt -39.002193 2.500000 +f 292/2597/292 434/2598/434 293/2599/293 +vt -39.056938 3.000000 +f 293/2599/293 434/2598/434 433/2600/433 +vt -39.080578 2.500000 +f 293/2599/293 433/2600/433 294/2601/294 +vt -39.136932 3.000000 +f 294/2601/294 433/2600/433 432/2602/432 +vt -39.165997 2.500000 +f 294/2601/294 432/2602/432 295/2603/295 +vt -39.216923 3.000000 +f 295/2603/295 432/2602/432 431/2604/431 +vt -39.257549 2.500000 +f 295/2603/295 431/2604/431 296/2605/296 +vt -39.296917 3.000000 +f 296/2605/296 431/2604/431 430/2606/430 +vt -39.351734 2.500000 +f 296/2605/296 430/2606/430 297/2607/297 +vt -39.376907 3.000000 +f 297/2607/297 430/2606/430 429/2608/429 +vt -39.446297 2.500000 +f 297/2607/297 429/2608/429 298/2609/298 +vt -39.456902 3.000000 +f 298/2609/298 429/2608/429 428/2610/428 +vt -39.536892 2.500000 +f 298/2609/298 428/2610/428 299/2611/299 +vt -39.536892 3.000000 +f 299/2611/299 428/2610/428 427/2612/427 +vt -36.915131 0.500000 +f 167/2563/167 166/2613/166 1194/2561/1194 +vt -36.801327 0.000000 +f 1194/2561/1194 166/2613/166 1028/2614/1028 +f 1194/2561/1194 1028/2614/1028 1027/2560/1027 +vt -36.983288 0.000000 +f 1028/2614/1028 166/2613/166 1029/2615/1029 +vt -37.099991 0.500000 +f 1029/2615/1029 166/2613/166 179/2616/179 +vt -37.165249 0.000000 +f 1029/2615/1029 179/2616/179 1030/2617/1030 +vt -37.281288 0.500000 +f 1030/2617/1030 179/2616/179 178/2618/178 +vt -37.347210 0.000000 +f 1030/2617/1030 178/2618/178 1031/2619/1031 +vt -37.371593 0.500000 +f 1031/2619/1031 178/2618/178 177/2620/177 +vt -37.438190 0.000000 +f 1031/2619/1031 177/2620/177 1032/2621/1032 +vt -37.462196 0.500000 +f 1032/2621/1032 177/2620/177 176/2622/176 +vt -37.529171 0.000000 +f 1032/2621/1032 176/2622/176 1033/2623/1033 +vt -37.553486 0.500000 +f 1033/2623/1033 176/2622/176 175/2624/175 +vt -37.620152 0.000000 +f 1033/2623/1033 175/2624/175 1034/2625/1034 +vt -37.642811 0.500000 +f 1034/2625/1034 175/2624/175 174/2626/174 +vt -37.711132 0.000000 +f 1034/2625/1034 174/2626/174 1035/2627/1035 +vt -37.809708 0.500000 +f 1035/2627/1035 174/2626/174 173/2628/173 +vt -37.802113 0.000000 +f 1035/2627/1035 173/2628/173 1036/2629/1036 +vt -37.893093 0.000000 +f 1036/2629/1036 173/2628/173 1037/2630/1037 +vt -37.964832 0.500000 +f 1037/2630/1037 173/2628/173 172/2631/172 +vt -37.984074 0.000000 +f 1037/2630/1037 172/2631/172 1038/2632/1038 +vt -38.075054 0.000000 +f 1038/2632/1038 172/2631/172 1039/2633/1039 +vt -38.112564 0.500000 +f 1039/2633/1039 172/2631/172 171/2634/171 +vt -38.257015 0.000000 +f 1039/2633/1039 171/2634/171 1040/2635/1040 +vt -38.257015 0.500000 +f 1040/2635/1040 171/2634/171 170/2636/170 +vt -38.407246 0.500000 +f 1040/2635/1040 170/2636/170 237/2637/237 +vt -38.576984 0.000000 +f 1040/2635/1040 237/2637/237 1041/2638/1041 +vt -38.554207 0.500000 +f 1041/2638/1041 237/2637/237 236/2639/236 +vt -38.656979 0.000000 +f 1041/2638/1041 236/2639/236 1042/2640/1042 +vt -38.699654 0.500000 +f 1042/2640/1042 236/2639/236 235/2641/235 +vt -38.736969 0.000000 +f 1042/2640/1042 235/2641/235 1043/2642/1043 +vt -38.772377 0.500000 +f 1043/2642/1043 235/2641/235 234/2643/234 +vt -38.816963 0.000000 +f 1043/2642/1043 234/2643/234 1044/2644/1044 +vt -38.845604 0.500000 +f 1044/2644/1044 234/2643/234 233/2645/233 +vt -38.896954 0.000000 +f 1044/2644/1044 233/2645/233 1045/2646/1045 +vt -38.920567 0.500000 +f 1045/2646/1045 233/2645/233 232/2647/232 +vt -38.976948 0.000000 +f 1045/2646/1045 232/2647/232 1046/2648/1046 +vt -38.997585 0.500000 +f 1046/2648/1046 232/2647/232 231/2649/231 +vt -39.056938 0.000000 +f 1046/2648/1046 231/2649/231 1047/2650/1047 +vt -39.077141 0.500000 +f 1047/2650/1047 231/2649/231 230/2651/230 +vt -39.136932 0.000000 +f 1047/2650/1047 230/2651/230 1048/2652/1048 +vt -39.162899 0.500000 +f 1048/2652/1048 230/2651/230 229/2653/229 +vt -39.216923 0.000000 +f 1048/2652/1048 229/2653/229 1049/2654/1049 +vt -39.255207 0.500000 +f 1049/2654/1049 229/2653/229 228/2655/228 +vt -39.296917 0.000000 +f 1049/2654/1049 228/2655/228 1050/2656/1050 +vt -39.350147 0.500000 +f 1050/2656/1050 228/2655/228 227/2657/227 +vt -39.376907 0.000000 +f 1050/2656/1050 227/2657/227 1051/2658/1051 +vt -39.445633 0.500000 +f 1051/2658/1051 227/2657/227 226/2659/226 +vt -39.456902 0.000000 +f 1051/2658/1051 226/2659/226 1052/2660/1052 +vt -39.536892 0.500000 +f 1052/2660/1052 226/2659/226 225/2661/225 +vt -39.536892 0.000000 +f 1052/2660/1052 225/2661/225 1053/2662/1053 +f 454/2555/454 1026/2559/1026 1431/2553/1431 +vt -36.255444 0.000000 +f 1431/2553/1431 1026/2559/1026 1025/2663/1025 +f 1431/2553/1431 1025/2663/1025 1024/2554/1024 +f 34/2536/34 19/2540/19 1427/2534/1427 +vt -35.245651 1.000000 +f 1427/2534/1427 19/2540/19 861/2664/861 +vt -35.144127 1.000000 +f 1427/2534/1427 861/2664/861 860/2665/860 +f 1427/2534/1427 860/2665/860 1426/2532/1426 +f 1426/2532/1426 860/2665/860 859/2533/859 +f 1421/2520/1421 856/2522/856 1420/2518/1420 +vt -34.664909 1.000000 +f 1420/2518/1420 856/2522/856 855/2666/855 +f 1420/2518/1420 855/2666/855 1419/2512/1419 +f 1419/2512/1419 855/2666/855 854/2510/854 +f 1414/2503/1414 851/2505/851 1413/2501/1413 +vt -34.236645 1.000000 +f 1413/2501/1413 851/2505/851 850/2667/850 +f 1413/2501/1413 850/2667/850 1412/2499/1412 +vt -34.154354 1.000000 +f 1412/2499/1412 850/2667/850 849/2668/849 +f 1412/2499/1412 849/2668/849 1411/2497/1411 +f 1411/2497/1411 849/2668/849 848/2495/848 +vt -33.750168 1.000000 +f 846/2492/846 845/2669/845 1410/2490/1410 +f 1410/2490/1410 845/2669/845 1409/2488/1409 +f 845/2669/845 844/2486/844 1409/2488/1409 +f 843/2484/843 842/2480/842 1435/2482/1435 +vt -33.103367 1.000000 +f 841/2478/841 840/2670/840 1408/2476/1408 +f 1408/2476/1408 840/2670/840 1407/2474/1407 +vt -33.017460 1.000000 +f 840/2670/840 839/2671/839 1407/2474/1407 +f 1407/2474/1407 839/2671/839 1406/2470/1406 +f 839/2671/839 838/2468/838 1406/2470/1406 +f 1402/2463/1402 836/2465/836 1401/2461/1401 +vt -32.642204 1.000000 +f 1401/2461/1401 836/2465/836 835/2672/835 +f 1401/2461/1401 835/2672/835 1400/2459/1400 +vt -32.588715 1.000000 +f 1400/2459/1400 835/2672/835 834/2673/834 +f 1400/2459/1400 834/2673/834 1399/2457/1399 +vt -32.533390 1.000000 +f 1399/2457/1399 834/2673/834 833/2674/833 +f 1399/2457/1399 833/2674/833 1398/2455/1398 +vt -32.476685 1.000000 +f 1398/2455/1398 833/2674/833 832/2675/832 +f 1398/2455/1398 832/2675/832 1397/2453/1397 +vt -32.418564 1.000000 +f 1397/2453/1397 832/2675/832 831/2676/831 +f 1397/2453/1397 831/2676/831 1396/2451/1396 +vt -32.358776 1.000000 +f 1396/2451/1396 831/2676/831 830/2677/830 +f 1396/2451/1396 830/2677/830 1395/2449/1395 +vt -32.296982 1.000000 +f 1395/2449/1395 830/2677/830 829/2678/829 +f 1395/2449/1395 829/2678/829 1394/2447/1394 +vt -32.234489 1.000000 +f 1394/2447/1394 829/2678/829 828/2679/828 +f 1394/2447/1394 828/2679/828 1393/2444/1393 +vt -32.173409 1.000000 +f 1393/2444/1393 828/2679/828 827/2680/827 +vt -32.113766 1.000000 +f 1393/2444/1393 827/2680/827 826/2681/826 +f 1393/2444/1393 826/2681/826 1392/2440/1392 +f 1392/2440/1392 826/2681/826 825/2438/825 +f 824/2436/824 823/2432/823 1437/2434/1437 +f 1387/2427/1387 821/2429/821 1386/2425/1386 +vt -31.490730 1.000000 +f 1386/2425/1386 821/2429/821 820/2682/820 +f 1386/2425/1386 820/2682/820 1385/2423/1385 +vt -31.423046 1.000000 +f 1385/2423/1385 820/2682/820 819/2683/819 +f 1385/2423/1385 819/2683/819 1384/2421/1384 +vt -31.385319 1.000000 +f 1384/2421/1384 819/2683/819 818/2684/818 +f 1384/2421/1384 818/2684/818 1383/2419/1383 +vt -31.344444 1.000000 +f 1383/2419/1383 818/2684/818 817/2685/817 +f 1383/2419/1383 817/2685/817 1382/2417/1382 +vt -31.300680 1.000000 +f 1382/2417/1382 817/2685/817 816/2686/816 +f 1382/2417/1382 816/2686/816 1381/2413/1381 +f 1381/2413/1381 816/2686/816 815/2411/815 +f 1377/2406/1377 813/2408/813 1376/2404/1376 +vt -31.092291 1.000000 +f 1376/2404/1376 813/2408/813 812/2687/812 +f 1376/2404/1376 812/2687/812 1375/2402/1375 +vt -31.021029 1.000000 +f 1375/2402/1375 812/2687/812 811/2688/811 +f 1375/2402/1375 811/2688/811 1374/2400/1374 +f 1374/2400/1374 811/2688/811 810/2401/810 +vt -30.613976 1.000000 +f 808/2394/808 807/2689/807 1373/2392/1373 +f 1373/2392/1373 807/2689/807 1372/2390/1372 +vt -30.479782 1.000000 +f 807/2689/807 806/2690/806 1372/2390/1372 +f 1372/2390/1372 806/2690/806 1371/2388/1371 +f 806/2690/806 805/2386/805 1371/2388/1371 +f 804/2387/804 803/2384/803 1439/2383/1439 +f 1369/2366/1369 798/2368/798 1368/2364/1368 +vt -29.826729 1.000000 +f 1368/2364/1368 798/2368/798 797/2691/797 +f 1368/2364/1368 797/2691/797 1367/2362/1367 +vt -29.745514 1.000000 +f 1367/2362/1367 797/2691/797 796/2692/796 +f 1367/2362/1367 796/2692/796 1366/2360/1366 +f 1366/2360/1366 796/2692/796 795/2358/795 +f 793/2355/793 792/2351/792 1443/2353/1443 +f 790/2348/790 789/2344/789 1445/2346/1445 +f 1364/2341/1364 788/2343/788 1363/2339/1363 +f 1363/2339/1363 788/2343/788 787/2337/787 +f 786/2335/786 785/2331/785 1447/2333/1447 +vt -27.962231 1.000000 +f 784/2329/784 1/2693/1 1360/2327/1360 +f 1360/2327/1360 1/2693/1 1359/2325/1359 +vt -27.962231 0.000000 +f 33/2694/33 1021/2298/1021 1/2693/1 +f 1/2693/1 1021/2298/1021 1358/2300/1358 +f 1/2693/1 1358/2300/1358 1359/2325/1359 +vt -26.123798 0.000000 +f 1011/2279/1011 1010/2695/1010 1346/2277/1346 +vt -26.068748 1.500000 +f 1346/2277/1346 1010/2695/1010 1345/2696/1345 +f 1346/2277/1346 1345/2696/1345 1517/2275/1517 +f 1517/2275/1517 1345/2696/1345 1516/2273/1516 +vt -25.992481 0.000000 +f 1010/2695/1010 1009/2697/1009 1345/2696/1345 +vt -25.942877 1.500000 +f 1345/2696/1345 1009/2697/1009 1344/2698/1344 +f 1345/2696/1345 1344/2698/1344 1516/2273/1516 +f 1516/2273/1516 1344/2698/1344 1515/2271/1515 +vt -25.861164 0.000000 +f 1009/2697/1009 1008/2699/1008 1344/2698/1344 +vt -25.817007 1.500000 +f 1344/2698/1344 1008/2699/1008 1343/2700/1343 +f 1344/2698/1344 1343/2700/1343 1515/2271/1515 +f 1515/2271/1515 1343/2700/1343 1514/2269/1514 +vt -25.729849 0.000000 +f 1008/2699/1008 1007/2701/1007 1343/2700/1343 +vt -25.691135 1.500000 +f 1343/2700/1343 1007/2701/1007 1342/2702/1342 +f 1343/2700/1343 1342/2702/1342 1514/2269/1514 +f 1514/2269/1514 1342/2702/1342 1513/2267/1513 +vt -25.598532 0.000000 +f 1007/2701/1007 1006/2703/1006 1342/2702/1342 +vt -25.565266 1.500000 +f 1342/2702/1342 1006/2703/1006 1341/2704/1341 +f 1342/2702/1342 1341/2704/1341 1513/2267/1513 +f 1513/2267/1513 1341/2704/1341 1512/2265/1512 +vt -25.467215 0.000000 +f 1006/2703/1006 1005/2705/1005 1341/2704/1341 +vt -25.439396 1.500000 +f 1341/2704/1341 1005/2705/1005 1340/2706/1340 +f 1341/2704/1341 1340/2706/1340 1512/2265/1512 +f 1512/2265/1512 1340/2706/1340 1511/2263/1511 +vt -25.335899 0.000000 +f 1005/2705/1005 1004/2707/1004 1340/2706/1340 +vt -25.313524 1.500000 +f 1340/2706/1340 1004/2707/1004 1339/2708/1339 +f 1340/2706/1340 1339/2708/1339 1511/2263/1511 +f 1511/2263/1511 1339/2708/1339 1510/2261/1510 +vt -25.204582 0.000000 +f 1004/2707/1004 1003/2709/1003 1339/2708/1339 +vt -25.187654 1.500000 +f 1339/2708/1339 1003/2709/1003 1338/2710/1338 +f 1339/2708/1339 1338/2710/1338 1510/2261/1510 +f 1510/2261/1510 1338/2710/1338 1509/2259/1509 +vt -25.073265 0.000000 +f 1003/2709/1003 1002/2711/1002 1338/2710/1338 +vt -25.061785 1.500000 +f 1338/2710/1338 1002/2711/1002 1337/2712/1337 +f 1338/2710/1338 1337/2712/1337 1509/2259/1509 +f 1509/2259/1509 1337/2712/1337 1508/2254/1508 +vt -24.941950 0.000000 +f 1002/2711/1002 1001/2713/1001 1337/2712/1337 +f 1337/2712/1337 1001/2713/1001 1336/2252/1336 +f 1337/2712/1337 1336/2252/1336 1508/2254/1508 +f 1001/2713/1001 1000/2250/1000 1336/2252/1336 +f 482/2238/482 998/2248/998 1448/2236/1448 +f 1448/2236/1448 998/2248/998 997/2234/997 +f 71/2220/71 140/2226/140 1449/2218/1449 +vt -23.680374 0.800000 +f 1449/2218/1449 140/2226/140 783/2714/783 +f 1449/2218/1449 783/2714/783 782/2216/782 +vt -23.291273 0.800000 +f 779/2210/779 778/2715/778 1452/2208/1452 +f 1452/2208/1452 778/2715/778 777/2206/777 +f 776/2204/776 775/2198/775 1454/2202/1454 +vt -22.704969 0.800000 +f 774/2197/774 773/2716/773 1328/2195/1328 +f 1328/2195/1328 773/2716/773 1327/2193/1327 +f 773/2716/773 772/2191/772 1327/2193/1327 +f 771/2189/771 770/2185/770 1324/2184/1324 +f 582/2178/582 769/2186/769 1455/2176/1455 +vt -22.148170 0.800000 +f 1455/2176/1455 769/2186/769 768/2717/768 +f 1455/2176/1455 768/2717/768 767/2174/767 +f 763/2166/763 762/2163/762 1458/2164/1458 +f 593/2155/593 760/2161/760 1459/2156/1459 +f 1459/2156/1459 760/2161/760 759/2157/759 +vt -20.947552 0.800000 +f 757/2148/757 756/2718/756 1318/2146/1318 +f 1318/2146/1318 756/2718/756 1317/2144/1317 +vt -20.897020 0.800000 +f 756/2718/756 755/2719/755 1317/2144/1317 +f 1317/2144/1317 755/2719/755 1316/2142/1316 +vt -20.803473 0.800000 +f 755/2719/755 754/2720/754 1316/2142/1316 +f 1316/2142/1316 754/2720/754 1315/2140/1315 +vt -20.756523 0.800000 +f 754/2720/754 753/2721/753 1315/2140/1315 +f 1315/2140/1315 753/2721/753 1314/2135/1314 +f 753/2721/753 752/2133/752 1314/2135/1314 +f 1310/2128/1310 750/2130/750 1309/2126/1309 +vt -20.587154 0.800000 +f 1309/2126/1309 750/2130/750 749/2722/749 +vt -20.543730 0.800000 +f 1309/2126/1309 749/2722/749 748/2723/748 +f 1309/2126/1309 748/2723/748 1308/2121/1308 +f 1308/2121/1308 748/2723/748 747/2119/747 +vt -20.139648 0.800000 +f 744/2113/744 743/2724/743 1305/2111/1305 +f 1305/2111/1305 743/2724/743 1304/2109/1304 +f 743/2724/743 742/2108/742 1304/2109/1304 +f 1303/2096/1303 738/2103/738 1302/2091/1302 +f 1302/2091/1302 738/2103/738 737/2092/737 +f 734/2095/734 733/2082/733 1297/2081/1297 +f 1291/2065/1291 729/2067/729 1290/2063/1290 +vt -18.416157 0.800000 +f 1290/2063/1290 729/2067/729 728/2725/728 +f 1290/2063/1290 728/2725/728 1289/2058/1289 +f 1289/2058/1289 728/2725/728 727/2056/727 +f 727/2056/727 726/2052/726 1463/2054/1463 +vt -17.563276 0.800000 +f 723/2047/723 722/2726/722 1284/2045/1284 +f 1284/2045/1284 722/2726/722 1283/2043/1283 +vt -17.435223 0.800000 +f 722/2726/722 721/2727/721 1283/2043/1283 +f 1283/2043/1283 721/2727/721 1282/2041/1282 +vt -17.309515 0.800000 +f 721/2727/721 720/2728/720 1282/2041/1282 +f 1282/2041/1282 720/2728/720 1281/2039/1281 +vt -17.183863 0.800000 +f 720/2728/720 719/2729/719 1281/2039/1281 +f 1281/2039/1281 719/2729/719 1280/2032/1280 +f 719/2729/719 718/2030/718 1280/2032/1280 +vt -16.620560 0.800000 +f 713/2020/713 712/2730/712 1274/2018/1274 +f 1274/2018/1274 712/2730/712 1273/2016/1273 +vt -16.505274 0.800000 +f 712/2730/712 711/2731/711 1273/2016/1273 +vt -16.396935 0.800000 +f 1273/2016/1273 711/2731/711 710/2732/710 +f 1273/2016/1273 710/2732/710 1272/2014/1272 +f 1272/2014/1272 710/2732/710 709/2015/709 +f 1268/1983/1268 699/2000/699 1267/1980/1267 +vt -15.009867 0.800000 +f 1267/1980/1267 699/2000/699 698/2733/698 +f 1267/1980/1267 698/2733/698 1266/1981/1266 +f 1266/1981/1266 698/2733/698 697/1982/697 +f 1262/1970/1262 695/1972/695 1261/1968/1261 +vt -14.363619 0.800000 +f 1261/1968/1261 695/1972/695 694/2734/694 +vt -14.257457 0.800000 +f 1261/1968/1261 694/2734/694 693/2735/693 +f 1261/1968/1261 693/2735/693 1260/1966/1260 +f 1260/1966/1260 693/2735/693 692/1964/692 +vt -13.937298 0.800000 +f 691/1962/691 690/2736/690 1259/1960/1259 +f 1259/1960/1259 690/2736/690 1258/1958/1258 +f 1258/1958/1258 690/2736/690 1257/1956/1257 +vt -13.831842 0.800000 +f 1257/1956/1257 690/2736/690 689/2737/689 +f 1257/1956/1257 689/2737/689 1256/1954/1256 +vt -13.727160 0.800000 +f 1256/1954/1256 689/2737/689 688/2738/688 +f 1256/1954/1256 688/2738/688 1255/1952/1255 +f 1255/1952/1255 688/2738/688 1254/1950/1254 +vt -13.624122 0.800000 +f 688/2738/688 687/2739/687 1254/1950/1254 +f 1254/1950/1254 687/2739/687 1253/1948/1253 +f 1253/1948/1253 687/2739/687 1252/1946/1252 +vt -13.525473 0.800000 +f 1252/1946/1252 687/2739/687 686/2740/686 +f 1252/1946/1252 686/2740/686 1251/1942/1251 +f 1251/1942/1251 686/2740/686 685/1940/685 +vt -13.070684 0.800000 +f 682/1935/682 681/2741/681 1247/1933/1247 +f 1247/1933/1247 681/2741/681 1246/1931/1246 +vt -12.893261 0.800000 +f 681/2741/681 680/2742/680 1246/1931/1246 +f 1246/1931/1246 680/2742/680 1245/1929/1245 +vt -12.714693 0.800000 +f 680/2742/680 118/2743/118 1245/1929/1245 +f 1245/1929/1245 118/2743/118 1244/1927/1244 +vt -12.714693 0.000000 +vt -12.622847 0.000000 +f 161/2744/161 993/2745/993 118/2743/118 +f 118/2743/118 993/2745/993 1236/1922/1236 +f 118/2743/118 1236/1922/1236 1244/1927/1244 +vt -12.600603 0.041664 +f 1236/1922/1236 993/2745/993 1470/2746/1470 +f 1470/2746/1470 993/2745/993 992/1921/992 +f 1470/2746/1470 992/1921/992 1236/1922/1236 +vt -12.348862 0.133595 +f 1234/1914/1234 991/1919/991 1238/2747/1238 +vt -12.347309 0.000000 +f 1238/2747/1238 991/1919/991 990/2748/990 +f 1238/2747/1238 990/2748/990 989/1913/989 +vt -11.612541 0.000000 +f 985/1463/985 984/2749/984 1228/1461/1228 +f 1228/1461/1228 984/2749/984 1226/1459/1226 +f 984/2749/984 983/1457/983 1226/1459/1226 +f 1500/1657/1500 1499/1655/1499 1195/1660/1195 +f 1195/1660/1195 1499/1655/1499 1196/1662/1196 +f 1499/1655/1499 1498/1653/1498 1196/1662/1196 +f 1196/1662/1196 1498/1653/1498 1197/1664/1197 +f 1498/1653/1498 1497/1651/1497 1197/1664/1197 +f 1197/1664/1197 1497/1651/1497 1198/1666/1198 +f 1497/1651/1497 1496/1649/1496 1198/1666/1198 +f 1198/1666/1198 1496/1649/1496 1199/1668/1199 +f 1496/1649/1496 1495/1647/1495 1199/1668/1199 +f 1199/1668/1199 1495/1647/1495 1200/1670/1200 +f 1495/1647/1495 1494/1645/1494 1200/1670/1200 +f 1200/1670/1200 1494/1645/1494 1201/1672/1201 +f 1494/1645/1494 1493/1643/1493 1201/1672/1201 +f 1201/1672/1201 1493/1643/1493 1202/1674/1202 +f 1493/1643/1493 1492/1641/1492 1202/1674/1202 +f 1202/1674/1202 1492/1641/1492 1203/1676/1203 +f 1492/1641/1492 1491/1639/1491 1203/1676/1203 +f 1203/1676/1203 1491/1639/1491 1204/1678/1204 +f 1491/1639/1491 1490/1636/1490 1204/1678/1204 +f 1204/1678/1204 1490/1636/1490 1205/1680/1205 +f 1490/1636/1490 1489/1634/1489 1205/1680/1205 +f 1205/1680/1205 1489/1634/1489 1206/1683/1206 +f 1489/1634/1489 1488/1632/1488 1206/1683/1206 +f 1206/1683/1206 1488/1632/1488 1207/1685/1207 +f 1488/1632/1488 1487/1630/1487 1207/1685/1207 +f 1207/1685/1207 1487/1630/1487 1208/1687/1208 +f 1487/1630/1487 1486/1628/1486 1208/1687/1208 +f 1208/1687/1208 1486/1628/1486 1209/1689/1209 +f 1486/1628/1486 1485/1626/1485 1209/1689/1209 +f 1209/1689/1209 1485/1626/1485 1210/1691/1210 +f 1485/1626/1485 1484/1624/1484 1210/1691/1210 +f 1210/1691/1210 1484/1624/1484 1211/1693/1211 +f 1484/1624/1484 1483/1622/1483 1211/1693/1211 +f 1211/1693/1211 1483/1622/1483 1212/1695/1212 +f 1483/1622/1483 1482/1620/1482 1212/1695/1212 +f 1212/1695/1212 1482/1620/1482 1213/1697/1213 +f 1482/1620/1482 1481/1618/1481 1213/1697/1213 +f 1213/1697/1213 1481/1618/1481 1214/1699/1214 +f 1481/1618/1481 1480/1616/1480 1214/1699/1214 +f 1214/1699/1214 1480/1616/1480 1215/1701/1215 +f 1480/1616/1480 1479/1614/1479 1215/1701/1215 +f 1215/1701/1215 1479/1614/1479 1216/1703/1216 +f 1479/1614/1479 1478/1612/1478 1216/1703/1216 +f 1216/1703/1216 1478/1612/1478 1217/1705/1217 +f 1478/1612/1478 1477/1610/1477 1217/1705/1217 +f 1217/1705/1217 1477/1610/1477 1218/1707/1218 +f 1477/1610/1477 1476/1608/1476 1218/1707/1218 +f 1218/1707/1218 1476/1608/1476 1219/1709/1219 +f 1476/1608/1476 1475/1606/1475 1219/1709/1219 +f 1219/1709/1219 1475/1606/1475 1220/1711/1220 +f 1475/1606/1475 1474/1604/1474 1220/1711/1220 +f 1220/1711/1220 1474/1604/1474 1221/1713/1221 +f 1474/1604/1474 1473/1602/1473 1221/1713/1221 +f 1221/1713/1221 1473/1602/1473 1222/1715/1222 +f 1473/1602/1473 1472/1600/1472 1222/1715/1222 +f 1222/1715/1222 1472/1600/1472 1223/1717/1223 +f 1472/1600/1472 1471/1598/1471 1223/1717/1223 +f 989/1913/989 1234/1914/1234 1238/2747/1238 +f 1507/2253/1507 1335/2251/1335 1506/2258/1506 +f 1518/2309/1518 1519/2311/1519 1348/2281/1348 +f 1348/2281/1348 1519/2311/1519 1349/2283/1349 +f 1519/2311/1519 1520/2313/1520 1349/2283/1349 +f 1349/2283/1349 1520/2313/1520 1350/2285/1350 +f 1520/2313/1520 1521/2315/1521 1350/2285/1350 +f 1350/2285/1350 1521/2315/1521 1351/2287/1351 +f 1521/2315/1521 1522/2317/1522 1351/2287/1351 +f 1351/2287/1351 1522/2317/1522 1352/2289/1352 +f 1522/2317/1522 1523/2319/1523 1352/2289/1352 +f 1352/2289/1352 1523/2319/1523 1353/2291/1353 +f 1523/2319/1523 1524/2321/1524 1353/2291/1353 +f 1353/2291/1353 1524/2321/1524 1354/2293/1354 +f 1524/2321/1524 1525/2323/1525 1354/2293/1354 +f 1354/2293/1354 1525/2323/1525 1355/2295/1355 +f 1525/2323/1525 1526/2306/1526 1355/2295/1355 +f 1528/2301/1528 1357/2299/1357 1527/2305/1527 +f 1527/2305/1527 1357/2299/1357 1356/2297/1356 +f 1532/2557/1532 453/2556/453 1432/2558/1432 +# 3068 faces, 2749 coords texture + +# End of File diff --git a/load/shapes/blub.obj b/load/shapes/blub.obj new file mode 100644 index 0000000..4c33d61 --- /dev/null +++ b/load/shapes/blub.obj @@ -0,0 +1,28631 @@ +v 0.30383 -0.334455 -0.339867 +v 0.407015 -0.335278 0.283284 +v 0.311802 0.281543 -0.353833 +v 0.363848 0.295688 0.319229 +v 0.201652 -0.150107 0.905069 +v 0.201652 0.049485 0.905069 +v 0.0716987 -0.155458 -0.811811 +v 0.0756873 0.0703828 -0.819499 +v 0 -0.455494 -0.350968 +v 0 -0.441442 0.299839 +v 0 -0.47588 -0.0209292 +v 0.366719 0.313819 -0.0234852 +v 0.49754 -0.0402774 0.30809 +v 0.400612 -0.0375791 -0.343536 +v 4.33681e-19 0.488471 0.399766 +v 0.304147 -0.249668 0.71379 +v 0 -0.14533 0.935144 +v 0 -0.322592 0.716751 +v 0.304147 0.182874 0.718698 +v 0.232157 -0.058285 0.935144 +v 0.412605 -0.0399979 0.716751 +v 0 0.0541512 0.935144 +v 0 0.293339 0.73685 +v 0 -0.0626395 0.997318 +v 0.207178 0.19576 -0.647838 +v 2.1684e-19 0.0883131 -0.858929 +v 0.180955 -0.273419 -0.642093 +v 0.0885117 -0.042324 -0.818201 +v 0.243561 -0.030447 -0.643532 +v 0 -0.183612 -0.819188 +v 0 -0.360839 -0.643532 +v 0 -0.0162403 -1.61128 +v 0.113139 0.459091 -0.374516 +v 0 0.614018 0.174524 +v 0.108009 0.573507 -0.0136262 +v 0.162845 0.27825 -0.69236 +v 2.1684e-19 0.240384 -0.919161 +v 0.0516932 0.688835 -0.483912 +v 0 1.00763 0.0319146 +v 0.0604302 0.943036 -0.121851 +v 0.0830123 0.441986 -0.775361 +v -2.1684e-19 0.376153 -0.908911 +v 0.0261295 -0.144958 -1.01487 +v 0.0313438 0.0347166 -1.02902 +v 0 0.0836219 -1.039 +v 0.0416476 -0.0660913 -1.01448 +v 0 -0.18438 -1.04012 +v 0.0311898 -0.220198 -1.19232 +v 0.0429241 0.116215 -1.22935 +v 0 0.232124 -1.34016 +v 0.0554778 0.000627617 -1.28859 +v 0 -0.313756 -1.30218 +v 0 0.327055 -1.89369 +v 0.0996455 0.273452 -1.51279 +v 0 0.470384 -1.75546 +v 0.104926 0.1875 -1.55025 +v 0 -0.257039 -1.65046 +v 0.0676659 -0.207683 -1.2396 +v 0.07204 -0.101465 -1.25726 +v 0 -0.418569 -1.52422 +v 0.440646 -0.374272 -0.00924983 +v 0.601292 -0.378551 0.00250401 +v 0.610971 -0.576469 -0.483016 +v 0.696806 -0.574979 -0.469607 +v 0.690906 -0.148398 -0.503363 +v 0.621193 -0.148828 -0.51413 +v 0.540789 -0.10824 -0.0494785 +v 0 0.48304 -0.792035 +v 0 0.741905 -0.511172 +v 0 1.02863 -0.152178 +v -0.30383 -0.334455 -0.339867 +v -0.407015 -0.335278 0.283284 +v -0.311802 0.281543 -0.353833 +v -0.363848 0.295688 0.319229 +v -0.201652 -0.150107 0.905069 +v -0.201652 0.049485 0.905069 +v -0.0716987 -0.155458 -0.811811 +v -0.0756873 0.0703828 -0.819499 +v -0.366719 0.313819 -0.0234852 +v -0.49754 -0.0402774 0.30809 +v -0.400612 -0.0375791 -0.343536 +v -0.304147 -0.249668 0.71379 +v -0.304147 0.182874 0.718698 +v -0.232157 -0.058285 0.935144 +v -0.412605 -0.0399979 0.716751 +v -0.207178 0.19576 -0.647838 +v -0.180955 -0.273419 -0.642093 +v -0.0885117 -0.042324 -0.818201 +v -0.243561 -0.030447 -0.643532 +v -0.113139 0.459091 -0.374516 +v -0.108009 0.573507 -0.0136262 +v -0.162845 0.27825 -0.69236 +v -0.0516932 0.688835 -0.483912 +v -0.0604302 0.943036 -0.121851 +v -0.0830123 0.441986 -0.775361 +v -0.0261295 -0.144958 -1.01487 +v -0.0313438 0.0347166 -1.02902 +v -0.0416476 -0.0660913 -1.01448 +v -0.0311898 -0.220198 -1.19232 +v -0.0429241 0.116215 -1.22935 +v -0.0554778 0.000627617 -1.28859 +v -0.0996455 0.273452 -1.51279 +v -0.104926 0.1875 -1.55025 +v -0.0676659 -0.207683 -1.2396 +v -0.07204 -0.101465 -1.25726 +v -0.440646 -0.374272 -0.00924983 +v -0.601292 -0.378551 0.00250401 +v -0.610971 -0.576469 -0.483016 +v -0.696806 -0.574979 -0.469607 +v -0.690906 -0.148398 -0.503363 +v -0.621193 -0.148828 -0.51413 +v -0.540789 -0.10824 -0.0494785 +v 0.208574 -0.412345 0.301751 +v 0.34796 -0.297318 0.511946 +v 0.167148 -0.305141 0.715271 +v 0 -0.39433 0.513465 +v 0.190415 -0.369912 0.513247 +v 0.250623 -0.193475 0.843459 +v 0.117873 -0.147917 0.925139 +v 0 -0.229562 0.853901 +v 0.139191 -0.222771 0.84904 +v 0.482817 -0.197561 0.311304 +v 0.465064 -0.0350359 0.514448 +v 0.386267 -0.155621 0.715271 +v 0.437869 -0.178295 0.514338 +v 0.462576 0.129959 0.303545 +v 0.343571 0.249678 0.527402 +v 0.386267 0.0775058 0.715855 +v 0.435489 0.111687 0.515157 +v 0.250623 0.105965 0.844044 +v 0.222488 -0.00113809 0.925139 +v 0.332913 -0.049563 0.853901 +v 0.313397 0.0344231 0.849109 +v 0.222488 -0.11051 0.925139 +v 0.313397 -0.131043 0.84904 +v 0.195658 0.431948 0.365784 +v 0 0.410903 0.574424 +v 0.167148 0.261838 0.729644 +v 0.188537 0.362868 0.556225 +v 0 0.165095 0.856294 +v 0.117873 0.0519363 0.925139 +v 0.139191 0.149775 0.850751 +v 0 -0.0186605 0.981722 +v 0.11904 -0.0620723 0.981722 +v 0.116249 -0.0159106 0.967391 +v 0 -0.0959138 0.981722 +v 0.116249 -0.0996045 0.967391 +v 0.378225 0.135867 -0.350008 +v 0.327544 -0.0293116 -0.510129 +v 0.231771 0.101195 -0.643496 +v 0.266496 0.246238 -0.511117 +v 0.310512 0.126816 -0.510806 +v 0.379282 -0.200918 -0.339129 +v 0.244733 -0.315054 -0.509521 +v 0.228649 -0.163913 -0.642812 +v 0.30816 -0.185744 -0.509519 +v 0.120666 -0.210751 -0.732623 +v 0.0857657 -0.106668 -0.814896 +v 0.158297 -0.0361976 -0.736897 +v 0.149978 -0.133431 -0.734747 +v 0.086191 0.0227038 -0.815903 +v 0.134375 0.131756 -0.749794 +v 0.151604 0.0607583 -0.736802 +v 0.168655 -0.423296 -0.346478 +v 0 -0.422762 -0.511014 +v 0.099748 -0.33948 -0.642812 +v 0.135181 -0.395663 -0.510394 +v 0 -0.265805 -0.737015 +v 0.0407757 -0.178572 -0.815595 +v 0.0671614 -0.253491 -0.73483 +v 0 0.522437 0.255061 +v 0.366845 0.315704 0.140774 +v 0.222277 0.446187 -0.0036015 +v 0.0766666 0.599646 0.122394 +v 0.18013 0.471399 0.184491 +v 0.347443 0.30275 -0.189022 +v 0.207792 0.373814 -0.354845 +v 0.107346 0.529623 -0.191512 +v 0.219164 0.417972 -0.181967 +v 0.183793 0.234957 -0.662621 +v 0.149252 0.362644 -0.536889 +v 0.20689 0.307443 -0.51397 +v 0.0497412 0.0877609 -0.839765 +v 0 0.161144 -0.86807 +v 0.102731 0.242137 -0.845395 +v 0.102077 0.167228 -0.80184 +v 0.0676805 0.765828 -0.0645255 +v 0.0402072 0.996322 -0.0065238 +v 0 0.81328 0.102477 +v 0.0443788 0.803601 0.0578596 +v 0.0691318 0.579805 -0.428344 +v 0.0554137 0.831721 -0.295723 +v 0.0647854 0.688466 -0.240715 +v 0.126821 0.360621 -0.737186 +v 0.0708903 0.549128 -0.645345 +v 0.105867 0.457605 -0.591138 +v 0 0.315478 -0.931389 +v 0.055742 0.388366 -0.871735 +v 0.0835812 0.32046 -0.870314 +v 0.0410841 0.0425437 -0.911861 +v 0.0138992 0.0732733 -1.03085 +v 0 0.0639116 -0.924988 +v 0.0240133 0.0607176 -0.918715 +v 0.0493405 -0.0479073 -0.914559 +v 0.0421493 -0.0180423 -1.01288 +v 0.0484446 0.00270438 -0.912014 +v 0.040307 -0.134942 -0.909352 +v 0.035753 -0.108779 -1.01239 +v 0.04784 -0.0971068 -0.911414 +v 0 -0.159342 -0.92002 +v 0.0137684 -0.172874 -1.02986 +v 0.023028 -0.154358 -0.915201 +v 0.0286558 0.0663989 -1.12307 +v 0.022823 0.19387 -1.29908 +v 0 0.135633 -1.17269 +v 0.0126932 0.114866 -1.15183 +v 0.0578733 -0.113461 -1.10909 +v 0.0769689 -0.160366 -1.25565 +v 0.0588067 -0.0221349 -1.11065 +v 0.0637908 -0.0675919 -1.10717 +v 0.0261424 -0.176212 -1.11252 +v 0.0481225 -0.220168 -1.21301 +v 0.0429943 -0.145581 -1.10505 +v 0 -0.239653 -1.17204 +v 0.0180914 -0.27557 -1.25798 +v 0.0122601 -0.217033 -1.1482 +v 0.0790873 0.19661 -1.37391 +v 0.0674442 0.392885 -1.65972 +v 0 0.371835 -1.55138 +v 0.045723 0.310189 -1.48534 +v 0.0565581 0.0462316 -1.20562 +v 0.0864215 0.089215 -1.4064 +v 0.116987 0.225287 -1.51831 +v 0.09561 0.115474 -1.3296 +v 0.0337351 -0.0153172 -1.48896 +v 0 0.155181 -1.75112 +v 0.0724031 0.268173 -1.75246 +v 0.0522754 0.124254 -1.61766 +v 0 0.447848 -1.88894 +v 0.0791531 0.368408 -1.7576 +v 0.0561148 -0.0548638 -1.25233 +v 0.0476093 -0.203302 -1.50684 +v 0 -0.147708 -1.60982 +v 0.0363069 -0.117808 -1.47699 +v 0.0486806 0.00842863 -1.13887 +v 0 -0.389738 -1.41876 +v 0.0443241 -0.344077 -1.42354 +v 0.0308875 -0.329098 -1.34698 +v 0 -0.361494 -1.61542 +v 0.0508481 -0.290825 -1.48591 +v 0.552548 -0.423353 -0.00165644 +v 0.525189 -0.315443 0.164743 +v 0.400229 -0.3727 0.152951 +v 0.503104 -0.354163 0.133794 +v 0.356116 -0.340815 -0.154481 +v 0.216523 -0.436032 -0.0039601 +v 0 -0.472085 -0.182738 +v 0.196477 -0.433373 -0.169902 +v 0 -0.467045 0.129327 +v 0.215913 -0.43229 0.141399 +v 0.557794 -0.524935 -0.282399 +v 0.662185 -0.653601 -0.519178 +v 0.667793 -0.524578 -0.265547 +v 0.616269 -0.606752 -0.274147 +v 0.612282 -0.376291 -0.536574 +v 0.667 -0.0865711 -0.564161 +v 0.711463 -0.374999 -0.521171 +v 0.678763 -0.395959 -0.616022 +v 0.462778 0.123401 -0.0192716 +v 0.460201 -0.0604436 -0.167262 +v 0.42904 0.131062 -0.180452 +v 0.519844 -0.061392 0.148862 +v 0.471209 0.129881 0.133939 +v 0.598809 -0.253267 -0.0103535 +v 0.536354 -0.213615 0.165216 +v 0.495441 -0.2533 -0.106803 +v 0.437985 -0.21721 -0.161814 +v 0.65107 -0.097695 -0.32785 +v 0.675141 -0.317621 -0.282972 +v 0.585556 -0.0977332 -0.339795 +v 0.552812 -0.318558 -0.309614 +v 0.636614 -0.0089103 -0.421602 +v 0 0.419526 -0.868897 +v 0.0419472 0.478728 -0.7887 +v 0.0346713 0.424165 -0.85665 +v 0 0.594403 -0.671541 +v 0.0289381 0.735368 -0.50793 +v 0.0360395 0.588875 -0.668292 +v 0 0.901129 -0.323284 +v 0.0384101 1.01785 -0.150567 +v 0.0336478 0.892608 -0.320231 +v 0 1.07769 -0.0384892 +v 0.0310937 1.06523 -0.0523842 +v -0.167148 -0.305141 0.715271 +v -0.34796 -0.297318 0.511946 +v -0.208574 -0.412345 0.301751 +v -0.190415 -0.369912 0.513247 +v -0.117873 -0.147917 0.925139 +v -0.250623 -0.193475 0.843459 +v -0.139191 -0.222771 0.84904 +v -0.386267 -0.155621 0.715271 +v -0.465064 -0.0350359 0.514448 +v -0.482817 -0.197561 0.311304 +v -0.437869 -0.178295 0.514338 +v -0.386267 0.0775058 0.715855 +v -0.343571 0.249678 0.527402 +v -0.462576 0.129959 0.303545 +v -0.435489 0.111687 0.515157 +v -0.332913 -0.049563 0.853901 +v -0.222488 -0.00113809 0.925139 +v -0.250623 0.105965 0.844044 +v -0.313397 0.0344231 0.849109 +v -0.222488 -0.11051 0.925139 +v -0.313397 -0.131043 0.84904 +v -0.167148 0.261838 0.729644 +v -0.195658 0.431948 0.365784 +v -0.188537 0.362868 0.556225 +v -0.117873 0.0519363 0.925139 +v -0.139191 0.149775 0.850751 +v -0.11904 -0.0620723 0.981722 +v -0.116249 -0.0159106 0.967391 +v -0.116249 -0.0996045 0.967391 +v -0.266496 0.246238 -0.511117 +v -0.231771 0.101195 -0.643496 +v -0.327544 -0.0293116 -0.510129 +v -0.378225 0.135867 -0.350008 +v -0.310512 0.126816 -0.510806 +v -0.228649 -0.163913 -0.642812 +v -0.244733 -0.315054 -0.509521 +v -0.379282 -0.200918 -0.339129 +v -0.30816 -0.185744 -0.509519 +v -0.158297 -0.0361976 -0.736897 +v -0.0857657 -0.106668 -0.814896 +v -0.120666 -0.210751 -0.732623 +v -0.149978 -0.133431 -0.734747 +v -0.134375 0.131756 -0.749794 +v -0.086191 0.0227038 -0.815903 +v -0.151604 0.0607583 -0.736802 +v -0.099748 -0.33948 -0.642812 +v -0.168655 -0.423296 -0.346478 +v -0.135181 -0.395663 -0.510394 +v -0.0407757 -0.178572 -0.815595 +v -0.0671614 -0.253491 -0.73483 +v -0.0766666 0.599646 0.122394 +v -0.222277 0.446187 -0.0036015 +v -0.366845 0.315704 0.140774 +v -0.18013 0.471399 0.184491 +v -0.107346 0.529623 -0.191512 +v -0.207792 0.373814 -0.354845 +v -0.347443 0.30275 -0.189022 +v -0.219164 0.417972 -0.181967 +v -0.149252 0.362644 -0.536889 +v -0.183793 0.234957 -0.662621 +v -0.20689 0.307443 -0.51397 +v -0.102731 0.242137 -0.845395 +v -0.0497412 0.0877609 -0.839765 +v -0.102077 0.167228 -0.80184 +v -0.0402072 0.996322 -0.0065238 +v -0.0676805 0.765828 -0.0645255 +v -0.0443788 0.803601 0.0578596 +v -0.0554137 0.831721 -0.295723 +v -0.0691318 0.579805 -0.428344 +v -0.0647854 0.688466 -0.240715 +v -0.0708903 0.549128 -0.645345 +v -0.126821 0.360621 -0.737186 +v -0.105867 0.457605 -0.591138 +v -0.055742 0.388366 -0.871735 +v -0.0835812 0.32046 -0.870314 +v -0.0138992 0.0732733 -1.03085 +v -0.0410841 0.0425437 -0.911861 +v -0.0240133 0.0607176 -0.918715 +v -0.0421493 -0.0180423 -1.01288 +v -0.0493405 -0.0479073 -0.914559 +v -0.0484446 0.00270438 -0.912014 +v -0.035753 -0.108779 -1.01239 +v -0.040307 -0.134942 -0.909352 +v -0.04784 -0.0971068 -0.911414 +v -0.0137684 -0.172874 -1.02986 +v -0.023028 -0.154358 -0.915201 +v -0.022823 0.19387 -1.29908 +v -0.0286558 0.0663989 -1.12307 +v -0.0126932 0.114866 -1.15183 +v -0.0565581 0.0462316 -1.20562 +v -0.0561148 -0.0548638 -1.25233 +v -0.0588067 -0.0221349 -1.11065 +v -0.0486806 0.00842863 -1.13887 +v -0.0578733 -0.113461 -1.10909 +v -0.0481225 -0.220168 -1.21301 +v -0.0261424 -0.176212 -1.11252 +v -0.0429943 -0.145581 -1.10505 +v -0.0180914 -0.27557 -1.25798 +v -0.0122601 -0.217033 -1.1482 +v -0.0674442 0.392885 -1.65972 +v -0.0790873 0.19661 -1.37391 +v -0.045723 0.310189 -1.48534 +v -0.116987 0.225287 -1.51831 +v -0.0864215 0.089215 -1.4064 +v -0.09561 0.115474 -1.3296 +v -0.0724031 0.268173 -1.75246 +v -0.0337351 -0.0153172 -1.48896 +v -0.0522754 0.124254 -1.61766 +v -0.0791531 0.368408 -1.7576 +v -0.0476093 -0.203302 -1.50684 +v -0.0363069 -0.117808 -1.47699 +v -0.0769689 -0.160366 -1.25565 +v -0.0637908 -0.0675919 -1.10717 +v -0.0443241 -0.344077 -1.42354 +v -0.0308875 -0.329098 -1.34698 +v -0.0508481 -0.290825 -1.48591 +v -0.400229 -0.3727 0.152951 +v -0.525189 -0.315443 0.164743 +v -0.552548 -0.423353 -0.00165644 +v -0.503104 -0.354163 0.133794 +v -0.216523 -0.436032 -0.0039601 +v -0.356116 -0.340815 -0.154481 +v -0.196477 -0.433373 -0.169902 +v -0.215913 -0.43229 0.141399 +v -0.667793 -0.524578 -0.265547 +v -0.662185 -0.653601 -0.519178 +v -0.557794 -0.524935 -0.282399 +v -0.616269 -0.606752 -0.274147 +v -0.711463 -0.374999 -0.521171 +v -0.667 -0.0865711 -0.564161 +v -0.612282 -0.376291 -0.536574 +v -0.678763 -0.395959 -0.616022 +v -0.460201 -0.0604436 -0.167262 +v -0.462778 0.123401 -0.0192716 +v -0.42904 0.131062 -0.180452 +v -0.519844 -0.061392 0.148862 +v -0.471209 0.129881 0.133939 +v -0.598809 -0.253267 -0.0103535 +v -0.536354 -0.213615 0.165216 +v -0.495441 -0.2533 -0.106803 +v -0.437985 -0.21721 -0.161814 +v -0.65107 -0.097695 -0.32785 +v -0.675141 -0.317621 -0.282972 +v -0.585556 -0.0977332 -0.339795 +v -0.552812 -0.318558 -0.309614 +v -0.636614 -0.0089103 -0.421602 +v -0.0419472 0.478728 -0.7887 +v -0.0346713 0.424165 -0.85665 +v -0.0289381 0.735368 -0.50793 +v -0.0360395 0.588875 -0.668292 +v -0.0384101 1.01785 -0.150567 +v -0.0336478 0.892608 -0.320231 +v -0.0310937 1.06523 -0.0523842 +v 0.105401 -0.43361 0.300937 +v 0.200592 -0.393989 0.403582 +v 0.0970934 -0.388165 0.513513 +v 0 -0.420793 0.403519 +v 0.101702 -0.413843 0.4039 +v 0.307696 -0.380244 0.298586 +v 0.372029 -0.317263 0.399091 +v 0.275924 -0.33978 0.512358 +v 0.293281 -0.362213 0.401134 +v 0.3265 -0.274887 0.619475 +v 0.2413 -0.282441 0.714261 +v 0.179391 -0.340304 0.620205 +v 0.259055 -0.313226 0.619707 +v 0.0854581 -0.318336 0.71628 +v 0 -0.361711 0.620826 +v 0.0916961 -0.356397 0.62064 +v 0.15331 -0.264848 0.791002 +v 0.0713388 -0.228137 0.85242 +v 0 -0.277238 0.793892 +v 0.0784191 -0.27434 0.792979 +v 0.278412 -0.221717 0.78804 +v 0.200083 -0.211918 0.8453 +v 0.221148 -0.247684 0.788989 +v 0.223094 -0.167948 0.882444 +v 0.167553 -0.149425 0.914834 +v 0.126522 -0.182679 0.892589 +v 0.180498 -0.178416 0.886096 +v 0.0607136 -0.146192 0.932405 +v 0 -0.184086 0.899934 +v 0.0651112 -0.184008 0.897815 +v 0.455667 -0.267845 0.304989 +v 0.45994 -0.188726 0.40744 +v 0.40159 -0.242476 0.51299 +v 0.426019 -0.257718 0.403443 +v 0.496326 -0.121356 0.311241 +v 0.483156 -0.036029 0.406957 +v 0.458697 -0.108222 0.514735 +v 0.478499 -0.114104 0.408181 +v 0.441976 -0.0365937 0.620924 +v 0.406126 -0.0991948 0.71628 +v 0.414096 -0.167269 0.620314 +v 0.435156 -0.103392 0.620762 +v 0.352462 -0.206653 0.714261 +v 0.37813 -0.225399 0.619771 +v 0.486909 0.0442324 0.304627 +v 0.451586 0.123116 0.40624 +v 0.457579 0.038761 0.514122 +v 0.474583 0.0435819 0.405629 +v 0.422303 0.214559 0.30752 +v 0.356295 0.275705 0.421594 +v 0.397813 0.18243 0.519075 +v 0.412659 0.201011 0.41087 +v 0.326061 0.218453 0.62899 +v 0.352462 0.132502 0.716306 +v 0.413858 0.096281 0.621344 +v 0.377752 0.1594 0.6237 +v 0.406126 0.0194756 0.716339 +v 0.435044 0.0304866 0.620796 +v 0.352478 0.0561841 0.791245 +v 0.328131 -0.00698769 0.852427 +v 0.375969 -0.0445477 0.793892 +v 0.370214 0.0065349 0.793003 +v 0.278412 0.144178 0.790085 +v 0.288059 0.0728825 0.845544 +v 0.32212 0.102665 0.789841 +v 0.223094 0.0723567 0.882502 +v 0.211974 0.0272307 0.914834 +v 0.269992 0.0145434 0.892596 +v 0.25155 0.0465227 0.88612 +v 0.229584 -0.030028 0.932405 +v 0.284592 -0.0543676 0.899934 +v 0.280928 -0.0196544 0.897816 +v 0.352478 -0.143289 0.791002 +v 0.288059 -0.165851 0.8453 +v 0.32212 -0.186254 0.788989 +v 0.328131 -0.0915783 0.85242 +v 0.370214 -0.0952565 0.792979 +v 0.229584 -0.0852659 0.932405 +v 0.269992 -0.119795 0.892589 +v 0.280928 -0.0882249 0.897815 +v 0.211974 -0.133305 0.914834 +v 0.25155 -0.147415 0.886096 +v 0.286195 0.370382 0.340272 +v 0.194304 0.402629 0.460353 +v 0.27249 0.311562 0.540945 +v 0.281896 0.344974 0.439561 +v 0.099166 0.473274 0.389155 +v 0 0.456538 0.486231 +v 0.096317 0.397848 0.568968 +v 0.0990131 0.441903 0.478341 +v 0 0.355269 0.659559 +v 0.0854581 0.284934 0.734685 +v 0.179203 0.315119 0.647842 +v 0.0916185 0.344422 0.656071 +v 0.2413 0.226876 0.723668 +v 0.258712 0.271683 0.637841 +v 0.15331 0.205609 0.79699 +v 0.200083 0.131529 0.84642 +v 0.221148 0.178969 0.792908 +v 0 0.228784 0.802266 +v 0.0713388 0.161138 0.854611 +v 0.0784191 0.222709 0.800647 +v 0 0.10573 0.900173 +v 0.0607136 0.0534416 0.932405 +v 0.126522 0.0976841 0.89276 +v 0.0651112 0.10361 0.898034 +v 0.167553 0.0504215 0.914834 +v 0.180498 0.0881331 0.886208 +v 0.115229 0.01448 0.949828 +v 0.171051 -0.0108322 0.949828 +v 0.166672 0.0180176 0.935287 +v 0 0.0131321 0.962286 +v 0.0588068 -0.0181561 0.978088 +v 0.0588806 0.0132807 0.959029 +v 0 -0.0432449 0.993412 +v 0.0598901 -0.0625688 0.993412 +v 0.11807 -0.0409459 0.978088 +v 0.0594504 -0.0428033 0.989568 +v 0.176709 -0.0607708 0.962286 +v 0.175037 -0.036951 0.959029 +v 0.11807 -0.0808318 0.978088 +v 0.171051 -0.103948 0.949828 +v 0.175037 -0.0827737 0.959029 +v 0 -0.0790606 0.993412 +v 0.0588068 -0.0968833 0.978088 +v 0.0594504 -0.0795375 0.989568 +v 0 -0.116802 0.962286 +v 0.115229 -0.120975 0.949828 +v 0.0588806 -0.117968 0.959029 +v 0.166672 -0.125483 0.935287 +v 0.35069 0.214801 -0.352569 +v 0.346245 0.133312 -0.432725 +v 0.291262 0.193518 -0.511033 +v 0.290472 0.265761 -0.434142 +v 0.322665 0.206063 -0.433729 +v 0.394751 0.0499894 -0.346785 +v 0.365943 -0.031963 -0.430059 +v 0.323016 0.0509379 -0.510488 +v 0.360806 0.0523551 -0.431408 +v 0.286416 -0.029011 -0.581902 +v 0.240246 0.0376708 -0.643371 +v 0.272022 0.116177 -0.581861 +v 0.282468 0.0459668 -0.581864 +v 0.220094 0.15545 -0.644715 +v 0.239017 0.222922 -0.582951 +v 0.256924 0.176777 -0.582141 +v 0.39591 -0.122001 -0.340859 +v 0.345284 -0.193835 -0.428214 +v 0.322906 -0.109332 -0.509783 +v 0.361148 -0.11505 -0.428941 +v 0.349123 -0.272384 -0.338686 +v 0.275382 -0.327222 -0.428513 +v 0.282403 -0.255376 -0.509408 +v 0.317109 -0.265498 -0.428024 +v 0.212914 -0.297327 -0.581259 +v 0.209168 -0.223138 -0.642322 +v 0.268939 -0.175989 -0.58155 +v 0.246068 -0.241447 -0.58134 +v 0.239934 -0.0986978 -0.643303 +v 0.282172 -0.104122 -0.581775 +v 0.188419 -0.149184 -0.692582 +v 0.156366 -0.0861195 -0.736211 +v 0.200143 -0.0330181 -0.693965 +v 0.197327 -0.0925171 -0.693525 +v 0.14988 -0.243325 -0.691201 +v 0.138341 -0.175764 -0.73329 +v 0.172808 -0.200345 -0.691639 +v 0.0942822 -0.18002 -0.77121 +v 0.0806714 -0.133892 -0.812716 +v 0.115151 -0.118608 -0.773966 +v 0.107163 -0.152559 -0.772055 +v 0.0880298 -0.0755557 -0.817131 +v 0.120321 -0.039471 -0.776814 +v 0.119213 -0.0802256 -0.7759 +v 0.190916 0.0820042 -0.694106 +v 0.144048 0.101185 -0.740454 +v 0.170858 0.164905 -0.703995 +v 0.181548 0.129517 -0.696971 +v 0.156526 0.0138421 -0.736422 +v 0.197576 0.0264611 -0.693678 +v 0.0880463 -0.00881348 -0.81728 +v 0.116077 0.0400116 -0.775668 +v 0.119295 0.00150673 -0.77609 +v 0.0822899 0.0498839 -0.815999 +v 0.102236 0.098455 -0.785189 +v 0.11046 0.0732567 -0.777913 +v 0.24252 -0.385251 -0.342814 +v 0.152484 -0.412371 -0.431276 +v 0.194763 -0.361985 -0.509899 +v 0.21948 -0.376467 -0.429744 +v 0.0864201 -0.44718 -0.349611 +v 0 -0.441823 -0.433156 +v 0.0691923 -0.415964 -0.510825 +v 0.0780911 -0.434351 -0.432588 +v 0 -0.396403 -0.581991 +v 0.0510328 -0.355567 -0.643303 +v 0.117388 -0.371817 -0.581637 +v 0.0600607 -0.390281 -0.581879 +v 0.143828 -0.312218 -0.642322 +v 0.169251 -0.340877 -0.581389 +v 0.0828686 -0.298255 -0.69259 +v 0.0964742 -0.236451 -0.733335 +v 0.119347 -0.275872 -0.691644 +v 0 -0.315297 -0.693977 +v 0.0344342 -0.262924 -0.736321 +v 0.0424254 -0.311166 -0.693536 +v 0 -0.219523 -0.777225 +v 0.0210037 -0.182625 -0.818051 +v 0.0530044 -0.211494 -0.774257 +v 0.0272351 -0.217768 -0.776283 +v 0.0580846 -0.170001 -0.813091 +v 0.075842 -0.19936 -0.772211 +v 0 0.555121 0.209729 +v 0.0854758 0.510213 0.238229 +v 0.11613 0.531313 0.149439 +v 0.0419588 0.609571 0.160922 +v 0.0631311 0.547497 0.194089 +v 0.191723 0.450379 0.276636 +v 0 0.505602 0.320204 +v 0.0958828 0.491168 0.306593 +v 0.36634 0.308939 0.2265 +v 0.28467 0.394746 0.160266 +v 0.285385 0.386698 0.248249 +v 0.296536 0.385477 -0.013714 +v 0.210893 0.457925 0.0852632 +v 0.367985 0.316628 0.0582102 +v 0.291587 0.392514 0.072741 +v 0.0981409 0.58799 0.0623452 +v 0.156978 0.504374 -0.00291675 +v 0.14503 0.517666 0.0797182 +v 0.223653 0.433363 -0.0927896 +v 0.156581 0.469507 -0.18234 +v 0.109451 0.554413 -0.0997597 +v 0.159173 0.488853 -0.0913601 +v 0.359702 0.309263 -0.106007 +v 0.28603 0.365394 -0.185976 +v 0.294185 0.376584 -0.100079 +v 0.331092 0.293702 -0.271855 +v 0.262137 0.332477 -0.353656 +v 0.21261 0.398596 -0.269772 +v 0.274529 0.350995 -0.270727 +v 0.155787 0.413403 -0.360699 +v 0.106854 0.498171 -0.284544 +v 0.153889 0.444852 -0.273054 +v 0.237601 0.281865 -0.51134 +v 0.207344 0.342717 -0.436086 +v 0.250618 0.309172 -0.434085 +v 0.194813 0.21936 -0.653631 +v 0.200887 0.270641 -0.589236 +v 0.22002 0.251585 -0.584746 +v 0.174198 0.252531 -0.675313 +v 0.163256 0.316038 -0.614068 +v 0.176768 0.331634 -0.521613 +v 0.182219 0.289513 -0.598348 +v 0.129618 0.412263 -0.457984 +v 0.16543 0.374421 -0.443075 +v 0.151092 0.202194 -0.734206 +v 0.104476 0.206743 -0.823061 +v 0.141144 0.254062 -0.772777 +v 0.146812 0.22459 -0.753061 +v 0.12241 0.150715 -0.767596 +v 0.160179 0.185977 -0.716636 +v 0.065526 0.0824367 -0.827865 +v 0.0709358 0.120962 -0.820166 +v 0.0906101 0.113603 -0.799462 +v 0 0.121156 -0.854668 +v 0.0494217 0.162015 -0.850997 +v 0.026843 0.0887421 -0.852595 +v 0.0383211 0.121767 -0.843561 +v 0.0539219 0.239591 -0.898355 +v 0 0.20114 -0.893979 +v 0.0539668 0.201276 -0.87408 +v 0.0543922 0.694541 0.0915102 +v 0.0236145 0.811128 0.09096 +v 0 0.705052 0.138925 +v 0.0293212 0.702266 0.126611 +v 0.0800885 0.664297 -0.0356592 +v 0.0596152 0.789183 0.00519197 +v 0.0714932 0.682387 0.0362365 +v 0.0635422 0.863581 -0.0949984 +v 0.0536836 0.976565 -0.0551929 +v 0.0413945 0.909852 0.0242468 +v 0.0558858 0.892527 -0.0266604 +v 0.021465 1.00549 0.0224198 +v 0 0.920281 0.0663996 +v 0.0219564 0.918191 0.0556646 +v 0.0784163 0.605442 -0.212486 +v 0.0679409 0.731871 -0.148293 +v 0.0808404 0.638682 -0.120269 +v 0.0853808 0.516692 -0.398505 +v 0.0634403 0.637236 -0.335996 +v 0.0781514 0.564729 -0.307 +v 0.0595249 0.639997 -0.458617 +v 0.0513069 0.761976 -0.391112 +v 0.0594516 0.767593 -0.270395 +v 0.0565492 0.706162 -0.365908 +v 0.0598444 0.893573 -0.203913 +v 0.0633949 0.821122 -0.178088 +v 0.125895 0.406601 -0.561452 +v 0.0854199 0.518273 -0.51297 +v 0.103663 0.462217 -0.482712 +v 0.146691 0.31608 -0.713932 +v 0.122368 0.40324 -0.665119 +v 0.143197 0.355878 -0.637575 +v 0.105004 0.404911 -0.758777 +v 0.0804434 0.489726 -0.714054 +v 0.087941 0.507749 -0.620813 +v 0.10128 0.450423 -0.692135 +v 0.0595684 0.616671 -0.568782 +v 0.0717637 0.572427 -0.543434 +v 0.0952706 0.280813 -0.861248 +v 0.112762 0.333996 -0.808174 +v 0.12935 0.291982 -0.791623 +v 0 0.278944 -0.931271 +v 0.0443129 0.315837 -0.914418 +v 0.0503326 0.278325 -0.911612 +v 0 0.348406 -0.922831 +v 0.0297661 0.378581 -0.899181 +v 0.0697195 0.357502 -0.873507 +v 0.0370588 0.349973 -0.9094 +v 0.0743222 0.408707 -0.829134 +v 0.0936588 0.374705 -0.821116 +v 0.0344491 0.068218 -0.873149 +v 0.0124838 0.0634216 -0.922945 +v 0 0.0695194 -0.883593 +v 0.0182739 0.0696159 -0.880178 +v 0.0553202 0.0523534 -0.861951 +v 0.0337034 0.0542003 -0.914634 +v 0.046748 0.0631171 -0.866449 +v 0.0328881 0.0379407 -0.967103 +v 0.0214803 0.0592409 -1.02638 +v 0.0175333 0.0630017 -0.97271 +v 0.0257045 0.0532575 -0.9694 +v 0.00684994 0.0811311 -1.03631 +v 0 0.0693318 -0.978373 +v 0.00888025 0.0679732 -0.976478 +v 0.0635302 0.011067 -0.86189 +v 0.0458675 0.024869 -0.91115 +v 0.0606725 0.0344986 -0.860803 +v 0.0648426 -0.0445618 -0.864668 +v 0.0493536 -0.0220738 -0.913648 +v 0.0646584 -0.0159423 -0.863703 +v 0.041708 -0.054403 -0.965341 +v 0.042836 -0.0424851 -1.01351 +v 0.0411355 -0.00566946 -0.963528 +v 0.042084 -0.0299755 -0.964487 +v 0.038834 0.00678625 -1.01561 +v 0.0381429 0.0175151 -0.964367 +v 0.0633707 -0.0993508 -0.861284 +v 0.0490028 -0.0733298 -0.913502 +v 0.0646556 -0.0728862 -0.863555 +v 0.0537345 -0.140669 -0.858367 +v 0.0451692 -0.118043 -0.909597 +v 0.0600448 -0.122448 -0.859129 +v 0.031183 -0.136848 -0.962332 +v 0.0313502 -0.127701 -1.01221 +v 0.038769 -0.100171 -0.962659 +v 0.0357144 -0.120015 -0.961497 +v 0.0392236 -0.08823 -1.01372 +v 0.0406619 -0.0780548 -0.96441 +v 0.0307948 -0.159949 -0.862798 +v 0.0327455 -0.14686 -0.911622 +v 0.0437375 -0.152856 -0.859941 +v 0 -0.164012 -0.866816 +v 0.0118733 -0.158248 -0.918522 +v 0.0158883 -0.163238 -0.865552 +v 0 -0.166998 -0.978042 +v 0.00697216 -0.181279 -1.03702 +v 0.0173833 -0.15945 -0.971368 +v 0.00891564 -0.16511 -0.975999 +v 0.0202128 -0.160367 -1.02152 +v 0.0249551 -0.150027 -0.966147 +v 0.0121764 0.0902089 -1.08974 +v 0.00616477 0.12998 -1.16635 +v 0 0.105169 -1.10311 +v 0.00588829 0.101287 -1.09889 +v 0.0286884 0.0499154 -1.07842 +v 0.0199849 0.0927786 -1.13518 +v 0.0193758 0.0727161 -1.08058 +v 0.0327249 0.0876722 -1.17198 +v 0.0333839 0.156594 -1.26294 +v 0.0160103 0.148768 -1.2205 +v 0.0242279 0.120091 -1.19468 +v 0.0115816 0.221296 -1.32807 +v 0 0.177217 -1.25071 +v 0.00796339 0.169279 -1.24173 +v 0.0513125 -0.0381578 -1.05807 +v 0.0625768 -0.0434132 -1.10696 +v 0.0449458 0.00775057 -1.06906 +v 0.0490429 -0.0139267 -1.05966 +v 0.0483439 -0.0850392 -1.06059 +v 0.0621821 -0.091762 -1.1086 +v 0.0509825 -0.0623557 -1.05933 +v 0.0657944 -0.153596 -1.16657 +v 0.0739712 -0.187605 -1.24936 +v 0.0740449 -0.107669 -1.1699 +v 0.0714817 -0.132794 -1.16929 +v 0.0764086 -0.13023 -1.25833 +v 0.0691895 -0.0579209 -1.16965 +v 0.0733219 -0.0815774 -1.1696 +v 0.03806 -0.123367 -1.05881 +v 0.0511606 -0.13087 -1.10719 +v 0.0438527 -0.10515 -1.05986 +v 0.0247975 -0.158055 -1.0649 +v 0.034394 -0.159822 -1.10556 +v 0.0315285 -0.140664 -1.05971 +v 0.0289079 -0.199027 -1.15744 +v 0.0383382 -0.220149 -1.20056 +v 0.0474799 -0.177258 -1.15508 +v 0.0377263 -0.186187 -1.15189 +v 0.0585021 -0.217421 -1.2268 +v 0.0573276 -0.167569 -1.16105 +v 0.0120911 -0.192453 -1.08926 +v 0.0188428 -0.196523 -1.12853 +v 0.0183236 -0.176085 -1.07593 +v 0 -0.209059 -1.10537 +v 0.00604459 -0.233061 -1.16487 +v 0.00600871 -0.20438 -1.10053 +v 0 -0.274954 -1.23827 +v 0.00925904 -0.302251 -1.28895 +v 0.0142158 -0.245461 -1.20519 +v 0.00711115 -0.266118 -1.22829 +v 0.0259373 -0.244201 -1.22102 +v 0.0213502 -0.220689 -1.17819 +v 0.0334405 0.250637 -1.38948 +v 0.0237758 0.353949 -1.53192 +v 0 0.30067 -1.44262 +v 0.0171491 0.286349 -1.42702 +v 0.0602457 0.153617 -1.29793 +v 0.0642403 0.253628 -1.42737 +v 0.048039 0.203198 -1.34234 +v 0.0932533 0.240353 -1.45128 +v 0.0892314 0.326842 -1.5778 +v 0.0573579 0.361784 -1.57863 +v 0.0779293 0.299545 -1.51033 +v 0.0362008 0.447335 -1.72706 +v 0 0.43271 -1.65836 +v 0.0304248 0.411778 -1.63469 +v 0.0510009 0.0787887 -1.20774 +v 0.0744607 0.0762212 -1.25994 +v 0.0900401 0.149894 -1.33945 +v 0.0693526 0.110459 -1.26793 +v 0.0584366 0.0197693 -1.23017 +v 0.0692201 0.0408073 -1.33827 +v 0.0943595 0.0942404 -1.34915 +v 0.0746657 0.0524256 -1.28094 +v 0.0994924 0.142736 -1.48501 +v 0.113658 0.202116 -1.53316 +v 0.112017 0.164642 -1.41497 +v 0.109287 0.144829 -1.43329 +v 0.110427 0.252333 -1.51259 +v 0.105644 0.196401 -1.42077 +v 0.046855 -0.0104203 -1.38339 +v 0.0412591 0.0510245 -1.54272 +v 0.0722122 0.102071 -1.50507 +v 0.0576794 0.0421209 -1.43443 +v 0.0176171 -0.0164587 -1.57502 +v 0 0.0661306 -1.66909 +v 0.0274283 0.145468 -1.71122 +v 0.0214764 0.0611561 -1.63153 +v 0 0.244344 -1.83384 +v 0.0390686 0.309033 -1.85089 +v 0.0632979 0.198895 -1.69499 +v 0.0337984 0.230221 -1.79185 +v 0.0948772 0.221834 -1.63809 +v 0.0849046 0.164981 -1.58133 +v 0.075201 0.39327 -1.71987 +v 0.042315 0.424552 -1.85053 +v 0 0.474284 -1.83474 +v 0.0402987 0.450396 -1.80108 +v 0.105287 0.29718 -1.63901 +v 0.0996338 0.321865 -1.61678 +v 0.0780221 0.32567 -1.77138 +v 0.102822 0.264238 -1.65112 +v 0 0.396847 -1.91096 +v 0.0419443 0.375631 -1.86938 +v 0.0326656 -0.0706618 -1.47051 +v 0.0191846 -0.139321 -1.57068 +v 0 -0.0866688 -1.59597 +v 0.0171713 -0.0824096 -1.55889 +v 0.0519151 -0.0301939 -1.26176 +v 0.0493044 -0.0880338 -1.36034 +v 0.0448059 -0.0527988 -1.36131 +v 0.0641366 -0.0773111 -1.2532 +v 0.0641706 -0.152999 -1.37882 +v 0.0421308 -0.160705 -1.49392 +v 0.0569071 -0.120107 -1.36975 +v 0.0252533 -0.24158 -1.60837 +v 0 -0.203212 -1.63418 +v 0.0223232 -0.191081 -1.59298 +v 0.048644 0.0246445 -1.16617 +v 0.0552514 -0.0225399 -1.17959 +v 0.0527475 -0.00413087 -1.19761 +v 0.0389517 0.0381198 -1.1222 +v 0.0413774 0.0554725 -1.16005 +v 0.0531875 -0.00587659 -1.12084 +v 0.0409321 0.0236613 -1.09145 +v 0.0620331 -0.0392069 -1.17169 +v 0.0239144 -0.304784 -1.30475 +v 0.0421545 -0.274309 -1.28075 +v 0.0331923 -0.261842 -1.2533 +v 0 -0.35412 -1.36221 +v 0.0162706 -0.372039 -1.39797 +v 0.0124677 -0.339497 -1.34535 +v 0 -0.413567 -1.47252 +v 0.0234734 -0.396977 -1.49502 +v 0.0380539 -0.34407 -1.38645 +v 0.0201247 -0.393398 -1.44764 +v 0.0599292 -0.275701 -1.33125 +v 0.051588 -0.280477 -1.3069 +v 0.0505573 -0.248293 -1.50359 +v 0.0269695 -0.341047 -1.57765 +v 0 -0.311684 -1.64313 +v 0.0268228 -0.293378 -1.60233 +v 0.0685449 -0.225655 -1.36899 +v 0.0681153 -0.18954 -1.37842 +v 0.0486983 -0.324789 -1.45788 +v 0.065727 -0.256118 -1.35258 +v 0 -0.39946 -1.57367 +v 0.0258132 -0.377832 -1.53999 +v 0.507061 -0.41238 -0.00323545 +v 0.524645 -0.372024 0.0877404 +v 0.46491 -0.357056 0.147726 +v 0.412527 -0.377023 0.0866423 +v 0.479582 -0.372689 0.0879622 +v 0.565203 -0.333718 0.0970017 +v 0.514458 -0.340389 0.15258 +v 0.583663 -0.412194 0.00127949 +v 0.551267 -0.360475 0.0930814 +v 0.398829 -0.362789 0.211675 +v 0.47612 -0.31729 0.218873 +v 0.465555 -0.343165 0.189764 +v 0.329657 -0.337795 -0.246045 +v 0.284173 -0.391992 -0.160116 +v 0.183197 -0.429807 -0.258322 +v 0.263412 -0.389518 -0.251394 +v 0.387884 -0.348386 -0.0734579 +v 0.323024 -0.400128 0.00609786 +v 0.208528 -0.435322 -0.0843218 +v 0.306214 -0.395392 -0.07365 +v 0.108788 -0.464341 -0.0155168 +v 0 -0.475511 -0.100185 +v 0.100256 -0.461546 -0.178797 +v 0.105391 -0.464191 -0.0951969 +v 0 -0.46546 -0.266896 +v 0.093866 -0.456032 -0.264299 +v 0.314989 -0.400839 0.149453 +v 0.218035 -0.435493 0.0698575 +v 0.321286 -0.402419 0.0806735 +v 0.213177 -0.424882 0.216194 +v 0.312071 -0.39377 0.218106 +v 0 -0.456659 0.209538 +v 0.10964 -0.456963 0.133191 +v 0.108058 -0.447725 0.211942 +v 0 -0.473239 0.0541796 +v 0.110055 -0.462191 0.0591496 +v 0.584638 -0.51314 -0.129838 +v 0.646234 -0.585277 -0.26847 +v 0.636971 -0.451586 -0.125881 +v 0.616459 -0.49804 -0.126639 +v 0.514914 -0.448624 -0.143169 +v 0.583325 -0.585395 -0.277007 +v 0.545935 -0.496222 -0.133325 +v 0.589722 -0.569453 -0.404822 +v 0.63357 -0.62775 -0.509058 +v 0.642619 -0.66432 -0.409896 +v 0.613202 -0.638065 -0.407606 +v 0.685352 -0.626824 -0.500968 +v 0.68848 -0.567841 -0.3894 +v 0.668972 -0.637104 -0.398997 +v 0.6105 -0.500543 -0.515922 +v 0.646545 -0.391348 -0.59825 +v 0.674176 -0.552875 -0.587697 +v 0.643003 -0.535419 -0.571841 +v 0.616617 -0.243176 -0.531841 +v 0.642464 -0.1083 -0.547927 +v 0.676272 -0.225995 -0.607191 +v 0.647273 -0.235308 -0.589249 +v 0.683788 -0.10806 -0.54155 +v 0.703398 -0.24234 -0.518405 +v 0.702403 -0.390588 -0.589581 +v 0.696644 -0.234789 -0.581607 +v 0.707738 -0.499021 -0.500772 +v 0.697691 -0.534551 -0.563327 +v 0.421231 0.22524 -0.024 +v 0.448672 0.126105 -0.0983997 +v 0.395003 0.223066 -0.186627 +v 0.410627 0.224368 -0.10438 +v 0.497234 0.0130816 -0.0173049 +v 0.491993 -0.0793899 -0.0947487 +v 0.450989 0.0336862 -0.173155 +v 0.476719 0.0211303 -0.0931061 +v 0.431094 -0.0468022 -0.25328 +v 0.405667 0.134791 -0.265071 +v 0.424189 0.0436811 -0.259142 +v 0.37491 0.220189 -0.269751 +v 0.468913 0.131851 0.214153 +v 0.427977 0.226262 0.132847 +v 0.426952 0.222695 0.215834 +v 0.509455 -0.0484891 0.22489 +v 0.500641 0.0317177 0.140101 +v 0.495379 0.0401519 0.218205 +v 0.529683 -0.0797763 0.0675924 +v 0.469759 0.125755 0.0572788 +v 0.502729 0.0202649 0.0624294 +v 0.426522 0.226445 0.0541046 +v 0.508557 -0.204416 0.234493 +v 0.53179 -0.143295 0.157993 +v 0.513811 -0.13049 0.231195 +v 0.53334 -0.272298 0.16824 +v 0.494089 -0.268613 0.231964 +v 0.606145 -0.322964 -0.00147935 +v 0.565511 -0.229648 0.0884027 +v 0.569946 -0.288718 0.095179 +v 0.579402 -0.178457 -0.0239389 +v 0.551618 -0.160909 0.0782513 +v 0.515926 -0.17874 -0.101527 +v 0.466607 -0.231495 -0.105793 +v 0.455837 -0.143815 -0.164486 +v 0.48583 -0.161296 -0.104388 +v 0.472797 -0.321486 -0.0824385 +v 0.406221 -0.282603 -0.156734 +v 0.437143 -0.293835 -0.0915168 +v 0.409544 -0.207902 -0.245579 +v 0.377923 -0.276992 -0.244351 +v 0.426682 -0.131039 -0.248655 +v 0.637998 -0.283987 -0.140558 +v 0.664208 -0.200618 -0.298361 +v 0.60681 -0.104541 -0.199073 +v 0.622518 -0.188305 -0.157983 +v 0.677134 -0.430765 -0.271313 +v 0.643735 -0.376279 -0.13046 +v 0.701325 -0.349425 -0.414851 +v 0.6999 -0.469185 -0.400022 +v 0.678773 -0.115455 -0.435245 +v 0.692207 -0.224061 -0.422088 +v 0.524213 -0.284046 -0.18652 +v 0.548794 -0.431529 -0.295508 +v 0.51244 -0.374742 -0.167685 +v 0.567308 -0.104574 -0.210733 +v 0.565043 -0.201157 -0.319389 +v 0.541512 -0.188649 -0.192095 +v 0.605058 -0.115682 -0.446801 +v 0.581467 -0.35081 -0.434249 +v 0.589632 -0.224837 -0.438542 +v 0.580384 -0.470905 -0.419091 +v 0.642032 -0.0278017 -0.378417 +v 0.613536 -0.0277264 -0.382982 +v 0.605738 -0.0498552 -0.284875 +v 0.651864 -0.0153435 -0.492793 +v 0.666975 -0.0421751 -0.469488 +v 0.628622 -0.0421959 -0.475409 +v 0.043547 0.410269 -0.865753 +v 0.0392496 0.443743 -0.831646 +v 0.0622517 0.466092 -0.78445 +v 0.0565659 0.431498 -0.831525 +v 0 0.398113 -0.89201 +v 0.0199921 0.420946 -0.865388 +v 0.0236299 0.400526 -0.885576 +v 0.0211444 0.482863 -0.791155 +v 0 0.446352 -0.835871 +v 0.0202621 0.446677 -0.834291 +v 0.0403071 0.527902 -0.733813 +v 0.053641 0.575327 -0.660584 +v 0.0602434 0.514848 -0.727257 +v 0 0.532948 -0.737091 +v 0.0181078 0.593821 -0.67116 +v 0.0202125 0.532509 -0.736543 +v 0 0.664892 -0.596022 +v 0.0148555 0.741189 -0.510849 +v 0.0314735 0.658935 -0.592782 +v 0.0159493 0.664236 -0.595697 +v 0.041475 0.719549 -0.499818 +v 0.0461498 0.644553 -0.584686 +v 0.0467131 0.871952 -0.311907 +v 0.037109 0.962144 -0.229843 +v 0.0521111 0.992561 -0.140534 +v 0.0510125 0.938917 -0.220941 +v 0.0301997 0.815073 -0.415127 +v 0.0424536 0.797039 -0.407007 +v 0 0.822497 -0.418353 +v 0.0175799 0.900198 -0.323071 +v 0.0156695 0.821691 -0.418038 +v 0 0.971832 -0.232411 +v 0.0203418 1.02734 -0.152818 +v 0.0194997 0.970737 -0.232486 +v 0.0358437 1.05382 -0.088932 +v 0.0364035 1.04823 -0.0322404 +v 0.0472441 1.02843 -0.0766387 +v 0 1.06567 -0.0879382 +v 0.0184136 1.07561 -0.042742 +v 0.0193969 1.06408 -0.0896716 +v 0 1.05972 -0.000866534 +v 0.0198357 1.0577 -0.00821232 +v -0.0970934 -0.388165 0.513513 +v -0.200592 -0.393989 0.403582 +v -0.105401 -0.43361 0.300937 +v -0.101702 -0.413843 0.4039 +v -0.0854581 -0.318336 0.71628 +v -0.179391 -0.340304 0.620205 +v -0.0916961 -0.356397 0.62064 +v -0.2413 -0.282441 0.714261 +v -0.3265 -0.274887 0.619475 +v -0.275924 -0.33978 0.512358 +v -0.259055 -0.313226 0.619707 +v -0.372029 -0.317263 0.399091 +v -0.307696 -0.380244 0.298586 +v -0.293281 -0.362213 0.401134 +v -0.0713388 -0.228137 0.85242 +v -0.15331 -0.264848 0.791002 +v -0.0784191 -0.27434 0.792979 +v -0.0607136 -0.146192 0.932405 +v -0.126522 -0.182679 0.892589 +v -0.0651112 -0.184008 0.897815 +v -0.167553 -0.149425 0.914834 +v -0.223094 -0.167948 0.882444 +v -0.200083 -0.211918 0.8453 +v -0.180498 -0.178416 0.886096 +v -0.278412 -0.221717 0.78804 +v -0.221148 -0.247684 0.788989 +v -0.40159 -0.242476 0.51299 +v -0.45994 -0.188726 0.40744 +v -0.455667 -0.267845 0.304989 +v -0.426019 -0.257718 0.403443 +v -0.352462 -0.206653 0.714261 +v -0.414096 -0.167269 0.620314 +v -0.37813 -0.225399 0.619771 +v -0.406126 -0.0991948 0.71628 +v -0.441976 -0.0365937 0.620924 +v -0.458697 -0.108222 0.514735 +v -0.435156 -0.103392 0.620762 +v -0.483156 -0.036029 0.406957 +v -0.496326 -0.121356 0.311241 +v -0.478499 -0.114104 0.408181 +v -0.457579 0.038761 0.514122 +v -0.451586 0.123116 0.40624 +v -0.486909 0.0442324 0.304627 +v -0.474583 0.0435819 0.405629 +v -0.406126 0.0194756 0.716339 +v -0.413858 0.096281 0.621344 +v -0.435044 0.0304866 0.620796 +v -0.352462 0.132502 0.716306 +v -0.326061 0.218453 0.62899 +v -0.397813 0.18243 0.519075 +v -0.377752 0.1594 0.6237 +v -0.356295 0.275705 0.421594 +v -0.422303 0.214559 0.30752 +v -0.412659 0.201011 0.41087 +v -0.375969 -0.0445477 0.793892 +v -0.328131 -0.00698769 0.852427 +v -0.352478 0.0561841 0.791245 +v -0.370214 0.0065349 0.793003 +v -0.284592 -0.0543676 0.899934 +v -0.229584 -0.030028 0.932405 +v -0.269992 0.0145434 0.892596 +v -0.280928 -0.0196544 0.897816 +v -0.211974 0.0272307 0.914834 +v -0.223094 0.0723567 0.882502 +v -0.288059 0.0728825 0.845544 +v -0.25155 0.0465227 0.88612 +v -0.278412 0.144178 0.790085 +v -0.32212 0.102665 0.789841 +v -0.288059 -0.165851 0.8453 +v -0.352478 -0.143289 0.791002 +v -0.32212 -0.186254 0.788989 +v -0.211974 -0.133305 0.914834 +v -0.269992 -0.119795 0.892589 +v -0.25155 -0.147415 0.886096 +v -0.229584 -0.0852659 0.932405 +v -0.328131 -0.0915783 0.85242 +v -0.280928 -0.0882249 0.897815 +v -0.370214 -0.0952565 0.792979 +v -0.27249 0.311562 0.540945 +v -0.194304 0.402629 0.460353 +v -0.286195 0.370382 0.340272 +v -0.281896 0.344974 0.439561 +v -0.2413 0.226876 0.723668 +v -0.179203 0.315119 0.647842 +v -0.258712 0.271683 0.637841 +v -0.0854581 0.284934 0.734685 +v -0.096317 0.397848 0.568968 +v -0.0916185 0.344422 0.656071 +v -0.099166 0.473274 0.389155 +v -0.0990131 0.441903 0.478341 +v -0.200083 0.131529 0.84642 +v -0.15331 0.205609 0.79699 +v -0.221148 0.178969 0.792908 +v -0.167553 0.0504215 0.914834 +v -0.126522 0.0976841 0.89276 +v -0.180498 0.0881331 0.886208 +v -0.0607136 0.0534416 0.932405 +v -0.0713388 0.161138 0.854611 +v -0.0651112 0.10361 0.898034 +v -0.0784191 0.222709 0.800647 +v -0.171051 -0.0108322 0.949828 +v -0.115229 0.01448 0.949828 +v -0.166672 0.0180176 0.935287 +v -0.176709 -0.0607708 0.962286 +v -0.11807 -0.0409459 0.978088 +v -0.175037 -0.036951 0.959029 +v -0.0598901 -0.0625688 0.993412 +v -0.0588068 -0.0181561 0.978088 +v -0.0594504 -0.0428033 0.989568 +v -0.0588806 0.0132807 0.959029 +v -0.171051 -0.103948 0.949828 +v -0.11807 -0.0808318 0.978088 +v -0.175037 -0.0827737 0.959029 +v -0.115229 -0.120975 0.949828 +v -0.166672 -0.125483 0.935287 +v -0.0588068 -0.0968833 0.978088 +v -0.0588806 -0.117968 0.959029 +v -0.0594504 -0.0795375 0.989568 +v -0.290472 0.265761 -0.434142 +v -0.291262 0.193518 -0.511033 +v -0.346245 0.133312 -0.432725 +v -0.35069 0.214801 -0.352569 +v -0.322665 0.206063 -0.433729 +v -0.239017 0.222922 -0.582951 +v -0.220094 0.15545 -0.644715 +v -0.272022 0.116177 -0.581861 +v -0.256924 0.176777 -0.582141 +v -0.240246 0.0376708 -0.643371 +v -0.286416 -0.029011 -0.581902 +v -0.323016 0.0509379 -0.510488 +v -0.282468 0.0459668 -0.581864 +v -0.365943 -0.031963 -0.430059 +v -0.394751 0.0499894 -0.346785 +v -0.360806 0.0523551 -0.431408 +v -0.322906 -0.109332 -0.509783 +v -0.345284 -0.193835 -0.428214 +v -0.39591 -0.122001 -0.340859 +v -0.361148 -0.11505 -0.428941 +v -0.239934 -0.0986978 -0.643303 +v -0.268939 -0.175989 -0.58155 +v -0.282172 -0.104122 -0.581775 +v -0.209168 -0.223138 -0.642322 +v -0.212914 -0.297327 -0.581259 +v -0.282403 -0.255376 -0.509408 +v -0.246068 -0.241447 -0.58134 +v -0.275382 -0.327222 -0.428513 +v -0.349123 -0.272384 -0.338686 +v -0.317109 -0.265498 -0.428024 +v -0.200143 -0.0330181 -0.693965 +v -0.156366 -0.0861195 -0.736211 +v -0.188419 -0.149184 -0.692582 +v -0.197327 -0.0925171 -0.693525 +v -0.120321 -0.039471 -0.776814 +v -0.0880298 -0.0755557 -0.817131 +v -0.115151 -0.118608 -0.773966 +v -0.119213 -0.0802256 -0.7759 +v -0.0806714 -0.133892 -0.812716 +v -0.0942822 -0.18002 -0.77121 +v -0.138341 -0.175764 -0.73329 +v -0.107163 -0.152559 -0.772055 +v -0.14988 -0.243325 -0.691201 +v -0.172808 -0.200345 -0.691639 +v -0.170858 0.164905 -0.703995 +v -0.144048 0.101185 -0.740454 +v -0.190916 0.0820042 -0.694106 +v -0.181548 0.129517 -0.696971 +v -0.102236 0.098455 -0.785189 +v -0.0822899 0.0498839 -0.815999 +v -0.116077 0.0400116 -0.775668 +v -0.11046 0.0732567 -0.777913 +v -0.0880463 -0.00881348 -0.81728 +v -0.156526 0.0138421 -0.736422 +v -0.119295 0.00150673 -0.77609 +v -0.197576 0.0264611 -0.693678 +v -0.194763 -0.361985 -0.509899 +v -0.152484 -0.412371 -0.431276 +v -0.24252 -0.385251 -0.342814 +v -0.21948 -0.376467 -0.429744 +v -0.143828 -0.312218 -0.642322 +v -0.117388 -0.371817 -0.581637 +v -0.169251 -0.340877 -0.581389 +v -0.0510328 -0.355567 -0.643303 +v -0.0691923 -0.415964 -0.510825 +v -0.0600607 -0.390281 -0.581879 +v -0.0864201 -0.44718 -0.349611 +v -0.0780911 -0.434351 -0.432588 +v -0.0964742 -0.236451 -0.733335 +v -0.0828686 -0.298255 -0.69259 +v -0.119347 -0.275872 -0.691644 +v -0.0580846 -0.170001 -0.813091 +v -0.0530044 -0.211494 -0.774257 +v -0.075842 -0.19936 -0.772211 +v -0.0210037 -0.182625 -0.818051 +v -0.0344342 -0.262924 -0.736321 +v -0.0272351 -0.217768 -0.776283 +v -0.0424254 -0.311166 -0.693536 +v -0.0419588 0.609571 0.160922 +v -0.11613 0.531313 0.149439 +v -0.0854758 0.510213 0.238229 +v -0.0631311 0.547497 0.194089 +v -0.156978 0.504374 -0.00291675 +v -0.210893 0.457925 0.0852632 +v -0.0981409 0.58799 0.0623452 +v -0.14503 0.517666 0.0797182 +v -0.367985 0.316628 0.0582102 +v -0.28467 0.394746 0.160266 +v -0.296536 0.385477 -0.013714 +v -0.291587 0.392514 0.072741 +v -0.191723 0.450379 0.276636 +v -0.36634 0.308939 0.2265 +v -0.285385 0.386698 0.248249 +v -0.0958828 0.491168 0.306593 +v -0.109451 0.554413 -0.0997597 +v -0.156581 0.469507 -0.18234 +v -0.223653 0.433363 -0.0927896 +v -0.159173 0.488853 -0.0913601 +v -0.106854 0.498171 -0.284544 +v -0.155787 0.413403 -0.360699 +v -0.21261 0.398596 -0.269772 +v -0.153889 0.444852 -0.273054 +v -0.262137 0.332477 -0.353656 +v -0.331092 0.293702 -0.271855 +v -0.28603 0.365394 -0.185976 +v -0.274529 0.350995 -0.270727 +v -0.359702 0.309263 -0.106007 +v -0.294185 0.376584 -0.100079 +v -0.207344 0.342717 -0.436086 +v -0.237601 0.281865 -0.51134 +v -0.250618 0.309172 -0.434085 +v -0.129618 0.412263 -0.457984 +v -0.176768 0.331634 -0.521613 +v -0.16543 0.374421 -0.443075 +v -0.163256 0.316038 -0.614068 +v -0.174198 0.252531 -0.675313 +v -0.200887 0.270641 -0.589236 +v -0.182219 0.289513 -0.598348 +v -0.194813 0.21936 -0.653631 +v -0.22002 0.251585 -0.584746 +v -0.141144 0.254062 -0.772777 +v -0.104476 0.206743 -0.823061 +v -0.151092 0.202194 -0.734206 +v -0.146812 0.22459 -0.753061 +v -0.0494217 0.162015 -0.850997 +v -0.0539219 0.239591 -0.898355 +v -0.0539668 0.201276 -0.87408 +v -0.026843 0.0887421 -0.852595 +v -0.0709358 0.120962 -0.820166 +v -0.0383211 0.121767 -0.843561 +v -0.12241 0.150715 -0.767596 +v -0.065526 0.0824367 -0.827865 +v -0.0906101 0.113603 -0.799462 +v -0.160179 0.185977 -0.716636 +v -0.0236145 0.811128 0.09096 +v -0.0543922 0.694541 0.0915102 +v -0.0293212 0.702266 0.126611 +v -0.021465 1.00549 0.0224198 +v -0.0413945 0.909852 0.0242468 +v -0.0219564 0.918191 0.0556646 +v -0.0536836 0.976565 -0.0551929 +v -0.0635422 0.863581 -0.0949984 +v -0.0596152 0.789183 0.00519197 +v -0.0558858 0.892527 -0.0266604 +v -0.0800885 0.664297 -0.0356592 +v -0.0714932 0.682387 0.0362365 +v -0.0679409 0.731871 -0.148293 +v -0.0784163 0.605442 -0.212486 +v -0.0808404 0.638682 -0.120269 +v -0.0598444 0.893573 -0.203913 +v -0.0594516 0.767593 -0.270395 +v -0.0633949 0.821122 -0.178088 +v -0.0513069 0.761976 -0.391112 +v -0.0595249 0.639997 -0.458617 +v -0.0634403 0.637236 -0.335996 +v -0.0565492 0.706162 -0.365908 +v -0.0853808 0.516692 -0.398505 +v -0.0781514 0.564729 -0.307 +v -0.0854199 0.518273 -0.51297 +v -0.125895 0.406601 -0.561452 +v -0.103663 0.462217 -0.482712 +v -0.0595684 0.616671 -0.568782 +v -0.087941 0.507749 -0.620813 +v -0.0717637 0.572427 -0.543434 +v -0.0804434 0.489726 -0.714054 +v -0.105004 0.404911 -0.758777 +v -0.122368 0.40324 -0.665119 +v -0.10128 0.450423 -0.692135 +v -0.146691 0.31608 -0.713932 +v -0.143197 0.355878 -0.637575 +v -0.112762 0.333996 -0.808174 +v -0.0952706 0.280813 -0.861248 +v -0.12935 0.291982 -0.791623 +v -0.0743222 0.408707 -0.829134 +v -0.0697195 0.357502 -0.873507 +v -0.0936588 0.374705 -0.821116 +v -0.0297661 0.378581 -0.899181 +v -0.0443129 0.315837 -0.914418 +v -0.0370588 0.349973 -0.9094 +v -0.0503326 0.278325 -0.911612 +v -0.0124838 0.0634216 -0.922945 +v -0.0344491 0.068218 -0.873149 +v -0.0182739 0.0696159 -0.880178 +v -0.00684994 0.0811311 -1.03631 +v -0.0175333 0.0630017 -0.97271 +v -0.00888025 0.0679732 -0.976478 +v -0.0214803 0.0592409 -1.02638 +v -0.0328881 0.0379407 -0.967103 +v -0.0337034 0.0542003 -0.914634 +v -0.0257045 0.0532575 -0.9694 +v -0.0553202 0.0523534 -0.861951 +v -0.046748 0.0631171 -0.866449 +v -0.0458675 0.024869 -0.91115 +v -0.0635302 0.011067 -0.86189 +v -0.0606725 0.0344986 -0.860803 +v -0.038834 0.00678625 -1.01561 +v -0.0411355 -0.00566946 -0.963528 +v -0.0381429 0.0175151 -0.964367 +v -0.042836 -0.0424851 -1.01351 +v -0.041708 -0.054403 -0.965341 +v -0.0493536 -0.0220738 -0.913648 +v -0.042084 -0.0299755 -0.964487 +v -0.0648426 -0.0445618 -0.864668 +v -0.0646584 -0.0159423 -0.863703 +v -0.0490028 -0.0733298 -0.913502 +v -0.0633707 -0.0993508 -0.861284 +v -0.0646556 -0.0728862 -0.863555 +v -0.0392236 -0.08823 -1.01372 +v -0.038769 -0.100171 -0.962659 +v -0.0406619 -0.0780548 -0.96441 +v -0.0313502 -0.127701 -1.01221 +v -0.031183 -0.136848 -0.962332 +v -0.0451692 -0.118043 -0.909597 +v -0.0357144 -0.120015 -0.961497 +v -0.0537345 -0.140669 -0.858367 +v -0.0600448 -0.122448 -0.859129 +v -0.0327455 -0.14686 -0.911622 +v -0.0307948 -0.159949 -0.862798 +v -0.0437375 -0.152856 -0.859941 +v -0.0202128 -0.160367 -1.02152 +v -0.0173833 -0.15945 -0.971368 +v -0.0249551 -0.150027 -0.966147 +v -0.00697216 -0.181279 -1.03702 +v -0.0118733 -0.158248 -0.918522 +v -0.00891564 -0.16511 -0.975999 +v -0.0158883 -0.163238 -0.865552 +v -0.00616477 0.12998 -1.16635 +v -0.0121764 0.0902089 -1.08974 +v -0.00588829 0.101287 -1.09889 +v -0.0115816 0.221296 -1.32807 +v -0.0160103 0.148768 -1.2205 +v -0.00796339 0.169279 -1.24173 +v -0.0333839 0.156594 -1.26294 +v -0.0327249 0.0876722 -1.17198 +v -0.0199849 0.0927786 -1.13518 +v -0.0242279 0.120091 -1.19468 +v -0.0286884 0.0499154 -1.07842 +v -0.0193758 0.0727161 -1.08058 +v -0.0389517 0.0381198 -1.1222 +v -0.0531875 -0.00587659 -1.12084 +v -0.0449458 0.00775057 -1.06906 +v -0.0409321 0.0236613 -1.09145 +v -0.0510009 0.0787887 -1.20774 +v -0.048644 0.0246445 -1.16617 +v -0.0413774 0.0554725 -1.16005 +v -0.0584366 0.0197693 -1.23017 +v -0.0519151 -0.0301939 -1.26176 +v -0.0552514 -0.0225399 -1.17959 +v -0.0527475 -0.00413087 -1.19761 +v -0.0641366 -0.0773111 -1.2532 +v -0.0691895 -0.0579209 -1.16965 +v -0.0620331 -0.0392069 -1.17169 +v -0.0483439 -0.0850392 -1.06059 +v -0.0511606 -0.13087 -1.10719 +v -0.03806 -0.123367 -1.05881 +v -0.0438527 -0.10515 -1.05986 +v -0.0657944 -0.153596 -1.16657 +v -0.0585021 -0.217421 -1.2268 +v -0.0474799 -0.177258 -1.15508 +v -0.0573276 -0.167569 -1.16105 +v -0.0383382 -0.220149 -1.20056 +v -0.0289079 -0.199027 -1.15744 +v -0.034394 -0.159822 -1.10556 +v -0.0377263 -0.186187 -1.15189 +v -0.0247975 -0.158055 -1.0649 +v -0.0315285 -0.140664 -1.05971 +v -0.0188428 -0.196523 -1.12853 +v -0.0120911 -0.192453 -1.08926 +v -0.0183236 -0.176085 -1.07593 +v -0.0259373 -0.244201 -1.22102 +v -0.0142158 -0.245461 -1.20519 +v -0.0213502 -0.220689 -1.17819 +v -0.00925904 -0.302251 -1.28895 +v -0.00604459 -0.233061 -1.16487 +v -0.00711115 -0.266118 -1.22829 +v -0.00600871 -0.20438 -1.10053 +v -0.0237758 0.353949 -1.53192 +v -0.0334405 0.250637 -1.38948 +v -0.0171491 0.286349 -1.42702 +v -0.0362008 0.447335 -1.72706 +v -0.0573579 0.361784 -1.57863 +v -0.0304248 0.411778 -1.63469 +v -0.0892314 0.326842 -1.5778 +v -0.0932533 0.240353 -1.45128 +v -0.0642403 0.253628 -1.42737 +v -0.0779293 0.299545 -1.51033 +v -0.0602457 0.153617 -1.29793 +v -0.048039 0.203198 -1.34234 +v -0.0900401 0.149894 -1.33945 +v -0.0744607 0.0762212 -1.25994 +v -0.0693526 0.110459 -1.26793 +v -0.110427 0.252333 -1.51259 +v -0.112017 0.164642 -1.41497 +v -0.105644 0.196401 -1.42077 +v -0.113658 0.202116 -1.53316 +v -0.0994924 0.142736 -1.48501 +v -0.0943595 0.0942404 -1.34915 +v -0.109287 0.144829 -1.43329 +v -0.0692201 0.0408073 -1.33827 +v -0.0746657 0.0524256 -1.28094 +v -0.0722122 0.102071 -1.50507 +v -0.0412591 0.0510245 -1.54272 +v -0.046855 -0.0104203 -1.38339 +v -0.0576794 0.0421209 -1.43443 +v -0.0948772 0.221834 -1.63809 +v -0.0632979 0.198895 -1.69499 +v -0.0849046 0.164981 -1.58133 +v -0.0390686 0.309033 -1.85089 +v -0.0274283 0.145468 -1.71122 +v -0.0337984 0.230221 -1.79185 +v -0.0176171 -0.0164587 -1.57502 +v -0.0214764 0.0611561 -1.63153 +v -0.042315 0.424552 -1.85053 +v -0.075201 0.39327 -1.71987 +v -0.0402987 0.450396 -1.80108 +v -0.0780221 0.32567 -1.77138 +v -0.0419443 0.375631 -1.86938 +v -0.105287 0.29718 -1.63901 +v -0.102822 0.264238 -1.65112 +v -0.0996338 0.321865 -1.61678 +v -0.0191846 -0.139321 -1.57068 +v -0.0326656 -0.0706618 -1.47051 +v -0.0171713 -0.0824096 -1.55889 +v -0.0252533 -0.24158 -1.60837 +v -0.0421308 -0.160705 -1.49392 +v -0.0223232 -0.191081 -1.59298 +v -0.0641706 -0.152999 -1.37882 +v -0.0493044 -0.0880338 -1.36034 +v -0.0569071 -0.120107 -1.36975 +v -0.0448059 -0.0527988 -1.36131 +v -0.0625768 -0.0434132 -1.10696 +v -0.0513125 -0.0381578 -1.05807 +v -0.0490429 -0.0139267 -1.05966 +v -0.0764086 -0.13023 -1.25833 +v -0.0740449 -0.107669 -1.1699 +v -0.0733219 -0.0815774 -1.1696 +v -0.0739712 -0.187605 -1.24936 +v -0.0621821 -0.091762 -1.1086 +v -0.0714817 -0.132794 -1.16929 +v -0.0509825 -0.0623557 -1.05933 +v -0.0421545 -0.274309 -1.28075 +v -0.0239144 -0.304784 -1.30475 +v -0.0331923 -0.261842 -1.2533 +v -0.0599292 -0.275701 -1.33125 +v -0.0380539 -0.34407 -1.38645 +v -0.051588 -0.280477 -1.3069 +v -0.0234734 -0.396977 -1.49502 +v -0.0162706 -0.372039 -1.39797 +v -0.0201247 -0.393398 -1.44764 +v -0.0124677 -0.339497 -1.34535 +v -0.0269695 -0.341047 -1.57765 +v -0.0505573 -0.248293 -1.50359 +v -0.0268228 -0.293378 -1.60233 +v -0.0486983 -0.324789 -1.45788 +v -0.0258132 -0.377832 -1.53999 +v -0.0685449 -0.225655 -1.36899 +v -0.065727 -0.256118 -1.35258 +v -0.0681153 -0.18954 -1.37842 +v -0.412527 -0.377023 0.0866423 +v -0.46491 -0.357056 0.147726 +v -0.524645 -0.372024 0.0877404 +v -0.507061 -0.41238 -0.00323545 +v -0.479582 -0.372689 0.0879622 +v -0.47612 -0.31729 0.218873 +v -0.514458 -0.340389 0.15258 +v -0.398829 -0.362789 0.211675 +v -0.465555 -0.343165 0.189764 +v -0.583663 -0.412194 0.00127949 +v -0.565203 -0.333718 0.0970017 +v -0.551267 -0.360475 0.0930814 +v -0.183197 -0.429807 -0.258322 +v -0.284173 -0.391992 -0.160116 +v -0.329657 -0.337795 -0.246045 +v -0.263412 -0.389518 -0.251394 +v -0.100256 -0.461546 -0.178797 +v -0.093866 -0.456032 -0.264299 +v -0.108788 -0.464341 -0.0155168 +v -0.208528 -0.435322 -0.0843218 +v -0.105391 -0.464191 -0.0951969 +v -0.323024 -0.400128 0.00609786 +v -0.387884 -0.348386 -0.0734579 +v -0.306214 -0.395392 -0.07365 +v -0.218035 -0.435493 0.0698575 +v -0.314989 -0.400839 0.149453 +v -0.321286 -0.402419 0.0806735 +v -0.10964 -0.456963 0.133191 +v -0.110055 -0.462191 0.0591496 +v -0.213177 -0.424882 0.216194 +v -0.108058 -0.447725 0.211942 +v -0.312071 -0.39377 0.218106 +v -0.636971 -0.451586 -0.125881 +v -0.646234 -0.585277 -0.26847 +v -0.584638 -0.51314 -0.129838 +v -0.616459 -0.49804 -0.126639 +v -0.68848 -0.567841 -0.3894 +v -0.685352 -0.626824 -0.500968 +v -0.642619 -0.66432 -0.409896 +v -0.668972 -0.637104 -0.398997 +v -0.63357 -0.62775 -0.509058 +v -0.589722 -0.569453 -0.404822 +v -0.583325 -0.585395 -0.277007 +v -0.613202 -0.638065 -0.407606 +v -0.514914 -0.448624 -0.143169 +v -0.545935 -0.496222 -0.133325 +v -0.674176 -0.552875 -0.587697 +v -0.646545 -0.391348 -0.59825 +v -0.6105 -0.500543 -0.515922 +v -0.643003 -0.535419 -0.571841 +v -0.707738 -0.499021 -0.500772 +v -0.702403 -0.390588 -0.589581 +v -0.697691 -0.534551 -0.563327 +v -0.703398 -0.24234 -0.518405 +v -0.683788 -0.10806 -0.54155 +v -0.676272 -0.225995 -0.607191 +v -0.696644 -0.234789 -0.581607 +v -0.642464 -0.1083 -0.547927 +v -0.616617 -0.243176 -0.531841 +v -0.647273 -0.235308 -0.589249 +v -0.395003 0.223066 -0.186627 +v -0.448672 0.126105 -0.0983997 +v -0.421231 0.22524 -0.024 +v -0.410627 0.224368 -0.10438 +v -0.405667 0.134791 -0.265071 +v -0.37491 0.220189 -0.269751 +v -0.431094 -0.0468022 -0.25328 +v -0.450989 0.0336862 -0.173155 +v -0.424189 0.0436811 -0.259142 +v -0.491993 -0.0793899 -0.0947487 +v -0.497234 0.0130816 -0.0173049 +v -0.476719 0.0211303 -0.0931061 +v -0.427977 0.226262 0.132847 +v -0.468913 0.131851 0.214153 +v -0.426952 0.222695 0.215834 +v -0.469759 0.125755 0.0572788 +v -0.426522 0.226445 0.0541046 +v -0.529683 -0.0797763 0.0675924 +v -0.500641 0.0317177 0.140101 +v -0.502729 0.0202649 0.0624294 +v -0.509455 -0.0484891 0.22489 +v -0.495379 0.0401519 0.218205 +v -0.53179 -0.143295 0.157993 +v -0.508557 -0.204416 0.234493 +v -0.513811 -0.13049 0.231195 +v -0.579402 -0.178457 -0.0239389 +v -0.565511 -0.229648 0.0884027 +v -0.551618 -0.160909 0.0782513 +v -0.606145 -0.322964 -0.00147935 +v -0.53334 -0.272298 0.16824 +v -0.569946 -0.288718 0.095179 +v -0.494089 -0.268613 0.231964 +v -0.455837 -0.143815 -0.164486 +v -0.466607 -0.231495 -0.105793 +v -0.515926 -0.17874 -0.101527 +v -0.48583 -0.161296 -0.104388 +v -0.409544 -0.207902 -0.245579 +v -0.426682 -0.131039 -0.248655 +v -0.406221 -0.282603 -0.156734 +v -0.377923 -0.276992 -0.244351 +v -0.472797 -0.321486 -0.0824385 +v -0.437143 -0.293835 -0.0915168 +v -0.60681 -0.104541 -0.199073 +v -0.664208 -0.200618 -0.298361 +v -0.637998 -0.283987 -0.140558 +v -0.622518 -0.188305 -0.157983 +v -0.678773 -0.115455 -0.435245 +v -0.701325 -0.349425 -0.414851 +v -0.692207 -0.224061 -0.422088 +v -0.677134 -0.430765 -0.271313 +v -0.6999 -0.469185 -0.400022 +v -0.643735 -0.376279 -0.13046 +v -0.548794 -0.431529 -0.295508 +v -0.524213 -0.284046 -0.18652 +v -0.51244 -0.374742 -0.167685 +v -0.581467 -0.35081 -0.434249 +v -0.580384 -0.470905 -0.419091 +v -0.605058 -0.115682 -0.446801 +v -0.565043 -0.201157 -0.319389 +v -0.589632 -0.224837 -0.438542 +v -0.567308 -0.104574 -0.210733 +v -0.541512 -0.188649 -0.192095 +v -0.613536 -0.0277264 -0.382982 +v -0.642032 -0.0278017 -0.378417 +v -0.605738 -0.0498552 -0.284875 +v -0.651864 -0.0153435 -0.492793 +v -0.628622 -0.0421959 -0.475409 +v -0.666975 -0.0421751 -0.469488 +v -0.0622517 0.466092 -0.78445 +v -0.0392496 0.443743 -0.831646 +v -0.043547 0.410269 -0.865753 +v -0.0565659 0.431498 -0.831525 +v -0.0199921 0.420946 -0.865388 +v -0.0211444 0.482863 -0.791155 +v -0.0202621 0.446677 -0.834291 +v -0.0236299 0.400526 -0.885576 +v -0.053641 0.575327 -0.660584 +v -0.0403071 0.527902 -0.733813 +v -0.0602434 0.514848 -0.727257 +v -0.041475 0.719549 -0.499818 +v -0.0314735 0.658935 -0.592782 +v -0.0461498 0.644553 -0.584686 +v -0.0148555 0.741189 -0.510849 +v -0.0181078 0.593821 -0.67116 +v -0.0159493 0.664236 -0.595697 +v -0.0202125 0.532509 -0.736543 +v -0.0521111 0.992561 -0.140534 +v -0.037109 0.962144 -0.229843 +v -0.0467131 0.871952 -0.311907 +v -0.0510125 0.938917 -0.220941 +v -0.0203418 1.02734 -0.152818 +v -0.0175799 0.900198 -0.323071 +v -0.0194997 0.970737 -0.232486 +v -0.0301997 0.815073 -0.415127 +v -0.0156695 0.821691 -0.418038 +v -0.0424536 0.797039 -0.407007 +v -0.0364035 1.04823 -0.0322404 +v -0.0358437 1.05382 -0.088932 +v -0.0472441 1.02843 -0.0766387 +v -0.0184136 1.07561 -0.042742 +v -0.0198357 1.0577 -0.00821232 +v -0.0193969 1.06408 -0.0896716 +v 0.0528396 -0.439391 0.300217 +v 0.103674 -0.424454 0.351015 +v 0.0510265 -0.419014 0.403675 +v 0 -0.431823 0.350343 +v 0.0519863 -0.429916 0.350595 +v 0.157405 -0.42447 0.301586 +v 0.204959 -0.403897 0.351014 +v 0.151674 -0.405446 0.40395 +v 0.154765 -0.415695 0.351267 +v 0.195676 -0.382651 0.458109 +v 0.144461 -0.38053 0.513453 +v 0.0995018 -0.401754 0.458448 +v 0.148213 -0.393724 0.458418 +v 0.0487824 -0.392779 0.513494 +v 0 -0.40831 0.458262 +v 0.0499589 -0.406647 0.458346 +v 0.258628 -0.397607 0.301017 +v 0.30142 -0.371766 0.347728 +v 0.248104 -0.379637 0.402554 +v 0.253959 -0.389316 0.349922 +v 0.355902 -0.360246 0.29366 +v 0.386817 -0.326323 0.342574 +v 0.335193 -0.341537 0.399592 +v 0.346997 -0.351057 0.344172 +v 0.359332 -0.307595 0.455788 +v 0.313997 -0.320126 0.512009 +v 0.284654 -0.351531 0.456523 +v 0.324259 -0.331229 0.455888 +v 0.234483 -0.356352 0.512827 +v 0.241475 -0.368629 0.45737 +v 0.267475 -0.32702 0.567105 +v 0.220487 -0.328155 0.619945 +v 0.185014 -0.355799 0.567653 +v 0.227541 -0.342865 0.567382 +v 0.337146 -0.286429 0.56685 +v 0.294569 -0.295482 0.619536 +v 0.304211 -0.308222 0.566901 +v 0.31563 -0.262647 0.668797 +v 0.274372 -0.267349 0.713925 +v 0.250414 -0.298375 0.669111 +v 0.284734 -0.28187 0.668887 +v 0.205402 -0.295015 0.714732 +v 0.173463 -0.323421 0.669784 +v 0.213161 -0.312209 0.669425 +v 0.0944948 -0.373055 0.567951 +v 0.0460981 -0.360389 0.620774 +v 0 -0.378812 0.568022 +v 0.0474959 -0.377372 0.568008 +v 0.136294 -0.34971 0.620443 +v 0.1405 -0.365863 0.567838 +v 0.127009 -0.312891 0.715809 +v 0.0886872 -0.338165 0.670457 +v 0.131808 -0.332058 0.670143 +v 0.0429646 -0.321546 0.716617 +v 0 -0.342986 0.670771 +v 0.0445881 -0.341792 0.670681 +v 0.0819987 -0.296882 0.756987 +v 0.03943 -0.276547 0.793632 +v 0 -0.300488 0.75766 +v 0.0412265 -0.299612 0.757468 +v 0.160364 -0.285457 0.755545 +v 0.116526 -0.270485 0.79206 +v 0.121863 -0.292198 0.756314 +v 0.146186 -0.243793 0.822035 +v 0.105919 -0.226038 0.850878 +v 0.0748291 -0.251247 0.824656 +v 0.111159 -0.248262 0.823447 +v 0.0358873 -0.229251 0.853486 +v 0 -0.253408 0.825841 +v 0.0376315 -0.252908 0.825506 +v 0.231462 -0.265402 0.754103 +v 0.188331 -0.257295 0.789932 +v 0.197048 -0.276559 0.754776 +v 0.291659 -0.235906 0.75343 +v 0.251321 -0.235872 0.788312 +v 0.26315 -0.251885 0.753622 +v 0.264652 -0.207455 0.817942 +v 0.226858 -0.203782 0.843994 +v 0.210605 -0.229713 0.81927 +v 0.239139 -0.219706 0.818325 +v 0.17072 -0.218156 0.847081 +v 0.179478 -0.237676 0.820575 +v 0.189829 -0.194724 0.867431 +v 0.154684 -0.181088 0.889281 +v 0.132523 -0.202263 0.87241 +v 0.162286 -0.199189 0.869826 +v 0.236572 -0.180133 0.864915 +v 0.203467 -0.174258 0.883554 +v 0.214732 -0.188496 0.865651 +v 0.210782 -0.15744 0.896178 +v 0.187692 -0.149878 0.909411 +v 0.172742 -0.163279 0.901728 +v 0.193767 -0.161478 0.897958 +v 0.144008 -0.148745 0.920204 +v 0.121526 -0.164426 0.910018 +v 0.148422 -0.164169 0.905917 +v 0.0680582 -0.205548 0.876671 +v 0.0327869 -0.184112 0.899357 +v 0 -0.206266 0.878467 +v 0.0342537 -0.206134 0.877971 +v 0.0965104 -0.183591 0.895496 +v 0.100964 -0.20432 0.874754 +v 0.0899596 -0.147018 0.929259 +v 0.0626217 -0.164046 0.916258 +v 0.0927707 -0.16433 0.913524 +v 0.0305789 -0.145582 0.93442 +v 0 -0.163585 0.918694 +v 0.0315432 -0.163742 0.918041 +v 0.435618 -0.300919 0.297505 +v 0.439849 -0.263836 0.351658 +v 0.401976 -0.289043 0.400798 +v 0.417005 -0.296701 0.346252 +v 0.471193 -0.233426 0.309306 +v 0.471119 -0.193416 0.357279 +v 0.44514 -0.224127 0.405761 +v 0.457637 -0.229372 0.35524 +v 0.448962 -0.183637 0.46029 +v 0.42177 -0.211331 0.513721 +v 0.41344 -0.250468 0.457787 +v 0.433314 -0.218007 0.459158 +v 0.377072 -0.271286 0.512336 +v 0.388919 -0.280503 0.456542 +v 0.49116 -0.16015 0.311833 +v 0.487549 -0.11754 0.357874 +v 0.471019 -0.151969 0.40817 +v 0.48105 -0.156072 0.358056 +v 0.498418 -0.0813437 0.309877 +v 0.490731 -0.0377022 0.355843 +v 0.482504 -0.0753751 0.4077 +v 0.490736 -0.078017 0.357035 +v 0.474654 -0.0351695 0.460227 +v 0.463636 -0.0718508 0.514644 +v 0.468955 -0.11101 0.460892 +v 0.473533 -0.0733442 0.460646 +v 0.450143 -0.143814 0.514655 +v 0.460804 -0.147873 0.460821 +v 0.447503 -0.1057 0.56844 +v 0.426447 -0.135872 0.620563 +v 0.426344 -0.172848 0.568089 +v 0.438775 -0.139826 0.568318 +v 0.454225 -0.0355399 0.568415 +v 0.440305 -0.0701817 0.620889 +v 0.452623 -0.0708212 0.568468 +v 0.428157 -0.038109 0.670771 +v 0.411003 -0.0697787 0.716617 +v 0.421436 -0.101241 0.670457 +v 0.426495 -0.0698588 0.670681 +v 0.397905 -0.127918 0.715809 +v 0.400834 -0.161535 0.669784 +v 0.412907 -0.131915 0.670143 +v 0.389946 -0.23413 0.567358 +v 0.354321 -0.251405 0.619569 +v 0.365673 -0.2616 0.567032 +v 0.398023 -0.197233 0.620034 +v 0.410119 -0.204414 0.567739 +v 0.371143 -0.181975 0.714732 +v 0.365762 -0.216251 0.669111 +v 0.385144 -0.189762 0.669425 +v 0.330154 -0.229327 0.713925 +v 0.342615 -0.24066 0.668887 +v 0.493797 0.00167891 0.306228 +v 0.481278 0.0444732 0.353609 +v 0.480579 0.00368844 0.40618 +v 0.487655 0.0032059 0.354603 +v 0.476595 0.08709 0.303621 +v 0.457693 0.127149 0.353556 +v 0.464982 0.0834561 0.405562 +v 0.471367 0.0858655 0.353161 +v 0.444203 0.117937 0.46048 +v 0.448421 0.0754149 0.514374 +v 0.466719 0.0416479 0.459521 +v 0.45736 0.0799448 0.45968 +v 0.463086 0.0018894 0.51421 +v 0.472433 0.00321883 0.459777 +v 0.444572 0.172546 0.304733 +v 0.41813 0.20845 0.358061 +v 0.434208 0.162366 0.407923 +v 0.440024 0.168088 0.35509 +v 0.395488 0.255703 0.31224 +v 0.360742 0.286504 0.369502 +v 0.386751 0.238856 0.41534 +v 0.39178 0.248 0.362766 +v 0.350556 0.263394 0.474546 +v 0.372825 0.216573 0.522592 +v 0.405887 0.192313 0.464893 +v 0.380425 0.228352 0.468953 +v 0.418661 0.147414 0.51666 +v 0.427096 0.15545 0.462143 +v 0.388436 0.171435 0.572362 +v 0.397712 0.128262 0.622226 +v 0.425392 0.104443 0.569151 +v 0.408875 0.138327 0.570384 +v 0.335391 0.234663 0.579202 +v 0.353897 0.189522 0.625908 +v 0.363974 0.203602 0.575248 +v 0.31563 0.201155 0.675808 +v 0.330154 0.158366 0.717197 +v 0.365762 0.146398 0.672032 +v 0.342615 0.174415 0.673561 +v 0.371143 0.105483 0.715901 +v 0.400834 0.0872765 0.670619 +v 0.385144 0.11729 0.671094 +v 0.447056 0.0350107 0.568268 +v 0.44025 -0.00297966 0.620846 +v 0.452403 -0.000207534 0.568294 +v 0.426274 0.0636314 0.620915 +v 0.438086 0.0699494 0.5685 +v 0.397905 0.0487705 0.716043 +v 0.421436 0.0252784 0.67054 +v 0.412907 0.0565441 0.670477 +v 0.411003 -0.0101802 0.716617 +v 0.426495 -0.00633465 0.670681 +v 0.389008 0.0131678 0.757026 +v 0.374549 -0.018935 0.793632 +v 0.395161 -0.0421723 0.75766 +v 0.393641 -0.014424 0.757468 +v 0.370103 0.067045 0.755935 +v 0.362883 0.0316465 0.792157 +v 0.381186 0.0403939 0.75647 +v 0.333531 0.0452134 0.822174 +v 0.32204 0.0139683 0.850906 +v 0.349877 -0.000243515 0.82467 +v 0.343124 0.0227605 0.823503 +v 0.331734 -0.0282348 0.853486 +v 0.355171 -0.0470394 0.825841 +v 0.353867 -0.0235823 0.825506 +v 0.337851 0.117785 0.755466 +v 0.338921 0.0799323 0.790419 +v 0.355682 0.0929119 0.755555 +v 0.291659 0.163715 0.756702 +v 0.301981 0.124156 0.789675 +v 0.316535 0.141456 0.755804 +v 0.264652 0.124762 0.81911 +v 0.270955 0.0902541 0.844383 +v 0.305459 0.0875581 0.819757 +v 0.286714 0.106932 0.819104 +v 0.302138 0.0541666 0.84722 +v 0.32102 0.0668989 0.820853 +v 0.27011 0.0590555 0.867528 +v 0.26182 0.0310238 0.889295 +v 0.292213 0.0241032 0.872438 +v 0.282434 0.0420904 0.869882 +v 0.236572 0.0882871 0.865149 +v 0.238881 0.060528 0.883593 +v 0.254927 0.0745904 0.865807 +v 0.210782 0.0588023 0.896178 +v 0.206277 0.0399883 0.909411 +v 0.232314 0.0357298 0.901728 +v 0.223068 0.0486539 0.897958 +v 0.217504 0.0133337 0.920204 +v 0.246747 0.00603315 0.910018 +v 0.240207 0.0213203 0.905917 +v 0.305107 -0.0135179 0.876674 +v 0.283674 -0.0370317 0.899357 +v 0.309339 -0.0520339 0.878467 +v 0.308289 -0.0327616 0.877971 +v 0.276365 -0.00240602 0.895499 +v 0.29976 0.0055021 0.874766 +v 0.22655 -0.0156201 0.929259 +v 0.255714 -0.0252177 0.916258 +v 0.251935 -0.00952408 0.913524 +v 0.231488 -0.0442777 0.93442 +v 0.258817 -0.0564795 0.918694 +v 0.258027 -0.0409141 0.918041 +v 0.337851 -0.196574 0.754103 +v 0.301981 -0.205076 0.788312 +v 0.316535 -0.217365 0.753622 +v 0.370103 -0.149501 0.755545 +v 0.338921 -0.165557 0.789932 +v 0.355682 -0.173848 0.754776 +v 0.333531 -0.137099 0.822035 +v 0.302138 -0.149182 0.847081 +v 0.305459 -0.175933 0.81927 +v 0.32102 -0.157276 0.820575 +v 0.270955 -0.180723 0.843994 +v 0.286714 -0.192761 0.818325 +v 0.389008 -0.0971972 0.756987 +v 0.362883 -0.119757 0.79206 +v 0.381186 -0.123846 0.756314 +v 0.374549 -0.0700875 0.793632 +v 0.393641 -0.069868 0.757468 +v 0.331734 -0.0707623 0.853486 +v 0.349877 -0.0933809 0.824656 +v 0.353867 -0.0703986 0.825506 +v 0.32204 -0.111757 0.850878 +v 0.343124 -0.115707 0.823447 +v 0.305107 -0.0898567 0.876671 +v 0.276365 -0.104386 0.895496 +v 0.292213 -0.125234 0.87241 +v 0.29976 -0.107962 0.874754 +v 0.283674 -0.071492 0.899357 +v 0.308289 -0.0711397 0.877971 +v 0.231488 -0.0719656 0.93442 +v 0.255714 -0.0866916 0.916258 +v 0.258027 -0.0717803 0.918041 +v 0.22655 -0.098132 0.929259 +v 0.246747 -0.114847 0.910018 +v 0.251935 -0.101089 0.913524 +v 0.27011 -0.156247 0.867431 +v 0.238881 -0.158821 0.883554 +v 0.254927 -0.169263 0.865651 +v 0.26182 -0.134273 0.889281 +v 0.282434 -0.14145 0.869826 +v 0.217504 -0.122347 0.920204 +v 0.232314 -0.139646 0.901728 +v 0.240207 -0.127841 0.905917 +v 0.206277 -0.143046 0.909411 +v 0.223068 -0.149837 0.897958 +v 0.327103 0.334219 0.32882 +v 0.28473 0.358775 0.389243 +v 0.321104 0.311363 0.42989 +v 0.324786 0.323728 0.378567 +v 0.242066 0.403263 0.35284 +v 0.195585 0.418747 0.412558 +v 0.23939 0.375682 0.449938 +v 0.241391 0.390747 0.400813 +v 0.191919 0.3839 0.508473 +v 0.23183 0.338898 0.54863 +v 0.277785 0.329173 0.490403 +v 0.236168 0.358316 0.499462 +v 0.309932 0.281582 0.533694 +v 0.316129 0.297267 0.481897 +v 0.147913 0.455522 0.378359 +v 0.0994412 0.459381 0.433258 +v 0.147356 0.42496 0.470136 +v 0.148132 0.441879 0.42376 +v 0.0497501 0.484494 0.396761 +v 0 0.474448 0.442484 +v 0.0497392 0.452686 0.484022 +v 0.0499267 0.470491 0.439887 +v 0 0.435201 0.530411 +v 0.0484146 0.407465 0.572909 +v 0.0979492 0.421254 0.523785 +v 0.0492233 0.431528 0.528564 +v 0.143195 0.38275 0.563206 +v 0.14568 0.405129 0.516835 +v 0.0941843 0.3721 0.613271 +v 0.136167 0.331807 0.652363 +v 0.184263 0.339838 0.602913 +v 0.139993 0.358188 0.608599 +v 0 0.384105 0.617673 +v 0.0460614 0.352422 0.658594 +v 0.0473487 0.380947 0.616453 +v 0 0.32486 0.699484 +v 0.0429646 0.29115 0.736248 +v 0.0886872 0.315228 0.696749 +v 0.0445881 0.32234 0.698726 +v 0.127009 0.275046 0.732402 +v 0.173463 0.289016 0.690317 +v 0.131808 0.303971 0.693848 +v 0.266101 0.292335 0.590365 +v 0.294162 0.246022 0.63309 +v 0.302585 0.264452 0.584389 +v 0.220222 0.294897 0.64288 +v 0.226479 0.317675 0.596687 +v 0.205402 0.245664 0.726652 +v 0.250414 0.2498 0.682549 +v 0.213161 0.27081 0.686453 +v 0.274372 0.205829 0.720936 +v 0.284734 0.226433 0.678903 +v 0.231462 0.203105 0.760374 +v 0.251321 0.162507 0.791233 +v 0.26315 0.184353 0.758297 +v 0.160364 0.233891 0.765127 +v 0.188331 0.193394 0.794898 +v 0.197048 0.219706 0.762722 +v 0.146186 0.177426 0.825457 +v 0.17072 0.14153 0.8485 +v 0.210605 0.154949 0.82151 +v 0.179478 0.167183 0.823413 +v 0.226858 0.119699 0.844829 +v 0.239139 0.140788 0.819994 +v 0.0819987 0.253953 0.769257 +v 0.116526 0.215443 0.798974 +v 0.121863 0.245395 0.767376 +v 0 0.26117 0.771059 +v 0.03943 0.227219 0.801812 +v 0.0412265 0.259299 0.770555 +v 0 0.196615 0.830626 +v 0.0358873 0.164084 0.855824 +v 0.0748291 0.191629 0.829038 +v 0.0376315 0.195337 0.83018 +v 0.105919 0.15634 0.852854 +v 0.111159 0.185617 0.827398 +v 0.0680582 0.13166 0.877547 +v 0.0965104 0.101086 0.895694 +v 0.132523 0.123092 0.873095 +v 0.100964 0.128038 0.875545 +v 0 0.134656 0.879425 +v 0.0327869 0.105182 0.899591 +v 0.0342537 0.133889 0.878906 +v 0 0.0787515 0.918694 +v 0.0305789 0.0539478 0.93442 +v 0.0626217 0.0773993 0.916258 +v 0.0315432 0.0783918 0.918041 +v 0.0899596 0.0527364 0.929259 +v 0.121526 0.0738625 0.910018 +v 0.0927707 0.0758606 0.913524 +v 0.189829 0.10919 0.867879 +v 0.203467 0.0813259 0.883637 +v 0.214732 0.0997375 0.865985 +v 0.154684 0.0934761 0.889423 +v 0.162286 0.116892 0.870394 +v 0.144008 0.0511453 0.920204 +v 0.172742 0.0685609 0.901728 +v 0.148422 0.0714913 0.905917 +v 0.187692 0.0498232 0.909411 +v 0.193767 0.0648846 0.897958 +v 0.165923 0.0336636 0.92592 +v 0.190101 0.0215793 0.92592 +v 0.187297 0.0355513 0.918459 +v 0.115901 0.0322152 0.938395 +v 0.141662 0.0157874 0.943236 +v 0.141951 0.0326459 0.932614 +v 0.115472 -0.00148885 0.95948 +v 0.144031 -0.0138297 0.95948 +v 0.16862 0.00321359 0.943236 +v 0.142551 0.000364153 0.952161 +v 0.19723 -0.00668079 0.938395 +v 0.193623 0.00741744 0.932614 +v 0.0595108 0.0321495 0.946663 +v 0.0875295 0.0136863 0.955124 +v 0.0882911 0.0320889 0.943121 +v 0 0.0323622 0.949676 +v 0.0295986 0.0131379 0.961448 +v 0.0299504 0.0322797 0.94889 +v 0 -0.00379138 0.97297 +v 0.0294887 -0.0185649 0.980805 +v 0.0586902 -0.003407 0.969505 +v 0.0294644 -0.00372716 0.972088 +v 0.0877836 -0.017312 0.973606 +v 0.087439 -0.0027034 0.965281 +v 0.0590978 -0.0312089 0.984779 +v 0.0889159 -0.042096 0.984779 +v 0.117175 -0.0290045 0.973606 +v 0.0883277 -0.0303714 0.98011 +v 0 -0.0317276 0.988537 +v 0.0297771 -0.0431567 0.992449 +v 0.0296127 -0.0316249 0.987593 +v 0 -0.0534648 0.99634 +v 0.0299913 -0.0626337 0.99634 +v 0.059752 -0.0531773 0.992449 +v 0.029923 -0.0534098 0.995366 +v 0.0896038 -0.0623975 0.988537 +v 0.118752 -0.0519101 0.980805 +v 0.089393 -0.0526999 0.987593 +v 0.173247 -0.0242039 0.955124 +v 0.20266 -0.0339057 0.946663 +v 0.20029 -0.0204619 0.943121 +v 0.146808 -0.0392644 0.969505 +v 0.145512 -0.027 0.965281 +v 0.148106 -0.0615459 0.97297 +v 0.176248 -0.0491235 0.961448 +v 0.147735 -0.0507404 0.972088 +v 0.204757 -0.0596997 0.949676 +v 0.204197 -0.0469917 0.94889 +v 0.176248 -0.0719429 0.961448 +v 0.20266 -0.0839563 0.946663 +v 0.204197 -0.0720092 0.94889 +v 0.118752 -0.0716079 0.980805 +v 0.146808 -0.0817287 0.969505 +v 0.147735 -0.0717985 0.972088 +v 0.117175 -0.090059 0.973606 +v 0.144031 -0.101544 0.95948 +v 0.173247 -0.0933975 0.955124 +v 0.145512 -0.091567 0.965281 +v 0.19723 -0.106907 0.938395 +v 0.20029 -0.0955771 0.943121 +v 0.059752 -0.0712157 0.992449 +v 0.0889159 -0.0800938 0.984779 +v 0.089393 -0.071403 0.987593 +v 0 -0.0710213 0.99634 +v 0.0297771 -0.0791855 0.992449 +v 0.029923 -0.0710778 0.995366 +v 0 -0.087208 0.988537 +v 0.0294887 -0.0961639 0.980805 +v 0.0590978 -0.0879535 0.984779 +v 0.0296127 -0.0873998 0.987593 +v 0.0877836 -0.0980405 0.973606 +v 0.0883277 -0.0888472 0.98011 +v 0.0586902 -0.106746 0.969505 +v 0.0875295 -0.119282 0.955124 +v 0.115472 -0.109783 0.95948 +v 0.087439 -0.108051 0.965281 +v 0 -0.105628 0.97297 +v 0.0295986 -0.117114 0.961448 +v 0.0294644 -0.105921 0.972088 +v 0 -0.129886 0.949676 +v 0.0595108 -0.130975 0.946663 +v 0.0299504 -0.130187 0.94889 +v 0.115901 -0.13356 0.938395 +v 0.0882911 -0.132137 0.943121 +v 0.16862 -0.114561 0.943236 +v 0.190101 -0.128757 0.92592 +v 0.193623 -0.117983 0.932614 +v 0.141662 -0.122966 0.943236 +v 0.142551 -0.11189 0.952161 +v 0.165923 -0.136965 0.92592 +v 0.141951 -0.135131 0.932614 +v 0.187297 -0.13918 0.918459 +v 0.332687 0.250025 -0.353403 +v 0.337128 0.210883 -0.393485 +v 0.30762 0.237846 -0.434027 +v 0.301414 0.274116 -0.394292 +v 0.32053 0.244384 -0.394026 +v 0.365855 0.17653 -0.351411 +v 0.362766 0.135069 -0.391796 +v 0.335557 0.171016 -0.433283 +v 0.351206 0.174237 -0.392724 +v 0.328785 0.130569 -0.472494 +v 0.301653 0.161614 -0.510934 +v 0.307358 0.20029 -0.473009 +v 0.319006 0.166823 -0.472787 +v 0.279492 0.221926 -0.511096 +v 0.278869 0.256471 -0.473159 +v 0.293945 0.230373 -0.47314 +v 0.387843 0.0934676 -0.34844 +v 0.378327 0.0516594 -0.389654 +v 0.354678 0.0935566 -0.432088 +v 0.371806 0.0940024 -0.390755 +v 0.398993 0.00608835 -0.345124 +v 0.383807 -0.0343621 -0.387489 +v 0.364578 0.0103134 -0.43072 +v 0.382327 0.00866357 -0.388548 +v 0.347147 -0.0303051 -0.471016 +v 0.326354 0.0110593 -0.510311 +v 0.342324 0.0521051 -0.471776 +v 0.345877 0.0110934 -0.471391 +v 0.317684 0.0897238 -0.510656 +v 0.336592 0.0921303 -0.472151 +v 0.303019 0.0488823 -0.547274 +v 0.277942 0.0819708 -0.581842 +v 0.29155 0.122027 -0.547362 +v 0.298089 0.0863372 -0.547315 +v 0.307259 -0.0289058 -0.547168 +v 0.28537 0.0087711 -0.581894 +v 0.306141 0.0102666 -0.547228 +v 0.265142 -0.0295503 -0.6141 +v 0.242671 0.00389388 -0.643467 +v 0.261498 0.0422201 -0.613986 +v 0.264169 0.0066283 -0.614057 +v 0.236531 0.0702994 -0.643348 +v 0.252054 0.109242 -0.614006 +v 0.257378 0.0766248 -0.613949 +v 0.274432 0.185696 -0.547508 +v 0.248206 0.201959 -0.582465 +v 0.253248 0.235058 -0.54779 +v 0.26425 0.212468 -0.547627 +v 0.264939 0.147981 -0.58195 +v 0.283598 0.155348 -0.547422 +v 0.22621 0.129773 -0.643919 +v 0.238793 0.166711 -0.614641 +v 0.245777 0.139471 -0.614216 +v 0.213669 0.17764 -0.645988 +v 0.223696 0.209825 -0.616376 +v 0.23135 0.190363 -0.615341 +v 0.399651 -0.0803567 -0.3421 +v 0.379026 -0.118327 -0.385704 +v 0.364852 -0.0738683 -0.42946 +v 0.382766 -0.0767945 -0.386532 +v 0.389187 -0.162269 -0.339854 +v 0.362738 -0.197461 -0.384551 +v 0.354677 -0.155157 -0.42852 +v 0.372409 -0.158651 -0.385034 +v 0.327048 -0.189957 -0.469933 +v 0.316853 -0.148187 -0.509637 +v 0.342401 -0.112082 -0.470368 +v 0.336117 -0.151698 -0.470118 +v 0.326432 -0.0695741 -0.509951 +v 0.346033 -0.0714907 -0.470671 +v 0.365994 -0.237704 -0.338725 +v 0.333519 -0.26931 -0.384255 +v 0.332813 -0.230733 -0.428043 +v 0.349834 -0.23445 -0.384282 +v 0.328469 -0.304715 -0.339052 +v 0.289946 -0.331416 -0.385043 +v 0.298017 -0.297779 -0.428174 +v 0.313616 -0.301735 -0.3845 +v 0.260269 -0.321794 -0.470074 +v 0.265114 -0.286658 -0.509432 +v 0.300026 -0.260878 -0.469804 +v 0.281806 -0.292777 -0.469883 +v 0.296714 -0.221606 -0.50944 +v 0.315062 -0.226477 -0.469824 +v 0.264373 -0.248923 -0.546649 +v 0.258749 -0.209717 -0.581436 +v 0.288747 -0.181116 -0.546787 +v 0.277899 -0.216045 -0.546706 +v 0.228905 -0.306925 -0.546651 +v 0.230817 -0.270782 -0.581276 +v 0.248073 -0.27935 -0.546628 +v 0.196887 -0.286185 -0.613141 +v 0.196187 -0.249581 -0.642158 +v 0.227623 -0.232875 -0.613293 +v 0.213478 -0.260883 -0.613184 +v 0.219967 -0.194459 -0.642551 +v 0.248863 -0.170282 -0.61362 +v 0.239394 -0.202547 -0.613446 +v 0.302789 -0.106708 -0.546986 +v 0.285377 -0.0667739 -0.581858 +v 0.306173 -0.068031 -0.547084 +v 0.276719 -0.140659 -0.581667 +v 0.297012 -0.144537 -0.546884 +v 0.235282 -0.131869 -0.643074 +v 0.261179 -0.101482 -0.613948 +v 0.256101 -0.136466 -0.613795 +v 0.242671 -0.0647673 -0.643467 +v 0.264169 -0.0657151 -0.614057 +v 0.21856 -0.0956796 -0.66964 +v 0.199458 -0.0629545 -0.69384 +v 0.221799 -0.0316244 -0.669967 +v 0.221007 -0.0638428 -0.669873 +v 0.208425 -0.156799 -0.668939 +v 0.193673 -0.121372 -0.693085 +v 0.214389 -0.126782 -0.669313 +v 0.168861 -0.141313 -0.714324 +v 0.153779 -0.11025 -0.735527 +v 0.176506 -0.0893004 -0.715526 +v 0.173386 -0.115805 -0.714965 +v 0.15784 -0.0613369 -0.7367 +v 0.17888 -0.034564 -0.716089 +v 0.178308 -0.0621149 -0.715928 +v 0.190839 -0.212162 -0.668238 +v 0.18149 -0.17562 -0.692079 +v 0.200598 -0.185376 -0.668565 +v 0.165245 -0.258952 -0.667911 +v 0.162297 -0.223025 -0.691326 +v 0.179078 -0.236805 -0.668004 +v 0.13498 -0.227078 -0.71257 +v 0.130307 -0.194324 -0.732809 +v 0.15525 -0.18808 -0.713124 +v 0.145991 -0.208708 -0.712726 +v 0.144865 -0.155368 -0.733969 +v 0.162845 -0.16551 -0.713684 +v 0.122254 -0.163792 -0.752734 +v 0.111708 -0.136266 -0.772942 +v 0.131998 -0.125781 -0.754434 +v 0.127752 -0.145513 -0.753525 +v 0.10706 -0.194885 -0.751968 +v 0.101395 -0.167229 -0.771434 +v 0.115393 -0.180341 -0.752177 +v 0.0824548 -0.166698 -0.790956 +v 0.0767353 -0.145492 -0.812028 +v 0.0932445 -0.14246 -0.791849 +v 0.0884602 -0.155457 -0.791183 +v 0.0836378 -0.120876 -0.813722 +v 0.0996638 -0.112155 -0.793926 +v 0.0969362 -0.127947 -0.792811 +v 0.137179 -0.0830646 -0.756146 +v 0.120076 -0.0600162 -0.77655 +v 0.138682 -0.0378547 -0.756952 +v 0.138335 -0.0606331 -0.75672 +v 0.117612 -0.0998418 -0.774995 +v 0.135104 -0.104873 -0.755346 +v 0.0871861 -0.0914872 -0.816083 +v 0.10274 -0.0776926 -0.796039 +v 0.101556 -0.0953242 -0.795049 +v 0.088428 -0.0590942 -0.817888 +v 0.103502 -0.0409822 -0.797043 +v 0.103346 -0.059499 -0.796751 +v 0.200884 0.142944 -0.672071 +v 0.176282 0.148983 -0.699856 +v 0.189354 0.18072 -0.677111 +v 0.19515 0.163753 -0.674138 +v 0.211295 0.0920121 -0.670034 +v 0.186484 0.10702 -0.695126 +v 0.206338 0.118846 -0.670755 +v 0.170923 0.0714825 -0.7162 +v 0.148123 0.0819932 -0.738068 +v 0.162474 0.11549 -0.719678 +v 0.166971 0.0946256 -0.717431 +v 0.139444 0.117913 -0.744262 +v 0.152321 0.148517 -0.728289 +v 0.157551 0.133609 -0.723208 +v 0.218847 0.0323476 -0.669749 +v 0.194671 0.0549806 -0.693695 +v 0.215537 0.0629948 -0.669751 +v 0.199458 -0.00304234 -0.69384 +v 0.221007 0.000623463 -0.669873 +v 0.157838 -0.0109977 -0.736704 +v 0.176711 0.0202224 -0.715716 +v 0.178308 -0.00696293 -0.715929 +v 0.154426 0.037901 -0.736354 +v 0.174209 0.0465261 -0.715717 +v 0.137298 0.00753115 -0.756355 +v 0.117973 0.0212425 -0.775694 +v 0.133247 0.0501429 -0.756401 +v 0.135598 0.0293747 -0.756143 +v 0.120069 -0.0188472 -0.776562 +v 0.138331 -0.015006 -0.756727 +v 0.0884118 -0.0254661 -0.817918 +v 0.102788 -0.00401389 -0.796206 +v 0.103335 -0.0223808 -0.796771 +v 0.0873334 0.00734081 -0.816528 +v 0.100317 0.0307401 -0.795278 +v 0.101802 0.0137994 -0.795618 +v 0.126656 0.0869249 -0.759561 +v 0.106687 0.0870359 -0.780774 +v 0.117651 0.114822 -0.768307 +v 0.122447 0.102175 -0.763081 +v 0.113581 0.0574659 -0.776309 +v 0.130262 0.0694536 -0.757437 +v 0.0845372 0.0369825 -0.815646 +v 0.0956175 0.0607274 -0.796421 +v 0.0982752 0.0464891 -0.795455 +v 0.0793673 0.061115 -0.817203 +v 0.0882194 0.0833953 -0.8018 +v 0.0922852 0.0731358 -0.798446 +v 0.275006 -0.361358 -0.341173 +v 0.231265 -0.381513 -0.387008 +v 0.249049 -0.353476 -0.429058 +v 0.262331 -0.358049 -0.385914 +v 0.206895 -0.405955 -0.344635 +v 0.160751 -0.418472 -0.38945 +v 0.187138 -0.396123 -0.430505 +v 0.197241 -0.401694 -0.388221 +v 0.143934 -0.404825 -0.471682 +v 0.165973 -0.380488 -0.510143 +v 0.207276 -0.369996 -0.470787 +v 0.176683 -0.389102 -0.471231 +v 0.22115 -0.340168 -0.509685 +v 0.235282 -0.347547 -0.470388 +v 0.128322 -0.437096 -0.348189 +v 0.0823478 -0.441352 -0.391539 +v 0.115981 -0.425138 -0.431992 +v 0.122289 -0.43173 -0.390591 +v 0.0434716 -0.453372 -0.35059 +v 0 -0.449213 -0.392443 +v 0.0392767 -0.439937 -0.432997 +v 0.0414205 -0.447219 -0.392191 +v 0 -0.433086 -0.472786 +v 0.0347964 -0.421058 -0.510961 +v 0.0736919 -0.425961 -0.472452 +v 0.0370615 -0.431294 -0.472692 +v 0.102787 -0.407493 -0.510629 +v 0.10946 -0.417124 -0.472102 +v 0.0646346 -0.404143 -0.547403 +v 0.089237 -0.382601 -0.581767 +v 0.126306 -0.384717 -0.547137 +v 0.0960258 -0.396051 -0.547281 +v 0 -0.410614 -0.547522 +v 0.0302011 -0.394876 -0.581959 +v 0.0325025 -0.408996 -0.547489 +v 0 -0.37989 -0.6141 +v 0.0256613 -0.359532 -0.643467 +v 0.0555127 -0.374162 -0.613948 +v 0.0279136 -0.378466 -0.614057 +v 0.075825 -0.348898 -0.643074 +v 0.108509 -0.356795 -0.61362 +v 0.0824827 -0.366948 -0.613795 +v 0.182051 -0.352317 -0.546846 +v 0.192278 -0.320687 -0.581302 +v 0.206774 -0.331246 -0.546729 +v 0.144174 -0.357915 -0.581506 +v 0.155104 -0.37014 -0.546987 +v 0.122512 -0.327268 -0.642551 +v 0.156473 -0.327549 -0.613293 +v 0.133277 -0.343672 -0.613446 +v 0.163405 -0.294283 -0.642158 +v 0.177781 -0.308397 -0.613184 +v 0.131426 -0.294767 -0.668238 +v 0.135481 -0.260912 -0.691328 +v 0.149272 -0.278251 -0.668004 +v 0.0911854 -0.319704 -0.668939 +v 0.101727 -0.28829 -0.692086 +v 0.111975 -0.308563 -0.668565 +v 0.0748448 -0.275921 -0.714357 +v 0.0823513 -0.245987 -0.734034 +v 0.10767 -0.256208 -0.713142 +v 0.0918322 -0.267187 -0.71371 +v 0.109317 -0.224749 -0.732831 +v 0.122129 -0.242875 -0.712735 +v 0.0466631 -0.33428 -0.66964 +v 0.0630187 -0.305851 -0.693095 +v 0.0693256 -0.328255 -0.669313 +v 0 -0.339009 -0.669967 +v 0.0213366 -0.314286 -0.693851 +v 0.0234653 -0.337843 -0.669873 +v 0 -0.290597 -0.716136 +v 0.0173238 -0.265118 -0.736817 +v 0.0383418 -0.287092 -0.71557 +v 0.0192858 -0.289748 -0.715974 +v 0.0511179 -0.259092 -0.735626 +v 0.0569381 -0.28252 -0.715004 +v 0.0307247 -0.239527 -0.756365 +v 0.0403946 -0.21528 -0.775339 +v 0.0598654 -0.231752 -0.7546 +v 0.0455921 -0.236401 -0.755543 +v 0 -0.241815 -0.757187 +v 0.0137092 -0.219126 -0.776956 +v 0.0154613 -0.241281 -0.756953 +v 0 -0.199824 -0.797701 +v 0.0105788 -0.183411 -0.818864 +v 0.0239874 -0.198512 -0.796652 +v 0.0120781 -0.19954 -0.797402 +v 0.0311206 -0.181072 -0.816908 +v 0.0466254 -0.193505 -0.794392 +v 0.0355594 -0.196559 -0.7956 +v 0.0858384 -0.217276 -0.752824 +v 0.0857034 -0.190674 -0.771513 +v 0.0971419 -0.207146 -0.752222 +v 0.0648813 -0.206244 -0.77317 +v 0.0733469 -0.225428 -0.753655 +v 0.049815 -0.174943 -0.814269 +v 0.0665643 -0.183376 -0.7921 +v 0.0570166 -0.18917 -0.793176 +v 0.0654305 -0.163567 -0.812219 +v 0.0751 -0.175945 -0.79131 +v 0 0.580706 0.191623 +v 0.032119 0.55297 0.20572 +v 0.0517772 0.574901 0.177045 +v 0.0214326 0.612764 0.171028 +v 0.0264835 0.579032 0.187869 +v 0 0.53609 0.230367 +v 0.0424428 0.519349 0.250809 +v 0.0751025 0.526093 0.213735 +v 0.0376639 0.533451 0.226169 +v 0.129689 0.495157 0.217492 +v 0.143295 0.502693 0.164329 +v 0.0919292 0.539682 0.175235 +v 0.112091 0.514578 0.193221 +v 0.0940367 0.562813 0.135922 +v 0.0606722 0.605009 0.144583 +v 0.0746915 0.569198 0.159584 +v 0.0981197 0.483168 0.346652 +v 0.0479374 0.501882 0.316391 +v 0 0.498143 0.358677 +v 0.0491738 0.494246 0.355248 +v 0.194416 0.441923 0.320725 +v 0.143844 0.473905 0.292452 +v 0.14661 0.465523 0.334581 +v 0.187442 0.459019 0.23277 +v 0.0920354 0.499377 0.269816 +v 0.139239 0.482692 0.251996 +v 0 0.512987 0.285336 +v 0.0457805 0.509538 0.281231 +v 0.365565 0.303149 0.271732 +v 0.32805 0.349176 0.236224 +v 0.286199 0.379603 0.293469 +v 0.327982 0.342691 0.281542 +v 0.366618 0.313108 0.183018 +v 0.328258 0.3563 0.149432 +v 0.284396 0.391924 0.204027 +v 0.327933 0.353702 0.192357 +v 0.236604 0.431849 0.172148 +v 0.239423 0.420871 0.261811 +v 0.236697 0.427897 0.217139 +v 0.241311 0.412982 0.306775 +v 0.333011 0.35149 -0.0193341 +v 0.294768 0.389345 0.0294321 +v 0.331389 0.356178 0.0647418 +v 0.367902 0.315544 0.017381 +v 0.33275 0.354216 0.0226969 +v 0.259042 0.416726 -0.00800859 +v 0.218201 0.452081 0.0405712 +v 0.250473 0.426328 0.0804567 +v 0.255928 0.421708 0.0359393 +v 0.199535 0.463955 0.131331 +v 0.287644 0.394628 0.116428 +v 0.242614 0.430517 0.126223 +v 0.367467 0.31678 0.0992565 +v 0.329651 0.356999 0.10694 +v 0.104345 0.581221 0.0259771 +v 0.119073 0.550395 0.0722588 +v 0.152619 0.511164 0.0394776 +v 0.130051 0.536678 -0.00680558 +v 0.126008 0.543831 0.034173 +v 0.0890355 0.594052 0.0947326 +v 0.133348 0.524179 0.116986 +v 0.108623 0.556634 0.106494 +v 0.175691 0.487607 0.084535 +v 0.163382 0.494231 0.126759 +v 0.187988 0.474807 -0.00187647 +v 0.183558 0.48124 0.0416805 +v 0.158967 0.496998 -0.0466461 +v 0.131948 0.519642 -0.0941171 +v 0.109497 0.564612 -0.0557193 +v 0.131824 0.528669 -0.0497193 +v 0.223936 0.440007 -0.0481118 +v 0.190088 0.460581 -0.0910605 +v 0.189985 0.467984 -0.0462077 +v 0.221904 0.426077 -0.137465 +v 0.186763 0.443274 -0.18132 +v 0.158182 0.479751 -0.136708 +v 0.188835 0.452408 -0.136182 +v 0.129735 0.497885 -0.18556 +v 0.108519 0.54279 -0.145205 +v 0.131045 0.509435 -0.139548 +v 0.296239 0.381261 -0.0569125 +v 0.258829 0.405735 -0.0961191 +v 0.259877 0.411451 -0.0520665 +v 0.363938 0.31175 -0.0646427 +v 0.328286 0.344798 -0.103698 +v 0.33145 0.348379 -0.061491 +v 0.354156 0.306287 -0.147495 +v 0.318034 0.335888 -0.187963 +v 0.290679 0.371333 -0.143128 +v 0.323741 0.340663 -0.145881 +v 0.252663 0.392384 -0.183748 +v 0.256293 0.399428 -0.140051 +v 0.280545 0.358652 -0.228537 +v 0.243704 0.375486 -0.269973 +v 0.215907 0.408871 -0.226126 +v 0.248335 0.384452 -0.227094 +v 0.339707 0.298579 -0.230503 +v 0.304016 0.324081 -0.271524 +v 0.311386 0.330389 -0.229869 +v 0.321743 0.288047 -0.312993 +v 0.287993 0.3087 -0.35378 +v 0.268291 0.342308 -0.312462 +v 0.296145 0.31688 -0.312853 +v 0.235111 0.353855 -0.353874 +v 0.209746 0.386969 -0.312735 +v 0.239164 0.365336 -0.312272 +v 0.154954 0.457936 -0.227906 +v 0.128381 0.470103 -0.277526 +v 0.106575 0.51479 -0.23814 +v 0.12864 0.484828 -0.231703 +v 0.182318 0.421367 -0.270635 +v 0.184412 0.432991 -0.226222 +v 0.181058 0.393337 -0.356983 +v 0.153971 0.43007 -0.317435 +v 0.181021 0.408212 -0.314306 +v 0.132854 0.434994 -0.366406 +v 0.108827 0.479645 -0.330184 +v 0.129579 0.453546 -0.322577 +v 0.271272 0.289202 -0.43404 +v 0.256373 0.321389 -0.394225 +v 0.27978 0.299457 -0.39423 +v 0.25243 0.265854 -0.51109 +v 0.244489 0.295954 -0.473151 +v 0.262234 0.277984 -0.473047 +v 0.222318 0.295364 -0.512192 +v 0.207464 0.325437 -0.475402 +v 0.22911 0.326676 -0.434645 +v 0.226082 0.311425 -0.47382 +v 0.207222 0.358953 -0.395931 +v 0.231939 0.340893 -0.394664 +v 0.229588 0.23906 -0.583632 +v 0.229573 0.267033 -0.548566 +v 0.241626 0.252863 -0.548006 +v 0.200866 0.209224 -0.650365 +v 0.208561 0.235652 -0.619796 +v 0.216079 0.224497 -0.617806 +v 0.189096 0.227495 -0.657696 +v 0.194073 0.252493 -0.626117 +v 0.210419 0.261708 -0.586535 +v 0.201205 0.24456 -0.622512 +v 0.204929 0.289067 -0.551885 +v 0.217277 0.278718 -0.549762 +v 0.191528 0.279593 -0.593091 +v 0.180704 0.31021 -0.560079 +v 0.191626 0.319194 -0.517002 +v 0.192718 0.299232 -0.555224 +v 0.178982 0.243072 -0.668465 +v 0.180366 0.2701 -0.636675 +v 0.187227 0.260724 -0.630778 +v 0.168974 0.264027 -0.68325 +v 0.165401 0.295679 -0.652898 +v 0.172836 0.301346 -0.605257 +v 0.173191 0.281469 -0.643988 +v 0.157507 0.338602 -0.575517 +v 0.162563 0.345778 -0.528133 +v 0.168947 0.323001 -0.566744 +v 0.18592 0.3583 -0.438774 +v 0.159922 0.394668 -0.402494 +v 0.182968 0.376551 -0.398413 +v 0.171361 0.353224 -0.482697 +v 0.189083 0.339032 -0.478244 +v 0.13959 0.38744 -0.497829 +v 0.146465 0.392077 -0.449356 +v 0.154723 0.369022 -0.489109 +v 0.120435 0.436389 -0.416997 +v 0.13883 0.414286 -0.40856 +v 0.162766 0.237365 -0.714519 +v 0.14453 0.238325 -0.762905 +v 0.154489 0.264476 -0.732809 +v 0.159146 0.249675 -0.723361 +v 0.169354 0.218362 -0.698838 +v 0.148654 0.212484 -0.74352 +v 0.165964 0.227083 -0.706329 +v 0.129345 0.185938 -0.768161 +v 0.103771 0.188709 -0.811765 +v 0.127078 0.214191 -0.789712 +v 0.127536 0.199003 -0.779188 +v 0.104233 0.22428 -0.834639 +v 0.123621 0.246714 -0.810795 +v 0.125951 0.229889 -0.800469 +v 0.165451 0.176774 -0.709605 +v 0.178392 0.202839 -0.686167 +v 0.183714 0.193291 -0.681147 +v 0.128906 0.142294 -0.757352 +v 0.141056 0.16866 -0.744268 +v 0.146905 0.159749 -0.735189 +v 0.11426 0.158209 -0.781184 +v 0.155163 0.193904 -0.72504 +v 0.134527 0.176606 -0.755889 +v 0.173551 0.210739 -0.692091 +v 0.071168 0.0773944 -0.823128 +v 0.0772557 0.0968129 -0.813063 +v 0.0970829 0.107166 -0.791453 +v 0.0833614 0.0911869 -0.806753 +v 0.0584782 0.0857965 -0.833486 +v 0.0594789 0.102778 -0.828784 +v 0.0822015 0.118201 -0.809113 +v 0.0694467 0.100576 -0.820488 +v 0.0844006 0.141885 -0.81231 +v 0.105628 0.131966 -0.78515 +v 0.0969787 0.138077 -0.797468 +v 0.112281 0.124484 -0.775546 +v 0 0.103329 -0.854353 +v 0.0194786 0.121401 -0.851505 +v 0.0323538 0.10384 -0.845874 +v 0.0136681 0.0885148 -0.857088 +v 0.0165037 0.103565 -0.851885 +v 0 0.140769 -0.859399 +v 0.0246564 0.161283 -0.863583 +v 0.0443595 0.141572 -0.845167 +v 0.0222954 0.140986 -0.85554 +v 0.0744048 0.163653 -0.83119 +v 0.0558912 0.121886 -0.832382 +v 0.0659611 0.142461 -0.829483 +v 0.0390318 0.0886167 -0.846477 +v 0.0468967 0.103722 -0.83771 +v 0.0272805 0.239981 -0.913565 +v 0.0544314 0.220439 -0.886988 +v 0.0271901 0.200978 -0.888648 +v 0 0.220837 -0.907572 +v 0.0275051 0.220528 -0.902034 +v 0.0792852 0.240036 -0.875107 +v 0.079917 0.202818 -0.851701 +v 0.0802003 0.22141 -0.864001 +v 0.0524605 0.181859 -0.861359 +v 0.078521 0.183669 -0.83968 +v 0 0.181255 -0.880204 +v 0.0262642 0.181255 -0.875225 +v 0.0345935 0.652775 0.14404 +v 0.0149263 0.704329 0.13577 +v 0 0.656235 0.156907 +v 0.0176416 0.655292 0.153605 +v 0.0636698 0.644262 0.107473 +v 0.0426536 0.698968 0.111755 +v 0.0501661 0.648995 0.128549 +v 0.0481798 0.748362 0.0748555 +v 0.034531 0.808126 0.076987 +v 0.0257816 0.755799 0.108847 +v 0.0376151 0.752741 0.0944763 +v 0.0119854 0.812786 0.0995372 +v 0 0.758168 0.120731 +v 0.0131023 0.75759 0.117691 +v 0.0825571 0.632648 0.0501658 +v 0.0640056 0.689091 0.0661828 +v 0.0744148 0.638889 0.081151 +v 0.0916572 0.616652 -0.0234619 +v 0.0768544 0.674199 0.00213464 +v 0.0882526 0.625311 0.0151005 +v 0.0723981 0.714628 -0.0495649 +v 0.0646362 0.778756 -0.0276981 +v 0.0641218 0.735226 0.0210732 +v 0.0692744 0.725982 -0.0123288 +v 0.0528015 0.797376 0.0338196 +v 0.0570529 0.742604 0.0502612 +v 0.0571458 0.842278 -0.0108912 +v 0.0493821 0.902479 0.0011097 +v 0.042335 0.858139 0.0408732 +v 0.0504963 0.851352 0.0172913 +v 0.0650303 0.816085 -0.0798878 +v 0.0606807 0.87967 -0.0587882 +v 0.0620637 0.83062 -0.0433818 +v 0.0623106 0.906503 -0.109204 +v 0.0579784 0.961716 -0.0864028 +v 0.0550076 0.93795 -0.0415996 +v 0.059611 0.924003 -0.0733258 +v 0.0477064 0.98797 -0.0284802 +v 0.0409032 0.956621 0.00833092 +v 0.0487038 0.948703 -0.0142919 +v 0.0224595 0.866007 0.0731619 +v 0.0111356 0.919844 0.063683 +v 0 0.868085 0.0843154 +v 0.0113912 0.867634 0.0814782 +v 0.0321476 0.914975 0.0424755 +v 0.0328817 0.862933 0.0595618 +v 0.0313467 1.00201 0.0104174 +v 0.021745 0.965433 0.0386799 +v 0.0318092 0.962063 0.0260024 +v 0.0109027 1.00721 0.02956 +v 0 0.967565 0.0488817 +v 0.0110342 0.967133 0.0463206 +v 0.0927221 0.594629 -0.108716 +v 0.0811949 0.652452 -0.0766817 +v 0.0929269 0.606445 -0.0649382 +v 0.0905311 0.565938 -0.200729 +v 0.0796919 0.623006 -0.165758 +v 0.0917033 0.581146 -0.154184 +v 0.0701261 0.646748 -0.226056 +v 0.0664635 0.711248 -0.193784 +v 0.0728865 0.684965 -0.133701 +v 0.0715802 0.666872 -0.179201 +v 0.0685643 0.750132 -0.104965 +v 0.0733807 0.70092 -0.0902555 +v 0.0903681 0.530111 -0.294603 +v 0.0776805 0.58601 -0.259787 +v 0.0898659 0.548946 -0.24774 +v 0.097517 0.486675 -0.385441 +v 0.0804959 0.541616 -0.353461 +v 0.0926983 0.509373 -0.340708 +v 0.0761219 0.548086 -0.413032 +v 0.0650798 0.609194 -0.382899 +v 0.0694326 0.600834 -0.321032 +v 0.0715222 0.575261 -0.367754 +v 0.0635599 0.663728 -0.28836 +v 0.0691888 0.624699 -0.273566 +v 0.059403 0.672743 -0.351189 +v 0.057568 0.737668 -0.318127 +v 0.0615189 0.729211 -0.255736 +v 0.0599632 0.701812 -0.303452 +v 0.0638022 0.610794 -0.443764 +v 0.057 0.673474 -0.412989 +v 0.0604715 0.642303 -0.398207 +v 0.0556913 0.666363 -0.472225 +v 0.0506779 0.725549 -0.438222 +v 0.0541077 0.736304 -0.37945 +v 0.0539679 0.701594 -0.426557 +v 0.0530592 0.797554 -0.343356 +v 0.0577082 0.802226 -0.283966 +v 0.0555436 0.77001 -0.331667 +v 0.0650836 0.777793 -0.163328 +v 0.0642453 0.843933 -0.135015 +v 0.0658258 0.798375 -0.120117 +v 0.0615954 0.795543 -0.223465 +v 0.0634368 0.754638 -0.208781 +v 0.0578491 0.863915 -0.248985 +v 0.0619551 0.860251 -0.191856 +v 0.0600345 0.832468 -0.237109 +v 0.0608785 0.920134 -0.161278 +v 0.0629029 0.885091 -0.148967 +v 0.115481 0.435977 -0.469324 +v 0.0934731 0.489974 -0.44147 +v 0.105485 0.461958 -0.428191 +v 0.137081 0.383248 -0.548209 +v 0.11484 0.434175 -0.522587 +v 0.126387 0.409488 -0.509208 +v 0.115541 0.431716 -0.575975 +v 0.09563 0.487491 -0.552719 +v 0.0937727 0.489983 -0.497482 +v 0.104679 0.460506 -0.53731 +v 0.0762495 0.549271 -0.471606 +v 0.0838962 0.519418 -0.456165 +v 0.153355 0.334537 -0.625031 +v 0.135717 0.380251 -0.599662 +v 0.146443 0.358012 -0.586694 +v 0.155343 0.295891 -0.702726 +v 0.147225 0.334236 -0.675546 +v 0.156695 0.313578 -0.663586 +v 0.13711 0.337947 -0.725558 +v 0.126607 0.380123 -0.70125 +v 0.132847 0.3791 -0.651128 +v 0.137145 0.356728 -0.688269 +v 0.115117 0.429295 -0.62851 +v 0.125288 0.404339 -0.613805 +v 0.111825 0.427336 -0.678979 +v 0.0953888 0.477888 -0.657145 +v 0.0967178 0.483278 -0.606298 +v 0.105164 0.454138 -0.643161 +v 0.116045 0.383233 -0.748399 +v 0.104768 0.425912 -0.725955 +v 0.115764 0.403493 -0.713981 +v 0.0939195 0.424785 -0.767904 +v 0.0829268 0.464178 -0.745605 +v 0.0907983 0.471541 -0.704017 +v 0.093771 0.446449 -0.736665 +v 0.0762139 0.518189 -0.680653 +v 0.079383 0.530028 -0.634043 +v 0.085752 0.499566 -0.669847 +v 0.0782139 0.546088 -0.528508 +v 0.0647285 0.606129 -0.502041 +v 0.0700284 0.578515 -0.487121 +v 0.0797836 0.539447 -0.582967 +v 0.0874224 0.514136 -0.568157 +v 0.0651245 0.582102 -0.608073 +v 0.0656789 0.596288 -0.55708 +v 0.0724417 0.562434 -0.596492 +v 0.054874 0.652395 -0.527414 +v 0.0598452 0.631096 -0.515695 +v 0.135989 0.272173 -0.782405 +v 0.140485 0.302163 -0.753089 +v 0.14818 0.282232 -0.742819 +v 0.0996581 0.26113 -0.854226 +v 0.114031 0.285033 -0.828141 +v 0.119554 0.265282 -0.820027 +v 0.089826 0.300739 -0.866572 +v 0.0997471 0.325848 -0.840926 +v 0.121513 0.312815 -0.800268 +v 0.107335 0.305408 -0.835114 +v 0.121996 0.345416 -0.773211 +v 0.131668 0.323485 -0.763319 +v 0.0525058 0.258976 -0.906454 +v 0.0738131 0.278818 -0.88955 +v 0.0770857 0.259289 -0.883545 +v 0 0.259819 -0.926922 +v 0.0255035 0.278608 -0.925997 +v 0.0265875 0.259413 -0.921423 +v 0 0.297563 -0.932622 +v 0.0224718 0.31542 -0.926863 +v 0.0475518 0.297368 -0.914157 +v 0.0241058 0.297349 -0.92768 +v 0.064893 0.31732 -0.89519 +v 0.0696785 0.298278 -0.893354 +v 0.0407655 0.333461 -0.912723 +v 0.0542138 0.352757 -0.893894 +v 0.0767933 0.33953 -0.872588 +v 0.0596677 0.335595 -0.895293 +v 0 0.332491 -0.927988 +v 0.0188043 0.34868 -0.91929 +v 0.0206788 0.332602 -0.923936 +v 0 0.363026 -0.916334 +v 0.01512 0.376656 -0.906406 +v 0.0333426 0.365103 -0.904776 +v 0.0169256 0.363437 -0.913316 +v 0.0434647 0.382345 -0.887527 +v 0.0626167 0.37393 -0.873184 +v 0.0487425 0.368456 -0.891228 +v 0.103382 0.354851 -0.815178 +v 0.101143 0.387978 -0.790775 +v 0.111732 0.367175 -0.782463 +v 0.083026 0.364682 -0.84897 +v 0.0915502 0.345792 -0.845552 +v 0.066124 0.39706 -0.852095 +v 0.0838772 0.392882 -0.825823 +v 0.0744566 0.381958 -0.851159 +v 0.0800478 0.423589 -0.80338 +v 0.0904932 0.407043 -0.797847 +v 0.0221743 0.0774254 -0.864213 +v 0.00926811 0.0696138 -0.882606 +v 0 0.0771331 -0.868873 +v 0.0112693 0.077288 -0.867522 +v 0.041434 0.0763382 -0.854706 +v 0.026755 0.0692444 -0.876848 +v 0.0323506 0.0772179 -0.859693 +v 0.0286782 0.0631084 -0.894638 +v 0.0184275 0.0624492 -0.920945 +v 0.0150683 0.0650394 -0.899939 +v 0.0221467 0.0644151 -0.897434 +v 0.00630153 0.0638405 -0.924398 +v 0 0.0652021 -0.902496 +v 0.00762528 0.0652216 -0.901758 +v 0.0553822 0.0713135 -0.845779 +v 0.0410938 0.0662555 -0.86962 +v 0.0490601 0.0744589 -0.849998 +v 0.0647275 0.0601576 -0.839647 +v 0.0514705 0.058563 -0.863829 +v 0.0605536 0.0666352 -0.842259 +v 0.0474456 0.0466041 -0.88612 +v 0.0377075 0.0490944 -0.913025 +v 0.0395472 0.0575214 -0.88952 +v 0.0438711 0.0528315 -0.887523 +v 0.029122 0.0580213 -0.916571 +v 0.0344806 0.0608788 -0.891946 +v 0.0291405 0.0528274 -0.941437 +v 0.0217037 0.0587879 -0.970922 +v 0.020346 0.0607537 -0.944921 +v 0.0249191 0.0573756 -0.943091 +v 0.0362158 0.039806 -0.938884 +v 0.0294798 0.0462959 -0.968238 +v 0.032932 0.0470054 -0.940017 +v 0.0311482 0.0364974 -0.996432 +v 0.0258155 0.049124 -1.02608 +v 0.0232415 0.0553451 -0.997994 +v 0.0272858 0.0466971 -0.997427 +v 0.0175609 0.0671713 -1.02819 +v 0.0154321 0.0672466 -1.00154 +v 0.0193071 0.0621043 -0.999483 +v 0.0104468 0.0644884 -0.948645 +v 0.00445433 0.0690294 -0.977819 +v 0 0.0653781 -0.950478 +v 0.00525763 0.0652 -0.949946 +v 0.0132494 0.0660137 -0.974668 +v 0.0154991 0.0630654 -0.946871 +v 0.0103372 0.0779051 -1.0337 +v 0.007707 0.0736096 -1.00589 +v 0.0115662 0.0710437 -1.00379 +v 0.00341251 0.0830153 -1.03822 +v 0 0.075503 -1.00808 +v 0.00385237 0.0750581 -1.00744 +v 0.0706368 0.0412733 -0.837559 +v 0.0583557 0.0442484 -0.861004 +v 0.0680572 0.0516139 -0.838152 +v 0.0739228 0.0162781 -0.838215 +v 0.0623656 0.0233546 -0.861161 +v 0.0725606 0.029405 -0.837652 +v 0.0550315 0.00667443 -0.886598 +v 0.0474004 0.0142273 -0.911428 +v 0.0524113 0.0291629 -0.885433 +v 0.0539721 0.0184294 -0.885857 +v 0.0437831 0.0343882 -0.911265 +v 0.0502641 0.0386345 -0.885472 +v 0.0753386 -0.0126748 -0.839888 +v 0.0642616 -0.00211374 -0.862803 +v 0.0748173 0.00216178 -0.839033 +v 0.0756377 -0.0434321 -0.840848 +v 0.0648191 -0.0301734 -0.864391 +v 0.0755806 -0.0279625 -0.840565 +v 0.0560893 -0.0459684 -0.889344 +v 0.0494136 -0.0349527 -0.914295 +v 0.0559989 -0.0189605 -0.888399 +v 0.0561044 -0.0324023 -0.889074 +v 0.0490631 -0.00945871 -0.912821 +v 0.0556742 -0.00586187 -0.887509 +v 0.0447156 -0.0256267 -0.939124 +v 0.0418249 -0.0177498 -0.963888 +v 0.0437874 -0.00123921 -0.937811 +v 0.0444364 -0.0132804 -0.938408 +v 0.0445592 -0.0506337 -0.939997 +v 0.0420121 -0.0422315 -0.96506 +v 0.0447237 -0.038128 -0.93973 +v 0.0407499 -0.0594704 -0.990275 +v 0.0424315 -0.0544375 -1.01412 +v 0.0414578 -0.0354762 -0.989395 +v 0.0412556 -0.0475669 -0.989963 +v 0.0427717 -0.0303235 -1.01299 +v 0.0405644 -0.0110995 -0.988704 +v 0.0412597 -0.0232898 -0.988876 +v 0.0410556 0.0212201 -0.937656 +v 0.0357879 0.0282294 -0.965662 +v 0.0389139 0.0311254 -0.938097 +v 0.0399169 0.00615045 -0.963672 +v 0.0426703 0.0103464 -0.93756 +v 0.0408796 -0.00573091 -1.01351 +v 0.0372973 0.013053 -0.990702 +v 0.039275 0.00100339 -0.989183 +v 0.0358836 0.0196847 -1.01991 +v 0.0345368 0.0250835 -0.993654 +v 0.075352 -0.0739048 -0.839743 +v 0.0648274 -0.0588622 -0.864336 +v 0.0756039 -0.0588145 -0.840522 +v 0.0736849 -0.10239 -0.837458 +v 0.0642093 -0.0864452 -0.862485 +v 0.0747547 -0.0884982 -0.838669 +v 0.0547726 -0.09758 -0.886045 +v 0.0485672 -0.0854987 -0.912505 +v 0.0558896 -0.0726458 -0.888248 +v 0.0554976 -0.0854161 -0.887205 +v 0.0492321 -0.0607495 -0.91424 +v 0.0560522 -0.0594398 -0.889015 +v 0.0696186 -0.127248 -0.835251 +v 0.0620218 -0.111414 -0.860112 +v 0.0720153 -0.115375 -0.836266 +v 0.062135 -0.146841 -0.834383 +v 0.0573216 -0.132262 -0.858494 +v 0.0663675 -0.137805 -0.834571 +v 0.0464682 -0.136762 -0.883458 +v 0.0430547 -0.127072 -0.909196 +v 0.0519087 -0.119407 -0.88402 +v 0.0495624 -0.128729 -0.883475 +v 0.0467358 -0.108005 -0.91039 +v 0.0536109 -0.108967 -0.88493 +v 0.0397848 -0.118273 -0.935532 +v 0.0374066 -0.110423 -0.961917 +v 0.0425224 -0.0979607 -0.937061 +v 0.0413499 -0.108499 -0.936162 +v 0.0352216 -0.135031 -0.935745 +v 0.033653 -0.128854 -0.961577 +v 0.0377633 -0.127158 -0.935337 +v 0.028162 -0.140217 -0.98881 +v 0.0288349 -0.13654 -1.01308 +v 0.0329166 -0.123185 -0.987166 +v 0.0306886 -0.132025 -0.987598 +v 0.033661 -0.118445 -1.01205 +v 0.0365294 -0.103767 -0.98788 +v 0.0348592 -0.113748 -0.987323 +v 0.0439439 -0.0750841 -0.938995 +v 0.0412711 -0.0663748 -0.965066 +v 0.0443205 -0.0629937 -0.939696 +v 0.039841 -0.089351 -0.963549 +v 0.0433658 -0.086781 -0.938061 +v 0.0376119 -0.0987055 -1.01302 +v 0.0391055 -0.0823881 -0.989425 +v 0.0379405 -0.0932965 -0.988644 +v 0.0405736 -0.077357 -1.01428 +v 0.0400376 -0.0710951 -0.990033 +v 0.050482 -0.159911 -0.835788 +v 0.0491656 -0.14748 -0.858907 +v 0.0567936 -0.154151 -0.834844 +v 0.0355027 -0.167485 -0.838457 +v 0.0375729 -0.156959 -0.861296 +v 0.0433389 -0.164297 -0.837047 +v 0.0266404 -0.155672 -0.888439 +v 0.0281113 -0.151111 -0.913346 +v 0.0378317 -0.148589 -0.885302 +v 0.0325021 -0.152655 -0.8868 +v 0.0368406 -0.141505 -0.910226 +v 0.0425225 -0.143337 -0.884127 +v 0.0183057 -0.170973 -0.841058 +v 0.0235256 -0.161989 -0.864274 +v 0.0271121 -0.169652 -0.839849 +v 0 -0.171783 -0.842258 +v 0.00800552 -0.163859 -0.866457 +v 0.00922217 -0.171625 -0.841916 +v 0 -0.159973 -0.892769 +v 0.00598158 -0.159094 -0.919597 +v 0.013746 -0.159103 -0.891413 +v 0.00692621 -0.15979 -0.892384 +v 0.0175854 -0.156703 -0.916991 +v 0.0203528 -0.157775 -0.890037 +v 0.010265 -0.160356 -0.946757 +v 0.0132335 -0.162751 -0.973882 +v 0.0199462 -0.155716 -0.942903 +v 0.0152151 -0.158465 -0.944988 +v 0 -0.161792 -0.948476 +v 0.00448582 -0.166526 -0.977469 +v 0.005169 -0.161447 -0.947992 +v 0 -0.174636 -1.00862 +v 0.00349707 -0.183567 -1.03926 +v 0.00781981 -0.17219 -1.00613 +v 0.00392939 -0.174007 -1.00793 +v 0.0104033 -0.177664 -1.03377 +v 0.0153279 -0.165267 -1.00041 +v 0.0116323 -0.169253 -1.00352 +v 0.0284597 -0.147422 -0.938653 +v 0.028265 -0.143906 -0.963939 +v 0.0320961 -0.141767 -0.936923 +v 0.0213092 -0.155208 -0.968706 +v 0.0243854 -0.152053 -0.940719 +v 0.0170456 -0.167058 -1.02566 +v 0.0222125 -0.154424 -0.993853 +v 0.0188676 -0.160301 -0.997092 +v 0.0232481 -0.15295 -1.01781 +v 0.0253236 -0.147706 -0.990994 +v 0.00623196 0.0902711 -1.06718 +v 0.00291915 0.104175 -1.10191 +v 0 0.0934189 -1.07056 +v 0.0030955 0.0926303 -1.06959 +v 0.0127915 0.0808668 -1.06011 +v 0.00895739 0.0966004 -1.09465 +v 0.00945033 0.0863477 -1.06386 +v 0.0121212 0.101481 -1.12017 +v 0.00936079 0.123452 -1.15974 +v 0.00585415 0.114438 -1.13182 +v 0.00891026 0.108892 -1.12647 +v 0.00305966 0.134143 -1.17092 +v 0 0.119149 -1.13703 +v 0.00290127 0.117922 -1.13556 +v 0.0201494 0.0650953 -1.05372 +v 0.0155954 0.0822074 -1.08477 +v 0.0162966 0.0738349 -1.05646 +v 0.0297234 0.0425491 -1.05572 +v 0.0236789 0.0618552 -1.07806 +v 0.024534 0.0544915 -1.0527 +v 0.0282665 0.0577386 -1.10059 +v 0.0241072 0.079956 -1.12813 +v 0.0192862 0.081911 -1.10754 +v 0.0234876 0.0702704 -1.10293 +v 0.0162074 0.104528 -1.14336 +v 0.0155386 0.0924011 -1.11358 +v 0.0215762 0.105417 -1.16407 +v 0.0200912 0.135174 -1.20769 +v 0.0139596 0.130543 -1.18513 +v 0.0176829 0.118701 -1.17458 +v 0.0300548 0.0762768 -1.14671 +v 0.0284344 0.104072 -1.18246 +v 0.025685 0.0911305 -1.15448 +v 0.0369275 0.100885 -1.19937 +v 0.0383028 0.136371 -1.24522 +v 0.0281079 0.137062 -1.22748 +v 0.0325692 0.11906 -1.21254 +v 0.0282098 0.176042 -1.2813 +v 0.0189349 0.169793 -1.25835 +v 0.0235582 0.154203 -1.24311 +v 0.00685536 0.148172 -1.20286 +v 0.00397648 0.175095 -1.24823 +v 0 0.154897 -1.21046 +v 0.00341212 0.15311 -1.20835 +v 0.0119712 0.16032 -1.23217 +v 0.0103608 0.140509 -1.19484 +v 0.0172661 0.209236 -1.31508 +v 0.00952633 0.193565 -1.28334 +v 0.0142527 0.183143 -1.27212 +v 0.00581208 0.229206 -1.33683 +v 0 0.202867 -1.29382 +v 0.00477052 0.200369 -1.29093 +v 0.0430684 -0.00233264 -1.03805 +v 0.0471119 -0.00250356 -1.06297 +v 0.0379721 0.0211541 -1.05062 +v 0.040551 0.0100302 -1.04225 +v 0.0459658 -0.0270111 -1.03559 +v 0.0504744 -0.0259121 -1.05824 +v 0.0448657 -0.0146886 -1.03608 +v 0.057488 -0.0516341 -1.08152 +v 0.063524 -0.0553265 -1.10675 +v 0.0557995 -0.0276189 -1.08213 +v 0.0569467 -0.0394439 -1.08134 +v 0.0609906 -0.032225 -1.10814 +v 0.0520586 -0.00658676 -1.0885 +v 0.0541392 -0.0165397 -1.08435 +v 0.0462175 -0.0513583 -1.03649 +v 0.0514636 -0.0503618 -1.05854 +v 0.0463918 -0.0392737 -1.03584 +v 0.044364 -0.0745209 -1.03765 +v 0.0499242 -0.073971 -1.06012 +v 0.045517 -0.0631467 -1.0372 +v 0.053032 -0.097926 -1.08413 +v 0.0603535 -0.10307 -1.10909 +v 0.0565107 -0.075737 -1.08304 +v 0.0550656 -0.0871865 -1.08378 +v 0.0633356 -0.0798366 -1.10787 +v 0.0573304 -0.063809 -1.08218 +v 0.0673767 -0.110691 -1.13702 +v 0.0731643 -0.120562 -1.16979 +v 0.0695195 -0.0861832 -1.13624 +v 0.0688228 -0.098666 -1.13672 +v 0.0623125 -0.131925 -1.1363 +v 0.069018 -0.143944 -1.16827 +v 0.0652002 -0.121897 -1.13695 +v 0.067764 -0.178755 -1.20073 +v 0.0712164 -0.198806 -1.2449 +v 0.0738841 -0.158341 -1.20641 +v 0.0712193 -0.169489 -1.20395 +v 0.0758992 -0.174614 -1.25294 +v 0.0767378 -0.132309 -1.20931 +v 0.0757323 -0.14579 -1.20817 +v 0.0686132 -0.0613133 -1.13568 +v 0.0716892 -0.0692318 -1.1695 +v 0.0646861 -0.039171 -1.13725 +v 0.0670239 -0.0497062 -1.13607 +v 0.0741022 -0.0945317 -1.16979 +v 0.0694473 -0.0736023 -1.13582 +v 0.0771492 -0.145393 -1.25745 +v 0.076116 -0.104464 -1.21005 +v 0.0768743 -0.118375 -1.20992 +v 0.074716 -0.11541 -1.25827 +v 0.0718098 -0.0786103 -1.20921 +v 0.0744365 -0.0910502 -1.20979 +v 0.0409649 -0.0957265 -1.03698 +v 0.0462964 -0.095392 -1.06041 +v 0.0428326 -0.0853628 -1.03749 +v 0.0363891 -0.115235 -1.03587 +v 0.0410836 -0.114435 -1.05924 +v 0.038803 -0.105666 -1.03636 +v 0.0403877 -0.133405 -1.08171 +v 0.047193 -0.138428 -1.10598 +v 0.0474102 -0.116774 -1.08305 +v 0.0440236 -0.12527 -1.08225 +v 0.0547649 -0.122638 -1.10834 +v 0.0504466 -0.107724 -1.08378 +v 0.0309739 -0.133479 -1.0363 +v 0.0348527 -0.132068 -1.05887 +v 0.0337654 -0.124488 -1.03577 +v 0.0250564 -0.150891 -1.04022 +v 0.0281545 -0.149284 -1.06162 +v 0.0280568 -0.142262 -1.0377 +v 0.0252079 -0.166483 -1.08898 +v 0.0301782 -0.167581 -1.10799 +v 0.032755 -0.149397 -1.0827 +v 0.0289282 -0.157693 -1.085 +v 0.038697 -0.152601 -1.10475 +v 0.0366031 -0.141375 -1.08173 +v 0.0361866 -0.172081 -1.12856 +v 0.0425304 -0.181554 -1.15282 +v 0.0455021 -0.160125 -1.12934 +v 0.0408147 -0.165937 -1.1283 +v 0.027456 -0.187279 -1.13557 +v 0.0331649 -0.191716 -1.15303 +v 0.0317047 -0.179035 -1.13076 +v 0.0302575 -0.2108 -1.17742 +v 0.0341797 -0.220034 -1.19559 +v 0.0386069 -0.202152 -1.17577 +v 0.034216 -0.205283 -1.1745 +v 0.0430523 -0.220307 -1.20647 +v 0.0484971 -0.197199 -1.1828 +v 0.0434182 -0.199621 -1.17873 +v 0.0546271 -0.147711 -1.13297 +v 0.061832 -0.16133 -1.16405 +v 0.0587328 -0.140413 -1.13485 +v 0.052478 -0.172737 -1.15794 +v 0.0501615 -0.154166 -1.13101 +v 0.0533492 -0.219391 -1.21988 +v 0.0587799 -0.190715 -1.1921 +v 0.0536909 -0.194395 -1.18737 +v 0.063351 -0.213703 -1.23347 +v 0.0635442 -0.185666 -1.19667 +v 0.0189367 -0.167607 -1.04891 +v 0.0215245 -0.167104 -1.06986 +v 0.0220146 -0.159421 -1.0441 +v 0.0126933 -0.181977 -1.05954 +v 0.015183 -0.18465 -1.08258 +v 0.0158279 -0.175206 -1.0542 +v 0.0119505 -0.204179 -1.11888 +v 0.0154853 -0.207043 -1.13832 +v 0.0183125 -0.185743 -1.1025 +v 0.0150794 -0.195294 -1.11067 +v 0.0223796 -0.186053 -1.11965 +v 0.021679 -0.175986 -1.09504 +v 0.00636728 -0.192058 -1.06856 +v 0.00903611 -0.199147 -1.09543 +v 0.00953802 -0.187675 -1.06447 +v 0 -0.195905 -1.07245 +v 0.00299975 -0.207801 -1.10402 +v 0.00318622 -0.194882 -1.07137 +v 0 -0.223692 -1.13865 +v 0.00301161 -0.237849 -1.17005 +v 0.00589997 -0.218097 -1.1327 +v 0.00294057 -0.222174 -1.13699 +v 0.00912028 -0.225914 -1.15732 +v 0.00889702 -0.21194 -1.12644 +v 0.00644607 -0.249123 -1.19681 +v 0.0106647 -0.25678 -1.21781 +v 0.0130083 -0.230891 -1.17707 +v 0.0097054 -0.24093 -1.18786 +v 0 -0.256791 -1.20533 +v 0.00355598 -0.272502 -1.23549 +v 0.00321578 -0.254675 -1.20296 +v 0 -0.293993 -1.27063 +v 0.00465619 -0.310553 -1.29851 +v 0.00804657 -0.283883 -1.25908 +v 0.00403515 -0.291178 -1.26742 +v 0.0137552 -0.290155 -1.27496 +v 0.0159033 -0.260451 -1.23226 +v 0.0120105 -0.273257 -1.24693 +v 0.0198538 -0.208367 -1.15393 +v 0.0250173 -0.209002 -1.16632 +v 0.0235275 -0.197291 -1.14364 +v 0.0177637 -0.233137 -1.19156 +v 0.0163692 -0.219802 -1.16542 +v 0.0222142 -0.259801 -1.23946 +v 0.023337 -0.232907 -1.20079 +v 0.0197012 -0.246614 -1.21638 +v 0.0290741 -0.23012 -1.20425 +v 0.0267434 -0.220488 -1.18699 +v 0.0141667 0.252735 -1.3763 +v 0.00862818 0.296788 -1.43833 +v 0 0.265263 -1.3901 +v 0.00711894 0.261877 -1.3863 +v 0.0277644 0.221253 -1.34312 +v 0.0254557 0.270562 -1.41023 +v 0.0210723 0.238855 -1.36145 +v 0.0395329 0.280718 -1.43721 +v 0.0350922 0.334478 -1.51104 +v 0.0203963 0.320599 -1.47923 +v 0.0302008 0.302916 -1.46042 +v 0.0120022 0.366951 -1.54602 +v 0 0.336732 -1.49672 +v 0.0102769 0.332344 -1.49191 +v 0.0402239 0.178951 -1.3015 +v 0.0409965 0.227784 -1.36634 +v 0.034172 0.200946 -1.32268 +v 0.0509761 0.133962 -1.26241 +v 0.0544836 0.178077 -1.31902 +v 0.0458489 0.156284 -1.28096 +v 0.0698954 0.17467 -1.3353 +v 0.0721234 0.224413 -1.39908 +v 0.0562407 0.228402 -1.38457 +v 0.0634831 0.201027 -1.35864 +v 0.0554396 0.282729 -1.45678 +v 0.0482351 0.255422 -1.41135 +v 0.0714489 0.277944 -1.46986 +v 0.0684238 0.331221 -1.5447 +v 0.0516924 0.337745 -1.53289 +v 0.0621617 0.308573 -1.50172 +v 0.0869837 0.21893 -1.41316 +v 0.0860594 0.268638 -1.4782 +v 0.0796807 0.247512 -1.43958 +v 0.0975647 0.259607 -1.4865 +v 0.0960039 0.296056 -1.54004 +v 0.0837438 0.316626 -1.54705 +v 0.0911638 0.286103 -1.51303 +v 0.0796578 0.360007 -1.61888 +v 0.0626362 0.380698 -1.62132 +v 0.0742484 0.348943 -1.58424 +v 0.0271549 0.384864 -1.58408 +v 0.0154306 0.426943 -1.65182 +v 0 0.404366 -1.6056 +v 0.013741 0.399016 -1.59966 +v 0.044546 0.389347 -1.60946 +v 0.0399144 0.363808 -1.56109 +v 0.052752 0.422811 -1.69677 +v 0.0334764 0.433124 -1.68269 +v 0.0488657 0.409534 -1.65506 +v 0.0184102 0.464009 -1.74762 +v 0 0.455254 -1.70865 +v 0.017008 0.449139 -1.70147 +v 0.0472051 0.0969698 -1.21656 +v 0.0594027 0.0935854 -1.23631 +v 0.0652408 0.131016 -1.28061 +v 0.0555341 0.113003 -1.24722 +v 0.0541669 0.0618249 -1.20379 +v 0.0645907 0.0600996 -1.23087 +v 0.0724647 0.0921321 -1.26075 +v 0.0624617 0.0758909 -1.23055 +v 0.0851424 0.0946585 -1.29285 +v 0.0936041 0.131114 -1.33119 +v 0.0798864 0.129274 -1.30238 +v 0.083178 0.110542 -1.29432 +v 0.0851303 0.171749 -1.35386 +v 0.075411 0.150701 -1.3163 +v 0.0580296 0.032162 -1.21411 +v 0.0655777 0.0349479 -1.25328 +v 0.0752245 0.0629119 -1.26637 +v 0.0656695 0.0463919 -1.23814 +v 0.0576343 0.00920675 -1.25469 +v 0.0614013 0.0195731 -1.31074 +v 0.0726943 0.0449836 -1.3046 +v 0.0641951 0.0259482 -1.27718 +v 0.0779037 0.0640985 -1.3704 +v 0.0912018 0.0894906 -1.3725 +v 0.0846199 0.0721928 -1.31296 +v 0.0820554 0.0662015 -1.33652 +v 0.0958454 0.103042 -1.33522 +v 0.0856359 0.081777 -1.29874 +v 0.102804 0.118559 -1.3893 +v 0.111717 0.152965 -1.42069 +v 0.104838 0.13873 -1.3702 +v 0.104794 0.126763 -1.37577 +v 0.0937432 0.115925 -1.4455 +v 0.105083 0.140979 -1.45393 +v 0.0990568 0.11474 -1.41211 +v 0.103293 0.168152 -1.52223 +v 0.109318 0.193254 -1.54239 +v 0.113142 0.172729 -1.48098 +v 0.108742 0.16724 -1.49659 +v 0.116421 0.212923 -1.52485 +v 0.116336 0.193422 -1.46423 +v 0.115848 0.181677 -1.47029 +v 0.0988496 0.172184 -1.37889 +v 0.0999499 0.216545 -1.4325 +v 0.0934845 0.19385 -1.39289 +v 0.109829 0.17911 -1.41496 +v 0.102745 0.153841 -1.37129 +v 0.114735 0.238821 -1.51441 +v 0.109751 0.222801 -1.46512 +v 0.114083 0.207308 -1.46255 +v 0.104823 0.264634 -1.51225 +v 0.104003 0.23937 -1.47182 +v 0.0518222 -0.00581491 -1.33275 +v 0.051411 0.014692 -1.40569 +v 0.064153 0.040118 -1.38286 +v 0.0570762 0.016003 -1.35486 +v 0.0407635 -0.0134879 -1.43672 +v 0.0368264 0.0166639 -1.51205 +v 0.0499859 0.0460213 -1.48903 +v 0.0445972 0.0150942 -1.45937 +v 0.0465648 0.0871071 -1.57868 +v 0.0629244 0.112638 -1.56167 +v 0.0648749 0.0714021 -1.46806 +v 0.0563036 0.0787253 -1.52377 +v 0.0800681 0.0938359 -1.45195 +v 0.0721259 0.0661792 -1.4156 +v 0.0259571 -0.0162077 -1.53632 +v 0.0191789 0.0211221 -1.599 +v 0.0316853 0.0563357 -1.59155 +v 0.0282898 0.0188551 -1.55988 +v 0.00890222 -0.0163698 -1.60127 +v 0 0.0236999 -1.63568 +v 0.0108441 0.0646873 -1.6587 +v 0.00968516 0.022919 -1.62555 +v 0 0.110231 -1.70855 +v 0.0138755 0.152422 -1.74005 +v 0.024297 0.102864 -1.66986 +v 0.0122754 0.108125 -1.69784 +v 0.0403358 0.135638 -1.66896 +v 0.0358114 0.0955059 -1.62876 +v 0.0306575 0.188187 -1.75282 +v 0.0493542 0.215788 -1.74786 +v 0.0579224 0.161808 -1.65738 +v 0.0449261 0.176003 -1.70959 +v 0 0.200159 -1.79386 +v 0.0171679 0.240353 -1.82213 +v 0.0155408 0.196768 -1.78245 +v 0 0.286917 -1.86809 +v 0.0198927 0.321999 -1.88174 +v 0.0366642 0.27077 -1.82548 +v 0.018653 0.282367 -1.85619 +v 0.056811 0.290357 -1.80613 +v 0.0681941 0.234642 -1.72763 +v 0.0533918 0.254177 -1.78097 +v 0.0789058 0.133663 -1.54391 +v 0.0929021 0.151417 -1.52889 +v 0.0870528 0.122737 -1.49079 +v 0.0750923 0.181383 -1.63809 +v 0.0692223 0.147191 -1.6008 +v 0.0851281 0.244684 -1.69489 +v 0.0901573 0.194827 -1.61408 +v 0.0804293 0.214214 -1.67048 +v 0.101542 0.201571 -1.58677 +v 0.0974382 0.17841 -1.56303 +v 0.0384889 0.452847 -1.76677 +v 0.0204866 0.467706 -1.8255 +v 0 0.476487 -1.79779 +v 0.0195744 0.46996 -1.78925 +v 0.0716988 0.396739 -1.69258 +v 0.0587617 0.424776 -1.76477 +v 0.0560837 0.427617 -1.7335 +v 0.0777521 0.38349 -1.74156 +v 0.061761 0.399441 -1.80902 +v 0.0415881 0.440718 -1.82924 +v 0.0606871 0.41511 -1.7901 +v 0.0214998 0.441451 -1.87841 +v 0 0.464497 -1.86542 +v 0.0211331 0.457964 -1.85551 +v 0.0947312 0.327848 -1.60033 +v 0.0889421 0.358303 -1.66968 +v 0.0846744 0.362681 -1.64715 +v 0.106925 0.285948 -1.56378 +v 0.10159 0.294646 -1.55523 +v 0.113159 0.260451 -1.57751 +v 0.10333 0.311113 -1.62931 +v 0.111012 0.274036 -1.57087 +v 0.0938068 0.333743 -1.69999 +v 0.092105 0.348211 -1.68708 +v 0.104971 0.281654 -1.64699 +v 0.0920277 0.295614 -1.71236 +v 0.0792053 0.349034 -1.76795 +v 0.0936916 0.316238 -1.70901 +v 0.110125 0.232846 -1.59063 +v 0.112672 0.246733 -1.58467 +v 0.0992778 0.244635 -1.6493 +v 0.106093 0.218754 -1.59365 +v 0.0757169 0.298616 -1.76663 +v 0.0890838 0.27179 -1.70825 +v 0.0424374 0.402634 -1.86419 +v 0.0213388 0.390973 -1.89945 +v 0 0.425057 -1.90442 +v 0.021573 0.418882 -1.89334 +v 0.0610832 0.353103 -1.82521 +v 0.0618844 0.378592 -1.82104 +v 0.040825 0.344208 -1.86523 +v 0.0593834 0.323511 -1.82056 +v 0 0.363939 -1.90768 +v 0.0207833 0.35844 -1.89587 +v 0.0170034 -0.0508072 -1.56238 +v 0.00869046 -0.0855611 -1.58575 +v 0 -0.0528693 -1.59882 +v 0.0085988 -0.0523687 -1.58877 +v 0.0324535 -0.0442612 -1.47572 +v 0.0252329 -0.0773859 -1.51921 +v 0.0250197 -0.0481247 -1.52344 +v 0.0340554 -0.0950127 -1.47154 +v 0.0281324 -0.129901 -1.52868 +v 0.0179539 -0.111752 -1.56239 +v 0.026352 -0.104481 -1.52163 +v 0.0097212 -0.145459 -1.59905 +v 0 -0.118121 -1.60042 +v 0.00909275 -0.11643 -1.58994 +v 0.0447967 -0.0327513 -1.36904 +v 0.0392598 -0.0624089 -1.41661 +v 0.0391105 -0.0391567 -1.42299 +v 0.0524799 -0.0157977 -1.27256 +v 0.0490942 -0.0420033 -1.30842 +v 0.0493179 -0.0249849 -1.31763 +v 0.0532909 -0.0430522 -1.25531 +v 0.0536119 -0.0715693 -1.30328 +v 0.0464519 -0.0710604 -1.35885 +v 0.0506819 -0.057366 -1.304 +v 0.0434501 -0.103649 -1.41956 +v 0.0408325 -0.0837409 -1.41599 +v 0.0529329 -0.104217 -1.36442 +v 0.0503051 -0.141182 -1.43293 +v 0.039104 -0.13954 -1.48505 +v 0.0467339 -0.122631 -1.42573 +v 0.0598942 -0.0661197 -1.25192 +v 0.0616224 -0.0984821 -1.30847 +v 0.0574151 -0.0851093 -1.30514 +v 0.0683494 -0.0889291 -1.25527 +v 0.0693729 -0.126711 -1.31517 +v 0.0607965 -0.136201 -1.375 +v 0.0657647 -0.112184 -1.31219 +v 0.0567954 -0.178979 -1.44408 +v 0.0450712 -0.181794 -1.50179 +v 0.0537852 -0.159799 -1.43957 +v 0.0206966 -0.165601 -1.58161 +v 0.0113188 -0.199929 -1.62286 +v 0 -0.175911 -1.62185 +v 0.0104914 -0.173131 -1.61078 +v 0.0326987 -0.177672 -1.54864 +v 0.0303295 -0.154134 -1.53836 +v 0.0369745 -0.224619 -1.56298 +v 0.0238977 -0.216245 -1.60263 +v 0.0349952 -0.201004 -1.55752 +v 0.0128077 -0.252837 -1.63891 +v 0 -0.230094 -1.6445 +v 0.0121191 -0.226336 -1.633 +v 0.0543231 0.00689893 -1.21179 +v 0.053059 -0.0175425 -1.22513 +v 0.0540884 -0.00512954 -1.23758 +v 0.0513883 0.0345546 -1.18418 +v 0.0512019 0.00995881 -1.17827 +v 0.0533632 0.0201672 -1.1943 +v 0.0478873 0.0160773 -1.1512 +v 0.0525205 -0.00689333 -1.15574 +v 0.0532201 -0.0137879 -1.18706 +v 0.0510772 0.0010882 -1.16557 +v 0.0565554 -0.0385254 -1.21144 +v 0.0540475 -0.0285138 -1.21665 +v 0.0451113 0.0662048 -1.18246 +v 0.045295 0.0398443 -1.1604 +v 0.0485779 0.0499407 -1.18054 +v 0.0371133 0.0714437 -1.16421 +v 0.041168 0.0832264 -1.18904 +v 0.0337123 0.0524465 -1.12083 +v 0.039443 0.0462312 -1.1401 +v 0.0347313 0.0612932 -1.14162 +v 0.0440494 0.0234401 -1.12795 +v 0.0439188 0.0311421 -1.143 +v 0.0395472 0.0307774 -1.10594 +v 0.0472741 0.00932703 -1.10386 +v 0.0505864 0.00127447 -1.1288 +v 0.0452874 0.0163445 -1.11487 +v 0.0345882 0.0371875 -1.08293 +v 0.0337467 0.0445748 -1.10139 +v 0.0428087 0.016229 -1.07886 +v 0.0359906 0.0297936 -1.06509 +v 0.0560666 -0.0135159 -1.11483 +v 0.0496507 0.00185939 -1.09503 +v 0.0583516 -0.0308548 -1.17464 +v 0.0641351 -0.0575965 -1.20801 +v 0.0600841 -0.048059 -1.20879 +v 0.0582455 -0.0220107 -1.14304 +v 0.0550634 -0.0144344 -1.14835 +v 0.0658082 -0.0480707 -1.17021 +v 0.0616065 -0.0300977 -1.13946 +v 0.0682099 -0.0676196 -1.20838 +v 0.0292745 -0.253755 -1.23819 +v 0.0364299 -0.24035 -1.22666 +v 0.0323776 -0.236268 -1.2167 +v 0.0208007 -0.290524 -1.28206 +v 0.0289357 -0.283711 -1.27973 +v 0.0253353 -0.272264 -1.26044 +v 0.0273156 -0.317819 -1.32631 +v 0.0370589 -0.302395 -1.3149 +v 0.0375343 -0.268735 -1.26733 +v 0.0328865 -0.293851 -1.29774 +v 0.0459254 -0.246386 -1.24622 +v 0.041007 -0.243783 -1.23646 +v 0.0107553 -0.321058 -1.31767 +v 0.0183825 -0.323888 -1.32718 +v 0.0159111 -0.307265 -1.30166 +v 0 -0.334092 -1.33268 +v 0.00629768 -0.350083 -1.35758 +v 0.00542202 -0.330476 -1.32853 +v 0 -0.372963 -1.39088 +v 0.00823868 -0.38489 -1.41309 +v 0.0143287 -0.356759 -1.37208 +v 0.00724822 -0.368509 -1.38573 +v 0.0238891 -0.352877 -1.3753 +v 0.0210737 -0.339326 -1.35168 +v 0.0182259 -0.384527 -1.42313 +v 0.0295009 -0.371447 -1.42046 +v 0.0345132 -0.338091 -1.36702 +v 0.0267331 -0.363844 -1.39821 +v 0 -0.403566 -1.44594 +v 0.0101996 -0.408059 -1.46574 +v 0.00923411 -0.398361 -1.43973 +v 0 -0.418862 -1.49859 +v 0.0119006 -0.412677 -1.51625 +v 0.0218971 -0.397824 -1.47158 +v 0.0111 -0.413119 -1.49122 +v 0.0343905 -0.373451 -1.46323 +v 0.0413705 -0.346308 -1.40529 +v 0.0320883 -0.374909 -1.44211 +v 0.0469066 -0.278439 -1.29398 +v 0.0560119 -0.247957 -1.2658 +v 0.0510013 -0.247979 -1.25608 +v 0.0455092 -0.313131 -1.34786 +v 0.0413241 -0.309049 -1.33162 +v 0.0529463 -0.310834 -1.37865 +v 0.0559964 -0.27978 -1.31937 +v 0.0494409 -0.313954 -1.36355 +v 0.064945 -0.240658 -1.284 +v 0.0607341 -0.245718 -1.27519 +v 0.0262233 -0.267573 -1.60804 +v 0.0136044 -0.306697 -1.63195 +v 0 -0.284527 -1.64974 +v 0.0133003 -0.279913 -1.6383 +v 0.0494289 -0.225723 -1.50727 +v 0.0392691 -0.273363 -1.55824 +v 0.038392 -0.249009 -1.56301 +v 0.0510213 -0.270248 -1.4963 +v 0.0394884 -0.318731 -1.53673 +v 0.0270665 -0.318151 -1.59197 +v 0.0396274 -0.296874 -1.54927 +v 0.013678 -0.355919 -1.60508 +v 0 -0.337631 -1.63143 +v 0.0137277 -0.332322 -1.62062 +v 0.0665991 -0.170996 -1.37987 +v 0.0603014 -0.219806 -1.44234 +v 0.0589571 -0.199218 -1.44487 +v 0.0736131 -0.159135 -1.31577 +v 0.0719778 -0.142559 -1.31632 +v 0.0741092 -0.192099 -1.31007 +v 0.0687528 -0.207978 -1.3747 +v 0.0743124 -0.175846 -1.31364 +v 0.0606624 -0.259182 -1.4288 +v 0.0608595 -0.24003 -1.43685 +v 0.0675252 -0.24192 -1.36153 +v 0.0581277 -0.29142 -1.40655 +v 0.0500648 -0.30926 -1.47294 +v 0.0597415 -0.276549 -1.41857 +v 0.0711302 -0.220855 -1.29913 +v 0.0730373 -0.207299 -1.30519 +v 0.0631839 -0.267596 -1.3424 +v 0.0684216 -0.232172 -1.29203 +v 0.0467757 -0.33665 -1.44124 +v 0.0558522 -0.303086 -1.39312 +v 0.0265468 -0.361222 -1.56009 +v 0.0130896 -0.39356 -1.56446 +v 0 -0.382396 -1.5959 +v 0.0134627 -0.376621 -1.5861 +v 0.0378048 -0.354251 -1.50341 +v 0.0388737 -0.338127 -1.52124 +v 0.0247838 -0.390032 -1.51807 +v 0.0363032 -0.366296 -1.48387 +v 0 -0.41181 -1.54951 +v 0.0125664 -0.405868 -1.54092 +v 0.478366 -0.398115 -0.00448525 +v 0.491718 -0.387707 0.0471224 +v 0.449087 -0.373041 0.0877671 +v 0.423318 -0.377999 0.0456594 +v 0.461155 -0.380725 0.0463378 +v 0.531705 -0.420712 -0.00247492 +v 0.538011 -0.39275 0.048317 +v 0.504652 -0.372975 0.0875016 +v 0.517175 -0.391937 0.0475864 +v 0.512393 -0.359809 0.116551 +v 0.488131 -0.354454 0.140938 +v 0.470439 -0.36341 0.120857 +v 0.494293 -0.361722 0.11783 +v 0.43544 -0.363145 0.151621 +v 0.4049 -0.375323 0.121742 +v 0.440559 -0.367643 0.122201 +v 0.583435 -0.352401 0.0538529 +v 0.559547 -0.349249 0.0955824 +v 0.567614 -0.38185 0.0517469 +v 0.594117 -0.398226 0.00236393 +v 0.577074 -0.369583 0.0532616 +v 0.545989 -0.321674 0.133461 +v 0.520088 -0.329768 0.15982 +v 0.533896 -0.347045 0.126248 +v 0.540798 -0.336289 0.130658 +v 0.508335 -0.348622 0.142917 +v 0.539908 -0.367962 0.0900339 +v 0.525011 -0.354901 0.120451 +v 0.569837 -0.420541 -0.000232802 +v 0.554708 -0.38948 0.0499013 +v 0.401485 -0.352909 0.243189 +v 0.434682 -0.351158 0.202649 +v 0.469711 -0.332583 0.206148 +v 0.446067 -0.32408 0.246859 +v 0.438328 -0.340609 0.22681 +v 0.398307 -0.368954 0.182263 +v 0.463619 -0.350815 0.170493 +v 0.4336 -0.35816 0.178012 +v 0.491913 -0.339335 0.173413 +v 0.488201 -0.347448 0.159196 +v 0.502196 -0.314196 0.192357 +v 0.496678 -0.328751 0.184401 +v 0.316906 -0.336415 -0.29319 +v 0.298587 -0.364923 -0.248363 +v 0.253134 -0.387795 -0.2974 +v 0.286952 -0.363499 -0.295056 +v 0.342566 -0.339096 -0.199464 +v 0.322594 -0.367425 -0.156455 +v 0.273657 -0.390793 -0.205423 +v 0.310328 -0.366081 -0.201895 +v 0.241813 -0.41411 -0.164815 +v 0.189963 -0.431865 -0.213943 +v 0.224745 -0.411255 -0.254819 +v 0.233289 -0.412849 -0.209591 +v 0.176116 -0.427012 -0.302634 +v 0.216005 -0.40905 -0.300001 +v 0.37079 -0.343452 -0.112129 +v 0.350301 -0.372767 -0.0714449 +v 0.295263 -0.393488 -0.116101 +v 0.3358 -0.369408 -0.112842 +v 0.408695 -0.356995 -0.0395205 +v 0.377334 -0.383575 0.00563385 +v 0.316311 -0.397816 -0.0330337 +v 0.36645 -0.378237 -0.0326527 +v 0.269666 -0.418218 0.00217227 +v 0.213239 -0.435818 -0.0433476 +v 0.258547 -0.416427 -0.0783814 +v 0.265198 -0.417407 -0.0372402 +v 0.202803 -0.434516 -0.126601 +v 0.250493 -0.415315 -0.120993 +v 0.157382 -0.451526 -0.0901543 +v 0.103007 -0.463203 -0.136632 +v 0.149123 -0.449377 -0.174725 +v 0.153507 -0.450716 -0.13201 +v 0.162853 -0.451757 -0.0101165 +v 0.10734 -0.464556 -0.0547414 +v 0.16056 -0.451856 -0.0494313 +v 0.0544597 -0.472733 -0.0193811 +v 0 -0.476069 -0.0600396 +v 0.0528363 -0.472469 -0.0987679 +v 0.05376 -0.472949 -0.0585275 +v 0 -0.474189 -0.141155 +v 0.0503799 -0.469306 -0.181631 +v 0.0517043 -0.471264 -0.139877 +v 0.139382 -0.444847 -0.261582 +v 0.0902658 -0.452053 -0.307111 +v 0.134019 -0.441431 -0.305078 +v 0.0972022 -0.459175 -0.221441 +v 0.144415 -0.447458 -0.218023 +v 0 -0.469181 -0.224722 +v 0.0472165 -0.463017 -0.266171 +v 0.0488787 -0.466567 -0.223804 +v 0 -0.460904 -0.309048 +v 0.0454089 -0.458628 -0.308508 +v 0.369261 -0.387628 0.084314 +v 0.323821 -0.401694 0.044095 +v 0.376037 -0.386537 0.0455138 +v 0.359782 -0.385701 0.152046 +v 0.318005 -0.402209 0.115549 +v 0.363705 -0.387352 0.119362 +v 0.266737 -0.416805 0.145721 +v 0.217195 -0.434327 0.105588 +v 0.270598 -0.41896 0.0756123 +v 0.268826 -0.418374 0.110794 +v 0.217966 -0.435993 0.0335582 +v 0.271172 -0.418822 0.0395973 +v 0.357534 -0.377531 0.21645 +v 0.31325 -0.398088 0.183117 +v 0.357903 -0.382669 0.183756 +v 0.310733 -0.3877 0.255987 +v 0.358141 -0.369563 0.252085 +v 0.211231 -0.419306 0.257137 +v 0.263715 -0.409895 0.217778 +v 0.2617 -0.404449 0.257381 +v 0.214656 -0.429176 0.177941 +v 0.265213 -0.413996 0.18097 +v 0.161169 -0.437712 0.214084 +v 0.108985 -0.4529 0.171634 +v 0.163408 -0.445986 0.137034 +v 0.162441 -0.442412 0.174654 +v 0.106863 -0.441331 0.254811 +v 0.159515 -0.43177 0.256127 +v 0 -0.449694 0.253113 +v 0.0542129 -0.45426 0.210263 +v 0.0535873 -0.447476 0.253653 +v 0 -0.462416 0.168485 +v 0.0550301 -0.464292 0.130434 +v 0.0546994 -0.459836 0.169403 +v 0.164434 -0.450261 0.0641365 +v 0.109668 -0.463592 0.0222259 +v 0.164074 -0.451278 0.0275155 +v 0.110021 -0.46002 0.0959171 +v 0.164142 -0.44855 0.100419 +v 0 -0.470626 0.0914343 +v 0.0551571 -0.470208 0.0555972 +v 0.0551883 -0.467719 0.0927124 +v 0 -0.474964 0.0169345 +v 0.0549199 -0.471849 0.0184466 +v 0.600142 -0.452531 -0.0592857 +v 0.628319 -0.478673 -0.125746 +v 0.619378 -0.412997 -0.058556 +v 0.611415 -0.436113 -0.0584422 +v 0.568315 -0.465197 -0.0621172 +v 0.601771 -0.509568 -0.128142 +v 0.585721 -0.462233 -0.0606546 +v 0.600847 -0.562039 -0.20159 +v 0.632015 -0.601219 -0.271427 +v 0.63202 -0.543895 -0.19747 +v 0.617399 -0.557559 -0.199473 +v 0.658352 -0.559528 -0.266202 +v 0.65335 -0.490163 -0.196027 +v 0.644181 -0.521335 -0.196136 +v 0.525826 -0.450623 -0.0646838 +v 0.565441 -0.508638 -0.131307 +v 0.548086 -0.461402 -0.0632415 +v 0.485969 -0.408562 -0.0754035 +v 0.527875 -0.476051 -0.136666 +v 0.502324 -0.432633 -0.0671001 +v 0.538323 -0.488959 -0.213272 +v 0.568931 -0.559743 -0.278938 +v 0.565311 -0.542962 -0.205261 +v 0.549865 -0.520142 -0.208342 +v 0.599571 -0.601271 -0.275709 +v 0.582895 -0.557051 -0.203265 +v 0.599345 -0.618071 -0.345077 +v 0.627786 -0.657405 -0.409936 +v 0.630233 -0.642136 -0.344282 +v 0.614595 -0.635929 -0.345232 +v 0.574926 -0.551918 -0.347237 +v 0.600084 -0.608208 -0.404875 +v 0.585712 -0.589691 -0.345264 +v 0.602184 -0.577083 -0.45219 +v 0.620391 -0.60161 -0.496131 +v 0.624726 -0.642453 -0.462726 +v 0.61192 -0.613519 -0.455329 +v 0.647958 -0.646326 -0.517289 +v 0.653309 -0.669432 -0.468894 +v 0.638967 -0.662077 -0.467921 +v 0.658506 -0.617361 -0.336329 +v 0.679668 -0.606864 -0.392534 +v 0.67958 -0.550676 -0.330995 +v 0.670183 -0.588681 -0.332533 +v 0.656485 -0.656904 -0.405517 +v 0.64503 -0.635563 -0.340779 +v 0.674882 -0.64584 -0.513082 +v 0.677766 -0.641462 -0.454423 +v 0.666422 -0.661559 -0.463623 +v 0.692895 -0.60033 -0.484804 +v 0.694265 -0.575453 -0.437791 +v 0.686802 -0.612147 -0.443611 +v 0.610545 -0.547598 -0.498937 +v 0.626591 -0.518378 -0.549059 +v 0.639387 -0.590472 -0.545224 +v 0.624666 -0.568467 -0.526789 +v 0.611058 -0.441925 -0.52902 +v 0.629255 -0.385162 -0.572854 +v 0.645241 -0.467391 -0.589527 +v 0.628014 -0.455633 -0.564698 +v 0.663324 -0.394923 -0.61267 +v 0.677374 -0.478749 -0.606693 +v 0.659143 -0.547893 -0.584781 +v 0.661955 -0.475622 -0.603522 +v 0.669127 -0.612954 -0.558652 +v 0.654581 -0.606529 -0.556139 +v 0.614232 -0.308184 -0.536926 +v 0.63174 -0.241398 -0.565288 +v 0.647359 -0.31225 -0.597974 +v 0.630634 -0.311893 -0.572675 +v 0.619143 -0.186834 -0.523088 +v 0.630258 -0.129262 -0.530503 +v 0.645881 -0.165733 -0.572624 +v 0.632162 -0.179246 -0.551817 +v 0.655173 -0.0929063 -0.560165 +v 0.672465 -0.149737 -0.589767 +v 0.662429 -0.229155 -0.603487 +v 0.65971 -0.15469 -0.585906 +v 0.678383 -0.309888 -0.616066 +v 0.663558 -0.311 -0.612533 +v 0.687865 -0.228883 -0.59955 +v 0.700685 -0.311598 -0.589709 +v 0.692036 -0.394528 -0.608215 +v 0.690988 -0.31066 -0.608282 +v 0.676564 -0.0927844 -0.556864 +v 0.69083 -0.165356 -0.565677 +v 0.68296 -0.154493 -0.582313 +v 0.688597 -0.128913 -0.521497 +v 0.696824 -0.186233 -0.511078 +v 0.702046 -0.240681 -0.554404 +v 0.695715 -0.178721 -0.541992 +v 0.708609 -0.307107 -0.522292 +v 0.709125 -0.384093 -0.560455 +v 0.706787 -0.310986 -0.56087 +v 0.687262 -0.547444 -0.580405 +v 0.692193 -0.589579 -0.536989 +v 0.681907 -0.606064 -0.551878 +v 0.70125 -0.466563 -0.580822 +v 0.690716 -0.475195 -0.599053 +v 0.710967 -0.440484 -0.51348 +v 0.704752 -0.517145 -0.536888 +v 0.708244 -0.454458 -0.552224 +v 0.702392 -0.546066 -0.484606 +v 0.699257 -0.567216 -0.515155 +v 0.395914 0.271517 -0.0247834 +v 0.416593 0.224784 -0.0638963 +v 0.386999 0.268867 -0.106036 +v 0.392133 0.270317 -0.0652086 +v 0.443307 0.175649 -0.0219057 +v 0.456549 0.124233 -0.0584674 +v 0.431035 0.176528 -0.101636 +v 0.437879 0.175855 -0.0614134 +v 0.439413 0.128541 -0.139063 +v 0.413601 0.178187 -0.183845 +v 0.403406 0.223844 -0.14533 +v 0.4229 0.177395 -0.142478 +v 0.373025 0.264865 -0.188465 +v 0.380601 0.267078 -0.147157 +v 0.480282 0.0691545 -0.0168688 +v 0.48836 0.0156939 -0.0552772 +v 0.463986 0.0738602 -0.0952684 +v 0.473162 0.0706204 -0.055766 +v 0.515055 -0.0446466 -0.0231875 +v 0.511435 -0.0912149 -0.0672201 +v 0.486611 -0.0307477 -0.0927772 +v 0.502782 -0.039872 -0.0589691 +v 0.475289 -0.0691835 -0.128606 +v 0.457249 -0.0143404 -0.169877 +v 0.464116 0.0274079 -0.132357 +v 0.471576 -0.0221383 -0.129903 +v 0.441544 0.0825242 -0.176785 +v 0.453273 0.0780896 -0.13555 +v 0.437775 0.0391241 -0.215627 +v 0.416416 0.0895558 -0.26218 +v 0.41782 0.133191 -0.222561 +v 0.42932 0.0863798 -0.219147 +v 0.445609 -0.0530181 -0.209189 +v 0.429057 -0.00203694 -0.256121 +v 0.4432 -0.00765053 -0.212231 +v 0.416235 -0.0416909 -0.298431 +v 0.409943 0.0473164 -0.303071 +v 0.414445 0.0025321 -0.3007 +v 0.392497 0.135729 -0.30766 +v 0.402652 0.0919519 -0.30543 +v 0.385492 0.221885 -0.228151 +v 0.354688 0.258815 -0.271208 +v 0.364358 0.262139 -0.229851 +v 0.391868 0.178592 -0.26765 +v 0.403262 0.17863 -0.225642 +v 0.363297 0.217866 -0.311274 +v 0.379404 0.177937 -0.309646 +v 0.344102 0.254806 -0.312428 +v 0.425178 0.219263 0.260303 +v 0.399176 0.266624 0.219839 +v 0.397852 0.261882 0.264776 +v 0.46629 0.131471 0.257327 +v 0.450066 0.177615 0.214075 +v 0.447879 0.175668 0.257943 +v 0.470526 0.131265 0.173273 +v 0.451569 0.178634 0.132528 +v 0.42782 0.224984 0.17354 +v 0.451256 0.17855 0.172485 +v 0.39991 0.272156 0.135421 +v 0.399761 0.270019 0.176898 +v 0.491584 0.0427697 0.259846 +v 0.483888 0.0858653 0.215657 +v 0.480746 0.0870464 0.258085 +v 0.503744 -0.0438425 0.2649 +v 0.503772 -0.00479708 0.221411 +v 0.499138 -0.000984854 0.262241 +v 0.514785 -0.0543084 0.186672 +v 0.511303 -0.0159136 0.144296 +v 0.498372 0.0364457 0.178643 +v 0.507796 -0.00976944 0.182506 +v 0.487421 0.0806125 0.136556 +v 0.48609 0.0836771 0.175446 +v 0.502261 0.0260347 0.101517 +v 0.487231 0.0730713 0.0598469 +v 0.471042 0.127865 0.0954029 +v 0.487949 0.0768019 0.098095 +v 0.524745 -0.0698313 0.110074 +v 0.516828 -0.0314425 0.0646199 +v 0.514389 -0.0232413 0.10555 +v 0.53485 -0.0913769 0.0187024 +v 0.501539 0.0152762 0.0223764 +v 0.518394 -0.0402072 0.0198581 +v 0.467093 0.124087 0.0191822 +v 0.484823 0.0702468 0.0215972 +v 0.427618 0.22666 0.0931794 +v 0.399484 0.27317 0.0548977 +v 0.399927 0.273122 0.0948739 +v 0.449734 0.177093 0.0551315 +v 0.451127 0.17803 0.0935601 +v 0.424467 0.225883 0.0151893 +v 0.447193 0.17618 0.0167928 +v 0.398255 0.272551 0.0151319 +v 0.50505 -0.125589 0.269554 +v 0.512815 -0.0904315 0.228258 +v 0.505738 -0.0854287 0.267453 +v 0.49535 -0.201015 0.271008 +v 0.512405 -0.168529 0.23338 +v 0.501611 -0.164169 0.270854 +v 0.522278 -0.208403 0.199861 +v 0.535035 -0.179866 0.161986 +v 0.522695 -0.136308 0.194547 +v 0.523545 -0.173629 0.19767 +v 0.5267 -0.103828 0.153523 +v 0.519763 -0.0965114 0.190784 +v 0.474206 -0.268769 0.265998 +v 0.502227 -0.238014 0.234214 +v 0.486197 -0.235972 0.269668 +v 0.484817 -0.295502 0.227164 +v 0.459428 -0.299136 0.259158 +v 0.529726 -0.296097 0.167452 +v 0.513938 -0.269387 0.200168 +v 0.508167 -0.29417 0.197479 +v 0.535669 -0.244615 0.167398 +v 0.518859 -0.24056 0.200828 +v 0.551883 -0.278557 0.13381 +v 0.568907 -0.260604 0.0923155 +v 0.550625 -0.220691 0.128659 +v 0.552236 -0.251185 0.131809 +v 0.56869 -0.313315 0.0968042 +v 0.549743 -0.302242 0.134436 +v 0.605278 -0.353087 0.00118322 +v 0.587907 -0.303336 0.0506487 +v 0.587044 -0.330027 0.0529287 +v 0.603966 -0.289313 -0.00536462 +v 0.581432 -0.240501 0.042661 +v 0.586034 -0.273202 0.0471729 +v 0.541184 -0.1517 0.119916 +v 0.541447 -0.122462 0.0725208 +v 0.533742 -0.11254 0.114971 +v 0.559693 -0.196527 0.08363 +v 0.546876 -0.18764 0.124587 +v 0.590747 -0.215956 -0.0163269 +v 0.563833 -0.170311 0.030934 +v 0.574109 -0.206107 0.037273 +v 0.564398 -0.141843 -0.0338433 +v 0.550372 -0.133407 0.0235691 +v 0.52674 -0.141993 -0.0861597 +v 0.501186 -0.170632 -0.0926807 +v 0.491198 -0.122412 -0.0994877 +v 0.509323 -0.133473 -0.080409 +v 0.505674 -0.216236 -0.108073 +v 0.481016 -0.2413 -0.0972202 +v 0.477496 -0.197522 -0.106845 +v 0.491761 -0.206681 -0.0981799 +v 0.452251 -0.22357 -0.128623 +v 0.448582 -0.181624 -0.163375 +v 0.4707 -0.15216 -0.129684 +v 0.463046 -0.189067 -0.129949 +v 0.45972 -0.103511 -0.165624 +v 0.474889 -0.112362 -0.128885 +v 0.484685 -0.288747 -0.0987227 +v 0.454332 -0.304729 -0.0767621 +v 0.453578 -0.263619 -0.100169 +v 0.468918 -0.27417 -0.0901148 +v 0.459165 -0.350423 -0.0565559 +v 0.416038 -0.322083 -0.0813809 +v 0.436124 -0.332415 -0.0570605 +v 0.383779 -0.312567 -0.154846 +v 0.421198 -0.28693 -0.11956 +v 0.398919 -0.315994 -0.114877 +v 0.424077 -0.250843 -0.159329 +v 0.438639 -0.256157 -0.124651 +v 0.391931 -0.279443 -0.19888 +v 0.395675 -0.24345 -0.244675 +v 0.423847 -0.212099 -0.201469 +v 0.409868 -0.246741 -0.199968 +v 0.35601 -0.308463 -0.244758 +v 0.369632 -0.310222 -0.198586 +v 0.363789 -0.274792 -0.291502 +v 0.342444 -0.306793 -0.292026 +v 0.394787 -0.204287 -0.292136 +v 0.381162 -0.240571 -0.291559 +v 0.441283 -0.136849 -0.204713 +v 0.430373 -0.0898189 -0.250785 +v 0.445016 -0.0960528 -0.206728 +v 0.419809 -0.170416 -0.246913 +v 0.434272 -0.175499 -0.203005 +v 0.411676 -0.126164 -0.294607 +v 0.404884 -0.166099 -0.293172 +v 0.415386 -0.0846425 -0.29638 +v 0.599896 -0.183896 -0.0882706 +v 0.613604 -0.143752 -0.173764 +v 0.578694 -0.110979 -0.129081 +v 0.587405 -0.14424 -0.101675 +v 0.618063 -0.267962 -0.0724279 +v 0.631025 -0.235666 -0.147594 +v 0.61023 -0.225654 -0.0790127 +v 0.657423 -0.30074 -0.211741 +v 0.670416 -0.258506 -0.289683 +v 0.644469 -0.19336 -0.228998 +v 0.651598 -0.246461 -0.218881 +v 0.657448 -0.146249 -0.310565 +v 0.630981 -0.0990647 -0.26559 +v 0.637206 -0.14353 -0.243948 +v 0.625038 -0.348157 -0.0629035 +v 0.642313 -0.331417 -0.134836 +v 0.623051 -0.30927 -0.0670423 +v 0.642032 -0.416895 -0.127464 +v 0.623866 -0.383206 -0.0600589 +v 0.673985 -0.481029 -0.267427 +v 0.661384 -0.404694 -0.200984 +v 0.658997 -0.450666 -0.197698 +v 0.67745 -0.375668 -0.276671 +v 0.660772 -0.354102 -0.20572 +v 0.690135 -0.451856 -0.338281 +v 0.701969 -0.411113 -0.407958 +v 0.689961 -0.33403 -0.351248 +v 0.69137 -0.394463 -0.344664 +v 0.695314 -0.521688 -0.392866 +v 0.686218 -0.504498 -0.333318 +v 0.705944 -0.48397 -0.454668 +v 0.700891 -0.533217 -0.443569 +v 0.708677 -0.363262 -0.472064 +v 0.708689 -0.426245 -0.46481 +v 0.680194 -0.211635 -0.363121 +v 0.685548 -0.166393 -0.426537 +v 0.666939 -0.103576 -0.385069 +v 0.673569 -0.154585 -0.371951 +v 0.697768 -0.286073 -0.418877 +v 0.685946 -0.272269 -0.35681 +v 0.70003 -0.235548 -0.474075 +v 0.705462 -0.298244 -0.474499 +v 0.68676 -0.132078 -0.476374 +v 0.693368 -0.179533 -0.472753 +v 0.492565 -0.34598 -0.115689 +v 0.510707 -0.414438 -0.154673 +v 0.485152 -0.379541 -0.094507 +v 0.509843 -0.26781 -0.138437 +v 0.517298 -0.330784 -0.178712 +v 0.500903 -0.30829 -0.130226 +v 0.538539 -0.301224 -0.245447 +v 0.549527 -0.376577 -0.302981 +v 0.531224 -0.404302 -0.229601 +v 0.533597 -0.354218 -0.238268 +v 0.551316 -0.481589 -0.288285 +v 0.532454 -0.44978 -0.220813 +v 0.529209 -0.184189 -0.137894 +v 0.532116 -0.236008 -0.189877 +v 0.519064 -0.22588 -0.140641 +v 0.556865 -0.11102 -0.139228 +v 0.552906 -0.14395 -0.196488 +v 0.540922 -0.144426 -0.13125 +v 0.576553 -0.0990864 -0.277671 +v 0.574209 -0.146513 -0.327117 +v 0.553316 -0.193789 -0.254448 +v 0.563732 -0.143747 -0.26268 +v 0.557947 -0.259295 -0.314319 +v 0.545015 -0.247015 -0.249772 +v 0.577116 -0.212299 -0.381354 +v 0.584702 -0.287168 -0.437141 +v 0.56702 -0.335264 -0.373417 +v 0.571097 -0.273243 -0.377509 +v 0.595272 -0.103692 -0.396858 +v 0.596301 -0.166865 -0.4407 +v 0.58515 -0.154944 -0.387091 +v 0.614273 -0.132421 -0.487563 +v 0.60269 -0.236392 -0.489148 +v 0.60741 -0.180101 -0.486041 +v 0.596453 -0.364663 -0.489504 +v 0.599001 -0.299379 -0.491014 +v 0.565028 -0.453291 -0.359479 +v 0.58341 -0.523418 -0.410527 +v 0.568215 -0.505883 -0.352444 +v 0.579882 -0.412712 -0.427615 +v 0.564814 -0.395849 -0.366938 +v 0.59532 -0.485687 -0.471919 +v 0.595155 -0.427844 -0.482484 +v 0.597157 -0.534953 -0.459771 +v 0.604658 -0.0732063 -0.238044 +v 0.585727 -0.0731881 -0.242509 +v 0.579701 -0.0884036 -0.180343 +v 0.646006 -0.0572485 -0.351773 +v 0.624919 -0.0346398 -0.330891 +v 0.626965 -0.0620584 -0.29578 +v 0.638922 -0.0122465 -0.403861 +v 0.627 -0.012205 -0.405693 +v 0.608638 -0.0345947 -0.333763 +v 0.624607 -0.0189376 -0.367295 +v 0.599193 -0.0571868 -0.359716 +v 0.592071 -0.0620066 -0.302627 +v 0.676064 -0.0676644 -0.508861 +v 0.672863 -0.0736294 -0.451235 +v 0.681493 -0.0950642 -0.490781 +v 0.659913 -0.0419556 -0.530742 +v 0.660265 -0.0223494 -0.484987 +v 0.668971 -0.0490516 -0.523499 +v 0.643512 -0.00618802 -0.453596 +v 0.655841 -0.0296005 -0.425311 +v 0.650528 -0.0117323 -0.4441 +v 0.66117 -0.0610648 -0.404245 +v 0.616252 -0.0737162 -0.460029 +v 0.636308 -0.067783 -0.514987 +v 0.624388 -0.0952684 -0.499586 +v 0.620615 -0.0295519 -0.430802 +v 0.607554 -0.0610562 -0.412795 +v 0.640904 -0.0223486 -0.487966 +v 0.63307 -0.0116952 -0.446783 +v 0.648588 -0.0491057 -0.526639 +v 0.0652789 0.421506 -0.830886 +v 0.0603753 0.44704 -0.809411 +v 0.0725038 0.455642 -0.78073 +v 0.0700722 0.436832 -0.807073 +v 0.0493524 0.400363 -0.869273 +v 0.0509656 0.419304 -0.85038 +v 0.0583102 0.409428 -0.851756 +v 0.0384244 0.418432 -0.861129 +v 0.0368617 0.431734 -0.84704 +v 0.0480019 0.438905 -0.831498 +v 0.0440406 0.426928 -0.848205 +v 0.041054 0.459413 -0.811952 +v 0.0521137 0.473675 -0.78696 +v 0.0507662 0.454478 -0.810876 +v 0 0.38759 -0.900977 +v 0.0120475 0.398621 -0.890418 +v 0.0264791 0.390139 -0.892942 +v 0.0134649 0.38812 -0.89895 +v 0 0.4085 -0.88149 +v 0.0102742 0.419905 -0.868003 +v 0.0213674 0.410492 -0.876599 +v 0.0109549 0.408952 -0.880279 +v 0.0285973 0.422553 -0.861118 +v 0.0342824 0.404209 -0.877419 +v 0.0306953 0.413303 -0.870405 +v 0.0385918 0.394076 -0.883026 +v 0.0105936 0.483146 -0.791807 +v 0.020821 0.463216 -0.814204 +v 0.0102153 0.446583 -0.835406 +v 0 0.463201 -0.815332 +v 0.0104473 0.463365 -0.815003 +v 0.0316099 0.481591 -0.790108 +v 0.0299715 0.446032 -0.832807 +v 0.0310478 0.462112 -0.813125 +v 0.0198047 0.432798 -0.851319 +v 0.0287554 0.433154 -0.848696 +v 0 0.431968 -0.853708 +v 0.0100927 0.432273 -0.853059 +v 0.0620534 0.488819 -0.757055 +v 0.0702792 0.504015 -0.721675 +v 0.0723875 0.47817 -0.752267 +v 0.0416012 0.50167 -0.762626 +v 0.0502735 0.522664 -0.731178 +v 0.0518246 0.496521 -0.760373 +v 0.0383562 0.557083 -0.702342 +v 0.0448843 0.583432 -0.665208 +v 0.0572849 0.543809 -0.69509 +v 0.0478352 0.551752 -0.699435 +v 0.0623096 0.56406 -0.654078 +v 0.0667346 0.532779 -0.688948 +v 0.0208949 0.506068 -0.765239 +v 0.0302819 0.531001 -0.735542 +v 0.0312834 0.504663 -0.764218 +v 0 0.506394 -0.765929 +v 0.0101136 0.532975 -0.736999 +v 0.0104593 0.506454 -0.765779 +v 0 0.562389 -0.705602 +v 0.00906493 0.594391 -0.671517 +v 0.0192368 0.561867 -0.705155 +v 0.00962574 0.562393 -0.705551 +v 0.0271067 0.59216 -0.67018 +v 0.0288185 0.560276 -0.704167 +v 0.0169654 0.628051 -0.634645 +v 0.0237911 0.662443 -0.594725 +v 0.0336483 0.622939 -0.631746 +v 0.0253598 0.626326 -0.633671 +v 0 0.628675 -0.634988 +v 0.00800121 0.664867 -0.596022 +v 0.00850035 0.628654 -0.63498 +v 0 0.70274 -0.554724 +v 0.00747605 0.741879 -0.511173 +v 0.0151994 0.702055 -0.554403 +v 0.00763671 0.702714 -0.554725 +v 0.0220417 0.739223 -0.509877 +v 0.0298064 0.696525 -0.551484 +v 0.022614 0.700185 -0.553431 +v 0.0497749 0.609033 -0.623772 +v 0.0530418 0.632575 -0.577874 +v 0.0575601 0.597459 -0.617056 +v 0.0389434 0.653155 -0.589546 +v 0.0417955 0.61735 -0.628557 +v 0.0354481 0.729014 -0.504686 +v 0.0432287 0.681515 -0.543357 +v 0.0367027 0.690494 -0.548234 +v 0.0469222 0.706359 -0.493002 +v 0.0493105 0.669009 -0.536525 +v 0.0561431 0.919481 -0.213542 +v 0.0521645 0.96774 -0.179016 +v 0.0569956 0.971365 -0.132286 +v 0.0572523 0.947348 -0.171253 +v 0.0516927 0.854691 -0.304941 +v 0.0490603 0.906764 -0.265506 +v 0.0541345 0.888388 -0.258367 +v 0.0406422 0.884319 -0.316908 +v 0.0355126 0.928741 -0.274061 +v 0.044614 0.952824 -0.226309 +v 0.0427965 0.919922 -0.270653 +v 0.0381654 0.992089 -0.188404 +v 0.0458812 1.0077 -0.14662 +v 0.0457554 0.982318 -0.184692 +v 0.0473755 0.781987 -0.400191 +v 0.0443758 0.835154 -0.359342 +v 0.0492843 0.819017 -0.352478 +v 0.0413516 0.75828 -0.4541 +v 0.0464327 0.744227 -0.447295 +v 0.0291598 0.775128 -0.462203 +v 0.0366816 0.807834 -0.411879 +v 0.0355542 0.768363 -0.458962 +v 0.0317863 0.854476 -0.367528 +v 0.0384908 0.846721 -0.364256 +v 0.0231482 0.819459 -0.417071 +v 0.0165556 0.861567 -0.370416 +v 0.0258973 0.897635 -0.322163 +v 0.0244193 0.859175 -0.369468 +v 0.0150575 0.781316 -0.465122 +v 0.0222877 0.779228 -0.464149 +v 0 0.782073 -0.465447 +v 0.00790594 0.822471 -0.418356 +v 0.00758845 0.782047 -0.465446 +v 0 0.862431 -0.370697 +v 0.00888444 0.901096 -0.323323 +v 0.00836058 0.862403 -0.370712 +v 0.0286588 0.96782 -0.231743 +v 0.0201234 1.00115 -0.190879 +v 0.0298023 1.02408 -0.152402 +v 0.0295347 0.998063 -0.190276 +v 0.0186065 0.936836 -0.276822 +v 0.0273784 0.934097 -0.27598 +v 0 0.937845 -0.276921 +v 0.00986799 0.971779 -0.232549 +v 0.00940955 0.937804 -0.276999 +v 0 1.00234 -0.190562 +v 0.010313 1.02854 -0.152512 +v 0.0101918 1.00227 -0.190784 +v 0.0504474 1.01271 -0.106298 +v 0.0510862 1.00639 -0.0669243 +v 0.0549067 0.990907 -0.0974278 +v 0.0375715 1.03869 -0.117159 +v 0.0421862 1.04371 -0.0841809 +v 0.0446518 1.02826 -0.112909 +v 0.0334209 1.06245 -0.0666377 +v 0.0336245 1.06059 -0.0435868 +v 0.0425723 1.03998 -0.0518895 +v 0.038603 1.05374 -0.0610557 +v 0.0386526 1.02684 -0.0199668 +v 0.0456346 1.01823 -0.0410219 +v 0 1.04996 -0.118066 +v 0.00988793 1.06552 -0.0885951 +v 0.0200191 1.04854 -0.119122 +v 0.0101637 1.04984 -0.118544 +v 0 1.07513 -0.0615082 +v 0.00953305 1.07745 -0.0396251 +v 0.0187171 1.07326 -0.0643509 +v 0.0096297 1.07493 -0.0623834 +v 0.0259893 1.07104 -0.0475488 +v 0.0281481 1.0604 -0.090273 +v 0.0267199 1.06903 -0.0667525 +v 0.0292578 1.04514 -0.118945 +v 0.0207562 1.03611 0.00709619 +v 0.0101266 1.05937 -0.00263345 +v 0 1.03819 0.0156508 +v 0.0105568 1.0378 0.0135704 +v 0.0287097 1.05406 -0.0178813 +v 0.0302406 1.03263 -0.00400516 +v 0.0189207 1.07064 -0.0244271 +v 0.0269726 1.06646 -0.0318271 +v 0 1.07272 -0.0185942 +v 0.00974202 1.07243 -0.0200369 +v -0.0510265 -0.419014 0.403675 +v -0.103674 -0.424454 0.351015 +v -0.0528396 -0.439391 0.300217 +v -0.0519863 -0.429916 0.350595 +v -0.0487824 -0.392779 0.513494 +v -0.0995018 -0.401754 0.458448 +v -0.0499589 -0.406647 0.458346 +v -0.144461 -0.38053 0.513453 +v -0.195676 -0.382651 0.458109 +v -0.151674 -0.405446 0.40395 +v -0.148213 -0.393724 0.458418 +v -0.204959 -0.403897 0.351014 +v -0.157405 -0.42447 0.301586 +v -0.154765 -0.415695 0.351267 +v -0.0460981 -0.360389 0.620774 +v -0.0944948 -0.373055 0.567951 +v -0.0474959 -0.377372 0.568008 +v -0.0429646 -0.321546 0.716617 +v -0.0886872 -0.338165 0.670457 +v -0.0445881 -0.341792 0.670681 +v -0.127009 -0.312891 0.715809 +v -0.173463 -0.323421 0.669784 +v -0.136294 -0.34971 0.620443 +v -0.131808 -0.332058 0.670143 +v -0.185014 -0.355799 0.567653 +v -0.1405 -0.365863 0.567838 +v -0.220487 -0.328155 0.619945 +v -0.267475 -0.32702 0.567105 +v -0.234483 -0.356352 0.512827 +v -0.227541 -0.342865 0.567382 +v -0.205402 -0.295015 0.714732 +v -0.250414 -0.298375 0.669111 +v -0.213161 -0.312209 0.669425 +v -0.274372 -0.267349 0.713925 +v -0.31563 -0.262647 0.668797 +v -0.294569 -0.295482 0.619536 +v -0.284734 -0.28187 0.668887 +v -0.337146 -0.286429 0.56685 +v -0.313997 -0.320126 0.512009 +v -0.304211 -0.308222 0.566901 +v -0.248104 -0.379637 0.402554 +v -0.30142 -0.371766 0.347728 +v -0.258628 -0.397607 0.301017 +v -0.253959 -0.389316 0.349922 +v -0.284654 -0.351531 0.456523 +v -0.241475 -0.368629 0.45737 +v -0.359332 -0.307595 0.455788 +v -0.335193 -0.341537 0.399592 +v -0.324259 -0.331229 0.455888 +v -0.386817 -0.326323 0.342574 +v -0.355902 -0.360246 0.29366 +v -0.346997 -0.351057 0.344172 +v -0.03943 -0.276547 0.793632 +v -0.0819987 -0.296882 0.756987 +v -0.0412265 -0.299612 0.757468 +v -0.0358873 -0.229251 0.853486 +v -0.0748291 -0.251247 0.824656 +v -0.0376315 -0.252908 0.825506 +v -0.105919 -0.226038 0.850878 +v -0.146186 -0.243793 0.822035 +v -0.116526 -0.270485 0.79206 +v -0.111159 -0.248262 0.823447 +v -0.160364 -0.285457 0.755545 +v -0.121863 -0.292198 0.756314 +v -0.0327869 -0.184112 0.899357 +v -0.0680582 -0.205548 0.876671 +v -0.0342537 -0.206134 0.877971 +v -0.0305789 -0.145582 0.93442 +v -0.0626217 -0.164046 0.916258 +v -0.0315432 -0.163742 0.918041 +v -0.0899596 -0.147018 0.929259 +v -0.121526 -0.164426 0.910018 +v -0.0965104 -0.183591 0.895496 +v -0.0927707 -0.16433 0.913524 +v -0.132523 -0.202263 0.87241 +v -0.100964 -0.20432 0.874754 +v -0.154684 -0.181088 0.889281 +v -0.189829 -0.194724 0.867431 +v -0.17072 -0.218156 0.847081 +v -0.162286 -0.199189 0.869826 +v -0.144008 -0.148745 0.920204 +v -0.172742 -0.163279 0.901728 +v -0.148422 -0.164169 0.905917 +v -0.187692 -0.149878 0.909411 +v -0.210782 -0.15744 0.896178 +v -0.203467 -0.174258 0.883554 +v -0.193767 -0.161478 0.897958 +v -0.236572 -0.180133 0.864915 +v -0.226858 -0.203782 0.843994 +v -0.214732 -0.188496 0.865651 +v -0.188331 -0.257295 0.789932 +v -0.231462 -0.265402 0.754103 +v -0.197048 -0.276559 0.754776 +v -0.210605 -0.229713 0.81927 +v -0.179478 -0.237676 0.820575 +v -0.264652 -0.207455 0.817942 +v -0.251321 -0.235872 0.788312 +v -0.239139 -0.219706 0.818325 +v -0.291659 -0.235906 0.75343 +v -0.26315 -0.251885 0.753622 +v -0.401976 -0.289043 0.400798 +v -0.439849 -0.263836 0.351658 +v -0.435618 -0.300919 0.297505 +v -0.417005 -0.296701 0.346252 +v -0.377072 -0.271286 0.512336 +v -0.41344 -0.250468 0.457787 +v -0.388919 -0.280503 0.456542 +v -0.42177 -0.211331 0.513721 +v -0.448962 -0.183637 0.46029 +v -0.44514 -0.224127 0.405761 +v -0.433314 -0.218007 0.459158 +v -0.471119 -0.193416 0.357279 +v -0.471193 -0.233426 0.309306 +v -0.457637 -0.229372 0.35524 +v -0.354321 -0.251405 0.619569 +v -0.389946 -0.23413 0.567358 +v -0.365673 -0.2616 0.567032 +v -0.330154 -0.229327 0.713925 +v -0.365762 -0.216251 0.669111 +v -0.342615 -0.24066 0.668887 +v -0.371143 -0.181975 0.714732 +v -0.400834 -0.161535 0.669784 +v -0.398023 -0.197233 0.620034 +v -0.385144 -0.189762 0.669425 +v -0.426344 -0.172848 0.568089 +v -0.410119 -0.204414 0.567739 +v -0.426447 -0.135872 0.620563 +v -0.447503 -0.1057 0.56844 +v -0.450143 -0.143814 0.514655 +v -0.438775 -0.139826 0.568318 +v -0.397905 -0.127918 0.715809 +v -0.421436 -0.101241 0.670457 +v -0.412907 -0.131915 0.670143 +v -0.411003 -0.0697787 0.716617 +v -0.428157 -0.038109 0.670771 +v -0.440305 -0.0701817 0.620889 +v -0.426495 -0.0698588 0.670681 +v -0.454225 -0.0355399 0.568415 +v -0.463636 -0.0718508 0.514644 +v -0.452623 -0.0708212 0.568468 +v -0.471019 -0.151969 0.40817 +v -0.487549 -0.11754 0.357874 +v -0.49116 -0.16015 0.311833 +v -0.48105 -0.156072 0.358056 +v -0.468955 -0.11101 0.460892 +v -0.460804 -0.147873 0.460821 +v -0.474654 -0.0351695 0.460227 +v -0.482504 -0.0753751 0.4077 +v -0.473533 -0.0733442 0.460646 +v -0.490731 -0.0377022 0.355843 +v -0.498418 -0.0813437 0.309877 +v -0.490736 -0.078017 0.357035 +v -0.480579 0.00368844 0.40618 +v -0.481278 0.0444732 0.353609 +v -0.493797 0.00167891 0.306228 +v -0.487655 0.0032059 0.354603 +v -0.463086 0.0018894 0.51421 +v -0.466719 0.0416479 0.459521 +v -0.472433 0.00321883 0.459777 +v -0.448421 0.0754149 0.514374 +v -0.444203 0.117937 0.46048 +v -0.464982 0.0834561 0.405562 +v -0.45736 0.0799448 0.45968 +v -0.457693 0.127149 0.353556 +v -0.476595 0.08709 0.303621 +v -0.471367 0.0858655 0.353161 +v -0.44025 -0.00297966 0.620846 +v -0.447056 0.0350107 0.568268 +v -0.452403 -0.000207534 0.568294 +v -0.411003 -0.0101802 0.716617 +v -0.421436 0.0252784 0.67054 +v -0.426495 -0.00633465 0.670681 +v -0.397905 0.0487705 0.716043 +v -0.400834 0.0872765 0.670619 +v -0.426274 0.0636314 0.620915 +v -0.412907 0.0565441 0.670477 +v -0.425392 0.104443 0.569151 +v -0.438086 0.0699494 0.5685 +v -0.397712 0.128262 0.622226 +v -0.388436 0.171435 0.572362 +v -0.418661 0.147414 0.51666 +v -0.408875 0.138327 0.570384 +v -0.371143 0.105483 0.715901 +v -0.365762 0.146398 0.672032 +v -0.385144 0.11729 0.671094 +v -0.330154 0.158366 0.717197 +v -0.31563 0.201155 0.675808 +v -0.353897 0.189522 0.625908 +v -0.342615 0.174415 0.673561 +v -0.335391 0.234663 0.579202 +v -0.372825 0.216573 0.522592 +v -0.363974 0.203602 0.575248 +v -0.434208 0.162366 0.407923 +v -0.41813 0.20845 0.358061 +v -0.444572 0.172546 0.304733 +v -0.440024 0.168088 0.35509 +v -0.405887 0.192313 0.464893 +v -0.427096 0.15545 0.462143 +v -0.350556 0.263394 0.474546 +v -0.386751 0.238856 0.41534 +v -0.380425 0.228352 0.468953 +v -0.360742 0.286504 0.369502 +v -0.395488 0.255703 0.31224 +v -0.39178 0.248 0.362766 +v -0.395161 -0.0421723 0.75766 +v -0.374549 -0.018935 0.793632 +v -0.389008 0.0131678 0.757026 +v -0.393641 -0.014424 0.757468 +v -0.355171 -0.0470394 0.825841 +v -0.331734 -0.0282348 0.853486 +v -0.349877 -0.000243515 0.82467 +v -0.353867 -0.0235823 0.825506 +v -0.32204 0.0139683 0.850906 +v -0.333531 0.0452134 0.822174 +v -0.362883 0.0316465 0.792157 +v -0.343124 0.0227605 0.823503 +v -0.370103 0.067045 0.755935 +v -0.381186 0.0403939 0.75647 +v -0.309339 -0.0520339 0.878467 +v -0.283674 -0.0370317 0.899357 +v -0.305107 -0.0135179 0.876674 +v -0.308289 -0.0327616 0.877971 +v -0.258817 -0.0564795 0.918694 +v -0.231488 -0.0442777 0.93442 +v -0.255714 -0.0252177 0.916258 +v -0.258027 -0.0409141 0.918041 +v -0.22655 -0.0156201 0.929259 +v -0.246747 0.00603315 0.910018 +v -0.276365 -0.00240602 0.895499 +v -0.251935 -0.00952408 0.913524 +v -0.292213 0.0241032 0.872438 +v -0.29976 0.0055021 0.874766 +v -0.26182 0.0310238 0.889295 +v -0.27011 0.0590555 0.867528 +v -0.302138 0.0541666 0.84722 +v -0.282434 0.0420904 0.869882 +v -0.217504 0.0133337 0.920204 +v -0.232314 0.0357298 0.901728 +v -0.240207 0.0213203 0.905917 +v -0.206277 0.0399883 0.909411 +v -0.210782 0.0588023 0.896178 +v -0.238881 0.060528 0.883593 +v -0.223068 0.0486539 0.897958 +v -0.236572 0.0882871 0.865149 +v -0.270955 0.0902541 0.844383 +v -0.254927 0.0745904 0.865807 +v -0.338921 0.0799323 0.790419 +v -0.337851 0.117785 0.755466 +v -0.355682 0.0929119 0.755555 +v -0.305459 0.0875581 0.819757 +v -0.32102 0.0668989 0.820853 +v -0.264652 0.124762 0.81911 +v -0.301981 0.124156 0.789675 +v -0.286714 0.106932 0.819104 +v -0.291659 0.163715 0.756702 +v -0.316535 0.141456 0.755804 +v -0.301981 -0.205076 0.788312 +v -0.337851 -0.196574 0.754103 +v -0.316535 -0.217365 0.753622 +v -0.270955 -0.180723 0.843994 +v -0.305459 -0.175933 0.81927 +v -0.286714 -0.192761 0.818325 +v -0.302138 -0.149182 0.847081 +v -0.333531 -0.137099 0.822035 +v -0.338921 -0.165557 0.789932 +v -0.32102 -0.157276 0.820575 +v -0.370103 -0.149501 0.755545 +v -0.355682 -0.173848 0.754776 +v -0.238881 -0.158821 0.883554 +v -0.27011 -0.156247 0.867431 +v -0.254927 -0.169263 0.865651 +v -0.206277 -0.143046 0.909411 +v -0.232314 -0.139646 0.901728 +v -0.223068 -0.149837 0.897958 +v -0.217504 -0.122347 0.920204 +v -0.246747 -0.114847 0.910018 +v -0.26182 -0.134273 0.889281 +v -0.240207 -0.127841 0.905917 +v -0.292213 -0.125234 0.87241 +v -0.282434 -0.14145 0.869826 +v -0.276365 -0.104386 0.895496 +v -0.305107 -0.0898567 0.876671 +v -0.32204 -0.111757 0.850878 +v -0.29976 -0.107962 0.874754 +v -0.22655 -0.098132 0.929259 +v -0.255714 -0.0866916 0.916258 +v -0.251935 -0.101089 0.913524 +v -0.231488 -0.0719656 0.93442 +v -0.283674 -0.071492 0.899357 +v -0.258027 -0.0717803 0.918041 +v -0.331734 -0.0707623 0.853486 +v -0.308289 -0.0711397 0.877971 +v -0.362883 -0.119757 0.79206 +v -0.389008 -0.0971972 0.756987 +v -0.381186 -0.123846 0.756314 +v -0.349877 -0.0933809 0.824656 +v -0.343124 -0.115707 0.823447 +v -0.374549 -0.0700875 0.793632 +v -0.353867 -0.0703986 0.825506 +v -0.393641 -0.069868 0.757468 +v -0.321104 0.311363 0.42989 +v -0.28473 0.358775 0.389243 +v -0.327103 0.334219 0.32882 +v -0.324786 0.323728 0.378567 +v -0.309932 0.281582 0.533694 +v -0.277785 0.329173 0.490403 +v -0.316129 0.297267 0.481897 +v -0.23183 0.338898 0.54863 +v -0.191919 0.3839 0.508473 +v -0.23939 0.375682 0.449938 +v -0.236168 0.358316 0.499462 +v -0.195585 0.418747 0.412558 +v -0.242066 0.403263 0.35284 +v -0.241391 0.390747 0.400813 +v -0.294162 0.246022 0.63309 +v -0.266101 0.292335 0.590365 +v -0.302585 0.264452 0.584389 +v -0.274372 0.205829 0.720936 +v -0.250414 0.2498 0.682549 +v -0.284734 0.226433 0.678903 +v -0.205402 0.245664 0.726652 +v -0.173463 0.289016 0.690317 +v -0.220222 0.294897 0.64288 +v -0.213161 0.27081 0.686453 +v -0.184263 0.339838 0.602913 +v -0.226479 0.317675 0.596687 +v -0.136167 0.331807 0.652363 +v -0.0941843 0.3721 0.613271 +v -0.143195 0.38275 0.563206 +v -0.139993 0.358188 0.608599 +v -0.127009 0.275046 0.732402 +v -0.0886872 0.315228 0.696749 +v -0.131808 0.303971 0.693848 +v -0.0429646 0.29115 0.736248 +v -0.0460614 0.352422 0.658594 +v -0.0445881 0.32234 0.698726 +v -0.0484146 0.407465 0.572909 +v -0.0473487 0.380947 0.616453 +v -0.147356 0.42496 0.470136 +v -0.0994412 0.459381 0.433258 +v -0.147913 0.455522 0.378359 +v -0.148132 0.441879 0.42376 +v -0.0979492 0.421254 0.523785 +v -0.14568 0.405129 0.516835 +v -0.0497392 0.452686 0.484022 +v -0.0492233 0.431528 0.528564 +v -0.0497501 0.484494 0.396761 +v -0.0499267 0.470491 0.439887 +v -0.251321 0.162507 0.791233 +v -0.231462 0.203105 0.760374 +v -0.26315 0.184353 0.758297 +v -0.226858 0.119699 0.844829 +v -0.210605 0.154949 0.82151 +v -0.239139 0.140788 0.819994 +v -0.17072 0.14153 0.8485 +v -0.146186 0.177426 0.825457 +v -0.188331 0.193394 0.794898 +v -0.179478 0.167183 0.823413 +v -0.160364 0.233891 0.765127 +v -0.197048 0.219706 0.762722 +v -0.203467 0.0813259 0.883637 +v -0.189829 0.10919 0.867879 +v -0.214732 0.0997375 0.865985 +v -0.187692 0.0498232 0.909411 +v -0.172742 0.0685609 0.901728 +v -0.193767 0.0648846 0.897958 +v -0.144008 0.0511453 0.920204 +v -0.121526 0.0738625 0.910018 +v -0.154684 0.0934761 0.889423 +v -0.148422 0.0714913 0.905917 +v -0.132523 0.123092 0.873095 +v -0.162286 0.116892 0.870394 +v -0.0965104 0.101086 0.895694 +v -0.0680582 0.13166 0.877547 +v -0.105919 0.15634 0.852854 +v -0.100964 0.128038 0.875545 +v -0.0899596 0.0527364 0.929259 +v -0.0626217 0.0773993 0.916258 +v -0.0927707 0.0758606 0.913524 +v -0.0305789 0.0539478 0.93442 +v -0.0327869 0.105182 0.899591 +v -0.0315432 0.0783918 0.918041 +v -0.0358873 0.164084 0.855824 +v -0.0342537 0.133889 0.878906 +v -0.116526 0.215443 0.798974 +v -0.0819987 0.253953 0.769257 +v -0.121863 0.245395 0.767376 +v -0.0748291 0.191629 0.829038 +v -0.111159 0.185617 0.827398 +v -0.03943 0.227219 0.801812 +v -0.0376315 0.195337 0.83018 +v -0.0412265 0.259299 0.770555 +v -0.190101 0.0215793 0.92592 +v -0.165923 0.0336636 0.92592 +v -0.187297 0.0355513 0.918459 +v -0.19723 -0.00668079 0.938395 +v -0.16862 0.00321359 0.943236 +v -0.193623 0.00741744 0.932614 +v -0.144031 -0.0138297 0.95948 +v -0.115472 -0.00148885 0.95948 +v -0.141662 0.0157874 0.943236 +v -0.142551 0.000364153 0.952161 +v -0.115901 0.0322152 0.938395 +v -0.141951 0.0326459 0.932614 +v -0.20266 -0.0339057 0.946663 +v -0.173247 -0.0242039 0.955124 +v -0.20029 -0.0204619 0.943121 +v -0.204757 -0.0596997 0.949676 +v -0.176248 -0.0491235 0.961448 +v -0.204197 -0.0469917 0.94889 +v -0.148106 -0.0615459 0.97297 +v -0.118752 -0.0519101 0.980805 +v -0.146808 -0.0392644 0.969505 +v -0.147735 -0.0507404 0.972088 +v -0.117175 -0.0290045 0.973606 +v -0.145512 -0.027 0.965281 +v -0.0889159 -0.042096 0.984779 +v -0.0590978 -0.0312089 0.984779 +v -0.0877836 -0.017312 0.973606 +v -0.0883277 -0.0303714 0.98011 +v -0.0896038 -0.0623975 0.988537 +v -0.059752 -0.0531773 0.992449 +v -0.089393 -0.0526999 0.987593 +v -0.0299913 -0.0626337 0.99634 +v -0.0297771 -0.0431567 0.992449 +v -0.029923 -0.0534098 0.995366 +v -0.0294887 -0.0185649 0.980805 +v -0.0296127 -0.0316249 0.987593 +v -0.0875295 0.0136863 0.955124 +v -0.0595108 0.0321495 0.946663 +v -0.0882911 0.0320889 0.943121 +v -0.0586902 -0.003407 0.969505 +v -0.087439 -0.0027034 0.965281 +v -0.0295986 0.0131379 0.961448 +v -0.0294644 -0.00372716 0.972088 +v -0.0299504 0.0322797 0.94889 +v -0.20266 -0.0839563 0.946663 +v -0.176248 -0.0719429 0.961448 +v -0.204197 -0.0720092 0.94889 +v -0.19723 -0.106907 0.938395 +v -0.173247 -0.0933975 0.955124 +v -0.20029 -0.0955771 0.943121 +v -0.144031 -0.101544 0.95948 +v -0.117175 -0.090059 0.973606 +v -0.146808 -0.0817287 0.969505 +v -0.145512 -0.091567 0.965281 +v -0.118752 -0.0716079 0.980805 +v -0.147735 -0.0717985 0.972088 +v -0.190101 -0.128757 0.92592 +v -0.16862 -0.114561 0.943236 +v -0.193623 -0.117983 0.932614 +v -0.165923 -0.136965 0.92592 +v -0.187297 -0.13918 0.918459 +v -0.115901 -0.13356 0.938395 +v -0.141662 -0.122966 0.943236 +v -0.141951 -0.135131 0.932614 +v -0.115472 -0.109783 0.95948 +v -0.142551 -0.11189 0.952161 +v -0.0875295 -0.119282 0.955124 +v -0.0586902 -0.106746 0.969505 +v -0.0877836 -0.0980405 0.973606 +v -0.087439 -0.108051 0.965281 +v -0.0595108 -0.130975 0.946663 +v -0.0882911 -0.132137 0.943121 +v -0.0295986 -0.117114 0.961448 +v -0.0299504 -0.130187 0.94889 +v -0.0294887 -0.0961639 0.980805 +v -0.0294644 -0.105921 0.972088 +v -0.0889159 -0.0800938 0.984779 +v -0.059752 -0.0712157 0.992449 +v -0.089393 -0.071403 0.987593 +v -0.0590978 -0.0879535 0.984779 +v -0.0883277 -0.0888472 0.98011 +v -0.0297771 -0.0791855 0.992449 +v -0.0296127 -0.0873998 0.987593 +v -0.029923 -0.0710778 0.995366 +v -0.301414 0.274116 -0.394292 +v -0.30762 0.237846 -0.434027 +v -0.337128 0.210883 -0.393485 +v -0.332687 0.250025 -0.353403 +v -0.32053 0.244384 -0.394026 +v -0.278869 0.256471 -0.473159 +v -0.279492 0.221926 -0.511096 +v -0.307358 0.20029 -0.473009 +v -0.293945 0.230373 -0.47314 +v -0.301653 0.161614 -0.510934 +v -0.328785 0.130569 -0.472494 +v -0.335557 0.171016 -0.433283 +v -0.319006 0.166823 -0.472787 +v -0.362766 0.135069 -0.391796 +v -0.365855 0.17653 -0.351411 +v -0.351206 0.174237 -0.392724 +v -0.253248 0.235058 -0.54779 +v -0.248206 0.201959 -0.582465 +v -0.274432 0.185696 -0.547508 +v -0.26425 0.212468 -0.547627 +v -0.223696 0.209825 -0.616376 +v -0.213669 0.17764 -0.645988 +v -0.238793 0.166711 -0.614641 +v -0.23135 0.190363 -0.615341 +v -0.22621 0.129773 -0.643919 +v -0.252054 0.109242 -0.614006 +v -0.264939 0.147981 -0.58195 +v -0.245777 0.139471 -0.614216 +v -0.29155 0.122027 -0.547362 +v -0.283598 0.155348 -0.547422 +v -0.277942 0.0819708 -0.581842 +v -0.303019 0.0488823 -0.547274 +v -0.317684 0.0897238 -0.510656 +v -0.298089 0.0863372 -0.547315 +v -0.236531 0.0702994 -0.643348 +v -0.261498 0.0422201 -0.613986 +v -0.257378 0.0766248 -0.613949 +v -0.242671 0.00389388 -0.643467 +v -0.265142 -0.0295503 -0.6141 +v -0.28537 0.0087711 -0.581894 +v -0.264169 0.0066283 -0.614057 +v -0.307259 -0.0289058 -0.547168 +v -0.326354 0.0110593 -0.510311 +v -0.306141 0.0102666 -0.547228 +v -0.354678 0.0935566 -0.432088 +v -0.378327 0.0516594 -0.389654 +v -0.387843 0.0934676 -0.34844 +v -0.371806 0.0940024 -0.390755 +v -0.342324 0.0521051 -0.471776 +v -0.336592 0.0921303 -0.472151 +v -0.347147 -0.0303051 -0.471016 +v -0.364578 0.0103134 -0.43072 +v -0.345877 0.0110934 -0.471391 +v -0.383807 -0.0343621 -0.387489 +v -0.398993 0.00608835 -0.345124 +v -0.382327 0.00866357 -0.388548 +v -0.364852 -0.0738683 -0.42946 +v -0.379026 -0.118327 -0.385704 +v -0.399651 -0.0803567 -0.3421 +v -0.382766 -0.0767945 -0.386532 +v -0.326432 -0.0695741 -0.509951 +v -0.342401 -0.112082 -0.470368 +v -0.346033 -0.0714907 -0.470671 +v -0.316853 -0.148187 -0.509637 +v -0.327048 -0.189957 -0.469933 +v -0.354677 -0.155157 -0.42852 +v -0.336117 -0.151698 -0.470118 +v -0.362738 -0.197461 -0.384551 +v -0.389187 -0.162269 -0.339854 +v -0.372409 -0.158651 -0.385034 +v -0.285377 -0.0667739 -0.581858 +v -0.302789 -0.106708 -0.546986 +v -0.306173 -0.068031 -0.547084 +v -0.242671 -0.0647673 -0.643467 +v -0.261179 -0.101482 -0.613948 +v -0.264169 -0.0657151 -0.614057 +v -0.235282 -0.131869 -0.643074 +v -0.248863 -0.170282 -0.61362 +v -0.276719 -0.140659 -0.581667 +v -0.256101 -0.136466 -0.613795 +v -0.288747 -0.181116 -0.546787 +v -0.297012 -0.144537 -0.546884 +v -0.258749 -0.209717 -0.581436 +v -0.264373 -0.248923 -0.546649 +v -0.296714 -0.221606 -0.50944 +v -0.277899 -0.216045 -0.546706 +v -0.219967 -0.194459 -0.642551 +v -0.227623 -0.232875 -0.613293 +v -0.239394 -0.202547 -0.613446 +v -0.196187 -0.249581 -0.642158 +v -0.196887 -0.286185 -0.613141 +v -0.230817 -0.270782 -0.581276 +v -0.213478 -0.260883 -0.613184 +v -0.228905 -0.306925 -0.546651 +v -0.265114 -0.286658 -0.509432 +v -0.248073 -0.27935 -0.546628 +v -0.332813 -0.230733 -0.428043 +v -0.333519 -0.26931 -0.384255 +v -0.365994 -0.237704 -0.338725 +v -0.349834 -0.23445 -0.384282 +v -0.300026 -0.260878 -0.469804 +v -0.315062 -0.226477 -0.469824 +v -0.260269 -0.321794 -0.470074 +v -0.298017 -0.297779 -0.428174 +v -0.281806 -0.292777 -0.469883 +v -0.289946 -0.331416 -0.385043 +v -0.328469 -0.304715 -0.339052 +v -0.313616 -0.301735 -0.3845 +v -0.221799 -0.0316244 -0.669967 +v -0.199458 -0.0629545 -0.69384 +v -0.21856 -0.0956796 -0.66964 +v -0.221007 -0.0638428 -0.669873 +v -0.17888 -0.034564 -0.716089 +v -0.15784 -0.0613369 -0.7367 +v -0.176506 -0.0893004 -0.715526 +v -0.178308 -0.0621149 -0.715928 +v -0.153779 -0.11025 -0.735527 +v -0.168861 -0.141313 -0.714324 +v -0.193673 -0.121372 -0.693085 +v -0.173386 -0.115805 -0.714965 +v -0.208425 -0.156799 -0.668939 +v -0.214389 -0.126782 -0.669313 +v -0.138682 -0.0378547 -0.756952 +v -0.120076 -0.0600162 -0.77655 +v -0.137179 -0.0830646 -0.756146 +v -0.138335 -0.0606331 -0.75672 +v -0.103502 -0.0409822 -0.797043 +v -0.088428 -0.0590942 -0.817888 +v -0.10274 -0.0776926 -0.796039 +v -0.103346 -0.059499 -0.796751 +v -0.0871861 -0.0914872 -0.816083 +v -0.0996638 -0.112155 -0.793926 +v -0.117612 -0.0998418 -0.774995 +v -0.101556 -0.0953242 -0.795049 +v -0.131998 -0.125781 -0.754434 +v -0.135104 -0.104873 -0.755346 +v -0.111708 -0.136266 -0.772942 +v -0.122254 -0.163792 -0.752734 +v -0.144865 -0.155368 -0.733969 +v -0.127752 -0.145513 -0.753525 +v -0.0836378 -0.120876 -0.813722 +v -0.0932445 -0.14246 -0.791849 +v -0.0969362 -0.127947 -0.792811 +v -0.0767353 -0.145492 -0.812028 +v -0.0824548 -0.166698 -0.790956 +v -0.101395 -0.167229 -0.771434 +v -0.0884602 -0.155457 -0.791183 +v -0.10706 -0.194885 -0.751968 +v -0.130307 -0.194324 -0.732809 +v -0.115393 -0.180341 -0.752177 +v -0.18149 -0.17562 -0.692079 +v -0.190839 -0.212162 -0.668238 +v -0.200598 -0.185376 -0.668565 +v -0.15525 -0.18808 -0.713124 +v -0.162845 -0.16551 -0.713684 +v -0.13498 -0.227078 -0.71257 +v -0.162297 -0.223025 -0.691326 +v -0.145991 -0.208708 -0.712726 +v -0.165245 -0.258952 -0.667911 +v -0.179078 -0.236805 -0.668004 +v -0.189354 0.18072 -0.677111 +v -0.176282 0.148983 -0.699856 +v -0.200884 0.142944 -0.672071 +v -0.19515 0.163753 -0.674138 +v -0.152321 0.148517 -0.728289 +v -0.139444 0.117913 -0.744262 +v -0.162474 0.11549 -0.719678 +v -0.157551 0.133609 -0.723208 +v -0.148123 0.0819932 -0.738068 +v -0.170923 0.0714825 -0.7162 +v -0.186484 0.10702 -0.695126 +v -0.166971 0.0946256 -0.717431 +v -0.211295 0.0920121 -0.670034 +v -0.206338 0.118846 -0.670755 +v -0.117651 0.114822 -0.768307 +v -0.106687 0.0870359 -0.780774 +v -0.126656 0.0869249 -0.759561 +v -0.122447 0.102175 -0.763081 +v -0.0882194 0.0833953 -0.8018 +v -0.0793673 0.061115 -0.817203 +v -0.0956175 0.0607274 -0.796421 +v -0.0922852 0.0731358 -0.798446 +v -0.0845372 0.0369825 -0.815646 +v -0.100317 0.0307401 -0.795278 +v -0.113581 0.0574659 -0.776309 +v -0.0982752 0.0464891 -0.795455 +v -0.133247 0.0501429 -0.756401 +v -0.130262 0.0694536 -0.757437 +v -0.117973 0.0212425 -0.775694 +v -0.137298 0.00753115 -0.756355 +v -0.154426 0.037901 -0.736354 +v -0.135598 0.0293747 -0.756143 +v -0.0873334 0.00734081 -0.816528 +v -0.102788 -0.00401389 -0.796206 +v -0.101802 0.0137994 -0.795618 +v -0.0884118 -0.0254661 -0.817918 +v -0.120069 -0.0188472 -0.776562 +v -0.103335 -0.0223808 -0.796771 +v -0.157838 -0.0109977 -0.736704 +v -0.138331 -0.015006 -0.756727 +v -0.194671 0.0549806 -0.693695 +v -0.218847 0.0323476 -0.669749 +v -0.215537 0.0629948 -0.669751 +v -0.176711 0.0202224 -0.715716 +v -0.174209 0.0465261 -0.715717 +v -0.199458 -0.00304234 -0.69384 +v -0.178308 -0.00696293 -0.715929 +v -0.221007 0.000623463 -0.669873 +v -0.249049 -0.353476 -0.429058 +v -0.231265 -0.381513 -0.387008 +v -0.275006 -0.361358 -0.341173 +v -0.262331 -0.358049 -0.385914 +v -0.22115 -0.340168 -0.509685 +v -0.207276 -0.369996 -0.470787 +v -0.235282 -0.347547 -0.470388 +v -0.165973 -0.380488 -0.510143 +v -0.143934 -0.404825 -0.471682 +v -0.187138 -0.396123 -0.430505 +v -0.176683 -0.389102 -0.471231 +v -0.160751 -0.418472 -0.38945 +v -0.206895 -0.405955 -0.344635 +v -0.197241 -0.401694 -0.388221 +v -0.192278 -0.320687 -0.581302 +v -0.182051 -0.352317 -0.546846 +v -0.206774 -0.331246 -0.546729 +v -0.163405 -0.294283 -0.642158 +v -0.156473 -0.327549 -0.613293 +v -0.177781 -0.308397 -0.613184 +v -0.122512 -0.327268 -0.642551 +v -0.108509 -0.356795 -0.61362 +v -0.144174 -0.357915 -0.581506 +v -0.133277 -0.343672 -0.613446 +v -0.126306 -0.384717 -0.547137 +v -0.155104 -0.37014 -0.546987 +v -0.089237 -0.382601 -0.581767 +v -0.0646346 -0.404143 -0.547403 +v -0.102787 -0.407493 -0.510629 +v -0.0960258 -0.396051 -0.547281 +v -0.075825 -0.348898 -0.643074 +v -0.0555127 -0.374162 -0.613948 +v -0.0824827 -0.366948 -0.613795 +v -0.0256613 -0.359532 -0.643467 +v -0.0302011 -0.394876 -0.581959 +v -0.0279136 -0.378466 -0.614057 +v -0.0347964 -0.421058 -0.510961 +v -0.0325025 -0.408996 -0.547489 +v -0.115981 -0.425138 -0.431992 +v -0.0823478 -0.441352 -0.391539 +v -0.128322 -0.437096 -0.348189 +v -0.122289 -0.43173 -0.390591 +v -0.0736919 -0.425961 -0.472452 +v -0.10946 -0.417124 -0.472102 +v -0.0392767 -0.439937 -0.432997 +v -0.0370615 -0.431294 -0.472692 +v -0.0434716 -0.453372 -0.35059 +v -0.0414205 -0.447219 -0.392191 +v -0.135481 -0.260912 -0.691328 +v -0.131426 -0.294767 -0.668238 +v -0.149272 -0.278251 -0.668004 +v -0.109317 -0.224749 -0.732831 +v -0.10767 -0.256208 -0.713142 +v -0.122129 -0.242875 -0.712735 +v -0.0823513 -0.245987 -0.734034 +v -0.0748448 -0.275921 -0.714357 +v -0.101727 -0.28829 -0.692086 +v -0.0918322 -0.267187 -0.71371 +v -0.0911854 -0.319704 -0.668939 +v -0.111975 -0.308563 -0.668565 +v -0.0857034 -0.190674 -0.771513 +v -0.0858384 -0.217276 -0.752824 +v -0.0971419 -0.207146 -0.752222 +v -0.0654305 -0.163567 -0.812219 +v -0.0665643 -0.183376 -0.7921 +v -0.0751 -0.175945 -0.79131 +v -0.049815 -0.174943 -0.814269 +v -0.0466254 -0.193505 -0.794392 +v -0.0648813 -0.206244 -0.77317 +v -0.0570166 -0.18917 -0.793176 +v -0.0598654 -0.231752 -0.7546 +v -0.0733469 -0.225428 -0.753655 +v -0.0403946 -0.21528 -0.775339 +v -0.0307247 -0.239527 -0.756365 +v -0.0511179 -0.259092 -0.735626 +v -0.0455921 -0.236401 -0.755543 +v -0.0311206 -0.181072 -0.816908 +v -0.0239874 -0.198512 -0.796652 +v -0.0355594 -0.196559 -0.7956 +v -0.0105788 -0.183411 -0.818864 +v -0.0137092 -0.219126 -0.776956 +v -0.0120781 -0.19954 -0.797402 +v -0.0173238 -0.265118 -0.736817 +v -0.0154613 -0.241281 -0.756953 +v -0.0630187 -0.305851 -0.693095 +v -0.0466631 -0.33428 -0.66964 +v -0.0693256 -0.328255 -0.669313 +v -0.0383418 -0.287092 -0.71557 +v -0.0569381 -0.28252 -0.715004 +v -0.0213366 -0.314286 -0.693851 +v -0.0192858 -0.289748 -0.715974 +v -0.0234653 -0.337843 -0.669873 +v -0.0214326 0.612764 0.171028 +v -0.0517772 0.574901 0.177045 +v -0.032119 0.55297 0.20572 +v -0.0264835 0.579032 0.187869 +v -0.0606722 0.605009 0.144583 +v -0.0940367 0.562813 0.135922 +v -0.0919292 0.539682 0.175235 +v -0.0746915 0.569198 0.159584 +v -0.143295 0.502693 0.164329 +v -0.129689 0.495157 0.217492 +v -0.0751025 0.526093 0.213735 +v -0.112091 0.514578 0.193221 +v -0.0424428 0.519349 0.250809 +v -0.0376639 0.533451 0.226169 +v -0.130051 0.536678 -0.00680558 +v -0.152619 0.511164 0.0394776 +v -0.119073 0.550395 0.0722588 +v -0.104345 0.581221 0.0259771 +v -0.126008 0.543831 0.034173 +v -0.187988 0.474807 -0.00187647 +v -0.218201 0.452081 0.0405712 +v -0.175691 0.487607 0.084535 +v -0.183558 0.48124 0.0416805 +v -0.199535 0.463955 0.131331 +v -0.133348 0.524179 0.116986 +v -0.163382 0.494231 0.126759 +v -0.0890355 0.594052 0.0947326 +v -0.108623 0.556634 0.106494 +v -0.367902 0.315544 0.017381 +v -0.331389 0.356178 0.0647418 +v -0.294768 0.389345 0.0294321 +v -0.333011 0.35149 -0.0193341 +v -0.33275 0.354216 0.0226969 +v -0.367467 0.31678 0.0992565 +v -0.328258 0.3563 0.149432 +v -0.287644 0.394628 0.116428 +v -0.329651 0.356999 0.10694 +v -0.236604 0.431849 0.172148 +v -0.250473 0.426328 0.0804567 +v -0.242614 0.430517 0.126223 +v -0.259042 0.416726 -0.00800859 +v -0.255928 0.421708 0.0359393 +v -0.286199 0.379603 0.293469 +v -0.32805 0.349176 0.236224 +v -0.365565 0.303149 0.271732 +v -0.327982 0.342691 0.281542 +v -0.194416 0.441923 0.320725 +v -0.239423 0.420871 0.261811 +v -0.241311 0.412982 0.306775 +v -0.187442 0.459019 0.23277 +v -0.284396 0.391924 0.204027 +v -0.236697 0.427897 0.217139 +v -0.366618 0.313108 0.183018 +v -0.327933 0.353702 0.192357 +v -0.0479374 0.501882 0.316391 +v -0.0981197 0.483168 0.346652 +v -0.0491738 0.494246 0.355248 +v -0.0920354 0.499377 0.269816 +v -0.0457805 0.509538 0.281231 +v -0.143844 0.473905 0.292452 +v -0.139239 0.482692 0.251996 +v -0.14661 0.465523 0.334581 +v -0.109497 0.564612 -0.0557193 +v -0.131948 0.519642 -0.0941171 +v -0.158967 0.496998 -0.0466461 +v -0.131824 0.528669 -0.0497193 +v -0.108519 0.54279 -0.145205 +v -0.129735 0.497885 -0.18556 +v -0.158182 0.479751 -0.136708 +v -0.131045 0.509435 -0.139548 +v -0.186763 0.443274 -0.18132 +v -0.221904 0.426077 -0.137465 +v -0.190088 0.460581 -0.0910605 +v -0.188835 0.452408 -0.136182 +v -0.223936 0.440007 -0.0481118 +v -0.189985 0.467984 -0.0462077 +v -0.106575 0.51479 -0.23814 +v -0.128381 0.470103 -0.277526 +v -0.154954 0.457936 -0.227906 +v -0.12864 0.484828 -0.231703 +v -0.108827 0.479645 -0.330184 +v -0.132854 0.434994 -0.366406 +v -0.153971 0.43007 -0.317435 +v -0.129579 0.453546 -0.322577 +v -0.181058 0.393337 -0.356983 +v -0.209746 0.386969 -0.312735 +v -0.182318 0.421367 -0.270635 +v -0.181021 0.408212 -0.314306 +v -0.215907 0.408871 -0.226126 +v -0.184412 0.432991 -0.226222 +v -0.243704 0.375486 -0.269973 +v -0.280545 0.358652 -0.228537 +v -0.252663 0.392384 -0.183748 +v -0.248335 0.384452 -0.227094 +v -0.235111 0.353855 -0.353874 +v -0.268291 0.342308 -0.312462 +v -0.239164 0.365336 -0.312272 +v -0.287993 0.3087 -0.35378 +v -0.321743 0.288047 -0.312993 +v -0.304016 0.324081 -0.271524 +v -0.296145 0.31688 -0.312853 +v -0.339707 0.298579 -0.230503 +v -0.318034 0.335888 -0.187963 +v -0.311386 0.330389 -0.229869 +v -0.258829 0.405735 -0.0961191 +v -0.296239 0.381261 -0.0569125 +v -0.259877 0.411451 -0.0520665 +v -0.290679 0.371333 -0.143128 +v -0.256293 0.399428 -0.140051 +v -0.354156 0.306287 -0.147495 +v -0.328286 0.344798 -0.103698 +v -0.323741 0.340663 -0.145881 +v -0.363938 0.31175 -0.0646427 +v -0.33145 0.348379 -0.061491 +v -0.256373 0.321389 -0.394225 +v -0.271272 0.289202 -0.43404 +v -0.27978 0.299457 -0.39423 +v -0.207222 0.358953 -0.395931 +v -0.22911 0.326676 -0.434645 +v -0.231939 0.340893 -0.394664 +v -0.207464 0.325437 -0.475402 +v -0.222318 0.295364 -0.512192 +v -0.244489 0.295954 -0.473151 +v -0.226082 0.311425 -0.47382 +v -0.25243 0.265854 -0.51109 +v -0.262234 0.277984 -0.473047 +v -0.159922 0.394668 -0.402494 +v -0.18592 0.3583 -0.438774 +v -0.182968 0.376551 -0.398413 +v -0.120435 0.436389 -0.416997 +v -0.146465 0.392077 -0.449356 +v -0.13883 0.414286 -0.40856 +v -0.13959 0.38744 -0.497829 +v -0.162563 0.345778 -0.528133 +v -0.171361 0.353224 -0.482697 +v -0.154723 0.369022 -0.489109 +v -0.191626 0.319194 -0.517002 +v -0.189083 0.339032 -0.478244 +v -0.180704 0.31021 -0.560079 +v -0.191528 0.279593 -0.593091 +v -0.204929 0.289067 -0.551885 +v -0.192718 0.299232 -0.555224 +v -0.157507 0.338602 -0.575517 +v -0.172836 0.301346 -0.605257 +v -0.168947 0.323001 -0.566744 +v -0.165401 0.295679 -0.652898 +v -0.168974 0.264027 -0.68325 +v -0.180366 0.2701 -0.636675 +v -0.173191 0.281469 -0.643988 +v -0.178982 0.243072 -0.668465 +v -0.194073 0.252493 -0.626117 +v -0.187227 0.260724 -0.630778 +v -0.229573 0.267033 -0.548566 +v -0.229588 0.23906 -0.583632 +v -0.241626 0.252863 -0.548006 +v -0.210419 0.261708 -0.586535 +v -0.217277 0.278718 -0.549762 +v -0.189096 0.227495 -0.657696 +v -0.208561 0.235652 -0.619796 +v -0.201205 0.24456 -0.622512 +v -0.200866 0.209224 -0.650365 +v -0.216079 0.224497 -0.617806 +v -0.154489 0.264476 -0.732809 +v -0.14453 0.238325 -0.762905 +v -0.162766 0.237365 -0.714519 +v -0.159146 0.249675 -0.723361 +v -0.123621 0.246714 -0.810795 +v -0.104233 0.22428 -0.834639 +v -0.127078 0.214191 -0.789712 +v -0.125951 0.229889 -0.800469 +v -0.103771 0.188709 -0.811765 +v -0.129345 0.185938 -0.768161 +v -0.148654 0.212484 -0.74352 +v -0.127536 0.199003 -0.779188 +v -0.169354 0.218362 -0.698838 +v -0.165964 0.227083 -0.706329 +v -0.0271901 0.200978 -0.888648 +v -0.0544314 0.220439 -0.886988 +v -0.0272805 0.239981 -0.913565 +v -0.0275051 0.220528 -0.902034 +v -0.0246564 0.161283 -0.863583 +v -0.0524605 0.181859 -0.861359 +v -0.0262642 0.181255 -0.875225 +v -0.0744048 0.163653 -0.83119 +v -0.079917 0.202818 -0.851701 +v -0.078521 0.183669 -0.83968 +v -0.0792852 0.240036 -0.875107 +v -0.0802003 0.22141 -0.864001 +v -0.0136681 0.0885148 -0.857088 +v -0.0323538 0.10384 -0.845874 +v -0.0194786 0.121401 -0.851505 +v -0.0165037 0.103565 -0.851885 +v -0.0390318 0.0886167 -0.846477 +v -0.0594789 0.102778 -0.828784 +v -0.0558912 0.121886 -0.832382 +v -0.0468967 0.103722 -0.83771 +v -0.0844006 0.141885 -0.81231 +v -0.0443595 0.141572 -0.845167 +v -0.0659611 0.142461 -0.829483 +v -0.0222954 0.140986 -0.85554 +v -0.0970829 0.107166 -0.791453 +v -0.0772557 0.0968129 -0.813063 +v -0.071168 0.0773944 -0.823128 +v -0.0833614 0.0911869 -0.806753 +v -0.128906 0.142294 -0.757352 +v -0.105628 0.131966 -0.78515 +v -0.112281 0.124484 -0.775546 +v -0.11426 0.158209 -0.781184 +v -0.0822015 0.118201 -0.809113 +v -0.0969787 0.138077 -0.797468 +v -0.0584782 0.0857965 -0.833486 +v -0.0694467 0.100576 -0.820488 +v -0.178392 0.202839 -0.686167 +v -0.165451 0.176774 -0.709605 +v -0.183714 0.193291 -0.681147 +v -0.155163 0.193904 -0.72504 +v -0.173551 0.210739 -0.692091 +v -0.141056 0.16866 -0.744268 +v -0.134527 0.176606 -0.755889 +v -0.146905 0.159749 -0.735189 +v -0.0149263 0.704329 0.13577 +v -0.0345935 0.652775 0.14404 +v -0.0176416 0.655292 0.153605 +v -0.0119854 0.812786 0.0995372 +v -0.0257816 0.755799 0.108847 +v -0.0131023 0.75759 0.117691 +v -0.034531 0.808126 0.076987 +v -0.0481798 0.748362 0.0748555 +v -0.0426536 0.698968 0.111755 +v -0.0376151 0.752741 0.0944763 +v -0.0636698 0.644262 0.107473 +v -0.0501661 0.648995 0.128549 +v -0.0111356 0.919844 0.063683 +v -0.0224595 0.866007 0.0731619 +v -0.0113912 0.867634 0.0814782 +v -0.0109027 1.00721 0.02956 +v -0.021745 0.965433 0.0386799 +v -0.0110342 0.967133 0.0463206 +v -0.0313467 1.00201 0.0104174 +v -0.0409032 0.956621 0.00833092 +v -0.0321476 0.914975 0.0424755 +v -0.0318092 0.962063 0.0260024 +v -0.042335 0.858139 0.0408732 +v -0.0328817 0.862933 0.0595618 +v -0.0493821 0.902479 0.0011097 +v -0.0571458 0.842278 -0.0108912 +v -0.0528015 0.797376 0.0338196 +v -0.0504963 0.851352 0.0172913 +v -0.0477064 0.98797 -0.0284802 +v -0.0550076 0.93795 -0.0415996 +v -0.0487038 0.948703 -0.0142919 +v -0.0579784 0.961716 -0.0864028 +v -0.0623106 0.906503 -0.109204 +v -0.0606807 0.87967 -0.0587882 +v -0.059611 0.924003 -0.0733258 +v -0.0650303 0.816085 -0.0798878 +v -0.0646362 0.778756 -0.0276981 +v -0.0620637 0.83062 -0.0433818 +v -0.0640056 0.689091 0.0661828 +v -0.0825571 0.632648 0.0501658 +v -0.0744148 0.638889 0.081151 +v -0.0641218 0.735226 0.0210732 +v -0.0570529 0.742604 0.0502612 +v -0.0723981 0.714628 -0.0495649 +v -0.0768544 0.674199 0.00213464 +v -0.0692744 0.725982 -0.0123288 +v -0.0916572 0.616652 -0.0234619 +v -0.0882526 0.625311 0.0151005 +v -0.0811949 0.652452 -0.0766817 +v -0.0927221 0.594629 -0.108716 +v -0.0929269 0.606445 -0.0649382 +v -0.0685643 0.750132 -0.104965 +v -0.0728865 0.684965 -0.133701 +v -0.0733807 0.70092 -0.0902555 +v -0.0664635 0.711248 -0.193784 +v -0.0701261 0.646748 -0.226056 +v -0.0796919 0.623006 -0.165758 +v -0.0715802 0.666872 -0.179201 +v -0.0905311 0.565938 -0.200729 +v -0.0917033 0.581146 -0.154184 +v -0.0642453 0.843933 -0.135015 +v -0.0650836 0.777793 -0.163328 +v -0.0658258 0.798375 -0.120117 +v -0.0608785 0.920134 -0.161278 +v -0.0619551 0.860251 -0.191856 +v -0.0629029 0.885091 -0.148967 +v -0.0578491 0.863915 -0.248985 +v -0.0577082 0.802226 -0.283966 +v -0.0615954 0.795543 -0.223465 +v -0.0600345 0.832468 -0.237109 +v -0.0615189 0.729211 -0.255736 +v -0.0634368 0.754638 -0.208781 +v -0.057568 0.737668 -0.318127 +v -0.059403 0.672743 -0.351189 +v -0.0635599 0.663728 -0.28836 +v -0.0599632 0.701812 -0.303452 +v -0.0530592 0.797554 -0.343356 +v -0.0541077 0.736304 -0.37945 +v -0.0555436 0.77001 -0.331667 +v -0.0506779 0.725549 -0.438222 +v -0.0556913 0.666363 -0.472225 +v -0.057 0.673474 -0.412989 +v -0.0539679 0.701594 -0.426557 +v -0.0638022 0.610794 -0.443764 +v -0.0650798 0.609194 -0.382899 +v -0.0604715 0.642303 -0.398207 +v -0.0776805 0.58601 -0.259787 +v -0.0903681 0.530111 -0.294603 +v -0.0898659 0.548946 -0.24774 +v -0.0694326 0.600834 -0.321032 +v -0.0691888 0.624699 -0.273566 +v -0.0761219 0.548086 -0.413032 +v -0.0804959 0.541616 -0.353461 +v -0.0715222 0.575261 -0.367754 +v -0.097517 0.486675 -0.385441 +v -0.0926983 0.509373 -0.340708 +v -0.0934731 0.489974 -0.44147 +v -0.115481 0.435977 -0.469324 +v -0.105485 0.461958 -0.428191 +v -0.0762495 0.549271 -0.471606 +v -0.0937727 0.489983 -0.497482 +v -0.0838962 0.519418 -0.456165 +v -0.09563 0.487491 -0.552719 +v -0.115541 0.431716 -0.575975 +v -0.11484 0.434175 -0.522587 +v -0.104679 0.460506 -0.53731 +v -0.137081 0.383248 -0.548209 +v -0.126387 0.409488 -0.509208 +v -0.0647285 0.606129 -0.502041 +v -0.0782139 0.546088 -0.528508 +v -0.0700284 0.578515 -0.487121 +v -0.054874 0.652395 -0.527414 +v -0.0656789 0.596288 -0.55708 +v -0.0598452 0.631096 -0.515695 +v -0.0651245 0.582102 -0.608073 +v -0.079383 0.530028 -0.634043 +v -0.0797836 0.539447 -0.582967 +v -0.0724417 0.562434 -0.596492 +v -0.0967178 0.483278 -0.606298 +v -0.0874224 0.514136 -0.568157 +v -0.0953888 0.477888 -0.657145 +v -0.111825 0.427336 -0.678979 +v -0.115117 0.429295 -0.62851 +v -0.105164 0.454138 -0.643161 +v -0.0762139 0.518189 -0.680653 +v -0.0907983 0.471541 -0.704017 +v -0.085752 0.499566 -0.669847 +v -0.0829268 0.464178 -0.745605 +v -0.0939195 0.424785 -0.767904 +v -0.104768 0.425912 -0.725955 +v -0.093771 0.446449 -0.736665 +v -0.116045 0.383233 -0.748399 +v -0.126607 0.380123 -0.70125 +v -0.115764 0.403493 -0.713981 +v -0.135717 0.380251 -0.599662 +v -0.153355 0.334537 -0.625031 +v -0.146443 0.358012 -0.586694 +v -0.132847 0.3791 -0.651128 +v -0.125288 0.404339 -0.613805 +v -0.13711 0.337947 -0.725558 +v -0.147225 0.334236 -0.675546 +v -0.137145 0.356728 -0.688269 +v -0.155343 0.295891 -0.702726 +v -0.156695 0.313578 -0.663586 +v -0.140485 0.302163 -0.753089 +v -0.135989 0.272173 -0.782405 +v -0.14818 0.282232 -0.742819 +v -0.121996 0.345416 -0.773211 +v -0.121513 0.312815 -0.800268 +v -0.131668 0.323485 -0.763319 +v -0.0997471 0.325848 -0.840926 +v -0.089826 0.300739 -0.866572 +v -0.114031 0.285033 -0.828141 +v -0.107335 0.305408 -0.835114 +v -0.0996581 0.26113 -0.854226 +v -0.119554 0.265282 -0.820027 +v -0.101143 0.387978 -0.790775 +v -0.103382 0.354851 -0.815178 +v -0.111732 0.367175 -0.782463 +v -0.0800478 0.423589 -0.80338 +v -0.0838772 0.392882 -0.825823 +v -0.0904932 0.407043 -0.797847 +v -0.066124 0.39706 -0.852095 +v -0.0626167 0.37393 -0.873184 +v -0.083026 0.364682 -0.84897 +v -0.0744566 0.381958 -0.851159 +v -0.0767933 0.33953 -0.872588 +v -0.0915502 0.345792 -0.845552 +v -0.0542138 0.352757 -0.893894 +v -0.0407655 0.333461 -0.912723 +v -0.064893 0.31732 -0.89519 +v -0.0596677 0.335595 -0.895293 +v -0.0434647 0.382345 -0.887527 +v -0.0333426 0.365103 -0.904776 +v -0.0487425 0.368456 -0.891228 +v -0.01512 0.376656 -0.906406 +v -0.0188043 0.34868 -0.91929 +v -0.0169256 0.363437 -0.913316 +v -0.0224718 0.31542 -0.926863 +v -0.0206788 0.332602 -0.923936 +v -0.0738131 0.278818 -0.88955 +v -0.0525058 0.258976 -0.906454 +v -0.0770857 0.259289 -0.883545 +v -0.0475518 0.297368 -0.914157 +v -0.0696785 0.298278 -0.893354 +v -0.0255035 0.278608 -0.925997 +v -0.0241058 0.297349 -0.92768 +v -0.0265875 0.259413 -0.921423 +v -0.00926811 0.0696138 -0.882606 +v -0.0221743 0.0774254 -0.864213 +v -0.0112693 0.077288 -0.867522 +v -0.00630153 0.0638405 -0.924398 +v -0.0150683 0.0650394 -0.899939 +v -0.00762528 0.0652216 -0.901758 +v -0.0184275 0.0624492 -0.920945 +v -0.0286782 0.0631084 -0.894638 +v -0.026755 0.0692444 -0.876848 +v -0.0221467 0.0644151 -0.897434 +v -0.041434 0.0763382 -0.854706 +v -0.0323506 0.0772179 -0.859693 +v -0.00445433 0.0690294 -0.977819 +v -0.0104468 0.0644884 -0.948645 +v -0.00525763 0.0652 -0.949946 +v -0.00341251 0.0830153 -1.03822 +v -0.007707 0.0736096 -1.00589 +v -0.00385237 0.0750581 -1.00744 +v -0.0103372 0.0779051 -1.0337 +v -0.0154321 0.0672466 -1.00154 +v -0.0132494 0.0660137 -0.974668 +v -0.0115662 0.0710437 -1.00379 +v -0.020346 0.0607537 -0.944921 +v -0.0154991 0.0630654 -0.946871 +v -0.0217037 0.0587879 -0.970922 +v -0.0291405 0.0528274 -0.941437 +v -0.029122 0.0580213 -0.916571 +v -0.0249191 0.0573756 -0.943091 +v -0.0175609 0.0671713 -1.02819 +v -0.0232415 0.0553451 -0.997994 +v -0.0193071 0.0621043 -0.999483 +v -0.0258155 0.049124 -1.02608 +v -0.0311482 0.0364974 -0.996432 +v -0.0294798 0.0462959 -0.968238 +v -0.0272858 0.0466971 -0.997427 +v -0.0362158 0.039806 -0.938884 +v -0.0377075 0.0490944 -0.913025 +v -0.032932 0.0470054 -0.940017 +v -0.0410938 0.0662555 -0.86962 +v -0.0553822 0.0713135 -0.845779 +v -0.0490601 0.0744589 -0.849998 +v -0.0395472 0.0575214 -0.88952 +v -0.0344806 0.0608788 -0.891946 +v -0.0474456 0.0466041 -0.88612 +v -0.0514705 0.058563 -0.863829 +v -0.0438711 0.0528315 -0.887523 +v -0.0647275 0.0601576 -0.839647 +v -0.0605536 0.0666352 -0.842259 +v -0.0583557 0.0442484 -0.861004 +v -0.0706368 0.0412733 -0.837559 +v -0.0680572 0.0516139 -0.838152 +v -0.0437831 0.0343882 -0.911265 +v -0.0524113 0.0291629 -0.885433 +v -0.0502641 0.0386345 -0.885472 +v -0.0474004 0.0142273 -0.911428 +v -0.0550315 0.00667443 -0.886598 +v -0.0623656 0.0233546 -0.861161 +v -0.0539721 0.0184294 -0.885857 +v -0.0739228 0.0162781 -0.838215 +v -0.0725606 0.029405 -0.837652 +v -0.0357879 0.0282294 -0.965662 +v -0.0410556 0.0212201 -0.937656 +v -0.0389139 0.0311254 -0.938097 +v -0.0358836 0.0196847 -1.01991 +v -0.0372973 0.013053 -0.990702 +v -0.0345368 0.0250835 -0.993654 +v -0.0408796 -0.00573091 -1.01351 +v -0.0405644 -0.0110995 -0.988704 +v -0.0399169 0.00615045 -0.963672 +v -0.039275 0.00100339 -0.989183 +v -0.0437874 -0.00123921 -0.937811 +v -0.0426703 0.0103464 -0.93756 +v -0.0418249 -0.0177498 -0.963888 +v -0.0447156 -0.0256267 -0.939124 +v -0.0490631 -0.00945871 -0.912821 +v -0.0444364 -0.0132804 -0.938408 +v -0.0427717 -0.0303235 -1.01299 +v -0.0414578 -0.0354762 -0.989395 +v -0.0412597 -0.0232898 -0.988876 +v -0.0424315 -0.0544375 -1.01412 +v -0.0407499 -0.0594704 -0.990275 +v -0.0420121 -0.0422315 -0.96506 +v -0.0412556 -0.0475669 -0.989963 +v -0.0445592 -0.0506337 -0.939997 +v -0.0494136 -0.0349527 -0.914295 +v -0.0447237 -0.038128 -0.93973 +v -0.0642616 -0.00211374 -0.862803 +v -0.0753386 -0.0126748 -0.839888 +v -0.0748173 0.00216178 -0.839033 +v -0.0559989 -0.0189605 -0.888399 +v -0.0556742 -0.00586187 -0.887509 +v -0.0560893 -0.0459684 -0.889344 +v -0.0648191 -0.0301734 -0.864391 +v -0.0561044 -0.0324023 -0.889074 +v -0.0756377 -0.0434321 -0.840848 +v -0.0755806 -0.0279625 -0.840565 +v -0.0648274 -0.0588622 -0.864336 +v -0.075352 -0.0739048 -0.839743 +v -0.0756039 -0.0588145 -0.840522 +v -0.0492321 -0.0607495 -0.91424 +v -0.0558896 -0.0726458 -0.888248 +v -0.0560522 -0.0594398 -0.889015 +v -0.0485672 -0.0854987 -0.912505 +v -0.0547726 -0.09758 -0.886045 +v -0.0642093 -0.0864452 -0.862485 +v -0.0554976 -0.0854161 -0.887205 +v -0.0736849 -0.10239 -0.837458 +v -0.0747547 -0.0884982 -0.838669 +v -0.0412711 -0.0663748 -0.965066 +v -0.0439439 -0.0750841 -0.938995 +v -0.0443205 -0.0629937 -0.939696 +v -0.0405736 -0.077357 -1.01428 +v -0.0391055 -0.0823881 -0.989425 +v -0.0400376 -0.0710951 -0.990033 +v -0.0376119 -0.0987055 -1.01302 +v -0.0365294 -0.103767 -0.98788 +v -0.039841 -0.089351 -0.963549 +v -0.0379405 -0.0932965 -0.988644 +v -0.0425224 -0.0979607 -0.937061 +v -0.0433658 -0.086781 -0.938061 +v -0.0374066 -0.110423 -0.961917 +v -0.0397848 -0.118273 -0.935532 +v -0.0467358 -0.108005 -0.91039 +v -0.0413499 -0.108499 -0.936162 +v -0.033661 -0.118445 -1.01205 +v -0.0329166 -0.123185 -0.987166 +v -0.0348592 -0.113748 -0.987323 +v -0.0288349 -0.13654 -1.01308 +v -0.028162 -0.140217 -0.98881 +v -0.033653 -0.128854 -0.961577 +v -0.0306886 -0.132025 -0.987598 +v -0.0352216 -0.135031 -0.935745 +v -0.0430547 -0.127072 -0.909196 +v -0.0377633 -0.127158 -0.935337 +v -0.0620218 -0.111414 -0.860112 +v -0.0696186 -0.127248 -0.835251 +v -0.0720153 -0.115375 -0.836266 +v -0.0519087 -0.119407 -0.88402 +v -0.0536109 -0.108967 -0.88493 +v -0.0464682 -0.136762 -0.883458 +v -0.0573216 -0.132262 -0.858494 +v -0.0495624 -0.128729 -0.883475 +v -0.062135 -0.146841 -0.834383 +v -0.0663675 -0.137805 -0.834571 +v -0.0491656 -0.14748 -0.858907 +v -0.050482 -0.159911 -0.835788 +v -0.0567936 -0.154151 -0.834844 +v -0.0368406 -0.141505 -0.910226 +v -0.0378317 -0.148589 -0.885302 +v -0.0425225 -0.143337 -0.884127 +v -0.0281113 -0.151111 -0.913346 +v -0.0266404 -0.155672 -0.888439 +v -0.0375729 -0.156959 -0.861296 +v -0.0325021 -0.152655 -0.8868 +v -0.0355027 -0.167485 -0.838457 +v -0.0433389 -0.164297 -0.837047 +v -0.028265 -0.143906 -0.963939 +v -0.0284597 -0.147422 -0.938653 +v -0.0320961 -0.141767 -0.936923 +v -0.0232481 -0.15295 -1.01781 +v -0.0222125 -0.154424 -0.993853 +v -0.0253236 -0.147706 -0.990994 +v -0.0170456 -0.167058 -1.02566 +v -0.0153279 -0.165267 -1.00041 +v -0.0213092 -0.155208 -0.968706 +v -0.0188676 -0.160301 -0.997092 +v -0.0199462 -0.155716 -0.942903 +v -0.0243854 -0.152053 -0.940719 +v -0.0132335 -0.162751 -0.973882 +v -0.010265 -0.160356 -0.946757 +v -0.0175854 -0.156703 -0.916991 +v -0.0152151 -0.158465 -0.944988 +v -0.0104033 -0.177664 -1.03377 +v -0.00781981 -0.17219 -1.00613 +v -0.0116323 -0.169253 -1.00352 +v -0.00349707 -0.183567 -1.03926 +v -0.00448582 -0.166526 -0.977469 +v -0.00392939 -0.174007 -1.00793 +v -0.00598158 -0.159094 -0.919597 +v -0.005169 -0.161447 -0.947992 +v -0.0235256 -0.161989 -0.864274 +v -0.0183057 -0.170973 -0.841058 +v -0.0271121 -0.169652 -0.839849 +v -0.013746 -0.159103 -0.891413 +v -0.0203528 -0.157775 -0.890037 +v -0.00800552 -0.163859 -0.866457 +v -0.00692621 -0.15979 -0.892384 +v -0.00922217 -0.171625 -0.841916 +v -0.00291915 0.104175 -1.10191 +v -0.00623196 0.0902711 -1.06718 +v -0.0030955 0.0926303 -1.06959 +v -0.00305966 0.134143 -1.17092 +v -0.00585415 0.114438 -1.13182 +v -0.00290127 0.117922 -1.13556 +v -0.00936079 0.123452 -1.15974 +v -0.0121212 0.101481 -1.12017 +v -0.00895739 0.0966004 -1.09465 +v -0.00891026 0.108892 -1.12647 +v -0.0127915 0.0808668 -1.06011 +v -0.00945033 0.0863477 -1.06386 +v -0.00397648 0.175095 -1.24823 +v -0.00685536 0.148172 -1.20286 +v -0.00341212 0.15311 -1.20835 +v -0.00581208 0.229206 -1.33683 +v -0.00952633 0.193565 -1.28334 +v -0.00477052 0.200369 -1.29093 +v -0.0172661 0.209236 -1.31508 +v -0.0189349 0.169793 -1.25835 +v -0.0119712 0.16032 -1.23217 +v -0.0142527 0.183143 -1.27212 +v -0.0139596 0.130543 -1.18513 +v -0.0103608 0.140509 -1.19484 +v -0.0200912 0.135174 -1.20769 +v -0.0215762 0.105417 -1.16407 +v -0.0162074 0.104528 -1.14336 +v -0.0176829 0.118701 -1.17458 +v -0.0282098 0.176042 -1.2813 +v -0.0281079 0.137062 -1.22748 +v -0.0235582 0.154203 -1.24311 +v -0.0383028 0.136371 -1.24522 +v -0.0369275 0.100885 -1.19937 +v -0.0284344 0.104072 -1.18246 +v -0.0325692 0.11906 -1.21254 +v -0.0300548 0.0762768 -1.14671 +v -0.0241072 0.079956 -1.12813 +v -0.025685 0.0911305 -1.15448 +v -0.0155954 0.0822074 -1.08477 +v -0.0201494 0.0650953 -1.05372 +v -0.0162966 0.0738349 -1.05646 +v -0.0192862 0.081911 -1.10754 +v -0.0155386 0.0924011 -1.11358 +v -0.0282665 0.0577386 -1.10059 +v -0.0236789 0.0618552 -1.07806 +v -0.0234876 0.0702704 -1.10293 +v -0.0297234 0.0425491 -1.05572 +v -0.024534 0.0544915 -1.0527 +v -0.0345882 0.0371875 -1.08293 +v -0.0428087 0.016229 -1.07886 +v -0.0379721 0.0211541 -1.05062 +v -0.0359906 0.0297936 -1.06509 +v -0.0337123 0.0524465 -1.12083 +v -0.0395472 0.0307774 -1.10594 +v -0.0337467 0.0445748 -1.10139 +v -0.0440494 0.0234401 -1.12795 +v -0.0505864 0.00127447 -1.1288 +v -0.0472741 0.00932703 -1.10386 +v -0.0452874 0.0163445 -1.11487 +v -0.0560666 -0.0135159 -1.11483 +v -0.0520586 -0.00658676 -1.0885 +v -0.0496507 0.00185939 -1.09503 +v -0.0371133 0.0714437 -1.16421 +v -0.039443 0.0462312 -1.1401 +v -0.0347313 0.0612932 -1.14162 +v -0.0472051 0.0969698 -1.21656 +v -0.0451113 0.0662048 -1.18246 +v -0.041168 0.0832264 -1.18904 +v -0.0541669 0.0618249 -1.20379 +v -0.0513883 0.0345546 -1.18418 +v -0.045295 0.0398443 -1.1604 +v -0.0485779 0.0499407 -1.18054 +v -0.0478873 0.0160773 -1.1512 +v -0.0439188 0.0311421 -1.143 +v -0.0512019 0.00995881 -1.17827 +v -0.0532201 -0.0137879 -1.18706 +v -0.0525205 -0.00689333 -1.15574 +v -0.0510772 0.0010882 -1.16557 +v -0.0580296 0.032162 -1.21411 +v -0.0543231 0.00689893 -1.21179 +v -0.0533632 0.0201672 -1.1943 +v -0.0576343 0.00920675 -1.25469 +v -0.0524799 -0.0157977 -1.27256 +v -0.053059 -0.0175425 -1.22513 +v -0.0540884 -0.00512954 -1.23758 +v -0.0532909 -0.0430522 -1.25531 +v -0.0565554 -0.0385254 -1.21144 +v -0.0540475 -0.0285138 -1.21665 +v -0.0582455 -0.0220107 -1.14304 +v -0.0658082 -0.0480707 -1.17021 +v -0.0646861 -0.039171 -1.13725 +v -0.0616065 -0.0300977 -1.13946 +v -0.0583516 -0.0308548 -1.17464 +v -0.0550634 -0.0144344 -1.14835 +v -0.0598942 -0.0661197 -1.25192 +v -0.0641351 -0.0575965 -1.20801 +v -0.0600841 -0.048059 -1.20879 +v -0.0683494 -0.0889291 -1.25527 +v -0.0718098 -0.0786103 -1.20921 +v -0.0682099 -0.0676196 -1.20838 +v -0.044364 -0.0745209 -1.03765 +v -0.0462964 -0.095392 -1.06041 +v -0.0409649 -0.0957265 -1.03698 +v -0.0428326 -0.0853628 -1.03749 +v -0.053032 -0.097926 -1.08413 +v -0.0547649 -0.122638 -1.10834 +v -0.0474102 -0.116774 -1.08305 +v -0.0504466 -0.107724 -1.08378 +v -0.047193 -0.138428 -1.10598 +v -0.0403877 -0.133405 -1.08171 +v -0.0410836 -0.114435 -1.05924 +v -0.0440236 -0.12527 -1.08225 +v -0.0363891 -0.115235 -1.03587 +v -0.038803 -0.105666 -1.03636 +v -0.0623125 -0.131925 -1.1363 +v -0.061832 -0.16133 -1.16405 +v -0.0546271 -0.147711 -1.13297 +v -0.0587328 -0.140413 -1.13485 +v -0.067764 -0.178755 -1.20073 +v -0.063351 -0.213703 -1.23347 +v -0.0587799 -0.190715 -1.1921 +v -0.0635442 -0.185666 -1.19667 +v -0.0533492 -0.219391 -1.21988 +v -0.0484971 -0.197199 -1.1828 +v -0.052478 -0.172737 -1.15794 +v -0.0536909 -0.194395 -1.18737 +v -0.0455021 -0.160125 -1.12934 +v -0.0501615 -0.154166 -1.13101 +v -0.0425304 -0.181554 -1.15282 +v -0.0361866 -0.172081 -1.12856 +v -0.038697 -0.152601 -1.10475 +v -0.0408147 -0.165937 -1.1283 +v -0.0430523 -0.220307 -1.20647 +v -0.0386069 -0.202152 -1.17577 +v -0.0434182 -0.199621 -1.17873 +v -0.0341797 -0.220034 -1.19559 +v -0.0302575 -0.2108 -1.17742 +v -0.0331649 -0.191716 -1.15303 +v -0.034216 -0.205283 -1.1745 +v -0.027456 -0.187279 -1.13557 +v -0.0301782 -0.167581 -1.10799 +v -0.0317047 -0.179035 -1.13076 +v -0.0348527 -0.132068 -1.05887 +v -0.0309739 -0.133479 -1.0363 +v -0.0337654 -0.124488 -1.03577 +v -0.032755 -0.149397 -1.0827 +v -0.0366031 -0.141375 -1.08173 +v -0.0252079 -0.166483 -1.08898 +v -0.0281545 -0.149284 -1.06162 +v -0.0289282 -0.157693 -1.085 +v -0.0250564 -0.150891 -1.04022 +v -0.0280568 -0.142262 -1.0377 +v -0.0215245 -0.167104 -1.06986 +v -0.0189367 -0.167607 -1.04891 +v -0.0220146 -0.159421 -1.0441 +v -0.0223796 -0.186053 -1.11965 +v -0.0183125 -0.185743 -1.1025 +v -0.021679 -0.175986 -1.09504 +v -0.0154853 -0.207043 -1.13832 +v -0.0119505 -0.204179 -1.11888 +v -0.015183 -0.18465 -1.08258 +v -0.0150794 -0.195294 -1.11067 +v -0.0126933 -0.181977 -1.05954 +v -0.0158279 -0.175206 -1.0542 +v -0.0250173 -0.209002 -1.16632 +v -0.0198538 -0.208367 -1.15393 +v -0.0235275 -0.197291 -1.14364 +v -0.0290741 -0.23012 -1.20425 +v -0.023337 -0.232907 -1.20079 +v -0.0267434 -0.220488 -1.18699 +v -0.0222142 -0.259801 -1.23946 +v -0.0159033 -0.260451 -1.23226 +v -0.0177637 -0.233137 -1.19156 +v -0.0197012 -0.246614 -1.21638 +v -0.0130083 -0.230891 -1.17707 +v -0.0163692 -0.219802 -1.16542 +v -0.0106647 -0.25678 -1.21781 +v -0.00644607 -0.249123 -1.19681 +v -0.00912028 -0.225914 -1.15732 +v -0.0097054 -0.24093 -1.18786 +v -0.0137552 -0.290155 -1.27496 +v -0.00804657 -0.283883 -1.25908 +v -0.0120105 -0.273257 -1.24693 +v -0.00465619 -0.310553 -1.29851 +v -0.00355598 -0.272502 -1.23549 +v -0.00403515 -0.291178 -1.26742 +v -0.00301161 -0.237849 -1.17005 +v -0.00321578 -0.254675 -1.20296 +v -0.00903611 -0.199147 -1.09543 +v -0.00636728 -0.192058 -1.06856 +v -0.00953802 -0.187675 -1.06447 +v -0.00589997 -0.218097 -1.1327 +v -0.00889702 -0.21194 -1.12644 +v -0.00299975 -0.207801 -1.10402 +v -0.00294057 -0.222174 -1.13699 +v -0.00318622 -0.194882 -1.07137 +v -0.00862818 0.296788 -1.43833 +v -0.0141667 0.252735 -1.3763 +v -0.00711894 0.261877 -1.3863 +v -0.0120022 0.366951 -1.54602 +v -0.0203963 0.320599 -1.47923 +v -0.0102769 0.332344 -1.49191 +v -0.0350922 0.334478 -1.51104 +v -0.0395329 0.280718 -1.43721 +v -0.0254557 0.270562 -1.41023 +v -0.0302008 0.302916 -1.46042 +v -0.0277644 0.221253 -1.34312 +v -0.0210723 0.238855 -1.36145 +v -0.0154306 0.426943 -1.65182 +v -0.0271549 0.384864 -1.58408 +v -0.013741 0.399016 -1.59966 +v -0.0184102 0.464009 -1.74762 +v -0.0334764 0.433124 -1.68269 +v -0.017008 0.449139 -1.70147 +v -0.052752 0.422811 -1.69677 +v -0.0626362 0.380698 -1.62132 +v -0.044546 0.389347 -1.60946 +v -0.0488657 0.409534 -1.65506 +v -0.0516924 0.337745 -1.53289 +v -0.0399144 0.363808 -1.56109 +v -0.0684238 0.331221 -1.5447 +v -0.0714489 0.277944 -1.46986 +v -0.0554396 0.282729 -1.45678 +v -0.0621617 0.308573 -1.50172 +v -0.0796578 0.360007 -1.61888 +v -0.0837438 0.316626 -1.54705 +v -0.0742484 0.348943 -1.58424 +v -0.0960039 0.296056 -1.54004 +v -0.0975647 0.259607 -1.4865 +v -0.0860594 0.268638 -1.4782 +v -0.0911638 0.286103 -1.51303 +v -0.0869837 0.21893 -1.41316 +v -0.0721234 0.224413 -1.39908 +v -0.0796807 0.247512 -1.43958 +v -0.0409965 0.227784 -1.36634 +v -0.0402239 0.178951 -1.3015 +v -0.034172 0.200946 -1.32268 +v -0.0562407 0.228402 -1.38457 +v -0.0482351 0.255422 -1.41135 +v -0.0698954 0.17467 -1.3353 +v -0.0544836 0.178077 -1.31902 +v -0.0634831 0.201027 -1.35864 +v -0.0509761 0.133962 -1.26241 +v -0.0458489 0.156284 -1.28096 +v -0.0652408 0.131016 -1.28061 +v -0.0594027 0.0935854 -1.23631 +v -0.0555341 0.113003 -1.24722 +v -0.0851303 0.171749 -1.35386 +v -0.0798864 0.129274 -1.30238 +v -0.075411 0.150701 -1.3163 +v -0.0936041 0.131114 -1.33119 +v -0.0851424 0.0946585 -1.29285 +v -0.0724647 0.0921321 -1.26075 +v -0.083178 0.110542 -1.29432 +v -0.0645907 0.0600996 -1.23087 +v -0.0624617 0.0758909 -1.23055 +v -0.0999499 0.216545 -1.4325 +v -0.0988496 0.172184 -1.37889 +v -0.0934845 0.19385 -1.39289 +v -0.104823 0.264634 -1.51225 +v -0.109751 0.222801 -1.46512 +v -0.104003 0.23937 -1.47182 +v -0.114735 0.238821 -1.51441 +v -0.116336 0.193422 -1.46423 +v -0.109829 0.17911 -1.41496 +v -0.114083 0.207308 -1.46255 +v -0.104838 0.13873 -1.3702 +v -0.102745 0.153841 -1.37129 +v -0.111717 0.152965 -1.42069 +v -0.102804 0.118559 -1.3893 +v -0.0958454 0.103042 -1.33522 +v -0.104794 0.126763 -1.37577 +v -0.116421 0.212923 -1.52485 +v -0.113142 0.172729 -1.48098 +v -0.115848 0.181677 -1.47029 +v -0.109318 0.193254 -1.54239 +v -0.103293 0.168152 -1.52223 +v -0.105083 0.140979 -1.45393 +v -0.108742 0.16724 -1.49659 +v -0.0937432 0.115925 -1.4455 +v -0.0912018 0.0894906 -1.3725 +v -0.0990568 0.11474 -1.41211 +v -0.0752245 0.0629119 -1.26637 +v -0.0655777 0.0349479 -1.25328 +v -0.0656695 0.0463919 -1.23814 +v -0.0846199 0.0721928 -1.31296 +v -0.0856359 0.081777 -1.29874 +v -0.0779037 0.0640985 -1.3704 +v -0.0726943 0.0449836 -1.3046 +v -0.0820554 0.0662015 -1.33652 +v -0.0614013 0.0195731 -1.31074 +v -0.0641951 0.0259482 -1.27718 +v -0.064153 0.040118 -1.38286 +v -0.051411 0.014692 -1.40569 +v -0.0518222 -0.00581491 -1.33275 +v -0.0570762 0.016003 -1.35486 +v -0.0800681 0.0938359 -1.45195 +v -0.0648749 0.0714021 -1.46806 +v -0.0721259 0.0661792 -1.4156 +v -0.0629244 0.112638 -1.56167 +v -0.0465648 0.0871071 -1.57868 +v -0.0499859 0.0460213 -1.48903 +v -0.0563036 0.0787253 -1.52377 +v -0.0368264 0.0166639 -1.51205 +v -0.0407635 -0.0134879 -1.43672 +v -0.0445972 0.0150942 -1.45937 +v -0.0929021 0.151417 -1.52889 +v -0.0789058 0.133663 -1.54391 +v -0.0870528 0.122737 -1.49079 +v -0.101542 0.201571 -1.58677 +v -0.0901573 0.194827 -1.61408 +v -0.0974382 0.17841 -1.56303 +v -0.0851281 0.244684 -1.69489 +v -0.0681941 0.234642 -1.72763 +v -0.0750923 0.181383 -1.63809 +v -0.0804293 0.214214 -1.67048 +v -0.0579224 0.161808 -1.65738 +v -0.0692223 0.147191 -1.6008 +v -0.0493542 0.215788 -1.74786 +v -0.0306575 0.188187 -1.75282 +v -0.0403358 0.135638 -1.66896 +v -0.0449261 0.176003 -1.70959 +v -0.056811 0.290357 -1.80613 +v -0.0366642 0.27077 -1.82548 +v -0.0533918 0.254177 -1.78097 +v -0.0198927 0.321999 -1.88174 +v -0.0171679 0.240353 -1.82213 +v -0.018653 0.282367 -1.85619 +v -0.0138755 0.152422 -1.74005 +v -0.0155408 0.196768 -1.78245 +v -0.0316853 0.0563357 -1.59155 +v -0.0191789 0.0211221 -1.599 +v -0.0259571 -0.0162077 -1.53632 +v -0.0282898 0.0188551 -1.55988 +v -0.024297 0.102864 -1.66986 +v -0.0358114 0.0955059 -1.62876 +v -0.0108441 0.0646873 -1.6587 +v -0.0122754 0.108125 -1.69784 +v -0.00890222 -0.0163698 -1.60127 +v -0.00968516 0.022919 -1.62555 +v -0.0204866 0.467706 -1.8255 +v -0.0384889 0.452847 -1.76677 +v -0.0195744 0.46996 -1.78925 +v -0.0214998 0.441451 -1.87841 +v -0.0415881 0.440718 -1.82924 +v -0.0211331 0.457964 -1.85551 +v -0.061761 0.399441 -1.80902 +v -0.0777521 0.38349 -1.74156 +v -0.0587617 0.424776 -1.76477 +v -0.0606871 0.41511 -1.7901 +v -0.0716988 0.396739 -1.69258 +v -0.0560837 0.427617 -1.7335 +v -0.0213388 0.390973 -1.89945 +v -0.0424374 0.402634 -1.86419 +v -0.021573 0.418882 -1.89334 +v -0.040825 0.344208 -1.86523 +v -0.0207833 0.35844 -1.89587 +v -0.0757169 0.298616 -1.76663 +v -0.0610832 0.353103 -1.82521 +v -0.0593834 0.323511 -1.82056 +v -0.0792053 0.349034 -1.76795 +v -0.0618844 0.378592 -1.82104 +v -0.0920277 0.295614 -1.71236 +v -0.104971 0.281654 -1.64699 +v -0.0938068 0.333743 -1.69999 +v -0.0936916 0.316238 -1.70901 +v -0.0992778 0.244635 -1.6493 +v -0.0890838 0.27179 -1.70825 +v -0.110125 0.232846 -1.59063 +v -0.106093 0.218754 -1.59365 +v -0.113159 0.260451 -1.57751 +v -0.112672 0.246733 -1.58467 +v -0.0889421 0.358303 -1.66968 +v -0.0947312 0.327848 -1.60033 +v -0.0846744 0.362681 -1.64715 +v -0.10333 0.311113 -1.62931 +v -0.092105 0.348211 -1.68708 +v -0.106925 0.285948 -1.56378 +v -0.111012 0.274036 -1.57087 +v -0.10159 0.294646 -1.55523 +v -0.00869046 -0.0855611 -1.58575 +v -0.0170034 -0.0508072 -1.56238 +v -0.0085988 -0.0523687 -1.58877 +v -0.0097212 -0.145459 -1.59905 +v -0.0179539 -0.111752 -1.56239 +v -0.00909275 -0.11643 -1.58994 +v -0.0281324 -0.129901 -1.52868 +v -0.0340554 -0.0950127 -1.47154 +v -0.0252329 -0.0773859 -1.51921 +v -0.026352 -0.104481 -1.52163 +v -0.0324535 -0.0442612 -1.47572 +v -0.0250197 -0.0481247 -1.52344 +v -0.0113188 -0.199929 -1.62286 +v -0.0206966 -0.165601 -1.58161 +v -0.0104914 -0.173131 -1.61078 +v -0.0128077 -0.252837 -1.63891 +v -0.0238977 -0.216245 -1.60263 +v -0.0121191 -0.226336 -1.633 +v -0.0369745 -0.224619 -1.56298 +v -0.0450712 -0.181794 -1.50179 +v -0.0326987 -0.177672 -1.54864 +v -0.0349952 -0.201004 -1.55752 +v -0.039104 -0.13954 -1.48505 +v -0.0303295 -0.154134 -1.53836 +v -0.0503051 -0.141182 -1.43293 +v -0.0529329 -0.104217 -1.36442 +v -0.0434501 -0.103649 -1.41956 +v -0.0467339 -0.122631 -1.42573 +v -0.0567954 -0.178979 -1.44408 +v -0.0607965 -0.136201 -1.375 +v -0.0537852 -0.159799 -1.43957 +v -0.0693729 -0.126711 -1.31517 +v -0.0616224 -0.0984821 -1.30847 +v -0.0657647 -0.112184 -1.31219 +v -0.0536119 -0.0715693 -1.30328 +v -0.0574151 -0.0851093 -1.30514 +v -0.0392598 -0.0624089 -1.41661 +v -0.0447967 -0.0327513 -1.36904 +v -0.0391105 -0.0391567 -1.42299 +v -0.0464519 -0.0710604 -1.35885 +v -0.0408325 -0.0837409 -1.41599 +v -0.0490942 -0.0420033 -1.30842 +v -0.0506819 -0.057366 -1.304 +v -0.0493179 -0.0249849 -1.31763 +v -0.0471119 -0.00250356 -1.06297 +v -0.0430684 -0.00233264 -1.03805 +v -0.040551 0.0100302 -1.04225 +v -0.0609906 -0.032225 -1.10814 +v -0.0557995 -0.0276189 -1.08213 +v -0.0541392 -0.0165397 -1.08435 +v -0.063524 -0.0553265 -1.10675 +v -0.057488 -0.0516341 -1.08152 +v -0.0504744 -0.0259121 -1.05824 +v -0.0569467 -0.0394439 -1.08134 +v -0.0459658 -0.0270111 -1.03559 +v -0.0448657 -0.0146886 -1.03608 +v -0.0716892 -0.0692318 -1.1695 +v -0.0686132 -0.0613133 -1.13568 +v -0.0670239 -0.0497062 -1.13607 +v -0.074716 -0.11541 -1.25827 +v -0.076116 -0.104464 -1.21005 +v -0.0744365 -0.0910502 -1.20979 +v -0.0771492 -0.145393 -1.25745 +v -0.0767378 -0.132309 -1.20931 +v -0.0741022 -0.0945317 -1.16979 +v -0.0768743 -0.118375 -1.20992 +v -0.0695195 -0.0861832 -1.13624 +v -0.0694473 -0.0736023 -1.13582 +v -0.0731643 -0.120562 -1.16979 +v -0.0673767 -0.110691 -1.13702 +v -0.0633356 -0.0798366 -1.10787 +v -0.0688228 -0.098666 -1.13672 +v -0.0758992 -0.174614 -1.25294 +v -0.0738841 -0.158341 -1.20641 +v -0.0757323 -0.14579 -1.20817 +v -0.0712164 -0.198806 -1.2449 +v -0.069018 -0.143944 -1.16827 +v -0.0712193 -0.169489 -1.20395 +v -0.0603535 -0.10307 -1.10909 +v -0.0652002 -0.121897 -1.13695 +v -0.0514636 -0.0503618 -1.05854 +v -0.0462175 -0.0513583 -1.03649 +v -0.0463918 -0.0392737 -1.03584 +v -0.0565107 -0.075737 -1.08304 +v -0.0573304 -0.063809 -1.08218 +v -0.0499242 -0.073971 -1.06012 +v -0.0550656 -0.0871865 -1.08378 +v -0.045517 -0.0631467 -1.0372 +v -0.0364299 -0.24035 -1.22666 +v -0.0292745 -0.253755 -1.23819 +v -0.0323776 -0.236268 -1.2167 +v -0.0459254 -0.246386 -1.24622 +v -0.0375343 -0.268735 -1.26733 +v -0.041007 -0.243783 -1.23646 +v -0.0370589 -0.302395 -1.3149 +v -0.0273156 -0.317819 -1.32631 +v -0.0289357 -0.283711 -1.27973 +v -0.0328865 -0.293851 -1.29774 +v -0.0208007 -0.290524 -1.28206 +v -0.0253353 -0.272264 -1.26044 +v -0.0560119 -0.247957 -1.2658 +v -0.0469066 -0.278439 -1.29398 +v -0.0510013 -0.247979 -1.25608 +v -0.064945 -0.240658 -1.284 +v -0.0559964 -0.27978 -1.31937 +v -0.0607341 -0.245718 -1.27519 +v -0.0529463 -0.310834 -1.37865 +v -0.0413705 -0.346308 -1.40529 +v -0.0455092 -0.313131 -1.34786 +v -0.0494409 -0.313954 -1.36355 +v -0.0345132 -0.338091 -1.36702 +v -0.0413241 -0.309049 -1.33162 +v -0.0295009 -0.371447 -1.42046 +v -0.0182259 -0.384527 -1.42313 +v -0.0238891 -0.352877 -1.3753 +v -0.0267331 -0.363844 -1.39821 +v -0.0343905 -0.373451 -1.46323 +v -0.0218971 -0.397824 -1.47158 +v -0.0320883 -0.374909 -1.44211 +v -0.0119006 -0.412677 -1.51625 +v -0.0101996 -0.408059 -1.46574 +v -0.0111 -0.413119 -1.49122 +v -0.00823868 -0.38489 -1.41309 +v -0.00923411 -0.398361 -1.43973 +v -0.0183825 -0.323888 -1.32718 +v -0.0107553 -0.321058 -1.31767 +v -0.0159111 -0.307265 -1.30166 +v -0.0143287 -0.356759 -1.37208 +v -0.0210737 -0.339326 -1.35168 +v -0.00629768 -0.350083 -1.35758 +v -0.00724822 -0.368509 -1.38573 +v -0.00542202 -0.330476 -1.32853 +v -0.0136044 -0.306697 -1.63195 +v -0.0262233 -0.267573 -1.60804 +v -0.0133003 -0.279913 -1.6383 +v -0.013678 -0.355919 -1.60508 +v -0.0270665 -0.318151 -1.59197 +v -0.0137277 -0.332322 -1.62062 +v -0.0394884 -0.318731 -1.53673 +v -0.0510213 -0.270248 -1.4963 +v -0.0392691 -0.273363 -1.55824 +v -0.0396274 -0.296874 -1.54927 +v -0.0494289 -0.225723 -1.50727 +v -0.038392 -0.249009 -1.56301 +v -0.0130896 -0.39356 -1.56446 +v -0.0265468 -0.361222 -1.56009 +v -0.0134627 -0.376621 -1.5861 +v -0.0247838 -0.390032 -1.51807 +v -0.0125664 -0.405868 -1.54092 +v -0.0467757 -0.33665 -1.44124 +v -0.0378048 -0.354251 -1.50341 +v -0.0363032 -0.366296 -1.48387 +v -0.0500648 -0.30926 -1.47294 +v -0.0388737 -0.338127 -1.52124 +v -0.0581277 -0.29142 -1.40655 +v -0.0675252 -0.24192 -1.36153 +v -0.0606624 -0.259182 -1.4288 +v -0.0597415 -0.276549 -1.41857 +v -0.0631839 -0.267596 -1.3424 +v -0.0558522 -0.303086 -1.39312 +v -0.0711302 -0.220855 -1.29913 +v -0.0684216 -0.232172 -1.29203 +v -0.0741092 -0.192099 -1.31007 +v -0.0730373 -0.207299 -1.30519 +v -0.0603014 -0.219806 -1.44234 +v -0.0665991 -0.170996 -1.37987 +v -0.0589571 -0.199218 -1.44487 +v -0.0687528 -0.207978 -1.3747 +v -0.0608595 -0.24003 -1.43685 +v -0.0736131 -0.159135 -1.31577 +v -0.0743124 -0.175846 -1.31364 +v -0.0719778 -0.142559 -1.31632 +v -0.423318 -0.377999 0.0456594 +v -0.449087 -0.373041 0.0877671 +v -0.491718 -0.387707 0.0471224 +v -0.478366 -0.398115 -0.00448525 +v -0.461155 -0.380725 0.0463378 +v -0.4049 -0.375323 0.121742 +v -0.43544 -0.363145 0.151621 +v -0.470439 -0.36341 0.120857 +v -0.440559 -0.367643 0.122201 +v -0.488131 -0.354454 0.140938 +v -0.512393 -0.359809 0.116551 +v -0.504652 -0.372975 0.0875016 +v -0.494293 -0.361722 0.11783 +v -0.538011 -0.39275 0.048317 +v -0.531705 -0.420712 -0.00247492 +v -0.517175 -0.391937 0.0475864 +v -0.446067 -0.32408 0.246859 +v -0.469711 -0.332583 0.206148 +v -0.434682 -0.351158 0.202649 +v -0.401485 -0.352909 0.243189 +v -0.438328 -0.340609 0.22681 +v -0.502196 -0.314196 0.192357 +v -0.520088 -0.329768 0.15982 +v -0.491913 -0.339335 0.173413 +v -0.496678 -0.328751 0.184401 +v -0.508335 -0.348622 0.142917 +v -0.463619 -0.350815 0.170493 +v -0.488201 -0.347448 0.159196 +v -0.398307 -0.368954 0.182263 +v -0.4336 -0.35816 0.178012 +v -0.594117 -0.398226 0.00236393 +v -0.567614 -0.38185 0.0517469 +v -0.559547 -0.349249 0.0955824 +v -0.583435 -0.352401 0.0538529 +v -0.577074 -0.369583 0.0532616 +v -0.569837 -0.420541 -0.000232802 +v -0.539908 -0.367962 0.0900339 +v -0.554708 -0.38948 0.0499013 +v -0.533896 -0.347045 0.126248 +v -0.525011 -0.354901 0.120451 +v -0.545989 -0.321674 0.133461 +v -0.540798 -0.336289 0.130658 +v -0.253134 -0.387795 -0.2974 +v -0.298587 -0.364923 -0.248363 +v -0.316906 -0.336415 -0.29319 +v -0.286952 -0.363499 -0.295056 +v -0.176116 -0.427012 -0.302634 +v -0.224745 -0.411255 -0.254819 +v -0.216005 -0.40905 -0.300001 +v -0.189963 -0.431865 -0.213943 +v -0.241813 -0.41411 -0.164815 +v -0.273657 -0.390793 -0.205423 +v -0.233289 -0.412849 -0.209591 +v -0.322594 -0.367425 -0.156455 +v -0.342566 -0.339096 -0.199464 +v -0.310328 -0.366081 -0.201895 +v -0.0902658 -0.452053 -0.307111 +v -0.139382 -0.444847 -0.261582 +v -0.134019 -0.441431 -0.305078 +v -0.0472165 -0.463017 -0.266171 +v -0.0454089 -0.458628 -0.308508 +v -0.0503799 -0.469306 -0.181631 +v -0.0972022 -0.459175 -0.221441 +v -0.0488787 -0.466567 -0.223804 +v -0.149123 -0.449377 -0.174725 +v -0.144415 -0.447458 -0.218023 +v -0.103007 -0.463203 -0.136632 +v -0.157382 -0.451526 -0.0901543 +v -0.202803 -0.434516 -0.126601 +v -0.153507 -0.450716 -0.13201 +v -0.0528363 -0.472469 -0.0987679 +v -0.0517043 -0.471264 -0.139877 +v -0.0544597 -0.472733 -0.0193811 +v -0.10734 -0.464556 -0.0547414 +v -0.05376 -0.472949 -0.0585275 +v -0.162853 -0.451757 -0.0101165 +v -0.213239 -0.435818 -0.0433476 +v -0.16056 -0.451856 -0.0494313 +v -0.295263 -0.393488 -0.116101 +v -0.350301 -0.372767 -0.0714449 +v -0.37079 -0.343452 -0.112129 +v -0.3358 -0.369408 -0.112842 +v -0.258547 -0.416427 -0.0783814 +v -0.250493 -0.415315 -0.120993 +v -0.269666 -0.418218 0.00217227 +v -0.316311 -0.397816 -0.0330337 +v -0.265198 -0.417407 -0.0372402 +v -0.377334 -0.383575 0.00563385 +v -0.408695 -0.356995 -0.0395205 +v -0.36645 -0.378237 -0.0326527 +v -0.323821 -0.401694 0.044095 +v -0.369261 -0.387628 0.084314 +v -0.376037 -0.386537 0.0455138 +v -0.217966 -0.435993 0.0335582 +v -0.270598 -0.41896 0.0756123 +v -0.271172 -0.418822 0.0395973 +v -0.217195 -0.434327 0.105588 +v -0.266737 -0.416805 0.145721 +v -0.318005 -0.402209 0.115549 +v -0.268826 -0.418374 0.110794 +v -0.359782 -0.385701 0.152046 +v -0.363705 -0.387352 0.119362 +v -0.109668 -0.463592 0.0222259 +v -0.164434 -0.450261 0.0641365 +v -0.164074 -0.451278 0.0275155 +v -0.0551571 -0.470208 0.0555972 +v -0.0549199 -0.471849 0.0184466 +v -0.0550301 -0.464292 0.130434 +v -0.110021 -0.46002 0.0959171 +v -0.0551883 -0.467719 0.0927124 +v -0.163408 -0.445986 0.137034 +v -0.164142 -0.44855 0.100419 +v -0.108985 -0.4529 0.171634 +v -0.161169 -0.437712 0.214084 +v -0.214656 -0.429176 0.177941 +v -0.162441 -0.442412 0.174654 +v -0.0542129 -0.45426 0.210263 +v -0.0546994 -0.459836 0.169403 +v -0.106863 -0.441331 0.254811 +v -0.0535873 -0.447476 0.253653 +v -0.211231 -0.419306 0.257137 +v -0.159515 -0.43177 0.256127 +v -0.31325 -0.398088 0.183117 +v -0.357534 -0.377531 0.21645 +v -0.357903 -0.382669 0.183756 +v -0.263715 -0.409895 0.217778 +v -0.265213 -0.413996 0.18097 +v -0.310733 -0.3877 0.255987 +v -0.2617 -0.404449 0.257381 +v -0.358141 -0.369563 0.252085 +v -0.619378 -0.412997 -0.058556 +v -0.628319 -0.478673 -0.125746 +v -0.600142 -0.452531 -0.0592857 +v -0.611415 -0.436113 -0.0584422 +v -0.65335 -0.490163 -0.196027 +v -0.658352 -0.559528 -0.266202 +v -0.63202 -0.543895 -0.19747 +v -0.644181 -0.521335 -0.196136 +v -0.632015 -0.601219 -0.271427 +v -0.600847 -0.562039 -0.20159 +v -0.601771 -0.509568 -0.128142 +v -0.617399 -0.557559 -0.199473 +v -0.568315 -0.465197 -0.0621172 +v -0.585721 -0.462233 -0.0606546 +v -0.67958 -0.550676 -0.330995 +v -0.679668 -0.606864 -0.392534 +v -0.658506 -0.617361 -0.336329 +v -0.670183 -0.588681 -0.332533 +v -0.694265 -0.575453 -0.437791 +v -0.692895 -0.60033 -0.484804 +v -0.677766 -0.641462 -0.454423 +v -0.686802 -0.612147 -0.443611 +v -0.674882 -0.64584 -0.513082 +v -0.653309 -0.669432 -0.468894 +v -0.656485 -0.656904 -0.405517 +v -0.666422 -0.661559 -0.463623 +v -0.630233 -0.642136 -0.344282 +v -0.64503 -0.635563 -0.340779 +v -0.627786 -0.657405 -0.409936 +v -0.599345 -0.618071 -0.345077 +v -0.599571 -0.601271 -0.275709 +v -0.614595 -0.635929 -0.345232 +v -0.647958 -0.646326 -0.517289 +v -0.624726 -0.642453 -0.462726 +v -0.638967 -0.662077 -0.467921 +v -0.620391 -0.60161 -0.496131 +v -0.602184 -0.577083 -0.45219 +v -0.600084 -0.608208 -0.404875 +v -0.61192 -0.613519 -0.455329 +v -0.574926 -0.551918 -0.347237 +v -0.568931 -0.559743 -0.278938 +v -0.585712 -0.589691 -0.345264 +v -0.565441 -0.508638 -0.131307 +v -0.525826 -0.450623 -0.0646838 +v -0.548086 -0.461402 -0.0632415 +v -0.565311 -0.542962 -0.205261 +v -0.582895 -0.557051 -0.203265 +v -0.538323 -0.488959 -0.213272 +v -0.527875 -0.476051 -0.136666 +v -0.549865 -0.520142 -0.208342 +v -0.485969 -0.408562 -0.0754035 +v -0.502324 -0.432633 -0.0671001 +v -0.639387 -0.590472 -0.545224 +v -0.626591 -0.518378 -0.549059 +v -0.610545 -0.547598 -0.498937 +v -0.624666 -0.568467 -0.526789 +v -0.669127 -0.612954 -0.558652 +v -0.659143 -0.547893 -0.584781 +v -0.654581 -0.606529 -0.556139 +v -0.677374 -0.478749 -0.606693 +v -0.663324 -0.394923 -0.61267 +v -0.645241 -0.467391 -0.589527 +v -0.661955 -0.475622 -0.603522 +v -0.629255 -0.385162 -0.572854 +v -0.611058 -0.441925 -0.52902 +v -0.628014 -0.455633 -0.564698 +v -0.692193 -0.589579 -0.536989 +v -0.687262 -0.547444 -0.580405 +v -0.681907 -0.606064 -0.551878 +v -0.702392 -0.546066 -0.484606 +v -0.704752 -0.517145 -0.536888 +v -0.699257 -0.567216 -0.515155 +v -0.710967 -0.440484 -0.51348 +v -0.709125 -0.384093 -0.560455 +v -0.70125 -0.466563 -0.580822 +v -0.708244 -0.454458 -0.552224 +v -0.692036 -0.394528 -0.608215 +v -0.690716 -0.475195 -0.599053 +v -0.700685 -0.311598 -0.589709 +v -0.687865 -0.228883 -0.59955 +v -0.678383 -0.309888 -0.616066 +v -0.690988 -0.31066 -0.608282 +v -0.708609 -0.307107 -0.522292 +v -0.702046 -0.240681 -0.554404 +v -0.706787 -0.310986 -0.56087 +v -0.696824 -0.186233 -0.511078 +v -0.688597 -0.128913 -0.521497 +v -0.69083 -0.165356 -0.565677 +v -0.695715 -0.178721 -0.541992 +v -0.676564 -0.0927844 -0.556864 +v -0.672465 -0.149737 -0.589767 +v -0.68296 -0.154493 -0.582313 +v -0.647359 -0.31225 -0.597974 +v -0.63174 -0.241398 -0.565288 +v -0.614232 -0.308184 -0.536926 +v -0.630634 -0.311893 -0.572675 +v -0.662429 -0.229155 -0.603487 +v -0.663558 -0.311 -0.612533 +v -0.655173 -0.0929063 -0.560165 +v -0.645881 -0.165733 -0.572624 +v -0.65971 -0.15469 -0.585906 +v -0.630258 -0.129262 -0.530503 +v -0.619143 -0.186834 -0.523088 +v -0.632162 -0.179246 -0.551817 +v -0.386999 0.268867 -0.106036 +v -0.416593 0.224784 -0.0638963 +v -0.395914 0.271517 -0.0247834 +v -0.392133 0.270317 -0.0652086 +v -0.373025 0.264865 -0.188465 +v -0.403406 0.223844 -0.14533 +v -0.380601 0.267078 -0.147157 +v -0.413601 0.178187 -0.183845 +v -0.439413 0.128541 -0.139063 +v -0.431035 0.176528 -0.101636 +v -0.4229 0.177395 -0.142478 +v -0.456549 0.124233 -0.0584674 +v -0.443307 0.175649 -0.0219057 +v -0.437879 0.175855 -0.0614134 +v -0.354688 0.258815 -0.271208 +v -0.385492 0.221885 -0.228151 +v -0.364358 0.262139 -0.229851 +v -0.363297 0.217866 -0.311274 +v -0.344102 0.254806 -0.312428 +v -0.392497 0.135729 -0.30766 +v -0.391868 0.178592 -0.26765 +v -0.379404 0.177937 -0.309646 +v -0.41782 0.133191 -0.222561 +v -0.403262 0.17863 -0.225642 +v -0.416416 0.0895558 -0.26218 +v -0.437775 0.0391241 -0.215627 +v -0.441544 0.0825242 -0.176785 +v -0.42932 0.0863798 -0.219147 +v -0.409943 0.0473164 -0.303071 +v -0.402652 0.0919519 -0.30543 +v -0.416235 -0.0416909 -0.298431 +v -0.429057 -0.00203694 -0.256121 +v -0.414445 0.0025321 -0.3007 +v -0.445609 -0.0530181 -0.209189 +v -0.457249 -0.0143404 -0.169877 +v -0.4432 -0.00765053 -0.212231 +v -0.463986 0.0738602 -0.0952684 +v -0.48836 0.0156939 -0.0552772 +v -0.480282 0.0691545 -0.0168688 +v -0.473162 0.0706204 -0.055766 +v -0.464116 0.0274079 -0.132357 +v -0.453273 0.0780896 -0.13555 +v -0.475289 -0.0691835 -0.128606 +v -0.486611 -0.0307477 -0.0927772 +v -0.471576 -0.0221383 -0.129903 +v -0.511435 -0.0912149 -0.0672201 +v -0.515055 -0.0446466 -0.0231875 +v -0.502782 -0.039872 -0.0589691 +v -0.399176 0.266624 0.219839 +v -0.425178 0.219263 0.260303 +v -0.397852 0.261882 0.264776 +v -0.39991 0.272156 0.135421 +v -0.42782 0.224984 0.17354 +v -0.399761 0.270019 0.176898 +v -0.451569 0.178634 0.132528 +v -0.470526 0.131265 0.173273 +v -0.450066 0.177615 0.214075 +v -0.451256 0.17855 0.172485 +v -0.46629 0.131471 0.257327 +v -0.447879 0.175668 0.257943 +v -0.399484 0.27317 0.0548977 +v -0.427618 0.22666 0.0931794 +v -0.399927 0.273122 0.0948739 +v -0.424467 0.225883 0.0151893 +v -0.398255 0.272551 0.0151319 +v -0.467093 0.124087 0.0191822 +v -0.449734 0.177093 0.0551315 +v -0.447193 0.17618 0.0167928 +v -0.471042 0.127865 0.0954029 +v -0.451127 0.17803 0.0935601 +v -0.487231 0.0730713 0.0598469 +v -0.502261 0.0260347 0.101517 +v -0.487421 0.0806125 0.136556 +v -0.487949 0.0768019 0.098095 +v -0.501539 0.0152762 0.0223764 +v -0.484823 0.0702468 0.0215972 +v -0.53485 -0.0913769 0.0187024 +v -0.516828 -0.0314425 0.0646199 +v -0.518394 -0.0402072 0.0198581 +v -0.524745 -0.0698313 0.110074 +v -0.511303 -0.0159136 0.144296 +v -0.514389 -0.0232413 0.10555 +v -0.483888 0.0858653 0.215657 +v -0.491584 0.0427697 0.259846 +v -0.480746 0.0870464 0.258085 +v -0.498372 0.0364457 0.178643 +v -0.48609 0.0836771 0.175446 +v -0.514785 -0.0543084 0.186672 +v -0.503772 -0.00479708 0.221411 +v -0.507796 -0.00976944 0.182506 +v -0.503744 -0.0438425 0.2649 +v -0.499138 -0.000984854 0.262241 +v -0.512815 -0.0904315 0.228258 +v -0.50505 -0.125589 0.269554 +v -0.505738 -0.0854287 0.267453 +v -0.5267 -0.103828 0.153523 +v -0.522695 -0.136308 0.194547 +v -0.519763 -0.0965114 0.190784 +v -0.535035 -0.179866 0.161986 +v -0.522278 -0.208403 0.199861 +v -0.512405 -0.168529 0.23338 +v -0.523545 -0.173629 0.19767 +v -0.49535 -0.201015 0.271008 +v -0.501611 -0.164169 0.270854 +v -0.541447 -0.122462 0.0725208 +v -0.541184 -0.1517 0.119916 +v -0.533742 -0.11254 0.114971 +v -0.564398 -0.141843 -0.0338433 +v -0.563833 -0.170311 0.030934 +v -0.550372 -0.133407 0.0235691 +v -0.590747 -0.215956 -0.0163269 +v -0.581432 -0.240501 0.042661 +v -0.559693 -0.196527 0.08363 +v -0.574109 -0.206107 0.037273 +v -0.550625 -0.220691 0.128659 +v -0.546876 -0.18764 0.124587 +v -0.568907 -0.260604 0.0923155 +v -0.551883 -0.278557 0.13381 +v -0.535669 -0.244615 0.167398 +v -0.552236 -0.251185 0.131809 +v -0.603966 -0.289313 -0.00536462 +v -0.587907 -0.303336 0.0506487 +v -0.586034 -0.273202 0.0471729 +v -0.605278 -0.353087 0.00118322 +v -0.56869 -0.313315 0.0968042 +v -0.587044 -0.330027 0.0529287 +v -0.529726 -0.296097 0.167452 +v -0.549743 -0.302242 0.134436 +v -0.502227 -0.238014 0.234214 +v -0.474206 -0.268769 0.265998 +v -0.486197 -0.235972 0.269668 +v -0.513938 -0.269387 0.200168 +v -0.518859 -0.24056 0.200828 +v -0.484817 -0.295502 0.227164 +v -0.508167 -0.29417 0.197479 +v -0.459428 -0.299136 0.259158 +v -0.491198 -0.122412 -0.0994877 +v -0.501186 -0.170632 -0.0926807 +v -0.52674 -0.141993 -0.0861597 +v -0.509323 -0.133473 -0.080409 +v -0.45972 -0.103511 -0.165624 +v -0.4707 -0.15216 -0.129684 +v -0.474889 -0.112362 -0.128885 +v -0.448582 -0.181624 -0.163375 +v -0.452251 -0.22357 -0.128623 +v -0.477496 -0.197522 -0.106845 +v -0.463046 -0.189067 -0.129949 +v -0.481016 -0.2413 -0.0972202 +v -0.505674 -0.216236 -0.108073 +v -0.491761 -0.206681 -0.0981799 +v -0.430373 -0.0898189 -0.250785 +v -0.441283 -0.136849 -0.204713 +v -0.445016 -0.0960528 -0.206728 +v -0.411676 -0.126164 -0.294607 +v -0.415386 -0.0846425 -0.29638 +v -0.394787 -0.204287 -0.292136 +v -0.419809 -0.170416 -0.246913 +v -0.404884 -0.166099 -0.293172 +v -0.423847 -0.212099 -0.201469 +v -0.434272 -0.175499 -0.203005 +v -0.395675 -0.24345 -0.244675 +v -0.391931 -0.279443 -0.19888 +v -0.424077 -0.250843 -0.159329 +v -0.409868 -0.246741 -0.199968 +v -0.363789 -0.274792 -0.291502 +v -0.381162 -0.240571 -0.291559 +v -0.35601 -0.308463 -0.244758 +v -0.342444 -0.306793 -0.292026 +v -0.383779 -0.312567 -0.154846 +v -0.369632 -0.310222 -0.198586 +v -0.453578 -0.263619 -0.100169 +v -0.454332 -0.304729 -0.0767621 +v -0.484685 -0.288747 -0.0987227 +v -0.468918 -0.27417 -0.0901148 +v -0.421198 -0.28693 -0.11956 +v -0.438639 -0.256157 -0.124651 +v -0.416038 -0.322083 -0.0813809 +v -0.398919 -0.315994 -0.114877 +v -0.459165 -0.350423 -0.0565559 +v -0.436124 -0.332415 -0.0570605 +v -0.578694 -0.110979 -0.129081 +v -0.613604 -0.143752 -0.173764 +v -0.599896 -0.183896 -0.0882706 +v -0.587405 -0.14424 -0.101675 +v -0.630981 -0.0990647 -0.26559 +v -0.657448 -0.146249 -0.310565 +v -0.644469 -0.19336 -0.228998 +v -0.637206 -0.14353 -0.243948 +v -0.670416 -0.258506 -0.289683 +v -0.657423 -0.30074 -0.211741 +v -0.631025 -0.235666 -0.147594 +v -0.651598 -0.246461 -0.218881 +v -0.618063 -0.267962 -0.0724279 +v -0.61023 -0.225654 -0.0790127 +v -0.666939 -0.103576 -0.385069 +v -0.685548 -0.166393 -0.426537 +v -0.680194 -0.211635 -0.363121 +v -0.673569 -0.154585 -0.371951 +v -0.68676 -0.132078 -0.476374 +v -0.70003 -0.235548 -0.474075 +v -0.693368 -0.179533 -0.472753 +v -0.708677 -0.363262 -0.472064 +v -0.697768 -0.286073 -0.418877 +v -0.705462 -0.298244 -0.474499 +v -0.689961 -0.33403 -0.351248 +v -0.685946 -0.272269 -0.35681 +v -0.701969 -0.411113 -0.407958 +v -0.690135 -0.451856 -0.338281 +v -0.67745 -0.375668 -0.276671 +v -0.69137 -0.394463 -0.344664 +v -0.705944 -0.48397 -0.454668 +v -0.708689 -0.426245 -0.46481 +v -0.695314 -0.521688 -0.392866 +v -0.700891 -0.533217 -0.443569 +v -0.673985 -0.481029 -0.267427 +v -0.686218 -0.504498 -0.333318 +v -0.642313 -0.331417 -0.134836 +v -0.625038 -0.348157 -0.0629035 +v -0.623051 -0.30927 -0.0670423 +v -0.661384 -0.404694 -0.200984 +v -0.660772 -0.354102 -0.20572 +v -0.642032 -0.416895 -0.127464 +v -0.658997 -0.450666 -0.197698 +v -0.623866 -0.383206 -0.0600589 +v -0.510707 -0.414438 -0.154673 +v -0.492565 -0.34598 -0.115689 +v -0.485152 -0.379541 -0.094507 +v -0.551316 -0.481589 -0.288285 +v -0.531224 -0.404302 -0.229601 +v -0.532454 -0.44978 -0.220813 +v -0.549527 -0.376577 -0.302981 +v -0.538539 -0.301224 -0.245447 +v -0.517298 -0.330784 -0.178712 +v -0.533597 -0.354218 -0.238268 +v -0.509843 -0.26781 -0.138437 +v -0.500903 -0.30829 -0.130226 +v -0.58341 -0.523418 -0.410527 +v -0.565028 -0.453291 -0.359479 +v -0.568215 -0.505883 -0.352444 +v -0.59532 -0.485687 -0.471919 +v -0.597157 -0.534953 -0.459771 +v -0.596453 -0.364663 -0.489504 +v -0.579882 -0.412712 -0.427615 +v -0.595155 -0.427844 -0.482484 +v -0.56702 -0.335264 -0.373417 +v -0.564814 -0.395849 -0.366938 +v -0.584702 -0.287168 -0.437141 +v -0.577116 -0.212299 -0.381354 +v -0.557947 -0.259295 -0.314319 +v -0.571097 -0.273243 -0.377509 +v -0.60269 -0.236392 -0.489148 +v -0.599001 -0.299379 -0.491014 +v -0.614273 -0.132421 -0.487563 +v -0.596301 -0.166865 -0.4407 +v -0.60741 -0.180101 -0.486041 +v -0.595272 -0.103692 -0.396858 +v -0.574209 -0.146513 -0.327117 +v -0.58515 -0.154944 -0.387091 +v -0.532116 -0.236008 -0.189877 +v -0.529209 -0.184189 -0.137894 +v -0.519064 -0.22588 -0.140641 +v -0.553316 -0.193789 -0.254448 +v -0.545015 -0.247015 -0.249772 +v -0.576553 -0.0990864 -0.277671 +v -0.552906 -0.14395 -0.196488 +v -0.563732 -0.143747 -0.26268 +v -0.556865 -0.11102 -0.139228 +v -0.540922 -0.144426 -0.13125 +v -0.585727 -0.0731881 -0.242509 +v -0.604658 -0.0732063 -0.238044 +v -0.579701 -0.0884036 -0.180343 +v -0.599193 -0.0571868 -0.359716 +v -0.608638 -0.0345947 -0.333763 +v -0.592071 -0.0620066 -0.302627 +v -0.627 -0.012205 -0.405693 +v -0.638922 -0.0122465 -0.403861 +v -0.624919 -0.0346398 -0.330891 +v -0.624607 -0.0189376 -0.367295 +v -0.646006 -0.0572485 -0.351773 +v -0.626965 -0.0620584 -0.29578 +v -0.636308 -0.067783 -0.514987 +v -0.616252 -0.0737162 -0.460029 +v -0.624388 -0.0952684 -0.499586 +v -0.659913 -0.0419556 -0.530742 +v -0.640904 -0.0223486 -0.487966 +v -0.648588 -0.0491057 -0.526639 +v -0.643512 -0.00618802 -0.453596 +v -0.620615 -0.0295519 -0.430802 +v -0.63307 -0.0116952 -0.446783 +v -0.607554 -0.0610562 -0.412795 +v -0.672863 -0.0736294 -0.451235 +v -0.676064 -0.0676644 -0.508861 +v -0.681493 -0.0950642 -0.490781 +v -0.655841 -0.0296005 -0.425311 +v -0.66117 -0.0610648 -0.404245 +v -0.660265 -0.0223494 -0.484987 +v -0.650528 -0.0117323 -0.4441 +v -0.668971 -0.0490516 -0.523499 +v -0.0725038 0.455642 -0.78073 +v -0.0603753 0.44704 -0.809411 +v -0.0652789 0.421506 -0.830886 +v -0.0700722 0.436832 -0.807073 +v -0.0521137 0.473675 -0.78696 +v -0.041054 0.459413 -0.811952 +v -0.0480019 0.438905 -0.831498 +v -0.0507662 0.454478 -0.810876 +v -0.0368617 0.431734 -0.84704 +v -0.0384244 0.418432 -0.861129 +v -0.0509656 0.419304 -0.85038 +v -0.0440406 0.426928 -0.848205 +v -0.0493524 0.400363 -0.869273 +v -0.0583102 0.409428 -0.851756 +v -0.0102153 0.446583 -0.835406 +v -0.020821 0.463216 -0.814204 +v -0.0105936 0.483146 -0.791807 +v -0.0104473 0.463365 -0.815003 +v -0.0102742 0.419905 -0.868003 +v -0.0198047 0.432798 -0.851319 +v -0.0100927 0.432273 -0.853059 +v -0.0285973 0.422553 -0.861118 +v -0.0299715 0.446032 -0.832807 +v -0.0287554 0.433154 -0.848696 +v -0.0316099 0.481591 -0.790108 +v -0.0310478 0.462112 -0.813125 +v -0.0264791 0.390139 -0.892942 +v -0.0120475 0.398621 -0.890418 +v -0.0134649 0.38812 -0.89895 +v -0.0342824 0.404209 -0.877419 +v -0.0385918 0.394076 -0.883026 +v -0.0213674 0.410492 -0.876599 +v -0.0306953 0.413303 -0.870405 +v -0.0109549 0.408952 -0.880279 +v -0.0702792 0.504015 -0.721675 +v -0.0620534 0.488819 -0.757055 +v -0.0723875 0.47817 -0.752267 +v -0.0623096 0.56406 -0.654078 +v -0.0572849 0.543809 -0.69509 +v -0.0667346 0.532779 -0.688948 +v -0.0448843 0.583432 -0.665208 +v -0.0383562 0.557083 -0.702342 +v -0.0502735 0.522664 -0.731178 +v -0.0478352 0.551752 -0.699435 +v -0.0416012 0.50167 -0.762626 +v -0.0518246 0.496521 -0.760373 +v -0.0530418 0.632575 -0.577874 +v -0.0497749 0.609033 -0.623772 +v -0.0575601 0.597459 -0.617056 +v -0.0469222 0.706359 -0.493002 +v -0.0432287 0.681515 -0.543357 +v -0.0493105 0.669009 -0.536525 +v -0.0354481 0.729014 -0.504686 +v -0.0298064 0.696525 -0.551484 +v -0.0389434 0.653155 -0.589546 +v -0.0367027 0.690494 -0.548234 +v -0.0336483 0.622939 -0.631746 +v -0.0417955 0.61735 -0.628557 +v -0.0237911 0.662443 -0.594725 +v -0.0169654 0.628051 -0.634645 +v -0.0271067 0.59216 -0.67018 +v -0.0253598 0.626326 -0.633671 +v -0.0220417 0.739223 -0.509877 +v -0.0151994 0.702055 -0.554403 +v -0.022614 0.700185 -0.553431 +v -0.00747605 0.741879 -0.511173 +v -0.00800121 0.664867 -0.596022 +v -0.00763671 0.702714 -0.554725 +v -0.00906493 0.594391 -0.671517 +v -0.00850035 0.628654 -0.63498 +v -0.0302819 0.531001 -0.735542 +v -0.0208949 0.506068 -0.765239 +v -0.0312834 0.504663 -0.764218 +v -0.0192368 0.561867 -0.705155 +v -0.0288185 0.560276 -0.704167 +v -0.0101136 0.532975 -0.736999 +v -0.00962574 0.562393 -0.705551 +v -0.0104593 0.506454 -0.765779 +v -0.0569956 0.971365 -0.132286 +v -0.0521645 0.96774 -0.179016 +v -0.0561431 0.919481 -0.213542 +v -0.0572523 0.947348 -0.171253 +v -0.0458812 1.0077 -0.14662 +v -0.0381654 0.992089 -0.188404 +v -0.044614 0.952824 -0.226309 +v -0.0457554 0.982318 -0.184692 +v -0.0355126 0.928741 -0.274061 +v -0.0406422 0.884319 -0.316908 +v -0.0490603 0.906764 -0.265506 +v -0.0427965 0.919922 -0.270653 +v -0.0516927 0.854691 -0.304941 +v -0.0541345 0.888388 -0.258367 +v -0.0298023 1.02408 -0.152402 +v -0.0201234 1.00115 -0.190879 +v -0.0286588 0.96782 -0.231743 +v -0.0295347 0.998063 -0.190276 +v -0.010313 1.02854 -0.152512 +v -0.00986799 0.971779 -0.232549 +v -0.0101918 1.00227 -0.190784 +v -0.00888444 0.901096 -0.323323 +v -0.0186065 0.936836 -0.276822 +v -0.00940955 0.937804 -0.276999 +v -0.0258973 0.897635 -0.322163 +v -0.0273784 0.934097 -0.27598 +v -0.0165556 0.861567 -0.370416 +v -0.0231482 0.819459 -0.417071 +v -0.0317863 0.854476 -0.367528 +v -0.0244193 0.859175 -0.369468 +v -0.00790594 0.822471 -0.418356 +v -0.00836058 0.862403 -0.370712 +v -0.0150575 0.781316 -0.465122 +v -0.00758845 0.782047 -0.465446 +v -0.0291598 0.775128 -0.462203 +v -0.0222877 0.779228 -0.464149 +v -0.0443758 0.835154 -0.359342 +v -0.0473755 0.781987 -0.400191 +v -0.0492843 0.819017 -0.352478 +v -0.0366816 0.807834 -0.411879 +v -0.0384908 0.846721 -0.364256 +v -0.0413516 0.75828 -0.4541 +v -0.0355542 0.768363 -0.458962 +v -0.0464327 0.744227 -0.447295 +v -0.0510862 1.00639 -0.0669243 +v -0.0504474 1.01271 -0.106298 +v -0.0549067 0.990907 -0.0974278 +v -0.0386526 1.02684 -0.0199668 +v -0.0425723 1.03998 -0.0518895 +v -0.0456346 1.01823 -0.0410219 +v -0.0336245 1.06059 -0.0435868 +v -0.0334209 1.06245 -0.0666377 +v -0.0421862 1.04371 -0.0841809 +v -0.038603 1.05374 -0.0610557 +v -0.0375715 1.03869 -0.117159 +v -0.0446518 1.02826 -0.112909 +v -0.0101266 1.05937 -0.00263345 +v -0.0207562 1.03611 0.00709619 +v -0.0105568 1.0378 0.0135704 +v -0.00953305 1.07745 -0.0396251 +v -0.0189207 1.07064 -0.0244271 +v -0.00974202 1.07243 -0.0200369 +v -0.0259893 1.07104 -0.0475488 +v -0.0287097 1.05406 -0.0178813 +v -0.0269726 1.06646 -0.0318271 +v -0.0302406 1.03263 -0.00400516 +v -0.0200191 1.04854 -0.119122 +v -0.00988793 1.06552 -0.0885951 +v -0.0101637 1.04984 -0.118544 +v -0.0281481 1.0604 -0.090273 +v -0.0292578 1.04514 -0.118945 +v -0.0187171 1.07326 -0.0643509 +v -0.0267199 1.06903 -0.0667525 +v -0.0096297 1.07493 -0.0623834 +vt 0.581714 0.398452 +vt 0.573583 0.418104 +vt 0.55643 0.390276 +vt 0.55047 0.410884 +vt 0.523292 0.425874 +vt 0.519598 0.445824 +vt 0.501704 0.422526 +vt 0.499875 0.443049 +vt 0.677064 0.437955 +vt 0.658435 0.456569 +vt 0.655585 0.425717 +vt 0.639432 0.444701 +vt 0.606044 0.452703 +vt 0.594337 0.469769 +vt 0.586274 0.444385 +vt 0.576644 0.462046 +vt 0.612259 0.502723 +vt 0.599294 0.515624 +vt 0.598482 0.493684 +vt 0.586982 0.507606 +vt 0.56459 0.513992 +vt 0.556506 0.52614 +vt 0.551795 0.508516 +vt 0.544986 0.521445 +vt 0.551003 0.4728 +vt 0.544372 0.488984 +vt 0.533766 0.467985 +vt 0.528804 0.48475 +vt 0.509743 0.4974 +vt 0.506975 0.51178 +vt 0.49497 0.495661 +vt 0.493584 0.510309 +vt 0.527953 0.529607 +vt 0.523693 0.540346 +vt 0.516427 0.526878 +vt 0.513205 0.538166 +vt 0.500476 0.546889 +vt 0.498861 0.555978 +vt 0.490308 0.54609 +vt 0.489486 0.555447 +vt 0.567734 0.546928 +vt 0.559568 0.554873 +vt 0.558973 0.541675 +vt 0.551736 0.550468 +vt 0.537608 0.554867 +vt 0.532885 0.56201 +vt 0.52909 0.552057 +vt 0.525135 0.559783 +vt 0.540749 0.572558 +vt 0.536107 0.576574 +vt 0.535213 0.570156 +vt 0.531258 0.574796 +vt 0.522853 0.577972 +vt 0.52103 0.58182 +vt 0.516769 0.577532 +vt 0.515171 0.581863 +vt 0.514092 0.565361 +vt 0.51185 0.571761 +vt 0.505962 0.564554 +vt 0.504267 0.571317 +vt 0.495422 0.576969 +vt 0.494708 0.58203 +vt 0.487725 0.576906 +vt 0.487357 0.582144 +vt 0.722055 0.493159 +vt 0.735057 0.513175 +vt 0.701784 0.504541 +vt 0.713557 0.522488 +vt 0.656781 0.486134 +vt 0.670182 0.50032 +vt 0.640143 0.500033 +vt 0.652361 0.512588 +vt 0.770011 0.574186 +vt 0.775952 0.595183 +vt 0.741685 0.578129 +vt 0.745777 0.597367 +vt 0.702204 0.547872 +vt 0.710069 0.56466 +vt 0.680885 0.554694 +vt 0.687383 0.569767 +vt 0.672446 0.602158 +vt 0.652131 0.603315 +vt 0.670335 0.588221 +vt 0.650378 0.590999 +vt 0.629562 0.582779 +vt 0.613815 0.586153 +vt 0.625585 0.572362 +vt 0.610374 0.577044 +vt 0.645513 0.535707 +vt 0.653916 0.548145 +vt 0.629004 0.544653 +vt 0.636397 0.555591 +vt 0.606241 0.543634 +vt 0.593569 0.551903 +vt 0.597458 0.535139 +vt 0.585801 0.544552 +vt 0.750122 0.683761 +vt 0.726782 0.677137 +vt 0.759018 0.661496 +vt 0.734619 0.657125 +vt 0.716014 0.634872 +vt 0.69254 0.63266 +vt 0.718838 0.616951 +vt 0.69477 0.616665 +vt 0.719138 0.749097 +vt 0.703532 0.768031 +vt 0.695577 0.734666 +vt 0.680112 0.751363 +vt 0.686182 0.70534 +vt 0.665794 0.695048 +vt 0.696051 0.688302 +vt 0.675096 0.68002 +vt 0.636789 0.698241 +vt 0.624684 0.710234 +vt 0.620496 0.687948 +vt 0.609585 0.698622 +vt 0.614019 0.668625 +vt 0.599952 0.661277 +vt 0.62082 0.658352 +vt 0.605937 0.652248 +vt 0.662256 0.658559 +vt 0.643402 0.652984 +vt 0.667394 0.644583 +vt 0.647905 0.640686 +vt 0.632671 0.626115 +vt 0.616367 0.624057 +vt 0.633878 0.615172 +vt 0.61737 0.614496 +vt 0.596874 0.638622 +vt 0.584732 0.634697 +vt 0.599869 0.630402 +vt 0.587284 0.627508 +vt 0.577566 0.618553 +vt 0.567441 0.617004 +vt 0.578268 0.612177 +vt 0.568007 0.6114 +vt 0.573433 0.66938 +vt 0.564136 0.661471 +vt 0.581064 0.662136 +vt 0.570893 0.655142 +vt 0.566938 0.643235 +vt 0.558517 0.638632 +vt 0.570935 0.637321 +vt 0.561932 0.633474 +vt 0.54751 0.638926 +vt 0.542996 0.642869 +vt 0.541639 0.635089 +vt 0.537896 0.638432 +vt 0.533309 0.623286 +vt 0.539796 0.62501 +vt 0.532492 0.626826 +vt 0.538356 0.628706 +vt 0.555945 0.625399 +vt 0.548123 0.623061 +vt 0.557374 0.62053 +vt 0.549223 0.618711 +vt 0.542192 0.613301 +vt 0.534848 0.612472 +vt 0.542439 0.609408 +vt 0.535018 0.608925 +vt 0.592994 0.573399 +vt 0.581614 0.577778 +vt 0.588134 0.566101 +vt 0.577422 0.571461 +vt 0.563637 0.570834 +vt 0.55592 0.575301 +vt 0.558465 0.566067 +vt 0.551472 0.57124 +vt 0.60268 0.605431 +vt 0.589809 0.605699 +vt 0.601677 0.597173 +vt 0.588917 0.598502 +vt 0.576253 0.593338 +vt 0.566424 0.594898 +vt 0.574262 0.58727 +vt 0.564801 0.589578 +vt 0.558759 0.605777 +vt 0.5503 0.605682 +vt 0.558335 0.600942 +vt 0.54997 0.601407 +vt 0.541755 0.598058 +vt 0.534532 0.598754 +vt 0.541031 0.594439 +vt 0.534035 0.595491 +vt 0.554449 0.58708 +vt 0.546979 0.589225 +vt 0.552082 0.582918 +vt 0.545179 0.585534 +vt 0.537109 0.584525 +vt 0.531508 0.586322 +vt 0.535122 0.581809 +vt 0.530487 0.583708 +vt 0.625515 0.806675 +vt 0.596779 0.817718 +vt 0.612643 0.789232 +vt 0.586809 0.799438 +vt 0.64204 0.749761 +vt 0.622044 0.761646 +vt 0.625578 0.735049 +vt 0.607769 0.746036 +vt 0.509348 0.846804 +vt 0.48 0.8508 +vt 0.507 0.822906 +vt 0.480002 0.82531 +vt 0.553443 0.790011 +vt 0.529239 0.796747 +vt 0.546648 0.771917 +vt 0.524755 0.777636 +vt 0.500381 0.763234 +vt 0.480033 0.764393 +vt 0.498401 0.746404 +vt 0.480052 0.747349 +vt 0.512865 0.72818 +vt 0.509541 0.713867 +vt 0.528781 0.724091 +vt 0.523827 0.710223 +vt 0.577634 0.740438 +vt 0.559346 0.748303 +vt 0.567712 0.725915 +vt 0.551383 0.733027 +vt 0.584889 0.696819 +vt 0.572368 0.704989 +vt 0.574068 0.686036 +vt 0.56289 0.69328 +vt 0.543581 0.688202 +vt 0.531837 0.693187 +vt 0.537387 0.6777 +vt 0.526815 0.682014 +vt 0.54896 0.659417 +vt 0.540909 0.664031 +vt 0.542726 0.652424 +vt 0.535479 0.656268 +vt 0.493419 0.702678 +vt 0.480071 0.703424 +vt 0.492117 0.690071 +vt 0.480053 0.690679 +vt 0.512338 0.674822 +vt 0.5018 0.677032 +vt 0.509515 0.665031 +vt 0.499899 0.666778 +vt 0.489206 0.658378 +vt 0.479996 0.658704 +vt 0.488534 0.649873 +vt 0.479985 0.650169 +vt 0.503576 0.64114 +vt 0.495896 0.641834 +vt 0.502355 0.634941 +vt 0.495065 0.635398 +vt 0.523555 0.652033 +vt 0.515595 0.654316 +vt 0.520358 0.645204 +vt 0.513005 0.646864 +vt 0.529498 0.636707 +vt 0.524102 0.638012 +vt 0.527224 0.632853 +vt 0.522016 0.633346 +vt 0.514804 0.629026 +vt 0.508287 0.629227 +vt 0.514128 0.624687 +vt 0.50761 0.624663 +vt 0.520438 0.617806 +vt 0.527187 0.618537 +vt 0.520349 0.621256 +vt 0.526838 0.622051 +vt 0.487245 0.629833 +vt 0.479978 0.629919 +vt 0.487012 0.624789 +vt 0.479983 0.624897 +vt 0.493519 0.616745 +vt 0.500259 0.616883 +vt 0.493695 0.620417 +vt 0.500484 0.620502 +vt 0.480004 0.610625 +vt 0.486682 0.610586 +vt 0.480001 0.613464 +vt 0.486704 0.613439 +vt 0.500102 0.60806 +vt 0.493373 0.608055 +vt 0.50011 0.605668 +vt 0.493379 0.605738 +vt 0.51369 0.614069 +vt 0.506898 0.613828 +vt 0.513711 0.610994 +vt 0.506883 0.610818 +vt 0.527779 0.608567 +vt 0.520696 0.608321 +vt 0.527782 0.605436 +vt 0.520704 0.605468 +vt 0.513616 0.600359 +vt 0.513697 0.602935 +vt 0.506824 0.600735 +vt 0.506861 0.603175 +vt 0.526723 0.593454 +vt 0.527134 0.596399 +vt 0.520099 0.594342 +vt 0.520307 0.597148 +vt 0.486676 0.601418 +vt 0.486678 0.603606 +vt 0.480002 0.60145 +vt 0.480005 0.603643 +vt 0.500149 0.59602 +vt 0.500079 0.598617 +vt 0.493451 0.59637 +vt 0.49338 0.59894 +vt 0.486905 0.590461 +vt 0.486789 0.593726 +vt 0.479945 0.590443 +vt 0.479966 0.593765 +vt 0.49418 0.586513 +vt 0.501113 0.586299 +vt 0.501853 0.581994 +vt 0.506955 0.592741 +vt 0.507262 0.589592 +vt 0.513476 0.592211 +vt 0.51367 0.589169 +vt 0.520131 0.585338 +vt 0.525527 0.584774 +vt 0.526092 0.581807 +vt 0.567396 0.116259 +vt 0.548301 0.110687 +vt 0.57204 0.0968793 +vt 0.552803 0.0919056 +vt 0.541798 0.0502111 +vt 0.53786 0.0687108 +vt 0.522271 0.0464429 +vt 0.518774 0.0645765 +vt 0.545361 0.191827 +vt 0.525697 0.183001 +vt 0.552297 0.173682 +vt 0.532662 0.165668 +vt 0.519803 0.140967 +vt 0.501841 0.134671 +vt 0.524915 0.123319 +vt 0.506761 0.117678 +vt 0.479518 0.144817 +vt 0.473622 0.160216 +vt 0.463692 0.13902 +vt 0.458265 0.153785 +vt 0.456963 0.104144 +vt 0.453225 0.119312 +vt 0.442359 0.101208 +vt 0.43907 0.115718 +vt 0.496814 0.0783217 +vt 0.493306 0.0956438 +vt 0.479203 0.0746868 +vt 0.476239 0.0916247 +vt 0.465263 0.0365723 +vt 0.464353 0.0547124 +vt 0.448514 0.035571 +vt 0.448458 0.0535785 +vt 0.512817 0.240177 +vt 0.500868 0.255555 +vt 0.496707 0.230358 +vt 0.485647 0.245061 +vt 0.490582 0.206107 +vt 0.474618 0.197429 +vt 0.49941 0.190806 +vt 0.482702 0.182678 +vt 0.463669 0.299604 +vt 0.449602 0.311582 +vt 0.450004 0.28544 +vt 0.436585 0.296241 +vt 0.460186 0.24829 +vt 0.448978 0.260893 +vt 0.446613 0.237658 +vt 0.436118 0.24942 +vt 0.413841 0.248761 +vt 0.403215 0.257657 +vt 0.403362 0.23813 +vt 0.393697 0.246469 +vt 0.402258 0.219337 +vt 0.392913 0.210701 +vt 0.410375 0.209457 +vt 0.400215 0.201389 +vt 0.451468 0.202811 +vt 0.44286 0.215613 +vt 0.437883 0.19463 +vt 0.429995 0.206822 +vt 0.43825 0.161632 +vt 0.43203 0.174671 +vt 0.425459 0.15597 +vt 0.419873 0.168387 +vt 0.397346 0.184411 +vt 0.388575 0.178307 +vt 0.403208 0.173976 +vt 0.393726 0.168484 +vt 0.393398 0.143384 +vt 0.389475 0.153761 +vt 0.384706 0.140389 +vt 0.381355 0.150081 +vt 0.370481 0.217631 +vt 0.364623 0.209405 +vt 0.377627 0.210729 +vt 0.370986 0.203027 +vt 0.370641 0.189098 +vt 0.364958 0.183101 +vt 0.37588 0.18135 +vt 0.369591 0.175882 +vt 0.351034 0.188571 +vt 0.347541 0.182734 +vt 0.355601 0.183576 +vt 0.351629 0.178194 +vt 0.351446 0.168259 +vt 0.347911 0.164137 +vt 0.354477 0.162507 +vt 0.350575 0.158862 +vt 0.367654 0.163523 +vt 0.362085 0.159611 +vt 0.370983 0.15547 +vt 0.364935 0.152125 +vt 0.361842 0.141737 +vt 0.356866 0.139691 +vt 0.363827 0.133946 +vt 0.358464 0.132516 +vt 0.433286 0.0700776 +vt 0.431378 0.0849802 +vt 0.420681 0.0709736 +vt 0.418926 0.0848497 +vt 0.411891 0.0465642 +vt 0.410621 0.0597477 +vt 0.401067 0.0514741 +vt 0.399906 0.0633619 +vt 0.422376 0.126119 +vt 0.418319 0.138821 +vt 0.410721 0.123386 +vt 0.407178 0.135378 +vt 0.405405 0.0977856 +vt 0.402907 0.109723 +vt 0.395191 0.0980003 +vt 0.392998 0.109033 +vt 0.381851 0.118709 +vt 0.379525 0.128419 +vt 0.3741 0.118015 +vt 0.372187 0.126976 +vt 0.369852 0.100868 +vt 0.368684 0.109311 +vt 0.363245 0.10231 +vt 0.362432 0.109974 +vt 0.388639 0.0778134 +vt 0.387422 0.0883125 +vt 0.379403 0.0807309 +vt 0.378604 0.0902239 +vt 0.370423 0.0667688 +vt 0.37103 0.0752748 +vt 0.361706 0.0719678 +vt 0.363152 0.0793928 +vt 0.397497 0.331345 +vt 0.379292 0.336333 +vt 0.389805 0.317199 +vt 0.373233 0.322055 +vt 0.411169 0.290735 +vt 0.39701 0.297649 +vt 0.401281 0.277635 +vt 0.388461 0.284323 +vt 0.324361 0.349053 +vt 0.305998 0.350766 +vt 0.322882 0.332606 +vt 0.306004 0.333638 +vt 0.352182 0.312056 +vt 0.336847 0.315166 +vt 0.348005 0.298138 +vt 0.33408 0.300863 +vt 0.318814 0.288763 +vt 0.306112 0.28925 +vt 0.317642 0.275641 +vt 0.306184 0.27604 +vt 0.336979 0.260028 +vt 0.326812 0.262033 +vt 0.333991 0.248543 +vt 0.324824 0.250351 +vt 0.368585 0.277119 +vt 0.356425 0.281436 +vt 0.362414 0.264948 +vt 0.351485 0.268989 +vt 0.375874 0.242927 +vt 0.366472 0.248666 +vt 0.369027 0.232844 +vt 0.360611 0.238128 +vt 0.339545 0.235414 +vt 0.336551 0.225572 +vt 0.347564 0.232319 +vt 0.343827 0.222833 +vt 0.347117 0.210834 +vt 0.343816 0.203004 +vt 0.353413 0.206808 +vt 0.349528 0.199412 +vt 0.306243 0.240501 +vt 0.306184 0.22994 +vt 0.314678 0.240224 +vt 0.31388 0.229697 +vt 0.320195 0.219222 +vt 0.319061 0.210194 +vt 0.32715 0.218102 +vt 0.325492 0.209276 +vt 0.312054 0.202165 +vt 0.306 0.202257 +vt 0.311617 0.194368 +vt 0.305975 0.194462 +vt 0.321626 0.186903 +vt 0.316478 0.187233 +vt 0.320605 0.180847 +vt 0.315796 0.18111 +vt 0.329857 0.199972 +vt 0.328145 0.192763 +vt 0.335482 0.198244 +vt 0.333358 0.191308 +vt 0.336088 0.183203 +vt 0.334011 0.177714 +vt 0.340425 0.180721 +vt 0.338002 0.175528 +vt 0.825016 0.153365 +vt 0.820748 0.160054 +vt 0.804746 0.15055 +vt 0.802825 0.157376 +vt 0.821849 0.173394 +vt 0.829818 0.169397 +vt 0.832058 0.178423 +vt 0.842397 0.175242 +vt 0.850518 0.126214 +vt 0.872683 0.129542 +vt 0.85036 0.137636 +vt 0.873006 0.141476 +vt 0.805914 0.141937 +vt 0.827284 0.144521 +vt 0.950979 0.178035 +vt 0.925834 0.173877 +vt 0.947195 0.16523 +vt 0.922493 0.161281 +vt 0.896313 0.145121 +vt 0.895127 0.132894 +vt 0.918049 0.207002 +vt 0.898307 0.203742 +vt 0.912843 0.195007 +vt 0.892266 0.192314 +vt 0.955238 0.190852 +vt 0.930557 0.186459 +vt 0.840446 0.184757 +vt 0.852278 0.18265 +vt 0.874765 0.191175 +vt 0.880961 0.201685 +vt 0.888349 0.222659 +vt 0.904922 0.225885 +vt 0.890067 0.233054 +vt 0.905997 0.236723 +vt 0.863737 0.237358 +vt 0.876619 0.240042 +vt 0.86436 0.246924 +vt 0.876847 0.249969 +vt 0.964357 0.240027 +vt 0.986457 0.245675 +vt 0.960795 0.251033 +vt 0.980423 0.256469 +vt 0.922114 0.25185 +vt 0.939072 0.256705 +vt 0.920017 0.262492 +vt 0.93574 0.267413 +vt 0.94704 0.283323 +vt 0.962322 0.288849 +vt 0.941917 0.29383 +vt 0.956288 0.299642 +vt 0.909902 0.292474 +vt 0.923092 0.298016 +vt 0.905626 0.301576 +vt 0.91814 0.307166 +vt 0.889202 0.26364 +vt 0.90291 0.268057 +vt 0.887276 0.273369 +vt 0.900254 0.277885 +vt 0.862046 0.275213 +vt 0.87306 0.278765 +vt 0.860193 0.284298 +vt 0.870687 0.287889 +vt 0.901509 0.330114 +vt 0.91237 0.334812 +vt 0.895528 0.337184 +vt 0.905897 0.341416 +vt 0.889496 0.305109 +vt 0.900998 0.309999 +vt 0.885157 0.313274 +vt 0.896066 0.317933 +vt 0.885958 0.361553 +vt 0.879169 0.368814 +vt 0.876554 0.358926 +vt 0.869941 0.366777 +vt 0.870257 0.336799 +vt 0.879652 0.340523 +vt 0.864645 0.344711 +vt 0.873646 0.348142 +vt 0.850678 0.349454 +vt 0.84497 0.358061 +vt 0.843187 0.345887 +vt 0.838002 0.354425 +vt 0.837669 0.323026 +vt 0.844899 0.3261 +vt 0.834066 0.331081 +vt 0.840756 0.334194 +vt 0.861038 0.313274 +vt 0.870544 0.317089 +vt 0.8571 0.32141 +vt 0.866092 0.325096 +vt 0.855209 0.301529 +vt 0.846501 0.298476 +vt 0.857902 0.293043 +vt 0.848668 0.28996 +vt 0.832536 0.376313 +vt 0.838963 0.367047 +vt 0.83943 0.379977 +vt 0.846256 0.37045 +vt 0.810306 0.382462 +vt 0.816039 0.375514 +vt 0.81391 0.387912 +vt 0.820465 0.380449 +vt 0.858843 0.393849 +vt 0.852305 0.402562 +vt 0.849538 0.393295 +vt 0.843111 0.402769 +vt 0.847475 0.382441 +vt 0.854388 0.373121 +vt 0.824121 0.424233 +vt 0.819897 0.434718 +vt 0.816186 0.426748 +vt 0.812891 0.437797 +vt 0.846017 0.411338 +vt 0.837356 0.41242 +vt 0.793297 0.415692 +vt 0.801909 0.41303 +vt 0.793145 0.425024 +vt 0.801522 0.422581 +vt 0.805902 0.441104 +vt 0.808252 0.429971 +vt 0.804281 0.388182 +vt 0.806903 0.393901 +vt 0.793014 0.40775 +vt 0.80113 0.405044 +vt 0.815971 0.184598 +vt 0.809767 0.187886 +vt 0.80904 0.180707 +vt 0.804121 0.184415 +vt 0.790162 0.184797 +vt 0.795227 0.186042 +vt 0.789021 0.188923 +vt 0.793001 0.190024 +vt 0.831308 0.201925 +vt 0.834863 0.209243 +vt 0.822811 0.203246 +vt 0.826071 0.210013 +vt 0.808747 0.195015 +vt 0.812371 0.199523 +vt 0.803846 0.197964 +vt 0.80689 0.201985 +vt 0.806733 0.214069 +vt 0.802331 0.215797 +vt 0.804643 0.208857 +vt 0.800561 0.21091 +vt 0.791986 0.207992 +vt 0.794013 0.205806 +vt 0.793336 0.210997 +vt 0.79569 0.209007 +vt 0.79422 0.195419 +vt 0.797129 0.197789 +vt 0.792097 0.198571 +vt 0.794413 0.20064 +vt 0.786867 0.199715 +vt 0.788675 0.200343 +vt 0.786442 0.202571 +vt 0.787844 0.203092 +vt 0.842674 0.242747 +vt 0.833566 0.241612 +vt 0.841617 0.233894 +vt 0.832384 0.233065 +vt 0.82275 0.225002 +vt 0.815912 0.225584 +vt 0.820808 0.217736 +vt 0.81413 0.218688 +vt 0.841601 0.278714 +vt 0.833602 0.276706 +vt 0.842555 0.269804 +vt 0.834159 0.267914 +vt 0.826595 0.257863 +vt 0.819724 0.257087 +vt 0.826294 0.24938 +vt 0.81933 0.248899 +vt 0.808673 0.26425 +vt 0.813931 0.26473 +vt 0.808976 0.272295 +vt 0.814071 0.272959 +vt 0.799265 0.248861 +vt 0.803105 0.248653 +vt 0.799821 0.256208 +vt 0.803661 0.256196 +vt 0.812379 0.240882 +vt 0.806997 0.241075 +vt 0.811299 0.233386 +vt 0.806047 0.233931 +vt 0.800817 0.228332 +vt 0.797396 0.229311 +vt 0.79982 0.222577 +vt 0.796566 0.223786 +vt 0.833913 0.312269 +vt 0.827554 0.309959 +vt 0.836369 0.304115 +vt 0.829536 0.301839 +vt 0.824675 0.291785 +vt 0.818826 0.290314 +vt 0.825672 0.283513 +vt 0.819475 0.282146 +vt 0.824608 0.336224 +vt 0.820991 0.344208 +vt 0.819701 0.333701 +vt 0.816617 0.341578 +vt 0.817784 0.323743 +vt 0.813559 0.321962 +vt 0.819977 0.315927 +vt 0.81532 0.314223 +vt 0.805318 0.32661 +vt 0.808251 0.328008 +vt 0.803895 0.333986 +vt 0.806458 0.335502 +vt 0.80113 0.309597 +vt 0.804071 0.310456 +vt 0.800816 0.317032 +vt 0.8035 0.317992 +vt 0.812196 0.304978 +vt 0.808078 0.303793 +vt 0.81298 0.297085 +vt 0.80855 0.296001 +vt 0.800973 0.279155 +vt 0.804693 0.279631 +vt 0.801215 0.286835 +vt 0.804754 0.287411 +vt 0.808824 0.36727 +vt 0.80438 0.373717 +vt 0.805915 0.363936 +vt 0.802012 0.370149 +vt 0.809831 0.346893 +vt 0.806719 0.354214 +vt 0.806896 0.344739 +vt 0.804208 0.351858 +vt 0.790109 0.38585 +vt 0.785182 0.386784 +vt 0.789464 0.382019 +vt 0.785139 0.382805 +vt 0.796387 0.372111 +vt 0.792678 0.376108 +vt 0.795085 0.36917 +vt 0.791788 0.373022 +vt 0.78804 0.372645 +vt 0.785021 0.373405 +vt 0.787719 0.370006 +vt 0.785015 0.370633 +vt 0.789846 0.365272 +vt 0.789357 0.362535 +vt 0.792173 0.361974 +vt 0.79143 0.359564 +vt 0.799501 0.356177 +vt 0.796806 0.361814 +vt 0.797923 0.354271 +vt 0.79553 0.359696 +vt 0.798362 0.338312 +vt 0.800188 0.339705 +vt 0.79692 0.344681 +vt 0.798479 0.346347 +vt 0.330218 0.0664261 +vt 0.328129 0.0707093 +vt 0.324229 0.0657082 +vt 0.322727 0.06988 +vt 0.316272 0.0733017 +vt 0.315347 0.0772123 +vt 0.31119 0.0729084 +vt 0.310742 0.0768041 +vt 0.351867 0.072293 +vt 0.34658 0.0779631 +vt 0.347343 0.069632 +vt 0.342872 0.0750467 +vt 0.328275 0.0802421 +vt 0.330767 0.0760754 +vt 0.332053 0.0819921 +vt 0.335097 0.0776764 +vt 0.32939 0.0919511 +vt 0.332265 0.0882344 +vt 0.33162 0.0946492 +vt 0.334785 0.090964 +vt 0.320167 0.0940065 +vt 0.321948 0.0910547 +vt 0.322344 0.095943 +vt 0.324493 0.0929929 +vt 0.322362 0.0827162 +vt 0.32068 0.0862722 +vt 0.318505 0.0816505 +vt 0.317252 0.0851693 +vt 0.312852 0.0877075 +vt 0.312132 0.0907148 +vt 0.30951 0.0872934 +vt 0.309163 0.0903009 +vt 0.357415 0.0900892 +vt 0.357676 0.0969275 +vt 0.351965 0.093156 +vt 0.352443 0.0992381 +vt 0.342067 0.0945822 +vt 0.340429 0.0905357 +vt 0.346188 0.0911047 +vt 0.34449 0.0865964 +vt 0.356024 0.117694 +vt 0.354966 0.124574 +vt 0.351466 0.117985 +vt 0.350681 0.124263 +vt 0.348066 0.107086 +vt 0.347909 0.112722 +vt 0.344247 0.10877 +vt 0.344257 0.113836 +vt 0.340871 0.119626 +vt 0.340539 0.124282 +vt 0.338021 0.120348 +vt 0.337783 0.124532 +vt 0.334919 0.113791 +vt 0.335275 0.117431 +vt 0.332224 0.115487 +vt 0.332626 0.118716 +vt 0.337216 0.108155 +vt 0.336358 0.104372 +vt 0.340405 0.106013 +vt 0.339607 0.101766 +vt 0.327864 0.104133 +vt 0.330559 0.100876 +vt 0.329439 0.106654 +vt 0.332175 0.103766 +vt 0.349098 0.150141 +vt 0.345659 0.147621 +vt 0.350873 0.144236 +vt 0.347202 0.142222 +vt 0.345099 0.135219 +vt 0.34205 0.134187 +vt 0.346073 0.129751 +vt 0.342886 0.129239 +vt 0.339072 0.168149 +vt 0.336638 0.164088 +vt 0.342048 0.164666 +vt 0.339366 0.160936 +vt 0.339055 0.154019 +vt 0.336552 0.15125 +vt 0.340944 0.149928 +vt 0.338295 0.147527 +vt 0.332361 0.151739 +vt 0.330231 0.154188 +vt 0.330289 0.149285 +vt 0.3283 0.151519 +vt 0.33129 0.141914 +vt 0.3299 0.144661 +vt 0.329115 0.140484 +vt 0.327815 0.142939 +vt 0.33834 0.137621 +vt 0.337202 0.141659 +vt 0.335855 0.136536 +vt 0.334785 0.140175 +vt 0.334853 0.12857 +vt 0.334274 0.132167 +vt 0.332414 0.128603 +vt 0.331873 0.131802 +vt 0.328141 0.174172 +vt 0.323979 0.17504 +vt 0.326592 0.169592 +vt 0.322725 0.170376 +vt 0.331572 0.162705 +vt 0.32847 0.164371 +vt 0.329655 0.159229 +vt 0.32678 0.160783 +vt 0.310588 0.175636 +vt 0.305978 0.175598 +vt 0.310292 0.170901 +vt 0.306001 0.170931 +vt 0.317791 0.166629 +vt 0.313947 0.166772 +vt 0.316916 0.162998 +vt 0.313368 0.163192 +vt 0.309456 0.160095 +vt 0.306058 0.160122 +vt 0.309185 0.157292 +vt 0.306066 0.157339 +vt 0.314521 0.154298 +vt 0.311754 0.154616 +vt 0.313766 0.151921 +vt 0.311253 0.152266 +vt 0.322321 0.158643 +vt 0.319268 0.159353 +vt 0.321026 0.155711 +vt 0.318221 0.156426 +vt 0.320718 0.149739 +vt 0.322777 0.148528 +vt 0.322174 0.152095 +vt 0.324414 0.150799 +vt 0.313147 0.0965392 +vt 0.314021 0.0941342 +vt 0.31521 0.0975087 +vt 0.316389 0.0951732 +vt 0.308152 0.0997757 +vt 0.308364 0.0977245 +vt 0.30994 0.10012 +vt 0.310407 0.0980901 +vt 0.319753 0.102283 +vt 0.321853 0.100574 +vt 0.320233 0.104508 +vt 0.322494 0.103217 +vt 0.31706 0.102168 +vt 0.315665 0.103792 +vt 0.315743 0.100766 +vt 0.314552 0.102547 +vt 0.315455 0.108122 +vt 0.314266 0.109244 +vt 0.315135 0.10661 +vt 0.314002 0.107876 +vt 0.312522 0.108003 +vt 0.3117 0.109267 +vt 0.311826 0.107083 +vt 0.31111 0.108429 +vt 0.310441 0.10417 +vt 0.310995 0.102511 +vt 0.311608 0.104832 +vt 0.312339 0.103247 +vt 0.307463 0.10662 +vt 0.307608 0.105066 +vt 0.308499 0.106848 +vt 0.308807 0.105314 +vt 0.328093 0.111836 +vt 0.328949 0.114432 +vt 0.325652 0.114196 +vt 0.326434 0.116443 +vt 0.321505 0.113426 +vt 0.322482 0.114774 +vt 0.319581 0.115961 +vt 0.320403 0.117135 +vt 0.330218 0.122917 +vt 0.330185 0.125845 +vt 0.327653 0.123857 +vt 0.327638 0.126427 +vt 0.322525 0.123834 +vt 0.322183 0.121971 +vt 0.324938 0.12259 +vt 0.324559 0.12043 +vt 0.318356 0.128969 +vt 0.318293 0.127539 +vt 0.320476 0.128341 +vt 0.320426 0.126671 +vt 0.314484 0.127927 +vt 0.314301 0.126888 +vt 0.316198 0.127095 +vt 0.315988 0.125891 +vt 0.317535 0.123409 +vt 0.317095 0.122209 +vt 0.319534 0.121891 +vt 0.319027 0.12049 +vt 0.313408 0.124157 +vt 0.312997 0.12345 +vt 0.314904 0.122779 +vt 0.314426 0.121976 +vt 0.328818 0.134286 +vt 0.32797 0.136862 +vt 0.326498 0.13384 +vt 0.32574 0.136109 +vt 0.322389 0.131485 +vt 0.322647 0.129606 +vt 0.324697 0.131426 +vt 0.325015 0.129259 +vt 0.324418 0.143407 +vt 0.322881 0.145094 +vt 0.322551 0.141904 +vt 0.321161 0.143403 +vt 0.322774 0.137363 +vt 0.321841 0.139072 +vt 0.320788 0.136652 +vt 0.32 0.138151 +vt 0.317536 0.138555 +vt 0.316651 0.139556 +vt 0.316151 0.137793 +vt 0.315455 0.138642 +vt 0.315289 0.136318 +vt 0.314009 0.136011 +vt 0.315598 0.135312 +vt 0.314157 0.135091 +vt 0.319875 0.133171 +vt 0.319444 0.134667 +vt 0.317899 0.133116 +vt 0.317584 0.134412 +vt 0.316251 0.131957 +vt 0.314568 0.132131 +vt 0.316359 0.130771 +vt 0.314622 0.131111 +vt 0.314325 0.147121 +vt 0.316206 0.146495 +vt 0.31524 0.149178 +vt 0.317341 0.148498 +vt 0.318189 0.143041 +vt 0.316715 0.143946 +vt 0.316842 0.141612 +vt 0.315541 0.142393 +vt 0.308474 0.150216 +vt 0.306148 0.150273 +vt 0.30828 0.148083 +vt 0.306205 0.148138 +vt 0.309557 0.144075 +vt 0.311135 0.143839 +vt 0.309932 0.145915 +vt 0.311727 0.145639 +vt 0.306464 0.140984 +vt 0.307698 0.140944 +vt 0.306403 0.142535 +vt 0.307817 0.142499 +vt 0.309727 0.139325 +vt 0.308664 0.139451 +vt 0.309409 0.13809 +vt 0.308459 0.138193 +vt 0.313246 0.141518 +vt 0.311943 0.141903 +vt 0.312462 0.140165 +vt 0.311313 0.140464 +vt 0.313725 0.138373 +vt 0.312809 0.138686 +vt 0.313142 0.137537 +vt 0.312265 0.137685 +vt 0.308712 0.109984 +vt 0.309071 0.108632 +vt 0.309354 0.110402 +vt 0.309827 0.109103 +vt 0.307061 0.112169 +vt 0.307144 0.110879 +vt 0.307597 0.112297 +vt 0.307786 0.111026 +vt 0.311507 0.11234 +vt 0.310772 0.113277 +vt 0.311338 0.111334 +vt 0.31064 0.112374 +vt 0.309772 0.11267 +vt 0.309269 0.113686 +vt 0.309401 0.1121 +vt 0.308954 0.113204 +vt 0.309101 0.115698 +vt 0.308701 0.116354 +vt 0.30902 0.115111 +vt 0.30863 0.115878 +vt 0.308155 0.11632 +vt 0.307897 0.117089 +vt 0.307952 0.116115 +vt 0.307709 0.116974 +vt 0.308231 0.113925 +vt 0.307954 0.114964 +vt 0.307849 0.113679 +vt 0.307632 0.114777 +vt 0.307152 0.115712 +vt 0.30704 0.116707 +vt 0.306849 0.115651 +vt 0.306794 0.116667 +vt 0.310488 0.117192 +vt 0.309892 0.117644 +vt 0.310933 0.115922 +vt 0.310277 0.116498 +vt 0.30955 0.115751 +vt 0.310108 0.115045 +vt 0.309415 0.116615 +vt 0.309955 0.116016 +vt 0.308872 0.120739 +vt 0.308376 0.121683 +vt 0.308505 0.120843 +vt 0.308095 0.121675 +vt 0.308992 0.119071 +vt 0.30859 0.120043 +vt 0.308604 0.119329 +vt 0.308275 0.120184 +vt 0.307748 0.120972 +vt 0.307511 0.121549 +vt 0.307584 0.120963 +vt 0.307401 0.121444 +vt 0.30743 0.12056 +vt 0.307537 0.120082 +vt 0.307594 0.120476 +vt 0.307746 0.119934 +vt 0.308387 0.11836 +vt 0.308764 0.117961 +vt 0.308194 0.119074 +vt 0.30853 0.118769 +vt 0.308074 0.117723 +vt 0.308339 0.117414 +vt 0.307943 0.118308 +vt 0.308218 0.118031 +vt 0.307385 0.123449 +vt 0.307174 0.123758 +vt 0.307236 0.12329 +vt 0.30706 0.123564 +vt 0.307551 0.122286 +vt 0.30731 0.122762 +vt 0.307407 0.122173 +vt 0.307205 0.12259 +vt 0.306568 0.123952 +vt 0.306668 0.123942 +vt 0.306568 0.124196 +vt 0.306694 0.124181 +vt 0.306848 0.123529 +vt 0.306737 0.123648 +vt 0.306804 0.123283 +vt 0.306708 0.123396 +vt 0.306571 0.12287 +vt 0.306615 0.122871 +vt 0.30657 0.123177 +vt 0.306622 0.123173 +vt 0.306721 0.122442 +vt 0.30666 0.122504 +vt 0.306724 0.122061 +vt 0.306663 0.122107 +vt 0.306822 0.122633 +vt 0.30693 0.122452 +vt 0.306862 0.122889 +vt 0.306976 0.122691 +vt 0.307045 0.121616 +vt 0.307168 0.121423 +vt 0.30704 0.121934 +vt 0.307177 0.121669 +vt 0.307326 0.117728 +vt 0.307185 0.11852 +vt 0.307137 0.117676 +vt 0.307023 0.118503 +vt 0.306801 0.119252 +vt 0.306753 0.119949 +vt 0.306676 0.11924 +vt 0.306652 0.119949 +vt 0.307866 0.117836 +vt 0.307712 0.118471 +vt 0.307119 0.119859 +vt 0.307219 0.119231 +vt 0.307273 0.119794 +vt 0.30738 0.119195 +vt 0.307347 0.120226 +vt 0.307264 0.120696 +vt 0.306936 0.121418 +vt 0.307065 0.121261 +vt 0.306916 0.121812 +vt 0.306806 0.120561 +vt 0.306914 0.120509 +vt 0.306762 0.121132 +vt 0.306861 0.121059 +vt 0.306616 0.121685 +vt 0.306669 0.121671 +vt 0.306613 0.122135 +vt 0.307199 0.124436 +vt 0.307466 0.124165 +vt 0.307324 0.124694 +vt 0.307643 0.12439 +vt 0.307138 0.12517 +vt 0.307234 0.125478 +vt 0.306845 0.125272 +vt 0.306891 0.125593 +vt 0.308588 0.12254 +vt 0.309137 0.121626 +vt 0.308964 0.122602 +vt 0.30961 0.121584 +vt 0.30854 0.124391 +vt 0.308267 0.124163 +vt 0.30911 0.123716 +vt 0.308764 0.123537 +vt 0.310618 0.123296 +vt 0.310211 0.123017 +vt 0.311621 0.122038 +vt 0.311117 0.121806 +vt 0.309565 0.125831 +vt 0.309313 0.125403 +vt 0.310424 0.125069 +vt 0.310099 0.124645 +vt 0.307896 0.125959 +vt 0.307762 0.125581 +vt 0.308441 0.125567 +vt 0.308251 0.125203 +vt 0.307511 0.126592 +vt 0.307604 0.12701 +vt 0.307031 0.126712 +vt 0.307075 0.127137 +vt 0.311245 0.117726 +vt 0.311927 0.116209 +vt 0.311987 0.117374 +vt 0.312762 0.115719 +vt 0.312571 0.118629 +vt 0.311553 0.120254 +vt 0.311851 0.118752 +vt 0.310941 0.120277 +vt 0.314249 0.110744 +vt 0.313214 0.111685 +vt 0.313245 0.110315 +vt 0.315059 0.111569 +vt 0.316279 0.110815 +vt 0.314451 0.113413 +vt 0.315557 0.112846 +vt 0.318388 0.105743 +vt 0.318252 0.107852 +vt 0.31998 0.106953 +vt 0.322146 0.109572 +vt 0.320415 0.1125 +vt 0.32068 0.109273 +vt 0.319233 0.112085 +vt 0.31668 0.11451 +vt 0.315339 0.116737 +vt 0.315646 0.114601 +vt 0.314473 0.116703 +vt 0.314719 0.119043 +vt 0.315401 0.119521 +vt 0.313343 0.120853 +vt 0.313905 0.121325 +vt 0.310985 0.136794 +vt 0.310065 0.136883 +vt 0.310788 0.135834 +vt 0.309885 0.135895 +vt 0.312865 0.134972 +vt 0.311717 0.13493 +vt 0.312942 0.134073 +vt 0.311744 0.134078 +vt 0.306576 0.136071 +vt 0.307373 0.136047 +vt 0.306571 0.137113 +vt 0.307432 0.137092 +vt 0.308927 0.135027 +vt 0.308107 0.135068 +vt 0.308888 0.134185 +vt 0.308074 0.134224 +vt 0.306627 0.132768 +vt 0.307335 0.132755 +vt 0.306601 0.133484 +vt 0.307317 0.133471 +vt 0.30886 0.131982 +vt 0.308078 0.132051 +vt 0.308863 0.131322 +vt 0.308083 0.131411 +vt 0.310681 0.133298 +vt 0.309731 0.133357 +vt 0.310682 0.13252 +vt 0.309721 0.132607 +vt 0.311835 0.130777 +vt 0.313125 0.130472 +vt 0.311818 0.1316 +vt 0.313117 0.131385 +vt 0.308418 0.12775 +vt 0.308304 0.127244 +vt 0.309161 0.127392 +vt 0.308999 0.126869 +vt 0.307189 0.128585 +vt 0.307832 0.128484 +vt 0.307229 0.129117 +vt 0.307904 0.129021 +vt 0.312087 0.125306 +vt 0.311761 0.124654 +vt 0.310365 0.128127 +vt 0.310193 0.127488 +vt 0.311413 0.127572 +vt 0.311197 0.126867 +vt 0.312974 0.128618 +vt 0.31283 0.127706 +vt 0.310656 0.130282 +vt 0.311773 0.129967 +vt 0.310701 0.131018 +vt 0.30872 0.129424 +vt 0.309557 0.129168 +vt 0.308776 0.130051 +vt 0.309629 0.129838 +vt 0.307344 0.130845 +vt 0.308058 0.130789 +vt 0.307359 0.131458 +vt 0.139096 0.903949 +vt 0.13935 0.908058 +vt 0.134195 0.901237 +vt 0.134577 0.905902 +vt 0.131293 0.91039 +vt 0.134417 0.916914 +vt 0.125781 0.910193 +vt 0.129384 0.917933 +vt 0.149009 0.917325 +vt 0.154065 0.919928 +vt 0.148473 0.921539 +vt 0.153633 0.924761 +vt 0.144029 0.906639 +vt 0.144132 0.910537 +vt 0.134421 0.925656 +vt 0.139023 0.923355 +vt 0.15272 0.92977 +vt 0.147147 0.9256 +vt 0.112575 0.851304 +vt 0.101196 0.850787 +vt 0.115176 0.843851 +vt 0.103734 0.843021 +vt 0.0949692 0.834236 +vt 0.0831936 0.833131 +vt 0.0979736 0.82631 +vt 0.0859812 0.824842 +vt 0.107914 0.883317 +vt 0.096786 0.883912 +vt 0.108181 0.874745 +vt 0.0967947 0.875132 +vt 0.0862863 0.86694 +vt 0.0749071 0.867161 +vt 0.0877733 0.858551 +vt 0.0763631 0.858462 +vt 0.0623407 0.886006 +vt 0.0500999 0.886673 +vt 0.0624228 0.876561 +vt 0.0503828 0.876998 +vt 0.0395431 0.867776 +vt 0.0275564 0.867992 +vt 0.0413637 0.85824 +vt 0.0296423 0.858208 +vt 0.0667415 0.849528 +vt 0.0550607 0.849129 +vt 0.0689497 0.84075 +vt 0.0572193 0.840018 +vt 0.0477215 0.829905 +vt 0.0358998 0.828857 +vt 0.0499867 0.820507 +vt 0.0379856 0.819074 +vt 0.104491 0.921619 +vt 0.100917 0.911893 +vt 0.114385 0.920297 +vt 0.110604 0.910968 +vt 0.0748939 0.894749 +vt 0.0862133 0.893782 +vt 0.0764646 0.904478 +vt 0.0877784 0.903305 +vt 0.134297 0.949331 +vt 0.143367 0.959541 +vt 0.121426 0.95145 +vt 0.12835 0.961612 +vt 0.0854682 0.934755 +vt 0.0977763 0.9331 +vt 0.0894549 0.945022 +vt 0.102573 0.943229 +vt 0.065268 0.959275 +vt 0.0795992 0.957313 +vt 0.0682843 0.969893 +vt 0.0833008 0.967823 +vt 0.0326764 0.941606 +vt 0.046129 0.93985 +vt 0.0345347 0.952415 +vt 0.048463 0.95054 +vt 0.0543934 0.917147 +vt 0.0668206 0.915777 +vt 0.0568249 0.927608 +vt 0.0695712 0.92607 +vt 0.0397903 0.907988 +vt 0.0271014 0.909178 +vt 0.0381335 0.897502 +vt 0.025243 0.898368 +vt 0.140457 0.89769 +vt 0.142148 0.895798 +vt 0.144939 0.900364 +vt 0.14611 0.898197 +vt 0.153077 0.896863 +vt 0.156834 0.898023 +vt 0.151625 0.898352 +vt 0.155872 0.899706 +vt 0.129725 0.883978 +vt 0.135546 0.884898 +vt 0.129554 0.887578 +vt 0.134367 0.887351 +vt 0.139229 0.889727 +vt 0.142872 0.889691 +vt 0.141289 0.892103 +vt 0.144355 0.891615 +vt 0.147301 0.887123 +vt 0.150263 0.887713 +vt 0.146072 0.888294 +vt 0.149186 0.888644 +vt 0.155926 0.890828 +vt 0.153028 0.890956 +vt 0.155123 0.88993 +vt 0.152207 0.889896 +vt 0.151731 0.894412 +vt 0.149258 0.892906 +vt 0.153887 0.893703 +vt 0.15179 0.892423 +vt 0.160551 0.893621 +vt 0.162249 0.894352 +vt 0.158405 0.894161 +vt 0.160663 0.894943 +vt 0.163553 0.889416 +vt 0.162655 0.888686 +vt 0.166525 0.889217 +vt 0.165736 0.888533 +vt 0.161613 0.890402 +vt 0.162687 0.891182 +vt 0.158778 0.890637 +vt 0.159892 0.891486 +vt 0.175047 0.888376 +vt 0.177599 0.888277 +vt 0.175548 0.888797 +vt 0.17829 0.888625 +vt 0.170275 0.889653 +vt 0.173199 0.889438 +vt 0.171087 0.890242 +vt 0.173898 0.889945 +vt 0.178059 0.890514 +vt 0.177324 0.890086 +vt 0.180527 0.890144 +vt 0.179955 0.88975 +vt 0.174036 0.891975 +vt 0.176508 0.891425 +vt 0.175225 0.892514 +vt 0.177643 0.891861 +vt 0.170374 0.891878 +vt 0.167792 0.892323 +vt 0.16928 0.891217 +vt 0.166588 0.891594 +vt 0.164266 0.893912 +vt 0.16656 0.893514 +vt 0.165296 0.894634 +vt 0.167626 0.894269 +vt 0.251152 0.889321 +vt 0.251616 0.881396 +vt 0.261794 0.891202 +vt 0.262173 0.883167 +vt 0.272672 0.876865 +vt 0.272469 0.868821 +vt 0.283028 0.878508 +vt 0.282692 0.87028 +vt 0.207199 0.881175 +vt 0.208557 0.874023 +vt 0.218481 0.883549 +vt 0.219553 0.875974 +vt 0.2309 0.870351 +vt 0.231259 0.863052 +vt 0.2414 0.871986 +vt 0.241612 0.864496 +vt 0.210866 0.85334 +vt 0.211384 0.846521 +vt 0.221207 0.85459 +vt 0.221508 0.84761 +vt 0.231669 0.841541 +vt 0.23165 0.834455 +vt 0.241662 0.842366 +vt 0.241537 0.835066 +vt 0.251895 0.858314 +vt 0.251812 0.850729 +vt 0.262066 0.859557 +vt 0.261873 0.85177 +vt 0.271563 0.844854 +vt 0.271197 0.8369 +vt 0.281508 0.845691 +vt 0.281084 0.837512 +vt 0.241832 0.948396 +vt 0.251454 0.949771 +vt 0.239758 0.956997 +vt 0.249361 0.9583 +vt 0.273164 0.944439 +vt 0.263284 0.942818 +vt 0.275367 0.936174 +vt 0.265347 0.934443 +vt 0.211655 0.953493 +vt 0.203372 0.952649 +vt 0.214217 0.945011 +vt 0.206054 0.944354 +vt 0.226614 0.928591 +vt 0.235923 0.929784 +vt 0.225023 0.937297 +vt 0.234245 0.938458 +vt 0.218572 0.918919 +vt 0.209998 0.918704 +vt 0.218837 0.909908 +vt 0.209827 0.909849 +vt 0.229037 0.893625 +vt 0.239911 0.895495 +vt 0.228821 0.902115 +vt 0.239234 0.903823 +vt 0.258797 0.915892 +vt 0.257185 0.924317 +vt 0.248529 0.914103 +vt 0.247153 0.922635 +vt 0.282944 0.903285 +vt 0.281552 0.9115 +vt 0.27191 0.90129 +vt 0.270743 0.909505 +vt 0.185133 0.951659 +vt 0.179683 0.951437 +vt 0.186283 0.943888 +vt 0.180518 0.943883 +vt 0.200497 0.935798 +vt 0.193652 0.935946 +vt 0.201605 0.927541 +vt 0.194594 0.928087 +vt 0.157299 0.947012 +vt 0.157862 0.939514 +vt 0.163607 0.949759 +vt 0.163817 0.942052 +vt 0.175424 0.936598 +vt 0.169795 0.936242 +vt 0.175825 0.929761 +vt 0.170134 0.92964 +vt 0.15949 0.917049 +vt 0.164908 0.917961 +vt 0.159392 0.922002 +vt 0.16481 0.923184 +vt 0.17035 0.908948 +vt 0.175836 0.90793 +vt 0.170462 0.913177 +vt 0.176123 0.912347 +vt 0.188387 0.921483 +vt 0.182094 0.92262 +vt 0.188433 0.914725 +vt 0.1822 0.916402 +vt 0.200928 0.902842 +vt 0.194373 0.906084 +vt 0.198821 0.896537 +vt 0.193006 0.90076 +vt 0.163844 0.871704 +vt 0.164872 0.866541 +vt 0.17469 0.872951 +vt 0.175905 0.867824 +vt 0.188049 0.863576 +vt 0.189118 0.857223 +vt 0.198848 0.865275 +vt 0.199706 0.85869 +vt 0.119555 0.874052 +vt 0.120269 0.866429 +vt 0.130793 0.872665 +vt 0.131392 0.865971 +vt 0.143978 0.859495 +vt 0.145903 0.852994 +vt 0.155102 0.860032 +vt 0.156818 0.853795 +vt 0.137378 0.84552 +vt 0.126431 0.844697 +vt 0.140223 0.83866 +vt 0.129484 0.837611 +vt 0.163183 0.834096 +vt 0.153396 0.832973 +vt 0.165537 0.827404 +vt 0.156269 0.826239 +vt 0.169322 0.848399 +vt 0.171065 0.841846 +vt 0.179794 0.849534 +vt 0.181178 0.842995 +vt 0.192304 0.837547 +vt 0.19334 0.830901 +vt 0.201988 0.838708 +vt 0.202608 0.832067 +vt 0.17969 0.899996 +vt 0.184557 0.897875 +vt 0.180693 0.902656 +vt 0.186061 0.900335 +vt 0.186685 0.894304 +vt 0.184449 0.893608 +vt 0.189667 0.892441 +vt 0.187134 0.892133 +vt 0.159998 0.902756 +vt 0.164886 0.903014 +vt 0.159707 0.905499 +vt 0.164889 0.905837 +vt 0.174055 0.899375 +vt 0.169522 0.900302 +vt 0.173289 0.897692 +vt 0.169228 0.898485 +vt 0.165294 0.897417 +vt 0.161613 0.897323 +vt 0.165519 0.896296 +vt 0.162386 0.896229 +vt 0.171044 0.894517 +vt 0.168296 0.895068 +vt 0.170083 0.89378 +vt 0.179481 0.894259 +vt 0.176104 0.895413 +vt 0.177983 0.893585 +vt 0.174978 0.894532 +vt 0.181127 0.891487 +vt 0.179058 0.892228 +vt 0.1797 0.891277 +vt 0.162634 0.879165 +vt 0.162473 0.881465 +vt 0.153115 0.878852 +vt 0.154067 0.881274 +vt 0.148855 0.883424 +vt 0.151444 0.884714 +vt 0.143585 0.884294 +vt 0.146963 0.885372 +vt 0.189947 0.884782 +vt 0.19569 0.88736 +vt 0.185768 0.885279 +vt 0.190576 0.886863 +vt 0.168984 0.884939 +vt 0.169807 0.883834 +vt 0.17474 0.885491 +vt 0.176596 0.884712 +vt 0.177916 0.886664 +vt 0.181522 0.887164 +vt 0.176505 0.887111 +vt 0.179625 0.887454 +vt 0.172093 0.88736 +vt 0.171946 0.887898 +vt 0.168282 0.887219 +vt 0.168546 0.887843 +vt 0.163261 0.8856 +vt 0.163773 0.886424 +vt 0.15818 0.885549 +vt 0.159441 0.886434 +vt 0.15729 0.8874 +vt 0.158739 0.888138 +vt 0.154534 0.887699 +vt 0.156155 0.888344 +vt 0.18948 0.889201 +vt 0.191317 0.888886 +vt 0.189672 0.889872 +vt 0.191993 0.889656 +vt 0.187679 0.887908 +vt 0.186428 0.887461 +vt 0.190201 0.888032 +vt 0.189324 0.887476 +vt 0.18203 0.889086 +vt 0.18442 0.88885 +vt 0.182579 0.889453 +vt 0.184968 0.889209 +vt 0.187501 0.889418 +vt 0.187421 0.89002 +vt 0.183986 0.887586 +vt 0.185414 0.88797 +vt 0.181508 0.88873 +vt 0.18392 0.888497 +vt 0.792466 0.353354 +vt 0.791596 0.351143 +vt 0.794047 0.348648 +vt 0.792884 0.346835 +vt 0.791471 0.333908 +vt 0.793144 0.334656 +vt 0.791082 0.339461 +vt 0.792529 0.340323 +vt 0.786631 0.354562 +vt 0.786539 0.350223 +vt 0.788183 0.353462 +vt 0.787996 0.349408 +vt 0.790742 0.357144 +vt 0.790123 0.354523 +vt 0.789836 0.333574 +vt 0.789604 0.339249 +vt 0.786524 0.345221 +vt 0.787993 0.344758 +vt 0.791917 0.314397 +vt 0.793899 0.31486 +vt 0.791893 0.321163 +vt 0.793824 0.32173 +vt 0.798452 0.308863 +vt 0.796026 0.308252 +vt 0.798422 0.301416 +vt 0.79591 0.300898 +vt 0.785002 0.320556 +vt 0.785007 0.313785 +vt 0.786665 0.32057 +vt 0.786649 0.313822 +vt 0.789998 0.307132 +vt 0.78826 0.30698 +vt 0.78986 0.299983 +vt 0.788169 0.299859 +vt 0.78656 0.292554 +vt 0.785121 0.292547 +vt 0.786538 0.285188 +vt 0.785198 0.285179 +vt 0.789204 0.277887 +vt 0.787777 0.277816 +vt 0.788956 0.270503 +vt 0.787613 0.270453 +vt 0.793416 0.293102 +vt 0.791434 0.292848 +vt 0.793103 0.285654 +vt 0.791153 0.285443 +vt 0.794722 0.270932 +vt 0.797413 0.271166 +vt 0.795061 0.278433 +vt 0.797778 0.278756 +vt 0.792483 0.236169 +vt 0.794996 0.23581 +vt 0.79296 0.242438 +vt 0.795524 0.242175 +vt 0.788337 0.226017 +vt 0.789745 0.225725 +vt 0.788646 0.231039 +vt 0.790116 0.230778 +vt 0.794246 0.263453 +vt 0.796976 0.263597 +vt 0.789573 0.249328 +vt 0.791256 0.249234 +vt 0.789855 0.256137 +vt 0.791602 0.256131 +vt 0.787401 0.263168 +vt 0.788665 0.263201 +vt 0.786028 0.249308 +vt 0.786164 0.256089 +vt 0.785148 0.249332 +vt 0.785206 0.256117 +vt 0.786706 0.236788 +vt 0.787717 0.236764 +vt 0.786851 0.242863 +vt 0.787962 0.24287 +vt 0.785331 0.22637 +vt 0.785895 0.226348 +vt 0.785258 0.231375 +vt 0.785898 0.231302 +vt 0.788884 0.217552 +vt 0.787728 0.218005 +vt 0.788411 0.214509 +vt 0.787446 0.215083 +vt 0.788958 0.211116 +vt 0.788217 0.209243 +vt 0.790293 0.209728 +vt 0.789244 0.207626 +vt 0.786051 0.212923 +vt 0.785589 0.212853 +vt 0.786085 0.21087 +vt 0.785568 0.210683 +vt 0.786882 0.218253 +vt 0.786692 0.21531 +vt 0.78819 0.206197 +vt 0.787415 0.207985 +vt 0.786268 0.209024 +vt 0.785651 0.208755 +vt 0.436715 0.425872 +vt 0.458305 0.422526 +vt 0.44042 0.445824 +vt 0.460147 0.443049 +vt 0.409531 0.410883 +vt 0.386418 0.418102 +vt 0.40357 0.390276 +vt 0.378286 0.398452 +vt 0.450328 0.497392 +vt 0.465123 0.495661 +vt 0.453102 0.511766 +vt 0.466519 0.510309 +vt 0.409009 0.472753 +vt 0.426258 0.467966 +vt 0.415645 0.488915 +vt 0.431231 0.484723 +vt 0.415022 0.521255 +vt 0.403499 0.525849 +vt 0.408212 0.508343 +vt 0.395413 0.513721 +vt 0.347741 0.502534 +vt 0.361518 0.493512 +vt 0.360705 0.515326 +vt 0.37302 0.507335 +vt 0.383359 0.462 +vt 0.36566 0.469691 +vt 0.373727 0.444365 +vt 0.353956 0.452676 +vt 0.320568 0.444692 +vt 0.301567 0.456559 +vt 0.304415 0.425717 +vt 0.282936 0.437955 +vt 0.470507 0.555447 +vt 0.461132 0.555962 +vt 0.469727 0.54609 +vt 0.45955 0.546882 +vt 0.446829 0.538137 +vt 0.436324 0.540262 +vt 0.443617 0.526845 +vt 0.432066 0.529522 +vt 0.472495 0.582144 +vt 0.465181 0.582005 +vt 0.47214 0.576906 +vt 0.464474 0.576956 +vt 0.455682 0.571267 +vt 0.448123 0.57163 +vt 0.454009 0.564515 +vt 0.445893 0.565266 +vt 0.444815 0.581517 +vt 0.438958 0.581274 +vt 0.443217 0.577213 +vt 0.437137 0.577472 +vt 0.428735 0.574291 +vt 0.423885 0.576029 +vt 0.424783 0.569812 +vt 0.419247 0.57219 +vt 0.434864 0.559653 +vt 0.427116 0.561808 +vt 0.430914 0.551934 +vt 0.422393 0.554686 +vt 0.408266 0.550187 +vt 0.400435 0.55456 +vt 0.40103 0.541325 +vt 0.392269 0.546543 +vt 0.303218 0.486102 +vt 0.319856 0.499949 +vt 0.289818 0.500293 +vt 0.307638 0.512518 +vt 0.237945 0.493159 +vt 0.258216 0.504537 +vt 0.224943 0.513175 +vt 0.246446 0.522484 +vt 0.353761 0.543365 +vt 0.362545 0.534789 +vt 0.366434 0.551615 +vt 0.374202 0.544168 +vt 0.314487 0.535617 +vt 0.330997 0.544517 +vt 0.306084 0.548095 +vt 0.323605 0.555516 +vt 0.330439 0.58275 +vt 0.334417 0.572322 +vt 0.346188 0.586119 +vt 0.349629 0.577005 +vt 0.287546 0.602137 +vt 0.28966 0.588203 +vt 0.30786 0.603287 +vt 0.309621 0.590976 +vt 0.257796 0.547865 +vt 0.279114 0.554679 +vt 0.24993 0.564656 +vt 0.272605 0.569754 +vt 0.189989 0.574186 +vt 0.218314 0.578128 +vt 0.184048 0.595183 +vt 0.214223 0.597365 +vt 0.243984 0.634869 +vt 0.241156 0.616945 +vt 0.267456 0.632653 +vt 0.265222 0.616652 +vt 0.209878 0.683761 +vt 0.200982 0.661496 +vt 0.23322 0.677136 +vt 0.225381 0.657124 +vt 0.327329 0.626093 +vt 0.326122 0.615144 +vt 0.343633 0.624032 +vt 0.342631 0.614465 +vt 0.297743 0.658554 +vt 0.292605 0.644575 +vt 0.316591 0.652974 +vt 0.312095 0.640674 +vt 0.345985 0.668621 +vt 0.339181 0.658346 +vt 0.36005 0.661271 +vt 0.354063 0.65224 +vt 0.323209 0.698242 +vt 0.339508 0.687945 +vt 0.33531 0.710236 +vt 0.350411 0.698622 +vt 0.273817 0.70534 +vt 0.263948 0.688301 +vt 0.2942 0.695054 +vt 0.284904 0.680018 +vt 0.240863 0.749097 +vt 0.264423 0.734667 +vt 0.256469 0.768031 +vt 0.279892 0.751364 +vt 0.382434 0.618548 +vt 0.381732 0.612166 +vt 0.392557 0.617012 +vt 0.391992 0.611404 +vt 0.363125 0.638612 +vt 0.36013 0.630386 +vt 0.375264 0.634696 +vt 0.372716 0.627498 +vt 0.417805 0.613365 +vt 0.417559 0.609482 +vt 0.425147 0.612541 +vt 0.42498 0.609006 +vt 0.404054 0.625474 +vt 0.402625 0.620573 +vt 0.411876 0.623174 +vt 0.410775 0.618774 +vt 0.426682 0.623558 +vt 0.427503 0.627273 +vt 0.420198 0.625267 +vt 0.421642 0.629117 +vt 0.41249 0.639187 +vt 0.41836 0.635501 +vt 0.417005 0.643149 +vt 0.422106 0.638877 +vt 0.393064 0.643271 +vt 0.389065 0.637345 +vt 0.401485 0.638739 +vt 0.398068 0.633542 +vt 0.386574 0.669375 +vt 0.378941 0.662131 +vt 0.395867 0.661486 +vt 0.389111 0.655149 +vt 0.408528 0.571024 +vt 0.404084 0.575109 +vt 0.401536 0.565851 +vt 0.396363 0.570653 +vt 0.36701 0.573319 +vt 0.371869 0.565933 +vt 0.378386 0.577696 +vt 0.38258 0.571317 +vt 0.422884 0.584029 +vt 0.424869 0.581202 +vt 0.428486 0.58579 +vt 0.429504 0.583065 +vt 0.40555 0.586995 +vt 0.407916 0.582736 +vt 0.413025 0.589109 +vt 0.414818 0.585281 +vt 0.418243 0.598103 +vt 0.418968 0.594429 +vt 0.425465 0.598796 +vt 0.425964 0.595489 +vt 0.401239 0.605807 +vt 0.401663 0.600972 +vt 0.409698 0.605739 +vt 0.410028 0.601462 +vt 0.383748 0.593325 +vt 0.385739 0.587241 +vt 0.393575 0.594895 +vt 0.3952 0.589557 +vt 0.35732 0.6054 +vt 0.358324 0.597144 +vt 0.370196 0.605675 +vt 0.371084 0.59848 +vt 0.317955 0.749763 +vt 0.334415 0.735052 +vt 0.337955 0.761646 +vt 0.352231 0.746039 +vt 0.334486 0.806675 +vt 0.347358 0.789232 +vt 0.363221 0.817718 +vt 0.373196 0.799436 +vt 0.375117 0.696815 +vt 0.385938 0.686031 +vt 0.387638 0.704986 +vt 0.397117 0.69328 +vt 0.382374 0.740438 +vt 0.392299 0.725914 +vt 0.400671 0.748303 +vt 0.408641 0.733039 +vt 0.447234 0.72818 +vt 0.43128 0.724094 +vt 0.450567 0.713862 +vt 0.436239 0.710226 +vt 0.45968 0.763234 +vt 0.461698 0.746404 +vt 0.406564 0.790011 +vt 0.413368 0.771917 +vt 0.430771 0.796747 +vt 0.435271 0.777626 +vt 0.450652 0.846804 +vt 0.453003 0.822906 +vt 0.411043 0.659454 +vt 0.417275 0.652537 +vt 0.419095 0.664068 +vt 0.424524 0.65637 +vt 0.416432 0.688202 +vt 0.422624 0.677706 +vt 0.428192 0.69319 +vt 0.43321 0.682024 +vt 0.430501 0.63721 +vt 0.432774 0.633385 +vt 0.435896 0.638426 +vt 0.437982 0.633784 +vt 0.436444 0.652171 +vt 0.439639 0.645415 +vt 0.444404 0.654386 +vt 0.446988 0.646965 +vt 0.456405 0.641181 +vt 0.457625 0.634981 +vt 0.464073 0.641845 +vt 0.464901 0.635424 +vt 0.470787 0.658378 +vt 0.471438 0.649873 +vt 0.447693 0.674827 +vt 0.450497 0.665046 +vt 0.458247 0.677034 +vt 0.460118 0.666794 +vt 0.46671 0.702678 +vt 0.467981 0.690071 +vt 0.439561 0.617917 +vt 0.439648 0.62147 +vt 0.432805 0.618654 +vt 0.433156 0.622308 +vt 0.445193 0.62929 +vt 0.445869 0.624899 +vt 0.451704 0.629345 +vt 0.452381 0.624775 +vt 0.432219 0.60864 +vt 0.432215 0.605516 +vt 0.439303 0.608376 +vt 0.439295 0.605523 +vt 0.446309 0.614114 +vt 0.446289 0.611028 +vt 0.453101 0.613849 +vt 0.453118 0.61083 +vt 0.459902 0.60806 +vt 0.459895 0.605667 +vt 0.466634 0.608055 +vt 0.466627 0.60574 +vt 0.473324 0.610586 +vt 0.473297 0.613439 +vt 0.466474 0.616757 +vt 0.46629 0.620423 +vt 0.459736 0.616897 +vt 0.459505 0.620529 +vt 0.472715 0.629833 +vt 0.472957 0.624789 +vt 0.433275 0.593336 +vt 0.439899 0.594231 +vt 0.432864 0.596389 +vt 0.439692 0.59713 +vt 0.446383 0.600378 +vt 0.453177 0.600739 +vt 0.446302 0.602965 +vt 0.45314 0.603184 +vt 0.433899 0.581165 +vt 0.434464 0.584167 +vt 0.439859 0.584839 +vt 0.453027 0.592659 +vt 0.446515 0.592047 +vt 0.452711 0.589468 +vt 0.446317 0.588914 +vt 0.458077 0.581943 +vt 0.458823 0.586247 +vt 0.465716 0.5865 +vt 0.472991 0.590461 +vt 0.473148 0.593726 +vt 0.459834 0.596005 +vt 0.466524 0.596352 +vt 0.459916 0.598614 +vt 0.466613 0.59894 +vt 0.473328 0.601418 +vt 0.473331 0.603606 +vt 0.0702003 0.0502138 +vt 0.0897271 0.0464456 +vt 0.0741383 0.0687133 +vt 0.0932253 0.0645784 +vt 0.059196 0.0919077 +vt 0.0636966 0.110689 +vt 0.0399591 0.0968812 +vt 0.0446031 0.116261 +vt 0.146735 0.0365751 +vt 0.163483 0.0355739 +vt 0.147645 0.0547153 +vt 0.163544 0.0535793 +vt 0.115184 0.078325 +vt 0.132795 0.0746902 +vt 0.118693 0.095648 +vt 0.135762 0.0916297 +vt 0.155039 0.104152 +vt 0.169643 0.101217 +vt 0.158776 0.119325 +vt 0.17293 0.115732 +vt 0.132478 0.144828 +vt 0.148308 0.139033 +vt 0.138371 0.160228 +vt 0.153732 0.153802 +vt 0.105237 0.117682 +vt 0.110149 0.13468 +vt 0.0870839 0.123321 +vt 0.0921943 0.14097 +vt 0.0793363 0.16567 +vt 0.0862986 0.183003 +vt 0.0597022 0.173683 +vt 0.0666379 0.191828 +vt 0.12929 0.182685 +vt 0.137381 0.197436 +vt 0.112584 0.19081 +vt 0.121416 0.206109 +vt 0.0991817 0.240177 +vt 0.115292 0.230359 +vt 0.11113 0.255554 +vt 0.126349 0.24506 +vt 0.173751 0.161648 +vt 0.186543 0.155988 +vt 0.179971 0.174686 +vt 0.192133 0.168406 +vt 0.160531 0.202819 +vt 0.174117 0.194643 +vt 0.169139 0.215627 +vt 0.182011 0.206849 +vt 0.211797 0.201436 +vt 0.219102 0.210771 +vt 0.201635 0.2095 +vt 0.209755 0.2194 +vt 0.198159 0.248798 +vt 0.208649 0.238192 +vt 0.208782 0.257697 +vt 0.21831 0.246537 +vt 0.151811 0.248295 +vt 0.165385 0.237669 +vt 0.163019 0.260898 +vt 0.175872 0.249435 +vt 0.148329 0.299603 +vt 0.161991 0.28544 +vt 0.162395 0.311581 +vt 0.175409 0.296238 +vt 0.218605 0.143397 +vt 0.227302 0.140404 +vt 0.222527 0.153774 +vt 0.230651 0.150099 +vt 0.218275 0.168499 +vt 0.223422 0.178331 +vt 0.208795 0.173993 +vt 0.21466 0.184438 +vt 0.25019 0.141768 +vt 0.248207 0.133977 +vt 0.255182 0.139728 +vt 0.253588 0.132551 +vt 0.247083 0.15216 +vt 0.249933 0.159683 +vt 0.241027 0.155497 +vt 0.244356 0.163569 +vt 0.260581 0.168485 +vt 0.257548 0.162653 +vt 0.26413 0.164381 +vt 0.261466 0.15902 +vt 0.260971 0.188724 +vt 0.256405 0.183719 +vt 0.264477 0.182977 +vt 0.260386 0.178419 +vt 0.242415 0.175934 +vt 0.247048 0.183171 +vt 0.236125 0.181388 +vt 0.241365 0.189151 +vt 0.241027 0.203094 +vt 0.247387 0.209476 +vt 0.23439 0.21081 +vt 0.241538 0.21772 +vt 0.200106 0.0465668 +vt 0.210931 0.0514767 +vt 0.201377 0.0597507 +vt 0.2121 0.0633625 +vt 0.178713 0.0700808 +vt 0.191318 0.0709773 +vt 0.180624 0.0849851 +vt 0.193069 0.0848564 +vt 0.241584 0.0667721 +vt 0.250316 0.0719726 +vt 0.240988 0.0752798 +vt 0.248888 0.0793983 +vt 0.223367 0.0778186 +vt 0.23261 0.080737 +vt 0.224587 0.0883203 +vt 0.233423 0.0902316 +vt 0.242181 0.100887 +vt 0.248806 0.102331 +vt 0.243351 0.109337 +vt 0.249615 0.110005 +vt 0.230162 0.118729 +vt 0.237921 0.118041 +vt 0.232489 0.12844 +vt 0.239838 0.127004 +vt 0.206596 0.0977937 +vt 0.216814 0.0980091 +vt 0.209095 0.109734 +vt 0.219002 0.109046 +vt 0.189625 0.126135 +vt 0.201281 0.123401 +vt 0.193683 0.138839 +vt 0.204829 0.135394 +vt 0.200822 0.29074 +vt 0.21071 0.27765 +vt 0.214988 0.297654 +vt 0.223542 0.28434 +vt 0.2145 0.331344 +vt 0.222193 0.317199 +vt 0.232705 0.336332 +vt 0.238766 0.32205 +vt 0.236144 0.243007 +vt 0.242992 0.232932 +vt 0.245549 0.248729 +vt 0.251416 0.238198 +vt 0.243439 0.277139 +vt 0.249622 0.26498 +vt 0.25563 0.281446 +vt 0.260599 0.269008 +vt 0.27523 0.260038 +vt 0.278234 0.248556 +vt 0.285527 0.262036 +vt 0.287539 0.250353 +vt 0.293393 0.288763 +vt 0.294697 0.275641 +vt 0.259837 0.312057 +vt 0.264048 0.298141 +vt 0.275181 0.315166 +vt 0.278 0.300858 +vt 0.287635 0.349052 +vt 0.289122 0.332606 +vt 0.264894 0.210886 +vt 0.258593 0.206867 +vt 0.268194 0.203076 +vt 0.262474 0.199489 +vt 0.272549 0.235438 +vt 0.264475 0.232362 +vt 0.275532 0.225589 +vt 0.268209 0.222869 +vt 0.275935 0.183426 +vt 0.2716 0.181011 +vt 0.278028 0.177951 +vt 0.274039 0.175845 +vt 0.28215 0.200013 +vt 0.276525 0.198322 +vt 0.283856 0.192812 +vt 0.27865 0.191421 +vt 0.290354 0.186928 +vt 0.291388 0.180873 +vt 0.295475 0.187239 +vt 0.296167 0.181126 +vt 0.299947 0.202165 +vt 0.300334 0.194368 +vt 0.291968 0.219225 +vt 0.284957 0.218111 +vt 0.293009 0.210206 +vt 0.286555 0.209288 +vt 0.297763 0.240224 +vt 0.298459 0.229698 +vt 0.748155 0.173391 +vt 0.737949 0.178419 +vt 0.740184 0.169396 +vt 0.7276 0.175251 +vt 0.744986 0.153379 +vt 0.765255 0.15055 +vt 0.749253 0.160054 +vt 0.767176 0.157376 +vt 0.67169 0.20376 +vt 0.677733 0.192318 +vt 0.689037 0.201696 +vt 0.695235 0.191177 +vt 0.717724 0.182649 +vt 0.72956 0.184753 +vt 0.614762 0.190852 +vt 0.619021 0.178035 +vt 0.639444 0.186459 +vt 0.644162 0.173885 +vt 0.651949 0.207015 +vt 0.657156 0.19501 +vt 0.697318 0.129541 +vt 0.696991 0.141479 +vt 0.674873 0.132893 +vt 0.673687 0.145121 +vt 0.647507 0.161281 +vt 0.622805 0.165229 +vt 0.764087 0.141937 +vt 0.742717 0.144521 +vt 0.719483 0.126213 +vt 0.719641 0.137636 +vt 0.706266 0.237357 +vt 0.705643 0.246924 +vt 0.693382 0.240042 +vt 0.69315 0.249972 +vt 0.681649 0.22267 +vt 0.679933 0.233057 +vt 0.665075 0.225903 +vt 0.664001 0.236731 +vt 0.707955 0.275214 +vt 0.709808 0.284299 +vt 0.696939 0.278768 +vt 0.699308 0.287895 +vt 0.680798 0.263643 +vt 0.682723 0.273372 +vt 0.66709 0.26806 +vt 0.669743 0.277889 +vt 0.660094 0.292483 +vt 0.664367 0.301589 +vt 0.646907 0.298019 +vt 0.651859 0.30717 +vt 0.62296 0.283324 +vt 0.628083 0.293831 +vt 0.607678 0.288849 +vt 0.613712 0.299643 +vt 0.647886 0.251852 +vt 0.649983 0.262495 +vt 0.630928 0.256706 +vt 0.63426 0.267415 +vt 0.605643 0.240027 +vt 0.609205 0.251034 +vt 0.583543 0.245676 +vt 0.589577 0.256469 +vt 0.680497 0.305121 +vt 0.684843 0.313272 +vt 0.668997 0.310008 +vt 0.673934 0.317934 +vt 0.668491 0.330114 +vt 0.674471 0.337183 +vt 0.657631 0.334813 +vt 0.664103 0.341417 +vt 0.721333 0.28996 +vt 0.723504 0.298462 +vt 0.712099 0.293044 +vt 0.714793 0.301522 +vt 0.708965 0.313243 +vt 0.712907 0.321322 +vt 0.699457 0.317068 +vt 0.703911 0.325042 +vt 0.732345 0.3228 +vt 0.735951 0.330715 +vt 0.725113 0.325891 +vt 0.729258 0.333855 +vt 0.719327 0.349248 +vt 0.726825 0.345548 +vt 0.725034 0.35784 +vt 0.73201 0.354064 +vt 0.699745 0.336744 +vt 0.705354 0.344631 +vt 0.69035 0.340502 +vt 0.696355 0.348112 +vt 0.684043 0.361554 +vt 0.693447 0.358919 +vt 0.690832 0.368815 +vt 0.700057 0.366769 +vt 0.759769 0.382347 +vt 0.756158 0.387827 +vt 0.753995 0.37529 +vt 0.749566 0.380277 +vt 0.737475 0.376145 +vt 0.730574 0.379889 +vt 0.731042 0.36684 +vt 0.723743 0.370361 +vt 0.777144 0.40775 +vt 0.776774 0.415692 +vt 0.768998 0.405039 +vt 0.768156 0.413018 +vt 0.765878 0.388134 +vt 0.763225 0.393866 +vt 0.764099 0.441105 +vt 0.757111 0.437798 +vt 0.761754 0.42997 +vt 0.753822 0.426744 +vt 0.768503 0.42258 +vt 0.776881 0.425024 +vt 0.717697 0.402563 +vt 0.726891 0.402767 +vt 0.723984 0.411338 +vt 0.732646 0.412419 +vt 0.745882 0.424233 +vt 0.750105 0.434719 +vt 0.722528 0.382411 +vt 0.715611 0.373092 +vt 0.711159 0.39385 +vt 0.720464 0.393291 +vt 0.779857 0.184797 +vt 0.781016 0.188923 +vt 0.774784 0.186043 +vt 0.777025 0.190025 +vt 0.754036 0.184594 +vt 0.760965 0.180704 +vt 0.760233 0.187894 +vt 0.765882 0.184415 +vt 0.783227 0.199715 +vt 0.783661 0.202571 +vt 0.7814 0.200347 +vt 0.782242 0.203094 +vt 0.775809 0.195432 +vt 0.777944 0.198588 +vt 0.772892 0.19782 +vt 0.775625 0.200676 +vt 0.778056 0.208114 +vt 0.776706 0.211197 +vt 0.776023 0.20592 +vt 0.774349 0.209194 +vt 0.769474 0.211097 +vt 0.767712 0.215992 +vt 0.765376 0.208975 +vt 0.763287 0.214196 +vt 0.761259 0.195027 +vt 0.766166 0.197995 +vt 0.757634 0.19954 +vt 0.763118 0.202034 +vt 0.738694 0.201923 +vt 0.747191 0.203249 +vt 0.735139 0.209241 +vt 0.743923 0.210027 +vt 0.755877 0.218742 +vt 0.754104 0.225623 +vt 0.749194 0.217755 +vt 0.747254 0.225019 +vt 0.737618 0.233068 +vt 0.736429 0.241623 +vt 0.728386 0.233893 +vt 0.727328 0.242747 +vt 0.773485 0.224054 +vt 0.772651 0.229507 +vt 0.770226 0.222821 +vt 0.769221 0.22852 +vt 0.763974 0.234026 +vt 0.763026 0.241125 +vt 0.758715 0.233449 +vt 0.757631 0.240919 +vt 0.770759 0.248893 +vt 0.770203 0.256248 +vt 0.766917 0.248686 +vt 0.766363 0.256228 +vt 0.761348 0.264278 +vt 0.761047 0.272323 +vt 0.756077 0.26475 +vt 0.755936 0.272982 +vt 0.750676 0.248911 +vt 0.750274 0.257102 +vt 0.743708 0.249385 +vt 0.743407 0.257868 +vt 0.735841 0.267916 +vt 0.736393 0.276713 +vt 0.727446 0.269804 +vt 0.7284 0.278714 +vt 0.750523 0.282159 +vt 0.751184 0.290309 +vt 0.744326 0.283519 +vt 0.745328 0.291781 +vt 0.740467 0.301806 +vt 0.742448 0.30987 +vt 0.733637 0.304082 +vt 0.736096 0.312175 +vt 0.769059 0.279194 +vt 0.768814 0.286842 +vt 0.765336 0.279666 +vt 0.76527 0.287423 +vt 0.761464 0.295955 +vt 0.761932 0.303634 +vt 0.75703 0.297046 +vt 0.757811 0.304866 +vt 0.768884 0.309177 +vt 0.769195 0.316352 +vt 0.765941 0.310067 +vt 0.766514 0.31736 +vt 0.764695 0.32597 +vt 0.766121 0.333293 +vt 0.761757 0.327586 +vt 0.763549 0.33505 +vt 0.754686 0.314063 +vt 0.756449 0.321716 +vt 0.75003 0.315774 +vt 0.752224 0.323516 +vt 0.745409 0.335783 +vt 0.750312 0.333347 +vt 0.749027 0.343722 +vt 0.753395 0.341194 +vt 0.760177 0.346623 +vt 0.76311 0.344472 +vt 0.763294 0.353986 +vt 0.765805 0.35162 +vt 0.761209 0.367046 +vt 0.764117 0.363752 +vt 0.765695 0.373602 +vt 0.768055 0.37005 +vt 0.771656 0.337407 +vt 0.773094 0.344008 +vt 0.769828 0.338883 +vt 0.771535 0.345712 +vt 0.770511 0.355945 +vt 0.772087 0.353948 +vt 0.77321 0.361693 +vt 0.774484 0.359549 +vt 0.778583 0.359489 +vt 0.780662 0.362489 +vt 0.77784 0.361902 +vt 0.780172 0.365254 +vt 0.782001 0.372645 +vt 0.782305 0.370006 +vt 0.7737 0.372075 +vt 0.774963 0.369131 +vt 0.777453 0.376099 +vt 0.778282 0.372986 +vt 0.780222 0.38585 +vt 0.780792 0.382019 +vt 0.295844 0.0733074 +vt 0.300925 0.0729113 +vt 0.296804 0.0772194 +vt 0.301405 0.0768077 +vt 0.281819 0.0664303 +vt 0.287808 0.0657115 +vt 0.28395 0.0707181 +vt 0.289351 0.0698858 +vt 0.299405 0.0877183 +vt 0.302725 0.0872988 +vt 0.300179 0.0907253 +vt 0.303123 0.0903065 +vt 0.289848 0.0827346 +vt 0.293692 0.0816639 +vt 0.291573 0.086291 +vt 0.294985 0.0851847 +vt 0.292225 0.0940405 +vt 0.290063 0.0959865 +vt 0.290381 0.0910868 +vt 0.287848 0.0930344 +vt 0.282896 0.0919927 +vt 0.280671 0.0946918 +vt 0.279964 0.0882676 +vt 0.277447 0.0909993 +vt 0.283896 0.0802604 +vt 0.280122 0.0820146 +vt 0.281358 0.076089 +vt 0.277029 0.0776923 +vt 0.260174 0.0723001 +vt 0.264695 0.0696384 +vt 0.265506 0.0779776 +vt 0.26921 0.0750585 +vt 0.270115 0.094605 +vt 0.265946 0.0911229 +vt 0.271751 0.0905617 +vt 0.267642 0.0866152 +vt 0.254652 0.0901007 +vt 0.260134 0.0931706 +vt 0.254396 0.0969426 +vt 0.25966 0.0992574 +vt 0.284568 0.104187 +vt 0.282984 0.106698 +vt 0.281797 0.100926 +vt 0.280176 0.103809 +vt 0.275071 0.108182 +vt 0.271826 0.106037 +vt 0.275928 0.104404 +vt 0.272624 0.101793 +vt 0.277428 0.113817 +vt 0.280192 0.115514 +vt 0.277069 0.117456 +vt 0.279787 0.118744 +vt 0.271359 0.119645 +vt 0.274263 0.12037 +vt 0.271692 0.124299 +vt 0.274504 0.12455 +vt 0.264075 0.107107 +vt 0.267937 0.10879 +vt 0.264231 0.112744 +vt 0.26793 0.113858 +vt 0.256052 0.117729 +vt 0.260639 0.118014 +vt 0.25711 0.124609 +vt 0.261422 0.124293 +vt 0.267037 0.135236 +vt 0.266066 0.12977 +vt 0.270128 0.134201 +vt 0.269295 0.129254 +vt 0.262967 0.150216 +vt 0.261195 0.144277 +vt 0.266437 0.147683 +vt 0.264897 0.142255 +vt 0.277488 0.128585 +vt 0.279993 0.12862 +vt 0.278062 0.132178 +vt 0.28053 0.131813 +vt 0.273879 0.137629 +vt 0.276417 0.136543 +vt 0.275015 0.141671 +vt 0.277483 0.140186 +vt 0.28103 0.141929 +vt 0.283271 0.140501 +vt 0.282417 0.144686 +vt 0.284568 0.142966 +vt 0.279846 0.151772 +vt 0.281967 0.149314 +vt 0.281975 0.154221 +vt 0.283954 0.151554 +vt 0.273071 0.154128 +vt 0.271185 0.150001 +vt 0.275615 0.151309 +vt 0.273874 0.147566 +vt 0.272992 0.168465 +vt 0.270017 0.164953 +vt 0.275453 0.164321 +vt 0.272726 0.161156 +vt 0.28055 0.162839 +vt 0.282506 0.159291 +vt 0.283647 0.164478 +vt 0.285372 0.160837 +vt 0.283913 0.174311 +vt 0.285487 0.1697 +vt 0.288062 0.175105 +vt 0.289344 0.170428 +vt 0.291647 0.149762 +vt 0.290128 0.152117 +vt 0.289594 0.148563 +vt 0.287892 0.150831 +vt 0.289868 0.15866 +vt 0.29121 0.155721 +vt 0.292909 0.159359 +vt 0.293998 0.156425 +vt 0.297718 0.154293 +vt 0.298534 0.151915 +vt 0.300446 0.154611 +vt 0.301006 0.152261 +vt 0.302666 0.160092 +vt 0.302955 0.157289 +vt 0.294294 0.16664 +vt 0.295208 0.163002 +vt 0.298121 0.166773 +vt 0.29874 0.163194 +vt 0.301378 0.175635 +vt 0.301717 0.1709 +vt 0.304469 0.0997811 +vt 0.302688 0.100131 +vt 0.304176 0.0977301 +vt 0.302145 0.0981015 +vt 0.299343 0.0965571 +vt 0.297304 0.0975344 +vt 0.298391 0.0941518 +vt 0.296052 0.0951979 +vt 0.305343 0.106624 +vt 0.304332 0.106857 +vt 0.305156 0.10507 +vt 0.30398 0.105323 +vt 0.302324 0.104185 +vt 0.301177 0.104854 +vt 0.301713 0.102527 +vt 0.300389 0.10327 +vt 0.300356 0.108048 +vt 0.301037 0.107116 +vt 0.301224 0.109311 +vt 0.301802 0.108461 +vt 0.297348 0.108169 +vt 0.297646 0.106654 +vt 0.298591 0.109296 +vt 0.298837 0.107926 +vt 0.295564 0.102206 +vt 0.296862 0.100797 +vt 0.29703 0.103828 +vt 0.298126 0.102577 +vt 0.292821 0.102331 +vt 0.292376 0.104559 +vt 0.290645 0.100626 +vt 0.290039 0.103272 +vt 0.296041 0.108869 +vt 0.296535 0.110855 +vt 0.294464 0.107896 +vt 0.295091 0.110126 +vt 0.293501 0.112125 +vt 0.294771 0.112114 +vt 0.295104 0.114684 +vt 0.296153 0.114542 +vt 0.299994 0.113198 +vt 0.299713 0.11174 +vt 0.300927 0.113978 +vt 0.300673 0.112652 +vt 0.298448 0.113448 +vt 0.299502 0.114067 +vt 0.299272 0.115291 +vt 0.300209 0.115749 +vt 0.301779 0.117745 +vt 0.302478 0.11811 +vt 0.30253 0.119184 +vt 0.303126 0.119415 +vt 0.303468 0.121595 +vt 0.302968 0.121612 +vt 0.302708 0.120379 +vt 0.302099 0.120292 +vt 0.298446 0.11673 +vt 0.299336 0.116851 +vt 0.299675 0.118652 +vt 0.300418 0.118653 +vt 0.30093 0.122413 +vt 0.299638 0.120876 +vt 0.301415 0.122058 +vt 0.300239 0.120555 +vt 0.290326 0.131486 +vt 0.287938 0.131428 +vt 0.290073 0.129611 +vt 0.287624 0.129266 +vt 0.283653 0.134291 +vt 0.286051 0.133841 +vt 0.284494 0.136869 +vt 0.286805 0.136111 +vt 0.296687 0.131961 +vt 0.296584 0.130779 +vt 0.298426 0.132136 +vt 0.298378 0.13112 +vt 0.292915 0.13317 +vt 0.294966 0.133117 +vt 0.293339 0.134668 +vt 0.295272 0.134416 +vt 0.297613 0.136359 +vt 0.297314 0.135334 +vt 0.298941 0.136058 +vt 0.298807 0.135117 +vt 0.295229 0.138576 +vt 0.296682 0.137833 +vt 0.296109 0.139579 +vt 0.297371 0.138687 +vt 0.289846 0.137365 +vt 0.291912 0.136654 +vt 0.290775 0.139079 +vt 0.292693 0.138158 +vt 0.288034 0.143437 +vt 0.28998 0.141924 +vt 0.289566 0.145128 +vt 0.291366 0.143426 +vt 0.294413 0.143049 +vt 0.29584 0.141619 +vt 0.295886 0.143952 +vt 0.297141 0.142399 +vt 0.298169 0.147118 +vt 0.297173 0.149176 +vt 0.296304 0.146498 +vt 0.29509 0.148506 +vt 0.29916 0.138426 +vt 0.299788 0.137594 +vt 0.300086 0.138727 +vt 0.300681 0.137731 +vt 0.299518 0.141524 +vt 0.300378 0.14018 +vt 0.300827 0.141901 +vt 0.301542 0.140466 +vt 0.303232 0.139321 +vt 0.303612 0.138087 +vt 0.304331 0.139446 +vt 0.304601 0.13819 +vt 0.305225 0.140941 +vt 0.304987 0.142495 +vt 0.303119 0.144071 +vt 0.302623 0.145908 +vt 0.301542 0.143832 +vt 0.300844 0.145632 +vt 0.303834 0.150212 +vt 0.304138 0.148079 +vt 0.305956 0.112172 +vt 0.305422 0.112301 +vt 0.305827 0.110881 +vt 0.305195 0.111031 +vt 0.304242 0.109994 +vt 0.30362 0.110419 +vt 0.303838 0.108644 +vt 0.303109 0.109121 +vt 0.305928 0.115714 +vt 0.306231 0.115652 +vt 0.306049 0.116708 +vt 0.306295 0.116668 +vt 0.304822 0.113929 +vt 0.305202 0.113683 +vt 0.305114 0.114964 +vt 0.305436 0.11478 +vt 0.304921 0.116304 +vt 0.305125 0.116106 +vt 0.305185 0.11707 +vt 0.305374 0.116963 +vt 0.303966 0.115695 +vt 0.304043 0.115109 +vt 0.304372 0.116338 +vt 0.304441 0.115864 +vt 0.303254 0.112693 +vt 0.303617 0.112118 +vt 0.303775 0.113697 +vt 0.304086 0.113214 +vt 0.30148 0.112393 +vt 0.301639 0.111383 +vt 0.302245 0.113319 +vt 0.302368 0.112413 +vt 0.303513 0.115763 +vt 0.303656 0.116628 +vt 0.302939 0.115071 +vt 0.303102 0.116039 +vt 0.30256 0.117214 +vt 0.302098 0.115954 +vt 0.303172 0.117661 +vt 0.302775 0.116524 +vt 0.305011 0.1177 +vt 0.305149 0.118291 +vt 0.304744 0.117394 +vt 0.304871 0.118015 +vt 0.304706 0.118357 +vt 0.304907 0.119076 +vt 0.304323 0.117965 +vt 0.304564 0.118774 +vt 0.305683 0.12056 +vt 0.305519 0.120477 +vt 0.305575 0.120085 +vt 0.305364 0.119937 +vt 0.305366 0.120974 +vt 0.305531 0.120964 +vt 0.305607 0.121549 +vt 0.305718 0.121445 +vt 0.304096 0.119082 +vt 0.304492 0.119338 +vt 0.304509 0.120051 +vt 0.30483 0.12019 +vt 0.304221 0.120746 +vt 0.304595 0.120849 +vt 0.304727 0.121688 +vt 0.305014 0.121678 +vt 0.305569 0.122289 +vt 0.305715 0.122175 +vt 0.305815 0.122764 +vt 0.305922 0.122593 +vt 0.30574 0.123449 +vt 0.305892 0.123292 +vt 0.305955 0.123757 +vt 0.306072 0.123566 +vt 0.306078 0.121616 +vt 0.306084 0.121933 +vt 0.305951 0.121421 +vt 0.305944 0.121668 +vt 0.306309 0.122634 +vt 0.30627 0.12289 +vt 0.306198 0.122452 +vt 0.306153 0.122691 +vt 0.306413 0.122442 +vt 0.306408 0.122061 +vt 0.306478 0.122504 +vt 0.306472 0.122106 +vt 0.306525 0.122871 +vt 0.306518 0.123173 +vt 0.306286 0.12353 +vt 0.306329 0.123284 +vt 0.306398 0.123649 +vt 0.306428 0.123395 +vt 0.306468 0.123942 +vt 0.306442 0.124181 +vt 0.306464 0.119949 +vt 0.306362 0.119949 +vt 0.306433 0.119241 +vt 0.306307 0.119253 +vt 0.305766 0.117725 +vt 0.305957 0.117676 +vt 0.305914 0.118517 +vt 0.306078 0.118503 +vt 0.306519 0.121685 +vt 0.306527 0.122135 +vt 0.306463 0.121671 +vt 0.306313 0.120562 +vt 0.306362 0.121133 +vt 0.306203 0.12051 +vt 0.306261 0.12106 +vt 0.306186 0.121417 +vt 0.306208 0.12181 +vt 0.306054 0.12126 +vt 0.305765 0.120227 +vt 0.305851 0.120695 +vt 0.305991 0.119858 +vt 0.305835 0.11979 +vt 0.305886 0.119226 +vt 0.305722 0.119187 +vt 0.305221 0.117814 +vt 0.305382 0.118453 +vt 0.306252 0.125595 +vt 0.305904 0.125482 +vt 0.306296 0.125273 +vt 0.305999 0.125172 +vt 0.305933 0.124437 +vt 0.305809 0.124697 +vt 0.305661 0.124165 +vt 0.305484 0.124393 +vt 0.306074 0.127139 +vt 0.30554 0.127014 +vt 0.306117 0.126714 +vt 0.305632 0.126596 +vt 0.305239 0.125964 +vt 0.304686 0.125577 +vt 0.305372 0.125586 +vt 0.304874 0.12521 +vt 0.303544 0.125843 +vt 0.302662 0.125082 +vt 0.303797 0.125414 +vt 0.30299 0.124658 +vt 0.30245 0.123311 +vt 0.302864 0.123031 +vt 0.301929 0.121824 +vt 0.304575 0.124398 +vt 0.303988 0.123723 +vt 0.304851 0.12417 +vt 0.304342 0.123545 +vt 0.304514 0.122546 +vt 0.304132 0.12261 +vt 0.303951 0.121633 +vt 0.291174 0.113464 +vt 0.293177 0.115992 +vt 0.290182 0.114808 +vt 0.292341 0.117165 +vt 0.284402 0.111871 +vt 0.286921 0.11423 +vt 0.283543 0.114461 +vt 0.286135 0.116471 +vt 0.299597 0.124172 +vt 0.29805 0.122798 +vt 0.300015 0.123469 +vt 0.298534 0.121997 +vt 0.295345 0.123426 +vt 0.293274 0.12191 +vt 0.295789 0.122228 +vt 0.293785 0.120512 +vt 0.298517 0.12794 +vt 0.296748 0.12711 +vt 0.298699 0.126901 +vt 0.296957 0.125905 +vt 0.29452 0.12898 +vt 0.292326 0.12835 +vt 0.294586 0.127553 +vt 0.292377 0.126684 +vt 0.290198 0.123849 +vt 0.287706 0.122609 +vt 0.290544 0.12199 +vt 0.288086 0.120452 +vt 0.282268 0.122941 +vt 0.28491 0.123877 +vt 0.282299 0.125865 +vt 0.284923 0.126444 +vt 0.300139 0.134996 +vt 0.300076 0.134081 +vt 0.301318 0.13495 +vt 0.301308 0.134085 +vt 0.302019 0.136819 +vt 0.30225 0.135853 +vt 0.302963 0.136889 +vt 0.303175 0.135901 +vt 0.301247 0.130785 +vt 0.301259 0.131605 +vt 0.299922 0.130483 +vt 0.299926 0.131393 +vt 0.30241 0.133298 +vt 0.30242 0.13252 +vt 0.303386 0.133355 +vt 0.303414 0.132604 +vt 0.304332 0.131981 +vt 0.304337 0.131322 +vt 0.305165 0.13205 +vt 0.305171 0.13141 +vt 0.305907 0.132754 +vt 0.305879 0.13347 +vt 0.304182 0.135025 +vt 0.304236 0.134182 +vt 0.305026 0.135065 +vt 0.305073 0.134221 +vt 0.305771 0.136044 +vt 0.305698 0.13709 +vt 0.305966 0.128586 +vt 0.305946 0.129118 +vt 0.305318 0.128486 +vt 0.305263 0.129024 +vt 0.304717 0.127755 +vt 0.30396 0.127398 +vt 0.304832 0.127249 +vt 0.304124 0.126878 +vt 0.305942 0.130845 +vt 0.30594 0.131458 +vt 0.30519 0.13079 +vt 0.304446 0.129427 +vt 0.304409 0.130053 +vt 0.303579 0.129173 +vt 0.303518 0.129843 +vt 0.302456 0.130288 +vt 0.302409 0.131023 +vt 0.301309 0.129976 +vt 0.300073 0.128631 +vt 0.300214 0.127717 +vt 0.30274 0.128134 +vt 0.301665 0.12758 +vt 0.302911 0.127496 +vt 0.301882 0.126877 +vt 0.300962 0.12532 +vt 0.301291 0.124669 +vt 0.870917 0.916429 +vt 0.864881 0.915134 +vt 0.875831 0.907596 +vt 0.869182 0.907723 +vt 0.860047 0.900547 +vt 0.86628 0.89732 +vt 0.859497 0.90517 +vt 0.86551 0.90264 +vt 0.84158 0.929099 +vt 0.840804 0.923576 +vt 0.848664 0.924684 +vt 0.847332 0.920178 +vt 0.864243 0.925127 +vt 0.858775 0.922343 +vt 0.853766 0.903699 +vt 0.853406 0.908036 +vt 0.846946 0.915547 +vt 0.84057 0.918296 +vt 0.923598 0.811096 +vt 0.926354 0.820716 +vt 0.910191 0.811659 +vt 0.913283 0.820952 +vt 0.903329 0.830351 +vt 0.906008 0.839499 +vt 0.890498 0.83056 +vt 0.893281 0.839376 +vt 0.977069 0.809072 +vt 0.978471 0.820142 +vt 0.963714 0.809558 +vt 0.965475 0.820245 +vt 0.954452 0.830724 +vt 0.956272 0.841149 +vt 0.94165 0.830555 +vt 0.943664 0.840667 +vt 0.971655 0.863357 +vt 0.970307 0.852482 +vt 0.984075 0.864425 +vt 0.982674 0.853354 +vt 0.960151 0.873187 +vt 0.960535 0.884471 +vt 0.947585 0.871912 +vt 0.947713 0.882947 +vt 0.933021 0.850099 +vt 0.934443 0.860192 +vt 0.920671 0.84937 +vt 0.922197 0.85914 +vt 0.910641 0.867949 +vt 0.910484 0.878218 +vt 0.898017 0.866798 +vt 0.89815 0.87682 +vt 0.934401 0.892441 +vt 0.932877 0.90391 +vt 0.922005 0.890522 +vt 0.920208 0.901703 +vt 0.900601 0.9223 +vt 0.888825 0.920011 +vt 0.90504 0.910984 +vt 0.893754 0.909239 +vt 0.973346 0.910671 +vt 0.97364 0.898022 +vt 0.9872 0.912963 +vt 0.987039 0.899765 +vt 0.958441 0.920782 +vt 0.95696 0.933342 +vt 0.94426 0.918188 +vt 0.94194 0.930443 +vt 0.987682 0.952559 +vt 0.987843 0.965758 +vt 0.971409 0.949238 +vt 0.97055 0.962187 +vt 0.951315 0.971369 +vt 0.949219 0.984122 +vt 0.933095 0.967605 +vt 0.929746 0.980106 +vt 0.923713 0.939632 +vt 0.919578 0.951716 +vt 0.908736 0.936573 +vt 0.903217 0.948347 +vt 0.863423 0.952757 +vt 0.879827 0.956504 +vt 0.851853 0.96404 +vt 0.871326 0.968057 +vt 0.843362 0.892764 +vt 0.844952 0.894487 +vt 0.83882 0.894191 +vt 0.839757 0.896099 +vt 0.858698 0.893451 +vt 0.852993 0.896661 +vt 0.856696 0.891284 +vt 0.851674 0.894198 +vt 0.835254 0.889177 +vt 0.837525 0.889711 +vt 0.833307 0.890141 +vt 0.834935 0.890736 +vt 0.84513 0.889818 +vt 0.842663 0.88901 +vt 0.848163 0.887929 +vt 0.845203 0.887388 +vt 0.840554 0.885497 +vt 0.841529 0.884287 +vt 0.843837 0.885576 +vt 0.844872 0.884184 +vt 0.84858 0.882508 +vt 0.847461 0.881246 +vt 0.852373 0.88205 +vt 0.851061 0.880479 +vt 0.860669 0.883877 +vt 0.857966 0.886836 +vt 0.856168 0.883841 +vt 0.854205 0.886265 +vt 0.872851 0.876702 +vt 0.872798 0.881164 +vt 0.86567 0.877744 +vt 0.866901 0.880874 +vt 0.834417 0.885233 +vt 0.837436 0.885384 +vt 0.833243 0.886366 +vt 0.836177 0.886561 +vt 0.832401 0.883909 +vt 0.829246 0.883719 +vt 0.833363 0.882756 +vt 0.830023 0.882571 +vt 0.831226 0.889788 +vt 0.829977 0.890679 +vt 0.828855 0.889522 +vt 0.82752 0.890424 +vt 0.825123 0.887894 +vt 0.826378 0.886947 +vt 0.827777 0.888246 +vt 0.829135 0.887223 +vt 0.821098 0.888211 +vt 0.819509 0.888805 +vt 0.818477 0.8876 +vt 0.81692 0.888041 +vt 0.816981 0.886449 +vt 0.814133 0.885875 +vt 0.817883 0.885797 +vt 0.814878 0.885284 +vt 0.825357 0.884633 +vt 0.824558 0.885665 +vt 0.822238 0.884405 +vt 0.821579 0.885362 +vt 0.819714 0.882197 +vt 0.81942 0.883135 +vt 0.816786 0.881964 +vt 0.816258 0.882785 +vt 0.704744 0.8559 +vt 0.715063 0.854684 +vt 0.704026 0.864481 +vt 0.7144 0.863075 +vt 0.724481 0.869973 +vt 0.735119 0.868441 +vt 0.72445 0.878398 +vt 0.735114 0.876776 +vt 0.707984 0.821753 +vt 0.718338 0.821452 +vt 0.707143 0.830275 +vt 0.717453 0.829728 +vt 0.726938 0.837235 +vt 0.737356 0.836453 +vt 0.726186 0.84534 +vt 0.736661 0.844341 +vt 0.7494 0.820548 +vt 0.759754 0.820247 +vt 0.748597 0.828087 +vt 0.759099 0.827517 +vt 0.769301 0.833942 +vt 0.780347 0.832881 +vt 0.768976 0.841164 +vt 0.780304 0.839966 +vt 0.746644 0.851054 +vt 0.757484 0.849792 +vt 0.746152 0.858888 +vt 0.757073 0.857454 +vt 0.768295 0.863732 +vt 0.780369 0.861978 +vt 0.76855 0.871911 +vt 0.780811 0.869811 +vt 0.711912 0.933781 +vt 0.709865 0.92505 +vt 0.721885 0.932451 +vt 0.719907 0.923596 +vt 0.733836 0.940212 +vt 0.743668 0.939186 +vt 0.735957 0.949236 +vt 0.745838 0.948278 +vt 0.703107 0.890374 +vt 0.714053 0.888634 +vt 0.70425 0.899013 +vt 0.714958 0.897271 +vt 0.726655 0.904385 +vt 0.736919 0.902909 +vt 0.728176 0.913291 +vt 0.738241 0.911941 +vt 0.757058 0.882183 +vt 0.756899 0.891182 +vt 0.746 0.883677 +vt 0.746387 0.892485 +vt 0.767295 0.909654 +vt 0.766997 0.900088 +vt 0.776269 0.91019 +vt 0.77646 0.900815 +vt 0.759096 0.919266 +vt 0.760808 0.928445 +vt 0.749598 0.91998 +vt 0.751366 0.929146 +vt 0.774884 0.945983 +vt 0.772111 0.937152 +vt 0.78355 0.945761 +vt 0.78067 0.937186 +vt 0.786527 0.92912 +vt 0.785293 0.920429 +vt 0.793933 0.930253 +vt 0.792914 0.921977 +vt 0.803248 0.947888 +vt 0.802014 0.939675 +vt 0.809245 0.948792 +vt 0.808423 0.940754 +vt 0.786072 0.894389 +vt 0.788671 0.888049 +vt 0.793366 0.898913 +vt 0.795238 0.893612 +vt 0.799863 0.91602 +vt 0.799916 0.908943 +vt 0.807041 0.918214 +vt 0.807091 0.911706 +vt 0.821514 0.905494 +vt 0.821071 0.909931 +vt 0.815055 0.90381 +vt 0.814399 0.908361 +vt 0.83409 0.914941 +vt 0.83394 0.920299 +vt 0.827467 0.915548 +vt 0.827323 0.921131 +vt 0.814336 0.933998 +vt 0.814085 0.926699 +vt 0.820826 0.934512 +vt 0.820711 0.927397 +vt 0.834781 0.948 +vt 0.827242 0.950204 +vt 0.834691 0.939529 +vt 0.827502 0.941651 +vt 0.792132 0.845676 +vt 0.804323 0.844163 +vt 0.792299 0.852737 +vt 0.804825 0.851067 +vt 0.818548 0.856005 +vt 0.831778 0.85489 +vt 0.819473 0.861787 +vt 0.83259 0.860769 +vt 0.79112 0.817822 +vt 0.801778 0.815998 +vt 0.791362 0.824667 +vt 0.802439 0.82306 +vt 0.81472 0.82864 +vt 0.826466 0.827173 +vt 0.815773 0.835804 +vt 0.828002 0.834513 +vt 0.836051 0.818174 +vt 0.833753 0.810528 +vt 0.847357 0.816619 +vt 0.844411 0.808704 +vt 0.865186 0.831524 +vt 0.862205 0.823365 +vt 0.877737 0.830954 +vt 0.874492 0.822443 +vt 0.855005 0.83999 +vt 0.85698 0.847505 +vt 0.842216 0.840695 +vt 0.843849 0.847807 +vt 0.88436 0.856498 +vt 0.885137 0.865357 +vt 0.871526 0.85543 +vt 0.872076 0.863204 +vt 0.804439 0.886836 +vt 0.807327 0.888675 +vt 0.800873 0.886404 +vt 0.804113 0.888773 +vt 0.811427 0.895292 +vt 0.809796 0.897764 +vt 0.805844 0.892459 +vt 0.803594 0.894554 +vt 0.812764 0.887409 +vt 0.814695 0.887319 +vt 0.814983 0.888328 +vt 0.813411 0.890054 +vt 0.815616 0.889658 +vt 0.817127 0.891427 +vt 0.818869 0.890732 +vt 0.823567 0.890828 +vt 0.824934 0.890047 +vt 0.826527 0.891315 +vt 0.829218 0.893691 +vt 0.829275 0.892502 +vt 0.833441 0.893497 +vt 0.832802 0.892294 +vt 0.818377 0.895343 +vt 0.819745 0.893759 +vt 0.823592 0.896601 +vt 0.824356 0.894757 +vt 0.834525 0.899486 +vt 0.83459 0.902497 +vt 0.828656 0.899651 +vt 0.828329 0.902654 +vt 0.851747 0.8781 +vt 0.846507 0.877058 +vt 0.855981 0.876751 +vt 0.849747 0.875417 +vt 0.843672 0.872435 +vt 0.833524 0.872294 +vt 0.844998 0.869518 +vt 0.833475 0.869469 +vt 0.837676 0.881849 +vt 0.839377 0.880757 +vt 0.84055 0.882129 +vt 0.842485 0.881209 +vt 0.836982 0.879253 +vt 0.831981 0.879081 +vt 0.83849 0.877985 +vt 0.832543 0.877845 +vt 0.826765 0.881299 +vt 0.822936 0.881265 +vt 0.826903 0.880193 +vt 0.822555 0.880254 +vt 0.815471 0.878769 +vt 0.817329 0.879611 +vt 0.811408 0.879505 +vt 0.813858 0.880161 +vt 0.825732 0.87658 +vt 0.818914 0.877069 +vt 0.824664 0.87497 +vt 0.816529 0.875781 +vt 0.800189 0.874827 +vt 0.805364 0.875918 +vt 0.793249 0.877827 +vt 0.79971 0.877889 +vt 0.804392 0.880828 +vt 0.801078 0.880676 +vt 0.805589 0.879851 +vt 0.80179 0.879491 +vt 0.802494 0.883227 +vt 0.802021 0.884044 +vt 0.79985 0.882163 +vt 0.798749 0.883007 +vt 0.812306 0.884005 +vt 0.809275 0.883405 +vt 0.812718 0.883166 +vt 0.809695 0.8826 +vt 0.807387 0.881208 +vt 0.808775 0.880331 +vt 0.805141 0.884833 +vt 0.805248 0.884056 +vt 0.811712 0.884711 +vt 0.80868 0.8841 +vt 0.778535 0.333732 +vt 0.778925 0.339309 +vt 0.776865 0.334264 +vt 0.777479 0.340007 +vt 0.777126 0.346516 +vt 0.778414 0.350974 +vt 0.775964 0.348247 +vt 0.777544 0.353163 +vt 0.783466 0.350223 +vt 0.78201 0.349388 +vt 0.783479 0.345221 +vt 0.782011 0.344745 +vt 0.780169 0.333512 +vt 0.7804 0.339187 +vt 0.779271 0.357072 +vt 0.779888 0.354459 +vt 0.783379 0.354562 +vt 0.781827 0.353449 +vt 0.771561 0.308475 +vt 0.771592 0.301249 +vt 0.773985 0.30794 +vt 0.774105 0.300747 +vt 0.778091 0.314238 +vt 0.778113 0.320987 +vt 0.77611 0.314547 +vt 0.776185 0.321338 +vt 0.775316 0.270961 +vt 0.774971 0.278461 +vt 0.772619 0.271206 +vt 0.772251 0.278791 +vt 0.776618 0.293068 +vt 0.776944 0.285658 +vt 0.778633 0.292829 +vt 0.778944 0.285444 +vt 0.781025 0.277893 +vt 0.78129 0.270511 +vt 0.782589 0.277818 +vt 0.782778 0.270458 +vt 0.783664 0.292554 +vt 0.783827 0.285188 +vt 0.780031 0.30709 +vt 0.780205 0.299961 +vt 0.781777 0.306969 +vt 0.781923 0.299852 +vt 0.783339 0.32057 +vt 0.783363 0.313822 +vt 0.781801 0.226073 +vt 0.781488 0.231087 +vt 0.780323 0.225844 +vt 0.779947 0.230872 +vt 0.777548 0.236264 +vt 0.777062 0.242497 +vt 0.775032 0.235927 +vt 0.774499 0.242231 +vt 0.784706 0.226348 +vt 0.784575 0.231302 +vt 0.783561 0.236791 +vt 0.783364 0.242868 +vt 0.782463 0.236777 +vt 0.782181 0.242878 +vt 0.784249 0.249308 +vt 0.784214 0.256089 +vt 0.782965 0.26317 +vt 0.781564 0.263208 +vt 0.780513 0.249341 +vt 0.780247 0.256152 +vt 0.778788 0.249256 +vt 0.778446 0.256148 +vt 0.775785 0.263481 +vt 0.773052 0.263633 +vt 0.780797 0.207676 +vt 0.781825 0.209285 +vt 0.779744 0.209842 +vt 0.781079 0.21121 +vt 0.781184 0.217671 +vt 0.781653 0.214603 +vt 0.78241 0.218061 +vt 0.782681 0.215135 +vt 0.784056 0.210874 +vt 0.783817 0.209028 +vt 0.784597 0.210683 +vt 0.784451 0.208755 +vt 0.781866 0.206213 +vt 0.782637 0.208003 +vt 0.783407 0.218274 +vt 0.783545 0.215329 +vt 0.784192 0.212927 +vt 0.784716 0.212853 +vt 0.531022 0.382737 +vt 0.527101 0.404838 +vt 0.480005 0.421265 +vt 0.480012 0.442039 +vt 0.63154 0.415987 +vt 0.618427 0.434757 +vt 0.565691 0.437159 +vt 0.558127 0.455459 +vt 0.583549 0.485698 +vt 0.57361 0.500397 +vt 0.5383 0.503888 +vt 0.532814 0.517431 +vt 0.516093 0.464374 +vt 0.512788 0.481538 +vt 0.480051 0.495047 +vt 0.480057 0.509771 +vt 0.504516 0.524856 +vt 0.502363 0.536362 +vt 0.48002 0.545787 +vt 0.479996 0.555209 +vt 0.549341 0.537036 +vt 0.543086 0.546408 +vt 0.519984 0.549754 +vt 0.5168 0.557983 +vt 0.528841 0.568221 +vt 0.525474 0.57337 +vt 0.510053 0.577238 +vt 0.508707 0.581896 +vt 0.497487 0.564034 +vt 0.496347 0.57079 +vt 0.479926 0.576883 +vt 0.479919 0.582154 +vt 0.708456 0.473527 +vt 0.688869 0.487278 +vt 0.641676 0.473331 +vt 0.626391 0.488605 +vt 0.759434 0.553678 +vt 0.734078 0.559283 +vt 0.692723 0.531473 +vt 0.672756 0.540056 +vt 0.666431 0.574522 +vt 0.647187 0.578839 +vt 0.620364 0.562299 +vt 0.605884 0.56823 +vt 0.635754 0.523911 +vt 0.620353 0.534206 +vt 0.587559 0.527316 +vt 0.577031 0.537745 +vt 0.767046 0.639214 +vt 0.740837 0.637062 +vt 0.718949 0.599208 +vt 0.694723 0.600782 +vt 0.730521 0.727793 +vt 0.707712 0.716262 +vt 0.704188 0.670698 +vt 0.682575 0.664487 +vt 0.647019 0.685519 +vt 0.629709 0.676761 +vt 0.626189 0.647788 +vt 0.610662 0.643005 +vt 0.67085 0.630445 +vt 0.650911 0.628258 +vt 0.633752 0.604256 +vt 0.617289 0.60496 +vt 0.601799 0.622092 +vt 0.589095 0.620278 +vt 0.578281 0.605831 +vt 0.568042 0.60584 +vt 0.587485 0.654548 +vt 0.5766 0.648646 +vt 0.574012 0.63122 +vt 0.564524 0.628155 +vt 0.551088 0.634626 +vt 0.54444 0.63142 +vt 0.540886 0.621141 +vt 0.533993 0.619662 +vt 0.558267 0.61559 +vt 0.549979 0.614401 +vt 0.542441 0.60556 +vt 0.53502 0.60547 +vt 0.582294 0.559223 +vt 0.572438 0.565378 +vt 0.552415 0.561776 +vt 0.54618 0.567616 +vt 0.599729 0.589036 +vt 0.587433 0.591344 +vt 0.571539 0.581441 +vt 0.562587 0.584478 +vt 0.557482 0.596187 +vt 0.549382 0.597202 +vt 0.540029 0.590945 +vt 0.533358 0.592313 +vt 0.549059 0.579074 +vt 0.542843 0.582055 +vt 0.532285 0.579735 +vt 0.529633 0.581759 +vt 0.653605 0.79508 +vt 0.63727 0.777977 +vt 0.659617 0.736427 +vt 0.641335 0.722836 +vt 0.538635 0.838198 +vt 0.53386 0.816837 +vt 0.577156 0.781633 +vt 0.567947 0.764501 +vt 0.520519 0.759996 +vt 0.516522 0.743385 +vt 0.544128 0.718738 +vt 0.537595 0.705433 +vt 0.594815 0.731414 +vt 0.582967 0.717721 +vt 0.596092 0.687955 +vt 0.584048 0.678226 +vt 0.554533 0.682514 +vt 0.547248 0.672883 +vt 0.556039 0.654392 +vt 0.549032 0.648219 +vt 0.506599 0.700609 +vt 0.504037 0.688318 +vt 0.522461 0.671874 +vt 0.518741 0.662686 +vt 0.498292 0.657491 +vt 0.496974 0.64933 +vt 0.510926 0.640255 +vt 0.509362 0.634448 +vt 0.530871 0.649347 +vt 0.527072 0.643427 +vt 0.533732 0.634874 +vt 0.53087 0.632586 +vt 0.520903 0.628969 +vt 0.520448 0.625102 +vt 0.494437 0.629649 +vt 0.494005 0.624856 +vt 0.506993 0.617134 +vt 0.507198 0.620661 +vt 0.493389 0.610681 +vt 0.493415 0.613456 +vt 0.506886 0.608096 +vt 0.506894 0.605598 +vt 0.52054 0.614456 +vt 0.520646 0.611387 +vt 0.520625 0.602663 +vt 0.520493 0.599889 +vt 0.49337 0.601237 +vt 0.493367 0.603509 +vt 0.506826 0.595528 +vt 0.506793 0.59819 +vt 0.493583 0.593558 +vt 0.493824 0.59015 +vt 0.507808 0.586026 +vt 0.519895 0.59151 +vt 0.519839 0.588439 +vt 0.576613 0.0774487 +vt 0.557176 0.07303 +vt 0.545676 0.0316602 +vt 0.525693 0.0282384 +vt 0.557675 0.15474 +vt 0.538473 0.147692 +vt 0.529522 0.105333 +vt 0.511159 0.100291 +vt 0.484703 0.1289 +vt 0.468562 0.123799 +vt 0.460083 0.0883689 +vt 0.445095 0.0861096 +vt 0.499958 0.0606636 +vt 0.481784 0.0573222 +vt 0.465745 0.0179732 +vt 0.445762 0.0145515 +vt 0.524474 0.224539 +vt 0.507252 0.215142 +vt 0.507292 0.174841 +vt 0.489986 0.167266 +vt 0.476396 0.285461 +vt 0.462452 0.272855 +vt 0.470853 0.234819 +vt 0.45656 0.224951 +vt 0.423978 0.238718 +vt 0.412774 0.228596 +vt 0.418078 0.198674 +vt 0.407206 0.191174 +vt 0.459487 0.189272 +vt 0.445363 0.181652 +vt 0.443889 0.14802 +vt 0.430576 0.143016 +vt 0.408671 0.162839 +vt 0.398722 0.158004 +vt 0.39698 0.132542 +vt 0.387812 0.130267 +vt 0.384496 0.202851 +vt 0.377266 0.195595 +vt 0.380801 0.172812 +vt 0.373919 0.167887 +vt 0.359876 0.177693 +vt 0.355453 0.172674 +vt 0.357211 0.156106 +vt 0.35294 0.152949 +vt 0.374025 0.146885 +vt 0.367677 0.144112 +vt 0.365626 0.125886 +vt 0.359933 0.125108 +vt 0.434504 0.0544055 +vt 0.42217 0.056715 +vt 0.413098 0.0332929 +vt 0.40221 0.03954 +vt 0.425906 0.112942 +vt 0.414032 0.111057 +vt 0.407538 0.0854733 +vt 0.39713 0.0867118 +vt 0.383929 0.108762 +vt 0.376007 0.108918 +vt 0.370683 0.0923615 +vt 0.36374 0.0946366 +vt 0.389615 0.0671913 +vt 0.380028 0.071207 +vt 0.369546 0.0582814 +vt 0.358658 0.0645285 +vt 0.415513 0.325904 +vt 0.406066 0.311447 +vt 0.424631 0.28237 +vt 0.413567 0.269599 +vt 0.342708 0.345339 +vt 0.339743 0.329948 +vt 0.36738 0.30804 +vt 0.361766 0.294437 +vt 0.331464 0.287295 +vt 0.32906 0.27428 +vt 0.347008 0.257154 +vt 0.343036 0.245928 +vt 0.380474 0.271781 +vt 0.373219 0.259784 +vt 0.384999 0.236134 +vt 0.377259 0.226511 +vt 0.355406 0.228372 +vt 0.351053 0.219217 +vt 0.359458 0.201865 +vt 0.354989 0.194913 +vt 0.323055 0.239324 +vt 0.32155 0.228958 +vt 0.333983 0.216394 +vt 0.331796 0.207858 +vt 0.318076 0.201812 +vt 0.31723 0.194263 +vt 0.326641 0.186206 +vt 0.325274 0.180312 +vt 0.340902 0.195832 +vt 0.338361 0.18919 +vt 0.344448 0.177446 +vt 0.341659 0.172577 +vt 0.800437 0.162896 +vt 0.815475 0.165534 +vt 0.823392 0.181513 +vt 0.814933 0.177057 +vt 0.828562 0.123124 +vt 0.828222 0.134287 +vt 0.785 0.141062 +vt 0.785 0.149689 +vt 0.943766 0.152434 +vt 0.92002 0.148781 +vt 0.89393 0.120753 +vt 0.872144 0.117701 +vt 0.939923 0.211262 +vt 0.935662 0.199076 +vt 0.98004 0.195517 +vt 0.97589 0.182395 +vt 0.847233 0.192187 +vt 0.860005 0.191586 +vt 0.885378 0.212212 +vt 0.902453 0.214932 +vt 0.873405 0.220215 +vt 0.875603 0.230292 +vt 0.852071 0.235325 +vt 0.852969 0.244548 +vt 0.94301 0.234678 +vt 0.941601 0.245866 +vt 0.905927 0.247401 +vt 0.90486 0.257905 +vt 0.931937 0.277939 +vt 0.927693 0.288185 +vt 0.897106 0.287431 +vt 0.893497 0.296549 +vt 0.876244 0.259725 +vt 0.875004 0.269432 +vt 0.851844 0.272218 +vt 0.850475 0.281238 +vt 0.907297 0.322901 +vt 0.918738 0.328116 +vt 0.883067 0.351493 +vt 0.892688 0.354725 +vt 0.875584 0.329018 +vt 0.885412 0.333047 +vt 0.856102 0.34115 +vt 0.848207 0.33767 +vt 0.840985 0.314968 +vt 0.848712 0.318012 +vt 0.864686 0.305087 +vt 0.874642 0.308965 +vt 0.82672 0.371986 +vt 0.832461 0.363222 +vt 0.807146 0.377745 +vt 0.81219 0.37108 +vt 0.865551 0.385248 +vt 0.856375 0.384052 +vt 0.861035 0.364347 +vt 0.852662 0.361459 +vt 0.832054 0.422125 +vt 0.826917 0.431809 +vt 0.861367 0.402233 +vt 0.854571 0.410248 +vt 0.792665 0.435593 +vt 0.800385 0.433112 +vt 0.803444 0.452258 +vt 0.809592 0.448664 +vt 0.79804 0.392484 +vt 0.799682 0.398105 +vt 0.785085 0.40867 +vt 0.785036 0.416592 +vt 0.8014 0.177885 +vt 0.798059 0.18222 +vt 0.785012 0.184416 +vt 0.785024 0.188618 +vt 0.827016 0.195276 +vt 0.819199 0.19753 +vt 0.80469 0.191292 +vt 0.800558 0.194723 +vt 0.798766 0.2069 +vt 0.802302 0.20437 +vt 0.792263 0.2033 +vt 0.790615 0.205694 +vt 0.791182 0.193725 +vt 0.789832 0.197265 +vt 0.785052 0.199536 +vt 0.785057 0.202434 +vt 0.839968 0.225287 +vt 0.830922 0.225113 +vt 0.818467 0.211042 +vt 0.812095 0.212473 +vt 0.843072 0.260766 +vt 0.834494 0.25919 +vt 0.825601 0.24104 +vt 0.818632 0.240903 +vt 0.813581 0.256555 +vt 0.808387 0.256372 +vt 0.798705 0.241873 +vt 0.802452 0.241432 +vt 0.809963 0.226318 +vt 0.805132 0.227442 +vt 0.798649 0.217414 +vt 0.795653 0.218886 +vt 0.838472 0.29582 +vt 0.831313 0.293669 +vt 0.826349 0.275097 +vt 0.819879 0.273882 +vt 0.822663 0.325911 +vt 0.827981 0.328263 +vt 0.821882 0.308017 +vt 0.816817 0.306395 +vt 0.809789 0.320411 +vt 0.806493 0.319123 +vt 0.801269 0.302057 +vt 0.80445 0.302829 +vt 0.813532 0.289103 +vt 0.808953 0.288188 +vt 0.800667 0.271465 +vt 0.804488 0.27181 +vt 0.813079 0.360026 +vt 0.80973 0.356895 +vt 0.81273 0.339236 +vt 0.809375 0.337239 +vt 0.794974 0.383232 +vt 0.793757 0.379209 +vt 0.799988 0.366927 +vt 0.798282 0.364095 +vt 0.79103 0.370389 +vt 0.790399 0.367516 +vt 0.794408 0.35761 +vt 0.793404 0.355446 +vt 0.802028 0.349832 +vt 0.800148 0.347918 +vt 0.799497 0.331436 +vt 0.80161 0.33265 +vt 0.318188 0.0650969 +vt 0.317212 0.069269 +vt 0.306057 0.0727807 +vt 0.306073 0.0766809 +vt 0.34188 0.0682707 +vt 0.338353 0.073136 +vt 0.326097 0.0748964 +vt 0.324158 0.0789241 +vt 0.326761 0.0896834 +vt 0.329316 0.0859638 +vt 0.317682 0.0925478 +vt 0.319123 0.0895598 +vt 0.314469 0.0809239 +vt 0.313619 0.0844511 +vt 0.306113 0.0871707 +vt 0.306138 0.0901775 +vt 0.356511 0.0834695 +vt 0.350967 0.0874508 +vt 0.338229 0.0870591 +vt 0.3421 0.0827969 +vt 0.356878 0.110766 +vt 0.352173 0.111719 +vt 0.347886 0.101553 +vt 0.343933 0.103831 +vt 0.34098 0.114984 +vt 0.338011 0.116212 +vt 0.331561 0.112373 +vt 0.334295 0.110271 +vt 0.335118 0.100886 +vt 0.338423 0.0977849 +vt 0.325578 0.101872 +vt 0.328689 0.0981336 +vt 0.352416 0.137947 +vt 0.348595 0.136458 +vt 0.34687 0.124125 +vt 0.343542 0.124147 +vt 0.344694 0.16045 +vt 0.341741 0.157007 +vt 0.342563 0.14537 +vt 0.33977 0.143373 +vt 0.331985 0.146576 +vt 0.334229 0.148804 +vt 0.332476 0.138886 +vt 0.330214 0.137781 +vt 0.339269 0.133345 +vt 0.336688 0.132676 +vt 0.335215 0.124879 +vt 0.332716 0.125323 +vt 0.332075 0.172794 +vt 0.330187 0.168329 +vt 0.33438 0.160455 +vt 0.332241 0.157145 +vt 0.315157 0.175635 +vt 0.314526 0.171011 +vt 0.321517 0.166256 +vt 0.320353 0.162619 +vt 0.312815 0.159987 +vt 0.312265 0.157195 +vt 0.3172 0.153794 +vt 0.316199 0.1514 +vt 0.325196 0.157583 +vt 0.323624 0.154676 +vt 0.324652 0.147 +vt 0.326459 0.149144 +vt 0.310913 0.0958802 +vt 0.311497 0.0934219 +vt 0.306308 0.0996694 +vt 0.306267 0.0976107 +vt 0.320407 0.0983381 +vt 0.318584 0.100407 +vt 0.314132 0.0996223 +vt 0.313165 0.101531 +vt 0.314481 0.105282 +vt 0.313406 0.106707 +vt 0.310951 0.106325 +vt 0.310354 0.107749 +vt 0.309137 0.103721 +vt 0.309524 0.101977 +vt 0.306398 0.10655 +vt 0.306377 0.104986 +vt 0.326982 0.109472 +vt 0.324642 0.112249 +vt 0.318672 0.115116 +vt 0.330026 0.120008 +vt 0.327417 0.121318 +vt 0.321704 0.120201 +vt 0.324016 0.118371 +vt 0.318153 0.126095 +vt 0.32025 0.125017 +vt 0.314068 0.125891 +vt 0.315701 0.12475 +vt 0.316611 0.121124 +vt 0.31843 0.119254 +vt 0.312564 0.122851 +vt 0.329482 0.131567 +vt 0.327036 0.131449 +vt 0.322753 0.127687 +vt 0.325162 0.127043 +vt 0.325781 0.141454 +vt 0.323753 0.140161 +vt 0.323563 0.135501 +vt 0.321447 0.135024 +vt 0.316734 0.136784 +vt 0.31829 0.137388 +vt 0.315868 0.134229 +vt 0.314322 0.13412 +vt 0.320198 0.131609 +vt 0.318161 0.131768 +vt 0.314641 0.130066 +vt 0.316393 0.129558 +vt 0.319328 0.147612 +vt 0.317971 0.145676 +vt 0.319544 0.141933 +vt 0.318029 0.140652 +vt 0.310783 0.150025 +vt 0.31034 0.147905 +vt 0.313469 0.14523 +vt 0.31267 0.143492 +vt 0.308926 0.140865 +vt 0.309217 0.142384 +vt 0.31078 0.139155 +vt 0.310365 0.137971 +vt 0.31448 0.141012 +vt 0.31358 0.139792 +vt 0.314472 0.137911 +vt 0.313826 0.137425 +vt 0.307992 0.109708 +vt 0.308234 0.108299 +vt 0.306508 0.11213 +vt 0.306483 0.110832 +vt 0.310987 0.110455 +vt 0.310326 0.111608 +vt 0.308931 0.111638 +vt 0.308554 0.112818 +vt 0.308839 0.114626 +vt 0.308466 0.115504 +vt 0.30771 0.115944 +vt 0.307501 0.116864 +vt 0.307431 0.113501 +vt 0.307282 0.114638 +vt 0.306545 0.116651 +vt 0.30654 0.115629 +vt 0.311273 0.114669 +vt 0.310562 0.115367 +vt 0.310138 0.114146 +vt 0.309579 0.114957 +vt 0.309416 0.119648 +vt 0.308988 0.119829 +vt 0.309375 0.118049 +vt 0.308925 0.118418 +vt 0.308003 0.120307 +vt 0.307793 0.120375 +vt 0.307661 0.119533 +vt 0.307905 0.119333 +vt 0.308556 0.117628 +vt 0.308951 0.117162 +vt 0.308173 0.117275 +vt 0.308384 0.116901 +vt 0.307645 0.123019 +vt 0.307481 0.122862 +vt 0.307848 0.121672 +vt 0.30766 0.121624 +vt 0.306831 0.124115 +vt 0.306785 0.123868 +vt 0.306978 0.123346 +vt 0.306919 0.123112 +vt 0.306682 0.123135 +vt 0.306672 0.12282 +vt 0.306807 0.121963 +vt 0.306803 0.12233 +vt 0.307077 0.122167 +vt 0.307117 0.122414 +vt 0.307272 0.121252 +vt 0.307317 0.121346 +vt 0.306943 0.117634 +vt 0.306868 0.118464 +vt 0.306555 0.119231 +vt 0.306558 0.11994 +vt 0.307527 0.118516 +vt 0.307687 0.117832 +vt 0.306988 0.119892 +vt 0.307074 0.119238 +vt 0.30718 0.12035 +vt 0.307121 0.120816 +vt 0.306823 0.121548 +vt 0.306713 0.120591 +vt 0.306692 0.121142 +vt 0.306568 0.121684 +vt 0.30657 0.122136 +vt 0.306966 0.124607 +vt 0.307056 0.124862 +vt 0.306573 0.125616 +vt 0.306571 0.125294 +vt 0.308138 0.123251 +vt 0.308466 0.123342 +vt 0.308062 0.124872 +vt 0.307849 0.124617 +vt 0.309801 0.124239 +vt 0.309439 0.123975 +vt 0.308832 0.126381 +vt 0.308637 0.125959 +vt 0.307428 0.126175 +vt 0.307325 0.125826 +vt 0.306574 0.126741 +vt 0.306575 0.127166 +vt 0.310518 0.11917 +vt 0.311178 0.118914 +vt 0.310616 0.121654 +vt 0.310099 0.121599 +vt 0.313923 0.112373 +vt 0.312955 0.113151 +vt 0.314627 0.114878 +vt 0.313665 0.115263 +vt 0.317672 0.110085 +vt 0.319103 0.109574 +vt 0.317699 0.114652 +vt 0.313292 0.118629 +vt 0.314028 0.118739 +vt 0.312096 0.122393 +vt 0.311925 0.136727 +vt 0.311806 0.135829 +vt 0.308194 0.136023 +vt 0.308294 0.137039 +vt 0.309793 0.134984 +vt 0.309763 0.134148 +vt 0.308059 0.133441 +vt 0.308079 0.132729 +vt 0.309725 0.131885 +vt 0.309728 0.13119 +vt 0.311758 0.133237 +vt 0.31183 0.132411 +vt 0.30777 0.127949 +vt 0.307681 0.127478 +vt 0.306579 0.128608 +vt 0.306589 0.129137 +vt 0.310993 0.126172 +vt 0.310698 0.125609 +vt 0.309465 0.128523 +vt 0.309322 0.127942 +vt 0.311721 0.129123 +vt 0.311563 0.12835 +vt 0.309687 0.130513 +vt 0.307963 0.129593 +vt 0.308026 0.130172 +vt 0.306651 0.13086 +vt 0.306658 0.131471 +vt 0.129129 0.898373 +vt 0.129698 0.90423 +vt 0.119001 0.91038 +vt 0.122814 0.919083 +vt 0.149129 0.913086 +vt 0.154201 0.915372 +vt 0.144248 0.903151 +vt 0.139456 0.900376 +vt 0.140991 0.933351 +vt 0.14469 0.929454 +vt 0.158545 0.933098 +vt 0.159112 0.927356 +vt 0.118232 0.836498 +vt 0.106719 0.835381 +vt 0.10111 0.818426 +vt 0.0889022 0.816599 +vt 0.108883 0.866605 +vt 0.0977722 0.86684 +vt 0.0898102 0.850349 +vt 0.0783608 0.849946 +vt 0.0632565 0.867351 +vt 0.0515326 0.867595 +vt 0.0433827 0.848763 +vt 0.0317281 0.848424 +vt 0.0713718 0.832036 +vt 0.0595703 0.830974 +vt 0.0522792 0.811117 +vt 0.0400715 0.80929 +vt 0.108312 0.901672 +vt 0.0985762 0.902431 +vt 0.0854873 0.884541 +vt 0.0741371 0.885296 +vt 0.114897 0.941377 +vt 0.126058 0.939316 +vt 0.0819002 0.924564 +vt 0.0936168 0.923053 +vt 0.0623125 0.948689 +vt 0.0760116 0.946835 +vt 0.030818 0.930797 +vt 0.043877 0.929186 +vt 0.0523764 0.906836 +vt 0.0645932 0.905625 +vt 0.037346 0.887254 +vt 0.0233847 0.887559 +vt 0.150621 0.900264 +vt 0.149654 0.902633 +vt 0.160903 0.898721 +vt 0.16036 0.900525 +vt 0.132485 0.891376 +vt 0.136036 0.890326 +vt 0.144323 0.894454 +vt 0.146828 0.89357 +vt 0.146096 0.889709 +vt 0.149399 0.889835 +vt 0.157141 0.89178 +vt 0.154394 0.892067 +vt 0.154658 0.895716 +vt 0.156544 0.894823 +vt 0.163056 0.895395 +vt 0.16354 0.894808 +vt 0.159777 0.888873 +vt 0.160744 0.889636 +vt 0.172162 0.888416 +vt 0.172603 0.888931 +vt 0.168263 0.890549 +vt 0.167344 0.889883 +vt 0.175532 0.890952 +vt 0.174671 0.890451 +vt 0.171482 0.892532 +vt 0.172633 0.893176 +vt 0.165291 0.892733 +vt 0.163926 0.891968 +vt 0.272519 0.893097 +vt 0.272684 0.884973 +vt 0.293361 0.880159 +vt 0.292883 0.871752 +vt 0.229722 0.885518 +vt 0.230277 0.877863 +vt 0.251838 0.873616 +vt 0.251896 0.865945 +vt 0.23151 0.855821 +vt 0.23161 0.848663 +vt 0.251644 0.84319 +vt 0.251424 0.835678 +vt 0.272215 0.860805 +vt 0.271896 0.852825 +vt 0.291449 0.84653 +vt 0.290971 0.838123 +vt 0.261169 0.951233 +vt 0.25901 0.959641 +vt 0.283073 0.946099 +vt 0.285417 0.937955 +vt 0.220819 0.954568 +vt 0.223078 0.945992 +vt 0.245537 0.931241 +vt 0.243758 0.939817 +vt 0.227739 0.919747 +vt 0.228391 0.911003 +vt 0.25047 0.897416 +vt 0.24962 0.905675 +vt 0.269141 0.917796 +vt 0.267333 0.926085 +vt 0.29245 0.913524 +vt 0.294795 0.90538 +vt 0.190752 0.951885 +vt 0.192365 0.94393 +vt 0.207954 0.935917 +vt 0.209232 0.927376 +vt 0.16899 0.95067 +vt 0.169382 0.943223 +vt 0.181204 0.936505 +vt 0.18174 0.929392 +vt 0.170476 0.91806 +vt 0.170366 0.923597 +vt 0.181457 0.906228 +vt 0.181969 0.910859 +vt 0.195069 0.920256 +vt 0.194952 0.912947 +vt 0.208595 0.900534 +vt 0.204227 0.889538 +vt 0.186793 0.869587 +vt 0.185487 0.875022 +vt 0.209583 0.867035 +vt 0.210245 0.860192 +vt 0.141911 0.871418 +vt 0.142759 0.865735 +vt 0.166179 0.860875 +vt 0.167691 0.854773 +vt 0.148121 0.846381 +vt 0.150672 0.839697 +vt 0.172908 0.83523 +vt 0.174805 0.82857 +vt 0.190197 0.850747 +vt 0.191249 0.844167 +vt 0.211749 0.839788 +vt 0.211876 0.833232 +vt 0.18879 0.89557 +vt 0.191198 0.897382 +vt 0.191523 0.890829 +vt 0.188908 0.890855 +vt 0.169841 0.902589 +vt 0.170124 0.905446 +vt 0.178503 0.897995 +vt 0.177253 0.89654 +vt 0.16898 0.897078 +vt 0.16869 0.895947 +vt 0.173812 0.893813 +vt 0.182488 0.893038 +vt 0.180602 0.892628 +vt 0.182535 0.890834 +vt 0.181071 0.890877 +vt 0.146553 0.881808 +vt 0.143899 0.879469 +vt 0.140044 0.885674 +vt 0.143938 0.886455 +vt 0.178704 0.883641 +vt 0.18134 0.882035 +vt 0.162567 0.883249 +vt 0.162871 0.88458 +vt 0.173465 0.886184 +vt 0.172551 0.886801 +vt 0.164346 0.887158 +vt 0.16502 0.887847 +vt 0.1536 0.885746 +vt 0.155701 0.886656 +vt 0.152664 0.88819 +vt 0.154445 0.888544 +vt 0.192233 0.888511 +vt 0.194249 0.889291 +vt 0.186824 0.88674 +vt 0.183834 0.886914 +vt 0.185199 0.889657 +vt 0.18298 0.889852 +vt 0.186577 0.890836 +vt 0.181827 0.887802 +vt 0.183023 0.888154 +vt 0.179339 0.889369 +vt 0.178835 0.888992 +vt 0.793938 0.341513 +vt 0.795437 0.343143 +vt 0.791751 0.32767 +vt 0.793584 0.328338 +vt 0.786783 0.358323 +vt 0.788497 0.356608 +vt 0.788221 0.333507 +vt 0.788089 0.339284 +vt 0.785002 0.350449 +vt 0.785001 0.345381 +vt 0.796032 0.315448 +vt 0.795869 0.322475 +vt 0.788351 0.320648 +vt 0.788331 0.313885 +vt 0.791851 0.307384 +vt 0.791689 0.300181 +vt 0.788051 0.292594 +vt 0.787948 0.285224 +vt 0.790846 0.278008 +vt 0.790535 0.2706 +vt 0.795678 0.293452 +vt 0.795476 0.285969 +vt 0.792142 0.230542 +vt 0.794431 0.229954 +vt 0.78806 0.221688 +vt 0.789352 0.221316 +vt 0.79392 0.256207 +vt 0.796502 0.256166 +vt 0.789317 0.242857 +vt 0.790912 0.242674 +vt 0.787233 0.256157 +vt 0.788384 0.256101 +vt 0.785124 0.24291 +vt 0.785927 0.242872 +vt 0.786645 0.231378 +vt 0.787479 0.231153 +vt 0.785364 0.222053 +vt 0.785863 0.222034 +vt 0.790385 0.216864 +vt 0.789762 0.213742 +vt 0.786158 0.215503 +vt 0.785672 0.215389 +vt 0.78711 0.221887 +vt 0.787137 0.205324 +vt 0.786657 0.207286 +vt 0.785055 0.208705 +vt 0.785089 0.210656 +vt 0.456406 0.40029 +vt 0.432902 0.404838 +vt 0.397536 0.369358 +vt 0.370048 0.378524 +vt 0.447266 0.481528 +vt 0.46358 0.479593 +vt 0.40188 0.455432 +vt 0.420944 0.449974 +vt 0.386393 0.500192 +vt 0.400644 0.494124 +vt 0.333607 0.488514 +vt 0.348958 0.47847 +vt 0.36361 0.425946 +vt 0.341573 0.434746 +vt 0.287584 0.406025 +vt 0.260096 0.415192 +vt 0.46881 0.535497 +vt 0.457688 0.536349 +vt 0.439951 0.514174 +vt 0.427205 0.517339 +vt 0.4717 0.570787 +vt 0.463577 0.570771 +vt 0.451992 0.55677 +vt 0.443197 0.557914 +vt 0.441018 0.572259 +vt 0.434518 0.572979 +vt 0.420055 0.564386 +vt 0.41382 0.567394 +vt 0.426327 0.543059 +vt 0.416918 0.546186 +vt 0.392785 0.531243 +vt 0.382972 0.537322 +vt 0.285284 0.471001 +vt 0.271132 0.487268 +vt 0.217379 0.481579 +vt 0.20314 0.503708 +vt 0.339648 0.534002 +vt 0.349572 0.524301 +vt 0.296734 0.525919 +vt 0.287243 0.540028 +vt 0.312812 0.578812 +vt 0.317554 0.567013 +vt 0.265264 0.600765 +vt 0.267833 0.585122 +vt 0.235436 0.540729 +vt 0.225921 0.55928 +vt 0.160424 0.570094 +vt 0.146185 0.592223 +vt 0.219163 0.637061 +vt 0.21491 0.617074 +vt 0.176199 0.66591 +vt 0.186204 0.690473 +vt 0.309087 0.628241 +vt 0.307725 0.615745 +vt 0.277423 0.664484 +vt 0.271535 0.648647 +vt 0.330291 0.676758 +vt 0.32265 0.665011 +vt 0.305313 0.709423 +vt 0.318654 0.722841 +vt 0.241963 0.696979 +vt 0.252288 0.716263 +vt 0.216218 0.764161 +vt 0.226223 0.788723 +vt 0.370906 0.620264 +vt 0.370241 0.61295 +vt 0.349335 0.642994 +vt 0.345902 0.633565 +vt 0.410019 0.614454 +vt 0.40973 0.61005 +vt 0.395475 0.62819 +vt 0.393695 0.622641 +vt 0.415559 0.631737 +vt 0.413435 0.627482 +vt 0.405748 0.643679 +vt 0.41097 0.648335 +vt 0.383402 0.648658 +vt 0.378874 0.641709 +vt 0.375959 0.67822 +vt 0.367355 0.669928 +vt 0.387564 0.565157 +vt 0.393571 0.559675 +vt 0.35412 0.568148 +vt 0.359751 0.559676 +vt 0.417153 0.581667 +vt 0.420084 0.578587 +vt 0.397413 0.584415 +vt 0.400373 0.579607 +vt 0.410617 0.597225 +vt 0.41165 0.593131 +vt 0.391957 0.605842 +vt 0.392511 0.600338 +vt 0.372568 0.591318 +vt 0.375143 0.584443 +vt 0.342712 0.604926 +vt 0.343927 0.595469 +vt 0.299706 0.765618 +vt 0.322731 0.777977 +vt 0.321389 0.824334 +vt 0.353112 0.836204 +vt 0.362956 0.708572 +vt 0.377038 0.717721 +vt 0.37153 0.755882 +vt 0.392061 0.764502 +vt 0.443552 0.743385 +vt 0.42578 0.738991 +vt 0.457539 0.781452 +vt 0.480014 0.782813 +vt 0.399476 0.808921 +vt 0.426144 0.816836 +vt 0.448278 0.871815 +vt 0.48 0.883685 +vt 0.403806 0.667338 +vt 0.412758 0.672896 +vt 0.409341 0.699745 +vt 0.422434 0.705438 +vt 0.427011 0.641496 +vt 0.432927 0.643741 +vt 0.432562 0.659773 +vt 0.441265 0.662721 +vt 0.454826 0.648203 +vt 0.463006 0.649346 +vt 0.470003 0.667888 +vt 0.480012 0.668303 +vt 0.44441 0.685583 +vt 0.456037 0.688321 +vt 0.465242 0.716259 +vt 0.480078 0.717107 +vt 0.439549 0.625418 +vt 0.433445 0.626025 +vt 0.444006 0.63415 +vt 0.45063 0.634569 +vt 0.432325 0.611851 +vt 0.439352 0.61144 +vt 0.453004 0.617171 +vt 0.446286 0.617443 +vt 0.4599 0.610669 +vt 0.466615 0.610684 +vt 0.479996 0.616742 +vt 0.473236 0.616702 +vt 0.459113 0.62467 +vt 0.465972 0.624872 +vt 0.472389 0.635652 +vt 0.479976 0.635783 +vt 0.432546 0.599416 +vt 0.439506 0.599914 +vt 0.446252 0.605548 +vt 0.453107 0.605604 +vt 0.440153 0.58806 +vt 0.43421 0.587135 +vt 0.453165 0.59549 +vt 0.446522 0.594936 +vt 0.459328 0.589976 +vt 0.466099 0.590132 +vt 0.479986 0.596591 +vt 0.473251 0.59656 +vt 0.459931 0.601052 +vt 0.466632 0.601235 +vt 0.473327 0.605783 +vt 0.480005 0.605808 +vt 0.0548234 0.0730323 +vt 0.0505658 0.0540709 +vt 0.0206036 0.101943 +vt 0.0253466 0.121948 +vt 0.128172 0.0394456 +vt 0.130215 0.0573249 +vt 0.0968839 0.0825594 +vt 0.100839 0.100295 +vt 0.139367 0.107954 +vt 0.143436 0.12381 +vt 0.122003 0.167275 +vt 0.115686 0.151241 +vt 0.0684031 0.129321 +vt 0.0735242 0.147694 +vt 0.0395757 0.181962 +vt 0.0443187 0.201967 +vt 0.0949317 0.199447 +vt 0.104746 0.215143 +vt 0.0957049 0.266156 +vt 0.0828583 0.250109 +vt 0.159924 0.168026 +vt 0.166637 0.181665 +vt 0.146098 0.211546 +vt 0.155438 0.224958 +vt 0.190468 0.218251 +vt 0.199234 0.228644 +vt 0.186848 0.260173 +vt 0.198418 0.269614 +vt 0.137723 0.259363 +vt 0.149544 0.272856 +vt 0.134244 0.314299 +vt 0.147091 0.330346 +vt 0.208954 0.146934 +vt 0.213279 0.158019 +vt 0.198267 0.180159 +vt 0.204803 0.191203 +vt 0.244343 0.144141 +vt 0.242078 0.135728 +vt 0.234226 0.159286 +vt 0.238086 0.167918 +vt 0.253135 0.166653 +vt 0.256564 0.172847 +vt 0.251906 0.189551 +vt 0.257012 0.19499 +vt 0.229024 0.187437 +vt 0.234742 0.195651 +vt 0.22682 0.219206 +vt 0.234763 0.226608 +vt 0.18888 0.0419583 +vt 0.189828 0.0567177 +vt 0.1648 0.0703183 +vt 0.166908 0.0861142 +vt 0.231752 0.0616198 +vt 0.231983 0.0712107 +vt 0.213367 0.0751371 +vt 0.214875 0.0867182 +vt 0.234666 0.0996226 +vt 0.236015 0.108939 +vt 0.221486 0.119808 +vt 0.224198 0.130284 +vt 0.1954 0.0981562 +vt 0.197969 0.111069 +vt 0.176908 0.12962 +vt 0.181426 0.143036 +vt 0.190205 0.304754 +vt 0.205931 0.311447 +vt 0.206681 0.345626 +vt 0.226544 0.35072 +vt 0.228449 0.25381 +vt 0.2388 0.259831 +vt 0.236743 0.289919 +vt 0.25026 0.294443 +vt 0.271843 0.272149 +vt 0.283194 0.274282 +vt 0.292009 0.302593 +vt 0.306046 0.303176 +vt 0.255471 0.326417 +vt 0.272265 0.329947 +vt 0.286135 0.366 +vt 0.305998 0.371094 +vt 0.260966 0.219271 +vt 0.254128 0.214898 +vt 0.269061 0.245956 +vt 0.260148 0.242541 +vt 0.273653 0.189359 +vt 0.268917 0.186643 +vt 0.280231 0.207885 +vt 0.27412 0.205857 +vt 0.289232 0.19368 +vt 0.294743 0.194271 +vt 0.299518 0.210677 +vt 0.306047 0.210827 +vt 0.290702 0.228962 +vt 0.283085 0.2276 +vt 0.296915 0.2514 +vt 0.306268 0.251727 +vt 0.759707 0.169755 +vt 0.754525 0.165536 +vt 0.785 0.156541 +vt 0.704193 0.200664 +vt 0.709996 0.191585 +vt 0.73952 0.187045 +vt 0.746618 0.181508 +vt 0.610407 0.203629 +vt 0.634337 0.199078 +vt 0.648445 0.218649 +vt 0.667541 0.214959 +vt 0.652219 0.136262 +vt 0.64998 0.148781 +vt 0.598261 0.169273 +vt 0.59411 0.182395 +vt 0.763483 0.131821 +vt 0.741778 0.134288 +vt 0.719643 0.114648 +vt 0.697856 0.1177 +vt 0.707693 0.227854 +vt 0.694399 0.230291 +vt 0.684619 0.21223 +vt 0.706597 0.265896 +vt 0.694996 0.269434 +vt 0.679595 0.253664 +vt 0.665139 0.25791 +vt 0.656225 0.282847 +vt 0.642307 0.288187 +vt 0.618061 0.272653 +vt 0.601645 0.278056 +vt 0.646756 0.240977 +vt 0.628399 0.245869 +vt 0.604197 0.22856 +vt 0.577509 0.234882 +vt 0.657149 0.315358 +vt 0.662703 0.322902 +vt 0.646656 0.339585 +vt 0.653615 0.345703 +vt 0.702154 0.296609 +vt 0.705315 0.305077 +vt 0.689466 0.3212 +vt 0.694417 0.328991 +vt 0.717239 0.3293 +vt 0.721803 0.337416 +vt 0.711224 0.352815 +vt 0.717335 0.36137 +vt 0.680632 0.344258 +vt 0.686933 0.351484 +vt 0.674491 0.364058 +vt 0.68145 0.370176 +vt 0.748522 0.367333 +vt 0.743298 0.371731 +vt 0.777831 0.400985 +vt 0.77051 0.39809 +vt 0.768309 0.383248 +vt 0.762931 0.377616 +vt 0.771074 0.444351 +vt 0.769626 0.43311 +vt 0.785013 0.42593 +vt 0.730083 0.420161 +vt 0.737949 0.422125 +vt 0.754262 0.445072 +vt 0.76041 0.448665 +vt 0.713626 0.384041 +vt 0.706848 0.375189 +vt 0.708634 0.402234 +vt 0.701838 0.394219 +vt 0.778426 0.18053 +vt 0.771946 0.18222 +vt 0.755074 0.177053 +vt 0.782664 0.196429 +vt 0.780228 0.19727 +vt 0.773133 0.192005 +vt 0.769456 0.194738 +vt 0.773467 0.203424 +vt 0.771265 0.207039 +vt 0.760381 0.206881 +vt 0.75791 0.21253 +vt 0.755292 0.192111 +vt 0.750802 0.197538 +vt 0.728783 0.200994 +vt 0.724884 0.209053 +vt 0.741367 0.217153 +vt 0.73908 0.225118 +vt 0.717932 0.235324 +vt 0.717034 0.244547 +vt 0.766297 0.221405 +vt 0.764899 0.227582 +vt 0.752588 0.23305 +vt 0.751373 0.240923 +vt 0.762343 0.248549 +vt 0.761631 0.2564 +vt 0.750083 0.26547 +vt 0.750115 0.273898 +vt 0.73583 0.250255 +vt 0.735506 0.259194 +vt 0.718157 0.272219 +vt 0.719526 0.281239 +vt 0.737432 0.285235 +vt 0.738689 0.293657 +vt 0.726096 0.30675 +vt 0.729027 0.314871 +vt 0.761031 0.280276 +vt 0.761065 0.288186 +vt 0.752061 0.298373 +vt 0.753188 0.306313 +vt 0.76264 0.311172 +vt 0.763518 0.318636 +vt 0.75843 0.329364 +vt 0.760629 0.336965 +vt 0.744809 0.317749 +vt 0.747348 0.325635 +vt 0.739879 0.338625 +vt 0.744021 0.346727 +vt 0.756786 0.349021 +vt 0.760289 0.356618 +vt 0.757843 0.370832 +vt 0.767855 0.340558 +vt 0.769865 0.347434 +vt 0.768697 0.358151 +vt 0.771747 0.364005 +vt 0.779624 0.36749 +vt 0.777008 0.364286 +vt 0.781655 0.375429 +vt 0.785044 0.376198 +vt 0.772204 0.375402 +vt 0.776437 0.379189 +vt 0.779525 0.390189 +vt 0.7852 0.391132 +vt 0.294865 0.069273 +vt 0.30043 0.0688405 +vt 0.279667 0.0621023 +vt 0.28625 0.0614953 +vt 0.298599 0.0844607 +vt 0.302305 0.0840285 +vt 0.288008 0.0789387 +vt 0.292323 0.0779227 +vt 0.288381 0.0877781 +vt 0.28552 0.0897183 +vt 0.276765 0.0842503 +vt 0.273951 0.0870858 +vt 0.278673 0.0717254 +vt 0.273729 0.0731469 +vt 0.253337 0.0645302 +vt 0.25992 0.0639232 +vt 0.262878 0.0822186 +vt 0.261129 0.0874647 +vt 0.248289 0.0869807 +vt 0.248308 0.0946498 +vt 0.278716 0.0976236 +vt 0.277171 0.100923 +vt 0.268957 0.0990669 +vt 0.268251 0.103852 +vt 0.274275 0.116236 +vt 0.274519 0.112124 +vt 0.268182 0.119003 +vt 0.268643 0.124165 +vt 0.259675 0.105447 +vt 0.259933 0.111746 +vt 0.250795 0.117615 +vt 0.252119 0.125147 +vt 0.263507 0.136485 +vt 0.262435 0.130471 +vt 0.2591 0.15303 +vt 0.257038 0.146576 +vt 0.27493 0.12867 +vt 0.27559 0.132687 +vt 0.272403 0.143396 +vt 0.271165 0.138926 +vt 0.278743 0.143571 +vt 0.280276 0.146601 +vt 0.277622 0.154543 +vt 0.279923 0.157209 +vt 0.270354 0.157173 +vt 0.268253 0.152725 +vt 0.270383 0.172927 +vt 0.267092 0.169083 +vt 0.278492 0.166781 +vt 0.281899 0.168492 +vt 0.282271 0.179452 +vt 0.286747 0.180383 +vt 0.288621 0.154697 +vt 0.286151 0.15335 +vt 0.288479 0.16194 +vt 0.291787 0.162635 +vt 0.296892 0.156885 +vt 0.299902 0.157192 +vt 0.302366 0.163246 +vt 0.306048 0.163267 +vt 0.293344 0.170777 +vt 0.297501 0.171018 +vt 0.301035 0.181089 +vt 0.305963 0.181062 +vt 0.303852 0.0954881 +vt 0.301555 0.095892 +vt 0.297353 0.091474 +vt 0.294691 0.0925717 +vt 0.304952 0.103426 +vt 0.303604 0.10373 +vt 0.301024 0.100728 +vt 0.299496 0.101554 +vt 0.299415 0.106748 +vt 0.300178 0.105696 +vt 0.295935 0.107006 +vt 0.296273 0.105311 +vt 0.293968 0.100448 +vt 0.29545 0.0988159 +vt 0.286872 0.101931 +vt 0.288229 0.0984483 +vt 0.292674 0.107002 +vt 0.29361 0.109618 +vt 0.292287 0.11254 +vt 0.294106 0.115148 +vt 0.298985 0.112416 +vt 0.298632 0.110794 +vt 0.2973 0.112881 +vt 0.298275 0.114907 +vt 0.301013 0.117395 +vt 0.301851 0.118931 +vt 0.30244 0.12167 +vt 0.301471 0.120273 +vt 0.297553 0.116765 +vt 0.298918 0.118763 +vt 0.300454 0.12287 +vt 0.299064 0.121347 +vt 0.285099 0.128977 +vt 0.285519 0.131455 +vt 0.281247 0.134881 +vt 0.282176 0.13779 +vt 0.294579 0.130396 +vt 0.294708 0.131771 +vt 0.291258 0.135023 +vt 0.290724 0.133294 +vt 0.295663 0.135656 +vt 0.296105 0.136813 +vt 0.293606 0.139498 +vt 0.294654 0.140659 +vt 0.287696 0.138235 +vt 0.288782 0.140175 +vt 0.286038 0.145165 +vt 0.287722 0.147041 +vt 0.29288 0.144681 +vt 0.294548 0.145688 +vt 0.296141 0.1514 +vt 0.29383 0.1507 +vt 0.298255 0.139331 +vt 0.29925 0.13982 +vt 0.298536 0.143015 +vt 0.300008 0.143487 +vt 0.303972 0.140861 +vt 0.302755 0.140681 +vt 0.306336 0.144246 +vt 0.304721 0.144201 +vt 0.302105 0.147899 +vt 0.300103 0.147581 +vt 0.303533 0.152451 +vt 0.306104 0.152508 +vt 0.30568 0.109527 +vt 0.304941 0.109715 +vt 0.303387 0.107231 +vt 0.302538 0.107769 +vt 0.306155 0.114561 +vt 0.305784 0.11464 +vt 0.304479 0.112826 +vt 0.304928 0.11252 +vt 0.304603 0.115495 +vt 0.304831 0.1152 +vt 0.303477 0.114968 +vt 0.303567 0.114279 +vt 0.302672 0.11164 +vt 0.303081 0.110957 +vt 0.300625 0.111412 +vt 0.300815 0.110291 +vt 0.302476 0.1154 +vt 0.302278 0.11432 +vt 0.30186 0.116731 +vt 0.301328 0.115344 +vt 0.304411 0.116942 +vt 0.304529 0.117621 +vt 0.303876 0.11752 +vt 0.304162 0.118429 +vt 0.305318 0.120378 +vt 0.30512 0.119768 +vt 0.305159 0.120964 +vt 0.305456 0.121626 +vt 0.303634 0.118794 +vt 0.304101 0.119838 +vt 0.30378 0.120625 +vt 0.304369 0.121662 +vt 0.305381 0.122376 +vt 0.305642 0.122864 +vt 0.305556 0.123604 +vt 0.305812 0.123943 +vt 0.306048 0.122168 +vt 0.3059 0.121862 +vt 0.306086 0.1229 +vt 0.306213 0.123112 +vt 0.306402 0.122768 +vt 0.306465 0.12282 +vt 0.30657 0.12345 +vt 0.306506 0.123445 +vt 0.306228 0.123765 +vt 0.30635 0.123869 +vt 0.306568 0.124444 +vt 0.306412 0.124427 +vt 0.306395 0.118462 +vt 0.306234 0.118465 +vt 0.305584 0.116861 +vt 0.30581 0.116777 +vt 0.306507 0.121173 +vt 0.306435 0.121143 +vt 0.306249 0.119929 +vt 0.306124 0.119892 +vt 0.306144 0.120965 +vt 0.305996 0.120815 +vt 0.305659 0.119691 +vt 0.305446 0.119535 +vt 0.305752 0.118536 +vt 0.305569 0.118503 +vt 0.305023 0.117175 +vt 0.304909 0.117252 +vt 0.306337 0.124973 +vt 0.306079 0.124864 +vt 0.306041 0.124191 +vt 0.306161 0.126316 +vt 0.305713 0.126179 +vt 0.305507 0.125243 +vt 0.305063 0.124878 +vt 0.30406 0.125039 +vt 0.30329 0.124252 +vt 0.303285 0.122826 +vt 0.305117 0.123976 +vt 0.304643 0.123348 +vt 0.304853 0.122492 +vt 0.289091 0.11064 +vt 0.287941 0.112289 +vt 0.281752 0.109435 +vt 0.280858 0.112402 +vt 0.296279 0.121145 +vt 0.296881 0.120258 +vt 0.291026 0.120223 +vt 0.291625 0.118591 +vt 0.294724 0.12611 +vt 0.295004 0.124744 +vt 0.289968 0.127695 +vt 0.290008 0.125764 +vt 0.285148 0.121341 +vt 0.285523 0.118845 +vt 0.279612 0.122032 +vt 0.279694 0.125346 +vt 0.300157 0.135899 +vt 0.301206 0.135861 +vt 0.301639 0.137855 +vt 0.302617 0.137976 +vt 0.299965 0.132291 +vt 0.301241 0.132413 +vt 0.302385 0.134107 +vt 0.303335 0.134147 +vt 0.304325 0.132671 +vt 0.305131 0.132727 +vt 0.30658 0.134265 +vt 0.305847 0.134248 +vt 0.304083 0.135946 +vt 0.304924 0.136021 +vt 0.306553 0.138275 +vt 0.305588 0.138248 +vt 0.305996 0.128078 +vt 0.305374 0.127952 +vt 0.304954 0.126777 +vt 0.304293 0.12639 +vt 0.30594 0.130251 +vt 0.305194 0.130173 +vt 0.304502 0.128827 +vt 0.303661 0.128528 +vt 0.302533 0.129558 +vt 0.30136 0.129133 +vt 0.300408 0.126846 +vt 0.298931 0.125903 +vt 0.303111 0.126904 +vt 0.302086 0.126183 +vt 0.301651 0.124112 +vt 0.878741 0.898798 +vt 0.871546 0.900675 +vt 0.865831 0.892894 +vt 0.859801 0.896501 +vt 0.842972 0.935112 +vt 0.851399 0.929046 +vt 0.871918 0.927946 +vt 0.878765 0.918061 +vt 0.847393 0.90653 +vt 0.847069 0.910863 +vt 0.833984 0.926105 +vt 0.896806 0.812276 +vt 0.900162 0.821321 +vt 0.880476 0.839424 +vt 0.950354 0.810053 +vt 0.952433 0.820381 +vt 0.928841 0.830431 +vt 0.931057 0.840232 +vt 0.957912 0.851638 +vt 0.959159 0.862335 +vt 0.935158 0.870581 +vt 0.935119 0.881337 +vt 0.908259 0.848725 +vt 0.909597 0.858288 +vt 0.883748 0.875855 +vt 0.909928 0.888801 +vt 0.907976 0.899946 +vt 0.883888 0.908072 +vt 0.960335 0.896235 +vt 0.959556 0.908435 +vt 0.930499 0.915661 +vt 0.92738 0.927625 +vt 0.955239 0.945958 +vt 0.953347 0.95866 +vt 0.915022 0.963875 +vt 0.910272 0.976089 +vt 0.894787 0.933604 +vt 0.887838 0.945032 +vt 0.83238 0.960024 +vt 0.850858 0.948146 +vt 0.846038 0.896642 +vt 0.840443 0.898471 +vt 0.853692 0.899798 +vt 0.836312 0.891589 +vt 0.839552 0.890433 +vt 0.847473 0.890905 +vt 0.851077 0.888696 +vt 0.848223 0.884067 +vt 0.847224 0.885688 +vt 0.856668 0.881572 +vt 0.855225 0.87963 +vt 0.864608 0.884565 +vt 0.861443 0.887927 +vt 0.877527 0.883697 +vt 0.835393 0.884093 +vt 0.838461 0.884232 +vt 0.834405 0.881596 +vt 0.830721 0.881411 +vt 0.830331 0.888503 +vt 0.832864 0.88882 +vt 0.827474 0.885908 +vt 0.830372 0.886145 +vt 0.822454 0.887483 +vt 0.819697 0.886949 +vt 0.818619 0.885017 +vt 0.815534 0.884563 +vt 0.825992 0.883548 +vt 0.822667 0.883355 +vt 0.819617 0.881297 +vt 0.817379 0.881361 +vt 0.703416 0.873089 +vt 0.713984 0.871544 +vt 0.724798 0.886947 +vt 0.735432 0.885308 +vt 0.706315 0.838803 +vt 0.71662 0.838024 +vt 0.72551 0.853492 +vt 0.736051 0.852292 +vt 0.747847 0.835663 +vt 0.758534 0.834847 +vt 0.768685 0.848527 +vt 0.780258 0.84718 +vt 0.745835 0.866894 +vt 0.757035 0.865409 +vt 0.768563 0.880699 +vt 0.78288 0.87934 +vt 0.72394 0.941353 +vt 0.713996 0.942528 +vt 0.738139 0.95828 +vt 0.748095 0.957393 +vt 0.705976 0.907664 +vt 0.716383 0.906017 +vt 0.72995 0.92226 +vt 0.73988 0.921055 +vt 0.75727 0.900642 +vt 0.747068 0.90152 +vt 0.768367 0.919 +vt 0.777176 0.919372 +vt 0.762942 0.937612 +vt 0.753406 0.938268 +vt 0.777964 0.954733 +vt 0.787921 0.953846 +vt 0.78833 0.937712 +vt 0.795361 0.938654 +vt 0.804593 0.956163 +vt 0.810151 0.956935 +vt 0.784721 0.902928 +vt 0.792636 0.906053 +vt 0.800269 0.92368 +vt 0.807327 0.92536 +vt 0.820822 0.915046 +vt 0.814016 0.913766 +vt 0.827304 0.927316 +vt 0.814698 0.941685 +vt 0.821028 0.942059 +vt 0.826823 0.959252 +vt 0.79266 0.859766 +vt 0.805616 0.857693 +vt 0.820556 0.866642 +vt 0.833146 0.865733 +vt 0.791615 0.831573 +vt 0.803117 0.83012 +vt 0.816754 0.842827 +vt 0.829419 0.84166 +vt 0.838273 0.825784 +vt 0.850134 0.824513 +vt 0.867756 0.839596 +vt 0.84508 0.854481 +vt 0.858126 0.85473 +vt 0.870664 0.869547 +vt 0.796908 0.886035 +vt 0.801102 0.889403 +vt 0.808518 0.901248 +vt 0.801789 0.897878 +vt 0.81035 0.887323 +vt 0.812779 0.888478 +vt 0.81102 0.890548 +vt 0.815296 0.89231 +vt 0.82226 0.891633 +vt 0.825755 0.892201 +vt 0.829144 0.895216 +vt 0.833995 0.895041 +vt 0.817061 0.897452 +vt 0.822842 0.898906 +vt 0.834503 0.906046 +vt 0.827997 0.906273 +vt 0.860834 0.875122 +vt 0.852675 0.873444 +vt 0.845753 0.865655 +vt 0.841289 0.879681 +vt 0.845045 0.880286 +vt 0.840148 0.876514 +vt 0.832992 0.876399 +vt 0.826813 0.879075 +vt 0.821848 0.879279 +vt 0.812972 0.877887 +vt 0.808402 0.878867 +vt 0.823351 0.872913 +vt 0.813911 0.874202 +vt 0.795696 0.872243 +vt 0.798338 0.880991 +vt 0.797471 0.879476 +vt 0.798986 0.884393 +vt 0.802639 0.88524 +vt 0.81044 0.881733 +vt 0.813236 0.882291 +vt 0.808103 0.885438 +vt 0.808268 0.884737 +vt 0.775163 0.335074 +vt 0.776074 0.341037 +vt 0.774751 0.350035 +vt 0.776607 0.355242 +vt 0.783446 0.33964 +vt 0.781915 0.339261 +vt 0.779997 0.327259 +vt 0.778255 0.327487 +vt 0.781113 0.359904 +vt 0.781517 0.356582 +vt 0.785005 0.3549 +vt 0.77398 0.314974 +vt 0.77168 0.315559 +vt 0.776426 0.327915 +vt 0.771953 0.286354 +vt 0.774555 0.285969 +vt 0.776345 0.300384 +vt 0.778348 0.300128 +vt 0.780753 0.2853 +vt 0.782328 0.285223 +vt 0.78352 0.299817 +vt 0.785051 0.299806 +vt 0.779938 0.314033 +vt 0.781684 0.313864 +vt 0.785002 0.32716 +vt 0.783349 0.32715 +vt 0.778488 0.225472 +vt 0.777904 0.230683 +vt 0.771968 0.235449 +vt 0.771321 0.24193 +vt 0.783952 0.226293 +vt 0.783718 0.231386 +vt 0.781125 0.23672 +vt 0.780763 0.242876 +vt 0.783229 0.249288 +vt 0.783059 0.256159 +vt 0.779936 0.263271 +vt 0.779577 0.270615 +vt 0.776666 0.249131 +vt 0.776112 0.256235 +vt 0.769779 0.263807 +vt 0.769368 0.271508 +vt 0.77873 0.212678 +vt 0.780285 0.213883 +vt 0.782083 0.221749 +vt 0.780716 0.221445 +vt 0.784258 0.206886 +vt 0.783419 0.207291 +vt 0.780839 0.20411 +vt 0.779433 0.205743 +vt 0.784203 0.218372 +vt 0.784195 0.21551 +vt 0.785166 0.21284 +vt 0.589952 0.378524 +vt 0.562464 0.369358 +vt 0.503596 0.40029 +vt 0.699904 0.415192 +vt 0.672416 0.406025 +vt 0.59639 0.425951 +vt 0.611041 0.478554 +vt 0.559363 0.49426 +vt 0.539068 0.449986 +vt 0.496492 0.479593 +vt 0.520096 0.51421 +vt 0.49126 0.535497 +vt 0.567218 0.531628 +vt 0.53368 0.543203 +vt 0.539945 0.564602 +vt 0.518969 0.572519 +vt 0.508003 0.556798 +vt 0.488199 0.570787 +vt 0.742621 0.481579 +vt 0.75686 0.503708 +vt 0.674716 0.47101 +vt 0.799576 0.570094 +vt 0.813815 0.592223 +vt 0.724563 0.54073 +vt 0.692159 0.585135 +vt 0.642447 0.567049 +vt 0.663266 0.525966 +vt 0.61043 0.524571 +vt 0.783801 0.66591 +vt 0.773796 0.690473 +vt 0.745088 0.617075 +vt 0.743783 0.764161 +vt 0.733778 0.788723 +vt 0.718037 0.696979 +vt 0.654681 0.70942 +vt 0.637352 0.665016 +vt 0.688464 0.648652 +vt 0.652274 0.615768 +vt 0.614096 0.633582 +vt 0.58976 0.612971 +vt 0.592651 0.669933 +vt 0.581128 0.641706 +vt 0.554254 0.643566 +vt 0.546564 0.627269 +vt 0.566304 0.622624 +vt 0.550269 0.609995 +vt 0.600252 0.559857 +vt 0.566431 0.559956 +vt 0.616073 0.5955 +vt 0.584858 0.584479 +vt 0.567488 0.600334 +vt 0.548349 0.593151 +vt 0.559627 0.579734 +vt 0.539909 0.579093 +vt 0.638611 0.824334 +vt 0.606889 0.836204 +vt 0.660293 0.765617 +vt 0.511722 0.871815 +vt 0.560526 0.808921 +vt 0.502489 0.781452 +vt 0.534269 0.73899 +vt 0.588474 0.755882 +vt 0.597048 0.708575 +vt 0.550671 0.699744 +vt 0.556198 0.667332 +vt 0.494899 0.716259 +vt 0.515639 0.685581 +vt 0.490019 0.667888 +vt 0.505161 0.648163 +vt 0.527442 0.659704 +vt 0.532988 0.641084 +vt 0.515991 0.633866 +vt 0.526553 0.625614 +vt 0.487566 0.635652 +vt 0.500872 0.624631 +vt 0.486757 0.616702 +vt 0.500102 0.610664 +vt 0.513712 0.617366 +vt 0.527672 0.611787 +vt 0.513748 0.605517 +vt 0.527453 0.599371 +vt 0.486682 0.605783 +vt 0.50007 0.60105 +vt 0.486722 0.59656 +vt 0.50062 0.590024 +vt 0.513473 0.595011 +vt 0.525783 0.587631 +vt 0.586653 0.121946 +vt 0.591396 0.101941 +vt 0.561433 0.0540682 +vt 0.567681 0.201967 +vt 0.572424 0.181962 +vt 0.543596 0.12932 +vt 0.496306 0.151233 +vt 0.472633 0.107947 +vt 0.515114 0.0825565 +vt 0.483825 0.0394428 +vt 0.516294 0.266158 +vt 0.52914 0.25011 +vt 0.517066 0.199446 +vt 0.477753 0.3143 +vt 0.464906 0.330348 +vt 0.474275 0.259362 +vt 0.425143 0.260158 +vt 0.421538 0.218218 +vt 0.4659 0.21154 +vt 0.452076 0.168013 +vt 0.413738 0.18014 +vt 0.403047 0.146919 +vt 0.3852 0.219117 +vt 0.382982 0.187399 +vt 0.360097 0.189474 +vt 0.358882 0.166536 +vt 0.377778 0.159267 +vt 0.369942 0.135702 +vt 0.447201 0.0703154 +vt 0.423117 0.0419556 +vt 0.435093 0.129602 +vt 0.4166 0.0981477 +vt 0.390522 0.119793 +vt 0.377353 0.0996072 +vt 0.398635 0.0751327 +vt 0.38025 0.061617 +vt 0.405316 0.345628 +vt 0.385452 0.350721 +vt 0.421791 0.304754 +vt 0.325862 0.366001 +vt 0.356531 0.326417 +vt 0.320081 0.302593 +vt 0.340324 0.272142 +vt 0.375268 0.289909 +vt 0.383562 0.253748 +vt 0.35189 0.242493 +vt 0.357884 0.214831 +vt 0.315571 0.2514 +vt 0.329081 0.227592 +vt 0.312567 0.210677 +vt 0.322751 0.193658 +vt 0.337894 0.205808 +vt 0.343097 0.186418 +vt 0.810294 0.169755 +vt 0.850359 0.114648 +vt 0.806518 0.131821 +vt 0.971739 0.169274 +vt 0.917781 0.136263 +vt 0.921552 0.218631 +vt 0.959593 0.203629 +vt 0.830487 0.18705 +vt 0.865808 0.200662 +vt 0.862308 0.227855 +vt 0.965804 0.22856 +vt 0.992491 0.234882 +vt 0.923244 0.240973 +vt 0.951939 0.272653 +vt 0.968356 0.278055 +vt 0.913774 0.282844 +vt 0.890404 0.253661 +vt 0.863404 0.265895 +vt 0.923344 0.339584 +vt 0.916386 0.345702 +vt 0.91285 0.315355 +vt 0.89551 0.364057 +vt 0.888551 0.370175 +vt 0.889369 0.344263 +vt 0.858776 0.352903 +vt 0.852768 0.329467 +vt 0.880535 0.32121 +vt 0.867845 0.296607 +vt 0.821498 0.367676 +vt 0.868163 0.394219 +vt 0.863153 0.375196 +vt 0.81574 0.445071 +vt 0.839919 0.42016 +vt 0.798928 0.44435 +vt 0.801863 0.383301 +vt 0.792424 0.400985 +vt 0.791579 0.18053 +vt 0.841219 0.200997 +vt 0.845118 0.209056 +vt 0.814711 0.192109 +vt 0.809626 0.206826 +vt 0.79656 0.203331 +vt 0.796883 0.191998 +vt 0.787411 0.196429 +vt 0.828634 0.217149 +vt 0.834171 0.250254 +vt 0.819915 0.265457 +vt 0.807673 0.248518 +vt 0.817419 0.233018 +vt 0.803738 0.221217 +vt 0.843911 0.306782 +vt 0.832568 0.285233 +vt 0.830139 0.339111 +vt 0.825999 0.347261 +vt 0.8252 0.317928 +vt 0.811576 0.329631 +vt 0.80737 0.311489 +vt 0.817945 0.298403 +vt 0.80899 0.280248 +vt 0.813228 0.349375 +vt 0.790839 0.390189 +vt 0.797925 0.375441 +vt 0.788428 0.375429 +vt 0.793007 0.36435 +vt 0.801319 0.358316 +vt 0.802158 0.341198 +vt 0.332327 0.0621015 +vt 0.325745 0.0614947 +vt 0.311647 0.0688385 +vt 0.352075 0.0639217 +vt 0.333407 0.0717162 +vt 0.335413 0.0842253 +vt 0.32389 0.0877493 +vt 0.319836 0.0779118 +vt 0.309894 0.0840236 +vt 0.363754 0.0869718 +vt 0.349211 0.0822056 +vt 0.361258 0.117579 +vt 0.352429 0.105426 +vt 0.344001 0.118983 +vt 0.337765 0.112099 +vt 0.343226 0.0990447 +vt 0.333573 0.0975813 +vt 0.355006 0.146532 +vt 0.349668 0.130446 +vt 0.344952 0.168765 +vt 0.343841 0.152613 +vt 0.334543 0.154481 +vt 0.33352 0.143557 +vt 0.34101 0.138912 +vt 0.33735 0.128656 +vt 0.329763 0.179299 +vt 0.333596 0.166563 +vt 0.310902 0.18109 +vt 0.318703 0.170758 +vt 0.309733 0.163248 +vt 0.315301 0.156889 +vt 0.32367 0.161905 +vt 0.326098 0.153322 +vt 0.314989 0.0914571 +vt 0.308597 0.0954824 +vt 0.324195 0.0983948 +vt 0.317083 0.0987829 +vt 0.316808 0.106963 +vt 0.316443 0.10527 +vt 0.312629 0.105664 +vt 0.311621 0.100712 +vt 0.307771 0.103422 +vt 0.330668 0.109399 +vt 0.323505 0.110594 +vt 0.332799 0.122007 +vt 0.327043 0.11882 +vt 0.322715 0.125751 +vt 0.317875 0.124728 +vt 0.32111 0.118566 +vt 0.316019 0.120234 +vt 0.33115 0.134873 +vt 0.32746 0.128966 +vt 0.326339 0.145129 +vt 0.324844 0.138228 +vt 0.319082 0.139491 +vt 0.317187 0.13564 +vt 0.321987 0.133296 +vt 0.318295 0.13039 +vt 0.318529 0.150689 +vt 0.319643 0.144662 +vt 0.308689 0.152454 +vt 0.312366 0.147588 +vt 0.307952 0.144205 +vt 0.310123 0.140685 +vt 0.314145 0.143015 +vt 0.314573 0.139291 +vt 0.309475 0.107218 +vt 0.307235 0.109524 +vt 0.312326 0.111353 +vt 0.312124 0.110237 +vt 0.309908 0.110933 +vt 0.309483 0.114267 +vt 0.308237 0.115204 +vt 0.308099 0.112513 +vt 0.306913 0.114559 +vt 0.311165 0.116708 +vt 0.311677 0.115309 +vt 0.310749 0.11428 +vt 0.309302 0.120617 +vt 0.308728 0.121656 +vt 0.309444 0.118781 +vt 0.307951 0.120961 +vt 0.307986 0.119765 +vt 0.309203 0.117508 +vt 0.308668 0.116955 +vt 0.307567 0.123604 +vt 0.307315 0.123946 +vt 0.307737 0.122373 +vt 0.306724 0.124427 +vt 0.306906 0.123764 +vt 0.306633 0.123444 +vt 0.306733 0.122768 +vt 0.307043 0.122899 +vt 0.307222 0.121863 +vt 0.307276 0.116776 +vt 0.306707 0.118461 +vt 0.308059 0.117198 +vt 0.307345 0.118544 +vt 0.30745 0.119691 +vt 0.306975 0.120965 +vt 0.306864 0.119929 +vt 0.306623 0.121172 +vt 0.307091 0.124193 +vt 0.3068 0.124972 +vt 0.308255 0.122488 +vt 0.308003 0.123971 +vt 0.309797 0.122813 +vt 0.309052 0.125029 +vt 0.307625 0.125238 +vt 0.306984 0.126314 +vt 0.310567 0.118094 +vt 0.310347 0.120366 +vt 0.312294 0.112597 +vt 0.313437 0.114031 +vt 0.316736 0.108826 +vt 0.318001 0.112075 +vt 0.31361 0.116827 +vt 0.312755 0.120533 +vt 0.31132 0.137829 +vt 0.31283 0.135856 +vt 0.307506 0.138251 +vt 0.309009 0.135948 +vt 0.307311 0.13425 +vt 0.30885 0.132673 +vt 0.310691 0.134104 +vt 0.313073 0.132287 +vt 0.308182 0.12677 +vt 0.307152 0.128077 +vt 0.311405 0.124096 +vt 0.309993 0.126895 +vt 0.312636 0.126836 +vt 0.31058 0.129551 +vt 0.308646 0.128824 +vt 0.307312 0.13025 +vt 0.134741 0.897372 +vt 0.123818 0.902577 +vt 0.149052 0.909116 +vt 0.128039 0.927803 +vt 0.151261 0.935128 +vt 0.123864 0.851854 +vt 0.109916 0.827785 +vt 0.120639 0.883074 +vt 0.0990923 0.858667 +vt 0.0741334 0.876091 +vt 0.053076 0.858287 +vt 0.08064 0.841498 +vt 0.0619869 0.821944 +vt 0.0971181 0.892942 +vt 0.158383 0.957471 +vt 0.144276 0.946157 +vt 0.109229 0.931423 +vt 0.0938029 0.955364 +vt 0.0983172 0.965752 +vt 0.0594861 0.938115 +vt 0.0788375 0.91443 +vt 0.0508158 0.896618 +vt 0.155128 0.901813 +vt 0.125564 0.889706 +vt 0.138448 0.893043 +vt 0.142594 0.887918 +vt 0.150127 0.891088 +vt 0.149715 0.895351 +vt 0.159314 0.895721 +vt 0.1617 0.887953 +vt 0.157888 0.889819 +vt 0.174897 0.887958 +vt 0.176895 0.888004 +vt 0.169566 0.889059 +vt 0.176632 0.889654 +vt 0.172963 0.891413 +vt 0.165451 0.890866 +vt 0.162835 0.893169 +vt 0.261113 0.899336 +vt 0.283276 0.886757 +vt 0.217801 0.891691 +vt 0.241054 0.879608 +vt 0.22079 0.861631 +vt 0.24174 0.849691 +vt 0.262194 0.86738 +vt 0.281923 0.853876 +vt 0.237618 0.965614 +vt 0.247223 0.966843 +vt 0.270935 0.952718 +vt 0.208802 0.961928 +vt 0.199197 0.960699 +vt 0.232324 0.947102 +vt 0.217632 0.927742 +vt 0.2384 0.912359 +vt 0.255372 0.932794 +vt 0.279614 0.919704 +vt 0.183892 0.959489 +vt 0.17879 0.959085 +vt 0.198849 0.944006 +vt 0.163485 0.957875 +vt 0.174919 0.943769 +vt 0.164591 0.92893 +vt 0.176222 0.917525 +vt 0.187973 0.92875 +vt 0.202078 0.910979 +vt 0.1631 0.876 +vt 0.173454 0.877172 +vt 0.197767 0.871743 +vt 0.131838 0.878135 +vt 0.153756 0.865875 +vt 0.134933 0.852384 +vt 0.160902 0.840754 +vt 0.178456 0.855922 +vt 0.201317 0.845361 +vt 0.187258 0.903875 +vt 0.192542 0.892938 +vt 0.159564 0.908772 +vt 0.164914 0.909241 +vt 0.174788 0.901559 +vt 0.16506 0.898855 +vt 0.171875 0.895352 +vt 0.181086 0.895118 +vt 0.182904 0.891654 +vt 0.152681 0.875564 +vt 0.139714 0.882944 +vt 0.193824 0.882843 +vt 0.170879 0.882315 +vt 0.179835 0.886208 +vt 0.16824 0.886555 +vt 0.156831 0.884468 +vt 0.152405 0.887035 +vt 0.19263 0.887824 +vt 0.185222 0.890147 +vt 0.180821 0.888387 +vt 0.79526 0.350473 +vt 0.794851 0.335707 +vt 0.788904 0.359922 +vt 0.790008 0.32732 +vt 0.786557 0.33964 +vt 0.798334 0.316191 +vt 0.786656 0.32715 +vt 0.790072 0.314092 +vt 0.78658 0.299817 +vt 0.789431 0.285299 +vt 0.793676 0.300484 +vt 0.798071 0.286342 +vt 0.798064 0.235325 +vt 0.791559 0.225283 +vt 0.800253 0.263768 +vt 0.793358 0.2491 +vt 0.790172 0.263259 +vt 0.786998 0.249287 +vt 0.788974 0.236687 +vt 0.786512 0.226287 +vt 0.791309 0.212491 +vt 0.78626 0.218367 +vt 0.789223 0.204095 +vt 0.785829 0.206886 +vt 0.428978 0.382737 +vt 0.443943 0.464369 +vt 0.421719 0.503804 +vt 0.376453 0.485562 +vt 0.394311 0.437147 +vt 0.32846 0.415987 +vt 0.455556 0.524848 +vt 0.462468 0.564025 +vt 0.451261 0.581746 +vt 0.449916 0.577093 +vt 0.431154 0.567941 +vt 0.440025 0.54969 +vt 0.410662 0.536766 +vt 0.318323 0.473296 +vt 0.251544 0.473527 +vt 0.372444 0.526931 +vt 0.324247 0.523776 +vt 0.339639 0.562219 +vt 0.293568 0.574505 +vt 0.267276 0.53146 +vt 0.200566 0.553678 +vt 0.241043 0.599199 +vt 0.192954 0.639214 +vt 0.326248 0.604225 +vt 0.289148 0.630433 +vt 0.33381 0.647779 +vt 0.312982 0.685518 +vt 0.255811 0.670696 +vt 0.22948 0.727793 +vt 0.381718 0.605816 +vt 0.358201 0.62207 +vt 0.417556 0.605641 +vt 0.424977 0.605558 +vt 0.401732 0.615621 +vt 0.419106 0.621257 +vt 0.425995 0.619774 +vt 0.408912 0.634837 +vt 0.385988 0.63123 +vt 0.372519 0.654544 +vt 0.407587 0.561548 +vt 0.377708 0.558954 +vt 0.427706 0.579092 +vt 0.430358 0.581105 +vt 0.410938 0.578795 +vt 0.419969 0.590827 +vt 0.42664 0.592195 +vt 0.402518 0.596202 +vt 0.388462 0.581377 +vt 0.360272 0.589007 +vt 0.300376 0.736431 +vt 0.306396 0.79508 +vt 0.363915 0.68795 +vt 0.365188 0.731414 +vt 0.4159 0.718741 +vt 0.43953 0.759996 +vt 0.382847 0.781634 +vt 0.421366 0.838198 +vt 0.403964 0.654426 +vt 0.405474 0.682511 +vt 0.426266 0.635406 +vt 0.429128 0.633128 +vt 0.429129 0.649557 +vt 0.449065 0.640372 +vt 0.461702 0.657498 +vt 0.437556 0.671888 +vt 0.4535 0.700609 +vt 0.439095 0.629382 +vt 0.439458 0.61452 +vt 0.453115 0.608105 +vt 0.466585 0.613458 +vt 0.452796 0.620731 +vt 0.465532 0.62966 +vt 0.439374 0.602718 +vt 0.4401 0.591261 +vt 0.452162 0.585881 +vt 0.466366 0.59355 +vt 0.453204 0.598182 +vt 0.46664 0.603509 +vt 0.0663222 0.0316632 +vt 0.0863048 0.0282414 +vt 0.0353858 0.077451 +vt 0.146252 0.0179763 +vt 0.166235 0.0145546 +vt 0.11204 0.0606664 +vt 0.151918 0.0883737 +vt 0.127296 0.128908 +vt 0.0824769 0.105336 +vt 0.0543245 0.154741 +vt 0.104701 0.174846 +vt 0.087525 0.224539 +vt 0.168113 0.148037 +vt 0.152511 0.189281 +vt 0.193928 0.198699 +vt 0.188025 0.238749 +vt 0.141145 0.234822 +vt 0.135602 0.28546 +vt 0.215025 0.132557 +vt 0.20333 0.162854 +vt 0.246409 0.12592 +vt 0.237985 0.146904 +vt 0.254815 0.156183 +vt 0.252133 0.177811 +vt 0.231201 0.172836 +vt 0.227517 0.202914 +vt 0.198898 0.0332954 +vt 0.209786 0.0395424 +vt 0.177494 0.0544083 +vt 0.242449 0.0582833 +vt 0.222388 0.0671948 +vt 0.241347 0.0923729 +vt 0.228082 0.108778 +vt 0.204463 0.085479 +vt 0.186095 0.112956 +vt 0.187357 0.282374 +vt 0.196484 0.325903 +vt 0.227021 0.236222 +vt 0.231535 0.271811 +vt 0.265087 0.257178 +vt 0.280703 0.287296 +vt 0.244628 0.308043 +vt 0.269288 0.345338 +vt 0.252548 0.201925 +vt 0.256615 0.228435 +vt 0.267578 0.177765 +vt 0.271105 0.195949 +vt 0.285365 0.186273 +vt 0.293928 0.201816 +vt 0.278072 0.216414 +vt 0.289284 0.239327 +vt 0.769564 0.162896 +vt 0.722769 0.192185 +vt 0.58996 0.195517 +vt 0.630076 0.211265 +vt 0.67607 0.120752 +vt 0.626234 0.152433 +vt 0.741439 0.123123 +vt 0.696595 0.220217 +vt 0.693757 0.259726 +vt 0.672887 0.287443 +vt 0.676491 0.296567 +vt 0.638063 0.27794 +vt 0.664073 0.247403 +vt 0.62699 0.234681 +vt 0.651263 0.328117 +vt 0.695357 0.308962 +vt 0.721297 0.317918 +vt 0.713904 0.340983 +vt 0.684588 0.333037 +vt 0.677313 0.354726 +vt 0.737552 0.362884 +vt 0.772215 0.392472 +vt 0.766558 0.452258 +vt 0.777344 0.435593 +vt 0.715431 0.410248 +vt 0.743085 0.43181 +vt 0.708962 0.36432 +vt 0.704451 0.385249 +vt 0.768602 0.177885 +vt 0.778858 0.193729 +vt 0.777778 0.203349 +vt 0.767717 0.204463 +vt 0.765318 0.191298 +vt 0.742987 0.195273 +vt 0.751533 0.211061 +vt 0.730034 0.225286 +vt 0.774403 0.219181 +vt 0.771401 0.217682 +vt 0.760055 0.226412 +vt 0.76757 0.241488 +vt 0.75643 0.256573 +vt 0.744402 0.241048 +vt 0.726929 0.260766 +vt 0.743645 0.275105 +vt 0.73153 0.295812 +vt 0.765544 0.27185 +vt 0.756479 0.289106 +vt 0.768746 0.301884 +vt 0.765564 0.302661 +vt 0.76022 0.320066 +vt 0.748123 0.307939 +vt 0.742033 0.327924 +vt 0.757278 0.338952 +vt 0.756941 0.359684 +vt 0.770522 0.330441 +vt 0.768407 0.331745 +vt 0.767981 0.349487 +vt 0.775601 0.357419 +vt 0.779004 0.370377 +vt 0.770059 0.366844 +vt 0.775281 0.38322 +vt 0.293849 0.0650992 +vt 0.297714 0.0809326 +vt 0.293189 0.0895829 +vt 0.282908 0.0859929 +vt 0.286025 0.0749074 +vt 0.270158 0.0682765 +vt 0.270031 0.082816 +vt 0.25555 0.0834791 +vt 0.28367 0.0981863 +vt 0.273807 0.0978158 +vt 0.278054 0.110299 +vt 0.27125 0.115005 +vt 0.264254 0.101572 +vt 0.255198 0.110795 +vt 0.265272 0.124148 +vt 0.259657 0.137977 +vt 0.277128 0.1249 +vt 0.272954 0.133354 +vt 0.279848 0.138895 +vt 0.27798 0.148834 +vt 0.269569 0.145411 +vt 0.267371 0.160673 +vt 0.277745 0.160599 +vt 0.279984 0.173015 +vt 0.285849 0.149181 +vt 0.287001 0.157611 +vt 0.295075 0.153794 +vt 0.299321 0.159983 +vt 0.290585 0.166289 +vt 0.29683 0.175639 +vt 0.300887 0.0934335 +vt 0.303167 0.101988 +vt 0.301892 0.106347 +vt 0.29828 0.105321 +vt 0.298456 0.0996462 +vt 0.292071 0.0983819 +vt 0.294289 0.105789 +vt 0.291982 0.109321 +vt 0.299662 0.110373 +vt 0.297804 0.111611 +vt 0.301072 0.116234 +vt 0.301158 0.118771 +vt 0.297221 0.114632 +vt 0.298209 0.119068 +vt 0.287479 0.127055 +vt 0.282995 0.131576 +vt 0.298362 0.130079 +vt 0.296552 0.129571 +vt 0.292598 0.13161 +vt 0.297053 0.134235 +vt 0.298653 0.134127 +vt 0.294482 0.137404 +vt 0.289062 0.1355 +vt 0.286675 0.141476 +vt 0.29306 0.141943 +vt 0.293112 0.147632 +vt 0.29841 0.137967 +vt 0.29909 0.137484 +vt 0.29828 0.141027 +vt 0.302146 0.139159 +vt 0.303577 0.142378 +vt 0.299116 0.145224 +vt 0.301555 0.150019 +vt 0.304648 0.108306 +vt 0.305619 0.113505 +vt 0.305368 0.115942 +vt 0.304221 0.114626 +vt 0.304076 0.111651 +vt 0.30198 0.110496 +vt 0.302901 0.114173 +vt 0.301742 0.114711 +vt 0.304694 0.116879 +vt 0.304129 0.117162 +vt 0.3052 0.119334 +vt 0.305106 0.120311 +vt 0.303703 0.118064 +vt 0.303663 0.119658 +vt 0.305266 0.121675 +vt 0.305476 0.123021 +vt 0.305847 0.12125 +vt 0.305802 0.121345 +vt 0.306009 0.122415 +vt 0.306321 0.121962 +vt 0.306327 0.12233 +vt 0.306455 0.123135 +vt 0.306154 0.123347 +vt 0.306304 0.124116 +vt 0.306152 0.117635 +vt 0.306408 0.120592 +vt 0.306302 0.121547 +vt 0.305934 0.120349 +vt 0.306032 0.119237 +vt 0.305402 0.117814 +vt 0.306169 0.124609 +vt 0.305814 0.125829 +vt 0.304489 0.125968 +vt 0.303658 0.123986 +vt 0.305278 0.124622 +vt 0.304976 0.123256 +vt 0.285519 0.109516 +vt 0.29439 0.119279 +vt 0.297243 0.124764 +vt 0.292554 0.125033 +vt 0.288633 0.118396 +vt 0.28246 0.120033 +vt 0.30106 0.13677 +vt 0.301305 0.133239 +vt 0.303418 0.131885 +vt 0.303417 0.131191 +vt 0.305119 0.133439 +vt 0.303289 0.134986 +vt 0.304808 0.137035 +vt 0.305461 0.127481 +vt 0.30523 0.129594 +vt 0.303461 0.130516 +vt 0.301517 0.128359 +vt 0.3038 0.127948 +vt 0.302385 0.125621 +vt 0.872666 0.893909 +vt 0.834318 0.932396 +vt 0.855668 0.933626 +vt 0.840667 0.913341 +vt 0.920698 0.801529 +vt 0.906955 0.802411 +vt 0.887247 0.821763 +vt 0.975668 0.798001 +vt 0.961925 0.798883 +vt 0.939422 0.820519 +vt 0.981273 0.842283 +vt 0.9688 0.841696 +vt 0.946833 0.861224 +vt 0.918565 0.839808 +vt 0.897302 0.857303 +vt 0.922871 0.879687 +vt 0.896901 0.898405 +vt 0.973524 0.885817 +vt 0.986878 0.886566 +vt 0.946073 0.906118 +vt 0.987522 0.93936 +vt 0.972183 0.936323 +vt 0.936315 0.955143 +vt 0.913512 0.924859 +vt 0.873929 0.941614 +vt 0.834355 0.897039 +vt 0.847043 0.899338 +vt 0.83224 0.891387 +vt 0.831834 0.890751 +vt 0.841605 0.891451 +vt 0.839141 0.886767 +vt 0.842198 0.887019 +vt 0.852191 0.883887 +vt 0.854096 0.889731 +vt 0.868961 0.885788 +vt 0.836474 0.882956 +vt 0.831869 0.887475 +vt 0.823762 0.888757 +vt 0.822246 0.889496 +vt 0.820775 0.886245 +vt 0.828429 0.884831 +vt 0.822938 0.882308 +vt 0.694494 0.857128 +vt 0.693711 0.865897 +vt 0.713753 0.88004 +vt 0.69763 0.822054 +vt 0.696846 0.830823 +vt 0.715796 0.846334 +vt 0.739046 0.82085 +vt 0.738167 0.828634 +vt 0.757933 0.842259 +vt 0.735477 0.860298 +vt 0.756836 0.873529 +vt 0.701928 0.935163 +vt 0.699814 0.926571 +vt 0.726042 0.950245 +vt 0.693473 0.900794 +vt 0.691359 0.892202 +vt 0.718028 0.914763 +vt 0.735998 0.894013 +vt 0.757855 0.909887 +vt 0.741688 0.930121 +vt 0.765381 0.946608 +vt 0.778598 0.928364 +vt 0.797108 0.946997 +vt 0.777815 0.890932 +vt 0.792384 0.91371 +vt 0.807593 0.905952 +vt 0.820673 0.92095 +vt 0.807789 0.932904 +vt 0.821139 0.950179 +vt 0.780138 0.854443 +vt 0.806429 0.863732 +vt 0.780462 0.819645 +vt 0.780425 0.826021 +vt 0.803715 0.837173 +vt 0.824807 0.819782 +vt 0.823094 0.812351 +vt 0.852752 0.832303 +vt 0.830703 0.848503 +vt 0.858919 0.861283 +vt 0.797722 0.890605 +vt 0.811305 0.886583 +vt 0.813164 0.886766 +vt 0.81014 0.88858 +vt 0.820597 0.890128 +vt 0.825049 0.893359 +vt 0.813312 0.893519 +vt 0.822107 0.901875 +vt 0.860094 0.878662 +vt 0.856081 0.870649 +vt 0.844564 0.881899 +vt 0.842467 0.882394 +vt 0.84383 0.878427 +vt 0.831394 0.880258 +vt 0.820601 0.878208 +vt 0.833362 0.874587 +vt 0.810694 0.871983 +vt 0.804506 0.87824 +vt 0.795568 0.881683 +vt 0.815921 0.883699 +vt 0.811559 0.880887 +vt 0.805878 0.885848 +vt 0.811167 0.885333 +vt 0.774576 0.342508 +vt 0.781783 0.333492 +vt 0.783234 0.358324 +vt 0.774144 0.321842 +vt 0.774342 0.293407 +vt 0.779262 0.278021 +vt 0.782132 0.292592 +vt 0.778167 0.30728 +vt 0.781653 0.320632 +vt 0.775606 0.230142 +vt 0.784798 0.222034 +vt 0.782761 0.231172 +vt 0.78431 0.242872 +vt 0.781809 0.256106 +vt 0.77913 0.24271 +vt 0.773522 0.256198 +vt 0.779662 0.217053 +vt 0.782938 0.205328 +vt 0.783203 0.221909 +vt 0.784795 0.215389 +vt 0.505532 0.376136 +vt 0.544659 0.43087 +vt 0.606833 0.40696 +vt 0.624637 0.462269 +vt 0.56766 0.47872 +vt 0.576557 0.520263 +vt 0.498133 0.462064 +vt 0.524235 0.500162 +vt 0.492349 0.523579 +vt 0.510407 0.54807 +vt 0.538963 0.533003 +vt 0.545423 0.558075 +vt 0.52176 0.566603 +vt 0.52811 0.578581 +vt 0.488784 0.563656 +vt 0.502901 0.577065 +vt 0.694073 0.454509 +vt 0.682106 0.515527 +vt 0.747649 0.533345 +vt 0.715838 0.581775 +vt 0.660923 0.561123 +vt 0.632299 0.593434 +vt 0.624676 0.512858 +vt 0.613897 0.552705 +vt 0.773827 0.616984 +vt 0.710986 0.652838 +vt 0.740736 0.705937 +vt 0.674184 0.721501 +vt 0.655487 0.672248 +vt 0.605789 0.678525 +vt 0.672576 0.616268 +vt 0.630123 0.637015 +vt 0.602729 0.613753 +vt 0.576185 0.624932 +vt 0.592751 0.64669 +vt 0.562002 0.648962 +vt 0.553875 0.630107 +vt 0.53651 0.6321 +vt 0.531619 0.63009 +vt 0.558733 0.610666 +vt 0.541679 0.617225 +vt 0.534506 0.616038 +vt 0.575501 0.552805 +vt 0.567997 0.575961 +vt 0.596846 0.581077 +vt 0.577601 0.599538 +vt 0.556218 0.591534 +vt 0.542219 0.601771 +vt 0.534861 0.602079 +vt 0.545323 0.575576 +vt 0.538733 0.587605 +vt 0.532499 0.589235 +vt 0.680649 0.782779 +vt 0.60022 0.772224 +vt 0.567799 0.828364 +vt 0.504704 0.801232 +vt 0.480005 0.802912 +vt 0.540241 0.754921 +vt 0.496567 0.73079 +vt 0.480071 0.731726 +vt 0.610595 0.721319 +vt 0.558719 0.712332 +vt 0.564536 0.676206 +vt 0.53203 0.66823 +vt 0.519457 0.697384 +vt 0.490987 0.678464 +vt 0.480033 0.678985 +vt 0.507131 0.656136 +vt 0.487992 0.642315 +vt 0.479978 0.642501 +vt 0.5374 0.646317 +vt 0.51784 0.639204 +vt 0.526462 0.629185 +vt 0.513811 0.620853 +vt 0.501474 0.629441 +vt 0.47999 0.620494 +vt 0.486855 0.620449 +vt 0.500143 0.613604 +vt 0.48668 0.608072 +vt 0.480005 0.608086 +vt 0.527469 0.615113 +vt 0.513741 0.608174 +vt 0.527671 0.602377 +vt 0.513531 0.597723 +vt 0.50009 0.603366 +vt 0.479997 0.599133 +vt 0.486687 0.599097 +vt 0.500314 0.59321 +vt 0.487089 0.586631 +vt 0.479926 0.586666 +vt 0.526227 0.590528 +vt 0.514186 0.585731 +vt 0.58114 0.0579846 +vt 0.533802 0.0871079 +vt 0.562658 0.135572 +vt 0.514009 0.158185 +vt 0.489284 0.112506 +vt 0.448874 0.133925 +vt 0.502888 0.0427932 +vt 0.462587 0.0719349 +vt 0.535704 0.208601 +vt 0.481023 0.220768 +vt 0.488761 0.270714 +vt 0.43718 0.272337 +vt 0.433674 0.227626 +vt 0.393797 0.22825 +vt 0.466909 0.175054 +vt 0.425301 0.187049 +vt 0.413729 0.151091 +vt 0.385304 0.163593 +vt 0.391089 0.194057 +vt 0.365184 0.19595 +vt 0.363922 0.17097 +vt 0.348112 0.173266 +vt 0.376895 0.137839 +vt 0.359651 0.149154 +vt 0.434895 0.0378283 +vt 0.409223 0.0727557 +vt 0.428912 0.0992488 +vt 0.400124 0.121315 +vt 0.38582 0.0986294 +vt 0.36726 0.117662 +vt 0.390493 0.0565052 +vt 0.371096 0.083818 +vt 0.433216 0.319833 +vt 0.382368 0.303328 +vt 0.361023 0.341048 +vt 0.321446 0.317164 +vt 0.306014 0.317884 +vt 0.344026 0.28484 +vt 0.31656 0.263196 +vt 0.306243 0.263567 +vt 0.392055 0.265312 +vt 0.356845 0.253388 +vt 0.363059 0.223494 +vt 0.34064 0.214001 +vt 0.33136 0.237735 +vt 0.313176 0.219851 +vt 0.306115 0.220043 +vt 0.324033 0.201122 +vt 0.311239 0.187338 +vt 0.305961 0.187334 +vt 0.34611 0.192632 +vt 0.331477 0.185002 +vt 0.797866 0.167593 +vt 0.838867 0.164746 +vt 0.846336 0.158264 +vt 0.854872 0.171605 +vt 0.871669 0.16657 +vt 0.806747 0.120487 +vt 0.872914 0.153504 +vt 0.849566 0.148774 +vt 0.940575 0.139644 +vt 0.900214 0.170038 +vt 0.897478 0.157523 +vt 0.963665 0.216313 +vt 0.906117 0.182609 +vt 0.884042 0.180364 +vt 0.852639 0.200505 +vt 0.866453 0.180781 +vt 0.860041 0.218519 +vt 0.890722 0.243427 +vt 0.92317 0.229927 +vt 0.95659 0.261899 +vt 0.974389 0.267262 +vt 0.917191 0.272837 +vt 0.936595 0.304092 +vt 0.950254 0.310436 +vt 0.930981 0.313445 +vt 0.94422 0.321229 +vt 0.864212 0.256451 +vt 0.884786 0.282849 +vt 0.881806 0.291974 +vt 0.924985 0.321223 +vt 0.890877 0.325566 +vt 0.899335 0.348034 +vt 0.867447 0.356052 +vt 0.861259 0.333074 +vt 0.836336 0.342385 +vt 0.831648 0.35073 +vt 0.878411 0.300636 +vt 0.852147 0.309837 +vt 0.826701 0.359288 +vt 0.817961 0.394242 +vt 0.825566 0.385761 +vt 0.822829 0.40232 +vt 0.831959 0.390165 +vt 0.872347 0.376808 +vt 0.840263 0.392372 +vt 0.833636 0.402768 +vt 0.833946 0.429014 +vt 0.819462 0.415363 +vt 0.828478 0.413486 +vt 0.791962 0.447247 +vt 0.810385 0.418877 +vt 0.811209 0.408773 +vt 0.791655 0.395182 +vt 0.809631 0.400606 +vt 0.793312 0.176216 +vt 0.800126 0.188254 +vt 0.821933 0.189477 +vt 0.815632 0.204918 +vt 0.79981 0.200727 +vt 0.797254 0.212884 +vt 0.794548 0.214607 +vt 0.788117 0.192816 +vt 0.790479 0.201508 +vt 0.837733 0.217051 +vt 0.824383 0.232842 +vt 0.843136 0.251726 +vt 0.826635 0.266491 +vt 0.813102 0.248606 +vt 0.804133 0.263957 +vt 0.808474 0.219884 +vt 0.801692 0.234637 +vt 0.840229 0.287369 +vt 0.82343 0.299962 +vt 0.8311 0.320298 +vt 0.815375 0.331516 +vt 0.811118 0.312744 +vt 0.800296 0.32433 +vt 0.802697 0.325401 +vt 0.813916 0.281072 +vt 0.801279 0.294464 +vt 0.804675 0.295145 +vt 0.817141 0.35224 +vt 0.803435 0.360927 +vt 0.799747 0.379113 +vt 0.788903 0.37855 +vt 0.785089 0.379382 +vt 0.793968 0.366665 +vt 0.787447 0.367322 +vt 0.785012 0.368035 +vt 0.787206 0.364536 +vt 0.785013 0.365177 +vt 0.804366 0.342858 +vt 0.796531 0.352358 +vt 0.312112 0.0646016 +vt 0.321253 0.0739681 +vt 0.336136 0.0672412 +vt 0.338922 0.0798703 +vt 0.325991 0.0841392 +vt 0.326704 0.0954292 +vt 0.310307 0.0805182 +vt 0.316073 0.0884535 +vt 0.354792 0.0772215 +vt 0.34729 0.096158 +vt 0.357463 0.103832 +vt 0.347496 0.118425 +vt 0.340843 0.110433 +vt 0.335365 0.121146 +vt 0.336827 0.0941659 +vt 0.3334 0.106914 +vt 0.353771 0.131359 +vt 0.343939 0.140446 +vt 0.347041 0.155577 +vt 0.336871 0.157544 +vt 0.335837 0.145415 +vt 0.328289 0.147085 +vt 0.340003 0.128877 +vt 0.333477 0.135622 +vt 0.335733 0.170823 +vt 0.325097 0.165529 +vt 0.319636 0.175482 +vt 0.310009 0.166811 +vt 0.306027 0.166804 +vt 0.316093 0.15977 +vt 0.308928 0.154779 +vt 0.306079 0.154821 +vt 0.327837 0.156117 +vt 0.31976 0.153077 +vt 0.308861 0.0930192 +vt 0.312342 0.0987265 +vt 0.318552 0.0965561 +vt 0.317966 0.103838 +vt 0.313525 0.104166 +vt 0.313005 0.109084 +vt 0.307953 0.101667 +vt 0.309933 0.105735 +vt 0.325569 0.107435 +vt 0.323321 0.116454 +vt 0.329598 0.117168 +vt 0.325138 0.124807 +vt 0.319947 0.123412 +vt 0.314587 0.129002 +vt 0.316336 0.128325 +vt 0.317745 0.11823 +vt 0.313759 0.124984 +vt 0.315334 0.123708 +vt 0.329938 0.128741 +vt 0.324208 0.133514 +vt 0.326962 0.139262 +vt 0.320763 0.140603 +vt 0.318921 0.136082 +vt 0.314953 0.137205 +vt 0.313884 0.136829 +vt 0.320399 0.129992 +vt 0.316087 0.13311 +vt 0.314453 0.133137 +vt 0.32118 0.146486 +vt 0.315136 0.144671 +vt 0.313046 0.149683 +vt 0.306268 0.14612 +vt 0.308106 0.146072 +vt 0.310597 0.142189 +vt 0.306517 0.13956 +vt 0.307595 0.139532 +vt 0.315624 0.140367 +vt 0.311817 0.138944 +vt 0.307341 0.108106 +vt 0.308387 0.111279 +vt 0.310474 0.109711 +vt 0.310022 0.113353 +vt 0.308569 0.114236 +vt 0.308311 0.116559 +vt 0.306984 0.113397 +vt 0.307441 0.11581 +vt 0.311475 0.113463 +vt 0.309703 0.117024 +vt 0.309968 0.11845 +vt 0.308201 0.120917 +vt 0.30827 0.119562 +vt 0.307334 0.120975 +vt 0.307454 0.120948 +vt 0.309071 0.116395 +vt 0.307799 0.118931 +vt 0.308068 0.118684 +vt 0.307971 0.122436 +vt 0.307126 0.123103 +vt 0.30699 0.123977 +vt 0.306569 0.123707 +vt 0.306648 0.123699 +vt 0.306763 0.123039 +vt 0.306571 0.12253 +vt 0.306612 0.122528 +vt 0.307298 0.122031 +vt 0.306912 0.122158 +vt 0.306746 0.117604 +vt 0.306934 0.119248 +vt 0.307508 0.117788 +vt 0.307572 0.119098 +vt 0.307036 0.120442 +vt 0.307201 0.121096 +vt 0.306634 0.120593 +vt 0.306736 0.121629 +vt 0.30676 0.12469 +vt 0.307473 0.124952 +vt 0.307771 0.123782 +vt 0.309374 0.122684 +vt 0.308798 0.124685 +vt 0.31102 0.123649 +vt 0.306938 0.125941 +vt 0.308041 0.126349 +vt 0.309797 0.120486 +vt 0.312778 0.117062 +vt 0.312512 0.114671 +vt 0.315412 0.10979 +vt 0.316758 0.112365 +vt 0.321935 0.106217 +vt 0.323878 0.106193 +vt 0.312158 0.120337 +vt 0.316183 0.116973 +vt 0.31699 0.117456 +vt 0.312883 0.136704 +vt 0.310708 0.134943 +vt 0.30917 0.136967 +vt 0.306576 0.13512 +vt 0.307331 0.135104 +vt 0.308861 0.133404 +vt 0.307353 0.132089 +vt 0.306648 0.1321 +vt 0.313013 0.133181 +vt 0.310699 0.131762 +vt 0.307114 0.127593 +vt 0.308539 0.128271 +vt 0.309787 0.126336 +vt 0.312383 0.126035 +vt 0.310488 0.128823 +vt 0.313074 0.129545 +vt 0.307272 0.129673 +vt 0.30883 0.13068 +vt 0.123699 0.895227 +vt 0.140086 0.912228 +vt 0.140827 0.915509 +vt 0.135889 0.910954 +vt 0.138365 0.91609 +vt 0.154222 0.911191 +vt 0.144405 0.914555 +vt 0.144043 0.918207 +vt 0.149189 0.941006 +vt 0.142239 0.921006 +vt 0.121761 0.82926 +vt 0.0922284 0.842246 +vt 0.110412 0.858839 +vt 0.085518 0.875598 +vt 0.0647699 0.858368 +vt 0.0380099 0.877397 +vt 0.0254706 0.877775 +vt 0.0739853 0.823388 +vt 0.0455111 0.839321 +vt 0.0338139 0.838641 +vt 0.107686 0.892374 +vt 0.0902652 0.913092 +vt 0.119479 0.929692 +vt 0.107837 0.953436 +vt 0.113334 0.963682 +vt 0.0726519 0.936422 +vt 0.0363931 0.963225 +vt 0.0508518 0.961248 +vt 0.0382514 0.974034 +vt 0.0532679 0.971964 +vt 0.063082 0.895697 +vt 0.0289597 0.919987 +vt 0.0417345 0.918557 +vt 0.154603 0.904388 +vt 0.147772 0.896569 +vt 0.136213 0.89472 +vt 0.138703 0.887534 +vt 0.147269 0.891292 +vt 0.151987 0.888948 +vt 0.154598 0.889115 +vt 0.15801 0.896721 +vt 0.158751 0.892741 +vt 0.156251 0.893169 +vt 0.157143 0.889053 +vt 0.164463 0.890141 +vt 0.168982 0.888456 +vt 0.176059 0.889223 +vt 0.171982 0.890832 +vt 0.178765 0.890932 +vt 0.180913 0.890542 +vt 0.161311 0.892345 +vt 0.168978 0.89305 +vt 0.283383 0.895026 +vt 0.262268 0.875239 +vt 0.240537 0.887434 +vt 0.220281 0.868713 +vt 0.241725 0.857066 +vt 0.22167 0.840707 +vt 0.221763 0.833843 +vt 0.282321 0.862071 +vt 0.26161 0.84402 +vt 0.26131 0.836289 +vt 0.268689 0.961007 +vt 0.25346 0.941274 +vt 0.230215 0.955744 +vt 0.216194 0.936433 +vt 0.237302 0.921049 +vt 0.21825 0.900655 +vt 0.277534 0.927929 +vt 0.260111 0.907566 +vt 0.196618 0.952164 +vt 0.187251 0.936235 +vt 0.174325 0.951168 +vt 0.164202 0.935165 +vt 0.176107 0.923367 +vt 0.159521 0.912655 +vt 0.164931 0.913298 +vt 0.202218 0.91924 +vt 0.188053 0.908764 +vt 0.196262 0.878048 +vt 0.17716 0.862083 +vt 0.152923 0.871145 +vt 0.132855 0.859206 +vt 0.121683 0.859031 +vt 0.158766 0.847345 +vt 0.143503 0.831854 +vt 0.133095 0.830647 +vt 0.147001 0.825073 +vt 0.137733 0.823908 +vt 0.200542 0.852037 +vt 0.184072 0.829736 +vt 0.182613 0.836384 +vt 0.19581 0.893769 +vt 0.182838 0.89623 +vt 0.175386 0.904373 +vt 0.164934 0.900704 +vt 0.172593 0.896381 +vt 0.165617 0.895398 +vt 0.184893 0.89187 +vt 0.176552 0.893027 +vt 0.135305 0.881226 +vt 0.155382 0.883094 +vt 0.172139 0.880194 +vt 0.182425 0.88575 +vt 0.168468 0.885821 +vt 0.178084 0.887768 +vt 0.175441 0.88754 +vt 0.149892 0.886273 +vt 0.160621 0.887219 +vt 0.196303 0.888694 +vt 0.187443 0.888627 +vt 0.187758 0.888341 +vt 0.188451 0.888818 +vt 0.189732 0.888483 +vt 0.183059 0.890301 +vt 0.186173 0.888719 +vt 0.186894 0.889029 +vt 0.179779 0.888059 +vt 0.185911 0.888357 +vt 0.796586 0.336952 +vt 0.79061 0.343802 +vt 0.791762 0.344982 +vt 0.790229 0.346845 +vt 0.790797 0.348692 +vt 0.78698 0.361593 +vt 0.789588 0.351512 +vt 0.789283 0.348032 +vt 0.78661 0.333561 +vt 0.789354 0.344006 +vt 0.798023 0.323348 +vt 0.793843 0.307758 +vt 0.790081 0.320824 +vt 0.786615 0.306905 +vt 0.785017 0.306887 +vt 0.789661 0.292685 +vt 0.786495 0.277788 +vt 0.785261 0.277784 +vt 0.78642 0.270422 +vt 0.785287 0.27042 +vt 0.79829 0.293902 +vt 0.792774 0.278187 +vt 0.792414 0.270736 +vt 0.793823 0.224662 +vt 0.790519 0.236475 +vt 0.796022 0.248993 +vt 0.792006 0.263341 +vt 0.788166 0.24932 +vt 0.785261 0.263158 +vt 0.786302 0.263158 +vt 0.787293 0.226191 +vt 0.785175 0.236874 +vt 0.785896 0.23684 +vt 0.792265 0.215909 +vt 0.787277 0.212975 +vt 0.787169 0.211639 +vt 0.788005 0.212259 +vt 0.787551 0.210676 +vt 0.785776 0.218416 +vt 0.78662 0.21308 +vt 0.786693 0.211281 +vt 0.786094 0.204893 +vt 0.786937 0.209631 +vt 0.454468 0.376136 +vt 0.415346 0.430864 +vt 0.461914 0.462064 +vt 0.435809 0.50013 +vt 0.392345 0.478631 +vt 0.383445 0.519913 +vt 0.353167 0.40696 +vt 0.335362 0.462237 +vt 0.467744 0.523579 +vt 0.44961 0.548044 +vt 0.47116 0.563656 +vt 0.457034 0.577013 +vt 0.438233 0.566417 +vt 0.431881 0.577974 +vt 0.421044 0.53283 +vt 0.414578 0.557859 +vt 0.265927 0.454509 +vt 0.277894 0.515508 +vt 0.335325 0.512685 +vt 0.346106 0.552537 +vt 0.299077 0.561096 +vt 0.327702 0.593406 +vt 0.212351 0.533345 +vt 0.244156 0.581769 +vt 0.186173 0.616984 +vt 0.249013 0.652836 +vt 0.287419 0.61625 +vt 0.329876 0.636999 +vt 0.304514 0.672245 +vt 0.354217 0.67852 +vt 0.219265 0.705937 +vt 0.285812 0.721503 +vt 0.357272 0.613725 +vt 0.383815 0.624933 +vt 0.401266 0.610695 +vt 0.418315 0.61729 +vt 0.425485 0.616099 +vt 0.406124 0.630247 +vt 0.423489 0.632603 +vt 0.42838 0.630621 +vt 0.36725 0.646684 +vt 0.398001 0.648999 +vt 0.384502 0.552455 +vt 0.392004 0.575838 +vt 0.414674 0.575232 +vt 0.421262 0.587298 +vt 0.427497 0.588906 +vt 0.403782 0.591513 +vt 0.417778 0.601844 +vt 0.425137 0.60216 +vt 0.363156 0.581038 +vt 0.382399 0.599526 +vt 0.279352 0.782779 +vt 0.359782 0.772224 +vt 0.349402 0.72132 +vt 0.401293 0.712333 +vt 0.419792 0.754921 +vt 0.463562 0.73079 +vt 0.392202 0.828364 +vt 0.455306 0.801232 +vt 0.39547 0.676201 +vt 0.427978 0.668257 +vt 0.4226 0.646578 +vt 0.442157 0.639467 +vt 0.452865 0.656164 +vt 0.471968 0.642315 +vt 0.440604 0.697386 +vt 0.469073 0.678464 +vt 0.433537 0.629687 +vt 0.446186 0.620994 +vt 0.432524 0.615179 +vt 0.446258 0.608204 +vt 0.459857 0.613613 +vt 0.473329 0.608072 +vt 0.458506 0.629482 +vt 0.473126 0.620449 +vt 0.432327 0.60245 +vt 0.446467 0.597707 +vt 0.433768 0.590221 +vt 0.4458 0.585411 +vt 0.459652 0.593177 +vt 0.472776 0.586631 +vt 0.459914 0.603366 +vt 0.473306 0.599097 +vt 0.0308597 0.0579872 +vt 0.078196 0.0871104 +vt 0.10911 0.042796 +vt 0.149413 0.0719381 +vt 0.122715 0.112512 +vt 0.163127 0.133942 +vt 0.0493415 0.135574 +vt 0.0979852 0.158189 +vt 0.0762946 0.208601 +vt 0.130974 0.22077 +vt 0.145086 0.175064 +vt 0.186702 0.187066 +vt 0.178328 0.227648 +vt 0.218221 0.22833 +vt 0.123237 0.270713 +vt 0.174812 0.272342 +vt 0.198272 0.151107 +vt 0.226697 0.163609 +vt 0.235118 0.137858 +vt 0.252377 0.149195 +vt 0.248087 0.171051 +vt 0.263915 0.173556 +vt 0.220921 0.194101 +vt 0.246822 0.196008 +vt 0.177102 0.0378311 +vt 0.202776 0.0727597 +vt 0.221507 0.0565079 +vt 0.240929 0.0838253 +vt 0.226191 0.098641 +vt 0.244775 0.117694 +vt 0.183089 0.0992578 +vt 0.21188 0.121328 +vt 0.178781 0.319831 +vt 0.229634 0.303332 +vt 0.219945 0.265349 +vt 0.255195 0.25343 +vt 0.268083 0.284844 +vt 0.295882 0.263196 +vt 0.250973 0.341048 +vt 0.290583 0.317164 +vt 0.248958 0.223575 +vt 0.271386 0.214037 +vt 0.265895 0.192775 +vt 0.280541 0.185143 +vt 0.287973 0.201138 +vt 0.300692 0.187338 +vt 0.280849 0.237745 +vt 0.299033 0.219852 +vt 0.772135 0.167593 +vt 0.731134 0.164747 +vt 0.715129 0.171605 +vt 0.723665 0.158265 +vt 0.698332 0.166572 +vt 0.717362 0.200502 +vt 0.685958 0.180364 +vt 0.703548 0.180781 +vt 0.606335 0.216313 +vt 0.663883 0.18261 +vt 0.669786 0.170039 +vt 0.629425 0.139643 +vt 0.697087 0.153504 +vt 0.672523 0.157523 +vt 0.763255 0.120487 +vt 0.720434 0.148774 +vt 0.70996 0.218517 +vt 0.679278 0.243429 +vt 0.70579 0.256451 +vt 0.68521 0.282858 +vt 0.688187 0.291987 +vt 0.652809 0.272839 +vt 0.633405 0.304093 +vt 0.639019 0.313446 +vt 0.619746 0.310436 +vt 0.62578 0.32123 +vt 0.646828 0.22994 +vt 0.61341 0.261899 +vt 0.595611 0.267263 +vt 0.645015 0.321224 +vt 0.679123 0.325563 +vt 0.691585 0.300645 +vt 0.717858 0.309804 +vt 0.708746 0.332964 +vt 0.733681 0.341944 +vt 0.73837 0.350245 +vt 0.670665 0.348035 +vt 0.702552 0.356022 +vt 0.743316 0.358846 +vt 0.752082 0.394188 +vt 0.747188 0.402299 +vt 0.744455 0.385652 +vt 0.738051 0.39011 +vt 0.778676 0.395182 +vt 0.758833 0.408763 +vt 0.760453 0.400584 +vt 0.77804 0.447248 +vt 0.759632 0.418874 +vt 0.750547 0.415357 +vt 0.736056 0.429015 +vt 0.736369 0.402758 +vt 0.741526 0.413482 +vt 0.697655 0.376809 +vt 0.729741 0.39235 +vt 0.776688 0.176216 +vt 0.769882 0.188257 +vt 0.78194 0.192816 +vt 0.779577 0.201525 +vt 0.770208 0.200788 +vt 0.775503 0.214876 +vt 0.772792 0.213127 +vt 0.748072 0.189474 +vt 0.754369 0.204937 +vt 0.732269 0.217049 +vt 0.74562 0.232855 +vt 0.761546 0.220002 +vt 0.768337 0.234754 +vt 0.756909 0.248628 +vt 0.765896 0.263993 +vt 0.726866 0.251726 +vt 0.743362 0.266498 +vt 0.729773 0.28737 +vt 0.746574 0.299931 +vt 0.756092 0.281093 +vt 0.76874 0.294421 +vt 0.765343 0.2951 +vt 0.758889 0.312516 +vt 0.769722 0.323426 +vt 0.767319 0.324579 +vt 0.738912 0.320089 +vt 0.754633 0.331246 +vt 0.752876 0.351799 +vt 0.766589 0.36077 +vt 0.765642 0.342436 +vt 0.773479 0.351957 +vt 0.776058 0.366615 +vt 0.782574 0.367322 +vt 0.782817 0.364537 +vt 0.770412 0.379065 +vt 0.781261 0.37855 +vt 0.299924 0.0646027 +vt 0.290866 0.0739764 +vt 0.301866 0.0805225 +vt 0.296211 0.0884698 +vt 0.286228 0.0841631 +vt 0.285649 0.0954784 +vt 0.275901 0.0672462 +vt 0.273207 0.0798882 +vt 0.257258 0.0772296 +vt 0.264848 0.0961761 +vt 0.275404 0.0941999 +vt 0.278949 0.106949 +vt 0.271387 0.110455 +vt 0.276979 0.121171 +vt 0.254611 0.103853 +vt 0.264645 0.118449 +vt 0.258303 0.13139 +vt 0.268195 0.14047 +vt 0.272224 0.12889 +vt 0.278854 0.135629 +vt 0.276376 0.145436 +vt 0.284024 0.147118 +vt 0.265024 0.155721 +vt 0.275255 0.157678 +vt 0.276329 0.171109 +vt 0.287014 0.165598 +vt 0.284364 0.156149 +vt 0.292533 0.153087 +vt 0.296064 0.15977 +vt 0.303242 0.154776 +vt 0.29238 0.175505 +vt 0.302048 0.166809 +vt 0.3035 0.093025 +vt 0.300227 0.0987438 +vt 0.304725 0.101672 +vt 0.302882 0.105749 +vt 0.29922 0.104197 +vt 0.299887 0.109138 +vt 0.293909 0.0965902 +vt 0.294681 0.103881 +vt 0.290656 0.10627 +vt 0.296056 0.112401 +vt 0.297419 0.109836 +vt 0.300462 0.114707 +vt 0.300195 0.117085 +vt 0.303272 0.120496 +vt 0.296685 0.117001 +vt 0.300851 0.120357 +vt 0.282543 0.128756 +vt 0.288422 0.133514 +vt 0.2924 0.129997 +vt 0.296844 0.133111 +vt 0.298533 0.133138 +vt 0.293857 0.13609 +vt 0.297936 0.137258 +vt 0.299049 0.136887 +vt 0.285498 0.139275 +vt 0.291847 0.140612 +vt 0.291265 0.146516 +vt 0.297458 0.14467 +vt 0.297135 0.140387 +vt 0.301089 0.138966 +vt 0.302186 0.142183 +vt 0.305428 0.139528 +vt 0.299331 0.149677 +vt 0.304436 0.146068 +vt 0.305519 0.108109 +vt 0.304606 0.111288 +vt 0.306064 0.113399 +vt 0.305638 0.115811 +vt 0.304488 0.114238 +vt 0.304765 0.116539 +vt 0.30248 0.10974 +vt 0.30301 0.113379 +vt 0.301525 0.113513 +vt 0.303364 0.117043 +vt 0.304002 0.116393 +vt 0.305301 0.118923 +vt 0.305029 0.118678 +vt 0.304832 0.119568 +vt 0.305783 0.120974 +vt 0.305662 0.120947 +vt 0.303095 0.118465 +vt 0.304905 0.120922 +vt 0.305142 0.12244 +vt 0.306003 0.123105 +vt 0.305824 0.122032 +vt 0.306214 0.122157 +vt 0.306371 0.123039 +vt 0.306529 0.122528 +vt 0.306143 0.123977 +vt 0.306489 0.123699 +vt 0.30635 0.117605 +vt 0.306173 0.119248 +vt 0.306488 0.120594 +vt 0.306392 0.121629 +vt 0.306078 0.120441 +vt 0.305917 0.121095 +vt 0.305583 0.117777 +vt 0.305529 0.119089 +vt 0.306376 0.124691 +vt 0.30566 0.124956 +vt 0.306207 0.125943 +vt 0.305095 0.126355 +vt 0.304315 0.124694 +vt 0.302041 0.123666 +vt 0.30535 0.123783 +vt 0.303715 0.122694 +vt 0.286944 0.107486 +vt 0.289333 0.116484 +vt 0.295087 0.118256 +vt 0.299243 0.124997 +vt 0.297613 0.123724 +vt 0.292858 0.123429 +vt 0.298417 0.129017 +vt 0.29661 0.12834 +vt 0.28289 0.117194 +vt 0.287505 0.124823 +vt 0.30008 0.136759 +vt 0.302351 0.134954 +vt 0.300016 0.133183 +vt 0.302408 0.131764 +vt 0.304288 0.133401 +vt 0.305928 0.132089 +vt 0.303895 0.136965 +vt 0.305816 0.135102 +vt 0.306033 0.127595 +vt 0.304599 0.128275 +vt 0.30594 0.129674 +vt 0.304368 0.130681 +vt 0.302621 0.12883 +vt 0.299973 0.129558 +vt 0.303319 0.126346 +vt 0.300662 0.126046 +vt 0.879407 0.890203 +vt 0.860123 0.914144 +vt 0.857142 0.913505 +vt 0.863541 0.908363 +vt 0.858289 0.909841 +vt 0.845052 0.941862 +vt 0.855005 0.919642 +vt 0.852994 0.916523 +vt 0.840885 0.908794 +vt 0.852805 0.912482 +vt 0.883486 0.812968 +vt 0.916088 0.830336 +vt 0.936984 0.810563 +vt 0.979872 0.831213 +vt 0.96718 0.830954 +vt 0.945459 0.850849 +vt 0.972794 0.874365 +vt 0.985477 0.875495 +vt 0.895636 0.848227 +vt 0.922933 0.869236 +vt 0.898072 0.887477 +vt 0.917357 0.913192 +vt 0.947217 0.89436 +vt 0.987361 0.926162 +vt 0.972845 0.923453 +vt 0.939277 0.942758 +vt 0.988004 0.978956 +vt 0.988165 0.992155 +vt 0.969635 0.975157 +vt 0.968692 0.988139 +vt 0.882307 0.93075 +vt 0.897146 0.960192 +vt 0.890799 0.972073 +vt 0.840868 0.901338 +vt 0.849745 0.892323 +vt 0.837639 0.892714 +vt 0.837295 0.888027 +vt 0.84002 0.888435 +vt 0.850652 0.8859 +vt 0.845237 0.882925 +vt 0.842206 0.883177 +vt 0.864141 0.889855 +vt 0.861518 0.881095 +vt 0.839354 0.883142 +vt 0.831432 0.88504 +vt 0.834584 0.887725 +vt 0.826357 0.889187 +vt 0.823599 0.886624 +vt 0.816009 0.886977 +vt 0.813537 0.8864 +vt 0.826462 0.882427 +vt 0.819093 0.884102 +vt 0.702969 0.881726 +vt 0.724888 0.861687 +vt 0.705511 0.847343 +vt 0.728692 0.821151 +vt 0.72779 0.82918 +vt 0.747203 0.843316 +vt 0.770108 0.819946 +vt 0.769689 0.826899 +vt 0.7458 0.875152 +vt 0.768399 0.855994 +vt 0.716105 0.951288 +vt 0.731835 0.931227 +vt 0.707867 0.916344 +vt 0.725531 0.895606 +vt 0.748152 0.910728 +vt 0.767733 0.890264 +vt 0.755672 0.947388 +vt 0.769956 0.928162 +vt 0.79075 0.946193 +vt 0.801004 0.931585 +vt 0.784576 0.911654 +vt 0.800561 0.902785 +vt 0.813945 0.919917 +vt 0.834301 0.910232 +vt 0.827701 0.910583 +vt 0.815174 0.949632 +vt 0.827443 0.934089 +vt 0.793489 0.866745 +vt 0.81766 0.849623 +vt 0.791888 0.838598 +vt 0.812436 0.814174 +vt 0.813596 0.821421 +vt 0.840343 0.833322 +vt 0.858755 0.81514 +vt 0.855069 0.80688 +vt 0.870659 0.813876 +vt 0.865727 0.805057 +vt 0.845748 0.860536 +vt 0.869978 0.847563 +vt 0.882858 0.847848 +vt 0.792562 0.885924 +vt 0.808408 0.891237 +vt 0.807587 0.887137 +vt 0.817665 0.889265 +vt 0.821012 0.892567 +vt 0.829428 0.891541 +vt 0.815948 0.900225 +vt 0.828942 0.897187 +vt 0.866322 0.87312 +vt 0.841965 0.874716 +vt 0.848117 0.879264 +vt 0.835616 0.880443 +vt 0.826436 0.87791 +vt 0.818767 0.880445 +vt 0.815857 0.880831 +vt 0.821915 0.870244 +vt 0.809614 0.876937 +vt 0.792722 0.880034 +vt 0.805136 0.882481 +vt 0.803854 0.88274 +vt 0.804567 0.881788 +vt 0.801977 0.881783 +vt 0.814148 0.88148 +vt 0.806913 0.882895 +vt 0.807059 0.882101 +vt 0.810902 0.885924 +vt 0.806074 0.883478 +vt 0.77343 0.33613 +vt 0.779395 0.343682 +vt 0.779777 0.346753 +vt 0.778245 0.344765 +vt 0.779209 0.348572 +vt 0.783394 0.333561 +vt 0.78065 0.343953 +vt 0.780723 0.347986 +vt 0.783041 0.361593 +vt 0.78042 0.351459 +vt 0.771993 0.322526 +vt 0.77617 0.307553 +vt 0.771728 0.293857 +vt 0.777276 0.278207 +vt 0.777637 0.27076 +vt 0.780463 0.292677 +vt 0.78398 0.277788 +vt 0.784102 0.270422 +vt 0.779923 0.320761 +vt 0.783422 0.306905 +vt 0.776224 0.224906 +vt 0.779533 0.236539 +vt 0.782997 0.226212 +vt 0.784431 0.23684 +vt 0.781989 0.249325 +vt 0.784173 0.263158 +vt 0.774 0.249026 +vt 0.778045 0.263362 +vt 0.777781 0.216152 +vt 0.782825 0.21301 +vt 0.782054 0.212323 +vt 0.782916 0.211666 +vt 0.782506 0.210711 +vt 0.784 0.204893 +vt 0.783131 0.209646 +vt 0.783414 0.211294 +vt 0.784825 0.218416 +vt 0.78355 0.213095 +vt 0.534976 0.360191 +vt 0.48 0.398454 +vt 0.644928 0.396858 +vt 0.480038 0.478891 +vt 0.480038 0.535072 +vt 0.479946 0.570629 +vt 0.728382 0.45945 +vt 0.785337 0.547965 +vt 0.793806 0.641348 +vt 0.753787 0.739598 +vt 0.670334 0.812464 +vt 0.543445 0.859944 +vt 0.596139 0.0819358 +vt 0.565659 0.0350819 +vt 0.577167 0.161957 +vt 0.485728 0.021395 +vt 0.541987 0.234062 +vt 0.4906 0.298253 +vt 0.423986 0.0270457 +vt 0.380434 0.0520343 +vt 0.425179 0.340535 +vt 0.345725 0.360907 +vt 0.785 0.162165 +vt 0.805472 0.173932 +vt 0.828573 0.111596 +vt 0.784997 0.13086 +vt 0.967589 0.156152 +vt 0.915716 0.123805 +vt 0.942685 0.223241 +vt 0.98419 0.208639 +vt 0.836401 0.193676 +vt 0.870269 0.210488 +vt 0.850526 0.226345 +vt 0.852787 0.263072 +vt 0.930303 0.333466 +vt 0.902468 0.357938 +vt 0.817041 0.363588 +vt 0.874959 0.386204 +vt 0.821887 0.441478 +vt 0.847775 0.418262 +vt 0.785005 0.436606 +vt 0.797297 0.455851 +vt 0.79641 0.387443 +vt 0.785137 0.401841 +vt 0.785007 0.180155 +vt 0.785045 0.196215 +vt 0.319162 0.0608879 +vt 0.306037 0.0686892 +vt 0.345493 0.063315 +vt 0.306096 0.0839047 +vt 0.306221 0.095365 +vt 0.306357 0.10334 +vt 0.306454 0.109476 +vt 0.306533 0.11453 +vt 0.312057 0.113932 +vt 0.309938 0.119403 +vt 0.307882 0.123116 +vt 0.306896 0.124346 +vt 0.306552 0.118446 +vt 0.306565 0.121164 +vt 0.30657 0.124991 +vt 0.306574 0.126339 +vt 0.306576 0.1281 +vt 0.306632 0.130265 +vt 0.130241 0.893971 +vt 0.117015 0.901716 +vt 0.149222 0.905584 +vt 0.135046 0.93676 +vt 0.113318 0.820253 +vt 0.0644869 0.812945 +vt 0.293839 0.888566 +vt 0.291927 0.854937 +vt 0.256828 0.968072 +vt 0.280728 0.954242 +vt 0.218407 0.963157 +vt 0.290106 0.921668 +vt 0.188993 0.959892 +vt 0.168586 0.958278 +vt 0.183628 0.879378 +vt 0.142382 0.876212 +vt 0.194424 0.890782 +vt 0.184424 0.890832 +vt 0.795474 0.329222 +vt 0.785008 0.358654 +vt 0.788318 0.327173 +vt 0.785001 0.339684 +vt 0.791062 0.220791 +vt 0.786418 0.222041 +vt 0.785253 0.215435 +vt 0.785051 0.206812 +vt 0.425024 0.360191 +vt 0.315072 0.396858 +vt 0.231618 0.45945 +vt 0.174663 0.547965 +vt 0.166194 0.641348 +vt 0.206214 0.739598 +vt 0.289667 0.812464 +vt 0.416556 0.859944 +vt 0.0463397 0.0350849 +vt 0.0158606 0.081938 +vt 0.12627 0.021398 +vt 0.0348327 0.161957 +vt 0.0700118 0.234062 +vt 0.121398 0.298251 +vt 0.18801 0.0270485 +vt 0.231561 0.0520363 +vt 0.186818 0.340533 +vt 0.266271 0.360907 +vt 0.764528 0.173929 +vt 0.699741 0.210468 +vt 0.733596 0.193682 +vt 0.58581 0.208638 +vt 0.627309 0.223253 +vt 0.654284 0.123804 +vt 0.602411 0.156152 +vt 0.741429 0.111596 +vt 0.719478 0.226337 +vt 0.717216 0.263071 +vt 0.639697 0.333467 +vt 0.667533 0.357939 +vt 0.752983 0.363225 +vt 0.773864 0.387406 +vt 0.772705 0.455851 +vt 0.722227 0.418263 +vt 0.748114 0.441478 +vt 0.695042 0.386205 +vt 0.292832 0.0608884 +vt 0.266502 0.0633163 +vt 0.290479 0.10962 +vt 0.297511 0.119546 +vt 0.305233 0.123117 +vt 0.306239 0.124347 +vt 0.886811 0.898001 +vt 0.871554 0.888814 +vt 0.862819 0.937916 +vt 0.847398 0.90262 +vt 0.893212 0.803293 +vt 0.948183 0.799765 +vt 0.692927 0.874665 +vt 0.696062 0.839591 +vt 0.704041 0.943756 +vt 0.728182 0.959167 +vt 0.695586 0.909387 +vt 0.768008 0.955619 +vt 0.799036 0.95539 +vt 0.821265 0.95848 +vt 0.808177 0.868744 +vt 0.858103 0.866852 +vt 0.795027 0.88336 +vt 0.808793 0.88628 +vt 0.774539 0.328548 +vt 0.781687 0.327144 +vt 0.778996 0.220988 +vt 0.78408 0.222053 +vt 0.48 0.341857 +vt 0.507488 0.351024 +vt 0.48 0.373071 +vt 0.61744 0.387691 +vt 0.480025 0.461234 +vt 0.480051 0.523127 +vt 0.47997 0.563503 +vt 0.714143 0.437321 +vt 0.771098 0.525836 +vt 0.80381 0.616786 +vt 0.763792 0.715035 +vt 0.702056 0.800593 +vt 0.575167 0.848074 +vt 0.600882 0.0619306 +vt 0.605625 0.0419254 +vt 0.585642 0.0385037 +vt 0.58191 0.141951 +vt 0.505711 0.0248167 +vt 0.554834 0.218015 +vt 0.503447 0.282205 +vt 0.434874 0.0207986 +vt 0.391322 0.0457871 +vt 0.445042 0.335441 +vt 0.365588 0.355814 +vt 0.795396 0.171892 +vt 0.785 0.166882 +vt 0.785 0.171267 +vt 0.785001 0.105492 +vt 0.806787 0.108544 +vt 0.785001 0.119282 +vt 0.963438 0.143031 +vt 0.959288 0.129909 +vt 0.937502 0.126857 +vt 0.988341 0.22176 +vt 0.856848 0.209389 +vt 0.848178 0.217491 +vt 0.853159 0.253793 +vt 0.937261 0.327347 +vt 0.909427 0.35182 +vt 0.821617 0.355531 +vt 0.881755 0.37819 +vt 0.840979 0.426277 +vt 0.834183 0.434291 +vt 0.828035 0.437884 +vt 0.785001 0.463038 +vt 0.785001 0.448609 +vt 0.791149 0.459445 +vt 0.785182 0.396131 +vt 0.785 0.17567 +vt 0.785033 0.192558 +vt 0.31258 0.0602812 +vt 0.305997 0.0596744 +vt 0.306018 0.0643831 +vt 0.33891 0.0627082 +vt 0.306084 0.0803966 +vt 0.306176 0.0928966 +vt 0.306337 0.101568 +vt 0.306425 0.108044 +vt 0.306524 0.113364 +vt 0.306548 0.117592 +vt 0.306562 0.120587 +vt 0.306568 0.12471 +vt 0.306573 0.125967 +vt 0.306574 0.127622 +vt 0.30661 0.129691 +vt 0.11689 0.892871 +vt 0.1543 0.907493 +vt 0.125525 0.822081 +vt 0.0766946 0.814772 +vt 0.294317 0.896973 +vt 0.292405 0.863344 +vt 0.276039 0.97053 +vt 0.266434 0.969301 +vt 0.278383 0.962386 +vt 0.228013 0.964386 +vt 0.287762 0.929811 +vt 0.194095 0.960296 +vt 0.173688 0.958681 +vt 0.198107 0.890529 +vt 0.79746 0.330285 +vt 0.785012 0.362151 +vt 0.785002 0.333618 +vt 0.793118 0.219969 +vt 0.785331 0.218424 +vt 0.785052 0.204788 +vt 0.452512 0.351024 +vt 0.34256 0.387691 +vt 0.245857 0.437321 +vt 0.188902 0.525836 +vt 0.15619 0.616786 +vt 0.196209 0.715035 +vt 0.257945 0.800593 +vt 0.384834 0.848074 +vt 0.0111176 0.0619331 +vt 0.00637457 0.0419283 +vt 0.0263571 0.0385066 +vt 0.106287 0.0248197 +vt 0.0300897 0.141952 +vt 0.0571652 0.218014 +vt 0.108551 0.282204 +vt 0.177123 0.0208015 +vt 0.220674 0.0457893 +vt 0.166954 0.33544 +vt 0.246408 0.355814 +vt 0.774605 0.171892 +vt 0.713154 0.209386 +vt 0.581659 0.22176 +vt 0.632498 0.126856 +vt 0.610712 0.129908 +vt 0.606562 0.14303 +vt 0.763215 0.108544 +vt 0.721824 0.217488 +vt 0.716844 0.253793 +vt 0.632739 0.327348 +vt 0.660574 0.351821 +vt 0.748401 0.355045 +vt 0.778853 0.459445 +vt 0.729023 0.426277 +vt 0.735819 0.434292 +vt 0.741967 0.437885 +vt 0.688246 0.37819 +vt 0.299415 0.0602814 +vt 0.273085 0.0627093 +vt 0.288662 0.106249 +vt 0.295858 0.117484 +vt 0.887533 0.887595 +vt 0.84102 0.904758 +vt 0.87947 0.804175 +vt 0.93444 0.800647 +vt 0.692143 0.883434 +vt 0.695278 0.84836 +vt 0.708269 0.96094 +vt 0.706155 0.952348 +vt 0.718225 0.960053 +vt 0.6977 0.917979 +vt 0.758052 0.956506 +vt 0.793478 0.954618 +vt 0.815708 0.957707 +vt 0.7902 0.881929 +vt 0.772557 0.32938 +vt 0.776933 0.220237 +f 1785/1 448/2 1787/3 +f 1786/4 1787/3 448/2 +f 1790/5 449/6 1794/7 +f 1792/8 1794/7 449/6 +f 1800/9 453/10 1802/11 +f 1801/12 1802/11 453/10 +f 1805/13 454/14 1808/15 +f 1807/16 1808/15 454/14 +f 1813/17 456/18 1815/19 +f 1814/20 1815/19 456/18 +f 1818/21 457/22 1822/23 +f 1820/24 1822/23 457/22 +f 1811/25 458/26 1828/27 +f 1827/28 1828/27 458/26 +f 1830/29 460/30 1834/31 +f 1832/32 1834/31 460/30 +f 1839/33 463/34 1841/35 +f 1840/36 1841/35 463/34 +f 1844/37 464/38 1848/39 +f 1846/40 1848/39 464/38 +f 1852/41 467/42 1854/43 +f 1853/44 1854/43 467/42 +f 1857/45 468/46 1860/47 +f 1859/48 1860/47 468/46 +f 1865/49 470/50 1867/51 +f 1866/52 1867/51 470/50 +f 1870/53 471/54 1874/55 +f 1872/56 1874/55 471/54 +f 1863/57 472/58 1880/59 +f 1879/60 1880/59 472/58 +f 1882/61 474/62 1886/63 +f 1884/64 1886/63 474/62 +f 1894/65 1892/66 1893/67 +f 478/68 1893/67 1892/66 +f 1900/69 1897/70 1899/71 +f 479/72 1899/71 1897/70 +f 1908/73 1906/74 1907/75 +f 482/76 1907/75 1906/74 +f 1914/77 1911/78 1913/79 +f 483/80 1913/79 1911/78 +f 1919/81 485/82 1921/83 +f 1920/84 1921/83 485/82 +f 1924/85 486/86 1928/87 +f 1926/88 1928/87 486/86 +f 1933/89 1917/90 1932/91 +f 487/92 1932/91 1917/90 +f 1935/93 489/94 1938/95 +f 1937/96 1938/95 489/94 +f 1944/97 492/98 1946/99 +f 1945/100 1946/99 492/98 +f 1949/101 493/102 1952/103 +f 1951/104 1952/103 493/102 +f 1960/105 1958/106 1959/107 +f 496/108 1959/107 1958/106 +f 1963/109 497/110 1966/111 +f 1965/112 1966/111 497/110 +f 1973/113 1971/114 1972/115 +f 499/116 1972/115 1971/114 +f 1976/117 500/118 1980/119 +f 1978/120 1980/119 500/118 +f 1969/121 501/122 1985/123 +f 1984/124 1985/123 501/122 +f 1987/125 503/126 1990/127 +f 1989/128 1990/127 503/126 +f 1995/129 505/130 1997/131 +f 1996/132 1997/131 505/130 +f 2000/133 506/134 2004/135 +f 2002/136 2004/135 506/134 +f 2008/137 509/138 2010/139 +f 2009/140 2010/139 509/138 +f 2013/141 510/142 2016/143 +f 2015/144 2016/143 510/142 +f 2023/145 2021/146 2022/147 +f 512/148 2022/147 2021/146 +f 2028/149 2030/150 513/151 +f 2026/152 513/151 2030/150 +f 2019/153 514/154 2036/155 +f 2035/156 2036/155 514/154 +f 2038/157 516/158 2042/159 +f 2040/160 2042/159 516/158 +f 2046/161 519/162 2048/163 +f 2047/164 2048/163 519/162 +f 2051/165 520/166 2054/167 +f 2053/168 2054/167 520/166 +f 1993/169 507/170 2059/171 +f 2058/172 2059/171 507/170 +f 2061/173 522/174 2064/175 +f 2063/176 2064/175 522/174 +f 2033/177 517/178 2070/179 +f 2069/180 2070/179 517/178 +f 2072/181 524/182 2076/183 +f 2074/184 2076/183 524/182 +f 2067/185 525/186 2081/187 +f 2080/188 2081/187 525/186 +f 2083/189 527/190 2086/191 +f 2085/192 2086/191 527/190 +f 2094/193 2092/194 2093/195 +f 530/196 2093/195 2092/194 +f 2100/197 2097/198 2099/199 +f 531/200 2099/199 2097/198 +f 2108/201 2106/202 2107/203 +f 534/204 2107/203 2106/202 +f 2114/205 2111/206 2113/207 +f 535/208 2113/207 2111/206 +f 2121/209 2119/210 2120/211 +f 537/212 2120/211 2119/210 +f 2124/213 538/214 2128/215 +f 2126/216 2128/215 538/214 +f 2133/217 2117/218 2132/219 +f 539/220 2132/219 2117/218 +f 2138/221 2135/222 2137/223 +f 541/224 2137/223 2135/222 +f 2144/225 2142/226 2143/227 +f 543/228 2143/227 2142/226 +f 2150/229 2147/230 2149/231 +f 544/232 2149/231 2147/230 +f 2156/233 2154/234 2155/235 +f 546/236 2155/235 2154/234 +f 2162/237 2159/238 2161/239 +f 547/240 2161/239 2159/238 +f 2169/241 2167/242 2168/243 +f 549/244 2168/243 2167/242 +f 2176/245 2172/246 2174/247 +f 550/248 2174/247 2172/246 +f 2181/249 2165/250 2180/251 +f 551/252 2180/251 2165/250 +f 2186/253 2183/254 2185/255 +f 553/256 2185/255 2183/254 +f 2192/257 2190/258 2191/259 +f 555/260 2191/259 2190/258 +f 556/261 2197/262 2195/263 +f 2198/264 2195/263 2197/262 +f 2204/265 2202/266 2203/267 +f 558/268 2203/267 2202/266 +f 559/269 2209/270 2207/271 +f 2210/272 2207/271 2209/270 +f 561/273 2216/274 2215/275 +f 2217/276 2215/275 2216/274 +f 2224/277 2220/278 2222/279 +f 562/280 2222/279 2220/278 +f 2229/281 2213/282 2228/283 +f 563/284 2228/283 2213/282 +f 2234/285 2231/286 2233/287 +f 565/288 2233/287 2231/286 +f 2239/289 2240/290 567/291 +f 2238/292 567/291 2240/290 +f 2245/293 2246/294 568/295 +f 2243/296 568/295 2246/294 +f 2251/297 2252/298 570/299 +f 2250/300 570/299 2252/298 +f 2257/301 2258/302 571/303 +f 2255/304 571/303 2258/302 +f 2264/305 2265/306 573/307 +f 2263/308 573/307 2265/306 +f 2267/309 474/62 2270/310 +f 1881/311 2270/310 474/62 +f 2261/312 574/313 2275/314 +f 2274/315 2275/314 574/313 +f 2276/316 471/54 2278/317 +f 1869/318 2278/317 471/54 +f 2285/319 578/320 2287/321 +f 2286/322 2287/321 578/320 +f 2294/323 2290/324 2292/325 +f 579/326 2292/325 2290/324 +f 2300/327 583/328 2302/329 +f 2301/330 2302/329 583/328 +f 2305/331 584/332 2308/333 +f 2307/334 2308/333 584/332 +f 2315/335 2313/336 2314/337 +f 586/338 2314/337 2313/336 +f 2322/339 2318/340 2320/341 +f 587/342 2320/341 2318/340 +f 2328/343 2311/344 2327/345 +f 588/346 2327/345 2311/344 +f 2334/347 2330/348 2332/349 +f 590/350 2332/349 2330/348 +f 2342/351 2340/352 2341/353 +f 594/354 2341/353 2340/352 +f 2345/355 595/356 2348/357 +f 2347/358 2348/357 595/356 +f 2356/359 2354/360 2355/361 +f 598/362 2355/361 2354/360 +f 2362/363 2359/364 2361/365 +f 599/366 2361/365 2359/364 +f 2369/367 2367/368 2368/369 +f 601/370 2368/369 2367/368 +f 2372/371 602/372 2376/373 +f 2374/374 2376/373 602/372 +f 2381/375 2365/376 2380/377 +f 603/378 2380/377 2365/376 +f 2386/379 2383/380 2385/381 +f 605/382 2385/381 2383/380 +f 2391/383 607/384 2393/385 +f 2392/386 2393/385 607/384 +f 2400/387 2396/388 2398/389 +f 608/390 2398/389 2396/388 +f 2404/391 611/392 2406/393 +f 2405/394 2406/393 611/392 +f 2409/395 612/396 2412/397 +f 2411/398 2412/397 612/396 +f 2417/399 614/400 2419/401 +f 2418/402 2419/401 614/400 +f 2422/403 615/404 2426/405 +f 2424/406 2426/405 615/404 +f 2415/407 616/408 2432/409 +f 2431/410 2432/409 616/408 +f 2434/411 618/412 2438/413 +f 2436/414 2438/413 618/412 +f 2445/415 2443/416 2444/417 +f 621/418 2444/417 2443/416 +f 2452/419 2448/420 2450/421 +f 622/422 2450/421 2448/420 +f 2457/423 2389/424 2456/425 +f 609/426 2456/425 2389/424 +f 2462/427 2459/428 2461/429 +f 625/430 2461/429 2459/428 +f 2468/431 2429/432 2467/433 +f 619/434 2467/433 2429/432 +f 2474/435 2470/436 2472/437 +f 627/438 2472/437 2470/436 +f 2480/439 2465/440 2479/441 +f 628/442 2479/441 2465/440 +f 2486/443 2482/444 2484/445 +f 630/446 2484/445 2482/444 +f 2494/447 2492/448 2493/449 +f 634/450 2493/449 2492/448 +f 2500/451 2497/452 2499/453 +f 635/454 2499/453 2497/452 +f 2508/455 2506/456 2507/457 +f 638/458 2507/457 2506/456 +f 2514/459 2511/460 2513/461 +f 639/462 2513/461 2511/460 +f 2521/463 2519/464 2520/465 +f 641/466 2520/465 2519/464 +f 2528/467 2524/468 2526/469 +f 642/470 2526/469 2524/468 +f 2533/471 2517/472 2532/473 +f 643/474 2532/473 2517/472 +f 2538/475 2535/476 2537/477 +f 645/478 2537/477 2535/476 +f 2542/479 647/480 2544/481 +f 2543/482 2544/481 647/480 +f 2547/483 648/484 2550/485 +f 2549/486 2550/485 648/484 +f 2554/487 650/488 2556/489 +f 2555/490 2556/489 650/488 +f 2559/491 651/492 2562/493 +f 2561/494 2562/493 651/492 +f 2569/495 2567/496 2568/497 +f 653/498 2568/497 2567/496 +f 2576/499 2572/500 2574/501 +f 654/502 2574/501 2572/500 +f 2565/503 655/504 2581/505 +f 2580/506 2581/505 655/504 +f 2583/507 657/508 2586/509 +f 2585/510 2586/509 657/508 +f 660/511 2594/512 2593/513 +f 2595/514 2593/513 2594/512 +f 2602/515 2598/516 2600/517 +f 661/518 2600/517 2598/516 +f 2609/519 2607/520 2608/521 +f 664/522 2608/521 2607/520 +f 2614/523 2611/524 2593/513 +f 660/511 2593/513 2611/524 +f 2620/525 668/526 2622/527 +f 2621/528 2622/527 668/526 +f 2624/529 664/522 2626/530 +f 2607/520 2626/530 664/522 +f 2635/531 2633/532 2634/533 +f 671/534 2634/533 2633/532 +f 2640/535 2637/536 2620/525 +f 668/526 2620/525 2637/536 +f 2600/517 661/518 2648/537 +f 2647/538 2648/537 661/518 +f 2649/539 671/534 2652/540 +f 2633/532 2652/540 671/534 +f 2659/541 2657/542 2658/543 +f 677/544 2658/543 2657/542 +f 2666/545 2662/546 2664/547 +f 678/548 2664/547 2662/546 +f 2672/549 2670/550 2671/551 +f 681/552 2671/551 2670/550 +f 2678/553 2675/554 2677/555 +f 682/556 2677/555 2675/554 +f 2685/557 2683/558 2684/559 +f 684/560 2684/559 2683/558 +f 2692/561 2688/562 2690/563 +f 685/564 2690/563 2688/562 +f 2698/565 2681/566 2697/567 +f 686/568 2697/567 2681/566 +f 2704/569 2700/570 2702/571 +f 688/572 2702/571 2700/570 +f 2709/573 2710/574 691/575 +f 2708/576 691/575 2710/574 +f 2715/577 2716/578 692/579 +f 2713/580 692/579 2716/578 +f 2722/581 2720/582 2721/583 +f 694/584 2721/583 2720/582 +f 2727/585 2728/586 695/587 +f 2725/588 695/587 2728/586 +f 2735/589 2733/590 2734/591 +f 697/592 2734/591 2733/590 +f 2740/593 2742/594 698/595 +f 2738/596 698/595 2742/594 +f 2746/597 2747/598 699/599 +f 2731/600 699/599 2747/598 +f 2749/601 701/602 2752/603 +f 2751/604 2752/603 701/602 +f 2758/605 2759/606 703/607 +f 2757/608 703/607 2759/606 +f 2764/609 2766/610 704/611 +f 2762/612 704/611 2766/610 +f 2772/613 2770/614 2771/615 +f 707/616 2771/615 2770/614 +f 703/607 2757/608 2774/617 +f 2776/618 2774/617 2757/608 +f 2783/619 2784/620 710/621 +f 2782/622 710/621 2784/620 +f 2770/614 2788/623 707/616 +f 2786/624 707/616 2788/623 +f 2795/625 713/626 2797/627 +f 2796/628 2797/627 713/626 +f 2802/629 2799/630 2782/622 +f 710/621 2782/622 2799/630 +f 2810/631 2764/609 2809/632 +f 704/611 2809/632 2764/609 +f 2814/633 2811/634 2795/625 +f 713/626 2795/625 2811/634 +f 2819/635 719/636 2821/637 +f 2820/638 2821/637 719/636 +f 2828/639 2824/640 2826/641 +f 720/642 2826/641 2824/640 +f 2834/643 2832/644 2833/645 +f 723/646 2833/645 2832/644 +f 2840/647 2837/648 2839/649 +f 724/650 2839/649 2837/648 +f 2845/651 726/652 2847/653 +f 2846/654 2847/653 726/652 +f 2852/655 2854/656 727/657 +f 2850/658 727/657 2854/656 +f 2860/659 2843/660 2859/661 +f 728/662 2859/661 2843/660 +f 2866/663 2862/664 2864/665 +f 730/666 2864/665 2862/664 +f 2870/667 733/668 2872/669 +f 2871/670 2872/669 733/668 +f 2875/671 734/672 2878/673 +f 2877/674 2878/673 734/672 +f 2882/675 736/676 2884/677 +f 2883/678 2884/677 736/676 +f 2887/679 737/680 2890/681 +f 2889/682 2890/681 737/680 +f 2896/683 2897/684 739/685 +f 2895/686 739/685 2897/684 +f 2902/687 2904/688 740/689 +f 2900/690 740/689 2904/688 +f 2893/691 741/692 2909/693 +f 2908/694 2909/693 741/692 +f 2911/695 743/696 2914/697 +f 2913/698 2914/697 743/696 +f 2918/699 745/700 2920/701 +f 2919/702 2920/701 745/700 +f 2923/703 746/704 2926/705 +f 2925/706 2926/705 746/704 +f 2932/707 2930/708 2931/709 +f 748/710 2931/709 2930/708 +f 2935/711 749/712 2938/713 +f 2937/714 2938/713 749/712 +f 2944/715 2945/716 751/717 +f 2943/718 751/717 2945/716 +f 2950/719 2952/720 752/721 +f 2948/722 752/721 2952/720 +f 2941/723 753/724 2957/725 +f 2956/726 2957/725 753/724 +f 2961/727 2962/728 755/729 +f 2959/730 755/729 2962/728 +f 2968/731 2966/732 2967/733 +f 757/734 2967/733 2966/732 +f 2974/735 2971/736 2973/737 +f 758/738 2973/737 2971/736 +f 2980/739 2978/740 2979/741 +f 760/742 2979/741 2978/740 +f 2986/743 2983/744 2985/745 +f 761/746 2985/745 2983/744 +f 2993/747 2991/748 2992/749 +f 763/750 2992/749 2991/748 +f 2996/751 764/752 3000/753 +f 2998/754 3000/753 764/752 +f 3005/755 2989/756 3004/757 +f 765/758 3004/757 2989/756 +f 3009/759 3010/760 767/761 +f 3007/762 767/761 3010/760 +f 3015/763 769/764 3017/765 +f 3016/766 3017/765 769/764 +f 3020/767 770/768 3024/769 +f 3022/770 3024/769 770/768 +f 3028/771 773/772 3030/773 +f 3029/774 3030/773 773/772 +f 3035/775 3036/776 774/777 +f 3033/778 774/777 3036/776 +f 3042/779 3043/780 776/781 +f 3041/782 776/781 3043/780 +f 3048/783 3050/784 777/785 +f 3046/786 777/785 3050/784 +f 3039/787 778/788 3056/789 +f 3055/790 3056/789 778/788 +f 3058/791 780/792 3062/793 +f 3060/794 3062/793 780/792 +f 3068/795 3066/796 3067/797 +f 783/798 3067/797 3066/796 +f 784/799 3073/800 3071/801 +f 3074/802 3071/801 3073/800 +f 3080/803 3078/804 3079/805 +f 786/806 3079/805 3078/804 +f 3086/807 3083/808 3085/809 +f 787/810 3085/809 3083/808 +f 3093/811 3091/812 3092/813 +f 789/814 3092/813 3091/812 +f 3100/815 3096/816 3098/817 +f 790/818 3098/817 3096/816 +f 791/819 3104/820 3089/821 +f 3105/822 3089/821 3104/820 +f 3109/823 3110/824 793/825 +f 3107/826 793/825 3110/824 +f 3114/827 795/828 3116/829 +f 3115/830 3116/829 795/828 +f 3119/831 796/832 3122/833 +f 3121/834 3122/833 796/832 +f 3126/835 798/836 3128/837 +f 3127/838 3128/837 798/836 +f 3131/839 799/840 3134/841 +f 3133/842 3134/841 799/840 +f 3141/843 3139/844 3140/845 +f 801/846 3140/845 3139/844 +f 3148/847 3144/848 3146/849 +f 802/850 3146/849 3144/848 +f 3153/851 3137/852 3152/853 +f 803/854 3152/853 3137/852 +f 3158/855 3155/856 3157/857 +f 805/858 3157/857 3155/856 +f 3164/859 3162/860 3163/861 +f 807/862 3163/861 3162/860 +f 3170/863 3167/864 3169/865 +f 808/866 3169/865 3167/864 +f 3176/867 3174/868 3175/869 +f 810/870 3175/869 3174/868 +f 3182/871 3179/872 3181/873 +f 811/874 3181/873 3179/872 +f 3189/875 3187/876 3188/877 +f 813/878 3188/877 3187/876 +f 3196/879 3192/880 3194/881 +f 814/882 3194/881 3192/880 +f 3201/883 3185/884 3200/885 +f 815/886 3200/885 3185/884 +f 817/887 3205/888 3203/889 +f 3206/890 3203/889 3205/888 +f 3212/891 3213/892 819/893 +f 3211/894 819/893 3213/892 +f 3218/895 3220/896 820/897 +f 3216/898 820/897 3220/896 +f 3225/899 3226/900 823/901 +f 3224/902 823/901 3226/900 +f 3229/903 824/904 3232/905 +f 3231/906 3232/905 824/904 +f 3237/907 826/908 3239/909 +f 3238/910 3239/909 826/908 +f 3242/911 827/912 3246/913 +f 3244/914 3246/913 827/912 +f 3251/915 3252/916 828/917 +f 3235/918 828/917 3252/916 +f 3256/919 3258/920 830/921 +f 3254/922 830/921 3258/920 +f 3265/923 3263/924 3264/925 +f 833/926 3264/925 3263/924 +f 3272/927 3268/928 3270/929 +f 834/930 3270/929 3268/928 +f 3278/931 3276/932 3277/933 +f 837/934 3277/933 3276/932 +f 838/935 3283/936 3281/937 +f 3284/938 3281/937 3283/936 +f 840/939 3290/940 3289/941 +f 3291/942 3289/941 3290/940 +f 841/943 3296/944 3294/945 +f 3298/946 3294/945 3296/944 +f 842/947 3303/948 3287/949 +f 3304/950 3287/949 3303/948 +f 844/951 3308/952 3306/953 +f 3310/954 3306/953 3308/952 +f 3316/955 3314/956 3315/957 +f 847/958 3315/957 3314/956 +f 848/959 3321/960 3319/961 +f 3322/962 3319/961 3321/960 +f 3328/963 3326/964 3327/965 +f 850/966 3327/965 3326/964 +f 3334/967 3331/968 3333/969 +f 851/970 3333/969 3331/968 +f 3341/971 3339/972 3340/973 +f 853/974 3340/973 3339/972 +f 3344/975 854/976 3348/977 +f 3346/978 3348/977 854/976 +f 3353/979 3337/980 3352/981 +f 855/982 3352/981 3337/980 +f 3355/983 857/984 3358/985 +f 3357/986 3358/985 857/984 +f 859/987 3363/988 3362/989 +f 3364/990 3362/989 3363/988 +f 3370/991 3367/992 3369/993 +f 860/994 3369/993 3367/992 +f 3376/995 3374/996 3375/997 +f 862/998 3375/997 3374/996 +f 863/999 3381/1000 3379/1001 +f 3382/1002 3379/1001 3381/1000 +f 865/1003 3388/1004 3387/1005 +f 3389/1006 3387/1005 3388/1004 +f 3396/1007 3392/1008 3394/1009 +f 866/1010 3394/1009 3392/1008 +f 3401/1011 3385/1012 3400/1013 +f 867/1014 3400/1013 3385/1012 +f 3406/1015 3403/1016 3405/1017 +f 869/1018 3405/1017 3403/1016 +f 3412/1019 3413/1020 871/1021 +f 3411/1022 871/1021 3413/1020 +f 3418/1023 3420/1024 872/1025 +f 3416/1026 872/1025 3420/1024 +f 3424/1027 875/1028 3426/1029 +f 3425/1030 3426/1029 875/1028 +f 3429/1031 876/1032 3432/1033 +f 3431/1034 3432/1033 876/1032 +f 3437/1035 878/1036 3439/1037 +f 3438/1038 3439/1037 878/1036 +f 3442/1039 879/1040 3446/1041 +f 3444/1042 3446/1041 879/1040 +f 3435/1043 880/1044 3452/1045 +f 3451/1046 3452/1045 880/1044 +f 3454/1047 882/1048 3458/1049 +f 3456/1050 3458/1049 882/1048 +f 3464/1051 886/1052 3466/1053 +f 3465/1054 3466/1053 886/1052 +f 3471/1055 3472/1056 887/1057 +f 3469/1058 887/1057 3472/1056 +f 3480/1059 3478/1060 3479/1061 +f 890/1062 3479/1061 3478/1060 +f 3486/1063 3483/1064 3485/1065 +f 891/1066 3485/1065 3483/1064 +f 3493/1067 3491/1068 3492/1069 +f 893/1070 3492/1069 3491/1068 +f 894/1071 3498/1072 3496/1073 +f 3500/1074 3496/1073 3498/1072 +f 3504/1075 3505/1076 895/1077 +f 3489/1078 895/1077 3505/1076 +f 3509/1079 3510/1080 897/1081 +f 3507/1082 897/1081 3510/1080 +f 3518/1083 3516/1084 3517/1085 +f 900/1086 3517/1085 3516/1084 +f 3524/1087 3521/1088 3523/1089 +f 901/1090 3523/1089 3521/1088 +f 904/1091 3531/1092 3530/1093 +f 3532/1094 3530/1093 3531/1092 +f 3538/1095 3535/1096 3537/1097 +f 905/1098 3537/1097 3535/1096 +f 907/1099 3544/1100 3543/1101 +f 3545/1102 3543/1101 3544/1100 +f 3552/1103 3548/1104 3550/1105 +f 908/1106 3550/1105 3548/1104 +f 909/1107 3556/1108 3541/1109 +f 3557/1110 3541/1109 3556/1108 +f 911/1111 3561/1112 3559/1113 +f 3562/1114 3559/1113 3561/1112 +f 3567/1115 913/1116 3569/1117 +f 3568/1118 3569/1117 913/1116 +f 3572/1119 914/1120 3576/1121 +f 3574/1122 3576/1121 914/1120 +f 3581/1123 3509/1079 3580/1124 +f 897/1081 3580/1124 3509/1079 +f 3585/1125 3586/1126 917/1127 +f 3583/1128 917/1127 3586/1126 +f 3592/1129 3498/1072 3591/1130 +f 894/1071 3591/1130 3498/1072 +f 3596/1131 3593/1132 3558/1133 +f 911/1111 3558/1133 3593/1132 +f 3602/1134 3589/1135 3601/1136 +f 919/1137 3601/1136 3589/1135 +f 3606/1138 3603/1139 3547/1140 +f 908/1106 3547/1140 3603/1139 +f 3613/1141 3611/1142 3612/1143 +f 923/1144 3612/1143 3611/1142 +f 3616/1145 924/1146 3620/1147 +f 3618/1148 3620/1147 924/1146 +f 3626/1149 3624/1150 3625/1151 +f 927/1152 3625/1151 3624/1150 +f 3631/1153 3632/1154 928/1155 +f 3629/1156 928/1155 3632/1154 +f 3638/1157 3639/1158 930/1159 +f 3637/1160 930/1159 3639/1158 +f 3644/1161 3646/1162 931/1163 +f 3642/1164 931/1163 3646/1162 +f 3651/1165 3652/1166 932/1167 +f 3635/1168 932/1167 3652/1166 +f 3654/1169 934/1170 3658/1171 +f 3656/1172 3658/1171 934/1170 +f 3664/1173 3662/1174 3663/1175 +f 937/1176 3663/1175 3662/1174 +f 938/1177 3669/1178 3667/1179 +f 3670/1180 3667/1179 3669/1178 +f 3674/1181 3675/1182 826/908 +f 3240/1183 826/908 3675/1182 +f 3677/1184 940/1185 3680/1186 +f 3679/1187 3680/1186 940/1185 +f 3227/1188 823/901 3686/1189 +f 3685/1190 3686/1189 823/901 +f 835/1191 3271/1192 3687/1193 +f 3690/1194 3687/1193 3271/1192 +f 942/1195 3694/1196 3683/1197 +f 3695/1198 3683/1197 3694/1196 +f 3696/1199 845/1200 3698/1201 +f 3309/1202 3698/1201 845/1200 +f 3704/1203 3702/1204 3703/1205 +f 945/1206 3703/1205 3702/1204 +f 3710/1207 3707/1208 3709/1209 +f 946/1210 3709/1209 3707/1208 +f 948/1211 3715/1212 3714/1213 +f 3716/1214 3714/1213 3715/1212 +f 3722/1215 3719/1216 3721/1217 +f 949/1218 3721/1217 3719/1216 +f 951/1219 3728/1220 3727/1221 +f 3729/1222 3727/1221 3728/1220 +f 3736/1223 3732/1224 3734/1225 +f 952/1226 3734/1225 3732/1224 +f 3741/1227 3725/1228 3740/1229 +f 953/1230 3740/1229 3725/1228 +f 955/1231 3745/1232 3743/1233 +f 3746/1234 3743/1233 3745/1232 +f 3752/1235 3753/1236 957/1237 +f 3751/1238 957/1237 3753/1236 +f 3760/1239 3756/1240 3758/1241 +f 958/1242 3758/1241 3756/1240 +f 3764/1243 3765/1244 844/951 +f 3308/952 844/951 3765/1244 +f 3769/1245 3770/1246 961/1247 +f 3767/1248 961/1247 3770/1246 +f 3775/1249 3776/1250 841/943 +f 3296/944 841/943 3776/1250 +f 3780/1251 3777/1252 3742/1253 +f 955/1231 3742/1253 3777/1252 +f 3786/1254 3773/1255 3785/1256 +f 963/1257 3785/1256 3773/1255 +f 3790/1258 3787/1259 3731/1260 +f 952/1226 3731/1260 3787/1259 +f 3797/1261 968/1262 3799/1263 +f 3798/1264 3799/1263 968/1262 +f 3802/1265 969/1266 3806/1267 +f 3804/1268 3806/1267 969/1266 +f 3814/1269 3815/1270 973/1271 +f 3813/1272 973/1271 3815/1270 +f 3820/1273 3817/1274 3797/1261 +f 968/1262 3797/1261 3817/1274 +f 3828/1275 3804/1268 3827/1276 +f 969/1266 3827/1276 3804/1268 +f 3832/1277 3829/1278 3813/1272 +f 973/1271 3813/1272 3829/1278 +f 3838/1279 980/1280 3840/1281 +f 3839/1282 3840/1281 980/1280 +f 3843/1283 981/1284 3846/1285 +f 3845/1286 3846/1285 981/1284 +f 3852/1287 984/1288 3854/1289 +f 3853/1290 3854/1289 984/1288 +f 3857/1291 985/1292 3860/1293 +f 3859/1294 3860/1293 985/1292 +f 3865/1295 987/1296 3867/1297 +f 3866/1298 3867/1297 987/1296 +f 3870/1299 988/1300 3874/1301 +f 3872/1302 3874/1301 988/1300 +f 3863/1303 989/1304 3879/1305 +f 3878/1306 3879/1305 989/1304 +f 3881/1307 991/1308 3884/1309 +f 3883/1310 3884/1309 991/1308 +f 993/1311 3889/1312 3888/1313 +f 3890/1314 3888/1313 3889/1312 +f 3895/1315 3896/1316 994/1317 +f 3893/1318 994/1317 3896/1316 +f 3901/1319 1799/1320 3900/1321 +f 452/1322 3900/1321 1799/1320 +f 3905/1323 3906/1324 996/1325 +f 3903/1326 996/1325 3906/1324 +f 3911/1327 3912/1328 447/1329 +f 1784/1330 447/1329 3912/1328 +f 3916/1331 3918/1332 998/1333 +f 3914/1334 998/1333 3918/1332 +f 3922/1335 3923/1336 999/1337 +f 3909/1338 999/1337 3923/1336 +f 3925/1339 1001/1340 3928/1341 +f 3927/1342 3928/1341 1001/1340 +f 3933/1343 1003/1344 3935/1345 +f 3934/1346 3935/1345 1003/1344 +f 1004/1347 3940/1348 3938/1349 +f 3942/1350 3938/1349 3940/1348 +f 3946/1351 1007/1352 3948/1353 +f 3947/1354 3948/1353 1007/1352 +f 3951/1355 1008/1356 3954/1357 +f 3953/1358 3954/1357 1008/1356 +f 3959/1359 1010/1360 3961/1361 +f 3960/1362 3961/1361 1010/1360 +f 3966/1363 3968/1364 1011/1365 +f 3964/1366 1011/1365 3968/1364 +f 3974/1367 3957/1368 3973/1369 +f 1012/1370 3973/1369 3957/1368 +f 1014/1371 3978/1372 3976/1373 +f 3980/1374 3976/1373 3978/1372 +f 3987/1375 3988/1376 1018/1377 +f 3986/1378 1018/1377 3988/1376 +f 3991/1379 1019/1380 3994/1381 +f 3993/1382 3994/1381 1019/1380 +f 4002/1383 4000/1384 4001/1385 +f 1022/1386 4001/1385 4000/1384 +f 4008/1387 4005/1388 4007/1389 +f 1023/1390 4007/1389 4005/1388 +f 4014/1391 4015/1392 1025/1393 +f 4013/1394 1025/1393 4015/1392 +f 4022/1395 4018/1396 4020/1397 +f 1026/1398 4020/1397 4018/1396 +f 1027/1399 4026/1400 4011/1401 +f 4027/1402 4011/1401 4026/1400 +f 4032/1403 4029/1404 4031/1405 +f 1029/1406 4031/1405 4029/1404 +f 4038/1407 1032/1408 4040/1409 +f 4039/1410 4040/1409 1032/1408 +f 4043/1411 1033/1412 4046/1413 +f 4045/1414 4046/1413 1033/1412 +f 4052/1415 1036/1416 4054/1417 +f 4053/1418 4054/1417 1036/1416 +f 4057/1419 1037/1420 4060/1421 +f 4059/1422 4060/1421 1037/1420 +f 4065/1423 1039/1424 4067/1425 +f 4066/1426 4067/1425 1039/1424 +f 4069/1427 582/1428 4072/1429 +f 2295/1430 4072/1429 582/1428 +f 4063/1431 1040/1432 4077/1433 +f 4076/1434 4077/1433 1040/1432 +f 4078/1435 577/1436 4080/1437 +f 2279/1438 4080/1437 577/1436 +f 1043/1439 4085/1440 4084/1441 +f 4086/1442 4084/1441 4085/1440 +f 4092/1443 4089/1444 4091/1445 +f 1044/1446 4091/1445 4089/1444 +f 4098/1447 4096/1448 4097/1449 +f 1046/1450 4097/1449 4096/1448 +f 1047/1451 4103/1452 4101/1453 +f 4104/1454 4101/1453 4103/1452 +f 4111/1455 4109/1456 4110/1457 +f 1049/1458 4110/1457 4109/1456 +f 1035/1459 4047/1460 4113/1461 +f 4116/1462 4113/1461 4047/1460 +f 4120/1463 4121/1464 1050/1465 +f 4107/1466 1050/1465 4121/1464 +f 4033/1467 4124/1468 1031/1469 +f 4122/1470 1031/1469 4124/1468 +f 4130/1471 4128/1472 4129/1473 +f 1053/1474 4129/1473 4128/1472 +f 4136/1475 4133/1476 4135/1477 +f 1054/1478 4135/1477 4133/1476 +f 3824/1479 977/1480 4141/1481 +f 4140/1482 4141/1481 977/1480 +f 4146/1483 4143/1484 4145/1485 +f 1056/1486 4145/1485 4143/1484 +f 972/1487 4151/1488 3812/1489 +f 4152/1490 3812/1489 4151/1488 +f 1058/1491 4156/1492 4154/1493 +f 4158/1494 4154/1493 4156/1492 +f 4163/1495 4149/1496 4162/1497 +f 1059/1498 4162/1497 4149/1496 +f 4168/1499 4165/1500 4167/1501 +f 1061/1502 4167/1501 4165/1500 +f 4174/1503 1064/1504 4176/1505 +f 4175/1506 4176/1505 1064/1504 +f 4179/1507 1065/1508 4182/1509 +f 4181/1510 4182/1509 1065/1508 +f 3851/1511 983/1512 4189/1513 +f 4188/1514 4189/1513 983/1512 +f 4191/1515 1068/1516 4194/1517 +f 4193/1518 4194/1517 1068/1516 +f 4200/1519 3837/1520 4199/1521 +f 979/1522 4199/1521 3837/1520 +f 4204/1523 4201/1524 2349/1525 +f 597/1526 2349/1525 4201/1524 +f 4197/1527 1070/1528 4209/1529 +f 4208/1530 4209/1529 1070/1528 +f 4210/1531 593/1532 4212/1533 +f 2335/1534 4212/1533 593/1532 +f 1073/1535 4218/1536 4217/1537 +f 4219/1538 4217/1537 4218/1536 +f 4222/1539 1074/1540 4226/1541 +f 4224/1542 4226/1541 1074/1540 +f 1005/1543 4230/1544 3931/1545 +f 4231/1546 3931/1545 4230/1544 +f 4236/1547 4233/1548 4235/1549 +f 1077/1550 4235/1549 4233/1548 +f 4242/1551 3971/1552 4241/1553 +f 1015/1554 4241/1553 3971/1552 +f 4246/1555 4243/1556 4028/1557 +f 1029/1406 4028/1557 4243/1556 +f 4252/1558 4239/1559 4251/1560 +f 1079/1561 4251/1560 4239/1559 +f 4256/1562 4253/1563 4017/1564 +f 1026/1398 4017/1564 4253/1563 +f 4260/1565 1083/1566 4262/1567 +f 4261/1568 4262/1567 1083/1566 +f 4265/1569 1084/1570 4268/1571 +f 4267/1572 4268/1571 1084/1570 +f 4274/1573 4272/1574 4273/1575 +f 1086/1576 4273/1575 4272/1574 +f 4279/1577 4280/1578 1087/1579 +f 4277/1580 1087/1579 4280/1578 +f 4287/1581 4285/1582 4286/1583 +f 1089/1584 4286/1583 4285/1582 +f 4289/1585 1021/1586 4292/1587 +f 3995/1588 4292/1587 1021/1586 +f 4283/1589 1090/1590 4297/1591 +f 4296/1592 4297/1591 1090/1590 +f 4298/1593 1017/1594 4300/1595 +f 3981/1596 4300/1595 1017/1594 +f 1093/1597 4305/1598 4304/1599 +f 4306/1600 4304/1599 4305/1598 +f 1094/1601 4311/1602 4309/1603 +f 4312/1604 4309/1603 4311/1602 +f 4316/1605 1096/1606 4318/1607 +f 4317/1608 4318/1607 1096/1606 +f 4320/1609 1093/1597 4322/1610 +f 4304/1599 4322/1610 1093/1597 +f 4311/1602 1094/1601 4327/1611 +f 4326/1612 4327/1611 1094/1601 +f 4316/1605 4330/1613 1096/1606 +f 4328/1614 1096/1606 4330/1613 +f 4335/1615 1099/1616 4337/1617 +f 4336/1618 4337/1617 1099/1616 +f 4342/1619 4344/1620 1100/1621 +f 4340/1622 1100/1621 4344/1620 +f 4352/1623 4350/1624 4351/1625 +f 1104/1626 4351/1625 4350/1624 +f 4356/1627 4354/1628 4335/1615 +f 1099/1616 4335/1615 4354/1628 +f 4364/1629 4342/1619 4363/1630 +f 1100/1621 4363/1630 4342/1619 +f 4350/1624 4368/1631 1104/1626 +f 4365/1632 1104/1626 4368/1631 +f 1109/1633 4373/1634 4372/1635 +f 4374/1636 4372/1635 4373/1634 +f 4380/1637 4377/1638 4379/1639 +f 1110/1640 4379/1639 4377/1638 +f 4384/1641 1112/1642 4386/1643 +f 4385/1644 4386/1643 1112/1642 +f 4392/1645 4389/1646 4391/1647 +f 1113/1648 4391/1647 4389/1646 +f 4399/1649 4397/1650 4398/1651 +f 1115/1652 4398/1651 4397/1650 +f 4406/1653 4402/1654 4404/1655 +f 1116/1656 4404/1655 4402/1654 +f 4411/1657 4395/1658 4410/1659 +f 1117/1660 4410/1659 4395/1658 +f 1119/1661 4415/1662 4413/1663 +f 4416/1664 4413/1663 4415/1662 +f 4422/1665 4423/1666 1121/1667 +f 4421/1668 1121/1667 4423/1666 +f 4428/1669 4430/1670 1122/1671 +f 4426/1672 1122/1671 4430/1670 +f 4434/1673 4435/1674 1119/1661 +f 4415/1662 1119/1661 4435/1674 +f 4439/1675 4440/1676 1125/1677 +f 4437/1678 1125/1677 4440/1676 +f 4445/1679 4446/1680 1116/1656 +f 4404/1655 1116/1656 4446/1680 +f 4452/1681 4448/1682 4450/1683 +f 1127/1684 4450/1683 4448/1682 +f 4457/1685 4458/1686 1128/1687 +f 4443/1688 1128/1687 4458/1686 +f 4462/1689 4464/1690 1130/1691 +f 4460/1692 1130/1691 4464/1690 +f 4470/1693 4468/1694 4469/1695 +f 1133/1696 4469/1695 4468/1694 +f 4473/1697 1134/1698 4476/1699 +f 4475/1700 4476/1699 1134/1698 +f 4483/1701 4484/1702 1137/1703 +f 4482/1704 1137/1703 4484/1702 +f 4468/1694 4488/1705 1133/1696 +f 4486/1706 1133/1696 4488/1705 +f 4494/1707 4475/1700 4493/1708 +f 1134/1698 4493/1708 4475/1700 +f 1137/1703 4482/1704 4495/1709 +f 4498/1710 4495/1709 4482/1704 +f 4504/1711 4505/1712 1141/1713 +f 4503/1714 1141/1713 4505/1712 +f 4508/1715 1142/1716 4512/1717 +f 4510/1718 4512/1717 1142/1716 +f 4517/1719 4518/1720 1145/1721 +f 4516/1722 1145/1721 4518/1720 +f 4523/1723 4524/1724 1146/1725 +f 4521/1726 1146/1725 4524/1724 +f 4529/1727 1148/1728 4531/1729 +f 4530/1730 4531/1729 1148/1728 +f 4536/1731 4538/1732 1149/1733 +f 4534/1734 1149/1733 4538/1732 +f 4527/1735 1150/1736 4544/1737 +f 4543/1738 4544/1737 1150/1736 +f 4546/1739 1152/1740 4550/1741 +f 4548/1742 4550/1741 1152/1740 +f 4554/1743 1155/1744 4556/1745 +f 4555/1746 4556/1745 1155/1744 +f 4559/1747 1156/1748 4562/1749 +f 4561/1750 4562/1749 1156/1748 +f 4566/1751 1158/1752 4568/1753 +f 4567/1754 4568/1753 1158/1752 +f 4571/1755 1159/1756 4574/1757 +f 4573/1758 4574/1757 1159/1756 +f 4579/1759 1161/1760 4581/1761 +f 4580/1762 4581/1761 1161/1760 +f 4584/1763 1162/1764 4588/1765 +f 4586/1766 4588/1765 1162/1764 +f 4577/1767 1163/1768 4593/1769 +f 4592/1770 4593/1769 1163/1768 +f 4595/1771 1165/1772 4598/1773 +f 4597/1774 4598/1773 1165/1772 +f 4605/1775 4603/1776 4604/1777 +f 1167/1778 4604/1777 4603/1776 +f 4612/1779 4608/1780 4610/1781 +f 1168/1782 4610/1781 4608/1780 +f 4617/1783 4618/1784 1171/1785 +f 4616/1786 1171/1785 4618/1784 +f 4624/1787 4621/1788 4623/1789 +f 1172/1790 4623/1789 4621/1788 +f 4630/1791 4631/1792 1174/1793 +f 4629/1794 1174/1793 4631/1792 +f 4636/1795 4638/1796 1175/1797 +f 4634/1798 1175/1797 4638/1796 +f 4644/1799 4627/1800 4643/1801 +f 1176/1802 4643/1801 4627/1800 +f 4650/1803 4646/1804 4648/1805 +f 1178/1806 4648/1805 4646/1804 +f 4656/1807 4657/1808 1181/1809 +f 4655/1810 1181/1809 4657/1808 +f 4662/1811 4664/1812 1182/1813 +f 4660/1814 1182/1813 4664/1812 +f 4669/1815 4670/1816 1185/1817 +f 4668/1818 1185/1817 4670/1816 +f 4675/1819 4676/1820 1186/1821 +f 4673/1822 1186/1821 4676/1820 +f 4682/1823 4683/1824 1188/1825 +f 4681/1826 1188/1825 4683/1824 +f 4690/1827 4686/1828 4688/1829 +f 1189/1830 4688/1829 4686/1828 +f 4695/1831 4696/1832 1190/1833 +f 4679/1834 1190/1833 4696/1832 +f 4702/1835 4698/1836 4700/1837 +f 1192/1838 4700/1837 4698/1836 +f 4709/1839 4710/1840 1196/1841 +f 4708/1842 1196/1841 4710/1840 +f 4715/1843 4716/1844 1197/1845 +f 4713/1846 1197/1845 4716/1844 +f 4723/1847 4724/1848 1200/1849 +f 4722/1850 1200/1849 4724/1848 +f 4729/1851 4730/1852 1201/1853 +f 4727/1854 1201/1853 4730/1852 +f 4735/1855 1203/1856 4737/1857 +f 4736/1858 4737/1857 1203/1856 +f 4744/1859 4740/1860 4742/1861 +f 1204/1862 4742/1861 4740/1860 +f 4748/1863 4749/1864 1205/1865 +f 4733/1866 1205/1865 4749/1864 +f 4753/1867 4754/1868 1207/1869 +f 4751/1870 1207/1869 4754/1868 +f 4758/1871 1209/1872 4760/1873 +f 4759/1874 4760/1873 1209/1872 +f 4765/1875 4766/1876 1210/1877 +f 4763/1878 1210/1877 4766/1876 +f 4771/1879 4772/1880 1212/1881 +f 4770/1882 1212/1881 4772/1880 +f 4777/1883 4778/1884 1213/1885 +f 4775/1886 1213/1885 4778/1884 +f 4784/1887 4785/1888 1215/1889 +f 4783/1890 1215/1889 4785/1888 +f 4717/1891 4790/1892 1199/1893 +f 4787/1894 1199/1893 4790/1892 +f 4794/1895 4795/1896 1216/1897 +f 4781/1898 1216/1897 4795/1896 +f 4703/1899 4798/1900 1195/1901 +f 4796/1902 1195/1901 4798/1900 +f 4805/1903 4803/1904 4804/1905 +f 1219/1906 4804/1905 4803/1904 +f 4812/1907 4808/1908 4810/1909 +f 1220/1910 4810/1909 4808/1908 +f 4818/1911 4816/1912 4817/1913 +f 1223/1914 4817/1913 4816/1912 +f 4824/1915 4821/1916 4823/1917 +f 1224/1918 4823/1917 4821/1916 +f 4830/1919 4831/1920 1226/1921 +f 4829/1922 1226/1921 4831/1920 +f 4836/1923 4833/1924 2119/210 +f 537/212 2119/210 4833/1924 +f 4842/1925 4827/1926 4841/1927 +f 1227/1928 4841/1927 4827/1926 +f 4846/1929 4843/1930 2106/202 +f 534/204 2106/202 4843/1930 +f 4852/1931 4850/1932 4851/1933 +f 1231/1934 4851/1933 4850/1932 +f 4858/1935 4855/1936 4857/1937 +f 1232/1938 4857/1937 4855/1936 +f 4864/1939 4862/1940 4863/1941 +f 1234/1942 4863/1941 4862/1940 +f 4870/1943 4867/1944 4869/1945 +f 1235/1946 4869/1945 4867/1944 +f 4877/1947 4875/1948 4876/1949 +f 1237/1950 4876/1949 4875/1948 +f 4882/1951 4879/1952 2167/242 +f 549/244 2167/242 4879/1952 +f 4887/1953 4873/1954 4886/1955 +f 1238/1956 4886/1955 4873/1954 +f 4890/1957 4888/1958 2154/234 +f 546/236 2154/234 4888/1958 +f 1241/1959 4895/1960 4894/1961 +f 4896/1962 4894/1961 4895/1960 +f 4902/1963 4899/1964 4901/1965 +f 1242/1966 4901/1965 4899/1964 +f 4908/1967 4906/1968 4907/1969 +f 1244/1970 4907/1969 4906/1968 +f 4914/1971 4911/1972 4913/1973 +f 1245/1974 4913/1973 4911/1972 +f 4921/1975 4919/1976 4920/1977 +f 1247/1978 4920/1977 4919/1976 +f 561/273 2215/275 4923/1979 +f 4926/1980 4923/1979 2215/275 +f 1248/1981 4930/1982 4917/1983 +f 4931/1984 4917/1983 4930/1982 +f 4934/1985 4932/1986 2202/266 +f 558/268 2202/266 4932/1986 +f 4938/1987 1251/1988 4940/1989 +f 4939/1990 4940/1989 1251/1988 +f 4943/1991 1252/1992 4946/1993 +f 4945/1994 4946/1993 1252/1992 +f 4582/1995 1161/1760 4951/1996 +f 4950/1997 4951/1996 1161/1760 +f 4955/1998 4956/1999 1254/2000 +f 4953/2001 1254/2000 4956/1999 +f 4569/2002 1158/1752 4962/2003 +f 4961/2004 4962/2003 1158/1752 +f 4963/2005 573/307 4966/2006 +f 2263/308 4966/2006 573/307 +f 4959/2007 1256/2008 4971/2009 +f 4970/2010 4971/2009 1256/2008 +f 4972/2011 570/299 4974/2012 +f 2250/300 4974/2012 570/299 +f 4983/2013 4981/2014 4982/2015 +f 1260/2016 4982/2015 4981/2014 +f 4986/2017 1261/2018 4990/2019 +f 4988/2020 4990/2019 1261/2018 +f 4998/2021 4996/2022 4997/2023 +f 1265/2024 4997/2023 4996/2022 +f 5004/2025 5001/2026 5003/2027 +f 1266/2028 5003/2027 5001/2026 +f 5011/2029 5009/2030 5010/2031 +f 1268/2032 5010/2031 5009/2030 +f 5018/2033 5014/2034 5016/2035 +f 1269/2036 5016/2035 5014/2034 +f 5007/2037 1270/2038 5024/2039 +f 5023/2040 5024/2039 1270/2038 +f 5026/2041 1272/2042 5030/2043 +f 5028/2044 5030/2043 1272/2042 +f 5035/2045 1275/2046 5037/2047 +f 5036/2048 5037/2047 1275/2046 +f 5044/2049 5040/2050 5042/2051 +f 1276/2052 5042/2051 5040/2050 +f 5050/2053 5048/2054 5049/2055 +f 1279/2056 5049/2055 5048/2054 +f 5056/2057 5053/2058 5055/2059 +f 1280/2060 5055/2059 5053/2058 +f 5061/2061 1282/2062 5063/2063 +f 5062/2064 5063/2063 1282/2062 +f 5070/2065 5066/2066 5068/2067 +f 1283/2068 5068/2067 5066/2066 +f 5076/2069 5059/2070 5075/2071 +f 1284/2072 5075/2071 5059/2070 +f 5082/2073 5078/2074 5080/2075 +f 1286/2076 5080/2075 5078/2074 +f 5090/2077 5088/2078 5089/2079 +f 1290/2080 5089/2079 5088/2078 +f 5093/2081 1291/2082 5096/2083 +f 5095/2084 5096/2083 1291/2082 +f 5103/2085 5104/2086 1294/2087 +f 5102/2088 1294/2087 5104/2086 +f 5107/2089 1295/2090 5110/2091 +f 5109/2092 5110/2091 1295/2090 +f 5116/2093 5117/2094 1297/2095 +f 5115/2096 1297/2095 5117/2094 +f 5122/2097 5124/2098 1298/2099 +f 5120/2100 1298/2099 5124/2098 +f 5113/2101 1299/2102 5129/2103 +f 5128/2104 5129/2103 1299/2102 +f 5131/2105 1301/2106 5134/2107 +f 5133/2108 5134/2107 1301/2106 +f 5142/2109 5140/2110 5141/2111 +f 1304/2112 5141/2111 5140/2110 +f 5148/2113 5145/2114 5147/2115 +f 1305/2116 5147/2115 5145/2114 +f 5156/2117 5154/2118 5155/2119 +f 1308/2120 5155/2119 5154/2118 +f 5162/2121 5159/2122 5161/2123 +f 1309/2124 5161/2123 5159/2122 +f 5169/2125 5167/2126 5168/2127 +f 1311/2128 5168/2127 5167/2126 +f 5174/2129 5171/2130 5097/2131 +f 1293/2132 5097/2131 5171/2130 +f 5179/2133 5165/2134 5178/2135 +f 1312/2136 5178/2135 5165/2134 +f 5182/2137 5180/2138 5083/2139 +f 1289/2140 5083/2139 5180/2138 +f 5189/2141 5187/2142 5188/2143 +f 1315/2144 5188/2143 5187/2142 +f 5196/2145 5192/2146 5194/2147 +f 1316/2148 5194/2147 5192/2146 +f 5202/2149 5200/2150 5201/2151 +f 1319/2152 5201/2151 5200/2150 +f 5208/2153 5205/2154 5207/2155 +f 1320/2156 5207/2155 5205/2154 +f 5215/2157 5213/2158 5214/2159 +f 1322/2160 5214/2159 5213/2158 +f 5220/2161 5217/2162 2519/464 +f 641/466 2519/464 5217/2162 +f 5226/2163 5211/2164 5225/2165 +f 1323/2166 5225/2165 5211/2164 +f 5230/2167 5227/2168 2506/456 +f 638/458 2506/456 5227/2168 +f 5235/2169 5236/2170 1327/2171 +f 5234/2172 1327/2171 5236/2170 +f 5241/2173 5242/2174 1328/2175 +f 5239/2176 1328/2175 5242/2174 +f 5247/2177 5248/2178 1330/2179 +f 5246/2180 1330/2179 5248/2178 +f 5253/2181 5254/2182 1331/2183 +f 5251/2184 1331/2183 5254/2182 +f 5261/2185 5259/2186 5260/2187 +f 1333/2188 5260/2187 5259/2186 +f 5266/2189 5263/2190 2567/496 +f 653/498 2567/496 5263/2190 +f 5270/2191 5271/2192 1334/2193 +f 5257/2194 1334/2193 5271/2192 +f 2554/487 5274/2195 650/488 +f 5272/2196 650/488 5274/2195 +f 5282/2197 5280/2198 5281/2199 +f 1338/2200 5281/2199 5280/2198 +f 1339/2201 5287/2202 5285/2203 +f 5288/2204 5285/2203 5287/2202 +f 5295/2205 1342/2206 5297/2207 +f 5296/2208 5297/2207 1342/2206 +f 5299/2209 1338/2200 5302/2210 +f 5280/2198 5302/2210 1338/2200 +f 5311/2211 5309/2212 5310/2213 +f 1346/2214 5310/2213 5309/2212 +f 5316/2215 5313/2216 5295/2205 +f 1342/2206 5295/2205 5313/2216 +f 5321/2217 1349/2218 5323/2219 +f 5322/2220 5323/2219 1349/2218 +f 5325/2221 1346/2214 5328/2222 +f 5309/2212 5328/2222 1346/2214 +f 5333/2223 5287/2202 5332/2224 +f 1339/2201 5332/2224 5287/2202 +f 5336/2225 5334/2226 5321/2217 +f 1349/2218 5321/2217 5334/2226 +f 5344/2227 5342/2228 5343/2229 +f 1354/2230 5343/2229 5342/2228 +f 5350/2231 5347/2232 5349/2233 +f 1355/2234 5349/2233 5347/2232 +f 5358/2235 5356/2236 5357/2237 +f 1358/2238 5357/2237 5356/2236 +f 5364/2239 5361/2240 5363/2241 +f 1359/2242 5363/2241 5361/2240 +f 5371/2243 5369/2244 5370/2245 +f 1361/2246 5370/2245 5369/2244 +f 5378/2247 5374/2248 5376/2249 +f 1362/2250 5376/2249 5374/2248 +f 5383/2251 5367/2252 5382/2253 +f 1363/2254 5382/2253 5367/2252 +f 5388/2255 5385/2256 5387/2257 +f 1365/2258 5387/2257 5385/2256 +f 5392/2259 1367/2260 5394/2261 +f 5393/2262 5394/2261 1367/2260 +f 5397/2263 1368/2264 5400/2265 +f 5399/2266 5400/2265 1368/2264 +f 5404/2267 1370/2268 5406/2269 +f 5405/2270 5406/2269 1370/2268 +f 5409/2271 1371/2272 5412/2273 +f 5411/2274 5412/2273 1371/2272 +f 5417/2275 1373/2276 5419/2277 +f 5418/2278 5419/2277 1373/2276 +f 5426/2279 5422/2280 5424/2281 +f 1374/2282 5424/2281 5422/2280 +f 5415/2283 1375/2284 5431/2285 +f 5430/2286 5431/2285 1375/2284 +f 5436/2287 5433/2288 5435/2289 +f 1377/2290 5435/2289 5433/2288 +f 5442/2291 1380/2292 5444/2293 +f 5443/2294 5444/2293 1380/2292 +f 5447/2295 1381/2296 5450/2297 +f 5449/2298 5450/2297 1381/2296 +f 5457/2299 5455/2300 5456/2301 +f 1383/2302 5456/2301 5455/2300 +f 5462/2303 5459/2304 5442/2291 +f 1380/2292 5442/2291 5459/2304 +f 5470/2305 5468/2306 5469/2307 +f 1387/2308 5469/2307 5468/2306 +f 1383/2302 5455/2300 5472/2309 +f 5474/2310 5472/2309 5455/2300 +f 5479/2311 1389/2312 5481/2313 +f 5480/2314 5481/2313 1389/2312 +f 5483/2315 1387/2308 5486/2316 +f 5468/2306 5486/2316 1387/2308 +f 1381/2296 5490/2317 5449/2298 +f 5491/2318 5449/2298 5490/2317 +f 5494/2319 5492/2320 5479/2311 +f 1389/2312 5479/2311 5492/2320 +f 5500/2321 5498/2322 5499/2323 +f 1393/2324 5499/2323 5498/2322 +f 5505/2325 5506/2326 1394/2327 +f 5503/2328 1394/2327 5506/2326 +f 5512/2329 5510/2330 5511/2331 +f 1396/2332 5511/2331 5510/2330 +f 5518/2333 5515/2334 5517/2335 +f 1397/2336 5517/2335 5515/2334 +f 5523/2337 1399/2338 5525/2339 +f 5524/2340 5525/2339 1399/2338 +f 5528/2341 1400/2342 5532/2343 +f 5530/2344 5532/2343 1400/2342 +f 5537/2345 5521/2346 5536/2347 +f 1401/2348 5536/2347 5521/2346 +f 5542/2349 5539/2350 5541/2351 +f 1403/2352 5541/2351 5539/2350 +f 5546/2353 1405/2354 5548/2355 +f 5547/2356 5548/2355 1405/2354 +f 5551/2357 1406/2358 5554/2359 +f 5553/2360 5554/2359 1406/2358 +f 5558/2361 1408/2362 5560/2363 +f 5559/2364 5560/2363 1408/2362 +f 5563/2365 1409/2366 5566/2367 +f 5565/2368 5566/2367 1409/2366 +f 5571/2369 1411/2370 5573/2371 +f 5572/2372 5573/2371 1411/2370 +f 5576/2373 1412/2374 5580/2375 +f 5578/2376 5580/2375 1412/2374 +f 5569/2377 1413/2378 5585/2379 +f 5584/2380 5585/2379 1413/2378 +f 5587/2381 1415/2382 5590/2383 +f 5589/2384 5590/2383 1415/2382 +f 5594/2385 1417/2386 5596/2387 +f 5595/2388 5596/2387 1417/2386 +f 5599/2389 1418/2390 5602/2391 +f 5601/2392 5602/2391 1418/2390 +f 5606/2393 1420/2394 5608/2395 +f 5607/2396 5608/2395 1420/2394 +f 5611/2397 1421/2398 5614/2399 +f 5613/2400 5614/2399 1421/2398 +f 5619/2401 1423/2402 5621/2403 +f 5620/2404 5621/2403 1423/2402 +f 5624/2405 1424/2406 5628/2407 +f 5626/2408 5628/2407 1424/2406 +f 5617/2409 1425/2410 5633/2411 +f 5632/2412 5633/2411 1425/2410 +f 5638/2413 5635/2414 5637/2415 +f 1427/2416 5637/2415 5635/2414 +f 5644/2417 5642/2418 5643/2419 +f 1429/2420 5643/2419 5642/2418 +f 5650/2421 5647/2422 5649/2423 +f 1430/2424 5649/2423 5647/2422 +f 5654/2425 1432/2426 5656/2427 +f 5655/2428 5656/2427 1432/2426 +f 5662/2429 5659/2430 5661/2431 +f 1433/2432 5661/2431 5659/2430 +f 5667/2433 1435/2434 5669/2435 +f 5668/2436 5669/2435 1435/2434 +f 5674/2437 5671/2438 2991/748 +f 763/750 2991/748 5671/2438 +f 5679/2439 5665/2440 5678/2441 +f 1436/2442 5678/2441 5665/2440 +f 5682/2443 5680/2444 2978/740 +f 760/742 2978/740 5680/2444 +f 5687/2445 5688/2446 1439/2447 +f 5686/2448 1439/2447 5688/2446 +f 5693/2449 5694/2450 1440/2451 +f 5691/2452 1440/2451 5694/2450 +f 5699/2453 5700/2454 1442/2455 +f 5698/2456 1442/2455 5700/2454 +f 5705/2457 5706/2458 1443/2459 +f 5703/2460 1443/2459 5706/2458 +f 5711/2461 1445/2462 5713/2463 +f 5712/2464 5713/2463 1445/2462 +f 5716/2465 1446/2466 5720/2467 +f 5718/2468 5720/2467 1446/2466 +f 5709/2469 1447/2470 5725/2471 +f 5724/2472 5725/2471 1447/2470 +f 5729/2473 5730/2474 1449/2475 +f 5727/2476 1449/2475 5730/2474 +f 1451/2477 5735/2478 5734/2479 +f 5736/2480 5734/2479 5735/2478 +f 5742/2481 5739/2482 5741/2483 +f 1452/2484 5741/2483 5739/2482 +f 5746/2485 1454/2486 5748/2487 +f 5747/2488 5748/2487 1454/2486 +f 1455/2489 5753/2490 5751/2491 +f 5754/2492 5751/2491 5753/2490 +f 5761/2493 5759/2494 5760/2495 +f 1457/2496 5760/2495 5759/2494 +f 5768/2497 5764/2498 5766/2499 +f 1458/2500 5766/2499 5764/2498 +f 5773/2501 5757/2502 5772/2503 +f 1459/2504 5772/2503 5757/2502 +f 5778/2505 5775/2506 5777/2507 +f 1461/2508 5777/2507 5775/2506 +f 5783/2509 5784/2510 1463/2511 +f 5782/2512 1463/2511 5784/2510 +f 5789/2513 5790/2514 1464/2515 +f 5787/2516 1464/2515 5790/2514 +f 5796/2517 5794/2518 5795/2519 +f 1466/2520 5795/2519 5794/2518 +f 5802/2521 5799/2522 5801/2523 +f 1467/2524 5801/2523 5799/2522 +f 5809/2525 5807/2526 5808/2527 +f 1469/2528 5808/2527 5807/2526 +f 5816/2529 5812/2530 5814/2531 +f 1470/2532 5814/2531 5812/2530 +f 5820/2533 5821/2534 1471/2535 +f 5805/2536 1471/2535 5821/2534 +f 5825/2537 5826/2538 1473/2539 +f 5823/2540 1473/2539 5826/2538 +f 5832/2541 5830/2542 5831/2543 +f 1475/2544 5831/2543 5830/2542 +f 5838/2545 5835/2546 5837/2547 +f 1476/2548 5837/2547 5835/2546 +f 1478/2549 5843/2550 5842/2551 +f 5844/2552 5842/2551 5843/2550 +f 5850/2553 5847/2554 5849/2555 +f 1479/2556 5849/2555 5847/2554 +f 5857/2557 5855/2558 5856/2559 +f 1481/2560 5856/2559 5855/2558 +f 5862/2561 5859/2562 3187/876 +f 813/878 3187/876 5859/2562 +f 5867/2563 5853/2564 5866/2565 +f 1482/2566 5866/2565 5853/2564 +f 5870/2567 5868/2568 3174/868 +f 810/870 3174/868 5868/2568 +f 5874/2569 1485/2570 5876/2571 +f 5875/2572 5876/2571 1485/2570 +f 5879/2573 1486/2574 5882/2575 +f 5881/2576 5882/2575 1486/2574 +f 5886/2577 1488/2578 5888/2579 +f 5887/2580 5888/2579 1488/2578 +f 5891/2581 1489/2582 5894/2583 +f 5893/2584 5894/2583 1489/2582 +f 5900/2585 5901/2586 1491/2587 +f 5899/2588 1491/2587 5901/2586 +f 5906/2589 5908/2590 1492/2591 +f 5904/2592 1492/2591 5908/2590 +f 5912/2593 5913/2594 1493/2595 +f 5897/2596 1493/2595 5913/2594 +f 5915/2597 1495/2598 5918/2599 +f 5917/2600 5918/2599 1495/2598 +f 5923/2601 1497/2602 5925/2603 +f 5924/2604 5925/2603 1497/2602 +f 5932/2605 5928/2606 5930/2607 +f 1498/2608 5930/2607 5928/2606 +f 5937/2609 5938/2610 1501/2611 +f 5936/2612 1501/2611 5938/2610 +f 5944/2613 5941/2614 5943/2615 +f 1502/2616 5943/2615 5941/2614 +f 5951/2617 5949/2618 5950/2619 +f 1504/2620 5950/2619 5949/2618 +f 1505/2621 5956/2622 5954/2623 +f 5958/2624 5954/2623 5956/2622 +f 5964/2625 5947/2626 5963/2627 +f 1506/2628 5963/2627 5947/2626 +f 5968/2629 5970/2630 1508/2631 +f 5966/2632 1508/2631 5970/2630 +f 1512/2633 5977/2634 5976/2635 +f 5978/2636 5976/2635 5977/2634 +f 5984/2637 5981/2638 5983/2639 +f 1513/2640 5983/2639 5981/2638 +f 5991/2641 5992/2642 1516/2643 +f 5990/2644 1516/2643 5992/2642 +f 5998/2645 5995/2646 5997/2647 +f 1517/2648 5997/2647 5995/2646 +f 6004/2649 6005/2650 1519/2651 +f 6003/2652 1519/2651 6005/2650 +f 6012/2653 6008/2654 6010/2655 +f 1520/2656 6010/2655 6008/2654 +f 6017/2657 6001/2658 6016/2659 +f 1521/2660 6016/2659 6001/2658 +f 6022/2661 6019/2662 6021/2663 +f 1523/2664 6021/2663 6019/2662 +f 6028/2665 6026/2666 6027/2667 +f 1525/2668 6027/2667 6026/2666 +f 1526/2669 6033/2670 6031/2671 +f 6034/2672 6031/2671 6033/2670 +f 6040/2673 6038/2674 6039/2675 +f 1528/2676 6039/2675 6038/2674 +f 6046/2677 6043/2678 6045/2679 +f 1529/2680 6045/2679 6043/2678 +f 6053/2681 6051/2682 6052/2683 +f 1531/2684 6052/2683 6051/2682 +f 865/1003 3387/1005 6055/2685 +f 6058/2686 6055/2685 3387/1005 +f 1532/2687 6062/2688 6049/2689 +f 6063/2690 6049/2689 6062/2688 +f 6066/2691 6064/2692 3374/996 +f 862/998 3374/996 6064/2692 +f 6070/2693 1535/2694 6072/2695 +f 6071/2696 6072/2695 1535/2694 +f 6075/2697 1536/2698 6078/2699 +f 6077/2700 6078/2699 1536/2698 +f 6083/2701 6084/2702 1538/2703 +f 6082/2704 1538/2703 6084/2702 +f 6089/2705 6090/2706 1539/2707 +f 6087/2708 1539/2707 6090/2706 +f 6096/2709 6097/2710 1541/2711 +f 6095/2712 1541/2711 6097/2710 +f 6102/2713 6104/2714 1542/2715 +f 6100/2716 1542/2715 6104/2714 +f 6108/2717 6109/2718 1543/2719 +f 6093/2720 1543/2719 6109/2718 +f 6113/2721 6114/2722 1545/2723 +f 6111/2724 1545/2723 6114/2722 +f 6118/2725 1547/2726 6120/2727 +f 6119/2728 6120/2727 1547/2726 +f 6125/2729 6126/2730 1548/2731 +f 6123/2732 1548/2731 6126/2730 +f 6130/2733 1550/2734 6132/2735 +f 6131/2736 6132/2735 1550/2734 +f 6135/2737 1551/2738 6138/2739 +f 6137/2740 6138/2739 1551/2738 +f 1553/2741 6144/2742 6143/2743 +f 6145/2744 6143/2743 6144/2742 +f 6152/2745 6148/2746 6150/2747 +f 1554/2748 6150/2747 6148/2746 +f 6157/2749 6141/2750 6156/2751 +f 1555/2752 6156/2751 6141/2750 +f 6162/2753 6159/2754 6161/2755 +f 1557/2756 6161/2755 6159/2754 +f 6169/2757 6167/2758 6168/2759 +f 1559/2760 6168/2759 6167/2758 +f 6176/2761 6172/2762 6174/2763 +f 1560/2764 6174/2763 6172/2762 +f 1563/2765 6181/2766 6180/2767 +f 6182/2768 6180/2767 6181/2766 +f 1564/2769 6187/2770 6185/2771 +f 6188/2772 6185/2771 6187/2770 +f 6195/2773 6193/2774 6194/2775 +f 1566/2776 6194/2775 6193/2774 +f 907/1099 3543/1101 6197/2777 +f 6200/2778 6197/2777 3543/1101 +f 6206/2779 6191/2780 6205/2781 +f 1567/2782 6205/2781 6191/2780 +f 904/1091 3530/1093 6207/2783 +f 6210/2784 6207/2783 3530/1093 +f 6214/2785 1571/2786 6216/2787 +f 6215/2788 6216/2787 1571/2786 +f 6221/2789 6222/2790 1572/2791 +f 6219/2792 1572/2791 6222/2790 +f 6227/2793 6196/2794 6226/2795 +f 1566/2776 6226/2795 6196/2794 +f 6232/2796 6229/2797 6231/2798 +f 1574/2799 6231/2798 6229/2797 +f 6238/2800 6183/2801 6237/2802 +f 1563/2765 6237/2802 6183/2801 +f 6242/2803 6239/2804 6143/2743 +f 1553/2741 6143/2743 6239/2804 +f 6235/2805 1576/2806 6247/2807 +f 6246/2808 6247/2807 1576/2806 +f 6250/2809 6248/2810 6130/2733 +f 1550/2734 6130/2733 6248/2810 +f 6254/2811 1579/2812 6256/2813 +f 6255/2814 6256/2813 1579/2812 +f 6262/2815 6259/2816 6261/2817 +f 1580/2818 6261/2817 6259/2816 +f 6266/2819 1582/2820 6268/2821 +f 6267/2822 6268/2821 1582/2820 +f 6271/2823 1583/2824 6274/2825 +f 6273/2826 6274/2825 1583/2824 +f 6279/2827 1585/2828 6281/2829 +f 6280/2830 6281/2829 1585/2828 +f 6283/2831 1508/2631 6286/2832 +f 5965/2833 6286/2832 1508/2631 +f 6277/2834 1586/2835 6291/2836 +f 6290/2837 6291/2836 1586/2835 +f 6294/2838 6292/2839 5953/2840 +f 1505/2621 5953/2840 6292/2839 +f 6300/2841 6298/2842 6299/2843 +f 1589/2844 6299/2843 6298/2842 +f 6306/2845 6303/2846 6305/2847 +f 1590/2848 6305/2847 6303/2846 +f 1592/2849 6311/2850 6310/2851 +f 6312/2852 6310/2851 6311/2850 +f 1593/2853 6317/2854 6315/2855 +f 6318/2856 6315/2855 6317/2854 +f 1595/2857 6324/2858 6323/2859 +f 6325/2860 6323/2859 6324/2858 +f 1515/2861 5985/2862 6327/2863 +f 6330/2864 6327/2863 5985/2862 +f 1596/2865 6334/2866 6321/2867 +f 6335/2868 6321/2867 6334/2866 +f 6338/2869 6336/2870 5971/2871 +f 1511/2872 5971/2871 6336/2870 +f 6344/2873 6342/2874 6343/2875 +f 1599/2876 6343/2875 6342/2874 +f 6350/2877 6347/2878 6349/2879 +f 1600/2880 6349/2879 6347/2878 +f 1602/2881 6355/2882 6354/2883 +f 6356/2884 6354/2883 6355/2882 +f 6362/2885 6359/2886 6361/2887 +f 1603/2888 6361/2887 6359/2886 +f 6369/2889 6367/2890 6368/2891 +f 1605/2892 6368/2891 6367/2890 +f 951/1219 3727/1221 6371/2893 +f 6374/2894 6371/2893 3727/1221 +f 6379/2895 6365/2896 6378/2897 +f 1606/2898 6378/2897 6365/2896 +f 948/1211 3714/1213 6380/2899 +f 6382/2900 6380/2899 3714/1213 +f 6388/2901 6386/2902 6387/2903 +f 1609/2904 6387/2903 6386/2902 +f 6391/2905 1610/2906 6394/2907 +f 6393/2908 6394/2907 1610/2906 +f 6399/2909 6370/2910 6398/2911 +f 1605/2892 6398/2911 6370/2910 +f 6404/2912 6401/2913 6403/2914 +f 1612/2915 6403/2914 6401/2913 +f 6410/2916 6357/2917 6409/2918 +f 1602/2881 6409/2918 6357/2917 +f 6411/2919 1595/2857 6414/2920 +f 6323/2859 6414/2920 1595/2857 +f 6407/2921 1614/2922 6419/2923 +f 6418/2924 6419/2923 1614/2922 +f 6420/2925 1592/2849 6422/2926 +f 6310/2851 6422/2926 1592/2849 +f 6429/2927 1618/2928 6431/2929 +f 6430/2930 6431/2929 1618/2928 +f 6436/2931 6438/2932 1619/2933 +f 6434/2934 1619/2933 6438/2932 +f 6447/2935 6445/2936 6446/2937 +f 1623/2938 6446/2937 6445/2936 +f 6452/2939 6449/2940 6429/2927 +f 1618/2928 6429/2927 6449/2940 +f 6460/2941 6436/2931 6459/2942 +f 1619/2933 6459/2942 6436/2931 +f 6461/2943 1623/2938 6464/2944 +f 6445/2936 6464/2944 1623/2938 +f 6469/2945 1629/2946 6471/2947 +f 6470/2948 6471/2947 1629/2946 +f 6474/2949 1630/2950 6478/2951 +f 6476/2952 6478/2951 1630/2950 +f 3883/2953 991/2954 6483/2955 +f 6482/2956 6483/2955 991/2954 +f 6485/2957 1633/2958 6488/2959 +f 6487/2960 6488/2959 1633/2958 +f 6493/2961 6494/2962 988/2963 +f 3872/2964 988/2963 6494/2962 +f 6496/2965 1635/2966 6500/2967 +f 6498/2968 6500/2967 1635/2966 +f 6491/2969 1636/2970 6506/2971 +f 6505/2972 6506/2971 1636/2970 +f 6508/2973 1638/2974 6512/2975 +f 6510/2976 6512/2975 1638/2974 +f 6516/2977 1641/2978 6518/2979 +f 6517/2980 6518/2979 1641/2978 +f 1642/2981 6523/2982 6521/2983 +f 6524/2984 6521/2983 6523/2982 +f 6528/2985 6529/2986 1001/2987 +f 3927/2988 1001/2987 6529/2986 +f 6531/2989 1644/2990 6534/2991 +f 6533/2992 6534/2991 1644/2990 +f 3916/2993 998/2994 6540/2995 +f 6539/2996 6540/2995 998/2994 +f 6541/2997 1143/2998 6544/2999 +f 4511/3000 6544/2999 1143/2998 +f 6537/3001 1646/3002 6549/3003 +f 6548/3004 6549/3003 1646/3002 +f 6552/3005 6550/3006 4549/3007 +f 1153/3008 4549/3007 6550/3006 +f 1650/3009 6559/3010 6558/3011 +f 6560/3012 6558/3011 6559/3010 +f 6565/3013 6566/3014 1651/3015 +f 6563/3016 1651/3015 6566/3014 +f 1654/3017 6573/3018 6572/3019 +f 6574/3020 6572/3019 6573/3018 +f 6580/3021 6577/3022 6579/3023 +f 1655/3024 6579/3023 6577/3022 +f 6585/3025 1657/3026 6587/3027 +f 6586/3028 6587/3027 1657/3026 +f 6590/3029 1658/3030 6594/3031 +f 6592/3032 6594/3031 1658/3030 +f 6598/3033 6599/3034 1659/3035 +f 6583/3036 1659/3035 6599/3034 +f 6603/3037 6604/3038 1661/3039 +f 6601/3040 1661/3039 6604/3038 +f 6610/3041 6611/3042 1663/3043 +f 6609/3044 1663/3043 6611/3042 +f 6614/3045 1664/3046 6618/3047 +f 6616/3048 6618/3047 1664/3046 +f 6624/3049 6622/3050 6623/3051 +f 1667/3052 6623/3051 6622/3050 +f 1668/3053 6629/3054 6627/3055 +f 6630/3056 6627/3055 6629/3054 +f 6637/3057 6635/3058 6636/3059 +f 1670/3060 6636/3059 6635/3058 +f 6640/3061 1671/3062 6644/3063 +f 6642/3064 6644/3063 1671/3062 +f 6650/3065 6633/3066 6649/3067 +f 1672/3068 6649/3067 6633/3066 +f 6656/3069 6652/3070 6654/3071 +f 1674/3072 6654/3071 6652/3070 +f 6661/3073 1677/3074 6663/3075 +f 6662/3076 6663/3075 1677/3074 +f 6666/3077 1678/3078 6670/3079 +f 6668/3080 6670/3079 1678/3078 +f 4978/3081 1262/3082 6675/3083 +f 6674/3084 6675/3083 1262/3082 +f 6677/3085 1681/3086 6680/3087 +f 6679/3088 6680/3087 1681/3086 +f 5021/3089 1273/3090 6686/3091 +f 6685/3092 6686/3091 1273/3090 +f 6688/3093 1683/3094 6692/3095 +f 6690/3096 6692/3095 1683/3094 +f 6683/3097 1684/3098 6698/3099 +f 6697/3100 6698/3099 1684/3098 +f 6700/3101 1686/3102 6704/3103 +f 6702/3104 6704/3103 1686/3102 +f 6710/3105 6708/3106 6709/3107 +f 1689/3108 6709/3107 6708/3106 +f 6713/3109 1690/3110 6716/3111 +f 6715/3112 6716/3111 1690/3110 +f 6659/3113 1679/3114 6721/3115 +f 6720/3116 6721/3115 1679/3114 +f 6723/3117 1692/3118 6726/3119 +f 6725/3120 6726/3119 1692/3118 +f 1687/3121 6731/3122 6695/3123 +f 6732/3124 6695/3123 6731/3122 +f 6738/3125 6734/3126 6736/3127 +f 1694/3128 6736/3127 6734/3126 +f 1695/3129 6742/3130 6729/3131 +f 6743/3132 6729/3131 6742/3130 +f 6748/3133 6745/3134 6747/3135 +f 1697/3136 6747/3135 6745/3134 +f 6754/3137 6752/3138 6753/3139 +f 1699/3140 6753/3139 6752/3138 +f 6760/3141 6757/3142 6759/3143 +f 1700/3144 6759/3143 6757/3142 +f 6766/3145 6764/3146 6765/3147 +f 1702/3148 6765/3147 6764/3146 +f 6772/3149 6769/3150 6771/3151 +f 1703/3152 6771/3151 6769/3150 +f 1705/3153 6778/3154 6777/3155 +f 6779/3156 6777/3155 6778/3154 +f 1627/3157 6463/3158 6781/3159 +f 6784/3160 6781/3159 6463/3158 +f 6789/3161 6775/3162 6788/3163 +f 1706/3164 6788/3163 6775/3162 +f 6439/3165 6792/3166 1622/3167 +f 6790/3168 1622/3167 6792/3166 +f 6797/3169 1709/3170 6799/3171 +f 6798/3172 6799/3171 1709/3170 +f 6802/3173 1710/3174 6806/3175 +f 6804/3176 6806/3175 1710/3174 +f 5033/3177 1277/3178 6811/3179 +f 6810/3180 6811/3179 1277/3178 +f 6813/3181 1713/3182 6816/3183 +f 6815/3184 6816/3183 1713/3182 +f 6822/3185 5073/3186 6821/3187 +f 1287/3188 6821/3187 5073/3186 +f 6826/3189 6823/3190 6477/3191 +f 1631/3192 6477/3191 6823/3190 +f 1715/3193 6831/3194 6819/3195 +f 6832/3196 6819/3195 6831/3194 +f 1639/3197 6511/3198 6833/3199 +f 6836/3200 6833/3199 6511/3198 +f 6842/3201 1720/3202 6844/3203 +f 6843/3204 6844/3203 1720/3202 +f 1721/3205 6849/3206 6847/3207 +f 6850/3208 6847/3207 6849/3206 +f 6857/3209 6638/3210 6856/3211 +f 1670/3060 6856/3211 6638/3210 +f 6862/3212 6859/3213 6861/3214 +f 1724/3215 6861/3214 6859/3213 +f 6868/3216 6625/3217 6867/3218 +f 1667/3052 6867/3218 6625/3217 +f 6872/3219 6869/3220 6567/3221 +f 1653/3222 6567/3221 6869/3220 +f 6877/3223 6865/3224 6876/3225 +f 1726/3226 6876/3225 6865/3224 +f 1649/3227 6553/3228 6878/3229 +f 6880/3230 6878/3229 6553/3228 +f 6884/3231 1729/3232 6886/3233 +f 6885/3234 6886/3233 1729/3232 +f 6889/3235 1730/3236 6892/3237 +f 6891/3238 6892/3237 1730/3236 +f 1665/3239 6896/3240 6607/3241 +f 6897/3242 6607/3241 6896/3240 +f 6899/3243 1732/3244 6902/3245 +f 6901/3246 6902/3245 1732/3244 +f 6647/3247 1675/3248 6908/3249 +f 6907/3250 6908/3249 1675/3248 +f 6914/3251 6910/3252 6912/3253 +f 1734/3254 6912/3253 6910/3252 +f 6905/3255 1735/3256 6919/3257 +f 6918/3258 6919/3257 1735/3256 +f 6924/3259 6921/3260 6923/3261 +f 1737/3262 6923/3261 6921/3260 +f 1739/3263 6929/3264 6928/3265 +f 6930/3266 6928/3265 6929/3264 +f 1740/3267 6935/3268 6933/3269 +f 6936/3270 6933/3269 6935/3268 +f 6940/3271 1742/3272 6942/3273 +f 6941/3274 6942/3273 1742/3272 +f 6944/3275 1739/3263 6946/3276 +f 6928/3265 6946/3276 1739/3263 +f 6935/3268 1740/3267 6951/3277 +f 6950/3278 6951/3277 1740/3267 +f 6940/3271 6954/3279 1742/3272 +f 6952/3280 1742/3272 6954/3279 +f 6960/3281 1746/3282 6962/3283 +f 6961/3284 6962/3283 1746/3282 +f 6965/3285 1747/3286 6968/3287 +f 6967/3288 6968/3287 1747/3286 +f 6973/3289 1749/3290 6975/3291 +f 6974/3292 6975/3291 1749/3290 +f 6980/3293 6977/3294 6960/3281 +f 1746/3282 6960/3281 6977/3294 +f 6985/3295 6967/3288 6984/3296 +f 1747/3286 6984/3296 6967/3288 +f 6988/3297 6986/3298 6973/3289 +f 1749/3290 6973/3289 6986/3298 +f 6994/3299 6992/3300 6993/3301 +f 1753/3302 6993/3301 6992/3300 +f 1754/3303 6999/3304 6997/3305 +f 7000/3306 6997/3305 6999/3304 +f 1756/3307 7005/3308 7004/3309 +f 7006/3310 7004/3309 7005/3308 +f 7012/3311 7009/3312 7011/3313 +f 1757/3314 7011/3313 7009/3312 +f 7019/3315 7017/3316 7018/3317 +f 1759/3318 7018/3317 7017/3316 +f 7024/3319 7021/3320 4397/1650 +f 1115/1652 4397/1650 7021/3320 +f 7029/3321 7015/3322 7028/3323 +f 1760/3324 7028/3323 7015/3322 +f 4384/1641 7032/3325 1112/1642 +f 7030/3326 1112/1642 7032/3325 +f 7038/3327 1764/3328 7040/3329 +f 7039/3330 7040/3329 1764/3328 +f 7043/3331 1765/3332 7046/3333 +f 7045/3334 7046/3333 1765/3332 +f 4462/1689 1130/1691 7053/3335 +f 7052/3336 7053/3335 1130/1691 +f 7055/3337 1768/3338 7058/3339 +f 7057/3340 7058/3339 1768/3338 +f 7064/3341 4450/1683 7063/3342 +f 1127/1684 7063/3342 4450/1683 +f 7065/3343 1759/3318 7068/3344 +f 7017/3316 7068/3344 1759/3318 +f 7061/3345 1770/3346 7073/3347 +f 7072/3348 7073/3347 1770/3346 +f 7074/3349 1756/3307 7076/3350 +f 7004/3309 7076/3350 1756/3307 +f 7080/3351 1773/3352 7082/3353 +f 7081/3354 7082/3353 1773/3352 +f 7088/3355 7085/3356 7087/3357 +f 1774/3358 7087/3357 7085/3356 +f 1776/3359 7093/3360 7092/3361 +f 7094/3362 7092/3361 7093/3360 +f 7098/3363 7096/3364 7080/3351 +f 1773/3352 7080/3351 7096/3364 +f 7087/3357 1774/3358 7103/3365 +f 7102/3366 7103/3365 1774/3358 +f 7104/3367 1776/3359 7106/3368 +f 7092/3361 7106/3368 1776/3359 +f 1780/3369 1787/3 451/3370 +f 1786/4 451/3370 1787/3 +f 1793/3371 1794/7 116/3372 +f 1792/8 116/3372 1794/7 +f 1802/11 1801/12 1796/3373 +f 455/3374 1796/3373 1801/12 +f 1808/15 1807/16 1788/3375 +f 117/3376 1788/3375 1807/16 +f 1815/19 1814/20 1809/3377 +f 459/3378 1809/3377 1814/20 +f 1822/23 1820/24 1821/3379 +f 115/3380 1821/3379 1820/24 +f 1828/27 1827/28 1823/3381 +f 462/3382 1823/3381 1827/28 +f 1833/3383 1834/31 18/3384 +f 1832/32 18/3384 1834/31 +f 1841/35 1840/36 1835/3385 +f 466/3386 1835/3385 1840/36 +f 1847/3387 1848/39 120/3388 +f 1846/40 120/3388 1848/39 +f 1854/43 1853/44 1849/3389 +f 469/3390 1849/3389 1853/44 +f 1860/47 1859/48 1842/3391 +f 121/3392 1842/3391 1859/48 +f 1867/51 1866/52 1861/3393 +f 473/3394 1861/3393 1866/52 +f 1874/55 1872/56 1873/3395 +f 119/3396 1873/3395 1872/56 +f 1880/59 1879/60 1875/3397 +f 476/3398 1875/3397 1879/60 +f 1886/63 1884/64 1885/3399 +f 17/3400 1885/3399 1884/64 +f 1888/3401 1894/65 480/3402 +f 1893/67 480/3402 1894/65 +f 1900/69 1899/71 1803/3403 +f 114/3404 1803/3403 1899/71 +f 1902/3405 1908/73 484/3406 +f 1907/75 484/3406 1908/73 +f 1895/3407 1914/77 125/3408 +f 1913/79 125/3408 1914/77 +f 1921/83 1920/84 1915/3409 +f 488/3410 1915/3409 1920/84 +f 1928/87 1926/88 1927/3411 +f 124/3412 1927/3411 1926/88 +f 1929/3413 1933/89 490/3414 +f 1932/91 490/3414 1933/89 +f 1938/95 1937/96 1816/3415 +f 16/3416 1816/3415 1937/96 +f 1946/99 1945/100 1940/3417 +f 494/3418 1940/3417 1945/100 +f 1952/103 1951/104 1909/3419 +f 123/3420 1909/3419 1951/104 +f 1954/3421 1960/105 498/3422 +f 1959/107 498/3422 1960/105 +f 1966/111 1965/112 1947/3423 +f 129/3424 1947/3423 1965/112 +f 1973/113 1972/115 1967/3425 +f 502/3426 1967/3425 1972/115 +f 1980/119 1978/120 1979/3427 +f 128/3428 1979/3427 1978/120 +f 1985/123 1984/124 1981/3429 +f 504/3430 1981/3429 1984/124 +f 1990/127 1989/128 1922/3431 +f 21/3432 1922/3431 1989/128 +f 1997/131 1996/132 1991/3433 +f 508/3434 1991/3433 1996/132 +f 2004/135 2002/136 2003/3435 +f 132/3436 2003/3435 2002/136 +f 2010/139 2009/140 2005/3437 +f 511/3438 2005/3437 2009/140 +f 2016/143 2015/144 1998/3439 +f 133/3440 1998/3439 2015/144 +f 2017/3441 2023/145 515/3442 +f 2022/147 515/3442 2023/145 +f 2030/150 2028/149 2029/3443 +f 131/3444 2029/3443 2028/149 +f 2036/155 2035/156 2031/3445 +f 518/3446 2031/3445 2035/156 +f 2042/159 2040/160 2041/3447 +f 20/3448 2041/3447 2040/160 +f 2048/163 2047/164 2043/3449 +f 521/3450 2043/3449 2047/164 +f 2054/167 2053/168 1855/3451 +f 118/3452 1855/3451 2053/168 +f 2059/171 2058/172 2055/3453 +f 523/3454 2055/3453 2058/172 +f 2064/175 2063/176 2049/3455 +f 135/3456 2049/3455 2063/176 +f 2070/179 2069/180 2065/3457 +f 526/3458 2065/3457 2069/180 +f 2076/183 2074/184 2075/3459 +f 134/3460 2075/3459 2074/184 +f 2081/187 2080/188 2077/3461 +f 528/3462 2077/3461 2080/188 +f 2086/191 2085/192 1868/3463 +f 5/3464 1868/3463 2085/192 +f 2088/3465 2094/193 532/3466 +f 2093/195 532/3466 2094/193 +f 1961/3467 2100/197 127/3468 +f 2099/199 127/3468 2100/197 +f 2102/3469 2108/201 536/3470 +f 2107/203 536/3470 2108/201 +f 2095/3471 2114/205 139/3472 +f 2113/207 139/3472 2114/205 +f 2115/3473 2121/209 540/3474 +f 2120/211 540/3474 2121/209 +f 2128/215 2126/216 2127/3475 +f 138/3476 2127/3475 2126/216 +f 2129/3477 2133/217 542/3478 +f 2132/219 542/3478 2133/217 +f 2138/221 2137/223 1974/3479 +f 19/3480 1974/3479 2137/223 +f 2139/3481 2144/225 545/3482 +f 2143/227 545/3482 2144/225 +f 2011/3483 2150/229 130/3484 +f 2149/231 130/3484 2150/229 +f 2151/3485 2156/233 548/3486 +f 2155/235 548/3486 2156/233 +f 2145/3487 2162/237 142/3488 +f 2161/239 142/3488 2162/237 +f 2163/3489 2169/241 552/3490 +f 2168/243 552/3490 2169/241 +f 2175/3491 2176/245 141/3492 +f 2174/247 141/3492 2176/245 +f 2177/3493 2181/249 554/3494 +f 2180/251 554/3494 2181/249 +f 2024/3495 2186/253 6/3496 +f 2185/255 6/3496 2186/253 +f 2187/3497 2192/257 557/3498 +f 2191/259 557/3498 2192/257 +f 2197/262 131/3444 2198/264 +f 2028/149 2198/264 131/3444 +f 2199/3499 2204/265 560/3500 +f 2203/267 560/3500 2204/265 +f 2209/270 145/3501 2210/272 +f 2193/3502 2210/272 145/3501 +f 2216/274 564/3503 2217/276 +f 2211/3504 2217/276 564/3503 +f 2223/3505 2224/277 144/3506 +f 2222/279 144/3506 2224/277 +f 2225/3507 2229/281 566/3508 +f 2228/283 566/3508 2229/281 +f 2040/160 2234/285 20/3448 +f 2233/287 20/3448 2234/285 +f 2235/3509 2240/290 569/3510 +f 2239/289 569/3510 2240/290 +f 2074/184 2246/294 134/3460 +f 2245/293 134/3460 2246/294 +f 572/3511 2247/3512 2251/297 +f 2252/298 2251/297 2247/3512 +f 147/3513 2241/3514 2257/301 +f 2258/302 2257/301 2241/3514 +f 2265/306 2264/305 2259/3515 +f 575/3516 2259/3515 2264/305 +f 2270/310 1881/311 2269/3517 +f 119/3396 2269/3517 1881/311 +f 2275/314 2274/315 2271/3518 +f 576/3519 2271/3518 2274/315 +f 2278/317 1869/318 2085/192 +f 5/3464 2085/192 1869/318 +f 2287/321 2286/322 2280/3520 +f 581/3521 2280/3520 2286/322 +f 2293/3522 2294/323 151/3523 +f 2292/325 151/3523 2294/323 +f 2302/329 2301/330 2296/3524 +f 585/3525 2296/3524 2301/330 +f 2308/333 2307/334 2288/3526 +f 152/3527 2288/3526 2307/334 +f 2309/3528 2315/335 589/3529 +f 2314/337 589/3529 2315/335 +f 2321/3530 2322/339 150/3531 +f 2320/341 150/3531 2322/339 +f 2323/3532 2328/343 592/3533 +f 2327/345 592/3533 2328/343 +f 2333/3534 2334/347 25/3535 +f 2332/349 25/3535 2334/347 +f 2342/351 2341/353 2336/3536 +f 596/3537 2336/3536 2341/353 +f 2348/357 2347/358 2303/3538 +f 149/3539 2303/3538 2347/358 +f 2350/3540 2356/359 600/3541 +f 2355/361 600/3541 2356/359 +f 2343/3542 2362/363 156/3543 +f 2361/365 156/3543 2362/363 +f 2363/3544 2369/367 604/3545 +f 2368/369 604/3545 2369/367 +f 2376/373 2374/374 2375/3546 +f 155/3547 2375/3546 2374/374 +f 2377/3548 2381/375 606/3549 +f 2380/377 606/3549 2381/375 +f 2316/3550 2386/379 29/3551 +f 2385/381 29/3551 2386/379 +f 2393/385 2392/386 2387/3552 +f 610/3553 2387/3552 2392/386 +f 2399/3554 2400/387 159/3555 +f 2398/389 159/3555 2400/387 +f 2406/393 2405/394 2401/3556 +f 613/3557 2401/3556 2405/394 +f 2412/397 2411/398 2394/3558 +f 160/3559 2394/3558 2411/398 +f 2419/401 2418/402 2413/3560 +f 617/3561 2413/3560 2418/402 +f 2426/405 2424/406 2425/3562 +f 158/3563 2425/3562 2424/406 +f 2432/409 2431/410 2427/3564 +f 620/3565 2427/3564 2431/410 +f 2437/3566 2438/413 28/3567 +f 2436/414 28/3567 2438/413 +f 2439/3568 2445/415 624/3569 +f 2444/417 624/3569 2445/415 +f 2451/3570 2452/419 162/3571 +f 2450/421 162/3571 2452/419 +f 2453/3572 2457/423 626/3573 +f 2456/425 626/3573 2457/423 +f 2446/3574 2462/427 163/3575 +f 2461/429 163/3575 2462/427 +f 2463/3576 2468/431 629/3577 +f 2467/433 629/3577 2468/431 +f 2473/3578 2474/435 161/3579 +f 2472/437 161/3579 2474/435 +f 2475/3580 2480/439 632/3581 +f 2479/441 632/3581 2480/439 +f 2485/3582 2486/443 8/3583 +f 2484/445 8/3583 2486/443 +f 2488/3584 2494/447 636/3585 +f 2493/449 636/3585 2494/447 +f 2357/3586 2500/451 154/3587 +f 2499/453 154/3587 2500/451 +f 2502/3588 2508/455 640/3589 +f 2507/457 640/3589 2508/455 +f 2495/3590 2514/459 167/3591 +f 2513/461 167/3591 2514/459 +f 2515/3592 2521/463 644/3593 +f 2520/465 644/3593 2521/463 +f 2527/3594 2528/467 166/3595 +f 2526/469 166/3595 2528/467 +f 2529/3596 2533/471 646/3597 +f 2532/473 646/3597 2533/471 +f 2370/3598 2538/475 27/3599 +f 2537/477 27/3599 2538/475 +f 2544/481 2543/482 2539/3600 +f 649/3601 2539/3600 2543/482 +f 2550/485 2549/486 2407/3602 +f 157/3603 2407/3602 2549/486 +f 2556/489 2555/490 2551/3604 +f 652/3605 2551/3604 2555/490 +f 2562/493 2561/494 2545/3606 +f 170/3607 2545/3606 2561/494 +f 2563/3608 2569/495 656/3609 +f 2568/497 656/3609 2569/495 +f 2575/3610 2576/499 169/3611 +f 2574/501 169/3611 2576/499 +f 2581/505 2580/506 2577/3612 +f 658/3613 2577/3612 2580/506 +f 2586/509 2585/510 2420/3614 +f 7/3615 2420/3614 2585/510 +f 2588/3616 2595/514 663/3617 +f 2594/512 663/3617 2595/514 +f 2600/517 174/3618 2602/515 +f 2601/3619 2602/515 174/3618 +f 2603/3620 2609/519 666/3621 +f 2608/521 666/3621 2609/519 +f 2613/3622 2614/523 171/3623 +f 2593/513 171/3623 2614/523 +f 2622/527 2621/528 2616/3624 +f 669/3625 2616/3624 2621/528 +f 2626/530 2607/520 2091/3626 +f 136/3627 2091/3626 2607/520 +f 2628/3628 2635/531 673/3629 +f 2634/533 673/3629 2635/531 +f 2639/3630 2640/535 172/3631 +f 2620/525 172/3631 2640/535 +f 2648/537 2647/538 2642/3632 +f 676/3633 2642/3632 2647/538 +f 2652/540 2633/532 2651/3634 +f 173/3635 2651/3634 2633/532 +f 2653/3636 2659/541 680/3637 +f 2658/543 680/3637 2659/541 +f 2665/3638 2666/545 178/3639 +f 2664/547 178/3639 2666/545 +f 2667/3640 2672/549 683/3641 +f 2671/551 683/3641 2672/549 +f 2660/3642 2678/553 179/3643 +f 2677/555 179/3643 2678/553 +f 2679/3644 2685/557 687/3645 +f 2684/559 687/3645 2685/557 +f 2691/3646 2692/561 177/3647 +f 2690/563 177/3647 2692/561 +f 2693/3648 2698/565 690/3649 +f 2697/567 690/3649 2698/565 +f 2703/3650 2704/569 33/3651 +f 2702/571 33/3651 2704/569 +f 693/3652 2705/3653 2709/573 +f 2710/574 2709/573 2705/3653 +f 2716/578 2715/577 2690/563 +f 177/3647 2690/563 2715/577 +f 696/3654 2717/3655 2721/583 +f 2722/581 2721/583 2717/3655 +f 182/3656 2711/3657 2727/585 +f 2728/586 2727/585 2711/3657 +f 2729/3658 2735/589 700/3659 +f 2734/591 700/3659 2735/589 +f 181/3660 2741/3661 2740/593 +f 2742/594 2740/593 2741/3661 +f 702/3662 2743/3663 2746/597 +f 2747/598 2746/597 2743/3663 +f 2752/603 2751/604 2702/571 +f 33/3651 2702/571 2751/604 +f 706/3664 2753/3665 2758/605 +f 2759/606 2758/605 2753/3665 +f 185/3666 2765/3667 2764/609 +f 2766/610 2764/609 2765/3667 +f 2767/3668 2772/613 708/3669 +f 2771/615 708/3669 2772/613 +f 2723/3670 2776/618 180/3671 +f 2757/608 180/3671 2776/618 +f 711/3672 2778/3673 2783/619 +f 2784/620 2783/619 2778/3673 +f 162/3674 2477/3675 2770/614 +f 2788/623 2770/614 2477/3675 +f 2790/3676 2797/627 715/3677 +f 2796/628 715/3677 2797/627 +f 2801/3678 2802/629 183/3679 +f 2782/622 183/3679 2802/629 +f 2804/3680 2810/631 718/3681 +f 2809/632 718/3681 2810/631 +f 2813/3682 2814/633 184/3683 +f 2795/625 184/3683 2814/633 +f 2821/637 2820/638 2815/3684 +f 722/3685 2815/3684 2820/638 +f 2827/3686 2828/639 189/3687 +f 2826/641 189/3687 2828/639 +f 2829/3688 2834/643 725/3689 +f 2833/645 725/3689 2834/643 +f 2822/3690 2840/647 190/3691 +f 2839/649 190/3691 2840/647 +f 729/3692 2841/3693 2846/654 +f 2847/653 2846/654 2841/3693 +f 2853/3694 2854/656 188/3695 +f 2852/655 188/3695 2854/656 +f 2855/3696 2860/659 732/3697 +f 2859/661 732/3697 2860/659 +f 2865/3698 2866/663 39/3699 +f 2864/665 39/3699 2866/663 +f 2872/669 2871/670 2867/3700 +f 735/3701 2867/3700 2871/670 +f 2878/673 2877/674 2835/3702 +f 187/3703 2835/3702 2877/674 +f 2884/677 2883/678 2879/3704 +f 738/3705 2879/3704 2883/678 +f 2890/681 2889/682 2873/3706 +f 193/3707 2873/3706 2889/682 +f 2897/684 2896/683 2891/3708 +f 742/3709 2891/3708 2896/683 +f 192/3710 2903/3711 2902/687 +f 2904/688 2902/687 2903/3711 +f 2909/693 2908/694 2905/3712 +f 744/3713 2905/3712 2908/694 +f 2914/697 2913/698 2848/3714 +f 40/3715 2848/3714 2913/698 +f 2920/701 2919/702 2915/3716 +f 747/3717 2915/3716 2919/702 +f 2926/705 2925/706 2885/3718 +f 191/3719 2885/3718 2925/706 +f 750/3720 2927/3721 2931/709 +f 2932/707 2931/709 2927/3721 +f 2938/713 2937/714 2921/3722 +f 196/3723 2921/3722 2937/714 +f 2945/716 2944/715 2939/3724 +f 754/3725 2939/3724 2944/715 +f 195/3726 2951/3727 2950/719 +f 2952/720 2950/719 2951/3727 +f 2957/725 2956/726 2953/3728 +f 756/3729 2953/3728 2956/726 +f 38/3730 2898/3731 2961/727 +f 2962/728 2961/727 2898/3731 +f 2963/3732 2968/731 759/3733 +f 2967/733 759/3733 2968/731 +f 2933/3734 2974/735 194/3735 +f 2973/737 194/3735 2974/735 +f 2975/3736 2980/739 762/3737 +f 2979/741 762/3737 2980/739 +f 2969/3738 2986/743 199/3739 +f 2985/745 199/3739 2986/743 +f 2987/3740 2993/747 766/3741 +f 2992/749 766/3741 2993/747 +f 3000/753 2998/754 2999/3742 +f 198/3743 2999/3742 2998/754 +f 3001/3744 3005/755 768/3745 +f 3004/757 768/3745 3005/755 +f 41/3746 2946/3747 3009/759 +f 3010/760 3009/759 2946/3747 +f 3017/765 3016/766 3011/3748 +f 772/3749 3011/3748 3016/766 +f 3024/769 3022/770 3023/3750 +f 202/3751 3023/3750 3022/770 +f 3030/773 3029/774 3025/3752 +f 775/3753 3025/3752 3029/774 +f 3036/776 3035/775 3018/3754 +f 203/3755 3018/3754 3035/775 +f 779/3756 3037/3757 3042/779 +f 3043/780 3042/779 3037/3757 +f 201/3758 3049/3759 3048/783 +f 3050/784 3048/783 3049/3759 +f 3056/789 3055/790 3051/3760 +f 782/3761 3051/3760 3055/790 +f 3062/793 3060/794 3061/3762 +f 45/3763 3061/3762 3060/794 +f 3063/3764 3068/795 785/3765 +f 3067/797 785/3765 3068/795 +f 3073/800 200/3766 3074/802 +f 3031/3767 3074/802 200/3766 +f 3075/3768 3080/803 788/3769 +f 3079/805 788/3769 3080/803 +f 3069/3770 3086/807 206/3771 +f 3085/809 206/3771 3086/807 +f 3087/3772 3093/811 792/3773 +f 3092/813 792/3773 3093/811 +f 3098/817 205/3774 3100/815 +f 3099/3775 3100/815 205/3774 +f 3104/820 794/3776 3105/822 +f 3101/3777 3105/822 794/3776 +f 44/3778 3044/3779 3109/823 +f 3110/824 3109/823 3044/3779 +f 3116/829 3115/830 3111/3780 +f 797/3781 3111/3780 3115/830 +f 3081/3782 3122/833 204/3783 +f 3121/834 204/3783 3122/833 +f 3128/837 3127/838 3123/3784 +f 800/3785 3123/3784 3127/838 +f 3134/841 3133/842 3117/3786 +f 209/3787 3117/3786 3133/842 +f 3140/845 804/3788 3141/843 +f 3135/3789 3141/843 804/3788 +f 3147/3790 3148/847 208/3791 +f 3146/849 208/3791 3148/847 +f 3149/3792 3153/851 806/3793 +f 3152/853 806/3793 3153/851 +f 3094/3794 3158/855 46/3795 +f 3157/857 46/3795 3158/855 +f 3159/3796 3164/859 809/3797 +f 3163/861 809/3797 3164/859 +f 3129/3798 3170/863 207/3799 +f 3169/865 207/3799 3170/863 +f 3171/3800 3176/867 812/3801 +f 3175/869 812/3801 3176/867 +f 3165/3802 3182/871 212/3803 +f 3181/873 212/3803 3182/871 +f 3183/3804 3189/875 816/3805 +f 3188/877 816/3805 3189/875 +f 3195/3806 3196/879 211/3807 +f 3194/881 211/3807 3196/879 +f 3197/3808 3201/883 818/3809 +f 3200/885 818/3809 3201/883 +f 3205/888 43/3810 3206/890 +f 3142/3811 3206/890 43/3810 +f 822/3812 3207/3813 3212/891 +f 3213/892 3212/891 3207/3813 +f 215/3814 3219/3815 3218/895 +f 3220/896 3218/895 3219/3815 +f 3226/900 3225/899 3221/3816 +f 825/3817 3221/3816 3225/899 +f 3232/905 3231/906 3214/3818 +f 216/3819 3214/3818 3231/906 +f 3239/909 3238/910 3233/3820 +f 829/3821 3233/3820 3238/910 +f 3246/913 3244/914 3245/3822 +f 214/3823 3245/3822 3244/914 +f 832/3824 3247/3825 3251/915 +f 3252/916 3251/915 3247/3825 +f 50/3826 3257/3827 3256/919 +f 3258/920 3256/919 3257/3827 +f 3259/3828 3265/923 836/3829 +f 3264/925 836/3829 3265/923 +f 3271/1192 3272/927 219/3830 +f 3270/929 219/3830 3272/927 +f 3273/3831 3278/931 839/3832 +f 3277/933 839/3832 3278/931 +f 3283/936 220/3833 3284/938 +f 3266/3834 3284/938 220/3833 +f 3290/940 843/3835 3291/942 +f 3285/3836 3291/942 843/3835 +f 3296/944 218/3837 3298/946 +f 3297/3838 3298/946 218/3837 +f 3303/948 846/3839 3304/950 +f 3299/3840 3304/950 846/3839 +f 3308/952 59/3841 3310/954 +f 3309/1202 3310/954 59/3841 +f 3311/3842 3316/955 849/3843 +f 3315/957 849/3843 3316/955 +f 3321/960 217/3844 3322/962 +f 3279/3845 3322/962 217/3844 +f 3323/3846 3328/963 852/3847 +f 3327/965 852/3847 3328/963 +f 3317/3848 3334/967 223/3849 +f 3333/969 223/3849 3334/967 +f 3340/973 856/3850 3341/971 +f 3335/3851 3341/971 856/3850 +f 3348/977 3346/978 3347/3852 +f 222/3853 3347/3852 3346/978 +f 3349/3854 3353/979 858/3855 +f 3352/981 858/3855 3353/979 +f 58/3856 3292/3857 3357/986 +f 3358/985 3357/986 3292/3857 +f 3359/3858 3364/990 861/3859 +f 3363/988 861/3859 3364/990 +f 3329/3860 3370/991 221/3861 +f 3369/993 221/3861 3370/991 +f 3371/3862 3376/995 864/3863 +f 3375/997 864/3863 3376/995 +f 3365/3864 3382/1002 226/3865 +f 3381/1000 226/3865 3382/1002 +f 3388/1004 868/3866 3389/1006 +f 3383/3867 3389/1006 868/3866 +f 3395/3868 3396/1007 225/3869 +f 3394/1009 225/3869 3396/1007 +f 3397/3870 3401/1011 870/3871 +f 3400/1013 870/3871 3401/1011 +f 3342/3872 3406/1015 48/3873 +f 3405/1017 48/3873 3406/1015 +f 874/3874 3407/3875 3412/1019 +f 3413/1020 3412/1019 3407/3875 +f 229/3876 3419/3877 3418/1023 +f 3420/1024 3418/1023 3419/3877 +f 3426/1029 3425/1030 3421/3878 +f 877/3879 3421/3878 3425/1030 +f 3432/1033 3431/1034 3414/3880 +f 230/3881 3414/3880 3431/1034 +f 3439/1037 3438/1038 3433/3882 +f 881/3883 3433/3882 3438/1038 +f 3446/1041 3444/1042 3445/3884 +f 228/3885 3445/3884 3444/1042 +f 3452/1045 3451/1046 3447/3886 +f 884/3887 3447/3886 3451/1046 +f 55/3888 3457/3889 3456/1050 +f 3458/1049 3456/1050 3457/3889 +f 3466/1053 3465/1054 3460/3890 +f 888/3891 3460/3890 3465/1054 +f 3472/1056 3471/1055 3427/3892 +f 227/3893 3427/3892 3471/1055 +f 3474/3894 3480/1059 892/3895 +f 3479/1061 892/3895 3480/1059 +f 3486/1063 3485/1065 3467/3896 +f 234/3897 3467/3896 3485/1065 +f 3487/3898 3493/1067 896/3899 +f 3492/1069 896/3899 3493/1067 +f 233/3900 3499/3901 3498/1072 +f 3500/1074 3498/1072 3499/3901 +f 898/3902 3501/3903 3504/1075 +f 3505/1076 3504/1075 3501/3903 +f 54/3904 3440/3905 3509/1079 +f 3510/1080 3509/1079 3440/3905 +f 3512/3906 3518/1083 902/3907 +f 3517/1085 902/3907 3518/1083 +f 3481/3908 3524/1087 232/3909 +f 3523/1089 232/3909 3524/1087 +f 3526/3910 3532/1094 906/3911 +f 3531/1092 906/3911 3532/1094 +f 3519/3912 3538/1095 238/3913 +f 3537/1097 238/3913 3538/1095 +f 3539/3914 3545/1102 910/3915 +f 3544/1100 910/3915 3545/1102 +f 3550/1105 237/3916 3552/1103 +f 3551/3917 3552/1103 237/3916 +f 3556/1108 912/3918 3557/1110 +f 3553/3919 3557/1110 912/3918 +f 3561/1112 56/3920 3562/1114 +f 3494/3921 3562/1114 56/3920 +f 3569/1117 3568/1118 3563/3922 +f 916/3923 3563/3922 3568/1118 +f 3576/1121 3574/1122 3575/3924 +f 239/3925 3575/3924 3574/1122 +f 918/3926 3577/3927 3580/1124 +f 3581/1123 3580/1124 3577/3927 +f 240/3928 3570/3929 3585/1125 +f 3586/1126 3585/1125 3570/3929 +f 3587/3930 3592/1129 920/3931 +f 3591/1130 920/3931 3592/1129 +f 3595/3932 3596/1131 237/3916 +f 3558/1133 237/3916 3596/1131 +f 3597/3933 3602/1134 922/3934 +f 3601/1136 922/3934 3602/1134 +f 3605/3935 3606/1138 53/3936 +f 3547/1140 53/3936 3606/1138 +f 3607/3937 3613/1141 926/3938 +f 3612/1143 926/3938 3613/1141 +f 243/3939 3619/3940 3618/1148 +f 3620/1147 3618/1148 3619/3940 +f 3621/3941 3626/1149 929/3942 +f 3625/1151 929/3942 3626/1149 +f 244/3943 3614/3944 3631/1153 +f 3632/1154 3631/1153 3614/3944 +f 933/3945 3633/3946 3638/1157 +f 3639/1158 3638/1157 3633/3946 +f 242/3947 3645/3948 3644/1161 +f 3646/1162 3644/1161 3645/3948 +f 936/3949 3647/3950 3651/1165 +f 3652/1166 3651/1165 3647/3950 +f 3658/1171 3656/1172 3657/3951 +f 57/3952 3657/3951 3656/1172 +f 3659/3953 3664/1173 939/3954 +f 3663/1175 939/3954 3664/1173 +f 241/3955 3627/3956 3669/1178 +f 3670/1180 3669/1178 3627/3956 +f 941/3957 3671/3958 3674/1181 +f 3675/1182 3674/1181 3671/3958 +f 3679/1187 245/3959 3680/1186 +f 3665/3960 3680/1186 245/3959 +f 3686/1189 3685/1190 3681/3961 +f 943/3962 3681/3961 3685/1190 +f 3690/1194 3271/1192 3689/3963 +f 219/3830 3689/3963 3271/1192 +f 3695/1198 3694/1196 3691/3964 +f 944/3965 3691/3964 3694/1196 +f 59/3841 3640/3966 3309/1202 +f 3698/1201 3309/1202 3640/3966 +f 3699/3967 3704/1203 947/3968 +f 3703/1205 947/3968 3704/1203 +f 3346/978 3710/1207 222/3853 +f 3709/1209 222/3853 3710/1207 +f 3715/1212 950/3969 3716/1214 +f 3711/3970 3716/1214 950/3969 +f 3705/3971 3722/1215 248/3972 +f 3721/1217 248/3972 3722/1215 +f 3723/3973 3729/1222 954/3974 +f 3728/1220 954/3974 3729/1222 +f 3735/3975 3736/1223 247/3976 +f 3734/1225 247/3976 3736/1223 +f 3737/3977 3741/1227 956/3978 +f 3740/1229 956/3978 3741/1227 +f 3745/1232 58/3856 3746/1234 +f 3357/986 3746/1234 58/3856 +f 960/3979 3747/3980 3752/1235 +f 3753/1236 3752/1235 3747/3980 +f 3759/3981 3760/1239 249/3982 +f 3758/1241 249/3982 3760/1239 +f 962/3983 3761/3984 3764/1243 +f 3765/1244 3764/1243 3761/3984 +f 250/3985 3754/3986 3769/1245 +f 3770/1246 3769/1245 3754/3986 +f 964/3987 3771/3988 3775/1249 +f 3776/1250 3775/1249 3771/3988 +f 3779/3989 3780/1251 247/3976 +f 3742/1253 247/3976 3780/1251 +f 3781/3990 3786/1254 966/3991 +f 3785/1256 966/3991 3786/1254 +f 3789/3992 3790/1258 60/3993 +f 3731/1260 60/3993 3790/1258 +f 3799/1263 3798/1264 3792/3994 +f 971/3995 3792/3994 3798/1264 +f 3806/1267 3804/1268 3805/3996 +f 253/3997 3805/3996 3804/1268 +f 975/3998 3808/3999 3814/1269 +f 3815/1270 3814/1269 3808/3999 +f 3819/4000 3820/1273 251/4001 +f 3797/1261 251/4001 3820/1273 +f 3822/4002 3828/1275 978/4003 +f 3827/1276 978/4003 3828/1275 +f 3831/4004 3832/1277 252/4005 +f 3813/1272 252/4005 3832/1277 +f 3840/1281 3839/1282 3834/4006 +f 982/4007 3834/4006 3839/1282 +f 3846/1285 3845/1286 2491/4008 +f 164/4009 2491/4008 3845/1286 +f 3854/1289 3853/1290 3848/4010 +f 986/4011 3848/4010 3853/1290 +f 3860/1293 3859/1294 3841/4012 +f 258/4013 3841/4012 3859/1294 +f 3867/1297 3866/1298 3861/4014 +f 990/4015 3861/4014 3866/1298 +f 3874/1301 3872/1302 3873/4016 +f 257/4017 3873/4016 3872/1302 +f 3879/1305 3878/1306 3875/4018 +f 992/4019 3875/4018 3878/1306 +f 3884/1309 3883/1310 2505/4020 +f 9/4021 2505/4020 3883/1310 +f 3885/4022 3890/1314 995/4023 +f 3889/1312 995/4023 3890/1314 +f 3896/1316 3895/1315 3855/4024 +f 256/4025 3855/4024 3895/1315 +f 3900/1321 997/4026 3901/1319 +f 3897/4027 3901/1319 997/4026 +f 260/4028 3891/4029 3905/1323 +f 3906/1324 3905/1323 3891/4029 +f 1000/4030 3907/4031 3911/1327 +f 3912/1328 3911/1327 3907/4031 +f 259/4032 3917/4033 3916/1331 +f 3918/1332 3916/1331 3917/4033 +f 1002/4034 3919/4035 3922/1335 +f 3923/1336 3922/1335 3919/4035 +f 3928/1341 3927/1342 3868/4036 +f 11/4037 3868/4036 3927/1342 +f 3934/1346 1006/4038 3935/1345 +f 3929/4039 3935/1345 1006/4038 +f 3940/1348 263/4040 3942/1350 +f 3941/4041 3942/1350 263/4040 +f 3948/1353 3947/1354 3943/4042 +f 1009/4043 3943/4042 3947/1354 +f 3954/1357 3953/1358 3936/4044 +f 264/4045 3936/4044 3953/1358 +f 3961/1361 3960/1362 3955/4046 +f 1013/4047 3955/4046 3960/1362 +f 262/4048 3967/4049 3966/1363 +f 3968/1364 3966/1363 3967/4049 +f 3969/4050 3974/1367 1016/4051 +f 3973/1369 1016/4051 3974/1367 +f 3979/4052 3980/1374 64/4053 +f 3978/1372 64/4053 3980/1374 +f 3988/1376 3987/1375 3982/4054 +f 1020/4055 3982/4054 3987/1375 +f 262/4048 3966/1363 3993/1382 +f 3994/1381 3993/1382 3966/1363 +f 3996/4056 4002/1383 1024/4057 +f 4001/1385 1024/4057 4002/1383 +f 268/4058 3989/4059 4007/1389 +f 4008/1387 4007/1389 3989/4059 +f 1028/4060 4009/4061 4014/1391 +f 4015/1392 4014/1391 4009/4061 +f 4021/4062 4022/1395 267/4063 +f 4020/1397 267/4063 4022/1395 +f 4026/1400 1030/4064 4027/1402 +f 4023/4065 4027/1402 1030/4064 +f 3978/1372 4032/1403 64/4053 +f 4031/1405 64/4053 4032/1403 +f 4040/1409 4039/1410 4034/4066 +f 1034/4067 4034/4066 4039/1410 +f 4046/1413 4045/1414 2673/4068 +f 176/4069 2673/4068 4045/1414 +f 4054/1417 4053/1418 4048/4070 +f 1038/4071 4048/4070 4053/1418 +f 4060/1421 4059/1422 4041/4072 +f 271/4073 4041/4072 4059/1422 +f 4067/1425 4066/1426 4061/4074 +f 1041/4075 4061/4074 4066/1426 +f 4072/1429 2295/1430 4071/4076 +f 148/4077 4071/4076 2295/1430 +f 4077/1433 4076/1434 4073/4078 +f 1042/4079 4073/4078 4076/1434 +f 4080/1437 2279/1438 2686/4080 +f 3/4081 2686/4080 2279/1438 +f 4085/1440 1045/4082 4086/1442 +f 4081/4083 4086/1442 1045/4082 +f 2619/4084 4092/1443 172/4085 +f 4091/1445 172/4085 4092/1443 +f 4093/4086 4098/1447 1048/4087 +f 4097/1449 1048/4087 4098/1447 +f 4103/1452 273/4088 4104/1454 +f 4087/4089 4104/1454 273/4088 +f 4105/4090 4111/1455 1051/4091 +f 4110/1457 1051/4091 4111/1455 +f 269/4092 4115/4093 4047/1460 +f 4116/1462 4047/1460 4115/4093 +f 1052/4094 4117/4095 4120/1463 +f 4121/1464 4120/1463 4117/4095 +f 2630/4096 4124/1468 12/4097 +f 4033/1467 12/4097 4124/1468 +f 4125/4098 4130/1471 1055/4099 +f 4129/1473 1055/4099 4130/1471 +f 4099/4100 4136/1475 272/4101 +f 4135/1477 272/4101 4136/1475 +f 4141/1481 4140/1482 4137/4102 +f 1057/4103 4137/4102 4140/1482 +f 4131/4104 4146/1483 275/4105 +f 4145/1485 275/4105 4146/1483 +f 4151/1488 1060/4106 4152/1490 +f 4147/4107 4152/1490 1060/4106 +f 4156/1492 274/4108 4158/1494 +f 4157/4109 4158/1494 274/4108 +f 4159/4110 4163/1495 1062/4111 +f 4162/1497 1062/4111 4163/1495 +f 4112/4112 4168/1499 67/4113 +f 4167/1501 67/4113 4168/1499 +f 1066/4114 4170/4115 4175/1506 +f 4176/1505 4175/1506 4170/4115 +f 4182/1509 4181/1510 4055/4116 +f 270/4117 4055/4116 4181/1510 +f 4189/1513 4188/1514 4184/4118 +f 1069/4119 4184/4118 4188/1514 +f 4194/1517 4193/1518 4177/4120 +f 277/4121 4177/4120 4193/1518 +f 4195/4122 4200/1519 1071/4123 +f 4199/1521 1071/4123 4200/1519 +f 4203/4124 4204/1523 153/4125 +f 2349/1525 153/4125 4204/1523 +f 4209/1529 4208/1530 4205/4126 +f 1072/4127 4205/4126 4208/1530 +f 4212/1533 2335/1534 4068/4128 +f 14/4129 4068/4128 2335/1534 +f 1076/4130 4213/4131 4218/1536 +f 4219/1538 4218/1536 4213/4131 +f 4226/1541 4224/1542 4225/4132 +f 278/4133 4225/4132 4224/1542 +f 4230/1544 1078/4134 4231/1546 +f 4227/4135 4231/1546 1078/4134 +f 4220/4136 4236/1547 279/4137 +f 4235/1549 279/4137 4236/1547 +f 4237/4138 4242/1551 1080/4139 +f 4241/1553 1080/4139 4242/1551 +f 4245/4140 4246/1555 267/4063 +f 4028/1557 267/4063 4246/1555 +f 4247/4141 4252/1558 1082/4142 +f 4251/1560 1082/4142 4252/1558 +f 4255/4143 4256/1562 65/4144 +f 4017/1564 65/4144 4256/1562 +f 1085/4145 4257/4146 4261/1568 +f 4262/1567 4261/1568 4257/4146 +f 4268/1571 4267/1572 3949/4147 +f 261/4148 3949/4147 4267/1572 +f 4273/1575 1088/4149 4274/1573 +f 4269/4150 4274/1573 1088/4149 +f 4280/1578 4279/1577 4263/4151 +f 281/4152 4263/4151 4279/1577 +f 4287/1581 4286/1583 4281/4153 +f 1091/4154 4281/4153 4286/1583 +f 4292/1587 3995/1588 4291/4155 +f 265/4156 4291/4155 3995/1588 +f 4297/1591 4296/1592 4293/4157 +f 1092/4158 4293/4157 4296/1592 +f 3962/4159 4300/1595 63/4160 +f 3981/1596 63/4160 4300/1595 +f 4305/1598 1095/4161 4306/1600 +f 4301/4162 4306/1600 1095/4161 +f 4275/4163 4312/1604 280/4164 +f 4311/1602 280/4164 4312/1604 +f 1097/4165 4313/4166 4317/1608 +f 4318/1607 4317/1608 4313/4166 +f 4322/1610 4304/1599 4249/4167 +f 278/4133 4249/4167 4304/1599 +f 4327/1611 4326/1612 4323/4168 +f 1098/4169 4323/4168 4326/1612 +f 4316/1605 266/4170 4330/1613 +f 4003/4171 4330/1613 266/4170 +f 1102/4172 4331/4173 4336/1618 +f 4337/1617 4336/1618 4331/4173 +f 284/4174 4343/4175 4342/1619 +f 4344/1620 4342/1619 4343/4175 +f 4346/4176 4352/1623 1105/4177 +f 4351/1625 1105/4177 4352/1623 +f 2998/754 4356/1627 198/3743 +f 4335/1615 198/3743 4356/1627 +f 4364/1629 4363/1630 4358/4178 +f 1108/4179 4358/4178 4363/1630 +f 283/4180 4367/4181 4350/1624 +f 4368/1631 4350/1624 4367/4181 +f 4373/1634 1111/4182 4374/1636 +f 4369/4183 4374/1636 1111/4182 +f 4379/1639 195/3726 4380/1637 +f 2950/719 4380/1637 195/3726 +f 4381/4184 4386/1643 1114/4185 +f 4385/1644 1114/4185 4386/1643 +f 4375/4186 4392/1645 288/4187 +f 4391/1647 288/4187 4392/1645 +f 4393/4188 4399/1649 1118/4189 +f 4398/1651 1118/4189 4399/1649 +f 4405/4190 4406/1653 287/4191 +f 4404/1655 287/4191 4406/1653 +f 4407/4192 4411/1657 1120/4193 +f 4410/1659 1120/4193 4411/1657 +f 4415/1662 38/3730 4416/1664 +f 2961/727 4416/1664 38/3730 +f 1124/4194 4417/4195 4422/1665 +f 4423/1666 4422/1665 4417/4195 +f 290/4196 4429/4197 4428/1669 +f 4430/1670 4428/1669 4429/4197 +f 1126/4198 4431/4199 4434/1673 +f 4435/1674 4434/1673 4431/4199 +f 291/4200 4424/4201 4439/1675 +f 4440/1676 4439/1675 4424/4201 +f 1129/4202 4441/4203 4445/1679 +f 4446/1680 4445/1679 4441/4203 +f 289/4204 4451/4205 4450/1683 +f 4452/1681 4450/1683 4451/4205 +f 1132/4206 4453/4207 4457/1685 +f 4458/1686 4457/1685 4453/4207 +f 70/4208 4463/4209 4462/1689 +f 4464/1690 4462/1689 4463/4209 +f 4465/4210 4470/1693 1135/4211 +f 4469/1695 1135/4211 4470/1693 +f 188/3695 2852/655 4475/1700 +f 4476/1699 4475/1700 2852/655 +f 1138/4212 4478/4213 4483/1701 +f 4484/1702 4483/1701 4478/4213 +f 290/4196 4455/4214 4468/1694 +f 4488/1705 4468/1694 4455/4214 +f 4489/4215 4494/1707 1140/4216 +f 4493/1708 1140/4216 4494/1707 +f 4497/4217 4498/1710 292/4218 +f 4482/1704 292/4218 4498/1710 +f 4499/4219 4505/1712 1144/4220 +f 4504/1711 1144/4220 4505/1712 +f 4512/1717 4510/1718 4511/4221 +f 296/4222 4511/4221 4510/1718 +f 1147/4223 4513/4224 4517/1719 +f 4518/1720 4517/1719 4513/4224 +f 297/4225 4506/4226 4523/1723 +f 4524/1724 4523/1723 4506/4226 +f 1151/4227 4525/4228 4530/1730 +f 4531/1729 4530/1730 4525/4228 +f 295/4229 4537/4230 4536/1731 +f 4538/1732 4536/1731 4537/4230 +f 4544/1737 4543/1738 4539/4231 +f 1154/4232 4539/4231 4543/1738 +f 4550/1741 4548/1742 4549/4233 +f 72/4234 4549/4233 4548/1742 +f 4556/1745 4555/1746 4551/4235 +f 1157/4236 4551/4235 4555/1746 +f 4562/1749 4561/1750 4519/4237 +f 294/4238 4519/4237 4561/1750 +f 4568/1753 4567/1754 4563/4239 +f 1160/4240 4563/4239 4567/1754 +f 4574/1757 4573/1758 4557/4241 +f 300/4242 4557/4241 4573/1758 +f 4581/1761 4580/1762 4575/4243 +f 1164/4244 4575/4243 4580/1762 +f 4588/1765 4586/1766 4587/4245 +f 299/4246 4587/4245 4586/1766 +f 4593/1769 4592/1770 4589/4247 +f 1166/4248 4589/4247 4592/1770 +f 4598/1773 4597/1774 4532/4249 +f 82/4250 4532/4249 4597/1774 +f 4599/4251 4605/1775 1170/4252 +f 4604/1777 1170/4252 4605/1775 +f 4611/4253 4612/1779 303/4254 +f 4610/1781 303/4254 4612/1779 +f 1173/4255 4613/4256 4617/1783 +f 4618/1784 4617/1783 4613/4256 +f 4606/4257 4624/1787 304/4258 +f 4623/1789 304/4258 4624/1787 +f 1177/4259 4625/4260 4630/1791 +f 4631/1792 4630/1791 4625/4260 +f 302/4261 4637/4262 4636/1795 +f 4638/1796 4636/1795 4637/4262 +f 4639/4263 4644/1799 1180/4264 +f 4643/1801 1180/4264 4644/1799 +f 4649/4265 4650/1803 80/4266 +f 4648/1805 80/4266 4650/1803 +f 1184/4267 4651/4268 4656/1807 +f 4657/1808 4656/1807 4651/4268 +f 4663/4269 4664/1812 307/4270 +f 4662/1811 307/4270 4664/1812 +f 1187/4271 4665/4272 4669/1815 +f 4670/1816 4669/1815 4665/4272 +f 308/4273 4658/4274 4675/1819 +f 4676/1820 4675/1819 4658/4274 +f 1191/4275 4677/4276 4682/1823 +f 4683/1824 4682/1823 4677/4276 +f 4689/4277 4690/1827 306/4278 +f 4688/1829 306/4278 4690/1827 +f 4691/4279 4696/1832 1194/4280 +f 4695/1831 1194/4280 4696/1832 +f 4701/4281 4702/1835 74/4282 +f 4700/1837 74/4282 4702/1835 +f 1198/4283 4704/4284 4709/1839 +f 4710/1840 4709/1839 4704/4284 +f 305/4285 4671/4286 4715/1843 +f 4716/1844 4715/1843 4671/4286 +f 1202/4287 4718/4288 4723/1847 +f 4724/1848 4723/1847 4718/4288 +f 312/4289 4711/4290 4729/1851 +f 4730/1852 4729/1851 4711/4290 +f 1206/4291 4731/4292 4736/1858 +f 4737/1857 4736/1858 4731/4292 +f 4743/4293 4744/1859 311/4294 +f 4742/1861 311/4294 4744/1859 +f 1208/4295 4745/4296 4748/1863 +f 4749/1864 4748/1863 4745/4296 +f 83/4297 4684/4298 4753/1867 +f 4754/1868 4753/1867 4684/4298 +f 1211/4299 4755/4300 4759/1874 +f 4760/1873 4759/1874 4755/4300 +f 301/4301 4619/4302 4765/1875 +f 4766/1876 4765/1875 4619/4302 +f 1214/4303 4767/4304 4771/1879 +f 4772/1880 4771/1879 4767/4304 +f 314/4305 4761/4306 4777/1883 +f 4778/1884 4777/1883 4761/4306 +f 1217/4307 4779/4308 4784/1887 +f 4785/1888 4784/1887 4779/4308 +f 309/4309 4789/4310 4717/1891 +f 4790/1892 4717/1891 4789/4310 +f 1218/4311 4791/4312 4794/1895 +f 4795/1896 4794/1895 4791/4312 +f 85/4313 4632/4314 4703/1899 +f 4798/1900 4703/1899 4632/4314 +f 4799/4315 4805/1903 1222/4316 +f 4804/1905 1222/4316 4805/1903 +f 4811/4317 4812/1907 316/4318 +f 4810/1909 316/4318 4812/1907 +f 4813/4319 4818/1911 1225/4320 +f 4817/1913 1225/4320 4818/1911 +f 4806/4321 4824/1915 317/4322 +f 4823/1917 317/4322 4824/1915 +f 1228/4323 4825/4324 4830/1919 +f 4831/1920 4830/1919 4825/4324 +f 4835/4325 4836/1923 137/4326 +f 2119/210 137/4326 4836/1923 +f 4837/4327 4842/1925 1230/4328 +f 4841/1927 1230/4328 4842/1925 +f 4845/4329 4846/1929 15/4330 +f 2106/202 15/4330 4846/1929 +f 4847/4331 4852/1931 1233/4332 +f 4851/1933 1233/4332 4852/1931 +f 4819/4333 4858/1935 315/4334 +f 4857/1937 315/4334 4858/1935 +f 4859/4335 4864/1939 1236/4336 +f 4863/1941 1236/4336 4864/1939 +f 4853/4337 4870/1943 319/4338 +f 4869/1945 319/4338 4870/1943 +f 4871/4339 4877/1947 1239/4340 +f 4876/1949 1239/4340 4877/1947 +f 4881/4341 4882/1951 140/4342 +f 2167/242 140/4342 4882/1951 +f 4883/4343 4887/1953 1240/4344 +f 4886/1955 1240/4344 4887/1953 +f 4832/4345 4890/1957 23/4346 +f 2154/234 23/4346 4890/1957 +f 4895/1960 1243/4347 4896/1962 +f 4891/4348 4896/1962 1243/4347 +f 4865/4349 4902/1963 318/4350 +f 4901/1965 318/4350 4902/1963 +f 4903/4351 4908/1967 1246/4352 +f 4907/1969 1246/4352 4908/1967 +f 4913/1973 321/4353 4914/1971 +f 4897/4354 4914/1971 321/4353 +f 4915/4355 4921/1975 1249/4356 +f 4920/1977 1249/4356 4921/1975 +f 2215/275 143/4357 4926/1980 +f 4925/4358 4926/1980 143/4357 +f 4927/4359 4931/1984 1250/4360 +f 4930/1982 1250/4360 4931/1984 +f 4878/4361 4934/1985 22/4362 +f 2202/266 22/4362 4934/1985 +f 4940/1989 4939/1990 4935/4363 +f 1253/4364 4935/4363 4939/1990 +f 4909/4365 4946/1993 320/4366 +f 4945/1994 320/4366 4946/1993 +f 1255/4367 4947/4368 4950/1997 +f 4951/1996 4950/1997 4947/4368 +f 322/4369 4941/4370 4955/1998 +f 4956/1999 4955/1998 4941/4370 +f 4962/2003 4961/2004 4957/4371 +f 1257/4372 4957/4371 4961/2004 +f 146/4373 4965/4374 2263/308 +f 4966/2006 2263/308 4965/4374 +f 4971/2009 4970/2010 4967/4375 +f 1258/4376 4967/4375 4970/2010 +f 4922/4377 4974/2012 24/4378 +f 2250/300 24/4378 4974/2012 +f 1263/4379 4976/4380 4982/2015 +f 4983/2013 4982/2015 4976/4380 +f 4990/2019 4988/2020 4989/4381 +f 326/4382 4989/4381 4988/2020 +f 4992/4383 4998/2021 1267/4384 +f 4997/2023 1267/4384 4998/2021 +f 4984/4385 5004/2025 327/4386 +f 5003/2027 327/4386 5004/2025 +f 5005/4387 5011/2029 1271/4388 +f 5010/2031 1271/4388 5011/2029 +f 325/4389 5017/4390 5016/2035 +f 5018/2033 5016/2035 5017/4390 +f 5024/2039 5023/2040 5019/4391 +f 1274/4392 5019/4391 5023/2040 +f 5030/2043 5028/2044 5029/4393 +f 81/4394 5029/4393 5028/2044 +f 5037/2047 5036/2048 5031/4395 +f 1278/4396 5031/4395 5036/2048 +f 5042/2051 330/4397 5044/2049 +f 5043/4398 5044/2049 330/4397 +f 5045/4399 5050/2053 1281/4400 +f 5049/2055 1281/4400 5050/2053 +f 5038/4401 5056/2057 331/4402 +f 5055/2059 331/4402 5056/2057 +f 5057/4403 5063/2063 1285/4404 +f 5062/2064 1285/4404 5063/2063 +f 5069/4405 5070/2065 329/4406 +f 5068/2067 329/4406 5070/2065 +f 5071/4407 5076/2069 1288/4408 +f 5075/2071 1288/4408 5076/2069 +f 5081/4409 5082/2073 71/4410 +f 5080/2075 71/4410 5082/2073 +f 5084/4411 5090/2077 1292/4412 +f 5089/2079 1292/4412 5090/2077 +f 5096/2083 5095/2084 5051/4413 +f 328/4414 5051/4413 5095/2084 +f 1296/4415 5098/4416 5103/2085 +f 5104/2086 5103/2085 5098/4416 +f 5110/2091 5109/2092 5091/4417 +f 335/4418 5091/4417 5109/2092 +f 5117/2094 5116/2093 5111/4419 +f 1300/4420 5111/4419 5116/2093 +f 5124/2098 5122/2097 5123/4421 +f 334/4422 5123/4421 5122/2097 +f 5129/2103 5128/2104 5125/4423 +f 1302/4424 5125/4423 5128/2104 +f 5134/2107 5133/2108 5064/4425 +f 87/4426 5064/4425 5133/2108 +f 5136/4427 5142/2109 1306/4428 +f 5141/2111 1306/4428 5142/2109 +f 4999/4429 5148/2113 324/4430 +f 5147/2115 324/4430 5148/2113 +f 5150/4431 5156/2117 1310/4432 +f 5155/2119 1310/4432 5156/2117 +f 5143/4433 5162/2121 338/4434 +f 5161/2123 338/4434 5162/2121 +f 5163/4435 5169/2125 1313/4436 +f 5168/2127 1313/4436 5169/2125 +f 5173/4437 5174/2129 332/4438 +f 5097/2131 332/4438 5174/2129 +f 5175/4439 5179/2133 1314/4440 +f 5178/2135 1314/4440 5179/2133 +f 5012/4441 5182/2137 89/4442 +f 5083/2139 89/4442 5182/2137 +f 5183/4443 5189/2141 1318/4444 +f 5188/2143 1318/4444 5189/2141 +f 5195/4445 5196/2145 340/4446 +f 5194/2147 340/4446 5196/2145 +f 5197/4447 5202/2149 1321/4448 +f 5201/2151 1321/4448 5202/2149 +f 5190/4449 5208/2153 341/4450 +f 5207/2155 341/4450 5208/2153 +f 5209/4451 5215/2157 1324/4452 +f 5214/2159 1324/4452 5215/2157 +f 5219/4453 5220/2161 165/4454 +f 2519/464 165/4454 5220/2161 +f 5221/4455 5226/2163 1326/4456 +f 5225/2165 1326/4456 5226/2163 +f 5229/4457 5230/2167 9/4458 +f 2506/456 9/4458 5230/2167 +f 1329/4459 5231/4460 5235/2169 +f 5236/2170 5235/2169 5231/4460 +f 339/4461 5203/4462 5241/2173 +f 5242/2174 5241/2173 5203/4462 +f 1332/4463 5243/4464 5247/2177 +f 5248/2178 5247/2177 5243/4464 +f 343/4465 5237/4466 5253/2181 +f 5254/2182 5253/2181 5237/4466 +f 5255/4467 5261/2185 1335/4468 +f 5260/2187 1335/4468 5261/2185 +f 5265/4469 5266/2189 168/4470 +f 2567/496 168/4470 5266/2189 +f 1336/4471 5267/4472 5270/2191 +f 5271/2192 5270/2191 5267/4472 +f 5216/4473 5274/2195 31/4474 +f 2554/487 31/4474 5274/2195 +f 5276/4475 5282/2197 1340/4476 +f 5281/2199 1340/4476 5282/2197 +f 5287/2202 171/3623 5288/2204 +f 2592/4477 5288/2204 171/3623 +f 5297/2207 5296/2208 5290/4478 +f 1344/4479 5290/4478 5296/2208 +f 5302/2210 5280/2198 5301/4480 +f 344/4481 5301/4480 5280/2198 +f 5304/4482 5311/2211 1348/4483 +f 5310/2213 1348/4483 5311/2211 +f 5315/4484 5316/2215 345/4485 +f 5295/2205 345/4485 5316/2215 +f 5323/2219 5322/2220 5317/4486 +f 1351/4487 5317/4486 5322/2220 +f 5328/2222 5309/2212 5327/4488 +f 346/4489 5327/4488 5309/2212 +f 5329/4490 5333/2223 1352/4491 +f 5332/2224 1352/4491 5333/2223 +f 4839/4492 5336/2225 316/4493 +f 5321/2217 316/4493 5336/2225 +f 5338/4494 5344/2227 1356/4495 +f 5343/2229 1356/4495 5344/2227 +f 5294/4496 5350/2231 345/4485 +f 5349/2233 345/4485 5350/2231 +f 5352/4497 5358/2235 1360/4498 +f 5357/2237 1360/4498 5358/2235 +f 5345/4499 5364/2239 351/4500 +f 5363/2241 351/4500 5364/2239 +f 5365/4501 5371/2243 1364/4502 +f 5370/2245 1364/4502 5371/2243 +f 5377/4503 5378/2247 350/4504 +f 5376/2249 350/4504 5378/2247 +f 5379/4505 5383/2251 1366/4506 +f 5382/2253 1366/4506 5383/2251 +f 5306/4507 5388/2255 79/4508 +f 5387/2257 79/4508 5388/2255 +f 5394/2261 5393/2262 5389/4509 +f 1369/4510 5389/4509 5393/2262 +f 5400/2265 5399/2266 4980/4511 +f 323/4512 4980/4511 5399/2266 +f 5406/2269 5405/2270 5401/4513 +f 1372/4514 5401/4513 5405/2270 +f 5412/2273 5411/2274 5395/4515 +f 354/4516 5395/4515 5411/2274 +f 5419/2277 5418/2278 5413/4517 +f 1376/4518 5413/4517 5418/2278 +f 5425/4519 5426/2279 353/4520 +f 5424/2281 353/4520 5426/2279 +f 5431/2285 5430/2286 5427/4521 +f 1378/4522 5427/4521 5430/2286 +f 5436/2287 5435/2289 4995/4523 +f 86/4524 4995/4523 5435/2289 +f 5444/2293 5443/2294 5438/4525 +f 1382/4526 5438/4525 5443/2294 +f 5450/2297 5449/2298 5424/2281 +f 353/4520 5424/2281 5449/2298 +f 5451/4527 5457/2299 1385/4528 +f 5456/2301 1385/4528 5457/2299 +f 5461/4529 5462/2303 355/4530 +f 5442/2291 355/4530 5462/2303 +f 5464/4531 5470/2305 1388/4532 +f 5469/2307 1388/4532 5470/2305 +f 5455/2300 184/3683 5474/2310 +f 2794/4533 5474/2310 184/3683 +f 5481/2313 5480/2314 5475/4534 +f 1391/4535 5475/4534 5480/2314 +f 5486/2316 5468/2306 5485/4536 +f 356/4537 5485/4536 5468/2306 +f 5490/2317 1392/4538 5491/2318 +f 5487/4539 5491/2318 1392/4538 +f 5479/2311 336/4540 5494/2319 +f 5139/4541 5494/2319 336/4540 +f 5495/4542 5500/2321 1395/4543 +f 5499/2323 1395/4543 5500/2321 +f 344/4481 5279/4544 5505/2325 +f 5506/2326 5505/2325 5279/4544 +f 5507/4545 5512/2329 1398/4546 +f 5511/2331 1398/4546 5512/2329 +f 5501/4547 5518/2333 360/4548 +f 5517/2335 360/4548 5518/2333 +f 5525/2339 5524/2340 5519/4549 +f 1402/4550 5519/4549 5524/2340 +f 5532/2343 5530/2344 5531/4551 +f 359/4552 5531/4551 5530/2344 +f 5533/4553 5537/2345 1404/4554 +f 5536/2347 1404/4554 5537/2345 +f 5292/4555 5542/2349 91/4556 +f 5541/2351 91/4556 5542/2349 +f 5548/2355 5547/2356 5543/4557 +f 1407/4558 5543/4557 5547/2356 +f 5554/2359 5553/2360 5341/4559 +f 348/4560 5341/4559 5553/2360 +f 5560/2363 5559/2364 5555/4561 +f 1410/4562 5555/4561 5559/2364 +f 5566/2367 5565/2368 5549/4563 +f 363/4564 5549/4563 5565/2368 +f 5573/2371 5572/2372 5567/4565 +f 1414/4566 5567/4565 5572/2372 +f 5580/2375 5578/2376 5579/4567 +f 362/4568 5579/4567 5578/2376 +f 5585/2379 5584/2380 5581/4569 +f 1416/4570 5581/4569 5584/2380 +f 5590/2383 5589/2384 5355/4571 +f 90/4572 5355/4571 5589/2384 +f 5596/2387 5595/2388 5591/4573 +f 1419/4574 5591/4573 5595/2388 +f 5602/2391 5601/2392 5407/4575 +f 352/4576 5407/4575 5601/2392 +f 5608/2395 5607/2396 5603/4577 +f 1422/4578 5603/4577 5607/2396 +f 5614/2399 5613/2400 5597/4579 +f 366/4580 5597/4579 5613/2400 +f 5621/2403 5620/2404 5615/4581 +f 1426/4582 5615/4581 5620/2404 +f 5628/2407 5626/2408 5627/4583 +f 365/4584 5627/4583 5626/2408 +f 5633/2411 5632/2412 5629/4585 +f 1428/4586 5629/4585 5632/2412 +f 5420/4587 5638/2413 92/4588 +f 5637/2415 92/4588 5638/2413 +f 5639/4589 5644/2417 1431/4590 +f 5643/2419 1431/4590 5644/2417 +f 5649/2423 355/4530 5650/2421 +f 5441/4591 5650/2421 355/4530 +f 5651/4592 5656/2427 1434/4593 +f 5655/2428 1434/4593 5656/2427 +f 5645/4594 5662/2429 368/4595 +f 5661/2431 368/4595 5662/2429 +f 1437/4596 5663/4597 5668/2436 +f 5669/2435 5668/2436 5663/4597 +f 5673/4598 5674/2437 197/4599 +f 2991/748 197/4599 5674/2437 +f 5675/4600 5679/2439 1438/4601 +f 5678/2441 1438/4601 5679/2439 +f 5453/4602 5682/2443 37/4603 +f 2978/740 37/4603 5682/2443 +f 1441/4604 5683/4605 5687/2445 +f 5688/2446 5687/2445 5683/4605 +f 356/4606 5467/4607 5693/2449 +f 5694/2450 5693/2449 5467/4607 +f 1444/4608 5695/4609 5699/2453 +f 5700/2454 5699/2453 5695/4609 +f 371/4610 5689/4611 5705/2457 +f 5706/2458 5705/2457 5689/4611 +f 5713/2463 5712/2464 5707/4612 +f 1448/4613 5707/4612 5712/2464 +f 5720/2467 5718/2468 5719/4614 +f 370/4615 5719/4614 5718/2468 +f 5725/2471 5724/2472 5721/4616 +f 1450/4617 5721/4616 5724/2472 +f 78/4618 5477/4619 5729/2473 +f 5730/2474 5729/2473 5477/4619 +f 5731/4620 5736/2480 1453/4621 +f 5735/2478 1453/4621 5736/2480 +f 5157/4622 5742/2481 337/4623 +f 5741/2483 337/4623 5742/2481 +f 5748/2487 5747/2488 5743/4624 +f 1456/4625 5743/4624 5747/2488 +f 5737/4626 5754/2492 374/4627 +f 5753/2490 374/4627 5754/2492 +f 5760/2495 1460/4628 5761/2493 +f 5755/4629 5761/2493 1460/4628 +f 5767/4630 5768/2497 373/4631 +f 5766/2499 373/4631 5768/2497 +f 5769/4632 5773/2501 1462/4633 +f 5772/2503 1462/4633 5773/2501 +f 5170/4634 5778/2505 88/4635 +f 5777/2507 88/4635 5778/2505 +f 1465/4636 5779/4637 5783/2509 +f 5784/2510 5783/2509 5779/4637 +f 333/4638 5105/4639 5789/2513 +f 5790/2514 5789/2513 5105/4639 +f 5791/4640 5796/2517 1468/4641 +f 5795/2519 1468/4641 5796/2517 +f 377/4642 5785/4643 5801/2523 +f 5802/2521 5801/2523 5785/4643 +f 5803/4644 5809/2525 1472/4645 +f 5808/2527 1472/4645 5809/2525 +f 5815/4646 5816/2529 376/4647 +f 5814/2531 376/4647 5816/2529 +f 1474/4648 5817/4649 5820/2533 +f 5821/2534 5820/2533 5817/4649 +f 77/4650 5118/4651 5825/2537 +f 5826/2538 5825/2537 5118/4651 +f 5827/4652 5832/2541 1477/4653 +f 5831/2543 1477/4653 5832/2541 +f 5249/4654 5838/2545 342/4655 +f 5837/2547 342/4655 5838/2545 +f 5843/2550 1480/4656 5844/2552 +f 5839/4657 5844/2552 1480/4656 +f 5833/4658 5850/2553 379/4659 +f 5849/2555 379/4659 5850/2553 +f 5851/4660 5857/2557 1483/4661 +f 5856/2559 1483/4661 5857/2557 +f 5861/4662 5862/2561 210/4663 +f 3187/876 210/4663 5862/2561 +f 5863/4664 5867/2563 1484/4665 +f 5866/2565 1484/4665 5867/2563 +f 5262/4666 5870/2567 30/4667 +f 3174/868 30/4667 5870/2567 +f 5876/2571 5875/2572 5871/4668 +f 1487/4669 5871/4668 5875/2572 +f 5882/2575 5881/2576 5701/4670 +f 369/4671 5701/4670 5881/2576 +f 5888/2579 5887/2580 5883/4672 +f 1490/4673 5883/4672 5887/2580 +f 5894/2583 5893/2584 5877/4674 +f 382/4675 5877/4674 5893/2584 +f 1494/4676 5895/4677 5900/2585 +f 5901/2586 5900/2585 5895/4677 +f 381/4678 5907/4679 5906/2589 +f 5908/2590 5906/2589 5907/4679 +f 1496/4680 5909/4681 5912/2593 +f 5913/2594 5912/2593 5909/4681 +f 97/4682 5714/4683 5917/2600 +f 5918/2599 5917/2600 5714/4683 +f 5919/4684 5925/2603 1500/4685 +f 5924/2604 1500/4685 5925/2603 +f 5932/2605 5930/2607 5931/4686 +f 385/4687 5931/4686 5930/2607 +f 1503/4688 5933/4689 5937/2609 +f 5938/2610 5937/2609 5933/4689 +f 5926/4690 5944/2613 386/4691 +f 5943/2615 386/4691 5944/2613 +f 5945/4692 5951/2617 1507/4693 +f 5950/2619 1507/4693 5951/2617 +f 384/4694 5957/4695 5956/2622 +f 5958/2624 5956/2622 5957/4695 +f 5964/2625 5963/2627 5959/4696 +f 1510/4697 5959/4696 5963/2627 +f 105/4698 5969/4699 5968/2629 +f 5970/2630 5968/2629 5969/4699 +f 5972/4700 5978/2636 1514/4701 +f 5977/2634 1514/4701 5978/2636 +f 5797/4702 5984/2637 375/4703 +f 5983/2639 375/4703 5984/2637 +f 5992/2642 5991/2641 5986/4704 +f 1518/4705 5986/4704 5991/2641 +f 5997/2647 390/4706 5998/2645 +f 5979/4707 5998/2645 390/4706 +f 5999/4708 6005/2650 1522/4709 +f 6004/2649 1522/4709 6005/2650 +f 6011/4710 6012/2653 389/4711 +f 6010/2655 389/4711 6012/2653 +f 6013/4712 6017/2657 1524/4713 +f 6016/2659 1524/4713 6017/2657 +f 5810/4714 6022/2661 96/4715 +f 6021/2663 96/4715 6022/2661 +f 6023/4716 6028/2665 1527/4717 +f 6027/2667 1527/4717 6028/2665 +f 6033/2670 378/4718 6034/2672 +f 5845/4719 6034/2672 378/4718 +f 6035/4720 6040/2673 1530/4721 +f 6039/2675 1530/4721 6040/2673 +f 6029/4722 6046/2677 392/4723 +f 6045/2679 392/4723 6046/2677 +f 6052/2683 1533/4724 6053/2681 +f 6047/4725 6053/2681 1533/4724 +f 3387/1005 224/4726 6058/2686 +f 6057/4727 6058/2686 224/4726 +f 6062/2688 1534/4728 6063/2690 +f 6059/4729 6063/2690 1534/4728 +f 5858/4730 6066/2691 47/4731 +f 3374/996 47/4731 6066/2691 +f 6072/2695 6071/2696 6067/4732 +f 1537/4733 6067/4732 6071/2696 +f 6078/2699 6077/2700 5889/4734 +f 380/4735 5889/4734 6077/2700 +f 6084/2702 6083/2701 6079/4736 +f 1540/4737 6079/4736 6083/2701 +f 395/4738 6073/4739 6089/2705 +f 6090/2706 6089/2705 6073/4739 +f 1544/4740 6091/4741 6096/2709 +f 6097/2710 6096/2709 6091/4741 +f 394/4742 6103/4743 6102/2713 +f 6104/2714 6102/2713 6103/4743 +f 1546/4744 6105/4745 6108/2717 +f 6109/2718 6108/2717 6105/4745 +f 100/4746 5902/4747 6113/2721 +f 6114/2722 6113/2721 5902/4747 +f 1549/4748 6115/4749 6119/2728 +f 6120/2727 6119/2728 6115/4749 +f 383/4750 5939/4751 6125/2729 +f 6126/2730 6125/2729 5939/4751 +f 6132/2735 6131/2736 6127/4752 +f 1552/4753 6127/4752 6131/2736 +f 6138/2739 6137/2740 6121/4754 +f 398/4755 6121/4754 6137/2740 +f 6144/2742 1556/4756 6145/2744 +f 6139/4757 6145/2744 1556/4756 +f 6151/4758 6152/2745 397/4759 +f 6150/2747 397/4759 6152/2745 +f 6153/4760 6157/2749 1558/4761 +f 6156/2751 1558/4761 6157/2749 +f 5952/4762 6162/2753 101/4763 +f 6161/2755 101/4763 6162/2753 +f 6163/4764 6169/2757 1562/4765 +f 6168/2759 1562/4765 6169/2757 +f 6175/4766 6176/2761 400/4767 +f 6174/2763 400/4767 6176/2761 +f 6181/2766 1565/4768 6182/2768 +f 6177/4769 6182/2768 1565/4768 +f 6170/4770 6188/2772 401/4771 +f 6187/2770 401/4771 6188/2772 +f 6189/4772 6195/2773 1568/4773 +f 6194/2775 1568/4773 6195/2773 +f 3543/1101 236/4774 6200/2778 +f 6199/4775 6200/2778 236/4774 +f 6201/4776 6206/2779 1570/4777 +f 6205/2781 1570/4777 6206/2779 +f 3530/1093 32/4778 6210/2784 +f 6209/4779 6210/2784 32/4778 +f 6216/2787 6215/2788 6211/4780 +f 1573/4781 6211/4780 6215/2788 +f 393/4782 6085/4783 6221/2789 +f 6222/2790 6221/2789 6085/4783 +f 6223/4784 6227/2793 1575/4785 +f 6226/2795 1575/4785 6227/2793 +f 6217/4786 6232/2796 402/4787 +f 6231/2798 402/4787 6232/2796 +f 6233/4788 6238/2800 1577/4789 +f 6237/2802 1577/4789 6238/2800 +f 6241/4790 6242/2803 396/4791 +f 6143/2743 396/4791 6242/2803 +f 6247/2807 6246/2808 6243/4792 +f 1578/4793 6243/4792 6246/2808 +f 6250/2809 6130/2733 6098/4794 +f 102/4795 6098/4794 6130/2733 +f 6256/2813 6255/2814 6251/4796 +f 1581/4797 6251/4796 6255/2814 +f 6203/4798 6262/2815 400/4767 +f 6261/2817 400/4767 6262/2815 +f 6268/2821 6267/2822 6263/4799 +f 1584/4800 6263/4799 6267/2822 +f 6274/2825 6273/2826 6257/4801 +f 404/4802 6257/4801 6273/2826 +f 6281/2829 6280/2830 6275/4803 +f 1587/4804 6275/4803 6280/2830 +f 6286/2832 5965/2833 6285/4805 +f 384/4694 6285/4805 5965/2833 +f 6291/2836 6290/2837 6287/4806 +f 1588/4807 6287/4806 6290/2837 +f 6165/4808 6294/2838 101/4763 +f 5953/2840 101/4763 6294/2838 +f 6295/4809 6300/2841 1591/4810 +f 6299/2843 1591/4810 6300/2841 +f 5749/4811 6306/2845 372/4812 +f 6305/2847 372/4812 6306/2845 +f 6311/2850 1594/4813 6312/2852 +f 6307/4814 6312/2852 1594/4813 +f 6317/2854 406/4815 6318/2856 +f 6301/4816 6318/2856 406/4815 +f 6324/2858 1597/4817 6325/2860 +f 6319/4818 6325/2860 1597/4817 +f 5985/2862 387/4819 6330/2864 +f 6329/4820 6330/2864 387/4819 +f 6334/2866 1598/4821 6335/2868 +f 6331/4822 6335/2868 1598/4821 +f 5762/4823 6338/2869 98/4824 +f 5971/2871 98/4824 6338/2869 +f 6339/4825 6344/2873 1601/4826 +f 6343/2875 1601/4826 6344/2873 +f 6041/4827 6350/2877 391/4828 +f 6349/2879 391/4828 6350/2877 +f 6351/4829 6356/2884 1604/4830 +f 6355/2882 1604/4830 6356/2884 +f 6345/4831 6362/2885 408/4832 +f 6361/2887 408/4832 6362/2885 +f 6363/4833 6369/2889 1607/4834 +f 6368/2891 1607/4834 6369/2889 +f 3727/1221 246/4835 6374/2894 +f 6373/4836 6374/2894 246/4835 +f 6375/4837 6379/2895 1608/4838 +f 6378/2897 1608/4838 6379/2895 +f 3714/1213 52/4839 6382/2900 +f 6054/4840 6382/2900 52/4839 +f 6388/2901 6387/2903 6383/4841 +f 1611/4842 6383/4841 6387/2903 +f 6394/2907 6393/2908 6269/4843 +f 403/4844 6269/4843 6393/2908 +f 6395/4845 6399/2909 1613/4846 +f 6398/2911 1613/4846 6399/2909 +f 6389/4847 6404/2912 409/4848 +f 6403/2914 409/4848 6404/2912 +f 6405/4849 6410/2916 1615/4850 +f 6409/2918 1615/4850 6410/2916 +f 6414/2920 6323/2859 6413/4851 +f 405/4852 6413/4851 6323/2859 +f 6419/2923 6418/2924 6415/4853 +f 1616/4854 6415/4853 6418/2924 +f 6422/2926 6310/2851 6282/4855 +f 105/4698 6282/4855 6310/2851 +f 6431/2929 6430/2930 6424/4856 +f 1621/4857 6424/4856 6430/2930 +f 6438/2932 6436/2931 6437/4858 +f 412/4859 6437/4858 6436/2931 +f 6440/4860 6447/2935 1625/4861 +f 6446/2937 1625/4861 6447/2935 +f 6451/4862 6452/2939 410/4863 +f 6429/2927 410/4863 6452/2939 +f 6460/2941 6459/2942 6454/4864 +f 1628/4865 6454/4864 6459/2942 +f 411/4866 6463/3158 6445/2936 +f 6464/2944 6445/2936 6463/3158 +f 6471/2947 6470/2948 6465/4867 +f 1632/4868 6465/4867 6470/2948 +f 6478/2951 6476/2952 6477/3191 +f 415/4869 6477/3191 6476/2952 +f 6483/2955 6482/2956 6479/4870 +f 1634/4871 6479/4870 6482/2956 +f 6488/2959 6487/2960 6472/4872 +f 416/4873 6472/4872 6487/2960 +f 6494/2962 6493/2961 6489/4874 +f 1637/4875 6489/4874 6493/2961 +f 6500/2967 6498/2968 6499/4876 +f 414/4877 6499/4876 6498/2968 +f 6506/2971 6505/2972 6501/4878 +f 1640/4879 6501/4878 6505/2972 +f 6512/2975 6510/2976 6511/3198 +f 106/4880 6511/3198 6510/2976 +f 6518/2979 6517/2980 6513/4881 +f 1643/4882 6513/4881 6517/2980 +f 6428/4883 6524/2984 410/4863 +f 6523/2982 410/4863 6524/2984 +f 6529/2986 6528/2985 6525/4884 +f 1645/4885 6525/4884 6528/2985 +f 6534/2991 6533/2992 6519/4886 +f 417/4887 6519/4886 6533/2992 +f 6540/2995 6539/2996 6535/4888 +f 1647/4889 6535/4888 6539/2996 +f 6544/2999 4511/3000 6543/4890 +f 296/4891 6543/4890 4511/3000 +f 6549/3003 6548/3004 6545/4892 +f 1648/4893 6545/4892 6548/3004 +f 4549/3007 72/4894 6552/3005 +f 6442/4895 6552/3005 72/4894 +f 6559/3010 1652/4896 6560/3012 +f 6554/4897 6560/3012 1652/4896 +f 6566/3014 6565/3013 6458/4898 +f 412/4859 6458/4898 6565/3013 +f 6568/4899 6574/3020 1656/4900 +f 6573/3018 1656/4900 6574/3020 +f 6561/4901 6580/3021 421/4902 +f 6579/3023 421/4902 6580/3021 +f 1660/4903 6581/4904 6586/3028 +f 6587/3027 6586/3028 6581/4904 +f 6594/3031 6592/3032 6593/4905 +f 420/4906 6593/4905 6592/3032 +f 1662/4907 6595/4908 6598/3033 +f 6599/3034 6598/3033 6595/4908 +f 106/4880 6426/4909 6603/3037 +f 6604/3038 6603/3037 6426/4909 +f 1666/4910 6605/4911 6610/3041 +f 6611/3042 6610/3041 6605/4911 +f 6618/3047 6616/3048 6617/4912 +f 424/4913 6617/4912 6616/3048 +f 6623/3051 1669/4914 6624/3049 +f 6619/4915 6624/3049 1669/4914 +f 6629/3054 425/4916 6630/3056 +f 6612/4917 6630/3056 425/4916 +f 6631/4918 6637/3057 1673/4919 +f 6636/3059 1673/4919 6637/3057 +f 6644/3063 6642/3064 6643/4920 +f 423/4921 6643/4920 6642/3064 +f 6645/4922 6650/3065 1676/4923 +f 6649/3067 1676/4923 6650/3065 +f 6655/4924 6656/3069 111/4925 +f 6654/3071 111/4925 6656/3069 +f 6663/3075 6662/3076 6657/4926 +f 1680/4927 6657/4926 6662/3076 +f 6670/3079 6668/3080 6669/4928 +f 427/4929 6669/4928 6668/3080 +f 6675/3083 6674/3084 6671/4930 +f 1682/4931 6671/4930 6674/3084 +f 6680/3087 6679/3088 6664/4932 +f 428/4933 6664/4932 6679/3088 +f 6686/3091 6685/3092 6681/4934 +f 1685/4935 6681/4934 6685/3092 +f 6692/3095 6690/3096 6691/4936 +f 426/4937 6691/4936 6690/3096 +f 6698/3099 6697/3100 6693/4938 +f 1688/4939 6693/4938 6697/3100 +f 6704/3103 6702/3104 6703/4940 +f 112/4941 6703/4940 6702/3104 +f 6709/3107 1691/4942 6710/3105 +f 6705/4943 6710/3105 1691/4942 +f 6716/3111 6715/3112 4693/4944 +f 307/4945 4693/4944 6715/3112 +f 6717/4946 6721/3115 1693/4947 +f 6720/3116 1693/4947 6721/3115 +f 6726/3119 6725/3120 6711/4948 +f 430/4949 6711/4948 6725/3120 +f 6731/3122 1696/4950 6732/3124 +f 6727/4951 6732/3124 1696/4950 +f 6737/4952 6738/3125 429/4953 +f 6736/3127 429/4953 6738/3125 +f 6742/3130 1698/4954 6743/3132 +f 6739/4955 6743/3132 1698/4954 +f 4653/4956 6748/3133 80/4957 +f 6747/3135 80/4957 6748/3133 +f 6749/4958 6754/3137 1701/4959 +f 6753/3139 1701/4959 6754/3137 +f 4641/4960 6760/3141 303/4961 +f 6759/3143 303/4961 6760/3141 +f 6761/4962 6766/3145 1704/4963 +f 6765/3147 1704/4963 6766/3145 +f 6755/4964 6772/3149 432/4965 +f 6771/3151 432/4965 6772/3149 +f 6778/3154 1707/4966 6779/3156 +f 6773/4967 6779/3156 1707/4966 +f 6783/4968 6784/3160 411/4866 +f 6463/3158 411/4866 6784/3160 +f 6785/4969 6789/3161 1708/4970 +f 6788/3163 1708/4970 6789/3161 +f 72/4894 4601/4971 6439/3165 +f 6792/3166 6439/3165 4601/4971 +f 6799/3171 6798/3172 6793/4972 +f 1712/4973 6793/4972 6798/3172 +f 6806/3175 6804/3176 6805/4974 +f 433/4975 6805/4974 6804/3176 +f 6811/3179 6810/3180 6807/4976 +f 1714/4977 6807/4976 6810/3180 +f 6816/3183 6815/3184 6800/4978 +f 434/4979 6800/4978 6815/3184 +f 6817/4980 6822/3185 1716/4981 +f 6821/3187 1716/4981 6822/3185 +f 6825/4982 6826/3189 415/4869 +f 6477/3191 415/4869 6826/3189 +f 6832/3196 6831/3194 6827/4983 +f 1718/4984 6827/4983 6831/3194 +f 106/4880 6835/4985 6511/3198 +f 6836/3200 6511/3198 6835/4985 +f 6844/3203 6843/3204 6838/4986 +f 1722/4987 6838/4986 6843/3204 +f 6849/3206 431/4988 6850/3208 +f 6767/4989 6850/3208 431/4988 +f 6852/4990 6857/3209 1725/4991 +f 6856/3211 1725/4991 6857/3209 +f 6845/4992 6862/3212 436/4993 +f 6861/3214 436/4993 6862/3212 +f 6863/4994 6868/3216 1727/4995 +f 6867/3218 1727/4995 6868/3216 +f 6871/4996 6872/3219 418/4997 +f 6567/3221 418/4997 6872/3219 +f 6873/4998 6877/3223 1728/4999 +f 6876/3225 1728/4999 6877/3223 +f 6553/3228 107/5000 6880/3230 +f 6780/5001 6880/3230 107/5000 +f 6886/3233 6885/3234 6881/5002 +f 1731/5003 6881/5002 6885/3234 +f 6892/3237 6891/3238 6829/5004 +f 433/4975 6829/5004 6891/3238 +f 1733/5005 6893/5006 6896/3240 +f 6897/3242 6896/3240 6893/5006 +f 6902/3245 6901/3246 6887/5007 +f 438/5008 6887/5007 6901/3246 +f 6908/3249 6907/3250 6903/5009 +f 1736/5010 6903/5009 6907/3250 +f 6913/5011 6914/3251 437/5012 +f 6912/3253 437/5012 6914/3251 +f 6919/3257 6918/3258 6915/5013 +f 1738/5014 6915/5013 6918/3258 +f 112/4941 6795/5015 6923/3261 +f 6924/3259 6923/3261 6795/5015 +f 6929/3264 1741/5016 6930/3266 +f 6925/5017 6930/3266 1741/5016 +f 6841/5018 6936/3270 435/5019 +f 6935/3268 435/5019 6936/3270 +f 1743/5020 6937/5021 6941/3274 +f 6942/3273 6941/3274 6937/5021 +f 6946/3276 6928/3265 6912/3253 +f 437/5012 6912/3253 6928/3265 +f 6951/3277 6950/3278 6947/5022 +f 1744/5023 6947/5022 6950/3278 +f 6642/3064 6954/3279 423/4921 +f 6940/3271 423/4921 6954/3279 +f 6962/3283 6961/3284 6956/5024 +f 1748/5025 6956/5024 6961/3284 +f 6968/3287 6967/3288 5657/5026 +f 367/5027 5657/5026 6967/3288 +f 6975/3291 6974/3292 6969/5028 +f 1751/5029 6969/5028 6974/3292 +f 6979/5030 6980/3293 440/5031 +f 6960/3281 440/5031 6980/3293 +f 6981/5032 6985/3295 1752/5033 +f 6984/3296 1752/5033 6985/3295 +f 4349/5034 6988/3297 283/4180 +f 6973/3289 283/4180 6988/3297 +f 6993/3301 1755/5035 6994/3299 +f 6989/5036 6994/3299 1755/5035 +f 6999/3304 440/5031 7000/3306 +f 6959/5037 7000/3306 440/5031 +f 7001/5038 7006/3310 1758/5039 +f 7005/3308 1758/5039 7006/3310 +f 6995/5040 7012/3311 443/5041 +f 7011/3313 443/5041 7012/3311 +f 7013/5042 7019/3315 1761/5043 +f 7018/3317 1761/5043 7019/3315 +f 7023/5044 7024/3319 286/5045 +f 4397/1650 286/5045 7024/3319 +f 7025/5046 7029/3321 1762/5047 +f 7028/3323 1762/5047 7029/3321 +f 68/5048 6971/5049 4384/1641 +f 7032/3325 4384/1641 6971/5049 +f 7040/3329 7039/3330 7034/5050 +f 1766/5051 7034/5050 7039/3330 +f 7046/3333 7045/3334 5561/5052 +f 361/5053 5561/5052 7045/3334 +f 7053/3335 7052/3336 7048/5054 +f 1769/5055 7048/5054 7052/3336 +f 7058/3339 7057/3340 7041/5056 +f 445/5057 7041/5056 7057/3340 +f 7064/3341 7063/3342 7059/5058 +f 1771/5059 7059/5058 7063/3342 +f 7068/3344 7017/3316 7067/5060 +f 442/5061 7067/5060 7017/3316 +f 7073/3347 7072/3348 7069/5062 +f 1772/5063 7069/5062 7072/3348 +f 7076/3350 7004/3309 5574/5064 +f 93/5065 5574/5064 7004/3309 +f 7077/5066 7082/3353 1775/5067 +f 7081/3354 1775/5067 7082/3353 +f 7087/3357 444/5068 7088/3355 +f 7037/5069 7088/3355 444/5068 +f 7089/5070 7094/3362 1777/5071 +f 7093/3360 1777/5071 7094/3362 +f 5513/5072 7098/3363 358/5073 +f 7080/3351 358/5073 7098/3363 +f 7103/3365 7102/3366 7099/5074 +f 1778/5075 7099/5074 7102/3366 +f 292/4218 4481/5076 7092/3361 +f 7106/3368 7092/3361 4481/5076 +f 113/5077 1785/1 1784/5078 +f 1787/3 1784/5078 1785/1 +f 1781/5079 451/3370 1794/7 +f 1790/5 1794/7 451/3370 +f 2/5080 1800/9 1799/5081 +f 1802/11 1799/5081 1800/9 +f 455/3374 1805/13 1797/5082 +f 1808/15 1797/5082 1805/13 +f 114/3404 1813/17 1804/5083 +f 1815/19 1804/5083 1813/17 +f 459/3378 1818/21 1810/5084 +f 1822/23 1810/5084 1818/21 +f 117/3376 1811/25 1789/5085 +f 1828/27 1789/5085 1811/25 +f 462/3382 1830/29 1824/5086 +f 1834/31 1824/5086 1830/29 +f 115/3380 1839/33 1829/5087 +f 1841/35 1829/5087 1839/33 +f 466/3386 1844/37 1836/5088 +f 1848/39 1836/5088 1844/37 +f 16/3416 1852/41 1817/5089 +f 1854/43 1817/5089 1852/41 +f 469/3390 1857/45 1850/5090 +f 1860/47 1850/5090 1857/45 +f 118/3452 1865/49 1856/5091 +f 1867/51 1856/5091 1865/49 +f 473/3394 1870/53 1862/5092 +f 1874/55 1862/5092 1870/53 +f 121/3392 1863/57 1843/5093 +f 1880/59 1843/5093 1863/57 +f 476/3398 1882/61 1876/5094 +f 1886/63 1876/5094 1882/61 +f 1891/5095 122/5096 1894/65 +f 1892/66 1894/65 122/5096 +f 1889/5097 480/3402 1900/69 +f 1897/70 1900/69 480/3402 +f 1905/5098 13/5099 1908/73 +f 1906/74 1908/73 13/5099 +f 1903/5100 484/3406 1914/77 +f 1911/78 1914/77 484/3406 +f 123/3420 1919/81 1910/5101 +f 1921/83 1910/5101 1919/81 +f 488/3410 1924/85 1916/5102 +f 1928/87 1916/5102 1924/85 +f 1896/5103 125/3408 1933/89 +f 1917/90 1933/89 125/3408 +f 490/3414 1935/93 1930/5104 +f 1938/95 1930/5104 1935/93 +f 1943/5105 126/5106 1946/99 +f 1944/97 1946/99 126/5106 +f 494/3418 1949/101 1941/5107 +f 1952/103 1941/5107 1949/101 +f 1957/5108 4/5109 1960/105 +f 1958/106 1960/105 4/5109 +f 1955/5110 498/3422 1966/111 +f 1963/109 1966/111 498/3422 +f 1962/5111 127/3468 1973/113 +f 1971/114 1973/113 127/3468 +f 502/3426 1976/117 1968/5112 +f 1980/119 1968/5112 1976/117 +f 129/3424 1969/121 1948/5113 +f 1985/123 1948/5113 1969/121 +f 504/3430 1987/125 1982/5114 +f 1990/127 1982/5114 1987/125 +f 128/3428 1995/129 1986/5115 +f 1997/131 1986/5115 1995/129 +f 508/3434 2000/133 1992/5116 +f 2004/135 1992/5116 2000/133 +f 19/3480 2008/137 1975/5117 +f 2010/139 1975/5117 2008/137 +f 511/3438 2013/141 2006/5118 +f 2016/143 2006/5118 2013/141 +f 2012/5119 130/3484 2023/145 +f 2021/146 2023/145 130/3484 +f 515/3442 2026/152 2018/5120 +f 2030/150 2018/5120 2026/152 +f 133/3440 2019/153 1999/5121 +f 2036/155 1999/5121 2019/153 +f 518/3446 2038/157 2032/5122 +f 2042/159 2032/5122 2038/157 +f 124/3412 2046/161 1934/5123 +f 2048/163 1934/5123 2046/161 +f 521/3450 2051/165 2044/5124 +f 2054/167 2044/5124 2051/165 +f 21/3432 1993/169 1923/5125 +f 2059/171 1923/5125 1993/169 +f 523/3454 2061/173 2056/5126 +f 2064/175 2056/5126 2061/173 +f 132/3436 2033/177 2060/5127 +f 2070/179 2060/5127 2033/177 +f 526/3458 2072/181 2066/5128 +f 2076/183 2066/5128 2072/181 +f 135/3456 2067/185 2050/5129 +f 2081/187 2050/5129 2067/185 +f 528/3462 2083/189 2078/5130 +f 2086/191 2078/5130 2083/189 +f 2091/5131 136/5132 2094/193 +f 2092/194 2094/193 136/5132 +f 2089/5133 532/3466 2100/197 +f 2097/198 2100/197 532/3466 +f 2105/5134 15/4330 2108/201 +f 2106/202 2108/201 15/4330 +f 2103/5135 536/3470 2114/205 +f 2111/206 2114/205 536/3470 +f 2110/5136 137/4326 2121/209 +f 2119/210 2121/209 137/4326 +f 540/3474 2124/213 2116/5137 +f 2128/215 2116/5137 2124/213 +f 2096/5138 139/3472 2133/217 +f 2117/218 2133/217 139/3472 +f 2130/5139 542/3478 2138/221 +f 2135/222 2138/221 542/3478 +f 2134/5140 138/3476 2144/225 +f 2142/226 2144/225 138/3476 +f 2140/5141 545/3482 2150/229 +f 2147/230 2150/229 545/3482 +f 2123/5142 23/4346 2156/233 +f 2154/234 2156/233 23/4346 +f 2152/5143 548/3486 2162/237 +f 2159/238 2162/237 548/3486 +f 2158/5144 140/4342 2169/241 +f 2167/242 2169/241 140/4342 +f 2164/5145 552/3490 2176/245 +f 2172/246 2176/245 552/3490 +f 2146/5146 142/3488 2181/249 +f 2165/250 2181/249 142/3488 +f 2178/5147 554/3494 2186/253 +f 2183/254 2186/253 554/3494 +f 2182/5148 141/3492 2192/257 +f 2190/258 2192/257 141/3492 +f 2195/263 2198/264 557/3498 +f 2188/5149 557/3498 2198/264 +f 2171/5150 22/4362 2204/265 +f 2202/266 2204/265 22/4362 +f 2200/5151 560/3500 2210/272 +f 2207/271 2210/272 560/3500 +f 2215/275 2217/276 143/4357 +f 2206/5152 143/4357 2217/276 +f 2212/5153 564/3503 2224/277 +f 2220/278 2224/277 564/3503 +f 2213/282 2229/281 145/3501 +f 2194/5154 145/3501 2229/281 +f 2226/5155 566/3508 2234/285 +f 2231/286 2234/285 566/3508 +f 2230/5156 144/3506 2240/290 +f 2238/292 2240/290 144/3506 +f 2246/294 2236/5157 2243/296 +f 569/3510 2243/296 2236/5157 +f 2219/5158 24/4378 2252/298 +f 2250/300 2252/298 24/4378 +f 2258/302 2248/5159 2255/304 +f 572/3511 2255/304 2248/5159 +f 146/4373 2263/308 2254/5160 +f 2265/306 2254/5160 2263/308 +f 575/3516 2267/309 2260/5161 +f 2270/310 2260/5161 2267/309 +f 147/3513 2261/312 2242/5162 +f 2275/314 2242/5162 2261/312 +f 576/3519 2276/316 2272/5163 +f 2278/317 2272/5163 2276/316 +f 148/5164 2285/319 2284/5165 +f 2287/321 2284/5165 2285/319 +f 581/3521 2290/324 2281/5166 +f 2294/323 2281/5166 2290/324 +f 14/5167 2300/327 2299/5168 +f 2302/329 2299/5168 2300/327 +f 585/3525 2305/331 2297/5169 +f 2308/333 2297/5169 2305/331 +f 149/3539 2313/336 2304/5170 +f 2315/335 2304/5170 2313/336 +f 2310/5171 589/3529 2322/339 +f 2318/340 2322/339 589/3529 +f 2289/5172 152/3527 2328/343 +f 2311/344 2328/343 152/3527 +f 2324/5173 592/3533 2334/347 +f 2330/348 2334/347 592/3533 +f 2340/352 2342/351 153/5174 +f 2339/5175 153/5174 2342/351 +f 596/3537 2345/355 2337/5176 +f 2348/357 2337/5176 2345/355 +f 2353/5177 1/5178 2356/359 +f 2354/360 2356/359 1/5178 +f 2351/5179 600/3541 2362/363 +f 2359/364 2362/363 600/3541 +f 2358/5180 154/3587 2369/367 +f 2367/368 2369/367 154/3587 +f 2364/5181 604/3545 2376/373 +f 2372/371 2376/373 604/3545 +f 2344/5182 156/3543 2381/375 +f 2365/376 2381/375 156/3543 +f 2378/5183 606/3549 2386/379 +f 2383/380 2386/379 606/3549 +f 155/3547 2391/383 2382/5184 +f 2393/385 2382/5184 2391/383 +f 2388/5185 610/3553 2400/387 +f 2396/388 2400/387 610/3553 +f 27/3599 2404/391 2371/5186 +f 2406/393 2371/5186 2404/391 +f 613/3557 2409/395 2402/5187 +f 2412/397 2402/5187 2409/395 +f 157/3603 2417/399 2408/5188 +f 2419/401 2408/5188 2417/399 +f 617/3561 2422/403 2414/5189 +f 2426/405 2414/5189 2422/403 +f 160/3559 2415/407 2395/5190 +f 2432/409 2395/5190 2415/407 +f 620/3565 2434/411 2428/5191 +f 2438/413 2428/5191 2434/411 +f 2329/5192 150/3531 2445/415 +f 2443/416 2445/415 150/3531 +f 2440/5193 624/3569 2452/419 +f 2448/420 2452/419 624/3569 +f 2317/5194 29/3551 2457/423 +f 2389/424 2457/423 29/3551 +f 2454/5195 626/3573 2462/427 +f 2459/428 2462/427 626/3573 +f 2458/5196 159/3555 2468/431 +f 2429/432 2468/431 159/3555 +f 2464/5197 629/3577 2474/435 +f 2470/436 2474/435 629/3577 +f 2447/5198 163/3575 2480/439 +f 2465/440 2480/439 163/3575 +f 2476/5199 632/3581 2486/443 +f 2482/444 2486/443 632/3581 +f 2491/5200 164/5201 2494/447 +f 2492/448 2494/447 164/5201 +f 2489/5202 636/3585 2500/451 +f 2497/452 2500/451 636/3585 +f 2505/5203 9/4458 2508/455 +f 2506/456 2508/455 9/4458 +f 2503/5204 640/3589 2514/459 +f 2511/460 2514/459 640/3589 +f 2510/5205 165/4454 2521/463 +f 2519/464 2521/463 165/4454 +f 2516/5206 644/3593 2528/467 +f 2524/468 2528/467 644/3593 +f 2496/5207 167/3591 2533/471 +f 2517/472 2533/471 167/3591 +f 2530/5208 646/3597 2538/475 +f 2535/476 2538/475 646/3597 +f 166/3595 2542/479 2534/5209 +f 2544/481 2534/5209 2542/479 +f 649/3601 2547/483 2540/5210 +f 2550/485 2540/5210 2547/483 +f 2523/5211 31/4474 2556/489 +f 2554/487 2556/489 31/4474 +f 652/3605 2559/491 2552/5212 +f 2562/493 2552/5212 2559/491 +f 2558/5213 168/4470 2569/495 +f 2567/496 2569/495 168/4470 +f 2564/5214 656/3609 2576/499 +f 2572/500 2576/499 656/3609 +f 170/3607 2565/503 2546/5215 +f 2581/505 2546/5215 2565/503 +f 658/3613 2583/507 2578/5216 +f 2586/509 2578/5216 2583/507 +f 2593/513 2595/514 171/3623 +f 2592/4477 171/3623 2595/514 +f 2589/5217 663/3617 2602/515 +f 2598/516 2602/515 663/3617 +f 2101/5218 136/3627 2609/519 +f 2607/520 2609/519 136/3627 +f 2604/5219 666/3621 2614/523 +f 2611/524 2614/523 666/3621 +f 172/3631 2620/525 2619/5220 +f 2622/527 2619/5220 2620/525 +f 669/3625 2624/529 2617/5221 +f 2626/530 2617/5221 2624/529 +f 2632/5222 173/3635 2635/531 +f 2633/532 2635/531 173/3635 +f 2629/5223 673/3629 2640/535 +f 2637/536 2640/535 673/3629 +f 2648/537 2646/5224 2600/517 +f 174/3618 2600/517 2646/5224 +f 676/3633 2649/539 2643/5225 +f 2652/540 2643/5225 2649/539 +f 2651/3634 173/3635 2659/541 +f 2657/542 2659/541 173/3635 +f 2654/5226 680/3637 2666/545 +f 2662/546 2666/545 680/3637 +f 2627/5227 12/5228 2672/549 +f 2670/550 2672/549 12/5228 +f 2668/5229 683/3641 2678/553 +f 2675/554 2678/553 683/3641 +f 2674/5230 176/5231 2685/557 +f 2683/558 2685/557 176/5231 +f 2680/5232 687/3645 2692/561 +f 2688/562 2692/561 687/3645 +f 2661/5233 179/3643 2698/565 +f 2681/566 2698/565 179/3643 +f 2694/5234 690/3649 2704/569 +f 2700/570 2704/569 690/3649 +f 2710/574 2293/5235 2708/576 +f 151/5236 2708/576 2293/5235 +f 2716/578 2706/5237 2713/580 +f 693/3652 2713/580 2706/5237 +f 2722/581 2333/5238 2720/582 +f 25/5239 2720/582 2333/5238 +f 2728/586 2718/5240 2725/588 +f 696/3654 2725/588 2718/5240 +f 2724/5241 180/3671 2735/589 +f 2733/590 2735/589 180/3671 +f 2742/594 2730/5242 2738/596 +f 700/3659 2738/596 2730/5242 +f 2747/598 2712/5243 2731/600 +f 182/3656 2731/600 2712/5243 +f 702/3662 2749/601 2744/5244 +f 2752/603 2744/5244 2749/601 +f 2759/606 2733/590 2757/608 +f 180/3671 2757/608 2733/590 +f 2766/610 2754/5245 2762/612 +f 706/3664 2762/612 2754/5245 +f 2770/614 2772/613 162/3674 +f 2451/5246 162/3674 2772/613 +f 2774/617 2776/618 708/3669 +f 2768/5247 708/3669 2776/618 +f 2784/620 2781/5248 2782/622 +f 183/3679 2782/622 2781/5248 +f 2788/623 2779/5249 2786/624 +f 711/3672 2786/624 2779/5249 +f 184/3683 2795/625 2794/4533 +f 2797/627 2794/4533 2795/625 +f 2791/5250 715/3677 2802/629 +f 2799/630 2802/629 715/3677 +f 2808/5251 185/3666 2810/631 +f 2764/609 2810/631 185/3666 +f 2805/5252 718/3681 2814/633 +f 2811/634 2814/633 718/3681 +f 174/3618 2819/635 2601/3619 +f 2821/637 2601/3619 2819/635 +f 2816/5253 722/3685 2828/639 +f 2824/640 2828/639 722/3685 +f 2641/5254 35/5255 2834/643 +f 2832/644 2834/643 35/5255 +f 2830/5256 725/3689 2840/647 +f 2837/648 2840/647 725/3689 +f 2847/653 2836/5257 2845/651 +f 187/3703 2845/651 2836/5257 +f 2854/656 2842/5258 2850/658 +f 729/3692 2850/658 2842/5258 +f 2823/5259 190/3691 2860/659 +f 2843/660 2860/659 190/3691 +f 2856/5260 732/3697 2866/663 +f 2862/664 2866/663 732/3697 +f 178/3639 2870/667 2665/3638 +f 2872/669 2665/3638 2870/667 +f 735/3701 2875/671 2868/5261 +f 2878/673 2868/5261 2875/671 +f 33/3651 2882/675 2703/3650 +f 2884/677 2703/3650 2882/675 +f 738/3705 2887/679 2880/5262 +f 2890/681 2880/5262 2887/679 +f 191/3719 2895/686 2886/5263 +f 2897/684 2886/5263 2895/686 +f 2904/688 2892/5264 2900/690 +f 742/3709 2900/690 2892/5264 +f 193/3707 2893/691 2874/5265 +f 2909/693 2874/5265 2893/691 +f 744/3713 2911/695 2906/5266 +f 2914/697 2906/5266 2911/695 +f 2920/701 2748/5267 2918/699 +f 181/3660 2918/699 2748/5267 +f 747/3717 2923/703 2916/5268 +f 2926/705 2916/5268 2923/703 +f 2737/5269 36/5270 2932/707 +f 2930/708 2932/707 36/5270 +f 2938/713 2928/5271 2935/711 +f 750/3720 2935/711 2928/5271 +f 2945/716 2934/5272 2943/718 +f 194/3735 2943/718 2934/5272 +f 754/3725 2948/722 2940/5273 +f 2952/720 2940/5273 2948/722 +f 196/3723 2941/723 2922/5274 +f 2957/725 2922/5274 2941/723 +f 2962/728 2954/5275 2959/730 +f 756/3729 2959/730 2954/5275 +f 2966/732 2968/731 185/3666 +f 2765/3667 185/3666 2968/731 +f 2964/5276 759/3733 2974/735 +f 2971/736 2974/735 759/3733 +f 2803/5277 37/4603 2980/739 +f 2978/740 2980/739 37/4603 +f 2976/5278 762/3737 2986/743 +f 2983/744 2986/743 762/3737 +f 2982/5279 197/4599 2993/747 +f 2991/748 2993/747 197/4599 +f 766/3741 2996/751 2988/5280 +f 3000/753 2988/5280 2996/751 +f 2970/5281 199/3739 3005/755 +f 2989/756 3005/755 199/3739 +f 3002/5282 768/3745 3010/760 +f 3007/762 3010/760 768/3745 +f 183/5283 3015/763 2801/5284 +f 3017/765 2801/5284 3015/763 +f 772/3749 3020/767 3012/5285 +f 3024/769 3012/5285 3020/767 +f 8/3583 3028/771 2777/5286 +f 3030/773 2777/5286 3028/771 +f 3036/776 3026/5287 3033/778 +f 775/3753 3033/778 3026/5287 +f 3043/780 3032/5288 3041/782 +f 200/3766 3041/782 3032/5288 +f 3050/784 3038/5289 3046/786 +f 779/3756 3046/786 3038/5289 +f 203/3755 3039/787 3019/5290 +f 3056/789 3019/5290 3039/787 +f 782/3761 3058/791 3052/5291 +f 3062/793 3052/5291 3058/791 +f 2481/5292 161/3579 3068/795 +f 3066/796 3068/795 161/3579 +f 3064/5293 785/3765 3074/802 +f 3071/801 3074/802 785/3765 +f 2469/5294 28/3567 3080/803 +f 3078/804 3080/803 28/3567 +f 3076/5295 788/3769 3086/807 +f 3083/808 3086/807 788/3769 +f 3082/5296 204/3783 3093/811 +f 3091/812 3093/811 204/3783 +f 3096/816 3100/815 792/3773 +f 3088/5297 792/3773 3100/815 +f 3070/5298 206/3771 3105/822 +f 3089/821 3105/822 206/3771 +f 3110/824 3102/5299 3107/826 +f 794/3776 3107/826 3102/5299 +f 158/3563 3114/827 2433/5300 +f 3116/829 2433/5300 3114/827 +f 797/3781 3119/831 3112/5301 +f 3122/833 3112/5301 3119/831 +f 7/3615 3126/835 2421/5302 +f 3128/837 2421/5302 3126/835 +f 800/3785 3131/839 3124/5303 +f 3134/841 3124/5303 3131/839 +f 3130/5304 207/3799 3141/843 +f 3139/844 3141/843 207/3799 +f 3136/5305 804/3788 3148/847 +f 3144/848 3148/847 804/3788 +f 209/3787 3137/852 3118/5306 +f 3153/851 3118/5306 3137/852 +f 3150/5307 806/3793 3158/855 +f 3155/856 3158/855 806/3793 +f 2582/5308 169/3611 3164/859 +f 3162/860 3164/859 169/3611 +f 3160/5309 809/3797 3170/863 +f 3167/864 3170/863 809/3797 +f 2571/5310 30/4667 3176/867 +f 3174/868 3176/867 30/4667 +f 3172/5311 812/3801 3182/871 +f 3179/872 3182/871 812/3801 +f 3178/5312 210/4663 3189/875 +f 3187/876 3189/875 210/4663 +f 3184/5313 816/3805 3196/879 +f 3192/880 3196/879 816/3805 +f 3166/5314 212/3803 3201/883 +f 3185/884 3201/883 212/3803 +f 3203/889 3206/890 818/3809 +f 3198/5315 818/3809 3206/890 +f 3213/892 3057/5316 3211/894 +f 201/3758 3211/894 3057/5316 +f 3220/896 3208/5317 3216/898 +f 822/3812 3216/898 3208/5317 +f 44/3778 3224/902 3045/5318 +f 3226/900 3045/5318 3224/902 +f 825/3817 3229/903 3222/5319 +f 3232/905 3222/5319 3229/903 +f 213/5320 3237/907 3228/5321 +f 3239/909 3228/5321 3237/907 +f 829/3821 3242/911 3234/5322 +f 3246/913 3234/5322 3242/911 +f 3252/916 3215/5323 3235/918 +f 216/3819 3235/918 3215/5323 +f 3258/920 3248/5324 3254/922 +f 832/3824 3254/922 3248/5324 +f 3106/5325 205/3774 3265/923 +f 3263/924 3265/923 205/3774 +f 3260/5326 836/3829 3272/927 +f 3268/928 3272/927 836/3829 +f 3095/5327 46/3795 3278/931 +f 3276/932 3278/931 46/3795 +f 3281/937 3284/938 839/3832 +f 3274/5328 839/3832 3284/938 +f 3289/941 3291/942 217/3844 +f 3280/5329 217/3844 3291/942 +f 3294/945 3298/946 843/3835 +f 3286/5330 843/3835 3298/946 +f 3287/949 3304/950 220/3833 +f 3267/5331 220/3833 3304/950 +f 3306/953 3310/954 846/3839 +f 3300/5332 846/3839 3310/954 +f 3154/5333 208/3791 3316/955 +f 3314/956 3316/955 208/3791 +f 3312/5334 849/3843 3322/962 +f 3319/961 3322/962 849/3843 +f 3143/5335 43/3810 3328/963 +f 3326/964 3328/963 43/3810 +f 3324/5336 852/3847 3334/967 +f 3331/968 3334/967 852/3847 +f 3330/5337 221/3861 3341/971 +f 3339/972 3341/971 221/3861 +f 3336/5338 856/3850 3348/977 +f 3344/975 3348/977 856/3850 +f 3337/980 3353/979 223/3849 +f 3318/5339 223/3849 3353/979 +f 3358/985 3350/5340 3355/983 +f 858/3855 3355/983 3350/5340 +f 3362/989 3364/990 211/3807 +f 3202/5341 211/3807 3364/990 +f 3360/5342 861/3859 3370/991 +f 3367/992 3370/991 861/3859 +f 3191/5343 47/4731 3376/995 +f 3374/996 3376/995 47/4731 +f 3379/1001 3382/1002 864/3863 +f 3372/5344 864/3863 3382/1002 +f 3387/1005 3389/1006 224/4726 +f 3378/5345 224/4726 3389/1006 +f 3392/1008 3396/1007 868/3866 +f 3384/5346 868/3866 3396/1007 +f 3366/5347 226/3865 3401/1011 +f 3385/1012 3401/1011 226/3865 +f 3398/5348 870/3871 3406/1015 +f 3403/1016 3406/1015 870/3871 +f 3413/1020 3253/5349 3411/1022 +f 214/3823 3411/1022 3253/5349 +f 3420/1024 3408/5350 3416/1026 +f 874/3874 3416/1026 3408/5350 +f 49/5351 3424/1027 3241/5352 +f 3426/1029 3241/5352 3424/1027 +f 877/3879 3429/1031 3422/5353 +f 3432/1033 3422/5353 3429/1031 +f 227/3893 3437/1035 3428/5354 +f 3439/1037 3428/5354 3437/1035 +f 881/3883 3442/1039 3434/5355 +f 3446/1041 3434/5355 3442/1039 +f 230/3881 3435/1043 3415/5356 +f 3452/1045 3415/5356 3435/1043 +f 3458/1049 3448/5357 3454/1047 +f 884/3887 3454/1047 3448/5357 +f 231/5358 3464/1051 3463/5359 +f 3466/1053 3463/5359 3464/1051 +f 888/3891 3469/1058 3461/5360 +f 3472/1056 3461/5360 3469/1058 +f 3477/5361 51/5362 3480/1059 +f 3478/1060 3480/1059 51/5362 +f 3475/5363 892/3895 3486/1063 +f 3483/1064 3486/1063 892/3895 +f 3482/5364 232/3909 3493/1067 +f 3491/1068 3493/1067 232/3909 +f 3496/1073 3500/1074 896/3899 +f 3488/5365 896/3899 3500/1074 +f 3505/1076 3468/5366 3489/1078 +f 234/3897 3489/1078 3468/5366 +f 3510/1080 3502/5367 3507/1082 +f 898/3902 3507/1082 3502/5367 +f 3515/5368 235/5369 3518/1083 +f 3516/1084 3518/1083 235/5369 +f 3513/5370 902/3907 3524/1087 +f 3521/1088 3524/1087 902/3907 +f 3530/1093 3532/1094 32/4778 +f 3529/5371 32/4778 3532/1094 +f 3527/5372 906/3911 3538/1095 +f 3535/1096 3538/1095 906/3911 +f 3543/1101 3545/1102 236/4774 +f 3534/5373 236/4774 3545/1102 +f 3540/5374 910/3915 3552/1103 +f 3548/1104 3552/1103 910/3915 +f 3520/5375 238/3913 3557/1110 +f 3541/1109 3557/1110 238/3913 +f 3559/1113 3562/1114 912/3918 +f 3554/5376 912/3918 3562/1114 +f 228/3885 3567/1115 3453/5377 +f 3569/1117 3453/5377 3567/1115 +f 916/3923 3572/1119 3564/5378 +f 3576/1121 3564/5378 3572/1119 +f 3581/1123 3441/5379 3509/1079 +f 54/3904 3509/1079 3441/5379 +f 3586/1126 3578/5380 3583/1128 +f 918/3926 3583/1128 3578/5380 +f 3582/5381 233/3900 3592/1129 +f 3498/1072 3592/1129 233/3900 +f 3588/5382 920/3931 3596/1131 +f 3593/1132 3596/1131 920/3931 +f 3571/5383 240/3928 3602/1134 +f 3589/1135 3602/1134 240/3928 +f 3598/5384 922/3934 3606/1138 +f 3603/1139 3606/1138 922/3934 +f 3525/5385 235/5369 3613/1141 +f 3611/1142 3613/1141 235/5369 +f 926/3938 3616/1145 3608/5386 +f 3620/1147 3608/5386 3616/1145 +f 3511/5387 51/5362 3626/1149 +f 3624/1150 3626/1149 51/5362 +f 3632/1154 3622/5388 3629/1156 +f 929/3942 3629/1156 3622/5388 +f 3639/1158 3628/5389 3637/1160 +f 241/3955 3637/1160 3628/5389 +f 3646/1162 3634/5390 3642/1164 +f 933/3945 3642/1164 3634/5390 +f 3652/1166 3615/5391 3635/1168 +f 244/3943 3635/1168 3615/5391 +f 936/3949 3654/1169 3648/5392 +f 3658/1171 3648/5392 3654/1169 +f 3662/1174 3664/1173 231/5358 +f 3473/5393 231/5358 3664/1173 +f 3660/5394 939/3954 3670/1180 +f 3667/1179 3670/1180 939/3954 +f 3675/1182 3459/5395 3240/1183 +f 49/5351 3240/1183 3459/5395 +f 941/3957 3677/1184 3672/5396 +f 3680/1186 3672/5396 3677/1184 +f 213/5320 3227/1188 3676/5397 +f 3686/1189 3676/5397 3227/1188 +f 3687/1193 3690/1194 943/3962 +f 3682/5398 943/3962 3690/1194 +f 3683/1197 3695/1198 245/3959 +f 3666/5399 245/3959 3695/1198 +f 944/3965 3696/1199 3692/5400 +f 3698/1201 3692/5400 3696/1199 +f 3402/5401 225/3869 3704/1203 +f 3702/1204 3704/1203 225/3869 +f 3700/5402 947/3968 3710/1207 +f 3707/1208 3710/1207 947/3968 +f 3714/1213 3716/1214 52/4839 +f 3391/5403 52/4839 3716/1214 +f 3712/5404 950/3969 3722/1215 +f 3719/1216 3722/1215 950/3969 +f 3727/1221 3729/1222 246/4835 +f 3718/5405 246/4835 3729/1222 +f 3724/5406 954/3974 3736/1223 +f 3732/1224 3736/1223 954/3974 +f 3706/5407 248/3972 3741/1227 +f 3725/1228 3741/1227 248/3972 +f 3738/5408 956/3978 3746/1234 +f 3743/1233 3746/1234 956/3978 +f 3753/1236 3653/5409 3751/1238 +f 242/3947 3751/1238 3653/5409 +f 3760/1239 3748/5410 3756/1240 +f 960/3979 3756/1240 3748/5410 +f 3765/1244 3641/5411 3308/952 +f 59/3841 3308/952 3641/5411 +f 3770/1246 3762/5412 3767/1248 +f 962/3983 3767/1248 3762/5412 +f 3776/1250 3766/5413 3296/944 +f 218/3837 3296/944 3766/5413 +f 3772/5414 964/3987 3780/1251 +f 3777/1252 3780/1251 964/3987 +f 3755/5415 250/3985 3786/1254 +f 3773/1255 3786/1254 250/3985 +f 3782/5416 966/3991 3790/1258 +f 3787/1259 3790/1258 966/3991 +f 3799/1263 3796/5417 3797/1261 +f 251/4001 3797/1261 3796/5417 +f 971/3995 3802/1265 3793/5418 +f 3806/1267 3793/5418 3802/1265 +f 252/4005 3813/1272 3812/1489 +f 3815/1270 3812/1489 3813/1272 +f 3820/1273 3809/5419 3817/1274 +f 975/3998 3817/1274 3809/5419 +f 3826/5420 253/3997 3828/1275 +f 3804/1268 3828/1275 253/3997 +f 3823/5421 978/4003 3832/1277 +f 3829/1278 3832/1277 978/4003 +f 255/5422 3838/1279 3837/1520 +f 3840/1281 3837/1520 3838/1279 +f 982/4007 3843/1283 3835/5423 +f 3846/1285 3835/5423 3843/1283 +f 61/5424 3852/1287 3851/1511 +f 3854/1289 3851/1511 3852/1287 +f 986/4011 3857/1291 3849/5425 +f 3860/1293 3849/5425 3857/1291 +f 256/4025 3865/1295 3856/5426 +f 3867/1297 3856/5426 3865/1295 +f 990/4015 3870/1299 3862/5427 +f 3874/1301 3862/5427 3870/1299 +f 258/4013 3863/1303 3842/5428 +f 3879/1305 3842/5428 3863/1303 +f 992/4019 3881/1307 3876/5429 +f 3884/1309 3876/5429 3881/1307 +f 3805/3996 253/3997 3890/1314 +f 3888/1313 3890/1314 253/3997 +f 3896/1316 3886/5430 3893/1318 +f 995/4023 3893/1318 3886/5430 +f 2/5431 1799/1320 3821/5432 +f 3901/1319 3821/5432 1799/1320 +f 3906/1324 3898/5433 3903/1326 +f 997/4026 3903/1326 3898/5433 +f 3912/1328 3902/5434 1784/1330 +f 113/5435 1784/1330 3902/5434 +f 3918/1332 3908/5436 3914/1334 +f 1000/4030 3914/1334 3908/5436 +f 3923/1336 3892/5437 3909/1338 +f 260/4028 3909/1338 3892/5437 +f 3928/1341 3920/5438 3925/1339 +f 1002/4034 3925/1339 3920/5438 +f 3935/1345 3819/4000 3933/1343 +f 251/4001 3933/1343 3819/4000 +f 3938/1349 3942/1350 1006/4038 +f 3930/5439 1006/4038 3942/1350 +f 61/5424 3946/1351 3791/5440 +f 3948/1353 3791/5440 3946/1351 +f 1009/4043 3951/1355 3944/5441 +f 3954/1357 3944/5441 3951/1355 +f 3961/1361 3950/5442 3959/1359 +f 261/4148 3959/1359 3950/5442 +f 1013/4047 3964/1366 3956/5443 +f 3968/1364 3956/5443 3964/1366 +f 3937/5444 264/4045 3974/1367 +f 3957/1368 3974/1367 264/4045 +f 3970/5445 1016/4051 3980/1374 +f 3976/1373 3980/1374 1016/4051 +f 3988/1376 3985/5446 3986/1378 +f 265/4156 3986/1378 3985/5446 +f 1020/4055 3991/1379 3983/5447 +f 3994/1381 3983/5447 3991/1379 +f 3999/5448 66/5449 4002/1383 +f 4000/1384 4002/1383 66/5449 +f 3997/5450 1024/4057 4008/1387 +f 4005/1388 4008/1387 1024/4057 +f 4015/1392 4004/5451 4013/1394 +f 266/4170 4013/1394 4004/5451 +f 4010/5452 1028/4060 4022/1395 +f 4018/1396 4022/1395 1028/4060 +f 4011/1401 4027/1402 268/4058 +f 3990/5453 268/4058 4027/1402 +f 4029/1404 4032/1403 1030/4064 +f 4024/5454 1030/4064 4032/1403 +f 269/4092 4038/1407 4037/5455 +f 4040/1409 4037/5455 4038/1407 +f 1034/4067 4043/1411 4035/5456 +f 4046/1413 4035/5456 4043/1411 +f 4054/1417 4051/5457 4052/1415 +f 67/4113 4052/1415 4051/5457 +f 1038/4071 4057/1419 4049/5458 +f 4060/1421 4049/5458 4057/1419 +f 270/4117 4065/1423 4056/5459 +f 4067/1425 4056/5459 4065/1423 +f 1041/4075 4069/1427 4062/5460 +f 4072/1429 4062/5460 4069/1427 +f 271/4073 4063/1431 4042/5461 +f 4077/1433 4042/5461 4063/1431 +f 1042/4079 4078/1435 4074/5462 +f 4080/1437 4074/5462 4078/1435 +f 4084/1441 4086/1442 126/5463 +f 1953/5464 126/5463 4086/1442 +f 4089/1444 4092/1443 1045/4082 +f 4082/5465 1045/4082 4092/1443 +f 1939/5466 13/5467 4098/1447 +f 4096/1448 4098/1447 13/5467 +f 4101/1453 4104/1454 1048/4087 +f 4094/5468 1048/4087 4104/1454 +f 4100/5469 272/4101 4111/1455 +f 4109/1456 4111/1455 272/4101 +f 4113/1461 4116/1462 1051/4091 +f 4106/5470 1051/4091 4116/1462 +f 4121/1464 4088/5471 4107/1466 +f 273/4088 4107/1466 4088/5471 +f 4118/5472 1052/4094 4124/1468 +f 4122/1470 4124/1468 1052/4094 +f 1901/5473 122/5474 4130/1471 +f 4128/1472 4130/1471 122/5474 +f 4126/5475 1055/4099 4136/1475 +f 4133/1476 4136/1475 1055/4099 +f 2/5431 3824/1479 1887/5476 +f 4141/1481 1887/5476 3824/1479 +f 4138/5477 1057/4103 4146/1483 +f 4143/1484 4146/1483 1057/4103 +f 4142/5478 252/4005 4152/1490 +f 3812/1489 4152/1490 252/4005 +f 4154/1493 4158/1494 1060/4106 +f 4148/5479 1060/4106 4158/1494 +f 4132/5480 275/4105 4163/1495 +f 4149/1496 4163/1495 275/4105 +f 4160/5481 1062/4111 4168/1499 +f 4165/1500 4168/1499 1062/4111 +f 276/5482 4174/1503 4173/5483 +f 4176/1505 4173/5483 4174/1503 +f 1066/4114 4179/1507 4171/5484 +f 4182/1509 4171/5484 4179/1507 +f 61/5424 3851/1511 4187/5485 +f 4189/1513 4187/5485 3851/1511 +f 1069/4119 4191/1515 4185/5486 +f 4194/1517 4185/5486 4191/1515 +f 4190/5487 255/5422 4200/1519 +f 3837/1520 4200/1519 255/5422 +f 4196/5488 1071/4123 4204/1523 +f 4201/1524 4204/1523 1071/4123 +f 277/4121 4197/1527 4178/5489 +f 4209/1529 4178/5489 4197/1527 +f 1072/4127 4210/1531 4206/5490 +f 4212/1533 4206/5490 4210/1531 +f 4217/1537 4219/1538 274/4108 +f 4164/5491 274/4108 4219/1538 +f 1076/4130 4222/1539 4214/5492 +f 4226/1541 4214/5492 4222/1539 +f 3931/1545 4231/1546 62/5493 +f 4153/5494 62/5493 4231/1546 +f 4228/5495 1078/4134 4236/1547 +f 4233/1548 4236/1547 1078/4134 +f 4232/5496 263/4040 4242/1551 +f 3971/1552 4242/1551 263/4040 +f 4238/5497 1080/4139 4246/1555 +f 4243/1556 4246/1555 1080/4139 +f 4221/5498 279/4137 4252/1558 +f 4239/1559 4252/1558 279/4137 +f 4248/5499 1082/4142 4256/1562 +f 4253/1563 4256/1562 1082/4142 +f 276/5482 4260/1565 4183/5500 +f 4262/1567 4183/5500 4260/1565 +f 4268/1571 4258/5501 4265/1569 +f 1085/4145 4265/1569 4258/5501 +f 67/4113 4272/1574 4169/5502 +f 4274/1573 4169/5502 4272/1574 +f 4277/1580 4280/1578 1088/4149 +f 4270/5503 1088/4149 4280/1578 +f 4276/5504 280/4164 4287/1581 +f 4285/1582 4287/1581 280/4164 +f 1091/4154 4289/1585 4282/5505 +f 4292/1587 4282/5505 4289/1585 +f 281/4152 4283/1589 4264/5506 +f 4297/1591 4264/5506 4283/1589 +f 1092/4158 4298/1593 4294/5507 +f 4300/1595 4294/5507 4298/1593 +f 4225/4132 278/4133 4306/1600 +f 4304/1599 4306/1600 278/4133 +f 4309/1603 4312/1604 1095/4161 +f 4302/5508 1095/4161 4312/1604 +f 4013/1394 266/4170 4318/1607 +f 4316/1605 4318/1607 266/4170 +f 1097/4165 4320/1609 4314/5509 +f 4322/1610 4314/5509 4320/1609 +f 280/4164 4311/1602 4285/1582 +f 4327/1611 4285/1582 4311/1602 +f 1098/4169 4328/1614 4324/5510 +f 4330/1613 4324/5510 4328/1614 +f 198/3743 4335/1615 3006/5511 +f 4337/1617 3006/5511 4335/1615 +f 4344/1620 4332/5512 4340/1622 +f 1102/4172 4340/1622 4332/5512 +f 4349/5034 283/4180 4352/1623 +f 4350/1624 4352/1623 283/4180 +f 4347/5513 1105/4177 4356/1627 +f 4354/1628 4356/1627 1105/4177 +f 4362/5514 284/4174 4364/1629 +f 4342/1619 4364/1629 284/4174 +f 4368/1631 4359/5515 4365/1632 +f 1108/4179 4365/1632 4359/5515 +f 4372/1635 4374/1636 284/4174 +f 4343/4175 284/4174 4374/1636 +f 4377/1638 4380/1637 1111/4182 +f 4370/5516 1111/4182 4380/1637 +f 68/5048 4384/1641 4357/5517 +f 4386/1643 4357/5517 4384/1641 +f 4382/5518 1114/4185 4392/1645 +f 4389/1646 4392/1645 1114/4185 +f 4388/5519 286/5045 4399/1649 +f 4397/1650 4399/1649 286/5045 +f 4394/5520 1118/4189 4406/1653 +f 4402/1654 4406/1653 1118/4189 +f 4376/5521 288/4187 4411/1657 +f 4395/1658 4411/1657 288/4187 +f 4408/5522 1120/4193 4416/1664 +f 4413/1663 4416/1664 1120/4193 +f 4423/1666 2910/5523 4421/1668 +f 192/3710 4421/1668 2910/5523 +f 4430/1670 4418/5524 4426/1672 +f 1124/4194 4426/1672 4418/5524 +f 4435/1674 2899/5525 4415/1662 +f 38/3730 4415/1662 2899/5525 +f 4440/1676 4432/5526 4437/1678 +f 1126/4198 4437/1678 4432/5526 +f 4446/1680 4436/5527 4404/1655 +f 287/4191 4404/1655 4436/5527 +f 4452/1681 4442/5528 4448/1682 +f 1129/4202 4448/1682 4442/5528 +f 4458/1686 4425/5529 4443/1688 +f 291/4200 4443/1688 4425/5529 +f 4464/1690 4454/5530 4460/1692 +f 1132/4206 4460/1692 4454/5530 +f 4468/1694 4470/1693 290/4196 +f 4429/4197 290/4196 4470/1693 +f 4466/5531 1135/4211 4476/1699 +f 4473/1697 4476/1699 1135/4211 +f 292/4218 4482/1704 4481/5076 +f 4484/1702 4481/5076 4482/1704 +f 4488/1705 4479/5532 4486/1706 +f 1138/4212 4486/1706 4479/5532 +f 2861/5533 188/3695 4494/1707 +f 4475/1700 4494/1707 188/3695 +f 4490/5534 1140/4216 4498/1710 +f 4495/1709 4498/1710 1140/4216 +f 1793/3371 116/3372 4505/1712 +f 4503/1714 4505/1712 116/3372 +f 4500/5535 1144/4220 4512/1717 +f 4508/1715 4512/1717 1144/4220 +f 1833/3383 18/3384 4518/1720 +f 4516/1722 4518/1720 18/3384 +f 4524/1724 4514/5536 4521/1726 +f 1147/4223 4521/1726 4514/5536 +f 294/4238 4529/1727 4520/5537 +f 4531/1729 4520/5537 4529/1727 +f 4538/1732 4526/5538 4534/1734 +f 1151/4227 4534/1734 4526/5538 +f 297/4225 4527/1735 4507/5539 +f 4544/1737 4507/5539 4527/1735 +f 1154/4232 4546/1739 4540/5540 +f 4550/1741 4540/5540 4546/1739 +f 1847/3387 120/3388 4556/1745 +f 4554/1743 4556/1745 120/3388 +f 1157/4236 4559/1747 4552/5541 +f 4562/1749 4552/5541 4559/1747 +f 4568/1753 1885/3399 4566/1751 +f 17/3400 4566/1751 1885/3399 +f 1160/4240 4571/1755 4564/5542 +f 4574/1757 4564/5542 4571/1755 +f 298/5543 4579/1759 4570/5544 +f 4581/1761 4570/5544 4579/1759 +f 1164/4244 4584/1763 4576/5545 +f 4588/1765 4576/5545 4584/1763 +f 300/4242 4577/1767 4558/5546 +f 4593/1769 4558/5546 4577/1767 +f 1166/4248 4595/1771 4590/5547 +f 4598/1773 4590/5547 4595/1771 +f 4605/1775 4545/5548 4603/1776 +f 295/4229 4603/1776 4545/5548 +f 4600/5549 1170/4252 4612/1779 +f 4608/1780 4612/1779 1170/4252 +f 4618/1784 4533/5550 4616/1786 +f 82/4250 4616/1786 4533/5550 +f 4614/5551 1173/4255 4624/1787 +f 4621/1788 4624/1787 1173/4255 +f 4631/1792 4620/5552 4629/1794 +f 301/4301 4629/1794 4620/5552 +f 4638/1796 4626/5553 4634/1798 +f 1177/4259 4634/1798 4626/5553 +f 4607/5554 304/4258 4644/1799 +f 4627/1800 4644/1799 304/4258 +f 4640/5555 1180/4264 4650/1803 +f 4646/1804 4650/1803 1180/4264 +f 4657/1808 4645/5556 4655/1810 +f 302/4261 4655/1810 4645/5556 +f 4664/1812 4652/5557 4660/1814 +f 1184/4267 4660/1814 4652/5557 +f 4670/1816 4633/5558 4668/1818 +f 85/4313 4668/1818 4633/5558 +f 4676/1820 4666/5559 4673/1822 +f 1187/4271 4673/1822 4666/5559 +f 4683/1824 4672/5560 4681/1826 +f 305/4285 4681/1826 4672/5560 +f 4690/1827 4678/5561 4686/1828 +f 1191/4275 4686/1828 4678/5561 +f 4696/1832 4659/5562 4679/1834 +f 308/4273 4679/1834 4659/5562 +f 4692/5563 1194/4280 4702/1835 +f 4698/1836 4702/1835 1194/4280 +f 4710/1840 4707/5564 4708/1842 +f 309/4309 4708/1842 4707/5564 +f 4716/1844 4705/5565 4713/1846 +f 1198/4283 4713/1846 4705/5565 +f 4724/1848 4721/5566 4722/1850 +f 84/5567 4722/1850 4721/5566 +f 4730/1852 4719/5568 4727/1854 +f 1202/4287 4727/1854 4719/5568 +f 4737/1857 4726/5569 4735/1855 +f 310/5570 4735/1855 4726/5569 +f 4732/5571 1206/4291 4744/1859 +f 4740/1860 4744/1859 1206/4291 +f 4749/1864 4712/5572 4733/1866 +f 312/4289 4733/1866 4712/5572 +f 4754/1868 4746/5573 4751/1870 +f 1208/4295 4751/1870 4746/5573 +f 299/4246 4758/1871 4594/5574 +f 4760/1873 4594/5574 4758/1871 +f 4766/1876 4756/5575 4763/1878 +f 1211/4299 4763/1878 4756/5575 +f 4772/1880 4583/5576 4770/1882 +f 75/5577 4770/1882 4583/5576 +f 4778/1884 4768/5578 4775/1886 +f 1214/4303 4775/1886 4768/5578 +f 4785/1888 4774/5579 4783/1890 +f 313/5580 4783/1890 4774/5579 +f 4790/1892 4780/5581 4787/1894 +f 1217/4307 4787/1894 4780/5581 +f 4795/1896 4762/5582 4781/1898 +f 314/4305 4781/1898 4762/5582 +f 4798/1900 4792/5583 4796/1902 +f 1218/4311 4796/1902 4792/5583 +f 4697/5584 306/4278 4805/1903 +f 4803/1904 4805/1903 306/4278 +f 4800/5585 1222/4316 4812/1907 +f 4808/1908 4812/1907 1222/4316 +f 4818/1911 4685/5586 4816/1912 +f 83/4297 4816/1912 4685/5586 +f 4814/5587 1225/4320 4824/1915 +f 4821/1916 4824/1915 1225/4320 +f 4831/1920 4820/5588 4829/1922 +f 315/4334 4829/1922 4820/5588 +f 4826/5589 1228/4323 4836/1923 +f 4833/1924 4836/1923 1228/4323 +f 4807/5590 317/4322 4842/1925 +f 4827/1926 4842/1925 317/4322 +f 4838/5591 1230/4328 4846/1929 +f 4843/1930 4846/1929 1230/4328 +f 4750/5592 311/4294 4852/1931 +f 4850/1932 4852/1931 311/4294 +f 4848/5593 1233/4332 4858/1935 +f 4855/1936 4858/1935 1233/4332 +f 4739/5594 76/5595 4864/1939 +f 4862/1940 4864/1939 76/5595 +f 4860/5596 1236/4336 4870/1943 +f 4867/1944 4870/1943 1236/4336 +f 4866/5597 318/4350 4877/1947 +f 4875/1948 4877/1947 318/4350 +f 4872/5598 1239/4340 4882/1951 +f 4879/1952 4882/1951 1239/4340 +f 4854/5599 319/4338 4887/1953 +f 4873/1954 4887/1953 319/4338 +f 4884/5600 1240/4344 4890/1957 +f 4888/1958 4890/1957 1240/4344 +f 4894/1961 4896/1962 310/5570 +f 4735/1855 310/5570 4896/1962 +f 4892/5601 1243/4347 4902/1963 +f 4899/1964 4902/1963 1243/4347 +f 4722/1850 84/5567 4908/1967 +f 4906/1968 4908/1967 84/5567 +f 4904/5602 1246/4352 4914/1971 +f 4911/1972 4914/1971 1246/4352 +f 4910/5603 320/4366 4921/1975 +f 4919/1976 4921/1975 320/4366 +f 4923/1979 4926/1980 1249/4356 +f 4916/5604 1249/4356 4926/1980 +f 4917/1983 4931/1984 321/4353 +f 4898/5605 321/4353 4931/1984 +f 4928/5606 1250/4360 4934/1985 +f 4932/1986 4934/1985 1250/4360 +f 4783/1890 313/5580 4940/1989 +f 4938/1987 4940/1989 313/5580 +f 4936/5607 1253/4364 4946/1993 +f 4943/1991 4946/1993 1253/4364 +f 4951/1996 4770/1882 4582/1995 +f 75/5577 4582/1995 4770/1882 +f 4956/1999 4948/5608 4953/2001 +f 1255/4367 4953/2001 4948/5608 +f 298/5543 4569/2002 4952/5609 +f 4962/2003 4952/5609 4569/2002 +f 4966/2006 4958/5610 4963/2005 +f 1257/4372 4963/2005 4958/5610 +f 322/4369 4959/2007 4942/5611 +f 4971/2009 4942/5611 4959/2007 +f 1258/4376 4972/2011 4968/5612 +f 4974/2012 4968/5612 4972/2011 +f 4980/5613 323/5614 4983/2013 +f 4981/2014 4983/2013 323/5614 +f 1263/4379 4986/2017 4977/5615 +f 4990/2019 4977/5615 4986/2017 +f 4995/5616 86/5617 4998/2021 +f 4996/2022 4998/2021 86/5617 +f 4993/5618 1267/4384 5004/2025 +f 5001/2026 5004/2025 1267/4384 +f 5000/5619 324/4430 5011/2029 +f 5009/2030 5011/2029 324/4430 +f 5006/5620 1271/4388 5018/2033 +f 5014/2034 5018/2033 1271/4388 +f 5024/2039 4985/5621 5007/2037 +f 327/4386 5007/2037 4985/5621 +f 1274/4392 5026/2041 5020/5622 +f 5030/2043 5020/5622 5026/2041 +f 325/4389 5035/2045 5025/5623 +f 5037/2047 5025/5623 5035/2045 +f 1278/4396 5040/2050 5032/5624 +f 5044/2049 5032/5624 5040/2050 +f 5013/5625 89/4442 5050/2053 +f 5048/2054 5050/2053 89/4442 +f 5046/5626 1281/4400 5056/2057 +f 5053/2058 5056/2057 1281/4400 +f 328/4414 5061/2061 5052/5627 +f 5063/2063 5052/5627 5061/2061 +f 5058/5628 1285/4404 5070/2065 +f 5066/2066 5070/2065 1285/4404 +f 5039/5629 331/4402 5076/2069 +f 5059/2070 5076/2069 331/4402 +f 5072/5630 1288/4408 5082/2073 +f 5078/2074 5082/2073 1288/4408 +f 5087/5631 332/4438 5090/2077 +f 5088/2078 5090/2077 332/4438 +f 1292/4412 5093/2081 5085/5632 +f 5096/2083 5085/5632 5093/2081 +f 5101/5633 88/4635 5104/2086 +f 5102/2088 5104/2086 88/4635 +f 1296/4415 5107/2089 5099/5634 +f 5110/2091 5099/5634 5107/2089 +f 333/4638 5115/2096 5106/5635 +f 5117/2094 5106/5635 5115/2096 +f 1300/4420 5120/2100 5112/5636 +f 5124/2098 5112/5636 5120/2100 +f 335/4418 5113/2101 5092/5637 +f 5129/2103 5092/5637 5113/2101 +f 1302/4424 5131/2105 5126/5638 +f 5134/2107 5126/5638 5131/2105 +f 5139/5639 336/5640 5142/2109 +f 5140/2110 5142/2109 336/5640 +f 5137/5641 1306/4428 5148/2113 +f 5145/2114 5148/2113 1306/4428 +f 5153/5642 78/4618 5156/2117 +f 5154/2118 5156/2117 78/4618 +f 5151/5643 1310/4432 5162/2121 +f 5159/2122 5162/2121 1310/4432 +f 5158/5644 337/4623 5169/2125 +f 5167/2126 5169/2125 337/4623 +f 5164/5645 1313/4436 5174/2129 +f 5171/2130 5174/2129 1313/4436 +f 5144/5646 338/4434 5179/2133 +f 5165/2134 5179/2133 338/4434 +f 5176/5647 1314/4440 5182/2137 +f 5180/2138 5182/2137 1314/4440 +f 5077/5648 329/4406 5189/2141 +f 5187/2142 5189/2141 329/4406 +f 5184/5649 1318/4444 5196/2145 +f 5192/2146 5196/2145 1318/4444 +f 5065/5650 87/4426 5202/2149 +f 5200/2150 5202/2149 87/4426 +f 5198/5651 1321/4448 5208/2153 +f 5205/2154 5208/2153 1321/4448 +f 5204/5652 339/4461 5215/2157 +f 5213/2158 5215/2157 339/4461 +f 5210/5653 1324/4452 5220/2161 +f 5217/2162 5220/2161 1324/4452 +f 5191/5654 341/4450 5226/2163 +f 5211/2164 5226/2163 341/4450 +f 5222/5655 1326/4456 5230/2167 +f 5227/2168 5230/2167 1326/4456 +f 5236/2170 5130/5656 5234/2172 +f 334/4422 5234/2172 5130/5656 +f 5242/2174 5232/5657 5239/2176 +f 1329/4459 5239/2176 5232/5657 +f 5248/2178 5119/5658 5246/2180 +f 77/4650 5246/2180 5119/5658 +f 5254/2182 5244/5659 5251/2184 +f 1332/4463 5251/2184 5244/5659 +f 5250/5660 342/4655 5261/2185 +f 5259/2186 5261/2185 342/4655 +f 5256/5661 1335/4468 5266/2189 +f 5263/2190 5266/2189 1335/4468 +f 5271/2192 5238/5662 5257/2194 +f 343/4465 5257/2194 5238/5662 +f 5274/2195 5268/5663 5272/2196 +f 1336/4471 5272/2196 5268/5663 +f 5280/2198 5282/2197 344/4481 +f 5279/4544 344/4481 5282/2197 +f 5277/5664 1340/4476 5288/2204 +f 5285/2203 5288/2204 1340/4476 +f 345/4485 5295/2205 5294/4496 +f 5297/2207 5294/4496 5295/2205 +f 1344/4479 5299/2209 5291/5665 +f 5302/2210 5291/5665 5299/2209 +f 5308/5666 346/4489 5311/2211 +f 5309/2212 5311/2211 346/4489 +f 5305/5667 1348/4483 5316/2215 +f 5313/2216 5316/2215 1348/4483 +f 316/4493 5321/2217 4811/5668 +f 5323/2219 4811/5668 5321/2217 +f 1351/4487 5325/2221 5318/5669 +f 5328/2222 5318/5669 5325/2221 +f 2613/3622 171/3623 5333/2223 +f 5287/2202 5333/2223 171/3623 +f 5330/5670 1352/4491 5336/2225 +f 5334/2226 5336/2225 1352/4491 +f 5341/4559 348/4560 5344/2227 +f 5342/2228 5344/2227 348/4560 +f 5339/5671 1356/4495 5350/2231 +f 5347/2232 5350/2231 1356/4495 +f 5355/4571 90/4572 5358/2235 +f 5356/2236 5358/2235 90/4572 +f 5353/5672 1360/4498 5364/2239 +f 5361/2240 5364/2239 1360/4498 +f 5360/5673 349/5674 5371/2243 +f 5369/2244 5371/2243 349/5674 +f 5366/5675 1364/4502 5378/2247 +f 5374/2248 5378/2247 1364/4502 +f 5346/5676 351/4500 5383/2251 +f 5367/2252 5383/2251 351/4500 +f 5380/5677 1366/4506 5388/2255 +f 5385/2256 5388/2255 1366/4506 +f 349/5674 5392/2259 5369/2244 +f 5394/2261 5369/2244 5392/2259 +f 1369/4510 5397/2263 5390/5678 +f 5400/2265 5390/5678 5397/2263 +f 90/4572 5404/2267 5356/2236 +f 5406/2269 5356/2236 5404/2267 +f 1372/4514 5409/2271 5402/5679 +f 5412/2273 5402/5679 5409/2271 +f 352/4576 5417/2275 5408/5680 +f 5419/2277 5408/5680 5417/2275 +f 5414/5681 1376/4518 5426/2279 +f 5422/2280 5426/2279 1376/4518 +f 354/4516 5415/2283 5396/5682 +f 5431/2285 5396/5682 5415/2283 +f 1378/4522 5433/2288 5428/5683 +f 5436/2287 5428/5683 5433/2288 +f 355/4530 5442/2291 5441/4591 +f 5444/2293 5441/4591 5442/2291 +f 1382/4526 5447/2295 5439/5684 +f 5450/2297 5439/5684 5447/2295 +f 2813/3682 184/3683 5457/2299 +f 5455/2300 5457/2299 184/3683 +f 5452/5685 1385/4528 5462/2303 +f 5459/2304 5462/2303 1385/4528 +f 5467/5686 356/4537 5470/2305 +f 5468/2306 5470/2305 356/4537 +f 5465/5687 1388/4532 5474/2310 +f 5472/2309 5474/2310 1388/4532 +f 336/4540 5479/2311 5149/5688 +f 5481/2313 5149/5688 5479/2311 +f 1391/4535 5483/2315 5476/5689 +f 5486/2316 5476/5689 5483/2315 +f 5432/5690 353/4520 5491/2318 +f 5449/2298 5491/2318 353/4520 +f 5488/5691 1392/4538 5494/2319 +f 5492/2320 5494/2319 1392/4538 +f 2827/3686 189/3687 5500/2321 +f 5498/2322 5500/2321 189/3687 +f 5506/2326 5496/5692 5503/2328 +f 1395/4543 5503/2328 5496/5692 +f 2865/3698 39/3699 5512/2329 +f 5510/2330 5512/2329 39/3699 +f 5508/5693 1398/4546 5518/2333 +f 5515/2334 5518/2333 1398/4546 +f 5514/5694 358/5073 5525/2339 +f 5523/2337 5525/2339 358/5073 +f 1402/4550 5528/2341 5520/5695 +f 5532/2343 5520/5695 5528/2341 +f 5502/5696 360/4548 5537/2345 +f 5521/2346 5537/2345 360/4548 +f 5534/5697 1404/4554 5542/2349 +f 5539/2350 5542/2349 1404/4554 +f 359/4552 5546/2353 5538/5698 +f 5548/2355 5538/5698 5546/2353 +f 1407/4558 5551/2357 5544/5699 +f 5554/2359 5544/5699 5551/2357 +f 94/5700 5558/2361 5527/5701 +f 5560/2363 5527/5701 5558/2361 +f 1410/4562 5563/2365 5556/5702 +f 5566/2367 5556/5702 5563/2365 +f 361/5053 5571/2369 5562/5703 +f 5573/2371 5562/5703 5571/2369 +f 1414/4566 5576/2373 5568/5704 +f 5580/2375 5568/5704 5576/2373 +f 363/4564 5569/2377 5550/5705 +f 5585/2379 5550/5705 5569/2377 +f 1416/4570 5587/2381 5582/5706 +f 5590/2383 5582/5706 5587/2381 +f 362/4568 5594/2385 5586/5707 +f 5596/2387 5586/5707 5594/2385 +f 1419/4574 5599/2389 5592/5708 +f 5602/2391 5592/5708 5599/2389 +f 93/5065 5606/2393 5575/5709 +f 5608/2395 5575/5709 5606/2393 +f 1422/4578 5611/2397 5604/5710 +f 5614/2399 5604/5710 5611/2397 +f 364/5711 5619/2401 5610/5712 +f 5621/2403 5610/5712 5619/2401 +f 1426/4582 5624/2405 5616/5713 +f 5628/2407 5616/5713 5624/2405 +f 366/4580 5617/2409 5598/5714 +f 5633/2411 5598/5714 5617/2409 +f 1428/4586 5635/2414 5630/5715 +f 5638/2413 5630/5715 5635/2414 +f 5634/5716 365/4584 5644/2417 +f 5642/2418 5644/2417 365/4584 +f 5640/5717 1431/4590 5650/2421 +f 5647/2422 5650/2421 1431/4590 +f 95/5718 5654/2425 5623/5719 +f 5656/2427 5623/5719 5654/2425 +f 5652/5720 1434/4593 5662/2429 +f 5659/2430 5662/2429 1434/4593 +f 367/5027 5667/2433 5658/5721 +f 5669/2435 5658/5721 5667/2433 +f 5664/5722 1437/4596 5674/2437 +f 5671/2438 5674/2437 1437/4596 +f 5646/5723 368/4595 5679/2439 +f 5665/2440 5679/2439 368/4595 +f 5676/5724 1438/4601 5682/2443 +f 5680/2444 5682/2443 1438/4601 +f 5688/2446 3023/3750 5686/2448 +f 202/3751 5686/2448 3023/3750 +f 5694/2450 5684/5725 5691/2452 +f 1441/4604 5691/2452 5684/5725 +f 5700/2454 3061/3762 5698/2456 +f 45/3763 5698/2456 3061/3762 +f 5706/2458 5696/5726 5703/2460 +f 1444/4608 5703/2460 5696/5726 +f 369/4671 5711/2461 5702/5727 +f 5713/2463 5702/5727 5711/2461 +f 1448/4613 5716/2465 5708/5728 +f 5720/2467 5708/5728 5716/2465 +f 5725/2471 5690/5729 5709/2469 +f 371/4610 5709/2469 5690/5729 +f 5730/2474 5722/5730 5727/2476 +f 1450/4617 5727/2476 5722/5730 +f 5734/2479 5736/2480 370/4615 +f 5726/5731 370/4615 5736/2480 +f 5732/5732 1453/4621 5742/2481 +f 5739/2482 5742/2481 1453/4621 +f 97/4682 5746/2485 5715/5733 +f 5748/2487 5715/5733 5746/2485 +f 5751/2491 5754/2492 1456/4625 +f 5744/5734 1456/4625 5754/2492 +f 5759/2494 5761/2493 372/4812 +f 5750/5735 372/4812 5761/2493 +f 5756/5736 1460/4628 5768/2497 +f 5764/2498 5768/2497 1460/4628 +f 5738/5737 374/4627 5773/2501 +f 5757/2502 5773/2501 374/4627 +f 5770/5738 1462/4633 5778/2505 +f 5775/2506 5778/2505 1462/4633 +f 5774/5739 373/4631 5784/2510 +f 5782/2512 5784/2510 373/4631 +f 5790/2514 5780/5740 5787/2516 +f 1465/4636 5787/2516 5780/5740 +f 5763/5741 98/4824 5796/2517 +f 5794/2518 5796/2517 98/4824 +f 5792/5742 1468/4641 5802/2521 +f 5799/2522 5802/2521 1468/4641 +f 5798/5743 375/4703 5809/2525 +f 5807/2526 5809/2525 375/4703 +f 5812/2530 5816/2529 1472/4645 +f 5804/5744 1472/4645 5816/2529 +f 5821/2534 5786/5745 5805/2536 +f 377/4642 5805/2536 5786/5745 +f 5826/2538 5818/5746 5823/2540 +f 1474/4648 5823/2540 5818/5746 +f 5822/5747 376/4647 5832/2541 +f 5830/2542 5832/2541 376/4647 +f 5828/5748 1477/4653 5838/2545 +f 5835/2546 5838/2545 1477/4653 +f 5842/2551 5844/2552 96/4715 +f 5811/5749 96/4715 5844/2552 +f 5840/5750 1480/4656 5850/2553 +f 5847/2554 5850/2553 1480/4656 +f 5846/5751 378/4718 5857/2557 +f 5855/2558 5857/2557 378/4718 +f 5852/5752 1483/4661 5862/2561 +f 5859/2562 5862/2561 1483/4661 +f 5834/5753 379/4659 5867/2563 +f 5853/2564 5867/2563 379/4659 +f 5864/5754 1484/4665 5870/2567 +f 5868/2568 5870/2567 1484/4665 +f 215/3814 5874/2569 3219/3815 +f 5876/2571 3219/3815 5874/2569 +f 1487/4669 5879/2573 5872/5755 +f 5882/2575 5872/5755 5879/2573 +f 50/3826 5886/2577 3257/3827 +f 5888/2579 3257/3827 5886/2577 +f 1490/4673 5891/2581 5884/5756 +f 5894/2583 5884/5756 5891/2581 +f 5901/2586 5890/5757 5899/2588 +f 380/4735 5899/2588 5890/5757 +f 5908/2590 5896/5758 5904/2592 +f 1494/4676 5904/2592 5896/5758 +f 5913/2594 5878/5759 5897/2596 +f 382/4675 5897/2596 5878/5759 +f 5918/2599 5910/5760 5915/2597 +f 1496/4680 5915/2597 5910/5760 +f 381/4678 5923/2601 5914/5761 +f 5925/2603 5914/5761 5923/2601 +f 5920/5762 1500/4685 5932/2605 +f 5928/2606 5932/2605 1500/4685 +f 5938/2610 5903/5763 5936/2612 +f 100/4746 5936/2612 5903/5763 +f 1503/4688 5941/2614 5934/5764 +f 5944/2613 5934/5764 5941/2614 +f 5940/5765 383/4750 5951/2617 +f 5949/2618 5951/2617 383/4750 +f 5954/2623 5958/2624 1507/4693 +f 5946/5766 1507/4693 5958/2624 +f 5927/5767 386/4691 5964/2625 +f 5947/2626 5964/2625 386/4691 +f 1510/4697 5966/2632 5960/5768 +f 5970/2630 5960/5768 5966/2632 +f 5976/2635 5978/2636 387/4819 +f 5975/5769 387/4819 5978/2636 +f 5973/5770 1514/4701 5984/2637 +f 5981/2638 5984/2637 1514/4701 +f 104/5771 5990/2644 5989/5772 +f 5992/2642 5989/5772 5990/2644 +f 5987/5773 1518/4705 5998/2645 +f 5995/2646 5998/2645 1518/4705 +f 6005/2650 5994/5774 6003/2652 +f 388/5775 6003/2652 5994/5774 +f 6008/2654 6012/2653 1522/4709 +f 6000/5776 1522/4709 6012/2653 +f 5980/5777 390/4706 6017/2657 +f 6001/2658 6017/2657 390/4706 +f 6014/5778 1524/4713 6022/2661 +f 6019/2662 6022/2661 1524/4713 +f 6018/5779 389/4711 6028/2665 +f 6026/2666 6028/2665 389/4711 +f 6024/5780 1527/4717 6034/2672 +f 6031/2671 6034/2672 1527/4717 +f 6007/5781 99/5782 6040/2673 +f 6038/2674 6040/2673 99/5782 +f 6036/5783 1530/4721 6046/2677 +f 6043/2678 6046/2677 1530/4721 +f 6042/5784 391/4828 6053/2681 +f 6051/2682 6053/2681 391/4828 +f 6055/2685 6058/2686 1533/4724 +f 6048/5785 1533/4724 6058/2686 +f 6030/5786 392/4723 6063/2690 +f 6049/2689 6063/2690 392/4723 +f 6060/5787 1534/4728 6066/2691 +f 6064/2692 6066/2691 1534/4728 +f 229/3876 6070/2693 3419/3877 +f 6072/2695 3419/3877 6070/2693 +f 1537/4733 6075/2697 6068/5788 +f 6078/2699 6068/5788 6075/2697 +f 55/3888 6082/2704 3457/3889 +f 6084/2702 3457/3889 6082/2704 +f 6090/2706 6080/5789 6087/2708 +f 1540/4737 6087/2708 6080/5789 +f 6097/2710 6086/5790 6095/2712 +f 393/4782 6095/2712 6086/5790 +f 6104/2714 6092/5791 6100/2716 +f 1544/4740 6100/2716 6092/5791 +f 6109/2718 6074/5792 6093/2720 +f 395/4738 6093/2720 6074/5792 +f 6114/2722 6106/5793 6111/2724 +f 1546/4744 6111/2724 6106/5793 +f 6120/2727 6110/5794 6118/2725 +f 394/4742 6118/2725 6110/5794 +f 6126/2730 6116/5795 6123/2732 +f 1549/4748 6123/2732 6116/5795 +f 102/4795 6130/2733 6099/5796 +f 6132/2735 6099/5796 6130/2733 +f 1552/4753 6135/2737 6128/5797 +f 6138/2739 6128/5797 6135/2737 +f 396/4791 6143/2743 6134/5798 +f 6145/2744 6134/5798 6143/2743 +f 6140/5799 1556/4756 6152/2745 +f 6148/2746 6152/2745 1556/4756 +f 6157/2749 6122/5800 6141/2750 +f 398/4755 6141/2750 6122/5800 +f 6154/5801 1558/4761 6162/2753 +f 6159/2754 6162/2753 1558/4761 +f 6158/5802 397/4759 6169/2757 +f 6167/2758 6169/2757 397/4759 +f 6164/5803 1562/4765 6176/2761 +f 6172/2762 6176/2761 1562/4765 +f 6180/2767 6182/2768 103/5804 +f 6147/5805 103/5804 6182/2768 +f 6185/2771 6188/2772 1565/4768 +f 6178/5806 1565/4768 6188/2772 +f 6193/2774 6195/2773 399/5807 +f 6184/5808 399/5807 6195/2773 +f 6190/5809 1568/4773 6200/2778 +f 6197/2777 6200/2778 1568/4773 +f 6171/5810 401/4771 6206/2779 +f 6191/2780 6206/2779 401/4771 +f 6202/5811 1570/4777 6210/2784 +f 6207/2783 6210/2784 1570/4777 +f 239/3925 6214/2785 3575/3924 +f 6216/2787 3575/3924 6214/2785 +f 1573/4781 6219/2792 6212/5812 +f 6222/2790 6212/5812 6219/2792 +f 3605/3935 53/3936 6227/2793 +f 6196/2794 6227/2793 53/3936 +f 6224/5813 1575/4785 6232/2796 +f 6229/2797 6232/2796 1575/4785 +f 6228/5814 399/5807 6238/2800 +f 6183/2801 6238/2800 399/5807 +f 6234/5815 1577/4789 6242/2803 +f 6239/2804 6242/2803 1577/4789 +f 402/4787 6235/2805 6218/5816 +f 6247/2807 6218/5816 6235/2805 +f 1578/4793 6248/2810 6244/5817 +f 6250/2809 6244/5817 6248/2810 +f 243/3939 6254/2811 3619/3940 +f 6256/2813 3619/3940 6254/2811 +f 6252/5818 1581/4797 6262/2815 +f 6259/2816 6262/2815 1581/4797 +f 57/3952 6266/2819 3657/3951 +f 6268/2821 3657/3951 6266/2819 +f 1584/4800 6271/2823 6264/5819 +f 6274/2825 6264/5819 6271/2823 +f 403/4844 6279/2827 6270/5820 +f 6281/2829 6270/5820 6279/2827 +f 1587/4804 6283/2831 6276/5821 +f 6286/2832 6276/5821 6283/2831 +f 404/4802 6277/2834 6258/5822 +f 6291/2836 6258/5822 6277/2834 +f 6288/5823 1588/4807 6294/2838 +f 6292/2839 6294/2838 1588/4807 +f 5931/4686 385/4687 6300/2841 +f 6298/2842 6300/2841 385/4687 +f 6296/5824 1591/4810 6306/2845 +f 6303/2846 6306/2845 1591/4810 +f 6310/2851 6312/2852 105/4698 +f 5969/4699 105/4698 6312/2852 +f 6315/2855 6318/2856 1594/4813 +f 6308/5825 1594/4813 6318/2856 +f 6323/2859 6325/2860 405/4852 +f 6314/5826 405/4852 6325/2860 +f 6327/2863 6330/2864 1597/4817 +f 6320/5827 1597/4817 6330/2864 +f 6321/2867 6335/2868 406/4815 +f 6302/5828 406/4815 6335/2868 +f 6332/5829 1598/4821 6338/2869 +f 6336/2870 6338/2869 1598/4821 +f 6003/2652 388/5775 6344/2873 +f 6342/2874 6344/2873 388/5775 +f 6340/5830 1601/4826 6350/2877 +f 6347/2878 6350/2877 1601/4826 +f 6354/2883 6356/2884 104/5771 +f 5990/2644 104/5771 6356/2884 +f 6352/5831 1604/4830 6362/2885 +f 6359/2886 6362/2885 1604/4830 +f 6358/5832 407/5833 6369/2889 +f 6367/2890 6369/2889 407/5833 +f 6364/5834 1607/4834 6374/2894 +f 6371/2893 6374/2894 1607/4834 +f 6346/5835 408/4832 6379/2895 +f 6365/2896 6379/2895 408/4832 +f 6380/2899 6382/2900 1608/4838 +f 6376/5836 1608/4838 6382/2900 +f 3759/3981 249/3982 6388/2901 +f 6386/2902 6388/2901 249/3982 +f 1611/4842 6391/2905 6384/5837 +f 6394/2907 6384/5837 6391/2905 +f 3789/3992 60/3993 6399/2909 +f 6370/2910 6399/2909 60/3993 +f 6396/5838 1613/4846 6404/2912 +f 6401/2913 6404/2912 1613/4846 +f 6400/5839 407/5833 6410/2916 +f 6357/2917 6410/2916 407/5833 +f 1615/4850 6411/2919 6406/5840 +f 6414/2920 6406/5840 6411/2919 +f 409/4848 6407/2921 6390/5841 +f 6419/2923 6390/5841 6407/2921 +f 1616/4854 6420/2925 6416/5842 +f 6422/2926 6416/5842 6420/2925 +f 410/4863 6429/2927 6428/4883 +f 6431/2929 6428/4883 6429/2927 +f 1621/4857 6434/2934 6425/5843 +f 6438/2932 6425/5843 6434/2934 +f 6444/5844 411/4866 6447/2935 +f 6445/2936 6447/2935 411/4866 +f 6441/5845 1625/4861 6452/2939 +f 6449/2940 6452/2939 1625/4861 +f 6458/4898 412/4859 6460/2941 +f 6436/2931 6460/2941 412/4859 +f 1628/4865 6461/2943 6455/5846 +f 6464/2944 6455/5846 6461/2943 +f 340/5847 6469/2945 5195/5848 +f 6471/2947 5195/5848 6469/2945 +f 1632/4868 6474/2949 6466/5849 +f 6478/2951 6466/5849 6474/2949 +f 9/5850 3883/2953 5229/5851 +f 6483/2955 5229/5851 3883/2953 +f 1634/4871 6485/2957 6480/5852 +f 6488/2959 6480/5852 6485/2957 +f 257/5853 3872/2964 6484/5854 +f 6494/2962 6484/5854 3872/2964 +f 1637/4875 6496/2965 6490/5855 +f 6500/2967 6490/5855 6496/2965 +f 416/4873 6491/2969 6473/5856 +f 6506/2971 6473/5856 6491/2969 +f 1640/4879 6508/2973 6502/5857 +f 6512/2975 6502/5857 6508/2973 +f 414/4877 6516/2977 6507/5858 +f 6518/2979 6507/5858 6516/2977 +f 6514/5859 1643/4882 6524/2984 +f 6521/2983 6524/2984 1643/4882 +f 6529/2986 6495/5860 3927/2988 +f 11/5861 3927/2988 6495/5860 +f 1645/4885 6531/2989 6526/5862 +f 6534/2991 6526/5862 6531/2989 +f 259/5863 3916/2993 6530/5864 +f 6540/2995 6530/5864 3916/2993 +f 1647/4889 6541/2997 6536/5865 +f 6544/2999 6536/5865 6541/2997 +f 417/4887 6537/3001 6520/5866 +f 6549/3003 6520/5866 6537/3001 +f 6550/3006 6552/3005 1648/4893 +f 6546/5867 1648/4893 6552/3005 +f 6558/3011 6560/3012 418/4997 +f 6557/5868 418/4997 6560/3012 +f 6563/3016 6566/3014 1652/4896 +f 6555/5869 1652/4896 6566/3014 +f 6571/5870 109/5871 6574/3020 +f 6572/3019 6574/3020 109/5871 +f 6569/5872 1656/4900 6580/3021 +f 6577/3022 6580/3021 1656/4900 +f 419/5873 6585/3025 6576/5874 +f 6587/3027 6576/5874 6585/3025 +f 6594/3031 6582/5875 6590/3029 +f 1660/4903 6590/3029 6582/5875 +f 6599/3034 6562/5876 6583/3036 +f 421/4902 6583/3036 6562/5876 +f 6604/3038 6596/5877 6601/3040 +f 1662/4907 6601/3040 6596/5877 +f 419/5873 6609/3044 6585/3025 +f 6611/3042 6585/3025 6609/3044 +f 6618/3047 6606/5878 6614/3045 +f 1666/4910 6614/3045 6606/5878 +f 6572/3019 109/5871 6624/3049 +f 6622/3050 6624/3049 109/5871 +f 6627/3055 6630/3056 1669/4914 +f 6620/5879 1669/4914 6630/3056 +f 6626/5880 422/5881 6637/3057 +f 6635/3058 6637/3057 422/5881 +f 1673/4919 6640/3061 6632/5882 +f 6644/3063 6632/5882 6640/3061 +f 425/4916 6633/3066 6613/5883 +f 6650/3065 6613/5883 6633/3066 +f 6646/5884 1676/4923 6656/3069 +f 6652/3070 6656/3069 1676/4923 +f 350/5885 6661/3073 5384/5886 +f 6663/3075 5384/5886 6661/3073 +f 1680/4927 6666/3077 6658/5887 +f 6670/3079 6658/5887 6666/3077 +f 73/5888 4978/3081 5373/5889 +f 6675/3083 5373/5889 4978/3081 +f 1682/4931 6677/3085 6672/5890 +f 6680/3087 6672/5890 6677/3085 +f 326/5891 5021/3089 6676/5892 +f 6686/3091 6676/5892 5021/3089 +f 1685/4935 6688/3093 6682/5893 +f 6692/3095 6682/5893 6688/3093 +f 428/4933 6683/3097 6665/5894 +f 6698/3099 6665/5894 6683/3097 +f 1688/4939 6700/3101 6694/5895 +f 6704/3103 6694/5895 6700/3101 +f 5327/5896 346/5897 6710/3105 +f 6708/3106 6710/3105 346/5897 +f 1691/4942 6713/3109 6706/5898 +f 6716/3111 6706/5898 6713/3109 +f 5303/5899 79/5900 6721/3115 +f 6659/3113 6721/3115 79/5900 +f 1693/4947 6723/3117 6718/5901 +f 6726/3119 6718/5901 6723/3117 +f 427/4929 6695/3123 6722/5902 +f 6732/3124 6722/5902 6695/3123 +f 6728/5903 1696/4950 6738/3125 +f 6734/3126 6738/3125 1696/4950 +f 6729/3131 6743/3132 430/4949 +f 6712/5904 430/4949 6743/3132 +f 6740/5905 1698/4954 6748/3133 +f 6745/3134 6748/3133 1698/4954 +f 6744/5906 429/4953 6754/3137 +f 6752/3138 6754/3137 429/4953 +f 6750/5907 1701/4959 6760/3141 +f 6757/3142 6760/3141 1701/4959 +f 6733/5908 112/4941 6766/3145 +f 6764/3146 6766/3145 112/4941 +f 6762/5909 1704/4963 6772/3149 +f 6769/3150 6772/3149 1704/4963 +f 6777/3155 6779/3156 431/4988 +f 6768/5910 431/4988 6779/3156 +f 6781/3159 6784/3160 1707/4966 +f 6774/5911 1707/4966 6784/3160 +f 6756/5912 432/4965 6789/3161 +f 6775/3162 6789/3161 432/4965 +f 6792/3166 6786/5913 6790/3168 +f 1708/4970 6790/3168 6786/5913 +f 426/4937 6797/3169 6699/5914 +f 6799/3171 6699/5914 6797/3169 +f 1712/4973 6802/3173 6794/5915 +f 6806/3175 6794/5915 6802/3173 +f 81/5916 5033/3177 6687/5917 +f 6811/3179 6687/5917 5033/3177 +f 1714/4977 6813/3181 6808/5918 +f 6816/3183 6808/5918 6813/3181 +f 6812/5919 330/5920 6822/3185 +f 5073/3186 6822/3185 330/5920 +f 6818/5921 1716/4981 6826/3189 +f 6823/3190 6826/3189 1716/4981 +f 434/4979 6819/3195 6801/5922 +f 6832/3196 6801/5922 6819/3195 +f 1718/4984 6833/3199 6828/5923 +f 6836/3200 6828/5923 6833/3199 +f 435/5019 6842/3201 6841/5018 +f 6844/3203 6841/5018 6842/3201 +f 1722/4987 6847/3207 6839/5924 +f 6850/3208 6839/5924 6847/3207 +f 6855/5925 110/5926 6857/3209 +f 6638/3210 6857/3209 110/5926 +f 6853/5927 1725/4991 6862/3212 +f 6859/3213 6862/3212 1725/4991 +f 6858/5928 422/5881 6868/3216 +f 6625/3217 6868/3216 422/5881 +f 6864/5929 1727/4995 6872/3219 +f 6869/3220 6872/3219 1727/4995 +f 6846/5930 436/4993 6877/3223 +f 6865/3224 6877/3223 436/4993 +f 6878/3229 6880/3230 1728/4999 +f 6874/5931 1728/4999 6880/3230 +f 420/4906 6884/3231 6600/5932 +f 6886/3233 6600/5932 6884/3231 +f 1731/5003 6889/3235 6882/5933 +f 6892/3237 6882/5933 6889/3235 +f 6589/5934 108/5935 6897/3242 +f 6607/3241 6897/3242 108/5935 +f 1733/5005 6899/3243 6894/5936 +f 6902/3245 6894/5936 6899/3243 +f 424/4913 6647/3247 6898/5937 +f 6908/3249 6898/5937 6647/3247 +f 1736/5010 6910/3252 6904/5938 +f 6914/3251 6904/5938 6910/3252 +f 438/5008 6905/3255 6888/5939 +f 6919/3257 6888/5939 6905/3255 +f 6921/3260 6924/3259 1738/5014 +f 6916/5940 1738/5014 6924/3259 +f 6920/5941 437/5012 6930/3266 +f 6928/3265 6930/3266 437/5012 +f 6933/3269 6936/3270 1741/5016 +f 6926/5942 1741/5016 6936/3270 +f 6940/3271 6942/3273 423/4921 +f 6651/5943 423/4921 6942/3273 +f 1743/5020 6944/3275 6938/5944 +f 6946/3276 6938/5944 6944/3275 +f 435/5019 6935/3268 6851/5945 +f 6951/3277 6851/5945 6935/3268 +f 1744/5023 6952/3280 6948/5946 +f 6954/3279 6948/5946 6952/3280 +f 440/5031 6960/3281 6959/5037 +f 6962/3283 6959/5037 6960/3281 +f 1748/5025 6965/3285 6957/5947 +f 6968/3287 6957/5947 6965/3285 +f 283/4180 6973/3289 4367/4181 +f 6975/3291 4367/4181 6973/3289 +f 6980/3293 6970/5948 6977/3294 +f 1751/5029 6977/3294 6970/5948 +f 5667/2433 367/5027 6985/3295 +f 6967/3288 6985/3295 367/5027 +f 6982/5949 1752/5033 6988/3297 +f 6986/3298 6988/3297 1752/5033 +f 6992/3300 6994/3299 364/5711 +f 5619/2401 364/5711 6994/3299 +f 6997/3305 7000/3306 1755/5035 +f 6990/5950 1755/5035 7000/3306 +f 7004/3309 7006/3310 93/5065 +f 5606/2393 93/5065 7006/3310 +f 7002/5951 1758/5039 7012/3311 +f 7009/3312 7012/3311 1758/5039 +f 7008/5952 442/5061 7019/3315 +f 7017/3316 7019/3315 442/5061 +f 7014/5953 1761/5043 7024/3319 +f 7021/3320 7024/3319 1761/5043 +f 6996/5954 443/5041 7029/3321 +f 7015/3322 7029/3321 443/5041 +f 7026/5955 1762/5047 7032/3325 +f 7030/3326 7032/3325 1762/5047 +f 444/5068 7038/3327 7037/5069 +f 7040/3329 7037/5069 7038/3327 +f 1766/5051 7043/3331 7035/5956 +f 7046/3333 7035/5956 7043/3331 +f 70/4208 4462/1689 7051/5957 +f 7053/3335 7051/5957 4462/1689 +f 1769/5055 7055/3337 7049/5958 +f 7058/3339 7049/5958 7055/3337 +f 289/4204 4450/1683 7054/5959 +f 7064/3341 7054/5959 4450/1683 +f 1771/5059 7065/3343 7060/5960 +f 7068/3344 7060/5960 7065/3343 +f 445/5057 7061/3345 7042/5961 +f 7073/3347 7042/5961 7061/3345 +f 1772/5063 7074/3349 7070/5962 +f 7076/3350 7070/5962 7074/3349 +f 358/5073 7080/3351 5523/2337 +f 7082/3353 5523/2337 7080/3351 +f 7078/5963 1775/5067 7088/3355 +f 7085/3356 7088/3355 1775/5067 +f 4497/4217 292/4218 7094/3362 +f 7092/3361 7094/3362 292/4218 +f 7090/5964 1777/5071 7098/3363 +f 7096/3364 7098/3363 1777/5071 +f 444/5068 7087/3357 7047/5965 +f 7103/3365 7047/5965 7087/3357 +f 1778/5075 7104/3367 7100/5966 +f 7106/3368 7100/5966 7104/3367 +f 1783/5967 1780/3369 1781/5079 +f 451/3370 1781/5079 1780/3369 +f 1788/3375 117/3376 1791/5968 +f 1789/5085 1791/5968 117/3376 +f 1796/3373 455/3374 1798/5969 +f 1797/5082 1798/5969 455/3374 +f 1803/3403 114/3404 1806/5970 +f 1804/5083 1806/5970 114/3404 +f 1809/3377 459/3378 1812/5971 +f 1810/5084 1812/5971 459/3378 +f 1816/3415 16/3416 1819/5972 +f 1817/5089 1819/5972 16/3416 +f 1823/3381 462/3382 1826/5973 +f 1824/5086 1826/5973 462/3382 +f 1821/3379 115/3380 1831/5974 +f 1829/5087 1831/5974 115/3380 +f 1835/3385 466/3386 1838/5975 +f 1836/5088 1838/5975 466/3386 +f 1842/3391 121/3392 1845/5976 +f 1843/5093 1845/5976 121/3392 +f 1849/3389 469/3390 1851/5977 +f 1850/5090 1851/5977 469/3390 +f 1855/3451 118/3452 1858/5978 +f 1856/5091 1858/5978 118/3452 +f 1861/3393 473/3394 1864/5979 +f 1862/5092 1864/5979 473/3394 +f 1868/3463 5/3464 1871/5980 +f 1869/318 1871/5980 5/3464 +f 1875/3397 476/3398 1878/5981 +f 1876/5094 1878/5981 476/3398 +f 1873/3395 119/3396 1883/5982 +f 1881/311 1883/5982 119/3396 +f 1890/5983 1888/3401 1889/5097 +f 480/3402 1889/5097 1888/3401 +f 1898/5984 1895/3407 1896/5103 +f 125/3408 1896/5103 1895/3407 +f 1904/5985 1902/3405 1903/5100 +f 484/3406 1903/5100 1902/3405 +f 1909/3419 123/3420 1912/5986 +f 1910/5101 1912/5986 123/3420 +f 1918/5987 1915/3409 1916/5102 +f 488/3410 1916/5102 1915/3409 +f 1922/3431 21/3432 1925/5988 +f 1923/5125 1925/5988 21/3432 +f 1929/3413 490/3414 1931/5989 +f 1930/5104 1931/5989 490/3414 +f 1927/3411 124/3412 1936/5990 +f 1934/5123 1936/5990 124/3412 +f 1940/3417 494/3418 1942/5991 +f 1941/5107 1942/5991 494/3418 +f 1947/3423 129/3424 1950/5992 +f 1948/5113 1950/5992 129/3424 +f 1956/5993 1954/3421 1955/5110 +f 498/3422 1955/5110 1954/3421 +f 1964/5994 1961/3467 1962/5111 +f 127/3468 1962/5111 1961/3467 +f 1967/3425 502/3426 1970/5995 +f 1968/5112 1970/5995 502/3426 +f 1974/3479 19/3480 1977/5996 +f 1975/5117 1977/5996 19/3480 +f 1981/3429 504/3430 1983/5997 +f 1982/5114 1983/5997 504/3430 +f 1979/3427 128/3428 1988/5998 +f 1986/5115 1988/5998 128/3428 +f 1991/3433 508/3434 1994/5999 +f 1992/5116 1994/5999 508/3434 +f 1998/3439 133/3440 2001/6000 +f 1999/5121 2001/6000 133/3440 +f 2005/3437 511/3438 2007/6001 +f 2006/5118 2007/6001 511/3438 +f 2014/6002 2011/3483 2012/5119 +f 130/3484 2012/5119 2011/3483 +f 2017/3441 515/3442 2020/6003 +f 2018/5120 2020/6003 515/3442 +f 2027/6004 2024/3495 2025/6005 +f 6/3496 2025/6005 2024/3495 +f 2031/3445 518/3446 2034/6006 +f 2032/5122 2034/6006 518/3446 +f 2029/3443 131/3444 2039/6007 +f 2037/6008 2039/6007 131/3444 +f 2043/3449 521/3450 2045/6009 +f 2044/5124 2045/6009 521/3450 +f 2049/3455 135/3456 2052/6010 +f 2050/5129 2052/6010 135/3456 +f 2055/3453 523/3454 2057/6011 +f 2056/5126 2057/6011 523/3454 +f 2003/3435 132/3436 2062/6012 +f 2060/5127 2062/6012 132/3436 +f 2065/3457 526/3458 2068/6013 +f 2066/5128 2068/6013 526/3458 +f 2041/3447 20/3448 2073/6014 +f 2071/6015 2073/6014 20/3448 +f 2077/3461 528/3462 2079/6016 +f 2078/5130 2079/6016 528/3462 +f 2075/3459 134/3460 2084/6017 +f 2082/6018 2084/6017 134/3460 +f 2090/6019 2088/3465 2089/5133 +f 532/3466 2089/5133 2088/3465 +f 2098/6020 2095/3471 2096/5138 +f 139/3472 2096/5138 2095/3471 +f 2104/6021 2102/3469 2103/5135 +f 536/3470 2103/5135 2102/3469 +f 2112/6022 2109/6023 2110/5136 +f 137/4326 2110/5136 2109/6023 +f 2118/6024 2115/3473 2116/5137 +f 540/3474 2116/5137 2115/3473 +f 2125/6025 2122/6026 2123/5142 +f 23/4346 2123/5142 2122/6026 +f 2131/6027 2129/3477 2130/5139 +f 542/3478 2130/5139 2129/3477 +f 2127/3475 138/3476 2136/6028 +f 2134/5140 2136/6028 138/3476 +f 2141/6029 2139/3481 2140/5141 +f 545/3482 2140/5141 2139/3481 +f 2148/6030 2145/3487 2146/5146 +f 142/3488 2146/5146 2145/3487 +f 2153/6031 2151/3485 2152/5143 +f 548/3486 2152/5143 2151/3485 +f 2160/6032 2157/6033 2158/5144 +f 140/4342 2158/5144 2157/6033 +f 2166/6034 2163/3489 2164/5145 +f 552/3490 2164/5145 2163/3489 +f 2173/6035 2170/6036 2171/5150 +f 22/4362 2171/5150 2170/6036 +f 2179/6037 2177/3493 2178/5147 +f 554/3494 2178/5147 2177/3493 +f 2184/6038 2175/3491 2182/5148 +f 141/3492 2182/5148 2175/3491 +f 557/3498 2188/5149 2187/3497 +f 2189/6039 2187/3497 2188/5149 +f 145/3501 2194/5154 2193/3502 +f 2196/6040 2193/3502 2194/5154 +f 2201/6041 2199/3499 2200/5151 +f 560/3500 2200/5151 2199/3499 +f 143/4357 2206/5152 2205/6042 +f 2208/6043 2205/6042 2206/5152 +f 564/3503 2212/5153 2211/3504 +f 2214/6044 2211/3504 2212/5153 +f 2219/5158 2221/6045 24/4378 +f 2218/6046 24/4378 2221/6045 +f 2227/6047 2225/3507 2226/5155 +f 566/3508 2226/5155 2225/3507 +f 2232/6048 2223/3505 2230/5156 +f 144/3506 2230/5156 2223/3505 +f 2237/6049 2235/3509 2236/5157 +f 569/3510 2236/5157 2235/3509 +f 2242/5162 2244/6050 147/3513 +f 2241/3514 147/3513 2244/6050 +f 2248/5159 2249/6051 572/3511 +f 2247/3512 572/3511 2249/6051 +f 2253/6052 146/4373 2256/6053 +f 2254/5160 2256/6053 146/4373 +f 2259/3515 575/3516 2262/6054 +f 2260/5161 2262/6054 575/3516 +f 1884/64 2268/6055 17/3400 +f 2266/6056 17/3400 2268/6055 +f 2271/3518 576/3519 2273/6057 +f 2272/5163 2273/6057 576/3519 +f 2269/3517 119/3396 2277/6058 +f 1872/56 2277/6058 119/3396 +f 2280/3520 581/3521 2283/6059 +f 2281/5166 2283/6059 581/3521 +f 2288/3526 152/3527 2291/6060 +f 2289/5172 2291/6060 152/3527 +f 2296/3524 585/3525 2298/6061 +f 2297/5169 2298/6061 585/3525 +f 2303/3538 149/3539 2306/6062 +f 2304/5170 2306/6062 149/3539 +f 2312/6063 2309/3528 2310/5171 +f 589/3529 2310/5171 2309/3528 +f 2319/6064 2316/3550 2317/5194 +f 29/3551 2317/5194 2316/3550 +f 2326/6065 2323/3532 2324/5173 +f 592/3533 2324/5173 2323/3532 +f 2331/6066 2321/3530 2329/5192 +f 150/3531 2329/5192 2321/3530 +f 2336/3536 596/3537 2338/6067 +f 2337/5176 2338/6067 596/3537 +f 2346/6068 2343/3542 2344/5182 +f 156/3543 2344/5182 2343/3542 +f 2352/6069 2350/3540 2351/5179 +f 600/3541 2351/5179 2350/3540 +f 2360/6070 2357/3586 2358/5180 +f 154/3587 2358/5180 2357/3586 +f 2366/6071 2363/3544 2364/5181 +f 604/3545 2364/5181 2363/3544 +f 2370/3598 27/3599 2373/6072 +f 2371/5186 2373/6072 27/3599 +f 2379/6073 2377/3548 2378/5183 +f 606/3549 2378/5183 2377/3548 +f 2375/3546 155/3547 2384/6074 +f 2382/5184 2384/6074 155/3547 +f 2390/6075 2387/3552 2388/5185 +f 610/3553 2388/5185 2387/3552 +f 2394/3558 160/3559 2397/6076 +f 2395/5190 2397/6076 160/3559 +f 2401/3556 613/3557 2403/6077 +f 2402/5187 2403/6077 613/3557 +f 2407/3602 157/3603 2410/6078 +f 2408/5188 2410/6078 157/3603 +f 2413/3560 617/3561 2416/6079 +f 2414/5189 2416/6079 617/3561 +f 2420/3614 7/3615 2423/6080 +f 2421/5302 2423/6080 7/3615 +f 2427/3564 620/3565 2430/6081 +f 2428/5191 2430/6081 620/3565 +f 2425/3562 158/3563 2435/6082 +f 2433/5300 2435/6082 158/3563 +f 2442/6083 2439/3568 2440/5193 +f 624/3569 2440/5193 2439/3568 +f 2449/6084 2446/3574 2447/5198 +f 163/3575 2447/5198 2446/3574 +f 2455/6085 2453/3572 2454/5195 +f 626/3573 2454/5195 2453/3572 +f 2460/6086 2399/3554 2458/5196 +f 159/3555 2458/5196 2399/3554 +f 2466/6087 2463/3576 2464/5197 +f 629/3577 2464/5197 2463/3576 +f 2471/6088 2437/3566 2469/5294 +f 28/3567 2469/5294 2437/3566 +f 2478/6089 2475/3580 2476/5199 +f 632/3581 2476/5199 2475/3580 +f 2483/6090 2473/3578 2481/5292 +f 161/3579 2481/5292 2473/3578 +f 2490/6091 2488/3584 2489/5202 +f 636/3585 2489/5202 2488/3584 +f 2498/6092 2495/3590 2496/5207 +f 167/3591 2496/5207 2495/3590 +f 2504/6093 2502/3588 2503/5204 +f 640/3589 2503/5204 2502/3588 +f 2512/6094 2509/6095 2510/5205 +f 165/4454 2510/5205 2509/6095 +f 2518/6096 2515/3592 2516/5206 +f 644/3593 2516/5206 2515/3592 +f 2525/6097 2522/6098 2523/5211 +f 31/4474 2523/5211 2522/6098 +f 2531/6099 2529/3596 2530/5208 +f 646/3597 2530/5208 2529/3596 +f 2536/6100 2527/3594 2534/5209 +f 166/3595 2534/5209 2527/3594 +f 2539/3600 649/3601 2541/6101 +f 2540/5210 2541/6101 649/3601 +f 2545/3606 170/3607 2548/6102 +f 2546/5215 2548/6102 170/3607 +f 2551/3604 652/3605 2553/6103 +f 2552/5212 2553/6103 652/3605 +f 2560/6104 2557/6105 2558/5213 +f 168/4470 2558/5213 2557/6105 +f 2566/6106 2563/3608 2564/5214 +f 656/3609 2564/5214 2563/3608 +f 2573/6107 2570/6108 2571/5310 +f 30/4667 2571/5310 2570/6108 +f 2577/3612 658/3613 2579/6109 +f 2578/5216 2579/6109 658/3613 +f 2584/6110 2575/3610 2582/5308 +f 169/3611 2582/5308 2575/3610 +f 2591/6111 2588/3616 2589/5217 +f 663/3617 2589/5217 2588/3616 +f 2599/6112 2596/6113 2597/6114 +f 175/6115 2597/6114 2596/6113 +f 2606/6116 2603/3620 2604/5219 +f 666/3621 2604/5219 2603/3620 +f 175/6115 2596/6113 2610/6117 +f 2612/6118 2610/6117 2596/6113 +f 2616/3624 669/3625 2618/6119 +f 2617/5221 2618/6119 669/3625 +f 2623/6120 175/6115 2625/6121 +f 2610/6117 2625/6121 175/6115 +f 2631/6122 2628/3628 2629/5223 +f 673/3629 2629/5223 2628/3628 +f 2638/6123 2636/6124 2623/6120 +f 175/6115 2623/6120 2636/6124 +f 2642/3632 676/3633 2645/6125 +f 2643/5225 2645/6125 676/3633 +f 2597/6114 175/6115 2650/6126 +f 2636/6124 2650/6126 175/6115 +f 2656/6127 2653/3636 2654/5226 +f 680/3637 2654/5226 2653/3636 +f 2663/6128 2660/3642 2661/5233 +f 179/3643 2661/5233 2660/3642 +f 2669/6129 2667/3640 2668/5229 +f 683/3641 2668/5229 2667/3640 +f 2676/6130 2673/6131 2674/5230 +f 176/5231 2674/5230 2673/6131 +f 2682/6132 2679/3644 2680/5232 +f 687/3645 2680/5232 2679/3644 +f 2689/6133 2686/6134 2687/6135 +f 3/6136 2687/6135 2686/6134 +f 2696/6137 2693/3648 2694/5234 +f 690/3649 2694/5234 2693/3648 +f 2701/6138 2691/3646 2699/6139 +f 177/3647 2699/6139 2691/3646 +f 2706/5237 2707/6140 693/3652 +f 2705/3653 693/3652 2707/6140 +f 2712/5243 2714/6141 182/3656 +f 2711/3657 182/3656 2714/6141 +f 2718/5240 2719/6142 696/3654 +f 2717/3655 696/3654 2719/6142 +f 2726/6143 2723/3670 2724/5241 +f 180/3671 2724/5241 2723/3670 +f 2730/5242 2732/6144 700/3659 +f 2729/3658 700/3659 2732/6144 +f 2739/6145 2736/6146 2737/5269 +f 36/5270 2737/5269 2736/6146 +f 2743/3663 702/3662 2745/6147 +f 2744/5244 2745/6147 702/3662 +f 2748/5267 2750/6148 181/3660 +f 2741/3661 181/3660 2750/6148 +f 2754/5245 2756/6149 706/3664 +f 2753/3665 706/3664 2756/6149 +f 2761/6150 2763/6151 186/6152 +f 2760/6153 186/6152 2763/6151 +f 2769/6154 2767/3668 2768/5247 +f 708/3669 2768/5247 2767/3668 +f 2775/6155 2773/6156 2760/6153 +f 186/6152 2760/6153 2773/6156 +f 2779/5249 2780/6157 711/3672 +f 2778/3673 711/3672 2780/6157 +f 2785/6158 186/6152 2787/6159 +f 2773/6156 2787/6159 186/6152 +f 2793/6160 2790/3676 2791/5250 +f 715/3677 2791/5250 2790/3676 +f 2800/6161 2798/6162 2785/6158 +f 186/6152 2785/6158 2798/6162 +f 2807/6163 2804/3680 2805/5252 +f 718/3681 2805/5252 2804/3680 +f 186/6152 2798/6162 2761/6150 +f 2812/6164 2761/6150 2798/6162 +f 2815/3684 722/3685 2818/6165 +f 2816/5253 2818/6165 722/3685 +f 2825/6166 2822/3690 2823/5259 +f 190/3691 2823/5259 2822/3690 +f 2831/6167 2829/3688 2830/5256 +f 725/3689 2830/5256 2829/3688 +f 2836/5257 2838/6168 187/3703 +f 2835/3702 187/3703 2838/6168 +f 2842/5258 2844/6169 729/3692 +f 2841/3693 729/3692 2844/6169 +f 2848/3714 40/3715 2851/6170 +f 2849/6171 2851/6170 40/3715 +f 2858/6172 2855/3696 2856/5260 +f 732/3697 2856/5260 2855/3696 +f 2863/6173 2853/3694 2861/5533 +f 188/3695 2861/5533 2853/3694 +f 2867/3700 735/3701 2869/6174 +f 2868/5261 2869/6174 735/3701 +f 2873/3706 193/3707 2876/6175 +f 2874/5265 2876/6175 193/3707 +f 2879/3704 738/3705 2881/6176 +f 2880/5262 2881/6176 738/3705 +f 2885/3718 191/3719 2888/6177 +f 2886/5263 2888/6177 191/3719 +f 2891/3708 742/3709 2894/6178 +f 2892/5264 2894/6178 742/3709 +f 2899/5525 2901/6179 38/3730 +f 2898/3731 38/3730 2901/6179 +f 2905/3712 744/3713 2907/6180 +f 2906/5266 2907/6180 744/3713 +f 2903/3711 192/3710 2912/6181 +f 2910/5523 2912/6181 192/3710 +f 2915/3716 747/3717 2917/6182 +f 2916/5268 2917/6182 747/3717 +f 2921/3722 196/3723 2924/6183 +f 2922/5274 2924/6183 196/3723 +f 2928/5271 2929/6184 750/3720 +f 2927/3721 750/3720 2929/6184 +f 2936/6185 2933/3734 2934/5272 +f 194/3735 2934/5272 2933/3734 +f 2939/3724 754/3725 2942/6186 +f 2940/5273 2942/6186 754/3725 +f 2947/6187 2949/6188 41/3746 +f 2946/3747 41/3746 2949/6188 +f 2953/3728 756/3729 2955/6189 +f 2954/5275 2955/6189 756/3729 +f 2958/6190 2960/6191 195/3726 +f 2951/3727 195/3726 2960/6191 +f 2965/6192 2963/3732 2964/5276 +f 759/3733 2964/5276 2963/3732 +f 2972/6193 2969/3738 2970/5281 +f 199/3739 2970/5281 2969/3738 +f 2977/6194 2975/3736 2976/5278 +f 762/3737 2976/5278 2975/3736 +f 2984/6195 2981/6196 2982/5279 +f 197/4599 2982/5279 2981/6196 +f 2990/6197 2987/3740 2988/5280 +f 766/3741 2988/5280 2987/3740 +f 2997/6198 2994/6199 2995/6200 +f 42/6201 2995/6200 2994/6199 +f 3003/6202 3001/3744 3002/5282 +f 768/3745 3002/5282 3001/3744 +f 2999/3742 198/3743 3008/6203 +f 3006/5511 3008/6203 198/3743 +f 3011/3748 772/3749 3014/6204 +f 3012/5285 3014/6204 772/3749 +f 3018/3754 203/3755 3021/6205 +f 3019/5290 3021/6205 203/3755 +f 3025/3752 775/3753 3027/6206 +f 3026/5287 3027/6206 775/3753 +f 3032/5288 3034/6207 200/3766 +f 3031/3767 200/3766 3034/6207 +f 3038/5289 3040/6208 779/3756 +f 3037/3757 779/3756 3040/6208 +f 44/3778 3045/5318 3044/3779 +f 3047/6209 3044/3779 3045/5318 +f 3051/3760 782/3761 3054/6210 +f 3052/5291 3054/6210 782/3761 +f 3057/5316 3059/6211 201/3758 +f 3049/3759 201/3758 3059/6211 +f 3065/6212 3063/3764 3064/5293 +f 785/3765 3064/5293 3063/3764 +f 3072/6213 3069/3770 3070/5298 +f 206/3771 3070/5298 3069/3770 +f 3077/6214 3075/3768 3076/5295 +f 788/3769 3076/5295 3075/3768 +f 3084/6215 3081/3782 3082/5296 +f 204/3783 3082/5296 3081/3782 +f 3090/6216 3087/3772 3088/5297 +f 792/3773 3088/5297 3087/3772 +f 3097/6217 3094/3794 3095/5327 +f 46/3795 3095/5327 3094/3794 +f 3102/5299 3103/6218 794/3776 +f 3101/3777 794/3776 3103/6218 +f 205/3774 3106/5325 3099/3775 +f 3108/6219 3099/3775 3106/5325 +f 3111/3780 797/3781 3113/6220 +f 3112/5301 3113/6220 797/3781 +f 3117/3786 209/3787 3120/6221 +f 3118/5306 3120/6221 209/3787 +f 3123/3784 800/3785 3125/6222 +f 3124/5303 3125/6222 800/3785 +f 3132/6223 3129/3798 3130/5304 +f 207/3799 3130/5304 3129/3798 +f 3138/6224 3135/3789 3136/5305 +f 804/3788 3136/5305 3135/3789 +f 3145/6225 3142/3811 3143/5335 +f 43/3810 3143/5335 3142/3811 +f 3151/6226 3149/3792 3150/5307 +f 806/3793 3150/5307 3149/3792 +f 3156/6227 3147/3790 3154/5333 +f 208/3791 3154/5333 3147/3790 +f 3161/6228 3159/3796 3160/5309 +f 809/3797 3160/5309 3159/3796 +f 3168/6229 3165/3802 3166/5314 +f 212/3803 3166/5314 3165/3802 +f 3173/6230 3171/3800 3172/5311 +f 812/3801 3172/5311 3171/3800 +f 3180/6231 3177/6232 3178/5312 +f 210/4663 3178/5312 3177/6232 +f 3186/6233 3183/3804 3184/5313 +f 816/3805 3184/5313 3183/3804 +f 3193/6234 3190/6235 3191/5343 +f 47/4731 3191/5343 3190/6235 +f 818/3809 3198/5315 3197/3808 +f 3199/6236 3197/3808 3198/5315 +f 211/3807 3202/5341 3195/3806 +f 3204/6237 3195/3806 3202/5341 +f 3207/3813 822/3812 3210/6238 +f 3208/5317 3210/6238 822/3812 +f 3215/5323 3217/6239 216/3819 +f 3214/3818 216/3819 3217/6239 +f 3221/3816 825/3817 3223/6240 +f 3222/5319 3223/6240 825/3817 +f 3227/1188 213/5320 3230/6241 +f 3228/5321 3230/6241 213/5320 +f 3233/3820 829/3821 3236/6242 +f 3234/5322 3236/6242 829/3821 +f 3240/1183 49/5351 3243/6243 +f 3241/5352 3243/6243 49/5351 +f 3248/5324 3250/6244 832/3824 +f 3247/3825 832/3824 3250/6244 +f 3253/5349 3255/6245 214/3823 +f 3245/3822 214/3823 3255/6245 +f 3262/6246 3259/3828 3260/5326 +f 836/3829 3260/5326 3259/3828 +f 3269/6247 3266/3834 3267/5331 +f 220/3833 3267/5331 3266/3834 +f 3275/6248 3273/3831 3274/5328 +f 839/3832 3274/5328 3273/3831 +f 217/3844 3280/5329 3279/3845 +f 3282/6249 3279/3845 3280/5329 +f 843/3835 3286/5330 3285/3836 +f 3288/6250 3285/3836 3286/5330 +f 58/3856 3293/6251 3292/3857 +f 3295/6252 3292/3857 3293/6251 +f 846/3839 3300/5332 3299/3840 +f 3302/6253 3299/3840 3300/5332 +f 218/3837 3305/6254 3297/3838 +f 3307/6255 3297/3838 3305/6254 +f 3313/6256 3311/3842 3312/5334 +f 849/3843 3312/5334 3311/3842 +f 3320/6257 3317/3848 3318/5339 +f 223/3849 3318/5339 3317/3848 +f 3325/6258 3323/3846 3324/5336 +f 852/3847 3324/5336 3323/3846 +f 3332/6259 3329/3860 3330/5337 +f 221/3861 3330/5337 3329/3860 +f 856/3850 3336/5338 3335/3851 +f 3338/6260 3335/3851 3336/5338 +f 3345/6261 3342/3872 3343/6262 +f 48/3873 3343/6262 3342/3872 +f 858/3855 3350/5340 3349/3854 +f 3351/6263 3349/3854 3350/5340 +f 3347/3852 222/3853 3356/6264 +f 3354/6265 3356/6264 222/3853 +f 3361/6266 3359/3858 3360/5342 +f 861/3859 3360/5342 3359/3858 +f 3368/6267 3365/3864 3366/5347 +f 226/3865 3366/5347 3365/3864 +f 3373/6268 3371/3862 3372/5344 +f 864/3863 3372/5344 3371/3862 +f 224/4726 3378/5345 3377/6269 +f 3380/6270 3377/6269 3378/5345 +f 868/3866 3384/5346 3383/3867 +f 3386/6271 3383/3867 3384/5346 +f 52/4839 3391/5403 3390/6272 +f 3393/6273 3390/6272 3391/5403 +f 3399/6274 3397/3870 3398/5348 +f 870/3871 3398/5348 3397/3870 +f 3404/6275 3395/3868 3402/5401 +f 225/3869 3402/5401 3395/3868 +f 3408/5350 3410/6276 874/3874 +f 3407/3875 874/3874 3410/6276 +f 3414/3880 230/3881 3417/6277 +f 3415/5356 3417/6277 230/3881 +f 3421/3878 877/3879 3423/6278 +f 3422/5353 3423/6278 877/3879 +f 3427/3892 227/3893 3430/6279 +f 3428/5354 3430/6279 227/3893 +f 3433/3882 881/3883 3436/6280 +f 3434/5355 3436/6280 881/3883 +f 3441/5379 3443/6281 54/3904 +f 3440/3905 54/3904 3443/6281 +f 3448/5357 3450/6282 884/3887 +f 3447/3886 884/3887 3450/6282 +f 3445/3884 228/3885 3455/6283 +f 3453/5377 3455/6283 228/3885 +f 3460/3890 888/3891 3462/6284 +f 3461/5360 3462/6284 888/3891 +f 3467/3896 234/3897 3470/6285 +f 3468/5366 3470/6285 234/3897 +f 3476/6286 3474/3894 3475/5363 +f 892/3895 3475/5363 3474/3894 +f 3484/6287 3481/3908 3482/5364 +f 232/3909 3482/5364 3481/3908 +f 3490/6288 3487/3898 3488/5365 +f 896/3899 3488/5365 3487/3898 +f 56/3920 3495/6289 3494/3921 +f 3497/6290 3494/3921 3495/6289 +f 3502/5367 3503/6291 898/3902 +f 3501/3903 898/3902 3503/6291 +f 3506/6292 3508/6293 233/3900 +f 3499/3901 233/3900 3508/6293 +f 3514/6294 3512/3906 3513/5370 +f 902/3907 3513/5370 3512/3906 +f 3522/6295 3519/3912 3520/5375 +f 238/3913 3520/5375 3519/3912 +f 3528/6296 3526/3910 3527/5372 +f 906/3911 3527/5372 3526/3910 +f 236/4774 3534/5373 3533/6297 +f 3536/6298 3533/6297 3534/5373 +f 3542/6299 3539/3914 3540/5374 +f 910/3915 3540/5374 3539/3914 +f 53/3936 3547/1140 3546/6300 +f 3549/6301 3546/6300 3547/1140 +f 912/3918 3554/5376 3553/3919 +f 3555/6302 3553/3919 3554/5376 +f 237/3916 3558/1133 3551/3917 +f 3560/6303 3551/3917 3558/1133 +f 3563/3922 916/3923 3566/6304 +f 3564/5378 3566/6304 916/3923 +f 3571/5383 3573/6305 240/3928 +f 3570/3929 240/3928 3573/6305 +f 3578/5380 3579/6306 918/3926 +f 3577/3927 918/3926 3579/6306 +f 3584/6307 3506/6292 3582/5381 +f 233/3900 3582/5381 3506/6292 +f 3590/6308 3587/3930 3588/5382 +f 920/3931 3588/5382 3587/3930 +f 3594/6309 3495/6289 3561/1112 +f 56/3920 3561/1112 3495/6289 +f 3600/6310 3597/3933 3598/5384 +f 922/3934 3598/5384 3597/3933 +f 3604/6311 3595/3932 3550/1105 +f 237/3916 3550/1105 3595/3932 +f 3610/6312 3607/3937 3608/5386 +f 926/3938 3608/5386 3607/3937 +f 3615/5391 3617/6313 244/3943 +f 3614/3944 244/3943 3617/6313 +f 3623/6314 3621/3941 3622/5388 +f 929/3942 3622/5388 3621/3941 +f 3628/5389 3630/6315 241/3955 +f 3627/3956 241/3955 3630/6315 +f 3634/5390 3636/6316 933/3945 +f 3633/3946 933/3945 3636/6316 +f 3641/5411 3643/6317 59/3841 +f 3640/3966 59/3841 3643/6317 +f 3647/3950 936/3949 3650/6318 +f 3648/5392 3650/6318 936/3949 +f 3653/5409 3655/6319 242/3947 +f 3645/3948 242/3947 3655/6319 +f 3661/6320 3659/3953 3660/5394 +f 939/3954 3660/5394 3659/3953 +f 245/3959 3666/5399 3665/3960 +f 3668/6321 3665/3960 3666/5399 +f 3671/3958 941/3957 3673/6322 +f 3672/5396 3673/6322 941/3957 +f 3237/907 213/5320 3678/6323 +f 3676/5397 3678/6323 213/5320 +f 943/3962 3682/5398 3681/3961 +f 3684/6324 3681/3961 3682/5398 +f 3688/6325 3224/902 3261/6326 +f 44/3778 3261/6326 3224/902 +f 3691/3964 944/3965 3693/6327 +f 3692/5400 3693/6327 944/3965 +f 3689/3963 219/3830 3697/6328 +f 3301/6329 3697/6328 219/3830 +f 3701/6330 3699/3967 3700/5402 +f 947/3968 3700/5402 3699/3967 +f 3708/6331 3705/3971 3706/5407 +f 248/3972 3706/5407 3705/3971 +f 3713/6332 3711/3970 3712/5404 +f 950/3969 3712/5404 3711/3970 +f 246/4835 3718/5405 3717/6333 +f 3720/6334 3717/6333 3718/5405 +f 3726/6335 3723/3973 3724/5406 +f 954/3974 3724/5406 3723/3973 +f 3733/6336 3730/6337 3731/1260 +f 60/3993 3731/1260 3730/6337 +f 3739/6338 3737/3977 3738/5408 +f 956/3978 3738/5408 3737/3977 +f 247/3976 3742/1253 3735/3975 +f 3744/6339 3735/3975 3742/1253 +f 3747/3980 960/3979 3750/6340 +f 3748/5410 3750/6340 960/3979 +f 3757/6341 3754/3986 3755/5415 +f 250/3985 3755/5415 3754/3986 +f 3762/5412 3763/6342 962/3983 +f 3761/3984 962/3983 3763/6342 +f 3766/5413 3768/6343 218/3837 +f 3305/6254 218/3837 3768/6343 +f 3774/6344 3771/3988 3772/5414 +f 964/3987 3772/5414 3771/3988 +f 3778/6345 3293/6251 3745/1232 +f 58/3856 3745/1232 3293/6251 +f 3784/6346 3781/3990 3782/5416 +f 966/3991 3782/5416 3781/3990 +f 3788/6347 3779/3989 3734/1225 +f 247/3976 3734/1225 3779/3989 +f 3792/3994 971/3995 3795/6348 +f 3793/5418 3795/6348 971/3995 +f 3800/6349 254/6350 3803/6351 +f 3801/6352 3803/6351 254/6350 +f 3809/5419 3811/6353 975/3998 +f 3808/3999 975/3998 3811/6353 +f 3818/6354 3816/6355 3800/6349 +f 254/6350 3800/6349 3816/6355 +f 3825/6356 3822/4002 3823/5421 +f 978/4003 3823/5421 3822/4002 +f 3830/6357 3801/6352 3816/6355 +f 254/6350 3816/6355 3801/6352 +f 3834/4006 982/4007 3836/6358 +f 3835/5423 3836/6358 982/4007 +f 3841/4012 258/4013 3844/6359 +f 3842/5428 3844/6359 258/4013 +f 3848/4010 986/4011 3850/6360 +f 3849/5425 3850/6360 986/4011 +f 3855/4024 256/4025 3858/6361 +f 3856/5426 3858/6361 256/4025 +f 3861/4014 990/4015 3864/6362 +f 3862/5427 3864/6362 990/4015 +f 3868/4036 11/4037 3871/6363 +f 3869/6364 3871/6363 11/4037 +f 3875/4018 992/4019 3877/6365 +f 3876/5429 3877/6365 992/4019 +f 3873/4016 257/4017 3882/6366 +f 3880/6367 3882/6366 257/4017 +f 3887/6368 3885/4022 3886/5430 +f 995/4023 3886/5430 3885/4022 +f 3892/5437 3894/6369 260/4028 +f 3891/4029 260/4028 3894/6369 +f 3898/5433 3899/6370 997/4026 +f 3897/4027 997/4026 3899/6370 +f 3904/6371 1795/6372 3902/5434 +f 113/5435 3902/5434 1795/6372 +f 3908/5436 3910/6373 1000/4030 +f 3907/4031 1000/4030 3910/6373 +f 3913/6374 3915/6375 10/6376 +f 1779/6377 10/6376 3915/6375 +f 3919/4035 1002/4034 3921/6378 +f 3920/5438 3921/6378 1002/4034 +f 3924/6379 3926/6380 259/4032 +f 3917/4033 259/4032 3926/6380 +f 1006/4038 3930/5439 3929/4039 +f 3932/6381 3929/4039 3930/5439 +f 3939/6382 3936/4044 3937/5444 +f 264/4045 3937/5444 3936/4044 +f 3943/4042 1009/4043 3945/6383 +f 3944/5441 3945/6383 1009/4043 +f 3950/5442 3952/6384 261/4148 +f 3949/4147 261/4148 3952/6384 +f 3955/4046 1013/4047 3958/6385 +f 3956/5443 3958/6385 1013/4047 +f 3965/6386 3962/4159 3963/6387 +f 63/4160 3963/6387 3962/4159 +f 3972/6388 3969/4050 3970/5445 +f 1016/4051 3970/5445 3969/4050 +f 262/4048 3975/6389 3967/4049 +f 3977/6390 3967/4049 3975/6389 +f 3982/4054 1020/4055 3984/6391 +f 3983/5447 3984/6391 1020/4055 +f 3990/5453 3992/6392 268/4058 +f 3989/4059 268/4058 3992/6392 +f 3997/5450 3998/6393 1024/4057 +f 3996/4056 1024/4057 3998/6393 +f 4006/6394 4003/4171 4004/5451 +f 266/4170 4004/5451 4003/4171 +f 4010/5452 4012/6395 1028/4060 +f 4009/4061 1028/4060 4012/6395 +f 4017/1564 4019/6396 65/4144 +f 4016/6397 65/4144 4019/6396 +f 1030/4064 4024/5454 4023/4065 +f 4025/6398 4023/4065 4024/5454 +f 4030/6399 4021/4062 4028/1557 +f 267/4063 4028/1557 4021/4062 +f 4034/4066 1034/4067 4036/6400 +f 4035/5456 4036/6400 1034/4067 +f 4041/4072 271/4073 4044/6401 +f 4042/5461 4044/6401 271/4073 +f 4048/4070 1038/4071 4050/6402 +f 4049/5458 4050/6402 1038/4071 +f 4055/4116 270/4117 4058/6403 +f 4056/5459 4058/6403 270/4117 +f 4061/4074 1041/4075 4064/6404 +f 4062/5460 4064/6404 1041/4075 +f 4068/4128 14/4129 4070/6405 +f 2299/6406 4070/6405 14/4129 +f 4073/4078 1042/4079 4075/6407 +f 4074/5462 4075/6407 1042/4079 +f 4071/4076 148/4077 4079/6408 +f 2284/6409 4079/6408 148/4077 +f 4083/6410 4081/4083 4082/5465 +f 1045/4082 4082/5465 4081/4083 +f 4088/5471 4090/6411 273/4088 +f 4087/4089 273/4088 4090/6411 +f 4095/6412 4093/4086 4094/5468 +f 1048/4087 4094/5468 4093/4086 +f 4102/6413 4099/4100 4100/5469 +f 272/4101 4100/5469 4099/4100 +f 1051/4091 4106/5470 4105/4090 +f 4108/6414 4105/4090 4106/5470 +f 4114/6415 4112/4112 4051/5457 +f 67/4113 4051/5457 4112/4112 +f 4119/6416 4117/4095 4118/5472 +f 1052/4094 4118/5472 4117/4095 +f 4037/5455 4123/6417 269/4092 +f 4115/4093 269/4092 4123/6417 +f 4127/6418 4125/4098 4126/5475 +f 1055/4099 4126/5475 4125/4098 +f 4134/6419 4131/4104 4132/5480 +f 275/4105 4132/5480 4131/4104 +f 4137/4102 1057/4103 4139/6420 +f 4138/5477 4139/6420 1057/4103 +f 4144/6421 3831/4004 4142/5478 +f 252/4005 4142/5478 3831/4004 +f 4150/6422 4147/4107 4148/5479 +f 1060/4106 4148/5479 4147/4107 +f 62/5493 4153/5494 3807/6423 +f 4155/6424 3807/6423 4153/5494 +f 4161/6425 4159/4110 4160/5481 +f 1062/4111 4160/5481 4159/4110 +f 274/4108 4164/5491 4157/4109 +f 4166/6426 4157/4109 4164/5491 +f 4171/5484 4172/6427 1066/4114 +f 4170/4115 1066/4114 4172/6427 +f 4177/4120 277/4121 4180/6428 +f 4178/5489 4180/6428 277/4121 +f 4184/4118 1069/4119 4186/6429 +f 4185/5486 4186/6429 1069/4119 +f 4192/6430 3847/6431 4190/5487 +f 255/5422 4190/5487 3847/6431 +f 4198/6432 4195/4122 4196/5488 +f 1071/4123 4196/5488 4195/4122 +f 4202/6433 3833/6434 2353/6435 +f 1/6436 2353/6435 3833/6434 +f 4205/4126 1072/4127 4207/6437 +f 4206/5490 4207/6437 1072/4127 +f 2339/6438 4211/6439 153/4125 +f 4203/4124 153/4125 4211/6439 +f 4214/5492 4216/6440 1076/4130 +f 4213/4131 1076/4130 4216/6440 +f 4223/6441 4220/4136 4221/5498 +f 279/4137 4221/5498 4220/4136 +f 1078/4134 4228/5495 4227/4135 +f 4229/6442 4227/4135 4228/5495 +f 263/4040 4232/5496 3941/4041 +f 4234/6443 3941/4041 4232/5496 +f 4240/6444 4237/4138 4238/5497 +f 1080/4139 4238/5497 4237/4138 +f 4244/6445 3979/4052 4031/1405 +f 64/4053 4031/1405 3979/4052 +f 4250/6446 4247/4141 4248/5499 +f 1082/4142 4248/5499 4247/4141 +f 4254/6447 4245/4140 4020/1397 +f 267/4063 4020/1397 4245/4140 +f 4258/5501 4259/6448 1085/4145 +f 4257/4146 1085/4145 4259/6448 +f 4263/4151 281/4152 4266/6449 +f 4264/5506 4266/6449 281/4152 +f 4269/4150 1088/4149 4271/6450 +f 4270/5503 4271/6450 1088/4149 +f 4278/6451 4275/4163 4276/5504 +f 280/4164 4276/5504 4275/4163 +f 4281/4153 1091/4154 4284/6452 +f 4282/5505 4284/6452 1091/4154 +f 4288/6453 66/5449 4290/6454 +f 3999/5448 4290/6454 66/5449 +f 4293/4157 1092/4158 4295/6455 +f 4294/5507 4295/6455 1092/4158 +f 4291/4155 265/4156 4299/6456 +f 3985/5446 4299/6456 265/4156 +f 1095/4161 4302/5508 4301/4162 +f 4303/6457 4301/4162 4302/5508 +f 282/6458 4308/6459 4307/6460 +f 4310/6461 4307/6460 4308/6459 +f 1097/4165 4314/5509 4313/4166 +f 4315/6462 4313/4166 4314/5509 +f 4319/6463 282/6458 4321/6464 +f 4307/6460 4321/6464 282/6458 +f 1098/4169 4324/5510 4323/4168 +f 4325/6465 4323/4168 4324/5510 +f 4319/6463 4329/6466 282/6458 +f 4308/6459 282/6458 4329/6466 +f 4332/5512 4334/6467 1102/4172 +f 4331/4173 1102/4172 4334/6467 +f 4339/6468 4341/6469 285/6470 +f 4338/6471 285/6470 4341/6469 +f 4348/6472 4346/4176 4347/5513 +f 1105/4177 4347/5513 4346/4176 +f 4355/6473 4353/6474 4338/6471 +f 285/6470 4338/6471 4353/6474 +f 4358/4178 1108/4179 4361/6475 +f 4359/5515 4361/6475 1108/4179 +f 4339/6468 285/6470 4366/6476 +f 4353/6474 4366/6476 285/6470 +f 1111/4182 4370/5516 4369/4183 +f 4371/6477 4369/4183 4370/5516 +f 4378/6478 4375/4186 4376/5521 +f 288/4187 4376/5521 4375/4186 +f 4383/6479 4381/4184 4382/5518 +f 1114/4185 4382/5518 4381/4184 +f 4390/6480 4387/6481 4388/5519 +f 286/5045 4388/5519 4387/6481 +f 4396/6482 4393/4188 4394/5520 +f 1118/4189 4394/5520 4393/4188 +f 4403/6483 4400/6484 4401/6485 +f 69/6486 4401/6485 4400/6484 +f 4409/6487 4407/4192 4408/5522 +f 1120/4193 4408/5522 4407/4192 +f 4414/6488 4405/4190 4412/6489 +f 287/4191 4412/6489 4405/4190 +f 4418/5524 4420/6490 1124/4194 +f 4417/4195 1124/4194 4420/6490 +f 4425/5529 4427/6491 291/4200 +f 4424/4201 291/4200 4427/6491 +f 4432/5526 4433/6492 1126/4198 +f 4431/4199 1126/4198 4433/6492 +f 4436/5527 4438/6493 287/4191 +f 4412/6489 287/4191 4438/6493 +f 4442/5528 4444/6494 1129/4202 +f 4441/4203 1129/4202 4444/6494 +f 4447/6495 4449/6496 69/6486 +f 4401/6485 69/6486 4449/6496 +f 4454/5530 4456/6497 1132/4206 +f 4453/4207 1132/4206 4456/6497 +f 4459/6498 4461/6499 289/4204 +f 4451/4205 289/4204 4461/6499 +f 4467/6500 4465/4210 4466/5531 +f 1135/4211 4466/5531 4465/4210 +f 4471/6501 293/6502 4474/6503 +f 4472/6504 4474/6503 293/6502 +f 4479/5532 4480/6505 1138/4212 +f 4478/4213 1138/4212 4480/6505 +f 4471/6501 4487/6506 293/6502 +f 4485/6507 293/6502 4487/6506 +f 4492/6508 4489/4215 4490/5534 +f 1140/4216 4490/5534 4489/4215 +f 4496/6509 4472/6504 4485/6507 +f 293/6502 4485/6507 4472/6504 +f 4502/6510 4499/4219 4500/5535 +f 1144/4220 4500/5535 4499/4219 +f 4507/5539 4509/6511 297/4225 +f 4506/4226 297/4225 4509/6511 +f 4514/5536 4515/6512 1147/4223 +f 4513/4224 1147/4223 4515/6512 +f 4519/4237 294/4238 4522/6513 +f 4520/5537 4522/6513 294/4238 +f 4526/5538 4528/6514 1151/4227 +f 4525/4228 1151/4227 4528/6514 +f 4533/5550 4535/6515 82/4250 +f 4532/4249 82/4250 4535/6515 +f 4539/4231 1154/4232 4542/6516 +f 4540/5540 4542/6516 1154/4232 +f 4545/5548 4547/6517 295/4229 +f 4537/4230 295/4229 4547/6517 +f 4551/4235 1157/4236 4553/6518 +f 4552/5541 4553/6518 1157/4236 +f 4557/4241 300/4242 4560/6519 +f 4558/5546 4560/6519 300/4242 +f 4563/4239 1160/4240 4565/6520 +f 4564/5542 4565/6520 1160/4240 +f 4569/2002 298/5543 4572/6521 +f 4570/5544 4572/6521 298/5543 +f 4575/4243 1164/4244 4578/6522 +f 4576/5545 4578/6522 1164/4244 +f 4582/1995 75/5577 4585/6523 +f 4583/5576 4585/6523 75/5577 +f 4589/4247 1166/4248 4591/6524 +f 4590/5547 4591/6524 1166/4248 +f 4587/4245 299/4246 4596/6525 +f 4594/5574 4596/6525 299/4246 +f 4602/6526 4599/4251 4600/5549 +f 1170/4252 4600/5549 4599/4251 +f 4609/6527 4606/4257 4607/5554 +f 304/4258 4607/5554 4606/4257 +f 4614/5551 4615/6528 1173/4255 +f 4613/4256 1173/4255 4615/6528 +f 4620/5552 4622/6529 301/4301 +f 4619/4302 301/4301 4622/6529 +f 4628/6530 4625/4260 4626/5553 +f 1177/4259 4626/5553 4625/4260 +f 4633/5558 4635/6531 85/4313 +f 4632/4314 85/4313 4635/6531 +f 4642/6532 4639/4263 4640/5555 +f 1180/4264 4640/5555 4639/4263 +f 4645/5556 4647/6533 302/4261 +f 4637/4262 302/4261 4647/6533 +f 4652/5557 4654/6534 1184/4267 +f 4651/4268 1184/4267 4654/6534 +f 4659/5562 4661/6535 308/4273 +f 4658/4274 308/4273 4661/6535 +f 4666/5559 4667/6536 1187/4271 +f 4665/4272 1187/4271 4667/6536 +f 4672/5560 4674/6537 305/4285 +f 4671/4286 305/4285 4674/6537 +f 4678/5561 4680/6538 1191/4275 +f 4677/4276 1191/4275 4680/6538 +f 4685/5586 4687/6539 83/4297 +f 4684/4298 83/4297 4687/6539 +f 4694/6540 4691/4279 4692/5563 +f 1194/4280 4692/5563 4691/4279 +f 4699/6541 4689/4277 4697/5584 +f 306/4278 4697/5584 4689/4277 +f 4705/5565 4706/6542 1198/4283 +f 4704/4284 1198/4283 4706/6542 +f 4712/5572 4714/6543 312/4289 +f 4711/4290 312/4289 4714/6543 +f 4719/5568 4720/6544 1202/4287 +f 4718/4288 1202/4287 4720/6544 +f 4726/5569 4728/6545 310/5570 +f 4725/6546 310/5570 4728/6545 +f 4732/5571 4734/6547 1206/4291 +f 4731/4292 1206/4291 4734/6547 +f 4741/6548 4738/6549 4739/5594 +f 76/5595 4739/5594 4738/6549 +f 4746/5573 4747/6550 1208/4295 +f 4745/4296 1208/4295 4747/6550 +f 4752/6551 4743/4293 4750/5592 +f 311/4294 4750/5592 4743/4293 +f 4756/5575 4757/6552 1211/4299 +f 4755/4300 1211/4299 4757/6552 +f 4762/5582 4764/6553 314/4305 +f 4761/4306 314/4305 4764/6553 +f 4768/5578 4769/6554 1214/4303 +f 4767/4304 1214/4303 4769/6554 +f 4774/5579 4776/6555 313/5580 +f 4773/6556 313/5580 4776/6555 +f 4780/5581 4782/6557 1217/4307 +f 4779/4308 1217/4307 4782/6557 +f 4721/5566 4788/6558 84/5567 +f 4786/6559 84/5567 4788/6558 +f 4792/5583 4793/6560 1218/4311 +f 4791/4312 1218/4311 4793/6560 +f 4707/5564 4797/6561 309/4309 +f 4789/4310 309/4309 4797/6561 +f 4802/6562 4799/4315 4800/5585 +f 1222/4316 4800/5585 4799/4315 +f 4809/6563 4806/4321 4807/5590 +f 317/4322 4807/5590 4806/4321 +f 4815/6564 4813/4319 4814/5587 +f 1225/4320 4814/5587 4813/4319 +f 4820/5588 4822/6565 315/4334 +f 4819/4333 315/4334 4822/6565 +f 4828/6566 4825/4324 4826/5589 +f 1228/4323 4826/5589 4825/4324 +f 4834/6567 4832/4345 2122/6026 +f 23/4346 2122/6026 4832/4345 +f 4840/6568 4837/4327 4838/5591 +f 1230/4328 4838/5591 4837/4327 +f 4844/6569 4835/4325 2109/6023 +f 137/4326 2109/6023 4835/4325 +f 4849/6570 4847/4331 4848/5593 +f 1233/4332 4848/5593 4847/4331 +f 4856/6571 4853/4337 4854/5599 +f 319/4338 4854/5599 4853/4337 +f 4861/6572 4859/4335 4860/5596 +f 1236/4336 4860/5596 4859/4335 +f 4868/6573 4865/4349 4866/5597 +f 318/4350 4866/5597 4865/4349 +f 4874/6574 4871/4339 4872/5598 +f 1239/4340 4872/5598 4871/4339 +f 4880/6575 4878/4361 2170/6036 +f 22/4362 2170/6036 4878/4361 +f 4885/6576 4883/4343 4884/5600 +f 1240/4344 4884/5600 4883/4343 +f 4889/6577 4881/4341 2157/6033 +f 140/4342 2157/6033 4881/4341 +f 1243/4347 4892/5601 4891/4348 +f 4893/6578 4891/4348 4892/5601 +f 321/4353 4898/5605 4897/4354 +f 4900/6579 4897/4354 4898/5605 +f 4905/6580 4903/4351 4904/5602 +f 1246/4352 4904/5602 4903/4351 +f 4912/6581 4909/4365 4910/5603 +f 320/4366 4910/5603 4909/4365 +f 1249/4356 4916/5604 4915/4355 +f 4918/6582 4915/4355 4916/5604 +f 4922/4377 24/4378 4924/6583 +f 2218/6046 4924/6583 24/4378 +f 4929/6584 4927/4359 4928/5606 +f 1250/4360 4928/5606 4927/4359 +f 143/4357 2205/6042 4925/4358 +f 4933/6585 4925/4358 2205/6042 +f 4937/6586 4935/4363 4936/5607 +f 1253/4364 4936/5607 4935/4363 +f 4941/4370 322/4369 4944/6587 +f 4942/5611 4944/6587 322/4369 +f 4948/5608 4949/6588 1255/4367 +f 4947/4368 1255/4367 4949/6588 +f 4579/1759 298/5543 4954/6589 +f 4952/5609 4954/6589 298/5543 +f 4958/5610 4960/6590 1257/4372 +f 4957/4371 1257/4372 4960/6590 +f 4566/1751 17/3400 4964/6591 +f 2266/6056 4964/6591 17/3400 +f 4967/4375 1258/4376 4969/6592 +f 4968/5612 4969/6592 1258/4376 +f 2253/6052 4973/6593 146/4373 +f 4965/4374 146/4373 4973/6593 +f 4977/5615 4979/6594 1263/4379 +f 4976/4380 1263/4379 4979/6594 +f 4985/5621 4987/6595 327/4386 +f 4984/4385 327/4386 4987/6595 +f 4994/6596 4992/4383 4993/5618 +f 1267/4384 4993/5618 4992/4383 +f 5002/6597 4999/4429 5000/5619 +f 324/4430 5000/5619 4999/4429 +f 5008/6598 5005/4387 5006/5620 +f 1271/4388 5006/5620 5005/4387 +f 5015/6599 5012/4441 5013/5625 +f 89/4442 5013/5625 5012/4441 +f 5019/4391 1274/4392 5022/6600 +f 5020/5622 5022/6600 1274/4392 +f 5017/4390 325/4389 5027/6601 +f 5025/5623 5027/6601 325/4389 +f 5031/4395 1278/4396 5034/6602 +f 5032/5624 5034/6602 1278/4396 +f 5041/6603 5038/4401 5039/5629 +f 331/4402 5039/5629 5038/4401 +f 5047/6604 5045/4399 5046/5626 +f 1281/4400 5046/5626 5045/4399 +f 5051/4413 328/4414 5054/6605 +f 5052/5627 5054/6605 328/4414 +f 5060/6606 5057/4403 5058/5628 +f 1285/4404 5058/5628 5057/4403 +f 5065/5650 5067/6607 87/4426 +f 5064/4425 87/4426 5067/6607 +f 5074/6608 5071/4407 5072/5630 +f 1288/4408 5072/5630 5071/4407 +f 5079/6609 5069/4405 5077/5648 +f 329/4406 5077/5648 5069/4405 +f 5086/6610 5084/4411 5085/5632 +f 1292/4412 5085/5632 5084/4411 +f 5091/4417 335/4418 5094/6611 +f 5092/5637 5094/6611 335/4418 +f 5099/5634 5100/6612 1296/4415 +f 5098/4416 1296/4415 5100/6612 +f 5105/4639 333/4638 5108/6613 +f 5106/5635 5108/6613 333/4638 +f 5111/4419 1300/4420 5114/6614 +f 5112/5636 5114/6614 1300/4420 +f 5119/5658 5121/6615 77/4650 +f 5118/4651 77/4650 5121/6615 +f 5125/4423 1302/4424 5127/6616 +f 5126/5638 5127/6616 1302/4424 +f 5123/4421 334/4422 5132/6617 +f 5130/5656 5132/6617 334/4422 +f 5138/6618 5136/4427 5137/5641 +f 1306/4428 5137/5641 5136/4427 +f 5146/6619 5143/4433 5144/5646 +f 338/4434 5144/5646 5143/4433 +f 5152/6620 5150/4431 5151/5643 +f 1310/4432 5151/5643 5150/4431 +f 5160/6621 5157/4622 5158/5644 +f 337/4623 5158/5644 5157/4622 +f 5166/6622 5163/4435 5164/5645 +f 1313/4436 5164/5645 5163/4435 +f 5172/6623 5170/4634 5101/5633 +f 88/4635 5101/5633 5170/4634 +f 5177/6624 5175/4439 5176/5647 +f 1314/4440 5176/5647 5175/4439 +f 5181/6625 5173/4437 5087/5631 +f 332/4438 5087/5631 5173/4437 +f 5186/6626 5183/4443 5184/5649 +f 1318/4444 5184/5649 5183/4443 +f 5193/6627 5190/4449 5191/5654 +f 341/4450 5191/5654 5190/4449 +f 5199/6628 5197/4447 5198/5651 +f 1321/4448 5198/5651 5197/4447 +f 5206/6629 5203/4462 5204/5652 +f 339/4461 5204/5652 5203/4462 +f 5212/6630 5209/4451 5210/5653 +f 1324/4452 5210/5653 5209/4451 +f 5218/6631 5216/4473 2522/6098 +f 31/4474 2522/6098 5216/4473 +f 5224/6632 5221/4455 5222/5655 +f 1326/4456 5222/5655 5221/4455 +f 5228/6633 5219/4453 2509/6095 +f 165/4454 2509/6095 5219/4453 +f 5232/5657 5233/6634 1329/4459 +f 5231/4460 1329/4459 5233/6634 +f 5238/5662 5240/6635 343/4465 +f 5237/4466 343/4465 5240/6635 +f 5244/5659 5245/6636 1332/4463 +f 5243/4464 1332/4463 5245/6636 +f 5252/6637 5249/4654 5250/5660 +f 342/4655 5250/5660 5249/4654 +f 5258/6638 5255/4467 5256/5661 +f 1335/4468 5256/5661 5255/4467 +f 5264/6639 5262/4666 2570/6108 +f 30/4667 2570/6108 5262/4666 +f 5268/5663 5269/6640 1336/4471 +f 5267/4472 1336/4471 5269/6640 +f 5273/6641 5265/4469 2557/6105 +f 168/4470 2557/6105 5265/4469 +f 5278/6642 5276/4475 5277/5664 +f 1340/4476 5277/5664 5276/4475 +f 5286/6643 5283/6644 5284/6645 +f 347/6646 5284/6645 5283/6644 +f 5290/4478 1344/4479 5293/6647 +f 5291/5665 5293/6647 1344/4479 +f 5298/6648 347/6646 5300/6649 +f 5283/6644 5300/6649 347/6646 +f 5307/6650 5304/4482 5305/5667 +f 1348/4483 5305/5667 5304/4482 +f 5314/6651 5312/6652 5298/6648 +f 347/6646 5298/6648 5312/6652 +f 5317/4486 1351/4487 5320/6653 +f 5318/5669 5320/6653 1351/4487 +f 347/6646 5312/6652 5324/6654 +f 5326/6655 5324/6654 5312/6652 +f 5331/6656 5329/4490 5330/5670 +f 1352/4491 5330/5670 5329/4490 +f 347/6646 5324/6654 5284/6645 +f 5335/6657 5284/6645 5324/6654 +f 5340/6658 5338/4494 5339/5671 +f 1356/4495 5339/5671 5338/4494 +f 5348/6659 5345/4499 5346/5676 +f 351/4500 5346/5676 5345/4499 +f 5354/6660 5352/4497 5353/5672 +f 1360/4498 5353/5672 5352/4497 +f 5362/6661 5359/6662 5360/5673 +f 349/5674 5360/5673 5359/6662 +f 5368/6663 5365/4501 5366/5675 +f 1364/4502 5366/5675 5365/4501 +f 5375/6664 5372/6665 5373/6666 +f 73/6667 5373/6666 5372/6665 +f 5381/6668 5379/4505 5380/5677 +f 1366/4506 5380/5677 5379/4505 +f 5386/6669 5377/4503 5384/6670 +f 350/4504 5384/6670 5377/4503 +f 5389/4509 1369/4510 5391/6671 +f 5390/5678 5391/6671 1369/4510 +f 5395/4515 354/4516 5398/6672 +f 5396/5682 5398/6672 354/4516 +f 5401/4513 1372/4514 5403/6673 +f 5402/5679 5403/6673 1372/4514 +f 5407/4575 352/4576 5410/6674 +f 5408/5680 5410/6674 352/4576 +f 5413/4517 1376/4518 5416/6675 +f 5414/5681 5416/6675 1376/4518 +f 5423/6676 5420/4587 5421/6677 +f 92/4588 5421/6677 5420/4587 +f 5427/4521 1378/4522 5429/6678 +f 5428/5683 5429/6678 1378/4522 +f 5434/6679 5425/4519 5432/5690 +f 353/4520 5432/5690 5425/4519 +f 5438/4525 1382/4526 5440/6680 +f 5439/5684 5440/6680 1382/4526 +f 5445/6681 357/6682 5448/6683 +f 5446/6684 5448/6683 357/6682 +f 5454/6685 5451/4527 5452/5685 +f 1385/4528 5452/5685 5451/4527 +f 357/6682 5445/6681 5458/6686 +f 5460/6687 5458/6686 5445/6681 +f 5466/6688 5464/4531 5465/5687 +f 1388/4532 5465/5687 5464/4531 +f 5473/6689 5471/6690 5458/6686 +f 357/6682 5458/6686 5471/6690 +f 5475/4534 1391/4535 5478/6691 +f 5476/5689 5478/6691 1391/4535 +f 5482/6692 357/6682 5484/6693 +f 5471/6690 5484/6693 357/6682 +f 5489/6694 5487/4539 5488/5691 +f 1392/4538 5488/5691 5487/4539 +f 5493/6695 5446/6684 5482/6692 +f 357/6682 5482/6692 5446/6684 +f 5496/5692 5497/6696 1395/4543 +f 5495/4542 1395/4543 5497/6696 +f 5504/6697 5501/4547 5502/5696 +f 360/4548 5502/5696 5501/4547 +f 5509/6698 5507/4545 5508/5693 +f 1398/4546 5508/5693 5507/4545 +f 5516/6699 5513/5072 5514/5694 +f 358/5073 5514/5694 5513/5072 +f 5519/4549 1402/4550 5522/6700 +f 5520/5695 5522/6700 1402/4550 +f 5526/6701 94/5700 5529/6702 +f 5527/5701 5529/6702 94/5700 +f 5535/6703 5533/4553 5534/5697 +f 1404/4554 5534/5697 5533/4553 +f 5531/4551 359/4552 5540/6704 +f 5538/5698 5540/6704 359/4552 +f 5543/4557 1407/4558 5545/6705 +f 5544/5699 5545/6705 1407/4558 +f 5549/4563 363/4564 5552/6706 +f 5550/5705 5552/6706 363/4564 +f 5555/4561 1410/4562 5557/6707 +f 5556/5702 5557/6707 1410/4562 +f 5561/5052 361/5053 5564/6708 +f 5562/5703 5564/6708 361/5053 +f 5567/4565 1414/4566 5570/6709 +f 5568/5704 5570/6709 1414/4566 +f 5574/5064 93/5065 5577/6710 +f 5575/5709 5577/6710 93/5065 +f 5581/4569 1416/4570 5583/6711 +f 5582/5706 5583/6711 1416/4570 +f 5579/4567 362/4568 5588/6712 +f 5586/5707 5588/6712 362/4568 +f 5591/4573 1419/4574 5593/6713 +f 5592/5708 5593/6713 1419/4574 +f 5597/4579 366/4580 5600/6714 +f 5598/5714 5600/6714 366/4580 +f 5603/4577 1422/4578 5605/6715 +f 5604/5710 5605/6715 1422/4578 +f 5609/6716 364/5711 5612/6717 +f 5610/5712 5612/6717 364/5711 +f 5615/4581 1426/4582 5618/6718 +f 5616/5713 5618/6718 1426/4582 +f 5622/6719 95/5718 5625/6720 +f 5623/5719 5625/6720 95/5718 +f 5629/4585 1428/4586 5631/6721 +f 5630/5715 5631/6721 1428/4586 +f 5636/6722 5627/4583 5634/5716 +f 365/4584 5634/5716 5627/4583 +f 5641/6723 5639/4589 5640/5717 +f 1431/4590 5640/5717 5639/4589 +f 5648/6724 5645/4594 5646/5723 +f 368/4595 5646/5723 5645/4594 +f 5653/6725 5651/4592 5652/5720 +f 1434/4593 5652/5720 5651/4592 +f 5657/5026 367/5027 5660/6726 +f 5658/5721 5660/6726 367/5027 +f 5666/6727 5663/4597 5664/5722 +f 1437/4596 5664/5722 5663/4597 +f 5672/6728 5670/6729 2994/6199 +f 42/6201 2994/6199 5670/6729 +f 5677/6730 5675/4600 5676/5724 +f 1438/4601 5676/5724 5675/4600 +f 5681/6731 5673/4598 2981/6196 +f 197/4599 2981/6196 5673/4598 +f 5683/4605 1441/4604 5685/6732 +f 5684/5725 5685/6732 1441/4604 +f 5690/5729 5692/6733 371/4610 +f 5689/4611 371/4610 5692/6733 +f 5696/5726 5697/6734 1444/4608 +f 5695/4609 1444/4608 5697/6734 +f 5701/4670 369/4671 5704/6735 +f 5702/5727 5704/6735 369/4671 +f 5707/4612 1448/4613 5710/6736 +f 5708/5728 5710/6736 1448/4613 +f 97/4682 5715/5733 5714/4683 +f 5717/6737 5714/4683 5715/5733 +f 5722/5730 5723/6738 1450/4617 +f 5721/4616 1450/4617 5723/6738 +f 5719/4614 370/4615 5728/6739 +f 5726/5731 5728/6739 370/4615 +f 5733/6740 5731/4620 5732/5732 +f 1453/4621 5732/5732 5731/4620 +f 5740/6741 5737/4626 5738/5737 +f 374/4627 5738/5737 5737/4626 +f 5743/4624 1456/4625 5745/6742 +f 5744/5734 5745/6742 1456/4625 +f 372/4812 5750/5735 5749/4811 +f 5752/6743 5749/4811 5750/5735 +f 5758/6744 5755/4629 5756/5736 +f 1460/4628 5756/5736 5755/4629 +f 5765/6745 5762/4823 5763/5741 +f 98/4824 5763/5741 5762/4823 +f 5771/6746 5769/4632 5770/5738 +f 1462/4633 5770/5738 5769/4632 +f 5776/6747 5767/4630 5774/5739 +f 373/4631 5774/5739 5767/4630 +f 5780/5740 5781/6748 1465/4636 +f 5779/4637 1465/4636 5781/6748 +f 5786/5745 5788/6749 377/4642 +f 5785/4643 377/4642 5788/6749 +f 5793/6750 5791/4640 5792/5742 +f 1468/4641 5792/5742 5791/4640 +f 5800/6751 5797/4702 5798/5743 +f 375/4703 5798/5743 5797/4702 +f 5806/6752 5803/4644 5804/5744 +f 1472/4645 5804/5744 5803/4644 +f 5813/6753 5810/4714 5811/5749 +f 96/4715 5811/5749 5810/4714 +f 5818/5746 5819/6754 1474/4648 +f 5817/4649 1474/4648 5819/6754 +f 5824/6755 5815/4646 5822/5747 +f 376/4647 5822/5747 5815/4646 +f 5829/6756 5827/4652 5828/5748 +f 1477/4653 5828/5748 5827/4652 +f 5836/6757 5833/4658 5834/5753 +f 379/4659 5834/5753 5833/4658 +f 1480/4656 5840/5750 5839/4657 +f 5841/6758 5839/4657 5840/5750 +f 378/4718 5846/5751 5845/4719 +f 5848/6759 5845/4719 5846/5751 +f 5854/6760 5851/4660 5852/5752 +f 1483/4661 5852/5752 5851/4660 +f 5860/6761 5858/4730 3190/6235 +f 47/4731 3190/6235 5858/4730 +f 5865/6762 5863/4664 5864/5754 +f 1484/4665 5864/5754 5863/4664 +f 5869/6763 5861/4662 3177/6232 +f 210/4663 3177/6232 5861/4662 +f 5872/5755 5873/6764 1487/4669 +f 5871/4668 1487/4669 5873/6764 +f 5877/4674 382/4675 5880/6765 +f 5878/5759 5880/6765 382/4675 +f 5883/4672 1490/4673 5885/6766 +f 5884/5756 5885/6766 1490/4673 +f 5889/4734 380/4735 5892/6767 +f 5890/5757 5892/6767 380/4735 +f 5896/5758 5898/6768 1494/4676 +f 5895/4677 1494/4676 5898/6768 +f 5903/5763 5905/6769 100/4746 +f 5902/4747 100/4746 5905/6769 +f 5910/5760 5911/6770 1496/4680 +f 5909/4681 1496/4680 5911/6770 +f 5914/5761 5916/6771 381/4678 +f 5907/4679 381/4678 5916/6771 +f 5922/6772 5919/4684 5920/5762 +f 1500/4685 5920/5762 5919/4684 +f 5929/6773 5926/4690 5927/5767 +f 386/4691 5927/5767 5926/4690 +f 5933/4689 1503/4688 5935/6774 +f 5934/5764 5935/6774 1503/4688 +f 5939/4751 383/4750 5942/6775 +f 5940/5765 5942/6775 383/4750 +f 5948/6776 5945/4692 5946/5766 +f 1507/4693 5946/5766 5945/4692 +f 5955/6777 5952/4762 5953/2840 +f 101/4763 5953/2840 5952/4762 +f 5959/4696 1510/4697 5962/6778 +f 5960/5768 5962/6778 1510/4697 +f 5965/2833 5967/6779 384/4694 +f 5957/4695 384/4694 5967/6779 +f 5974/6780 5972/4700 5973/5770 +f 1514/4701 5973/5770 5972/4700 +f 5982/6781 5979/4707 5980/5777 +f 390/4706 5980/5777 5979/4707 +f 1518/4705 5987/5773 5986/4704 +f 5988/6782 5986/4704 5987/5773 +f 5994/5774 5996/6783 388/5775 +f 5993/6784 388/5775 5996/6783 +f 1522/4709 6000/5776 5999/4708 +f 6002/6785 5999/4708 6000/5776 +f 6009/6786 6006/6787 6007/5781 +f 99/5782 6007/5781 6006/6787 +f 6015/6788 6013/4712 6014/5778 +f 1524/4713 6014/5778 6013/4712 +f 6020/6789 6011/4710 6018/5779 +f 389/4711 6018/5779 6011/4710 +f 6025/6790 6023/4716 6024/5780 +f 1527/4717 6024/5780 6023/4716 +f 6032/6791 6029/4722 6030/5786 +f 392/4723 6030/5786 6029/4722 +f 6037/6792 6035/4720 6036/5783 +f 1530/4721 6036/5783 6035/4720 +f 6044/6793 6041/4827 6042/5784 +f 391/4828 6042/5784 6041/4827 +f 1533/4724 6048/5785 6047/4725 +f 6050/6794 6047/4725 6048/5785 +f 52/4839 3390/6272 6054/4840 +f 6056/6795 6054/4840 3390/6272 +f 6061/6796 6059/4729 6060/5787 +f 1534/4728 6060/5787 6059/4729 +f 224/4726 3377/6269 6057/4727 +f 6065/6797 6057/4727 3377/6269 +f 6067/4732 1537/4733 6069/6798 +f 6068/5788 6069/6798 1537/4733 +f 6074/5792 6076/6799 395/4738 +f 6073/4739 395/4738 6076/6799 +f 6079/4736 1540/4737 6081/6800 +f 6080/5789 6081/6800 1540/4737 +f 6086/5790 6088/6801 393/4782 +f 6085/4783 393/4782 6088/6801 +f 6092/5791 6094/6802 1544/4740 +f 6091/4741 1544/4740 6094/6802 +f 6098/4794 102/4795 6101/6803 +f 6099/5796 6101/6803 102/4795 +f 6106/5793 6107/6804 1546/4744 +f 6105/4745 1546/4744 6107/6804 +f 6110/5794 6112/6805 394/4742 +f 6103/4743 394/4742 6112/6805 +f 6116/5795 6117/6806 1549/4748 +f 6115/4749 1549/4748 6117/6806 +f 6122/5800 6124/6807 398/4755 +f 6121/4754 398/4755 6124/6807 +f 6127/4752 1552/4753 6129/6808 +f 6128/5797 6129/6808 1552/4753 +f 6133/6809 396/4791 6136/6810 +f 6134/5798 6136/6810 396/4791 +f 6142/6811 6139/4757 6140/5799 +f 1556/4756 6140/5799 6139/4757 +f 103/5804 6147/5805 6146/6812 +f 6149/6813 6146/6812 6147/5805 +f 6155/6814 6153/4760 6154/5801 +f 1558/4761 6154/5801 6153/4760 +f 6160/6815 6151/4758 6158/5802 +f 397/4759 6158/5802 6151/4758 +f 6166/6816 6163/4764 6164/5803 +f 1562/4765 6164/5803 6163/4764 +f 6173/6817 6170/4770 6171/5810 +f 401/4771 6171/5810 6170/4770 +f 1565/4768 6178/5806 6177/4769 +f 6179/6818 6177/4769 6178/5806 +f 399/5807 6184/5808 6183/2801 +f 6186/6819 6183/2801 6184/5808 +f 6192/6820 6189/4772 6190/5809 +f 1568/4773 6190/5809 6189/4772 +f 53/3936 3546/6300 6196/2794 +f 6198/6821 6196/2794 3546/6300 +f 6204/6822 6201/4776 6202/5811 +f 1570/4777 6202/5811 6201/4776 +f 236/4774 3533/6297 6199/4775 +f 6208/6823 6199/4775 3533/6297 +f 6211/4780 1573/4781 6213/6824 +f 6212/5812 6213/6824 1573/4781 +f 6217/4786 402/4787 6220/6825 +f 6218/5816 6220/6825 402/4787 +f 6225/6826 6223/4784 6224/5813 +f 1575/4785 6224/5813 6223/4784 +f 6230/6827 6193/2774 6228/5814 +f 399/5807 6228/5814 6193/2774 +f 6236/6828 6233/4788 6234/5815 +f 1577/4789 6234/5815 6233/4788 +f 6240/6829 6180/2767 6146/6812 +f 103/5804 6146/6812 6180/2767 +f 6243/4792 1578/4793 6245/6830 +f 6244/5817 6245/6830 1578/4793 +f 6249/6831 6241/4790 6133/6809 +f 396/4791 6133/6809 6241/4790 +f 6253/6832 6251/4796 6252/5818 +f 1581/4797 6252/5818 6251/4796 +f 6257/4801 404/4802 6260/6833 +f 6258/5822 6260/6833 404/4802 +f 6263/4799 1584/4800 6265/6834 +f 6264/5819 6265/6834 1584/4800 +f 6269/4843 403/4844 6272/6835 +f 6270/5820 6272/6835 403/4844 +f 6275/4803 1587/4804 6278/6836 +f 6276/5821 6278/6836 1587/4804 +f 6282/4855 105/4698 6284/6837 +f 5968/2629 6284/6837 105/4698 +f 6289/6838 6287/4806 6288/5823 +f 1588/4807 6288/5823 6287/4806 +f 6285/4805 384/4694 6293/6839 +f 5956/2622 6293/6839 384/4694 +f 6297/6840 6295/4809 6296/5824 +f 1591/4810 6296/5824 6295/4809 +f 6304/6841 6301/4816 6302/5828 +f 406/4815 6302/5828 6301/4816 +f 1594/4813 6308/5825 6307/4814 +f 6309/6842 6307/4814 6308/5825 +f 405/4852 6314/5826 6313/6843 +f 6316/6844 6313/6843 6314/5826 +f 1597/4817 6320/5827 6319/4818 +f 6322/6845 6319/4818 6320/5827 +f 104/5771 5989/5772 6326/6846 +f 6328/6847 6326/6846 5989/5772 +f 6333/6848 6331/4822 6332/5829 +f 1598/4821 6332/5829 6331/4822 +f 387/4819 5975/5769 6329/4820 +f 6337/6849 6329/4820 5975/5769 +f 6341/6850 6339/4825 6340/5830 +f 1601/4826 6340/5830 6339/4825 +f 6348/6851 6345/4831 6346/5835 +f 408/4832 6346/5835 6345/4831 +f 6353/6852 6351/4829 6352/5831 +f 1604/4830 6352/5831 6351/4829 +f 407/5833 6358/5832 6357/2917 +f 6360/6853 6357/2917 6358/5832 +f 6366/6854 6363/4833 6364/5834 +f 1607/4834 6364/5834 6363/4833 +f 6372/6855 6370/2910 3730/6337 +f 60/3993 3730/6337 6370/2910 +f 6377/6856 6375/4837 6376/5836 +f 1608/4838 6376/5836 6375/4837 +f 246/4835 3717/6333 6373/4836 +f 6381/6857 6373/4836 3717/6333 +f 6383/4841 1611/4842 6385/6858 +f 6384/5837 6385/6858 1611/4842 +f 6392/6859 6389/4847 6390/5841 +f 409/4848 6390/5841 6389/4847 +f 6397/6860 6395/4845 6396/5838 +f 1613/4846 6396/5838 6395/4845 +f 6402/6861 6367/2890 6400/5839 +f 407/5833 6400/5839 6367/2890 +f 6408/6862 6405/4849 6406/5840 +f 1615/4850 6406/5840 6405/4849 +f 6412/6863 6354/2883 6326/6846 +f 104/5771 6326/6846 6354/2883 +f 6415/4853 1616/4854 6417/6864 +f 6416/5842 6417/6864 1616/4854 +f 6413/4851 405/4852 6421/6865 +f 6313/6843 6421/6865 405/4852 +f 6424/4856 1621/4857 6427/6866 +f 6425/5843 6427/6866 1621/4857 +f 6432/6867 413/6868 6435/6869 +f 6433/6870 6435/6869 413/6868 +f 6443/6871 6440/4860 6441/5845 +f 1625/4861 6441/5845 6440/4860 +f 6450/6872 6448/6873 6432/6867 +f 413/6868 6432/6867 6448/6873 +f 6454/4864 1628/4865 6457/6874 +f 6455/5846 6457/6874 1628/4865 +f 6462/6875 6433/6870 6448/6873 +f 413/6868 6448/6873 6433/6870 +f 6465/4867 1632/4868 6468/6876 +f 6466/5849 6468/6876 1632/4868 +f 6472/4872 416/4873 6475/6877 +f 6473/5856 6475/6877 416/4873 +f 6479/4870 1634/4871 6481/6878 +f 6480/5852 6481/6878 1634/4871 +f 3880/6879 257/5853 6486/6880 +f 6484/5854 6486/6880 257/5853 +f 6489/4874 1637/4875 6492/6881 +f 6490/5855 6492/6881 1637/4875 +f 6495/5860 6497/6882 11/5861 +f 3869/6883 11/5861 6497/6882 +f 6501/4878 1640/4879 6504/6884 +f 6502/5857 6504/6884 1640/4879 +f 6499/4876 414/4877 6509/6885 +f 6507/5858 6509/6885 414/4877 +f 6515/6886 6513/4881 6514/5859 +f 1643/4882 6514/5859 6513/4881 +f 6519/4886 417/4887 6522/6887 +f 6520/5866 6522/6887 417/4887 +f 6525/4884 1645/4885 6527/6888 +f 6526/5862 6527/6888 1645/4885 +f 3924/6889 259/5863 6532/6890 +f 6530/5864 6532/6890 259/5863 +f 6535/4888 1647/4889 6538/6891 +f 6536/5865 6538/6891 1647/4889 +f 3913/6892 10/6893 6542/6894 +f 4501/6895 6542/6894 10/6893 +f 6545/4892 1648/4893 6547/6896 +f 6546/5867 6547/6896 1648/4893 +f 6551/6897 6543/4890 4541/6898 +f 296/4891 4541/6898 6543/4890 +f 1652/4896 6555/5869 6554/4897 +f 6556/6899 6554/4897 6555/5869 +f 6564/6900 6561/4901 6562/5876 +f 421/4902 6562/5876 6561/4901 +f 6570/6901 6568/4899 6569/5872 +f 1656/4900 6569/5872 6568/4899 +f 419/5873 6576/5874 6575/6902 +f 6578/6903 6575/6902 6576/5874 +f 6582/5875 6584/6904 1660/4903 +f 6581/4904 1660/4903 6584/6904 +f 6591/6905 6588/6906 6589/5934 +f 108/5935 6589/5934 6588/6906 +f 6596/5877 6597/6907 1662/4907 +f 6595/4908 1662/4907 6597/6907 +f 6593/4905 420/4906 6602/6908 +f 6600/5932 6602/6908 420/4906 +f 6606/5878 6608/6909 1666/4910 +f 6605/4911 1666/4910 6608/6909 +f 6612/4917 425/4916 6615/6910 +f 6613/5883 6615/6910 425/4916 +f 1669/4914 6620/5879 6619/4915 +f 6621/6911 6619/4915 6620/5879 +f 6628/6912 6625/3217 6626/5880 +f 422/5881 6626/5880 6625/3217 +f 6631/4918 1673/4919 6634/6913 +f 6632/5882 6634/6913 1673/4919 +f 6638/3210 110/5926 6641/6914 +f 6639/6915 6641/6914 110/5926 +f 6645/4922 1676/4923 6648/6916 +f 6646/5884 6648/6916 1676/4923 +f 6653/6917 6643/4920 6651/5943 +f 423/4921 6651/5943 6643/4920 +f 6657/4926 1680/4927 6660/6918 +f 6658/5887 6660/6918 1680/4927 +f 6664/4932 428/4933 6667/6919 +f 6665/5894 6667/6919 428/4933 +f 6671/4930 1682/4931 6673/6920 +f 6672/5890 6673/6920 1682/4931 +f 4989/6921 326/5891 6678/6922 +f 6676/5892 6678/6922 326/5891 +f 6681/4934 1685/4935 6684/6923 +f 6682/5893 6684/6923 1685/4935 +f 5029/6924 81/5916 6689/6925 +f 6687/5917 6689/6925 81/5916 +f 6693/4938 1688/4939 6696/6926 +f 6694/5895 6696/6926 1688/4939 +f 6691/4936 426/4937 6701/6927 +f 6699/5914 6701/6927 426/4937 +f 6707/6928 6705/4943 6706/5898 +f 1691/4942 6706/5898 6705/4943 +f 6711/4948 430/4949 6714/6929 +f 6712/5904 6714/6929 430/4949 +f 6719/6930 6717/4946 6718/5901 +f 1693/4947 6718/5901 6717/4946 +f 6669/4928 427/4929 6724/6931 +f 6722/5902 6724/6931 427/4929 +f 1696/4950 6728/5903 6727/4951 +f 6730/6932 6727/4951 6728/5903 +f 6735/6933 6703/4940 6733/5908 +f 112/4941 6733/5908 6703/4940 +f 6741/6934 6739/4955 6740/5905 +f 1698/4954 6740/5905 6739/4955 +f 6746/6935 6737/4952 6744/5906 +f 429/4953 6744/5906 6737/4952 +f 6751/6936 6749/4958 6750/5907 +f 1701/4959 6750/5907 6749/4958 +f 6758/6937 6755/4964 6756/5912 +f 432/4965 6756/5912 6755/4964 +f 6763/6938 6761/4962 6762/5909 +f 1704/4963 6762/5909 6761/4962 +f 431/4988 6768/5910 6767/4989 +f 6770/6939 6767/4989 6768/5910 +f 6776/6940 6773/4967 6774/5911 +f 1707/4966 6774/5911 6773/4967 +f 107/5000 6456/6941 6780/5001 +f 6782/6942 6780/5001 6456/6941 +f 6786/5913 6787/6943 1708/4970 +f 6785/4969 1708/4970 6787/6943 +f 6791/6944 6783/4968 6444/5844 +f 411/4866 6444/5844 6783/4968 +f 6793/4972 1712/4973 6796/6945 +f 6794/5915 6796/6945 1712/4973 +f 6800/4978 434/4979 6803/6946 +f 6801/5922 6803/6946 434/4979 +f 6807/4976 1714/4977 6809/6947 +f 6808/5918 6809/6947 1714/4977 +f 5043/6948 330/5920 6814/6949 +f 6812/5919 6814/6949 330/5920 +f 6820/6950 6817/4980 6818/5921 +f 1716/4981 6818/5921 6817/4980 +f 6824/6951 5081/6952 6467/6953 +f 71/6954 6467/6953 5081/6952 +f 6827/4983 1718/4984 6830/6955 +f 6828/5923 6830/6955 1718/4984 +f 6834/6956 6825/4982 6503/6957 +f 415/4869 6503/6957 6825/4982 +f 6838/4986 1722/4987 6840/6958 +f 6839/5924 6840/6958 1722/4987 +f 6848/6959 6845/4992 6846/5930 +f 436/4993 6846/5930 6845/4992 +f 6854/6960 6852/4990 6853/5927 +f 1725/4991 6853/5927 6852/4990 +f 6860/6961 6635/3058 6858/5928 +f 422/5881 6858/5928 6635/3058 +f 6866/6962 6863/4994 6864/5929 +f 1727/4995 6864/5929 6863/4994 +f 6870/6963 6622/3050 6571/5870 +f 109/5871 6571/5870 6622/3050 +f 1728/4999 6874/5931 6873/4998 +f 6875/6964 6873/4998 6874/5931 +f 418/4997 6557/5868 6871/4996 +f 6879/6965 6871/4996 6557/5868 +f 6881/5002 1731/5003 6883/6966 +f 6882/5933 6883/6966 1731/5003 +f 6887/5007 438/5008 6890/6967 +f 6888/5939 6890/6967 438/5008 +f 6893/5006 1733/5005 6895/6968 +f 6894/5936 6895/6968 1733/5005 +f 6617/4912 424/4913 6900/6969 +f 6898/5937 6900/6969 424/4913 +f 6903/5009 1736/5010 6906/6970 +f 6904/5938 6906/6970 1736/5010 +f 6655/4924 111/4925 6911/6971 +f 6909/6972 6911/6971 111/4925 +f 6915/5013 1738/5014 6917/6973 +f 6916/5940 6917/6973 1738/5014 +f 6922/6974 6913/5011 6920/5941 +f 437/5012 6920/5941 6913/5011 +f 1741/5016 6926/5942 6925/5017 +f 6927/6975 6925/5017 6926/5942 +f 439/6976 6932/6977 6931/6978 +f 6934/6979 6931/6978 6932/6977 +f 1743/5020 6938/5944 6937/5021 +f 6939/6980 6937/5021 6938/5944 +f 6943/6981 439/6976 6945/6982 +f 6931/6978 6945/6982 439/6976 +f 1744/5023 6948/5946 6947/5022 +f 6949/6983 6947/5022 6948/5946 +f 6943/6981 6953/6984 439/6976 +f 6932/6977 439/6976 6953/6984 +f 6956/5024 1748/5025 6958/6985 +f 6957/5947 6958/6985 1748/5025 +f 6963/6986 441/6987 6966/6988 +f 6964/6989 6966/6988 441/6987 +f 6970/5948 6972/6990 1751/5029 +f 6969/5028 1751/5029 6972/6990 +f 6963/6986 6978/6991 441/6987 +f 6976/6992 441/6987 6978/6991 +f 6983/6993 6981/5032 6982/5949 +f 1752/5033 6982/5949 6981/5032 +f 6987/6994 6964/6989 6976/6992 +f 441/6987 6976/6992 6964/6989 +f 1755/5035 6990/5950 6989/5036 +f 6991/6995 6989/5036 6990/5950 +f 6998/6996 6995/5040 6996/5954 +f 443/5041 6996/5954 6995/5040 +f 7003/6997 7001/5038 7002/5951 +f 1758/5039 7002/5951 7001/5038 +f 7010/6998 7007/6999 7008/5952 +f 442/5061 7008/5952 7007/6999 +f 7016/7000 7013/5042 7014/5953 +f 1761/5043 7014/5953 7013/5042 +f 7022/7001 7020/7002 4400/6484 +f 69/6486 4400/6484 7020/7002 +f 7027/7003 7025/5046 7026/5955 +f 1762/5047 7026/5955 7025/5046 +f 7031/7004 7023/5044 4387/6481 +f 286/5045 4387/6481 7023/5044 +f 7034/5050 1766/5051 7036/7005 +f 7035/5956 7036/7005 1766/5051 +f 7041/5056 445/5057 7044/7006 +f 7042/5961 7044/7006 445/5057 +f 7048/5054 1769/5055 7050/7007 +f 7049/5958 7050/7007 1769/5055 +f 4459/6498 289/4204 7056/7008 +f 7054/5959 7056/7008 289/4204 +f 7059/5058 1771/5059 7062/7009 +f 7060/5960 7062/7009 1771/5059 +f 4447/6495 69/6486 7066/7010 +f 7020/7002 7066/7010 69/6486 +f 7069/5062 1772/5063 7071/7011 +f 7070/5962 7071/7011 1772/5063 +f 7067/5060 442/5061 7075/7012 +f 7007/6999 7075/7012 442/5061 +f 7079/7013 7077/5066 7078/5963 +f 1775/5067 7078/5963 7077/5066 +f 7084/7014 7086/7015 446/7016 +f 7083/7017 446/7016 7086/7015 +f 7091/7018 7089/5070 7090/5964 +f 1777/5071 7090/5964 7089/5070 +f 7097/7019 7095/7020 7083/7017 +f 446/7016 7083/7017 7095/7020 +f 7099/5074 1778/5075 7101/7021 +f 7100/5966 7101/7021 1778/5075 +f 7084/7014 446/7016 7105/7022 +f 7095/7020 7105/7022 446/7016 +f 447/7023 1784/5078 1780/3369 +f 1787/3 1780/3369 1784/5078 +f 450/7024 1781/5079 1793/3371 +f 1794/7 1793/3371 1781/5079 +f 1799/5081 1802/11 452/7025 +f 1796/3373 452/7025 1802/11 +f 1797/5082 1808/15 448/2 +f 1788/3375 448/2 1808/15 +f 1804/5083 1815/19 454/14 +f 1809/3377 454/14 1815/19 +f 1810/5084 1822/23 458/26 +f 1821/3379 458/26 1822/23 +f 1789/5085 1828/27 449/6 +f 1823/3381 449/6 1828/27 +f 1824/5086 1834/31 461/7026 +f 1833/3383 461/7026 1834/31 +f 1829/5087 1841/35 460/30 +f 1835/3385 460/30 1841/35 +f 465/7027 1836/5088 1847/3387 +f 1848/39 1847/3387 1836/5088 +f 1817/5089 1854/43 457/22 +f 1849/3389 457/22 1854/43 +f 1850/5090 1860/47 463/34 +f 1842/3391 463/34 1860/47 +f 1856/5091 1867/51 468/46 +f 1861/3393 468/46 1867/51 +f 1862/5092 1874/55 472/58 +f 1873/3395 472/58 1874/55 +f 1843/5093 1880/59 464/38 +f 1875/3397 464/38 1880/59 +f 1876/5094 1886/63 475/7028 +f 1885/3399 475/7028 1886/63 +f 477/7029 1891/5095 1888/3401 +f 1894/65 1888/3401 1891/5095 +f 1889/5097 1900/69 453/10 +f 1803/3403 453/10 1900/69 +f 481/7030 1905/5098 1902/3405 +f 1908/73 1902/3405 1905/5098 +f 478/68 1903/5100 1895/3407 +f 1914/77 1895/3407 1903/5100 +f 483/80 1910/5101 1915/3409 +f 1921/83 1915/3409 1910/5101 +f 1916/5102 1928/87 487/92 +f 1927/3411 487/92 1928/87 +f 479/72 1896/5103 1929/3413 +f 1933/89 1929/3413 1896/5103 +f 1930/5104 1938/95 456/18 +f 1816/3415 456/18 1938/95 +f 491/7031 1943/5105 1940/3417 +f 1946/99 1940/3417 1943/5105 +f 1941/5107 1952/103 482/76 +f 1909/3419 482/76 1952/103 +f 495/7032 1957/5108 1954/3421 +f 1960/105 1954/3421 1957/5108 +f 1955/5110 1966/111 492/98 +f 1947/3423 492/98 1966/111 +f 497/110 1962/5111 1967/3425 +f 1973/113 1967/3425 1962/5111 +f 1968/5112 1980/119 501/122 +f 1979/3427 501/122 1980/119 +f 1948/5113 1985/123 493/102 +f 1981/3429 493/102 1985/123 +f 1982/5114 1990/127 485/82 +f 1922/3431 485/82 1990/127 +f 1986/5115 1997/131 503/126 +f 1991/3433 503/126 1997/131 +f 1992/5116 2004/135 507/170 +f 2003/3435 507/170 2004/135 +f 1975/5117 2010/139 500/118 +f 2005/3437 500/118 2010/139 +f 2006/5118 2016/143 505/130 +f 1998/3439 505/130 2016/143 +f 510/142 2012/5119 2017/3441 +f 2023/145 2017/3441 2012/5119 +f 2018/5120 2030/150 514/154 +f 2029/3443 514/154 2030/150 +f 1999/5121 2036/155 506/134 +f 2031/3445 506/134 2036/155 +f 2032/5122 2042/159 517/178 +f 2041/3447 517/178 2042/159 +f 1934/5123 2048/163 489/94 +f 2043/3449 489/94 2048/163 +f 2044/5124 2054/167 467/42 +f 1855/3451 467/42 2054/167 +f 1923/5125 2059/171 486/86 +f 2055/3453 486/86 2059/171 +f 2056/5126 2064/175 519/162 +f 2049/3455 519/162 2064/175 +f 2060/5127 2070/179 522/174 +f 2065/3457 522/174 2070/179 +f 2066/5128 2076/183 525/186 +f 2075/3459 525/186 2076/183 +f 2050/5129 2081/187 520/166 +f 2077/3461 520/166 2081/187 +f 2078/5130 2086/191 470/50 +f 1868/3463 470/50 2086/191 +f 529/7033 2091/5131 2088/3465 +f 2094/193 2088/3465 2091/5131 +f 496/108 2089/5133 1961/3467 +f 2100/197 1961/3467 2089/5133 +f 533/7034 2105/5134 2102/3469 +f 2108/201 2102/3469 2105/5134 +f 530/196 2103/5135 2095/3471 +f 2114/205 2095/3471 2103/5135 +f 535/208 2110/5136 2115/3473 +f 2121/209 2115/3473 2110/5136 +f 2116/5137 2128/215 539/220 +f 2127/3475 539/220 2128/215 +f 531/200 2096/5138 2129/3477 +f 2133/217 2129/3477 2096/5138 +f 499/116 2130/5139 1974/3479 +f 2138/221 1974/3479 2130/5139 +f 541/224 2134/5140 2139/3481 +f 2144/225 2139/3481 2134/5140 +f 509/138 2140/5141 2011/3483 +f 2150/229 2011/3483 2140/5141 +f 538/214 2123/5142 2151/3485 +f 2156/233 2151/3485 2123/5142 +f 543/228 2152/5143 2145/3487 +f 2162/237 2145/3487 2152/5143 +f 547/240 2158/5144 2163/3489 +f 2169/241 2163/3489 2158/5144 +f 551/252 2164/5145 2175/3491 +f 2176/245 2175/3491 2164/5145 +f 544/232 2146/5146 2177/3493 +f 2181/249 2177/3493 2146/5146 +f 512/148 2178/5147 2024/3495 +f 2186/253 2024/3495 2178/5147 +f 553/256 2182/5148 2187/3497 +f 2192/257 2187/3497 2182/5148 +f 2198/264 2028/149 2188/5149 +f 513/151 2188/5149 2028/149 +f 550/248 2171/5150 2199/3499 +f 2204/265 2199/3499 2171/5150 +f 555/260 2200/5151 2193/3502 +f 2210/272 2193/3502 2200/5151 +f 2217/276 2211/3504 2206/5152 +f 559/269 2206/5152 2211/3504 +f 563/284 2212/5153 2223/3505 +f 2224/277 2223/3505 2212/5153 +f 2229/281 2225/3507 2194/5154 +f 556/261 2194/5154 2225/3507 +f 516/158 2226/5155 2040/160 +f 2234/285 2040/160 2226/5155 +f 565/288 2230/5156 2235/3509 +f 2240/290 2235/3509 2230/5156 +f 524/182 2236/5157 2074/184 +f 2246/294 2074/184 2236/5157 +f 562/280 2219/5158 2247/3512 +f 2252/298 2247/3512 2219/5158 +f 2241/3514 567/291 2258/302 +f 2248/5159 2258/302 567/291 +f 2254/5160 2265/306 571/303 +f 2259/3515 571/303 2265/306 +f 2260/5161 2270/310 574/313 +f 2269/3517 574/313 2270/310 +f 2242/5162 2275/314 568/295 +f 2271/3518 568/295 2275/314 +f 2272/5163 2278/317 527/190 +f 2085/192 527/190 2278/317 +f 2284/5165 2287/321 577/7035 +f 2280/3520 577/7035 2287/321 +f 580/7036 2281/5166 2293/3522 +f 2294/323 2293/3522 2281/5166 +f 2299/5168 2302/329 582/7037 +f 2296/3524 582/7037 2302/329 +f 2297/5169 2308/333 578/320 +f 2288/3526 578/320 2308/333 +f 584/332 2304/5170 2309/3528 +f 2315/335 2309/3528 2304/5170 +f 588/346 2310/5171 2321/3530 +f 2322/339 2321/3530 2310/5171 +f 579/326 2289/5172 2323/3532 +f 2328/343 2323/3532 2289/5172 +f 591/7038 2324/5173 2333/3534 +f 2334/347 2333/3534 2324/5173 +f 2339/5175 2342/351 593/7039 +f 2336/3536 593/7039 2342/351 +f 2337/5176 2348/357 583/328 +f 2303/3538 583/328 2348/357 +f 597/7040 2353/5177 2350/3540 +f 2356/359 2350/3540 2353/5177 +f 594/354 2351/5179 2343/3542 +f 2362/363 2343/3542 2351/5179 +f 599/366 2358/5180 2363/3544 +f 2369/367 2363/3544 2358/5180 +f 603/378 2364/5181 2375/3546 +f 2376/373 2375/3546 2364/5181 +f 595/356 2344/5182 2377/3548 +f 2381/375 2377/3548 2344/5182 +f 586/338 2378/5183 2316/3550 +f 2386/379 2316/3550 2378/5183 +f 2382/5184 2393/385 605/382 +f 2387/3552 605/382 2393/385 +f 609/426 2388/5185 2399/3554 +f 2400/387 2399/3554 2388/5185 +f 2371/5186 2406/393 602/372 +f 2401/3556 602/372 2406/393 +f 2402/5187 2412/397 607/384 +f 2394/3558 607/384 2412/397 +f 2408/5188 2419/401 612/396 +f 2413/3560 612/396 2419/401 +f 2414/5189 2426/405 616/408 +f 2425/3562 616/408 2426/405 +f 2395/5190 2432/409 608/390 +f 2427/3564 608/390 2432/409 +f 619/434 2428/5191 2437/3566 +f 2438/413 2437/3566 2428/5191 +f 590/350 2329/5192 2439/3568 +f 2445/415 2439/3568 2329/5192 +f 623/7041 2440/5193 2451/3570 +f 2452/419 2451/3570 2440/5193 +f 587/342 2317/5194 2453/3572 +f 2457/423 2453/3572 2317/5194 +f 621/418 2454/5195 2446/3574 +f 2462/427 2446/3574 2454/5195 +f 625/430 2458/5196 2463/3576 +f 2468/431 2463/3576 2458/5196 +f 628/442 2464/5197 2473/3578 +f 2474/435 2473/3578 2464/5197 +f 622/422 2447/5198 2475/3580 +f 2480/439 2475/3580 2447/5198 +f 631/7042 2476/5199 2485/3582 +f 2486/443 2485/3582 2476/5199 +f 633/7043 2491/5200 2488/3584 +f 2494/447 2488/3584 2491/5200 +f 598/362 2489/5202 2357/3586 +f 2500/451 2357/3586 2489/5202 +f 637/7044 2505/5203 2502/3588 +f 2508/455 2502/3588 2505/5203 +f 634/450 2503/5204 2495/3590 +f 2514/459 2495/3590 2503/5204 +f 639/462 2510/5205 2515/3592 +f 2521/463 2515/3592 2510/5205 +f 643/474 2516/5206 2527/3594 +f 2528/467 2527/3594 2516/5206 +f 635/454 2496/5207 2529/3596 +f 2533/471 2529/3596 2496/5207 +f 601/370 2530/5208 2370/3598 +f 2538/475 2370/3598 2530/5208 +f 2534/5209 2544/481 645/478 +f 2539/3600 645/478 2544/481 +f 2540/5210 2550/485 611/392 +f 2407/3602 611/392 2550/485 +f 642/470 2523/5211 2551/3604 +f 2556/489 2551/3604 2523/5211 +f 2552/5212 2562/493 647/480 +f 2545/3606 647/480 2562/493 +f 651/492 2558/5213 2563/3608 +f 2569/495 2563/3608 2558/5213 +f 655/504 2564/5214 2575/3610 +f 2576/499 2575/3610 2564/5214 +f 2546/5215 2581/505 648/484 +f 2577/3612 648/484 2581/505 +f 2578/5216 2586/509 614/400 +f 2420/3614 614/400 2586/509 +f 2595/514 2588/3616 2592/4477 +f 659/7045 2592/4477 2588/3616 +f 2602/515 2601/3619 2589/5217 +f 662/7046 2589/5217 2601/3619 +f 533/7047 2101/5218 2603/3620 +f 2609/519 2603/3620 2101/5218 +f 665/7048 2604/5219 2613/3622 +f 2614/523 2613/3622 2604/5219 +f 2619/5220 2622/527 667/7049 +f 2616/3624 667/7049 2622/527 +f 2617/5221 2626/530 529/7050 +f 2091/3626 529/7050 2626/530 +f 670/7051 2632/5222 2628/3628 +f 2635/531 2628/3628 2632/5222 +f 672/7052 2629/5223 2639/3630 +f 2640/535 2639/3630 2629/5223 +f 2642/3632 674/7053 2648/537 +f 2646/5224 2648/537 674/7053 +f 2643/5225 2652/540 675/7054 +f 2651/3634 675/7054 2652/540 +f 675/7054 2651/3634 2653/3636 +f 2659/541 2653/3636 2651/3634 +f 679/7055 2654/5226 2665/3638 +f 2666/545 2665/3638 2654/5226 +f 670/7051 2627/5227 2667/3640 +f 2672/549 2667/3640 2627/5227 +f 677/544 2668/5229 2660/3642 +f 2678/553 2660/3642 2668/5229 +f 682/556 2674/5230 2679/3644 +f 2685/557 2679/3644 2674/5230 +f 686/568 2680/5232 2691/3646 +f 2692/561 2691/3646 2680/5232 +f 678/548 2661/5233 2693/3648 +f 2698/565 2693/3648 2661/5233 +f 689/7056 2694/5234 2703/3650 +f 2704/569 2703/3650 2694/5234 +f 2705/3653 580/7057 2710/574 +f 2293/5235 2710/574 580/7057 +f 2690/563 685/564 2716/578 +f 2706/5237 2716/578 685/564 +f 2717/3655 591/7058 2722/581 +f 2333/5238 2722/581 591/7058 +f 2711/3657 691/575 2728/586 +f 2718/5240 2728/586 691/575 +f 695/587 2724/5241 2729/3658 +f 2735/589 2729/3658 2724/5241 +f 2741/3661 699/599 2742/594 +f 2730/5242 2742/594 699/599 +f 2743/3663 692/579 2747/598 +f 2712/5243 2747/598 692/579 +f 2744/5244 2752/603 688/572 +f 2702/571 688/572 2752/603 +f 2753/3665 697/592 2759/606 +f 2733/590 2759/606 697/592 +f 2765/3667 705/7059 2766/610 +f 2754/5245 2766/610 705/7059 +f 2772/613 2767/3668 2451/5246 +f 623/7060 2451/5246 2767/3668 +f 694/584 2768/5247 2723/3670 +f 2776/618 2723/3670 2768/5247 +f 2778/3673 709/7061 2784/620 +f 2781/5248 2784/620 709/7061 +f 2477/3675 631/7062 2788/623 +f 2779/5249 2788/623 631/7062 +f 2794/4533 2797/627 712/7063 +f 2790/3676 712/7063 2797/627 +f 714/7064 2791/5250 2801/3678 +f 2802/629 2801/3678 2791/5250 +f 716/7065 2808/5251 2804/3680 +f 2810/631 2804/3680 2808/5251 +f 717/7066 2805/5252 2813/3682 +f 2814/633 2813/3682 2805/5252 +f 2601/3619 2821/637 662/7046 +f 2815/3684 662/7046 2821/637 +f 721/7067 2816/5253 2827/3686 +f 2828/639 2827/3686 2816/5253 +f 674/7053 2641/5254 2829/3688 +f 2834/643 2829/3688 2641/5254 +f 719/636 2830/5256 2822/3690 +f 2840/647 2822/3690 2830/5256 +f 2841/3693 724/650 2847/653 +f 2836/5257 2847/653 724/650 +f 728/662 2842/5258 2853/3694 +f 2854/656 2853/3694 2842/5258 +f 720/642 2823/5259 2855/3696 +f 2860/659 2855/3696 2823/5259 +f 731/7068 2856/5260 2865/3698 +f 2866/663 2865/3698 2856/5260 +f 2665/3638 2872/669 679/7055 +f 2867/3700 679/7055 2872/669 +f 2835/3702 723/646 2878/673 +f 2868/5261 2878/673 723/646 +f 2703/3650 2884/677 689/7056 +f 2879/3704 689/7056 2884/677 +f 2880/5262 2890/681 733/668 +f 2873/3706 733/668 2890/681 +f 2886/5263 2897/684 737/680 +f 2891/3708 737/680 2897/684 +f 2892/5264 2904/688 741/692 +f 2903/3711 741/692 2904/688 +f 2874/5265 2909/693 734/672 +f 2905/3712 734/672 2909/693 +f 2906/5266 2914/697 726/652 +f 2848/3714 726/652 2914/697 +f 2748/5267 2920/701 701/602 +f 2915/3716 701/602 2920/701 +f 2916/5268 2926/705 736/676 +f 2885/3718 736/676 2926/705 +f 698/595 2737/5269 2927/3721 +f 2932/707 2927/3721 2737/5269 +f 2928/5271 2938/713 745/700 +f 2921/3722 745/700 2938/713 +f 2934/5272 2945/716 749/712 +f 2939/3724 749/712 2945/716 +f 2940/5273 2952/720 753/724 +f 2951/3727 753/724 2952/720 +f 2922/5274 2957/725 746/704 +f 2953/3728 746/704 2957/725 +f 2898/3731 739/685 2962/728 +f 2954/5275 2962/728 739/685 +f 2968/731 2963/3732 2765/3667 +f 705/7059 2765/3667 2963/3732 +f 748/710 2964/5276 2933/3734 +f 2974/735 2933/3734 2964/5276 +f 716/7065 2803/5277 2975/3736 +f 2980/739 2975/3736 2803/5277 +f 757/734 2976/5278 2969/3738 +f 2986/743 2969/3738 2976/5278 +f 761/746 2982/5279 2987/3740 +f 2993/747 2987/3740 2982/5279 +f 2988/5280 3000/753 765/758 +f 2999/3742 765/758 3000/753 +f 758/738 2970/5281 3001/3744 +f 3005/755 3001/3744 2970/5281 +f 2946/3747 751/717 3010/760 +f 3002/5282 3010/760 751/717 +f 2801/5284 3017/765 714/7069 +f 3011/3748 714/7069 3017/765 +f 3012/5285 3024/769 771/7070 +f 3023/3750 771/7070 3024/769 +f 2777/5286 3030/773 709/7071 +f 3025/3752 709/7071 3030/773 +f 3026/5287 3036/776 769/764 +f 3018/3754 769/764 3036/776 +f 3037/3757 774/777 3043/780 +f 3032/5288 3043/780 774/777 +f 3049/3759 778/788 3050/784 +f 3038/5289 3050/784 778/788 +f 3019/5290 3056/789 770/768 +f 3051/3760 770/768 3056/789 +f 3052/5291 3062/793 781/7072 +f 3061/3762 781/7072 3062/793 +f 630/446 2481/5292 3063/3764 +f 3068/795 3063/3764 2481/5292 +f 773/772 3064/5293 3031/3767 +f 3074/802 3031/3767 3064/5293 +f 627/438 2469/5294 3075/3768 +f 3080/803 3075/3768 2469/5294 +f 783/798 3076/5295 3069/3770 +f 3086/807 3069/3770 3076/5295 +f 787/810 3082/5296 3087/3772 +f 3093/811 3087/3772 3082/5296 +f 3100/815 3099/3775 3088/5297 +f 791/819 3088/5297 3099/3775 +f 3105/822 3101/3777 3070/5298 +f 784/799 3070/5298 3101/3777 +f 3044/3779 776/781 3110/824 +f 3102/5299 3110/824 776/781 +f 2433/5300 3116/829 618/412 +f 3111/3780 618/412 3116/829 +f 786/806 3112/5301 3081/3782 +f 3122/833 3081/3782 3112/5301 +f 2421/5302 3128/837 615/404 +f 3123/3784 615/404 3128/837 +f 3124/5303 3134/841 795/828 +f 3117/3786 795/828 3134/841 +f 799/840 3130/5304 3135/3789 +f 3141/843 3135/3789 3130/5304 +f 803/854 3136/5305 3147/3790 +f 3148/847 3147/3790 3136/5305 +f 3118/5306 3153/851 796/832 +f 3149/3792 796/832 3153/851 +f 789/814 3150/5307 3094/3794 +f 3158/855 3094/3794 3150/5307 +f 657/508 2582/5308 3159/3796 +f 3164/859 3159/3796 2582/5308 +f 798/836 3160/5309 3129/3798 +f 3170/863 3129/3798 3160/5309 +f 654/502 2571/5310 3171/3800 +f 3176/867 3171/3800 2571/5310 +f 807/862 3172/5311 3165/3802 +f 3182/871 3165/3802 3172/5311 +f 811/874 3178/5312 3183/3804 +f 3189/875 3183/3804 3178/5312 +f 815/886 3184/5313 3195/3806 +f 3196/879 3195/3806 3184/5313 +f 808/866 3166/5314 3197/3808 +f 3201/883 3197/3808 3166/5314 +f 3206/890 3142/3811 3198/5315 +f 801/846 3198/5315 3142/3811 +f 3057/5316 3213/892 780/792 +f 3207/3813 780/792 3213/892 +f 3208/5317 3220/896 821/7073 +f 3219/3815 821/7073 3220/896 +f 3045/5318 3226/900 777/785 +f 3221/3816 777/785 3226/900 +f 3222/5319 3232/905 819/893 +f 3214/3818 819/893 3232/905 +f 3228/5321 3239/909 824/904 +f 3233/3820 824/904 3239/909 +f 3234/5322 3246/913 828/917 +f 3245/3822 828/917 3246/913 +f 3247/3825 820/897 3252/916 +f 3215/5323 3252/916 820/897 +f 3257/3827 831/7074 3258/920 +f 3248/5324 3258/920 831/7074 +f 793/825 3106/5325 3259/3828 +f 3265/923 3259/3828 3106/5325 +f 835/1191 3260/5326 3271/1192 +f 3272/927 3271/1192 3260/5326 +f 790/818 3095/5327 3273/3831 +f 3278/931 3273/3831 3095/5327 +f 833/926 3274/5328 3266/3834 +f 3284/938 3266/3834 3274/5328 +f 3291/942 3285/3836 3280/5329 +f 838/935 3280/5329 3285/3836 +f 3298/946 3297/3838 3286/5330 +f 842/947 3286/5330 3297/3838 +f 834/930 3267/5331 3299/3840 +f 3304/950 3299/3840 3267/5331 +f 3310/954 3309/1202 3300/5332 +f 845/1200 3300/5332 3309/1202 +f 805/858 3154/5333 3311/3842 +f 3316/955 3311/3842 3154/5333 +f 837/934 3312/5334 3279/3845 +f 3322/962 3279/3845 3312/5334 +f 802/850 3143/5335 3323/3846 +f 3328/963 3323/3846 3143/5335 +f 847/958 3324/5336 3317/3848 +f 3334/967 3317/3848 3324/5336 +f 851/970 3330/5337 3335/3851 +f 3341/971 3335/3851 3330/5337 +f 3336/5338 3348/977 855/982 +f 3347/3852 855/982 3348/977 +f 3353/979 3349/3854 3318/5339 +f 848/959 3318/5339 3349/3854 +f 3358/985 3292/3857 3350/5340 +f 840/939 3350/5340 3292/3857 +f 3364/990 3359/3858 3202/5341 +f 817/887 3202/5341 3359/3858 +f 850/966 3360/5342 3329/3860 +f 3370/991 3329/3860 3360/5342 +f 814/882 3191/5343 3371/3862 +f 3376/995 3371/3862 3191/5343 +f 859/987 3372/5344 3365/3864 +f 3382/1002 3365/3864 3372/5344 +f 3389/1006 3383/3867 3378/5345 +f 863/999 3378/5345 3383/3867 +f 867/1014 3384/5346 3395/3868 +f 3396/1007 3395/3868 3384/5346 +f 860/994 3366/5347 3397/3870 +f 3401/1011 3397/3870 3366/5347 +f 853/974 3398/5348 3342/3872 +f 3406/1015 3342/3872 3398/5348 +f 3407/3875 830/921 3413/1020 +f 3253/5349 3413/1020 830/921 +f 3419/3877 873/7075 3420/1024 +f 3408/5350 3420/1024 873/7075 +f 3241/5352 3426/1029 827/912 +f 3421/3878 827/912 3426/1029 +f 3422/5353 3432/1033 871/1021 +f 3414/3880 871/1021 3432/1033 +f 3428/5354 3439/1037 876/1032 +f 3433/3882 876/1032 3439/1037 +f 3434/5355 3446/1041 880/1044 +f 3445/3884 880/1044 3446/1041 +f 3447/3886 872/1025 3452/1045 +f 3415/5356 3452/1045 872/1025 +f 3457/3889 883/7076 3458/1049 +f 3448/5357 3458/1049 883/7076 +f 3463/5359 3466/1053 885/7077 +f 3460/3890 885/7077 3466/1053 +f 3461/5360 3472/1056 875/1028 +f 3427/3892 875/1028 3472/1056 +f 889/7078 3477/5361 3474/3894 +f 3480/1059 3474/3894 3477/5361 +f 3475/5363 3486/1063 886/1052 +f 3467/3896 886/1052 3486/1063 +f 891/1066 3482/5364 3487/3898 +f 3493/1067 3487/3898 3482/5364 +f 3499/3901 895/1077 3500/1074 +f 3488/5365 3500/1074 895/1077 +f 3501/3903 887/1057 3505/1076 +f 3468/5366 3505/1076 887/1057 +f 3440/3905 878/1036 3510/1080 +f 3502/5367 3510/1080 878/1036 +f 899/7079 3515/5368 3512/3906 +f 3518/1083 3512/3906 3515/5368 +f 890/1062 3513/5370 3481/3908 +f 3524/1087 3481/3908 3513/5370 +f 903/7080 3529/5371 3526/3910 +f 3532/1094 3526/3910 3529/5371 +f 900/1086 3527/5372 3519/3912 +f 3538/1095 3519/3912 3527/5372 +f 905/1098 3534/5373 3539/3914 +f 3545/1102 3539/3914 3534/5373 +f 909/1107 3540/5374 3551/3917 +f 3552/1103 3551/3917 3540/5374 +f 3557/1110 3553/3919 3520/5375 +f 901/1090 3520/5375 3553/3919 +f 3562/1114 3494/3921 3554/5376 +f 893/1070 3554/5376 3494/3921 +f 3453/5377 3569/1117 882/1048 +f 3563/3922 882/1048 3569/1117 +f 3564/5378 3576/1121 915/7081 +f 3575/3924 915/7081 3576/1121 +f 3577/3927 879/1040 3581/1123 +f 3441/5379 3581/1123 879/1040 +f 3570/3929 913/1116 3586/1126 +f 3578/5380 3586/1126 913/1116 +f 917/1127 3582/5381 3587/3930 +f 3592/1129 3587/3930 3582/5381 +f 919/1137 3588/5382 3595/3932 +f 3596/1131 3595/3932 3588/5382 +f 3597/3933 914/1120 3602/1134 +f 3571/5383 3602/1134 914/1120 +f 921/7082 3598/5384 3605/3935 +f 3606/1138 3605/3935 3598/5384 +f 903/7080 3525/5385 3607/3937 +f 3613/1141 3607/3937 3525/5385 +f 3619/3940 925/7083 3620/1147 +f 3608/5386 3620/1147 925/7083 +f 899/7079 3511/5387 3621/3941 +f 3626/1149 3621/3941 3511/5387 +f 3614/3944 923/1144 3632/1154 +f 3622/5388 3632/1154 923/1144 +f 3633/3946 928/1155 3639/1158 +f 3628/5389 3639/1158 928/1155 +f 3645/3948 932/1167 3646/1162 +f 3634/5390 3646/1162 932/1167 +f 3615/5391 3652/1166 924/1146 +f 3647/3950 924/1146 3652/1166 +f 3648/5392 3658/1171 935/7084 +f 3657/3951 935/7084 3658/1171 +f 889/7078 3473/5393 3659/3953 +f 3664/1173 3659/3953 3473/5393 +f 927/1152 3660/5394 3627/3956 +f 3670/1180 3627/3956 3660/5394 +f 3671/3958 885/7077 3675/1182 +f 3459/5395 3675/1182 885/7077 +f 3672/5396 3680/1186 937/1176 +f 3665/3960 937/1176 3680/1186 +f 3676/5397 3686/1189 940/1185 +f 3681/3961 940/1185 3686/1189 +f 3690/1194 3689/3963 3682/5398 +f 942/1195 3682/5398 3689/3963 +f 3695/1198 3691/3964 3666/5399 +f 938/1177 3666/5399 3691/3964 +f 3640/3966 930/1159 3698/1201 +f 3692/5400 3698/1201 930/1159 +f 869/1018 3402/5401 3699/3967 +f 3704/1203 3699/3967 3402/5401 +f 854/976 3700/5402 3346/978 +f 3710/1207 3346/978 3700/5402 +f 3716/1214 3711/3970 3391/5403 +f 866/1010 3391/5403 3711/3970 +f 945/1206 3712/5404 3705/3971 +f 3722/1215 3705/3971 3712/5404 +f 949/1218 3718/5405 3723/3973 +f 3729/1222 3723/3973 3718/5405 +f 953/1230 3724/5406 3735/3975 +f 3736/1223 3735/3975 3724/5406 +f 946/1210 3706/5407 3737/3977 +f 3741/1227 3737/3977 3706/5407 +f 857/984 3738/5408 3357/986 +f 3746/1234 3357/986 3738/5408 +f 3747/3980 934/1170 3753/1236 +f 3653/5409 3753/1236 934/1170 +f 3759/3981 959/7085 3760/1239 +f 3748/5410 3760/1239 959/7085 +f 3761/3984 931/1163 3765/1244 +f 3641/5411 3765/1244 931/1163 +f 3754/3986 957/1237 3770/1246 +f 3762/5412 3770/1246 957/1237 +f 3771/3988 961/1247 3776/1250 +f 3766/5413 3776/1250 961/1247 +f 963/1257 3772/5414 3779/3989 +f 3780/1251 3779/3989 3772/5414 +f 958/1242 3755/5415 3781/3990 +f 3786/1254 3781/3990 3755/5415 +f 965/7086 3782/5416 3789/3992 +f 3790/1258 3789/3992 3782/5416 +f 3792/3994 967/7087 3799/1263 +f 3796/5417 3799/1263 967/7087 +f 3793/5418 3806/1267 970/7088 +f 3805/3996 970/7088 3806/1267 +f 3808/3999 972/1487 3815/1270 +f 3812/1489 3815/1270 972/1487 +f 3819/4000 974/7089 3820/1273 +f 3809/5419 3820/1273 974/7089 +f 976/7090 3826/5420 3822/4002 +f 3828/1275 3822/4002 3826/5420 +f 977/1480 3823/5421 3831/4004 +f 3832/1277 3831/4004 3823/5421 +f 3837/1520 3840/1281 979/1522 +f 3834/4006 979/1522 3840/1281 +f 3835/5423 3846/1285 633/7091 +f 2491/4008 633/7091 3846/1285 +f 3851/1511 3854/1289 983/1512 +f 3848/4010 983/1512 3854/1289 +f 3849/5425 3860/1293 980/1280 +f 3841/4012 980/1280 3860/1293 +f 3856/5426 3867/1297 985/1292 +f 3861/4014 985/1292 3867/1297 +f 3862/5427 3874/1301 989/1304 +f 3873/4016 989/1304 3874/1301 +f 3842/5428 3879/1305 981/1284 +f 3875/4018 981/1284 3879/1305 +f 3876/5429 3884/1309 637/7092 +f 2505/4020 637/7092 3884/1309 +f 970/7088 3805/3996 3885/4022 +f 3890/1314 3885/4022 3805/3996 +f 3886/5430 3896/1316 984/1288 +f 3855/4024 984/1288 3896/1316 +f 3901/1319 3897/4027 3821/5432 +f 976/7090 3821/5432 3897/4027 +f 3891/4029 993/1311 3906/1324 +f 3898/5433 3906/1324 993/1311 +f 3907/4031 996/1325 3912/1328 +f 3902/5434 3912/1328 996/1325 +f 3917/4033 999/1337 3918/1332 +f 3908/5436 3918/1332 999/1337 +f 3919/4035 994/1317 3923/1336 +f 3892/5437 3923/1336 994/1317 +f 3920/5438 3928/1341 987/1296 +f 3868/4036 987/1296 3928/1341 +f 3935/1345 3929/4039 3819/4000 +f 974/7089 3819/4000 3929/4039 +f 3942/1350 3941/4041 3930/5439 +f 1005/1543 3930/5439 3941/4041 +f 3791/5440 3948/1353 967/7087 +f 3943/4042 967/7087 3948/1353 +f 3944/5441 3954/1357 1003/1344 +f 3936/4044 1003/1344 3954/1357 +f 3950/5442 3961/1361 1008/1356 +f 3955/4046 1008/1356 3961/1361 +f 3956/5443 3968/1364 1012/1370 +f 3967/4049 1012/1370 3968/1364 +f 1004/1347 3937/5444 3969/4050 +f 3974/1367 3969/4050 3937/5444 +f 1015/1554 3970/5445 3979/4052 +f 3980/1374 3979/4052 3970/5445 +f 3985/5446 3988/1376 1017/1594 +f 3982/4054 1017/1594 3988/1376 +f 3966/1363 1011/1365 3994/1381 +f 3983/5447 3994/1381 1011/1365 +f 3996/4056 1021/1586 4002/1383 +f 3999/5448 4002/1383 1021/1586 +f 3989/4059 1018/1377 4008/1387 +f 3997/5450 4008/1387 1018/1377 +f 4009/4061 1023/1390 4015/1392 +f 4004/5451 4015/1392 1023/1390 +f 1027/1399 4010/5452 4021/4062 +f 4022/1395 4021/4062 4010/5452 +f 4027/1402 4023/4065 3990/5453 +f 1019/1380 3990/5453 4023/4065 +f 1014/1371 4024/5454 3978/1372 +f 4032/1403 3978/1372 4024/5454 +f 4037/5455 4040/1409 1031/1469 +f 4034/4066 1031/1469 4040/1409 +f 4035/5456 4046/1413 681/7093 +f 2673/4068 681/7093 4046/1413 +f 4051/5457 4054/1417 1035/1459 +f 4048/4070 1035/1459 4054/1417 +f 4049/5458 4060/1421 1032/1408 +f 4041/4072 1032/1408 4060/1421 +f 4056/5459 4067/1425 1037/1420 +f 4061/4074 1037/1420 4067/1425 +f 4062/5460 4072/1429 1040/1432 +f 4071/4076 1040/1432 4072/1429 +f 4042/5461 4077/1433 1033/1412 +f 4073/4078 1033/1412 4077/1433 +f 4074/5462 4080/1437 684/7094 +f 2686/4080 684/7094 4080/1437 +f 4086/1442 4081/4083 1953/5464 +f 495/7095 1953/5464 4081/4083 +f 667/7096 4082/5465 2619/4084 +f 4092/1443 2619/4084 4082/5465 +f 491/7097 1939/5466 4093/4086 +f 4098/1447 4093/4086 1939/5466 +f 4104/1454 4087/4089 4094/5468 +f 1043/1439 4094/5468 4087/4089 +f 1047/1451 4100/5469 4105/4090 +f 4111/1455 4105/4090 4100/5469 +f 4115/4093 1050/1465 4116/1462 +f 4106/5470 4116/1462 1050/1465 +f 4117/4095 1044/1446 4121/1464 +f 4088/5471 4121/1464 1044/1446 +f 672/7098 4118/5472 2630/4096 +f 4124/1468 2630/4096 4118/5472 +f 481/7099 1901/5473 4125/4098 +f 4130/1471 4125/4098 1901/5473 +f 1046/1450 4126/5475 4099/4100 +f 4136/1475 4099/4100 4126/5475 +f 1887/5476 4141/1481 477/7100 +f 4137/4102 477/7100 4141/1481 +f 1053/1474 4138/5477 4131/4104 +f 4146/1483 4131/4104 4138/5477 +f 1056/1486 4142/5478 4147/4107 +f 4152/1490 4147/4107 4142/5478 +f 1059/1498 4148/5479 4157/4109 +f 4158/1494 4157/4109 4148/5479 +f 1054/1478 4132/5480 4159/4110 +f 4163/1495 4159/4110 4132/5480 +f 1049/1458 4160/5481 4112/4112 +f 4168/1499 4112/4112 4160/5481 +f 4170/4115 1063/7101 4176/1505 +f 4173/5483 4176/1505 1063/7101 +f 4171/5484 4182/1509 1036/1416 +f 4055/4116 1036/1416 4182/1509 +f 4187/5485 4189/1513 1067/7102 +f 4184/4118 1067/7102 4189/1513 +f 4185/5486 4194/1517 1064/1504 +f 4177/4120 1064/1504 4194/1517 +f 1068/1516 4190/5487 4195/4122 +f 4200/1519 4195/4122 4190/5487 +f 4204/1523 4203/4124 4196/5488 +f 1070/1528 4196/5488 4203/4124 +f 4178/5489 4209/1529 1065/1508 +f 4205/4126 1065/1508 4209/1529 +f 4206/5490 4212/1533 1039/1424 +f 4068/4128 1039/1424 4212/1533 +f 4213/4131 1061/1502 4219/1538 +f 4164/5491 4219/1538 1061/1502 +f 4214/5492 4226/1541 1075/7103 +f 4225/4132 1075/7103 4226/1541 +f 4231/1546 4227/4135 4153/5494 +f 1058/1491 4153/5494 4227/4135 +f 1073/1535 4228/5495 4220/4136 +f 4236/1547 4220/4136 4228/5495 +f 1077/1550 4232/5496 4237/4138 +f 4242/1551 4237/4138 4232/5496 +f 1079/1561 4238/5497 4245/4140 +f 4246/1555 4245/4140 4238/5497 +f 1074/1540 4221/5498 4247/4141 +f 4252/1558 4247/4141 4221/5498 +f 1081/7104 4248/5499 4255/4143 +f 4256/1562 4255/4143 4248/5499 +f 4257/4146 1067/7102 4262/1567 +f 4183/5500 4262/1567 1067/7102 +f 3949/4147 1007/1352 4268/1571 +f 4258/5501 4268/1571 1007/1352 +f 4169/5502 4274/1573 1063/7101 +f 4269/4150 1063/7101 4274/1573 +f 4270/5503 4280/1578 1083/1566 +f 4263/4151 1083/1566 4280/1578 +f 4281/4153 1087/1579 4287/1581 +f 4276/5504 4287/1581 1087/1579 +f 4282/5505 4292/1587 1090/1590 +f 4291/4155 1090/1590 4292/1587 +f 4264/5506 4297/1591 1084/1570 +f 4293/4157 1084/1570 4297/1591 +f 4294/5507 4300/1595 1010/1360 +f 3962/4159 1010/1360 4300/1595 +f 4306/1600 4301/4162 4225/4132 +f 1075/7103 4225/4132 4301/4162 +f 4312/1604 4275/4163 4302/5508 +f 1086/1576 4302/5508 4275/4163 +f 4318/1607 4313/4166 4013/1394 +f 1025/1393 4013/1394 4313/4166 +f 4314/5509 4322/1610 1081/7104 +f 4249/4167 1081/7104 4322/1610 +f 4285/1582 4327/1611 1089/1584 +f 4323/4168 1089/1584 4327/1611 +f 4330/1613 4003/4171 4324/5510 +f 1022/1386 4324/5510 4003/4171 +f 3006/5511 4337/1617 767/761 +f 4331/4173 767/761 4337/1617 +f 4343/4175 1101/7105 4344/1620 +f 4332/5512 4344/1620 1101/7105 +f 1103/7106 4349/5034 4346/4176 +f 4352/1623 4346/4176 4349/5034 +f 764/752 4347/5513 2998/754 +f 4356/1627 2998/754 4347/5513 +f 4362/5514 4364/1629 1106/7107 +f 4358/4178 1106/7107 4364/1629 +f 4359/5515 4368/1631 1107/7108 +f 4367/4181 1107/7108 4368/1631 +f 4374/1636 4369/4183 4343/4175 +f 1101/7105 4343/4175 4369/4183 +f 4380/1637 2950/719 4370/5516 +f 752/721 4370/5516 2950/719 +f 4357/5517 4386/1643 1106/7107 +f 4381/4184 1106/7107 4386/1643 +f 1109/1633 4382/5518 4375/4186 +f 4392/1645 4375/4186 4382/5518 +f 1113/1648 4388/5519 4393/4188 +f 4399/1649 4393/4188 4388/5519 +f 1117/1660 4394/5520 4405/4190 +f 4406/1653 4405/4190 4394/5520 +f 1110/1640 4376/5521 4407/4192 +f 4411/1657 4407/4192 4376/5521 +f 4416/1664 2961/727 4408/5522 +f 755/729 4408/5522 2961/727 +f 4417/4195 743/696 4423/1666 +f 2910/5523 4423/1666 743/696 +f 4429/4197 1123/7109 4430/1670 +f 4418/5524 4430/1670 1123/7109 +f 4431/4199 740/689 4435/1674 +f 2899/5525 4435/1674 740/689 +f 4424/4201 1121/1667 4440/1676 +f 4432/5526 4440/1676 1121/1667 +f 4441/4203 1125/1677 4446/1680 +f 4436/5527 4446/1680 1125/1677 +f 4451/4205 1128/1687 4452/1681 +f 4442/5528 4452/1681 1128/1687 +f 4453/4207 1122/1671 4458/1686 +f 4425/5529 4458/1686 1122/1671 +f 4463/4209 1131/7110 4464/1690 +f 4454/5530 4464/1690 1131/7110 +f 4470/1693 4465/4210 4429/4197 +f 1123/7109 4429/4197 4465/4210 +f 727/657 4466/5531 2852/655 +f 4476/1699 2852/655 4466/5531 +f 4478/4213 1136/7111 4484/1702 +f 4481/5076 4484/1702 1136/7111 +f 4455/4214 1131/7110 4488/1705 +f 4479/5532 4488/1705 1131/7110 +f 730/666 2861/5533 4489/4215 +f 4494/1707 4489/4215 2861/5533 +f 1139/7112 4490/5534 4497/4217 +f 4498/1710 4497/4217 4490/5534 +f 450/7024 1793/3371 4499/4219 +f 4505/1712 4499/4219 1793/3371 +f 1143/7113 4500/5535 4511/4221 +f 4512/1717 4511/4221 4500/5535 +f 4513/4224 461/7026 4518/1720 +f 1833/3383 4518/1720 461/7026 +f 4506/4226 1141/1713 4524/1724 +f 4514/5536 4524/1724 1141/1713 +f 4525/4228 1146/1725 4531/1729 +f 4520/5537 4531/1729 1146/1725 +f 4537/4230 1150/1736 4538/1732 +f 4526/5538 4538/1732 1150/1736 +f 4507/5539 4544/1737 1142/1716 +f 4539/4231 1142/1716 4544/1737 +f 4540/5540 4550/1741 1153/7114 +f 4549/4233 1153/7114 4550/1741 +f 465/7027 1847/3387 4551/4235 +f 4556/1745 4551/4235 1847/3387 +f 4552/5541 4562/1749 1145/1721 +f 4519/4237 1145/1721 4562/1749 +f 1885/3399 4568/1753 475/7028 +f 4563/4239 475/7028 4568/1753 +f 4564/5542 4574/1757 1155/1744 +f 4557/4241 1155/1744 4574/1757 +f 4570/5544 4581/1761 1159/1756 +f 4575/4243 1159/1756 4581/1761 +f 4576/5545 4588/1765 1163/1768 +f 4587/4245 1163/1768 4588/1765 +f 4558/5546 4593/1769 1156/1748 +f 4589/4247 1156/1748 4593/1769 +f 4590/5547 4598/1773 1148/1728 +f 4532/4249 1148/1728 4598/1773 +f 4599/4251 1152/1740 4605/1775 +f 4545/5548 4605/1775 1152/1740 +f 1169/7115 4600/5549 4611/4253 +f 4612/1779 4611/4253 4600/5549 +f 4613/4256 1149/1733 4618/1784 +f 4533/5550 4618/1784 1149/1733 +f 1167/1778 4614/5551 4606/4257 +f 4624/1787 4606/4257 4614/5551 +f 4625/4260 1172/1790 4631/1792 +f 4620/5552 4631/1792 1172/1790 +f 1176/1802 4626/5553 4637/4262 +f 4638/1796 4637/4262 4626/5553 +f 1168/1782 4607/5554 4639/4263 +f 4644/1799 4639/4263 4607/5554 +f 1179/7116 4640/5555 4649/4265 +f 4650/1803 4649/4265 4640/5555 +f 4651/4268 1178/1806 4657/1808 +f 4645/5556 4657/1808 1178/1806 +f 1183/7117 4652/5557 4663/4269 +f 4664/1812 4663/4269 4652/5557 +f 4665/4272 1175/1797 4670/1816 +f 4633/5558 4670/1816 1175/1797 +f 4658/4274 1181/1809 4676/1820 +f 4666/5559 4676/1820 1181/1809 +f 4677/4276 1186/1821 4683/1824 +f 4672/5560 4683/1824 1186/1821 +f 1190/1833 4678/5561 4689/4277 +f 4690/1827 4689/4277 4678/5561 +f 4691/4279 1182/1813 4696/1832 +f 4659/5562 4696/1832 1182/1813 +f 1193/7118 4692/5563 4701/4281 +f 4702/1835 4701/4281 4692/5563 +f 4704/4284 1195/1901 4710/1840 +f 4707/5564 4710/1840 1195/1901 +f 4671/4286 1185/1817 4716/1844 +f 4705/5565 4716/1844 1185/1817 +f 4718/4288 1199/1893 4724/1848 +f 4721/5566 4724/1848 1199/1893 +f 4711/4290 1196/1841 4730/1852 +f 4719/5568 4730/1852 1196/1841 +f 4731/4292 1201/1853 4737/1857 +f 4726/5569 4737/1857 1201/1853 +f 1205/1865 4732/5571 4743/4293 +f 4744/1859 4743/4293 4732/5571 +f 4745/4296 1197/1845 4749/1864 +f 4712/5572 4749/1864 1197/1845 +f 4684/4298 1188/1825 4754/1868 +f 4746/5573 4754/1868 1188/1825 +f 4594/5574 4760/1873 1165/1772 +f 4755/4300 1165/1772 4760/1873 +f 4619/4302 1171/1785 4766/1876 +f 4756/5575 4766/1876 1171/1785 +f 4583/5576 4772/1880 1162/1764 +f 4767/4304 1162/1764 4772/1880 +f 4761/4306 1209/1872 4778/1884 +f 4768/5578 4778/1884 1209/1872 +f 4779/4308 1213/1885 4785/1888 +f 4774/5579 4785/1888 1213/1885 +f 4789/4310 1216/1897 4790/1892 +f 4780/5581 4790/1892 1216/1897 +f 4791/4312 1210/1877 4795/1896 +f 4762/5582 4795/1896 1210/1877 +f 4632/4314 1174/1793 4798/1900 +f 4792/5583 4798/1900 1174/1793 +f 1192/1838 4697/5584 4799/4315 +f 4805/1903 4799/4315 4697/5584 +f 1221/7119 4800/5585 4811/4317 +f 4812/1907 4811/4317 4800/5585 +f 1189/1830 4685/5586 4813/4319 +f 4818/1911 4813/4319 4685/5586 +f 1219/1906 4814/5587 4806/4321 +f 4824/1915 4806/4321 4814/5587 +f 4825/4324 1224/1918 4831/1920 +f 4820/5588 4831/1920 1224/1918 +f 1227/1928 4826/5589 4835/4325 +f 4836/1923 4835/4325 4826/5589 +f 1220/1910 4807/5590 4837/4327 +f 4842/1925 4837/4327 4807/5590 +f 1229/7120 4838/5591 4845/4329 +f 4846/1929 4845/4329 4838/5591 +f 1207/1869 4750/5592 4847/4331 +f 4852/1931 4847/4331 4750/5592 +f 1223/1914 4848/5593 4819/4333 +f 4858/1935 4819/4333 4848/5593 +f 1204/1862 4739/5594 4859/4335 +f 4864/1939 4859/4335 4739/5594 +f 1231/1934 4860/5596 4853/4337 +f 4870/1943 4853/4337 4860/5596 +f 1235/1946 4866/5597 4871/4339 +f 4877/1947 4871/4339 4866/5597 +f 1238/1956 4872/5598 4881/4341 +f 4882/1951 4881/4341 4872/5598 +f 1232/1938 4854/5599 4883/4343 +f 4887/1953 4883/4343 4854/5599 +f 1226/1921 4884/5600 4832/4345 +f 4890/1957 4832/4345 4884/5600 +f 4896/1962 4891/4348 4735/1855 +f 1203/1856 4735/1855 4891/4348 +f 1234/1942 4892/5601 4865/4349 +f 4902/1963 4865/4349 4892/5601 +f 1200/1849 4722/1850 4903/4351 +f 4908/1967 4903/4351 4722/1850 +f 4914/1971 4897/4354 4904/5602 +f 1241/1959 4904/5602 4897/4354 +f 1245/1974 4910/5603 4915/4355 +f 4921/1975 4915/4355 4910/5603 +f 4926/1980 4925/4358 4916/5604 +f 1248/1981 4916/5604 4925/4358 +f 1242/1966 4898/5605 4927/4359 +f 4931/1984 4927/4359 4898/5605 +f 1237/1950 4928/5606 4878/4361 +f 4934/1985 4878/4361 4928/5606 +f 1215/1889 4783/1890 4935/4363 +f 4940/1989 4935/4363 4783/1890 +f 1244/1970 4936/5607 4909/4365 +f 4946/1993 4909/4365 4936/5607 +f 4947/4368 1212/1881 4951/1996 +f 4770/1882 4951/1996 1212/1881 +f 4941/4370 1251/1988 4956/1999 +f 4948/5608 4956/1999 1251/1988 +f 4952/5609 4962/2003 1254/2000 +f 4957/4371 1254/2000 4962/2003 +f 4965/4374 1256/2008 4966/2006 +f 4958/5610 4966/2006 1256/2008 +f 4942/5611 4971/2009 1252/1992 +f 4967/4375 1252/1992 4971/2009 +f 1247/1978 4968/5612 4922/4377 +f 4974/2012 4922/4377 4968/5612 +f 1259/7121 4980/5613 4976/4380 +f 4983/2013 4976/4380 4980/5613 +f 4977/5615 4990/2019 1262/7122 +f 4989/4381 1262/7122 4990/2019 +f 1264/7123 4995/5616 4992/4383 +f 4998/2021 4992/4383 4995/5616 +f 1260/2016 4993/5618 4984/4385 +f 5004/2025 4984/4385 4993/5618 +f 1266/2028 5000/5619 5005/4387 +f 5011/2029 5005/4387 5000/5619 +f 1270/2038 5006/5620 5017/4390 +f 5018/2033 5017/4390 5006/5620 +f 4985/5621 5024/2039 1261/2018 +f 5019/4391 1261/2018 5024/2039 +f 5020/5622 5030/2043 1273/7124 +f 5029/4393 1273/7124 5030/2043 +f 5025/5623 5037/2047 1272/2042 +f 5031/4395 1272/2042 5037/2047 +f 5032/5624 5044/2049 1277/7125 +f 5043/4398 1277/7125 5044/2049 +f 1269/2036 5013/5625 5045/4399 +f 5050/2053 5045/4399 5013/5625 +f 1275/2046 5046/5626 5038/4401 +f 5056/2057 5038/4401 5046/5626 +f 1280/2060 5052/5627 5057/4403 +f 5063/2063 5057/4403 5052/5627 +f 1284/2072 5058/5628 5069/4405 +f 5070/2065 5069/4405 5058/5628 +f 1276/2052 5039/5629 5071/4407 +f 5076/2069 5071/4407 5039/5629 +f 1287/7126 5072/5630 5081/4409 +f 5082/2073 5081/4409 5072/5630 +f 1289/2140 5087/5631 5084/4411 +f 5090/2077 5084/4411 5087/5631 +f 5085/5632 5096/2083 1279/2056 +f 5051/4413 1279/2056 5096/2083 +f 1293/2132 5101/5633 5098/4416 +f 5104/2086 5098/4416 5101/5633 +f 5099/5634 5110/2091 1290/2080 +f 5091/4417 1290/2080 5110/2091 +f 5106/5635 5117/2094 1295/2090 +f 5111/4419 1295/2090 5117/2094 +f 5112/5636 5124/2098 1299/2102 +f 5123/4421 1299/2102 5124/2098 +f 5092/5637 5129/2103 1291/2082 +f 5125/4423 1291/2082 5129/2103 +f 5126/5638 5134/2107 1282/2062 +f 5064/4425 1282/2062 5134/2107 +f 1303/7127 5139/5639 5136/4427 +f 5142/2109 5136/4427 5139/5639 +f 1265/2024 5137/5641 4999/4429 +f 5148/2113 4999/4429 5137/5641 +f 1307/7128 5153/5642 5150/4431 +f 5156/2117 5150/4431 5153/5642 +f 1304/2112 5151/5643 5143/4433 +f 5162/2121 5143/4433 5151/5643 +f 1309/2124 5158/5644 5163/4435 +f 5169/2125 5163/4435 5158/5644 +f 1312/2136 5164/5645 5173/4437 +f 5174/2129 5173/4437 5164/5645 +f 1305/2116 5144/5646 5175/4439 +f 5179/2133 5175/4439 5144/5646 +f 1268/2032 5176/5647 5012/4441 +f 5182/2137 5012/4441 5176/5647 +f 1286/2076 5077/5648 5183/4443 +f 5189/2141 5183/4443 5077/5648 +f 1317/7129 5184/5649 5195/4445 +f 5196/2145 5195/4445 5184/5649 +f 1283/2068 5065/5650 5197/4447 +f 5202/2149 5197/4447 5065/5650 +f 1315/2144 5198/5651 5190/4449 +f 5208/2153 5190/4449 5198/5651 +f 1320/2156 5204/5652 5209/4451 +f 5215/2157 5209/4451 5204/5652 +f 1323/2166 5210/5653 5219/4453 +f 5220/2161 5219/4453 5210/5653 +f 1316/2148 5191/5654 5221/4455 +f 5226/2163 5221/4455 5191/5654 +f 1325/7130 5222/5655 5229/4457 +f 5230/2167 5229/4457 5222/5655 +f 5130/5656 5236/2170 1301/2106 +f 5231/4460 1301/2106 5236/2170 +f 5203/4462 1319/2152 5242/2174 +f 5232/5657 5242/2174 1319/2152 +f 5243/4464 1298/2099 5248/2178 +f 5119/5658 5248/2178 1298/2099 +f 5237/4466 1327/2171 5254/2182 +f 5244/5659 5254/2182 1327/2171 +f 1331/2183 5250/5660 5255/4467 +f 5261/2185 5255/4467 5250/5660 +f 1334/2193 5256/5661 5265/4469 +f 5266/2189 5265/4469 5256/5661 +f 5267/4472 1328/2175 5271/2192 +f 5238/5662 5271/2192 1328/2175 +f 1322/2160 5268/5663 5216/4473 +f 5274/2195 5216/4473 5268/5663 +f 5282/2197 5276/4475 5279/4544 +f 1337/7131 5279/4544 5276/4475 +f 5288/2204 2592/4477 5277/5664 +f 659/7045 5277/5664 2592/4477 +f 5294/4496 5297/2207 1341/7132 +f 5290/4478 1341/7132 5297/2207 +f 5291/5665 5302/2210 1343/7133 +f 5301/4480 1343/7133 5302/2210 +f 1345/7134 5308/5666 5304/4482 +f 5311/2211 5304/4482 5308/5666 +f 1347/7135 5305/5667 5315/4484 +f 5316/2215 5315/4484 5305/5667 +f 4811/5668 5323/2219 1221/7136 +f 5317/4486 1221/7136 5323/2219 +f 5318/5669 5328/2222 1350/7137 +f 5327/4488 1350/7137 5328/2222 +f 665/7048 2613/3622 5329/4490 +f 5333/2223 5329/4490 2613/3622 +f 1229/7138 5330/5670 4839/4492 +f 5336/2225 4839/4492 5330/5670 +f 1353/7139 5341/4559 5338/4494 +f 5344/2227 5338/4494 5341/4559 +f 1341/7132 5339/5671 5294/4496 +f 5350/2231 5294/4496 5339/5671 +f 1357/7140 5355/4571 5352/4497 +f 5358/2235 5352/4497 5355/4571 +f 1354/2230 5353/5672 5345/4499 +f 5364/2239 5345/4499 5353/5672 +f 1359/2242 5360/5673 5365/4501 +f 5371/2243 5365/4501 5360/5673 +f 1363/2254 5366/5675 5377/4503 +f 5378/2247 5377/4503 5366/5675 +f 1355/2234 5346/5676 5379/4505 +f 5383/2251 5379/4505 5346/5676 +f 1347/7135 5380/5677 5306/4507 +f 5388/2255 5306/4507 5380/5677 +f 5369/2244 5394/2261 1361/2246 +f 5389/4509 1361/2246 5394/2261 +f 5390/5678 5400/2265 1259/7141 +f 4980/4511 1259/7141 5400/2265 +f 5356/2236 5406/2269 1358/2238 +f 5401/4513 1358/2238 5406/2269 +f 5402/5679 5412/2273 1367/2260 +f 5395/4515 1367/2260 5412/2273 +f 5408/5680 5419/2277 1371/2272 +f 5413/4517 1371/2272 5419/2277 +f 1375/2284 5414/5681 5425/4519 +f 5426/2279 5425/4519 5414/5681 +f 5396/5682 5431/2285 1368/2264 +f 5427/4521 1368/2264 5431/2285 +f 5428/5683 5436/2287 1264/7142 +f 4995/4523 1264/7142 5436/2287 +f 5441/4591 5444/2293 1379/7143 +f 5438/4525 1379/7143 5444/2293 +f 5439/5684 5450/2297 1374/2282 +f 5424/2281 1374/2282 5450/2297 +f 717/7066 2813/3682 5451/4527 +f 5457/2299 5451/4527 2813/3682 +f 1384/7144 5452/5685 5461/4529 +f 5462/2303 5461/4529 5452/5685 +f 1386/7145 5467/5686 5464/4531 +f 5470/2305 5464/4531 5467/5686 +f 5474/2310 2794/4533 5465/5687 +f 712/7063 5465/5687 2794/4533 +f 5149/5688 5481/2313 1307/7146 +f 5475/4534 1307/7146 5481/2313 +f 5476/5689 5486/2316 1390/7147 +f 5485/4536 1390/7147 5486/2316 +f 1377/2290 5432/5690 5487/4539 +f 5491/2318 5487/4539 5432/5690 +f 5494/2319 5139/4541 5488/5691 +f 1303/7148 5488/5691 5139/4541 +f 721/7067 2827/3686 5495/4542 +f 5500/2321 5495/4542 2827/3686 +f 5279/4544 1337/7131 5506/2326 +f 5496/5692 5506/2326 1337/7131 +f 731/7068 2865/3698 5507/4545 +f 5512/2329 5507/4545 2865/3698 +f 1393/2324 5508/5693 5501/4547 +f 5518/2333 5501/4547 5508/5693 +f 1397/2336 5514/5694 5519/4549 +f 5525/2339 5519/4549 5514/5694 +f 5520/5695 5532/2343 1401/2348 +f 5531/4551 1401/2348 5532/2343 +f 1394/2327 5502/5696 5533/4553 +f 5537/2345 5533/4553 5502/5696 +f 1343/7133 5534/5697 5292/4555 +f 5542/2349 5292/4555 5534/5697 +f 5538/5698 5548/2355 1403/2352 +f 5543/4557 1403/2352 5548/2355 +f 5544/5699 5554/2359 1353/7139 +f 5341/4559 1353/7139 5554/2359 +f 5527/5701 5560/2363 1400/2342 +f 5555/4561 1400/2342 5560/2363 +f 5556/5702 5566/2367 1405/2354 +f 5549/4563 1405/2354 5566/2367 +f 5562/5703 5573/2371 1409/2366 +f 5567/4565 1409/2366 5573/2371 +f 5568/5704 5580/2375 1413/2378 +f 5579/4567 1413/2378 5580/2375 +f 5550/5705 5585/2379 1406/2358 +f 5581/4569 1406/2358 5585/2379 +f 5582/5706 5590/2383 1357/7140 +f 5355/4571 1357/7140 5590/2383 +f 5586/5707 5596/2387 1415/2382 +f 5591/4573 1415/2382 5596/2387 +f 5592/5708 5602/2391 1370/2268 +f 5407/4575 1370/2268 5602/2391 +f 5575/5709 5608/2395 1412/2374 +f 5603/4577 1412/2374 5608/2395 +f 5604/5710 5614/2399 1417/2386 +f 5597/4579 1417/2386 5614/2399 +f 5610/5712 5621/2403 1421/2398 +f 5615/4581 1421/2398 5621/2403 +f 5616/5713 5628/2407 1425/2410 +f 5627/4583 1425/2410 5628/2407 +f 5598/5714 5633/2411 1418/2390 +f 5629/4585 1418/2390 5633/2411 +f 1373/2276 5630/5715 5420/4587 +f 5638/2413 5420/4587 5630/5715 +f 1427/2416 5634/5716 5639/4589 +f 5644/2417 5639/4589 5634/5716 +f 5650/2421 5441/4591 5640/5717 +f 1379/7143 5640/5717 5441/4591 +f 5623/5719 5656/2427 1424/2406 +f 5651/4592 1424/2406 5656/2427 +f 1429/2420 5652/5720 5645/4594 +f 5662/2429 5645/4594 5652/5720 +f 5663/4597 1433/2432 5669/2435 +f 5658/5721 5669/2435 1433/2432 +f 1436/2442 5664/5722 5673/4598 +f 5674/2437 5673/4598 5664/5722 +f 1430/2424 5646/5723 5675/4600 +f 5679/2439 5675/4600 5646/5723 +f 1384/7144 5676/5724 5453/4602 +f 5682/2443 5453/4602 5676/5724 +f 5683/4605 771/7070 5688/2446 +f 3023/3750 5688/2446 771/7070 +f 5684/5725 5694/2450 1386/7149 +f 5467/4607 1386/7149 5694/2450 +f 5695/4609 781/7072 5700/2454 +f 3061/3762 5700/2454 781/7072 +f 5689/4611 1439/2447 5706/2458 +f 5696/5726 5706/2458 1439/2447 +f 5702/5727 5713/2463 1443/2459 +f 5707/4612 1443/2459 5713/2463 +f 5708/5728 5720/2467 1447/2470 +f 5719/4614 1447/2470 5720/2467 +f 5721/4616 1440/2451 5725/2471 +f 5690/5729 5725/2471 1440/2451 +f 5477/4619 1390/7150 5730/2474 +f 5722/5730 5730/2474 1390/7150 +f 1449/2475 5726/5731 5731/4620 +f 5736/2480 5731/4620 5726/5731 +f 1308/2120 5732/5732 5157/4622 +f 5742/2481 5157/4622 5732/5732 +f 5715/5733 5748/2487 1446/2466 +f 5743/4624 1446/2466 5748/2487 +f 5754/2492 5737/4626 5744/5734 +f 1451/2477 5744/5734 5737/4626 +f 5761/2493 5755/4629 5750/5735 +f 1455/2489 5750/5735 5755/4629 +f 1459/2504 5756/5736 5767/4630 +f 5768/2497 5767/4630 5756/5736 +f 1452/2484 5738/5737 5769/4632 +f 5773/2501 5769/4632 5738/5737 +f 1311/2128 5770/5738 5170/4634 +f 5778/2505 5170/4634 5770/5738 +f 1461/2508 5774/5739 5779/4637 +f 5784/2510 5779/4637 5774/5739 +f 5105/4639 1294/2087 5790/2514 +f 5780/5740 5790/2514 1294/2087 +f 1458/2500 5763/5741 5791/4640 +f 5796/2517 5791/4640 5763/5741 +f 5785/4643 1463/2511 5802/2521 +f 5792/5742 5802/2521 1463/2511 +f 1467/2524 5798/5743 5803/4644 +f 5809/2525 5803/4644 5798/5743 +f 1471/2535 5804/5744 5815/4646 +f 5816/2529 5815/4646 5804/5744 +f 5817/4649 1464/2515 5821/2534 +f 5786/5745 5821/2534 1464/2515 +f 5118/4651 1297/2095 5826/2538 +f 5818/5746 5826/2538 1297/2095 +f 1473/2539 5822/5747 5827/4652 +f 5832/2541 5827/4652 5822/5747 +f 1330/2179 5828/5748 5249/4654 +f 5838/2545 5249/4654 5828/5748 +f 5844/2552 5839/4657 5811/5749 +f 1470/2532 5811/5749 5839/4657 +f 1475/2544 5840/5750 5833/4658 +f 5850/2553 5833/4658 5840/5750 +f 1479/2556 5846/5751 5851/4660 +f 5857/2557 5851/4660 5846/5751 +f 1482/2566 5852/5752 5861/4662 +f 5862/2561 5861/4662 5852/5752 +f 1476/2548 5834/5753 5863/4664 +f 5867/2563 5863/4664 5834/5753 +f 1333/2188 5864/5754 5262/4666 +f 5870/2567 5262/4666 5864/5754 +f 5871/4668 821/7073 5876/2571 +f 3219/3815 5876/2571 821/7073 +f 5701/4670 1442/2455 5882/2575 +f 5872/5755 5882/2575 1442/2455 +f 3257/3827 5888/2579 831/7074 +f 5883/4672 831/7074 5888/2579 +f 5884/5756 5894/2583 1485/2570 +f 5877/4674 1485/2570 5894/2583 +f 5895/4677 1489/2582 5901/2586 +f 5890/5757 5901/2586 1489/2582 +f 5907/4679 1493/2595 5908/2590 +f 5896/5758 5908/2590 1493/2595 +f 5909/4681 1486/2574 5913/2594 +f 5878/5759 5913/2594 1486/2574 +f 5714/4683 1445/2462 5918/2599 +f 5910/5760 5918/2599 1445/2462 +f 5914/5761 5925/2603 1495/2598 +f 5919/4684 1495/2598 5925/2603 +f 1499/7151 5920/5762 5931/4686 +f 5932/2605 5931/4686 5920/5762 +f 5933/4689 1492/2591 5938/2610 +f 5903/5763 5938/2610 1492/2591 +f 5934/5764 5944/2613 1497/2602 +f 5926/4690 1497/2602 5944/2613 +f 1502/2616 5940/5765 5945/4692 +f 5951/2617 5945/4692 5940/5765 +f 1506/2628 5946/5766 5957/4695 +f 5958/2624 5957/4695 5946/5766 +f 1498/2608 5927/5767 5959/4696 +f 5964/2625 5959/4696 5927/5767 +f 5960/5768 5970/2630 1509/7152 +f 5969/4699 1509/7152 5970/2630 +f 1511/2872 5975/5769 5972/4700 +f 5978/2636 5972/4700 5975/5769 +f 1466/2520 5973/5770 5797/4702 +f 5984/2637 5797/4702 5973/5770 +f 5992/2642 5986/4704 5989/5772 +f 1515/2861 5989/5772 5986/4704 +f 5998/2645 5979/4707 5987/5773 +f 1512/2633 5987/5773 5979/4707 +f 5999/4708 1517/2648 6005/2650 +f 5994/5774 6005/2650 1517/2648 +f 1521/2660 6000/5776 6011/4710 +f 6012/2653 6011/4710 6000/5776 +f 1513/2640 5980/5777 6013/4712 +f 6017/2657 6013/4712 5980/5777 +f 1469/2528 6014/5778 5810/4714 +f 6022/2661 5810/4714 6014/5778 +f 1523/2664 6018/5779 6023/4716 +f 6028/2665 6023/4716 6018/5779 +f 6034/2672 5845/4719 6024/5780 +f 1478/2549 6024/5780 5845/4719 +f 1520/2656 6007/5781 6035/4720 +f 6040/2673 6035/4720 6007/5781 +f 1525/2668 6036/5783 6029/4722 +f 6046/2677 6029/4722 6036/5783 +f 1529/2680 6042/5784 6047/4725 +f 6053/2681 6047/4725 6042/5784 +f 6058/2686 6057/4727 6048/5785 +f 1532/2687 6048/5785 6057/4727 +f 1526/2669 6030/5786 6059/4729 +f 6063/2690 6059/4729 6030/5786 +f 1481/2560 6060/5787 5858/4730 +f 6066/2691 5858/4730 6060/5787 +f 3419/3877 6072/2695 873/7075 +f 6067/4732 873/7075 6072/2695 +f 6068/5788 6078/2699 1488/2578 +f 5889/4734 1488/2578 6078/2699 +f 3457/3889 6084/2702 883/7076 +f 6079/4736 883/7076 6084/2702 +f 6080/5789 6090/2706 1535/2694 +f 6073/4739 1535/2694 6090/2706 +f 6091/4741 1539/2707 6097/2710 +f 6086/5790 6097/2710 1539/2707 +f 6103/4743 1543/2719 6104/2714 +f 6092/5791 6104/2714 1543/2719 +f 6105/4745 1536/2698 6109/2718 +f 6074/5792 6109/2718 1536/2698 +f 5902/4747 1491/2587 6114/2722 +f 6106/5793 6114/2722 1491/2587 +f 6115/4749 1545/2723 6120/2727 +f 6110/5794 6120/2727 1545/2723 +f 5939/4751 1501/2611 6126/2730 +f 6116/5795 6126/2730 1501/2611 +f 6099/5796 6132/2735 1542/2715 +f 6127/4752 1542/2715 6132/2735 +f 6128/5797 6138/2739 1547/2726 +f 6121/4754 1547/2726 6138/2739 +f 6134/5798 6145/2744 1551/2738 +f 6139/4757 1551/2738 6145/2744 +f 1555/2752 6140/5799 6151/4758 +f 6152/2745 6151/4758 6140/5799 +f 6153/4760 1548/2731 6157/2749 +f 6122/5800 6157/2749 1548/2731 +f 1504/2620 6154/5801 5952/4762 +f 6162/2753 5952/4762 6154/5801 +f 1557/2756 6158/5802 6163/4764 +f 6169/2757 6163/4764 6158/5802 +f 1561/7153 6164/5803 6175/4766 +f 6176/2761 6175/4766 6164/5803 +f 6182/2768 6177/4769 6147/5805 +f 1554/2748 6147/5805 6177/4769 +f 6188/2772 6170/4770 6178/5806 +f 1559/2760 6178/5806 6170/4770 +f 1564/2769 6184/5808 6189/4772 +f 6195/2773 6189/4772 6184/5808 +f 1567/2782 6190/5809 6199/4775 +f 6200/2778 6199/4775 6190/5809 +f 1560/2764 6171/5810 6201/4776 +f 6206/2779 6201/4776 6171/5810 +f 1569/7154 6202/5811 6209/4779 +f 6210/2784 6209/4779 6202/5811 +f 3575/3924 6216/2787 915/7081 +f 6211/4780 915/7081 6216/2787 +f 6212/5812 6222/2790 1538/2703 +f 6085/4783 1538/2703 6222/2790 +f 921/7082 3605/3935 6223/4784 +f 6227/2793 6223/4784 3605/3935 +f 6224/5813 6232/2796 1571/2786 +f 6217/4786 1571/2786 6232/2796 +f 1574/2799 6228/5814 6233/4788 +f 6238/2800 6233/4788 6228/5814 +f 1576/2806 6234/5815 6241/4790 +f 6242/2803 6241/4790 6234/5815 +f 6218/5816 6247/2807 1572/2791 +f 6243/4792 1572/2791 6247/2807 +f 6244/5817 6250/2809 1541/2711 +f 6098/4794 1541/2711 6250/2809 +f 3619/3940 6256/2813 925/7083 +f 6251/4796 925/7083 6256/2813 +f 1569/7154 6252/5818 6203/4798 +f 6262/2815 6203/4798 6252/5818 +f 3657/3951 6268/2821 935/7084 +f 6263/4799 935/7084 6268/2821 +f 6264/5819 6274/2825 1579/2812 +f 6257/4801 1579/2812 6274/2825 +f 6270/5820 6281/2829 1583/2824 +f 6275/4803 1583/2824 6281/2829 +f 6276/5821 6286/2832 1586/2835 +f 6285/4805 1586/2835 6286/2832 +f 6258/5822 6291/2836 1580/2818 +f 6287/4806 1580/2818 6291/2836 +f 1561/7153 6288/5823 6165/4808 +f 6294/2838 6165/4808 6288/5823 +f 1499/7151 5931/4686 6295/4809 +f 6300/2841 6295/4809 5931/4686 +f 1454/2486 6296/5824 5749/4811 +f 6306/2845 5749/4811 6296/5824 +f 6312/2852 6307/4814 5969/4699 +f 1509/7152 5969/4699 6307/4814 +f 1589/2844 6308/5825 6301/4816 +f 6318/2856 6301/4816 6308/5825 +f 6325/2860 6319/4818 6314/5826 +f 1593/2853 6314/5826 6319/4818 +f 6330/2864 6329/4820 6320/5827 +f 1596/2865 6320/5827 6329/4820 +f 1590/2848 6302/5828 6331/4822 +f 6335/2868 6331/4822 6302/5828 +f 1457/2496 6332/5829 5762/4823 +f 6338/2869 5762/4823 6332/5829 +f 1519/2651 6003/2652 6339/4825 +f 6344/2873 6339/4825 6003/2652 +f 1528/2676 6340/5830 6041/4827 +f 6350/2877 6041/4827 6340/5830 +f 1516/2643 5990/2644 6351/4829 +f 6356/2884 6351/4829 5990/2644 +f 1599/2876 6352/5831 6345/4831 +f 6362/2885 6345/4831 6352/5831 +f 1603/2888 6358/5832 6363/4833 +f 6369/2889 6363/4833 6358/5832 +f 1606/2898 6364/5834 6373/4836 +f 6374/2894 6373/4836 6364/5834 +f 1600/2880 6346/5835 6375/4837 +f 6379/2895 6375/4837 6346/5835 +f 6382/2900 6054/4840 6376/5836 +f 1531/2684 6376/5836 6054/4840 +f 3759/3981 6388/2901 959/7085 +f 6383/4841 959/7085 6388/2901 +f 6384/5837 6394/2907 1582/2820 +f 6269/4843 1582/2820 6394/2907 +f 965/7086 3789/3992 6395/4845 +f 6399/2909 6395/4845 3789/3992 +f 1609/2904 6396/5838 6389/4847 +f 6404/2912 6389/4847 6396/5838 +f 1612/2915 6400/5839 6405/4849 +f 6410/2916 6405/4849 6400/5839 +f 6406/5840 6414/2920 1614/2922 +f 6413/4851 1614/2922 6414/2920 +f 6390/5841 6419/2923 1610/2906 +f 6415/4853 1610/2906 6419/2923 +f 6416/5842 6422/2926 1585/2828 +f 6282/4855 1585/2828 6422/2926 +f 6428/4883 6431/2929 1617/7155 +f 6424/4856 1617/7155 6431/2929 +f 6425/5843 6438/2932 1620/7156 +f 6437/4858 1620/7156 6438/2932 +f 1622/3167 6444/5844 6440/4860 +f 6447/2935 6440/4860 6444/5844 +f 1624/7157 6441/5845 6451/4862 +f 6452/2939 6451/4862 6441/5845 +f 6458/4898 6460/2941 1626/7158 +f 6454/4864 1626/7158 6460/2941 +f 6455/5846 6464/2944 1627/3157 +f 6463/3158 1627/3157 6464/2944 +f 5195/5848 6471/2947 1317/7159 +f 6465/4867 1317/7159 6471/2947 +f 6466/5849 6478/2951 1631/3192 +f 6477/3191 1631/3192 6478/2951 +f 5229/5851 6483/2955 1325/7160 +f 6479/4870 1325/7160 6483/2955 +f 6480/5852 6488/2959 1629/2946 +f 6472/4872 1629/2946 6488/2959 +f 6484/5854 6494/2962 1633/2958 +f 6489/4874 1633/2958 6494/2962 +f 6490/5855 6500/2967 1636/2970 +f 6499/4876 1636/2970 6500/2967 +f 6473/5856 6506/2971 1630/2950 +f 6501/4878 1630/2950 6506/2971 +f 6502/5857 6512/2975 1639/3197 +f 6511/3198 1639/3197 6512/2975 +f 6507/5858 6518/2979 1638/2974 +f 6513/4881 1638/2974 6518/2979 +f 1617/7155 6514/5859 6428/4883 +f 6524/2984 6428/4883 6514/5859 +f 6495/5860 6529/2986 1635/2966 +f 6525/4884 1635/2966 6529/2986 +f 6526/5862 6534/2991 1641/2978 +f 6519/4886 1641/2978 6534/2991 +f 6530/5864 6540/2995 1644/2990 +f 6535/4888 1644/2990 6540/2995 +f 6536/5865 6544/2999 1646/3002 +f 6543/4890 1646/3002 6544/2999 +f 6520/5866 6549/3003 1642/2981 +f 6545/4892 1642/2981 6549/3003 +f 6552/3005 6442/4895 6546/5867 +f 1624/7157 6546/5867 6442/4895 +f 6560/3012 6554/4897 6557/5868 +f 1649/3227 6557/5868 6554/4897 +f 6566/3014 6458/4898 6555/5869 +f 1626/7158 6555/5869 6458/4898 +f 1653/3222 6571/5870 6568/4899 +f 6574/3020 6568/4899 6571/5870 +f 1650/3009 6569/5872 6561/4901 +f 6580/3021 6561/4901 6569/5872 +f 6581/4904 1655/3024 6587/3027 +f 6576/5874 6587/3027 1655/3024 +f 6593/4905 1659/3035 6594/3031 +f 6582/5875 6594/3031 1659/3035 +f 6595/4908 1651/3015 6599/3034 +f 6562/5876 6599/3034 1651/3015 +f 6426/4909 1620/7156 6604/3038 +f 6596/5877 6604/3038 1620/7156 +f 6585/3025 6611/3042 1657/3026 +f 6605/4911 1657/3026 6611/3042 +f 6606/5878 6618/3047 1665/3239 +f 6617/4912 1665/3239 6618/3047 +f 1654/3017 6572/3019 6619/4915 +f 6624/3049 6619/4915 6572/3019 +f 6630/3056 6612/4917 6620/5879 +f 1663/3043 6620/5879 6612/4917 +f 1668/3053 6626/5880 6631/4918 +f 6637/3057 6631/4918 6626/5880 +f 6632/5882 6644/3063 1672/3068 +f 6643/4920 1672/3068 6644/3063 +f 6613/5883 6650/3065 1664/3046 +f 6645/4922 1664/3046 6650/3065 +f 6646/5884 6656/3069 1675/3248 +f 6655/4924 1675/3248 6656/3069 +f 5384/5886 6663/3075 1365/7161 +f 6657/4926 1365/7161 6663/3075 +f 6658/5887 6670/3079 1679/3114 +f 6669/4928 1679/3114 6670/3079 +f 5373/5889 6675/3083 1362/7162 +f 6671/4930 1362/7162 6675/3083 +f 6672/5890 6680/3087 1677/3074 +f 6664/4932 1677/3074 6680/3087 +f 6676/5892 6686/3091 1681/3086 +f 6681/4934 1681/3086 6686/3091 +f 6682/5893 6692/3095 1684/3098 +f 6691/4936 1684/3098 6692/3095 +f 6665/5894 6698/3099 1678/3078 +f 6693/4938 1678/3078 6698/3099 +f 6703/4940 1687/3121 6704/3103 +f 6694/5895 6704/3103 1687/3121 +f 1350/7163 5327/5896 6705/4943 +f 6710/3105 6705/4943 5327/5896 +f 6706/5898 6716/3111 1193/7164 +f 4693/4944 1193/7164 6716/3111 +f 1345/7165 5303/5899 6717/4946 +f 6721/3115 6717/4946 5303/5899 +f 6718/5901 6726/3119 1689/3108 +f 6711/4948 1689/3108 6726/3119 +f 6722/5902 6732/3124 1692/3118 +f 6727/4951 1692/3118 6732/3124 +f 1695/3129 6728/5903 6737/4952 +f 6738/3125 6737/4952 6728/5903 +f 6743/3132 6739/4955 6712/5904 +f 1690/3110 6712/5904 6739/4955 +f 1183/7166 6740/5905 4653/4956 +f 6748/3133 4653/4956 6740/5905 +f 1697/3136 6744/5906 6749/4958 +f 6754/3137 6749/4958 6744/5906 +f 1179/7167 6750/5907 4641/4960 +f 6760/3141 4641/4960 6750/5907 +f 1694/3128 6733/5908 6761/4962 +f 6766/3145 6761/4962 6733/5908 +f 1699/3140 6762/5909 6755/4964 +f 6772/3149 6755/4964 6762/5909 +f 1703/3152 6768/5910 6773/4967 +f 6779/3156 6773/4967 6768/5910 +f 1706/3164 6774/5911 6783/4968 +f 6784/3160 6783/4968 6774/5911 +f 1700/3144 6756/5912 6785/4969 +f 6789/3161 6785/4969 6756/5912 +f 4601/4971 1169/7168 6792/3166 +f 6786/5913 6792/3166 1169/7168 +f 6699/5914 6799/3171 1686/3102 +f 6793/4972 1686/3102 6799/3171 +f 6794/5915 6806/3175 1711/7169 +f 6805/4974 1711/7169 6806/3175 +f 6687/5917 6811/3179 1683/3094 +f 6807/4976 1683/3094 6811/3179 +f 6808/5918 6816/3183 1709/3170 +f 6800/4978 1709/3170 6816/3183 +f 6822/3185 6817/4980 6812/5919 +f 1713/3182 6812/5919 6817/4980 +f 1715/3193 6818/5921 6825/4982 +f 6826/3189 6825/4982 6818/5921 +f 6801/5922 6832/3196 1710/3174 +f 6827/4983 1710/3174 6832/3196 +f 6835/4985 1717/7170 6836/3200 +f 6828/5923 6836/3200 1717/7170 +f 6841/5018 6844/3203 1719/7171 +f 6838/4986 1719/7171 6844/3203 +f 6839/5924 6850/3208 1702/3148 +f 6767/4989 1702/3148 6850/3208 +f 1723/7172 6855/5925 6852/4990 +f 6857/3209 6852/4990 6855/5925 +f 1720/3202 6853/5927 6845/4992 +f 6862/3212 6845/4992 6853/5927 +f 1724/3215 6858/5928 6863/4994 +f 6868/3216 6863/4994 6858/5928 +f 1726/3226 6864/5929 6871/4996 +f 6872/3219 6871/4996 6864/5929 +f 1721/3205 6846/5930 6873/4998 +f 6877/3223 6873/4998 6846/5930 +f 6880/3230 6780/5001 6874/5931 +f 1705/3153 6874/5931 6780/5001 +f 6600/5932 6886/3233 1661/3039 +f 6881/5002 1661/3039 6886/3233 +f 6882/5933 6892/3237 1717/7170 +f 6829/5004 1717/7170 6892/3237 +f 6589/5934 6897/3242 1658/3030 +f 6893/5006 1658/3030 6897/3242 +f 6894/5936 6902/3245 1729/3232 +f 6887/5007 1729/3232 6902/3245 +f 6898/5937 6908/3249 1732/3244 +f 6903/5009 1732/3244 6908/3249 +f 6904/5938 6914/3251 1735/3256 +f 6913/5011 1735/3256 6914/3251 +f 6888/5939 6919/3257 1730/3236 +f 6915/5013 1730/3236 6919/3257 +f 6916/5940 6924/3259 1711/7169 +f 6795/5015 1711/7169 6924/3259 +f 6930/3266 6925/5017 6920/5941 +f 1737/3262 6920/5941 6925/5017 +f 6936/3270 6841/5018 6926/5942 +f 1719/7171 6926/5942 6841/5018 +f 6942/3273 6937/5021 6651/5943 +f 1674/3072 6651/5943 6937/5021 +f 6938/5944 6946/3276 1734/3254 +f 6912/3253 1734/3254 6946/3276 +f 6851/5945 6951/3277 1723/7172 +f 6947/5022 1723/7172 6951/3277 +f 6954/3279 6642/3064 6948/5946 +f 1671/3062 6948/5946 6642/3064 +f 6959/5037 6962/3283 1745/7173 +f 6956/5024 1745/7173 6962/3283 +f 6957/5947 6968/3287 1432/2426 +f 5657/5026 1432/2426 6968/3287 +f 6969/5028 1107/7108 6975/3291 +f 4367/4181 6975/3291 1107/7108 +f 6979/5030 1750/7174 6980/3293 +f 6970/5948 6980/3293 1750/7174 +f 1435/2434 5667/2433 6981/5032 +f 6985/3295 6981/5032 5667/2433 +f 1103/7106 6982/5949 4349/5034 +f 6988/3297 4349/5034 6982/5949 +f 6994/3299 6989/5036 5619/2401 +f 1423/2402 5619/2401 6989/5036 +f 7000/3306 6959/5037 6990/5950 +f 1745/7173 6990/5950 6959/5037 +f 7006/3310 7001/5038 5606/2393 +f 1420/2394 5606/2393 7001/5038 +f 1753/3302 7002/5951 6995/5040 +f 7012/3311 6995/5040 7002/5951 +f 1757/3314 7008/5952 7013/5042 +f 7019/3315 7013/5042 7008/5952 +f 1760/3324 7014/5953 7023/5044 +f 7024/3319 7023/5044 7014/5953 +f 1754/3303 6996/5954 7025/5046 +f 7029/3321 7025/5046 6996/5954 +f 6971/5049 1750/7174 7032/3325 +f 7026/5955 7032/3325 1750/7174 +f 7037/5069 7040/3329 1763/7175 +f 7034/5050 1763/7175 7040/3329 +f 7035/5956 7046/3333 1408/2362 +f 5561/5052 1408/2362 7046/3333 +f 7051/5957 7053/3335 1767/7176 +f 7048/5054 1767/7176 7053/3335 +f 7049/5958 7058/3339 1764/3328 +f 7041/5056 1764/3328 7058/3339 +f 7054/5959 7064/3341 1768/3338 +f 7059/5058 1768/3338 7064/3341 +f 7060/5960 7068/3344 1770/3346 +f 7067/5060 1770/3346 7068/3344 +f 7042/5961 7073/3347 1765/3332 +f 7069/5062 1765/3332 7073/3347 +f 7070/5962 7076/3350 1411/2370 +f 5574/5064 1411/2370 7076/3350 +f 1399/2338 5523/2337 7077/5066 +f 7082/3353 7077/5066 5523/2337 +f 7088/3355 7037/5069 7078/5963 +f 1763/7175 7078/5963 7037/5069 +f 1139/7112 4497/4217 7089/5070 +f 7094/3362 7089/5070 4497/4217 +f 1396/2332 7090/5964 5513/5072 +f 7098/3363 5513/5072 7090/5964 +f 7047/5965 7103/3365 1767/7176 +f 7099/5074 1767/7176 7103/3365 +f 7100/5966 7106/3368 1136/7111 +f 4481/5076 1136/7111 7106/3368 +f 10/7177 1779/7178 1782/7179 +f 1783/5967 1782/7179 1779/7178 +f 1786/4 1791/5968 451/3370 +f 1790/5 451/3370 1791/5968 +f 1795/7180 1798/5969 113/5077 +f 1785/1 113/5077 1798/5969 +f 1801/12 1806/5970 455/3374 +f 1805/13 455/3374 1806/5970 +f 1807/16 1812/5971 117/3376 +f 1811/25 117/3376 1812/5971 +f 1814/20 1819/5972 459/3378 +f 1818/21 459/3378 1819/5972 +f 1792/8 1826/5973 116/3372 +f 1825/7181 116/3372 1826/5973 +f 1827/28 1831/5974 462/3382 +f 1830/29 462/3382 1831/5974 +f 18/3384 1832/32 1837/7182 +f 1838/5975 1837/7182 1832/32 +f 1840/36 1845/5976 466/3386 +f 1844/37 466/3386 1845/5976 +f 1820/24 1851/5977 115/3380 +f 1839/33 115/3380 1851/5977 +f 1853/44 1858/5978 469/3390 +f 1857/45 469/3390 1858/5978 +f 1859/48 1864/5979 121/3392 +f 1863/57 121/3392 1864/5979 +f 1866/52 1871/5980 473/3394 +f 1870/53 473/3394 1871/5980 +f 1846/40 1878/5981 120/3388 +f 1877/7183 120/3388 1878/5981 +f 1879/60 1883/5982 476/3398 +f 1882/61 476/3398 1883/5982 +f 2/5080 1887/7184 1800/9 +f 1890/5983 1800/9 1887/7184 +f 480/3402 1893/67 1897/70 +f 1898/5984 1897/70 1893/67 +f 122/5096 1901/7185 1892/66 +f 1904/5985 1892/66 1901/7185 +f 484/3406 1907/75 1911/78 +f 1912/5986 1911/78 1907/75 +f 125/3408 1913/79 1917/90 +f 1918/5987 1917/90 1913/79 +f 1920/84 1925/5988 488/3410 +f 1924/85 488/3410 1925/5988 +f 1899/71 1931/5989 114/3404 +f 1813/17 114/3404 1931/5989 +f 1932/91 1936/5990 490/3414 +f 1935/93 490/3414 1936/5990 +f 13/5099 1939/7186 1906/74 +f 1942/5991 1906/74 1939/7186 +f 1945/100 1950/5992 494/3418 +f 1949/101 494/3418 1950/5992 +f 126/5106 1953/7187 1944/97 +f 1956/5993 1944/97 1953/7187 +f 498/3422 1959/107 1963/109 +f 1964/5994 1963/109 1959/107 +f 1965/112 1970/5995 129/3424 +f 1969/121 129/3424 1970/5995 +f 1972/115 1977/5996 502/3426 +f 1976/117 502/3426 1977/5996 +f 1951/104 1983/5997 123/3420 +f 1919/81 123/3420 1983/5997 +f 1984/124 1988/5998 504/3430 +f 1987/125 504/3430 1988/5998 +f 1989/128 1994/5999 21/3432 +f 1993/169 21/3432 1994/5999 +f 1996/132 2001/6000 508/3434 +f 2000/133 508/3434 2001/6000 +f 1978/120 2007/6001 128/3428 +f 1995/129 128/3428 2007/6001 +f 2009/140 2014/6002 511/3438 +f 2013/141 511/3438 2014/6002 +f 2015/144 2020/6003 133/3440 +f 2019/153 133/3440 2020/6003 +f 515/3442 2022/147 2026/152 +f 2027/6004 2026/152 2022/147 +f 2002/136 2034/6006 132/3436 +f 2033/177 132/3436 2034/6006 +f 2035/156 2039/6007 518/3446 +f 2038/157 518/3446 2039/6007 +f 1937/96 2045/6009 16/3416 +f 1852/41 16/3416 2045/6009 +f 2047/164 2052/6010 521/3450 +f 2051/165 521/3450 2052/6010 +f 1926/88 2057/6011 124/3412 +f 2046/161 124/3412 2057/6011 +f 2058/172 2062/6012 523/3454 +f 2061/173 523/3454 2062/6012 +f 2063/176 2068/6013 135/3456 +f 2067/185 135/3456 2068/6013 +f 2069/180 2073/6014 526/3458 +f 2072/181 526/3458 2073/6014 +f 2053/168 2079/6016 118/3452 +f 1865/49 118/3452 2079/6016 +f 2080/188 2084/6017 528/3462 +f 2083/189 528/3462 2084/6017 +f 4/5109 2087/7188 1958/106 +f 2090/6019 1958/106 2087/7188 +f 532/3466 2093/195 2097/198 +f 2098/6020 2097/198 2093/195 +f 136/5132 2101/7189 2092/194 +f 2104/6021 2092/194 2101/7189 +f 536/3470 2107/203 2111/206 +f 2112/6022 2111/206 2107/203 +f 139/3472 2113/207 2117/218 +f 2118/6024 2117/218 2113/207 +f 2120/211 2125/6025 540/3474 +f 2124/213 540/3474 2125/6025 +f 127/3468 2099/199 1971/114 +f 2131/6027 1971/114 2099/199 +f 542/3478 2132/219 2135/222 +f 2136/6028 2135/222 2132/219 +f 2137/223 2141/6029 19/3480 +f 2008/137 19/3480 2141/6029 +f 545/3482 2143/227 2147/230 +f 2148/6030 2147/230 2143/227 +f 2126/216 2153/6031 138/3476 +f 2142/226 138/3476 2153/6031 +f 548/3486 2155/235 2159/238 +f 2160/6032 2159/238 2155/235 +f 142/3488 2161/239 2165/250 +f 2166/6034 2165/250 2161/239 +f 552/3490 2168/243 2172/246 +f 2173/6035 2172/246 2168/243 +f 130/3484 2149/231 2021/146 +f 2179/6037 2021/146 2149/231 +f 554/3494 2180/251 2183/254 +f 2184/6038 2183/254 2180/251 +f 2189/6039 2025/6005 2185/255 +f 6/3496 2185/255 2025/6005 +f 557/3498 2191/259 2195/263 +f 2196/6040 2195/263 2191/259 +f 141/3492 2174/247 2190/258 +f 2201/6041 2190/258 2174/247 +f 2208/6043 2207/271 2203/267 +f 560/3500 2203/267 2207/271 +f 2214/6044 2213/282 2209/270 +f 145/3501 2209/270 2213/282 +f 564/3503 2216/274 2220/278 +f 2221/6045 2220/278 2216/274 +f 131/3444 2197/262 2037/6008 +f 2227/6047 2037/6008 2197/262 +f 566/3508 2228/283 2231/286 +f 2232/6048 2231/286 2228/283 +f 20/3448 2233/287 2071/6015 +f 2237/6049 2071/6015 2233/287 +f 2243/296 569/3510 2244/6050 +f 2239/289 2244/6050 569/3510 +f 144/3506 2222/279 2238/292 +f 2249/6051 2238/292 2222/279 +f 2255/304 572/3511 2256/6053 +f 2251/297 2256/6053 572/3511 +f 2257/301 2262/6054 147/3513 +f 2261/312 147/3513 2262/6054 +f 2264/305 2268/6055 575/3516 +f 2267/309 575/3516 2268/6055 +f 134/3460 2245/293 2082/6018 +f 2273/6057 2082/6018 2245/293 +f 2274/315 2277/6058 576/3519 +f 2276/316 576/3519 2277/6058 +f 2279/7190 2283/6059 3/7191 +f 2282/7192 3/7191 2283/6059 +f 2286/322 2291/6060 581/3521 +f 2290/324 581/3521 2291/6060 +f 2295/7193 2298/6061 148/5164 +f 2285/319 148/5164 2298/6061 +f 2301/330 2306/6062 585/3525 +f 2305/331 585/3525 2306/6062 +f 152/3527 2307/334 2311/344 +f 2312/6063 2311/344 2307/334 +f 589/3529 2314/337 2318/340 +f 2319/6064 2318/340 2314/337 +f 151/3523 2292/325 2325/7194 +f 2326/6065 2325/7194 2292/325 +f 592/3533 2327/345 2330/348 +f 2331/6066 2330/348 2327/345 +f 2335/7195 2338/6067 14/5167 +f 2300/327 14/5167 2338/6067 +f 2341/353 2346/6068 596/3537 +f 2345/355 596/3537 2346/6068 +f 153/5174 2349/7196 2340/352 +f 2352/6069 2340/352 2349/7196 +f 600/3541 2355/361 2359/364 +f 2360/6070 2359/364 2355/361 +f 156/3543 2361/365 2365/376 +f 2366/6071 2365/376 2361/365 +f 604/3545 2368/369 2372/371 +f 2373/6072 2372/371 2368/369 +f 2347/358 2379/6073 149/3539 +f 2313/336 149/3539 2379/6073 +f 606/3549 2380/377 2383/380 +f 2384/6074 2383/380 2380/377 +f 29/3551 2385/381 2389/424 +f 2390/6075 2389/424 2385/381 +f 2392/386 2397/6076 610/3553 +f 2396/388 610/3553 2397/6076 +f 2374/374 2403/6077 155/3547 +f 2391/383 155/3547 2403/6077 +f 2405/394 2410/6078 613/3557 +f 2409/395 613/3557 2410/6078 +f 2411/398 2416/6079 160/3559 +f 2415/407 160/3559 2416/6079 +f 2418/402 2423/6080 617/3561 +f 2422/403 617/3561 2423/6080 +f 159/3555 2398/389 2429/432 +f 2430/6081 2429/432 2398/389 +f 2431/410 2435/6082 620/3565 +f 2434/411 620/3565 2435/6082 +f 25/3535 2332/349 2441/7197 +f 2442/6083 2441/7197 2332/349 +f 624/3569 2444/417 2448/420 +f 2449/6084 2448/420 2444/417 +f 150/3531 2320/341 2443/416 +f 2455/6085 2443/416 2320/341 +f 626/3573 2456/425 2459/428 +f 2460/6086 2459/428 2456/425 +f 163/3575 2461/429 2465/440 +f 2466/6087 2465/440 2461/429 +f 629/3577 2467/433 2470/436 +f 2471/6088 2470/436 2467/433 +f 162/3571 2450/421 2477/7198 +f 2478/6089 2477/7198 2450/421 +f 632/3581 2479/441 2482/444 +f 2483/6090 2482/444 2479/441 +f 1/5178 2487/7199 2354/360 +f 2490/6091 2354/360 2487/7199 +f 636/3585 2493/449 2497/452 +f 2498/6092 2497/452 2493/449 +f 164/5201 2501/7200 2492/448 +f 2504/6093 2492/448 2501/7200 +f 640/3589 2507/457 2511/460 +f 2512/6094 2511/460 2507/457 +f 167/3591 2513/461 2517/472 +f 2518/6096 2517/472 2513/461 +f 644/3593 2520/465 2524/468 +f 2525/6097 2524/468 2520/465 +f 154/3587 2499/453 2367/368 +f 2531/6099 2367/368 2499/453 +f 646/3597 2532/473 2535/476 +f 2536/6100 2535/476 2532/473 +f 2537/477 2541/6101 27/3599 +f 2404/391 27/3599 2541/6101 +f 2543/482 2548/6102 649/3601 +f 2547/483 649/3601 2548/6102 +f 2526/469 2553/6103 166/3595 +f 2542/479 166/3595 2553/6103 +f 2555/490 2560/6104 652/3605 +f 2559/491 652/3605 2560/6104 +f 2561/494 2566/6106 170/3607 +f 2565/503 170/3607 2566/6106 +f 656/3609 2568/497 2572/500 +f 2573/6107 2572/500 2568/497 +f 2549/486 2579/6109 157/3603 +f 2417/399 157/3603 2579/6109 +f 658/3613 2580/506 2583/507 +f 2584/6110 2583/507 2580/506 +f 2591/6111 2590/7201 2587/7202 +f 34/7203 2587/7202 2590/7201 +f 663/3617 2594/512 2598/516 +f 2599/6112 2598/516 2594/512 +f 15/7204 2105/7205 2605/7206 +f 2606/6116 2605/7206 2105/7205 +f 666/3621 2608/521 2611/524 +f 2612/6118 2611/524 2608/521 +f 2615/7207 2618/6119 4/7208 +f 2087/7209 4/7208 2618/6119 +f 2621/528 2625/6121 669/3625 +f 2624/529 669/3625 2625/6121 +f 12/5228 2627/5227 2630/7210 +f 2631/6122 2630/7210 2627/5227 +f 673/3629 2634/533 2637/536 +f 2638/6123 2637/536 2634/533 +f 2641/5254 2645/6125 35/5255 +f 2644/7211 35/5255 2645/6125 +f 2647/538 2650/6126 676/3633 +f 2649/539 676/3633 2650/6126 +f 35/5255 2644/7211 2655/7212 +f 2656/6127 2655/7212 2644/7211 +f 680/3637 2658/543 2662/546 +f 2663/6128 2662/546 2658/543 +f 173/3635 2632/5222 2657/542 +f 2669/6129 2657/542 2632/5222 +f 683/3641 2671/551 2675/554 +f 2676/6130 2675/554 2671/551 +f 179/3643 2677/555 2681/566 +f 2682/6132 2681/566 2677/555 +f 687/3645 2684/559 2688/562 +f 2689/6133 2688/562 2684/559 +f 178/3639 2664/547 2695/7213 +f 2696/6137 2695/7213 2664/547 +f 690/3649 2697/567 2700/570 +f 2701/6138 2700/570 2697/567 +f 3/6136 2282/7214 2687/6135 +f 2707/6140 2687/6135 2282/7214 +f 2713/580 693/3652 2714/6141 +f 2709/573 2714/6141 693/3652 +f 2708/576 151/5236 2719/6142 +f 2325/7215 2719/6142 151/5236 +f 696/3654 2721/583 2725/588 +f 2726/6143 2725/588 2721/583 +f 2731/600 182/3656 2732/6144 +f 2727/585 2732/6144 182/3656 +f 700/3659 2734/591 2738/596 +f 2739/6145 2738/596 2734/591 +f 2715/577 2745/6147 177/3647 +f 2699/6139 177/3647 2745/6147 +f 2749/601 702/3662 2750/6148 +f 2746/597 2750/6148 702/3662 +f 2755/7216 36/5270 2756/6149 +f 2736/6146 2756/6149 36/5270 +f 2762/612 706/3664 2763/6151 +f 2758/605 2763/6151 706/3664 +f 2720/582 25/5239 2769/6154 +f 2441/7217 2769/6154 25/5239 +f 2775/6155 2774/617 2771/615 +f 708/3669 2771/615 2774/617 +f 2485/7218 8/7219 2780/6157 +f 2777/7220 2780/6157 8/7219 +f 2786/624 711/3672 2787/6159 +f 2783/619 2787/6159 711/3672 +f 26/7221 2789/7222 2792/7223 +f 2793/6160 2792/7223 2789/7222 +f 715/3677 2796/628 2799/630 +f 2800/6161 2799/630 2796/628 +f 37/4603 2803/5277 2806/7224 +f 2807/6163 2806/7224 2803/5277 +f 718/3681 2809/632 2811/634 +f 2812/6164 2811/634 2809/632 +f 2590/7201 2818/6165 34/7203 +f 2817/7225 34/7203 2818/6165 +f 722/3685 2820/638 2824/640 +f 2825/6166 2824/640 2820/638 +f 2646/5224 2831/6167 174/3618 +f 2819/635 174/3618 2831/6167 +f 725/3689 2833/645 2837/648 +f 2838/6168 2837/648 2833/645 +f 190/3691 2839/649 2843/660 +f 2844/6169 2843/660 2839/649 +f 2846/654 2851/6170 729/3692 +f 2850/658 729/3692 2851/6170 +f 189/3687 2826/641 2857/7226 +f 2858/6172 2857/7226 2826/641 +f 732/3697 2859/661 2862/664 +f 2863/6173 2862/664 2859/661 +f 2655/7212 2869/6174 35/5255 +f 2832/644 35/5255 2869/6174 +f 2871/670 2876/6175 735/3701 +f 2875/671 735/3701 2876/6175 +f 2870/667 178/3639 2881/6176 +f 2695/7213 2881/6176 178/3639 +f 2883/678 2888/6177 738/3705 +f 2887/679 738/3705 2888/6177 +f 2889/682 2894/6178 193/3707 +f 2893/691 193/3707 2894/6178 +f 2900/690 742/3709 2901/6179 +f 2896/683 2901/6179 742/3709 +f 2877/674 2907/6180 187/3703 +f 2845/651 187/3703 2907/6180 +f 2908/694 2912/6181 744/3713 +f 2911/695 744/3713 2912/6181 +f 2751/604 2917/6182 33/3651 +f 2882/675 33/3651 2917/6182 +f 2919/702 2924/6183 747/3717 +f 2923/703 747/3717 2924/6183 +f 2918/699 181/3660 2929/6184 +f 2740/593 2929/6184 181/3660 +f 2935/711 750/3720 2936/6185 +f 2931/709 2936/6185 750/3720 +f 2937/714 2942/6186 196/3723 +f 2941/723 196/3723 2942/6186 +f 2944/715 2949/6188 754/3725 +f 2948/722 754/3725 2949/6188 +f 2925/706 2955/6189 191/3719 +f 2895/686 191/3719 2955/6189 +f 2959/730 756/3729 2960/6191 +f 2956/726 2960/6191 756/3729 +f 36/5270 2755/7216 2930/708 +f 2965/6192 2930/708 2755/7216 +f 759/3733 2967/733 2971/736 +f 2972/6193 2971/736 2967/733 +f 185/3666 2808/5251 2966/732 +f 2977/6194 2966/732 2808/5251 +f 762/3737 2979/741 2983/744 +f 2984/6195 2983/744 2979/741 +f 199/3739 2985/745 2989/756 +f 2990/6197 2989/756 2985/745 +f 2992/749 2997/6198 766/3741 +f 2996/751 766/3741 2997/6198 +f 194/3735 2973/737 2943/718 +f 3003/6202 2943/718 2973/737 +f 768/3745 3004/757 3007/762 +f 3008/6203 3007/762 3004/757 +f 2792/7227 3014/6204 26/7228 +f 3013/7229 26/7228 3014/6204 +f 3016/766 3021/6205 772/3749 +f 3020/767 772/3749 3021/6205 +f 2781/7230 3027/6206 183/5283 +f 3015/763 183/5283 3027/6206 +f 3033/778 775/3753 3034/6207 +f 3029/774 3034/6207 775/3753 +f 3039/787 203/3755 3040/6208 +f 3035/775 3040/6208 203/3755 +f 3046/786 779/3756 3047/6209 +f 3042/779 3047/6209 779/3756 +f 3022/770 3054/6210 202/3751 +f 3053/7231 202/3751 3054/6210 +f 3055/790 3059/6211 782/3761 +f 3058/791 782/3761 3059/6211 +f 8/3583 2484/445 3028/771 +f 3065/6212 3028/771 2484/445 +f 785/3765 3067/797 3071/801 +f 3072/6213 3071/801 3067/797 +f 161/3579 2472/437 3066/796 +f 3077/6214 3066/796 2472/437 +f 788/3769 3079/805 3083/808 +f 3084/6215 3083/808 3079/805 +f 206/3771 3085/809 3089/821 +f 3090/6216 3089/821 3085/809 +f 792/3773 3092/813 3096/816 +f 3097/6217 3096/816 3092/813 +f 3041/782 200/3766 3103/6218 +f 3073/800 3103/6218 200/3766 +f 3108/6219 3107/826 3104/820 +f 794/3776 3104/820 3107/826 +f 28/3567 2436/414 3078/804 +f 3113/6220 3078/804 2436/414 +f 3115/830 3120/6221 797/3781 +f 3119/831 797/3781 3120/6221 +f 2424/406 3125/6222 158/3563 +f 3114/827 158/3563 3125/6222 +f 3127/838 3132/6223 800/3785 +f 3131/839 800/3785 3132/6223 +f 3133/842 3138/6224 209/3787 +f 3137/852 209/3787 3138/6224 +f 3145/6225 3144/848 3140/845 +f 804/3788 3140/845 3144/848 +f 204/3783 3121/834 3091/812 +f 3151/6226 3091/812 3121/834 +f 806/3793 3152/853 3155/856 +f 3156/6227 3155/856 3152/853 +f 2585/510 3161/6228 7/3615 +f 3126/835 7/3615 3161/6228 +f 809/3797 3163/861 3167/864 +f 3168/6229 3167/864 3163/861 +f 169/3611 2574/501 3162/860 +f 3173/6230 3162/860 2574/501 +f 812/3801 3175/869 3179/872 +f 3180/6231 3179/872 3175/869 +f 212/3803 3181/873 3185/884 +f 3186/6233 3185/884 3181/873 +f 816/3805 3188/877 3192/880 +f 3193/6234 3192/880 3188/877 +f 207/3799 3169/865 3139/844 +f 3199/6236 3139/844 3169/865 +f 3204/6237 3203/889 3200/885 +f 818/3809 3200/885 3203/889 +f 3060/794 3210/6238 45/3763 +f 3209/7232 45/3763 3210/6238 +f 3216/898 822/3812 3217/6239 +f 3212/891 3217/6239 822/3812 +f 3211/894 201/3758 3223/6240 +f 3048/783 3223/6240 201/3758 +f 3225/899 3230/6241 825/3817 +f 3229/903 825/3817 3230/6241 +f 3231/906 3236/6242 216/3819 +f 3235/918 216/3819 3236/6242 +f 3238/910 3243/6243 829/3821 +f 3242/911 829/3821 3243/6243 +f 3249/7233 215/3814 3250/6244 +f 3218/895 3250/6244 215/3814 +f 3254/922 832/3824 3255/6245 +f 3251/915 3255/6245 832/3824 +f 44/3778 3109/823 3261/6326 +f 3262/6246 3261/6326 3109/823 +f 836/3829 3264/925 3268/928 +f 3269/6247 3268/928 3264/925 +f 205/3774 3098/817 3263/924 +f 3275/6248 3263/924 3098/817 +f 3282/6249 3281/937 3277/933 +f 839/3832 3277/933 3281/937 +f 3288/6250 3287/949 3283/936 +f 220/3833 3283/936 3287/949 +f 3295/6252 3294/945 3290/940 +f 843/3835 3290/940 3294/945 +f 219/3830 3270/929 3301/6329 +f 3302/6253 3301/6329 3270/929 +f 3307/6255 3306/953 3303/948 +f 846/3839 3303/948 3306/953 +f 46/3795 3157/857 3276/932 +f 3313/6256 3276/932 3157/857 +f 849/3843 3315/957 3319/961 +f 3320/6257 3319/961 3315/957 +f 208/3791 3146/849 3314/956 +f 3325/6258 3314/956 3146/849 +f 852/3847 3327/965 3331/968 +f 3332/6259 3331/968 3327/965 +f 3338/6260 3337/980 3333/969 +f 223/3849 3333/969 3337/980 +f 3345/6261 3344/975 3340/973 +f 856/3850 3340/973 3344/975 +f 3351/6263 3289/941 3321/960 +f 217/3844 3321/960 3289/941 +f 3352/981 3356/6264 858/3855 +f 3355/983 858/3855 3356/6264 +f 43/3810 3205/888 3326/964 +f 3361/6266 3326/964 3205/888 +f 861/3859 3363/988 3367/992 +f 3368/6267 3367/992 3363/988 +f 3373/6268 3362/989 3194/881 +f 211/3807 3194/881 3362/989 +f 864/3863 3375/997 3379/1001 +f 3380/6270 3379/1001 3375/997 +f 226/3865 3381/1000 3385/1012 +f 3386/6271 3385/1012 3381/1000 +f 3393/6273 3392/1008 3388/1004 +f 868/3866 3388/1004 3392/1008 +f 221/3861 3369/993 3339/972 +f 3399/6274 3339/972 3369/993 +f 870/3871 3400/1013 3403/1016 +f 3404/6275 3403/1016 3400/1013 +f 3409/7234 50/3826 3410/6276 +f 3256/919 3410/6276 50/3826 +f 3416/1026 874/3874 3417/6277 +f 3412/1019 3417/6277 874/3874 +f 3411/1022 214/3823 3423/6278 +f 3244/914 3423/6278 214/3823 +f 3425/1030 3430/6279 877/3879 +f 3429/1031 877/3879 3430/6279 +f 3431/1034 3436/6280 230/3881 +f 3435/1043 230/3881 3436/6280 +f 3438/1038 3443/6281 881/3883 +f 3442/1039 881/3883 3443/6281 +f 3449/7235 229/3876 3450/6282 +f 3418/1023 3450/6282 229/3876 +f 3451/1046 3455/6283 884/3887 +f 3454/1047 884/3887 3455/6283 +f 3459/5395 3462/6284 49/5351 +f 3424/1027 49/5351 3462/6284 +f 3465/1054 3470/6285 888/3891 +f 3469/1058 888/3891 3470/6285 +f 231/5358 3473/5393 3464/1051 +f 3476/6286 3464/1051 3473/5393 +f 892/3895 3479/1061 3483/1064 +f 3484/6287 3483/1064 3479/1061 +f 3485/1065 3490/6288 234/3897 +f 3489/1078 234/3897 3490/6288 +f 3497/6290 3496/1073 3492/1069 +f 896/3899 3492/1069 3496/1073 +f 3437/1035 227/3893 3503/6291 +f 3471/1055 3503/6291 227/3893 +f 3507/1082 898/3902 3508/6293 +f 3504/1075 3508/6293 898/3902 +f 51/5362 3511/5387 3478/1060 +f 3514/6294 3478/1060 3511/5387 +f 902/3907 3517/1085 3521/1088 +f 3522/6295 3521/1088 3517/1085 +f 235/5369 3525/5385 3516/1084 +f 3528/6296 3516/1084 3525/5385 +f 906/3911 3531/1092 3535/1096 +f 3536/6298 3535/1096 3531/1092 +f 238/3913 3537/1097 3541/1109 +f 3542/6299 3541/1109 3537/1097 +f 910/3915 3544/1100 3548/1104 +f 3549/6301 3548/1104 3544/1100 +f 232/3909 3523/1089 3491/1068 +f 3555/6302 3491/1068 3523/1089 +f 3560/6303 3559/1113 3556/1108 +f 912/3918 3556/1108 3559/1113 +f 3565/7236 55/3888 3566/6304 +f 3456/1050 3566/6304 55/3888 +f 3568/1118 3573/6305 916/3923 +f 3572/1119 916/3923 3573/6305 +f 3444/1042 3579/6306 228/3885 +f 3567/1115 228/3885 3579/6306 +f 3583/1128 918/3926 3584/6307 +f 3580/1124 3584/6307 918/3926 +f 240/3928 3585/1125 3589/1135 +f 3590/6308 3589/1135 3585/1125 +f 920/3931 3591/1130 3593/1132 +f 3594/6309 3593/1132 3591/1130 +f 3574/1122 3600/6310 239/3925 +f 3599/7237 239/3925 3600/6310 +f 922/3934 3601/1136 3603/1139 +f 3604/6311 3603/1139 3601/1136 +f 3610/6312 3609/7238 3529/5371 +f 32/4778 3529/5371 3609/7238 +f 3612/1143 3617/6313 926/3938 +f 3616/1145 926/3938 3617/6313 +f 235/5369 3515/5368 3611/1142 +f 3623/6314 3611/1142 3515/5368 +f 3629/1156 929/3942 3630/6315 +f 3625/1151 3630/6315 929/3942 +f 3635/1168 244/3943 3636/6316 +f 3631/1153 3636/6316 244/3943 +f 3642/1164 933/3945 3643/6317 +f 3638/1157 3643/6317 933/3945 +f 3649/7239 243/3939 3650/6318 +f 3618/1148 3650/6318 243/3939 +f 3654/1169 936/3949 3655/6319 +f 3651/1165 3655/6319 936/3949 +f 51/5362 3477/5361 3624/1150 +f 3661/6320 3624/1150 3477/5361 +f 939/3954 3663/1175 3667/1179 +f 3668/6321 3667/1179 3663/1175 +f 3463/5359 3673/6322 231/5358 +f 3662/1174 231/5358 3673/6322 +f 3674/1181 3678/6323 941/3957 +f 3677/1184 941/3957 3678/6323 +f 3684/6324 3683/1197 3679/1187 +f 245/3959 3679/1187 3683/1197 +f 3688/6325 3687/1193 3685/1190 +f 943/3962 3685/1190 3687/1193 +f 3637/1160 241/3955 3693/6327 +f 3669/1178 3693/6327 241/3955 +f 3694/1196 3697/6328 944/3965 +f 3696/1199 944/3965 3697/6328 +f 48/3873 3405/1017 3343/6262 +f 3701/6330 3343/6262 3405/1017 +f 947/3968 3703/1205 3707/1208 +f 3708/6331 3707/1208 3703/1205 +f 225/3869 3394/1009 3702/1204 +f 3713/6332 3702/1204 3394/1009 +f 3720/6334 3719/1216 3715/1212 +f 950/3969 3715/1212 3719/1216 +f 248/3972 3721/1217 3725/1228 +f 3726/6335 3725/1228 3721/1217 +f 954/3974 3728/1220 3732/1224 +f 3733/6336 3732/1224 3728/1220 +f 222/3853 3709/1209 3354/6265 +f 3739/6338 3354/6265 3709/1209 +f 956/3978 3740/1229 3743/1233 +f 3744/6339 3743/1233 3740/1229 +f 3656/1172 3750/6340 57/3952 +f 3749/7240 57/3952 3750/6340 +f 3756/1240 960/3979 3757/6341 +f 3752/1235 3757/6341 960/3979 +f 3751/1238 242/3947 3763/6342 +f 3644/1161 3763/6342 242/3947 +f 3767/1248 962/3983 3768/6343 +f 3764/1243 3768/6343 962/3983 +f 250/3985 3769/1245 3773/1255 +f 3774/6344 3773/1255 3769/1245 +f 964/3987 3775/1249 3777/1252 +f 3778/6345 3777/1252 3775/1249 +f 249/3982 3758/1241 3783/7241 +f 3784/6346 3783/7241 3758/1241 +f 966/3991 3785/1256 3787/1259 +f 3788/6347 3787/1259 3785/1256 +f 3791/5440 3795/6348 61/5424 +f 3794/7242 61/5424 3795/6348 +f 3798/1264 3803/6351 971/3995 +f 3802/1265 971/3995 3803/6351 +f 3810/7243 62/5493 3811/6353 +f 3807/6423 3811/6353 62/5493 +f 3817/1274 975/3998 3818/6354 +f 3814/1269 3818/6354 975/3998 +f 2/5431 3821/5432 3824/1479 +f 3825/6356 3824/1479 3821/5432 +f 978/4003 3827/1276 3829/1278 +f 3830/6357 3829/1278 3827/1276 +f 3833/6434 3836/6358 1/6436 +f 2487/7244 1/6436 3836/6358 +f 3839/1282 3844/6359 982/4007 +f 3843/1283 982/4007 3844/6359 +f 3847/6431 3850/6360 255/5422 +f 3838/1279 255/5422 3850/6360 +f 3853/1290 3858/6361 986/4011 +f 3857/1291 986/4011 3858/6361 +f 3859/1294 3864/6362 258/4013 +f 3863/1303 258/4013 3864/6362 +f 3866/1298 3871/6363 990/4015 +f 3870/1299 990/4015 3871/6363 +f 3845/1286 3877/6365 164/4009 +f 2501/7245 164/4009 3877/6365 +f 3878/1306 3882/6366 992/4019 +f 3881/1307 992/4019 3882/6366 +f 61/5424 3794/7242 3852/1287 +f 3887/6368 3852/1287 3794/7242 +f 3893/1318 995/4023 3894/6369 +f 3889/1312 3894/6369 995/4023 +f 3899/6370 3888/1313 3826/5420 +f 253/3997 3826/5420 3888/1313 +f 3904/6371 3903/1326 3900/1321 +f 997/4026 3900/1321 3903/1326 +f 3909/1338 260/4028 3910/6373 +f 3905/1323 3910/6373 260/4028 +f 3914/1334 1000/4030 3915/6375 +f 3911/1327 3915/6375 1000/4030 +f 3895/1315 3921/6378 256/4025 +f 3865/1295 256/4025 3921/6378 +f 3925/1339 1002/4034 3926/6380 +f 3922/1335 3926/6380 1002/4034 +f 3932/6381 3931/1545 3810/7243 +f 62/5493 3810/7243 3931/1545 +f 3939/6382 3938/1349 3934/1346 +f 1006/4038 3934/1346 3938/1349 +f 3796/5417 3945/6383 251/4001 +f 3933/1343 251/4001 3945/6383 +f 3947/1354 3952/6384 1009/4043 +f 3951/1355 1009/4043 3952/6384 +f 3953/1358 3958/6385 264/4045 +f 3957/1368 264/4045 3958/6385 +f 3960/1362 3965/6386 1013/4047 +f 3964/1366 1013/4047 3965/6386 +f 3972/6388 3971/1552 3940/1348 +f 263/4040 3940/1348 3971/1552 +f 1016/4051 3973/1369 3976/1373 +f 3977/6390 3976/1373 3973/1369 +f 3981/1596 3984/6391 63/4160 +f 3963/6387 63/4160 3984/6391 +f 3987/1375 3992/6392 1020/4055 +f 3991/1379 1020/4055 3992/6392 +f 3986/1378 265/4156 3998/6393 +f 3995/1588 3998/6393 265/4156 +f 1024/4057 4001/1385 4005/1388 +f 4006/6394 4005/1388 4001/1385 +f 268/4058 4007/1389 4011/1401 +f 4012/6395 4011/1401 4007/1389 +f 4018/1396 1028/4060 4019/6396 +f 4014/1391 4019/6396 1028/4060 +f 4025/6398 3975/6389 3993/1382 +f 262/4048 3993/1382 3975/6389 +f 4030/6399 4029/1404 4026/1400 +f 1030/4064 4026/1400 4029/1404 +f 12/4097 4033/1467 2670/7246 +f 4036/6400 2670/7246 4033/1467 +f 4039/1410 4044/6401 1034/4067 +f 4043/1411 1034/4067 4044/6401 +f 4047/1460 4050/6402 269/4092 +f 4038/1407 269/4092 4050/6402 +f 4053/1418 4058/6403 1038/4071 +f 4057/1419 1038/4071 4058/6403 +f 4059/1422 4064/6404 271/4073 +f 4063/1431 271/4073 4064/6404 +f 4066/1426 4070/6405 1041/4075 +f 4069/1427 1041/4075 4070/6405 +f 4045/1414 4075/6407 176/4069 +f 2683/7247 176/4069 4075/6407 +f 4076/1434 4079/6408 1042/4079 +f 4078/1435 1042/4079 4079/6408 +f 4/7248 1957/7249 2615/7250 +f 4083/6410 2615/7250 1957/7249 +f 4089/1444 1045/4082 4090/6411 +f 4085/1440 4090/6411 1045/4082 +f 4095/6412 4084/1441 1943/7251 +f 126/5463 1943/7251 4084/1441 +f 1048/4087 4097/1449 4101/1453 +f 4102/6413 4101/1453 4097/1449 +f 4108/6414 4107/1466 4103/1452 +f 273/4088 4103/1452 4107/1466 +f 1051/4091 4110/1457 4113/1461 +f 4114/6415 4113/1461 4110/1457 +f 172/4085 4091/1445 2639/7252 +f 4119/6416 2639/7252 4091/1445 +f 4122/1470 1052/4094 4123/6417 +f 4120/1463 4123/6417 1052/4094 +f 13/5467 1905/7253 4096/1448 +f 4127/6418 4096/1448 1905/7253 +f 1055/4099 4129/1473 4133/1476 +f 4134/6419 4133/1476 4129/1473 +f 122/5474 1891/7254 4128/1472 +f 4139/6420 4128/1472 1891/7254 +f 4140/1482 4144/6421 1057/4103 +f 4143/1484 1057/4103 4144/6421 +f 275/4105 4145/1485 4149/1496 +f 4150/6422 4149/1496 4145/1485 +f 4155/6424 4154/1493 4151/1488 +f 1060/4106 4151/1488 4154/1493 +f 272/4101 4135/1477 4109/1456 +f 4161/6425 4109/1456 4135/1477 +f 1062/4111 4162/1497 4165/1500 +f 4166/6426 4165/1500 4162/1497 +f 67/4113 4169/5502 4052/1415 +f 4172/6427 4052/1415 4169/5502 +f 4175/1506 4180/6428 1066/4114 +f 4179/1507 1066/4114 4180/6428 +f 4183/5500 4186/6429 276/5482 +f 4174/1503 276/5482 4186/6429 +f 4188/1514 4192/6430 1069/4119 +f 4191/1515 1069/4119 4192/6430 +f 4193/1518 4198/6432 277/4121 +f 4197/1527 277/4121 4198/6432 +f 1071/4123 4199/1521 4201/1524 +f 4202/6433 4201/1524 4199/1521 +f 4181/1510 4207/6437 270/4117 +f 4065/1423 270/4117 4207/6437 +f 4208/1530 4211/6439 1072/4127 +f 4210/1531 1072/4127 4211/6439 +f 4167/1501 4216/6440 67/4113 +f 4215/7255 67/4113 4216/6440 +f 4222/1539 1076/4130 4223/6441 +f 4218/1536 4223/6441 1076/4130 +f 4229/6442 4217/1537 4156/1492 +f 274/4108 4156/1492 4217/1537 +f 1078/4134 4230/1544 4233/1548 +f 4234/6443 4233/1548 4230/1544 +f 279/4137 4235/1549 4239/1559 +f 4240/6444 4239/1559 4235/1549 +f 1080/4139 4241/1553 4243/1556 +f 4244/6445 4243/1556 4241/1553 +f 4224/1542 4250/6446 278/4133 +f 4249/4167 278/4133 4250/6446 +f 1082/4142 4251/1560 4253/1563 +f 4254/6447 4253/1563 4251/1560 +f 61/5424 4187/5485 3946/1351 +f 4259/6448 3946/1351 4187/5485 +f 4261/1568 4266/6449 1085/4145 +f 4265/1569 1085/4145 4266/6449 +f 4173/5483 4271/6450 276/5482 +f 4260/1565 276/5482 4271/6450 +f 1088/4149 4273/1575 4277/1580 +f 4278/6451 4277/1580 4273/1575 +f 4279/1577 4284/6452 281/4152 +f 4283/1589 281/4152 4284/6452 +f 4286/1583 4290/6454 1091/4154 +f 4289/1585 1091/4154 4290/6454 +f 4267/1572 4295/6455 261/4148 +f 3959/1359 261/4148 4295/6455 +f 4296/1592 4299/6456 1092/4158 +f 4298/1593 1092/4158 4299/6456 +f 4303/6457 4272/1574 4215/7255 +f 67/4113 4215/7255 4272/1574 +f 4310/6461 4309/1603 4305/1598 +f 1095/4161 4305/1598 4309/1603 +f 4315/6462 4255/4143 4016/6397 +f 65/4144 4016/6397 4255/4143 +f 4317/1608 4321/6464 1097/4165 +f 4320/1609 1097/4165 4321/6464 +f 4325/6465 4000/1384 4288/6453 +f 66/5449 4288/6453 4000/1384 +f 4326/1612 4329/6466 1098/4169 +f 4328/1614 1098/4169 4329/6466 +f 4333/7256 41/3746 4334/6467 +f 3009/759 4334/6467 41/3746 +f 4340/1622 1102/4172 4341/6469 +f 4336/1618 4341/6469 1102/4172 +f 42/6201 4345/7257 2995/6200 +f 4348/6472 2995/6200 4345/7257 +f 1105/4177 4351/1625 4354/1628 +f 4355/6473 4354/1628 4351/1625 +f 4357/5517 4361/6475 68/5048 +f 4360/7258 68/5048 4361/6475 +f 4363/1630 4366/6476 1108/4179 +f 4365/1632 1108/4179 4366/6476 +f 4371/6477 2947/6187 4333/7256 +f 41/3746 4333/7256 2947/6187 +f 1111/4182 4373/1634 4377/1638 +f 4378/6478 4377/1638 4373/1634 +f 4383/6479 4372/1635 4362/5514 +f 284/4174 4362/5514 4372/1635 +f 1114/4185 4385/1644 4389/1646 +f 4390/6480 4389/1646 4385/1644 +f 288/4187 4391/1647 4395/1658 +f 4396/6482 4395/1658 4391/1647 +f 1118/4189 4398/1651 4402/1654 +f 4403/6483 4402/1654 4398/1651 +f 4409/6487 2958/6190 4379/1639 +f 195/3726 4379/1639 2958/6190 +f 1120/4193 4410/1659 4413/1663 +f 4414/6488 4413/1663 4410/1659 +f 2913/698 4420/6490 40/3715 +f 4419/7259 40/3715 4420/6490 +f 4426/1672 1124/4194 4427/6491 +f 4422/1665 4427/6491 1124/4194 +f 4421/1668 192/3710 4433/6492 +f 2902/687 4433/6492 192/3710 +f 4437/1678 1126/4198 4438/6493 +f 4434/1673 4438/6493 1126/4198 +f 4443/1688 291/4200 4444/6494 +f 4439/1675 4444/6494 291/4200 +f 4448/1682 1129/4202 4449/6496 +f 4445/1679 4449/6496 1129/4202 +f 4455/4214 290/4196 4456/6497 +f 4428/1669 4456/6497 290/4196 +f 4460/1692 1132/4206 4461/6499 +f 4457/1685 4461/6499 1132/4206 +f 40/3715 4419/7259 2849/6171 +f 4467/6500 2849/6171 4419/7259 +f 4473/1697 1135/4211 4474/6503 +f 4469/1695 4474/6503 1135/4211 +f 4463/4209 70/4208 4480/6505 +f 4477/7260 4480/6505 70/4208 +f 4486/1706 1138/4212 4487/6506 +f 4483/1701 4487/6506 1138/4212 +f 39/3699 2864/665 4491/7261 +f 4492/6508 4491/7261 2864/665 +f 1140/4216 4493/1708 4495/1709 +f 4496/6509 4495/1709 4493/1708 +f 10/7177 1782/7179 4501/7262 +f 4502/6510 4501/7262 1782/7179 +f 4508/1715 1144/4220 4509/6511 +f 4504/1711 4509/6511 1144/4220 +f 4503/1714 116/3372 4515/6512 +f 1825/7181 4515/6512 116/3372 +f 4521/1726 1147/4223 4522/6513 +f 4517/1719 4522/6513 1147/4223 +f 4527/1735 297/4225 4528/6514 +f 4523/1723 4528/6514 297/4225 +f 4534/1734 1151/4227 4535/6515 +f 4530/1730 4535/6515 1151/4227 +f 4510/1718 4542/6516 296/4222 +f 4541/7263 296/4222 4542/6516 +f 4543/1738 4547/6517 1154/4232 +f 4546/1739 1154/4232 4547/6517 +f 18/3384 1837/7182 4516/1722 +f 4553/6518 4516/1722 1837/7182 +f 4555/1746 4560/6519 1157/4236 +f 4559/1747 1157/4236 4560/6519 +f 1877/7183 4565/6520 120/3388 +f 4554/1743 120/3388 4565/6520 +f 4567/1754 4572/6521 1160/4240 +f 4571/1755 1160/4240 4572/6521 +f 4573/1758 4578/6522 300/4242 +f 4577/1767 300/4242 4578/6522 +f 4580/1762 4585/6523 1164/4244 +f 4584/1763 1164/4244 4585/6523 +f 4561/1750 4591/6524 294/4238 +f 4529/1727 294/4238 4591/6524 +f 4592/1770 4596/6525 1166/4248 +f 4595/1771 1166/4248 4596/6525 +f 72/4234 4548/1742 4601/7264 +f 4602/6526 4601/7264 4548/1742 +f 1170/4252 4604/1777 4608/1780 +f 4609/6527 4608/1780 4604/1777 +f 4603/1776 295/4229 4615/6528 +f 4536/1731 4615/6528 295/4229 +f 4621/1788 1173/4255 4622/6529 +f 4617/1783 4622/6529 1173/4255 +f 304/4258 4623/1789 4627/1800 +f 4628/6530 4627/1800 4623/1789 +f 4634/1798 1177/4259 4635/6531 +f 4630/1791 4635/6531 1177/4259 +f 303/4254 4610/1781 4641/7265 +f 4642/6532 4641/7265 4610/1781 +f 1180/4264 4643/1801 4646/1804 +f 4647/6533 4646/1804 4643/1801 +f 80/4266 4648/1805 4653/7266 +f 4654/6534 4653/7266 4648/1805 +f 4660/1814 1184/4267 4661/6535 +f 4656/1807 4661/6535 1184/4267 +f 4655/1810 302/4261 4667/6536 +f 4636/1795 4667/6536 302/4261 +f 4673/1822 1187/4271 4674/6537 +f 4669/1815 4674/6537 1187/4271 +f 4679/1834 308/4273 4680/6538 +f 4675/1819 4680/6538 308/4273 +f 4686/1828 1191/4275 4687/6539 +f 4682/1823 4687/6539 1191/4275 +f 307/4270 4662/1811 4693/7267 +f 4694/6540 4693/7267 4662/1811 +f 1194/4280 4695/1831 4698/1836 +f 4699/6541 4698/1836 4695/1831 +f 4668/1818 85/4313 4706/6542 +f 4703/1899 4706/6542 85/4313 +f 4713/1846 1198/4283 4714/6543 +f 4709/1839 4714/6543 1198/4283 +f 4708/1842 309/4309 4720/6544 +f 4717/1891 4720/6544 309/4309 +f 4727/1854 1202/4287 4728/6545 +f 4723/1847 4728/6545 1202/4287 +f 4733/1866 312/4289 4734/6547 +f 4729/1851 4734/6547 312/4289 +f 1206/4291 4736/1858 4740/1860 +f 4741/6548 4740/1860 4736/1858 +f 4681/1826 305/4285 4747/6550 +f 4715/1843 4747/6550 305/4285 +f 4751/1870 1208/4295 4752/6551 +f 4748/1863 4752/6551 1208/4295 +f 4616/1786 82/4250 4757/6552 +f 4597/1774 4757/6552 82/4250 +f 4763/1878 1211/4299 4764/6553 +f 4759/1874 4764/6553 1211/4299 +f 4586/1766 4769/6554 299/4246 +f 4758/1871 299/4246 4769/6554 +f 4775/1886 1214/4303 4776/6555 +f 4771/1879 4776/6555 1214/4303 +f 4781/1898 314/4305 4782/6557 +f 4777/1883 4782/6557 314/4305 +f 4787/1894 1217/4307 4788/6558 +f 4784/1887 4788/6558 1217/4307 +f 4629/1794 301/4301 4793/6560 +f 4765/1875 4793/6560 301/4301 +f 4796/1902 1218/4311 4797/6561 +f 4794/1895 4797/6561 1218/4311 +f 74/4282 4700/1837 4801/7268 +f 4802/6562 4801/7268 4700/1837 +f 1222/4316 4804/1905 4808/1908 +f 4809/6563 4808/1908 4804/1905 +f 306/4278 4688/1829 4803/1904 +f 4815/6564 4803/1904 4688/1829 +f 1225/4320 4817/1913 4821/1916 +f 4822/6565 4821/1916 4817/1913 +f 317/4322 4823/1917 4827/1926 +f 4828/6566 4827/1926 4823/1917 +f 4833/1924 1228/4323 4834/6567 +f 4830/1919 4834/6567 1228/4323 +f 316/4318 4810/1909 4839/7269 +f 4840/6568 4839/7269 4810/1909 +f 1230/4328 4841/1927 4843/1930 +f 4844/6569 4843/1930 4841/1927 +f 4816/1912 83/4297 4849/6570 +f 4753/1867 4849/6570 83/4297 +f 1233/4332 4851/1933 4855/1936 +f 4856/6571 4855/1936 4851/1933 +f 311/4294 4742/1861 4850/1932 +f 4861/6572 4850/1932 4742/1861 +f 1236/4336 4863/1941 4867/1944 +f 4868/6573 4867/1944 4863/1941 +f 319/4338 4869/1945 4873/1954 +f 4874/6574 4873/1954 4869/1945 +f 1239/4340 4876/1949 4879/1952 +f 4880/6575 4879/1952 4876/1949 +f 4829/1922 315/4334 4885/6576 +f 4857/1937 4885/6576 315/4334 +f 1240/4344 4886/1955 4888/1958 +f 4889/6577 4888/1958 4886/1955 +f 4893/6578 4862/1940 4738/6549 +f 76/5595 4738/6549 4862/1940 +f 1243/4347 4895/1960 4899/1964 +f 4900/6579 4899/1964 4895/1960 +f 310/5570 4725/6546 4894/1961 +f 4905/6580 4894/1961 4725/6546 +f 1246/4352 4907/1969 4911/1972 +f 4912/6581 4911/1972 4907/1969 +f 4918/6582 4917/1983 4913/1973 +f 321/4353 4913/1973 4917/1983 +f 1249/4356 4920/1977 4923/1979 +f 4924/6583 4923/1979 4920/1977 +f 318/4350 4901/1965 4875/1948 +f 4929/6584 4875/1948 4901/1965 +f 4933/6585 4932/1986 4930/1982 +f 1250/4360 4930/1982 4932/1986 +f 84/5567 4786/6559 4906/1968 +f 4937/6586 4906/1968 4786/6559 +f 4939/1990 4944/6587 1253/4364 +f 4943/1991 1253/4364 4944/6587 +f 313/5580 4773/6556 4938/1987 +f 4949/6588 4938/1987 4773/6556 +f 4950/1997 4954/6589 1255/4367 +f 4953/2001 1255/4367 4954/6589 +f 4959/2007 322/4369 4960/6590 +f 4955/1998 4960/6590 322/4369 +f 4963/2005 1257/4372 4964/6591 +f 4961/2004 4964/6591 1257/4372 +f 320/4366 4945/1994 4919/1976 +f 4969/6592 4919/1976 4945/1994 +f 4970/2010 4973/6593 1258/4376 +f 4972/2011 1258/4376 4973/6593 +f 4978/7270 73/7271 4979/6594 +f 4975/7272 4979/6594 73/7271 +f 4986/2017 1263/4379 4987/6595 +f 4982/2015 4987/6595 1263/4379 +f 323/5614 4991/7273 4981/2014 +f 4994/6596 4981/2014 4991/7273 +f 1267/4384 4997/2023 5001/2026 +f 5002/6597 5001/2026 4997/2023 +f 327/4386 5003/2027 5007/2037 +f 5008/6598 5007/2037 5003/2027 +f 1271/4388 5010/2031 5014/2034 +f 5015/6599 5014/2034 5010/2031 +f 4988/2020 5022/6600 326/4382 +f 5021/7274 326/4382 5022/6600 +f 5023/2040 5027/6601 1274/4392 +f 5026/2041 1274/4392 5027/6601 +f 5028/2044 5034/6602 81/4394 +f 5033/7275 81/4394 5034/6602 +f 5040/2050 1278/4396 5041/6603 +f 5036/2048 5041/6603 1278/4396 +f 5035/2045 325/4389 5047/6604 +f 5016/2035 5047/6604 325/4389 +f 1281/4400 5049/2055 5053/2058 +f 5054/6605 5053/2058 5049/2055 +f 331/4402 5055/2059 5059/2070 +f 5060/6606 5059/2070 5055/2059 +f 1285/4404 5062/2064 5066/2066 +f 5067/6607 5066/2066 5062/2064 +f 330/4397 5042/2051 5073/7276 +f 5074/6608 5073/7276 5042/2051 +f 1288/4408 5075/2071 5078/2074 +f 5079/6609 5078/2074 5075/2071 +f 89/4442 5083/2139 5048/2054 +f 5086/6610 5048/2054 5083/2139 +f 5089/2079 5094/6611 1292/4412 +f 5093/2081 1292/4412 5094/6611 +f 332/4438 5097/2131 5088/2078 +f 5100/6612 5088/2078 5097/2131 +f 5103/2085 5108/6613 1296/4415 +f 5107/2089 1296/4415 5108/6613 +f 5109/2092 5114/6614 335/4418 +f 5113/2101 335/4418 5114/6614 +f 5120/2100 1300/4420 5121/6615 +f 5116/2093 5121/6615 1300/4420 +f 5095/2084 5127/6616 328/4414 +f 5061/2061 328/4414 5127/6616 +f 5128/2104 5132/6617 1302/4424 +f 5131/2105 1302/4424 5132/6617 +f 86/5617 5135/7277 4996/2022 +f 5138/6618 4996/2022 5135/7277 +f 1306/4428 5141/2111 5145/2114 +f 5146/6619 5145/2114 5141/2111 +f 336/5640 5149/7278 5140/2110 +f 5152/6620 5140/2110 5149/7278 +f 1310/4432 5155/2119 5159/2122 +f 5160/6621 5159/2122 5155/2119 +f 338/4434 5161/2123 5165/2134 +f 5166/6622 5165/2134 5161/2123 +f 1313/4436 5168/2127 5171/2130 +f 5172/6623 5171/2130 5168/2127 +f 324/4430 5147/2115 5009/2030 +f 5177/6624 5009/2030 5147/2115 +f 1314/4440 5178/2135 5180/2138 +f 5181/6625 5180/2138 5178/2135 +f 71/4410 5080/2075 5185/7279 +f 5186/6626 5185/7279 5080/2075 +f 1318/4444 5188/2143 5192/2146 +f 5193/6627 5192/2146 5188/2143 +f 329/4406 5068/2067 5187/2142 +f 5199/6628 5187/2142 5068/2067 +f 1321/4448 5201/2151 5205/2154 +f 5206/6629 5205/2154 5201/2151 +f 341/4450 5207/2155 5211/2164 +f 5212/6630 5211/2164 5207/2155 +f 1324/4452 5214/2159 5217/2162 +f 5218/6631 5217/2162 5214/2159 +f 340/4446 5194/2147 5223/7280 +f 5224/6632 5223/7280 5194/2147 +f 1326/4456 5225/2165 5227/2168 +f 5228/6633 5227/2168 5225/2165 +f 5200/2150 87/4426 5233/6634 +f 5133/2108 5233/6634 87/4426 +f 5239/2176 1329/4459 5240/6635 +f 5235/2169 5240/6635 1329/4459 +f 5234/2172 334/4422 5245/6636 +f 5122/2097 5245/6636 334/4422 +f 1332/4463 5247/2177 5251/2184 +f 5252/6637 5251/2184 5247/2177 +f 5257/2194 343/4465 5258/6638 +f 5253/2181 5258/6638 343/4465 +f 1335/4468 5260/2187 5263/2190 +f 5264/6639 5263/2190 5260/2187 +f 5213/2158 339/4461 5269/6640 +f 5241/2173 5269/6640 339/4461 +f 5272/2196 1336/4471 5273/6641 +f 5270/2191 5273/6641 1336/4471 +f 5278/6642 2587/7202 5275/7281 +f 34/7203 5275/7281 2587/7202 +f 1340/4476 5281/2199 5285/2203 +f 5286/6643 5285/2203 5281/2199 +f 5289/7282 5293/6647 91/4556 +f 5292/4555 91/4556 5293/6647 +f 5296/2208 5300/6649 1344/4479 +f 5299/2209 1344/4479 5300/6649 +f 79/4508 5303/7283 5306/4507 +f 5307/6650 5306/4507 5303/7283 +f 1348/4483 5310/2213 5313/2216 +f 5314/6651 5313/2216 5310/2213 +f 4801/7284 5320/6653 74/7285 +f 5319/7286 74/7285 5320/6653 +f 5322/2220 5326/6655 1351/4487 +f 5325/2221 1351/4487 5326/6655 +f 15/7204 2605/7206 4845/7287 +f 5331/6656 4845/7287 2605/7206 +f 1352/4491 5332/2224 5334/2226 +f 5335/6657 5334/2226 5332/2224 +f 91/4556 5337/7288 5289/7282 +f 5340/6658 5289/7282 5337/7288 +f 1356/4495 5343/2229 5347/2232 +f 5348/6659 5347/2232 5343/2229 +f 348/4560 5351/7289 5342/2228 +f 5354/6660 5342/2228 5351/7289 +f 1360/4498 5357/2237 5361/2240 +f 5362/6661 5361/2240 5357/2237 +f 351/4500 5363/2241 5367/2252 +f 5368/6663 5367/2252 5363/2241 +f 1364/4502 5370/2245 5374/2248 +f 5375/6664 5374/2248 5370/2245 +f 345/4485 5349/2233 5315/4484 +f 5381/6668 5315/4484 5349/2233 +f 1366/4506 5382/2253 5385/2256 +f 5386/6669 5385/2256 5382/2253 +f 73/6667 5372/6665 4975/7290 +f 5391/6671 4975/7290 5372/6665 +f 5393/2262 5398/6672 1369/4510 +f 5397/2263 1369/4510 5398/6672 +f 5359/6662 5403/6673 349/5674 +f 5392/2259 349/5674 5403/6673 +f 5405/2270 5410/6674 1372/4514 +f 5409/2271 1372/4514 5410/6674 +f 5411/2274 5416/6675 354/4516 +f 5415/2283 354/4516 5416/6675 +f 1376/4518 5418/2278 5422/2280 +f 5423/6676 5422/2280 5418/2278 +f 5399/2266 5429/6678 323/4512 +f 4991/7291 323/4512 5429/6678 +f 1378/4522 5430/2286 5433/2288 +f 5434/6679 5433/2288 5430/2286 +f 5437/7292 5440/6680 92/4588 +f 5421/6677 92/4588 5440/6680 +f 5443/2294 5448/6683 1382/4526 +f 5447/2295 1382/4526 5448/6683 +f 37/4603 2806/7224 5453/4602 +f 5454/6685 5453/4602 2806/7224 +f 1385/4528 5456/2301 5459/2304 +f 5460/6687 5459/2304 5456/2301 +f 26/7221 5463/7293 2789/7222 +f 5466/6688 2789/7222 5463/7293 +f 1388/4532 5469/2307 5472/2309 +f 5473/6689 5472/2309 5469/2307 +f 5153/7294 5478/6691 78/7295 +f 5477/7296 78/7295 5478/6691 +f 5480/2314 5484/6693 1391/4535 +f 5483/2315 1391/4535 5484/6693 +f 5435/2289 5489/6694 86/4524 +f 5135/7297 86/4524 5489/6694 +f 5493/6695 5492/2320 5490/2317 +f 1392/4538 5490/2317 5492/2320 +f 5275/7281 34/7203 5497/6696 +f 2817/7225 5497/6696 34/7203 +f 1395/4543 5499/2323 5503/2328 +f 5504/6697 5503/2328 5499/2323 +f 189/3687 2857/7226 5498/2322 +f 5509/6698 5498/2322 2857/7226 +f 1398/4546 5511/2331 5515/2334 +f 5516/6699 5515/2334 5511/2331 +f 360/4548 5517/2335 5521/2346 +f 5522/6700 5521/2346 5517/2335 +f 5524/2340 5529/6702 1402/4550 +f 5528/2341 1402/4550 5529/6702 +f 5301/4480 344/4481 5535/6703 +f 5505/2325 5535/6703 344/4481 +f 1404/4554 5536/2347 5539/2350 +f 5540/6704 5539/2350 5536/2347 +f 5541/2351 5545/6705 91/4556 +f 5337/7288 91/4556 5545/6705 +f 5547/2356 5552/6706 1407/4558 +f 5551/2357 1407/4558 5552/6706 +f 5530/2344 5557/6707 359/4552 +f 5546/2353 359/4552 5557/6707 +f 5559/2364 5564/6708 1410/4562 +f 5563/2365 1410/4562 5564/6708 +f 5565/2368 5570/6709 363/4564 +f 5569/2377 363/4564 5570/6709 +f 5572/2372 5577/6710 1414/4566 +f 5576/2373 1414/4566 5577/6710 +f 5553/2360 5583/6711 348/4560 +f 5351/7289 348/4560 5583/6711 +f 5584/2380 5588/6712 1416/4570 +f 5587/2381 1416/4570 5588/6712 +f 5589/2384 5593/6713 90/4572 +f 5404/2267 90/4572 5593/6713 +f 5595/2388 5600/6714 1419/4574 +f 5599/2389 1419/4574 5600/6714 +f 5578/2376 5605/6715 362/4568 +f 5594/2385 362/4568 5605/6715 +f 5607/2396 5612/6717 1422/4578 +f 5611/2397 1422/4578 5612/6717 +f 5613/2400 5618/6718 366/4580 +f 5617/2409 366/4580 5618/6718 +f 5620/2404 5625/6720 1426/4582 +f 5624/2405 1426/4582 5625/6720 +f 5601/2392 5631/6721 352/4576 +f 5417/2275 352/4576 5631/6721 +f 5632/2412 5636/6722 1428/4586 +f 5635/2414 1428/4586 5636/6722 +f 92/4588 5637/2415 5437/7292 +f 5641/6723 5437/7292 5637/2415 +f 1431/4590 5643/2419 5647/2422 +f 5648/6724 5647/2422 5643/2419 +f 365/4584 5626/2408 5642/2418 +f 5653/6725 5642/2418 5626/2408 +f 1434/4593 5655/2428 5659/2430 +f 5660/6726 5659/2430 5655/2428 +f 368/4595 5661/2431 5665/2440 +f 5666/6727 5665/2440 5661/2431 +f 5668/2436 5672/6728 1437/4596 +f 5671/2438 1437/4596 5672/6728 +f 355/4530 5649/2423 5461/4529 +f 5677/6730 5461/4529 5649/2423 +f 1438/4601 5678/2441 5680/2444 +f 5681/6731 5680/2444 5678/2441 +f 3013/7229 5685/6732 26/7228 +f 5463/7298 26/7228 5685/6732 +f 5691/2452 1441/4604 5692/6733 +f 5687/2445 5692/6733 1441/4604 +f 5686/2448 202/3751 5697/6734 +f 3053/7231 5697/6734 202/3751 +f 5703/2460 1444/4608 5704/6735 +f 5699/2453 5704/6735 1444/4608 +f 5705/2457 5710/6736 371/4610 +f 5709/2469 371/4610 5710/6736 +f 5712/2464 5717/6737 1448/4613 +f 5716/2465 1448/4613 5717/6737 +f 5485/7299 356/4606 5723/6738 +f 5693/2449 5723/6738 356/4606 +f 5724/2472 5728/6739 1450/4617 +f 5727/2476 1450/4617 5728/6739 +f 78/4618 5729/2473 5154/2118 +f 5733/6740 5154/2118 5729/2473 +f 1453/4621 5735/2478 5739/2482 +f 5740/6741 5739/2482 5735/2478 +f 5718/2468 5745/6742 370/4615 +f 5734/2479 370/4615 5745/6742 +f 5752/6743 5751/2491 5747/2488 +f 1456/4625 5747/2488 5751/2491 +f 374/4627 5753/2490 5757/2502 +f 5758/6744 5757/2502 5753/2490 +f 1460/4628 5760/2495 5764/2498 +f 5765/6745 5764/2498 5760/2495 +f 337/4623 5741/2483 5167/2126 +f 5771/6746 5167/2126 5741/2483 +f 1462/4633 5772/2503 5775/2506 +f 5776/6747 5775/2506 5772/2503 +f 88/4635 5777/2507 5102/2088 +f 5781/6748 5102/2088 5777/2507 +f 5787/2516 1465/4636 5788/6749 +f 5783/2509 5788/6749 1465/4636 +f 373/4631 5766/2499 5782/2512 +f 5793/6750 5782/2512 5766/2499 +f 1468/4641 5795/2519 5799/2522 +f 5800/6751 5799/2522 5795/2519 +f 5805/2536 377/4642 5806/6752 +f 5801/2523 5806/6752 377/4642 +f 5813/6753 5812/2530 5808/2527 +f 1472/4645 5808/2527 5812/2530 +f 5115/2096 333/4638 5819/6754 +f 5789/2513 5819/6754 333/4638 +f 5823/2540 1474/4648 5824/6755 +f 5820/2533 5824/6755 1474/4648 +f 5246/2180 77/4650 5829/6756 +f 5825/2537 5829/6756 77/4650 +f 1477/4653 5831/2543 5835/2546 +f 5836/6757 5835/2546 5831/2543 +f 376/4647 5814/2531 5830/2542 +f 5841/6758 5830/2542 5814/2531 +f 5848/6759 5847/2554 5843/2550 +f 1480/4656 5843/2550 5847/2554 +f 379/4659 5849/2555 5853/2564 +f 5854/6760 5853/2564 5849/2555 +f 1483/4661 5856/2559 5859/2562 +f 5860/6761 5859/2562 5856/2559 +f 342/4655 5837/2547 5259/2186 +f 5865/6762 5259/2186 5837/2547 +f 1484/4665 5866/2565 5868/2568 +f 5869/6763 5868/2568 5866/2565 +f 5698/2456 45/3763 5873/6764 +f 3209/7232 5873/6764 45/3763 +f 5875/2572 5880/6765 1487/4669 +f 5879/2573 1487/4669 5880/6765 +f 3249/7233 5885/6766 215/3814 +f 5874/2569 215/3814 5885/6766 +f 5887/2580 5892/6767 1490/4673 +f 5891/2581 1490/4673 5892/6767 +f 5897/2596 382/4675 5898/6768 +f 5893/2584 5898/6768 382/4675 +f 5904/2592 1494/4676 5905/6769 +f 5900/2585 5905/6769 1494/4676 +f 5881/2576 5911/6770 369/4671 +f 5711/2461 369/4671 5911/6770 +f 5915/2597 1496/4680 5916/6771 +f 5912/2593 5916/6771 1496/4680 +f 97/4682 5917/2600 5921/7300 +f 5922/6772 5921/7300 5917/2600 +f 1500/4685 5924/2604 5928/2606 +f 5929/6773 5928/2606 5924/2604 +f 5906/2589 5935/6774 381/4678 +f 5923/2601 381/4678 5935/6774 +f 5937/2609 5942/6775 1503/4688 +f 5941/2614 1503/4688 5942/6775 +f 386/4691 5943/2615 5947/2626 +f 5948/6776 5947/2626 5943/2615 +f 1507/4693 5950/2619 5954/2623 +f 5955/6777 5954/2623 5950/2619 +f 5930/2607 5962/6778 385/4687 +f 5961/7301 385/4687 5962/6778 +f 5963/2627 5967/6779 1510/4697 +f 5966/2632 1510/4697 5967/6779 +f 98/4824 5971/2871 5794/2518 +f 5974/6780 5794/2518 5971/2871 +f 1514/4701 5977/2634 5981/2638 +f 5982/6781 5981/2638 5977/2634 +f 5988/6782 5976/2635 5985/2862 +f 387/4819 5985/2862 5976/2635 +f 5995/2646 1518/4705 5996/6783 +f 5991/2641 5996/6783 1518/4705 +f 6002/6785 6001/2658 5997/2647 +f 390/4706 5997/2647 6001/2658 +f 6009/6786 6008/2654 6004/2649 +f 1522/4709 6004/2649 6008/2654 +f 375/4703 5983/2639 5807/2526 +f 6015/6788 5807/2526 5983/2639 +f 1524/4713 6016/2659 6019/2662 +f 6020/6789 6019/2662 6016/2659 +f 96/4715 6021/2663 5842/2551 +f 6025/6790 5842/2551 6021/2663 +f 1527/4717 6027/2667 6031/2671 +f 6032/6791 6031/2671 6027/2667 +f 389/4711 6010/2655 6026/2666 +f 6037/6792 6026/2666 6010/2655 +f 1530/4721 6039/2675 6043/2678 +f 6044/6793 6043/2678 6039/2675 +f 392/4723 6045/2679 6049/2689 +f 6050/6794 6049/2689 6045/2679 +f 6056/6795 6055/2685 6052/2683 +f 1533/4724 6052/2683 6055/2685 +f 6061/6796 5855/2558 6033/2670 +f 378/4718 6033/2670 5855/2558 +f 1534/4728 6062/2688 6064/2692 +f 6065/6797 6064/2692 6062/2688 +f 3409/7234 6069/6798 50/3826 +f 5886/2577 50/3826 6069/6798 +f 6071/2696 6076/6799 1537/4733 +f 6075/2697 1537/4733 6076/6799 +f 3449/7235 6081/6800 229/3876 +f 6070/2693 229/3876 6081/6800 +f 6087/2708 1540/4737 6088/6801 +f 6083/2701 6088/6801 1540/4737 +f 6093/2720 395/4738 6094/6802 +f 6089/2705 6094/6802 395/4738 +f 6100/2716 1544/4740 6101/6803 +f 6096/2709 6101/6803 1544/4740 +f 6077/2700 6107/6804 380/4735 +f 5899/2588 380/4735 6107/6804 +f 6111/2724 1546/4744 6112/6805 +f 6108/2717 6112/6805 1546/4744 +f 5936/2612 100/4746 6117/6806 +f 6113/2721 6117/6806 100/4746 +f 6123/2732 1549/4748 6124/6807 +f 6119/2728 6124/6807 1549/4748 +f 6102/2713 6129/6808 394/4742 +f 6118/2725 394/4742 6129/6808 +f 6131/2736 6136/6810 1552/4753 +f 6135/2737 1552/4753 6136/6810 +f 6141/2750 398/4755 6142/6811 +f 6137/2740 6142/6811 398/4755 +f 6149/6813 6148/2746 6144/2742 +f 1556/4756 6144/2742 6148/2746 +f 383/4750 6125/2729 5949/2618 +f 6155/6814 5949/2618 6125/2729 +f 1558/4761 6156/2751 6159/2754 +f 6160/6815 6159/2754 6156/2751 +f 101/4763 6161/2755 6165/4808 +f 6166/6816 6165/4808 6161/2755 +f 1562/4765 6168/2759 6172/2762 +f 6173/6817 6172/2762 6168/2759 +f 397/4759 6150/2747 6167/2758 +f 6179/6818 6167/2758 6150/2747 +f 6186/6819 6185/2771 6181/2766 +f 1565/4768 6181/2766 6185/2771 +f 401/4771 6187/2770 6191/2780 +f 6192/6820 6191/2780 6187/2770 +f 1568/4773 6194/2775 6197/2777 +f 6198/6821 6197/2777 6194/2775 +f 400/4767 6174/2763 6203/4798 +f 6204/6822 6203/4798 6174/2763 +f 1570/4777 6205/2781 6207/2783 +f 6208/6823 6207/2783 6205/2781 +f 3565/7236 6213/6824 55/3888 +f 6082/2704 55/3888 6213/6824 +f 6219/2792 1573/4781 6220/6825 +f 6215/2788 6220/6825 1573/4781 +f 3599/7237 6225/6826 239/3925 +f 6214/2785 239/3925 6225/6826 +f 1575/4785 6226/2795 6229/2797 +f 6230/6827 6229/2797 6226/2795 +f 402/4787 6231/2798 6235/2805 +f 6236/6828 6235/2805 6231/2798 +f 1577/4789 6237/2802 6239/2804 +f 6240/6829 6239/2804 6237/2802 +f 6095/2712 393/4782 6245/6830 +f 6221/2789 6245/6830 393/4782 +f 6246/2808 6249/6831 1578/4793 +f 6248/2810 1578/4793 6249/6831 +f 6253/6832 6209/4779 3609/7238 +f 32/4778 3609/7238 6209/4779 +f 6255/2814 6260/6833 1581/4797 +f 6259/2816 1581/4797 6260/6833 +f 3649/7239 6265/6834 243/3939 +f 6254/2811 243/3939 6265/6834 +f 6267/2822 6272/6835 1584/4800 +f 6271/2823 1584/4800 6272/6835 +f 6273/2826 6278/6836 404/4802 +f 6277/2834 404/4802 6278/6836 +f 6280/2830 6284/6837 1587/4804 +f 6283/2831 1587/4804 6284/6837 +f 400/4767 6261/2817 6175/4766 +f 6289/6838 6175/4766 6261/2817 +f 6290/2837 6293/6839 1588/4807 +f 6292/2839 1588/4807 6293/6839 +f 97/4682 5921/7300 5746/2485 +f 6297/6840 5746/2485 5921/7300 +f 1591/4810 6299/2843 6303/2846 +f 6304/6841 6303/2846 6299/2843 +f 385/4687 5961/7301 6298/2842 +f 6309/6842 6298/2842 5961/7301 +f 6316/6844 6315/2855 6311/2850 +f 1594/4813 6311/2850 6315/2855 +f 6322/6845 6321/2867 6317/2854 +f 406/4815 6317/2854 6321/2867 +f 6328/6847 6327/2863 6324/2858 +f 1597/4817 6324/2858 6327/2863 +f 372/4812 6305/2847 5759/2494 +f 6333/6848 5759/2494 6305/2847 +f 6337/6849 6336/2870 6334/2866 +f 1598/4821 6334/2866 6336/2870 +f 99/5782 6006/6787 6038/2674 +f 6341/6850 6038/2674 6006/6787 +f 1601/4826 6343/2875 6347/2878 +f 6348/6851 6347/2878 6343/2875 +f 388/5775 5993/6784 6342/2874 +f 6353/6852 6342/2874 5993/6784 +f 1604/4830 6355/2882 6359/2886 +f 6360/6853 6359/2886 6355/2882 +f 408/4832 6361/2887 6365/2896 +f 6366/6854 6365/2896 6361/2887 +f 1607/4834 6368/2891 6371/2893 +f 6372/6855 6371/2893 6368/2891 +f 391/4828 6349/2879 6051/2682 +f 6377/6856 6051/2682 6349/2879 +f 6381/6857 6380/2899 6378/2897 +f 1608/4838 6378/2897 6380/2899 +f 3749/7240 6385/6858 57/3952 +f 6266/2819 57/3952 6385/6858 +f 6387/2903 6392/6859 1611/4842 +f 6391/2905 1611/4842 6392/6859 +f 249/3982 3783/7241 6386/2902 +f 6397/6860 6386/2902 3783/7241 +f 1613/4846 6398/2911 6401/2913 +f 6402/6861 6401/2913 6398/2911 +f 409/4848 6403/2914 6407/2921 +f 6408/6862 6407/2921 6403/2914 +f 1615/4850 6409/2918 6411/2919 +f 6412/6863 6411/2919 6409/2918 +f 6393/2908 6417/6864 403/4844 +f 6279/2827 403/4844 6417/6864 +f 6418/2924 6421/6865 1616/4854 +f 6420/2925 1616/4854 6421/6865 +f 6423/7302 6427/6866 106/4880 +f 6426/4909 106/4880 6427/6866 +f 6430/2930 6435/6869 1621/4857 +f 6434/2934 1621/4857 6435/6869 +f 72/4894 6439/3165 6442/4895 +f 6443/6871 6442/4895 6439/3165 +f 1625/4861 6446/2937 6449/2940 +f 6450/6872 6449/2940 6446/2937 +f 6453/7303 6457/6874 107/5000 +f 6456/6941 107/5000 6457/6874 +f 6459/2942 6462/6875 1628/4865 +f 6461/2943 1628/4865 6462/6875 +f 5185/7304 6468/6876 71/6954 +f 6467/6953 71/6954 6468/6876 +f 6470/2948 6475/6877 1632/4868 +f 6474/2949 1632/4868 6475/6877 +f 5223/7305 6481/6878 340/5847 +f 6469/2945 340/5847 6481/6878 +f 6482/2956 6486/6880 1634/4871 +f 6485/2957 1634/4871 6486/6880 +f 6487/2960 6492/6881 416/4873 +f 6491/2969 416/4873 6492/6881 +f 6493/2961 6497/6882 1637/4875 +f 6496/2965 1637/4875 6497/6882 +f 6476/2952 6504/6884 415/4869 +f 6503/6957 415/4869 6504/6884 +f 6505/2972 6509/6885 1640/4879 +f 6508/2973 1640/4879 6509/6885 +f 106/4880 6510/2976 6423/7302 +f 6515/6886 6423/7302 6510/2976 +f 6517/2980 6522/6887 1643/4882 +f 6521/2983 1643/4882 6522/6887 +f 6498/2968 6527/6888 414/4877 +f 6516/2977 414/4877 6527/6888 +f 6528/2985 6532/6890 1645/4885 +f 6531/2989 1645/4885 6532/6890 +f 6533/2992 6538/6891 417/4887 +f 6537/3001 417/4887 6538/6891 +f 6539/2996 6542/6894 1647/4889 +f 6541/2997 1647/4889 6542/6894 +f 6547/6896 6451/4862 6523/2982 +f 410/4863 6523/2982 6451/4862 +f 6551/6897 6550/3006 6548/3004 +f 1648/4893 6548/3004 6550/3006 +f 6556/6899 6453/7303 6553/3228 +f 107/5000 6553/3228 6453/7303 +f 6564/6900 6563/3016 6559/3010 +f 1652/4896 6559/3010 6563/3016 +f 6570/6901 6558/3011 6567/3221 +f 418/4997 6567/3221 6558/3011 +f 1656/4900 6573/3018 6577/3022 +f 6578/6903 6577/3022 6573/3018 +f 6583/3036 421/4902 6584/6904 +f 6579/3023 6584/6904 421/4902 +f 6586/3028 6591/6905 1660/4903 +f 6590/3029 1660/4903 6591/6905 +f 6437/4858 412/4859 6597/6907 +f 6565/3013 6597/6907 412/4859 +f 6601/3040 1662/4907 6602/6908 +f 6598/3033 6602/6908 1662/4907 +f 6588/6906 6608/6909 108/5935 +f 6607/3241 108/5935 6608/6909 +f 6614/3045 1666/4910 6615/6910 +f 6610/3041 6615/6910 1666/4910 +f 6621/6911 6609/3044 6575/6902 +f 419/5873 6575/6902 6609/3044 +f 6628/6912 6627/3055 6623/3051 +f 1669/4914 6623/3051 6627/3055 +f 425/4916 6629/3054 6633/3066 +f 6634/6913 6633/3066 6629/3054 +f 6636/3059 6641/6914 1673/4919 +f 6640/3061 1673/4919 6641/6914 +f 6616/3048 6648/6916 424/4913 +f 6647/3247 424/4913 6648/6916 +f 1676/4923 6649/3067 6652/3070 +f 6653/6917 6652/3070 6649/3067 +f 79/5900 5387/7306 6659/3113 +f 6660/6918 6659/3113 5387/7306 +f 6662/3076 6667/6919 1680/4927 +f 6666/3077 1680/4927 6667/6919 +f 5376/7307 6673/6920 350/5885 +f 6661/3073 350/5885 6673/6920 +f 6674/3084 6678/6922 1682/4931 +f 6677/3085 1682/4931 6678/6922 +f 6679/3088 6684/6923 428/4933 +f 6683/3097 428/4933 6684/6923 +f 6685/3092 6689/6925 1685/4935 +f 6688/3093 1685/4935 6689/6925 +f 6668/3080 6696/6926 427/4929 +f 6695/3123 427/4929 6696/6926 +f 6697/3100 6701/6927 1688/4939 +f 6700/3101 1688/4939 6701/6927 +f 74/7308 5319/7309 4701/7310 +f 6707/6928 4701/7310 5319/7309 +f 6709/3107 6714/6929 1691/4942 +f 6713/3109 1691/4942 6714/6929 +f 346/5897 5308/7311 6708/3106 +f 6719/6930 6708/3106 5308/7311 +f 6720/3116 6724/6931 1693/4947 +f 6723/3117 1693/4947 6724/6931 +f 6730/6932 6729/3131 6725/3120 +f 430/4949 6725/3120 6729/3131 +f 1696/4950 6731/3122 6734/3126 +f 6735/6933 6734/3126 6731/3122 +f 6715/3112 6741/6934 307/4945 +f 4663/7312 307/4945 6741/6934 +f 1698/4954 6742/3130 6745/3134 +f 6746/6935 6745/3134 6742/3130 +f 80/4957 6747/3135 4649/7313 +f 6751/6936 4649/7313 6747/3135 +f 1701/4959 6753/3139 6757/3142 +f 6758/6937 6757/3142 6753/3139 +f 429/4953 6736/3127 6752/3138 +f 6763/6938 6752/3138 6736/3127 +f 1704/4963 6765/3147 6769/3150 +f 6770/6939 6769/3150 6765/3147 +f 432/4965 6771/3151 6775/3162 +f 6776/6940 6775/3162 6771/3151 +f 6782/6942 6781/3159 6778/3154 +f 1707/4966 6778/3154 6781/3159 +f 303/4961 6759/3143 4611/7314 +f 6787/6943 4611/7314 6759/3143 +f 6790/3168 1708/4970 6791/6944 +f 6788/3163 6791/6944 1708/4970 +f 112/4941 6702/3104 6795/5015 +f 6796/6945 6795/5015 6702/3104 +f 6798/3172 6803/6946 1712/4973 +f 6802/3173 1712/4973 6803/6946 +f 6690/3096 6809/6947 426/4937 +f 6797/3169 426/4937 6809/6947 +f 6810/3180 6814/6949 1714/4977 +f 6813/3181 1714/4977 6814/6949 +f 6815/3184 6820/6950 434/4979 +f 6819/3195 434/4979 6820/6950 +f 1716/4981 6821/3187 6823/3190 +f 6824/6951 6823/3190 6821/3187 +f 6804/3176 6830/6955 433/4975 +f 6829/5004 433/4975 6830/6955 +f 6834/6956 6833/3199 6831/3194 +f 1718/4984 6831/3194 6833/3199 +f 6764/3146 112/4941 6840/6958 +f 6837/7315 6840/6958 112/4941 +f 6843/3204 6848/6959 1722/4987 +f 6847/3207 1722/4987 6848/6959 +f 6851/5945 6854/6960 435/5019 +f 6842/3201 435/5019 6854/6960 +f 1725/4991 6856/3211 6859/3213 +f 6860/6961 6859/3213 6856/3211 +f 436/4993 6861/3214 6865/3224 +f 6866/6962 6865/3224 6861/3214 +f 1727/4995 6867/3218 6869/3220 +f 6870/6963 6869/3220 6867/3218 +f 6875/6964 6777/3155 6849/3206 +f 431/4988 6849/3206 6777/3155 +f 1728/4999 6876/3225 6878/3229 +f 6879/6965 6878/3229 6876/3225 +f 106/4880 6603/3037 6835/4985 +f 6883/6966 6835/4985 6603/3037 +f 6885/3234 6890/6967 1731/5003 +f 6889/3235 1731/5003 6890/6967 +f 6592/3032 6895/6968 420/4906 +f 6884/3231 420/4906 6895/6968 +f 6896/3240 6900/6969 1733/5005 +f 6899/3243 1733/5005 6900/6969 +f 6901/3246 6906/6970 438/5008 +f 6905/3255 438/5008 6906/6970 +f 6907/3250 6911/6971 1736/5010 +f 6910/3252 1736/5010 6911/6971 +f 6891/3238 6917/6973 433/4975 +f 6805/4974 433/4975 6917/6973 +f 1738/5014 6918/3258 6921/3260 +f 6922/6974 6921/3260 6918/3258 +f 6927/6975 6837/7315 6923/3261 +f 112/4941 6923/3261 6837/7315 +f 6934/6979 6933/3269 6929/3264 +f 1741/5016 6929/3264 6933/3269 +f 6939/6980 6909/6972 6654/3071 +f 111/4925 6654/3071 6909/6972 +f 6941/3274 6945/6982 1743/5020 +f 6944/3275 1743/5020 6945/6982 +f 6949/6983 6639/6915 6855/5925 +f 110/5926 6855/5925 6639/6915 +f 6950/3278 6953/6984 1744/5023 +f 6952/3280 1744/5023 6953/6984 +f 6955/7316 6958/6985 95/5718 +f 5654/2425 95/5718 6958/6985 +f 6961/3284 6966/6988 1748/5025 +f 6965/3285 1748/5025 6966/6988 +f 6971/5049 68/5048 6972/6990 +f 4360/7258 6972/6990 68/5048 +f 6977/3294 1751/5029 6978/6991 +f 6974/3292 6978/6991 1751/5029 +f 42/6201 5670/6729 4345/7257 +f 6983/6993 4345/7257 5670/6729 +f 1752/5033 6984/3296 6986/3298 +f 6987/6994 6986/3298 6984/3296 +f 6991/6995 6955/7316 5622/6719 +f 95/5718 5622/6719 6955/7316 +f 1755/5035 6993/3301 6997/3305 +f 6998/6996 6997/3305 6993/3301 +f 7003/6997 6992/3300 5609/6716 +f 364/5711 5609/6716 6992/3300 +f 1758/5039 7005/3308 7009/3312 +f 7010/6998 7009/3312 7005/3308 +f 443/5041 7011/3313 7015/3322 +f 7016/7000 7015/3322 7011/3313 +f 1761/5043 7018/3317 7021/3320 +f 7022/7001 7021/3320 7018/3317 +f 7027/7003 6979/5030 6999/3304 +f 440/5031 6999/3304 6979/5030 +f 1762/5047 7028/3323 7030/3326 +f 7031/7004 7030/3326 7028/3323 +f 7033/7317 7036/7005 94/5700 +f 5558/2361 94/5700 7036/7005 +f 7039/3330 7044/7006 1766/5051 +f 7043/3331 1766/5051 7044/7006 +f 7047/5965 7050/7007 444/5068 +f 7038/3327 444/5068 7050/7007 +f 7052/3336 7056/7008 1769/5055 +f 7055/3337 1769/5055 7056/7008 +f 7057/3340 7062/7009 445/5057 +f 7061/3345 445/5057 7062/7009 +f 7063/3342 7066/7010 1771/5059 +f 7065/3343 1771/5059 7066/7010 +f 7045/3334 7071/7011 361/5053 +f 5571/2369 361/5053 7071/7011 +f 7072/3348 7075/7012 1772/5063 +f 7074/3349 1772/5063 7075/7012 +f 94/5700 5526/6701 7033/7317 +f 7079/7013 7033/7317 5526/6701 +f 7081/3354 7086/7015 1775/5067 +f 7085/3356 1775/5067 7086/7015 +f 39/3699 4491/7261 5510/2330 +f 7091/7018 5510/2330 4491/7261 +f 1777/5071 7093/3360 7096/3364 +f 7097/7019 7096/3364 7093/3360 +f 7051/5957 7101/7021 70/4208 +f 4477/7260 70/4208 7101/7021 +f 7102/3366 7105/7022 1778/5075 +f 7104/3367 1778/5075 7105/7022 +f 1782/7179 1783/5967 450/7024 +f 1781/5079 450/7024 1783/5967 +f 1791/5968 1789/5085 1790/5 +f 449/6 1790/5 1789/5085 +f 1798/5969 1797/5082 1785/1 +f 448/2 1785/1 1797/5082 +f 1806/5970 1804/5083 1805/13 +f 454/14 1805/13 1804/5083 +f 1812/5971 1810/5084 1811/25 +f 458/26 1811/25 1810/5084 +f 1819/5972 1817/5089 1818/21 +f 457/22 1818/21 1817/5089 +f 1826/5973 1824/5086 1825/7181 +f 461/7026 1825/7181 1824/5086 +f 1831/5974 1829/5087 1830/29 +f 460/30 1830/29 1829/5087 +f 1837/7182 1838/5975 465/7027 +f 1836/5088 465/7027 1838/5975 +f 1845/5976 1843/5093 1844/37 +f 464/38 1844/37 1843/5093 +f 1851/5977 1850/5090 1839/33 +f 463/34 1839/33 1850/5090 +f 1858/5978 1856/5091 1857/45 +f 468/46 1857/45 1856/5091 +f 1864/5979 1862/5092 1863/57 +f 472/58 1863/57 1862/5092 +f 1871/5980 1869/318 1870/53 +f 471/54 1870/53 1869/318 +f 1878/5981 1876/5094 1877/7183 +f 475/7028 1877/7183 1876/5094 +f 1883/5982 1881/311 1882/61 +f 474/62 1882/61 1881/311 +f 453/10 1800/9 1889/5097 +f 1890/5983 1889/5097 1800/9 +f 1897/70 1898/5984 479/72 +f 1896/5103 479/72 1898/5984 +f 1892/66 1904/5985 478/68 +f 1903/5100 478/68 1904/5985 +f 1911/78 1912/5986 483/80 +f 1910/5101 483/80 1912/5986 +f 1917/90 1918/5987 487/92 +f 1916/5102 487/92 1918/5987 +f 1925/5988 1923/5125 1924/85 +f 486/86 1924/85 1923/5125 +f 1931/5989 1930/5104 1813/17 +f 456/18 1813/17 1930/5104 +f 1936/5990 1934/5123 1935/93 +f 489/94 1935/93 1934/5123 +f 1906/74 1942/5991 482/76 +f 1941/5107 482/76 1942/5991 +f 1950/5992 1948/5113 1949/101 +f 493/102 1949/101 1948/5113 +f 1956/5993 1955/5110 1944/97 +f 492/98 1944/97 1955/5110 +f 1963/109 1964/5994 497/110 +f 1962/5111 497/110 1964/5994 +f 1970/5995 1968/5112 1969/121 +f 501/122 1969/121 1968/5112 +f 1977/5996 1975/5117 1976/117 +f 500/118 1976/117 1975/5117 +f 1983/5997 1982/5114 1919/81 +f 485/82 1919/81 1982/5114 +f 1988/5998 1986/5115 1987/125 +f 503/126 1987/125 1986/5115 +f 1994/5999 1992/5116 1993/169 +f 507/170 1993/169 1992/5116 +f 2001/6000 1999/5121 2000/133 +f 506/134 2000/133 1999/5121 +f 2007/6001 2006/5118 1995/129 +f 505/130 1995/129 2006/5118 +f 2014/6002 2012/5119 2013/141 +f 510/142 2013/141 2012/5119 +f 2020/6003 2018/5120 2019/153 +f 514/154 2019/153 2018/5120 +f 513/151 2026/152 2025/6005 +f 2027/6004 2025/6005 2026/152 +f 2034/6006 2032/5122 2033/177 +f 517/178 2033/177 2032/5122 +f 2039/6007 2037/6008 2038/157 +f 516/158 2038/157 2037/6008 +f 2045/6009 2044/5124 1852/41 +f 467/42 1852/41 2044/5124 +f 2052/6010 2050/5129 2051/165 +f 520/166 2051/165 2050/5129 +f 2057/6011 2056/5126 2046/161 +f 519/162 2046/161 2056/5126 +f 2062/6012 2060/5127 2061/173 +f 522/174 2061/173 2060/5127 +f 2068/6013 2066/5128 2067/185 +f 525/186 2067/185 2066/5128 +f 2073/6014 2071/6015 2072/181 +f 524/182 2072/181 2071/6015 +f 2079/6016 2078/5130 1865/49 +f 470/50 1865/49 2078/5130 +f 2084/6017 2082/6018 2083/189 +f 527/190 2083/189 2082/6018 +f 1958/106 2090/6019 496/108 +f 2089/5133 496/108 2090/6019 +f 2097/198 2098/6020 531/200 +f 2096/5138 531/200 2098/6020 +f 2092/194 2104/6021 530/196 +f 2103/5135 530/196 2104/6021 +f 2111/206 2112/6022 535/208 +f 2110/5136 535/208 2112/6022 +f 2117/218 2118/6024 539/220 +f 2116/5137 539/220 2118/6024 +f 2125/6025 2123/5142 2124/213 +f 538/214 2124/213 2123/5142 +f 1971/114 2131/6027 499/116 +f 2130/5139 499/116 2131/6027 +f 2135/222 2136/6028 541/224 +f 2134/5140 541/224 2136/6028 +f 2008/137 2141/6029 509/138 +f 2140/5141 509/138 2141/6029 +f 2147/230 2148/6030 544/232 +f 2146/5146 544/232 2148/6030 +f 2142/226 2153/6031 543/228 +f 2152/5143 543/228 2153/6031 +f 2159/238 2160/6032 547/240 +f 2158/5144 547/240 2160/6032 +f 2165/250 2166/6034 551/252 +f 2164/5145 551/252 2166/6034 +f 2172/246 2173/6035 550/248 +f 2171/5150 550/248 2173/6035 +f 2021/146 2179/6037 512/148 +f 2178/5147 512/148 2179/6037 +f 2183/254 2184/6038 553/256 +f 2182/5148 553/256 2184/6038 +f 2188/5149 513/151 2189/6039 +f 2025/6005 2189/6039 513/151 +f 2194/5154 556/261 2196/6040 +f 2195/263 2196/6040 556/261 +f 2190/258 2201/6041 555/260 +f 2200/5151 555/260 2201/6041 +f 2206/5152 559/269 2208/6043 +f 2207/271 2208/6043 559/269 +f 2213/282 2214/6044 563/284 +f 2212/5153 563/284 2214/6044 +f 2220/278 2221/6045 562/280 +f 2219/5158 562/280 2221/6045 +f 2037/6008 2227/6047 516/158 +f 2226/5155 516/158 2227/6047 +f 2231/286 2232/6048 565/288 +f 2230/5156 565/288 2232/6048 +f 2071/6015 2237/6049 524/182 +f 2236/5157 524/182 2237/6049 +f 568/295 2243/296 2242/5162 +f 2244/6050 2242/5162 2243/296 +f 567/291 2238/292 2248/5159 +f 2249/6051 2248/5159 2238/292 +f 571/303 2255/304 2254/5160 +f 2256/6053 2254/5160 2255/304 +f 2262/6054 2260/5161 2261/312 +f 574/313 2261/312 2260/5161 +f 2268/6055 1884/64 2267/309 +f 474/62 2267/309 1884/64 +f 2273/6057 2272/5163 2082/6018 +f 527/190 2082/6018 2272/5163 +f 2277/6058 1872/56 2276/316 +f 471/54 2276/316 1872/56 +f 2282/7192 2283/6059 580/7036 +f 2281/5166 580/7036 2283/6059 +f 2290/324 2291/6060 579/326 +f 2289/5172 579/326 2291/6060 +f 2298/6061 2297/5169 2285/319 +f 578/320 2285/319 2297/5169 +f 2306/6062 2304/5170 2305/331 +f 584/332 2305/331 2304/5170 +f 2311/344 2312/6063 588/346 +f 2310/5171 588/346 2312/6063 +f 2318/340 2319/6064 587/342 +f 2317/5194 587/342 2319/6064 +f 2325/7194 2326/6065 591/7038 +f 2324/5173 591/7038 2326/6065 +f 2330/348 2331/6066 590/350 +f 2329/5192 590/350 2331/6066 +f 2338/6067 2337/5176 2300/327 +f 583/328 2300/327 2337/5176 +f 2346/6068 2344/5182 2345/355 +f 595/356 2345/355 2344/5182 +f 2340/352 2352/6069 594/354 +f 2351/5179 594/354 2352/6069 +f 2359/364 2360/6070 599/366 +f 2358/5180 599/366 2360/6070 +f 2365/376 2366/6071 603/378 +f 2364/5181 603/378 2366/6071 +f 2373/6072 2371/5186 2372/371 +f 602/372 2372/371 2371/5186 +f 2313/336 2379/6073 586/338 +f 2378/5183 586/338 2379/6073 +f 2383/380 2384/6074 605/382 +f 2382/5184 605/382 2384/6074 +f 2389/424 2390/6075 609/426 +f 2388/5185 609/426 2390/6075 +f 2397/6076 2395/5190 2396/388 +f 608/390 2396/388 2395/5190 +f 2403/6077 2402/5187 2391/383 +f 607/384 2391/383 2402/5187 +f 2410/6078 2408/5188 2409/395 +f 612/396 2409/395 2408/5188 +f 2416/6079 2414/5189 2415/407 +f 616/408 2415/407 2414/5189 +f 2423/6080 2421/5302 2422/403 +f 615/404 2422/403 2421/5302 +f 2429/432 2430/6081 619/434 +f 2428/5191 619/434 2430/6081 +f 2435/6082 2433/5300 2434/411 +f 618/412 2434/411 2433/5300 +f 2441/7197 2442/6083 623/7041 +f 2440/5193 623/7041 2442/6083 +f 2448/420 2449/6084 622/422 +f 2447/5198 622/422 2449/6084 +f 2443/416 2455/6085 621/418 +f 2454/5195 621/418 2455/6085 +f 2459/428 2460/6086 625/430 +f 2458/5196 625/430 2460/6086 +f 2465/440 2466/6087 628/442 +f 2464/5197 628/442 2466/6087 +f 2470/436 2471/6088 627/438 +f 2469/5294 627/438 2471/6088 +f 2477/7198 2478/6089 631/7042 +f 2476/5199 631/7042 2478/6089 +f 2482/444 2483/6090 630/446 +f 2481/5292 630/446 2483/6090 +f 2354/360 2490/6091 598/362 +f 2489/5202 598/362 2490/6091 +f 2497/452 2498/6092 635/454 +f 2496/5207 635/454 2498/6092 +f 2492/448 2504/6093 634/450 +f 2503/5204 634/450 2504/6093 +f 2511/460 2512/6094 639/462 +f 2510/5205 639/462 2512/6094 +f 2517/472 2518/6096 643/474 +f 2516/5206 643/474 2518/6096 +f 2524/468 2525/6097 642/470 +f 2523/5211 642/470 2525/6097 +f 2367/368 2531/6099 601/370 +f 2530/5208 601/370 2531/6099 +f 2535/476 2536/6100 645/478 +f 2534/5209 645/478 2536/6100 +f 2541/6101 2540/5210 2404/391 +f 611/392 2404/391 2540/5210 +f 2548/6102 2546/5215 2547/483 +f 648/484 2547/483 2546/5215 +f 2553/6103 2552/5212 2542/479 +f 647/480 2542/479 2552/5212 +f 2559/491 2560/6104 651/492 +f 2558/5213 651/492 2560/6104 +f 2565/503 2566/6106 655/504 +f 2564/5214 655/504 2566/6106 +f 2572/500 2573/6107 654/502 +f 2571/5310 654/502 2573/6107 +f 2579/6109 2578/5216 2417/399 +f 614/400 2417/399 2578/5216 +f 2583/507 2584/6110 657/508 +f 2582/5308 657/508 2584/6110 +f 2589/5217 662/7046 2591/6111 +f 2590/7201 2591/6111 662/7046 +f 2598/516 2599/6112 661/518 +f 2597/6114 661/518 2599/6112 +f 2605/7206 2606/6116 665/7048 +f 2604/5219 665/7048 2606/6116 +f 2596/6113 660/511 2612/6118 +f 2611/524 2612/6118 660/511 +f 2618/6119 2617/5221 2087/7209 +f 529/7050 2087/7209 2617/5221 +f 2625/6121 2610/6117 2624/529 +f 664/522 2624/529 2610/6117 +f 2630/7210 2631/6122 672/7052 +f 2629/5223 672/7052 2631/6122 +f 2637/536 2638/6123 668/526 +f 2623/6120 668/526 2638/6123 +f 2645/6125 2643/5225 2644/7211 +f 675/7054 2644/7211 2643/5225 +f 2650/6126 2636/6124 2649/539 +f 671/534 2649/539 2636/6124 +f 2655/7212 2656/6127 679/7055 +f 2654/5226 679/7055 2656/6127 +f 2662/546 2663/6128 678/548 +f 2661/5233 678/548 2663/6128 +f 2657/542 2669/6129 677/544 +f 2668/5229 677/544 2669/6129 +f 2675/554 2676/6130 682/556 +f 2674/5230 682/556 2676/6130 +f 2681/566 2682/6132 686/568 +f 2680/5232 686/568 2682/6132 +f 2688/562 2689/6133 685/564 +f 2687/6135 685/564 2689/6133 +f 2695/7213 2696/6137 689/7056 +f 2694/5234 689/7056 2696/6137 +f 2700/570 2701/6138 688/572 +f 2699/6139 688/572 2701/6138 +f 685/564 2687/6135 2706/5237 +f 2707/6140 2706/5237 2687/6135 +f 692/579 2713/580 2712/5243 +f 2714/6141 2712/5243 2713/580 +f 691/575 2708/576 2718/5240 +f 2719/6142 2718/5240 2708/576 +f 2725/588 2726/6143 695/587 +f 2724/5241 695/587 2726/6143 +f 699/599 2731/600 2730/5242 +f 2732/6144 2730/5242 2731/600 +f 2738/596 2739/6145 698/595 +f 2737/5269 698/595 2739/6145 +f 2745/6147 2744/5244 2699/6139 +f 688/572 2699/6139 2744/5244 +f 701/602 2749/601 2748/5267 +f 2750/6148 2748/5267 2749/601 +f 705/7059 2755/7216 2754/5245 +f 2756/6149 2754/5245 2755/7216 +f 704/611 2762/612 2761/6150 +f 2763/6151 2761/6150 2762/612 +f 2720/582 2769/6154 694/584 +f 2768/5247 694/584 2769/6154 +f 2760/6153 703/607 2775/6155 +f 2774/617 2775/6155 703/607 +f 631/7062 2485/7218 2779/5249 +f 2780/6157 2779/5249 2485/7218 +f 707/616 2786/624 2773/6156 +f 2787/6159 2773/6156 2786/624 +f 2792/7223 2793/6160 714/7064 +f 2791/5250 714/7064 2793/6160 +f 2799/630 2800/6161 710/621 +f 2785/6158 710/621 2800/6161 +f 2806/7224 2807/6163 717/7066 +f 2805/5252 717/7066 2807/6163 +f 2811/634 2812/6164 713/626 +f 2798/6162 713/626 2812/6164 +f 2818/6165 2816/5253 2817/7225 +f 721/7067 2817/7225 2816/5253 +f 2824/640 2825/6166 720/642 +f 2823/5259 720/642 2825/6166 +f 2819/635 2831/6167 719/636 +f 2830/5256 719/636 2831/6167 +f 724/650 2837/648 2836/5257 +f 2838/6168 2836/5257 2837/648 +f 2843/660 2844/6169 728/662 +f 2842/5258 728/662 2844/6169 +f 2851/6170 2849/6171 2850/658 +f 727/657 2850/658 2849/6171 +f 2857/7226 2858/6172 731/7068 +f 2856/5260 731/7068 2858/6172 +f 2862/664 2863/6173 730/666 +f 2861/5533 730/666 2863/6173 +f 723/646 2832/644 2868/5261 +f 2869/6174 2868/5261 2832/644 +f 2876/6175 2874/5265 2875/671 +f 734/672 2875/671 2874/5265 +f 2881/6176 2880/5262 2870/667 +f 733/668 2870/667 2880/5262 +f 2888/6177 2886/5263 2887/679 +f 737/680 2887/679 2886/5263 +f 2894/6178 2892/5264 2893/691 +f 741/692 2893/691 2892/5264 +f 740/689 2900/690 2899/5525 +f 2901/6179 2899/5525 2900/690 +f 2907/6180 2906/5266 2845/651 +f 726/652 2845/651 2906/5266 +f 2912/6181 2910/5523 2911/695 +f 743/696 2911/695 2910/5523 +f 2917/6182 2916/5268 2882/675 +f 736/676 2882/675 2916/5268 +f 2924/6183 2922/5274 2923/703 +f 746/704 2923/703 2922/5274 +f 745/700 2918/699 2928/5271 +f 2929/6184 2928/5271 2918/699 +f 749/712 2935/711 2934/5272 +f 2936/6185 2934/5272 2935/711 +f 2942/6186 2940/5273 2941/723 +f 753/724 2941/723 2940/5273 +f 752/721 2948/722 2947/6187 +f 2949/6188 2947/6187 2948/722 +f 2955/6189 2954/5275 2895/686 +f 739/685 2895/686 2954/5275 +f 755/729 2959/730 2958/6190 +f 2960/6191 2958/6190 2959/730 +f 2930/708 2965/6192 748/710 +f 2964/5276 748/710 2965/6192 +f 2971/736 2972/6193 758/738 +f 2970/5281 758/738 2972/6193 +f 2966/732 2977/6194 757/734 +f 2976/5278 757/734 2977/6194 +f 2983/744 2984/6195 761/746 +f 2982/5279 761/746 2984/6195 +f 2989/756 2990/6197 765/758 +f 2988/5280 765/758 2990/6197 +f 2997/6198 2995/6200 2996/751 +f 764/752 2996/751 2995/6200 +f 2943/718 3003/6202 751/717 +f 3002/5282 751/717 3003/6202 +f 767/761 3007/762 3006/5511 +f 3008/6203 3006/5511 3007/762 +f 3014/6204 3012/5285 3013/7229 +f 771/7070 3013/7229 3012/5285 +f 3021/6205 3019/5290 3020/767 +f 770/768 3020/767 3019/5290 +f 3027/6206 3026/5287 3015/763 +f 769/764 3015/763 3026/5287 +f 774/777 3033/778 3032/5288 +f 3034/6207 3032/5288 3033/778 +f 778/788 3039/787 3038/5289 +f 3040/6208 3038/5289 3039/787 +f 777/785 3046/786 3045/5318 +f 3047/6209 3045/5318 3046/786 +f 3054/6210 3052/5291 3053/7231 +f 781/7072 3053/7231 3052/5291 +f 3059/6211 3057/5316 3058/791 +f 780/792 3058/791 3057/5316 +f 3028/771 3065/6212 773/772 +f 3064/5293 773/772 3065/6212 +f 3071/801 3072/6213 784/799 +f 3070/5298 784/799 3072/6213 +f 3066/796 3077/6214 783/798 +f 3076/5295 783/798 3077/6214 +f 3083/808 3084/6215 787/810 +f 3082/5296 787/810 3084/6215 +f 3089/821 3090/6216 791/819 +f 3088/5297 791/819 3090/6216 +f 3096/816 3097/6217 790/818 +f 3095/5327 790/818 3097/6217 +f 776/781 3041/782 3102/5299 +f 3103/6218 3102/5299 3041/782 +f 3106/5325 793/825 3108/6219 +f 3107/826 3108/6219 793/825 +f 3078/804 3113/6220 786/806 +f 3112/5301 786/806 3113/6220 +f 3120/6221 3118/5306 3119/831 +f 796/832 3119/831 3118/5306 +f 3125/6222 3124/5303 3114/827 +f 795/828 3114/827 3124/5303 +f 3132/6223 3130/5304 3131/839 +f 799/840 3131/839 3130/5304 +f 3137/852 3138/6224 803/854 +f 3136/5305 803/854 3138/6224 +f 3144/848 3145/6225 802/850 +f 3143/5335 802/850 3145/6225 +f 3091/812 3151/6226 789/814 +f 3150/5307 789/814 3151/6226 +f 3155/856 3156/6227 805/858 +f 3154/5333 805/858 3156/6227 +f 3126/835 3161/6228 798/836 +f 3160/5309 798/836 3161/6228 +f 3167/864 3168/6229 808/866 +f 3166/5314 808/866 3168/6229 +f 3162/860 3173/6230 807/862 +f 3172/5311 807/862 3173/6230 +f 3179/872 3180/6231 811/874 +f 3178/5312 811/874 3180/6231 +f 3185/884 3186/6233 815/886 +f 3184/5313 815/886 3186/6233 +f 3192/880 3193/6234 814/882 +f 3191/5343 814/882 3193/6234 +f 3198/5315 801/846 3199/6236 +f 3139/844 3199/6236 801/846 +f 3202/5341 817/887 3204/6237 +f 3203/889 3204/6237 817/887 +f 3210/6238 3208/5317 3209/7232 +f 821/7073 3209/7232 3208/5317 +f 820/897 3216/898 3215/5323 +f 3217/6239 3215/5323 3216/898 +f 3223/6240 3222/5319 3211/894 +f 819/893 3211/894 3222/5319 +f 3230/6241 3228/5321 3229/903 +f 824/904 3229/903 3228/5321 +f 3236/6242 3234/5322 3235/918 +f 828/917 3235/918 3234/5322 +f 3243/6243 3241/5352 3242/911 +f 827/912 3242/911 3241/5352 +f 831/7074 3249/7233 3248/5324 +f 3250/6244 3248/5324 3249/7233 +f 830/921 3254/922 3253/5349 +f 3255/6245 3253/5349 3254/922 +f 3261/6326 3262/6246 835/1191 +f 3260/5326 835/1191 3262/6246 +f 3268/928 3269/6247 834/930 +f 3267/5331 834/930 3269/6247 +f 3263/924 3275/6248 833/926 +f 3274/5328 833/926 3275/6248 +f 3280/5329 838/935 3282/6249 +f 3281/937 3282/6249 838/935 +f 3286/5330 842/947 3288/6250 +f 3287/949 3288/6250 842/947 +f 3293/6251 841/943 3295/6252 +f 3294/945 3295/6252 841/943 +f 3301/6329 3302/6253 845/1200 +f 3300/5332 845/1200 3302/6253 +f 3305/6254 844/951 3307/6255 +f 3306/953 3307/6255 844/951 +f 3276/932 3313/6256 837/934 +f 3312/5334 837/934 3313/6256 +f 3319/961 3320/6257 848/959 +f 3318/5339 848/959 3320/6257 +f 3314/956 3325/6258 847/958 +f 3324/5336 847/958 3325/6258 +f 3331/968 3332/6259 851/970 +f 3330/5337 851/970 3332/6259 +f 3337/980 3338/6260 855/982 +f 3336/5338 855/982 3338/6260 +f 3345/6261 3343/6262 3344/975 +f 854/976 3344/975 3343/6262 +f 3350/5340 840/939 3351/6263 +f 3289/941 3351/6263 840/939 +f 3356/6264 3354/6265 3355/983 +f 857/984 3355/983 3354/6265 +f 3326/964 3361/6266 850/966 +f 3360/5342 850/966 3361/6266 +f 3367/992 3368/6267 860/994 +f 3366/5347 860/994 3368/6267 +f 3372/5344 859/987 3373/6268 +f 3362/989 3373/6268 859/987 +f 3378/5345 863/999 3380/6270 +f 3379/1001 3380/6270 863/999 +f 3385/1012 3386/6271 867/1014 +f 3384/5346 867/1014 3386/6271 +f 3391/5403 866/1010 3393/6273 +f 3392/1008 3393/6273 866/1010 +f 3339/972 3399/6274 853/974 +f 3398/5348 853/974 3399/6274 +f 3403/1016 3404/6275 869/1018 +f 3402/5401 869/1018 3404/6275 +f 873/7075 3409/7234 3408/5350 +f 3410/6276 3408/5350 3409/7234 +f 872/1025 3416/1026 3415/5356 +f 3417/6277 3415/5356 3416/1026 +f 3423/6278 3422/5353 3411/1022 +f 871/1021 3411/1022 3422/5353 +f 3430/6279 3428/5354 3429/1031 +f 876/1032 3429/1031 3428/5354 +f 3436/6280 3434/5355 3435/1043 +f 880/1044 3435/1043 3434/5355 +f 879/1040 3442/1039 3441/5379 +f 3443/6281 3441/5379 3442/1039 +f 883/7076 3449/7235 3448/5357 +f 3450/6282 3448/5357 3449/7235 +f 3455/6283 3453/5377 3454/1047 +f 882/1048 3454/1047 3453/5377 +f 3462/6284 3461/5360 3424/1027 +f 875/1028 3424/1027 3461/5360 +f 887/1057 3469/1058 3468/5366 +f 3470/6285 3468/5366 3469/1058 +f 3476/6286 3475/5363 3464/1051 +f 886/1052 3464/1051 3475/5363 +f 3483/1064 3484/6287 891/1066 +f 3482/5364 891/1066 3484/6287 +f 3490/6288 3488/5365 3489/1078 +f 895/1077 3489/1078 3488/5365 +f 3495/6289 894/1071 3497/6290 +f 3496/1073 3497/6290 894/1071 +f 878/1036 3437/1035 3502/5367 +f 3503/6291 3502/5367 3437/1035 +f 897/1081 3507/1082 3506/6292 +f 3508/6293 3506/6292 3507/1082 +f 3478/1060 3514/6294 890/1062 +f 3513/5370 890/1062 3514/6294 +f 3521/1088 3522/6295 901/1090 +f 3520/5375 901/1090 3522/6295 +f 3516/1084 3528/6296 900/1086 +f 3527/5372 900/1086 3528/6296 +f 3535/1096 3536/6298 905/1098 +f 3534/5373 905/1098 3536/6298 +f 3541/1109 3542/6299 909/1107 +f 3540/5374 909/1107 3542/6299 +f 3548/1104 3549/6301 908/1106 +f 3547/1140 908/1106 3549/6301 +f 3491/1068 3555/6302 893/1070 +f 3554/5376 893/1070 3555/6302 +f 3558/1133 911/1111 3560/6303 +f 3559/1113 3560/6303 911/1111 +f 3566/6304 3564/5378 3565/7236 +f 915/7081 3565/7236 3564/5378 +f 914/1120 3572/1119 3571/5383 +f 3573/6305 3571/5383 3572/1119 +f 913/1116 3567/1115 3578/5380 +f 3579/6306 3578/5380 3567/1115 +f 917/1127 3583/1128 3582/5381 +f 3584/6307 3582/5381 3583/1128 +f 3589/1135 3590/6308 919/1137 +f 3588/5382 919/1137 3590/6308 +f 3593/1132 3594/6309 911/1111 +f 3561/1112 911/1111 3594/6309 +f 3599/7237 3600/6310 921/7082 +f 3598/5384 921/7082 3600/6310 +f 3603/1139 3604/6311 908/1106 +f 3550/1105 908/1106 3604/6311 +f 925/7083 3609/7238 3608/5386 +f 3610/6312 3608/5386 3609/7238 +f 3617/6313 3615/5391 3616/1145 +f 924/1146 3616/1145 3615/5391 +f 3611/1142 3623/6314 923/1144 +f 3622/5388 923/1144 3623/6314 +f 928/1155 3629/1156 3628/5389 +f 3630/6315 3628/5389 3629/1156 +f 932/1167 3635/1168 3634/5390 +f 3636/6316 3634/5390 3635/1168 +f 931/1163 3642/1164 3641/5411 +f 3643/6317 3641/5411 3642/1164 +f 935/7084 3649/7239 3648/5392 +f 3650/6318 3648/5392 3649/7239 +f 934/1170 3654/1169 3653/5409 +f 3655/6319 3653/5409 3654/1169 +f 3624/1150 3661/6320 927/1152 +f 3660/5394 927/1152 3661/6320 +f 3666/5399 938/1177 3668/6321 +f 3667/1179 3668/6321 938/1177 +f 3673/6322 3672/5396 3662/1174 +f 937/1176 3662/1174 3672/5396 +f 3678/6323 3676/5397 3677/1184 +f 940/1185 3677/1184 3676/5397 +f 3682/5398 942/1195 3684/6324 +f 3683/1197 3684/6324 942/1195 +f 3261/6326 835/1191 3688/6325 +f 3687/1193 3688/6325 835/1191 +f 930/1159 3637/1160 3692/5400 +f 3693/6327 3692/5400 3637/1160 +f 3697/6328 3301/6329 3696/1199 +f 845/1200 3696/1199 3301/6329 +f 3343/6262 3701/6330 854/976 +f 3700/5402 854/976 3701/6330 +f 3707/1208 3708/6331 946/1210 +f 3706/5407 946/1210 3708/6331 +f 3702/1204 3713/6332 945/1206 +f 3712/5404 945/1206 3713/6332 +f 3719/1216 3720/6334 949/1218 +f 3718/5405 949/1218 3720/6334 +f 3725/1228 3726/6335 953/1230 +f 3724/5406 953/1230 3726/6335 +f 3732/1224 3733/6336 952/1226 +f 3731/1260 952/1226 3733/6336 +f 3354/6265 3739/6338 857/984 +f 3738/5408 857/984 3739/6338 +f 3742/1253 955/1231 3744/6339 +f 3743/1233 3744/6339 955/1231 +f 3750/6340 3748/5410 3749/7240 +f 959/7085 3749/7240 3748/5410 +f 3756/1240 3757/6341 958/1242 +f 3755/5415 958/1242 3757/6341 +f 957/1237 3751/1238 3762/5412 +f 3763/6342 3762/5412 3751/1238 +f 961/1247 3767/1248 3766/5413 +f 3768/6343 3766/5413 3767/1248 +f 3773/1255 3774/6344 963/1257 +f 3772/5414 963/1257 3774/6344 +f 3777/1252 3778/6345 955/1231 +f 3745/1232 955/1231 3778/6345 +f 3783/7241 3784/6346 965/7086 +f 3782/5416 965/7086 3784/6346 +f 3734/1225 952/1226 3788/6347 +f 3787/1259 3788/6347 952/1226 +f 3795/6348 3793/5418 3794/7242 +f 970/7088 3794/7242 3793/5418 +f 3803/6351 3801/6352 3802/1265 +f 969/1266 3802/1265 3801/6352 +f 974/7089 3810/7243 3809/5419 +f 3811/6353 3809/5419 3810/7243 +f 3817/1274 3818/6354 968/1262 +f 3800/6349 968/1262 3818/6354 +f 3824/1479 3825/6356 977/1480 +f 3823/5421 977/1480 3825/6356 +f 3829/1278 3830/6357 973/1271 +f 3816/6355 973/1271 3830/6357 +f 3836/6358 3835/5423 2487/7244 +f 633/7091 2487/7244 3835/5423 +f 3844/6359 3842/5428 3843/1283 +f 981/1284 3843/1283 3842/5428 +f 3850/6360 3849/5425 3838/1279 +f 980/1280 3838/1279 3849/5425 +f 3858/6361 3856/5426 3857/1291 +f 985/1292 3857/1291 3856/5426 +f 3864/6362 3862/5427 3863/1303 +f 989/1304 3863/1303 3862/5427 +f 3871/6363 3869/6364 3870/1299 +f 988/1300 3870/1299 3869/6364 +f 3877/6365 3876/5429 2501/7245 +f 637/7092 2501/7245 3876/5429 +f 3882/6366 3880/6367 3881/1307 +f 991/1308 3881/1307 3880/6367 +f 3852/1287 3887/6368 984/1288 +f 3886/5430 984/1288 3887/6368 +f 994/1317 3893/1318 3892/5437 +f 3894/6369 3892/5437 3893/1318 +f 993/1311 3888/1313 3898/5433 +f 3899/6370 3898/5433 3888/1313 +f 996/1325 3903/1326 3902/5434 +f 3904/6371 3902/5434 3903/1326 +f 999/1337 3909/1338 3908/5436 +f 3910/6373 3908/5436 3909/1338 +f 998/1333 3914/1334 3913/6374 +f 3915/6375 3913/6374 3914/1334 +f 3921/6378 3920/5438 3865/1295 +f 987/1296 3865/1295 3920/5438 +f 1001/1340 3925/1339 3924/6379 +f 3926/6380 3924/6379 3925/1339 +f 3930/5439 1005/1543 3932/6381 +f 3931/1545 3932/6381 1005/1543 +f 3937/5444 1004/1347 3939/6382 +f 3938/1349 3939/6382 1004/1347 +f 3945/6383 3944/5441 3933/1343 +f 1003/1344 3933/1343 3944/5441 +f 1008/1356 3951/1355 3950/5442 +f 3952/6384 3950/5442 3951/1355 +f 3958/6385 3956/5443 3957/1368 +f 1012/1370 3957/1368 3956/5443 +f 3965/6386 3963/6387 3964/1366 +f 1011/1365 3964/1366 3963/6387 +f 3971/1552 3972/6388 1015/1554 +f 3970/5445 1015/1554 3972/6388 +f 3975/6389 1014/1371 3977/6390 +f 3976/1373 3977/6390 1014/1371 +f 3984/6391 3983/5447 3963/6387 +f 1011/1365 3963/6387 3983/5447 +f 3992/6392 3990/5453 3991/1379 +f 1019/1380 3991/1379 3990/5453 +f 1018/1377 3986/1378 3997/5450 +f 3998/6393 3997/5450 3986/1378 +f 4005/1388 4006/6394 1023/1390 +f 4004/5451 1023/1390 4006/6394 +f 4011/1401 4012/6395 1027/1399 +f 4010/5452 1027/1399 4012/6395 +f 4018/1396 4019/6396 1026/1398 +f 4017/1564 1026/1398 4019/6396 +f 3975/6389 4025/6398 1014/1371 +f 4024/5454 1014/1371 4025/6398 +f 4029/1404 4030/6399 1029/1406 +f 4028/1557 1029/1406 4030/6399 +f 4036/6400 4035/5456 2670/7246 +f 681/7093 2670/7246 4035/5456 +f 4044/6401 4042/5461 4043/1411 +f 1033/1412 4043/1411 4042/5461 +f 4050/6402 4049/5458 4038/1407 +f 1032/1408 4038/1407 4049/5458 +f 4058/6403 4056/5459 4057/1419 +f 1037/1420 4057/1419 4056/5459 +f 4064/6404 4062/5460 4063/1431 +f 1040/1432 4063/1431 4062/5460 +f 4070/6405 2299/6406 4069/1427 +f 582/1428 4069/1427 2299/6406 +f 4075/6407 4074/5462 2683/7247 +f 684/7094 2683/7247 4074/5462 +f 4079/6408 2284/6409 4078/1435 +f 577/1436 4078/1435 2284/6409 +f 2615/7250 4083/6410 667/7096 +f 4082/5465 667/7096 4083/6410 +f 1044/1446 4089/1444 4088/5471 +f 4090/6411 4088/5471 4089/1444 +f 4094/5468 1043/1439 4095/6412 +f 4084/1441 4095/6412 1043/1439 +f 4101/1453 4102/6413 1047/1451 +f 4100/5469 1047/1451 4102/6413 +f 4106/5470 1050/1465 4108/6414 +f 4107/1466 4108/6414 1050/1465 +f 4051/5457 1035/1459 4114/6415 +f 4113/1461 4114/6415 1035/1459 +f 2639/7252 4119/6416 672/7098 +f 4118/5472 672/7098 4119/6416 +f 1031/1469 4122/1470 4037/5455 +f 4123/6417 4037/5455 4122/1470 +f 4096/1448 4127/6418 1046/1450 +f 4126/5475 1046/1450 4127/6418 +f 4133/1476 4134/6419 1054/1478 +f 4132/5480 1054/1478 4134/6419 +f 4128/1472 4139/6420 1053/1474 +f 4138/5477 1053/1474 4139/6420 +f 4143/1484 4144/6421 1056/1486 +f 4142/5478 1056/1486 4144/6421 +f 4149/1496 4150/6422 1059/1498 +f 4148/5479 1059/1498 4150/6422 +f 4153/5494 1058/1491 4155/6424 +f 4154/1493 4155/6424 1058/1491 +f 4109/1456 4161/6425 1049/1458 +f 4160/5481 1049/1458 4161/6425 +f 4164/5491 1061/1502 4166/6426 +f 4165/1500 4166/6426 1061/1502 +f 4172/6427 4171/5484 4052/1415 +f 1036/1416 4052/1415 4171/5484 +f 4180/6428 4178/5489 4179/1507 +f 1065/1508 4179/1507 4178/5489 +f 4186/6429 4185/5486 4174/1503 +f 1064/1504 4174/1503 4185/5486 +f 4191/1515 4192/6430 1068/1516 +f 4190/5487 1068/1516 4192/6430 +f 4196/5488 1070/1528 4198/6432 +f 4197/1527 4198/6432 1070/1528 +f 4201/1524 4202/6433 597/1526 +f 2353/6435 597/1526 4202/6433 +f 4207/6437 4206/5490 4065/1423 +f 1039/1424 4065/1423 4206/5490 +f 4211/6439 2339/6438 4210/1531 +f 593/1532 4210/1531 2339/6438 +f 1075/7103 4215/7255 4214/5492 +f 4216/6440 4214/5492 4215/7255 +f 4221/5498 1074/1540 4223/6441 +f 4222/1539 4223/6441 1074/1540 +f 4228/5495 1073/1535 4229/6442 +f 4217/1537 4229/6442 1073/1535 +f 4233/1548 4234/6443 1077/1550 +f 4232/5496 1077/1550 4234/6443 +f 4239/1559 4240/6444 1079/1561 +f 4238/5497 1079/1561 4240/6444 +f 4243/1556 4244/6445 1029/1406 +f 4031/1405 1029/1406 4244/6445 +f 4249/4167 4250/6446 1081/7104 +f 4248/5499 1081/7104 4250/6446 +f 4253/1563 4254/6447 1026/1398 +f 4020/1397 1026/1398 4254/6447 +f 1007/1352 3946/1351 4258/5501 +f 4259/6448 4258/5501 3946/1351 +f 4266/6449 4264/5506 4265/1569 +f 1084/1570 4265/1569 4264/5506 +f 4271/6450 4270/5503 4260/1565 +f 1083/1566 4260/1565 4270/5503 +f 4277/1580 4278/6451 1087/1579 +f 4276/5504 1087/1579 4278/6451 +f 4284/6452 4282/5505 4283/1589 +f 1090/1590 4283/1589 4282/5505 +f 4290/6454 3999/5448 4289/1585 +f 1021/1586 4289/1585 3999/5448 +f 4295/6455 4294/5507 3959/1359 +f 1010/1360 3959/1359 4294/5507 +f 4299/6456 3985/5446 4298/1593 +f 1017/1594 4298/1593 3985/5446 +f 4302/5508 1086/1576 4303/6457 +f 4272/1574 4303/6457 1086/1576 +f 4308/6459 1094/1601 4310/6461 +f 4309/1603 4310/6461 1094/1601 +f 4255/4143 4315/6462 1081/7104 +f 4314/5509 1081/7104 4315/6462 +f 4321/6464 4307/6460 4320/1609 +f 1093/1597 4320/1609 4307/6460 +f 4324/5510 1022/1386 4325/6465 +f 4000/1384 4325/6465 1022/1386 +f 1096/1606 4328/1614 4319/6463 +f 4329/6466 4319/6463 4328/1614 +f 1101/7105 4333/7256 4332/5512 +f 4334/6467 4332/5512 4333/7256 +f 1100/1621 4340/1622 4339/6468 +f 4341/6469 4339/6468 4340/1622 +f 2995/6200 4348/6472 764/752 +f 4347/5513 764/752 4348/6472 +f 4354/1628 4355/6473 1099/1616 +f 4338/6471 1099/1616 4355/6473 +f 4361/6475 4359/5515 4360/7258 +f 1107/7108 4360/7258 4359/5515 +f 4366/6476 4353/6474 4365/1632 +f 1104/1626 4365/1632 4353/6474 +f 4370/5516 752/721 4371/6477 +f 2947/6187 4371/6477 752/721 +f 4377/1638 4378/6478 1110/1640 +f 4376/5521 1110/1640 4378/6478 +f 4372/1635 4383/6479 1109/1633 +f 4382/5518 1109/1633 4383/6479 +f 4389/1646 4390/6480 1113/1648 +f 4388/5519 1113/1648 4390/6480 +f 4395/1658 4396/6482 1117/1660 +f 4394/5520 1117/1660 4396/6482 +f 4402/1654 4403/6483 1116/1656 +f 4401/6485 1116/1656 4403/6483 +f 4408/5522 755/729 4409/6487 +f 2958/6190 4409/6487 755/729 +f 4413/1663 4414/6488 1119/1661 +f 4412/6489 1119/1661 4414/6488 +f 1123/7109 4419/7259 4418/5524 +f 4420/6490 4418/5524 4419/7259 +f 1122/1671 4426/1672 4425/5529 +f 4427/6491 4425/5529 4426/1672 +f 1121/1667 4421/1668 4432/5526 +f 4433/6492 4432/5526 4421/1668 +f 1125/1677 4437/1678 4436/5527 +f 4438/6493 4436/5527 4437/1678 +f 1128/1687 4443/1688 4442/5528 +f 4444/6494 4442/5528 4443/1688 +f 4448/1682 4449/6496 1127/1684 +f 4447/6495 1127/1684 4449/6496 +f 1131/7110 4455/4214 4454/5530 +f 4456/6497 4454/5530 4455/4214 +f 1130/1691 4460/1692 4459/6498 +f 4461/6499 4459/6498 4460/1692 +f 2849/6171 4467/6500 727/657 +f 4466/5531 727/657 4467/6500 +f 4474/6503 4472/6504 4473/1697 +f 1134/1698 4473/1697 4472/6504 +f 1131/7110 4463/4209 4479/5532 +f 4480/6505 4479/5532 4463/4209 +f 1133/1696 4486/1706 4471/6501 +f 4487/6506 4471/6501 4486/1706 +f 4491/7261 4492/6508 1139/7112 +f 4490/5534 1139/7112 4492/6508 +f 4495/1709 4496/6509 1137/1703 +f 4485/6507 1137/1703 4496/6509 +f 4501/7262 4502/6510 1143/7113 +f 4500/5535 1143/7113 4502/6510 +f 4509/6511 4507/5539 4508/1715 +f 1142/1716 4508/1715 4507/5539 +f 1141/1713 4503/1714 4514/5536 +f 4515/6512 4514/5536 4503/1714 +f 1146/1725 4521/1726 4520/5537 +f 4522/6513 4520/5537 4521/1726 +f 1150/1736 4527/1735 4526/5538 +f 4528/6514 4526/5538 4527/1735 +f 1149/1733 4534/1734 4533/5550 +f 4535/6515 4533/5550 4534/1734 +f 4542/6516 4540/5540 4541/7263 +f 1153/7114 4541/7263 4540/5540 +f 4547/6517 4545/5548 4546/1739 +f 1152/1740 4546/1739 4545/5548 +f 4553/6518 4552/5541 4516/1722 +f 1145/1721 4516/1722 4552/5541 +f 4560/6519 4558/5546 4559/1747 +f 1156/1748 4559/1747 4558/5546 +f 4565/6520 4564/5542 4554/1743 +f 1155/1744 4554/1743 4564/5542 +f 4572/6521 4570/5544 4571/1755 +f 1159/1756 4571/1755 4570/5544 +f 4578/6522 4576/5545 4577/1767 +f 1163/1768 4577/1767 4576/5545 +f 4585/6523 4583/5576 4584/1763 +f 1162/1764 4584/1763 4583/5576 +f 4591/6524 4590/5547 4529/1727 +f 1148/1728 4529/1727 4590/5547 +f 4596/6525 4594/5574 4595/1771 +f 1165/1772 4595/1771 4594/5574 +f 4601/7264 4602/6526 1169/7115 +f 4600/5549 1169/7115 4602/6526 +f 4608/1780 4609/6527 1168/1782 +f 4607/5554 1168/1782 4609/6527 +f 4603/1776 4615/6528 1167/1778 +f 4614/5551 1167/1778 4615/6528 +f 4621/1788 4622/6529 1172/1790 +f 4620/5552 1172/1790 4622/6529 +f 4627/1800 4628/6530 1176/1802 +f 4626/5553 1176/1802 4628/6530 +f 1175/1797 4634/1798 4633/5558 +f 4635/6531 4633/5558 4634/1798 +f 4641/7265 4642/6532 1179/7116 +f 4640/5555 1179/7116 4642/6532 +f 4646/1804 4647/6533 1178/1806 +f 4645/5556 1178/1806 4647/6533 +f 4653/7266 4654/6534 1183/7117 +f 4652/5557 1183/7117 4654/6534 +f 1182/1813 4660/1814 4659/5562 +f 4661/6535 4659/5562 4660/1814 +f 1181/1809 4655/1810 4666/5559 +f 4667/6536 4666/5559 4655/1810 +f 1186/1821 4673/1822 4672/5560 +f 4674/6537 4672/5560 4673/1822 +f 1190/1833 4679/1834 4678/5561 +f 4680/6538 4678/5561 4679/1834 +f 1189/1830 4686/1828 4685/5586 +f 4687/6539 4685/5586 4686/1828 +f 4693/7267 4694/6540 1193/7118 +f 4692/5563 1193/7118 4694/6540 +f 4698/1836 4699/6541 1192/1838 +f 4697/5584 1192/1838 4699/6541 +f 1185/1817 4668/1818 4705/5565 +f 4706/6542 4705/5565 4668/1818 +f 1197/1845 4713/1846 4712/5572 +f 4714/6543 4712/5572 4713/1846 +f 1196/1841 4708/1842 4719/5568 +f 4720/6544 4719/5568 4708/1842 +f 1201/1853 4727/1854 4726/5569 +f 4728/6545 4726/5569 4727/1854 +f 1205/1865 4733/1866 4732/5571 +f 4734/6547 4732/5571 4733/1866 +f 4740/1860 4741/6548 1204/1862 +f 4739/5594 1204/1862 4741/6548 +f 1188/1825 4681/1826 4746/5573 +f 4747/6550 4746/5573 4681/1826 +f 4751/1870 4752/6551 1207/1869 +f 4750/5592 1207/1869 4752/6551 +f 1171/1785 4616/1786 4756/5575 +f 4757/6552 4756/5575 4616/1786 +f 1210/1877 4763/1878 4762/5582 +f 4764/6553 4762/5582 4763/1878 +f 4769/6554 4768/5578 4758/1871 +f 1209/1872 4758/1871 4768/5578 +f 1213/1885 4775/1886 4774/5579 +f 4776/6555 4774/5579 4775/1886 +f 1216/1897 4781/1898 4780/5581 +f 4782/6557 4780/5581 4781/1898 +f 1199/1893 4787/1894 4721/5566 +f 4788/6558 4721/5566 4787/1894 +f 1174/1793 4629/1794 4792/5583 +f 4793/6560 4792/5583 4629/1794 +f 1195/1901 4796/1902 4707/5564 +f 4797/6561 4707/5564 4796/1902 +f 4801/7268 4802/6562 1221/7119 +f 4800/5585 1221/7119 4802/6562 +f 4808/1908 4809/6563 1220/1910 +f 4807/5590 1220/1910 4809/6563 +f 4803/1904 4815/6564 1219/1906 +f 4814/5587 1219/1906 4815/6564 +f 4821/1916 4822/6565 1224/1918 +f 4820/5588 1224/1918 4822/6565 +f 4827/1926 4828/6566 1227/1928 +f 4826/5589 1227/1928 4828/6566 +f 4833/1924 4834/6567 537/212 +f 2122/6026 537/212 4834/6567 +f 4839/7269 4840/6568 1229/7120 +f 4838/5591 1229/7120 4840/6568 +f 4843/1930 4844/6569 534/204 +f 2109/6023 534/204 4844/6569 +f 4816/1912 4849/6570 1223/1914 +f 4848/5593 1223/1914 4849/6570 +f 4855/1936 4856/6571 1232/1938 +f 4854/5599 1232/1938 4856/6571 +f 4850/1932 4861/6572 1231/1934 +f 4860/5596 1231/1934 4861/6572 +f 4867/1944 4868/6573 1235/1946 +f 4866/5597 1235/1946 4868/6573 +f 4873/1954 4874/6574 1238/1956 +f 4872/5598 1238/1956 4874/6574 +f 4879/1952 4880/6575 549/244 +f 2170/6036 549/244 4880/6575 +f 1226/1921 4829/1922 4884/5600 +f 4885/6576 4884/5600 4829/1922 +f 4888/1958 4889/6577 546/236 +f 2157/6033 546/236 4889/6577 +f 4862/1940 4893/6578 1234/1942 +f 4892/5601 1234/1942 4893/6578 +f 4899/1964 4900/6579 1242/1966 +f 4898/5605 1242/1966 4900/6579 +f 4904/5602 1241/1959 4905/6580 +f 4894/1961 4905/6580 1241/1959 +f 4911/1972 4912/6581 1245/1974 +f 4910/5603 1245/1974 4912/6581 +f 4916/5604 1248/1981 4918/6582 +f 4917/1983 4918/6582 1248/1981 +f 2218/6046 561/273 4924/6583 +f 4923/1979 4924/6583 561/273 +f 4875/1948 4929/6584 1237/1950 +f 4928/5606 1237/1950 4929/6584 +f 4932/1986 4933/6585 558/268 +f 2205/6042 558/268 4933/6585 +f 4906/1968 4937/6586 1244/1970 +f 4936/5607 1244/1970 4937/6586 +f 4944/6587 4942/5611 4943/1991 +f 1252/1992 4943/1991 4942/5611 +f 1251/1988 4938/1987 4948/5608 +f 4949/6588 4948/5608 4938/1987 +f 4954/6589 4952/5609 4953/2001 +f 1254/2000 4953/2001 4952/5609 +f 1256/2008 4959/2007 4958/5610 +f 4960/6590 4958/5610 4959/2007 +f 4964/6591 2266/6056 4963/2005 +f 573/307 4963/2005 2266/6056 +f 4919/1976 4969/6592 1247/1978 +f 4968/5612 1247/1978 4969/6592 +f 570/299 4972/2011 2253/6052 +f 4973/6593 2253/6052 4972/2011 +f 4979/6594 4977/5615 4978/7270 +f 1262/7122 4978/7270 4977/5615 +f 4987/6595 4985/5621 4986/2017 +f 1261/2018 4986/2017 4985/5621 +f 4981/2014 4994/6596 1260/2016 +f 4993/5618 1260/2016 4994/6596 +f 5001/2026 5002/6597 1266/2028 +f 5000/5619 1266/2028 5002/6597 +f 5007/2037 5008/6598 1270/2038 +f 5006/5620 1270/2038 5008/6598 +f 5014/2034 5015/6599 1269/2036 +f 5013/5625 1269/2036 5015/6599 +f 5022/6600 5020/5622 5021/7274 +f 1273/7124 5021/7274 5020/5622 +f 5027/6601 5025/5623 5026/2041 +f 1272/2042 5026/2041 5025/5623 +f 5034/6602 5032/5624 5033/7275 +f 1277/7125 5033/7275 5032/5624 +f 5040/2050 5041/6603 1276/2052 +f 5039/5629 1276/2052 5041/6603 +f 5035/2045 5047/6604 1275/2046 +f 5046/5626 1275/2046 5047/6604 +f 5053/2058 5054/6605 1280/2060 +f 5052/5627 1280/2060 5054/6605 +f 5059/2070 5060/6606 1284/2072 +f 5058/5628 1284/2072 5060/6606 +f 5066/2066 5067/6607 1283/2068 +f 5065/5650 1283/2068 5067/6607 +f 5073/7276 5074/6608 1287/7126 +f 5072/5630 1287/7126 5074/6608 +f 5078/2074 5079/6609 1286/2076 +f 5077/5648 1286/2076 5079/6609 +f 5048/2054 5086/6610 1279/2056 +f 5085/5632 1279/2056 5086/6610 +f 5094/6611 5092/5637 5093/2081 +f 1291/2082 5093/2081 5092/5637 +f 1290/2080 5088/2078 5099/5634 +f 5100/6612 5099/5634 5088/2078 +f 5108/6613 5106/5635 5107/2089 +f 1295/2090 5107/2089 5106/5635 +f 5114/6614 5112/5636 5113/2101 +f 1299/2102 5113/2101 5112/5636 +f 1298/2099 5120/2100 5119/5658 +f 5121/6615 5119/5658 5120/2100 +f 5127/6616 5126/5638 5061/2061 +f 1282/2062 5061/2061 5126/5638 +f 5132/6617 5130/5656 5131/2105 +f 1301/2106 5131/2105 5130/5656 +f 4996/2022 5138/6618 1265/2024 +f 5137/5641 1265/2024 5138/6618 +f 5145/2114 5146/6619 1305/2116 +f 5144/5646 1305/2116 5146/6619 +f 5140/2110 5152/6620 1304/2112 +f 5151/5643 1304/2112 5152/6620 +f 5159/2122 5160/6621 1309/2124 +f 5158/5644 1309/2124 5160/6621 +f 5165/2134 5166/6622 1312/2136 +f 5164/5645 1312/2136 5166/6622 +f 5171/2130 5172/6623 1293/2132 +f 5101/5633 1293/2132 5172/6623 +f 5009/2030 5177/6624 1268/2032 +f 5176/5647 1268/2032 5177/6624 +f 5180/2138 5181/6625 1289/2140 +f 5087/5631 1289/2140 5181/6625 +f 5185/7279 5186/6626 1317/7129 +f 5184/5649 1317/7129 5186/6626 +f 5192/2146 5193/6627 1316/2148 +f 5191/5654 1316/2148 5193/6627 +f 5187/2142 5199/6628 1315/2144 +f 5198/5651 1315/2144 5199/6628 +f 5205/2154 5206/6629 1320/2156 +f 5204/5652 1320/2156 5206/6629 +f 5211/2164 5212/6630 1323/2166 +f 5210/5653 1323/2166 5212/6630 +f 5217/2162 5218/6631 641/466 +f 2522/6098 641/466 5218/6631 +f 5223/7280 5224/6632 1325/7130 +f 5222/5655 1325/7130 5224/6632 +f 5227/2168 5228/6633 638/458 +f 2509/6095 638/458 5228/6633 +f 1319/2152 5200/2150 5232/5657 +f 5233/6634 5232/5657 5200/2150 +f 1328/2175 5239/2176 5238/5662 +f 5240/6635 5238/5662 5239/2176 +f 1327/2171 5234/2172 5244/5659 +f 5245/6636 5244/5659 5234/2172 +f 5251/2184 5252/6637 1331/2183 +f 5250/5660 1331/2183 5252/6637 +f 5257/2194 5258/6638 1334/2193 +f 5256/5661 1334/2193 5258/6638 +f 5263/2190 5264/6639 653/498 +f 2570/6108 653/498 5264/6639 +f 5213/2158 5269/6640 1322/2160 +f 5268/5663 1322/2160 5269/6640 +f 5272/2196 5273/6641 650/488 +f 2557/6105 650/488 5273/6641 +f 5277/5664 659/7045 5278/6642 +f 2587/7202 5278/6642 659/7045 +f 5284/6645 1339/2201 5286/6643 +f 5285/2203 5286/6643 1339/2201 +f 5293/6647 5291/5665 5292/4555 +f 1343/7133 5292/4555 5291/5665 +f 5300/6649 5283/6644 5299/2209 +f 1338/2200 5299/2209 5283/6644 +f 5306/4507 5307/6650 1347/7135 +f 5305/5667 1347/7135 5307/6650 +f 5313/2216 5314/6651 1342/2206 +f 5298/6648 1342/2206 5314/6651 +f 5320/6653 5318/5669 5319/7286 +f 1350/7137 5319/7286 5318/5669 +f 5326/6655 5312/6652 5325/2221 +f 1346/2214 5325/2221 5312/6652 +f 4845/7287 5331/6656 1229/7138 +f 5330/5670 1229/7138 5331/6656 +f 5334/2226 5335/6657 1349/2218 +f 5324/6654 1349/2218 5335/6657 +f 5289/7282 5340/6658 1341/7132 +f 5339/5671 1341/7132 5340/6658 +f 5347/2232 5348/6659 1355/2234 +f 5346/5676 1355/2234 5348/6659 +f 5342/2228 5354/6660 1354/2230 +f 5353/5672 1354/2230 5354/6660 +f 5361/2240 5362/6661 1359/2242 +f 5360/5673 1359/2242 5362/6661 +f 5367/2252 5368/6663 1363/2254 +f 5366/5675 1363/2254 5368/6663 +f 5374/2248 5375/6664 1362/2250 +f 5373/6666 1362/2250 5375/6664 +f 5315/4484 5381/6668 1347/7135 +f 5380/5677 1347/7135 5381/6668 +f 5385/2256 5386/6669 1365/2258 +f 5384/6670 1365/2258 5386/6669 +f 5391/6671 5390/5678 4975/7290 +f 1259/7141 4975/7290 5390/5678 +f 5398/6672 5396/5682 5397/2263 +f 1368/2264 5397/2263 5396/5682 +f 5403/6673 5402/5679 5392/2259 +f 1367/2260 5392/2259 5402/5679 +f 5410/6674 5408/5680 5409/2271 +f 1371/2272 5409/2271 5408/5680 +f 5416/6675 5414/5681 5415/2283 +f 1375/2284 5415/2283 5414/5681 +f 5422/2280 5423/6676 1374/2282 +f 5421/6677 1374/2282 5423/6676 +f 5429/6678 5428/5683 4991/7291 +f 1264/7142 4991/7291 5428/5683 +f 5433/2288 5434/6679 1377/2290 +f 5432/5690 1377/2290 5434/6679 +f 5440/6680 5439/5684 5421/6677 +f 1374/2282 5421/6677 5439/5684 +f 5448/6683 5446/6684 5447/2295 +f 1381/2296 5447/2295 5446/6684 +f 5453/4602 5454/6685 1384/7144 +f 5452/5685 1384/7144 5454/6685 +f 5459/2304 5460/6687 1380/2292 +f 5445/6681 1380/2292 5460/6687 +f 2789/7222 5466/6688 712/7063 +f 5465/5687 712/7063 5466/6688 +f 5472/2309 5473/6689 1383/2302 +f 5458/6686 1383/2302 5473/6689 +f 5478/6691 5476/5689 5477/7296 +f 1390/7147 5477/7296 5476/5689 +f 5484/6693 5471/6690 5483/2315 +f 1387/2308 5483/2315 5471/6690 +f 5488/5691 1303/7148 5489/6694 +f 5135/7297 5489/6694 1303/7148 +f 5492/2320 5493/6695 1389/2312 +f 5482/6692 1389/2312 5493/6695 +f 1337/7131 5275/7281 5496/5692 +f 5497/6696 5496/5692 5275/7281 +f 5503/2328 5504/6697 1394/2327 +f 5502/5696 1394/2327 5504/6697 +f 5498/2322 5509/6698 1393/2324 +f 5508/5693 1393/2324 5509/6698 +f 5515/2334 5516/6699 1397/2336 +f 5514/5694 1397/2336 5516/6699 +f 5522/6700 5520/5695 5521/2346 +f 1401/2348 5521/2346 5520/5695 +f 5529/6702 5527/5701 5528/2341 +f 1400/2342 5528/2341 5527/5701 +f 5301/4480 5535/6703 1343/7133 +f 5534/5697 1343/7133 5535/6703 +f 5540/6704 5538/5698 5539/2350 +f 1403/2352 5539/2350 5538/5698 +f 5545/6705 5544/5699 5337/7288 +f 1353/7139 5337/7288 5544/5699 +f 5552/6706 5550/5705 5551/2357 +f 1406/2358 5551/2357 5550/5705 +f 5557/6707 5556/5702 5546/2353 +f 1405/2354 5546/2353 5556/5702 +f 5564/6708 5562/5703 5563/2365 +f 1409/2366 5563/2365 5562/5703 +f 5570/6709 5568/5704 5569/2377 +f 1413/2378 5569/2377 5568/5704 +f 5577/6710 5575/5709 5576/2373 +f 1412/2374 5576/2373 5575/5709 +f 5583/6711 5582/5706 5351/7289 +f 1357/7140 5351/7289 5582/5706 +f 5588/6712 5586/5707 5587/2381 +f 1415/2382 5587/2381 5586/5707 +f 5593/6713 5592/5708 5404/2267 +f 1370/2268 5404/2267 5592/5708 +f 5600/6714 5598/5714 5599/2389 +f 1418/2390 5599/2389 5598/5714 +f 5605/6715 5604/5710 5594/2385 +f 1417/2386 5594/2385 5604/5710 +f 5612/6717 5610/5712 5611/2397 +f 1421/2398 5611/2397 5610/5712 +f 5618/6718 5616/5713 5617/2409 +f 1425/2410 5617/2409 5616/5713 +f 5625/6720 5623/5719 5624/2405 +f 1424/2406 5624/2405 5623/5719 +f 5631/6721 5630/5715 5417/2275 +f 1373/2276 5417/2275 5630/5715 +f 5635/2414 5636/6722 1427/2416 +f 5634/5716 1427/2416 5636/6722 +f 5640/5717 1379/7143 5641/6723 +f 5437/7292 5641/6723 1379/7143 +f 5647/2422 5648/6724 1430/2424 +f 5646/5723 1430/2424 5648/6724 +f 5642/2418 5653/6725 1429/2420 +f 5652/5720 1429/2420 5653/6725 +f 5659/2430 5660/6726 1433/2432 +f 5658/5721 1433/2432 5660/6726 +f 5665/2440 5666/6727 1436/2442 +f 5664/5722 1436/2442 5666/6727 +f 5671/2438 5672/6728 763/750 +f 2994/6199 763/750 5672/6728 +f 5461/4529 5677/6730 1384/7144 +f 5676/5724 1384/7144 5677/6730 +f 5680/2444 5681/6731 760/742 +f 2981/6196 760/742 5681/6731 +f 5685/6732 5684/5725 5463/7298 +f 1386/7149 5463/7298 5684/5725 +f 1440/2451 5691/2452 5690/5729 +f 5692/6733 5690/5729 5691/2452 +f 1439/2447 5686/2448 5696/5726 +f 5697/6734 5696/5726 5686/2448 +f 5704/6735 5702/5727 5703/2460 +f 1443/2459 5703/2460 5702/5727 +f 5710/6736 5708/5728 5709/2469 +f 1447/2470 5709/2469 5708/5728 +f 5717/6737 5715/5733 5716/2465 +f 1446/2466 5716/2465 5715/5733 +f 1390/7150 5485/7299 5722/5730 +f 5723/6738 5722/5730 5485/7299 +f 1449/2475 5727/2476 5726/5731 +f 5728/6739 5726/5731 5727/2476 +f 5154/2118 5733/6740 1308/2120 +f 5732/5732 1308/2120 5733/6740 +f 5739/2482 5740/6741 1452/2484 +f 5738/5737 1452/2484 5740/6741 +f 5744/5734 1451/2477 5745/6742 +f 5734/2479 5745/6742 1451/2477 +f 5750/5735 1455/2489 5752/6743 +f 5751/2491 5752/6743 1455/2489 +f 5757/2502 5758/6744 1459/2504 +f 5756/5736 1459/2504 5758/6744 +f 5764/2498 5765/6745 1458/2500 +f 5763/5741 1458/2500 5765/6745 +f 5167/2126 5771/6746 1311/2128 +f 5770/5738 1311/2128 5771/6746 +f 5775/2506 5776/6747 1461/2508 +f 5774/5739 1461/2508 5776/6747 +f 1294/2087 5102/2088 5780/5740 +f 5781/6748 5780/5740 5102/2088 +f 1464/2515 5787/2516 5786/5745 +f 5788/6749 5786/5745 5787/2516 +f 5782/2512 5793/6750 1463/2511 +f 5792/5742 1463/2511 5793/6750 +f 5799/2522 5800/6751 1467/2524 +f 5798/5743 1467/2524 5800/6751 +f 1471/2535 5805/2536 5804/5744 +f 5806/6752 5804/5744 5805/2536 +f 5812/2530 5813/6753 1470/2532 +f 5811/5749 1470/2532 5813/6753 +f 1297/2095 5115/2096 5818/5746 +f 5819/6754 5818/5746 5115/2096 +f 1473/2539 5823/2540 5822/5747 +f 5824/6755 5822/5747 5823/2540 +f 5246/2180 5829/6756 1330/2179 +f 5828/5748 1330/2179 5829/6756 +f 5835/2546 5836/6757 1476/2548 +f 5834/5753 1476/2548 5836/6757 +f 5830/2542 5841/6758 1475/2544 +f 5840/5750 1475/2544 5841/6758 +f 5847/2554 5848/6759 1479/2556 +f 5846/5751 1479/2556 5848/6759 +f 5853/2564 5854/6760 1482/2566 +f 5852/5752 1482/2566 5854/6760 +f 5859/2562 5860/6761 813/878 +f 3190/6235 813/878 5860/6761 +f 5259/2186 5865/6762 1333/2188 +f 5864/5754 1333/2188 5865/6762 +f 5868/2568 5869/6763 810/870 +f 3177/6232 810/870 5869/6763 +f 1442/2455 5698/2456 5872/5755 +f 5873/6764 5872/5755 5698/2456 +f 5880/6765 5878/5759 5879/2573 +f 1486/2574 5879/2573 5878/5759 +f 5885/6766 5884/5756 5874/2569 +f 1485/2570 5874/2569 5884/5756 +f 5892/6767 5890/5757 5891/2581 +f 1489/2582 5891/2581 5890/5757 +f 1493/2595 5897/2596 5896/5758 +f 5898/6768 5896/5758 5897/2596 +f 1492/2591 5904/2592 5903/5763 +f 5905/6769 5903/5763 5904/2592 +f 5911/6770 5910/5760 5711/2461 +f 1445/2462 5711/2461 5910/5760 +f 1495/2598 5915/2597 5914/5761 +f 5916/6771 5914/5761 5915/2597 +f 5921/7300 5922/6772 1499/7151 +f 5920/5762 1499/7151 5922/6772 +f 5928/2606 5929/6773 1498/2608 +f 5927/5767 1498/2608 5929/6773 +f 5935/6774 5934/5764 5923/2601 +f 1497/2602 5923/2601 5934/5764 +f 5942/6775 5940/5765 5941/2614 +f 1502/2616 5941/2614 5940/5765 +f 5947/2626 5948/6776 1506/2628 +f 5946/5766 1506/2628 5948/6776 +f 5953/2840 1505/2621 5955/6777 +f 5954/2623 5955/6777 1505/2621 +f 5962/6778 5960/5768 5961/7301 +f 1509/7152 5961/7301 5960/5768 +f 1508/2631 5966/2632 5965/2833 +f 5967/6779 5965/2833 5966/2632 +f 5794/2518 5974/6780 1466/2520 +f 5973/5770 1466/2520 5974/6780 +f 5981/2638 5982/6781 1513/2640 +f 5980/5777 1513/2640 5982/6781 +f 5987/5773 1512/2633 5988/6782 +f 5976/2635 5988/6782 1512/2633 +f 1517/2648 5995/2646 5994/5774 +f 5996/6783 5994/5774 5995/2646 +f 6001/2658 6002/6785 1521/2660 +f 6000/5776 1521/2660 6002/6785 +f 6008/2654 6009/6786 1520/2656 +f 6007/5781 1520/2656 6009/6786 +f 5807/2526 6015/6788 1469/2528 +f 6014/5778 1469/2528 6015/6788 +f 6019/2662 6020/6789 1523/2664 +f 6018/5779 1523/2664 6020/6789 +f 6024/5780 1478/2549 6025/6790 +f 5842/2551 6025/6790 1478/2549 +f 6031/2671 6032/6791 1526/2669 +f 6030/5786 1526/2669 6032/6791 +f 6026/2666 6037/6792 1525/2668 +f 6036/5783 1525/2668 6037/6792 +f 6043/2678 6044/6793 1529/2680 +f 6042/5784 1529/2680 6044/6793 +f 6048/5785 1532/2687 6050/6794 +f 6049/2689 6050/6794 1532/2687 +f 3390/6272 865/1003 6056/6795 +f 6055/2685 6056/6795 865/1003 +f 5855/2558 6061/6796 1481/2560 +f 6060/5787 1481/2560 6061/6796 +f 6064/2692 6065/6797 862/998 +f 3377/6269 862/998 6065/6797 +f 6069/6798 6068/5788 5886/2577 +f 1488/2578 5886/2577 6068/5788 +f 6076/6799 6074/5792 6075/2697 +f 1536/2698 6075/2697 6074/5792 +f 6081/6800 6080/5789 6070/2693 +f 1535/2694 6070/2693 6080/5789 +f 1539/2707 6087/2708 6086/5790 +f 6088/6801 6086/5790 6087/2708 +f 1543/2719 6093/2720 6092/5791 +f 6094/6802 6092/5791 6093/2720 +f 6101/6803 6099/5796 6100/2716 +f 1542/2715 6100/2716 6099/5796 +f 1491/2587 5899/2588 6106/5793 +f 6107/6804 6106/5793 5899/2588 +f 1545/2723 6111/2724 6110/5794 +f 6112/6805 6110/5794 6111/2724 +f 1501/2611 5936/2612 6116/5795 +f 6117/6806 6116/5795 5936/2612 +f 1548/2731 6123/2732 6122/5800 +f 6124/6807 6122/5800 6123/2732 +f 6129/6808 6128/5797 6118/2725 +f 1547/2726 6118/2725 6128/5797 +f 6136/6810 6134/5798 6135/2737 +f 1551/2738 6135/2737 6134/5798 +f 6141/2750 6142/6811 1555/2752 +f 6140/5799 1555/2752 6142/6811 +f 6147/5805 1554/2748 6149/6813 +f 6148/2746 6149/6813 1554/2748 +f 5949/2618 6155/6814 1504/2620 +f 6154/5801 1504/2620 6155/6814 +f 6159/2754 6160/6815 1557/2756 +f 6158/5802 1557/2756 6160/6815 +f 6164/5803 1561/7153 6166/6816 +f 6165/4808 6166/6816 1561/7153 +f 6172/2762 6173/6817 1560/2764 +f 6171/5810 1560/2764 6173/6817 +f 6178/5806 1559/2760 6179/6818 +f 6167/2758 6179/6818 1559/2760 +f 6184/5808 1564/2769 6186/6819 +f 6185/2771 6186/6819 1564/2769 +f 6191/2780 6192/6820 1567/2782 +f 6190/5809 1567/2782 6192/6820 +f 3546/6300 907/1099 6198/6821 +f 6197/2777 6198/6821 907/1099 +f 6203/4798 6204/6822 1569/7154 +f 6202/5811 1569/7154 6204/6822 +f 3533/6297 904/1091 6208/6823 +f 6207/2783 6208/6823 904/1091 +f 6213/6824 6212/5812 6082/2704 +f 1538/2703 6082/2704 6212/5812 +f 6220/6825 6218/5816 6219/2792 +f 1572/2791 6219/2792 6218/5816 +f 6225/6826 6224/5813 6214/2785 +f 1571/2786 6214/2785 6224/5813 +f 6229/2797 6230/6827 1574/2799 +f 6228/5814 1574/2799 6230/6827 +f 6235/2805 6236/6828 1576/2806 +f 6234/5815 1576/2806 6236/6828 +f 6239/2804 6240/6829 1553/2741 +f 6146/6812 1553/2741 6240/6829 +f 1541/2711 6095/2712 6244/5817 +f 6245/6830 6244/5817 6095/2712 +f 6248/2810 6249/6831 1550/2734 +f 6133/6809 1550/2734 6249/6831 +f 6209/4779 6253/6832 1569/7154 +f 6252/5818 1569/7154 6253/6832 +f 6260/6833 6258/5822 6259/2816 +f 1580/2818 6259/2816 6258/5822 +f 6265/6834 6264/5819 6254/2811 +f 1579/2812 6254/2811 6264/5819 +f 6272/6835 6270/5820 6271/2823 +f 1583/2824 6271/2823 6270/5820 +f 6278/6836 6276/5821 6277/2834 +f 1586/2835 6277/2834 6276/5821 +f 6284/6837 5968/2629 6283/2831 +f 1508/2631 6283/2831 5968/2629 +f 6175/4766 6289/6838 1561/7153 +f 6288/5823 1561/7153 6289/6838 +f 6292/2839 6293/6839 1505/2621 +f 5956/2622 1505/2621 6293/6839 +f 5746/2485 6297/6840 1454/2486 +f 6296/5824 1454/2486 6297/6840 +f 6303/2846 6304/6841 1590/2848 +f 6302/5828 1590/2848 6304/6841 +f 6298/2842 6309/6842 1589/2844 +f 6308/5825 1589/2844 6309/6842 +f 6314/5826 1593/2853 6316/6844 +f 6315/2855 6316/6844 1593/2853 +f 6320/5827 1596/2865 6322/6845 +f 6321/2867 6322/6845 1596/2865 +f 5989/5772 1515/2861 6328/6847 +f 6327/2863 6328/6847 1515/2861 +f 5759/2494 6333/6848 1457/2496 +f 6332/5829 1457/2496 6333/6848 +f 5975/5769 1511/2872 6337/6849 +f 6336/2870 6337/6849 1511/2872 +f 6038/2674 6341/6850 1528/2676 +f 6340/5830 1528/2676 6341/6850 +f 6347/2878 6348/6851 1600/2880 +f 6346/5835 1600/2880 6348/6851 +f 6342/2874 6353/6852 1599/2876 +f 6352/5831 1599/2876 6353/6852 +f 6359/2886 6360/6853 1603/2888 +f 6358/5832 1603/2888 6360/6853 +f 6365/2896 6366/6854 1606/2898 +f 6364/5834 1606/2898 6366/6854 +f 3730/6337 951/1219 6372/6855 +f 6371/2893 6372/6855 951/1219 +f 6051/2682 6377/6856 1531/2684 +f 6376/5836 1531/2684 6377/6856 +f 3717/6333 948/1211 6381/6857 +f 6380/2899 6381/6857 948/1211 +f 6385/6858 6384/5837 6266/2819 +f 1582/2820 6266/2819 6384/5837 +f 6392/6859 6390/5841 6391/2905 +f 1610/2906 6391/2905 6390/5841 +f 6386/2902 6397/6860 1609/2904 +f 6396/5838 1609/2904 6397/6860 +f 6401/2913 6402/6861 1612/2915 +f 6400/5839 1612/2915 6402/6861 +f 6408/6862 6406/5840 6407/2921 +f 1614/2922 6407/2921 6406/5840 +f 6412/6863 6326/6846 6411/2919 +f 1595/2857 6411/2919 6326/6846 +f 6417/6864 6416/5842 6279/2827 +f 1585/2828 6279/2827 6416/5842 +f 6421/6865 6313/6843 6420/2925 +f 1592/2849 6420/2925 6313/6843 +f 6427/6866 6425/5843 6426/4909 +f 1620/7156 6426/4909 6425/5843 +f 6435/6869 6433/6870 6434/2934 +f 1619/2933 6434/2934 6433/6870 +f 6442/4895 6443/6871 1624/7157 +f 6441/5845 1624/7157 6443/6871 +f 6449/2940 6450/6872 1618/2928 +f 6432/6867 1618/2928 6450/6872 +f 6457/6874 6455/5846 6456/6941 +f 1627/3157 6456/6941 6455/5846 +f 6462/6875 6448/6873 6461/2943 +f 1623/2938 6461/2943 6448/6873 +f 6468/6876 6466/5849 6467/6953 +f 1631/3192 6467/6953 6466/5849 +f 6475/6877 6473/5856 6474/2949 +f 1630/2950 6474/2949 6473/5856 +f 6481/6878 6480/5852 6469/2945 +f 1629/2946 6469/2945 6480/5852 +f 6486/6880 6484/5854 6485/2957 +f 1633/2958 6485/2957 6484/5854 +f 6492/6881 6490/5855 6491/2969 +f 1636/2970 6491/2969 6490/5855 +f 6497/6882 6495/5860 6496/2965 +f 1635/2966 6496/2965 6495/5860 +f 6504/6884 6502/5857 6503/6957 +f 1639/3197 6503/6957 6502/5857 +f 6509/6885 6507/5858 6508/2973 +f 1638/2974 6508/2973 6507/5858 +f 6423/7302 6515/6886 1617/7155 +f 6514/5859 1617/7155 6515/6886 +f 6522/6887 6520/5866 6521/2983 +f 1642/2981 6521/2983 6520/5866 +f 6527/6888 6526/5862 6516/2977 +f 1641/2978 6516/2977 6526/5862 +f 6532/6890 6530/5864 6531/2989 +f 1644/2990 6531/2989 6530/5864 +f 6538/6891 6536/5865 6537/3001 +f 1646/3002 6537/3001 6536/5865 +f 6542/6894 4501/6895 6541/2997 +f 1143/2998 6541/2997 4501/6895 +f 6546/5867 1624/7157 6547/6896 +f 6451/4862 6547/6896 1624/7157 +f 6550/3006 6551/6897 1153/3008 +f 4541/6898 1153/3008 6551/6897 +f 6555/5869 1626/7158 6556/6899 +f 6453/7303 6556/6899 1626/7158 +f 6563/3016 6564/6900 1651/3015 +f 6562/5876 1651/3015 6564/6900 +f 6569/5872 1650/3009 6570/6901 +f 6558/3011 6570/6901 1650/3009 +f 6577/3022 6578/6903 1655/3024 +f 6576/5874 1655/3024 6578/6903 +f 1659/3035 6583/3036 6582/5875 +f 6584/6904 6582/5875 6583/3036 +f 6591/6905 6589/5934 6590/3029 +f 1658/3030 6590/3029 6589/5934 +f 1620/7156 6437/4858 6596/5877 +f 6597/6907 6596/5877 6437/4858 +f 6602/6908 6600/5932 6601/3040 +f 1661/3039 6601/3040 6600/5932 +f 6608/6909 6606/5878 6607/3241 +f 1665/3239 6607/3241 6606/5878 +f 1664/3046 6614/3045 6613/5883 +f 6615/6910 6613/5883 6614/3045 +f 6620/5879 1663/3043 6621/6911 +f 6609/3044 6621/6911 1663/3043 +f 6627/3055 6628/6912 1668/3053 +f 6626/5880 1668/3053 6628/6912 +f 6634/6913 6632/5882 6633/3066 +f 1672/3068 6633/3066 6632/5882 +f 6641/6914 6639/6915 6640/3061 +f 1671/3062 6640/3061 6639/6915 +f 6648/6916 6646/5884 6647/3247 +f 1675/3248 6647/3247 6646/5884 +f 6652/3070 6653/6917 1674/3072 +f 6651/5943 1674/3072 6653/6917 +f 6660/6918 6658/5887 6659/3113 +f 1679/3114 6659/3113 6658/5887 +f 6667/6919 6665/5894 6666/3077 +f 1678/3078 6666/3077 6665/5894 +f 6673/6920 6672/5890 6661/3073 +f 1677/3074 6661/3073 6672/5890 +f 6678/6922 6676/5892 6677/3085 +f 1681/3086 6677/3085 6676/5892 +f 6684/6923 6682/5893 6683/3097 +f 1684/3098 6683/3097 6682/5893 +f 6689/6925 6687/5917 6688/3093 +f 1683/3094 6688/3093 6687/5917 +f 6696/6926 6694/5895 6695/3123 +f 1687/3121 6695/3123 6694/5895 +f 6701/6927 6699/5914 6700/3101 +f 1686/3102 6700/3101 6699/5914 +f 4701/7310 6707/6928 1193/7164 +f 6706/5898 1193/7164 6707/6928 +f 6714/6929 6712/5904 6713/3109 +f 1690/3110 6713/3109 6712/5904 +f 6708/3106 6719/6930 1689/3108 +f 6718/5901 1689/3108 6719/6930 +f 6724/6931 6722/5902 6723/3117 +f 1692/3118 6723/3117 6722/5902 +f 6728/5903 1695/3129 6730/6932 +f 6729/3131 6730/6932 1695/3129 +f 6734/3126 6735/6933 1694/3128 +f 6733/5908 1694/3128 6735/6933 +f 6741/6934 6740/5905 4663/7312 +f 1183/7166 4663/7312 6740/5905 +f 6745/3134 6746/6935 1697/3136 +f 6744/5906 1697/3136 6746/6935 +f 4649/7313 6751/6936 1179/7167 +f 6750/5907 1179/7167 6751/6936 +f 6757/3142 6758/6937 1700/3144 +f 6756/5912 1700/3144 6758/6937 +f 6752/3138 6763/6938 1699/3140 +f 6762/5909 1699/3140 6763/6938 +f 6769/3150 6770/6939 1703/3152 +f 6768/5910 1703/3152 6770/6939 +f 6775/3162 6776/6940 1706/3164 +f 6774/5911 1706/3164 6776/6940 +f 6456/6941 1627/3157 6782/6942 +f 6781/3159 6782/6942 1627/3157 +f 4611/7314 6787/6943 1169/7168 +f 6786/5913 1169/7168 6787/6943 +f 1622/3167 6790/3168 6444/5844 +f 6791/6944 6444/5844 6790/3168 +f 6796/6945 6794/5915 6795/5015 +f 1711/7169 6795/5015 6794/5915 +f 6803/6946 6801/5922 6802/3173 +f 1710/3174 6802/3173 6801/5922 +f 6809/6947 6808/5918 6797/3169 +f 1709/3170 6797/3169 6808/5918 +f 6814/6949 6812/5919 6813/3181 +f 1713/3182 6813/3181 6812/5919 +f 6818/5921 1715/3193 6820/6950 +f 6819/3195 6820/6950 1715/3193 +f 6823/3190 6824/6951 1631/3192 +f 6467/6953 1631/3192 6824/6951 +f 6830/6955 6828/5923 6829/5004 +f 1717/7170 6829/5004 6828/5923 +f 6833/3199 6834/6956 1639/3197 +f 6503/6957 1639/3197 6834/6956 +f 6840/6958 6839/5924 6764/3146 +f 1702/3148 6764/3146 6839/5924 +f 6846/5930 1721/3205 6848/6959 +f 6847/3207 6848/6959 1721/3205 +f 6853/5927 1720/3202 6854/6960 +f 6842/3201 6854/6960 1720/3202 +f 6859/3213 6860/6961 1724/3215 +f 6858/5928 1724/3215 6860/6961 +f 6865/3224 6866/6962 1726/3226 +f 6864/5929 1726/3226 6866/6962 +f 6869/3220 6870/6963 1653/3222 +f 6571/5870 1653/3222 6870/6963 +f 6874/5931 1705/3153 6875/6964 +f 6777/3155 6875/6964 1705/3153 +f 6557/5868 1649/3227 6879/6965 +f 6878/3229 6879/6965 1649/3227 +f 6835/4985 6883/6966 1717/7170 +f 6882/5933 1717/7170 6883/6966 +f 6890/6967 6888/5939 6889/3235 +f 1730/3236 6889/3235 6888/5939 +f 6895/6968 6894/5936 6884/3231 +f 1729/3232 6884/3231 6894/5936 +f 6900/6969 6898/5937 6899/3243 +f 1732/3244 6899/3243 6898/5937 +f 6906/6970 6904/5938 6905/3255 +f 1735/3256 6905/3255 6904/5938 +f 6911/6971 6909/6972 6910/3252 +f 1734/3254 6910/3252 6909/6972 +f 6917/6973 6916/5940 6805/4974 +f 1711/7169 6805/4974 6916/5940 +f 6921/3260 6922/6974 1737/3262 +f 6920/5941 1737/3262 6922/6974 +f 6926/5942 1719/7171 6927/6975 +f 6837/7315 6927/6975 1719/7171 +f 6932/6977 1740/3267 6934/6979 +f 6933/3269 6934/6979 1740/3267 +f 6909/6972 6939/6980 1734/3254 +f 6938/5944 1734/3254 6939/6980 +f 6945/6982 6931/6978 6944/3275 +f 1739/3263 6944/3275 6931/6978 +f 6948/5946 1671/3062 6949/6983 +f 6639/6915 6949/6983 1671/3062 +f 1742/3272 6952/3280 6943/6981 +f 6953/6984 6943/6981 6952/3280 +f 6958/6985 6957/5947 5654/2425 +f 1432/2426 5654/2425 6957/5947 +f 6966/6988 6964/6989 6965/3285 +f 1747/3286 6965/3285 6964/6989 +f 1750/7174 6971/5049 6970/5948 +f 6972/6990 6970/5948 6971/5049 +f 1746/3282 6977/3294 6963/6986 +f 6978/6991 6963/6986 6977/3294 +f 4345/7257 6983/6993 1103/7106 +f 6982/5949 1103/7106 6983/6993 +f 6986/3298 6987/6994 1749/3290 +f 6976/6992 1749/3290 6987/6994 +f 6990/5950 1745/7173 6991/6995 +f 6955/7316 6991/6995 1745/7173 +f 6997/3305 6998/6996 1754/3303 +f 6996/5954 1754/3303 6998/6996 +f 6992/3300 7003/6997 1753/3302 +f 7002/5951 1753/3302 7003/6997 +f 7009/3312 7010/6998 1757/3314 +f 7008/5952 1757/3314 7010/6998 +f 7015/3322 7016/7000 1760/3324 +f 7014/5953 1760/3324 7016/7000 +f 7021/3320 7022/7001 1115/1652 +f 4400/6484 1115/1652 7022/7001 +f 6979/5030 7027/7003 1750/7174 +f 7026/5955 1750/7174 7027/7003 +f 1112/1642 7030/3326 4387/6481 +f 7031/7004 4387/6481 7030/3326 +f 7036/7005 7035/5956 5558/2361 +f 1408/2362 5558/2361 7035/5956 +f 7044/7006 7042/5961 7043/3331 +f 1765/3332 7043/3331 7042/5961 +f 7050/7007 7049/5958 7038/3327 +f 1764/3328 7038/3327 7049/5958 +f 7056/7008 7054/5959 7055/3337 +f 1768/3338 7055/3337 7054/5959 +f 7062/7009 7060/5960 7061/3345 +f 1770/3346 7061/3345 7060/5960 +f 7066/7010 7020/7002 7065/3343 +f 1759/3318 7065/3343 7020/7002 +f 7071/7011 7070/5962 5571/2369 +f 1411/2370 5571/2369 7070/5962 +f 7075/7012 7007/6999 7074/3349 +f 1756/3307 7074/3349 7007/6999 +f 7078/5963 1763/7175 7079/7013 +f 7033/7317 7079/7013 1763/7175 +f 1774/3358 7085/3356 7084/7014 +f 7086/7015 7084/7014 7085/3356 +f 5510/2330 7091/7018 1396/2332 +f 7090/5964 1396/2332 7091/7018 +f 7096/3364 7097/7019 1773/3352 +f 7083/7017 1773/3352 7097/7019 +f 7101/7021 7100/5966 4477/7260 +f 1136/7111 4477/7260 7100/5966 +f 7105/7022 7095/7020 7104/3367 +f 1776/3359 7104/3367 7095/7020 +f 1779/7178 447/7023 1783/5967 +f 1780/3369 1783/5967 447/7023 +f 448/2 1788/3375 1786/4 +f 1791/5968 1786/4 1788/3375 +f 452/7025 1796/3373 1795/7180 +f 1798/5969 1795/7180 1796/3373 +f 453/10 1803/3403 1801/12 +f 1806/5970 1801/12 1803/3403 +f 454/14 1809/3377 1807/16 +f 1812/5971 1807/16 1809/3377 +f 456/18 1816/3415 1814/20 +f 1819/5972 1814/20 1816/3415 +f 449/6 1823/3381 1792/8 +f 1826/5973 1792/8 1823/3381 +f 458/26 1821/3379 1827/28 +f 1831/5974 1827/28 1821/3379 +f 460/30 1835/3385 1832/32 +f 1838/5975 1832/32 1835/3385 +f 463/34 1842/3391 1840/36 +f 1845/5976 1840/36 1842/3391 +f 457/22 1849/3389 1820/24 +f 1851/5977 1820/24 1849/3389 +f 467/42 1855/3451 1853/44 +f 1858/5978 1853/44 1855/3451 +f 468/46 1861/3393 1859/48 +f 1864/5979 1859/48 1861/3393 +f 470/50 1868/3463 1866/52 +f 1871/5980 1866/52 1868/3463 +f 464/38 1875/3397 1846/40 +f 1878/5981 1846/40 1875/3397 +f 472/58 1873/3395 1879/60 +f 1883/5982 1879/60 1873/3395 +f 1887/7184 477/7029 1890/5983 +f 1888/3401 1890/5983 477/7029 +f 1893/67 478/68 1898/5984 +f 1895/3407 1898/5984 478/68 +f 1901/7185 481/7030 1904/5985 +f 1902/3405 1904/5985 481/7030 +f 1907/75 482/76 1912/5986 +f 1909/3419 1912/5986 482/76 +f 1913/79 483/80 1918/5987 +f 1915/3409 1918/5987 483/80 +f 485/82 1922/3431 1920/84 +f 1925/5988 1920/84 1922/3431 +f 1899/71 479/72 1931/5989 +f 1929/3413 1931/5989 479/72 +f 1932/91 487/92 1936/5990 +f 1927/3411 1936/5990 487/92 +f 1939/7186 491/7031 1942/5991 +f 1940/3417 1942/5991 491/7031 +f 492/98 1947/3423 1945/100 +f 1950/5992 1945/100 1947/3423 +f 1953/7187 495/7032 1956/5993 +f 1954/3421 1956/5993 495/7032 +f 1959/107 496/108 1964/5994 +f 1961/3467 1964/5994 496/108 +f 497/110 1967/3425 1965/112 +f 1970/5995 1965/112 1967/3425 +f 499/116 1974/3479 1972/115 +f 1977/5996 1972/115 1974/3479 +f 493/102 1981/3429 1951/104 +f 1983/5997 1951/104 1981/3429 +f 501/122 1979/3427 1984/124 +f 1988/5998 1984/124 1979/3427 +f 503/126 1991/3433 1989/128 +f 1994/5999 1989/128 1991/3433 +f 505/130 1998/3439 1996/132 +f 2001/6000 1996/132 1998/3439 +f 500/118 2005/3437 1978/120 +f 2007/6001 1978/120 2005/3437 +f 2009/140 509/138 2014/6002 +f 2011/3483 2014/6002 509/138 +f 510/142 2017/3441 2015/144 +f 2020/6003 2015/144 2017/3441 +f 2022/147 512/148 2027/6004 +f 2024/3495 2027/6004 512/148 +f 506/134 2031/3445 2002/136 +f 2034/6006 2002/136 2031/3445 +f 514/154 2029/3443 2035/156 +f 2039/6007 2035/156 2029/3443 +f 489/94 2043/3449 1937/96 +f 2045/6009 1937/96 2043/3449 +f 519/162 2049/3455 2047/164 +f 2052/6010 2047/164 2049/3455 +f 486/86 2055/3453 1926/88 +f 2057/6011 1926/88 2055/3453 +f 507/170 2003/3435 2058/172 +f 2062/6012 2058/172 2003/3435 +f 522/174 2065/3457 2063/176 +f 2068/6013 2063/176 2065/3457 +f 517/178 2041/3447 2069/180 +f 2073/6014 2069/180 2041/3447 +f 520/166 2077/3461 2053/168 +f 2079/6016 2053/168 2077/3461 +f 525/186 2075/3459 2080/188 +f 2084/6017 2080/188 2075/3459 +f 2087/7188 529/7033 2090/6019 +f 2088/3465 2090/6019 529/7033 +f 2093/195 530/196 2098/6020 +f 2095/3471 2098/6020 530/196 +f 2101/7189 533/7034 2104/6021 +f 2102/3469 2104/6021 533/7034 +f 2107/203 534/204 2112/6022 +f 2109/6023 2112/6022 534/204 +f 2113/207 535/208 2118/6024 +f 2115/3473 2118/6024 535/208 +f 2120/211 537/212 2125/6025 +f 2122/6026 2125/6025 537/212 +f 2099/199 531/200 2131/6027 +f 2129/3477 2131/6027 531/200 +f 2132/219 539/220 2136/6028 +f 2127/3475 2136/6028 539/220 +f 2137/223 541/224 2141/6029 +f 2139/3481 2141/6029 541/224 +f 2143/227 543/228 2148/6030 +f 2145/3487 2148/6030 543/228 +f 538/214 2151/3485 2126/216 +f 2153/6031 2126/216 2151/3485 +f 2155/235 546/236 2160/6032 +f 2157/6033 2160/6032 546/236 +f 2161/239 547/240 2166/6034 +f 2163/3489 2166/6034 547/240 +f 2168/243 549/244 2173/6035 +f 2170/6036 2173/6035 549/244 +f 2149/231 544/232 2179/6037 +f 2177/3493 2179/6037 544/232 +f 2180/251 551/252 2184/6038 +f 2175/3491 2184/6038 551/252 +f 2185/255 553/256 2189/6039 +f 2187/3497 2189/6039 553/256 +f 2191/259 555/260 2196/6040 +f 2193/3502 2196/6040 555/260 +f 2174/247 550/248 2201/6041 +f 2199/3499 2201/6041 550/248 +f 2203/267 558/268 2208/6043 +f 2205/6042 2208/6043 558/268 +f 2211/3504 2214/6044 559/269 +f 2209/270 559/269 2214/6044 +f 2218/6046 2221/6045 561/273 +f 2216/274 561/273 2221/6045 +f 2225/3507 2227/6047 556/261 +f 2197/262 556/261 2227/6047 +f 2228/283 563/284 2232/6048 +f 2223/3505 2232/6048 563/284 +f 2233/287 565/288 2237/6049 +f 2235/3509 2237/6049 565/288 +f 2244/6050 2239/289 2241/3514 +f 567/291 2241/3514 2239/289 +f 2222/279 562/280 2249/6051 +f 2247/3512 2249/6051 562/280 +f 570/299 2253/6052 2251/297 +f 2256/6053 2251/297 2253/6052 +f 571/303 2259/3515 2257/301 +f 2262/6054 2257/301 2259/3515 +f 2268/6055 2264/305 2266/6056 +f 573/307 2266/6056 2264/305 +f 568/295 2271/3518 2245/293 +f 2273/6057 2245/293 2271/3518 +f 574/313 2269/3517 2274/315 +f 2277/6058 2274/315 2269/3517 +f 577/7035 2280/3520 2279/7190 +f 2283/6059 2279/7190 2280/3520 +f 578/320 2288/3526 2286/322 +f 2291/6060 2286/322 2288/3526 +f 582/7037 2296/3524 2295/7193 +f 2298/6061 2295/7193 2296/3524 +f 583/328 2303/3538 2301/330 +f 2306/6062 2301/330 2303/3538 +f 2307/334 584/332 2312/6063 +f 2309/3528 2312/6063 584/332 +f 2314/337 586/338 2319/6064 +f 2316/3550 2319/6064 586/338 +f 2292/325 579/326 2326/6065 +f 2323/3532 2326/6065 579/326 +f 2327/345 588/346 2331/6066 +f 2321/3530 2331/6066 588/346 +f 593/7039 2336/3536 2335/7195 +f 2338/6067 2335/7195 2336/3536 +f 2341/353 594/354 2346/6068 +f 2343/3542 2346/6068 594/354 +f 2349/7196 597/7040 2352/6069 +f 2350/3540 2352/6069 597/7040 +f 2355/361 598/362 2360/6070 +f 2357/3586 2360/6070 598/362 +f 2361/365 599/366 2366/6071 +f 2363/3544 2366/6071 599/366 +f 2368/369 601/370 2373/6072 +f 2370/3598 2373/6072 601/370 +f 2347/358 595/356 2379/6073 +f 2377/3548 2379/6073 595/356 +f 2380/377 603/378 2384/6074 +f 2375/3546 2384/6074 603/378 +f 2385/381 605/382 2390/6075 +f 2387/3552 2390/6075 605/382 +f 607/384 2394/3558 2392/386 +f 2397/6076 2392/386 2394/3558 +f 602/372 2401/3556 2374/374 +f 2403/6077 2374/374 2401/3556 +f 611/392 2407/3602 2405/394 +f 2410/6078 2405/394 2407/3602 +f 612/396 2413/3560 2411/398 +f 2416/6079 2411/398 2413/3560 +f 614/400 2420/3614 2418/402 +f 2423/6080 2418/402 2420/3614 +f 608/390 2427/3564 2398/389 +f 2430/6081 2398/389 2427/3564 +f 616/408 2425/3562 2431/410 +f 2435/6082 2431/410 2425/3562 +f 2332/349 590/350 2442/6083 +f 2439/3568 2442/6083 590/350 +f 2444/417 621/418 2449/6084 +f 2446/3574 2449/6084 621/418 +f 2320/341 587/342 2455/6085 +f 2453/3572 2455/6085 587/342 +f 2456/425 609/426 2460/6086 +f 2399/3554 2460/6086 609/426 +f 2461/429 625/430 2466/6087 +f 2463/3576 2466/6087 625/430 +f 2467/433 619/434 2471/6088 +f 2437/3566 2471/6088 619/434 +f 2450/421 622/422 2478/6089 +f 2475/3580 2478/6089 622/422 +f 2479/441 628/442 2483/6090 +f 2473/3578 2483/6090 628/442 +f 2487/7199 633/7043 2490/6091 +f 2488/3584 2490/6091 633/7043 +f 2493/449 634/450 2498/6092 +f 2495/3590 2498/6092 634/450 +f 2501/7200 637/7044 2504/6093 +f 2502/3588 2504/6093 637/7044 +f 2507/457 638/458 2512/6094 +f 2509/6095 2512/6094 638/458 +f 2513/461 639/462 2518/6096 +f 2515/3592 2518/6096 639/462 +f 2520/465 641/466 2525/6097 +f 2522/6098 2525/6097 641/466 +f 2499/453 635/454 2531/6099 +f 2529/3596 2531/6099 635/454 +f 2532/473 643/474 2536/6100 +f 2527/3594 2536/6100 643/474 +f 645/478 2539/3600 2537/477 +f 2541/6101 2537/477 2539/3600 +f 647/480 2545/3606 2543/482 +f 2548/6102 2543/482 2545/3606 +f 2526/469 642/470 2553/6103 +f 2551/3604 2553/6103 642/470 +f 2555/490 650/488 2560/6104 +f 2557/6105 2560/6104 650/488 +f 2561/494 651/492 2566/6106 +f 2563/3608 2566/6106 651/492 +f 2568/497 653/498 2573/6107 +f 2570/6108 2573/6107 653/498 +f 648/484 2577/3612 2549/486 +f 2579/6109 2549/486 2577/3612 +f 2580/506 655/504 2584/6110 +f 2575/3610 2584/6110 655/504 +f 659/7045 2588/3616 2587/7202 +f 2591/6111 2587/7202 2588/3616 +f 2596/6113 2599/6112 660/511 +f 2594/512 660/511 2599/6112 +f 2105/7205 533/7047 2606/6116 +f 2603/3620 2606/6116 533/7047 +f 2608/521 664/522 2612/6118 +f 2610/6117 2612/6118 664/522 +f 667/7049 2616/3624 2615/7207 +f 2618/6119 2615/7207 2616/3624 +f 668/526 2623/6120 2621/528 +f 2625/6121 2621/528 2623/6120 +f 2627/5227 670/7051 2631/6122 +f 2628/3628 2631/6122 670/7051 +f 2634/533 671/534 2638/6123 +f 2636/6124 2638/6123 671/534 +f 674/7053 2642/3632 2641/5254 +f 2645/6125 2641/5254 2642/3632 +f 661/518 2597/6114 2647/538 +f 2650/6126 2647/538 2597/6114 +f 2644/7211 675/7054 2656/6127 +f 2653/3636 2656/6127 675/7054 +f 2658/543 677/544 2663/6128 +f 2660/3642 2663/6128 677/544 +f 2632/5222 670/7051 2669/6129 +f 2667/3640 2669/6129 670/7051 +f 2671/551 681/552 2676/6130 +f 2673/6131 2676/6130 681/552 +f 2677/555 682/556 2682/6132 +f 2679/3644 2682/6132 682/556 +f 2684/559 684/560 2689/6133 +f 2686/6134 2689/6133 684/560 +f 2664/547 678/548 2696/6137 +f 2693/3648 2696/6137 678/548 +f 2697/567 686/568 2701/6138 +f 2691/3646 2701/6138 686/568 +f 2707/6140 2282/7214 2705/3653 +f 580/7057 2705/3653 2282/7214 +f 2714/6141 2709/573 2711/3657 +f 691/575 2711/3657 2709/573 +f 2719/6142 2325/7215 2717/3655 +f 591/7058 2717/3655 2325/7215 +f 2721/583 694/584 2726/6143 +f 2723/3670 2726/6143 694/584 +f 2732/6144 2727/585 2729/3658 +f 695/587 2729/3658 2727/585 +f 2734/591 697/592 2739/6145 +f 2736/6146 2739/6145 697/592 +f 2745/6147 2715/577 2743/3663 +f 692/579 2743/3663 2715/577 +f 2750/6148 2746/597 2741/3661 +f 699/599 2741/3661 2746/597 +f 2756/6149 2736/6146 2753/3665 +f 697/592 2753/3665 2736/6146 +f 2763/6151 2758/605 2760/6153 +f 703/607 2760/6153 2758/605 +f 2767/3668 2769/6154 623/7060 +f 2441/7217 623/7060 2769/6154 +f 2771/615 707/616 2775/6155 +f 2773/6156 2775/6155 707/616 +f 2780/6157 2777/7220 2778/3673 +f 709/7061 2778/3673 2777/7220 +f 710/621 2785/6158 2783/619 +f 2787/6159 2783/619 2785/6158 +f 2789/7222 712/7063 2793/6160 +f 2790/3676 2793/6160 712/7063 +f 2796/628 713/626 2800/6161 +f 2798/6162 2800/6161 713/626 +f 2803/5277 716/7065 2807/6163 +f 2804/3680 2807/6163 716/7065 +f 2809/632 704/611 2812/6164 +f 2761/6150 2812/6164 704/611 +f 662/7046 2815/3684 2590/7201 +f 2818/6165 2590/7201 2815/3684 +f 2820/638 719/636 2825/6166 +f 2822/3690 2825/6166 719/636 +f 2646/5224 674/7053 2831/6167 +f 2829/3688 2831/6167 674/7053 +f 2838/6168 2833/645 2835/3702 +f 723/646 2835/3702 2833/645 +f 2844/6169 2839/649 2841/3693 +f 724/650 2841/3693 2839/649 +f 726/652 2848/3714 2846/654 +f 2851/6170 2846/654 2848/3714 +f 2826/641 720/642 2858/6172 +f 2855/3696 2858/6172 720/642 +f 2859/661 728/662 2863/6173 +f 2853/3694 2863/6173 728/662 +f 679/7055 2867/3700 2655/7212 +f 2869/6174 2655/7212 2867/3700 +f 733/668 2873/3706 2871/670 +f 2876/6175 2871/670 2873/3706 +f 2881/6176 2695/7213 2879/3704 +f 689/7056 2879/3704 2695/7213 +f 736/676 2885/3718 2883/678 +f 2888/6177 2883/678 2885/3718 +f 737/680 2891/3708 2889/682 +f 2894/6178 2889/682 2891/3708 +f 2901/6179 2896/683 2898/3731 +f 739/685 2898/3731 2896/683 +f 734/672 2905/3712 2877/674 +f 2907/6180 2877/674 2905/3712 +f 741/692 2903/3711 2908/694 +f 2912/6181 2908/694 2903/3711 +f 701/602 2915/3716 2751/604 +f 2917/6182 2751/604 2915/3716 +f 745/700 2921/3722 2919/702 +f 2924/6183 2919/702 2921/3722 +f 2929/6184 2740/593 2927/3721 +f 698/595 2927/3721 2740/593 +f 2931/709 748/710 2936/6185 +f 2933/3734 2936/6185 748/710 +f 749/712 2939/3724 2937/714 +f 2942/6186 2937/714 2939/3724 +f 751/717 2946/3747 2944/715 +f 2949/6188 2944/715 2946/3747 +f 746/704 2953/3728 2925/706 +f 2955/6189 2925/706 2953/3728 +f 2960/6191 2956/726 2951/3727 +f 753/724 2951/3727 2956/726 +f 2963/3732 2965/6192 705/7059 +f 2755/7216 705/7059 2965/6192 +f 2967/733 757/734 2972/6193 +f 2969/3738 2972/6193 757/734 +f 2808/5251 716/7065 2977/6194 +f 2975/3736 2977/6194 716/7065 +f 2979/741 760/742 2984/6195 +f 2981/6196 2984/6195 760/742 +f 2985/745 761/746 2990/6197 +f 2987/3740 2990/6197 761/746 +f 2992/749 763/750 2997/6198 +f 2994/6199 2997/6198 763/750 +f 2973/737 758/738 3003/6202 +f 3001/3744 3003/6202 758/738 +f 3004/757 765/758 3008/6203 +f 2999/3742 3008/6203 765/758 +f 714/7069 3011/3748 2792/7227 +f 3014/6204 2792/7227 3011/3748 +f 769/764 3018/3754 3016/766 +f 3021/6205 3016/766 3018/3754 +f 709/7071 3025/3752 2781/7230 +f 3027/6206 2781/7230 3025/3752 +f 773/772 3031/3767 3029/774 +f 3034/6207 3029/774 3031/3767 +f 3040/6208 3035/775 3037/3757 +f 774/777 3037/3757 3035/775 +f 3047/6209 3042/779 3044/3779 +f 776/781 3044/3779 3042/779 +f 770/768 3051/3760 3022/770 +f 3054/6210 3022/770 3051/3760 +f 3059/6211 3055/790 3049/3759 +f 778/788 3049/3759 3055/790 +f 2484/445 630/446 3065/6212 +f 3063/3764 3065/6212 630/446 +f 3067/797 783/798 3072/6213 +f 3069/3770 3072/6213 783/798 +f 2472/437 627/438 3077/6214 +f 3075/3768 3077/6214 627/438 +f 3079/805 786/806 3084/6215 +f 3081/3782 3084/6215 786/806 +f 3085/809 787/810 3090/6216 +f 3087/3772 3090/6216 787/810 +f 3092/813 789/814 3097/6217 +f 3094/3794 3097/6217 789/814 +f 3101/3777 3103/6218 784/799 +f 3073/800 784/799 3103/6218 +f 3099/3775 3108/6219 791/819 +f 3104/820 791/819 3108/6219 +f 618/412 3111/3780 2436/414 +f 3113/6220 2436/414 3111/3780 +f 795/828 3117/3786 3115/830 +f 3120/6221 3115/830 3117/3786 +f 615/404 3123/3784 2424/406 +f 3125/6222 2424/406 3123/3784 +f 798/836 3129/3798 3127/838 +f 3132/6223 3127/838 3129/3798 +f 799/840 3135/3789 3133/842 +f 3138/6224 3133/842 3135/3789 +f 3140/845 801/846 3145/6225 +f 3142/3811 3145/6225 801/846 +f 3121/834 796/832 3151/6226 +f 3149/3792 3151/6226 796/832 +f 3152/853 803/854 3156/6227 +f 3147/3790 3156/6227 803/854 +f 2585/510 657/508 3161/6228 +f 3159/3796 3161/6228 657/508 +f 3163/861 807/862 3168/6229 +f 3165/3802 3168/6229 807/862 +f 2574/501 654/502 3173/6230 +f 3171/3800 3173/6230 654/502 +f 3175/869 810/870 3180/6231 +f 3177/6232 3180/6231 810/870 +f 3181/873 811/874 3186/6233 +f 3183/3804 3186/6233 811/874 +f 3188/877 813/878 3193/6234 +f 3190/6235 3193/6234 813/878 +f 3169/865 808/866 3199/6236 +f 3197/3808 3199/6236 808/866 +f 3200/885 815/886 3204/6237 +f 3195/3806 3204/6237 815/886 +f 780/792 3207/3813 3060/794 +f 3210/6238 3060/794 3207/3813 +f 3217/6239 3212/891 3214/3818 +f 819/893 3214/3818 3212/891 +f 3223/6240 3048/783 3221/3816 +f 777/785 3221/3816 3048/783 +f 823/901 3227/1188 3225/899 +f 3230/6241 3225/899 3227/1188 +f 824/904 3233/3820 3231/906 +f 3236/6242 3231/906 3233/3820 +f 826/908 3240/1183 3238/910 +f 3243/6243 3238/910 3240/1183 +f 3250/6244 3218/895 3247/3825 +f 820/897 3247/3825 3218/895 +f 3255/6245 3251/915 3245/3822 +f 828/917 3245/3822 3251/915 +f 3109/823 793/825 3262/6246 +f 3259/3828 3262/6246 793/825 +f 3264/925 833/926 3269/6247 +f 3266/3834 3269/6247 833/926 +f 3098/817 790/818 3275/6248 +f 3273/3831 3275/6248 790/818 +f 3279/3845 3282/6249 837/934 +f 3277/933 837/934 3282/6249 +f 3285/3836 3288/6250 838/935 +f 3283/936 838/935 3288/6250 +f 3292/3857 3295/6252 840/939 +f 3290/940 840/939 3295/6252 +f 3270/929 834/930 3302/6253 +f 3299/3840 3302/6253 834/930 +f 3297/3838 3307/6255 842/947 +f 3303/948 842/947 3307/6255 +f 3157/857 805/858 3313/6256 +f 3311/3842 3313/6256 805/858 +f 3315/957 847/958 3320/6257 +f 3317/3848 3320/6257 847/958 +f 3146/849 802/850 3325/6258 +f 3323/3846 3325/6258 802/850 +f 3327/965 850/966 3332/6259 +f 3329/3860 3332/6259 850/966 +f 3333/969 851/970 3338/6260 +f 3335/3851 3338/6260 851/970 +f 3340/973 853/974 3345/6261 +f 3342/3872 3345/6261 853/974 +f 3349/3854 3351/6263 848/959 +f 3321/960 848/959 3351/6263 +f 855/982 3347/3852 3352/981 +f 3356/6264 3352/981 3347/3852 +f 3359/3858 3361/6266 817/887 +f 3205/888 817/887 3361/6266 +f 3363/988 859/987 3368/6267 +f 3365/3864 3368/6267 859/987 +f 3194/881 814/882 3373/6268 +f 3371/3862 3373/6268 814/882 +f 3375/997 862/998 3380/6270 +f 3377/6269 3380/6270 862/998 +f 3383/3867 3386/6271 863/999 +f 3381/1000 863/999 3386/6271 +f 3390/6272 3393/6273 865/1003 +f 3388/1004 865/1003 3393/6273 +f 3369/993 860/994 3399/6274 +f 3397/3870 3399/6274 860/994 +f 3400/1013 867/1014 3404/6275 +f 3395/3868 3404/6275 867/1014 +f 3410/6276 3256/919 3407/3875 +f 830/921 3407/3875 3256/919 +f 3417/6277 3412/1019 3414/3880 +f 871/1021 3414/3880 3412/1019 +f 827/912 3421/3878 3244/914 +f 3423/6278 3244/914 3421/3878 +f 875/1028 3427/3892 3425/1030 +f 3430/6279 3425/1030 3427/3892 +f 876/1032 3433/3882 3431/1034 +f 3436/6280 3431/1034 3433/3882 +f 3443/6281 3438/1038 3440/3905 +f 878/1036 3440/3905 3438/1038 +f 3450/6282 3418/1023 3447/3886 +f 872/1025 3447/3886 3418/1023 +f 880/1044 3445/3884 3451/1046 +f 3455/6283 3451/1046 3445/3884 +f 885/7077 3460/3890 3459/5395 +f 3462/6284 3459/5395 3460/3890 +f 886/1052 3467/3896 3465/1054 +f 3470/6285 3465/1054 3467/3896 +f 3473/5393 889/7078 3476/6286 +f 3474/3894 3476/6286 889/7078 +f 3479/1061 890/1062 3484/6287 +f 3481/3908 3484/6287 890/1062 +f 3485/1065 891/1066 3490/6288 +f 3487/3898 3490/6288 891/1066 +f 3494/3921 3497/6290 893/1070 +f 3492/1069 893/1070 3497/6290 +f 3503/6291 3471/1055 3501/3903 +f 887/1057 3501/3903 3471/1055 +f 3508/6293 3504/1075 3499/3901 +f 895/1077 3499/3901 3504/1075 +f 3512/3906 3514/6294 899/7079 +f 3511/5387 899/7079 3514/6294 +f 3517/1085 900/1086 3522/6295 +f 3519/3912 3522/6295 900/1086 +f 3525/5385 903/7080 3528/6296 +f 3526/3910 3528/6296 903/7080 +f 3533/6297 3536/6298 904/1091 +f 3531/1092 904/1091 3536/6298 +f 3537/1097 905/1098 3542/6299 +f 3539/3914 3542/6299 905/1098 +f 3546/6300 3549/6301 907/1099 +f 3544/1100 907/1099 3549/6301 +f 3553/3919 3555/6302 901/1090 +f 3523/1089 901/1090 3555/6302 +f 3551/3917 3560/6303 909/1107 +f 3556/1108 909/1107 3560/6303 +f 882/1048 3563/3922 3456/1050 +f 3566/6304 3456/1050 3563/3922 +f 3573/6305 3568/1118 3570/3929 +f 913/1116 3570/3929 3568/1118 +f 879/1040 3577/3927 3444/1042 +f 3579/6306 3444/1042 3577/3927 +f 3580/1124 897/1081 3584/6307 +f 3506/6292 3584/6307 897/1081 +f 3585/1125 917/1127 3590/6308 +f 3587/3930 3590/6308 917/1127 +f 3591/1130 894/1071 3594/6309 +f 3495/6289 3594/6309 894/1071 +f 3600/6310 3574/1122 3597/3933 +f 914/1120 3597/3933 3574/1122 +f 3601/1136 919/1137 3604/6311 +f 3595/3932 3604/6311 919/1137 +f 3529/5371 903/7080 3610/6312 +f 3607/3937 3610/6312 903/7080 +f 3617/6313 3612/1143 3614/3944 +f 923/1144 3614/3944 3612/1143 +f 3515/5368 899/7079 3623/6314 +f 3621/3941 3623/6314 899/7079 +f 3625/1151 927/1152 3630/6315 +f 3627/3956 3630/6315 927/1152 +f 3636/6316 3631/1153 3633/3946 +f 928/1155 3633/3946 3631/1153 +f 3643/6317 3638/1157 3640/3966 +f 930/1159 3640/3966 3638/1157 +f 924/1146 3647/3950 3618/1148 +f 3650/6318 3618/1148 3647/3950 +f 3655/6319 3651/1165 3645/3948 +f 932/1167 3645/3948 3651/1165 +f 3477/5361 889/7078 3661/6320 +f 3659/3953 3661/6320 889/7078 +f 3663/1175 937/1176 3668/6321 +f 3665/3960 3668/6321 937/1176 +f 885/7077 3671/3958 3463/5359 +f 3673/6322 3463/5359 3671/3958 +f 3678/6323 3674/1181 3237/907 +f 826/908 3237/907 3674/1181 +f 940/1185 3681/3961 3679/1187 +f 3684/6324 3679/1187 3681/3961 +f 3224/902 3688/6325 823/901 +f 3685/1190 823/901 3688/6325 +f 3693/6327 3669/1178 3691/3964 +f 938/1177 3691/3964 3669/1178 +f 942/1195 3689/3963 3694/1196 +f 3697/6328 3694/1196 3689/3963 +f 3405/1017 869/1018 3701/6330 +f 3699/3967 3701/6330 869/1018 +f 3703/1205 945/1206 3708/6331 +f 3705/3971 3708/6331 945/1206 +f 3394/1009 866/1010 3713/6332 +f 3711/3970 3713/6332 866/1010 +f 3717/6333 3720/6334 948/1211 +f 3715/1212 948/1211 3720/6334 +f 3721/1217 949/1218 3726/6335 +f 3723/3973 3726/6335 949/1218 +f 3730/6337 3733/6336 951/1219 +f 3728/1220 951/1219 3733/6336 +f 3709/1209 946/1210 3739/6338 +f 3737/3977 3739/6338 946/1210 +f 3740/1229 953/1230 3744/6339 +f 3735/3975 3744/6339 953/1230 +f 934/1170 3747/3980 3656/1172 +f 3750/6340 3656/1172 3747/3980 +f 3757/6341 3752/1235 3754/3986 +f 957/1237 3754/3986 3752/1235 +f 3763/6342 3644/1161 3761/3984 +f 931/1163 3761/3984 3644/1161 +f 3768/6343 3764/1243 3305/6254 +f 844/951 3305/6254 3764/1243 +f 3774/6344 3769/1245 3771/3988 +f 961/1247 3771/3988 3769/1245 +f 3778/6345 3775/1249 3293/6251 +f 841/943 3293/6251 3775/1249 +f 3758/1241 958/1242 3784/6346 +f 3781/3990 3784/6346 958/1242 +f 3785/1256 963/1257 3788/6347 +f 3779/3989 3788/6347 963/1257 +f 967/7087 3792/3994 3791/5440 +f 3795/6348 3791/5440 3792/3994 +f 968/1262 3800/6349 3798/1264 +f 3803/6351 3798/1264 3800/6349 +f 3811/6353 3807/6423 3808/3999 +f 972/1487 3808/3999 3807/6423 +f 3818/6354 3814/1269 3816/6355 +f 973/1271 3816/6355 3814/1269 +f 3821/5432 976/7090 3825/6356 +f 3822/4002 3825/6356 976/7090 +f 3827/1276 969/1266 3830/6357 +f 3801/6352 3830/6357 969/1266 +f 979/1522 3834/4006 3833/6434 +f 3836/6358 3833/6434 3834/4006 +f 980/1280 3841/4012 3839/1282 +f 3844/6359 3839/1282 3841/4012 +f 983/1512 3848/4010 3847/6431 +f 3850/6360 3847/6431 3848/4010 +f 984/1288 3855/4024 3853/1290 +f 3858/6361 3853/1290 3855/4024 +f 985/1292 3861/4014 3859/1294 +f 3864/6362 3859/1294 3861/4014 +f 987/1296 3868/4036 3866/1298 +f 3871/6363 3866/1298 3868/4036 +f 981/1284 3875/4018 3845/1286 +f 3877/6365 3845/1286 3875/4018 +f 989/1304 3873/4016 3878/1306 +f 3882/6366 3878/1306 3873/4016 +f 3794/7242 970/7088 3887/6368 +f 3885/4022 3887/6368 970/7088 +f 3894/6369 3889/1312 3891/4029 +f 993/1311 3891/4029 3889/1312 +f 3897/4027 3899/6370 976/7090 +f 3826/5420 976/7090 3899/6370 +f 3900/1321 452/1322 3904/6371 +f 1795/6372 3904/6371 452/1322 +f 3910/6373 3905/1323 3907/4031 +f 996/1325 3907/4031 3905/1323 +f 3915/6375 3911/1327 1779/6377 +f 447/1329 1779/6377 3911/1327 +f 994/1317 3919/4035 3895/1315 +f 3921/6378 3895/1315 3919/4035 +f 3926/6380 3922/1335 3917/4033 +f 999/1337 3917/4033 3922/1335 +f 3929/4039 3932/6381 974/7089 +f 3810/7243 974/7089 3932/6381 +f 3934/1346 1003/1344 3939/6382 +f 3936/4044 3939/6382 1003/1344 +f 967/7087 3943/4042 3796/5417 +f 3945/6383 3796/5417 3943/4042 +f 3952/6384 3947/1354 3949/4147 +f 1007/1352 3949/4147 3947/1354 +f 1008/1356 3955/4046 3953/1358 +f 3958/6385 3953/1358 3955/4046 +f 1010/1360 3962/4159 3960/1362 +f 3965/6386 3960/1362 3962/4159 +f 3969/4050 3972/6388 1004/1347 +f 3940/1348 1004/1347 3972/6388 +f 3973/1369 1012/1370 3977/6390 +f 3967/4049 3977/6390 1012/1370 +f 1017/1594 3982/4054 3981/1596 +f 3984/6391 3981/1596 3982/4054 +f 1018/1377 3989/4059 3987/1375 +f 3992/6392 3987/1375 3989/4059 +f 3998/6393 3995/1588 3996/4056 +f 1021/1586 3996/4056 3995/1588 +f 4001/1385 1022/1386 4006/6394 +f 4003/4171 4006/6394 1022/1386 +f 4012/6395 4007/1389 4009/4061 +f 1023/1390 4009/4061 4007/1389 +f 4019/6396 4014/1391 4016/6397 +f 1025/1393 4016/6397 4014/1391 +f 4023/4065 4025/6398 1019/1380 +f 3993/1382 1019/1380 4025/6398 +f 4026/1400 1027/1399 4030/6399 +f 4021/4062 4030/6399 1027/1399 +f 1031/1469 4034/4066 4033/1467 +f 4036/6400 4033/1467 4034/4066 +f 1032/1408 4041/4072 4039/1410 +f 4044/6401 4039/1410 4041/4072 +f 1035/1459 4048/4070 4047/1460 +f 4050/6402 4047/1460 4048/4070 +f 1036/1416 4055/4116 4053/1418 +f 4058/6403 4053/1418 4055/4116 +f 1037/1420 4061/4074 4059/1422 +f 4064/6404 4059/1422 4061/4074 +f 1039/1424 4068/4128 4066/1426 +f 4070/6405 4066/1426 4068/4128 +f 1033/1412 4073/4078 4045/1414 +f 4075/6407 4045/1414 4073/4078 +f 1040/1432 4071/4076 4076/1434 +f 4079/6408 4076/1434 4071/4076 +f 1957/7249 495/7095 4083/6410 +f 4081/4083 4083/6410 495/7095 +f 4090/6411 4085/1440 4087/4089 +f 1043/1439 4087/4089 4085/1440 +f 4093/4086 4095/6412 491/7097 +f 1943/7251 491/7097 4095/6412 +f 4097/1449 1046/1450 4102/6413 +f 4099/4100 4102/6413 1046/1450 +f 4105/4090 4108/6414 1047/1451 +f 4103/1452 1047/1451 4108/6414 +f 4110/1457 1049/1458 4114/6415 +f 4112/4112 4114/6415 1049/1458 +f 4091/1445 1044/1446 4119/6416 +f 4117/4095 4119/6416 1044/1446 +f 4123/6417 4120/1463 4115/4093 +f 1050/1465 4115/4093 4120/1463 +f 1905/7253 481/7099 4127/6418 +f 4125/4098 4127/6418 481/7099 +f 4129/1473 1053/1474 4134/6419 +f 4131/4104 4134/6419 1053/1474 +f 1891/7254 477/7100 4139/6420 +f 4137/4102 4139/6420 477/7100 +f 977/1480 3831/4004 4140/1482 +f 4144/6421 4140/1482 3831/4004 +f 4145/1485 1056/1486 4150/6422 +f 4147/4107 4150/6422 1056/1486 +f 3807/6423 4155/6424 972/1487 +f 4151/1488 972/1487 4155/6424 +f 4135/1477 1054/1478 4161/6425 +f 4159/4110 4161/6425 1054/1478 +f 4162/1497 1059/1498 4166/6426 +f 4157/4109 4166/6426 1059/1498 +f 4172/6427 4169/5502 4170/4115 +f 1063/7101 4170/4115 4169/5502 +f 1064/1504 4177/4120 4175/1506 +f 4180/6428 4175/1506 4177/4120 +f 1067/7102 4184/4118 4183/5500 +f 4186/6429 4183/5500 4184/4118 +f 4188/1514 983/1512 4192/6430 +f 3847/6431 4192/6430 983/1512 +f 4195/4122 4198/6432 1068/1516 +f 4193/1518 1068/1516 4198/6432 +f 4199/1521 979/1522 4202/6433 +f 3833/6434 4202/6433 979/1522 +f 1065/1508 4205/4126 4181/1510 +f 4207/6437 4181/1510 4205/4126 +f 4211/6439 4208/1530 4203/4124 +f 1070/1528 4203/4124 4208/1530 +f 4216/6440 4167/1501 4213/4131 +f 1061/1502 4213/4131 4167/1501 +f 4220/4136 4223/6441 1073/1535 +f 4218/1536 1073/1535 4223/6441 +f 4227/4135 4229/6442 1058/1491 +f 4156/1492 1058/1491 4229/6442 +f 3941/4041 4234/6443 1005/1543 +f 4230/1544 1005/1543 4234/6443 +f 4235/1549 1077/1550 4240/6444 +f 4237/4138 4240/6444 1077/1550 +f 4241/1553 1015/1554 4244/6445 +f 3979/4052 4244/6445 1015/1554 +f 1074/1540 4247/4141 4224/1542 +f 4250/6446 4224/1542 4247/4141 +f 4251/1560 1079/1561 4254/6447 +f 4245/4140 4254/6447 1079/1561 +f 4187/5485 1067/7102 4259/6448 +f 4257/4146 4259/6448 1067/7102 +f 1083/1566 4263/4151 4261/1568 +f 4266/6449 4261/1568 4263/4151 +f 1063/7101 4269/4150 4173/5483 +f 4271/6450 4173/5483 4269/4150 +f 4273/1575 1086/1576 4278/6451 +f 4275/4163 4278/6451 1086/1576 +f 1087/1579 4281/4153 4279/1577 +f 4284/6452 4279/1577 4281/4153 +f 1089/1584 4288/6453 4286/1583 +f 4290/6454 4286/1583 4288/6453 +f 1084/1570 4293/4157 4267/1572 +f 4295/6455 4267/1572 4293/4157 +f 1090/1590 4291/4155 4296/1592 +f 4299/6456 4296/1592 4291/4155 +f 4301/4162 4303/6457 1075/7103 +f 4215/7255 1075/7103 4303/6457 +f 4307/6460 4310/6461 1093/1597 +f 4305/1598 1093/1597 4310/6461 +f 4313/4166 4315/6462 1025/1393 +f 4016/6397 1025/1393 4315/6462 +f 1096/1606 4319/6463 4317/1608 +f 4321/6464 4317/1608 4319/6463 +f 4288/6453 1089/1584 4325/6465 +f 4323/4168 4325/6465 1089/1584 +f 4329/6466 4326/1612 4308/6459 +f 1094/1601 4308/6459 4326/1612 +f 4334/6467 3009/759 4331/4173 +f 767/761 4331/4173 3009/759 +f 4341/6469 4336/1618 4338/6471 +f 1099/1616 4338/6471 4336/1618 +f 4345/7257 1103/7106 4348/6472 +f 4346/4176 4348/6472 1103/7106 +f 4351/1625 1104/1626 4355/6473 +f 4353/6474 4355/6473 1104/1626 +f 1106/7107 4358/4178 4357/5517 +f 4361/6475 4357/5517 4358/4178 +f 1100/1621 4339/6468 4363/1630 +f 4366/6476 4363/1630 4339/6468 +f 4369/4183 4371/6477 1101/7105 +f 4333/7256 1101/7105 4371/6477 +f 4373/1634 1109/1633 4378/6478 +f 4375/4186 4378/6478 1109/1633 +f 4362/5514 1106/7107 4383/6479 +f 4381/4184 4383/6479 1106/7107 +f 1112/1642 4387/6481 4385/1644 +f 4390/6480 4385/1644 4387/6481 +f 4391/1647 1113/1648 4396/6482 +f 4393/4188 4396/6482 1113/1648 +f 4398/1651 1115/1652 4403/6483 +f 4400/6484 4403/6483 1115/1652 +f 4379/1639 1110/1640 4409/6487 +f 4407/4192 4409/6487 1110/1640 +f 4410/1659 1117/1660 4414/6488 +f 4405/4190 4414/6488 1117/1660 +f 4420/6490 2913/698 4417/4195 +f 743/696 4417/4195 2913/698 +f 4427/6491 4422/1665 4424/4201 +f 1121/1667 4424/4201 4422/1665 +f 4433/6492 2902/687 4431/4199 +f 740/689 4431/4199 2902/687 +f 4438/6493 4434/1673 4412/6489 +f 1119/1661 4412/6489 4434/1673 +f 4444/6494 4439/1675 4441/4203 +f 1125/1677 4441/4203 4439/1675 +f 4449/6496 4445/1679 4401/6485 +f 1116/1656 4401/6485 4445/1679 +f 4456/6497 4428/1669 4453/4207 +f 1122/1671 4453/4207 4428/1669 +f 4461/6499 4457/1685 4451/4205 +f 1128/1687 4451/4205 4457/1685 +f 4465/4210 4467/6500 1123/7109 +f 4419/7259 1123/7109 4467/6500 +f 1133/1696 4471/6501 4469/1695 +f 4474/6503 4469/1695 4471/6501 +f 4480/6505 4477/7260 4478/4213 +f 1136/7111 4478/4213 4477/7260 +f 4487/6506 4483/1701 4485/6507 +f 1137/1703 4485/6507 4483/1701 +f 2864/665 730/666 4492/6508 +f 4489/4215 4492/6508 730/666 +f 4493/1708 1134/1698 4496/6509 +f 4472/6504 4496/6509 1134/1698 +f 1782/7179 450/7024 4502/6510 +f 4499/4219 4502/6510 450/7024 +f 4509/6511 4504/1711 4506/4226 +f 1141/1713 4506/4226 4504/1711 +f 4515/6512 1825/7181 4513/4224 +f 461/7026 4513/4224 1825/7181 +f 1145/1721 4519/4237 4517/1719 +f 4522/6513 4517/1719 4519/4237 +f 4528/6514 4523/1723 4525/4228 +f 1146/1725 4525/4228 4523/1723 +f 4535/6515 4530/1730 4532/4249 +f 1148/1728 4532/4249 4530/1730 +f 1142/1716 4539/4231 4510/1718 +f 4542/6516 4510/1718 4539/4231 +f 1150/1736 4537/4230 4543/1738 +f 4547/6517 4543/1738 4537/4230 +f 1837/7182 465/7027 4553/6518 +f 4551/4235 4553/6518 465/7027 +f 1155/1744 4557/4241 4555/1746 +f 4560/6519 4555/1746 4557/4241 +f 475/7028 4563/4239 1877/7183 +f 4565/6520 1877/7183 4563/4239 +f 1158/1752 4569/2002 4567/1754 +f 4572/6521 4567/1754 4569/2002 +f 1159/1756 4575/4243 4573/1758 +f 4578/6522 4573/1758 4575/4243 +f 1161/1760 4582/1995 4580/1762 +f 4585/6523 4580/1762 4582/1995 +f 1156/1748 4589/4247 4561/1750 +f 4591/6524 4561/1750 4589/4247 +f 1163/1768 4587/4245 4592/1770 +f 4596/6525 4592/1770 4587/4245 +f 1152/1740 4599/4251 4548/1742 +f 4602/6526 4548/1742 4599/4251 +f 4604/1777 1167/1778 4609/6527 +f 4606/4257 4609/6527 1167/1778 +f 4615/6528 4536/1731 4613/4256 +f 1149/1733 4613/4256 4536/1731 +f 4622/6529 4617/1783 4619/4302 +f 1171/1785 4619/4302 4617/1783 +f 4623/1789 1172/1790 4628/6530 +f 4625/4260 4628/6530 1172/1790 +f 4635/6531 4630/1791 4632/4314 +f 1174/1793 4632/4314 4630/1791 +f 4610/1781 1168/1782 4642/6532 +f 4639/4263 4642/6532 1168/1782 +f 4643/1801 1176/1802 4647/6533 +f 4637/4262 4647/6533 1176/1802 +f 4648/1805 1178/1806 4654/6534 +f 4651/4268 4654/6534 1178/1806 +f 4661/6535 4656/1807 4658/4274 +f 1181/1809 4658/4274 4656/1807 +f 4667/6536 4636/1795 4665/4272 +f 1175/1797 4665/4272 4636/1795 +f 4674/6537 4669/1815 4671/4286 +f 1185/1817 4671/4286 4669/1815 +f 4680/6538 4675/1819 4677/4276 +f 1186/1821 4677/4276 4675/1819 +f 4687/6539 4682/1823 4684/4298 +f 1188/1825 4684/4298 4682/1823 +f 4694/6540 4662/1811 4691/4279 +f 1182/1813 4691/4279 4662/1811 +f 4695/1831 1190/1833 4699/6541 +f 4689/4277 4699/6541 1190/1833 +f 4706/6542 4703/1899 4704/4284 +f 1195/1901 4704/4284 4703/1899 +f 4714/6543 4709/1839 4711/4290 +f 1196/1841 4711/4290 4709/1839 +f 4720/6544 4717/1891 4718/4288 +f 1199/1893 4718/4288 4717/1891 +f 4728/6545 4723/1847 4725/6546 +f 1200/1849 4725/6546 4723/1847 +f 4734/6547 4729/1851 4731/4292 +f 1201/1853 4731/4292 4729/1851 +f 1203/1856 4738/6549 4736/1858 +f 4741/6548 4736/1858 4738/6549 +f 4747/6550 4715/1843 4745/4296 +f 1197/1845 4745/4296 4715/1843 +f 4752/6551 4748/1863 4743/4293 +f 1205/1865 4743/4293 4748/1863 +f 1165/1772 4755/4300 4597/1774 +f 4757/6552 4597/1774 4755/4300 +f 4764/6553 4759/1874 4761/4306 +f 1209/1872 4761/4306 4759/1874 +f 1162/1764 4767/4304 4586/1766 +f 4769/6554 4586/1766 4767/4304 +f 4776/6555 4771/1879 4773/6556 +f 1212/1881 4773/6556 4771/1879 +f 4782/6557 4777/1883 4779/4308 +f 1213/1885 4779/4308 4777/1883 +f 4788/6558 4784/1887 4786/6559 +f 1215/1889 4786/6559 4784/1887 +f 4793/6560 4765/1875 4791/4312 +f 1210/1877 4791/4312 4765/1875 +f 4797/6561 4794/1895 4789/4310 +f 1216/1897 4789/4310 4794/1895 +f 4700/1837 1192/1838 4802/6562 +f 4799/4315 4802/6562 1192/1838 +f 4804/1905 1219/1906 4809/6563 +f 4806/4321 4809/6563 1219/1906 +f 4688/1829 1189/1830 4815/6564 +f 4813/4319 4815/6564 1189/1830 +f 4817/1913 1223/1914 4822/6565 +f 4819/4333 4822/6565 1223/1914 +f 4823/1917 1224/1918 4828/6566 +f 4825/4324 4828/6566 1224/1918 +f 4834/6567 4830/1919 4832/4345 +f 1226/1921 4832/4345 4830/1919 +f 4810/1909 1220/1910 4840/6568 +f 4837/4327 4840/6568 1220/1910 +f 4841/1927 1227/1928 4844/6569 +f 4835/4325 4844/6569 1227/1928 +f 4753/1867 1207/1869 4849/6570 +f 4847/4331 4849/6570 1207/1869 +f 4851/1933 1231/1934 4856/6571 +f 4853/4337 4856/6571 1231/1934 +f 4742/1861 1204/1862 4861/6572 +f 4859/4335 4861/6572 1204/1862 +f 4863/1941 1234/1942 4868/6573 +f 4865/4349 4868/6573 1234/1942 +f 4869/1945 1235/1946 4874/6574 +f 4871/4339 4874/6574 1235/1946 +f 4876/1949 1237/1950 4880/6575 +f 4878/4361 4880/6575 1237/1950 +f 4857/1937 1232/1938 4885/6576 +f 4883/4343 4885/6576 1232/1938 +f 4886/1955 1238/1956 4889/6577 +f 4881/4341 4889/6577 1238/1956 +f 4891/4348 4893/6578 1203/1856 +f 4738/6549 1203/1856 4893/6578 +f 4897/4354 4900/6579 1241/1959 +f 4895/1960 1241/1959 4900/6579 +f 4725/6546 1200/1849 4905/6580 +f 4903/4351 4905/6580 1200/1849 +f 4907/1969 1244/1970 4912/6581 +f 4909/4365 4912/6581 1244/1970 +f 4913/1973 1245/1974 4918/6582 +f 4915/4355 4918/6582 1245/1974 +f 4920/1977 1247/1978 4924/6583 +f 4922/4377 4924/6583 1247/1978 +f 4901/1965 1242/1966 4929/6584 +f 4927/4359 4929/6584 1242/1966 +f 4925/4358 4933/6585 1248/1981 +f 4930/1982 1248/1981 4933/6585 +f 4786/6559 1215/1889 4937/6586 +f 4935/4363 4937/6586 1215/1889 +f 1251/1988 4941/4370 4939/1990 +f 4944/6587 4939/1990 4941/4370 +f 4949/6588 4773/6556 4947/4368 +f 1212/1881 4947/4368 4773/6556 +f 1161/1760 4579/1759 4950/1997 +f 4954/6589 4950/1997 4579/1759 +f 4960/6590 4955/1998 4957/4371 +f 1254/2000 4957/4371 4955/1998 +f 1158/1752 4566/1751 4961/2004 +f 4964/6591 4961/2004 4566/1751 +f 1252/1992 4967/4375 4945/1994 +f 4969/6592 4945/1994 4967/4375 +f 1256/2008 4965/4374 4970/2010 +f 4973/6593 4970/2010 4965/4374 +f 4975/7272 1259/7121 4979/6594 +f 4976/4380 4979/6594 1259/7121 +f 4982/2015 1260/2016 4987/6595 +f 4984/4385 4987/6595 1260/2016 +f 4991/7273 1264/7123 4994/6596 +f 4992/4383 4994/6596 1264/7123 +f 4997/2023 1265/2024 5002/6597 +f 4999/4429 5002/6597 1265/2024 +f 5003/2027 1266/2028 5008/6598 +f 5005/4387 5008/6598 1266/2028 +f 5010/2031 1268/2032 5015/6599 +f 5012/4441 5015/6599 1268/2032 +f 1261/2018 5019/4391 4988/2020 +f 5022/6600 4988/2020 5019/4391 +f 1270/2038 5017/4390 5023/2040 +f 5027/6601 5023/2040 5017/4390 +f 1272/2042 5031/4395 5028/2044 +f 5034/6602 5028/2044 5031/4395 +f 5041/6603 5036/2048 5038/4401 +f 1275/2046 5038/4401 5036/2048 +f 5016/2035 1269/2036 5047/6604 +f 5045/4399 5047/6604 1269/2036 +f 5049/2055 1279/2056 5054/6605 +f 5051/4413 5054/6605 1279/2056 +f 5055/2059 1280/2060 5060/6606 +f 5057/4403 5060/6606 1280/2060 +f 1282/2062 5064/4425 5062/2064 +f 5067/6607 5062/2064 5064/4425 +f 5042/2051 1276/2052 5074/6608 +f 5071/4407 5074/6608 1276/2052 +f 5075/2071 1284/2072 5079/6609 +f 5069/4405 5079/6609 1284/2072 +f 5083/2139 1289/2140 5086/6610 +f 5084/4411 5086/6610 1289/2140 +f 1290/2080 5091/4417 5089/2079 +f 5094/6611 5089/2079 5091/4417 +f 5097/2131 1293/2132 5100/6612 +f 5098/4416 5100/6612 1293/2132 +f 5108/6613 5103/2085 5105/4639 +f 1294/2087 5105/4639 5103/2085 +f 1295/2090 5111/4419 5109/2092 +f 5114/6614 5109/2092 5111/4419 +f 5121/6615 5116/2093 5118/4651 +f 1297/2095 5118/4651 5116/2093 +f 1291/2082 5125/4423 5095/2084 +f 5127/6616 5095/2084 5125/4423 +f 1299/2102 5123/4421 5128/2104 +f 5132/6617 5128/2104 5123/4421 +f 5135/7277 1303/7127 5138/6618 +f 5136/4427 5138/6618 1303/7127 +f 5141/2111 1304/2112 5146/6619 +f 5143/4433 5146/6619 1304/2112 +f 5149/7278 1307/7128 5152/6620 +f 5150/4431 5152/6620 1307/7128 +f 5155/2119 1308/2120 5160/6621 +f 5157/4622 5160/6621 1308/2120 +f 5161/2123 1309/2124 5166/6622 +f 5163/4435 5166/6622 1309/2124 +f 5168/2127 1311/2128 5172/6623 +f 5170/4634 5172/6623 1311/2128 +f 5147/2115 1305/2116 5177/6624 +f 5175/4439 5177/6624 1305/2116 +f 5178/2135 1312/2136 5181/6625 +f 5173/4437 5181/6625 1312/2136 +f 5080/2075 1286/2076 5186/6626 +f 5183/4443 5186/6626 1286/2076 +f 5188/2143 1315/2144 5193/6627 +f 5190/4449 5193/6627 1315/2144 +f 5068/2067 1283/2068 5199/6628 +f 5197/4447 5199/6628 1283/2068 +f 5201/2151 1319/2152 5206/6629 +f 5203/4462 5206/6629 1319/2152 +f 5207/2155 1320/2156 5212/6630 +f 5209/4451 5212/6630 1320/2156 +f 5214/2159 1322/2160 5218/6631 +f 5216/4473 5218/6631 1322/2160 +f 5194/2147 1316/2148 5224/6632 +f 5221/4455 5224/6632 1316/2148 +f 5225/2165 1323/2166 5228/6633 +f 5219/4453 5228/6633 1323/2166 +f 1301/2106 5231/4460 5133/2108 +f 5233/6634 5133/2108 5231/4460 +f 5240/6635 5235/2169 5237/4466 +f 1327/2171 5237/4466 5235/2169 +f 5245/6636 5122/2097 5243/4464 +f 1298/2099 5243/4464 5122/2097 +f 5247/2177 1330/2179 5252/6637 +f 5249/4654 5252/6637 1330/2179 +f 5253/2181 1331/2183 5258/6638 +f 5255/4467 5258/6638 1331/2183 +f 5260/2187 1333/2188 5264/6639 +f 5262/4666 5264/6639 1333/2188 +f 5269/6640 5241/2173 5267/4472 +f 1328/2175 5267/4472 5241/2173 +f 5270/2191 1334/2193 5273/6641 +f 5265/4469 5273/6641 1334/2193 +f 5276/4475 5278/6642 1337/7131 +f 5275/7281 1337/7131 5278/6642 +f 5281/2199 1338/2200 5286/6643 +f 5283/6644 5286/6643 1338/2200 +f 1341/7132 5290/4478 5289/7282 +f 5293/6647 5289/7282 5290/4478 +f 1342/2206 5298/6648 5296/2208 +f 5300/6649 5296/2208 5298/6648 +f 5303/7283 1345/7134 5307/6650 +f 5304/4482 5307/6650 1345/7134 +f 5310/2213 1346/2214 5314/6651 +f 5312/6652 5314/6651 1346/2214 +f 1221/7136 5317/4486 4801/7284 +f 5320/6653 4801/7284 5317/4486 +f 1349/2218 5324/6654 5322/2220 +f 5326/6655 5322/2220 5324/6654 +f 2605/7206 665/7048 5331/6656 +f 5329/4490 5331/6656 665/7048 +f 5284/6645 5335/6657 1339/2201 +f 5332/2224 1339/2201 5335/6657 +f 5337/7288 1353/7139 5340/6658 +f 5338/4494 5340/6658 1353/7139 +f 5343/2229 1354/2230 5348/6659 +f 5345/4499 5348/6659 1354/2230 +f 5351/7289 1357/7140 5354/6660 +f 5352/4497 5354/6660 1357/7140 +f 5357/2237 1358/2238 5362/6661 +f 5359/6662 5362/6661 1358/2238 +f 5363/2241 1359/2242 5368/6663 +f 5365/4501 5368/6663 1359/2242 +f 5370/2245 1361/2246 5375/6664 +f 5372/6665 5375/6664 1361/2246 +f 5349/2233 1355/2234 5381/6668 +f 5379/4505 5381/6668 1355/2234 +f 5382/2253 1363/2254 5386/6669 +f 5377/4503 5386/6669 1363/2254 +f 1361/2246 5389/4509 5372/6665 +f 5391/6671 5372/6665 5389/4509 +f 1367/2260 5395/4515 5393/2262 +f 5398/6672 5393/2262 5395/4515 +f 1358/2238 5401/4513 5359/6662 +f 5403/6673 5359/6662 5401/4513 +f 1370/2268 5407/4575 5405/2270 +f 5410/6674 5405/2270 5407/4575 +f 1371/2272 5413/4517 5411/2274 +f 5416/6675 5411/2274 5413/4517 +f 5418/2278 1373/2276 5423/6676 +f 5420/4587 5423/6676 1373/2276 +f 1368/2264 5427/4521 5399/2266 +f 5429/6678 5399/2266 5427/4521 +f 5430/2286 1375/2284 5434/6679 +f 5425/4519 5434/6679 1375/2284 +f 1379/7143 5438/4525 5437/7292 +f 5440/6680 5437/7292 5438/4525 +f 1380/2292 5445/6681 5443/2294 +f 5448/6683 5443/2294 5445/6681 +f 2806/7224 717/7066 5454/6685 +f 5451/4527 5454/6685 717/7066 +f 5456/2301 1383/2302 5460/6687 +f 5458/6686 5460/6687 1383/2302 +f 5463/7293 1386/7145 5466/6688 +f 5464/4531 5466/6688 1386/7145 +f 5469/2307 1387/2308 5473/6689 +f 5471/6690 5473/6689 1387/2308 +f 1307/7146 5475/4534 5153/7294 +f 5478/6691 5153/7294 5475/4534 +f 1389/2312 5482/6692 5480/2314 +f 5484/6693 5480/2314 5482/6692 +f 5435/2289 1377/2290 5489/6694 +f 5487/4539 5489/6694 1377/2290 +f 5446/6684 5493/6695 1381/2296 +f 5490/2317 1381/2296 5493/6695 +f 5497/6696 2817/7225 5495/4542 +f 721/7067 5495/4542 2817/7225 +f 5499/2323 1393/2324 5504/6697 +f 5501/4547 5504/6697 1393/2324 +f 2857/7226 731/7068 5509/6698 +f 5507/4545 5509/6698 731/7068 +f 5511/2331 1396/2332 5516/6699 +f 5513/5072 5516/6699 1396/2332 +f 5517/2335 1397/2336 5522/6700 +f 5519/4549 5522/6700 1397/2336 +f 1399/2338 5526/6701 5524/2340 +f 5529/6702 5524/2340 5526/6701 +f 5505/2325 1394/2327 5535/6703 +f 5533/4553 5535/6703 1394/2327 +f 1401/2348 5531/4551 5536/2347 +f 5540/6704 5536/2347 5531/4551 +f 1403/2352 5543/4557 5541/2351 +f 5545/6705 5541/2351 5543/4557 +f 1405/2354 5549/4563 5547/2356 +f 5552/6706 5547/2356 5549/4563 +f 1400/2342 5555/4561 5530/2344 +f 5557/6707 5530/2344 5555/4561 +f 1408/2362 5561/5052 5559/2364 +f 5564/6708 5559/2364 5561/5052 +f 1409/2366 5567/4565 5565/2368 +f 5570/6709 5565/2368 5567/4565 +f 1411/2370 5574/5064 5572/2372 +f 5577/6710 5572/2372 5574/5064 +f 1406/2358 5581/4569 5553/2360 +f 5583/6711 5553/2360 5581/4569 +f 1413/2378 5579/4567 5584/2380 +f 5588/6712 5584/2380 5579/4567 +f 1415/2382 5591/4573 5589/2384 +f 5593/6713 5589/2384 5591/4573 +f 1417/2386 5597/4579 5595/2388 +f 5600/6714 5595/2388 5597/4579 +f 1412/2374 5603/4577 5578/2376 +f 5605/6715 5578/2376 5603/4577 +f 1420/2394 5609/6716 5607/2396 +f 5612/6717 5607/2396 5609/6716 +f 1421/2398 5615/4581 5613/2400 +f 5618/6718 5613/2400 5615/4581 +f 1423/2402 5622/6719 5620/2404 +f 5625/6720 5620/2404 5622/6719 +f 1418/2390 5629/4585 5601/2392 +f 5631/6721 5601/2392 5629/4585 +f 1425/2410 5627/4583 5632/2412 +f 5636/6722 5632/2412 5627/4583 +f 5637/2415 1427/2416 5641/6723 +f 5639/4589 5641/6723 1427/2416 +f 5643/2419 1429/2420 5648/6724 +f 5645/4594 5648/6724 1429/2420 +f 5626/2408 1424/2406 5653/6725 +f 5651/4592 5653/6725 1424/2406 +f 1432/2426 5657/5026 5655/2428 +f 5660/6726 5655/2428 5657/5026 +f 5661/2431 1433/2432 5666/6727 +f 5663/4597 5666/6727 1433/2432 +f 1435/2434 5670/6729 5668/2436 +f 5672/6728 5668/2436 5670/6729 +f 5649/2423 1430/2424 5677/6730 +f 5675/4600 5677/6730 1430/2424 +f 5678/2441 1436/2442 5681/6731 +f 5673/4598 5681/6731 1436/2442 +f 5685/6732 3013/7229 5683/4605 +f 771/7070 5683/4605 3013/7229 +f 5692/6733 5687/2445 5689/4611 +f 1439/2447 5689/4611 5687/2445 +f 5697/6734 3053/7231 5695/4609 +f 781/7072 5695/4609 3053/7231 +f 5704/6735 5699/2453 5701/4670 +f 1442/2455 5701/4670 5699/2453 +f 1443/2459 5707/4612 5705/2457 +f 5710/6736 5705/2457 5707/4612 +f 1445/2462 5714/4683 5712/2464 +f 5717/6737 5712/2464 5714/4683 +f 5723/6738 5693/2449 5721/4616 +f 1440/2451 5721/4616 5693/2449 +f 1447/2470 5719/4614 5724/2472 +f 5728/6739 5724/2472 5719/4614 +f 5729/2473 1449/2475 5733/6740 +f 5731/4620 5733/6740 1449/2475 +f 5735/2478 1451/2477 5740/6741 +f 5737/4626 5740/6741 1451/2477 +f 1446/2466 5743/4624 5718/2468 +f 5745/6742 5718/2468 5743/4624 +f 5749/4811 5752/6743 1454/2486 +f 5747/2488 1454/2486 5752/6743 +f 5753/2490 1455/2489 5758/6744 +f 5755/4629 5758/6744 1455/2489 +f 5760/2495 1457/2496 5765/6745 +f 5762/4823 5765/6745 1457/2496 +f 5741/2483 1452/2484 5771/6746 +f 5769/4632 5771/6746 1452/2484 +f 5772/2503 1459/2504 5776/6747 +f 5767/4630 5776/6747 1459/2504 +f 5777/2507 1461/2508 5781/6748 +f 5779/4637 5781/6748 1461/2508 +f 5788/6749 5783/2509 5785/4643 +f 1463/2511 5785/4643 5783/2509 +f 5766/2499 1458/2500 5793/6750 +f 5791/4640 5793/6750 1458/2500 +f 5795/2519 1466/2520 5800/6751 +f 5797/4702 5800/6751 1466/2520 +f 5801/2523 1467/2524 5806/6752 +f 5803/4644 5806/6752 1467/2524 +f 5808/2527 1469/2528 5813/6753 +f 5810/4714 5813/6753 1469/2528 +f 5819/6754 5789/2513 5817/4649 +f 1464/2515 5817/4649 5789/2513 +f 5824/6755 5820/2533 5815/4646 +f 1471/2535 5815/4646 5820/2533 +f 5825/2537 1473/2539 5829/6756 +f 5827/4652 5829/6756 1473/2539 +f 5831/2543 1475/2544 5836/6757 +f 5833/4658 5836/6757 1475/2544 +f 5839/4657 5841/6758 1470/2532 +f 5814/2531 1470/2532 5841/6758 +f 5845/4719 5848/6759 1478/2549 +f 5843/2550 1478/2549 5848/6759 +f 5849/2555 1479/2556 5854/6760 +f 5851/4660 5854/6760 1479/2556 +f 5856/2559 1481/2560 5860/6761 +f 5858/4730 5860/6761 1481/2560 +f 5837/2547 1476/2548 5865/6762 +f 5863/4664 5865/6762 1476/2548 +f 5866/2565 1482/2566 5869/6763 +f 5861/4662 5869/6763 1482/2566 +f 5873/6764 3209/7232 5871/4668 +f 821/7073 5871/4668 3209/7232 +f 1485/2570 5877/4674 5875/2572 +f 5880/6765 5875/2572 5877/4674 +f 831/7074 5883/4672 3249/7233 +f 5885/6766 3249/7233 5883/4672 +f 1488/2578 5889/4734 5887/2580 +f 5892/6767 5887/2580 5889/4734 +f 5898/6768 5893/2584 5895/4677 +f 1489/2582 5895/4677 5893/2584 +f 5905/6769 5900/2585 5902/4747 +f 1491/2587 5902/4747 5900/2585 +f 5911/6770 5881/2576 5909/4681 +f 1486/2574 5909/4681 5881/2576 +f 5916/6771 5912/2593 5907/4679 +f 1493/2595 5907/4679 5912/2593 +f 5917/2600 1495/2598 5922/6772 +f 5919/4684 5922/6772 1495/2598 +f 5924/2604 1497/2602 5929/6773 +f 5926/4690 5929/6773 1497/2602 +f 5935/6774 5906/2589 5933/4689 +f 1492/2591 5933/4689 5906/2589 +f 1501/2611 5939/4751 5937/2609 +f 5942/6775 5937/2609 5939/4751 +f 5943/2615 1502/2616 5948/6776 +f 5945/4692 5948/6776 1502/2616 +f 5950/2619 1504/2620 5955/6777 +f 5952/4762 5955/6777 1504/2620 +f 1498/2608 5959/4696 5930/2607 +f 5962/6778 5930/2607 5959/4696 +f 5967/6779 5963/2627 5957/4695 +f 1506/2628 5957/4695 5963/2627 +f 5971/2871 1511/2872 5974/6780 +f 5972/4700 5974/6780 1511/2872 +f 5977/2634 1512/2633 5982/6781 +f 5979/4707 5982/6781 1512/2633 +f 5986/4704 5988/6782 1515/2861 +f 5985/2862 1515/2861 5988/6782 +f 5996/6783 5991/2641 5993/6784 +f 1516/2643 5993/6784 5991/2641 +f 5997/2647 1517/2648 6002/6785 +f 5999/4708 6002/6785 1517/2648 +f 6009/6786 6004/2649 6006/6787 +f 1519/2651 6006/6787 6004/2649 +f 5983/2639 1513/2640 6015/6788 +f 6013/4712 6015/6788 1513/2640 +f 6016/2659 1521/2660 6020/6789 +f 6011/4710 6020/6789 1521/2660 +f 6021/2663 1523/2664 6025/6790 +f 6023/4716 6025/6790 1523/2664 +f 6027/2667 1525/2668 6032/6791 +f 6029/4722 6032/6791 1525/2668 +f 6010/2655 1520/2656 6037/6792 +f 6035/4720 6037/6792 1520/2656 +f 6039/2675 1528/2676 6044/6793 +f 6041/4827 6044/6793 1528/2676 +f 6045/2679 1529/2680 6050/6794 +f 6047/4725 6050/6794 1529/2680 +f 6054/4840 6056/6795 1531/2684 +f 6052/2683 1531/2684 6056/6795 +f 6059/4729 6061/6796 1526/2669 +f 6033/2670 1526/2669 6061/6796 +f 6057/4727 6065/6797 1532/2687 +f 6062/2688 1532/2687 6065/6797 +f 873/7075 6067/4732 3409/7234 +f 6069/6798 3409/7234 6067/4732 +f 1535/2694 6073/4739 6071/2696 +f 6076/6799 6071/2696 6073/4739 +f 883/7076 6079/4736 3449/7235 +f 6081/6800 3449/7235 6079/4736 +f 1538/2703 6085/4783 6083/2701 +f 6088/6801 6083/2701 6085/4783 +f 6094/6802 6089/2705 6091/4741 +f 1539/2707 6091/4741 6089/2705 +f 1541/2711 6098/4794 6096/2709 +f 6101/6803 6096/2709 6098/4794 +f 6107/6804 6077/2700 6105/4745 +f 1536/2698 6105/4745 6077/2700 +f 6112/6805 6108/2717 6103/4743 +f 1543/2719 6103/4743 6108/2717 +f 6117/6806 6113/2721 6115/4749 +f 1545/2723 6115/4749 6113/2721 +f 1547/2726 6121/4754 6119/2728 +f 6124/6807 6119/2728 6121/4754 +f 1542/2715 6127/4752 6102/2713 +f 6129/6808 6102/2713 6127/4752 +f 1550/2734 6133/6809 6131/2736 +f 6136/6810 6131/2736 6133/6809 +f 6142/6811 6137/2740 6139/4757 +f 1551/2738 6139/4757 6137/2740 +f 6146/6812 6149/6813 1553/2741 +f 6144/2742 1553/2741 6149/6813 +f 6155/6814 6125/2729 6153/4760 +f 1548/2731 6153/4760 6125/2729 +f 6156/2751 1555/2752 6160/6815 +f 6151/4758 6160/6815 1555/2752 +f 6161/2755 1557/2756 6166/6816 +f 6163/4764 6166/6816 1557/2756 +f 6168/2759 1559/2760 6173/6817 +f 6170/4770 6173/6817 1559/2760 +f 6150/2747 1554/2748 6179/6818 +f 6177/4769 6179/6818 1554/2748 +f 6183/2801 6186/6819 1563/2765 +f 6181/2766 1563/2765 6186/6819 +f 6187/2770 1564/2769 6192/6820 +f 6189/4772 6192/6820 1564/2769 +f 6194/2775 1566/2776 6198/6821 +f 6196/2794 6198/6821 1566/2776 +f 6174/2763 1560/2764 6204/6822 +f 6201/4776 6204/6822 1560/2764 +f 6205/2781 1567/2782 6208/6823 +f 6199/4775 6208/6823 1567/2782 +f 915/7081 6211/4780 3565/7236 +f 6213/6824 3565/7236 6211/4780 +f 1571/2786 6217/4786 6215/2788 +f 6220/6825 6215/2788 6217/4786 +f 3599/7237 921/7082 6225/6826 +f 6223/4784 6225/6826 921/7082 +f 6226/2795 1566/2776 6230/6827 +f 6193/2774 6230/6827 1566/2776 +f 6231/2798 1574/2799 6236/6828 +f 6233/4788 6236/6828 1574/2799 +f 6237/2802 1563/2765 6240/6829 +f 6180/2767 6240/6829 1563/2765 +f 1572/2791 6243/4792 6221/2789 +f 6245/6830 6221/2789 6243/4792 +f 1576/2806 6241/4790 6246/2808 +f 6249/6831 6246/2808 6241/4790 +f 925/7083 6251/4796 3609/7238 +f 6253/6832 3609/7238 6251/4796 +f 1579/2812 6257/4801 6255/2814 +f 6260/6833 6255/2814 6257/4801 +f 935/7084 6263/4799 3649/7239 +f 6265/6834 3649/7239 6263/4799 +f 1582/2820 6269/4843 6267/2822 +f 6272/6835 6267/2822 6269/4843 +f 1583/2824 6275/4803 6273/2826 +f 6278/6836 6273/2826 6275/4803 +f 1585/2828 6282/4855 6280/2830 +f 6284/6837 6280/2830 6282/4855 +f 6261/2817 1580/2818 6289/6838 +f 6287/4806 6289/6838 1580/2818 +f 1586/2835 6285/4805 6290/2837 +f 6293/6839 6290/2837 6285/4805 +f 5921/7300 1499/7151 6297/6840 +f 6295/4809 6297/6840 1499/7151 +f 6299/2843 1589/2844 6304/6841 +f 6301/4816 6304/6841 1589/2844 +f 5961/7301 1509/7152 6309/6842 +f 6307/4814 6309/6842 1509/7152 +f 6313/6843 6316/6844 1592/2849 +f 6311/2850 1592/2849 6316/6844 +f 6319/4818 6322/6845 1593/2853 +f 6317/2854 1593/2853 6322/6845 +f 6326/6846 6328/6847 1595/2857 +f 6324/2858 1595/2857 6328/6847 +f 6305/2847 1590/2848 6333/6848 +f 6331/4822 6333/6848 1590/2848 +f 6329/4820 6337/6849 1596/2865 +f 6334/2866 1596/2865 6337/6849 +f 6006/6787 1519/2651 6341/6850 +f 6339/4825 6341/6850 1519/2651 +f 6343/2875 1599/2876 6348/6851 +f 6345/4831 6348/6851 1599/2876 +f 5993/6784 1516/2643 6353/6852 +f 6351/4829 6353/6852 1516/2643 +f 6357/2917 6360/6853 1602/2881 +f 6355/2882 1602/2881 6360/6853 +f 6361/2887 1603/2888 6366/6854 +f 6363/4833 6366/6854 1603/2888 +f 6368/2891 1605/2892 6372/6855 +f 6370/2910 6372/6855 1605/2892 +f 6349/2879 1600/2880 6377/6856 +f 6375/4837 6377/6856 1600/2880 +f 6378/2897 1606/2898 6381/6857 +f 6373/4836 6381/6857 1606/2898 +f 959/7085 6383/4841 3749/7240 +f 6385/6858 3749/7240 6383/4841 +f 6387/2903 1609/2904 6392/6859 +f 6389/4847 6392/6859 1609/2904 +f 3783/7241 965/7086 6397/6860 +f 6395/4845 6397/6860 965/7086 +f 6367/2890 6402/6861 1605/2892 +f 6398/2911 1605/2892 6402/6861 +f 6403/2914 1612/2915 6408/6862 +f 6405/4849 6408/6862 1612/2915 +f 6409/2918 1602/2881 6412/6863 +f 6354/2883 6412/6863 1602/2881 +f 1610/2906 6415/4853 6393/2908 +f 6417/6864 6393/2908 6415/4853 +f 1614/2922 6413/4851 6418/2924 +f 6421/6865 6418/2924 6413/4851 +f 1617/7155 6424/4856 6423/7302 +f 6427/6866 6423/7302 6424/4856 +f 1618/2928 6432/6867 6430/2930 +f 6435/6869 6430/2930 6432/6867 +f 6439/3165 1622/3167 6443/6871 +f 6440/4860 6443/6871 1622/3167 +f 6446/2937 1623/2938 6450/6872 +f 6448/6873 6450/6872 1623/2938 +f 1626/7158 6454/4864 6453/7303 +f 6457/6874 6453/7303 6454/4864 +f 6459/2942 1619/2933 6462/6875 +f 6433/6870 6462/6875 1619/2933 +f 1317/7159 6465/4867 5185/7304 +f 6468/6876 5185/7304 6465/4867 +f 1629/2946 6472/4872 6470/2948 +f 6475/6877 6470/2948 6472/4872 +f 1325/7160 6479/4870 5223/7305 +f 6481/6878 5223/7305 6479/4870 +f 991/2954 3880/6879 6482/2956 +f 6486/6880 6482/2956 3880/6879 +f 1633/2958 6489/4874 6487/2960 +f 6492/6881 6487/2960 6489/4874 +f 6497/6882 6493/2961 3869/6883 +f 988/2963 3869/6883 6493/2961 +f 1630/2950 6501/4878 6476/2952 +f 6504/6884 6476/2952 6501/4878 +f 1636/2970 6499/4876 6505/2972 +f 6509/6885 6505/2972 6499/4876 +f 6510/2976 1638/2974 6515/6886 +f 6513/4881 6515/6886 1638/2974 +f 1641/2978 6519/4886 6517/2980 +f 6522/6887 6517/2980 6519/4886 +f 1635/2966 6525/4884 6498/2968 +f 6527/6888 6498/2968 6525/4884 +f 1001/2987 3924/6889 6528/2985 +f 6532/6890 6528/2985 3924/6889 +f 1644/2990 6535/4888 6533/2992 +f 6538/6891 6533/2992 6535/4888 +f 998/2994 3913/6892 6539/2996 +f 6542/6894 6539/2996 3913/6892 +f 1642/2981 6545/4892 6523/2982 +f 6547/6896 6523/2982 6545/4892 +f 1646/3002 6543/4890 6548/3004 +f 6551/6897 6548/3004 6543/4890 +f 6554/4897 6556/6899 1649/3227 +f 6553/3228 1649/3227 6556/6899 +f 6561/4901 6564/6900 1650/3009 +f 6559/3010 1650/3009 6564/6900 +f 6567/3221 1653/3222 6570/6901 +f 6568/4899 6570/6901 1653/3222 +f 6575/6902 6578/6903 1654/3017 +f 6573/3018 1654/3017 6578/6903 +f 6584/6904 6579/3023 6581/4904 +f 1655/3024 6581/4904 6579/3023 +f 1657/3026 6588/6906 6586/3028 +f 6591/6905 6586/3028 6588/6906 +f 6597/6907 6565/3013 6595/4908 +f 1651/3015 6595/4908 6565/3013 +f 1659/3035 6593/4905 6598/3033 +f 6602/6908 6598/3033 6593/4905 +f 1657/3026 6605/4911 6588/6906 +f 6608/6909 6588/6906 6605/4911 +f 6615/6910 6610/3041 6612/4917 +f 1663/3043 6612/4917 6610/3041 +f 6575/6902 1654/3017 6621/6911 +f 6619/4915 6621/6911 1654/3017 +f 6623/3051 1667/3052 6628/6912 +f 6625/3217 6628/6912 1667/3052 +f 6629/3054 1668/3053 6634/6913 +f 6631/4918 6634/6913 1668/3053 +f 6636/3059 1670/3060 6641/6914 +f 6638/3210 6641/6914 1670/3060 +f 1664/3046 6645/4922 6616/3048 +f 6648/6916 6616/3048 6645/4922 +f 6649/3067 1672/3068 6653/6917 +f 6643/4920 6653/6917 1672/3068 +f 6660/6918 5387/7306 6657/4926 +f 1365/7161 6657/4926 5387/7306 +f 1677/3074 6664/4932 6662/3076 +f 6667/6919 6662/3076 6664/4932 +f 1362/7162 6671/4930 5376/7307 +f 6673/6920 5376/7307 6671/4930 +f 1262/3082 4989/6921 6674/3084 +f 6678/6922 6674/3084 4989/6921 +f 1681/3086 6681/4934 6679/3088 +f 6684/6923 6679/3088 6681/4934 +f 1273/3090 5029/6924 6685/3092 +f 6689/6925 6685/3092 5029/6924 +f 1678/3078 6693/4938 6668/3080 +f 6696/6926 6668/3080 6693/4938 +f 1684/3098 6691/4936 6697/3100 +f 6701/6927 6697/3100 6691/4936 +f 5319/7309 1350/7163 6707/6928 +f 6705/4943 6707/6928 1350/7163 +f 1689/3108 6711/4948 6709/3107 +f 6714/6929 6709/3107 6711/4948 +f 5308/7311 1345/7165 6719/6930 +f 6717/4946 6719/6930 1345/7165 +f 1679/3114 6669/4928 6720/3116 +f 6724/6931 6720/3116 6669/4928 +f 6727/4951 6730/6932 1692/3118 +f 6725/3120 1692/3118 6730/6932 +f 6703/4940 6735/6933 1687/3121 +f 6731/3122 1687/3121 6735/6933 +f 1690/3110 6739/4955 6715/3112 +f 6741/6934 6715/3112 6739/4955 +f 6742/3130 1695/3129 6746/6935 +f 6737/4952 6746/6935 1695/3129 +f 6747/3135 1697/3136 6751/6936 +f 6749/4958 6751/6936 1697/3136 +f 6753/3139 1699/3140 6758/6937 +f 6755/4964 6758/6937 1699/3140 +f 6736/3127 1694/3128 6763/6938 +f 6761/4962 6763/6938 1694/3128 +f 6767/4989 6770/6939 1702/3148 +f 6765/3147 1702/3148 6770/6939 +f 6771/3151 1703/3152 6776/6940 +f 6773/4967 6776/6940 1703/3152 +f 6780/5001 6782/6942 1705/3153 +f 6778/3154 1705/3153 6782/6942 +f 6759/3143 1700/3144 6787/6943 +f 6785/4969 6787/6943 1700/3144 +f 6788/3163 1706/3164 6791/6944 +f 6783/4968 6791/6944 1706/3164 +f 1686/3102 6793/4972 6702/3104 +f 6796/6945 6702/3104 6793/4972 +f 1709/3170 6800/4978 6798/3172 +f 6803/6946 6798/3172 6800/4978 +f 1683/3094 6807/4976 6690/3096 +f 6809/6947 6690/3096 6807/4976 +f 1277/3178 5043/6948 6810/3180 +f 6814/6949 6810/3180 5043/6948 +f 6817/4980 6820/6950 1713/3182 +f 6815/3184 1713/3182 6820/6950 +f 6821/3187 1287/3188 6824/6951 +f 5081/6952 6824/6951 1287/3188 +f 1710/3174 6827/4983 6804/3176 +f 6830/6955 6804/3176 6827/4983 +f 6831/3194 1715/3193 6834/6956 +f 6825/4982 6834/6956 1715/3193 +f 1719/7171 6838/4986 6837/7315 +f 6840/6958 6837/7315 6838/4986 +f 6845/4992 6848/6959 1720/3202 +f 6843/3204 1720/3202 6848/6959 +f 6851/5945 1723/7172 6854/6960 +f 6852/4990 6854/6960 1723/7172 +f 6856/3211 1670/3060 6860/6961 +f 6635/3058 6860/6961 1670/3060 +f 6861/3214 1724/3215 6866/6962 +f 6863/4994 6866/6962 1724/3215 +f 6867/3218 1667/3052 6870/6963 +f 6622/3050 6870/6963 1667/3052 +f 6873/4998 6875/6964 1721/3205 +f 6849/3206 1721/3205 6875/6964 +f 6876/3225 1726/3226 6879/6965 +f 6871/4996 6879/6965 1726/3226 +f 1661/3039 6881/5002 6603/3037 +f 6883/6966 6603/3037 6881/5002 +f 1729/3232 6887/5007 6885/3234 +f 6890/6967 6885/3234 6887/5007 +f 1658/3030 6893/5006 6592/3032 +f 6895/6968 6592/3032 6893/5006 +f 1665/3239 6617/4912 6896/3240 +f 6900/6969 6896/3240 6617/4912 +f 1732/3244 6903/5009 6901/3246 +f 6906/6970 6901/3246 6903/5009 +f 1675/3248 6655/4924 6907/3250 +f 6911/6971 6907/3250 6655/4924 +f 1730/3236 6915/5013 6891/3238 +f 6917/6973 6891/3238 6915/5013 +f 6918/3258 1735/3256 6922/6974 +f 6913/5011 6922/6974 1735/3256 +f 6925/5017 6927/6975 1737/3262 +f 6923/3261 1737/3262 6927/6975 +f 6931/6978 6934/6979 1739/3263 +f 6929/3264 1739/3263 6934/6979 +f 6937/5021 6939/6980 1674/3072 +f 6654/3071 1674/3072 6939/6980 +f 1742/3272 6943/6981 6941/3274 +f 6945/6982 6941/3274 6943/6981 +f 6855/5925 1723/7172 6949/6983 +f 6947/5022 6949/6983 1723/7172 +f 6953/6984 6950/3278 6932/6977 +f 1740/3267 6932/6977 6950/3278 +f 1745/7173 6956/5024 6955/7316 +f 6958/6985 6955/7316 6956/5024 +f 1746/3282 6963/6986 6961/3284 +f 6966/6988 6961/3284 6963/6986 +f 6972/6990 4360/7258 6969/5028 +f 1107/7108 6969/5028 4360/7258 +f 6978/6991 6974/3292 6976/6992 +f 1749/3290 6976/6992 6974/3292 +f 5670/6729 1435/2434 6983/6993 +f 6981/5032 6983/6993 1435/2434 +f 6984/3296 1747/3286 6987/6994 +f 6964/6989 6987/6994 1747/3286 +f 6989/5036 6991/6995 1423/2402 +f 5622/6719 1423/2402 6991/6995 +f 6993/3301 1753/3302 6998/6996 +f 6995/5040 6998/6996 1753/3302 +f 7001/5038 7003/6997 1420/2394 +f 5609/6716 1420/2394 7003/6997 +f 7005/3308 1756/3307 7010/6998 +f 7007/6999 7010/6998 1756/3307 +f 7011/3313 1757/3314 7016/7000 +f 7013/5042 7016/7000 1757/3314 +f 7018/3317 1759/3318 7022/7001 +f 7020/7002 7022/7001 1759/3318 +f 6999/3304 1754/3303 7027/7003 +f 7025/5046 7027/7003 1754/3303 +f 7028/3323 1760/3324 7031/7004 +f 7023/5044 7031/7004 1760/3324 +f 1763/7175 7034/5050 7033/7317 +f 7036/7005 7033/7317 7034/5050 +f 1764/3328 7041/5056 7039/3330 +f 7044/7006 7039/3330 7041/5056 +f 1767/7176 7048/5054 7047/5965 +f 7050/7007 7047/5965 7048/5054 +f 1130/1691 4459/6498 7052/3336 +f 7056/7008 7052/3336 4459/6498 +f 1768/3338 7059/5058 7057/3340 +f 7062/7009 7057/3340 7059/5058 +f 7063/3342 1127/1684 7066/7010 +f 4447/6495 7066/7010 1127/1684 +f 1765/3332 7069/5062 7045/3334 +f 7071/7011 7045/3334 7069/5062 +f 1770/3346 7067/5060 7072/3348 +f 7075/7012 7072/3348 7067/5060 +f 5526/6701 1399/2338 7079/7013 +f 7077/5066 7079/7013 1399/2338 +f 1773/3352 7083/7017 7081/3354 +f 7086/7015 7081/3354 7083/7017 +f 4491/7261 1139/7112 7091/7018 +f 7089/5070 7091/7018 1139/7112 +f 7093/3360 1776/3359 7097/7019 +f 7095/7020 7097/7019 1776/3359 +f 1767/7176 7099/5074 7051/5957 +f 7101/7021 7051/5957 7099/5074 +f 1774/3358 7084/7014 7102/3366 +f 7105/7022 7102/3366 7084/7014 diff --git a/load/shapes/cabin.obj b/load/shapes/cabin.obj new file mode 100644 index 0000000..afa8885 --- /dev/null +++ b/load/shapes/cabin.obj @@ -0,0 +1,15020 @@ +#### +# +# OBJ File Generated by Meshlab +# +#### +# Object wardrobe_0089.obj +# +# Vertices: 3752 +# Faces: 7500 +# +#### +vn -0.493132 -0.715355 0.495064 +v 1.379920 -3.063924 32.629902 +vn -0.400297 -0.893020 0.205617 +v 0.885935 -3.099864 31.363300 +vn -0.825692 -0.266341 0.497287 +v 0.533146 -2.433444 31.730499 +vn -0.703132 -0.086318 0.705800 +v 1.246460 -2.106234 32.757999 +vn -0.515486 -0.271569 0.812726 +v 2.282319 -2.433154 33.471298 +vn -0.217459 -0.893752 0.392326 +v 2.657849 -3.099294 33.128502 +vn -0.032505 -0.998917 0.033284 +v 2.050439 -3.160814 31.981899 +vn -0.857324 -0.007431 0.514723 +v 0.509305 -1.185724 31.740400 +vn -0.705671 -0.002109 0.708537 +v 1.240960 -0.594272 32.763599 +vn -0.540366 -0.007660 0.841395 +v 2.271959 -1.185004 33.494499 +vn -0.360224 -0.527846 0.769167 +v 3.350939 -2.763604 34.055901 +vn -0.089018 -0.985315 0.145703 +v 4.085439 -3.136264 33.415100 +vn -0.005740 -0.999973 0.004686 +v 3.573649 -3.167654 32.451500 +vn -0.409535 -0.024735 0.911959 +v 3.326219 -1.779485 34.102600 +vn -0.857938 -0.000170 0.513752 +v 0.508760 0.591095 31.740700 +vn -0.705684 -0.000130 0.708527 +v 1.240550 1.185300 32.764099 +vn -0.539695 -0.000227 0.841860 +v 2.271719 0.591465 33.495201 +vn -0.857983 -0.000000 0.513678 +v 0.508761 5.049095 31.740700 +vn -0.534949 0.004006 0.844875 +v 2.271719 2.376306 33.495201 +vn -0.409760 -0.000234 0.912193 +v 3.326079 -0.002228 34.103298 +vn -0.399574 0.015687 0.916566 +v 3.324089 1.781125 34.102501 +vn -0.705680 0.000004 0.708530 +v 1.240549 4.907494 32.764099 +vn -0.520835 0.004804 0.853644 +v 2.271719 4.161136 33.495201 +vn -0.510217 0.000012 0.860046 +v 2.271733 6.578114 33.495152 +vn -0.391058 0.018431 0.920181 +v 3.238919 3.569076 34.014198 +vn -0.376616 0.017438 0.926205 +v 3.156339 5.355026 33.927101 +vn -0.171709 -0.736195 0.654624 +v 4.619119 -3.064054 34.306900 +vn -0.234705 -0.085643 0.968287 +v 4.421829 -2.107194 34.454700 +vn -0.074069 -0.189589 0.979066 +v 5.652608 -2.431444 34.643398 +vn -0.011917 -0.789522 0.613607 +v 6.132729 -3.090814 34.401699 +vn -0.013887 -0.998462 0.053667 +v 5.533869 -3.169294 33.578800 +vn -0.241766 -0.002552 0.970331 +v 4.417119 -0.592706 34.466099 +vn -0.083442 -0.011644 0.996445 +v 5.647959 -1.182165 34.674400 +vn -0.001679 -0.999382 -0.035103 +v 5.415968 -3.167644 32.623001 +vn 0.069823 -0.185193 0.980219 +v 7.007509 -2.441904 34.630199 +vn 0.113475 -0.752146 0.649153 +v 7.507109 -3.085694 34.393799 +vn 0.031614 -0.998680 0.040483 +v 6.986409 -3.164174 33.587002 +vn 0.040501 -0.031535 0.998682 +v 7.100119 -1.192245 34.674599 +vn 0.023766 -0.999232 -0.031140 +v 6.948988 -3.163684 32.636002 +vn 0.600364 -0.613796 0.512657 +v 8.124988 -3.055844 34.295101 +vn 0.507430 -0.239269 0.827807 +v 8.017567 -2.458724 34.410099 +vn 0.836923 -0.535758 0.111909 +v 8.384837 -2.466424 33.610100 +vn 0.491774 -0.870220 -0.029578 +v 7.985739 -3.088554 33.598499 +vn 0.339659 -0.412153 0.845436 +v 9.080237 -0.935798 34.488098 +vn 0.674127 -0.703590 0.224754 +v 9.200567 -1.468054 33.605499 +vn 0.776445 -0.615736 -0.134172 +v 8.457777 -2.285584 32.410500 +vn 0.509605 -0.857460 -0.071164 +v 7.923929 -3.103244 32.639500 +vn 0.599012 -0.792660 -0.113469 +v 9.321487 -1.289424 32.184101 +vn -0.241502 0.014807 0.970287 +v 4.414938 1.180245 34.465500 +vn -0.084735 0.000903 0.996403 +v 5.648889 0.579944 34.674999 +vn -0.192522 0.071249 0.978703 +v 4.335329 2.746346 34.376801 +vn -0.075313 0.090714 0.993025 +v 5.651029 1.923305 34.672001 +vn -0.000137 0.000043 1.000000 +v 7.205978 0.578504 34.678101 +vn -0.000906 0.107102 0.994248 +v 7.208068 1.919575 34.675201 +vn -0.130267 0.051336 0.990149 +v 4.161378 4.533016 34.293201 +vn 0.026295 0.127841 0.991446 +v 5.498709 4.013976 34.252899 +vn 0.048518 0.068762 0.996453 +v 4.857018 5.726526 34.155899 +vn 0.086476 0.051695 0.994912 +v 5.980709 5.732476 34.087299 +vn 0.056616 0.124546 0.990597 +v 6.424778 4.747456 34.095699 +vn -0.129799 0.026222 0.991193 +v 3.903009 6.546386 34.123402 +vn 0.002785 0.179206 0.983808 +v 7.275578 4.337436 34.165901 +vn 0.003862 0.204366 0.978887 +v 7.210719 3.147386 34.410099 +vn 0.047878 0.058607 0.997132 +v 7.342349 5.974596 33.913399 +vn 0.021078 -0.046683 0.998687 +v 8.884567 0.572457 34.675098 +vn 0.000238 0.106155 0.994350 +v 8.993247 1.919395 34.675201 +vn 0.032533 -0.107439 0.993679 +v 10.674597 0.751722 34.666698 +vn 0.152159 -0.652121 0.742688 +v 11.271997 -0.085568 34.422901 +vn 0.362383 -0.918192 0.160007 +v 10.590797 -0.535152 33.593700 +vn 0.000698 0.103260 0.994654 +v 10.776998 1.922005 34.675098 +vn 0.352760 -0.935117 -0.033401 +v 10.580398 -0.554138 32.183498 +vn 0.000552 0.176159 0.984361 +v 8.994387 4.349946 34.160599 +vn -0.000069 0.207090 0.978322 +v 8.993797 3.148666 34.410099 +vn 0.000072 0.070756 0.997494 +v 8.993447 5.985046 33.913502 +vn -0.000049 0.176390 0.984320 +v 10.788805 4.349668 34.160900 +vn -0.000039 0.207131 0.978313 +v 10.778597 3.148686 34.410099 +vn -0.000076 0.070625 0.997503 +v 10.791131 5.984603 33.913799 +vn -0.716449 -0.690318 0.100806 +v -0.047800 -3.055073 29.496300 +vn -0.700316 -0.713811 0.005574 +v -0.055568 -3.074744 27.980000 +vn -0.996942 -0.076233 0.017201 +v -0.147767 -2.418424 28.546700 +vn -0.992826 -0.047179 0.109867 +v -0.113681 -2.100094 29.780399 +vn -0.808958 -0.505180 0.300633 +v 0.123052 -2.759504 30.846300 +vn -0.164434 -0.982939 0.082409 +v 0.689058 -3.130334 30.028700 +vn -0.072574 -0.997307 0.010584 +v 0.599007 -3.156914 28.581900 +vn -0.999760 -0.006628 0.020888 +v -0.164044 -1.180404 28.547199 +vn -0.994176 -0.001866 0.107751 +v -0.121207 -0.592662 29.780899 +vn -0.948448 -0.022789 0.316111 +v 0.077671 -1.781224 30.865400 +vn -0.704250 -0.709927 -0.005864 +v -0.058608 -3.076473 26.236000 +vn -0.996661 -0.081637 -0.001711 +v -0.156448 -2.415604 26.826401 +vn -0.064789 -0.997899 0.000135 +v 0.603651 -3.158244 26.831900 +vn -0.999958 -0.008938 0.002025 +v -0.176238 -1.176204 26.820700 +vn -0.695663 -0.715608 -0.062911 +v -0.049163 -3.086544 25.182800 +vn -0.995784 -0.077099 -0.049700 +v -0.150233 -2.240294 25.270901 +vn -0.053511 -0.997979 -0.034271 +v 0.604731 -3.155804 25.530899 +vn -0.999643 -0.018048 -0.019674 +v -0.172966 -0.987987 25.034901 +vn -0.008632 -0.999949 0.005230 +v 1.582410 -3.167664 30.467300 +vn 0.025674 -0.999670 -0.000474 +v 1.396500 -3.167374 28.609900 +vn 0.286650 -0.913337 -0.289218 +v 3.307009 -3.104784 30.851900 +vn 0.571565 -0.637924 -0.516106 +v 3.934669 -1.598094 30.098301 +vn 0.747271 -0.629079 -0.214115 +v 3.119469 -2.099264 28.916599 +vn 0.424082 -0.899090 -0.108593 +v 2.265149 -3.106964 28.728201 +vn 0.385169 -0.795350 -0.468042 +v 4.560608 -0.872151 29.749901 +vn 0.640308 -0.761130 -0.103376 +v 4.048648 -1.114844 28.775700 +vn 0.040484 -0.999180 0.000557 +v 1.407780 -3.162924 26.828300 +vn 0.022377 -0.999416 -0.025812 +v 1.377480 -3.162744 25.552601 +vn 0.764671 -0.642561 -0.048920 +v 2.789399 -2.096714 26.816401 +vn 0.514866 -0.857102 -0.016988 +v 2.153389 -3.095894 26.825500 +vn 0.602884 -0.796764 -0.041213 +v 3.839929 -1.106014 26.809999 +vn 0.764336 -0.642252 -0.057469 +v 2.778099 -2.098454 25.264799 +vn 0.512416 -0.858407 -0.023812 +v 2.112819 -3.108943 25.545500 +vn 0.569844 -0.819887 -0.055349 +v 3.831239 -1.101793 25.029800 +vn -0.999766 -0.000477 0.021612 +v -0.165980 0.590407 28.547300 +vn -0.994109 -0.000098 0.108380 +v -0.121785 1.188581 29.781000 +vn -0.949321 -0.000235 0.314308 +v 0.077137 0.003057 30.865501 +vn -0.999765 0.000000 0.021655 +v -0.165980 6.036165 28.547295 +vn -0.949302 -0.000000 0.314366 +v 0.077134 6.283299 30.865499 +vn -0.999993 -0.000725 0.003659 +v -0.178958 0.590122 26.818447 +vn -0.999998 -0.001859 -0.001003 +v -0.178783 0.593346 25.035801 +vn -1.000000 -0.000039 -0.000024 +v -0.178954 2.388438 25.018408 +vn -0.999993 -0.000000 0.003753 +v -0.178956 8.025710 26.818604 +vn -1.000000 -0.000009 -0.000002 +v -0.178954 4.423421 23.109266 +vn -0.573810 -0.688867 -0.442950 +v -0.014255 -3.071784 24.770500 +vn -0.011967 -0.853607 -0.520781 +v 0.613346 -3.090974 24.788900 +vn -0.073682 -0.622798 -0.778905 +v 0.611160 -2.093253 24.175301 +vn -0.743629 -0.404552 -0.532310 +v -0.052498 -2.065523 24.297501 +vn -0.194692 -0.774542 -0.601814 +v 0.601519 -1.092693 23.101400 +vn -0.843901 -0.427219 -0.324522 +v -0.098190 -0.790514 23.199699 +vn 0.020786 -0.861695 -0.507002 +v 1.378150 -3.111794 24.835199 +vn 0.044868 -0.642056 -0.765343 +v 1.647390 -2.107973 24.180500 +vn 0.044492 -0.824680 -0.563847 +v 1.869440 -1.104263 23.085199 +vn 0.515310 -0.673369 -0.530122 +v 2.349559 -2.593084 24.579500 +vn 0.409252 -0.813597 -0.413004 +v 2.064519 -3.119653 24.872101 +vn 0.336035 -0.879096 -0.338040 +v 3.320869 -1.223343 23.587500 +vn -0.999741 -0.020839 -0.009108 +v -0.176111 0.781524 23.246201 +vn -1.000000 -0.000688 -0.000239 +v -0.178902 2.376777 23.248600 +vn -0.801146 -0.595022 -0.064138 +v -0.076133 0.113754 20.864401 +vn -0.998989 -0.043508 -0.011319 +v -0.170724 0.963378 21.459801 +vn -0.102342 -0.957813 -0.268551 +v 0.601257 -0.141470 21.443701 +vn -0.999997 -0.002438 -0.000511 +v -0.178816 2.378687 21.463800 +vn -1.000000 -0.000038 -0.000008 +v -0.178954 4.102991 21.260895 +vn -0.791536 -0.611122 0.000224 +v -0.073476 0.107970 19.087814 +vn -0.998264 -0.058895 -0.000800 +v -0.167897 0.958136 19.685425 +vn -0.192405 -0.981312 0.002710 +v 0.604161 -0.152337 19.679001 +vn -0.999993 -0.003670 -0.000228 +v -0.178782 2.379435 19.676888 +vn -0.192267 -0.981343 0.000004 +v 0.603992 -0.152346 17.667896 +vn -1.000000 -0.000048 -0.000000 +v -0.178954 4.160169 15.216205 +vn -0.010771 -0.967545 -0.252469 +v 1.866050 -0.167747 21.432100 +vn 0.007092 -0.973072 -0.230392 +v 3.646839 -0.171970 21.440399 +vn -0.010466 -0.999941 0.002905 +v 1.865900 -0.177666 19.679100 +vn -0.010401 -0.999946 0.000006 +v 1.865744 -0.177696 17.599592 +vn -0.000577 -0.999997 0.002197 +v 3.638879 -0.178972 19.679100 +vn -0.000361 -1.000000 0.000001 +v 3.637709 -0.178968 17.423050 +vn 0.105153 -0.881541 -0.460248 +v 5.306959 -3.099954 31.761499 +vn 0.189849 -0.609378 -0.769815 +v 5.311429 -2.100554 31.105200 +vn 0.082066 -0.761072 -0.643456 +v 5.437829 -1.108284 30.163700 +vn 0.041995 -0.855725 -0.515724 +v 6.944959 -3.104944 31.871000 +vn 0.065141 -0.637426 -0.767753 +v 7.095499 -2.093604 31.229601 +vn 0.036608 -0.808835 -0.586896 +v 7.217638 -1.101614 30.183500 +vn 0.493328 -0.660962 -0.565470 +v 8.039877 -2.589984 31.657000 +vn 0.346176 -0.835135 -0.427448 +v 7.730928 -3.111794 31.962999 +vn 0.312366 -0.855960 -0.412018 +v 8.733137 -1.363854 30.710300 +vn 0.233328 -0.951211 -0.201880 +v 5.451018 -0.164734 28.575701 +vn 0.000162 -0.966227 -0.257693 +v 7.208609 -0.169421 28.571501 +vn 0.264383 -0.964392 -0.007078 +v 5.456288 -0.168524 26.816000 +vn 0.255452 -0.966822 -0.000480 +v 5.455089 -0.169450 25.033100 +vn -0.002568 -0.999994 0.002310 +v 7.208219 -0.178974 26.818399 +vn -0.002781 -0.999996 0.000066 +v 7.208148 -0.178971 25.033300 +vn 0.001992 -0.967892 -0.251358 +v 9.003118 -0.170336 28.576799 +vn 0.270937 -0.959278 -0.079868 +v 10.679398 -0.362458 30.386700 +vn 0.052065 -0.993340 -0.102784 +v 10.789897 -0.174864 28.590000 +vn -0.000066 -0.999997 0.002522 +v 8.993320 -0.178970 26.818712 +vn -0.032706 -0.011721 -0.999396 +v 10.778197 -0.178972 26.818300 +vn -0.000273 -1.000000 0.000339 +v 12.563139 -0.178970 26.818018 +vn 0.232254 -0.972625 -0.007694 +v 5.447218 -0.171969 23.240700 +vn 0.059017 -0.996502 -0.059172 +v 5.431448 -0.176733 21.456200 +vn 0.999754 -0.017958 0.013027 +v 7.208249 -0.178971 23.248400 +vn -0.000968 -0.999999 0.000338 +v 7.208302 -0.178969 21.463831 +vn -0.150546 0.010623 0.988546 +v 5.423728 -0.178970 19.678900 +vn -0.000157 -1.000000 0.000157 +v 7.208317 -0.178968 19.678972 +vn 0.000000 -1.000000 -0.000000 +v 10.764585 -0.178968 20.568657 +vn -0.705679 -0.000004 0.708531 +v 1.240551 8.726305 32.764103 +vn -0.857983 -0.000000 0.513678 +v 0.508761 13.973539 31.740700 +vn -0.510208 0.000003 0.860051 +v 2.271714 9.812005 33.495197 +vn -0.348150 0.000001 0.937439 +v 3.156799 7.136476 33.927200 +vn -0.348123 -0.000011 0.937449 +v 3.156859 8.921245 33.927299 +vn -0.705682 0.000003 0.708529 +v 1.240551 18.469620 32.764103 +vn -0.348153 0.000009 0.937438 +v 3.156779 10.706095 33.927200 +vn -0.348130 0.000017 0.937446 +v 3.156779 12.490994 33.927200 +vn -0.510208 -0.000002 0.860051 +v 2.271721 18.390570 33.495201 +vn -0.348108 -0.000018 0.937454 +v 3.156775 16.020670 33.927197 +vn -0.857983 -0.000000 0.513678 +v 0.508761 22.899712 31.740705 +vn -0.510208 0.000003 0.860051 +v 2.271746 21.091183 33.495159 +vn -0.348182 -0.000029 0.937427 +v 3.156769 17.845394 33.927200 +vn -0.348210 0.000008 0.937417 +v 3.156839 19.630194 33.927299 +vn 0.056477 0.015059 0.998290 +v 4.680388 7.733086 34.074501 +vn 0.058413 0.023049 0.998026 +v 5.812559 7.733426 34.002899 +vn -0.096720 -0.000065 0.995312 +v 3.904259 8.326704 34.123699 +vn 0.062863 -0.000022 0.998022 +v 4.681038 9.516864 34.074600 +vn 0.058335 -0.000161 0.998297 +v 5.812139 9.517334 34.003601 +vn -0.096809 0.000024 0.995303 +v 3.904119 10.111594 34.123699 +vn 0.031311 0.005726 0.999493 +v 7.348548 7.732496 33.919998 +vn 0.024485 -0.000192 0.999700 +v 7.347279 9.517684 33.920700 +vn 0.062830 0.000006 0.998024 +v 4.681118 11.301694 34.074501 +vn 0.058248 -0.000010 0.998302 +v 5.812068 11.302195 34.003700 +vn -0.096815 0.000000 0.995302 +v 3.904099 11.896395 34.123699 +vn 0.062791 0.000016 0.998027 +v 4.681028 13.086494 34.074600 +vn 0.058260 0.000011 0.998301 +v 5.812068 13.086994 34.003700 +vn -0.096817 0.000028 0.995302 +v 3.904179 13.681294 34.123600 +vn 0.024506 -0.000007 0.999700 +v 7.347289 11.302494 33.920700 +vn 0.024489 0.000007 0.999700 +v 7.347292 14.845475 33.920700 +vn -0.002050 -0.003741 0.999991 +v 8.993867 7.731936 33.928902 +vn -0.002513 -0.000052 0.999997 +v 8.993730 9.517821 33.928902 +vn -0.000021 -0.004314 0.999991 +v 10.793957 7.731791 33.928902 +vn 0.000022 0.000021 1.000000 +v 10.790101 9.534310 33.928799 +vn -0.002462 -0.000000 0.999997 +v 8.993737 14.871768 33.928902 +vn 0.062811 0.000005 0.998025 +v 4.681118 14.871394 34.074501 +vn 0.058244 0.000026 0.998302 +v 5.812159 14.871795 34.003601 +vn -0.096794 -0.000029 0.995304 +v 3.904189 15.466094 34.123600 +vn 0.062836 -0.000040 0.998024 +v 4.681028 16.656195 34.074600 +vn 0.058285 -0.000028 0.998300 +v 5.812159 16.656694 34.003601 +vn -0.096849 -0.000029 0.995299 +v 3.904089 17.250895 34.123699 +vn 0.024506 -0.000007 0.999700 +v 7.347284 18.415060 33.920700 +vn 0.062847 -0.000022 0.998023 +v 4.681008 18.440994 34.074600 +vn 0.058288 -0.000037 0.998300 +v 5.812068 18.441494 34.003700 +vn -0.096834 -0.000023 0.995301 +v 3.903999 19.035694 34.123798 +vn 0.062848 0.000007 0.998023 +v 4.682597 20.326561 34.074497 +vn 0.058264 0.000001 0.998301 +v 5.811978 20.226294 34.003799 +vn -0.096809 -0.000004 0.995303 +v 3.904221 21.643227 34.123798 +vn 0.024536 -0.000007 0.999699 +v 7.347289 20.226694 33.920700 +vn 0.000029 -0.000000 1.000000 +v 10.781498 17.549057 33.928799 +vn -0.002462 -0.000000 0.999997 +v 8.993737 21.118544 33.928902 +vn -0.705678 -0.000005 0.708532 +v 1.240551 22.755783 32.764103 +vn -0.510211 0.000002 0.860049 +v 2.271723 23.965263 33.495201 +vn -0.348219 0.000001 0.937413 +v 3.156789 21.415094 33.927200 +vn -0.348200 -0.000009 0.937420 +v 3.156849 23.199894 33.927299 +vn -0.705684 -0.000000 0.708526 +v 1.240550 28.849604 32.764099 +vn -0.857982 -0.000000 0.513679 +v 0.508761 29.148167 31.740705 +vn -0.348205 0.000028 0.937418 +v 3.156759 24.984795 33.927200 +vn -0.348118 0.000007 0.937451 +v 3.156684 27.674171 33.927155 +vn -0.510207 -0.000002 0.860052 +v 2.271725 32.539299 33.495205 +vn -0.348185 -0.000021 0.937426 +v 3.156759 30.339294 33.927200 +vn -0.857983 -0.000000 0.513678 +v 0.508759 35.393955 31.740705 +vn -0.705680 0.000004 0.708531 +v 1.240549 33.464725 32.764099 +vn -0.510209 0.000004 0.860051 +v 2.271746 35.369846 33.495159 +vn -0.348201 0.000008 0.937420 +v 3.156759 32.124100 33.927200 +vn -0.348162 -0.000007 0.937434 +v 3.156839 33.908798 33.927299 +vn 0.058265 0.000018 0.998301 +v 5.812058 22.011095 34.003700 +vn 0.062871 -0.000007 0.998022 +v 4.681018 23.795494 34.074600 +vn 0.058281 -0.000019 0.998300 +v 5.812068 23.795994 34.003700 +vn -0.096850 0.000024 0.995299 +v 3.904009 24.390194 34.123798 +vn 0.024519 0.000007 0.999699 +v 7.347283 22.039877 33.920700 +vn 0.062804 0.000022 0.998026 +v 4.681008 25.580294 34.074600 +vn 0.058264 0.000001 0.998301 +v 5.811978 25.580793 34.003799 +vn -0.096860 0.000027 0.995298 +v 3.904079 26.175095 34.123699 +vn 0.062785 0.000022 0.998027 +v 4.681018 27.365194 34.074600 +vn 0.058260 0.000037 0.998301 +v 5.812058 27.365595 34.003700 +vn -0.096828 -0.000005 0.995301 +v 3.904179 27.959894 34.123600 +vn 0.024536 -0.000007 0.999699 +v 7.347289 25.581194 33.920700 +vn 0.024519 0.000007 0.999699 +v 7.347289 27.365993 33.920700 +vn 0.000029 -0.000000 1.000000 +v 10.781498 26.473206 33.928799 +vn -0.002462 -0.000000 0.999997 +v 8.993737 27.365576 33.928902 +vn 0.062829 -0.000022 0.998024 +v 4.681018 29.149994 34.074600 +vn 0.058284 -0.000001 0.998300 +v 5.812159 29.150494 34.003601 +vn -0.096849 -0.000029 0.995299 +v 3.904089 29.744694 34.123699 +vn 0.062847 -0.000022 0.998023 +v 4.681008 30.934793 34.074600 +vn 0.058288 -0.000037 0.998300 +v 5.812068 30.935295 34.003700 +vn -0.096869 0.000001 0.995297 +v 3.903989 31.529493 34.123798 +vn 0.024489 0.000007 0.999700 +v 7.347289 29.150795 33.920700 +vn 0.024506 -0.000007 0.999700 +v 7.347289 30.935595 33.920700 +vn 0.062804 0.000023 0.998026 +v 4.681008 32.719601 34.074600 +vn 0.058264 0.000001 0.998301 +v 5.811978 32.720100 34.003799 +vn -0.096817 -0.000008 0.995302 +v 3.904089 33.314400 34.123699 +vn 0.062859 -0.000003 0.998022 +v 4.680929 34.504501 34.074600 +vn 0.058264 0.000019 0.998301 +v 5.812058 34.505001 34.003700 +vn -0.096792 0.000013 0.995305 +v 3.904169 35.099201 34.123798 +vn 0.024536 -0.000007 0.999699 +v 7.347289 32.720501 33.920700 +vn 0.024519 0.000007 0.999699 +v 7.347280 34.579933 33.920700 +vn -0.002462 -0.000000 0.999997 +v 8.993737 33.612526 33.928902 +vn 0.000029 -0.000000 1.000000 +v 10.785935 35.992142 33.928799 +vn -0.994108 -0.000000 0.108392 +v -0.121785 10.972757 29.781000 +vn -0.999765 -0.000000 0.021655 +v -0.165980 13.913445 28.547295 +vn -0.949302 -0.000000 0.314366 +v 0.077135 13.367246 30.865501 +vn -0.999993 -0.000000 0.003753 +v -0.178956 14.858483 26.818583 +vn -0.994108 -0.000000 0.108393 +v -0.121787 19.046690 29.781000 +vn -0.999765 -0.000000 0.021655 +v -0.165981 20.229311 28.547304 +vn -0.949301 -0.000000 0.314367 +v 0.077133 19.639904 30.865499 +vn -0.999993 -0.000000 0.003752 +v -0.178956 22.008554 26.818638 +vn -1.000000 -0.000000 -0.000000 +v -0.178954 19.152700 23.718252 +vn -1.000000 -0.000000 -0.000000 +v -0.178954 9.259710 20.443182 +vn -1.000000 0.000000 -0.000000 +v -0.178954 13.976753 22.355402 +vn -1.000000 -0.000000 -0.000000 +v -0.178954 7.729789 15.216211 +vn -1.000000 0.000000 0.000000 +v -0.178954 15.166773 17.893482 +vn -1.000000 0.000000 0.000000 +v -0.178954 12.191987 16.108717 +vn -1.000000 -0.000000 -0.000000 +v -0.178954 22.900883 21.909248 +vn -1.000000 -0.000000 0.000000 +v -0.178954 19.232105 16.901850 +vn -0.999765 -0.000000 0.021654 +v -0.165981 26.470440 28.547312 +vn -0.994108 -0.000000 0.108393 +v -0.121788 27.074562 29.781006 +vn -0.949301 -0.000000 0.314367 +v 0.077133 25.873919 30.865505 +vn -0.999993 0.000000 0.003752 +v -0.178956 27.109058 26.818596 +vn -0.999765 0.000000 0.021654 +v -0.165981 33.609776 28.547312 +vn -0.994108 -0.000000 0.108393 +v -0.121788 34.214626 29.781006 +vn -0.949302 -0.000000 0.314366 +v 0.077133 33.017357 30.865505 +vn -1.000000 0.000000 -0.000000 +v -0.178954 31.289619 24.391495 +vn -0.999993 -0.000000 0.003752 +v -0.178956 34.502392 26.818638 +vn -1.000000 0.000000 -0.000000 +v -0.178954 29.147869 21.463036 +vn -1.000000 0.000000 0.000000 +v -0.178954 24.586628 18.488358 +vn -1.000000 0.000000 -0.000000 +v -0.178954 35.493671 21.264746 +vn -1.000000 -0.000000 -0.000000 +v -0.178954 31.378910 16.554905 +vn -1.000000 0.000000 0.000000 +v -0.178954 35.394466 17.893429 +vn 0.011124 -0.137871 0.990388 +v 12.563797 0.941952 34.660801 +vn 0.022421 -0.696600 0.717110 +v 13.160097 0.102710 34.415501 +vn 0.088887 -0.984933 0.148343 +v 12.572197 -0.159723 33.582298 +vn 0.000678 0.099990 0.994988 +v 12.561497 1.925805 34.674900 +vn 0.092859 -0.995660 0.006276 +v 12.575497 -0.177351 32.168598 +vn 0.000058 -0.148687 0.988884 +v 14.358017 0.942480 34.660599 +vn -0.000029 -0.699627 0.714508 +v 14.955428 0.102258 34.415298 +vn -0.000212 -0.987403 0.158228 +v 14.349302 -0.160733 33.580299 +vn 0.000010 0.099318 0.995056 +v 14.349702 1.926772 34.674801 +vn -0.000340 -0.999979 0.006404 +v 14.349916 -0.178652 32.167000 +vn -0.000052 0.207357 0.978265 +v 12.563498 3.148676 34.410099 +vn -0.000009 0.207438 0.978248 +v 14.423635 3.148748 34.410084 +vn -0.000000 -0.987402 0.158234 +v 21.487349 -0.160733 33.580299 +vn 0.000000 0.099289 0.995059 +v 21.486473 1.926765 34.674801 +vn 0.000000 0.176369 0.984324 +v 20.596739 4.349656 34.160900 +vn -0.000000 0.070620 0.997503 +v 22.381931 5.984606 33.913799 +vn -0.000000 -0.999979 0.006428 +v 23.272089 -0.178653 32.167000 +vn 0.000000 -0.148687 0.988884 +v 24.163071 0.942479 34.660599 +vn 0.000000 -0.699618 0.714517 +v 24.758471 0.102258 34.415298 +vn 0.000000 0.207446 0.978247 +v 23.272470 3.148666 34.410099 +vn 0.060340 -0.998111 -0.011522 +v 12.571397 -0.178000 30.384899 +vn 0.011859 -0.999851 -0.012531 +v 12.565097 -0.178737 28.600401 +vn -0.000297 -1.000000 0.000112 +v 14.346642 -0.178969 30.386103 +vn -0.000117 -1.000000 0.000052 +v 14.348385 -0.178969 28.602518 +vn -0.000016 -1.000000 0.000016 +v 14.348994 -0.178969 26.813709 +vn -0.000000 -1.000000 0.000089 +v 20.594786 -0.178969 30.387699 +vn 0.000000 -1.000000 -0.000000 +v 19.345449 -0.178968 26.282631 +vn 0.000000 -1.000000 -0.000000 +v 16.132757 -0.178968 21.909836 +vn -0.000000 -1.000000 -0.000000 +v 14.124804 -0.178967 17.670773 +vn 0.000000 -1.000000 -0.000000 +v 17.917459 -0.178967 14.770406 +vn 0.000000 -1.000000 -0.000000 +v 21.997107 -0.178968 22.993422 +vn 0.000000 -1.000000 -0.000000 +v 25.056871 -0.178968 25.925703 +vn -0.000000 -1.000000 0.000089 +v 26.841768 -0.178969 30.387699 +vn 0.000000 -1.000000 -0.000000 +v 21.844187 -0.178967 17.358467 +vn 0.000000 -1.000000 -0.000000 +v 25.821903 -0.178968 19.168766 +vn 0.000000 -0.987402 0.158234 +v 28.626617 -0.160733 33.580299 +vn 0.000030 0.099270 0.995061 +v 30.389597 1.926764 34.674801 +vn 0.000020 -0.148670 0.988887 +v 30.401159 0.942479 34.660599 +vn -0.000000 -0.699618 0.714517 +v 31.897820 0.102258 34.415298 +vn 0.000000 -0.999979 0.006428 +v 31.304029 -0.178653 32.167000 +vn -0.000040 0.176382 0.984322 +v 30.403721 4.349656 34.160900 +vn -0.000023 0.207433 0.978249 +v 30.403568 3.148682 34.410095 +vn 0.023266 0.070723 0.997225 +v 32.198490 5.984606 33.913799 +vn 0.000109 -0.148490 0.988914 +v 32.194790 0.942479 34.660599 +vn 0.000000 -0.987402 0.158234 +v 34.873486 -0.160733 33.580299 +vn 0.003664 0.102363 0.994740 +v 32.195988 1.927365 34.674599 +vn 0.022845 0.176412 0.984051 +v 32.198090 4.349656 34.161098 +vn 0.014794 0.210418 0.977500 +v 32.197189 3.149276 34.410000 +vn 0.000168 -0.147871 0.989007 +v 33.979588 0.942479 34.660599 +vn 0.010894 0.125077 0.992087 +v 33.982487 1.930135 34.673500 +vn 0.000214 -0.146957 0.989143 +v 35.764389 0.942479 34.660599 +vn 0.000000 -0.699618 0.714517 +v 38.144581 0.102258 34.415298 +vn 0.006206 0.168074 0.985755 +v 35.766487 1.934215 34.671799 +vn -0.000000 -0.999979 0.006428 +v 40.228157 -0.178653 32.167000 +vn 0.085687 0.192209 0.977606 +v 33.985287 4.349006 34.078201 +vn 0.051050 0.242680 0.968762 +v 33.983490 3.150566 34.368401 +vn 0.100570 0.070691 0.992415 +v 33.985790 5.983816 33.830502 +vn 0.089371 0.239820 0.966695 +v 35.599689 4.348306 33.868900 +vn 0.044419 0.310128 0.949657 +v 35.680290 3.148616 34.244499 +vn 0.135756 0.079908 0.987515 +v 35.600288 5.983496 33.578602 +vn 0.000223 -0.145835 0.989309 +v 37.549290 0.942479 34.660599 +vn -0.005236 0.182367 0.983217 +v 37.550587 1.938475 34.669601 +vn -0.000262 -0.145089 0.989419 +v 39.334087 0.942479 34.660599 +vn 0.000000 -0.987402 0.158234 +v 43.797695 -0.160733 33.580299 +vn -0.006231 0.155919 0.987750 +v 39.332287 1.942075 34.667301 +vn 0.058060 0.296160 0.953372 +v 37.408787 4.354896 33.773300 +vn 0.009582 0.351834 0.936013 +v 37.436588 3.153146 34.174702 +vn 0.135522 0.113595 0.984241 +v 37.321789 5.977536 33.363800 +vn -0.027244 0.359000 0.932940 +v 39.115387 4.130676 33.779301 +vn -0.029188 0.368964 0.928985 +v 39.297989 2.932256 34.328098 +vn 0.009194 0.161825 0.986777 +v 38.905090 5.981046 33.093498 +vn -0.000000 -1.000000 -0.000000 +v 28.849527 -0.178969 27.041090 +vn 0.000000 -1.000000 0.000089 +v 32.553169 -0.178969 30.387135 +vn -0.000000 -1.000000 -0.000000 +v 33.981045 -0.178968 25.925684 +vn 0.000000 -1.000000 -0.000000 +v 30.946648 -0.178968 21.820515 +vn 0.000000 -1.000000 -0.000000 +v 33.267059 -0.178967 18.072327 +vn -0.000000 -1.000000 0.000089 +v 38.443218 -0.178969 30.386909 +vn -0.000000 -1.000000 -0.000000 +v 38.443150 -0.178968 25.925787 +vn 0.000000 -1.000000 -0.000000 +v 37.773678 -0.178968 21.686773 +vn 0.000000 -1.000000 -0.000000 +v 40.228092 -0.178967 15.662944 +vn 0.000000 0.000029 1.000000 +v 16.135944 9.517334 33.928799 +vn 0.000000 -0.000000 1.000000 +v 14.128066 12.863961 33.928799 +vn -0.000000 -0.004293 0.999991 +v 20.597933 7.731816 33.928902 +vn 0.000000 -0.000000 1.000000 +v 19.705767 13.087101 33.928799 +vn 0.000000 -0.000000 1.000000 +v 14.351088 18.441437 33.928799 +vn 0.000000 -0.000000 1.000000 +v 13.331276 23.286116 33.928799 +vn 0.000000 -0.000000 1.000000 +v 17.920755 17.102840 33.928799 +vn -0.000000 0.000029 1.000000 +v 22.204262 9.519797 33.928799 +vn 0.000000 -0.004293 0.999991 +v 27.737362 7.731816 33.928902 +vn 0.000000 -0.000000 1.000000 +v 23.870197 14.276870 33.928799 +vn 0.000000 -0.000000 1.000000 +v 18.099297 23.439035 33.928799 +vn 0.000000 -0.000000 1.000000 +v 23.275297 19.333891 33.928799 +vn 0.000000 -0.000000 1.000000 +v 15.243526 28.258099 33.928799 +vn 0.000000 -0.000000 1.000000 +v 14.351226 32.273968 33.928799 +vn 0.000000 -0.000000 1.000000 +v 17.920816 33.612503 33.928799 +vn 0.000000 -0.000000 1.000000 +v 24.167788 22.457380 33.928799 +vn 0.000000 -0.000000 1.000000 +v 20.725677 28.640629 33.928799 +vn 0.000000 -0.000000 1.000000 +v 24.167776 27.365681 33.928799 +vn 0.000000 -0.000000 1.000000 +v 23.498425 34.281784 33.928799 +vn 0.000000 -0.000000 1.000000 +v 27.068203 29.373634 33.928799 +vn 0.023312 0.000029 0.999728 +v 32.199387 9.517330 33.928799 +vn 0.000000 -0.000000 1.000000 +v 28.629789 12.577089 33.928799 +vn 0.023334 -0.004304 0.999718 +v 32.199390 7.731816 33.928902 +vn 0.023312 -0.000000 0.999728 +v 32.199390 15.126691 33.928799 +vn 0.000000 -0.000000 1.000000 +v 28.035042 17.251677 33.928799 +vn 0.023311 -0.000000 0.999728 +v 32.199390 21.118696 33.928799 +vn 0.100771 -0.004282 0.994901 +v 33.986687 7.731026 33.845402 +vn 0.100771 0.000007 0.994910 +v 33.986691 9.574828 33.845398 +vn 0.140100 -0.004090 0.990129 +v 35.601990 7.731057 33.592602 +vn 0.140158 -0.000000 0.990129 +v 35.601990 16.656094 33.592602 +vn 0.146630 -0.003349 0.989186 +v 37.325390 7.729707 33.374302 +vn 0.042530 -0.003114 0.999090 +v 38.909889 7.729455 33.104301 +vn 0.042577 -0.000000 0.999093 +v 38.909782 10.412871 33.104301 +vn 0.146861 -0.000000 0.989157 +v 37.325390 17.546873 33.374298 +vn 0.100764 -0.000000 0.994910 +v 33.986687 18.440685 33.845402 +vn 0.042575 -0.000000 0.999093 +v 38.909790 17.546421 33.104301 +vn 0.000000 -0.000000 1.000000 +v 28.884823 25.070908 33.928799 +vn 0.023311 -0.000000 0.999728 +v 32.199390 26.473022 33.928799 +vn 0.000000 -0.000000 1.000000 +v 28.629738 32.720154 33.928799 +vn 0.023311 -0.000000 0.999728 +v 32.199390 34.759937 33.928799 +vn 0.100764 -0.000000 0.994910 +v 33.986687 28.257139 33.845402 +vn 0.140159 -0.000000 0.990129 +v 35.601990 23.795202 33.592602 +vn 0.140159 -0.000000 0.990129 +v 35.601990 30.042278 33.592602 +vn 0.146861 -0.000000 0.989157 +v 37.325390 26.471001 33.374298 +vn 0.042575 -0.000000 0.999093 +v 38.909790 24.685896 33.104301 +vn 0.100764 -0.000000 0.994910 +v 33.986687 37.181477 33.845402 +vn 0.140159 -0.000000 0.990129 +v 35.601990 37.181461 33.592602 +vn 0.146861 -0.000000 0.989157 +v 37.325390 34.502884 33.374298 +vn 0.042575 -0.000000 0.999093 +v 38.909790 30.932636 33.104301 +vn 0.042575 -0.000000 0.999093 +v 38.909790 37.179771 33.104301 +vn -0.705679 -0.000005 0.708532 +v 1.240551 37.283432 32.764103 +vn -0.510214 0.000001 0.860047 +v 2.271711 38.242390 33.495193 +vn -0.348215 -0.000001 0.937415 +v 3.156789 35.693699 33.927200 +vn -0.348145 0.000021 0.937441 +v 3.156849 37.478500 33.927299 +vn -0.857982 -0.000000 0.513679 +v 0.508760 44.320805 31.740705 +vn -0.705682 0.000003 0.708529 +v 1.240552 46.859283 32.764114 +vn -0.348096 -0.000009 0.937459 +v 3.156725 40.312599 33.927174 +vn -0.510210 -0.000001 0.860050 +v 2.271716 46.853600 33.495209 +vn -0.348187 -0.000020 0.937425 +v 3.156761 42.865273 33.927200 +vn -0.705678 -0.000004 0.708533 +v 1.240549 51.007320 32.764111 +vn -0.510210 0.000003 0.860050 +v 2.271748 49.622746 33.495174 +vn -0.348231 -0.000010 0.937409 +v 3.156759 46.402699 33.927212 +vn -0.348237 -0.000009 0.937406 +v 3.156829 48.187500 33.927311 +vn 0.062896 0.000004 0.998020 +v 4.681129 36.289299 34.074501 +vn 0.058241 0.000008 0.998303 +v 5.812068 36.289799 34.003700 +vn -0.096769 0.000001 0.995307 +v 3.904169 36.883999 34.123798 +vn 0.062815 0.000032 0.998025 +v 4.681038 38.074100 34.074600 +vn 0.058261 0.000010 0.998301 +v 5.812068 38.074600 34.003700 +vn -0.096790 0.000051 0.995305 +v 3.904189 38.668900 34.123600 +vn 0.062811 0.000006 0.998025 +v 4.681108 39.859001 34.074501 +vn 0.058244 0.000026 0.998302 +v 5.812159 39.859402 34.003601 +vn -0.096792 -0.000038 0.995305 +v 3.904179 40.453701 34.123600 +vn 0.062836 -0.000040 0.998024 +v 4.681018 41.643799 34.074600 +vn 0.058284 -0.000028 0.998300 +v 5.812159 41.644299 34.003601 +vn -0.096850 -0.000029 0.995299 +v 3.904079 42.238499 34.123699 +vn 0.024489 0.000007 0.999700 +v 7.347284 39.886520 33.920700 +vn -0.002462 -0.000000 0.999997 +v 8.993737 41.644066 33.928902 +vn 0.000029 -0.000000 1.000000 +v 10.781497 43.428970 33.928799 +vn 0.062849 -0.000035 0.998023 +v 4.680999 43.428600 34.074600 +vn 0.058288 -0.000037 0.998300 +v 5.812068 43.429100 34.003700 +vn -0.096890 -0.000028 0.995295 +v 3.903978 44.042641 34.123814 +vn 0.062825 -0.000017 0.998025 +v 4.680795 45.232208 34.074718 +vn 0.058305 -0.000027 0.998299 +v 5.811978 45.213902 34.003811 +vn 0.024506 -0.000007 0.999700 +v 7.347289 43.429401 33.920700 +vn 0.024537 -0.000007 0.999699 +v 7.347297 45.289730 33.920712 +vn 0.058270 0.000009 0.998301 +v 5.812039 50.476959 34.003807 +vn -0.096894 -0.000024 0.995295 +v 3.903989 47.592999 34.123810 +vn 0.062859 -0.000003 0.998022 +v 4.680919 48.783100 34.074711 +vn -0.096871 0.000027 0.995297 +v 3.904069 49.377800 34.123913 +vn -0.002462 -0.000000 0.999997 +v 8.993737 49.675598 33.928913 +vn 0.000029 -0.000000 1.000000 +v 10.785181 52.607895 33.928810 +vn -0.857982 -0.000000 0.513679 +v 0.508761 54.137215 31.740707 +vn -0.705684 -0.000000 0.708526 +v 1.240550 55.622135 32.764111 +vn -0.510213 0.000002 0.860048 +v 2.271716 52.517315 33.495209 +vn -0.348269 0.000014 0.937394 +v 3.156779 49.972401 33.927212 +vn -0.348208 -0.000009 0.937417 +v 3.156849 51.757099 33.927311 +vn -0.348232 0.000008 0.937409 +v 3.156759 53.687214 33.927212 +vn -0.510210 -0.000004 0.860050 +v 2.271716 61.132294 33.495209 +vn -0.857981 0.000010 0.513681 +v 0.508761 62.978088 31.740707 +vn -0.705680 0.000057 0.708530 +v 1.240541 63.650269 32.764099 +vn -0.348230 -0.000010 0.937409 +v 3.156759 60.637630 33.927212 +vn -0.510046 0.002052 0.860145 +v 2.271790 64.845192 33.495171 +vn -0.348217 0.000007 0.937414 +v 3.156829 62.466099 33.927311 +vn 0.062856 0.000033 0.998023 +v 4.680939 50.567902 34.074612 +vn -0.096823 0.000001 0.995302 +v 3.904059 51.162601 34.123810 +vn 0.062838 -0.000012 0.998024 +v 4.680929 52.352798 34.074612 +vn 0.058297 -0.000009 0.998299 +v 5.811994 54.196007 34.003811 +vn -0.096871 -0.000005 0.995297 +v 3.903990 53.005875 34.123810 +vn 0.024543 -0.000000 0.999699 +v 7.347289 52.353264 33.920712 +vn 0.062823 -0.000019 0.998025 +v 4.681063 54.193699 34.074703 +vn 0.024543 -0.000000 0.999699 +v 7.347289 58.599861 33.920712 +vn -0.002462 -0.000000 0.999997 +v 8.993737 57.707417 33.928913 +vn -0.096876 0.000004 0.995296 +v 3.903986 61.805889 34.123810 +vn 0.062814 0.000013 0.998025 +v 4.680830 61.256741 34.074715 +vn 0.058234 0.000105 0.998303 +v 5.811969 63.060432 34.003811 +vn 0.062860 0.000125 0.998022 +v 4.680929 63.061699 34.074612 +vn -0.096715 0.000087 0.995312 +v 3.904069 63.656399 34.123810 +vn 0.024380 0.026626 0.999348 +v 7.347289 64.847397 33.920712 +vn 0.000029 -0.000000 1.000000 +v 10.789373 59.492233 33.928810 +vn -0.002465 0.026368 0.999649 +v 8.993737 64.847000 33.928913 +vn -0.999765 -0.000000 0.021654 +v -0.165981 41.613281 28.547308 +vn -0.994108 -0.000000 0.108393 +v -0.121788 40.447277 29.781006 +vn -0.949302 -0.000000 0.314366 +v 0.077133 41.007038 30.865505 +vn -0.999993 -0.000000 0.003752 +v -0.178957 38.968742 26.818483 +vn -1.000000 -0.000000 -0.000001 +v -0.178954 40.749237 24.222475 +vn -0.994108 -0.000000 0.108393 +v -0.121788 46.700047 29.781006 +vn -0.999765 0.000000 0.021654 +v -0.165982 48.780998 28.547306 +vn -0.949301 -0.000000 0.314367 +v 0.077132 48.186661 30.865505 +vn -0.999993 0.000000 0.003752 +v -0.178956 46.741245 26.818594 +vn -1.000000 0.000000 -0.000000 +v -0.178954 48.780865 24.222490 +vn -1.000000 -0.000000 -0.000000 +v -0.178954 42.533524 21.016808 +vn -1.000000 0.000000 -0.000000 +v -0.178954 38.964195 15.216111 +vn -1.000000 0.000000 0.000000 +v -0.178954 43.681015 17.383478 +vn -1.000000 -0.000000 0.000000 +v -0.178954 47.888523 18.785822 +vn -0.994108 0.000000 0.108393 +v -0.121788 53.859367 29.781006 +vn -0.999765 -0.000000 0.021654 +v -0.165981 55.049503 28.547308 +vn -0.949301 -0.000000 0.314367 +v 0.077133 54.460785 30.865505 +vn -0.999993 0.000000 0.003752 +v -0.178956 55.162579 26.818577 +vn -1.000000 0.000000 -0.000000 +v -0.178954 57.705330 24.222418 +vn -0.994108 0.000001 0.108391 +v -0.121790 62.721413 29.780993 +vn -0.999767 0.000563 0.021553 +v -0.165982 64.843925 28.547314 +vn -0.949274 0.000557 0.314450 +v 0.077131 64.249718 30.865505 +vn -0.999993 0.000648 0.003753 +v -0.178956 64.844154 26.818613 +vn -1.000000 -0.000000 -0.000000 +v -0.178954 51.330379 20.953104 +vn -1.000000 0.000000 0.000000 +v -0.178954 55.205906 20.035213 +vn -1.000000 0.000000 -0.000000 +v -0.178954 52.796616 16.108526 +vn -1.000000 -0.000000 0.000000 +v -0.178954 58.597282 18.785927 +vn -1.000000 -0.000000 -0.000000 +v -0.178954 61.988358 21.819891 +vn -1.000000 0.000647 -0.000000 +v -0.178954 64.844383 19.232143 +vn -0.566918 -0.767184 0.300054 +v -0.615744 70.372704 34.684212 +vn -0.800479 -0.578912 0.155223 +v -0.761036 70.041702 33.218113 +vn -0.880072 -0.465425 0.094089 +v -1.428130 71.013496 33.912010 +vn -0.754215 -0.572571 0.321439 +v -1.251580 71.052902 35.117310 +vn -0.313788 -0.679425 0.663263 +v -0.385127 70.545097 35.634510 +vn -0.191010 -0.730470 0.655689 +v 0.844337 69.964897 34.849911 +vn -0.557676 -0.631666 0.538512 +v 0.298999 69.027298 33.777111 +vn -0.897416 -0.420328 0.134049 +v -0.640643 69.450897 31.514511 +vn -0.917758 -0.396923 0.013105 +v -1.388020 71.000504 32.177311 +vn -0.816023 -0.484800 0.314762 +v 0.013384 68.650101 32.513313 +vn -0.858168 0.002185 0.513363 +v 0.508717 64.844704 31.740505 +vn -0.705563 -0.023125 0.708269 +v 1.240670 65.435501 32.763813 +vn -0.853524 -0.148318 0.499498 +v 0.518174 66.591797 31.736612 +vn -0.662926 -0.360189 0.656348 +v 1.108640 67.407402 32.900013 +vn -0.498971 -0.157101 0.852260 +v 2.275719 66.592201 33.485912 +vn -0.348318 0.000406 0.937376 +v 3.156779 64.250999 33.927212 +vn -0.341586 -0.033228 0.939263 +v 3.157959 66.019096 33.924713 +vn -0.039936 -0.616667 0.786210 +v 1.254470 70.490303 35.557312 +vn -0.161946 -0.541420 0.825008 +v 2.504809 69.377197 34.680111 +vn -0.314624 -0.506437 0.802829 +v 1.506800 68.639801 34.043110 +vn -0.048056 -0.530482 0.846333 +v 3.066679 70.173103 35.409012 +vn -0.070998 -0.453347 0.888502 +v 3.770789 69.096298 34.788212 +vn -0.242061 -0.302694 0.921836 +v 2.873599 67.803001 34.087711 +vn -0.405392 -0.280964 0.869894 +v -0.767163 71.296700 35.842411 +vn -0.923975 0.155372 0.349470 +v -1.551240 71.614304 35.219810 +vn -0.520115 0.257768 0.814270 +v -0.872808 71.845001 35.855812 +vn -0.033884 0.008698 0.999388 +v 0.132647 71.589699 35.941212 +vn -0.004578 -0.306637 0.951815 +v 0.697894 71.044998 35.864212 +vn -0.350804 0.719136 0.599817 +v -0.726149 72.113503 35.819813 +vn -0.367152 0.924045 0.106492 +v -0.884549 72.106499 35.188511 +vn -0.012090 0.998503 0.053338 +v 0.267444 72.167503 35.182411 +vn -0.002011 0.731026 0.682347 +v 0.257953 72.089600 35.842213 +vn -0.960535 0.274811 0.043017 +v -1.591530 71.621300 33.960510 +vn -0.377406 0.925948 0.013608 +v -1.025450 72.108101 33.954212 +vn -0.029262 0.999562 0.004410 +v 0.138284 72.175102 33.947010 +vn -0.961595 0.274448 -0.003635 +v -1.593340 71.626801 32.170311 +vn -0.373085 0.927797 0.000567 +v -1.028240 72.107597 32.171211 +vn -0.029819 0.999555 0.000134 +v 0.135345 72.176003 32.172211 +vn -0.000800 0.014177 0.999899 +v 1.853710 71.579201 35.945610 +vn -0.002553 -0.314364 0.949299 +v 2.449249 71.043602 35.864410 +vn 0.003191 0.997639 0.068596 +v 1.851460 72.159401 35.187813 +vn 0.001645 0.724904 0.688848 +v 1.852200 72.075302 35.855911 +vn 0.000243 0.012243 0.999925 +v 3.638669 71.578903 35.945610 +vn -0.001449 -0.307796 0.951451 +v 4.233819 71.042297 35.862812 +vn 0.000327 0.997566 0.069727 +v 3.637699 72.158302 35.189812 +vn 0.000191 0.724815 0.688944 +v 3.637169 72.073898 35.857212 +vn 0.000645 0.999979 0.006405 +v 1.849700 72.175301 33.941513 +vn -0.000460 1.000000 0.000613 +v 1.849570 72.177902 32.173813 +vn 0.000053 0.999972 0.007499 +v 3.637659 72.175499 33.942013 +vn -0.000035 1.000000 0.000715 +v 3.641338 72.178001 32.173927 +vn 0.069926 0.016738 0.997412 +v 4.682559 64.850304 34.074013 +vn 0.057804 0.027555 0.997948 +v 5.812338 64.849800 34.003311 +vn -0.084812 0.010415 0.996343 +v 3.903379 65.441200 34.123711 +vn 0.103410 -0.063062 0.992638 +v 4.633318 66.609398 34.021111 +vn 0.059056 -0.014340 0.998152 +v 5.767309 66.607498 33.908310 +vn -0.062019 -0.173660 0.982851 +v 3.907839 67.184097 34.114410 +vn 0.010542 -0.056563 0.998343 +v 7.349429 66.600700 33.827011 +vn 0.103484 -0.458111 0.882851 +v 5.576828 68.699799 34.512512 +vn 0.220535 -0.254824 0.941504 +v 5.465189 67.478699 33.969013 +vn 0.002319 -0.496740 0.867897 +v 4.684888 69.846199 35.256912 +vn 0.041742 -0.525967 0.849480 +v 6.447299 70.166000 35.409912 +vn 0.049408 -0.537491 0.841821 +v 7.633889 69.375801 34.641212 +vn 0.052287 -0.314518 0.947810 +v 6.538259 68.093102 34.049313 +vn -0.002559 -0.075610 0.997134 +v 8.993127 66.598503 33.836411 +vn 0.000029 0.026349 0.999653 +v 10.781497 64.847000 33.928810 +vn 0.000007 -0.075436 0.997151 +v 10.837931 66.598495 33.836411 +vn 0.019859 -0.571759 0.820181 +v 8.402277 70.491898 35.560913 +vn 0.007300 -0.563594 0.826020 +v 9.592527 69.702400 34.792412 +vn -0.010661 -0.310783 0.950421 +v 8.403827 68.404800 34.209213 +vn -0.000040 -0.595295 0.803507 +v 10.184797 70.491997 35.561310 +vn -0.000006 -0.562245 0.826971 +v 11.374197 69.702103 34.792210 +vn -0.000049 -0.307897 0.951420 +v 10.240803 68.405403 34.209721 +vn -0.000062 0.011911 0.999929 +v 5.423479 71.578796 35.945610 +vn 0.000927 -0.308220 0.951315 +v 6.017088 71.042603 35.863213 +vn 0.000025 0.997563 0.069774 +v 5.472355 72.158203 35.189911 +vn 0.000012 0.724810 0.688948 +v 5.472276 72.073799 35.857307 +vn -0.000256 0.012895 0.999917 +v 7.208299 71.578903 35.945610 +vn 0.002789 -0.315762 0.948834 +v 7.802109 71.043900 35.864811 +vn 0.000008 0.999971 0.007630 +v 5.506933 72.175499 33.941971 +vn -0.000000 1.000000 0.000708 +v 9.502140 72.178001 32.173801 +vn -0.000098 0.013645 0.999907 +v 8.993137 71.579002 35.945713 +vn -0.000092 -0.320530 0.947238 +v 9.587817 71.044296 35.865311 +vn -0.000017 0.724898 0.688856 +v 8.991647 72.073799 35.857311 +vn -0.000019 0.013815 0.999905 +v 10.777997 71.579002 35.945713 +vn -0.000006 -0.320448 0.947266 +v 11.372498 71.044502 35.865410 +vn 0.000000 0.997563 0.069773 +v 14.346731 72.158203 35.189911 +vn -0.000022 0.724961 0.688790 +v 12.508183 72.073799 35.857311 +vn -0.000000 0.999971 0.007637 +v 14.346702 72.175499 33.942013 +vn -0.994032 0.001729 0.109070 +v -0.121744 65.440598 29.781305 +vn -0.993738 -0.103135 0.042986 +v -0.163655 66.612099 28.547512 +vn -0.979999 -0.162374 0.115046 +v -0.115888 67.189301 29.776611 +vn -0.950234 -0.032370 0.309849 +v 0.079816 66.018898 30.862711 +vn -0.942035 -0.322986 0.090826 +v -0.753652 69.178596 30.083912 +vn -0.936867 -0.349143 0.019482 +v -1.263930 70.676003 30.360712 +vn -0.931543 -0.282093 0.229458 +v -0.057936 67.807404 31.142511 +vn -0.963158 -0.266057 0.039240 +v -0.648080 68.567398 28.545111 +vn -0.952038 -0.305933 0.005318 +v -1.140880 70.349297 28.571512 +vn -0.992698 -0.120565 0.003731 +v -0.176669 66.612144 26.817959 +vn -0.967732 -0.251955 0.003673 +v -0.661984 68.570312 26.818438 +vn -0.954722 -0.297491 0.002227 +v -1.148210 70.351700 26.816711 +vn -0.954865 -0.297040 0.000007 +v -1.148198 70.351593 24.445271 +vn -0.964966 0.262369 -0.001714 +v -1.593150 71.624496 30.384312 +vn -0.373666 0.927563 -0.000203 +v -1.028360 72.107399 30.386412 +vn -0.029969 0.999551 -0.000014 +v 0.135128 72.175903 30.387312 +vn -0.966358 0.257199 -0.001101 +v -1.592860 71.622200 28.599512 +vn -0.374939 0.927050 -0.000218 +v -1.028450 72.107498 28.601612 +vn -0.029955 0.999551 0.000029 +v 0.135032 72.176003 28.602512 +vn -0.966133 0.258044 0.000513 +v -1.592690 71.621399 26.815411 +vn -0.375433 0.926850 -0.000085 +v -1.028370 72.107399 26.816711 +vn -0.029999 0.999550 -0.000030 +v 0.135020 72.176003 26.817612 +vn -0.966009 0.258508 -0.000006 +v -1.592670 71.621399 25.030611 +vn -0.375503 0.926821 -0.000006 +v -1.028450 72.107498 25.031912 +vn -0.029956 0.999551 -0.000010 +v 0.135103 72.175903 25.032812 +vn -0.000604 1.000000 -0.000007 +v 1.849550 72.177902 30.388912 +vn -0.000589 1.000000 0.000007 +v 1.849550 72.177902 28.604111 +vn -0.000028 1.000000 0.000000 +v 3.642237 72.178001 28.306587 +vn -0.000604 1.000000 -0.000007 +v 1.849342 72.177902 25.056484 +vn -0.992710 -0.120530 0.000000 +v -0.176666 66.612099 18.785851 +vn -0.967737 -0.251961 0.000000 +v -0.662031 68.570503 21.462677 +vn -0.967737 -0.251960 0.000000 +v -0.662031 68.570503 14.323171 +vn -0.954859 -0.297057 -0.000000 +v -1.148200 70.351601 14.322832 +vn -0.965971 0.258651 0.000044 +v -1.592750 71.621498 23.245811 +vn -0.375402 0.926862 0.000028 +v -1.028370 72.107399 23.247112 +vn -0.029968 0.999551 0.000012 +v 0.135114 72.175903 23.248011 +vn -0.965993 0.258566 0.000001 +v -1.592771 71.621498 19.307690 +vn -0.375453 0.926841 0.000022 +v -1.028450 72.107498 21.462212 +vn -0.029956 0.999551 0.000028 +v 0.135027 72.176003 21.451471 +vn -0.375461 0.926838 0.000000 +v -1.028461 72.107498 16.223776 +vn -0.029955 0.999551 0.000000 +v 0.135019 72.176003 15.216313 +vn -0.000589 1.000000 0.000007 +v 1.849723 72.177902 21.486279 +vn -0.000028 1.000000 0.000000 +v 3.637799 72.178001 20.572306 +vn -0.000582 1.000000 0.000000 +v 1.849548 72.177902 17.002707 +vn 0.000000 1.000000 0.000000 +v 6.761294 72.178001 25.480728 +vn 0.000000 1.000000 0.000000 +v 11.768678 72.178001 28.405857 +vn 0.000000 1.000000 0.000000 +v 11.570382 72.178001 23.844564 +vn 0.000000 1.000000 0.000000 +v 6.984422 72.178001 19.456839 +vn -0.000006 1.000000 0.000006 +v 14.222877 72.178001 16.217394 +vn 0.000000 -0.000000 1.000000 +v 16.135731 37.181999 33.928799 +vn 0.000000 -0.000000 1.000000 +v 15.689644 40.751724 33.928799 +vn 0.000000 -0.000000 1.000000 +v 14.797158 44.321297 33.928810 +vn 0.000000 -0.000000 1.000000 +v 14.152903 49.378490 33.928810 +vn 0.000000 -0.000000 1.000000 +v 19.348537 45.749123 33.928810 +vn 0.000000 -0.000000 1.000000 +v 20.725456 38.584511 33.928799 +vn 0.000000 -0.000000 1.000000 +v 24.167540 40.751789 33.928799 +vn 0.000000 -0.000000 1.000000 +v 22.382706 48.783409 33.928810 +vn 0.000000 -0.000000 1.000000 +v 25.729523 47.668030 33.928810 +vn 0.000000 -0.000000 1.000000 +v 15.243742 55.030548 33.928810 +vn 0.000000 -0.000000 1.000000 +v 19.110573 52.551270 33.928810 +vn 0.000000 -0.000000 1.000000 +v 16.804983 58.376701 33.928810 +vn -0.000000 0.026350 0.999653 +v 14.053271 64.847000 33.928810 +vn 0.000000 -0.000000 1.000000 +v 18.813156 62.169476 33.928810 +vn 0.000000 -0.000000 1.000000 +v 21.490200 57.707508 33.928810 +vn 0.000000 -0.000000 1.000000 +v 23.989420 53.781197 33.928810 +vn 0.000000 -0.000000 1.000000 +v 27.737127 56.815037 33.928810 +vn 0.000000 -0.000000 1.000000 +v 25.853249 61.078884 33.928810 +vn 0.000000 -0.000000 1.000000 +v 28.034706 38.867798 33.928799 +vn 0.023311 -0.000000 0.999728 +v 32.199390 40.752029 33.928799 +vn 0.000000 -0.000000 1.000000 +v 28.272615 44.142834 33.928810 +vn 0.023311 -0.000000 0.999728 +v 32.199390 45.808819 33.928810 +vn 0.023311 -0.000000 0.999728 +v 32.199390 49.675976 33.928810 +vn 0.100764 -0.000000 0.994910 +v 33.986687 44.320793 33.845413 +vn 0.140159 -0.000000 0.990129 +v 35.601990 46.105865 33.592613 +vn 0.146861 -0.000000 0.989157 +v 37.325390 42.534374 33.374298 +vn 0.042575 -0.000000 0.999093 +v 38.909790 44.318996 33.104313 +vn 0.100764 -0.000000 0.994910 +v 33.986687 50.567348 33.845413 +vn 0.146860 -0.000000 0.989157 +v 37.325390 48.781155 33.374310 +vn 0.042575 -0.000000 0.999093 +v 38.909790 53.243198 33.104313 +vn 0.000000 -0.000000 1.000000 +v 27.737457 52.352875 33.928810 +vn 0.023311 -0.000000 0.999728 +v 32.199390 54.435608 33.928810 +vn 0.000000 0.026350 0.999653 +v 28.119753 64.847000 33.928810 +vn 0.023312 0.000000 0.999728 +v 32.199390 60.385071 33.928810 +vn 0.020430 0.023483 0.999515 +v 32.199390 64.847000 33.928810 +vn 0.140159 -0.000000 0.990129 +v 35.601990 55.030083 33.592613 +vn 0.100764 -0.000000 0.994910 +v 33.986687 56.814869 33.845413 +vn 0.146861 -0.000000 0.989157 +v 37.325390 55.920792 33.374310 +vn 0.140142 0.002528 0.990128 +v 35.602013 64.848297 33.592613 +vn 0.097649 0.011535 0.995154 +v 33.986706 64.846169 33.845409 +vn 0.042578 -0.000001 0.999093 +v 38.909786 62.264824 33.104313 +vn 0.146834 0.002451 0.989158 +v 37.325455 64.846710 33.374310 +vn -0.000004 -0.595304 0.803501 +v 11.969797 70.491997 35.561211 +vn -0.000008 -0.562225 0.826984 +v 13.158998 69.702003 34.792210 +vn 0.000004 -0.595268 0.803528 +v 13.754498 70.492104 35.561310 +vn 0.000009 -0.562231 0.826981 +v 16.084673 69.701965 34.792198 +vn 0.000001 -0.307881 0.951425 +v 17.985592 68.405319 34.209713 +vn -0.000000 -0.075446 0.997150 +v 18.812622 66.598503 33.836411 +vn 0.000000 0.026350 0.999653 +v 20.597979 64.847000 33.928810 +vn -0.000007 -0.595247 0.803543 +v 15.539397 70.491898 35.561211 +vn 0.000003 -0.595266 0.803529 +v 17.324095 70.492104 35.561310 +vn -0.000006 -0.562232 0.826980 +v 18.513494 69.702103 34.792210 +vn 0.000013 0.013867 0.999904 +v 13.558050 71.579086 35.945831 +vn 0.000001 -0.320546 0.947233 +v 13.157397 71.044403 35.865410 +vn 0.000007 -0.320496 0.947250 +v 15.834713 71.044357 35.865276 +vn -0.000020 0.724943 0.688809 +v 16.989532 72.073799 35.857300 +vn 0.000000 1.000000 0.000708 +v 18.426476 72.178001 32.173809 +vn 0.000011 0.013716 0.999906 +v 16.132494 71.579002 35.945713 +vn -0.000007 0.013884 0.999904 +v 18.706701 71.579086 35.945831 +vn -0.000006 -0.320546 0.947233 +v 18.511894 71.044403 35.865410 +vn -0.000007 -0.595314 0.803493 +v 19.109095 70.491997 35.561211 +vn -0.000016 -0.562237 0.826976 +v 20.298294 69.702003 34.792210 +vn -0.000007 -0.595242 0.803547 +v 20.893795 70.491997 35.561310 +vn 0.000014 -0.562246 0.826971 +v 23.826767 69.702003 34.792213 +vn 0.000004 -0.307884 0.951424 +v 24.105133 68.405296 34.209709 +vn 0.000000 -0.075446 0.997150 +v 25.059662 66.598503 33.836411 +vn -0.000005 -0.595258 0.803535 +v 24.022535 70.491928 35.561245 +vn -0.000004 -0.562261 0.826960 +v 25.652794 69.702103 34.792210 +vn 0.000008 -0.320448 0.947266 +v 20.296694 71.044502 35.865410 +vn -0.000000 0.997563 0.069772 +v 24.163248 72.158203 35.189911 +vn 0.000014 0.724910 0.688844 +v 21.432360 72.073799 35.857311 +vn 0.000026 0.013793 0.999905 +v 21.515633 71.579002 35.945709 +vn -0.000002 -0.320442 0.947268 +v 23.186752 71.044411 35.865299 +vn 0.000000 0.999971 0.007637 +v 22.378357 72.175499 33.942013 +vn 0.000000 0.724904 0.688850 +v 25.947557 72.073799 35.857311 +vn -0.000015 0.013824 0.999904 +v 25.123478 71.578995 35.945713 +vn -0.000006 -0.320436 0.947270 +v 25.651194 71.044403 35.865410 +vn -0.000000 1.000000 0.000708 +v 25.947922 72.178001 32.173798 +vn 0.000000 1.000000 0.000000 +v 17.470209 72.178001 27.265360 +vn 0.000000 1.000000 0.000000 +v 15.536742 72.178001 21.663130 +vn -0.000013 1.000000 0.000042 +v 16.128113 72.178001 16.113493 +vn -0.000007 1.000000 0.000007 +v 17.932680 72.178001 17.930813 +vn 0.000000 1.000000 0.000000 +v 21.486191 72.178001 29.496471 +vn 0.000000 1.000000 0.000000 +v 21.486107 72.178001 25.034439 +vn 0.000000 1.000000 0.000000 +v 26.075661 72.178001 26.309355 +vn -0.000007 1.000000 0.000007 +v 23.197763 72.178001 19.718718 +vn -0.000014 1.000000 0.000042 +v 19.706142 72.178001 17.895037 +vn -0.000006 1.000000 0.000006 +v 26.733994 72.178001 21.503418 +vn -0.000035 1.000000 0.000090 +v 23.270895 72.178001 17.895111 +vn -0.000014 1.000000 0.000042 +v 25.055794 72.178001 19.679911 +vn -0.000048 1.000000 0.000104 +v 25.055794 72.178101 17.895111 +vn 0.009765 -0.077864 0.996916 +v 32.198788 66.598503 33.836411 +vn -0.000008 -0.595319 0.803490 +v 26.248394 70.491898 35.561211 +vn -0.000008 -0.562245 0.826971 +v 27.491682 69.701996 34.792210 +vn -0.000004 -0.307881 0.951425 +v 26.609303 68.405296 34.209709 +vn 0.000014 -0.595262 0.803532 +v 28.726572 70.491936 35.561245 +vn 0.000011 -0.562245 0.826971 +v 31.007395 69.702003 34.792210 +vn -0.000005 -0.595259 0.803534 +v 31.602795 70.491997 35.561310 +vn 0.000124 -0.562338 0.826908 +v 32.792088 69.702103 34.792210 +vn 0.000089 -0.307904 0.951418 +v 31.603994 68.405296 34.209713 +vn 0.000004 -0.320434 0.947271 +v 27.435995 71.044403 35.865410 +vn 0.000016 0.013801 0.999905 +v 28.693182 71.579002 35.945709 +vn -0.000003 -0.320438 0.947270 +v 30.113409 71.044418 35.865299 +vn -0.000000 0.999971 0.007637 +v 30.410139 72.175499 33.942013 +vn -0.000000 1.000000 0.000708 +v 31.302650 72.178001 32.173813 +vn -0.000000 0.997563 0.069772 +v 33.979828 72.158203 35.189911 +vn 0.000000 0.724905 0.688849 +v 33.086826 72.073799 35.857311 +vn -0.000015 0.013826 0.999904 +v 32.195889 71.579002 35.945713 +vn -0.000002 -0.320429 0.947273 +v 32.790489 71.044403 35.865410 +vn 0.077049 -0.092146 0.992760 +v 33.985489 66.596901 33.793812 +vn 0.121017 -0.122603 0.985050 +v 35.602089 66.598999 33.583611 +vn 0.000055 -0.595335 0.803478 +v 33.387688 70.491898 35.561211 +vn 0.026141 -0.583328 0.811816 +v 34.579288 69.700500 34.790611 +vn 0.027368 -0.317692 0.947799 +v 33.389488 68.404198 34.208912 +vn 0.007354 -0.604057 0.796907 +v 35.174088 70.491600 35.560410 +vn 0.031438 -0.610897 0.791085 +v 36.278790 69.701599 34.705612 +vn 0.069461 -0.349771 0.934257 +v 35.093090 68.406601 34.083313 +vn 0.143078 -0.144756 0.979068 +v 37.326488 66.598099 33.365410 +vn 0.042714 0.002583 0.999084 +v 38.909889 64.844597 33.104313 +vn 0.037119 -0.160677 0.986309 +v 38.912289 66.598000 33.095413 +vn 0.005425 -0.623548 0.781767 +v 36.958889 70.490303 35.558411 +vn 0.034040 -0.651218 0.758127 +v 38.035889 69.701401 34.637211 +vn 0.086563 -0.388022 0.917576 +v 36.847088 68.401398 33.969910 +vn 0.003688 -0.636815 0.771008 +v 38.742989 70.489502 35.557110 +vn -0.012347 -0.652647 0.757562 +v 39.803288 69.700302 34.586113 +vn 0.053201 -0.428043 0.902191 +v 38.448689 68.405800 33.752010 +vn 0.000018 0.013791 0.999905 +v 35.698689 71.578995 35.945713 +vn 0.000103 -0.320713 0.947176 +v 34.575287 71.044403 35.865410 +vn 0.000197 -0.321425 0.946935 +v 36.360287 71.044403 35.865311 +vn -0.000000 0.999971 0.007637 +v 39.334240 72.175499 33.942013 +vn 0.000000 1.000000 0.000708 +v 38.441990 72.178001 32.173813 +vn -0.000021 0.013808 0.999905 +v 39.306454 71.579002 35.945709 +vn 0.000118 -0.322078 0.946713 +v 38.145088 71.044403 35.865311 +vn -0.000033 0.724971 0.688780 +v 41.020050 72.073799 35.857311 +vn -0.000011 -0.322273 0.946647 +v 39.929787 71.044502 35.865410 +vn 0.000001 0.997563 0.069766 +v 43.075150 72.158203 35.189919 +vn 0.000000 1.000000 0.000000 +v 30.920019 72.178001 29.623827 +vn 0.000000 1.000000 0.000000 +v 31.302635 72.178001 26.373007 +vn -0.000014 1.000000 0.000042 +v 28.634924 72.178001 21.466272 +vn -0.000035 1.000000 0.000090 +v 26.840593 72.178001 19.679911 +vn -0.000083 1.000000 0.000056 +v 26.840593 72.178299 17.895111 +vn -0.000048 1.000000 0.000104 +v 28.625395 72.178101 19.679911 +vn -0.000007 1.000000 0.000063 +v 28.625395 72.178497 17.895111 +vn -0.000007 1.000000 0.000007 +v 32.195087 72.178001 23.249611 +vn -0.000035 1.000000 0.000090 +v 32.195087 72.178001 21.464811 +vn -0.000042 1.000000 0.000070 +v 30.410194 72.178299 19.679911 +vn 0.000014 1.000000 0.000042 +v 30.410294 72.178299 17.895111 +vn -0.000042 1.000000 0.000070 +v 32.195087 72.178299 19.679911 +vn 0.000014 1.000000 0.000042 +v 32.195087 72.178299 17.895111 +vn 0.000000 1.000000 0.000000 +v 37.549183 72.178001 29.496237 +vn -0.000007 1.000000 0.000007 +v 35.745476 72.178001 25.036118 +vn -0.000014 1.000000 0.000042 +v 37.546104 72.178001 25.037592 +vn -0.000007 1.000000 0.000007 +v 39.334389 72.178001 26.819212 +vn -0.000035 1.000000 0.000090 +v 39.334389 72.178001 25.034412 +vn -0.000014 1.000000 0.000042 +v 33.979889 72.178001 23.249611 +vn -0.000049 1.000000 0.000104 +v 33.979889 72.178101 21.464811 +vn -0.000035 1.000000 0.000090 +v 35.764690 72.178001 23.249611 +vn -0.000083 1.000000 0.000056 +v 35.764690 72.178299 21.464811 +vn -0.000007 1.000000 0.000063 +v 33.979889 72.178497 19.679911 +vn -0.000014 1.000000 -0.000042 +v 33.979889 72.178299 17.895111 +vn 0.000014 1.000000 0.000042 +v 35.764690 72.178299 19.679911 +vn -0.000014 1.000000 -0.000042 +v 35.764690 72.178299 17.895111 +vn -0.000049 1.000000 0.000104 +v 37.549587 72.178101 23.249611 +vn -0.000007 1.000000 0.000063 +v 37.549587 72.178497 21.464811 +vn -0.000083 1.000000 0.000056 +v 39.334389 72.178299 23.249611 +vn 0.000014 1.000000 0.000042 +v 39.334389 72.178299 21.464712 +vn 0.000000 1.000000 0.000000 +v 37.549587 72.178299 19.679911 +vn 0.000007 1.000000 -0.000062 +v 37.549587 72.178497 17.895111 +vn -0.000014 1.000000 -0.000042 +v 39.334389 72.178299 19.679911 +vn 0.000083 1.000000 -0.000055 +v 39.334389 72.178299 17.895111 +vn -0.791663 -0.610958 0.000000 +v -0.073481 0.107978 13.729200 +vn -0.999992 -0.003895 -0.000006 +v -0.178782 2.379085 10.899275 +vn -0.791265 -0.611473 -0.000526 +v -0.073411 0.107880 11.944300 +vn -0.998251 -0.059120 -0.000017 +v -0.167901 0.958139 12.539200 +vn -0.192232 -0.981349 -0.000307 +v 0.603994 -0.152346 12.539500 +vn -0.838110 -0.540696 0.072243 +v -0.074162 0.110833 10.173100 +vn -0.998260 -0.058959 0.000147 +v -0.167831 0.958041 10.754300 +vn -0.202111 -0.977333 0.063013 +v 0.606305 -0.150844 10.768100 +vn -1.000000 0.000000 0.000000 +v -0.178954 7.474898 10.741087 +vn -1.000000 -0.000034 -0.000490 +v -0.178954 4.161560 7.184037 +vn -0.010444 -0.999945 -0.000119 +v 1.865760 -0.177695 12.539400 +vn 0.002437 -0.999266 0.038231 +v 1.868120 -0.177161 10.760100 +vn -0.000766 -0.999999 -0.000916 +v 3.638967 -0.178967 10.754830 +vn -0.663096 -0.674048 0.325519 +v -0.026919 -3.051461 6.223080 +vn -0.708415 -0.705689 -0.012299 +v -0.056802 -3.075971 4.813710 +vn -0.996745 -0.077735 0.021339 +v -0.151559 -2.419951 5.381790 +vn -0.926834 -0.191294 0.323087 +v -0.081677 -2.125881 6.489600 +vn -0.276481 -0.585528 0.762047 +v 0.601188 -2.471761 7.042960 +vn -0.034464 -0.881992 0.470003 +v 0.926424 -3.095621 6.506060 +vn -0.063153 -0.997615 0.027847 +v 0.603694 -3.156311 5.336850 +vn -0.999872 -0.014256 0.007181 +v -0.170748 -1.183991 5.378120 +vn -0.990144 -0.096367 0.101622 +v -0.127819 -0.726995 6.844490 +vn -0.569956 -0.566067 0.595582 +v 0.259193 -1.451901 7.697200 +vn -0.705830 -0.701209 -0.100548 +v 0.043038 -3.079171 3.386669 +vn -0.993328 -0.076741 -0.086085 +v -0.111468 -2.418771 3.969660 +vn -0.070543 -0.997429 -0.012599 +v 0.667814 -3.160591 3.660159 +vn -0.995814 -0.007782 -0.091069 +v -0.129384 -1.177860 3.971730 +vn 0.282362 -0.570111 0.771522 +v 1.641250 -2.296651 7.084970 +vn 0.208359 -0.853214 0.478135 +v 1.772850 -3.106201 6.371270 +vn 0.028217 -0.999191 0.028657 +v 1.517200 -3.161701 5.162500 +vn 0.164772 -0.691362 0.703469 +v 1.274750 -1.294701 7.760860 +vn 0.006613 -0.999953 0.007140 +v 1.748340 -3.172961 3.429589 +vn 0.486569 -0.735573 0.471363 +v 2.193019 -3.072921 6.228960 +vn 0.685994 -0.587015 0.429914 +v 2.620899 -2.090671 6.409920 +vn 0.776135 -0.554738 0.299800 +v 3.008569 -2.098411 5.024140 +vn 0.470933 -0.855835 0.213936 +v 2.490989 -3.098251 4.825250 +vn 0.426495 -0.816885 0.388330 +v 3.263699 -1.022151 7.146860 +vn 0.589199 -0.768613 0.249156 +v 3.825089 -1.099521 5.421390 +vn 0.630960 -0.487863 0.603224 +v 3.700209 -2.085221 3.855430 +vn 0.301520 -0.877425 0.373111 +v 3.689699 -3.120721 3.129029 +vn 0.611818 -0.650785 0.449619 +v 3.802589 -1.563601 4.221850 +vn -0.919858 -0.340547 0.194651 +v -0.083097 -0.268359 8.326560 +vn -0.998992 -0.044339 0.006993 +v -0.168538 0.958388 8.974630 +vn -0.233786 -0.890616 0.390061 +v 0.600973 -0.529011 8.941150 +vn -0.999993 -0.003700 0.000073 +v -0.178782 2.379169 8.969280 +vn -0.999659 -0.024028 0.010202 +v -0.173135 0.772158 7.154140 +vn -0.999997 -0.002196 -0.000033 +v -0.178853 2.377729 7.184210 +vn -1.000000 0.000000 -0.000494 +v -0.178955 9.769573 7.184309 +vn -0.999932 -0.005469 -0.010240 +v -0.176291 0.586980 5.406160 +vn -0.999881 -0.000478 -0.015388 +v -0.177219 2.375749 5.441820 +vn -0.995695 -0.000759 -0.092686 +v -0.131964 0.590263 3.971470 +vn -0.995620 0.000151 -0.093490 +v -0.131943 2.375109 3.971070 +vn -0.999874 -0.000012 -0.015871 +v -0.177235 4.293323 5.442211 +vn -0.995595 -0.000298 -0.093755 +v -0.131944 4.159890 3.971051 +vn -0.995728 -0.000371 -0.092330 +v -0.131987 5.944710 3.971211 +vn 0.120990 -0.938943 0.322098 +v 1.873420 -0.361922 8.970870 +vn 0.089271 -0.983821 0.155329 +v 3.648399 -0.174845 8.987270 +vn 0.000000 -1.000000 -0.000000 +v 7.861952 -0.178967 14.993587 +vn -0.001133 -0.999999 -0.001056 +v 5.419919 -0.178966 8.973572 +vn -0.000000 -1.000000 -0.000000 +v 12.206176 -0.178967 12.360913 +vn 0.137066 -0.989598 0.043684 +v 5.430979 -0.175378 7.197370 +vn -0.000169 -1.000000 -0.000508 +v 8.993334 -0.178966 7.185000 +vn -0.001122 -0.999997 -0.002007 +v 7.208519 -0.178966 7.184890 +vn 0.197935 -0.951483 0.235587 +v 5.446319 -0.160703 5.445640 +vn 0.288035 -0.761126 0.581140 +v 4.873319 -1.092420 3.819130 +vn 0.020010 -0.973495 0.227831 +v 7.214839 -0.171576 5.426720 +vn 0.074211 -0.799136 0.596551 +v 6.619908 -1.101360 3.818940 +vn -0.000706 -0.999999 -0.000761 +v 10.771108 -0.178966 5.406872 +vn 0.049145 -0.989777 0.133890 +v 8.999817 -0.176563 5.409980 +vn 0.337633 -0.833253 0.437828 +v 8.635717 -1.019400 3.307250 +vn 0.138095 -0.987274 0.078864 +v 10.788797 -0.176188 3.627120 +vn -0.702300 -0.645476 -0.300224 +v 0.169126 -3.054440 2.571879 +vn -0.418739 -0.845553 -0.331205 +v 0.782264 -3.105020 2.022019 +vn -0.818404 -0.193308 -0.541153 +v 0.463002 -2.432550 1.885820 +vn -0.962863 -0.042761 -0.266582 +v 0.072285 -2.425361 2.762860 +vn -0.864993 -0.013331 -0.501607 +v 0.441454 -1.186800 1.846040 +vn -0.962482 -0.006314 -0.271273 +v 0.057188 -1.180410 2.762130 +vn -0.033325 -0.998853 -0.034387 +v 1.948230 -3.175480 1.926340 +vn -0.497456 -0.682011 -0.536096 +v 1.312510 -3.073730 0.950185 +vn -0.233536 -0.832653 -0.502146 +v 2.257919 -3.103410 0.645214 +vn -0.454500 -0.185943 -0.871123 +v 1.888970 -2.435680 0.456568 +vn -0.739767 -0.130209 -0.660144 +v 1.065250 -2.439520 1.092400 +vn -0.502208 -0.014588 -0.864624 +v 1.841180 -1.191870 0.444727 +vn -0.707403 -0.018028 -0.706580 +v 1.042350 -1.192620 1.052620 +vn 0.006772 -0.999944 0.008112 +v 3.520939 -3.172730 1.658230 +vn -0.016378 -0.996743 -0.078963 +v 3.682779 -3.162220 0.655841 +vn -0.234971 -0.635004 -0.735906 +v 3.075979 -3.052260 0.026702 +vn -0.030945 -0.724843 -0.688218 +v 3.845809 -3.075470 0.008257 +vn -0.071802 -0.079575 -0.994240 +v 3.987699 -2.421590 -0.115002 +vn -0.325577 -0.102200 -0.939976 +v 2.816859 -2.431130 0.067678 +vn -0.091126 -0.007259 -0.995813 +v 3.983299 -1.184630 -0.130471 +vn -0.272705 -0.010180 -0.962044 +v 2.767079 -1.192570 0.055045 +vn -0.866340 -0.000133 -0.499454 +v 0.442477 0.589836 1.842510 +vn -0.962077 -0.000099 -0.272777 +v 0.057364 0.589165 2.758280 +vn -0.865920 0.000328 -0.500183 +v 0.444774 2.374640 1.839040 +vn -0.961871 0.000529 -0.273503 +v 0.059566 2.374019 2.754900 +vn -0.865384 -0.000154 -0.501109 +v 0.447076 4.159530 1.835561 +vn -0.961616 -0.000496 -0.274397 +v 0.061764 4.158880 2.751591 +vn -0.865782 -0.000039 -0.500422 +v 0.442534 5.944620 1.842361 +vn -0.961896 -0.001025 -0.273414 +v 0.057273 5.944170 2.758401 +vn -0.500137 -0.000092 -0.865946 +v 1.838410 0.589520 0.446094 +vn -0.707689 -0.000319 -0.706524 +v 1.041220 0.588854 1.051310 +vn -0.498836 -0.000271 -0.866696 +v 1.841880 2.374620 0.443787 +vn -0.706765 0.000065 -0.707448 +v 1.046810 2.373970 1.045730 +vn -0.499114 -0.000150 -0.866536 +v 1.840290 4.159490 0.444859 +vn -0.705611 -0.000145 -0.708599 +v 1.054030 4.159020 1.039091 +vn -0.498150 -0.000209 -0.867091 +v 1.845460 5.944630 0.441404 +vn -0.705261 0.000080 -0.708948 +v 1.056160 5.943920 1.035841 +vn -0.091738 -0.000172 -0.995783 +v 3.984289 0.588874 -0.131964 +vn -0.272316 0.000417 -0.962208 +v 2.765149 0.587867 0.056567 +vn -0.092499 0.000143 -0.995713 +v 3.984209 2.373740 -0.131948 +vn -0.272247 -0.000003 -0.962227 +v 2.761849 2.372710 0.058775 +vn -0.092079 -0.000148 -0.995752 +v 3.984239 4.158540 -0.131956 +vn -0.271750 -0.000529 -0.962368 +v 2.765189 4.157940 0.056557 +vn -0.091112 -0.000224 -0.995841 +v 3.984329 5.943360 -0.131981 +vn -0.270865 -0.000502 -0.962617 +v 2.770249 5.943020 0.053237 +vn 0.227677 -0.547547 0.805206 +v 5.321739 -2.095881 2.822070 +vn 0.082070 -0.862722 0.498974 +v 5.906438 -3.100060 2.188749 +vn 0.010567 -0.999625 0.025254 +v 5.307778 -3.168230 1.434120 +vn -0.000905 -0.997743 -0.067142 +v 5.418249 -3.158800 0.593960 +vn 0.124006 -0.601338 0.789313 +v 7.125449 -2.098441 2.767990 +vn 0.102545 -0.834036 0.542097 +v 7.504919 -3.095360 2.137959 +vn 0.033773 -0.998910 0.032227 +v 7.008169 -3.160090 1.390860 +vn 0.020328 -0.998490 -0.051038 +v 6.910809 -3.158590 0.591057 +vn -0.016112 -0.706541 -0.707489 +v 5.440079 -3.077430 -0.064120 +vn -0.016293 -0.079114 -0.996732 +v 5.460578 -2.420140 -0.154797 +vn -0.014640 -0.008510 -0.999857 +v 5.463259 -1.179150 -0.175106 +vn 0.006836 -0.714637 -0.699462 +v 6.909569 -3.083360 -0.055385 +vn 0.023211 -0.082205 -0.996345 +v 7.001328 -2.421770 -0.153101 +vn 0.014944 -0.015232 -0.999772 +v 7.101649 -1.182330 -0.174784 +vn 0.555307 -0.702671 0.444845 +v 8.129697 -3.071330 2.056189 +vn 0.536177 -0.531636 0.655650 +v 8.124457 -2.275780 2.370980 +vn 0.833180 -0.544170 0.098439 +v 8.427897 -2.474590 1.390400 +vn 0.490881 -0.870217 -0.041936 +v 8.024987 -3.082570 1.381250 +vn 0.639934 -0.739325 0.209483 +v 9.337227 -1.298940 1.630370 +vn 0.784950 -0.575619 -0.229165 +v 8.411687 -2.455540 0.573835 +vn 0.485843 -0.867280 -0.108547 +v 7.912659 -3.094020 0.593425 +vn 0.641274 -0.726117 -0.248035 +v 9.231847 -1.451410 0.581062 +vn 0.501029 -0.328213 -0.800778 +v 7.910288 -2.754890 -0.073065 +vn 0.438508 -0.677819 -0.590146 +v 7.801848 -3.096070 -0.032170 +vn 0.317861 -0.336639 -0.886363 +v 8.787777 -1.280720 -0.108481 +vn -0.015634 -0.000591 -0.999878 +v 5.463967 0.590209 -0.177448 +vn 0.000196 -0.001105 -0.999999 +v 7.207939 0.589460 -0.178614 +vn -0.000245 -0.000003 -1.000000 +v 7.208686 2.835376 -0.178636 +vn -0.015716 0.000038 -0.999876 +v 5.463752 9.443228 -0.177448 +vn 0.307220 -0.944891 0.113125 +v 10.699697 -0.362442 1.853680 +vn 0.391884 -0.910202 -0.134010 +v 10.603897 -0.528337 0.588377 +vn 0.006937 -0.015699 -0.999853 +v 8.885717 0.588506 -0.176859 +vn 0.000199 -0.000312 -1.000000 +v 8.994185 2.382563 -0.178299 +vn 0.208976 -0.524975 -0.825064 +v 10.586497 -0.266230 -0.086347 +vn 0.011480 -0.039036 -0.999172 +v 10.677197 0.771371 -0.171621 +vn 0.000524 -0.001715 -0.999998 +v 10.777797 2.375050 -0.178259 +vn 0.000095 -0.000007 -1.000000 +v 10.778029 4.440715 -0.178302 +vn -1.000000 0.000000 0.000000 +v -0.178954 13.753710 12.315866 +vn -1.000000 0.000000 0.000000 +v -0.178954 17.546410 10.739330 +vn -1.000000 -0.000000 0.000000 +v -0.178954 22.008394 12.538850 +vn -1.000000 0.000000 -0.000494 +v -0.178955 14.869164 7.184211 +vn -0.999874 0.000000 -0.015860 +v -0.177234 12.191751 5.442101 +vn -0.995855 0.000002 -0.090951 +v -0.132019 7.790584 3.971335 +vn -0.995853 -0.000000 -0.090971 +v -0.132018 13.084073 3.971331 +vn -1.000000 0.000015 -0.000524 +v -0.178955 22.003193 7.184000 +vn -1.000000 0.000004 -0.000497 +v -0.178955 20.151104 7.184167 +vn -0.999874 0.000021 -0.015865 +v -0.177234 20.187449 5.442092 +vn -0.995854 0.000027 -0.090965 +v -0.132018 20.204416 3.971332 +vn -1.000000 0.000000 -0.000000 +v -0.178954 27.139877 14.100561 +vn -1.000000 0.000000 0.000000 +v -0.178954 26.470608 9.851752 +vn -1.000000 -0.000000 0.000000 +v -0.178954 31.952431 11.247389 +vn -1.000000 -0.000000 0.000000 +v -0.178954 35.394547 12.538832 +vn -1.000000 0.000010 -0.000578 +v -0.178955 23.911184 7.189319 +vn -1.000000 -0.000003 -0.000599 +v -0.178955 28.220997 7.184546 +vn -0.999883 -0.000593 -0.015257 +v -0.177182 22.007999 5.442783 +vn -0.999924 -0.000596 -0.012339 +v -0.176974 23.792900 5.444803 +vn -0.995810 -0.001386 -0.091438 +v -0.131918 22.007500 3.971833 +vn -0.996058 -0.001974 -0.088679 +v -0.141615 23.794201 4.022613 +vn -0.999950 0.000097 -0.010021 +v -0.176832 25.578100 5.446043 +vn -0.999946 0.000047 -0.010334 +v -0.176858 27.362900 5.445854 +vn -0.996325 -0.000784 -0.085647 +v -0.151111 25.580500 4.070953 +vn -0.996377 0.000237 -0.085047 +v -0.150197 27.365700 4.068295 +vn -1.000000 -0.000003 -0.000585 +v -0.178955 31.864264 7.184417 +vn -1.000000 -0.000003 -0.000570 +v -0.178955 36.109440 7.184731 +vn -0.999944 0.000044 -0.010595 +v -0.176883 29.147800 5.445664 +vn -0.999941 0.000048 -0.010847 +v -0.176907 30.932600 5.445484 +vn -0.996351 0.000177 -0.085343 +v -0.149412 29.150600 4.064044 +vn -0.996328 0.000177 -0.085611 +v -0.148626 30.935400 4.059794 +vn -0.999938 0.000045 -0.011104 +v -0.176929 32.717400 5.445294 +vn -0.999935 0.000048 -0.011353 +v -0.176952 34.502201 5.445114 +vn -0.996306 0.000177 -0.085876 +v -0.147841 32.720299 4.055554 +vn -0.996283 0.000177 -0.086140 +v -0.147056 34.505100 4.051324 +vn -0.864940 -0.000327 -0.501875 +v 0.443602 7.729540 1.840841 +vn -0.962198 -0.000649 -0.272351 +v 0.051781 7.729240 2.766711 +vn -0.865498 0.000027 -0.500913 +v 0.437979 9.514680 1.849361 +vn -0.962442 0.000014 -0.271487 +v 0.051840 9.706209 2.766724 +vn -0.865442 0.000002 -0.501008 +v 0.438074 11.664101 1.849251 +vn -0.500120 0.006358 -0.865933 +v 1.846280 7.728980 0.441208 +vn -0.704519 0.003368 -0.709677 +v 1.051800 7.729330 1.042471 +vn -0.490786 0.007990 -0.871243 +v 1.911560 9.515240 0.428172 +vn -0.696050 0.002999 -0.717987 +v 1.046530 9.514480 1.050561 +vn -0.483229 0.004218 -0.875484 +v 1.974170 11.302300 0.415706 +vn -0.688946 -0.000152 -0.724813 +v 1.046790 11.299100 1.050301 +vn -0.477632 -0.000561 -0.878560 +v 1.970460 13.086700 0.416303 +vn -0.689476 -0.000152 -0.724309 +v 1.046770 13.083900 1.050322 +vn -0.090940 0.000040 -0.995856 +v 3.984349 7.728210 -0.131989 +vn -0.272122 0.001914 -0.962261 +v 2.771039 7.727170 0.053063 +vn -0.089783 -0.001279 -0.995961 +v 3.986979 9.511840 -0.132060 +vn -0.268332 0.001354 -0.963326 +v 2.837299 9.513940 0.040384 +vn -0.086067 -0.002715 -0.996286 +v 4.053039 11.299000 -0.144918 +vn -0.277093 0.003016 -0.960838 +v 2.839299 11.298000 0.040494 +vn -0.082262 -0.001885 -0.996609 +v 4.117279 13.085300 -0.157183 +vn -0.269250 0.000030 -0.963070 +v 2.902519 13.085600 0.028105 +vn -0.865440 -0.000016 -0.501013 +v 0.438078 21.852711 1.849241 +vn -0.962437 0.000001 -0.271506 +v 0.051838 19.611006 2.766730 +vn -0.478329 -0.000559 -0.878181 +v 1.966260 14.871500 0.417164 +vn -0.690019 -0.000152 -0.723791 +v 1.046750 14.868700 1.050342 +vn -0.479033 -0.000559 -0.877797 +v 1.962070 16.656401 0.418021 +vn -0.690565 -0.000153 -0.723270 +v 1.046740 16.653500 1.050352 +vn -0.479739 -0.000560 -0.877411 +v 1.957890 18.441200 0.418877 +vn -0.691118 -0.000157 -0.722741 +v 1.046720 18.438400 1.050362 +vn -0.480449 -0.000560 -0.877022 +v 1.953710 20.226101 0.419732 +vn -0.691666 -0.000154 -0.722218 +v 1.046700 20.223200 1.050382 +vn -0.083280 0.000204 -0.996526 +v 4.114159 14.870600 -0.156334 +vn -0.269552 -0.000211 -0.962986 +v 2.898399 14.870200 0.028854 +vn -0.083565 0.000188 -0.996502 +v 4.109778 16.655399 -0.155517 +vn -0.269609 -0.000206 -0.962970 +v 2.894009 16.655001 0.029685 +vn -0.083853 0.000188 -0.996478 +v 4.105409 18.440300 -0.154701 +vn -0.269663 -0.000205 -0.962955 +v 2.889619 18.439899 0.030515 +vn -0.084139 0.000188 -0.996454 +v 4.101038 20.225100 -0.153883 +vn -0.269715 -0.000205 -0.962940 +v 2.885239 20.224701 0.031346 +vn -0.000268 -0.000024 -1.000000 +v 7.208328 11.291519 -0.178634 +vn -0.012720 -0.000841 -0.999919 +v 5.465739 11.297400 -0.177298 +vn -0.008724 -0.000903 -0.999962 +v 5.468429 13.082400 -0.177212 +vn -0.000310 -0.000040 -1.000000 +v 7.208408 13.083600 -0.178800 +vn 0.000140 -0.000046 -1.000000 +v 8.991762 13.073814 -0.178300 +vn 0.000128 -0.000012 -1.000000 +v 10.778235 14.848383 -0.178300 +vn -0.008108 0.000033 -0.999967 +v 5.469199 14.867900 -0.177291 +vn -0.008420 0.000062 -0.999965 +v 5.468988 16.652700 -0.177319 +vn -0.000346 -0.000052 -1.000000 +v 7.208408 14.868500 -0.178800 +vn -0.000370 0.000010 -1.000000 +v 7.208408 16.653299 -0.178967 +vn -0.008649 0.000062 -0.999963 +v 5.468789 18.437500 -0.177346 +vn -0.008888 0.000051 -0.999961 +v 5.468588 20.222300 -0.177371 +vn -0.000350 0.000068 -1.000000 +v 7.208408 18.438101 -0.178800 +vn -0.000318 0.000045 -1.000000 +v 7.208408 20.223000 -0.178633 +vn 0.000163 -0.000069 -1.000000 +v 8.993287 14.868500 -0.178467 +vn 0.000175 -0.000011 -1.000000 +v 9.000828 16.657415 -0.178632 +vn 0.000175 -0.000012 -1.000000 +v 10.778097 16.653299 -0.178300 +vn 0.000152 0.000058 -1.000000 +v 8.993278 18.438101 -0.178467 +vn 0.000152 0.000059 -1.000000 +v 8.993278 20.223000 -0.178466 +vn 0.000117 0.000070 -1.000000 +v 10.778097 20.222900 -0.178133 +vn -0.962373 0.000170 -0.271733 +v 0.051888 22.007500 2.766543 +vn -0.867853 0.003278 -0.496810 +v 0.437997 23.793100 1.849223 +vn -0.963913 0.002064 -0.266209 +v 0.041917 23.793900 2.816993 +vn -0.872067 0.005745 -0.489353 +v 0.428040 25.579100 1.898783 +vn -0.962105 0.001061 -0.272677 +v 0.042312 25.578300 2.817234 +vn -0.875937 0.003940 -0.482409 +v 0.418392 27.365999 1.946674 +vn -0.962941 0.001252 -0.269707 +v 0.032866 27.365200 2.866174 +vn -0.481162 -0.000560 -0.876632 +v 1.949540 22.010900 0.420585 +vn -0.692217 -0.000155 -0.721689 +v 1.046690 22.007999 1.050393 +vn -0.481878 -0.000560 -0.876238 +v 1.945370 23.795799 0.421437 +vn -0.692751 -0.000161 -0.721177 +v 1.046670 23.792900 1.050413 +vn -0.482612 -0.000556 -0.875834 +v 1.941210 25.580601 0.422288 +vn -0.699650 0.001877 -0.714483 +v 1.046530 25.577801 1.050573 +vn -0.483368 -0.000551 -0.875417 +v 1.937060 27.365499 0.423139 +vn -0.706977 0.001700 -0.707235 +v 1.046290 27.362600 1.050864 +vn -0.084422 0.000188 -0.996430 +v 4.096689 22.009899 -0.153068 +vn -0.269767 -0.000204 -0.962926 +v 2.880869 22.009600 0.032176 +vn -0.084704 0.000188 -0.996406 +v 4.092339 23.794800 -0.152253 +vn -0.269817 -0.000203 -0.962912 +v 2.876509 23.794399 0.033005 +vn -0.084984 0.000188 -0.996382 +v 4.087998 25.579599 -0.151438 +vn -0.269866 -0.000203 -0.962898 +v 2.872159 25.579300 0.033835 +vn -0.085261 0.000187 -0.996359 +v 4.083669 27.364500 -0.150623 +vn -0.269917 -0.000201 -0.962884 +v 2.867809 27.364100 0.034663 +vn -0.875145 -0.000549 -0.483860 +v 0.419068 29.150600 1.942884 +vn -0.962671 -0.000204 -0.270675 +v 0.033629 29.150101 2.862064 +vn -0.874748 -0.000557 -0.484577 +v 0.419897 30.935400 1.938804 +vn -0.962655 -0.000206 -0.270730 +v 0.034431 30.934900 2.857794 +vn -0.874351 -0.000558 -0.485293 +v 0.420724 32.720299 1.934724 +vn -0.962641 -0.000206 -0.270780 +v 0.035234 32.719799 2.853534 +vn -0.873950 -0.000559 -0.486015 +v 0.421550 34.505199 1.930645 +vn -0.962627 -0.000205 -0.270829 +v 0.036036 34.504601 2.849274 +vn -0.484108 -0.000558 -0.875008 +v 1.932910 29.150299 0.423988 +vn -0.708234 -0.000304 -0.705978 +v 1.046180 29.147200 1.050984 +vn -0.484837 -0.000563 -0.874605 +v 1.928770 30.935200 0.424834 +vn -0.708246 -0.000315 -0.705965 +v 1.046180 30.931999 1.050984 +vn -0.485576 -0.000554 -0.874194 +v 1.924630 32.720001 0.425680 +vn -0.708258 -0.000316 -0.705954 +v 1.046180 32.716801 1.050974 +vn -0.486289 -0.000568 -0.873798 +v 1.920500 34.504902 0.426525 +vn -0.708269 -0.000317 -0.705942 +v 1.046180 34.501701 1.050975 +vn -0.085537 0.000187 -0.996335 +v 4.079339 29.149300 -0.149809 +vn -0.269965 -0.000201 -0.962870 +v 2.863479 29.148899 0.035492 +vn -0.085810 0.000187 -0.996311 +v 4.075028 30.934099 -0.148996 +vn -0.270012 -0.000201 -0.962857 +v 2.859149 30.933800 0.036320 +vn -0.086082 0.000187 -0.996288 +v 4.070719 32.719002 -0.148184 +vn -0.270088 -0.000194 -0.962836 +v 2.852644 33.618408 0.037565 +vn -0.086349 0.000185 -0.996265 +v 4.066419 34.503799 -0.147371 +vn -0.009157 0.000048 -0.999958 +v 5.468399 22.007200 -0.177396 +vn -0.009435 0.000048 -0.999955 +v 5.468199 23.792000 -0.177420 +vn -0.000256 -0.000004 -1.000000 +v 7.207604 23.820700 -0.178633 +vn -0.009705 0.000052 -0.999953 +v 5.468009 25.576799 -0.177443 +vn -0.009966 0.000049 -0.999950 +v 5.467819 27.361601 -0.177464 +vn -0.000236 -0.000003 -1.000000 +v 7.207595 29.195202 -0.178632 +vn 0.000175 0.000035 -1.000000 +v 8.993278 22.007799 -0.178299 +vn 0.000093 0.000047 -1.000000 +v 10.777851 22.010744 -0.177966 +vn 0.000093 0.000000 -1.000000 +v 10.776576 28.892220 -0.177965 +vn -0.010238 0.000049 -0.999948 +v 5.467628 29.146400 -0.177485 +vn -0.010502 0.000052 -0.999945 +v 5.467449 30.931299 -0.177505 +vn -0.010762 0.000048 -0.999942 +v 5.467258 32.716099 -0.177525 +vn -0.011024 0.000051 -0.999939 +v 5.467079 34.500900 -0.177543 +vn -0.000222 -0.000002 -1.000000 +v 7.208070 33.577065 -0.178631 +vn 0.000093 0.000000 -1.000000 +v 10.778500 36.583736 -0.177964 +vn 0.000000 -1.000000 -0.000000 +v 16.781866 -0.178966 7.996279 +vn -0.000617 -1.000000 -0.000706 +v 12.563033 -0.178965 3.615263 +vn 0.000000 -1.000000 -0.000430 +v 20.059444 -0.178965 3.615314 +vn 0.000000 -1.000000 -0.000000 +v 21.264175 -0.178966 10.977763 +vn 0.000000 -1.000000 -0.000000 +v 26.841677 -0.178967 14.324144 +vn 0.000000 -1.000000 -0.000000 +v 28.091145 -0.178966 10.397588 +vn 0.000000 -1.000000 -0.000000 +v 24.387568 -0.178966 6.738733 +vn -0.000000 -1.000000 -0.000430 +v 25.949322 -0.178965 3.615290 +vn 0.036852 -0.999318 0.002249 +v 12.567197 -0.177073 1.846320 +vn 0.079247 -0.979960 -0.182752 +v 12.573497 -0.152120 0.593648 +vn -0.000083 -0.999949 -0.010072 +v 14.348434 -0.177444 1.844439 +vn -0.000372 -0.981004 -0.193989 +v 14.347697 -0.153357 0.591800 +vn 0.055865 -0.584449 -0.809505 +v 12.573997 0.109474 -0.078253 +vn 0.005664 -0.052856 -0.998586 +v 12.566597 0.957511 -0.166808 +vn 0.000553 -0.003515 -0.999994 +v 12.562197 2.377800 -0.177848 +vn -0.000234 -0.606768 -0.794879 +v 14.347597 0.107026 -0.077544 +vn 0.000191 -0.056020 -0.998430 +v 14.347497 0.956711 -0.166045 +vn 0.000076 -0.004133 -0.999991 +v 14.336946 2.377877 -0.177794 +vn 0.000098 -0.000028 -1.000000 +v 12.563765 4.197882 -0.177969 +vn 0.000003 -0.000045 -1.000000 +v 14.488894 4.172069 -0.177969 +vn -0.000000 -0.981032 -0.193848 +v 18.741039 -0.153361 0.591815 +vn 0.000000 -0.999950 -0.010041 +v 21.487183 -0.177444 1.844430 +vn 0.000005 -0.606637 -0.794979 +v 16.313398 0.106964 -0.077490 +vn 0.000009 -0.056012 -0.998430 +v 16.235691 0.956641 -0.165994 +vn -0.000000 -0.000049 -1.000000 +v 19.479073 4.165078 -0.177969 +vn 0.000000 -0.606635 -0.794980 +v 22.379318 0.106962 -0.077488 +vn 0.000000 -0.056014 -0.998430 +v 22.379103 0.956638 -0.165993 +vn 0.000000 -0.004198 -0.999991 +v 23.271845 2.378700 -0.177795 +vn 0.000000 -0.981032 -0.193848 +v 25.948914 -0.153361 0.591814 +vn 0.000000 -0.000049 -1.000000 +v 24.164257 4.162075 -0.177969 +vn 0.000000 -1.000000 -0.000000 +v 32.642548 -0.178967 14.324247 +vn 0.000000 -1.000000 -0.000000 +v 33.624027 -0.178966 10.040648 +vn 0.000000 -1.000000 -0.000000 +v 30.921217 -0.178966 6.165036 +vn 0.000000 -1.000000 -0.000430 +v 33.088547 -0.178965 3.615290 +vn 0.000000 -1.000000 -0.000000 +v 38.315647 -0.178967 12.794361 +vn 0.000000 -1.000000 -0.000000 +v 42.012783 -0.178966 9.415967 +vn 0.000000 -1.000000 -0.000000 +v 36.275826 -0.178966 7.184999 +vn 0.000000 -1.000000 -0.000000 +v 41.120319 -0.178966 6.292715 +vn 0.000000 -1.000000 -0.000430 +v 40.228226 -0.178965 3.615290 +vn 0.000000 -0.999950 -0.010041 +v 30.411364 -0.177444 1.844430 +vn -0.000000 -0.606635 -0.794980 +v 30.411133 0.106962 -0.077488 +vn -0.000000 -0.056014 -0.998430 +v 31.303474 0.956638 -0.165993 +vn -0.000000 -0.004198 -0.999991 +v 32.196083 2.378700 -0.177795 +vn 0.000000 -0.000049 -1.000000 +v 28.849388 4.165078 -0.177969 +vn 0.000000 -0.981032 -0.193848 +v 32.195793 -0.153361 0.591814 +vn -0.000000 -0.000049 -1.000000 +v 33.385735 4.165326 -0.177969 +vn 0.000000 -0.999950 -0.010041 +v 40.228153 -0.177444 1.844430 +vn 0.000000 -0.981032 -0.193848 +v 39.335247 -0.153361 0.591814 +vn 0.000000 -0.606635 -0.794980 +v 37.550255 0.106962 -0.077488 +vn 0.000000 -0.000049 -1.000000 +v 38.442822 4.159470 -0.177968 +vn 0.000000 -0.056014 -0.998430 +v 40.227394 0.956638 -0.165993 +vn 0.000000 -0.004198 -0.999991 +v 40.227737 2.378700 -0.177795 +vn 0.000000 0.000000 -1.000000 +v 38.825348 6.964230 -0.177968 +vn 0.000000 0.000000 -1.000000 +v 16.330894 10.307248 -0.177968 +vn 0.000093 0.000000 -1.000000 +v 12.563299 13.381080 -0.177967 +vn -0.000000 0.000000 -1.000000 +v 15.909479 16.430176 -0.177967 +vn 0.000058 0.000012 -1.000000 +v 12.565201 20.227730 -0.177966 +vn -0.000000 0.000000 -1.000000 +v 18.937359 19.713097 -0.177966 +vn 0.000000 0.000000 -1.000000 +v 20.467163 11.808778 -0.177967 +vn -0.000000 0.000000 -1.000000 +v 25.056765 9.351779 -0.177968 +vn 0.000000 0.000000 -1.000000 +v 23.596470 15.679685 -0.177967 +vn 0.000000 0.000000 -1.000000 +v 22.506844 22.517591 -0.177966 +vn 0.000000 0.000000 -1.000000 +v 27.490509 20.060791 -0.177966 +vn 0.000011 0.000012 -1.000000 +v 12.577235 22.047289 -0.177966 +vn 0.000000 0.000000 -1.000000 +v 14.570880 28.923965 -0.177965 +vn -0.000000 0.000000 -1.000000 +v 18.363691 25.131300 -0.177966 +vn 0.000000 0.000000 -1.000000 +v 13.455442 32.716850 -0.177965 +vn 0.000000 0.000000 -1.000000 +v 19.447344 30.167006 -0.177965 +vn -0.000000 0.000000 -1.000000 +v 16.578775 35.170834 -0.177964 +vn 0.000000 0.000000 -1.000000 +v 23.494953 28.923906 -0.177965 +vn 0.000000 0.000000 -1.000000 +v 25.949326 24.685377 -0.177966 +vn 0.000000 0.000000 -1.000000 +v 21.189596 35.096478 -0.177964 +vn 0.000000 0.000000 -1.000000 +v 25.949144 32.716682 -0.177965 +vn -0.000000 0.000000 -1.000000 +v 28.983335 11.655835 -0.177967 +vn 0.000000 0.000000 -1.000000 +v 33.980824 10.406312 -0.177968 +vn 0.000000 0.000000 -1.000000 +v 29.965023 15.091581 -0.177967 +vn 0.000000 0.000000 -1.000000 +v 32.909950 18.081188 -0.177967 +vn 0.000000 0.000000 -1.000000 +v 36.020725 16.143278 -0.177967 +vn 0.000000 0.000000 -1.000000 +v 39.112091 11.521833 -0.177967 +vn 0.000000 0.000000 -1.000000 +v 35.542419 21.784470 -0.177966 +vn 0.000000 0.000000 -1.000000 +v 39.781544 16.876314 -0.177967 +vn 0.000000 0.000000 -1.000000 +v 28.626387 26.916227 -0.177965 +vn 0.000000 0.000000 -1.000000 +v 31.303459 22.900208 -0.177966 +vn 0.000000 0.000000 -1.000000 +v 32.642086 27.808302 -0.177965 +vn -0.000012 -0.000011 -1.000000 +v 28.612646 36.272652 -0.177964 +vn -0.000012 -0.000011 -1.000000 +v 33.973904 30.931267 -0.177965 +vn -0.000012 -0.000011 -1.000000 +v 32.189003 32.716068 -0.177965 +vn -0.000012 -0.000012 -1.000000 +v 30.411194 34.501598 -0.177964 +vn -0.000058 -0.000058 -1.000000 +v 32.195988 34.501598 -0.177964 +vn -0.000011 -0.000011 -1.000000 +v 37.542763 27.335545 -0.177965 +vn -0.000012 -0.000011 -1.000000 +v 41.106346 23.785097 -0.177966 +vn -0.000014 -0.000014 -1.000000 +v 39.335289 25.577400 -0.177966 +vn -0.000058 -0.000058 -1.000000 +v 39.335289 27.362200 -0.177965 +vn -0.000012 -0.000011 -1.000000 +v 35.758705 29.146467 -0.177965 +vn -0.000058 -0.000058 -1.000000 +v 35.765690 30.931900 -0.177965 +vn -0.000058 -0.000058 -1.000000 +v 33.980888 32.716702 -0.177965 +vn -0.000093 -0.000093 -1.000000 +v 33.980888 34.501598 -0.178131 +vn -0.000093 -0.000093 -1.000000 +v 35.765690 32.716702 -0.178132 +vn -0.000047 -0.000046 -1.000000 +v 35.765690 34.501598 -0.178464 +vn -0.000058 -0.000058 -1.000000 +v 37.550488 29.147100 -0.177965 +vn -0.000093 -0.000093 -1.000000 +v 37.550488 30.931900 -0.178132 +vn -0.000093 -0.000093 -1.000000 +v 39.335289 29.147100 -0.178132 +vn -0.000047 -0.000046 -1.000000 +v 39.335289 30.931900 -0.178465 +vn -0.000047 -0.000046 -1.000000 +v 37.550488 32.716702 -0.178465 +vn 0.000000 0.000000 -1.000000 +v 37.550488 34.501598 -0.178297 +vn 0.000000 0.000000 -1.000000 +v 39.335388 32.716702 -0.178298 +vn -0.000000 0.000000 -1.000000 +v 39.335388 34.501598 -0.178297 +vn -1.000000 -0.000000 -0.000000 +v -0.178954 42.533665 13.431328 +vn -1.000000 0.000000 0.000000 +v -0.178954 40.748993 9.851804 +vn -1.000000 0.000000 -0.000000 +v -0.178954 46.995796 13.431422 +vn -1.000000 0.000000 0.000000 +v -0.178954 46.995831 9.851766 +vn -1.000000 -0.000003 -0.000555 +v -0.178955 40.751240 7.184492 +vn -0.999933 0.000045 -0.011604 +v -0.176973 36.287102 5.444934 +vn -0.999930 0.000045 -0.011859 +v -0.176993 38.071899 5.444754 +vn -0.996260 0.000177 -0.086402 +v -0.146271 36.290001 4.047094 +vn -0.996238 0.000177 -0.086662 +v -0.145487 38.074799 4.042884 +vn -0.999927 0.000048 -0.012101 +v -0.177013 39.856701 5.444576 +vn -0.999924 0.000045 -0.012349 +v -0.177032 41.641602 5.444406 +vn -0.996215 0.000175 -0.086923 +v -0.144703 39.859699 4.038666 +vn -0.996193 0.000177 -0.087177 +v -0.143919 41.644501 4.034466 +vn -1.000000 -0.000003 -0.000540 +v -0.178955 46.023548 7.184488 +vn -0.999920 0.000061 -0.012602 +v -0.177051 43.426399 5.444226 +vn -0.999916 0.000070 -0.012910 +v -0.177068 45.211201 5.444056 +vn -0.996171 0.000207 -0.087425 +v -0.143135 43.429401 4.030256 +vn -0.996145 0.000254 -0.087719 +v -0.142177 45.213200 4.025336 +vn -0.999912 0.000036 -0.013233 +v -0.177085 46.995998 5.443886 +vn -0.999910 0.000025 -0.013427 +v -0.177101 48.780899 5.443726 +vn -0.996114 0.000190 -0.088071 +v -0.141052 46.996101 4.019886 +vn -0.996093 0.000126 -0.088309 +v -0.140392 48.780998 4.016156 +vn -1.000000 -0.000000 0.000000 +v -0.178954 53.323822 11.714050 +vn -1.000000 -0.000002 -0.000513 +v -0.178954 56.809570 7.184005 +vn -1.000000 -0.000000 0.000000 +v -0.178954 60.463310 13.512509 +vn -1.000000 0.000647 0.000000 +v -0.178954 64.844055 11.604610 +vn -1.000000 -0.000002 -0.000524 +v -0.178955 52.023396 7.184926 +vn -0.999907 0.000049 -0.013588 +v -0.177117 50.565701 5.443557 +vn -0.999904 0.000047 -0.013831 +v -0.177132 52.350498 5.443397 +vn -0.996074 0.000132 -0.088525 +v -0.139891 50.566799 4.012927 +vn -0.996056 0.000181 -0.088721 +v -0.139092 52.351700 4.008687 +vn -0.999901 0.000047 -0.014075 +v -0.177146 54.135399 5.443237 +vn -0.999897 0.000049 -0.014311 +v -0.177159 55.920200 5.443077 +vn -0.996034 0.000179 -0.088975 +v -0.138291 54.136501 4.004437 +vn -0.996012 0.000182 -0.089220 +v -0.137490 55.921398 4.000207 +vn -1.000000 -0.000002 -0.000506 +v -0.178955 60.352272 7.184197 +vn -1.000000 0.000635 -0.000489 +v -0.178955 64.843224 7.182009 +vn -0.999894 0.000047 -0.014551 +v -0.177172 57.705002 5.442917 +vn -0.999891 0.000048 -0.014786 +v -0.177185 59.489799 5.442767 +vn -0.995989 0.000179 -0.089472 +v -0.136689 57.706200 3.995968 +vn -0.995967 0.000182 -0.089716 +v -0.135889 59.491001 3.991738 +vn -0.999887 0.000047 -0.015023 +v -0.177197 61.274700 5.442618 +vn -0.999883 0.000049 -0.015256 +v -0.177208 63.059502 5.442469 +vn -0.995945 0.000179 -0.089963 +v -0.135088 61.275902 3.987518 +vn -0.995923 0.000182 -0.090204 +v -0.134287 63.060699 3.983299 +vn -0.873548 -0.000558 -0.486737 +v 0.422375 36.290001 1.926575 +vn -0.962613 -0.000204 -0.270878 +v 0.036839 36.289501 2.845025 +vn -0.873143 -0.000558 -0.487463 +v 0.423199 38.074902 1.922515 +vn -0.962600 -0.000204 -0.270927 +v 0.037641 38.074299 2.840785 +vn -0.872733 -0.000565 -0.488196 +v 0.424022 39.859699 1.918455 +vn -0.962581 -0.000197 -0.270995 +v 0.038857 40.780533 2.834363 +vn -0.872333 -0.000551 -0.488911 +v 0.424844 41.644600 1.914395 +vn -0.487027 -0.000565 -0.873387 +v 1.916370 36.289700 0.427368 +vn -0.708281 -0.000319 -0.705930 +v 1.046180 36.286499 1.050965 +vn -0.487778 -0.000555 -0.872968 +v 1.912240 38.074600 0.428210 +vn -0.708296 -0.000319 -0.705915 +v 1.046180 38.071400 1.050965 +vn -0.488498 -0.000570 -0.872565 +v 1.908130 39.859402 0.429051 +vn -0.708307 -0.000322 -0.705904 +v 1.046180 39.856201 1.050955 +vn -0.489257 -0.000558 -0.872140 +v 1.904010 41.644299 0.429890 +vn -0.708320 -0.000322 -0.705891 +v 1.046180 41.640999 1.050945 +vn -0.086619 0.000186 -0.996242 +v 4.062119 36.288700 -0.146560 +vn -0.270153 -0.000198 -0.962817 +v 2.846199 36.288300 0.038801 +vn -0.086884 0.000187 -0.996218 +v 4.057838 38.073502 -0.145749 +vn -0.270224 -0.000192 -0.962797 +v 2.839574 39.041386 0.040075 +vn -0.087146 0.000184 -0.996196 +v 4.053558 39.858299 -0.144939 +vn -0.087410 0.000186 -0.996172 +v 4.049289 41.643200 -0.144130 +vn -0.270310 -0.000192 -0.962773 +v 2.831091 42.572277 0.041708 +vn -0.871913 -0.000561 -0.489660 +v 0.425666 43.429401 1.910346 +vn -0.962561 -0.000199 -0.271063 +v 0.040047 43.428902 2.828086 +vn -0.871468 -0.000603 -0.490452 +v 0.426486 45.214298 1.906296 +vn -0.962530 -0.000212 -0.271173 +v 0.041024 45.212700 2.823136 +vn -0.870983 -0.000660 -0.491313 +v 0.427482 46.998100 1.901516 +vn -0.962532 -0.000218 -0.271169 +v 0.041993 46.996601 2.818396 +vn -0.870491 -0.000620 -0.492184 +v 0.428642 48.780998 1.896216 +vn -0.962549 -0.000195 -0.271109 +v 0.042681 48.781502 2.814436 +vn -0.489990 -0.000569 -0.871728 +v 1.899900 43.429100 0.430730 +vn -0.708334 -0.000323 -0.705877 +v 1.046180 43.425900 1.050946 +vn -0.490762 -0.000506 -0.871294 +v 1.895800 45.214001 0.431567 +vn -0.708327 -0.000294 -0.705884 +v 1.046180 45.210701 1.050936 +vn -0.491410 -0.000406 -0.870928 +v 1.892670 46.997799 0.432100 +vn -0.708127 -0.000284 -0.706085 +v 1.046180 46.995499 1.050936 +vn -0.491877 -0.000481 -0.870664 +v 1.890570 48.780800 0.432379 +vn -0.707779 -0.000361 -0.706434 +v 1.046180 48.780399 1.050926 +vn -0.087655 0.000197 -0.996151 +v 4.045019 43.428001 -0.143320 +vn -0.087856 0.000198 -0.996133 +v 4.040759 45.212898 -0.142511 +vn -0.270380 -0.000191 -0.962754 +v 2.824759 45.212502 0.042929 +vn -0.088007 0.000133 -0.996120 +v 4.036509 46.997700 -0.141704 +vn -0.270357 -0.000199 -0.962760 +v 2.821469 46.996300 0.043449 +vn -0.088156 0.000064 -0.996107 +v 4.033238 48.781601 -0.141200 +vn -0.270447 -0.000207 -0.962735 +v 2.818239 48.780300 0.044020 +vn -0.011280 0.000049 -0.999936 +v 5.466898 36.285702 -0.177561 +vn -0.011540 0.000051 -0.999933 +v 5.466729 38.070499 -0.177578 +vn -0.000212 -0.000002 -1.000000 +v 7.206800 37.444714 -0.178631 +vn -0.011788 0.000049 -0.999931 +v 5.466548 39.855400 -0.177594 +vn -0.012046 0.000049 -0.999927 +v 5.466379 41.640202 -0.177610 +vn -0.000210 0.000033 -1.000000 +v 7.201502 43.392410 -0.178632 +vn 0.000094 0.000000 -1.000000 +v 10.775598 42.533428 -0.177964 +vn -0.012300 0.000097 -0.999924 +v 5.466208 43.424999 -0.177624 +vn -0.012515 0.000118 -0.999922 +v 5.466039 45.209801 -0.177471 +vn -0.000227 0.000057 -1.000000 +v 7.208418 45.210602 -0.178463 +vn -0.012729 0.000095 -0.999919 +v 5.465878 46.994598 -0.177318 +vn -0.012851 0.000027 -0.999917 +v 5.465719 48.779499 -0.177331 +vn -0.000225 0.000058 -1.000000 +v 7.208418 46.995399 -0.178463 +vn -0.000195 0.000033 -1.000000 +v 7.210958 48.801151 -0.178295 +vn 0.000059 0.000011 -1.000000 +v 10.781678 46.973228 -0.177963 +vn 0.000117 0.000069 -1.000000 +v 8.993267 46.995399 -0.178130 +vn 0.000093 0.000047 -1.000000 +v 8.992487 48.794956 -0.177963 +vn 0.000011 0.000011 -1.000000 +v 10.817581 48.794533 -0.177962 +vn -0.870105 -0.000510 -0.492867 +v 0.429338 50.565899 1.892627 +vn -0.962488 -0.000219 -0.271323 +v 0.043656 50.565399 2.809666 +vn -0.869754 -0.000502 -0.493485 +v 0.429874 52.351799 1.889547 +vn -0.962499 -0.000191 -0.271283 +v 0.044178 52.351299 2.806417 +vn -0.869303 -0.000577 -0.494279 +v 0.430707 54.136600 1.885447 +vn -0.962479 -0.000195 -0.271355 +v 0.045424 55.068275 2.799930 +vn -0.868871 -0.000566 -0.495037 +v 0.431542 55.921501 1.881338 +vn -0.492563 -0.000590 -0.870276 +v 1.886770 50.565701 0.433130 +vn -0.707796 -0.000342 -0.706417 +v 1.046180 50.565201 1.050927 +vn -0.493361 -0.000619 -0.869825 +v 1.881910 52.351398 0.434142 +vn -0.708000 -0.000301 -0.706212 +v 1.046180 52.349998 1.050917 +vn -0.494193 -0.000577 -0.869352 +v 1.877740 54.136299 0.434993 +vn -0.708035 -0.000336 -0.706177 +v 1.046180 54.134899 1.050917 +vn -0.494984 -0.000572 -0.868902 +v 1.873580 55.921101 0.435843 +vn -0.708045 -0.000340 -0.706167 +v 1.046180 55.919701 1.050907 +vn -0.088289 0.000082 -0.996095 +v 4.031009 50.564499 -0.140949 +vn -0.270597 -0.000193 -0.962693 +v 2.814229 50.565102 0.044709 +vn -0.088535 0.000182 -0.996073 +v 4.027069 52.349400 -0.140226 +vn -0.270455 -0.000223 -0.962732 +v 2.810969 52.348999 0.045289 +vn -0.088845 0.000216 -0.996045 +v 4.022069 54.135101 -0.139242 +vn -0.270573 -0.000194 -0.962699 +v 2.805949 54.134800 0.046290 +vn -0.089093 0.000190 -0.996023 +v 4.017768 55.919998 -0.138419 +vn -0.270627 -0.000191 -0.962684 +v 2.799505 56.803333 0.047547 +vn -0.868420 -0.000579 -0.495829 +v 0.432377 57.706299 1.877238 +vn -0.962456 -0.000195 -0.271439 +v 0.047047 58.593937 2.791513 +vn -0.867981 -0.000568 -0.496598 +v 0.433211 59.491199 1.873138 +vn -0.867522 -0.000581 -0.497398 +v 0.434045 61.276001 1.869038 +vn -0.962432 -0.000193 -0.271520 +v 0.048700 62.187435 2.782951 +vn -0.867075 -0.000569 -0.498176 +v 0.434879 63.060902 1.864938 +vn -0.495756 -0.000584 -0.868462 +v 1.869420 57.706001 0.436693 +vn -0.708058 -0.000340 -0.706154 +v 1.046180 57.704498 1.050897 +vn -0.496563 -0.000572 -0.868000 +v 1.865260 59.490799 0.437541 +vn -0.708071 -0.000341 -0.706141 +v 1.046180 59.489399 1.050898 +vn -0.497343 -0.000584 -0.867554 +v 1.861110 61.275600 0.438390 +vn -0.708082 -0.000343 -0.706130 +v 1.046180 61.274200 1.050888 +vn -0.498166 -0.000573 -0.867081 +v 1.856960 63.060501 0.439238 +vn -0.708093 -0.000344 -0.706118 +v 1.046180 63.058998 1.050888 +vn -0.089343 0.000187 -0.996001 +v 4.013479 57.704800 -0.137595 +vn -0.089597 0.000190 -0.995978 +v 4.009189 59.489601 -0.136773 +vn -0.270702 -0.000190 -0.962663 +v 2.790747 60.434689 0.049256 +vn -0.089845 0.000188 -0.995956 +v 4.004909 61.274502 -0.135950 +vn -0.090107 0.000176 -0.995932 +v 4.000638 63.059299 -0.135128 +vn -0.270760 -0.000065 -0.962647 +v 2.780220 64.836525 0.051316 +vn -0.012939 0.000011 -0.999916 +v 5.465559 50.564301 -0.177342 +vn -0.013124 0.000043 -0.999914 +v 5.465399 52.349098 -0.177354 +vn -0.000175 -0.000002 -1.000000 +v 7.208412 53.198151 -0.178295 +vn -0.013406 0.000063 -0.999910 +v 5.465249 54.133900 -0.177365 +vn -0.013659 0.000051 -0.999907 +v 5.465098 55.918701 -0.177376 +vn -0.000178 -0.000012 -1.000000 +v 7.202981 59.451893 -0.178295 +vn 0.000082 -0.000011 -1.000000 +v 8.994218 57.683262 -0.177961 +vn -0.000012 -0.000012 -1.000000 +v 10.777468 55.912514 -0.177962 +vn -0.013908 0.000051 -0.999903 +v 5.464949 57.703602 -0.177384 +vn -0.014154 0.000051 -0.999900 +v 5.464798 59.488400 -0.177394 +vn -0.014408 0.000039 -0.999896 +v 5.464649 61.273201 -0.177403 +vn -0.014697 -0.000007 -0.999892 +v 5.464509 63.057999 -0.177411 +vn -0.000221 -0.000059 -1.000000 +v 7.208418 61.273998 -0.178294 +vn -0.000255 -0.000094 -1.000000 +v 7.208418 63.058800 -0.178461 +vn 0.000035 -0.000059 -1.000000 +v 8.993267 59.489201 -0.177961 +vn -0.000058 -0.000058 -1.000000 +v 10.778097 57.704300 -0.177961 +vn -0.000093 -0.000093 -1.000000 +v 10.778097 59.489201 -0.178128 +vn 0.000000 -0.000093 -1.000000 +v 8.993267 61.273998 -0.178128 +vn 0.000047 -0.000046 -1.000000 +v 8.993267 63.058800 -0.178461 +vn -0.000047 -0.000046 -1.000000 +v 10.778097 61.273998 -0.178461 +vn 0.000000 0.000000 -1.000000 +v 10.778097 63.058800 -0.178294 +vn -0.992710 -0.120530 0.000000 +v -0.176666 66.612099 12.539260 +vn -0.965997 0.258554 0.000019 +v -1.592769 71.621498 9.027989 +vn -0.375471 0.926834 0.000062 +v -1.028460 72.107498 8.971169 +vn -0.029969 0.999551 0.000014 +v 0.135019 72.176003 10.754209 +vn -0.000027 1.000000 0.000000 +v 3.659010 72.178001 15.217832 +vn -0.000589 1.000000 0.000063 +v 1.849512 72.177902 10.757279 +vn -0.000028 1.000000 0.000083 +v 3.637345 72.178001 10.756722 +vn -0.992703 -0.120583 -0.000408 +v -0.176668 66.612099 7.183248 +vn -0.967726 -0.252005 -0.000186 +v -0.662032 68.570503 7.182007 +vn -0.954875 -0.297008 -0.000103 +v -1.148192 70.351570 7.188991 +vn -0.999879 0.000698 -0.015533 +v -0.177219 64.844299 5.442328 +vn -0.992452 -0.121696 -0.015153 +v -0.175083 66.612396 5.440979 +vn -0.995910 0.000814 -0.090347 +v -0.133483 64.845596 3.979069 +vn -0.988603 -0.107461 -0.105435 +v -0.129758 66.618896 3.968858 +vn -0.967286 -0.253469 -0.010546 +v -0.661417 68.571404 5.419769 +vn -0.954361 -0.298619 -0.004667 +v -1.148340 70.352699 5.400168 +vn -0.953189 -0.231650 -0.194344 +v -0.628610 68.578300 3.941599 +vn -0.915760 -0.297783 -0.269645 +v -1.128350 70.349503 3.939999 +vn -0.030013 0.999550 0.000083 +v 0.135019 72.176003 8.969349 +vn -0.966030 0.258428 -0.000193 +v -1.592780 71.621498 7.182330 +vn -0.375593 0.926785 -0.000037 +v -1.028460 72.107697 7.183620 +vn -0.030047 0.999548 0.000019 +v 0.135022 72.176300 7.184530 +vn -0.965815 0.259229 -0.000846 +v -1.592070 71.622002 5.401420 +vn -0.374794 0.927106 -0.001720 +v -1.027740 72.107803 5.405230 +vn -0.029961 0.999548 -0.002358 +v 0.135025 72.176102 5.406390 +vn -0.965581 0.180101 -0.187662 +v -1.589420 71.613098 3.933929 +vn -0.361284 0.932454 0.002023 +v -1.033910 72.099602 3.942119 +vn -0.025087 0.998885 -0.040005 +v 0.137704 72.169403 3.940259 +vn -0.000632 1.000000 0.000104 +v 1.849550 72.178101 8.970959 +vn -0.000598 1.000000 0.000042 +v 1.849550 72.178398 7.186130 +vn -0.000049 1.000000 0.000076 +v 3.637799 72.178299 8.970959 +vn -0.000007 1.000000 0.000035 +v 3.637809 72.178299 7.186130 +vn -0.000639 0.999997 -0.002408 +v 1.849570 72.178200 5.407990 +vn -0.000484 0.998967 -0.045430 +v 1.850300 72.171303 3.942159 +vn -0.000038 0.999997 -0.002396 +v 3.637829 72.178299 5.408000 +vn 0.000017 0.998962 -0.045557 +v 3.638569 72.171402 3.942149 +vn -0.000007 1.000000 0.000007 +v 5.422628 72.178001 12.540608 +vn -0.000035 1.000000 0.000090 +v 5.422628 72.178001 10.755809 +vn -0.000014 1.000000 0.000042 +v 7.207458 72.178001 12.540608 +vn -0.000049 1.000000 0.000104 +v 7.207458 72.178101 10.755809 +vn -0.000007 1.000000 0.000007 +v 9.008566 72.178001 14.361113 +vn -0.000014 1.000000 0.000042 +v 10.777097 72.178001 14.325409 +vn -0.000035 1.000000 0.000091 +v 8.992287 72.178001 12.540608 +vn -0.000083 1.000000 0.000056 +v 8.992287 72.178299 10.755809 +vn -0.000049 1.000000 0.000104 +v 10.777097 72.178101 12.540608 +vn -0.000007 1.000000 0.000063 +v 10.777097 72.178497 10.755809 +vn -0.000042 1.000000 0.000070 +v 5.422638 72.178299 8.970968 +vn 0.000014 1.000000 0.000042 +v 5.422638 72.178299 7.186120 +vn -0.000007 1.000000 0.000063 +v 7.207469 72.178497 8.970959 +vn -0.000014 1.000000 -0.000042 +v 7.207469 72.178299 7.186120 +vn 0.000015 0.999997 -0.002446 +v 5.422668 72.178497 5.408000 +vn 0.000054 0.998961 -0.045571 +v 5.423398 72.171204 3.942139 +vn 0.000042 0.999997 -0.002476 +v 7.207499 72.178299 5.408010 +vn 0.000047 0.998964 -0.045505 +v 7.208229 72.170998 3.942139 +vn 0.000014 1.000000 0.000042 +v 8.992297 72.178299 8.970959 +vn -0.000014 1.000000 -0.000042 +v 8.992297 72.178299 7.186120 +vn 0.000000 1.000000 0.000000 +v 10.777097 72.178299 8.970939 +vn 0.000007 1.000000 -0.000063 +v 10.777097 72.178497 7.186120 +vn 0.000040 0.999997 -0.002476 +v 8.992317 72.178299 5.408000 +vn 0.000016 0.998967 -0.045441 +v 10.771334 72.170998 3.942141 +vn 0.000047 0.999997 -0.002499 +v 10.777097 72.178101 5.408000 +vn -0.866641 -0.000412 -0.498932 +v 0.435712 64.845703 1.860849 +vn -0.962433 0.000115 -0.271518 +v 0.049926 64.845200 2.776628 +vn -0.864786 0.007051 -0.502091 +v 0.438206 66.627800 1.855089 +vn -0.954521 -0.043821 -0.294904 +v 0.053161 66.626297 2.766979 +vn -0.826837 0.050894 -0.560134 +v 0.385492 68.227798 2.001219 +vn -0.873894 -0.083858 -0.478829 +v -0.258928 68.504997 2.917209 +vn -0.479729 0.325093 -0.814969 +v 0.688760 69.989601 2.094859 +vn -0.707633 -0.121104 -0.696124 +v -0.551646 70.273903 3.042719 +vn -0.498948 -0.000475 -0.866632 +v 1.852820 64.845299 0.440082 +vn -0.708099 -0.000274 -0.706113 +v 1.046180 64.843903 1.050879 +vn -0.500797 0.004607 -0.865552 +v 1.849730 66.626404 0.440660 +vn -0.708399 0.008173 -0.705765 +v 1.047250 66.625099 1.049899 +vn -0.537126 0.144507 -0.831031 +v 1.881610 68.044296 0.440442 +vn -0.671686 0.122450 -0.730646 +v 1.081500 68.044800 1.049629 +vn -0.362007 0.548786 -0.753515 +v 1.974550 69.217598 0.957957 +vn -0.654844 0.267625 -0.706793 +v 0.847545 69.057999 1.462119 +vn -0.124100 0.634025 -0.763290 +v 2.463949 70.464401 1.876339 +vn -0.067836 0.756230 -0.650779 +v 3.677469 69.521698 0.931226 +vn -0.013278 0.685073 -0.728354 +v 4.231298 70.473602 1.825899 +vn -0.090413 0.000366 -0.995904 +v 3.996369 64.844101 -0.134306 +vn -0.090469 0.003800 -0.995892 +v 3.992089 66.619698 -0.132783 +vn -0.270086 0.002283 -0.962833 +v 2.776969 66.621498 0.052172 +vn -0.085520 0.041974 -0.995452 +v 3.987009 68.041397 -0.122209 +vn -0.265130 0.017246 -0.964058 +v 2.770339 68.033401 0.060004 +vn -0.134892 0.502679 -0.853884 +v 3.391299 68.878098 0.003653 +vn -0.360462 0.414577 -0.835580 +v 2.573669 68.765999 0.140227 +vn -0.169736 0.294196 -0.940552 +v 0.109372 71.533302 2.746109 +vn -0.575963 -0.029266 -0.816951 +v -1.044090 71.611702 3.046749 +vn -0.120445 0.784853 -0.607864 +v -0.441263 72.090401 3.052339 +vn -0.557846 0.646887 -0.519948 +v -1.162660 72.063202 3.195869 +vn -0.039678 0.492715 -0.869286 +v 1.847920 71.460999 2.735509 +vn 0.003055 0.826922 -0.562308 +v 1.256620 72.093201 3.041289 +vn -0.004643 0.556658 -0.830729 +v 3.637699 71.466400 2.738129 +vn -0.000022 0.823414 -0.567441 +v 3.043819 72.093300 3.041299 +vn -0.006497 0.774886 -0.632068 +v 5.421489 69.525299 0.876992 +vn 0.000123 0.692061 -0.721839 +v 6.015384 70.473755 1.826546 +vn 0.000093 0.775248 -0.631657 +v 7.207289 69.525101 0.877477 +vn -0.015005 0.000164 -0.999887 +v 5.464368 64.842903 -0.177586 +vn -0.015297 0.003790 -0.999876 +v 5.464249 66.618401 -0.177113 +vn -0.000218 0.000077 -1.000000 +v 7.208428 64.843697 -0.178794 +vn -0.000277 0.003671 -0.999993 +v 7.208448 66.619202 -0.178147 +vn -0.012526 0.045482 -0.998887 +v 5.463889 68.036903 -0.166874 +vn -0.025869 0.507758 -0.861112 +v 4.866118 68.888000 -0.089662 +vn -0.000290 0.048878 -0.998805 +v 7.208269 68.037498 -0.168177 +vn -0.000238 0.513621 -0.858017 +v 6.613379 68.887802 -0.090680 +vn 0.000008 0.775214 -0.631698 +v 10.593120 69.525108 0.877460 +vn -0.000000 0.691987 -0.721910 +v 12.255298 70.473801 1.826582 +vn 0.000093 0.000089 -1.000000 +v 8.993278 64.843697 -0.178294 +vn 0.000051 0.003588 -0.999994 +v 8.993307 66.619202 -0.177979 +vn 0.000000 0.000089 -1.000000 +v 10.778097 64.843697 -0.178294 +vn 0.000045 0.003608 -0.999994 +v 10.778097 66.619202 -0.178144 +vn 0.000043 0.048862 -0.998806 +v 8.993117 68.037399 -0.168191 +vn 0.000005 0.513865 -0.857871 +v 8.398237 68.887604 -0.090723 +vn 0.000045 0.048851 -0.998806 +v 10.777897 68.037399 -0.168026 +vn 0.000035 0.513812 -0.857903 +v 10.183097 68.887604 -0.090737 +vn 0.000042 0.561880 -0.827219 +v 5.433223 71.466599 2.738298 +vn 0.000043 0.823427 -0.567423 +v 4.828619 72.093300 3.041309 +vn 0.000031 0.823481 -0.567343 +v 6.642902 72.093300 3.041309 +vn -0.000000 0.561838 -0.827247 +v 13.454561 71.466599 2.738299 +vn 0.000000 0.000000 -1.000000 +v 13.455290 40.748257 -0.177964 +vn 0.000000 0.000000 -1.000000 +v 20.059217 38.785225 -0.177964 +vn 0.000000 0.000000 -1.000000 +v 16.897512 42.150642 -0.177963 +vn -0.000012 -0.000011 -1.000000 +v 19.694689 46.981564 -0.177963 +vn -0.000012 -0.000011 -1.000000 +v 17.909887 48.766361 -0.177962 +vn -0.000012 -0.000012 -1.000000 +v 16.131964 50.558014 -0.177962 +vn -0.000011 -0.000011 -1.000000 +v 21.472757 45.171009 -0.177963 +vn -0.000012 -0.000011 -1.000000 +v 25.042858 39.848595 -0.177964 +vn -0.000012 -0.000011 -1.000000 +v 26.827656 38.063694 -0.177964 +vn -0.000012 -0.000012 -1.000000 +v 23.271894 41.640900 -0.177964 +vn -0.000059 -0.000058 -1.000000 +v 25.056694 41.640900 -0.177964 +vn -0.000058 -0.000058 -1.000000 +v 19.702194 48.780201 -0.177963 +vn -0.000058 -0.000058 -1.000000 +v 21.487095 46.995399 -0.177963 +vn -0.000093 -0.000093 -1.000000 +v 21.487095 48.780201 -0.178130 +vn -0.000058 -0.000011 -1.000000 +v 23.271894 43.425701 -0.177963 +vn -0.000093 -0.000047 -1.000000 +v 23.271894 45.210499 -0.177963 +vn -0.000105 -0.000058 -1.000000 +v 25.056694 43.425701 -0.178130 +vn -0.000070 -0.000070 -1.000000 +v 25.056694 45.210499 -0.178296 +vn -0.000093 -0.000093 -1.000000 +v 23.271894 46.995399 -0.178130 +vn -0.000047 -0.000046 -1.000000 +v 23.271894 48.780201 -0.178463 +vn -0.000058 -0.000012 -1.000000 +v 25.056694 46.995399 -0.178463 +vn 0.000000 0.000000 -1.000000 +v 25.056694 48.780201 -0.178296 +vn -0.000012 -0.000012 -1.000000 +v 14.340709 52.349270 -0.177962 +vn -0.000012 -0.000012 -1.000000 +v 12.562897 54.134701 -0.177962 +vn -0.000058 -0.000058 -1.000000 +v 12.562897 55.919498 -0.177962 +vn -0.000058 -0.000058 -1.000000 +v 14.347697 54.134701 -0.177962 +vn -0.000093 -0.000093 -1.000000 +v 14.347697 55.919498 -0.178129 +vn -0.000058 -0.000058 -1.000000 +v 16.132595 52.349899 -0.177962 +vn -0.000058 -0.000058 -1.000000 +v 17.917395 50.564999 -0.177962 +vn -0.000093 -0.000093 -1.000000 +v 17.917395 52.349899 -0.178129 +vn -0.000093 -0.000093 -1.000000 +v 16.132595 54.134701 -0.178129 +vn -0.000047 -0.000046 -1.000000 +v 16.132595 55.919498 -0.178462 +vn -0.000047 -0.000046 -1.000000 +v 17.917395 54.134701 -0.178462 +vn 0.000000 0.000000 -1.000000 +v 17.917395 55.919498 -0.178295 +vn -0.000093 -0.000093 -1.000000 +v 12.562897 57.704300 -0.178128 +vn -0.000047 -0.000046 -1.000000 +v 12.562897 59.489201 -0.178461 +vn -0.000047 -0.000046 -1.000000 +v 14.347697 57.704300 -0.178461 +vn 0.000000 0.000000 -1.000000 +v 14.347797 59.489201 -0.178294 +vn 0.000000 0.000000 -1.000000 +v 12.562897 61.273998 -0.178294 +vn -0.000000 0.000000 -1.000000 +v 12.562897 63.058800 -0.178294 +vn -0.000000 0.000000 -1.000000 +v 14.347797 61.273998 -0.178294 +vn 0.000047 0.000047 -1.000000 +v 14.347797 63.058800 -0.178461 +vn 0.000000 0.000000 -1.000000 +v 16.132595 57.704399 -0.178294 +vn -0.000000 0.000000 -1.000000 +v 16.132595 59.489201 -0.178294 +vn -0.000000 0.000000 -1.000000 +v 17.917395 57.704399 -0.178294 +vn 0.000047 0.000047 -1.000000 +v 17.917395 59.489201 -0.178461 +vn 0.000047 0.000047 -1.000000 +v 16.132595 61.273998 -0.178461 +vn 0.000093 0.000093 -1.000000 +v 16.132595 63.058800 -0.178128 +vn 0.000093 0.000093 -1.000000 +v 17.917395 61.273998 -0.178128 +vn 0.000058 0.000058 -1.000000 +v 17.917395 63.058800 -0.177961 +vn -0.000093 -0.000093 -1.000000 +v 19.702194 50.564999 -0.178129 +vn -0.000047 -0.000046 -1.000000 +v 19.702194 52.349899 -0.178462 +vn -0.000047 -0.000046 -1.000000 +v 21.487095 50.564999 -0.178462 +vn 0.000000 0.000000 -1.000000 +v 21.487095 52.349899 -0.178295 +vn 0.000000 0.000000 -1.000000 +v 19.702194 54.134701 -0.178295 +vn -0.000000 0.000000 -1.000000 +v 19.702194 55.919498 -0.178295 +vn -0.000000 0.000000 -1.000000 +v 21.487095 54.134701 -0.178295 +vn 0.000047 0.000047 -1.000000 +v 21.487095 55.919498 -0.178462 +vn 0.000000 0.000000 -1.000000 +v 23.271894 50.564999 -0.178295 +vn -0.000000 0.000000 -1.000000 +v 23.271894 52.349899 -0.178295 +vn -0.000000 0.000000 -1.000000 +v 25.056694 50.564999 -0.178295 +vn 0.000047 0.000047 -1.000000 +v 25.056694 52.349899 -0.178462 +vn 0.000047 0.000047 -1.000000 +v 23.271894 54.134701 -0.178462 +vn 0.000093 0.000093 -1.000000 +v 23.271894 55.919498 -0.178129 +vn 0.000093 0.000093 -1.000000 +v 25.056694 54.134701 -0.178129 +vn 0.000058 0.000058 -1.000000 +v 25.056694 55.919498 -0.177962 +vn 0.000047 0.000047 -1.000000 +v 19.702194 57.704399 -0.178461 +vn 0.000093 0.000093 -1.000000 +v 19.702194 59.489201 -0.178128 +vn 0.000093 0.000093 -1.000000 +v 21.487095 57.704399 -0.178128 +vn 0.000058 0.000059 -1.000000 +v 21.487095 59.489201 -0.177961 +vn 0.000058 0.000059 -1.000000 +v 19.702194 61.273998 -0.177961 +vn 0.000012 0.000012 -1.000000 +v 19.702194 63.058800 -0.177961 +vn 0.000012 0.000012 -1.000000 +v 21.487724 61.280983 -0.177961 +vn 0.000058 0.000058 -1.000000 +v 23.271894 57.704399 -0.177961 +vn 0.000011 0.000012 -1.000000 +v 23.285789 59.515667 -0.177961 +vn 0.000012 0.000012 -1.000000 +v 25.070532 57.711800 -0.177961 +vn 0.000000 0.000089 -1.000000 +v 24.759043 64.843254 -0.177961 +vn -0.000058 -0.000058 -1.000000 +v 28.626394 38.071201 -0.177964 +vn -0.000058 -0.000058 -1.000000 +v 26.841494 39.856098 -0.177964 +vn -0.000093 -0.000093 -1.000000 +v 26.841494 41.640900 -0.178131 +vn -0.000093 -0.000093 -1.000000 +v 28.626394 39.856098 -0.178131 +vn -0.000047 -0.000046 -1.000000 +v 28.626394 41.640900 -0.178464 +vn -0.000058 -0.000058 -1.000000 +v 30.411194 36.286400 -0.177964 +vn -0.000093 -0.000093 -1.000000 +v 30.411194 38.071201 -0.178131 +vn -0.000093 -0.000093 -1.000000 +v 32.195988 36.286400 -0.178131 +vn -0.000047 -0.000046 -1.000000 +v 32.195988 38.071201 -0.178464 +vn -0.000047 -0.000046 -1.000000 +v 30.411194 39.856098 -0.178464 +vn 0.000000 0.000000 -1.000000 +v 30.411194 41.640900 -0.178297 +vn 0.000000 0.000000 -1.000000 +v 32.195988 39.856098 -0.178297 +vn -0.000000 0.000000 -1.000000 +v 32.195988 41.640900 -0.178297 +vn -0.000047 -0.000046 -1.000000 +v 26.841494 43.425701 -0.178463 +vn -0.000035 0.000012 -1.000000 +v 26.841494 45.210602 -0.178296 +vn 0.000000 0.000000 -1.000000 +v 28.626394 43.425701 -0.178296 +vn -0.000000 0.000000 -1.000000 +v 28.626394 45.210602 -0.178296 +vn -0.000000 0.000000 -1.000000 +v 26.841595 46.995399 -0.178296 +vn 0.000035 -0.000012 -1.000000 +v 26.841595 48.780201 -0.178296 +vn 0.000058 0.000012 -1.000000 +v 28.626394 46.995399 -0.178463 +vn 0.000070 0.000070 -1.000000 +v 28.626394 48.780201 -0.178296 +vn -0.000000 0.000000 -1.000000 +v 30.411194 43.425701 -0.178296 +vn 0.000047 0.000047 -1.000000 +v 30.411194 45.210602 -0.178463 +vn 0.000047 0.000047 -1.000000 +v 32.195988 43.425701 -0.178463 +vn 0.000093 0.000093 -1.000000 +v 32.195988 45.210602 -0.178130 +vn 0.000093 0.000093 -1.000000 +v 30.411194 46.995399 -0.178130 +vn 0.000093 0.000047 -1.000000 +v 30.411194 48.780201 -0.177963 +vn 0.000058 0.000059 -1.000000 +v 32.195988 46.995399 -0.177963 +vn 0.000012 0.000012 -1.000000 +v 32.195988 48.780201 -0.177963 +vn -0.000047 -0.000046 -1.000000 +v 33.980888 36.286400 -0.178464 +vn 0.000000 0.000000 -1.000000 +v 33.980888 38.071201 -0.178297 +vn 0.000000 0.000000 -1.000000 +v 35.765690 36.286400 -0.178297 +vn -0.000000 0.000000 -1.000000 +v 35.765690 38.071201 -0.178297 +vn -0.000000 0.000000 -1.000000 +v 33.980888 39.856098 -0.178297 +vn 0.000047 0.000047 -1.000000 +v 33.980888 41.640900 -0.178464 +vn 0.000047 0.000047 -1.000000 +v 35.765690 39.856098 -0.178464 +vn 0.000093 0.000093 -1.000000 +v 35.765690 41.640900 -0.178131 +vn -0.000000 0.000000 -1.000000 +v 37.550488 36.286400 -0.178297 +vn 0.000047 0.000047 -1.000000 +v 37.550488 38.071201 -0.178464 +vn 0.000047 0.000047 -1.000000 +v 39.335388 36.286400 -0.178464 +vn 0.000093 0.000093 -1.000000 +v 39.335388 38.071201 -0.178131 +vn 0.000093 0.000093 -1.000000 +v 37.550488 39.856098 -0.178131 +vn 0.000058 0.000059 -1.000000 +v 37.550488 41.640900 -0.177964 +vn 0.000059 0.000058 -1.000000 +v 39.335388 39.856098 -0.177964 +vn 0.000011 0.000011 -1.000000 +v 39.381493 41.680828 -0.177963 +vn 0.000093 0.000093 -1.000000 +v 33.980888 43.425701 -0.178130 +vn 0.000058 0.000059 -1.000000 +v 33.980888 45.210602 -0.177963 +vn 0.000058 0.000059 -1.000000 +v 35.765690 43.425701 -0.177963 +vn 0.000012 0.000012 -1.000000 +v 35.772675 45.211132 -0.177963 +vn 0.000012 0.000012 -1.000000 +v 33.981518 47.002380 -0.177963 +vn -0.000000 0.000000 -1.000000 +v 36.658211 48.780518 -0.177963 +vn 0.000012 0.000012 -1.000000 +v 37.564327 43.433208 -0.177963 +vn -0.000000 0.000000 -1.000000 +v 40.822720 48.482662 -0.177963 +vn 0.000047 0.000047 -1.000000 +v 26.841595 50.564999 -0.178462 +vn 0.000093 0.000093 -1.000000 +v 26.841595 52.349899 -0.178129 +vn 0.000105 0.000058 -1.000000 +v 28.626394 50.564999 -0.178129 +vn 0.000058 0.000059 -1.000000 +v 28.626394 52.349899 -0.177962 +vn 0.000059 0.000058 -1.000000 +v 26.841595 54.134701 -0.177962 +vn 0.000012 0.000012 -1.000000 +v 26.855328 55.926998 -0.177962 +vn 0.000013 0.000014 -1.000000 +v 28.626394 54.134701 -0.177962 +vn 0.000059 0.000012 -1.000000 +v 30.411194 50.564999 -0.177962 +vn 0.000011 0.000012 -1.000000 +v 30.425531 52.389397 -0.177962 +vn -0.000000 0.000000 -1.000000 +v 33.980717 52.796021 -0.177962 +vn -0.000000 0.000000 -1.000000 +v 31.749884 59.043030 -0.177961 +vn 0.000000 0.000089 -1.000000 +v 29.136114 64.840942 -0.177961 +vn -0.000000 0.000089 -1.000000 +v 34.427044 64.842712 -0.177961 +vn 0.000000 0.000000 -1.000000 +v 38.343517 57.307724 -0.177961 +vn 0.000000 0.000000 -1.000000 +v 39.781307 53.465160 -0.177962 +vn 0.000000 0.000000 -1.000000 +v 37.996674 61.274139 -0.177961 +vn -0.000035 1.000000 0.000090 +v 14.342600 72.178001 14.324911 +vn -0.000042 1.000000 0.000070 +v 12.561997 72.178299 12.540608 +vn 0.000014 1.000000 0.000042 +v 12.561997 72.178299 10.755809 +vn -0.000042 1.000000 0.000070 +v 14.346797 72.178299 12.540608 +vn 0.000014 1.000000 0.000042 +v 14.346797 72.178299 10.755809 +vn -0.000048 1.000000 0.000104 +v 16.131594 72.178101 14.325409 +vn -0.000035 1.000000 0.000091 +v 17.916395 72.178001 16.110312 +vn -0.000083 1.000000 0.000056 +v 17.916395 72.178299 14.325409 +vn -0.000007 1.000000 0.000063 +v 16.131594 72.178497 12.540608 +vn -0.000014 1.000000 -0.000042 +v 16.131594 72.178299 10.755809 +vn 0.000014 1.000000 0.000042 +v 17.916395 72.178299 12.540608 +vn -0.000014 1.000000 -0.000042 +v 17.916395 72.178299 10.755809 +vn -0.000014 1.000000 -0.000042 +v 12.561997 72.178299 8.970948 +vn 0.000083 1.000000 -0.000056 +v 12.561997 72.178299 7.186120 +vn 0.000007 1.000000 -0.000062 +v 14.346797 72.178497 8.970948 +vn 0.000048 1.000000 -0.000104 +v 14.346797 72.178101 7.186120 +vn 0.000035 0.999997 -0.002479 +v 12.561997 72.178001 5.408000 +vn 0.000008 0.998969 -0.045399 +v 12.633064 72.170998 3.942144 +vn 0.000014 0.999997 -0.002430 +v 14.346797 72.178001 5.408010 +vn 0.000042 1.000000 -0.000069 +v 16.131594 72.178299 8.970948 +vn 0.000035 1.000000 -0.000090 +v 16.135796 72.178001 7.186618 +vn 0.000042 1.000000 -0.000069 +v 17.916395 72.178299 8.970948 +vn 0.000007 0.999997 -0.002396 +v 16.190098 72.178001 5.407937 +vn 0.000000 0.998969 -0.045392 +v 20.596361 72.170998 3.942155 +vn -0.000049 1.000000 0.000104 +v 19.701294 72.178101 16.110312 +vn -0.000007 1.000000 0.000063 +v 19.701294 72.178497 14.325409 +vn -0.000042 1.000000 0.000070 +v 21.486094 72.178299 16.110312 +vn 0.000014 1.000000 0.000042 +v 21.486094 72.178299 14.325409 +vn 0.000000 1.000000 0.000000 +v 19.701294 72.178299 12.540608 +vn 0.000007 1.000000 -0.000062 +v 19.701294 72.178497 10.755809 +vn -0.000014 1.000000 -0.000042 +v 21.486094 72.178299 12.540608 +vn 0.000083 1.000000 -0.000055 +v 21.486094 72.178299 10.755809 +vn -0.000042 1.000000 0.000070 +v 23.270895 72.178299 16.110312 +vn 0.000014 1.000000 0.000042 +v 23.270895 72.178299 14.325409 +vn -0.000007 1.000000 0.000063 +v 25.055794 72.178497 16.110312 +vn -0.000014 1.000000 -0.000042 +v 25.055794 72.178299 14.325409 +vn 0.000007 1.000000 -0.000062 +v 23.270895 72.178497 12.540608 +vn 0.000049 1.000000 -0.000104 +v 23.270895 72.178101 10.755809 +vn 0.000042 1.000000 -0.000069 +v 25.055794 72.178299 12.540608 +vn 0.000034 1.000000 -0.000090 +v 25.059992 72.178001 10.756306 +vn 0.000049 1.000000 -0.000104 +v 19.701294 72.178101 8.970948 +vn 0.000014 1.000000 -0.000042 +v 19.701294 72.178001 7.186120 +vn 0.000035 1.000000 -0.000090 +v 21.486094 72.178001 8.970948 +vn 0.000007 1.000000 -0.000007 +v 21.486094 72.178001 7.186130 +vn 0.000000 0.999997 -0.002389 +v 25.055737 72.178001 5.408020 +vn 0.000014 1.000000 -0.000042 +v 23.270895 72.178001 8.970948 +vn 0.000007 1.000000 -0.000007 +v 25.039515 72.178001 8.935256 +vn -0.000000 0.998969 -0.045392 +v 28.623451 72.170998 3.942149 +vn -0.000000 0.775198 -0.631719 +v 15.238897 69.525101 0.877453 +vn 0.000047 0.000136 -1.000000 +v 12.562897 64.843697 -0.178461 +vn 0.000091 0.003644 -0.999993 +v 12.562997 66.619202 -0.177811 +vn 0.000093 0.000183 -1.000000 +v 14.347797 64.843697 -0.178128 +vn 0.000059 0.003598 -0.999994 +v 14.347797 66.619202 -0.177644 +vn 0.000052 0.048748 -0.998811 +v 12.562798 68.037399 -0.167858 +vn 0.000032 0.513694 -0.857973 +v 12.002593 68.887497 -0.090736 +vn 0.000013 0.048680 -0.998814 +v 14.374374 68.037407 -0.167858 +vn -0.000018 0.691987 -0.721910 +v 20.269928 70.473801 1.826580 +vn 0.000059 0.000147 -1.000000 +v 16.132595 64.843697 -0.177961 +vn 0.000012 0.003551 -0.999994 +v 16.154055 66.619232 -0.177644 +vn 0.000012 0.000101 -1.000000 +v 17.925240 64.844521 -0.177960 +vn -0.000012 0.513648 -0.858001 +v 22.510267 68.887497 -0.090738 +vn 0.000000 0.823504 -0.567311 +v 14.642908 72.093300 3.041309 +vn -0.000033 0.561868 -0.827227 +v 21.460333 71.466599 2.738302 +vn -0.000031 0.775178 -0.631742 +v 21.471384 69.525101 0.877453 +vn -0.000031 0.691988 -0.721909 +v 22.080894 70.473801 1.826409 +vn 0.000000 0.003539 -0.999994 +v 25.949186 66.619202 -0.177644 +vn 0.000000 0.048667 -0.998815 +v 23.273752 68.037407 -0.167858 +vn -0.000005 0.775189 -0.631729 +v 23.270794 69.525101 0.877286 +vn 0.000007 0.691985 -0.721912 +v 23.865694 70.473801 1.826579 +vn 0.000006 0.775185 -0.631734 +v 25.055593 69.525101 0.877285 +vn 0.000017 0.691987 -0.721910 +v 25.650595 70.473801 1.826409 +vn -0.000029 0.823542 -0.567255 +v 22.525110 72.093300 3.041317 +vn -0.000008 0.561909 -0.827199 +v 23.271093 71.466599 2.738129 +vn 0.000007 0.561911 -0.827198 +v 25.055895 71.466599 2.738129 +vn 0.000027 0.823525 -0.567279 +v 26.287271 72.093300 3.041310 +vn 0.000014 1.000000 0.000042 +v 26.840593 72.178299 16.110312 +vn -0.000014 1.000000 -0.000042 +v 26.840593 72.178299 14.325409 +vn -0.000000 1.000000 0.000000 +v 28.625395 72.178299 16.110312 +vn 0.000007 1.000000 -0.000062 +v 28.625395 72.178497 14.325409 +vn 0.000042 1.000000 -0.000069 +v 26.840593 72.178299 12.540608 +vn 0.000048 1.000000 -0.000104 +v 28.625395 72.178101 12.540608 +vn 0.000014 1.000000 -0.000041 +v 28.610806 72.178001 10.742947 +vn -0.000014 1.000000 -0.000042 +v 30.410294 72.178299 16.110312 +vn 0.000083 1.000000 -0.000055 +v 30.410294 72.178299 14.325409 +vn 0.000007 1.000000 -0.000062 +v 32.195087 72.178497 16.110312 +vn 0.000048 1.000000 -0.000104 +v 32.195087 72.178101 14.325409 +vn 0.000035 1.000000 -0.000090 +v 30.410194 72.178001 12.540608 +vn 0.000007 1.000000 -0.000007 +v 30.429401 72.178001 10.754096 +vn 0.000014 1.000000 -0.000042 +v 32.195087 72.178001 12.540608 +vn -0.000000 0.999997 -0.002389 +v 31.302624 72.178001 5.408023 +vn 0.000042 1.000000 -0.000069 +v 33.979889 72.178299 16.110312 +vn 0.000035 1.000000 -0.000090 +v 33.984089 72.178001 14.325907 +vn 0.000042 1.000000 -0.000069 +v 35.764690 72.178299 16.110312 +vn 0.000007 1.000000 -0.000007 +v 34.000359 72.178001 12.502805 +vn 0.000014 1.000000 -0.000042 +v 37.544792 72.178001 14.314144 +vn 0.000048 1.000000 -0.000104 +v 37.549587 72.178101 16.110312 +vn 0.000035 1.000000 -0.000090 +v 39.334389 72.178001 16.110312 +vn 0.000007 1.000000 -0.000007 +v 39.371693 72.178001 14.288094 +vn 0.000008 0.999997 -0.002396 +v 35.693676 72.178001 5.407885 +vn 0.000035 0.998969 -0.045406 +v 35.753502 72.170998 3.942148 +vn -0.000008 0.999997 -0.002415 +v 37.620258 72.178001 5.407899 +vn -0.000018 0.998968 -0.045410 +v 37.550289 72.170898 3.942239 +vn -0.000001 0.998968 -0.045411 +v 39.335087 72.170998 3.942249 +vn 0.000030 0.775187 -0.631731 +v 26.872362 69.525101 0.877454 +vn 0.000025 0.691987 -0.721910 +v 27.461559 70.473801 1.826580 +vn 0.000012 0.513654 -0.857998 +v 26.285234 68.887497 -0.090737 +vn 0.000000 0.048667 -0.998815 +v 32.195797 68.037399 -0.167858 +vn 0.000000 0.775198 -0.631719 +v 36.657089 69.525101 0.877453 +vn 0.000013 0.692000 -0.721898 +v 36.311054 70.473793 1.826573 +vn -0.000000 0.003539 -0.999994 +v 34.873428 66.619202 -0.177644 +vn 0.000000 0.513667 -0.857990 +v 31.600845 68.887497 -0.090737 +vn 0.000034 0.561853 -0.827237 +v 26.878359 71.466599 2.738299 +vn 0.000021 0.823504 -0.567310 +v 35.121429 72.093300 3.041309 +vn -0.000000 0.513667 -0.857990 +v 37.847729 68.887497 -0.090737 +vn -0.000013 0.692009 -0.721889 +v 39.941959 70.473816 1.826598 +vn -0.000000 0.000089 -1.000000 +v 42.904930 64.843697 -0.177961 +vn 0.000000 0.003539 -0.999994 +v 42.012444 66.619202 -0.177644 +vn 0.000000 0.048667 -0.998815 +v 40.227615 68.037399 -0.167858 +vn 0.000038 0.561861 -0.827232 +v 35.754860 71.466599 2.738299 +vn 0.000001 0.561858 -0.827234 +v 37.549690 71.466499 2.738379 +vn 0.000029 0.823511 -0.567300 +v 36.955490 72.093201 3.041399 +vn 0.000001 0.561839 -0.827247 +v 39.334587 71.466499 2.738389 +vn -0.000006 0.823472 -0.567356 +v 38.740387 72.093300 3.041319 +vn -0.000421 -0.146583 0.989198 +v 41.118889 0.942479 34.660599 +vn 0.000000 -0.699618 0.714517 +v 44.391533 0.102258 34.415298 +vn -0.003459 0.127773 0.991797 +v 41.115490 1.936565 34.669998 +vn -0.000050 -0.148467 0.988917 +v 42.903790 0.942479 34.660599 +vn -0.004273 0.113668 0.993510 +v 42.903587 1.928315 34.674301 +vn -0.082232 0.304298 0.949021 +v 41.053188 4.367886 33.783901 +vn -0.037536 0.316443 0.947869 +v 41.148388 2.929056 34.396301 +vn -0.117070 0.173430 0.977863 +v 41.023289 5.753856 33.468399 +vn -0.067622 0.250375 0.965784 +v 42.927788 4.131886 34.146599 +vn -0.014303 0.234158 0.972093 +v 42.932388 3.157726 34.363201 +vn -0.122585 0.166509 0.978390 +v 42.860489 5.758876 33.684799 +vn -0.000000 -0.148687 0.988884 +v 47.365124 0.942479 34.660599 +vn -0.000072 0.099394 0.995048 +v 44.687359 1.926790 34.674801 +vn -0.000000 -0.999979 0.006428 +v 49.152111 -0.178653 32.167000 +vn -0.021005 0.199668 0.979639 +v 44.720390 4.351696 34.118000 +vn -0.012225 0.224313 0.974440 +v 44.688087 3.150536 34.409401 +vn -0.057133 0.090350 0.994270 +v 44.752789 5.985795 33.829399 +vn -0.008289 0.179691 0.983688 +v 46.475189 4.350046 34.160702 +vn -0.000069 0.207509 0.978233 +v 46.460564 3.148707 34.410095 +vn -0.021252 0.073784 0.997048 +v 46.473087 5.985085 33.913502 +vn -0.000000 -0.699618 0.714517 +v 53.315693 0.102258 34.415298 +vn -0.000016 0.099274 0.995060 +v 53.569595 1.926764 34.674801 +vn 0.000000 -0.987402 0.158234 +v 52.721676 -0.160733 33.580299 +vn -0.000024 0.176382 0.984322 +v 48.283810 4.349645 34.160900 +vn -0.000067 0.070633 0.997502 +v 48.266079 5.984596 33.913799 +vn -0.000054 0.207447 0.978246 +v 53.606197 3.148677 34.410099 +vn -0.000000 -0.148687 0.988884 +v 55.397415 0.942479 34.660599 +vn 0.000000 -0.999979 0.006428 +v 56.291401 -0.178653 32.167000 +vn -0.000041 0.176384 0.984321 +v 53.616089 4.349646 34.160900 +vn -0.000035 0.070672 0.997500 +v 55.390800 5.984601 33.913799 +vn -0.000000 -1.000000 0.000089 +v 44.333202 -0.178969 30.387135 +vn 0.000000 -1.000000 -0.000000 +v 42.310062 -0.178968 24.438362 +vn 0.000000 -1.000000 -0.000000 +v 49.151913 -0.178969 27.710377 +vn 0.000000 -1.000000 -0.000000 +v 46.831470 -0.178968 23.069878 +vn 0.000000 -1.000000 -0.000000 +v 43.128212 -0.178967 18.117027 +vn 0.000000 -1.000000 -0.000000 +v 47.367214 -0.178967 17.001520 +vn -0.000000 -1.000000 0.000089 +v 50.937366 -0.178969 30.387699 +vn 0.000000 -1.000000 -0.000000 +v 51.828915 -0.178968 23.248245 +vn -0.000000 -1.000000 -0.000000 +v 56.291115 -0.178969 27.710726 +vn 0.000000 -1.000000 -0.000000 +v 56.291027 -0.178968 24.587099 +vn 0.000000 -1.000000 -0.000000 +v 51.606392 -0.178967 17.670963 +vn 0.000000 -1.000000 -0.000000 +v 56.673679 -0.178968 20.443752 +vn -0.000009 0.099202 0.995067 +v 55.564754 1.926759 34.674801 +vn -0.000000 -0.987402 0.158233 +v 58.968414 -0.160733 33.580299 +vn -0.000062 0.176421 0.984315 +v 55.400890 4.349656 34.161098 +vn -0.000055 0.207390 0.978258 +v 55.399387 3.148656 34.410301 +vn -0.000064 0.176430 0.984313 +v 57.185688 4.349656 34.161098 +vn -0.000036 0.207362 0.978264 +v 57.184143 3.148652 34.410400 +vn -0.000062 0.070699 0.997498 +v 57.186089 5.984606 33.913898 +vn 0.000356 -0.699854 0.714286 +v 64.934380 0.102254 34.415302 +vn 0.000012 -0.148686 0.988885 +v 64.260727 0.942479 34.660599 +vn 0.000076 -0.999979 0.006454 +v 64.320541 -0.178653 32.167000 +vn -0.000038 0.176373 0.984323 +v 58.980320 4.349646 34.161301 +vn -0.000057 0.070735 0.997495 +v 58.973087 5.984616 33.914101 +vn 0.000226 -0.987402 0.158234 +v 64.323067 -0.160733 33.580299 +vn 0.000009 0.099130 0.995074 +v 66.003632 1.926753 34.674801 +vn -0.000000 0.207292 0.978279 +v 64.323524 3.148646 34.410400 +vn 0.000000 0.070735 0.997495 +v 65.217987 5.984616 33.914101 +vn 0.003935 0.176416 0.984308 +v 69.679573 4.349646 34.161301 +vn -0.000126 -0.148642 0.988891 +v 66.106575 0.942458 34.660500 +vn -0.067440 -0.648778 0.757984 +v 66.689980 0.104111 34.415901 +vn -0.060514 -0.984268 0.165998 +v 66.097275 -0.159747 33.578300 +vn -0.036123 -0.999331 -0.005729 +v 66.103775 -0.178308 32.165001 +vn -0.014569 -0.119475 0.992730 +v 67.886475 0.941214 34.661301 +vn -0.224060 -0.459644 0.859374 +v 68.723480 -0.270935 34.420399 +vn -0.362290 -0.911574 0.194367 +v 68.111374 -0.532461 33.578300 +vn -0.000094 0.099489 0.995039 +v 67.891975 1.926755 34.674801 +vn -0.294118 -0.950573 -0.099529 +v 67.988274 -0.361615 32.163399 +vn 0.002428 0.207763 0.978176 +v 69.679733 3.149050 34.410328 +vn -0.000000 -1.000000 0.000089 +v 58.671181 -0.178969 30.387255 +vn 0.000000 -1.000000 -0.000000 +v 61.467224 -0.178968 24.675882 +vn 0.000000 -1.000000 -0.000000 +v 56.960903 -0.178967 16.332088 +vn 0.000000 -1.000000 -0.000000 +v 61.645950 -0.178968 19.678671 +vn 0.000676 -1.000000 0.000379 +v 66.107895 -0.178969 30.387789 +vn -0.000000 -1.000000 -0.000000 +v 64.323067 -0.178968 25.925550 +vn 0.000794 -0.999999 0.000844 +v 67.890755 -0.178969 28.605423 +vn -0.140903 -0.986835 -0.079394 +v 67.876877 -0.175904 30.381399 +vn 0.000489 -1.000000 0.000634 +v 69.677475 -0.178969 26.818291 +vn -0.000000 -1.000000 -0.000000 +v 65.215675 -0.178967 18.786381 +vn 0.000090 -1.000000 0.000030 +v 69.681458 -0.178968 25.023554 +vn -0.000000 -1.000000 -0.000000 +v 69.454544 -0.178967 17.670647 +vn -0.112133 0.034457 0.993096 +v 40.925388 7.731556 33.273102 +vn -0.100616 -0.000017 0.994925 +v 40.927494 9.543331 33.273399 +vn -0.145846 0.044865 0.988289 +v 42.767689 7.733996 33.491402 +vn -0.146646 -0.000011 0.989189 +v 42.768703 9.822048 33.491611 +vn -0.146642 -0.000001 0.989190 +v 42.768589 14.869354 33.491600 +vn -0.099935 0.007974 0.994962 +v 44.752789 7.731766 33.845100 +vn -0.112281 -0.000011 0.993677 +v 44.751415 9.501004 33.845001 +vn -0.024360 -0.004396 0.999694 +v 46.472847 7.732513 33.928799 +vn -0.112273 -0.000000 0.993677 +v 44.751389 17.547808 33.845001 +vn -0.024317 -0.000000 0.999704 +v 46.472889 17.449905 33.928799 +vn -0.100618 -0.000000 0.994925 +v 40.927490 18.437641 33.273399 +vn -0.146643 -0.000000 0.989190 +v 42.768589 22.008707 33.491600 +vn -0.000044 -0.004307 0.999991 +v 48.268631 7.731793 33.928902 +vn -0.000007 0.000021 1.000000 +v 48.366383 9.558186 33.928799 +vn 0.000000 -0.000000 1.000000 +v 50.344696 14.574258 33.928799 +vn 0.000000 0.000029 1.000000 +v 55.402206 9.517330 33.928799 +vn -0.000007 -0.004272 0.999991 +v 57.128365 7.731853 33.928902 +vn 0.000000 -0.000000 1.000000 +v 55.848209 12.640860 33.928799 +vn 0.000000 -0.000000 1.000000 +v 50.047421 22.011131 33.928799 +vn 0.000000 -0.000000 1.000000 +v 54.152695 17.906109 33.928799 +vn -0.100618 -0.000000 0.994925 +v 40.927490 27.361712 33.273399 +vn -0.146643 -0.000000 0.989190 +v 42.768589 28.255301 33.491600 +vn -0.112273 -0.000000 0.993677 +v 44.751389 26.471893 33.845001 +vn -0.024317 -0.000000 0.999704 +v 46.472889 24.688055 33.928799 +vn -0.146643 -0.000000 0.989190 +v 42.768589 34.502605 33.491600 +vn -0.100618 -0.000000 0.994925 +v 40.927490 35.393627 33.273399 +vn -0.112273 -0.000000 0.993677 +v 44.751389 32.718746 33.845001 +vn -0.024317 -0.000000 0.999704 +v 46.472889 31.955091 33.928799 +vn 0.000000 -0.000000 1.000000 +v 50.939732 25.580791 33.928799 +vn 0.000000 -0.000000 1.000000 +v 56.294373 22.011105 33.928799 +vn 0.000000 -0.000000 1.000000 +v 52.805695 30.123938 33.928799 +vn 0.000000 -0.000000 1.000000 +v 50.047501 33.612572 33.928799 +vn 0.000000 -0.000000 1.000000 +v 54.956070 36.289886 33.928799 +vn -0.000014 -0.004221 0.999991 +v 58.987049 7.731803 33.928902 +vn -0.000000 0.000029 1.000000 +v 60.756783 9.525201 33.928799 +vn 0.000000 -0.000000 1.000000 +v 59.863796 14.425513 33.928799 +vn 0.000000 -0.000000 1.000000 +v 60.979641 18.664570 33.928799 +vn 0.004019 -0.004201 0.999983 +v 69.680779 7.731826 33.928902 +vn -0.000000 0.000029 1.000000 +v 65.754601 9.522961 33.928799 +vn 0.000000 -0.000000 1.000000 +v 65.218567 15.585619 33.928799 +vn 0.004054 0.000042 0.999992 +v 69.680748 9.535944 33.928799 +vn 0.000000 -0.000000 1.000000 +v 66.111267 21.118622 33.928799 +vn 0.004097 -0.000000 0.999992 +v 69.680779 17.013491 33.928799 +vn 0.000000 -0.000000 1.000000 +v 58.525303 25.580568 33.928799 +vn 0.000000 -0.000000 1.000000 +v 57.632744 29.150301 33.928799 +vn 0.000000 -0.000000 1.000000 +v 61.648533 22.903646 33.928799 +vn 0.000000 -0.000000 1.000000 +v 59.566612 34.306507 33.928799 +vn 0.000000 -0.000000 1.000000 +v 62.838539 30.638008 33.928799 +vn 0.000000 -0.000000 1.000000 +v 65.218407 25.580603 33.928799 +vn 0.000000 -0.000000 1.000000 +v 67.181831 29.507326 33.928799 +vn 0.000000 -0.000000 1.000000 +v 65.219002 35.397713 33.928799 +vn 0.004097 -0.000000 0.999992 +v 69.680779 33.612553 33.928799 +vn -0.461021 -0.689024 0.559201 +v 70.921577 -3.057414 34.282398 +vn -0.534822 -0.844326 0.032834 +v 70.741974 -3.095864 33.171501 +vn -0.796550 -0.565920 0.212702 +v 70.384079 -2.466224 33.576900 +vn -0.451306 -0.272840 0.849636 +v 70.751678 -2.129964 34.411301 +vn -0.115444 -0.189729 0.975026 +v 71.709076 -2.432674 34.632500 +vn -0.026439 -0.789981 0.612560 +v 72.184776 -3.092774 34.394501 +vn -0.040307 -0.998082 0.046992 +v 71.714577 -3.166544 33.572899 +vn -0.577981 -0.643255 0.502156 +v 69.540276 -1.454284 33.997398 +vn -0.173053 -0.186821 0.967032 +v 70.202774 -0.728930 34.538200 +vn -0.071525 -0.036941 0.996755 +v 71.708374 -1.189545 34.667301 +vn -0.520403 -0.840212 -0.152397 +v 70.828377 -3.106474 32.248299 +vn -0.785107 -0.581930 -0.212048 +v 70.258080 -2.298124 32.379799 +vn -0.034067 -0.998789 -0.035494 +v 71.705978 -3.162864 32.618999 +vn -0.640425 -0.757230 -0.128290 +v 69.392776 -1.288264 32.756699 +vn 0.053433 -0.173120 0.983450 +v 73.191681 -2.433524 34.638100 +vn 0.073834 -0.750170 0.657109 +v 73.792580 -3.092254 34.396198 +vn -0.001069 -0.998830 0.048339 +v 73.249275 -3.174524 33.563099 +vn 0.069856 -0.015590 0.997435 +v 73.189575 -1.181495 34.677399 +vn -0.013082 -0.999389 -0.032410 +v 73.324577 -3.173244 32.396500 +vn 0.214721 -0.135396 0.967245 +v 74.612373 -2.435104 34.435600 +vn 0.187176 -0.729376 0.658009 +v 75.176277 -3.081984 34.128700 +vn 0.028414 -0.997256 0.068355 +v 74.960175 -3.171984 33.490601 +vn 0.227685 -0.013228 0.973645 +v 74.603874 -1.180105 34.469398 +vn -0.002846 -0.999944 -0.010168 +v 75.109879 -3.177414 32.170502 +vn -0.026986 -0.069277 0.997232 +v 69.799179 0.755685 34.667400 +vn -0.000325 0.102882 0.994694 +v 69.677475 1.924405 34.674999 +vn -0.009430 -0.007944 0.999924 +v 71.591675 0.575217 34.675800 +vn 0.007971 0.095608 0.995387 +v 71.461281 1.918065 34.676300 +vn 0.004070 0.070723 0.997488 +v 69.679878 5.984616 33.914101 +vn -0.019504 0.182330 0.983044 +v 71.432480 4.353405 34.146702 +vn -0.027435 0.212284 0.976823 +v 71.448380 3.147436 34.404301 +vn -0.022967 0.067524 0.997453 +v 71.424377 5.984476 33.899799 +vn 0.070078 0.024914 0.997230 +v 73.191177 0.587093 34.678699 +vn 0.062239 0.077778 0.995026 +v 73.193474 2.147096 34.593800 +vn 0.222949 0.015188 0.974712 +v 74.603775 0.591621 34.471100 +vn 0.202771 0.028778 0.978803 +v 74.608376 2.377706 34.388599 +vn -0.055442 0.206057 0.976968 +v 72.321678 3.962716 34.278801 +vn -0.063956 0.149216 0.986734 +v 73.388779 4.231866 34.282101 +vn -0.107458 0.123854 0.986465 +v 72.876381 5.168816 34.062901 +vn 0.140857 0.061465 0.988120 +v 74.604980 3.931176 34.391102 +vn -0.087187 0.060503 0.994353 +v 74.025574 6.312606 34.159500 +vn 0.136468 0.048715 0.989446 +v 74.866676 5.725996 34.221001 +vn 0.399024 -0.656902 0.639735 +v 75.966278 -3.065094 33.921501 +vn 0.423910 -0.061506 0.903614 +v 75.772675 -2.417644 34.074200 +vn 0.679177 -0.151867 0.718091 +v 76.542274 -2.425814 33.515598 +vn 0.428936 -0.813617 0.392481 +v 76.428879 -3.100474 33.258301 +vn 0.443786 -0.006586 0.896108 +v 75.769180 -1.183874 34.089600 +vn 0.648622 -0.010653 0.761036 +v 76.581177 -1.188534 33.523800 +vn 0.057296 -0.997975 0.027605 +v 76.492081 -3.170524 32.043900 +vn 0.664371 -0.645935 0.376005 +v 77.342377 -3.062464 32.555698 +vn 0.809776 -0.093183 0.579293 +v 77.243378 -2.436524 32.783798 +vn 0.962280 -0.169250 0.213004 +v 77.659081 -2.433654 31.740601 +vn 0.570953 -0.818771 0.060230 +v 77.362877 -3.090574 31.879000 +vn 0.843856 -0.017505 0.536285 +v 77.287674 -1.188044 32.799198 +vn 0.967686 -0.013393 0.251800 +v 77.684975 -1.185924 31.751200 +vn 0.446434 -0.000053 0.894817 +v 75.771278 0.592450 34.088799 +vn 0.646967 -0.000089 0.762518 +v 76.583481 0.592271 33.521999 +vn 0.416916 0.021839 0.908683 +v 75.769478 2.378576 34.088799 +vn 0.646750 0.000269 0.762702 +v 76.585777 2.377056 33.520000 +vn 0.843547 -0.000440 0.537055 +v 77.290680 0.591783 32.796700 +vn 0.968413 -0.000368 0.249351 +v 77.686279 0.591260 31.750200 +vn 0.843881 -0.000337 0.536529 +v 77.292976 2.376556 32.794701 +vn 0.968570 -0.000127 0.248741 +v 77.686279 2.376096 31.750099 +vn 0.403572 0.029387 0.914476 +v 75.776276 4.165346 34.003399 +vn 0.623670 0.007188 0.781654 +v 76.584076 4.163086 33.519901 +vn 0.380312 0.019347 0.924656 +v 75.786575 5.949636 33.919399 +vn 0.593495 0.007464 0.804803 +v 76.580078 5.947826 33.520699 +vn 0.843881 -0.000179 0.536530 +v 77.295174 4.161326 32.792702 +vn 0.968724 -0.000136 0.248142 +v 77.686279 4.160926 31.750099 +vn 0.843597 -0.000088 0.536976 +v 77.297379 5.946096 32.790699 +vn 0.968876 -0.000133 0.247547 +v 77.686378 5.945755 31.750000 +vn -0.428510 -0.757280 -0.492856 +v 70.940079 -3.093484 31.805201 +vn -0.053827 -0.871136 -0.488082 +v 71.774475 -3.097934 31.848700 +vn -0.133582 -0.618930 -0.774003 +v 71.772881 -2.102444 31.225800 +vn -0.448471 -0.616195 -0.647439 +v 70.695580 -2.093454 31.393101 +vn -0.192462 -0.790466 -0.581482 +v 71.558273 -1.119784 30.198000 +vn -0.380936 -0.834403 -0.398322 +v 69.933975 -1.021924 30.764000 +vn -0.216737 -0.845102 -0.488700 +v 73.390480 -3.103254 31.407400 +vn -0.320299 -0.541599 -0.777225 +v 73.372475 -2.283024 30.989901 +vn -0.238918 -0.782090 -0.575547 +v 73.370079 -1.477334 30.174400 +vn -0.324163 -0.911310 -0.253835 +v 75.177574 -3.121234 30.322901 +vn -0.651785 -0.480634 -0.586658 +v 74.704376 -2.472704 30.204700 +vn -0.513620 -0.610214 -0.603186 +v 74.315079 -1.846034 30.205000 +vn -0.047025 -0.990013 -0.132900 +v 69.665878 -0.176250 28.598700 +vn -0.112212 -0.967634 -0.226038 +v 71.436577 -0.169601 28.582600 +vn -0.084140 -0.996402 -0.010223 +v 71.450577 -0.177708 26.816099 +vn -0.037240 -0.999228 -0.012512 +v 71.457779 -0.178540 25.031000 +vn -0.350820 -0.911338 -0.215381 +v 73.364174 -0.542845 28.571699 +vn -0.661285 -0.700748 -0.267681 +v 74.685074 -1.471544 29.143999 +vn -0.392432 -0.918786 -0.042778 +v 73.365974 -0.553038 26.816799 +vn -0.307930 -0.945585 -0.105108 +v 73.293175 -0.362748 25.028099 +vn -0.695774 -0.718133 -0.013549 +v 74.671875 -1.481394 27.415001 +vn -0.672665 -0.725200 -0.146990 +v 74.597176 -1.291373 25.623800 +vn 0.000805 -1.000000 0.000370 +v 71.462479 -0.178968 23.248400 +vn 0.000945 -0.999999 0.000961 +v 73.247696 -0.178968 21.463732 +vn -0.147926 -0.985399 -0.084298 +v 73.230576 -0.175476 23.240700 +vn -0.387378 -0.827108 -0.407223 +v 75.172676 -1.022163 23.636700 +vn -0.041951 -0.989993 -0.134736 +v 75.015076 -0.175747 21.458300 +vn 0.000045 -1.000000 -0.000000 +v 73.245926 -0.178967 17.018736 +vn 0.005110 -0.999987 0.000662 +v 75.027122 -0.178807 19.679316 +vn 0.031425 -0.999501 -0.003257 +v 76.643074 -3.168034 30.389200 +vn -0.473583 -0.879705 -0.042874 +v 75.901474 -3.105083 28.007000 +vn -0.840950 -0.514332 -0.168127 +v 75.450974 -2.481574 28.583500 +vn 0.018244 -0.999817 -0.005776 +v 76.721375 -3.166954 28.601200 +vn 0.966168 -0.248402 0.069389 +v 77.864174 -2.434074 30.291000 +vn 0.554876 -0.831342 0.031347 +v 77.504074 -3.095394 30.338699 +vn 0.996668 -0.012080 0.080665 +v 77.894478 -1.184834 30.292700 +vn 0.964291 -0.264712 0.008433 +v 77.900879 -2.431784 28.606199 +vn 0.542070 -0.840329 0.002847 +v 77.523674 -3.093414 28.604700 +vn 0.999887 -0.011094 0.010153 +v 77.927376 -1.185544 28.606300 +vn -0.499360 -0.866172 -0.019645 +v 75.896278 -3.102524 26.239300 +vn -0.804293 -0.594085 -0.013246 +v 75.441177 -2.480214 26.821400 +vn 0.008278 -0.999965 -0.000769 +v 76.720375 -3.163594 26.828300 +vn -0.498639 -0.845501 -0.191014 +v 76.018379 -3.109914 25.164900 +vn -0.770753 -0.584899 -0.252653 +v 75.374077 -2.301094 25.269100 +vn -0.006091 -0.999630 -0.026517 +v 76.638275 -3.163244 25.549900 +vn 0.961171 -0.275243 -0.019758 +v 77.899979 -2.431273 26.824800 +vn 0.549528 -0.835264 -0.018769 +v 77.524574 -3.091383 26.826500 +vn 0.999927 -0.011909 -0.001808 +v 77.927574 -1.185044 26.820601 +vn 0.943145 -0.289345 -0.163575 +v 77.888474 -2.246953 25.263901 +vn 0.554491 -0.828810 -0.074920 +v 77.431778 -3.099974 25.543900 +vn 0.995725 -0.048783 -0.078433 +v 77.922279 -0.997758 25.027399 +vn 0.996728 -0.000253 0.080821 +v 77.895378 0.590013 30.292700 +vn 0.996730 0.000021 0.080803 +v 77.895279 2.387115 30.292700 +vn 0.999952 -0.000171 0.009777 +v 77.927879 0.589629 28.606701 +vn 0.999952 0.000007 0.009771 +v 77.927879 2.436067 28.606680 +vn 0.996732 -0.000007 0.080774 +v 77.895279 5.944516 30.292700 +vn 1.000000 -0.000205 0.000118 +v 77.928276 0.590461 26.817474 +vn 0.999997 -0.001960 -0.001670 +v 77.928276 0.592397 25.036400 +vn 1.000000 -0.000062 0.000063 +v 77.928574 2.378195 25.032858 +vn 1.000000 0.000007 0.000188 +v 77.928276 9.457088 26.814594 +vn -0.404488 -0.753320 -0.518555 +v 76.147179 -3.083794 24.760500 +vn 0.034452 -0.855946 -0.515916 +v 76.745377 -3.100234 24.822701 +vn 0.038962 -0.609884 -0.791533 +v 76.831078 -2.091223 24.173901 +vn -0.401307 -0.627682 -0.667059 +v 75.933273 -2.092643 24.297899 +vn 0.005075 -0.808726 -0.588163 +v 76.634277 -1.094403 23.098801 +vn 0.555687 -0.534944 -0.636433 +v 77.443779 -2.578294 24.573999 +vn 0.500271 -0.753879 -0.425905 +v 77.336174 -3.111044 24.873301 +vn 0.739218 -0.500399 -0.450729 +v 77.633774 -1.144973 23.588200 +vn 0.112339 -0.965680 -0.234182 +v 76.555779 -0.155708 21.441401 +vn 0.997536 -0.065335 -0.025541 +v 77.922974 0.780087 23.240101 +vn 0.999999 -0.001335 -0.000503 +v 77.928574 2.376137 23.249424 +vn 0.983314 -0.177267 -0.040871 +v 77.912979 0.957383 21.453699 +vn 0.673714 -0.708111 -0.211395 +v 77.537781 0.112696 21.436899 +vn -0.007249 -0.982133 -0.188046 +v 77.928276 2.378957 21.464899 +vn 0.137567 -0.990490 0.002359 +v 76.567474 -0.163900 19.678200 +vn 0.136922 -0.990582 -0.000002 +v 76.567375 -0.163896 17.168837 +vn 0.976941 -0.213506 -0.000622 +v 77.908073 0.949163 19.678699 +vn 0.651370 -0.758757 0.002020 +v 77.532776 0.098164 19.678699 +vn 0.999978 -0.006614 -0.000445 +v 77.927979 2.380269 19.679491 +vn 0.977047 -0.213023 -0.000023 +v 77.907974 0.949092 17.845213 +vn 0.652011 -0.758209 -0.000010 +v 77.532677 0.098099 17.742947 +vn 0.999975 -0.006981 -0.000008 +v 77.927979 2.380301 17.821136 +vn 1.000000 0.000000 0.000000 +v 77.927979 5.051712 15.217092 +vn -0.019045 -0.003878 0.999811 +v 71.425674 7.731496 33.914902 +vn -0.018602 0.000144 0.999827 +v 71.425575 9.517004 33.914700 +vn -0.018508 0.000020 0.999829 +v 71.425674 11.301794 33.914501 +vn -0.018422 0.000078 0.999830 +v 71.425674 13.086695 33.914501 +vn -0.088938 0.027575 0.995655 +v 73.127274 7.140056 33.991001 +vn -0.057674 -0.000069 0.998335 +v 73.128380 8.921254 33.992100 +vn -0.072178 0.014256 0.997290 +v 74.286880 8.328684 34.073299 +vn 0.140645 0.015845 0.989933 +v 75.131477 7.732876 34.135201 +vn -0.071659 0.000083 0.997429 +v 74.286774 10.110394 34.073399 +vn 0.122638 0.000024 0.992452 +v 75.133179 9.515494 34.135300 +vn -0.057793 0.000128 0.998329 +v 73.127579 10.706994 33.991402 +vn -0.057797 0.000110 0.998328 +v 73.127876 12.490894 33.991600 +vn -0.074569 -0.001876 0.997214 +v 74.285675 11.894694 34.073101 +vn 0.124065 -0.000041 0.992274 +v 75.132576 11.299495 34.135300 +vn -0.082921 -0.001917 0.996554 +v 74.283073 13.679594 34.073101 +vn 0.115257 -0.000590 0.993336 +v 75.083481 13.085295 34.144600 +vn -0.018306 -0.000032 0.999832 +v 71.425674 14.871494 33.914501 +vn -0.018304 0.000048 0.999833 +v 71.425674 16.656294 33.914501 +vn 0.004097 -0.000000 0.999992 +v 69.680779 24.688389 33.928799 +vn -0.018284 -0.000056 0.999833 +v 71.425674 18.441093 33.914501 +vn -0.018332 0.000048 0.999832 +v 71.425674 20.225994 33.914501 +vn -0.057942 0.000085 0.998320 +v 73.126381 14.276694 33.990601 +vn -0.057916 0.000053 0.998321 +v 73.126778 16.060595 33.991001 +vn -0.088393 0.000071 0.996086 +v 74.281380 15.464794 34.073101 +vn 0.103501 0.000899 0.994629 +v 75.036179 14.870494 34.153599 +vn -0.087958 0.000250 0.996124 +v 74.281174 17.249695 34.072899 +vn 0.108712 0.000248 0.994073 +v 75.037476 16.655594 34.153000 +vn -0.057902 -0.000013 0.998322 +v 73.126076 17.846394 33.990398 +vn -0.057843 -0.000017 0.998326 +v 73.126877 19.630194 33.991100 +vn -0.087217 0.000073 0.996189 +v 74.281380 19.034494 34.072899 +vn 0.110283 0.000127 0.993900 +v 75.040977 18.440495 34.152302 +vn -0.086625 0.000224 0.996241 +v 74.281578 20.819395 34.072899 +vn 0.111723 0.000132 0.993739 +v 75.044380 20.225294 34.151699 +vn 0.382938 -0.000229 0.923774 +v 75.793480 7.729056 33.918400 +vn 0.589887 0.000018 0.807486 +v 76.580276 7.731346 33.519501 +vn 0.384051 0.000249 0.923312 +v 75.797379 9.514804 33.916199 +vn 0.590428 0.000093 0.807090 +v 76.582581 9.516145 33.517399 +vn 0.843635 -0.000243 0.536917 +v 77.299675 7.730875 32.788700 +vn 0.969038 -0.000147 0.246911 +v 77.686378 7.730586 31.749901 +vn 0.843923 -0.000316 0.536464 +v 77.301880 9.515644 32.786598 +vn 0.969188 -0.000133 0.246322 +v 77.686478 9.515417 31.749901 +vn 0.384289 0.001781 0.923211 +v 75.799774 11.299194 33.914200 +vn 0.590498 0.000121 0.807039 +v 76.584976 11.300895 33.515400 +vn 0.378862 0.004313 0.925443 +v 75.753677 13.084595 33.922001 +vn 0.584851 0.004415 0.811129 +v 76.587173 13.085494 33.513500 +vn 0.844303 -0.000359 0.535866 +v 77.304176 11.300394 32.784599 +vn 0.969349 -0.000131 0.245686 +v 77.686478 11.300198 31.749800 +vn 0.844657 -0.000337 0.535308 +v 77.306480 13.085195 32.782600 +vn 0.969514 -0.000148 0.245036 +v 77.686478 13.085097 31.749800 +vn 0.382647 0.003664 0.923887 +v 75.755074 14.868895 33.920200 +vn 0.577438 0.007357 0.816402 +v 76.542175 14.870594 33.521000 +vn 0.384635 0.002256 0.923066 +v 75.710075 16.654795 33.927700 +vn 0.569678 0.005247 0.821851 +v 76.498276 16.656294 33.528400 +vn 0.839246 0.002230 0.543748 +v 77.308479 14.870194 32.780800 +vn 0.969659 -0.000130 0.244462 +v 77.686577 14.869897 31.749701 +vn 0.833199 0.002070 0.552969 +v 77.310379 16.654894 32.778999 +vn 0.969790 -0.000120 0.243943 +v 77.686577 16.654694 31.749701 +vn 0.386546 0.000046 0.922270 +v 75.715576 18.439495 33.924999 +vn 0.571218 -0.000347 0.820798 +v 76.503479 18.440794 33.525799 +vn 0.387379 0.000027 0.921921 +v 75.721176 20.224295 33.922401 +vn 0.571909 -0.000386 0.820317 +v 76.508980 20.225594 33.523102 +vn 0.832788 -0.000420 0.553592 +v 77.312477 18.439495 32.777000 +vn 0.969931 -0.000126 0.243380 +v 77.686676 18.439594 31.749599 +vn 0.833586 -0.000460 0.552389 +v 77.314774 20.224194 32.775002 +vn 0.970093 -0.000133 0.242734 +v 77.686676 20.224394 31.749500 +vn -0.018312 -0.000056 0.999832 +v 71.425674 22.010794 33.914501 +vn -0.018360 0.000048 0.999831 +v 71.425674 23.795595 33.914501 +vn -0.018327 -0.000048 0.999832 +v 71.425674 25.580494 33.914501 +vn -0.018358 0.000048 0.999832 +v 71.425674 27.365294 33.914501 +vn -0.057878 -0.000013 0.998324 +v 73.126274 21.415995 33.990501 +vn -0.057833 -0.000029 0.998326 +v 73.126976 23.199894 33.991199 +vn -0.085896 0.000056 0.996304 +v 74.281876 22.604195 34.072899 +vn 0.113221 0.000124 0.993570 +v 75.047874 22.010195 34.151001 +vn -0.085319 0.000190 0.996354 +v 74.282074 24.388994 34.073002 +vn 0.114684 0.000100 0.993402 +v 75.051277 23.795094 34.150398 +vn -0.057899 0.000005 0.998322 +v 73.126381 24.985695 33.990601 +vn -0.057853 0.000000 0.998325 +v 73.127174 26.769495 33.991199 +vn -0.084652 0.000094 0.996411 +v 74.282280 26.173794 34.073002 +vn 0.116165 0.000120 0.993230 +v 75.054680 25.579895 34.149799 +vn -0.084080 0.000203 0.996459 +v 74.282478 27.958694 34.073002 +vn 0.117578 0.000119 0.993064 +v 75.058075 27.364794 34.149101 +vn -0.018338 -0.000056 0.999832 +v 71.425674 29.150095 33.914501 +vn -0.018385 0.000048 0.999831 +v 71.425674 30.934895 33.914501 +vn -0.018354 -0.000048 0.999832 +v 71.425674 32.719799 33.914501 +vn -0.018396 0.000039 0.999831 +v 71.425674 34.504601 33.914501 +vn -0.057886 -0.000014 0.998323 +v 73.126480 28.555294 33.990601 +vn -0.057828 -0.000018 0.998327 +v 73.127274 30.339193 33.991299 +vn -0.083415 0.000067 0.996515 +v 74.282677 29.743494 34.073002 +vn 0.118970 0.000108 0.992898 +v 75.061478 29.149593 34.148499 +vn -0.082855 0.000215 0.996562 +v 74.282875 31.528294 34.073002 +vn 0.120397 0.000116 0.992726 +v 75.064880 30.934494 34.147900 +vn -0.057865 0.000004 0.998324 +v 73.126579 32.125000 33.990700 +vn -0.057831 -0.000028 0.998326 +v 73.127380 33.908901 33.991299 +vn -0.082183 0.000062 0.996617 +v 74.283073 33.313202 34.073002 +vn 0.121804 0.000121 0.992554 +v 75.068275 32.719299 34.147202 +vn -0.081626 0.000173 0.996663 +v 74.283279 35.098000 34.073101 +vn 0.123249 0.000076 0.992376 +v 75.071678 34.504200 34.146599 +vn 0.388172 0.000035 0.921587 +v 75.726776 22.009094 33.919701 +vn 0.572587 -0.000387 0.819844 +v 76.514580 22.010395 33.520401 +vn 0.388995 0.000027 0.921240 +v 75.732376 23.793795 33.917099 +vn 0.573268 -0.000379 0.819367 +v 76.520081 23.795195 33.517700 +vn 0.834404 -0.000478 0.551153 +v 77.317078 22.008995 32.772900 +vn 0.970256 -0.000147 0.242082 +v 77.686676 22.009193 31.749506 +vn 0.835186 -0.000470 0.549968 +v 77.319374 23.793795 32.770901 +vn 0.970422 -0.000164 0.241414 +v 77.686775 23.793995 31.749405 +vn 0.389836 0.000042 0.920884 +v 75.737976 25.578594 33.914398 +vn 0.573944 -0.000356 0.818894 +v 76.525574 25.579895 33.514999 +vn 0.390659 0.000018 0.920535 +v 75.743675 27.363394 33.911701 +vn 0.574657 -0.000383 0.818394 +v 76.531075 27.364695 33.512199 +vn 0.835980 -0.000458 0.548760 +v 77.321678 25.578495 32.768799 +vn 0.970584 -0.000149 0.240762 +v 77.686874 25.578894 31.749306 +vn 0.836779 -0.000466 0.547541 +v 77.323975 27.363295 32.766701 +vn 0.970744 -0.000129 0.240118 +v 77.686874 27.363695 31.749306 +vn 0.391444 0.000028 0.920202 +v 75.749275 29.148193 33.909100 +vn 0.575361 -0.000382 0.817899 +v 76.536674 29.149494 33.509499 +vn 0.392294 0.000031 0.919840 +v 75.754875 30.932995 33.906399 +vn 0.576058 -0.000374 0.817408 +v 76.542175 30.934294 33.506699 +vn 0.837615 -0.000493 0.546260 +v 77.326378 29.148094 32.764599 +vn 0.970918 -0.000153 0.239411 +v 77.686874 29.148495 31.749207 +vn 0.838401 -0.000478 0.545053 +v 77.328674 30.932795 32.762501 +vn 0.971085 -0.000164 0.238732 +v 77.686974 30.933393 31.749105 +vn 0.393052 0.000040 0.919516 +v 75.760475 32.717800 33.903702 +vn 0.576729 -0.000383 0.816936 +v 76.547676 32.719101 33.504002 +vn 0.393862 0.000020 0.919170 +v 75.766075 34.502602 33.901001 +vn 0.577410 -0.000375 0.816454 +v 76.553177 34.503899 33.501301 +vn 0.839192 -0.000474 0.543835 +v 77.330978 32.717602 32.760502 +vn 0.971250 -0.000150 0.238060 +v 77.687080 32.718201 31.749006 +vn 0.840017 -0.000492 0.542560 +v 77.333275 34.502399 32.758400 +vn 0.971416 -0.000145 0.237384 +v 77.687080 34.502998 31.748905 +vn 0.996734 -0.000006 0.080747 +v 77.895279 9.556273 30.292702 +vn 0.999952 -0.000000 0.009777 +v 77.927879 10.406342 28.606701 +vn 1.000000 -0.000014 0.000098 +v 77.928574 7.728987 25.033600 +vn 1.000000 0.000021 0.000149 +v 77.928574 9.513817 25.033600 +vn 1.000000 0.000014 0.000152 +v 77.928276 11.312671 26.818598 +vn 1.000000 0.000062 0.000162 +v 77.928474 11.298597 25.033600 +vn 1.000000 0.000056 0.000140 +v 77.928276 13.083497 25.033600 +vn 0.996737 -0.000007 0.080722 +v 77.895279 14.868697 30.292700 +vn 0.996736 -0.000015 0.080729 +v 77.895279 16.653494 30.292700 +vn 0.999952 -0.000055 0.009778 +v 77.927879 16.650997 28.606703 +vn 0.996733 -0.000013 0.080761 +v 77.895279 18.507692 30.292711 +vn 0.999952 -0.000062 0.009816 +v 77.928078 18.437895 28.606701 +vn 0.999951 -0.000028 0.009838 +v 77.928177 20.222794 28.606701 +vn 1.000000 -0.000042 0.000097 +v 77.928276 16.655235 26.817804 +vn 1.000000 0.000007 0.000076 +v 77.928276 14.868298 25.033600 +vn 1.000000 0.000014 0.000042 +v 77.928276 16.663050 25.024143 +vn 1.000000 -0.000070 0.000069 +v 77.928474 18.437895 26.818501 +vn 1.000000 -0.000035 0.000090 +v 77.928474 20.222794 26.818399 +vn 1.000000 -0.000063 -0.000076 +v 77.928474 20.222794 25.033600 +vn 1.000000 -0.000057 -0.000084 +v 77.928574 7.728987 23.248800 +vn 1.000000 -0.000043 -0.000042 +v 77.928780 9.513817 23.248800 +vn 1.000000 -0.000042 -0.000181 +v 77.928276 7.728977 21.463900 +vn 1.000000 -0.000063 -0.000217 +v 77.928474 9.513797 21.463900 +vn 1.000000 0.000007 -0.000007 +v 77.928780 11.298697 23.248800 +vn 1.000000 0.000057 0.000056 +v 77.928780 13.083497 23.248800 +vn 1.000000 -0.000014 -0.000183 +v 77.928474 11.298597 21.463900 +vn 1.000000 -0.000014 -0.000127 +v 77.928474 13.083497 21.463900 +vn 1.000000 -0.000035 -0.000132 +v 77.927979 9.507972 19.680229 +vn 1.000000 0.000000 0.000000 +v 77.927979 8.493902 15.599589 +vn 1.000000 -0.000062 -0.000160 +v 77.928078 11.298597 19.679100 +vn 1.000000 -0.000083 -0.000167 +v 77.928276 13.083497 19.679100 +vn 1.000000 -0.000007 -0.000021 +v 77.927979 11.298597 17.894300 +vn 1.000000 -0.000014 -0.000069 +v 77.927979 13.083397 17.894300 +vn 1.000000 0.000064 0.000077 +v 77.928574 14.868298 23.248800 +vn 1.000000 0.000063 0.000076 +v 77.928474 16.658190 23.244724 +vn 1.000000 0.000014 -0.000042 +v 77.928474 14.868298 21.463900 +vn 1.000000 0.000007 -0.000007 +v 77.928474 16.653099 21.463900 +vn 1.000000 -0.000000 -0.000056 +v 77.928276 20.222794 23.248800 +vn 1.000000 0.000083 0.000083 +v 77.928276 20.222799 21.464001 +vn 1.000000 -0.000049 -0.000146 +v 77.928474 14.868298 19.679100 +vn 1.000000 -0.000014 -0.000097 +v 77.928474 16.653099 19.679100 +vn 1.000000 -0.000035 -0.000132 +v 77.927979 14.870947 17.893204 +vn 1.000000 -0.000063 -0.000160 +v 77.928078 16.653099 17.894300 +vn 1.000000 -0.000014 -0.000042 +v 77.928474 18.438000 19.679100 +vn 1.000000 0.000014 0.000042 +v 77.928474 20.222799 19.679100 +vn 1.000000 -0.000083 -0.000167 +v 77.928276 18.437901 17.894300 +vn 1.000000 -0.000049 -0.000146 +v 77.928474 20.222799 17.894300 +vn 0.996734 -0.000007 0.080758 +v 77.895279 23.792795 30.292706 +vn 0.999951 0.000007 0.009859 +v 77.928177 22.007595 28.606707 +vn 0.999952 0.000014 0.009824 +v 77.928177 23.797699 28.606710 +vn 0.996736 -0.000007 0.080729 +v 77.895279 25.577595 30.292706 +vn 0.996738 -0.000007 0.080706 +v 77.895279 30.764734 30.292686 +vn 0.999952 -0.000000 0.009783 +v 77.928177 30.039402 28.606707 +vn 1.000000 0.000007 0.000104 +v 77.928574 22.007595 26.818405 +vn 1.000000 0.000062 0.000104 +v 77.928474 23.792395 26.818405 +vn 1.000000 -0.000007 -0.000076 +v 77.928574 22.007595 25.033606 +vn 1.000000 0.000042 -0.000069 +v 77.928474 23.792494 25.033606 +vn 1.000000 0.000056 0.000083 +v 77.928276 25.577293 26.818405 +vn 1.000000 -0.000000 0.000028 +v 77.928276 30.039343 26.818405 +vn 1.000000 0.000062 -0.000063 +v 77.928474 25.577293 25.033606 +vn 1.000000 0.000041 -0.000070 +v 77.928276 27.369865 25.033056 +vn 0.996740 -0.000007 0.080675 +v 77.895279 32.716999 30.292706 +vn 0.996742 -0.000007 0.080650 +v 77.895279 36.158592 30.292679 +vn 0.999952 -0.000042 0.009769 +v 77.928177 38.063396 28.606707 +vn 1.000000 -0.000014 -0.000014 +v 77.928276 39.821575 26.828196 +vn 1.000000 -0.000000 -0.000083 +v 77.928276 36.286243 25.033606 +vn 1.000000 -0.000000 -0.000139 +v 77.928276 22.007595 23.248806 +vn 1.000000 0.000049 -0.000132 +v 77.928276 23.792395 23.248806 +vn 1.000000 0.000063 0.000076 +v 77.928078 22.007601 21.464006 +vn 1.000000 0.000035 0.000049 +v 77.927979 23.792400 21.463905 +vn 1.000000 0.000063 -0.000118 +v 77.928078 25.577293 23.248806 +vn 1.000000 0.000035 -0.000090 +v 77.927979 27.362095 23.248806 +vn 1.000000 0.000014 0.000042 +v 77.927979 25.577299 21.464006 +vn 1.000000 0.000021 0.000063 +v 77.927979 27.362101 21.464006 +vn 1.000000 0.000014 0.000097 +v 77.928474 22.007601 19.679106 +vn 1.000000 0.000063 0.000132 +v 77.928474 23.792400 19.679106 +vn 1.000000 -0.000014 -0.000097 +v 77.928474 22.007601 17.894306 +vn 1.000000 0.000042 -0.000042 +v 77.928474 23.792400 17.894306 +vn 1.000000 0.000028 0.000111 +v 77.928276 25.577299 19.679106 +vn 1.000000 0.000042 0.000153 +v 77.928276 27.362101 19.679106 +vn 1.000000 -0.000028 -0.000111 +v 77.928276 25.577175 16.110077 +vn 1.000000 -0.000042 0.000042 +v 77.928474 27.362101 17.894306 +vn 1.000000 0.000000 -0.000083 +v 77.927979 31.824116 23.248806 +vn 1.000000 0.000007 0.000021 +v 77.927979 29.146900 21.464006 +vn 1.000000 0.000035 0.000132 +v 77.927979 30.936522 19.678568 +vn 1.000000 0.000007 0.000020 +v 77.927979 34.501945 19.698584 +vn 1.000000 0.000062 0.000160 +v 77.928078 29.146900 19.679106 +vn 1.000000 0.000014 0.000097 +v 77.928474 29.146900 17.894306 +vn 1.000000 0.000049 0.000146 +v 77.928474 30.931801 17.894306 +vn 1.000000 0.000014 0.000069 +v 77.927979 32.716599 19.679106 +vn 1.000000 0.000083 0.000167 +v 77.928276 32.716599 17.894306 +vn 1.000000 0.000062 0.000160 +v 77.928078 34.501400 17.894306 +vn -0.100618 -0.000000 0.994925 +v 40.927490 41.640526 33.273399 +vn -0.146643 -0.000000 0.989190 +v 42.768589 43.426598 33.491600 +vn -0.112273 -0.000000 0.993677 +v 44.751389 38.966061 33.845001 +vn -0.024317 -0.000000 0.999704 +v 46.472889 41.346565 33.928799 +vn -0.100619 -0.000000 0.994925 +v 40.927490 47.887360 33.273411 +vn -0.146643 -0.000000 0.989190 +v 42.768589 52.350876 33.491611 +vn -0.112273 -0.000000 0.993677 +v 44.751389 47.889843 33.845013 +vn -0.024317 -0.000000 0.999704 +v 46.472889 46.105892 33.928810 +vn -0.024317 -0.000000 0.999704 +v 46.472889 50.925152 33.928810 +vn 0.000000 -0.000000 1.000000 +v 49.282707 38.584560 33.928799 +vn 0.000000 -0.000000 1.000000 +v 53.107254 39.859211 33.928799 +vn 0.000000 -0.000000 1.000000 +v 51.118828 45.749413 33.928810 +vn 0.000000 -0.000000 1.000000 +v 54.127468 48.783627 33.928810 +vn -0.100619 -0.000000 0.994925 +v 40.927490 55.026829 33.273411 +vn -0.112273 -0.000000 0.993677 +v 44.751389 56.814083 33.845013 +vn -0.024317 -0.000000 0.999704 +v 46.472889 56.815075 33.928810 +vn -0.100616 0.000002 0.994925 +v 40.927448 62.671574 33.273407 +vn -0.146643 0.000008 0.989189 +v 42.768581 62.903614 33.491611 +vn -0.112192 0.026300 0.993338 +v 44.751389 64.845802 33.845013 +vn -0.024312 0.026354 0.999357 +v 46.472889 64.847000 33.928810 +vn 0.000000 -0.000000 1.000000 +v 50.302628 52.863174 33.928810 +vn 0.000000 -0.000000 1.000000 +v 55.911995 53.373055 33.928810 +vn 0.000000 -0.000000 1.000000 +v 52.278545 57.261288 33.928810 +vn 0.000000 -0.000000 1.000000 +v 50.940327 61.277664 33.928810 +vn 0.000000 -0.000000 1.000000 +v 56.422405 43.939152 33.928810 +vn 0.000000 -0.000000 1.000000 +v 60.756756 39.066315 33.928799 +vn 0.000000 -0.000000 1.000000 +v 60.533752 43.652096 33.928810 +vn 0.000000 -0.000000 1.000000 +v 59.963341 51.758183 33.928810 +vn 0.000000 -0.000000 1.000000 +v 61.649364 47.891411 33.928810 +vn 0.000000 -0.000000 1.000000 +v 65.887985 41.421307 33.928799 +vn 0.004097 -0.000000 0.999992 +v 69.680779 38.074322 33.928799 +vn 0.000000 -0.000000 1.000000 +v 66.468460 45.928066 33.928810 +vn 0.004097 -0.000000 0.999992 +v 69.680779 44.916443 33.928810 +vn 0.000000 -0.000000 1.000000 +v 65.664955 50.568478 33.928810 +vn 0.000000 -0.000000 1.000000 +v 58.079685 56.815472 33.928810 +vn 0.000000 -0.000000 1.000000 +v 57.856518 60.608120 33.928810 +vn 0.000007 0.026357 0.999653 +v 55.367062 64.847008 33.928810 +vn 0.000000 -0.000000 1.000000 +v 62.541588 61.277752 33.928810 +vn 0.000000 -0.000000 1.000000 +v 64.549706 56.146412 33.928810 +vn 0.004097 -0.000000 0.999992 +v 69.680779 52.709957 33.928810 +vn 0.004083 -0.000014 0.999992 +v 69.680733 59.462101 33.928810 +vn -0.000008 0.026372 0.999652 +v 64.396606 64.847008 33.928810 +vn 0.004026 -0.000014 0.999992 +v 69.680710 61.263718 33.928810 +vn 0.003677 0.026043 0.999654 +v 69.680779 64.847000 33.928810 +vn -0.097664 0.005868 0.995202 +v 40.928589 64.844200 33.273510 +vn -0.076587 -0.149176 0.985840 +v 40.933388 66.596001 33.263611 +vn -0.144056 0.017647 0.989412 +v 42.769588 64.845497 33.491711 +vn -0.129981 -0.119741 0.984260 +v 42.772888 66.594002 33.438911 +vn -0.004984 -0.636714 0.771084 +v 40.526989 70.489601 35.557110 +vn -0.028457 -0.644701 0.763906 +v 41.655590 69.700104 34.654110 +vn -0.033106 -0.422006 0.905989 +v 40.403187 68.398499 33.849911 +vn -0.010811 -0.615921 0.787734 +v 42.310490 70.490997 35.559513 +vn -0.038971 -0.601321 0.798057 +v 43.533890 69.697998 34.788113 +vn -0.071207 -0.400569 0.913496 +v 42.148090 68.404900 33.854710 +vn -0.096799 -0.098721 0.990396 +v 44.753387 66.597504 33.752213 +vn -0.022010 -0.078616 0.996662 +v 46.472290 66.598503 33.836311 +vn -0.000166 -0.595267 0.803528 +v 44.096687 70.491997 35.561211 +vn -0.004012 -0.566733 0.823892 +v 45.285088 69.701401 34.791813 +vn -0.078422 -0.354442 0.931784 +v 44.162689 68.403397 34.166210 +vn 0.000013 -0.595212 0.803568 +v 45.881390 70.491997 35.561310 +vn -0.000004 -0.562268 0.826955 +v 47.070789 69.702103 34.792210 +vn -0.014773 -0.316308 0.948542 +v 45.879189 68.404701 34.209312 +vn -0.000008 0.013842 0.999904 +v 41.963634 71.579193 35.945831 +vn -0.000226 -0.321655 0.946857 +v 41.714588 71.044502 35.865410 +vn -0.000162 -0.320836 0.947135 +v 43.499588 71.044403 35.865311 +vn 0.000023 0.724913 0.688841 +v 42.903389 72.073799 35.857410 +vn -0.000000 1.000000 0.000708 +v 46.473595 72.178001 32.173813 +vn 0.000013 0.013794 0.999905 +v 44.689690 71.579102 35.945812 +vn -0.000006 -0.320501 0.947248 +v 45.284389 71.044403 35.865311 +vn 0.000010 0.724985 0.688764 +v 44.688190 72.073799 35.857311 +vn 0.000008 0.013771 0.999905 +v 46.474590 71.579002 35.945713 +vn -0.000004 -0.320447 0.947267 +v 47.069088 71.044502 35.865410 +vn -0.000025 0.724961 0.688790 +v 47.476048 72.073799 35.857285 +vn -0.000000 0.999971 0.007637 +v 47.366074 72.175499 33.942013 +vn -0.000019 -0.075441 0.997150 +v 48.273174 66.598503 33.836411 +vn 0.000001 -0.595293 0.803509 +v 47.666290 70.491997 35.561211 +vn -0.000009 -0.562225 0.826985 +v 48.909584 69.701996 34.792210 +vn -0.000041 -0.307899 0.951419 +v 47.835663 68.405380 34.209721 +vn 0.000012 -0.595206 0.803573 +v 49.450989 70.492203 35.561413 +vn -0.000025 -0.075519 0.997144 +v 55.400013 66.598503 33.836411 +vn -0.000007 -0.595239 0.803549 +v 51.235989 70.491997 35.561211 +vn 0.000010 -0.562217 0.826990 +v 52.425388 69.702003 34.792210 +vn -0.000148 -0.307926 0.951410 +v 54.792252 68.405319 34.209717 +vn 0.000004 -0.595264 0.803530 +v 53.020687 70.492104 35.561310 +vn -0.000067 -0.562216 0.826991 +v 54.210087 69.702103 34.792210 +vn -0.000004 0.013832 0.999904 +v 49.144791 71.579193 35.945831 +vn 0.000003 -0.320490 0.947252 +v 48.853889 71.044502 35.865410 +vn 0.000001 0.997563 0.069772 +v 51.657024 72.158203 35.189919 +vn 0.000013 -0.320528 0.947239 +v 50.638889 71.044502 35.865311 +vn 0.000021 0.724918 0.688835 +v 50.042690 72.073799 35.857410 +vn -0.000012 0.013827 0.999904 +v 52.026024 71.579079 35.945812 +vn -0.000009 -0.320505 0.947247 +v 52.972263 71.044487 35.865406 +vn 0.000009 0.724983 0.688767 +v 51.827587 72.073799 35.857311 +vn -0.000017 0.725001 0.688748 +v 55.323833 72.073799 35.857311 +vn -0.000006 0.999971 0.007645 +v 57.069542 72.175499 33.942055 +vn -0.000007 1.000000 0.000715 +v 53.592026 72.178001 32.173954 +vn -0.000006 1.000000 0.000006 +v 44.582291 72.178001 28.642725 +vn -0.000014 1.000000 0.000042 +v 41.124039 72.178001 26.819138 +vn -0.000049 1.000000 0.000104 +v 41.119190 72.178101 25.034412 +vn -0.000042 1.000000 0.000070 +v 42.903988 72.178299 25.034412 +vn -0.000014 1.000000 0.000042 +v 46.470203 72.178001 28.607292 +vn -0.000035 1.000000 0.000090 +v 44.688889 72.178001 26.819212 +vn -0.000042 1.000000 0.000070 +v 44.688889 72.178299 25.034412 +vn -0.000048 1.000000 0.000104 +v 46.473690 72.178101 26.819212 +vn -0.000007 1.000000 0.000063 +v 46.473690 72.178497 25.034412 +vn -0.000007 1.000000 0.000063 +v 41.119190 72.178497 23.249611 +vn 0.000000 1.000000 0.000000 +v 41.119190 72.178299 21.464712 +vn 0.000014 1.000000 0.000042 +v 42.904087 72.178299 23.249611 +vn -0.000014 1.000000 -0.000042 +v 42.904087 72.178299 21.464712 +vn 0.000007 1.000000 -0.000062 +v 41.119190 72.178497 19.679911 +vn 0.000049 1.000000 -0.000104 +v 41.119190 72.178101 17.895111 +vn 0.000083 1.000000 -0.000055 +v 42.904087 72.178299 19.679911 +vn 0.000035 1.000000 -0.000090 +v 42.904087 72.178001 17.895111 +vn 0.000014 1.000000 0.000042 +v 44.688889 72.178299 23.249611 +vn 0.000007 1.000000 -0.000062 +v 44.688889 72.178497 21.464712 +vn -0.000014 1.000000 -0.000042 +v 46.473690 72.178299 23.249611 +vn 0.000042 1.000000 -0.000069 +v 46.473690 72.178299 21.464712 +vn 0.000048 1.000000 -0.000104 +v 44.688889 72.178101 19.679911 +vn 0.000014 1.000000 -0.000042 +v 44.688889 72.178001 17.895111 +vn 0.000035 1.000000 -0.000090 +v 46.477886 72.178001 19.680408 +vn 0.000007 1.000000 -0.000006 +v 46.546066 72.178001 17.874210 +vn -0.000007 1.000000 0.000007 +v 48.258488 72.178001 30.388912 +vn -0.000035 1.000000 0.000090 +v 48.258488 72.178001 28.604111 +vn -0.000014 1.000000 0.000042 +v 50.043388 72.178001 30.388912 +vn -0.000049 1.000000 0.000104 +v 50.043388 72.178101 28.604111 +vn -0.000083 1.000000 0.000056 +v 48.258488 72.178299 26.819212 +vn 0.000014 1.000000 0.000042 +v 48.258488 72.178299 25.034412 +vn -0.000007 1.000000 0.000063 +v 50.043388 72.178497 26.819212 +vn 0.000000 1.000000 0.000000 +v 50.043388 72.178299 25.034412 +vn -0.000035 1.000000 0.000090 +v 53.608791 72.178001 30.388414 +vn -0.000042 1.000000 0.000070 +v 51.828190 72.178299 28.604111 +vn -0.000042 1.000000 0.000070 +v 53.612988 72.178299 28.604111 +vn 0.000014 1.000000 0.000042 +v 51.828190 72.178299 26.819212 +vn -0.000014 1.000000 -0.000042 +v 51.828190 72.178299 25.034412 +vn 0.000014 1.000000 0.000042 +v 53.612988 72.178299 26.819212 +vn 0.000007 1.000000 -0.000062 +v 53.612988 72.178497 25.034412 +vn -0.000014 1.000000 -0.000042 +v 48.258488 72.178299 23.249611 +vn 0.000042 1.000000 -0.000069 +v 48.258488 72.178299 21.464712 +vn 0.000007 1.000000 -0.000062 +v 50.043388 72.178497 23.249611 +vn 0.000049 1.000000 -0.000104 +v 50.043388 72.178101 21.464712 +vn 0.000014 1.000000 -0.000042 +v 50.043388 72.178001 19.679911 +vn 0.000083 1.000000 -0.000055 +v 51.828190 72.178299 23.249611 +vn 0.000035 1.000000 -0.000090 +v 51.828190 72.178001 21.464712 +vn 0.000048 1.000000 -0.000104 +v 53.612988 72.178101 23.249611 +vn 0.000013 1.000000 -0.000042 +v 53.612988 72.178001 21.464712 +vn 0.000007 1.000000 -0.000007 +v 51.847389 72.178001 19.678202 +vn 0.000000 1.000000 0.000000 +v 52.720207 72.178001 15.753244 +vn 0.000000 0.026380 0.999652 +v 59.757168 64.846985 33.928810 +vn 0.004209 -0.069756 0.997555 +v 57.186287 66.598396 33.836311 +vn -0.000057 -0.595265 0.803529 +v 54.805687 70.492104 35.561310 +vn 0.007078 -0.563135 0.826335 +v 55.995289 69.702599 34.793011 +vn 0.006425 -0.598669 0.800971 +v 56.590988 70.492500 35.561913 +vn 0.010631 -0.559882 0.828505 +v 57.784290 69.679604 34.734211 +vn 0.013618 -0.303775 0.952647 +v 56.591988 68.405800 34.210411 +vn 0.003144 -0.056888 0.998376 +v 58.971188 66.598297 33.836311 +vn -0.002438 -0.053908 0.998543 +v 60.756088 66.598297 33.836311 +vn 0.006950 -0.617440 0.786588 +v 58.379787 70.470100 35.503910 +vn 0.009024 -0.564370 0.825473 +v 59.567589 69.685898 34.750813 +vn 0.014851 -0.297394 0.954640 +v 58.381187 68.383698 34.152710 +vn 0.004238 -0.625961 0.779843 +v 60.166790 70.453499 35.461712 +vn -0.004459 -0.561206 0.827664 +v 61.354790 69.669502 34.708611 +vn 0.004378 -0.293525 0.955941 +v 60.167988 68.367104 34.110512 +vn -0.000024 0.013958 0.999903 +v 55.398689 71.579201 35.945812 +vn -0.000036 -0.320278 0.947324 +v 55.993290 71.044601 35.865513 +vn 0.000071 0.013693 0.999906 +v 57.183487 71.579201 35.945812 +vn 0.006306 -0.338785 0.940843 +v 57.778389 71.044197 35.865112 +vn -0.000018 0.997562 0.069785 +v 62.475895 72.158195 35.189926 +vn 0.000010 0.724951 0.688801 +v 57.181988 72.073799 35.857410 +vn -0.000014 1.000000 0.000749 +v 55.397789 72.178001 32.173813 +vn -0.000035 1.000000 0.000797 +v 57.182690 72.178001 32.173813 +vn 0.000074 0.013429 0.999910 +v 58.968388 71.579102 35.945812 +vn 0.004189 -0.359844 0.933003 +v 59.563087 71.043900 35.864712 +vn 0.000012 0.724975 0.688775 +v 58.966888 72.073799 35.857311 +vn 0.000015 0.013299 0.999912 +v 60.753189 71.579002 35.945713 +vn -0.003256 -0.357313 0.933979 +v 61.347389 71.043999 35.864811 +vn -0.000003 0.724926 0.688827 +v 61.523537 72.073799 35.857292 +vn -0.000014 0.999970 0.007682 +v 58.972767 72.175499 33.942001 +vn -0.000048 1.000000 0.000812 +v 58.967487 72.178101 32.173813 +vn -0.000042 1.000000 0.000778 +v 60.752289 72.178299 32.173912 +vn -0.002387 -0.062194 0.998061 +v 62.540890 66.598396 33.836311 +vn -0.001857 -0.069560 0.997576 +v 64.325775 66.598396 33.836311 +vn -0.006655 -0.622470 0.782616 +v 61.948490 70.465897 35.494110 +vn -0.010227 -0.561952 0.827106 +v 63.136890 69.682198 34.741413 +vn -0.013000 -0.289925 0.956961 +v 61.950089 68.379501 34.143013 +vn -0.005864 -0.610618 0.791903 +v 63.731289 70.478699 35.526810 +vn -0.007537 -0.561888 0.827179 +v 64.920380 69.692101 34.766712 +vn -0.011208 -0.297293 0.954721 +v 63.732788 68.391998 34.175411 +vn -0.000663 -0.074152 0.997247 +v 66.110580 66.598503 33.836411 +vn -0.003771 -0.600852 0.799352 +v 65.514778 70.488403 35.552113 +vn -0.003738 -0.561958 0.827158 +v 66.704376 69.698502 34.783112 +vn -0.006746 -0.302859 0.953011 +v 65.516075 68.401802 34.200710 +vn -0.001317 -0.596199 0.802836 +v 67.299179 70.492104 35.561310 +vn -0.000823 -0.562311 0.826926 +v 68.488579 69.702103 34.792210 +vn -0.002115 -0.306438 0.951888 +v 67.300575 68.405296 34.209713 +vn -0.000055 0.013470 0.999909 +v 62.537987 71.579102 35.945713 +vn -0.003487 -0.342962 0.939343 +v 63.132290 71.044197 35.865013 +vn -0.000041 0.013615 0.999907 +v 64.322777 71.579201 35.945812 +vn -0.002852 -0.329680 0.944089 +v 64.917274 71.044296 35.865211 +vn -0.000020 0.997557 0.069859 +v 64.321877 72.158203 35.189911 +vn -0.000003 0.724923 0.688830 +v 64.321381 72.073799 35.857410 +vn -0.000056 0.999970 0.007723 +v 62.536987 72.175499 33.942013 +vn -0.000042 1.000000 0.000778 +v 62.537189 72.178299 32.173912 +vn -0.000068 0.999970 0.007757 +v 64.321877 72.175697 33.942013 +vn -0.000014 1.000000 0.000750 +v 64.321976 72.178497 32.173813 +vn -0.000025 0.013820 0.999905 +v 66.196655 71.579079 35.945812 +vn -0.001055 -0.322146 0.946689 +v 66.702278 71.044502 35.865410 +vn -0.000026 0.997552 0.069933 +v 66.106674 72.158203 35.189911 +vn -0.000003 0.724976 0.688774 +v 66.106178 72.073799 35.857311 +vn -0.000004 -0.320491 0.947252 +v 68.487076 71.044502 35.865410 +vn -0.000041 0.997548 0.069981 +v 67.891479 72.158302 35.189911 +vn -0.000039 0.724934 0.688819 +v 68.159149 72.073807 35.857292 +vn -0.000061 0.999970 0.007746 +v 66.106674 72.175903 33.942013 +vn 0.000013 1.000000 0.000720 +v 66.106773 72.178299 32.173813 +vn -0.000007 0.999970 0.007748 +v 67.891479 72.176003 33.942013 +vn 0.000007 1.000000 0.000698 +v 67.891678 72.178299 32.173813 +vn -0.000049 1.000000 0.000104 +v 55.397789 72.178101 30.388912 +vn -0.000007 1.000000 0.000063 +v 55.397888 72.178497 28.604111 +vn -0.000083 1.000000 0.000056 +v 57.182690 72.178299 30.388912 +vn 0.000014 1.000000 0.000042 +v 57.182690 72.178299 28.604111 +vn -0.000014 1.000000 -0.000042 +v 55.397888 72.178299 26.819212 +vn 0.000042 1.000000 -0.000069 +v 55.397888 72.178299 25.034412 +vn -0.000014 1.000000 -0.000042 +v 57.182690 72.178299 26.819212 +vn 0.000042 1.000000 -0.000069 +v 57.182690 72.178299 25.034412 +vn -0.000007 1.000000 0.000063 +v 58.967487 72.178497 30.388912 +vn -0.000000 1.000000 0.000000 +v 58.967487 72.178299 28.604111 +vn 0.000014 1.000000 0.000042 +v 60.752289 72.178299 30.388912 +vn -0.000014 1.000000 -0.000042 +v 60.752289 72.178299 28.604111 +vn 0.000007 1.000000 -0.000062 +v 58.967487 72.178497 26.819212 +vn 0.000048 1.000000 -0.000104 +v 58.967487 72.178101 25.034412 +vn 0.000083 1.000000 -0.000055 +v 60.752289 72.178299 26.819212 +vn 0.000035 1.000000 -0.000090 +v 60.752289 72.178001 25.034412 +vn 0.000035 1.000000 -0.000090 +v 55.402084 72.178001 23.250109 +vn 0.000006 1.000000 -0.000006 +v 55.436375 72.178001 21.358213 +vn 0.000014 1.000000 -0.000042 +v 58.961029 72.178001 23.244942 +vn 0.000007 1.000000 -0.000007 +v 60.772751 72.178001 23.211800 +vn 0.000000 1.000000 0.000000 +v 59.477222 72.178001 17.639956 +vn 0.000014 1.000000 0.000042 +v 62.537189 72.178299 30.388912 +vn 0.000007 1.000000 -0.000062 +v 62.537189 72.178497 28.604111 +vn -0.000014 1.000000 -0.000042 +v 64.321976 72.178299 30.388912 +vn 0.000042 1.000000 -0.000069 +v 64.321976 72.178299 28.604111 +vn 0.000049 1.000000 -0.000104 +v 62.537189 72.178101 26.819212 +vn 0.000014 1.000000 -0.000042 +v 62.537189 72.178001 25.034412 +vn 0.000035 1.000000 -0.000090 +v 64.326172 72.178001 26.819708 +vn 0.000007 1.000000 -0.000007 +v 64.305695 72.178001 24.998707 +vn -0.000014 1.000000 -0.000042 +v 66.106773 72.178299 30.388912 +vn 0.000042 1.000000 -0.000069 +v 66.106773 72.178299 28.604111 +vn 0.000007 1.000000 -0.000062 +v 67.891678 72.178497 30.388912 +vn 0.000048 1.000000 -0.000104 +v 67.891678 72.178101 28.604111 +vn 0.000000 1.000000 0.000000 +v 67.668663 72.178001 23.026688 +vn 0.000013 1.000000 -0.000042 +v 67.891678 72.178001 26.819212 +vn 0.000000 1.000000 0.000000 +v 64.767616 72.178001 19.233541 +vn 0.000000 1.000000 0.000000 +v 70.469681 72.178001 18.093473 +vn -0.018382 -0.000048 0.999831 +v 71.425674 36.289398 33.914501 +vn -0.018412 0.000048 0.999830 +v 71.425674 38.074299 33.914501 +vn -0.018392 -0.000056 0.999831 +v 71.425674 39.859100 33.914501 +vn -0.018440 0.000048 0.999830 +v 71.425674 41.643902 33.914501 +vn -0.057882 -0.000015 0.998323 +v 73.126678 35.694599 33.990799 +vn -0.057836 0.000000 0.998326 +v 73.127480 37.478500 33.991402 +vn -0.080968 0.000088 0.996717 +v 74.283478 36.882801 34.073101 +vn 0.124610 0.000109 0.992206 +v 75.075081 36.289001 34.146000 +vn -0.080425 0.000198 0.996761 +v 74.283676 38.667702 34.073101 +vn 0.125986 0.000114 0.992032 +v 75.078476 38.073898 34.145302 +vn -0.057870 -0.000014 0.998324 +v 73.126778 39.264301 33.990799 +vn -0.057812 -0.000017 0.998328 +v 73.127579 41.048199 33.991501 +vn -0.079793 0.000057 0.996811 +v 74.283875 40.452499 34.073101 +vn 0.127350 0.000073 0.991858 +v 75.081879 39.858700 34.144699 +vn -0.079377 0.000144 0.996845 +v 74.284081 42.237301 34.073101 +vn 0.127250 -0.001549 0.991869 +v 75.084976 41.643398 34.144100 +vn -0.018408 -0.000048 0.999831 +v 71.425674 43.428699 33.914501 +vn -0.018438 0.000048 0.999830 +v 71.425674 45.213600 33.914513 +vn -0.018418 -0.000057 0.999830 +v 71.425674 46.998402 33.914513 +vn -0.018467 0.000048 0.999830 +v 71.425674 48.783199 33.914513 +vn -0.057850 0.000004 0.998325 +v 73.126976 42.834000 33.990898 +vn -0.057802 0.000000 0.998328 +v 73.127678 44.617802 33.991512 +vn -0.078952 0.000048 0.996878 +v 74.284279 44.022099 34.073112 +vn 0.117945 -0.001674 0.993019 +v 75.087578 43.428200 34.143799 +vn -0.078527 0.000194 0.996912 +v 74.284477 45.806999 34.073112 +vn 0.108786 0.000012 0.994065 +v 75.090378 45.213299 34.143311 +vn -0.057837 -0.000013 0.998326 +v 73.127075 46.403599 33.990910 +vn -0.057793 -0.000030 0.998329 +v 73.127777 48.187500 33.991611 +vn -0.077907 0.000041 0.996961 +v 74.284676 47.591801 34.073112 +vn 0.109368 0.000020 0.994001 +v 75.093674 46.998100 34.142712 +vn -0.077398 0.000178 0.997000 +v 74.284874 49.376598 34.073212 +vn 0.110016 -0.000009 0.993930 +v 75.096977 48.783001 34.142113 +vn 0.394685 0.000005 0.918816 +v 75.771675 36.287399 33.898399 +vn 0.578135 -0.000391 0.815941 +v 76.558678 36.288700 33.498501 +vn 0.395408 0.000041 0.918506 +v 75.777275 38.072102 33.895699 +vn 0.578845 -0.000385 0.815438 +v 76.564278 38.073502 33.495800 +vn 0.840819 -0.000484 0.541316 +v 77.335678 36.287102 32.756302 +vn 0.971590 -0.000160 0.236670 +v 77.687180 36.287800 31.748806 +vn 0.841647 -0.000489 0.540027 +v 77.337975 38.071899 32.754200 +vn 0.971752 -0.000166 0.236006 +v 77.687180 38.072701 31.748806 +vn 0.396242 -0.000011 0.918146 +v 75.782875 39.856899 33.893002 +vn 0.579552 -0.000374 0.814935 +v 76.569778 39.858200 33.493000 +vn 0.397236 -0.003537 0.917710 +v 75.787674 41.641201 33.890800 +vn 0.580953 -0.001791 0.813935 +v 76.574677 41.642700 33.490601 +vn 0.842450 -0.000490 0.538773 +v 77.340279 39.856701 32.752102 +vn 0.971901 -0.000178 0.235387 +v 77.687279 39.857498 31.748705 +vn 0.843243 -0.000462 0.537532 +v 77.342674 41.641399 32.750000 +vn 0.972064 -0.000157 0.234717 +v 77.687378 41.642300 31.748507 +vn 0.389774 -0.004628 0.920899 +v 75.762680 43.426102 33.915001 +vn 0.579435 -0.001597 0.815017 +v 76.549774 43.427700 33.515202 +vn 0.382668 -0.003062 0.923881 +v 75.737274 45.212101 33.939713 +vn 0.585679 -0.002542 0.810539 +v 76.552177 45.213402 33.515011 +vn 0.843544 0.000980 0.537058 +v 77.343880 43.426102 32.749100 +vn 0.972168 -0.000024 0.234285 +v 77.687378 43.427200 31.748507 +vn 0.838899 0.003614 0.544275 +v 77.315979 45.210602 32.773811 +vn 0.970504 0.001783 0.241080 +v 77.686874 45.212200 31.749306 +vn 0.377826 -0.000338 0.925877 +v 75.740074 46.998199 33.939213 +vn 0.581565 -0.000707 0.813500 +v 76.526276 46.998402 33.539913 +vn 0.377880 -0.000356 0.925854 +v 75.743279 48.783100 33.938511 +vn 0.582407 -0.000583 0.812897 +v 76.529480 48.784401 33.539310 +vn 0.834859 0.002612 0.550458 +v 77.286980 46.996799 32.800011 +vn 0.968490 0.001721 0.249046 +v 77.686279 46.997002 31.750206 +vn 0.836118 -0.000171 0.548550 +v 77.286980 48.782600 32.800011 +vn 0.968143 0.000014 0.250397 +v 77.686180 48.853622 31.750307 +vn -0.018435 -0.000048 0.999830 +v 71.425674 50.568100 33.914513 +vn -0.018465 0.000048 0.999830 +v 71.425674 52.352901 33.914513 +vn -0.018445 -0.000056 0.999830 +v 71.425674 54.137699 33.914513 +vn -0.018492 0.000048 0.999829 +v 71.425674 55.922600 33.914513 +vn -0.057858 0.000004 0.998325 +v 73.127174 49.973301 33.991013 +vn -0.057810 0.000000 0.998328 +v 73.127876 51.757198 33.991611 +vn -0.076815 0.000066 0.997045 +v 74.285080 51.161400 34.073212 +vn 0.110569 0.000016 0.993868 +v 75.100281 50.567799 34.141510 +vn -0.076327 0.000205 0.997083 +v 74.285278 52.946301 34.073212 +vn 0.111157 0.000030 0.993803 +v 75.103577 52.352699 34.140911 +vn -0.057845 -0.000012 0.998326 +v 73.127274 53.542900 33.991013 +vn -0.057787 -0.000018 0.998329 +v 73.128075 55.326801 33.991711 +vn -0.075688 0.000055 0.997132 +v 74.285477 54.731098 34.073212 +vn 0.111739 0.000023 0.993738 +v 75.106880 54.137501 34.140213 +vn -0.075213 0.000187 0.997167 +v 74.285675 56.515999 34.073212 +vn 0.112265 0.000019 0.993678 +v 75.110176 55.922401 34.139610 +vn -0.018461 -0.000048 0.999830 +v 71.425674 57.707401 33.914513 +vn -0.018502 -0.000014 0.999829 +v 71.425674 59.492199 33.914513 +vn -0.018510 -0.000137 0.999829 +v 71.425674 61.277000 33.914711 +vn -0.018581 0.000003 0.999827 +v 71.425674 63.061901 33.914913 +vn -0.057824 0.000004 0.998327 +v 73.127380 57.112598 33.991112 +vn -0.057771 -0.000035 0.998330 +v 73.128174 58.896500 33.991711 +vn -0.074649 0.000064 0.997210 +v 74.285873 58.300800 34.073212 +vn 0.112826 0.000007 0.993615 +v 75.113380 57.707199 34.139011 +vn -0.074139 0.000134 0.997248 +v 74.286079 60.085602 34.073212 +vn 0.113340 0.000018 0.993556 +v 75.116676 59.492100 34.138412 +vn -0.057780 -0.000090 0.998329 +v 73.127480 60.682301 33.991310 +vn -0.057735 -0.000067 0.998332 +v 73.128281 62.466099 33.992012 +vn -0.073484 0.000002 0.997296 +v 74.286179 61.870399 34.073410 +vn 0.114001 -0.000026 0.993481 +v 75.119980 61.276901 34.137810 +vn -0.072715 0.000141 0.997353 +v 74.286278 63.655300 34.073513 +vn 0.114567 0.000123 0.993416 +v 75.123276 63.061798 34.137211 +vn 0.377937 -0.000352 0.925831 +v 75.746574 50.567902 33.937912 +vn 0.583096 -0.000569 0.812403 +v 76.532578 50.569199 33.538712 +vn 0.378035 -0.000340 0.925791 +v 75.749878 52.352798 33.937210 +vn 0.583789 -0.000564 0.811905 +v 76.535675 52.354099 33.538010 +vn 0.836571 -0.000165 0.547858 +v 77.286980 50.567501 32.800011 +vn 0.837007 -0.000158 0.547192 +v 77.286980 52.352299 32.800011 +vn 0.378049 -0.000342 0.925785 +v 75.753075 54.137600 33.936512 +vn 0.584448 -0.000568 0.811431 +v 76.538780 54.138901 33.537411 +vn 0.378108 -0.000355 0.925761 +v 75.756378 55.922501 33.935913 +vn 0.585181 -0.000586 0.810902 +v 76.541977 55.923801 33.536713 +vn 0.837458 -0.000169 0.546501 +v 77.286980 54.137100 32.800011 +vn 0.968150 -0.000006 0.250371 +v 77.686180 55.829906 31.750303 +vn 0.837931 -0.000174 0.545776 +v 77.287079 55.922001 32.799911 +vn 0.378161 -0.000345 0.925740 +v 75.759575 57.707298 33.935211 +vn 0.585844 -0.000559 0.810424 +v 76.545074 57.708599 33.536110 +vn 0.378246 -0.000356 0.925705 +v 75.762878 59.492199 33.934612 +vn 0.586576 -0.000577 0.809894 +v 76.548180 59.493500 33.535412 +vn 0.838376 -0.000184 0.545092 +v 77.287079 57.706799 32.799911 +vn 0.968153 -0.000046 0.250360 +v 77.686180 57.705799 31.750305 +vn 0.838780 -0.000170 0.544470 +v 77.287079 59.491600 32.799911 +vn 0.968146 -0.000048 0.250385 +v 77.686378 59.490601 31.750305 +vn 0.378307 -0.000356 0.925680 +v 75.766075 61.277000 33.933910 +vn 0.587249 -0.000582 0.809406 +v 76.551277 61.278301 33.534813 +vn 0.378454 -0.000225 0.925620 +v 75.769379 63.061901 33.933311 +vn 0.587906 -0.000286 0.808929 +v 76.554375 63.063202 33.534210 +vn 0.839222 -0.000183 0.543789 +v 77.287079 61.276501 32.799911 +vn 0.968147 -0.000019 0.250381 +v 77.686478 61.275501 31.750305 +vn 0.839651 -0.000089 0.543126 +v 77.287178 63.061298 32.799911 +vn 0.968153 -0.000003 0.250359 +v 77.686478 63.060299 31.750305 +vn 0.996743 -0.000056 0.080645 +v 77.895279 38.071400 30.292706 +vn 0.996743 -0.000075 0.080645 +v 77.895477 39.856300 30.292706 +vn 0.996746 -0.000045 0.080604 +v 77.895676 41.641102 30.292807 +vn 0.999952 -0.000013 0.009741 +v 77.928375 39.855900 28.606707 +vn 0.999953 0.000013 0.009707 +v 77.928177 41.640701 28.606707 +vn 1.000000 -0.000014 -0.000014 +v 77.928276 41.640701 26.818405 +vn 1.000000 0.000042 -0.000069 +v 77.928276 41.640701 25.033606 +vn 0.996738 0.000030 0.080709 +v 77.895676 45.219872 30.292686 +vn 0.999953 0.000014 0.009706 +v 77.928177 43.454933 28.606695 +vn 0.996725 0.000034 0.080860 +v 77.895676 46.995602 30.292706 +vn 0.996720 0.000006 0.080921 +v 77.895676 48.870537 30.292803 +vn 1.000000 0.000006 -0.000035 +v 77.928474 43.425598 26.818405 +vn 1.000000 0.000042 -0.000042 +v 77.928276 45.218052 26.818081 +vn 1.000000 0.000048 -0.000104 +v 77.928078 43.425598 25.033606 +vn 1.000000 0.000035 -0.000091 +v 77.927979 45.214600 25.034103 +vn 1.000000 -0.000000 -0.000083 +v 77.927979 52.349663 25.033606 +vn 1.000000 0.000000 -0.000083 +v 77.927979 38.070923 23.247925 +vn 1.000000 0.000014 -0.000042 +v 77.927979 43.407055 23.248356 +vn 1.000000 0.000014 0.000069 +v 77.927979 38.057388 17.900885 +vn 1.000000 0.000035 0.000132 +v 77.927979 36.286201 17.894306 +vn 1.000000 0.000007 0.000021 +v 77.927979 39.839104 17.913185 +vn 1.000000 0.000035 0.000132 +v 77.927979 41.644855 16.110409 +vn 1.000000 0.000007 -0.000007 +v 77.927979 45.194103 23.213106 +vn 1.000000 0.000000 0.000000 +v 77.927979 48.423023 22.534830 +vn 1.000000 0.000006 0.000020 +v 77.927979 45.245117 16.165064 +vn 1.000000 0.000005 0.000019 +v 77.927979 50.408623 14.456579 +vn 0.999953 -0.000000 0.009664 +v 77.928177 53.242126 28.606707 +vn 0.996720 -0.000020 0.080921 +v 77.895676 57.670883 30.292807 +vn 1.000000 -0.000000 -0.000056 +v 77.928276 53.241985 26.818405 +vn 0.996724 -0.000014 0.080879 +v 77.895775 59.489399 30.292807 +vn 0.999953 -0.000007 0.009642 +v 77.928177 59.466908 28.606695 +vn 0.996726 -0.000002 0.080857 +v 77.895676 61.274200 30.292807 +vn 0.996724 0.000014 0.080872 +v 77.895676 63.059101 30.292807 +vn 0.999953 -0.000021 0.009629 +v 77.928177 61.273800 28.606707 +vn 0.999954 0.000007 0.009605 +v 77.928375 63.058701 28.606707 +vn 1.000000 0.000042 -0.000042 +v 77.928276 61.266109 26.818810 +vn 1.000000 0.000014 -0.000042 +v 77.927979 63.027020 25.032934 +vn 1.000000 0.000048 -0.000077 +v 77.928078 63.058701 26.818405 +vn 1.000000 0.000000 0.000000 +v 77.927979 52.706459 20.571568 +vn 1.000000 0.000000 0.000000 +v 77.927979 57.703655 22.356342 +vn 1.000000 0.000000 0.000000 +v 77.927979 57.193928 18.149237 +vn 1.000000 0.000000 0.000000 +v 77.927979 61.471989 18.687679 +vn 0.002576 -0.075637 0.997132 +v 69.680176 66.598503 33.836411 +vn -0.018950 0.023775 0.999538 +v 71.425674 64.846703 33.914913 +vn -0.048561 -0.092364 0.994541 +v 71.429977 66.601402 33.826611 +vn -0.000008 -0.595280 0.803518 +v 69.084274 70.492104 35.561310 +vn 0.000773 -0.562767 0.826616 +v 70.273575 69.702003 34.792210 +vn 0.000635 -0.307956 0.951401 +v 69.085381 68.405296 34.209713 +vn 0.000315 -0.595729 0.803186 +v 70.869080 70.492203 35.561310 +vn -0.068468 -0.535851 0.841532 +v 72.040474 69.708702 34.794212 +vn -0.030032 -0.305904 0.951589 +v 70.855476 68.408203 34.207111 +vn -0.059269 0.007340 0.998215 +v 73.127480 64.251900 33.991512 +vn -0.085438 -0.052336 0.994968 +v 73.135078 66.020203 33.951111 +vn -0.104569 -0.030668 0.994045 +v 74.287781 65.437103 34.074711 +vn 0.103082 -0.035993 0.994022 +v 75.127876 64.842201 34.135612 +vn -0.107449 -0.213767 0.970957 +v 74.029175 67.513100 34.182911 +vn 0.077883 -0.184795 0.979686 +v 75.332176 66.926399 34.299110 +vn -0.037546 -0.549428 0.834697 +v 72.652077 70.494698 35.564312 +vn -0.102591 -0.423835 0.899910 +v 73.773674 69.101402 34.726410 +vn -0.077693 -0.269754 0.959790 +v 72.593178 68.126198 34.292912 +vn 0.016667 -0.394598 0.918703 +v 75.279274 69.141602 34.969513 +vn -0.029072 -0.469701 0.882347 +v 74.417274 70.176003 35.417713 +vn -0.000030 0.013922 0.999903 +v 69.677277 71.579201 35.945812 +vn 0.000007 -0.320464 0.947261 +v 70.271873 71.044601 35.865513 +vn -0.000035 0.997546 0.070014 +v 69.676376 72.158501 35.189911 +vn 0.000004 0.013835 0.999904 +v 71.462173 71.579201 35.945812 +vn -0.000141 -0.319866 0.947463 +v 72.056778 71.044502 35.865410 +vn -0.000020 0.997546 0.070017 +v 71.461174 72.158501 35.189911 +vn -0.000023 0.724780 0.688981 +v 71.460678 72.073799 35.857410 +vn -0.000012 0.999970 0.007687 +v 69.676376 72.175903 33.942013 +vn -0.000021 1.000000 0.000643 +v 69.676476 72.178299 32.173813 +vn 0.000014 0.999970 0.007692 +v 71.461174 72.175903 33.942013 +vn 0.000007 1.000000 0.000616 +v 71.461281 72.178497 32.173813 +vn 0.000235 0.012931 0.999916 +v 73.246979 71.579102 35.945911 +vn -0.002379 -0.311690 0.950181 +v 73.842880 71.043198 35.863811 +vn 0.000009 0.997547 0.069999 +v 73.245979 72.158600 35.189911 +vn -0.000018 0.724841 0.688916 +v 73.245476 72.073898 35.857410 +vn 0.000182 0.011955 0.999929 +v 75.031776 71.578903 35.945812 +vn 0.000293 -0.309364 0.950944 +v 75.626579 71.042603 35.863010 +vn 0.000004 0.997559 0.069822 +v 75.030876 72.158401 35.190010 +vn -0.000010 0.724919 0.688834 +v 75.030273 72.074097 35.857410 +vn -0.000008 0.999971 0.007618 +v 73.245979 72.175903 33.942013 +vn 0.000042 1.000000 0.000608 +v 73.246178 72.178299 32.173813 +vn 0.000010 0.999971 0.007653 +v 75.030777 72.175903 33.942013 +vn 0.000042 1.000000 0.000608 +v 75.030975 72.178299 32.173813 +vn 0.379223 -0.050866 0.923906 +v 75.774879 64.842598 33.931812 +vn 0.587383 -0.051346 0.807679 +v 76.558380 64.843697 33.531612 +vn 0.386749 -0.222960 0.894826 +v 75.977875 66.928802 34.089813 +vn 0.582494 -0.213156 0.784389 +v 76.732475 66.841003 33.658611 +vn 0.848333 -0.034895 0.528312 +v 77.288475 64.842400 32.797512 +vn 0.968216 0.002958 0.250098 +v 77.686478 64.845200 31.750206 +vn 0.846150 -0.235437 0.478120 +v 77.445076 66.840401 32.937012 +vn 0.966636 -0.171915 0.189893 +v 77.676476 66.590698 31.748711 +vn 0.357376 -0.519788 0.775953 +v 76.824280 68.875397 34.507610 +vn 0.599113 -0.365917 0.712157 +v 76.885880 68.327103 34.118313 +vn 0.036502 -0.484846 0.873838 +v 76.213577 70.174400 35.414513 +vn 0.162037 -0.585746 0.794132 +v 77.996780 70.515999 35.576813 +vn 0.410429 -0.738210 0.535345 +v 78.901077 70.331902 34.956913 +vn 0.697796 -0.564332 0.441147 +v 77.901474 68.882301 33.513813 +vn 0.875594 -0.441953 0.194965 +v 78.417976 68.664703 31.933512 +vn 0.648570 -0.687073 0.327548 +v 79.686974 70.489403 34.681610 +vn 0.597570 -0.685957 0.415178 +v 79.560181 70.985397 35.211910 +vn 0.890779 -0.439302 0.116303 +v 80.096680 71.014099 33.917812 +vn 0.666875 -0.741701 0.071819 +v 79.487877 70.377296 33.759411 +vn 0.880844 -0.473399 0.002514 +v 80.061577 71.009697 32.174110 +vn 0.788680 -0.609414 0.081227 +v 79.308876 70.035004 32.097511 +vn -0.000830 0.012632 0.999920 +v 76.816475 71.579399 35.945610 +vn 0.006338 -0.314724 0.949162 +v 77.410278 71.045998 35.865211 +vn 0.000380 0.997579 0.069542 +v 76.815376 72.158401 35.190010 +vn -0.000361 0.725493 0.688230 +v 76.814880 72.074501 35.857212 +vn 0.008915 0.006821 0.999937 +v 78.412277 71.584297 35.946613 +vn 0.172728 -0.491451 0.853605 +v 79.070580 71.175797 35.881413 +vn 0.023072 0.997360 0.068857 +v 78.529175 72.157097 35.189812 +vn 0.003187 0.724702 0.689055 +v 78.401474 72.068901 35.862011 +vn 0.000481 0.999971 0.007639 +v 76.815376 72.176003 33.942013 +vn 0.000524 1.000000 0.000594 +v 76.815475 72.178101 32.173813 +vn 0.028404 0.999575 0.006541 +v 78.528275 72.174301 33.940411 +vn 0.029798 0.999556 0.000505 +v 78.528374 72.176399 32.172211 +vn 0.628708 -0.313565 0.711620 +v 79.851875 71.324898 35.859711 +vn 0.369080 0.207402 0.905961 +v 79.501480 71.693298 35.875412 +vn 0.955605 0.163916 0.244849 +v 80.176277 71.705498 35.216812 +vn 0.375583 0.613745 0.694445 +v 79.398880 72.046600 35.879311 +vn 0.424547 0.855323 0.296954 +v 79.550774 72.085602 35.530113 +vn 0.967317 0.236856 0.090535 +v 80.254181 71.615303 33.963913 +vn 0.370675 0.928607 0.017033 +v 79.692078 72.105904 34.535412 +vn 0.960297 0.278965 -0.002932 +v 80.259781 71.627899 32.170212 +vn 0.373590 0.927591 0.002544 +v 79.691475 72.107903 32.766312 +vn 0.000083 1.000000 -0.000055 +v 69.676476 72.178299 30.388912 +vn 0.000035 1.000000 -0.000090 +v 69.676476 72.178001 28.604111 +vn 0.000048 1.000000 -0.000104 +v 71.461281 72.178101 30.388912 +vn 0.000014 1.000000 -0.000042 +v 71.460617 72.178001 28.602028 +vn 0.000006 1.000000 -0.000006 +v 69.766075 72.178001 26.763599 +vn 0.000035 1.000000 -0.000090 +v 73.250275 72.178001 30.389410 +vn 0.000007 1.000000 -0.000007 +v 73.283875 72.178001 28.583643 +vn 0.000468 1.000000 0.000000 +v 76.815460 72.178001 24.142246 +vn 0.000000 1.000000 0.000000 +v 72.888985 72.178001 22.179214 +vn 0.000468 1.000000 0.000000 +v 76.815460 72.178001 17.597841 +vn 0.996722 0.003275 0.080829 +v 77.895676 64.843903 30.292807 +vn 0.986219 -0.144803 0.080029 +v 77.884178 66.593201 30.292511 +vn 0.999948 0.003307 0.009588 +v 77.928177 64.843498 28.606707 +vn 0.989476 -0.144383 0.009504 +v 77.916779 66.592796 28.606411 +vn 0.912662 -0.405337 0.052436 +v 78.442680 68.424103 30.291311 +vn 0.916891 -0.399038 0.008884 +v 78.475174 68.423401 28.606112 +vn 0.999994 0.003323 -0.000062 +v 77.927979 64.843498 26.818405 +vn 0.989539 -0.144266 -0.000077 +v 77.916473 66.592796 26.815113 +vn 0.999994 0.003295 -0.000007 +v 77.927979 64.843552 24.975325 +vn 0.917005 -0.398876 -0.000067 +v 78.474976 68.423500 26.816450 +vn 0.899096 -0.437661 0.008902 +v 80.068474 71.013199 30.388311 +vn 0.843108 -0.536736 0.032907 +v 79.248878 69.791603 30.341511 +vn 0.904183 -0.427142 0.001523 +v 80.070976 71.014900 28.601912 +vn 0.850334 -0.526216 0.005341 +v 79.267174 69.792801 28.604012 +vn 0.904608 -0.426243 0.000002 +v 80.071075 71.014999 26.634195 +vn 0.850879 -0.525361 -0.000021 +v 79.267273 69.792999 26.803566 +vn 0.000481 1.000000 -0.000042 +v 76.815544 72.178001 30.386734 +vn 0.029882 0.999553 -0.000007 +v 78.528381 72.176399 30.365551 +vn 0.029875 0.999554 0.000000 +v 78.528374 72.176399 22.355930 +vn 0.960198 0.279317 0.000697 +v 80.259781 71.627502 30.385511 +vn 0.371129 0.928581 -0.000048 +v 79.691475 72.107903 30.981411 +vn 0.959698 0.281034 0.000255 +v 80.259773 71.627502 28.605801 +vn 0.371199 0.928553 0.000000 +v 79.691475 72.107903 26.519775 +vn 0.989540 -0.144260 -0.000000 +v 77.916473 66.592796 18.786373 +vn 0.917002 -0.398882 0.000000 +v 78.474976 68.423500 20.570753 +vn 0.999994 0.003288 -0.000000 +v 77.927979 64.843498 17.894520 +vn 0.904607 -0.426247 0.000000 +v 80.071075 71.014999 18.784714 +vn 0.850872 -0.525372 0.000000 +v 79.267281 69.792999 19.677589 +vn 0.959638 0.281236 0.000000 +v 80.259781 71.627502 19.676489 +vn 0.371196 0.928554 0.000000 +v 79.691475 72.107903 18.487789 +vn 0.000000 -1.000000 -0.000000 +v 46.276546 -0.178966 10.357941 +vn 0.000000 -1.000000 -0.000430 +v 45.582493 -0.178965 3.615324 +vn 0.000000 -1.000000 -0.000000 +v 50.044395 -0.178967 12.539501 +vn 0.000000 -1.000000 -0.000000 +v 53.167904 -0.178966 11.200760 +vn -0.000000 -1.000000 -0.000430 +v 50.936970 -0.178965 3.615320 +vn 0.000000 -1.000000 -0.000000 +v 53.613998 -0.178966 7.185188 +vn 0.000000 -0.606635 -0.794980 +v 43.797062 0.106962 -0.077488 +vn -0.000000 -0.000049 -1.000000 +v 45.582146 4.162075 -0.177969 +vn 0.000000 -0.981032 -0.193848 +v 49.151676 -0.153361 0.591814 +vn -0.000000 -0.999950 -0.010041 +v 49.152172 -0.177444 1.844430 +vn 0.000000 -0.056014 -0.998430 +v 47.366600 0.956638 -0.165993 +vn -0.000000 -0.004198 -0.999991 +v 47.366783 2.378700 -0.177795 +vn 0.000000 -0.606635 -0.794980 +v 50.936279 0.106962 -0.077488 +vn 0.000000 -0.000049 -1.000000 +v 52.721531 4.160935 -0.177969 +vn 0.000000 0.000000 -1.000000 +v 49.597935 8.844563 -0.177968 +vn -0.000000 -0.999950 -0.010041 +v 55.399094 -0.177444 1.844430 +vn 0.000000 -0.056014 -0.998430 +v 54.505966 0.956638 -0.165993 +vn -0.000000 -0.004198 -0.999991 +v 54.506084 2.378700 -0.177795 +vn -0.000000 -1.000000 -0.000000 +v 58.075886 -0.178966 10.754600 +vn -0.000000 -1.000000 -0.000000 +v 61.943554 -0.178967 14.125962 +vn -0.000000 -1.000000 -0.000000 +v 62.538380 -0.178966 9.862165 +vn -0.000000 -1.000000 -0.000000 +v 57.183788 -0.178966 6.292669 +vn -0.000000 -1.000000 -0.000430 +v 59.325806 -0.178966 3.615354 +vn 0.000227 -1.000000 -0.000422 +v 64.322838 -0.178966 3.615274 +vn -0.000000 -1.000000 -0.000000 +v 67.892868 -0.178967 13.431808 +vn 0.000013 -1.000000 -0.000013 +v 69.646492 -0.178967 10.745158 +vn 0.000012 -1.000000 -0.000012 +v 64.309982 -0.178966 7.178946 +vn 0.000095 -1.000000 -0.000047 +v 64.323174 -0.178966 5.400120 +vn 0.000113 -1.000000 -0.000159 +v 66.107979 -0.178966 7.184950 +vn 0.000358 -1.000000 -0.000855 +v 67.892776 -0.178966 7.184950 +vn -0.012478 -0.999844 0.012525 +v 66.105774 -0.178800 5.402950 +vn -0.060471 -0.998110 0.010934 +v 66.099174 -0.178135 3.618110 +vn -0.031943 -0.996003 0.083407 +v 67.884377 -0.177204 5.410820 +vn -0.207920 -0.972188 0.107792 +v 67.994980 -0.364470 3.622820 +vn -0.000000 -0.981032 -0.193848 +v 57.183285 -0.153361 0.591814 +vn -0.000000 -0.606635 -0.794980 +v 58.968170 0.106962 -0.077488 +vn -0.000012 -0.000011 -1.000000 +v 57.176079 7.715292 -0.177968 +vn -0.000012 -0.000060 -1.000000 +v 60.731617 4.156871 -0.177968 +vn 0.000219 -0.999949 -0.010056 +v 64.322327 -0.177444 1.844428 +vn 0.000197 -0.981037 -0.193820 +v 64.322212 -0.153361 0.591814 +vn -0.000013 -0.056026 -0.998429 +v 64.270599 0.956634 -0.165992 +vn -0.000012 -0.004210 -0.999991 +v 62.516685 2.378673 -0.177794 +vn -0.000016 -0.000015 -1.000000 +v 58.968487 5.944300 -0.177968 +vn -0.000059 -0.000058 -1.000000 +v 60.753288 5.944300 -0.177968 +vn 0.000085 -0.606684 -0.794943 +v 64.322876 0.106962 -0.077488 +vn -0.000059 -0.004256 -0.999991 +v 64.322975 2.378700 -0.177795 +vn -0.000059 -0.000107 -1.000000 +v 62.538090 4.159470 -0.177968 +vn -0.000093 -0.000093 -1.000000 +v 62.538090 5.944300 -0.178135 +vn -0.000093 -0.000142 -1.000000 +v 64.322975 4.159470 -0.178135 +vn -0.000047 -0.000046 -1.000000 +v 64.322975 5.944310 -0.178468 +vn -0.091420 -0.995760 -0.010211 +v 66.095680 -0.176716 1.842100 +vn -0.074663 -0.975210 -0.208304 +v 66.099678 -0.152384 0.588943 +vn -0.354991 -0.934544 0.024670 +v 68.113678 -0.552029 1.840260 +vn -0.331887 -0.894272 -0.300214 +v 68.124077 -0.527718 0.584330 +vn -0.028001 -0.593345 -0.804461 +v 66.105278 0.107875 -0.078044 +vn -0.000243 -0.055801 -0.998442 +v 66.107574 0.956638 -0.165993 +vn -0.000091 -0.004303 -0.999991 +v 66.107780 2.378700 -0.177961 +vn -0.129570 -0.483811 -0.865528 +v 68.013680 -0.083466 -0.082440 +vn -0.004574 -0.045135 -0.998970 +v 67.890381 0.955945 -0.166791 +vn -0.000172 -0.004097 -0.999992 +v 67.892578 2.378710 -0.178295 +vn -0.000046 -0.000096 -1.000000 +v 66.107780 4.159470 -0.178468 +vn 0.000000 0.000000 -1.000000 +v 66.107780 5.944310 -0.178301 +vn -0.000094 -0.000049 -1.000000 +v 67.892578 4.159480 -0.178301 +vn -0.000093 0.000000 -1.000000 +v 67.892578 5.944320 -0.178301 +vn -0.000000 0.000000 -1.000000 +v 44.094727 9.315643 -0.177968 +vn 0.000000 0.000000 -1.000000 +v 45.582191 13.529875 -0.177967 +vn -0.000011 -0.000011 -1.000000 +v 46.435204 18.423765 -0.177966 +vn -0.000012 -0.000011 -1.000000 +v 42.891239 21.994053 -0.177966 +vn -0.000012 -0.000011 -1.000000 +v 48.245651 16.645796 -0.177967 +vn -0.000013 -0.000013 -1.000000 +v 44.689789 20.222900 -0.177966 +vn -0.000059 -0.000058 -1.000000 +v 46.474689 20.222900 -0.177966 +vn -0.000012 -0.000012 -1.000000 +v 50.043659 14.861416 -0.177967 +vn -0.000012 -0.000011 -1.000000 +v 53.606483 11.284961 -0.177967 +vn -0.000012 -0.000011 -1.000000 +v 55.391285 9.500122 -0.177968 +vn -0.000012 -0.000012 -1.000000 +v 51.828457 13.076616 -0.177967 +vn -0.000058 -0.000058 -1.000000 +v 53.613987 13.083600 -0.177967 +vn -0.000058 -0.000058 -1.000000 +v 50.044289 16.653299 -0.177967 +vn -0.000058 -0.000058 -1.000000 +v 48.259487 18.438101 -0.177967 +vn -0.000093 -0.000093 -1.000000 +v 48.259487 20.222900 -0.178133 +vn -0.000093 -0.000093 -1.000000 +v 50.044289 18.438101 -0.178134 +vn -0.000047 -0.000046 -1.000000 +v 50.044289 20.222900 -0.178466 +vn -0.000058 -0.000058 -1.000000 +v 51.829090 14.868400 -0.177967 +vn -0.000093 -0.000093 -1.000000 +v 51.829090 16.653299 -0.178134 +vn -0.000093 -0.000093 -1.000000 +v 53.613987 14.868400 -0.178134 +vn -0.000047 -0.000046 -1.000000 +v 53.613987 16.653299 -0.178467 +vn -0.000047 -0.000046 -1.000000 +v 51.829189 18.438101 -0.178467 +vn 0.000000 0.000000 -1.000000 +v 51.829189 20.222900 -0.178299 +vn 0.000000 0.000000 -1.000000 +v 53.613987 18.438101 -0.178300 +vn -0.000000 0.000000 -1.000000 +v 53.613987 20.222900 -0.178299 +vn -0.000058 -0.000058 -1.000000 +v 42.904987 23.792601 -0.177966 +vn -0.000059 -0.000058 -1.000000 +v 41.120190 25.577400 -0.177966 +vn -0.000093 -0.000093 -1.000000 +v 41.120190 27.362200 -0.178132 +vn -0.000093 -0.000093 -1.000000 +v 42.904987 25.577400 -0.178133 +vn -0.000047 -0.000046 -1.000000 +v 42.904987 27.362301 -0.178465 +vn -0.000058 -0.000058 -1.000000 +v 44.689789 22.007799 -0.177966 +vn -0.000093 -0.000093 -1.000000 +v 44.689789 23.792601 -0.178133 +vn -0.000093 -0.000093 -1.000000 +v 46.474689 22.007799 -0.178133 +vn -0.000047 -0.000046 -1.000000 +v 46.474689 23.792601 -0.178466 +vn -0.000047 -0.000046 -1.000000 +v 44.689789 25.577400 -0.178466 +vn 0.000000 0.000000 -1.000000 +v 44.689789 27.362301 -0.178298 +vn 0.000000 0.000000 -1.000000 +v 46.474689 25.577400 -0.178299 +vn -0.000000 0.000000 -1.000000 +v 46.474689 27.362301 -0.178298 +vn -0.000047 -0.000046 -1.000000 +v 41.120190 29.147100 -0.178465 +vn 0.000000 0.000000 -1.000000 +v 41.120190 30.931900 -0.178298 +vn 0.000000 0.000000 -1.000000 +v 42.904987 29.147100 -0.178298 +vn -0.000000 0.000000 -1.000000 +v 42.904987 30.931900 -0.178298 +vn -0.000000 0.000000 -1.000000 +v 41.120190 32.716801 -0.178298 +vn 0.000047 0.000047 -1.000000 +v 41.120190 34.501598 -0.178464 +vn 0.000047 0.000047 -1.000000 +v 42.904987 32.716702 -0.178465 +vn 0.000093 0.000093 -1.000000 +v 42.904987 34.501598 -0.178131 +vn -0.000000 0.000000 -1.000000 +v 44.689789 29.147100 -0.178298 +vn 0.000047 0.000047 -1.000000 +v 44.689789 30.931900 -0.178465 +vn 0.000047 0.000047 -1.000000 +v 46.474689 29.147100 -0.178465 +vn 0.000093 0.000093 -1.000000 +v 46.474689 30.931900 -0.178132 +vn 0.000093 0.000093 -1.000000 +v 44.689789 32.716801 -0.178132 +vn 0.000058 0.000059 -1.000000 +v 44.689789 34.501598 -0.177964 +vn 0.000059 0.000058 -1.000000 +v 46.474689 32.716702 -0.177965 +vn 0.000011 0.000011 -1.000000 +v 46.513908 34.522022 -0.177964 +vn -0.000047 -0.000046 -1.000000 +v 48.259487 22.007799 -0.178466 +vn 0.000000 0.000000 -1.000000 +v 48.259487 23.792601 -0.178299 +vn 0.000000 0.000000 -1.000000 +v 50.044289 22.007799 -0.178299 +vn -0.000000 0.000000 -1.000000 +v 50.044289 23.792601 -0.178299 +vn -0.000000 0.000000 -1.000000 +v 48.259487 25.577400 -0.178299 +vn 0.000047 0.000047 -1.000000 +v 48.259487 27.362301 -0.178465 +vn 0.000047 0.000047 -1.000000 +v 50.044289 25.577400 -0.178466 +vn 0.000093 0.000093 -1.000000 +v 50.044289 27.362301 -0.178132 +vn -0.000000 0.000000 -1.000000 +v 51.829189 22.007799 -0.178299 +vn 0.000047 0.000047 -1.000000 +v 51.829189 23.792601 -0.178466 +vn 0.000047 0.000047 -1.000000 +v 53.613987 22.007799 -0.178466 +vn 0.000093 0.000093 -1.000000 +v 53.613987 23.792601 -0.178133 +vn 0.000093 0.000093 -1.000000 +v 51.829189 25.577400 -0.178133 +vn 0.000058 0.000059 -1.000000 +v 51.829189 27.362301 -0.177965 +vn 0.000058 0.000059 -1.000000 +v 53.613987 25.577400 -0.177966 +vn 0.000012 0.000012 -1.000000 +v 53.621490 27.376137 -0.177965 +vn 0.000093 0.000093 -1.000000 +v 48.259487 29.147100 -0.178132 +vn 0.000058 0.000059 -1.000000 +v 48.259487 30.931900 -0.177965 +vn 0.000058 0.000059 -1.000000 +v 50.044289 29.147100 -0.177965 +vn 0.000012 0.000012 -1.000000 +v 50.051792 30.945736 -0.177965 +vn 0.000013 0.000013 -1.000000 +v 48.259487 32.716702 -0.177965 +vn 0.000012 0.000012 -1.000000 +v 51.836693 29.160934 -0.177965 +vn -0.000000 0.000000 -1.000000 +v 54.378845 33.736641 -0.177965 +vn -0.000058 -0.000058 -1.000000 +v 57.183590 9.513960 -0.177968 +vn -0.000058 -0.000058 -1.000000 +v 55.398788 11.298800 -0.177968 +vn -0.000093 -0.000093 -1.000000 +v 55.398788 13.083600 -0.178134 +vn -0.000093 -0.000093 -1.000000 +v 57.183590 11.298800 -0.178135 +vn -0.000047 -0.000046 -1.000000 +v 57.183590 13.083600 -0.178467 +vn -0.000058 -0.000058 -1.000000 +v 58.968487 7.729130 -0.177968 +vn -0.000093 -0.000093 -1.000000 +v 58.968487 9.513960 -0.178135 +vn -0.000093 -0.000093 -1.000000 +v 60.753288 7.729130 -0.178135 +vn -0.000047 -0.000046 -1.000000 +v 60.753288 9.513960 -0.178468 +vn -0.000047 -0.000046 -1.000000 +v 58.968487 11.298800 -0.178468 +vn 0.000000 0.000000 -1.000000 +v 58.968487 13.083600 -0.178300 +vn 0.000000 0.000000 -1.000000 +v 60.753288 11.298800 -0.178301 +vn -0.000000 0.000000 -1.000000 +v 60.753288 13.083600 -0.178300 +vn -0.000047 -0.000046 -1.000000 +v 55.398788 14.868400 -0.178467 +vn 0.000000 0.000000 -1.000000 +v 55.398788 16.653299 -0.178300 +vn 0.000000 0.000000 -1.000000 +v 57.183590 14.868500 -0.178300 +vn -0.000000 0.000000 -1.000000 +v 57.183590 16.653299 -0.178300 +vn -0.000000 0.000000 -1.000000 +v 55.398788 18.438101 -0.178300 +vn 0.000047 0.000047 -1.000000 +v 55.398788 20.222900 -0.178466 +vn 0.000047 0.000047 -1.000000 +v 57.183590 18.438101 -0.178467 +vn 0.000093 0.000093 -1.000000 +v 57.183590 20.222900 -0.178133 +vn -0.000000 0.000000 -1.000000 +v 58.968487 14.868500 -0.178300 +vn 0.000047 0.000047 -1.000000 +v 58.968487 16.653299 -0.178467 +vn 0.000047 0.000047 -1.000000 +v 60.753288 14.868500 -0.178467 +vn 0.000093 0.000093 -1.000000 +v 60.753288 16.653299 -0.178134 +vn 0.000093 0.000093 -1.000000 +v 58.968487 18.438101 -0.178134 +vn 0.000058 0.000059 -1.000000 +v 58.968487 20.222900 -0.177966 +vn 0.000058 0.000059 -1.000000 +v 60.753288 18.438101 -0.177967 +vn 0.000012 0.000012 -1.000000 +v 60.753918 20.229885 -0.177966 +vn -0.000047 -0.000046 -1.000000 +v 62.538090 7.729130 -0.178468 +vn 0.000000 0.000000 -1.000000 +v 62.538090 9.513970 -0.178301 +vn 0.000000 0.000000 -1.000000 +v 64.322975 7.729140 -0.178301 +vn -0.000000 0.000000 -1.000000 +v 64.322975 9.513980 -0.178301 +vn -0.000000 0.000000 -1.000000 +v 62.538090 11.298800 -0.178301 +vn 0.000047 0.000047 -1.000000 +v 62.538090 13.083600 -0.178467 +vn 0.000047 0.000047 -1.000000 +v 64.322975 11.298800 -0.178468 +vn 0.000093 0.000093 -1.000000 +v 64.322975 13.083600 -0.178134 +vn -0.000000 0.000000 -1.000000 +v 66.107780 7.729150 -0.178301 +vn 0.000047 0.000047 -1.000000 +v 66.107780 9.513970 -0.178468 +vn -0.000047 0.000047 -1.000000 +v 67.892578 7.729140 -0.178468 +vn 0.000000 0.000093 -1.000000 +v 67.892578 9.513980 -0.178135 +vn 0.000093 0.000093 -1.000000 +v 66.107780 11.298800 -0.178135 +vn 0.000058 0.000059 -1.000000 +v 66.107780 13.083600 -0.177967 +vn -0.000035 0.000059 -1.000000 +v 67.892578 11.298800 -0.177968 +vn -0.000070 0.000024 -1.000000 +v 67.892578 13.083600 -0.177967 +vn 0.000093 0.000093 -1.000000 +v 62.538090 14.868500 -0.178134 +vn 0.000058 0.000059 -1.000000 +v 62.538090 16.653299 -0.177967 +vn 0.000058 0.000058 -1.000000 +v 64.322975 14.868500 -0.177967 +vn 0.000012 0.000012 -1.000000 +v 64.330482 16.667135 -0.177967 +vn 0.000011 0.000012 -1.000000 +v 62.552422 18.477583 -0.177966 +vn 0.000012 0.000012 -1.000000 +v 66.107780 14.868500 -0.177967 +vn -0.000035 0.000012 -1.000000 +v 67.910591 14.911695 -0.177967 +vn -0.000094 0.000000 -1.000000 +v 69.676018 22.262745 -0.177966 +vn 0.000093 0.000093 -1.000000 +v 55.398788 22.007799 -0.178133 +vn 0.000059 0.000058 -1.000000 +v 55.398788 23.792601 -0.177966 +vn 0.000058 0.000058 -1.000000 +v 57.183590 22.007799 -0.177966 +vn 0.000012 0.000012 -1.000000 +v 57.190571 23.793230 -0.177966 +vn 0.000011 0.000011 -1.000000 +v 55.425827 25.623241 -0.177965 +vn 0.000012 0.000012 -1.000000 +v 58.968487 22.007799 -0.177966 +vn -0.000000 0.000000 -1.000000 +v 61.645493 25.131050 -0.177966 +vn -0.000000 0.000000 -1.000000 +v 60.976414 29.370138 -0.177965 +vn -0.000000 0.000000 -1.000000 +v 58.075829 34.501541 -0.177964 +vn 0.000000 0.000000 -1.000000 +v 64.099648 31.601130 -0.177965 +vn 0.000000 0.000000 -1.000000 +v 63.073563 36.643475 -0.177964 +vn 0.000000 0.000000 -1.000000 +v 66.617584 25.832464 -0.177966 +vn -0.000094 0.000000 -1.000000 +v 69.676872 29.504004 -0.177965 +vn -0.000093 0.000000 -1.000000 +v 69.675461 33.609013 -0.177965 +vn 0.000042 -1.000000 0.000003 +v 73.224701 -0.178967 12.696108 +vn 0.000131 -1.000000 -0.000183 +v 71.462479 -0.178966 10.754600 +vn 0.004926 -0.999988 -0.000031 +v 75.027084 -0.178806 12.540264 +vn 0.000362 -1.000000 -0.000905 +v 73.247276 -0.178966 10.754600 +vn 0.005346 -0.999983 -0.002181 +v 75.027779 -0.178847 10.754400 +vn 0.000112 -1.000000 -0.000058 +v 69.677673 -0.178966 8.969780 +vn 0.000543 -0.999997 -0.002187 +v 69.677673 -0.178966 7.184950 +vn -0.012616 -0.999839 0.012778 +v 71.459976 -0.178780 8.972630 +vn -0.062766 -0.997985 0.009253 +v 71.452675 -0.177950 7.187720 +vn -0.021465 -0.978674 0.204297 +v 69.672073 -0.172169 5.425060 +vn -0.240717 -0.909833 0.338021 +v 69.611076 -0.827591 3.714910 +vn -0.089693 -0.964093 0.249961 +v 71.451775 -0.167587 5.434010 +vn -0.146991 -0.839687 0.522799 +v 70.974777 -1.103090 3.808700 +vn -0.033238 -0.995749 0.085903 +v 73.238480 -0.176921 8.981300 +vn -0.215635 -0.969866 0.113407 +v 73.299873 -0.365106 7.193500 +vn -0.017853 -0.977650 0.209478 +v 75.023079 -0.172184 8.994870 +vn -0.247590 -0.904348 0.347640 +v 74.865974 -0.829124 7.299480 +vn -0.354970 -0.894595 0.271469 +v 73.375275 -0.547409 5.434820 +vn -0.227009 -0.781594 0.581015 +v 72.707275 -1.286290 3.823640 +vn -0.501430 -0.797674 0.335088 +v 74.617081 -1.292721 5.817860 +vn -0.546704 -0.673852 0.497029 +v 74.313576 -1.754521 4.333100 +vn 0.136909 -0.990584 -0.000118 +v 76.567375 -0.163896 12.538500 +vn 0.136641 -0.990618 -0.002322 +v 76.568779 -0.163361 10.754200 +vn 0.977087 -0.212840 0.000230 +v 77.907974 0.949092 10.754516 +vn 0.651983 -0.758233 -0.000047 +v 77.532677 0.098099 12.539000 +vn 0.999975 -0.006988 0.000083 +v 77.927979 2.380267 10.755521 +vn 0.651973 -0.758241 -0.000408 +v 77.533279 0.098675 10.754900 +vn -0.408091 -0.773032 0.485677 +v 76.126175 -3.068991 5.678340 +vn -0.334087 -0.927602 0.167152 +v 75.909576 -3.102941 4.610810 +vn -0.656150 -0.621318 0.428289 +v 75.460480 -2.477701 5.017860 +vn -0.437742 -0.688638 0.578066 +v 75.822479 -1.786411 6.208030 +vn 0.042599 -0.566060 0.823262 +v 76.722176 -2.081011 6.386400 +vn 0.098194 -0.817411 0.567624 +v 77.110176 -3.090401 5.760590 +vn 0.000376 -0.999258 0.038526 +v 76.720276 -3.158831 4.974300 +vn 0.041637 -0.837819 0.544358 +v 76.160477 -1.094971 7.402270 +vn -0.101813 -0.990205 0.095542 +v 75.461876 -3.136871 3.113109 +vn -0.462470 -0.769501 0.440443 +v 74.716881 -2.786261 3.790039 +vn 0.027531 -0.999596 0.007064 +v 76.700180 -3.166031 3.665989 +vn 0.600040 -0.658777 0.453833 +v 77.613777 -3.054131 5.668790 +vn 0.709393 -0.280383 0.646643 +v 77.532974 -2.253231 5.978920 +vn 0.971292 -0.215653 0.100425 +v 77.889275 -2.431451 4.980050 +vn 0.530851 -0.847309 -0.016284 +v 77.526474 -3.089021 4.970500 +vn 0.795648 -0.452026 0.403259 +v 77.493675 -0.796540 6.898380 +vn 0.990587 -0.042366 0.130165 +v 77.911476 -1.003451 5.206670 +vn 0.960993 -0.263191 -0.084988 +v 77.858574 -2.433071 3.722180 +vn 0.550526 -0.833467 -0.047473 +v 77.478775 -3.093771 3.717589 +vn 0.996358 -0.010117 -0.084669 +v 77.885674 -1.186790 3.723070 +vn 0.157035 -0.960873 0.228172 +v 76.572479 -0.152853 8.997100 +vn 0.977145 -0.212571 0.000564 +v 77.908875 0.949072 8.969990 +vn 0.698076 -0.707739 0.108606 +v 77.536179 0.103127 8.979850 +vn 0.999977 -0.006829 0.000112 +v 77.928276 2.380277 8.970423 +vn 0.990461 -0.135561 0.024695 +v 77.911774 0.953151 7.195590 +vn 0.999982 -0.005988 0.000232 +v 77.928177 2.379679 7.185490 +vn 1.000000 -0.000021 -0.000007 +v 77.928276 4.178149 7.168506 +vn 0.998682 -0.041967 0.029535 +v 77.921074 0.774726 5.409720 +vn 0.999926 -0.003003 -0.011816 +v 77.928276 2.377499 5.400730 +vn 0.996372 -0.000477 -0.085107 +v 77.886177 0.590691 3.724570 +vn 0.996199 -0.000418 -0.087106 +v 77.886078 2.375249 3.726460 +vn 0.999919 -0.000005 -0.012680 +v 77.928276 4.159310 5.401210 +vn 0.999919 -0.000041 -0.012702 +v 77.928276 7.726214 5.401211 +vn 0.996145 0.000073 -0.087716 +v 77.885780 4.161237 3.726943 +vn -0.440012 -0.762709 0.473988 +v 70.918777 -3.064070 2.063449 +vn -0.541949 -0.840373 0.008039 +v 70.739777 -3.092900 1.014630 +vn -0.794828 -0.583060 0.168194 +v 70.383774 -2.471830 1.392000 +vn -0.421091 -0.710882 0.563320 +v 70.618675 -1.783100 2.607930 +vn -0.183202 -0.640077 0.746149 +v 71.696579 -2.087991 2.773990 +vn -0.083100 -0.874629 0.477618 +v 72.172775 -3.096860 2.142839 +vn -0.036273 -0.998549 0.039814 +v 71.711578 -3.161320 1.393540 +vn -0.507879 -0.834967 0.211870 +v 69.407974 -1.292750 2.218560 +vn -0.565434 -0.791417 -0.232257 +v 70.836578 -3.079390 0.256751 +vn -0.813442 -0.504348 -0.289733 +v 70.397377 -2.468700 0.567926 +vn -0.029901 -0.997355 -0.066249 +v 71.706779 -3.150840 0.583702 +vn -0.649991 -0.718338 -0.247995 +v 69.530075 -1.468300 0.910710 +vn -0.444175 -0.612356 -0.654010 +v 70.941978 -3.060360 -0.106034 +vn 0.001490 -0.709329 -0.704876 +v 71.791077 -3.065010 -0.083825 +vn -0.018346 -0.053393 -0.998405 +v 71.795479 -2.420550 -0.162891 +vn -0.454164 -0.178581 -0.872837 +v 70.838577 -2.424890 -0.095169 +vn -0.029000 -0.008426 -0.999544 +v 71.714676 -1.203640 -0.171046 +vn -0.287265 -0.319251 -0.903082 +v 69.933678 -0.944528 -0.078507 +vn -0.339641 -0.644248 0.685266 +v 73.372375 -2.279261 3.011130 +vn -0.195634 -0.919143 0.341911 +v 73.985779 -3.101300 2.605849 +vn -0.007641 -0.999612 0.026796 +v 73.239677 -3.167130 1.396110 +vn -0.002696 -0.997700 -0.067737 +v 73.222878 -3.157370 0.593390 +vn 0.002637 -0.999992 0.002941 +v 75.056580 -3.169350 1.692700 +vn 0.014810 -0.998604 -0.050695 +v 74.747681 -3.159910 0.688580 +vn 0.009677 -0.710825 -0.703303 +v 73.201279 -3.075000 -0.062453 +vn 0.017374 -0.075608 -0.996986 +v 73.200577 -2.422090 -0.154069 +vn 0.013976 -0.007019 -0.999878 +v 73.201477 -1.182710 -0.172512 +vn 0.058355 -0.706878 -0.704924 +v 74.583977 -3.087490 -0.022278 +vn 0.097872 -0.073209 -0.992503 +v 74.568581 -2.423420 -0.119360 +vn 0.105573 -0.005473 -0.994397 +v 74.564079 -1.180470 -0.135534 +vn -0.007944 -0.031850 -0.999461 +v 69.801178 0.766564 -0.169697 +vn -0.000357 -0.003075 -0.999995 +v 69.677780 2.377110 -0.178370 +vn -0.008819 -0.009334 -0.999918 +v 71.589874 0.582322 -0.174929 +vn 0.000816 -0.001427 -0.999999 +v 71.462280 2.374990 -0.178460 +vn -0.000052 -0.000080 -1.000000 +v 69.677376 4.159490 -0.178635 +vn -0.000047 0.000047 -1.000000 +v 69.677376 5.944330 -0.178801 +vn 0.001330 -0.000019 -0.999999 +v 71.462173 4.159490 -0.178635 +vn 0.001365 0.000060 -0.999999 +v 71.462173 5.944320 -0.178468 +vn 0.013168 -0.000636 -0.999913 +v 73.200378 0.589123 -0.173984 +vn 0.013885 -0.000276 -0.999904 +v 73.199379 2.374410 -0.173983 +vn 0.108717 -0.000566 -0.994073 +v 74.560577 0.587999 -0.138365 +vn 0.108558 -0.000105 -0.994090 +v 74.557175 2.372860 -0.139010 +vn 0.013950 -0.000049 -0.999903 +v 73.199478 4.159320 -0.173958 +vn 0.013714 -0.000024 -0.999906 +v 73.199280 5.944160 -0.173935 +vn 0.108333 -0.000103 -0.994115 +v 74.553680 4.157630 -0.139655 +vn 0.108118 -0.000104 -0.994138 +v 74.550278 5.942400 -0.140301 +vn 0.031369 -0.999398 -0.014854 +v 76.463379 -3.169230 2.146099 +vn 0.332642 -0.846538 -0.415599 +v 76.122681 -3.097460 0.796676 +vn 0.944517 -0.232153 -0.232360 +v 77.639679 -2.436410 2.282260 +vn 0.561458 -0.820347 -0.108610 +v 77.279579 -3.099620 2.244249 +vn 0.965035 -0.010141 -0.261924 +v 77.667076 -1.185310 2.286660 +vn 0.761915 -0.302504 -0.572692 +v 77.180473 -2.769100 1.245100 +vn 0.521367 -0.780261 -0.345498 +v 77.074875 -3.116940 1.392970 +vn 0.586955 -0.148089 -0.795961 +v 76.480980 -2.115690 0.502122 +vn 0.831285 -0.026445 -0.555216 +v 77.237976 -1.785920 1.233490 +vn 0.588795 -0.002463 -0.808279 +v 76.489777 -0.602328 0.489533 +vn 0.446366 -0.200794 -0.872032 +v 75.667679 -2.758510 0.100133 +vn 0.285286 -0.690311 -0.664893 +v 75.504578 -3.104160 0.103615 +vn 0.330080 -0.015287 -0.943829 +v 75.697075 -1.782000 0.076514 +vn 0.965321 -0.000129 -0.261067 +v 77.667877 0.590368 2.286440 +vn 0.965350 0.000087 -0.260960 +v 77.667778 2.375230 2.286450 +vn 0.834054 -0.001523 -0.551680 +v 77.254280 -0.005011 1.243720 +vn 0.589785 0.000427 -0.807560 +v 76.502075 1.183440 0.498988 +vn 0.834106 0.000244 -0.551604 +v 77.254280 1.780050 1.243800 +vn 0.588990 0.000567 -0.808140 +v 76.498779 2.968310 0.498295 +vn 0.965384 0.000058 -0.260831 +v 77.667580 4.166895 2.286467 +vn 0.833668 0.000247 -0.552265 +v 77.254280 3.564880 1.243800 +vn 0.588265 0.000569 -0.808668 +v 76.495476 4.753080 0.497610 +vn 0.833202 0.000228 -0.552969 +v 77.254280 5.349710 1.243781 +vn 0.587506 0.000564 -0.809219 +v 76.492081 6.537860 0.496923 +vn 0.329184 0.000724 -0.944265 +v 75.709274 -0.007230 0.084584 +vn 0.329986 0.000274 -0.943986 +v 75.705879 1.777670 0.083940 +vn 0.329923 0.000276 -0.944008 +v 75.701851 3.872887 0.083159 +vn 1.000000 0.000000 0.000000 +v 77.927979 13.529664 14.324660 +vn 1.000000 0.000006 0.000020 +v 77.927979 11.266829 10.789605 +vn 1.000000 0.000014 0.000070 +v 77.927979 9.508275 10.755745 +vn 1.000000 -0.000007 -0.000021 +v 77.927979 16.653099 16.109501 +vn -0.561923 -0.162102 -0.811151 +v 77.927979 18.437901 16.109501 +vn 1.000000 -0.000035 -0.000132 +v 77.927979 20.217978 16.110039 +vn 1.000000 0.000000 0.000000 +v 77.927979 19.330359 11.647399 +vn 1.000000 0.000035 0.000132 +v 77.927979 13.110342 8.966669 +vn 1.000000 -0.000014 0.000097 +v 77.928276 7.729743 8.969038 +vn 1.000000 0.000042 0.000153 +v 77.928276 9.513800 8.970160 +vn 1.000000 -0.000042 0.000042 +v 77.928474 9.513800 7.185321 +vn 1.000000 0.000062 0.000160 +v 77.928078 11.298600 8.970162 +vn 1.000000 0.000014 0.000097 +v 77.928474 11.298600 7.185331 +vn 1.000000 0.000062 0.000132 +v 77.928474 13.083500 7.185331 +vn 0.999919 -0.000063 -0.012740 +v 77.928474 9.513800 5.401211 +vn 0.996146 -0.000037 -0.087708 +v 77.885780 7.729010 3.726941 +vn 0.996155 -0.000070 -0.087604 +v 77.885780 9.513840 3.726931 +vn 0.999919 -0.000014 -0.012703 +v 77.928474 11.298600 5.401211 +vn 0.999920 0.000041 -0.012644 +v 77.928474 13.083500 5.401211 +vn 0.996164 -0.000067 -0.087509 +v 77.885880 11.298700 3.726931 +vn 0.996165 -0.000034 -0.087492 +v 77.886078 13.083500 3.726931 +vn 1.000000 0.000042 0.000097 +v 77.928276 14.876080 7.184787 +vn 1.000000 -0.000000 0.000083 +v 77.927979 21.115057 8.970162 +vn 1.000000 -0.000000 0.000083 +v 77.928276 22.899994 7.185333 +vn 0.999920 0.000055 -0.012599 +v 77.928276 14.873886 5.401209 +vn 0.996168 0.000014 -0.087454 +v 77.886078 14.868300 3.726942 +vn 0.996169 0.000007 -0.087442 +v 77.886078 16.653200 3.726942 +vn 0.999920 -0.000000 -0.012599 +v 77.928276 22.007668 5.401213 +vn 0.996167 0.000007 -0.087471 +v 77.886078 18.555984 3.726967 +vn 1.000000 -0.000063 -0.000160 +v 77.928078 22.007601 16.109406 +vn 1.000000 -0.000042 -0.000153 +v 77.928276 23.792400 16.109507 +vn 1.000000 -0.000006 -0.000020 +v 77.927979 22.073477 14.272463 +vn 1.000000 -0.000014 -0.000070 +v 77.927979 23.797915 14.323858 +vn 1.000000 -0.000063 -0.000132 +v 77.928474 27.362101 16.109507 +vn 1.000000 -0.000035 -0.000132 +v 77.927979 27.362101 14.324603 +vn 1.000000 -0.000000 0.000083 +v 77.927979 26.172235 8.971337 +vn 1.000000 -0.000007 -0.000021 +v 77.927979 29.096815 12.554559 +vn 1.000000 -0.000014 -0.000097 +v 77.928474 29.146900 16.109507 +vn 1.000000 -0.000014 -0.000042 +v 77.928474 30.931801 16.109507 +vn 1.000000 -0.000062 -0.000160 +v 77.928078 29.146900 14.324603 +vn 1.000000 -0.000083 -0.000167 +v 77.928276 30.931700 14.324603 +vn 1.000000 0.000014 0.000042 +v 77.928474 32.716599 16.109507 +vn 1.000000 0.000014 0.000097 +v 77.928474 34.501400 16.109507 +vn 1.000000 -0.000049 -0.000146 +v 77.928474 32.716599 14.324603 +vn 1.000000 -0.000014 -0.000097 +v 77.928474 34.501400 14.324606 +vn 1.000000 -0.000014 -0.000069 +v 77.927979 30.928696 12.538576 +vn 1.000000 -0.000035 -0.000132 +v 77.927979 32.716599 12.539803 +vn 1.000000 -0.000062 -0.000160 +v 77.928078 34.501400 12.539805 +vn 1.000000 -0.000007 -0.000021 +v 77.927979 34.467400 10.771804 +vn 1.000000 0.000000 0.000083 +v 77.928276 30.039351 7.185334 +vn 0.996165 0.000007 -0.087496 +v 77.886078 22.113422 3.726965 +vn 0.999920 -0.000000 -0.012599 +v 77.928276 28.254587 5.401214 +vn 0.996163 0.000007 -0.087522 +v 77.886078 25.669085 3.726963 +vn 1.000000 -0.000000 0.000083 +v 77.927979 32.716393 8.970163 +vn 1.000000 -0.000000 0.000083 +v 77.928276 38.070892 7.185336 +vn 0.996160 0.000007 -0.087546 +v 77.886078 32.674854 3.726942 +vn 0.999920 0.000000 -0.012599 +v 77.928276 36.286179 5.401214 +vn -0.000000 0.000093 -1.000000 +v 69.677376 7.729160 -0.178468 +vn -0.000035 0.000059 -1.000000 +v 69.677376 9.513980 -0.178301 +vn 0.001324 0.000060 -0.999999 +v 71.462173 7.729150 -0.178302 +vn 0.001284 0.000014 -0.999999 +v 71.462173 9.513970 -0.178302 +vn -0.000094 0.000000 -1.000000 +v 69.677376 11.298800 -0.178301 +vn -0.000152 0.000035 -1.000000 +v 69.677376 13.083600 -0.178300 +vn 0.001280 -0.000045 -0.999999 +v 71.462173 11.298800 -0.178302 +vn 0.001252 -0.000033 -0.999999 +v 71.462173 13.083600 -0.178468 +vn 0.013467 -0.000010 -0.999909 +v 73.199074 7.728990 -0.173911 +vn 0.013309 -0.000016 -0.999911 +v 73.198975 9.513820 -0.173887 +vn 0.107827 -0.000112 -0.994170 +v 74.546776 7.727170 -0.140951 +vn 0.111511 0.002701 -0.993760 +v 74.543877 9.512150 -0.141422 +vn 0.013182 -0.000064 -0.999913 +v 73.198776 11.298600 -0.173862 +vn 0.013022 -0.000098 -0.999915 +v 73.198677 13.083500 -0.174004 +vn 0.121231 0.002499 -0.992621 +v 74.541176 11.296900 -0.141816 +vn 0.126559 -0.000273 -0.991959 +v 74.537880 13.081500 -0.142398 +vn -0.000163 0.000070 -1.000000 +v 69.677376 14.868500 -0.178134 +vn -0.000140 0.000047 -1.000000 +v 69.678894 16.663061 -0.177967 +vn 0.001213 0.000014 -0.999999 +v 71.462173 14.868500 -0.178468 +vn 0.001174 0.000060 -0.999999 +v 71.462173 16.653299 -0.178468 +vn 0.001205 0.000037 -0.999999 +v 71.462173 18.438101 -0.178301 +vn 0.001227 0.000003 -0.999999 +v 71.462151 21.155449 -0.178300 +vn 0.012737 -0.000051 -0.999919 +v 73.198479 14.868300 -0.173979 +vn 0.012451 -0.000005 -0.999923 +v 73.198380 16.653099 -0.173953 +vn 0.125761 -0.000295 -0.992061 +v 74.534378 14.866200 -0.143231 +vn 0.124931 -0.000262 -0.992165 +v 74.530876 16.650999 -0.144066 +vn 0.012175 0.000010 -0.999926 +v 73.198174 18.438000 -0.173760 +vn 0.011950 -0.000038 -0.999929 +v 73.197975 20.222799 -0.173731 +vn 0.124049 -0.000224 -0.992276 +v 74.527374 18.435801 -0.144734 +vn 0.123194 -0.000237 -0.992383 +v 74.523781 20.220501 -0.145400 +vn 0.965372 -0.000056 -0.260877 +v 77.667580 7.729700 2.286451 +vn 0.966348 -0.002778 -0.257221 +v 77.668175 9.514290 2.287311 +vn 0.832714 0.000270 -0.553704 +v 77.254280 7.134540 1.243761 +vn 0.586435 0.001438 -0.809995 +v 76.488174 8.322150 0.495716 +vn 0.832016 -0.002374 -0.554746 +v 77.254181 8.918660 1.244101 +vn 0.588883 0.002354 -0.808214 +v 76.523079 10.108300 0.528923 +vn 0.968998 -0.002871 -0.247053 +v 77.668777 11.299100 2.288281 +vn 0.970605 0.000183 -0.240676 +v 77.668877 13.084200 2.288342 +vn 0.837051 -0.003898 -0.547111 +v 77.290779 10.704600 1.276541 +vn 0.581471 0.002843 -0.813562 +v 76.519379 11.892400 0.527886 +vn 0.842701 -0.001626 -0.538379 +v 77.327179 12.490400 1.309132 +vn 0.585572 0.000951 -0.810620 +v 76.552177 13.678600 0.559159 +vn 0.329810 0.000208 -0.944047 +v 75.695480 7.131980 0.081947 +vn 0.331252 0.005022 -0.943529 +v 75.691978 8.916490 0.080955 +vn 0.338938 0.006090 -0.940789 +v 75.725281 10.701900 0.112719 +vn 0.344526 0.004478 -0.938766 +v 75.758179 12.488100 0.144012 +vn 0.970419 0.000196 -0.241425 +v 77.668777 14.869000 2.288252 +vn 0.970239 0.000201 -0.242147 +v 77.668777 16.653900 2.288152 +vn 0.842043 0.000523 -0.539409 +v 77.324776 14.275300 1.307072 +vn 0.584654 0.000386 -0.811282 +v 76.546379 15.463200 0.556243 +vn 0.841182 0.000501 -0.540752 +v 77.322380 16.060200 1.304892 +vn 0.583887 0.000390 -0.811835 +v 76.540581 17.247999 0.553371 +vn 0.970062 0.000216 -0.242859 +v 77.668678 18.438700 2.288062 +vn 0.969881 0.000194 -0.243577 +v 77.668579 20.223499 2.287983 +vn 0.840325 0.000513 -0.542083 +v 77.319977 17.845100 1.302713 +vn 0.583139 0.000383 -0.812372 +v 76.534775 19.032801 0.550505 +vn 0.839480 0.000511 -0.543391 +v 77.317574 19.629900 1.300542 +vn 0.582389 0.000378 -0.812910 +v 76.528976 20.817600 0.547643 +vn 0.348087 -0.000183 -0.937462 +v 75.752480 14.272500 0.141298 +vn 0.347495 -0.000174 -0.937682 +v 75.746574 16.057301 0.138544 +vn 0.346880 -0.000162 -0.937909 +v 75.740677 17.842100 0.135792 +vn 0.346253 -0.000161 -0.938141 +v 75.734879 19.626900 0.133043 +vn 0.001244 0.000005 -0.999999 +v 71.462151 24.724300 -0.178300 +vn 0.001262 0.000004 -0.999999 +v 71.462166 28.276211 -0.178299 +vn 0.011771 0.000010 -0.999931 +v 73.197861 22.766682 -0.173690 +vn 0.122353 -0.000111 -0.992487 +v 74.520279 22.005301 -0.146068 +vn 0.121704 -0.000080 -0.992566 +v 74.518478 23.791000 -0.146096 +vn 0.011724 -0.000033 -0.999931 +v 73.197578 25.577299 -0.173645 +vn 0.011503 -0.000038 -0.999934 +v 73.197380 27.362101 -0.173614 +vn 0.121074 -0.000156 -0.992644 +v 74.516678 25.576700 -0.146112 +vn 0.120303 -0.000245 -0.992737 +v 74.513275 27.361401 -0.146762 +vn 0.001280 0.000004 -0.999999 +v 71.462166 31.845121 -0.178299 +vn 0.001298 0.000005 -0.999999 +v 71.462189 35.392765 -0.178298 +vn 0.011271 -0.000033 -0.999937 +v 73.197174 29.146900 -0.173584 +vn 0.011048 -0.000038 -0.999939 +v 73.197075 30.931801 -0.173553 +vn 0.119465 -0.000239 -0.992838 +v 74.509781 29.146200 -0.147421 +vn 0.118731 -0.000173 -0.992926 +v 74.506279 30.931000 -0.148075 +vn 0.010816 -0.000034 -0.999942 +v 73.196877 32.716599 -0.173522 +vn 0.010587 -0.000038 -0.999944 +v 73.196777 34.501400 -0.173489 +vn 0.118140 -0.000181 -0.992997 +v 74.502777 32.715698 -0.148728 +vn 0.117432 -0.000255 -0.993081 +v 74.499275 34.500500 -0.149387 +vn 0.969703 0.000200 -0.244287 +v 77.668579 22.008301 2.287893 +vn 0.969524 0.000193 -0.244997 +v 77.668480 23.793200 2.287813 +vn 0.838629 0.000489 -0.544702 +v 77.315178 21.414801 1.298383 +vn 0.581690 0.000263 -0.813411 +v 76.523277 22.602400 0.544785 +vn 0.837858 0.000421 -0.545888 +v 77.312775 23.199699 1.296223 +vn 0.581157 0.000227 -0.813791 +v 76.519180 24.388100 0.542571 +vn 0.969346 0.000199 -0.245699 +v 77.668480 25.577999 2.287734 +vn 0.969168 0.000193 -0.246402 +v 77.668381 27.362801 2.287663 +vn 0.837187 0.000403 -0.546917 +v 77.310379 24.984501 1.294063 +vn 0.580676 0.000280 -0.814135 +v 76.515175 26.173800 0.540374 +vn 0.836465 0.000500 -0.548019 +v 77.307976 26.769400 1.291914 +vn 0.579983 0.000367 -0.814628 +v 76.509476 27.958599 0.537547 +vn 0.345586 -0.000153 -0.938387 +v 75.728973 21.411699 0.130296 +vn 0.345062 -0.000167 -0.938580 +v 75.724777 23.197399 0.128190 +vn 0.344194 -0.000161 -0.938899 +v 75.718979 24.982300 0.125459 +vn 0.343671 -0.000174 -0.939090 +v 75.714874 26.768000 0.123363 +vn 0.968991 0.000174 -0.247094 +v 77.668381 29.147699 2.287594 +vn 0.968857 0.000074 -0.247622 +v 77.668381 30.932501 2.287564 +vn 0.835633 0.000478 -0.549288 +v 77.305580 28.554300 1.289774 +vn 0.579254 0.000389 -0.815147 +v 76.503876 29.742399 0.534773 +vn 0.834812 0.000371 -0.550535 +v 77.303276 30.338100 1.287734 +vn 0.578613 0.000390 -0.815602 +v 76.499374 31.526400 0.532911 +vn 0.968781 0.000103 -0.247917 +v 77.668381 32.717300 2.287544 +vn 0.968663 0.000192 -0.248379 +v 77.668274 34.502201 2.287484 +vn 0.834187 0.000315 -0.551481 +v 77.302177 32.121101 1.286574 +vn 0.577720 0.000387 -0.816235 +v 76.493774 33.311100 0.530152 +vn 0.833573 0.000400 -0.552409 +v 77.300980 33.906101 1.285344 +vn 0.577131 0.000365 -0.816652 +v 76.489281 35.095001 0.528231 +vn 0.343012 -0.000163 -0.939331 +v 75.709076 28.552799 0.120641 +vn 0.342390 -0.000041 -0.939558 +v 75.703278 30.336500 0.117974 +vn 0.341963 -0.000024 -0.939713 +v 75.698776 32.119499 0.116218 +vn 0.341476 -0.000078 -0.939891 +v 75.694077 33.904400 0.114367 +vn 0.000093 0.000093 -1.000000 +v 41.120190 36.286400 -0.178131 +vn 0.000058 0.000059 -1.000000 +v 41.120190 38.071201 -0.177964 +vn 0.000059 0.000058 -1.000000 +v 42.904987 36.286400 -0.177964 +vn 0.000012 0.000012 -1.000000 +v 42.918823 38.078705 -0.177964 +vn 0.000012 0.000012 -1.000000 +v 41.127171 39.856728 -0.177964 +vn -0.000000 0.000000 -1.000000 +v 45.454929 42.915733 -0.177963 +vn 0.000012 0.000012 -1.000000 +v 44.689789 36.286400 -0.177964 +vn -0.000000 0.000000 -1.000000 +v 48.259407 39.346195 -0.177964 +vn -0.000000 0.000000 -1.000000 +v 46.028576 46.995186 -0.177963 +vn 0.000000 0.000000 -1.000000 +v 52.275169 41.640911 -0.177964 +vn -0.000000 0.000000 -1.000000 +v 52.721176 37.178688 -0.177964 +vn 0.000000 0.000000 -1.000000 +v 50.936626 47.887951 -0.177963 +vn 0.000000 0.000000 -1.000000 +v 45.582092 51.011112 -0.177962 +vn 0.000000 0.000000 -1.000000 +v 55.041908 45.745953 -0.177963 +vn 0.000000 0.000000 -1.000000 +v 44.852051 56.568420 -0.177962 +vn -0.000000 0.000000 -1.000000 +v 44.020565 61.943302 -0.177961 +vn 0.000000 0.000000 -1.000000 +v 49.821213 53.911873 -0.177962 +vn 0.000000 0.000000 -1.000000 +v 55.398468 52.349567 -0.177962 +vn 0.000000 0.000000 -1.000000 +v 53.613716 56.811863 -0.177962 +vn 0.000000 0.000000 -1.000000 +v 49.534374 59.489315 -0.177961 +vn 0.000000 0.000089 -1.000000 +v 50.341396 64.843254 -0.177961 +vn 0.000000 0.000000 -1.000000 +v 53.613842 62.166458 -0.177961 +vn 0.000000 0.000000 -1.000000 +v 57.778347 39.657768 -0.177964 +vn 0.000000 0.000000 -1.000000 +v 62.538292 41.641182 -0.177964 +vn 0.000000 0.000000 -1.000000 +v 58.745346 48.557159 -0.177963 +vn 0.000000 0.000000 -1.000000 +v 60.307167 44.764149 -0.177963 +vn -0.000094 0.000000 -1.000000 +v 69.676872 37.714050 -0.177964 +vn -0.000082 0.000011 -1.000000 +v 69.664330 41.603611 -0.177963 +vn -0.000000 0.000000 -1.000000 +v 64.322968 46.549305 -0.177963 +vn -0.000035 0.000012 -1.000000 +v 69.657387 43.406994 -0.177963 +vn 0.001327 0.000019 -0.999999 +v 71.462433 45.216095 -0.177963 +vn -0.000000 0.000000 -1.000000 +v 66.776619 51.010971 -0.177962 +vn 0.000000 0.000000 -1.000000 +v 58.254147 56.276142 -0.177962 +vn 0.000000 0.000000 -1.000000 +v 61.645535 52.349991 -0.177962 +vn -0.000000 0.000000 -1.000000 +v 63.430355 55.919647 -0.177962 +vn -0.000000 0.000000 -1.000000 +v 58.611164 61.095230 -0.177961 +vn 0.001220 0.000000 -0.999999 +v 71.462395 55.473164 -0.177962 +vn -0.000000 0.000000 -1.000000 +v 64.768997 59.489151 -0.177961 +vn -0.000000 0.000089 -1.000000 +v 64.620247 64.843254 -0.177961 +vn -0.000000 0.000000 -1.000000 +v 66.999939 62.166298 -0.177961 +vn 0.000014 1.000000 -0.000042 +v 41.119190 72.178001 16.110312 +vn 0.000007 1.000000 -0.000007 +v 42.903988 72.178001 16.110312 +vn 0.000000 1.000000 0.000000 +v 45.581196 72.178001 13.968517 +vn 0.000000 1.000000 0.000000 +v 43.796394 72.178001 9.863347 +vn 0.000000 0.999997 -0.002389 +v 44.292244 72.178001 5.408020 +vn -0.000015 0.998968 -0.045429 +v 41.160118 72.170998 3.942152 +vn -0.000000 0.998969 -0.045392 +v 47.366985 72.170998 3.942149 +vn 0.000000 1.000000 0.000000 +v 50.043240 72.178001 10.756008 +vn 0.000000 1.000000 0.000000 +v 53.612988 72.178001 9.863343 +vn 0.000000 0.999997 -0.002389 +v 50.043339 72.178001 5.408021 +vn 0.000000 0.998969 -0.045392 +v 53.613842 72.170998 3.942149 +vn -0.000000 0.999997 -0.002389 +v 56.290237 72.178001 5.408023 +vn 0.000020 0.775209 -0.631704 +v 48.232639 69.525101 0.877453 +vn -0.000005 0.513665 -0.857991 +v 47.350887 68.887497 -0.090737 +vn 0.000026 0.691970 -0.721926 +v 48.828686 70.473801 1.826583 +vn 0.000005 0.003548 -0.999994 +v 49.809544 66.619232 -0.177644 +vn 0.000007 0.048674 -0.998815 +v 48.699993 68.037437 -0.167855 +vn -0.000037 0.561883 -0.827217 +v 41.176453 71.466606 2.738307 +vn -0.000029 0.823502 -0.567314 +v 40.525188 72.093201 3.041399 +vn -0.000013 0.823505 -0.567309 +v 42.366516 72.093300 3.041315 +vn 0.000007 0.561828 -0.827254 +v 49.743263 71.466606 2.738301 +vn -0.000000 0.823504 -0.567310 +v 49.449459 72.093300 3.041309 +vn 0.000048 0.775223 -0.631687 +v 50.043190 69.524902 0.877478 +vn 0.000030 0.691950 -0.721945 +v 50.638187 70.473701 1.826579 +vn 0.000045 0.513744 -0.857944 +v 49.449287 68.887604 -0.090712 +vn 0.000043 0.775203 -0.631712 +v 51.827988 69.525002 0.877515 +vn 0.000044 0.691944 -0.721952 +v 52.428360 70.473495 1.826578 +vn 0.000029 0.775212 -0.631701 +v 53.643646 69.524803 0.877529 +vn 0.000007 0.048701 -0.998813 +v 52.956978 68.037483 -0.167781 +vn 0.000026 0.513684 -0.857980 +v 51.234089 68.887398 -0.090698 +vn 0.000033 0.513687 -0.857978 +v 53.154766 68.887299 -0.090666 +vn 0.000015 0.561792 -0.827278 +v 51.828388 71.466599 2.738299 +vn -0.000000 0.561777 -0.827289 +v 57.182274 71.466599 2.738299 +vn 0.000000 1.000000 0.000000 +v 58.967506 72.178001 11.112818 +vn 0.000000 1.000000 0.000000 +v 62.759979 72.178001 11.425288 +vn -0.000000 0.998969 -0.045392 +v 59.860809 72.170998 3.942149 +vn -0.000000 0.999997 -0.002389 +v 62.239563 72.178001 5.408020 +vn 0.000000 1.000000 0.000000 +v 64.321770 72.178001 15.218023 +vn 0.000000 1.000000 0.000000 +v 68.248680 72.178001 13.254880 +vn 0.000000 1.000000 0.000000 +v 67.668373 72.178001 9.194089 +vn -0.000000 0.998969 -0.045392 +v 67.000008 72.170998 3.942149 +vn 0.000007 0.999997 -0.002395 +v 71.327347 72.178001 5.407889 +vn -0.000000 0.691919 -0.721975 +v 57.777115 70.473503 1.826579 +vn -0.000000 0.000089 -1.000000 +v 58.075504 64.843697 -0.177961 +vn 0.000000 0.003567 -0.999994 +v 59.860577 66.619202 -0.177644 +vn -0.000000 0.775207 -0.631707 +v 62.536728 69.524803 0.877529 +vn -0.000000 0.691919 -0.721976 +v 64.024307 70.473503 1.826579 +vn 0.000000 0.048709 -0.998813 +v 61.645657 68.037498 -0.167779 +vn -0.000000 0.513709 -0.857964 +v 62.835526 68.887299 -0.090661 +vn 0.000000 0.823504 -0.567311 +v 55.696114 72.093300 3.041309 +vn -0.000000 0.823504 -0.567311 +v 61.943115 72.093300 3.041309 +vn -0.000010 0.775207 -0.631707 +v 69.575104 69.524803 0.877529 +vn -0.000004 0.691924 -0.721970 +v 70.201675 70.473495 1.826573 +vn 0.001328 0.003646 -0.999992 +v 71.463882 66.619186 -0.177646 +vn 0.001505 0.048947 -0.998800 +v 71.464134 68.037529 -0.167780 +vn 0.000377 0.513645 -0.858003 +v 70.866249 68.887299 -0.090660 +vn -0.000000 0.561777 -0.827289 +v 64.321869 71.466599 2.738299 +vn 0.000039 0.561797 -0.827275 +v 71.434219 71.466599 2.738299 +vn 0.000021 0.823504 -0.567310 +v 70.818016 72.093300 3.041309 +vn 1.000000 0.000049 0.000146 +v 77.928474 36.286201 16.109507 +vn 1.000000 0.000083 0.000167 +v 77.928276 38.071098 16.109507 +vn 1.000000 -0.000014 -0.000042 +v 77.928474 36.286201 14.324606 +vn 1.000000 0.000014 0.000042 +v 77.928474 38.071098 14.324606 +vn 1.000000 0.000062 0.000160 +v 77.928078 39.855900 16.109507 +vn 1.000000 0.000014 0.000097 +v 77.928474 39.855900 14.324606 +vn 1.000000 0.000049 0.000146 +v 77.928474 41.640701 14.324706 +vn 1.000000 -0.000083 -0.000167 +v 77.928276 36.286201 12.539805 +vn 1.000000 -0.000049 -0.000146 +v 77.928474 38.071098 12.539805 +vn 1.000000 -0.000014 -0.000069 +v 77.927979 36.286201 10.755006 +vn 1.000000 -0.000035 -0.000132 +v 77.927979 38.071098 10.755006 +vn 1.000000 -0.000014 -0.000097 +v 77.928474 39.855900 12.539805 +vn 1.000000 -0.000014 -0.000042 +v 77.928474 41.640701 12.539805 +vn 1.000000 -0.000062 -0.000159 +v 77.928078 39.855900 10.755006 +vn 1.000000 -0.000083 -0.000167 +v 77.928276 41.640701 10.755006 +vn 1.000000 0.000014 0.000070 +v 77.927979 43.425499 16.109507 +vn 1.000000 0.000083 0.000167 +v 77.928276 43.425598 14.324706 +vn 1.000000 0.000062 0.000159 +v 77.928078 45.210400 14.324706 +vn 1.000000 0.000035 0.000132 +v 77.927979 46.995201 14.324606 +vn 1.000000 0.000013 0.000070 +v 77.927979 48.779999 14.324606 +vn 1.000000 0.000014 0.000042 +v 77.928474 43.425598 12.539805 +vn 1.000000 0.000014 0.000097 +v 77.928474 45.210400 12.539805 +vn 1.000000 -0.000049 -0.000146 +v 77.928474 43.425598 10.755006 +vn 1.000000 -0.000014 -0.000097 +v 77.928474 45.210400 10.755006 +vn 1.000000 0.000049 0.000146 +v 77.928474 46.995201 12.539805 +vn 1.000000 0.000083 0.000167 +v 77.928276 48.779999 12.539805 +vn 1.000000 -0.000014 -0.000042 +v 77.928474 47.005089 10.745549 +vn 1.000000 0.000014 0.000042 +v 77.928474 48.779999 10.755006 +vn 1.000000 -0.000007 0.000063 +v 77.927979 39.793365 8.973253 +vn 1.000000 -0.000014 0.000014 +v 77.927979 41.640701 8.970146 +vn 0.996158 0.000007 -0.087575 +v 77.886078 36.365398 3.726962 +vn 0.999920 -0.000000 -0.012599 +v 77.928276 43.425579 5.401216 +vn 0.996155 0.000007 -0.087602 +v 77.886078 40.028095 3.726971 +vn 1.000000 -0.000035 -0.000049 +v 77.927979 43.425499 8.970146 +vn 1.000000 -0.000062 -0.000076 +v 77.928078 45.210400 8.970136 +vn 1.000000 -0.000007 0.000063 +v 77.928276 45.190948 7.184764 +vn 1.000000 -0.000083 -0.000083 +v 77.928276 46.998878 8.967287 +vn 1.000000 -0.000014 0.000014 +v 77.928276 46.995201 7.185326 +vn 0.996153 0.000007 -0.087627 +v 77.886078 45.366531 3.726970 +vn 0.999920 -0.000014 -0.012641 +v 77.928276 50.549973 5.401210 +vn 1.000000 0.000035 0.000132 +v 77.927979 52.353848 12.540711 +vn 1.000000 0.000007 0.000021 +v 77.927979 55.952446 12.542641 +vn 1.000000 0.000063 0.000159 +v 77.928078 50.564899 12.539805 +vn 1.000000 0.000014 0.000097 +v 77.928474 50.564899 10.755006 +vn 1.000000 0.000049 0.000146 +v 77.928474 52.349701 10.755006 +vn 1.000000 0.000014 0.000069 +v 77.927979 54.134499 12.539805 +vn 1.000000 0.000083 0.000167 +v 77.928276 54.134499 10.755006 +vn 1.000000 0.000062 0.000159 +v 77.928078 55.919399 10.755009 +vn 1.000000 0.000000 0.000000 +v 77.927979 61.868538 14.027208 +vn 1.000000 0.000014 0.000070 +v 77.927979 61.262081 10.757124 +vn 1.000000 0.000035 0.000132 +v 77.927979 57.704201 10.755009 +vn 1.000000 0.000007 0.000021 +v 77.927979 63.058701 10.755009 +vn 1.000000 -0.000007 0.000007 +v 77.928474 50.564899 8.970146 +vn 1.000000 -0.000014 0.000042 +v 77.928474 52.349701 8.970146 +vn 1.000000 -0.000062 -0.000076 +v 77.928474 50.564899 7.185317 +vn 1.000000 -0.000078 -0.000063 +v 77.928574 52.349701 7.185317 +vn 1.000000 0.000028 0.000113 +v 77.928474 54.134499 8.970156 +vn 1.000000 0.000021 0.000118 +v 77.928474 55.919399 8.970168 +vn 1.000000 -0.000007 0.000007 +v 77.928780 54.134499 7.185327 +vn 1.000000 0.000050 0.000064 +v 77.928574 55.919399 7.185327 +vn 0.999920 -0.000063 -0.012675 +v 77.928276 52.349701 5.401207 +vn 0.996151 0.000007 -0.087652 +v 77.886078 50.564899 3.726946 +vn 0.996148 -0.000041 -0.087690 +v 77.886078 52.349800 3.726947 +vn 0.999919 -0.000077 -0.012691 +v 77.928474 54.134499 5.401197 +vn 0.999920 -0.000049 -0.012665 +v 77.928574 55.919399 5.401207 +vn 0.996144 -0.000064 -0.087732 +v 77.886276 54.134602 3.726947 +vn 0.996146 -0.000024 -0.087712 +v 77.886276 55.919399 3.726937 +vn 1.000000 0.000063 0.000132 +v 77.928474 57.704201 8.970168 +vn 1.000000 0.000028 0.000111 +v 77.928276 59.488998 8.970179 +vn 1.000000 0.000077 0.000092 +v 77.928474 57.704201 7.185327 +vn 1.000000 -0.000001 0.000084 +v 77.928276 59.488998 7.185327 +vn 1.000000 0.000042 0.000153 +v 77.928276 61.273800 8.970168 +vn 1.000000 0.000062 0.000160 +v 77.928078 63.058701 8.970168 +vn 1.000000 -0.000042 0.000127 +v 77.928474 61.273800 7.185328 +vn 1.000000 0.000014 0.000183 +v 77.928474 63.058701 7.185338 +vn 0.999920 0.000021 -0.012625 +v 77.928780 57.704201 5.401217 +vn 0.999920 0.000014 -0.012618 +v 77.928574 59.488998 5.401227 +vn 0.996146 0.000032 -0.087704 +v 77.886276 57.704201 3.726928 +vn 0.996148 0.000055 -0.087688 +v 77.886078 59.489101 3.726928 +vn 0.999920 -0.000072 -0.012650 +v 77.928780 61.273899 5.401218 +vn 0.999920 -0.000007 -0.012597 +v 77.928780 63.058701 5.401218 +vn 0.996143 -0.000056 -0.087747 +v 77.886078 61.273899 3.726928 +vn 0.996140 -0.000054 -0.087780 +v 77.886276 63.058701 3.726928 +vn 0.001318 0.000005 -0.999999 +v 71.462181 38.970444 -0.178298 +vn 0.001334 0.000050 -0.999999 +v 71.462173 41.640900 -0.178298 +vn 0.010348 -0.000034 -0.999946 +v 73.196579 36.286301 -0.173456 +vn 0.010116 -0.000038 -0.999949 +v 73.196381 38.071098 -0.173423 +vn 0.116559 -0.000257 -0.993184 +v 74.495773 36.285301 -0.150051 +vn 0.115689 -0.000256 -0.993285 +v 74.492279 38.070000 -0.150714 +vn 0.009875 -0.000034 -0.999951 +v 73.196274 39.855900 -0.173389 +vn 0.009625 -0.000004 -0.999954 +v 73.196075 41.640800 -0.173355 +vn 0.114821 -0.000257 -0.993386 +v 74.488777 39.854801 -0.151378 +vn 0.113939 -0.000259 -0.993488 +v 74.485176 41.639599 -0.152043 +vn 0.001358 0.000062 -0.999999 +v 71.462173 43.425701 -0.178130 +vn 0.001273 -0.000018 -0.999999 +v 71.462456 47.024929 -0.177964 +vn 0.009345 -0.000019 -0.999956 +v 73.195877 43.425598 -0.173151 +vn 0.009765 0.000600 -0.999952 +v 73.196480 45.210899 -0.173266 +vn 0.113009 -0.000256 -0.993594 +v 74.481674 43.424301 -0.152707 +vn 0.111342 0.000775 -0.993782 +v 74.478973 45.208599 -0.153348 +vn 0.012762 0.000525 -0.999918 +v 73.198677 46.995701 -0.173479 +vn 0.014955 -0.000099 -0.999888 +v 73.199890 48.756535 -0.173724 +vn 0.113973 0.001115 -0.993483 +v 74.523781 46.992802 -0.144725 +vn 0.116951 -0.000058 -0.993138 +v 74.568977 48.779800 -0.136059 +vn 0.968488 0.000195 -0.249060 +v 77.668274 36.286999 2.287415 +vn 0.968312 0.000191 -0.249742 +v 77.668175 38.071800 2.287355 +vn 0.832763 0.000476 -0.553630 +v 77.298576 35.691898 1.283175 +vn 0.576409 0.000366 -0.817161 +v 76.483475 36.880798 0.525351 +vn 0.831934 0.000491 -0.554874 +v 77.296181 37.476799 1.281015 +vn 0.575693 0.000365 -0.817666 +v 76.477676 38.665600 0.522513 +vn 0.968137 0.000194 -0.250421 +v 77.668175 39.856602 2.287295 +vn 0.967961 0.000187 -0.251100 +v 77.668076 41.641499 2.287216 +vn 0.831106 0.000470 -0.556114 +v 77.293777 39.261600 1.278875 +vn 0.574979 0.000364 -0.818168 +v 76.471977 40.450401 0.519670 +vn 0.830289 0.000484 -0.557333 +v 77.291374 41.046501 1.276725 +vn 0.574261 0.000369 -0.818672 +v 76.466179 42.235199 0.516821 +vn 0.340886 -0.000184 -0.940104 +v 75.688179 35.690201 0.111588 +vn 0.340238 -0.000177 -0.940339 +v 75.682381 37.474899 0.108840 +vn 0.339569 -0.000179 -0.940581 +v 75.676476 39.259701 0.106095 +vn 0.338886 -0.000173 -0.940827 +v 75.670578 41.044498 0.103351 +vn 0.967784 0.000175 -0.251781 +v 77.668076 43.426300 2.287146 +vn 0.967614 0.000185 -0.252433 +v 77.668076 45.211102 2.287106 +vn 0.829460 0.000473 -0.558565 +v 77.288979 42.831299 1.274586 +vn 0.573544 0.000365 -0.819175 +v 76.460381 44.019901 0.513974 +vn 0.828631 0.000456 -0.559794 +v 77.286575 44.616100 1.272456 +vn 0.576507 -0.005176 -0.817075 +v 76.454781 45.803600 0.511228 +vn 0.967450 0.000175 -0.253063 +v 77.667976 46.995998 2.287046 +vn 0.967287 0.000157 -0.253683 +v 77.667976 48.780800 2.286986 +vn 0.830199 -0.002534 -0.557461 +v 77.284279 46.400799 1.270386 +vn 0.581890 -0.006049 -0.813245 +v 76.495979 47.588402 0.517929 +vn 0.835890 -0.002771 -0.548889 +v 77.282074 48.185699 1.268476 +vn 0.590022 -0.004320 -0.807376 +v 76.538177 49.374901 0.524675 +vn 0.338216 -0.000175 -0.941069 +v 75.664680 42.829300 0.100609 +vn 0.337439 -0.001073 -0.941347 +v 75.658775 44.613098 0.097879 +vn 0.342053 -0.003653 -0.939674 +v 75.700577 46.398998 0.104432 +vn 0.334710 -0.003236 -0.942316 +v 75.698380 48.183800 0.101628 +vn 0.116041 -0.000277 -0.993244 +v 74.569778 50.565102 -0.136541 +vn 0.115361 -0.000178 -0.993324 +v 74.569679 52.349998 -0.136562 +vn 0.014767 -0.000004 -0.999891 +v 73.200180 56.902512 -0.173723 +vn 0.114706 -0.000177 -0.993399 +v 74.569679 54.134800 -0.136581 +vn 0.114048 -0.000177 -0.993475 +v 74.569580 55.919601 -0.136600 +vn 0.001220 0.000000 -0.999999 +v 71.462280 60.381699 -0.177962 +vn 0.001225 0.000095 -0.999999 +v 71.461990 64.849693 -0.177961 +vn 0.113403 -0.000179 -0.993549 +v 74.569481 57.704498 -0.136619 +vn 0.112764 -0.000180 -0.993622 +v 74.569481 59.489300 -0.136638 +vn 0.014740 0.000105 -0.999891 +v 73.200455 64.816895 -0.173721 +vn 0.112100 -0.000176 -0.993697 +v 74.569374 61.274101 -0.136658 +vn 0.111441 -0.000184 -0.993771 +v 74.569374 63.058998 -0.136678 +vn 0.967129 0.000182 -0.254286 +v 77.667976 50.565601 2.286947 +vn 0.966961 0.000188 -0.254923 +v 77.667877 52.350399 2.286897 +vn 0.839506 0.000312 -0.543351 +v 77.279877 49.970699 1.266506 +vn 0.591940 -0.000118 -0.805982 +v 76.535271 51.165821 0.522465 +vn 0.839104 0.000306 -0.543971 +v 77.277580 51.755501 1.264407 +vn 0.966770 0.000136 -0.255648 +v 77.667877 54.135300 2.286837 +vn 0.966591 0.000105 -0.256322 +v 77.667976 55.920101 2.286787 +vn 0.838741 0.000305 -0.544531 +v 77.275177 53.540401 1.262317 +vn 0.838355 0.000278 -0.545125 +v 77.272774 55.325199 1.260207 +vn 0.591878 -0.000151 -0.806028 +v 76.528076 56.515400 0.516128 +vn 0.337450 -0.001812 -0.941342 +v 75.742676 49.969200 0.108476 +vn 0.336513 -0.000465 -0.941679 +v 75.739677 51.755001 0.106192 +vn 0.335883 -0.000482 -0.941904 +v 75.737274 53.539902 0.104123 +vn 0.335273 -0.000476 -0.942121 +v 75.734978 55.324699 0.102058 +vn 0.966425 0.000162 -0.256949 +v 77.668175 57.704899 2.286738 +vn 0.966271 0.000190 -0.257528 +v 77.668076 59.489799 2.286698 +vn 0.837948 0.000277 -0.545750 +v 77.270477 57.110100 1.258108 +vn 0.591830 -0.000149 -0.806063 +v 76.524529 59.056019 0.513111 +vn 0.837564 0.000300 -0.546339 +v 77.268074 58.894901 1.256018 +vn 0.966107 0.000170 -0.258140 +v 77.668076 61.274601 2.286658 +vn 0.965926 0.000162 -0.258819 +v 77.668076 63.059399 2.286599 +vn 0.837211 0.000295 -0.546879 +v 77.265778 60.679699 1.253928 +vn 0.591780 -0.000158 -0.806099 +v 76.519241 63.010376 0.508466 +vn 0.836848 0.000292 -0.547434 +v 77.263374 62.464600 1.251848 +vn 0.334644 -0.000466 -0.942345 +v 75.732574 57.109501 0.099996 +vn 0.334031 -0.000466 -0.942562 +v 75.730179 58.894402 0.097936 +vn 0.333398 -0.000472 -0.942786 +v 75.727776 60.679199 0.095878 +vn 0.332756 -0.000472 -0.943013 +v 75.725380 62.464100 0.093822 +vn 0.000000 1.000000 0.000000 +v 73.501030 72.178001 14.835547 +vn 0.000000 1.000000 0.000000 +v 71.907570 72.178001 9.863464 +vn 0.000446 1.000000 0.000050 +v 76.815231 72.178001 7.196578 +vn 0.000035 0.998969 -0.045406 +v 71.462074 72.170998 3.942149 +vn -0.000007 1.000000 0.000007 +v 75.011688 72.178001 7.187844 +vn -0.000008 0.999997 -0.002415 +v 73.246178 72.178001 5.408020 +vn -0.000019 0.998968 -0.045410 +v 73.246880 72.170898 3.942239 +vn -0.000091 0.999997 -0.002329 +v 75.030975 72.178001 5.408020 +vn -0.000264 0.998971 -0.045350 +v 75.031677 72.170998 3.942249 +vn 0.999994 0.003316 0.000139 +v 77.927979 64.843475 8.972370 +vn 0.989845 -0.142132 -0.002141 +v 77.916473 66.592796 12.539609 +vn 0.916726 -0.399439 -0.007853 +v 78.474976 68.423500 12.538909 +vn 0.990706 -0.136019 0.000015 +v 77.916473 66.592697 10.754708 +vn 0.918960 -0.394331 -0.003853 +v 78.437180 68.407303 10.747608 +vn 0.849882 -0.526952 -0.004749 +v 79.267281 69.792999 12.538209 +vn 0.904610 -0.426241 0.000011 +v 80.071075 71.014999 12.575841 +vn 0.901255 -0.433249 -0.005799 +v 80.070976 71.014702 10.752909 +vn 0.848858 -0.528611 -0.003328 +v 79.229477 69.776497 10.747209 +vn 0.029875 0.999554 0.000000 +v 78.528374 72.176399 13.431705 +vn 0.959637 0.281241 -0.000000 +v 80.259781 71.627502 10.776311 +vn 0.371288 0.928518 -0.000037 +v 79.691475 72.107903 9.590525 +vn 0.990405 -0.138176 0.002244 +v 77.916473 66.592697 8.969818 +vn 0.999994 0.003322 0.000217 +v 77.928474 64.843498 7.185349 +vn 0.989541 -0.144248 0.000235 +v 77.916878 66.592796 7.185059 +vn 0.918924 -0.394411 0.004371 +v 78.437378 68.407402 8.963538 +vn 0.920057 -0.391701 0.008040 +v 78.475281 68.423599 7.184988 +vn 0.999919 0.003048 -0.012309 +v 77.928780 64.843498 5.401218 +vn 0.989312 -0.145419 -0.010721 +v 77.917175 66.592697 5.401039 +vn 0.996185 0.001610 -0.087249 +v 77.886375 64.843597 3.726928 +vn 0.985296 -0.145370 -0.089771 +v 77.878075 66.606598 3.715559 +vn 0.916746 -0.399427 -0.005841 +v 78.476379 68.424400 5.402089 +vn 0.912574 -0.396817 -0.098719 +v 78.459976 68.439796 3.838919 +vn 0.896100 -0.443837 -0.003671 +v 80.033279 70.998703 8.962039 +vn 0.850973 -0.525208 0.000199 +v 79.267380 69.792603 8.968988 +vn 0.895990 -0.444071 0.001551 +v 80.033478 70.998703 7.177480 +vn 0.853469 -0.521130 0.003711 +v 79.229477 69.776604 7.177749 +vn 0.909488 -0.415538 -0.012601 +v 80.070877 71.019997 5.396860 +vn 0.852948 -0.521996 0.000049 +v 79.268776 69.794701 5.401928 +vn 0.925595 -0.312156 -0.214082 +v 80.049377 71.032402 3.915209 +vn 0.853295 -0.513109 -0.092772 +v 79.258980 69.799500 3.945219 +vn 0.029853 0.999554 0.000120 +v 78.528374 72.176399 7.185283 +vn 0.000902 0.999996 -0.002632 +v 76.816780 72.178101 5.406540 +vn 0.001698 0.998994 -0.044801 +v 76.816879 72.171898 3.942499 +vn 0.031097 0.999502 -0.005347 +v 78.528275 72.176804 5.402530 +vn 0.024478 0.998845 -0.041345 +v 78.418274 72.164001 3.935059 +vn 0.965342 0.260956 -0.004024 +v 80.259781 71.627197 8.967379 +vn 0.966060 0.258318 -0.000485 +v 80.259781 71.627098 7.182760 +vn 0.371397 0.928474 -0.000030 +v 79.691475 72.107903 7.778590 +vn 0.956640 0.288678 -0.038787 +v 80.258080 71.632103 5.395830 +vn 0.371113 0.928557 -0.007606 +v 79.690079 72.108299 5.994690 +vn 0.915823 0.321125 -0.241135 +v 80.137474 71.625900 3.919689 +vn 0.360408 0.931789 -0.043315 +v 79.584076 72.102402 4.362240 +vn 0.000227 0.775138 -0.631792 +v 71.461075 69.524902 0.877551 +vn 0.000032 0.691838 -0.722053 +v 72.056076 70.473503 1.826599 +vn 0.014496 0.774565 -0.632328 +v 73.220573 69.526001 0.880094 +vn 0.016460 0.683060 -0.730177 +v 73.840080 70.473701 1.825989 +vn 0.097985 0.751443 -0.652482 +v 74.741379 69.516998 0.965962 +vn 0.067438 0.627107 -0.776009 +v 75.572578 70.469902 1.896689 +vn 0.014429 0.003627 -0.999889 +v 73.200478 66.619499 -0.173327 +vn 0.110779 -0.000083 -0.993845 +v 74.569275 64.843803 -0.136698 +vn 0.109949 0.002333 -0.993935 +v 74.569481 66.620903 -0.136317 +vn 0.012015 0.048007 -0.998775 +v 73.199181 68.038902 -0.162414 +vn 0.004089 0.513410 -0.858134 +v 72.627480 68.888397 -0.087485 +vn 0.108654 0.049290 -0.992857 +v 74.562080 68.035004 -0.129219 +vn 0.070140 0.513849 -0.855009 +v 74.199074 68.883003 -0.074254 +vn -0.000060 0.561901 -0.827204 +v 73.246277 71.466499 2.738379 +vn 0.000029 0.823511 -0.567300 +v 72.652077 72.093201 3.041399 +vn 0.005483 0.551613 -0.834083 +v 75.031174 71.466499 2.738379 +vn 0.000041 0.823446 -0.567394 +v 74.436874 72.093300 3.041319 +vn 0.965775 0.000236 -0.259382 +v 77.667976 64.844200 2.286549 +vn 0.950524 -0.097546 -0.294938 +v 77.665176 66.621803 2.275069 +vn 0.836505 0.000326 -0.547959 +v 77.261078 64.249397 1.249769 +vn 0.591734 -0.000065 -0.806133 +v 76.515976 65.439598 0.505608 +vn 0.835940 -0.000078 -0.548821 +v 77.258476 66.030899 1.247599 +vn 0.589946 0.006118 -0.807420 +v 76.513779 67.215797 0.504013 +vn 0.273609 0.631048 -0.725891 +v 76.056274 69.385201 1.167769 +vn 0.152925 0.469264 -0.869715 +v 77.139374 70.446999 2.061049 +vn 0.821776 -0.236989 -0.518189 +v 78.328575 68.795898 2.485299 +vn 0.778540 0.002245 -0.627591 +v 77.249878 67.623703 1.232419 +vn 0.566841 0.287873 -0.771894 +v 76.471680 68.450500 0.498790 +vn 0.405997 0.134042 -0.903991 +v 78.486877 70.419403 2.342859 +vn 0.532806 0.254632 -0.807019 +v 77.282478 69.146698 1.596059 +vn 0.332137 -0.000450 -0.943231 +v 75.723076 64.248901 0.091769 +vn 0.331414 0.000178 -0.943485 +v 75.720680 66.030296 0.089878 +vn 0.329518 0.019288 -0.943952 +v 75.713074 67.624298 0.089577 +vn 0.302640 0.463877 -0.832602 +v 75.596077 68.770203 0.110276 +vn 0.773576 -0.297244 -0.559666 +v 79.361481 70.345398 2.944729 +vn 0.844003 -0.486300 -0.226209 +v 78.883980 69.450203 3.019669 +vn 0.014089 0.510590 -0.859709 +v 76.814980 71.474197 2.739709 +vn -0.001181 0.824735 -0.565518 +v 76.220978 72.094002 3.043209 +vn 0.140840 0.414740 -0.898974 +v 78.432877 71.462700 2.736159 +vn 0.017218 0.820505 -0.571380 +v 77.863876 72.092499 3.033539 +vn 0.656323 0.102846 -0.747437 +v 79.601173 71.306602 3.017759 +vn 0.394173 0.739832 -0.545230 +v 79.417580 72.085999 3.177749 +# 3752 vertices, 0 vertices normals + +f 1//1 3//3 2//2 +f 1//1 4//4 3//3 +f 1//1 5//5 4//4 +f 1//1 6//6 5//5 +f 1//1 7//7 6//6 +f 1//1 2//2 7//7 +f 4//4 8//8 3//3 +f 4//4 9//9 8//8 +f 4//4 10//10 9//9 +f 4//4 5//5 10//10 +f 6//6 11//11 5//5 +f 6//6 12//12 11//11 +f 6//6 13//13 12//12 +f 6//6 7//7 13//13 +f 5//5 14//14 10//10 +f 5//5 11//11 14//14 +f 9//9 15//15 8//8 +f 9//9 16//16 15//15 +f 9//9 17//17 16//16 +f 9//9 10//10 17//17 +f 16//16 18//18 15//15 +f 16//16 17//17 19//19 +f 10//10 20//20 17//17 +f 10//10 14//14 20//20 +f 17//17 21//21 19//19 +f 17//17 20//20 21//21 +f 16//16 22//22 18//18 +f 16//16 23//23 22//22 +f 16//16 19//19 23//23 +f 22//22 23//23 24//24 +f 19//19 25//25 23//23 +f 19//19 21//21 25//25 +f 23//23 26//26 24//24 +f 23//23 25//25 26//26 +f 27//27 11//11 12//12 +f 27//27 28//28 11//11 +f 27//27 29//29 28//28 +f 27//27 30//30 29//29 +f 27//27 31//31 30//30 +f 27//27 12//12 31//31 +f 28//28 14//14 11//11 +f 28//28 32//32 14//14 +f 28//28 33//33 32//32 +f 28//28 29//29 33//33 +f 12//12 34//34 31//31 +f 12//12 13//13 34//34 +f 30//30 35//35 29//29 +f 30//30 36//36 35//35 +f 30//30 37//37 36//36 +f 30//30 31//31 37//37 +f 29//29 38//38 33//33 +f 29//29 35//35 38//38 +f 31//31 39//39 37//37 +f 31//31 34//34 39//39 +f 40//40 42//42 41//41 +f 40//40 43//43 42//42 +f 36//36 41//41 35//35 +f 36//36 40//40 41//41 +f 36//36 43//43 40//40 +f 36//36 37//37 43//43 +f 41//41 45//45 44//44 +f 41//41 42//42 45//45 +f 35//35 44//44 38//38 +f 35//35 41//41 44//44 +f 43//43 46//46 42//42 +f 43//43 47//47 46//46 +f 37//37 47//47 43//43 +f 37//37 39//39 47//47 +f 42//42 48//48 45//45 +f 42//42 46//46 48//48 +f 32//32 20//20 14//14 +f 32//32 49//49 20//20 +f 32//32 50//50 49//49 +f 32//32 33//33 50//50 +f 49//49 21//21 20//20 +f 49//49 51//51 21//21 +f 49//49 52//52 51//51 +f 49//49 50//50 52//52 +f 33//33 53//53 50//50 +f 33//33 38//38 53//53 +f 50//50 54//54 52//52 +f 50//50 53//53 54//54 +f 51//51 25//25 21//21 +f 51//51 55//55 25//25 +f 51//51 56//56 55//55 +f 51//51 52//52 56//56 +f 56//56 58//58 57//57 +f 56//56 59//59 58//58 +f 55//55 26//26 25//25 +f 55//55 60//60 26//26 +f 55//55 57//57 60//60 +f 55//55 56//56 57//57 +f 56//56 61//61 59//59 +f 56//56 62//62 61//61 +f 52//52 62//62 56//56 +f 52//52 54//54 62//62 +f 59//59 63//63 58//58 +f 59//59 61//61 63//63 +f 38//38 64//64 53//53 +f 38//38 44//44 64//64 +f 53//53 65//65 54//54 +f 53//53 64//64 65//65 +f 44//44 66//66 64//64 +f 44//44 67//67 66//66 +f 44//44 68//68 67//67 +f 44//44 45//45 68//68 +f 64//64 69//69 65//65 +f 64//64 66//66 69//69 +f 45//45 70//70 68//68 +f 45//45 48//48 70//70 +f 62//62 71//71 61//61 +f 62//62 72//72 71//71 +f 54//54 72//72 62//62 +f 54//54 65//65 72//72 +f 61//61 73//73 63//63 +f 61//61 71//71 73//73 +f 72//72 74//74 71//71 +f 72//72 75//75 74//74 +f 65//65 75//75 72//72 +f 65//65 69//69 75//75 +f 71//71 76//76 73//73 +f 71//71 74//74 76//76 +f 77//77 79//79 78//78 +f 77//77 80//80 79//79 +f 77//77 81//81 80//80 +f 77//77 82//82 81//81 +f 77//77 83//83 82//82 +f 77//77 78//78 83//83 +f 80//80 84//84 79//79 +f 80//80 85//85 84//84 +f 80//80 86//86 85//85 +f 80//80 81//81 86//86 +f 78//78 88//88 87//87 +f 78//78 79//79 88//88 +f 78//78 89//89 83//83 +f 78//78 87//87 89//89 +f 79//79 90//90 88//88 +f 79//79 84//84 90//90 +f 87//87 92//92 91//91 +f 87//87 88//88 92//92 +f 87//87 93//93 89//89 +f 87//87 91//91 93//93 +f 88//88 94//94 92//92 +f 88//88 90//90 94//94 +f 2//2 81//81 82//82 +f 2//2 3//3 81//81 +f 2//2 95//95 7//7 +f 2//2 82//82 95//95 +f 3//3 86//86 81//81 +f 3//3 8//8 86//86 +f 82//82 96//96 95//95 +f 82//82 83//83 96//96 +f 7//7 97//97 13//13 +f 7//7 95//95 97//97 +f 97//97 99//99 98//98 +f 97//97 100//100 99//99 +f 95//95 100//100 97//97 +f 95//95 96//96 100//100 +f 98//98 102//102 101//101 +f 98//98 99//99 102//102 +f 83//83 103//103 96//96 +f 83//83 89//89 103//103 +f 89//89 104//104 103//103 +f 89//89 93//93 104//104 +f 100//100 105//105 99//99 +f 100//100 106//106 105//105 +f 96//96 106//106 100//100 +f 96//96 103//103 106//106 +f 99//99 107//107 102//102 +f 99//99 105//105 107//107 +f 106//106 108//108 105//105 +f 106//106 109//109 108//108 +f 103//103 109//109 106//106 +f 103//103 104//104 109//109 +f 105//105 110//110 107//107 +f 105//105 108//108 110//110 +f 85//85 111//111 84//84 +f 85//85 112//112 111//111 +f 85//85 113//113 112//112 +f 85//85 86//86 113//113 +f 112//112 114//114 111//111 +f 112//112 113//113 115//115 +f 84//84 116//116 90//90 +f 84//84 111//111 116//116 +f 111//111 114//114 116//116 +f 90//90 117//117 94//94 +f 90//90 116//116 117//117 +f 116//116 118//118 117//117 +f 114//114 119//119 116//116 +f 116//116 119//119 118//118 +f 119//119 120//120 118//118 +f 8//8 113//113 86//86 +f 8//8 15//15 113//113 +f 15//15 18//18 113//113 +f 18//18 115//115 113//113 +f 121//121 123//123 122//122 +f 121//121 124//124 123//123 +f 91//91 124//124 121//121 +f 91//91 92//92 124//124 +f 91//91 122//122 93//93 +f 91//91 121//121 122//122 +f 124//124 125//125 123//123 +f 124//124 126//126 125//125 +f 92//92 126//126 124//124 +f 92//92 94//94 126//126 +f 122//122 128//128 127//127 +f 122//122 123//123 128//128 +f 93//93 127//127 104//104 +f 93//93 122//122 127//127 +f 123//123 129//129 128//128 +f 123//123 125//125 129//129 +f 109//109 130//130 108//108 +f 109//109 131//131 130//130 +f 127//127 130//130 131//131 +f 127//127 128//128 130//130 +f 104//104 131//131 109//109 +f 104//104 127//127 131//131 +f 108//108 132//132 110//110 +f 108//108 130//130 132//132 +f 128//128 132//132 130//130 +f 128//128 129//129 132//132 +f 94//94 133//133 126//126 +f 94//94 117//117 133//133 +f 117//117 134//134 133//133 +f 117//117 118//118 134//134 +f 126//126 136//136 135//135 +f 126//126 133//133 136//136 +f 126//126 137//137 125//125 +f 126//126 135//135 137//137 +f 133//133 138//138 136//136 +f 133//133 134//134 138//138 +f 118//118 120//120 134//134 +f 134//134 139//139 138//138 +f 134//134 120//120 139//139 +f 135//135 141//141 140//140 +f 135//135 136//136 141//141 +f 135//135 142//142 137//137 +f 135//135 140//140 142//142 +f 136//136 143//143 141//141 +f 136//136 138//138 143//143 +f 140//140 144//144 142//142 +f 138//138 139//139 143//143 +f 143//143 139//139 145//145 +f 125//125 146//146 129//129 +f 125//125 137//137 146//146 +f 129//129 147//147 132//132 +f 129//129 146//146 147//147 +f 137//137 148//148 146//146 +f 137//137 142//142 148//148 +f 142//142 149//149 148//148 +f 142//142 144//144 149//149 +f 146//146 150//150 147//147 +f 146//146 148//148 150//150 +f 148//148 151//151 150//150 +f 148//148 149//149 151//151 +f 97//97 153//153 152//152 +f 97//97 98//98 153//153 +f 13//13 152//152 34//34 +f 13//13 97//97 152//152 +f 98//98 154//154 153//153 +f 98//98 101//101 154//154 +f 152//152 156//156 155//155 +f 152//152 153//153 156//156 +f 34//34 155//155 39//39 +f 34//34 152//152 155//155 +f 153//153 157//157 156//156 +f 153//153 154//154 157//157 +f 47//47 158//158 46//46 +f 47//47 159//159 158//158 +f 155//155 158//158 159//159 +f 155//155 156//156 158//158 +f 39//39 159//159 47//47 +f 39//39 155//155 159//159 +f 46//46 160//160 48//48 +f 46//46 158//158 160//160 +f 156//156 160//160 158//158 +f 156//156 157//157 160//160 +f 101//101 161//161 154//154 +f 101//101 102//102 161//161 +f 154//154 162//162 157//157 +f 154//154 161//161 162//162 +f 102//102 163//163 161//161 +f 102//102 107//107 163//163 +f 107//107 164//164 163//163 +f 107//107 110//110 164//164 +f 161//161 165//165 162//162 +f 161//161 163//163 165//165 +f 163//163 166//166 165//165 +f 163//163 164//164 166//166 +f 157//157 167//167 160//160 +f 157//157 162//162 167//167 +f 48//48 168//168 70//70 +f 48//48 160//160 168//168 +f 160//160 169//169 168//168 +f 160//160 167//167 169//169 +f 162//162 170//170 167//167 +f 162//162 165//165 170//170 +f 165//165 166//166 170//170 +f 167//167 171//171 169//169 +f 167//167 170//170 171//171 +f 170//170 172//172 171//171 +f 110//110 173//173 164//164 +f 110//110 132//132 173//173 +f 132//132 174//174 173//173 +f 132//132 147//147 174//174 +f 164//164 175//175 166//166 +f 164//164 173//173 175//175 +f 173//173 176//176 175//175 +f 173//173 174//174 176//176 +f 147//147 177//177 174//174 +f 147//147 150//150 177//177 +f 150//150 178//178 177//177 +f 150//150 151//151 178//178 +f 174//174 178//178 176//176 +f 174//174 177//177 178//178 +f 166//166 176//176 170//170 +f 166//166 175//175 176//176 +f 170//170 179//179 172//172 +f 170//170 176//176 179//179 +f 176//176 178//178 179//179 +f 22//22 180//180 18//18 +f 22//22 24//24 180//180 +f 180//180 181//181 18//18 +f 180//180 24//24 182//182 +f 24//24 26//26 183//183 +f 24//24 184//184 182//182 +f 24//24 183//183 184//184 +f 180//180 185//185 181//181 +f 180//180 182//182 185//185 +f 182//182 184//184 186//186 +f 182//182 186//186 187//187 +f 185//185 182//182 188//188 +f 182//182 187//187 189//189 +f 182//182 189//189 188//188 +f 185//185 190//190 181//181 +f 185//185 188//188 191//191 +f 188//188 189//189 192//192 +f 188//188 193//193 191//191 +f 188//188 192//192 193//193 +f 57//57 195//195 194//194 +f 57//57 58//58 195//195 +f 60//60 183//183 26//26 +f 60//60 196//196 183//183 +f 60//60 194//194 196//196 +f 60//60 57//57 194//194 +f 194//194 198//198 197//197 +f 194//194 195//195 198//198 +f 196//196 184//184 183//183 +f 196//196 199//199 184//184 +f 196//196 197//197 199//199 +f 196//196 194//194 197//197 +f 58//58 200//200 195//195 +f 58//58 63//63 200//200 +f 195//195 201//201 198//198 +f 195//195 200//200 201//201 +f 197//197 203//203 202//202 +f 197//197 198//198 203//203 +f 199//199 186//186 184//184 +f 199//199 204//204 186//186 +f 199//199 202//202 204//204 +f 199//199 197//197 202//202 +f 202//202 206//206 205//205 +f 202//202 203//203 206//206 +f 204//204 187//187 186//186 +f 204//204 207//207 187//187 +f 204//204 205//205 207//207 +f 204//204 202//202 205//205 +f 198//198 208//208 203//203 +f 198//198 201//201 208//208 +f 203//203 209//209 206//206 +f 203//203 208//208 209//209 +f 63//63 210//210 200//200 +f 63//63 73//73 210//210 +f 200//200 211//211 201//201 +f 200//200 210//210 211//211 +f 73//73 212//212 210//210 +f 73//73 76//76 212//212 +f 210//210 213//213 211//211 +f 210//210 212//212 213//213 +f 201//201 211//211 208//208 +f 208//208 214//214 209//209 +f 208//208 211//211 214//214 +f 211//211 213//213 214//214 +f 205//205 216//216 215//215 +f 205//205 206//206 216//216 +f 207//207 189//189 187//187 +f 207//207 217//217 189//189 +f 207//207 215//215 217//217 +f 207//207 205//205 215//215 +f 215//215 219//219 218//218 +f 215//215 216//216 219//219 +f 217//217 220//220 189//189 +f 217//217 218//218 220//220 +f 217//217 215//215 218//218 +f 206//206 209//209 216//216 +f 216//216 221//221 219//219 +f 216//216 209//209 221//221 +f 218//218 223//223 222//222 +f 218//218 219//219 223//223 +f 220//220 192//192 189//189 +f 220//220 224//224 192//192 +f 220//220 222//222 224//224 +f 220//220 218//218 222//222 +f 222//222 226//226 225//225 +f 222//222 223//223 226//226 +f 224//224 193//193 192//192 +f 224//224 227//227 193//193 +f 224//224 225//225 227//227 +f 224//224 222//222 225//225 +f 219//219 221//221 223//223 +f 223//223 228//228 226//226 +f 223//223 221//221 228//228 +f 209//209 214//214 221//221 +f 214//214 213//213 229//229 +f 221//221 214//214 230//230 +f 221//221 230//230 228//228 +f 214//214 229//229 230//230 +f 185//185 231//231 190//190 +f 185//185 191//191 231//231 +f 231//231 191//191 232//232 +f 191//191 193//193 233//233 +f 191//191 234//234 232//232 +f 191//191 233//233 234//234 +f 231//231 235//235 190//190 +f 231//231 232//232 235//235 +f 235//235 236//236 190//190 +f 232//232 234//234 237//237 +f 232//232 237//237 238//238 +f 235//235 232//232 239//239 +f 232//232 238//238 239//239 +f 239//239 238//238 240//240 +f 235//235 241//241 236//236 +f 235//235 242//242 241//241 +f 235//235 239//239 242//242 +f 242//242 239//239 243//243 +f 239//239 240//240 244//244 +f 239//239 245//245 243//243 +f 239//239 244//244 245//245 +f 225//225 226//226 246//246 +f 227//227 233//233 193//193 +f 225//225 248//248 247//247 +f 225//225 246//246 248//248 +f 227//227 234//234 233//233 +f 227//227 249//249 234//234 +f 227//227 247//247 249//249 +f 227//227 225//225 247//247 +f 226//226 250//250 246//246 +f 226//226 228//228 250//250 +f 246//246 250//250 248//248 +f 247//247 252//252 251//251 +f 247//247 248//248 252//252 +f 249//249 237//237 234//234 +f 249//249 253//253 237//237 +f 249//249 251//251 253//253 +f 249//249 247//247 251//251 +f 251//251 255//255 254//254 +f 251//251 252//252 255//255 +f 253//253 238//238 237//237 +f 253//253 256//256 238//238 +f 253//253 254//254 256//256 +f 253//253 251//251 254//254 +f 248//248 257//257 252//252 +f 248//248 250//250 257//257 +f 252//252 258//258 255//255 +f 252//252 257//257 258//258 +f 228//228 230//230 250//250 +f 230//230 229//229 259//259 +f 250//250 260//260 257//257 +f 250//250 230//230 260//260 +f 257//257 260//260 258//258 +f 230//230 259//259 260//260 +f 254//254 262//262 261//261 +f 254//254 255//255 262//262 +f 256//256 263//263 238//238 +f 256//256 261//261 263//263 +f 256//256 254//254 261//261 +f 261//261 265//265 264//264 +f 261//261 262//262 265//265 +f 263//263 240//240 238//238 +f 263//263 266//266 240//240 +f 263//263 264//264 266//266 +f 263//263 261//261 264//264 +f 255//255 267//267 262//262 +f 255//255 258//258 267//267 +f 262//262 268//268 265//265 +f 262//262 267//267 268//268 +f 264//264 270//270 269//269 +f 264//264 265//265 270//270 +f 266//266 244//244 240//240 +f 266//266 271//271 244//244 +f 266//266 269//269 271//271 +f 266//266 264//264 269//269 +f 269//269 273//273 272//272 +f 269//269 270//270 273//273 +f 271//271 245//245 244//244 +f 271//271 274//274 245//245 +f 271//271 272//272 274//274 +f 271//271 269//269 272//272 +f 265//265 275//275 270//270 +f 265//265 268//268 275//275 +f 270//270 276//276 273//273 +f 270//270 275//275 276//276 +f 258//258 260//260 267//267 +f 267//267 277//277 268//268 +f 267//267 260//260 277//277 +f 260//260 259//259 277//277 +f 268//268 277//277 275//275 +f 275//275 277//277 276//276 +f 277//277 259//259 278//278 +f 112//112 279//279 114//114 +f 112//112 115//115 279//279 +f 279//279 280//280 114//114 +f 279//279 115//115 281//281 +f 114//114 282//282 119//119 +f 114//114 280//280 282//282 +f 18//18 181//181 115//115 +f 181//181 281//281 115//115 +f 279//279 283//283 280//280 +f 279//279 281//281 283//283 +f 283//283 284//284 280//280 +f 283//283 281//281 285//285 +f 280//280 284//284 282//282 +f 284//284 286//286 282//282 +f 282//282 286//286 287//287 +f 181//181 285//285 281//281 +f 181//181 190//190 285//285 +f 120//120 119//119 288//288 +f 119//119 289//289 288//288 +f 119//119 282//282 289//289 +f 120//120 288//288 139//139 +f 139//139 288//288 290//290 +f 289//289 291//291 288//288 +f 288//288 291//291 292//292 +f 282//282 287//287 289//289 +f 289//289 294//294 291//291 +f 289//289 287//287 294//294 +f 287//287 293//293 294//294 +f 283//283 295//295 284//284 +f 283//283 296//296 295//295 +f 283//283 297//297 296//296 +f 283//283 285//285 297//297 +f 284//284 298//298 286//286 +f 284//284 295//295 298//298 +f 190//190 297//297 285//285 +f 190//190 236//236 297//297 +f 296//296 299//299 295//295 +f 296//296 300//300 299//299 +f 296//296 301//301 300//300 +f 296//296 297//297 301//301 +f 295//295 299//299 298//298 +f 299//299 303//303 298//298 +f 298//298 303//303 302//302 +f 236//236 301//301 297//297 +f 236//236 241//241 301//301 +f 287//287 286//286 293//293 +f 286//286 298//298 293//293 +f 298//298 304//304 293//293 +f 293//293 305//305 294//294 +f 293//293 304//304 305//305 +f 298//298 302//302 304//304 +f 302//302 303//303 306//306 +f 302//302 306//306 304//304 +f 305//305 304//304 307//307 +f 304//304 306//306 307//307 +f 306//306 308//308 307//307 +f 67//67 309//309 66//66 +f 67//67 310//310 309//309 +f 67//67 311//311 310//310 +f 67//67 68//68 311//311 +f 66//66 312//312 69//69 +f 66//66 309//309 312//312 +f 68//68 313//313 311//311 +f 68//68 70//70 313//313 +f 310//310 314//314 309//309 +f 310//310 315//315 314//314 +f 310//310 316//316 315//315 +f 310//310 311//311 316//316 +f 309//309 317//317 312//312 +f 309//309 314//314 317//317 +f 311//311 318//318 316//316 +f 311//311 313//313 318//318 +f 75//75 319//319 74//74 +f 69//69 319//319 75//75 +f 69//69 312//312 319//319 +f 319//319 320//320 74//74 +f 312//312 320//320 319//319 +f 312//312 317//317 320//320 +f 315//315 316//316 321//321 +f 314//314 322//322 317//317 +f 316//316 318//318 321//321 +f 320//320 323//323 74//74 +f 74//74 323//323 76//76 +f 317//317 322//322 320//320 +f 323//323 324//324 76//76 +f 321//321 318//318 325//325 +f 315//315 326//326 314//314 +f 315//315 327//327 326//326 +f 315//315 321//321 327//327 +f 314//314 326//326 322//322 +f 320//320 328//328 323//323 +f 322//322 328//328 320//320 +f 70//70 329//329 313//313 +f 70//70 168//168 329//329 +f 168//168 330//330 329//329 +f 168//168 169//169 330//330 +f 313//313 331//331 318//318 +f 313//313 329//329 331//331 +f 329//329 332//332 331//331 +f 329//329 330//330 332//332 +f 169//169 172//172 330//330 +f 169//169 171//171 172//172 +f 330//330 333//333 332//332 +f 330//330 172//172 333//333 +f 318//318 331//331 334//334 +f 331//331 335//335 334//334 +f 331//331 332//332 335//335 +f 333//333 336//336 332//332 +f 332//332 336//336 335//335 +f 172//172 336//336 333//333 +f 172//172 179//179 336//336 +f 179//179 337//337 336//336 +f 336//336 337//337 338//338 +f 318//318 334//334 325//325 +f 334//334 335//335 340//340 +f 325//325 334//334 341//341 +f 334//334 340//340 341//341 +f 335//335 339//339 340//340 +f 335//335 336//336 339//339 +f 336//336 342//342 339//339 +f 336//336 338//338 342//342 +f 339//339 343//343 340//340 +f 339//339 342//342 343//343 +f 327//327 321//321 344//344 +f 326//326 345//345 322//322 +f 321//321 325//325 344//344 +f 327//327 346//346 326//326 +f 327//327 347//347 346//346 +f 327//327 344//344 347//347 +f 326//326 346//346 345//345 +f 344//344 325//325 348//348 +f 328//328 349//349 323//323 +f 322//322 345//345 328//328 +f 323//323 349//349 324//324 +f 328//328 350//350 349//349 +f 345//345 350//350 328//328 +f 349//349 351//351 324//324 +f 347//347 352//352 346//346 +f 347//347 344//344 353//353 +f 346//346 354//354 345//345 +f 346//346 352//352 354//354 +f 344//344 348//348 353//353 +f 350//350 355//355 349//349 +f 350//350 356//356 355//355 +f 345//345 356//356 350//350 +f 345//345 354//354 356//356 +f 349//349 355//355 351//351 +f 347//347 357//357 352//352 +f 352//352 358//358 354//354 +f 352//352 357//357 358//358 +f 347//347 359//359 357//357 +f 347//347 360//360 359//359 +f 347//347 353//353 360//360 +f 357//357 361//361 358//358 +f 357//357 359//359 361//361 +f 353//353 348//348 362//362 +f 356//356 363//363 355//355 +f 356//356 364//364 363//363 +f 354//354 364//364 356//356 +f 354//354 358//358 364//364 +f 355//355 365//365 351//351 +f 355//355 363//363 365//365 +f 364//364 366//366 363//363 +f 364//364 367//367 366//366 +f 358//358 367//367 364//364 +f 358//358 361//361 367//367 +f 363//363 368//368 365//365 +f 363//363 366//366 368//368 +f 360//360 369//369 359//359 +f 359//359 370//370 361//361 +f 359//359 369//369 370//370 +f 360//360 371//371 369//369 +f 360//360 353//353 372//372 +f 369//369 373//373 370//370 +f 369//369 371//371 373//373 +f 353//353 362//362 372//372 +f 367//367 374//374 366//366 +f 367//367 375//375 374//374 +f 361//361 375//375 367//367 +f 361//361 370//370 375//375 +f 366//366 376//376 368//368 +f 366//366 374//374 376//376 +f 375//375 377//377 374//374 +f 375//375 378//378 377//377 +f 370//370 378//378 375//375 +f 370//370 373//373 378//378 +f 374//374 379//379 376//376 +f 374//374 377//377 379//379 +f 341//341 340//340 380//380 +f 325//325 341//341 348//348 +f 348//348 341//341 381//381 +f 341//341 380//380 381//381 +f 380//380 382//382 381//381 +f 340//340 383//383 380//380 +f 340//340 343//343 383//383 +f 343//343 384//384 383//383 +f 380//380 383//383 382//382 +f 348//348 385//385 362//362 +f 348//348 381//381 385//385 +f 381//381 382//382 385//385 +f 385//385 382//382 386//386 +f 382//382 383//383 387//387 +f 383//383 384//384 387//387 +f 382//382 387//387 386//386 +f 384//384 388//388 387//387 +f 212//212 389//389 213//213 +f 213//213 389//389 390//390 +f 76//76 391//391 212//212 +f 76//76 324//324 391//391 +f 212//212 391//391 389//389 +f 389//389 392//392 390//390 +f 213//213 390//390 229//229 +f 229//229 390//390 393//393 +f 229//229 393//393 394//394 +f 390//390 395//395 393//393 +f 390//390 392//392 395//395 +f 391//391 396//396 389//389 +f 389//389 396//396 392//392 +f 324//324 397//397 391//391 +f 391//391 397//397 396//396 +f 396//396 398//398 392//392 +f 392//392 398//398 395//395 +f 395//395 398//398 400//400 +f 395//395 400//400 399//399 +f 229//229 394//394 259//259 +f 259//259 394//394 401//401 +f 393//393 399//399 394//394 +f 393//393 395//395 399//399 +f 394//394 399//399 401//401 +f 259//259 401//401 402//402 +f 259//259 402//402 278//278 +f 399//399 400//400 404//404 +f 399//399 405//405 401//401 +f 399//399 404//404 405//405 +f 404//404 406//406 405//405 +f 401//401 405//405 402//402 +f 402//402 405//405 403//403 +f 405//405 407//407 403//403 +f 405//405 406//406 408//408 +f 405//405 408//408 407//407 +f 397//397 409//409 396//396 +f 324//324 351//351 397//397 +f 396//396 410//410 398//398 +f 396//396 409//409 410//410 +f 351//351 411//411 397//397 +f 397//397 411//411 409//409 +f 409//409 412//412 410//410 +f 398//398 410//410 413//413 +f 398//398 413//413 400//400 +f 400//400 413//413 404//404 +f 413//413 414//414 404//404 +f 410//410 412//412 413//413 +f 413//413 412//412 414//414 +f 351//351 415//415 411//411 +f 351//351 365//365 415//415 +f 411//411 416//416 409//409 +f 411//411 415//415 416//416 +f 365//365 417//417 415//415 +f 365//365 368//368 417//417 +f 415//415 417//417 416//416 +f 409//409 416//416 412//412 +f 416//416 417//417 418//418 +f 368//368 419//419 417//417 +f 368//368 376//376 419//419 +f 376//376 420//420 419//419 +f 376//376 379//379 420//420 +f 419//419 420//420 421//421 +f 417//417 422//422 418//418 +f 417//417 419//419 422//422 +f 419//419 421//421 422//422 +f 412//412 416//416 423//423 +f 416//416 418//418 423//423 +f 412//412 423//423 414//414 +f 422//422 421//421 424//424 +f 404//404 414//414 425//425 +f 404//404 425//425 406//406 +f 406//406 425//425 408//408 +f 414//414 426//426 425//425 +f 408//408 427//427 407//407 +f 425//425 426//426 408//408 +f 408//408 428//428 427//427 +f 408//408 426//426 428//428 +f 414//414 429//429 426//426 +f 414//414 423//423 429//429 +f 423//423 418//418 430//430 +f 423//423 430//430 429//429 +f 429//429 430//430 431//431 +f 418//418 422//422 430//430 +f 430//430 422//422 432//432 +f 422//422 424//424 433//433 +f 422//422 433//433 432//432 +f 430//430 432//432 431//431 +f 426//426 429//429 428//428 +f 428//428 429//429 434//434 +f 429//429 435//435 434//434 +f 429//429 431//431 435//435 +f 431//431 432//432 436//436 +f 432//432 433//433 437//437 +f 432//432 437//437 436//436 +f 431//431 436//436 435//435 +f 436//436 437//437 438//438 +f 242//242 439//439 241//241 +f 242//242 243//243 439//439 +f 439//439 243//243 440//440 +f 243//243 245//245 441//441 +f 243//243 442//442 440//440 +f 243//243 441//441 442//442 +f 439//439 443//443 241//241 +f 439//439 444//444 443//443 +f 439//439 440//440 444//444 +f 440//440 442//442 445//445 +f 444//444 440//440 446//446 +f 440//440 447//447 446//446 +f 440//440 445//445 447//447 +f 444//444 448//448 443//443 +f 444//444 449//449 448//448 +f 444//444 446//446 449//449 +f 446//446 447//447 450//450 +f 446//446 451//451 449//449 +f 446//446 450//450 451//451 +f 272//272 453//453 452//452 +f 272//272 273//273 453//453 +f 274//274 441//441 245//245 +f 274//274 454//454 441//441 +f 274//274 452//452 454//454 +f 274//274 272//272 452//452 +f 452//452 456//456 455//455 +f 452//452 453//453 456//456 +f 454//454 442//442 441//441 +f 454//454 457//457 442//442 +f 454//454 455//455 457//457 +f 454//454 452//452 455//455 +f 273//273 276//276 453//453 +f 453//453 276//276 456//456 +f 455//455 459//459 458//458 +f 455//455 456//456 459//459 +f 457//457 445//445 442//442 +f 457//457 460//460 445//445 +f 457//457 458//458 460//460 +f 457//457 455//455 458//458 +f 458//458 462//462 461//461 +f 458//458 459//459 462//462 +f 460//460 463//463 445//445 +f 460//460 461//461 463//463 +f 460//460 458//458 461//461 +f 456//456 464//464 459//459 +f 456//456 276//276 464//464 +f 459//459 464//464 462//462 +f 276//276 277//277 465//465 +f 277//277 278//278 465//465 +f 276//276 465//465 464//464 +f 465//465 278//278 466//466 +f 461//461 468//468 467//467 +f 461//461 462//462 468//468 +f 463//463 447//447 445//445 +f 463//463 469//469 447//447 +f 463//463 467//467 469//469 +f 463//463 461//461 467//467 +f 467//467 471//471 470//470 +f 467//467 468//468 471//471 +f 469//469 467//467 470//470 +f 462//462 472//472 468//468 +f 462//462 464//464 472//472 +f 468//468 473//473 471//471 +f 468//468 472//472 473//473 +f 470//470 471//471 474//474 +f 469//469 450//450 447//447 +f 469//469 475//475 450//450 +f 469//469 470//470 475//475 +f 470//470 474//474 476//476 +f 475//475 451//451 450//450 +f 475//475 477//477 451//451 +f 475//475 476//476 477//477 +f 475//475 470//470 476//476 +f 471//471 473//473 474//474 +f 464//464 465//465 472//472 +f 472//472 465//465 473//473 +f 473//473 465//465 478//478 +f 465//465 466//466 478//478 +f 478//478 466//466 479//479 +f 448//448 480//480 443//443 +f 448//448 481//481 480//480 +f 448//448 482//482 481//481 +f 448//448 449//449 482//482 +f 449//449 451//451 483//483 +f 449//449 484//484 482//482 +f 449//449 483//483 484//484 +f 482//482 484//484 485//485 +f 481//481 482//482 486//486 +f 481//481 487//487 480//480 +f 481//481 488//488 487//487 +f 481//481 486//486 488//488 +f 482//482 485//485 486//486 +f 486//486 485//485 489//489 +f 488//488 486//486 490//490 +f 486//486 491//491 490//490 +f 486//486 489//489 491//491 +f 476//476 474//474 492//492 +f 477//477 483//483 451//451 +f 477//477 493//493 483//483 +f 477//477 492//492 493//493 +f 477//477 476//476 492//492 +f 492//492 495//495 494//494 +f 492//492 474//474 495//495 +f 493//493 484//484 483//483 +f 493//493 496//496 484//484 +f 493//493 494//494 496//496 +f 493//493 492//492 494//494 +f 474//474 473//473 497//497 +f 474//474 497//497 495//495 +f 494//494 495//495 498//498 +f 496//496 485//485 484//484 +f 496//496 494//494 498//498 +f 495//495 497//497 499//499 +f 473//473 478//478 497//497 +f 497//497 478//478 500//500 +f 497//497 500//500 499//499 +f 478//478 479//479 500//500 +f 496//496 501//501 485//485 +f 496//496 498//498 501//501 +f 498//498 503//503 502//502 +f 498//498 495//495 503//503 +f 501//501 489//489 485//485 +f 501//501 498//498 502//502 +f 495//495 499//499 503//503 +f 502//502 503//503 504//504 +f 501//501 491//491 489//489 +f 501//501 505//505 491//491 +f 501//501 504//504 505//505 +f 501//501 502//502 504//504 +f 503//503 499//499 506//506 +f 500//500 479//479 507//507 +f 499//499 508//508 506//506 +f 499//499 500//500 508//508 +f 500//500 507//507 508//508 +f 300//300 509//509 299//299 +f 300//300 510//510 509//509 +f 300//300 511//511 510//510 +f 300//300 301//301 511//511 +f 299//299 512//512 303//303 +f 299//299 509//509 512//512 +f 512//512 513//513 303//303 +f 241//241 511//511 301//301 +f 241//241 443//443 511//511 +f 510//510 514//514 509//509 +f 510//510 511//511 514//514 +f 514//514 515//515 509//509 +f 514//514 511//511 516//516 +f 509//509 517//517 512//512 +f 512//512 517//517 513//513 +f 509//509 515//515 517//517 +f 443//443 516//516 511//511 +f 303//303 513//513 306//306 +f 513//513 519//519 306//306 +f 306//306 520//520 308//308 +f 306//306 519//519 520//520 +f 519//519 521//521 520//520 +f 513//513 517//517 519//519 +f 517//517 518//518 519//519 +f 519//519 518//518 522//522 +f 519//519 522//522 521//521 +f 514//514 523//523 515//515 +f 514//514 516//516 523//523 +f 523//523 524//524 515//515 +f 523//523 516//516 525//525 +f 515//515 526//526 517//517 +f 515//515 524//524 526//526 +f 517//517 526//526 518//518 +f 443//443 480//480 516//516 +f 480//480 525//525 516//516 +f 523//523 528//528 524//524 +f 523//523 525//525 528//528 +f 528//528 529//529 524//524 +f 528//528 525//525 530//530 +f 524//524 529//529 526//526 +f 529//529 531//531 526//526 +f 526//526 531//531 527//527 +f 480//480 530//530 525//525 +f 480//480 487//487 530//530 +f 518//518 526//526 532//532 +f 518//518 532//532 522//522 +f 526//526 527//527 532//532 +f 532//532 527//527 533//533 +f 532//532 533//533 534//534 +f 527//527 535//535 533//533 +f 527//527 531//531 536//536 +f 527//527 536//536 535//535 +f 535//535 536//536 537//537 +f 538//538 540//540 539//539 +f 538//538 541//541 540//540 +f 538//538 542//542 541//541 +f 538//538 543//543 542//542 +f 538//538 544//544 543//543 +f 538//538 539//539 544//544 +f 539//539 546//546 545//545 +f 539//539 540//540 546//546 +f 539//539 547//547 544//544 +f 539//539 545//545 547//547 +f 488//488 548//548 487//487 +f 488//488 549//549 548//548 +f 488//488 490//490 549//549 +f 549//549 550//550 548//548 +f 549//549 551//551 550//550 +f 549//549 552//552 551//551 +f 549//549 490//490 552//552 +f 490//490 491//491 553//553 +f 490//490 554//554 552//552 +f 490//490 553//553 554//554 +f 543//543 555//555 542//542 +f 543//543 556//556 555//555 +f 543//543 557//557 556//556 +f 543//543 544//544 557//557 +f 551//551 547//547 550//550 +f 551//551 544//544 547//547 +f 551//551 557//557 544//544 +f 551//551 552//552 557//557 +f 556//556 558//558 555//555 +f 556//556 559//559 558//558 +f 556//556 560//560 559//559 +f 556//556 557//557 560//560 +f 552//552 560//560 557//557 +f 552//552 554//554 560//560 +f 561//561 562//562 541//541 +f 561//561 563//563 562//562 +f 561//561 564//564 563//563 +f 561//561 565//565 564//564 +f 561//561 542//542 565//565 +f 561//561 541//541 542//542 +f 566//566 568//568 567//567 +f 566//566 569//569 568//568 +f 563//563 567//567 562//562 +f 563//563 566//566 567//567 +f 563//563 569//569 566//566 +f 563//563 564//564 569//569 +f 541//541 570//570 540//540 +f 541//541 562//562 570//570 +f 567//567 572//572 571//571 +f 567//567 568//568 572//572 +f 562//562 571//571 570//570 +f 562//562 567//567 571//571 +f 540//540 573//573 546//546 +f 540//540 570//570 573//573 +f 571//571 575//575 574//574 +f 571//571 572//572 575//575 +f 570//570 574//574 573//573 +f 570//570 571//571 574//574 +f 565//565 576//576 564//564 +f 565//565 577//577 576//576 +f 565//565 555//555 577//577 +f 565//565 542//542 555//555 +f 569//569 578//578 568//568 +f 569//569 579//579 578//578 +f 564//564 579//579 569//569 +f 564//564 576//576 579//579 +f 577//577 580//580 576//576 +f 577//577 581//581 580//580 +f 577//577 558//558 581//581 +f 577//577 555//555 558//558 +f 579//579 582//582 578//578 +f 579//579 583//583 582//582 +f 576//576 583//583 579//579 +f 576//576 580//580 583//583 +f 568//568 584//584 572//572 +f 568//568 578//578 584//584 +f 572//572 585//585 575//575 +f 572//572 584//584 585//585 +f 578//578 586//586 584//584 +f 578//578 582//582 586//586 +f 584//584 587//587 585//585 +f 584//584 586//586 587//587 +f 504//504 589//589 588//588 +f 504//504 503//503 589//589 +f 505//505 553//553 491//491 +f 505//505 590//590 553//553 +f 505//505 588//588 590//590 +f 505//505 504//504 588//588 +f 588//588 592//592 591//591 +f 588//588 589//589 592//592 +f 590//590 554//554 553//553 +f 590//590 593//593 554//554 +f 590//590 591//591 593//593 +f 590//590 588//588 591//591 +f 503//503 506//506 589//589 +f 589//589 594//594 592//592 +f 589//589 506//506 594//594 +f 591//591 596//596 595//595 +f 591//591 592//592 596//596 +f 593//593 560//560 554//554 +f 593//593 559//559 560//560 +f 593//593 595//595 559//559 +f 593//593 591//591 595//595 +f 559//559 597//597 558//558 +f 559//559 595//595 597//597 +f 595//595 598//598 597//597 +f 595//595 599//599 598//598 +f 595//595 600//600 599//599 +f 595//595 596//596 600//600 +f 592//592 600//600 596//596 +f 592//592 594//594 600//600 +f 506//506 601//601 594//594 +f 506//506 508//508 601//601 +f 508//508 507//507 602//602 +f 508//508 603//603 601//601 +f 508//508 602//602 603//603 +f 599//599 604//604 598//598 +f 599//599 605//605 604//604 +f 599//599 606//606 605//605 +f 599//599 600//600 606//606 +f 594//594 606//606 600//600 +f 594//594 601//601 606//606 +f 605//605 607//607 604//604 +f 605//605 608//608 607//607 +f 605//605 609//609 608//608 +f 605//605 606//606 609//609 +f 601//601 609//609 606//606 +f 601//601 603//603 609//609 +f 581//581 610//610 580//580 +f 581//581 611//611 610//610 +f 581//581 597//597 611//611 +f 581//581 558//558 597//597 +f 583//583 612//612 582//582 +f 583//583 613//613 612//612 +f 580//580 613//613 583//583 +f 580//580 610//610 613//613 +f 611//611 614//614 610//610 +f 611//611 615//615 614//614 +f 611//611 598//598 615//615 +f 611//611 597//597 598//598 +f 610//610 614//614 613//613 +f 582//582 616//616 586//586 +f 582//582 612//612 616//616 +f 586//586 616//616 587//587 +f 616//616 617//617 587//587 +f 615//615 618//618 614//614 +f 615//615 619//619 618//618 +f 615//615 604//604 619//619 +f 615//615 598//598 604//604 +f 613//613 620//620 612//612 +f 614//614 620//620 613//613 +f 614//614 618//618 620//620 +f 619//619 621//621 618//618 +f 619//619 622//622 621//621 +f 619//619 607//607 622//622 +f 619//619 604//604 607//607 +f 620//620 623//623 612//612 +f 620//620 624//624 623//623 +f 618//618 624//624 620//620 +f 618//618 621//621 624//624 +f 612//612 625//625 616//616 +f 612//612 623//623 625//625 +f 616//616 625//625 617//617 +f 528//528 626//626 529//529 +f 528//528 530//530 626//626 +f 626//626 627//627 529//529 +f 626//626 628//628 627//627 +f 626//626 629//629 628//628 +f 626//626 530//530 629//629 +f 545//545 631//631 630//630 +f 545//545 546//546 631//631 +f 545//545 632//632 547//547 +f 545//545 630//630 632//632 +f 628//628 633//633 627//627 +f 628//628 630//630 633//633 +f 628//628 632//632 630//630 +f 628//628 629//629 632//632 +f 630//630 634//634 633//633 +f 630//630 631//631 634//634 +f 529//529 635//635 531//531 +f 529//529 627//627 635//635 +f 627//627 636//636 635//635 +f 627//627 633//633 636//636 +f 633//633 637//637 636//636 +f 633//633 634//634 637//637 +f 636//636 637//637 638//638 +f 487//487 548//548 530//530 +f 548//548 629//629 530//530 +f 548//548 550//550 629//629 +f 550//550 632//632 629//629 +f 550//550 547//547 632//632 +f 546//546 639//639 631//631 +f 546//546 573//573 639//639 +f 574//574 641//641 640//640 +f 574//574 575//575 641//641 +f 573//573 640//640 639//639 +f 573//573 574//574 640//640 +f 631//631 642//642 634//634 +f 631//631 639//639 642//642 +f 640//640 644//644 643//643 +f 640//640 641//641 644//644 +f 639//639 643//643 642//642 +f 639//639 640//640 643//643 +f 634//634 645//645 637//637 +f 634//634 642//642 645//645 +f 643//643 647//647 646//646 +f 643//643 644//644 647//647 +f 642//642 646//646 645//645 +f 642//642 643//643 646//646 +f 637//637 648//648 638//638 +f 637//637 645//645 648//648 +f 646//646 650//650 649//649 +f 646//646 647//647 650//650 +f 645//645 649//649 648//648 +f 645//645 646//646 649//649 +f 575//575 651//651 641//641 +f 575//575 585//585 651//651 +f 641//641 652//652 644//644 +f 641//641 651//651 652//652 +f 585//585 653//653 651//651 +f 585//585 587//587 653//653 +f 651//651 653//653 652//652 +f 644//644 654//654 647//647 +f 644//644 652//652 654//654 +f 647//647 654//654 650//650 +f 652//652 653//653 654//654 +f 531//531 537//537 536//536 +f 531//531 635//635 537//537 +f 537//537 635//635 655//655 +f 635//635 636//636 656//656 +f 636//636 638//638 656//656 +f 635//635 656//656 655//655 +f 655//655 656//656 657//657 +f 656//656 658//658 657//657 +f 656//656 638//638 658//658 +f 638//638 648//648 659//659 +f 649//649 661//661 660//660 +f 649//649 650//650 661//661 +f 648//648 660//660 659//659 +f 648//648 649//649 660//660 +f 638//638 659//659 662//662 +f 660//660 664//664 663//663 +f 660//660 661//661 664//664 +f 659//659 663//663 662//662 +f 659//659 660//660 663//663 +f 663//663 664//664 665//665 +f 662//662 663//663 665//665 +f 638//638 662//662 658//658 +f 665//665 664//664 666//666 +f 650//650 667//667 661//661 +f 650//650 654//654 667//667 +f 661//661 667//667 664//664 +f 654//654 668//668 667//667 +f 654//654 653//653 668//668 +f 664//664 667//667 669//669 +f 664//664 669//669 666//666 +f 667//667 668//668 669//669 +f 587//587 617//617 653//653 +f 653//653 617//617 670//670 +f 617//617 671//671 670//670 +f 671//671 672//672 670//670 +f 653//653 670//670 668//668 +f 668//668 670//670 673//673 +f 670//670 672//672 673//673 +f 672//672 674//674 673//673 +f 402//402 675//675 278//278 +f 278//278 676//676 466//466 +f 278//278 675//675 676//676 +f 402//402 403//403 675//675 +f 466//466 676//676 677//677 +f 466//466 677//677 678//678 +f 466//466 678//678 479//479 +f 677//677 676//676 679//679 +f 677//677 679//679 678//678 +f 403//403 680//680 675//675 +f 403//403 407//407 680//680 +f 675//675 680//680 676//676 +f 680//680 407//407 681//681 +f 676//676 680//680 679//679 +f 680//680 681//681 679//679 +f 679//679 681//681 683//683 +f 679//679 683//683 682//682 +f 479//479 678//678 684//684 +f 479//479 684//684 507//507 +f 678//678 679//679 685//685 +f 678//678 685//685 684//684 +f 684//684 685//685 686//686 +f 507//507 684//684 686//686 +f 507//507 686//686 687//687 +f 686//686 688//688 687//687 +f 679//679 682//682 685//685 +f 685//685 689//689 686//686 +f 682//682 690//690 685//685 +f 682//682 683//683 690//690 +f 685//685 690//690 689//689 +f 686//686 689//689 688//688 +f 690//690 691//691 689//689 +f 689//689 691//691 692//692 +f 689//689 692//692 688//688 +f 407//407 427//427 693//693 +f 407//407 693//693 681//681 +f 427//427 428//428 693//693 +f 693//693 428//428 694//694 +f 681//681 693//693 695//695 +f 681//681 695//695 683//683 +f 695//695 696//696 683//683 +f 693//693 694//694 695//695 +f 694//694 696//696 695//695 +f 696//696 697//697 683//683 +f 428//428 434//434 694//694 +f 694//694 434//434 698//698 +f 434//434 699//699 698//698 +f 434//434 435//435 699//699 +f 435//435 436//436 700//700 +f 435//435 700//700 699//699 +f 436//436 438//438 700//700 +f 700//700 438//438 701//701 +f 694//694 698//698 696//696 +f 696//696 702//702 697//697 +f 696//696 698//698 702//702 +f 698//698 699//699 702//702 +f 699//699 700//700 703//703 +f 700//700 701//701 703//703 +f 703//703 701//701 704//704 +f 683//683 705//705 690//690 +f 690//690 705//705 691//691 +f 683//683 697//697 705//705 +f 705//705 697//697 706//706 +f 705//705 706//706 691//691 +f 691//691 708//708 692//692 +f 691//691 706//706 708//708 +f 692//692 708//708 707//707 +f 708//708 709//709 707//707 +f 697//697 702//702 706//706 +f 702//702 699//699 710//710 +f 706//706 702//702 711//711 +f 702//702 710//710 711//711 +f 699//699 712//712 710//710 +f 699//699 703//703 712//712 +f 703//703 704//704 712//712 +f 706//706 711//711 708//708 +f 711//711 710//710 713//713 +f 708//708 711//711 714//714 +f 708//708 714//714 709//709 +f 711//711 713//713 714//714 +f 710//710 712//712 713//713 +f 712//712 704//704 715//715 +f 713//713 712//712 716//716 +f 712//712 715//715 716//716 +f 507//507 687//687 602//602 +f 602//602 687//687 603//603 +f 608//608 717//717 607//607 +f 608//608 718//718 717//717 +f 608//608 609//609 718//718 +f 718//718 719//719 717//717 +f 718//718 720//720 719//719 +f 718//718 721//721 720//720 +f 718//718 609//609 721//721 +f 603//603 721//721 609//609 +f 687//687 722//722 603//603 +f 688//688 723//723 687//687 +f 687//687 723//723 722//722 +f 720//720 724//724 719//719 +f 603//603 722//722 721//721 +f 720//720 725//725 724//724 +f 720//720 726//726 725//725 +f 720//720 721//721 726//726 +f 622//622 727//727 621//621 +f 622//622 728//728 727//727 +f 622//622 717//717 728//728 +f 622//622 607//607 717//717 +f 621//621 727//727 624//624 +f 728//728 729//729 727//727 +f 728//728 719//719 729//729 +f 728//728 717//717 719//719 +f 624//624 730//730 623//623 +f 727//727 730//730 624//624 +f 625//625 731//731 617//617 +f 729//729 732//732 727//727 +f 729//729 719//719 724//724 +f 727//727 732//732 730//730 +f 729//729 733//733 732//732 +f 729//729 734//734 733//733 +f 729//729 725//725 734//734 +f 729//729 724//724 725//725 +f 732//732 733//733 730//730 +f 726//726 735//735 725//725 +f 726//726 736//736 735//735 +f 726//726 721//721 736//736 +f 736//736 737//737 735//735 +f 736//736 738//738 737//737 +f 736//736 739//739 738//738 +f 736//736 721//721 739//739 +f 722//722 739//739 721//721 +f 688//688 692//692 723//723 +f 723//723 740//740 722//722 +f 692//692 707//707 723//723 +f 723//723 707//707 740//740 +f 738//738 741//741 737//737 +f 722//722 740//740 739//739 +f 738//738 742//742 741//741 +f 738//738 739//739 742//742 +f 734//734 743//743 733//733 +f 734//734 735//735 743//743 +f 734//734 725//725 735//735 +f 730//730 744//744 623//623 +f 730//730 745//745 744//744 +f 733//733 745//745 730//730 +f 743//743 746//746 733//733 +f 743//743 747//747 746//746 +f 743//743 737//737 747//747 +f 743//743 735//735 737//737 +f 733//733 746//746 745//745 +f 623//623 748//748 625//625 +f 623//623 744//744 748//748 +f 625//625 748//748 731//731 +f 747//747 737//737 741//741 +f 745//745 749//749 744//744 +f 746//746 749//749 745//745 +f 747//747 750//750 746//746 +f 747//747 751//751 750//750 +f 747//747 741//741 751//751 +f 746//746 750//750 749//749 +f 748//748 752//752 731//731 +f 617//617 731//731 671//671 +f 671//671 731//731 753//753 +f 671//671 753//753 672//672 +f 672//672 754//754 674//674 +f 674//674 754//754 755//755 +f 672//672 753//753 754//754 +f 754//754 756//756 755//755 +f 731//731 757//757 753//753 +f 757//757 758//758 753//753 +f 731//731 752//752 757//757 +f 757//757 752//752 759//759 +f 757//757 759//759 758//758 +f 753//753 758//758 754//754 +f 754//754 758//758 760//760 +f 754//754 760//760 756//756 +f 756//756 760//760 761//761 +f 758//758 762//762 760//760 +f 758//758 759//759 762//762 +f 760//760 763//763 761//761 +f 762//762 764//764 760//760 +f 760//760 765//765 763//763 +f 760//760 764//764 765//765 +f 707//707 766//766 740//740 +f 742//742 767//767 741//741 +f 742//742 768//768 767//767 +f 742//742 769//769 768//768 +f 742//742 739//739 769//769 +f 740//740 769//769 739//739 +f 768//768 770//770 767//767 +f 740//740 766//766 769//769 +f 707//707 709//709 766//766 +f 768//768 771//771 770//770 +f 768//768 769//769 771//771 +f 771//771 772//772 770//770 +f 771//771 773//773 772//772 +f 771//771 774//774 773//773 +f 771//771 769//769 774//774 +f 766//766 774//774 769//769 +f 751//751 775//775 750//750 +f 751//751 767//767 775//775 +f 751//751 741//741 767//767 +f 775//775 776//776 750//750 +f 775//775 777//777 776//776 +f 775//775 770//770 777//777 +f 775//775 767//767 770//770 +f 750//750 776//776 749//749 +f 744//744 778//778 748//748 +f 748//748 778//778 752//752 +f 778//778 779//779 752//752 +f 749//749 780//780 744//744 +f 749//749 781//781 780//780 +f 776//776 781//781 749//749 +f 777//777 782//782 776//776 +f 777//777 783//783 782//782 +f 777//777 772//772 783//783 +f 777//777 770//770 772//772 +f 776//776 782//782 781//781 +f 744//744 780//780 778//778 +f 709//709 784//784 766//766 +f 709//709 714//714 784//784 +f 714//714 785//785 784//784 +f 714//714 713//713 785//785 +f 773//773 786//786 772//772 +f 773//773 787//787 786//786 +f 773//773 788//788 787//787 +f 773//773 774//774 788//788 +f 766//766 788//788 774//774 +f 766//766 784//784 788//788 +f 787//787 789//789 786//786 +f 787//787 790//790 789//789 +f 787//787 791//791 790//790 +f 787//787 788//788 791//791 +f 784//784 791//791 788//788 +f 784//784 785//785 791//791 +f 713//713 792//792 785//785 +f 713//713 716//716 792//792 +f 716//716 715//715 793//793 +f 716//716 794//794 792//792 +f 716//716 793//793 794//794 +f 790//790 795//795 789//789 +f 790//790 796//796 795//795 +f 790//790 797//797 796//796 +f 790//790 791//791 797//797 +f 785//785 797//797 791//791 +f 785//785 792//792 797//797 +f 796//796 798//798 795//795 +f 796//796 799//799 798//798 +f 796//796 800//800 799//799 +f 796//796 797//797 800//800 +f 792//792 800//800 797//797 +f 792//792 794//794 800//800 +f 783//783 801//801 782//782 +f 783//783 802//802 801//801 +f 783//783 786//786 802//802 +f 783//783 772//772 786//786 +f 782//782 801//801 781//781 +f 802//802 803//803 801//801 +f 802//802 789//789 803//803 +f 802//802 786//786 789//789 +f 780//780 804//804 778//778 +f 778//778 805//805 779//779 +f 778//778 804//804 805//805 +f 803//803 806//806 801//801 +f 803//803 807//807 806//806 +f 803//803 795//795 807//807 +f 803//803 789//789 795//795 +f 781//781 808//808 780//780 +f 801//801 808//808 781//781 +f 801//801 806//806 808//808 +f 807//807 809//809 806//806 +f 807//807 798//798 809//809 +f 807//807 795//795 798//798 +f 808//808 810//810 780//780 +f 780//780 810//810 804//804 +f 752//752 779//779 811//811 +f 752//752 811//811 759//759 +f 759//759 811//811 812//812 +f 759//759 812//812 813//813 +f 759//759 813//813 762//762 +f 762//762 814//814 764//764 +f 764//764 815//815 765//765 +f 764//764 814//814 815//815 +f 762//762 816//816 814//814 +f 762//762 813//813 816//816 +f 814//814 817//817 815//815 +f 814//814 816//816 817//817 +f 812//812 818//818 813//813 +f 813//813 818//818 819//819 +f 813//813 820//820 816//816 +f 816//816 821//821 817//817 +f 816//816 820//820 821//821 +f 813//813 822//822 820//820 +f 813//813 819//819 822//822 +f 820//820 823//823 821//821 +f 820//820 822//822 823//823 +f 779//779 824//824 811//811 +f 779//779 805//805 824//824 +f 811//811 824//824 812//812 +f 812//812 824//824 826//826 +f 812//812 826//826 825//825 +f 824//824 827//827 826//826 +f 826//826 827//827 828//828 +f 812//812 829//829 818//818 +f 812//812 825//825 829//829 +f 818//818 830//830 819//819 +f 818//818 829//829 830//830 +f 825//825 831//831 829//829 +f 829//829 832//832 830//830 +f 829//829 831//831 832//832 +f 819//819 833//833 822//822 +f 819//819 830//830 833//833 +f 822//822 834//834 823//823 +f 822//822 833//833 834//834 +f 830//830 835//835 833//833 +f 830//830 832//832 835//835 +f 833//833 836//836 834//834 +f 833//833 835//835 836//836 +f 825//825 837//837 831//831 +f 825//825 826//826 837//837 +f 831//831 838//838 832//832 +f 831//831 837//837 838//838 +f 826//826 839//839 837//837 +f 826//826 828//828 839//839 +f 837//837 840//840 838//838 +f 837//837 839//839 840//840 +f 832//832 841//841 835//835 +f 832//832 838//838 841//841 +f 835//835 842//842 836//836 +f 835//835 841//841 842//842 +f 838//838 843//843 841//841 +f 838//838 840//840 843//843 +f 841//841 844//844 842//842 +f 841//841 843//843 844//844 +f 140//140 141//141 845//845 +f 140//140 845//845 144//144 +f 141//141 143//143 846//846 +f 145//145 139//139 290//290 +f 143//143 145//145 846//846 +f 845//845 848//848 847//847 +f 845//845 141//141 848//848 +f 845//845 849//849 144//144 +f 845//845 847//847 849//849 +f 141//141 846//846 848//848 +f 847//847 851//851 850//850 +f 847//847 848//848 851//851 +f 847//847 852//852 849//849 +f 847//847 850//850 852//852 +f 848//848 846//846 851//851 +f 145//145 290//290 853//853 +f 846//846 145//145 854//854 +f 145//145 853//853 854//854 +f 144//144 855//855 149//149 +f 144//144 849//849 855//855 +f 849//849 856//856 855//855 +f 849//849 852//852 856//856 +f 149//149 857//857 151//151 +f 149//149 855//855 857//857 +f 855//855 856//856 857//857 +f 858//858 860//860 859//859 +f 858//858 861//861 860//860 +f 858//858 862//862 861//861 +f 858//858 863//863 862//862 +f 858//858 864//864 863//863 +f 858//858 859//859 864//864 +f 861//861 865//865 860//860 +f 861//861 866//866 865//865 +f 861//861 867//867 866//866 +f 861//861 862//862 867//867 +f 859//859 869//869 868//868 +f 859//859 860//860 869//869 +f 859//859 870//870 864//864 +f 859//859 868//868 870//870 +f 860//860 871//871 869//869 +f 860//860 865//865 871//871 +f 863//863 872//872 862//862 +f 863//863 873//873 872//872 +f 863//863 874//874 873//873 +f 863//863 864//864 874//874 +f 862//862 875//875 867//867 +f 862//862 872//872 875//875 +f 864//864 876//876 874//874 +f 864//864 870//870 876//876 +f 877//877 879//879 878//878 +f 877//877 880//880 879//879 +f 873//873 878//878 872//872 +f 873//873 877//877 878//878 +f 873//873 880//880 877//877 +f 873//873 874//874 880//880 +f 878//878 882//882 881//881 +f 878//878 879//879 882//882 +f 872//872 881//881 875//875 +f 872//872 878//878 881//881 +f 880//880 883//883 879//879 +f 880//880 884//884 883//883 +f 874//874 884//884 880//880 +f 874//874 876//876 884//884 +f 879//879 885//885 882//882 +f 879//879 883//883 885//885 +f 850//850 887//887 886//886 +f 850//850 851//851 887//887 +f 850//850 888//888 852//852 +f 850//850 886//886 888//888 +f 851//851 889//889 887//887 +f 851//851 846//846 889//889 +f 886//886 890//890 866//866 +f 886//886 887//887 890//890 +f 886//886 867//867 888//888 +f 886//886 866//866 867//867 +f 887//887 891//891 890//890 +f 887//887 889//889 891//891 +f 846//846 854//854 889//889 +f 889//889 854//854 891//891 +f 854//854 853//853 892//892 +f 866//866 893//893 865//865 +f 866//866 890//890 893//893 +f 890//890 894//894 893//893 +f 890//890 891//891 894//894 +f 865//865 895//895 871//871 +f 865//865 893//893 895//895 +f 893//893 896//896 895//895 +f 893//893 894//894 896//896 +f 891//891 897//897 894//894 +f 891//891 854//854 897//897 +f 854//854 892//892 897//897 +f 894//894 898//898 896//896 +f 894//894 897//897 898//898 +f 897//897 899//899 898//898 +f 852//852 900//900 856//856 +f 852//852 888//888 900//900 +f 888//888 875//875 900//900 +f 888//888 867//867 875//875 +f 856//856 901//901 857//857 +f 856//856 900//900 901//901 +f 900//900 881//881 901//901 +f 900//900 875//875 881//881 +f 151//151 902//902 178//178 +f 151//151 903//903 902//902 +f 151//151 857//857 903//903 +f 178//178 902//902 179//179 +f 903//903 904//904 902//902 +f 857//857 901//901 903//903 +f 901//901 905//905 903//903 +f 901//901 881//881 905//905 +f 903//903 907//907 906//906 +f 903//903 905//905 907//907 +f 881//881 908//908 905//905 +f 881//881 882//882 908//908 +f 882//882 909//909 908//908 +f 882//882 885//885 909//909 +f 905//905 910//910 907//907 +f 905//905 908//908 910//910 +f 908//908 911//911 910//910 +f 908//908 909//909 911//911 +f 903//903 906//906 904//904 +f 904//904 906//906 912//912 +f 907//907 913//913 906//906 +f 907//907 910//910 913//913 +f 910//910 914//914 913//913 +f 910//910 911//911 914//914 +f 906//906 913//913 912//912 +f 913//913 915//915 912//912 +f 913//913 914//914 915//915 +f 916//916 918//918 917//917 +f 916//916 919//919 918//918 +f 868//868 919//919 916//916 +f 868//868 869//869 919//919 +f 868//868 917//917 870//870 +f 868//868 916//916 917//917 +f 919//919 920//920 918//918 +f 919//919 921//921 920//920 +f 869//869 921//921 919//919 +f 869//869 871//871 921//921 +f 870//870 922//922 876//876 +f 870//870 917//917 922//922 +f 923//923 925//925 924//924 +f 923//923 926//926 925//925 +f 917//917 926//926 923//923 +f 917//917 918//918 926//926 +f 917//917 924//924 922//922 +f 917//917 923//923 924//924 +f 926//926 927//927 925//925 +f 926//926 928//928 927//927 +f 918//918 928//928 926//926 +f 918//918 920//920 928//928 +f 876//876 929//929 884//884 +f 876//876 922//922 929//929 +f 922//922 930//930 929//929 +f 922//922 924//924 930//930 +f 931//931 933//933 932//932 +f 931//931 934//934 933//933 +f 924//924 934//934 931//931 +f 924//924 925//925 934//934 +f 924//924 932//932 930//930 +f 924//924 931//931 932//932 +f 934//934 935//935 933//933 +f 934//934 936//936 935//935 +f 925//925 936//936 934//934 +f 925//925 927//927 936//936 +f 921//921 937//937 920//920 +f 921//921 938//938 937//937 +f 871//871 938//938 921//921 +f 871//871 895//895 938//938 +f 938//938 939//939 937//937 +f 938//938 940//940 939//939 +f 895//895 940//940 938//938 +f 895//895 896//896 940//940 +f 940//940 941//941 939//939 +f 940//940 942//942 941//941 +f 896//896 942//942 940//940 +f 896//896 898//898 942//942 +f 942//942 943//943 941//941 +f 942//942 944//944 943//943 +f 898//898 944//944 942//942 +f 898//898 899//899 944//944 +f 928//928 945//945 927//927 +f 928//928 946//946 945//945 +f 920//920 946//946 928//928 +f 920//920 937//937 946//946 +f 946//946 947//947 945//945 +f 946//946 948//948 947//947 +f 937//937 948//948 946//946 +f 937//937 939//939 948//948 +f 948//948 949//949 947//947 +f 948//948 950//950 949//949 +f 939//939 950//950 948//948 +f 939//939 941//941 950//950 +f 950//950 951//951 949//949 +f 950//950 952//952 951//951 +f 941//941 952//952 950//950 +f 941//941 943//943 952//952 +f 936//936 953//953 935//935 +f 936//936 954//954 953//953 +f 927//927 954//954 936//936 +f 927//927 945//945 954//954 +f 954//954 955//955 953//953 +f 954//954 956//956 955//955 +f 945//945 956//956 954//954 +f 945//945 947//947 956//956 +f 956//956 957//957 955//955 +f 956//956 958//958 957//957 +f 947//947 958//958 956//956 +f 947//947 949//949 958//958 +f 958//958 959//959 957//957 +f 958//958 960//960 959//959 +f 949//949 960//960 958//958 +f 949//949 951//951 960//960 +f 884//884 961//961 883//883 +f 884//884 962//962 961//961 +f 884//884 963//963 962//962 +f 884//884 929//929 963//963 +f 883//883 909//909 885//885 +f 883//883 961//961 909//909 +f 929//929 964//964 963//963 +f 929//929 930//930 964//964 +f 962//962 965//965 961//961 +f 962//962 966//966 965//965 +f 962//962 967//967 966//966 +f 962//962 963//963 967//967 +f 961//961 911//911 909//909 +f 961//961 965//965 911//911 +f 963//963 968//968 967//967 +f 963//963 964//964 968//968 +f 932//932 970//970 969//969 +f 932//932 933//933 970//970 +f 930//930 969//969 964//964 +f 930//930 932//932 969//969 +f 933//933 971//971 970//970 +f 933//933 935//935 971//971 +f 969//969 973//973 972//972 +f 969//969 970//970 973//973 +f 964//964 972//972 968//968 +f 964//964 969//969 972//972 +f 970//970 974//974 973//973 +f 970//970 971//971 974//974 +f 975//975 977//977 976//976 +f 975//975 978//978 977//977 +f 966//966 976//976 965//965 +f 966//966 975//975 976//976 +f 966//966 978//978 975//975 +f 966//966 967//967 978//978 +f 976//976 979//979 914//914 +f 976//976 977//977 979//979 +f 965//965 914//914 911//911 +f 965//965 976//976 914//914 +f 978//978 980//980 977//977 +f 978//978 981//981 980//980 +f 967//967 981//981 978//978 +f 967//967 968//968 981//981 +f 977//977 982//982 979//979 +f 977//977 980//980 982//982 +f 981//981 983//983 980//980 +f 981//981 984//984 983//983 +f 972//972 983//983 984//984 +f 972//972 973//973 983//983 +f 968//968 984//984 981//981 +f 968//968 972//972 984//984 +f 980//980 985//985 982//982 +f 980//980 983//983 985//985 +f 973//973 985//985 983//983 +f 973//973 974//974 985//985 +f 935//935 986//986 971//971 +f 935//935 953//953 986//986 +f 953//953 955//955 986//986 +f 971//971 987//987 974//974 +f 971//971 986//986 987//987 +f 986//986 988//988 987//987 +f 955//955 957//957 986//986 +f 957//957 989//989 986//986 +f 957//957 959//959 989//989 +f 986//986 989//989 988//988 +f 914//914 990//990 915//915 +f 914//914 979//979 990//990 +f 979//979 991//991 990//990 +f 979//979 982//982 991//991 +f 974//974 992//992 985//985 +f 974//974 987//987 992//992 +f 987//987 993//993 992//992 +f 987//987 988//988 993//993 +f 985//985 995//995 994//994 +f 985//985 992//992 995//995 +f 982//982 994//994 991//991 +f 982//982 985//985 994//994 +f 992//992 996//996 995//995 +f 992//992 993//993 996//996 +f 993//993 997//997 996//996 +f 288//288 292//292 290//290 +f 290//290 998//998 853//853 +f 290//290 292//292 998//998 +f 292//292 291//291 998//998 +f 291//291 294//294 998//998 +f 998//998 294//294 999//999 +f 294//294 1000//1000 999//999 +f 853//853 998//998 892//892 +f 998//998 1001//1001 892//892 +f 892//892 1002//1002 897//897 +f 897//897 1003//1003 899//899 +f 897//897 1002//1002 1003//1003 +f 1002//1002 1004//1004 1003//1003 +f 998//998 999//999 1001//1001 +f 999//999 1000//1000 1005//1005 +f 999//999 1006//1006 1001//1001 +f 999//999 1005//1005 1006//1006 +f 892//892 1001//1001 1002//1002 +f 1001//1001 1007//1007 1002//1002 +f 1002//1002 1008//1008 1004//1004 +f 1002//1002 1007//1007 1008//1008 +f 1001//1001 1006//1006 1007//1007 +f 294//294 305//305 1000//1000 +f 305//305 1009//1009 1000//1000 +f 1000//1000 1009//1009 1010//1010 +f 305//305 307//307 1009//1009 +f 307//307 1012//1012 1011//1011 +f 1009//1009 307//307 1011//1011 +f 1009//1009 1011//1011 1010//1010 +f 1000//1000 1010//1010 1005//1005 +f 1005//1005 1010//1010 1013//1013 +f 1010//1010 1014//1014 1013//1013 +f 1006//1006 1015//1015 1007//1007 +f 1006//1006 1005//1005 1015//1015 +f 1005//1005 1016//1016 1015//1015 +f 1005//1005 1013//1013 1016//1016 +f 1007//1007 1017//1017 1008//1008 +f 1007//1007 1015//1015 1017//1017 +f 1015//1015 1018//1018 1017//1017 +f 1015//1015 1016//1016 1018//1018 +f 1013//1013 1019//1019 1016//1016 +f 1013//1013 1020//1020 1019//1019 +f 1013//1013 1014//1014 1020//1020 +f 1016//1016 1021//1021 1018//1018 +f 1016//1016 1019//1019 1021//1021 +f 1019//1019 1022//1022 1021//1021 +f 1019//1019 1020//1020 1022//1022 +f 1010//1010 1023//1023 1014//1014 +f 1010//1010 1011//1011 1023//1023 +f 1011//1011 1012//1012 1024//1024 +f 1011//1011 1024//1024 1023//1023 +f 1014//1014 1025//1025 1020//1020 +f 1014//1014 1026//1026 1025//1025 +f 1014//1014 1023//1023 1026//1026 +f 1020//1020 1027//1027 1022//1022 +f 1020//1020 1025//1025 1027//1027 +f 1025//1025 1028//1028 1027//1027 +f 1025//1025 1026//1026 1028//1028 +f 1023//1023 1029//1029 1026//1026 +f 1023//1023 1030//1030 1029//1029 +f 1023//1023 1024//1024 1030//1030 +f 1026//1026 1031//1031 1028//1028 +f 1026//1026 1029//1029 1031//1031 +f 1029//1029 1032//1032 1031//1031 +f 1029//1029 1030//1030 1032//1032 +f 944//944 1033//1033 943//943 +f 944//944 1034//1034 1033//1033 +f 899//899 1034//1034 944//944 +f 899//899 1003//1003 1034//1034 +f 1034//1034 1035//1035 1033//1033 +f 1034//1034 1036//1036 1035//1035 +f 1003//1003 1036//1036 1034//1034 +f 1036//1036 1037//1037 1035//1035 +f 1003//1003 1004//1004 1036//1036 +f 952//952 1038//1038 951//951 +f 952//952 1039//1039 1038//1038 +f 943//943 1039//1039 952//952 +f 943//943 1033//1033 1039//1039 +f 1039//1039 1040//1040 1038//1038 +f 1039//1039 1041//1041 1040//1040 +f 1033//1033 1041//1041 1039//1039 +f 1033//1033 1035//1035 1041//1041 +f 1041//1041 1042//1042 1040//1040 +f 1041//1041 1043//1043 1042//1042 +f 1035//1035 1043//1043 1041//1041 +f 1035//1035 1037//1037 1043//1043 +f 1043//1043 1044//1044 1042//1042 +f 1043//1043 1045//1045 1044//1044 +f 1037//1037 1045//1045 1043//1043 +f 960//960 1046//1046 959//959 +f 960//960 1047//1047 1046//1046 +f 951//951 1047//1047 960//960 +f 951//951 1038//1038 1047//1047 +f 1047//1047 1048//1048 1046//1046 +f 1047//1047 1049//1049 1048//1048 +f 1038//1038 1049//1049 1047//1047 +f 1038//1038 1040//1040 1049//1049 +f 1049//1049 1050//1050 1048//1048 +f 1049//1049 1051//1051 1050//1050 +f 1040//1040 1051//1051 1049//1049 +f 1040//1040 1042//1042 1051//1051 +f 1051//1051 1052//1052 1050//1050 +f 1051//1051 1053//1053 1052//1052 +f 1042//1042 1053//1053 1051//1051 +f 1042//1042 1044//1044 1053//1053 +f 1036//1036 1054//1054 1037//1037 +f 1036//1036 1055//1055 1054//1054 +f 1004//1004 1055//1055 1036//1036 +f 1004//1004 1008//1008 1055//1055 +f 1045//1045 1056//1056 1044//1044 +f 1045//1045 1057//1057 1056//1056 +f 1037//1037 1057//1057 1045//1045 +f 1057//1057 1058//1058 1056//1056 +f 1057//1057 1059//1059 1058//1058 +f 1037//1037 1059//1059 1057//1057 +f 1037//1037 1054//1054 1059//1059 +f 1059//1059 1060//1060 1058//1058 +f 1059//1059 1061//1061 1060//1060 +f 1054//1054 1061//1061 1059//1059 +f 1061//1061 1062//1062 1060//1060 +f 1061//1061 1063//1063 1062//1062 +f 1054//1054 1063//1063 1061//1061 +f 1053//1053 1064//1064 1052//1052 +f 1053//1053 1065//1065 1064//1064 +f 1044//1044 1065//1065 1053//1053 +f 1044//1044 1056//1056 1065//1065 +f 1065//1065 1066//1066 1064//1064 +f 1065//1065 1067//1067 1066//1066 +f 1056//1056 1067//1067 1065//1065 +f 1056//1056 1058//1058 1067//1067 +f 1067//1067 1068//1068 1066//1066 +f 1067//1067 1069//1069 1068//1068 +f 1058//1058 1069//1069 1067//1067 +f 1058//1058 1060//1060 1069//1069 +f 1069//1069 1070//1070 1068//1068 +f 1069//1069 1071//1071 1070//1070 +f 1060//1060 1071//1071 1069//1069 +f 1060//1060 1062//1062 1071//1071 +f 959//959 1046//1046 989//989 +f 1046//1046 1048//1048 989//989 +f 989//989 1072//1072 988//988 +f 1048//1048 1073//1073 989//989 +f 1048//1048 1050//1050 1073//1073 +f 1050//1050 1074//1074 1073//1073 +f 1050//1050 1052//1052 1074//1074 +f 989//989 1073//1073 1072//1072 +f 1073//1073 1075//1075 1072//1072 +f 1073//1073 1074//1074 1075//1075 +f 988//988 1072//1072 993//993 +f 1072//1072 1076//1076 993//993 +f 993//993 1076//1076 997//997 +f 1072//1072 1075//1075 1076//1076 +f 1076//1076 1077//1077 997//997 +f 1052//1052 1078//1078 1074//1074 +f 1052//1052 1064//1064 1078//1078 +f 1064//1064 1079//1079 1078//1078 +f 1064//1064 1066//1066 1079//1079 +f 1074//1074 1080//1080 1075//1075 +f 1074//1074 1078//1078 1080//1080 +f 1078//1078 1081//1081 1080//1080 +f 1078//1078 1079//1079 1081//1081 +f 1066//1066 1082//1082 1079//1079 +f 1066//1066 1068//1068 1082//1082 +f 1068//1068 1083//1083 1082//1082 +f 1068//1068 1070//1070 1083//1083 +f 1079//1079 1084//1084 1081//1081 +f 1079//1079 1082//1082 1084//1084 +f 1082//1082 1085//1085 1084//1084 +f 1082//1082 1083//1083 1085//1085 +f 1075//1075 1086//1086 1076//1076 +f 1075//1075 1080//1080 1086//1086 +f 1080//1080 1087//1087 1086//1086 +f 1080//1080 1081//1081 1087//1087 +f 1076//1076 1086//1086 1077//1077 +f 1086//1086 1088//1088 1077//1077 +f 1086//1086 1087//1087 1088//1088 +f 1081//1081 1089//1089 1087//1087 +f 1081//1081 1084//1084 1089//1089 +f 1084//1084 1090//1090 1089//1089 +f 1084//1084 1085//1085 1090//1090 +f 1089//1089 1091//1091 1087//1087 +f 1089//1089 1090//1090 1091//1091 +f 1055//1055 1092//1092 1054//1054 +f 1008//1008 1092//1092 1055//1055 +f 1008//1008 1017//1017 1092//1092 +f 1092//1092 1093//1093 1054//1054 +f 1092//1092 1094//1094 1093//1093 +f 1017//1017 1094//1094 1092//1092 +f 1017//1017 1018//1018 1094//1094 +f 1094//1094 1095//1095 1093//1093 +f 1094//1094 1096//1096 1095//1095 +f 1018//1018 1096//1096 1094//1094 +f 1018//1018 1021//1021 1096//1096 +f 1096//1096 1097//1097 1095//1095 +f 1096//1096 1098//1098 1097//1097 +f 1021//1021 1098//1098 1096//1096 +f 1021//1021 1022//1022 1098//1098 +f 1063//1063 1099//1099 1062//1062 +f 1063//1063 1100//1100 1099//1099 +f 1054//1054 1100//1100 1063//1063 +f 1100//1100 1101//1101 1099//1099 +f 1100//1100 1102//1102 1101//1101 +f 1054//1054 1102//1102 1100//1100 +f 1054//1054 1093//1093 1102//1102 +f 1102//1102 1103//1103 1101//1101 +f 1102//1102 1104//1104 1103//1103 +f 1093//1093 1104//1104 1102//1102 +f 1093//1093 1095//1095 1104//1104 +f 1104//1104 1105//1105 1103//1103 +f 1104//1104 1106//1106 1105//1105 +f 1095//1095 1106//1106 1104//1104 +f 1095//1095 1097//1097 1106//1106 +f 1071//1071 1107//1107 1070//1070 +f 1071//1071 1108//1108 1107//1107 +f 1062//1062 1108//1108 1071//1071 +f 1062//1062 1099//1099 1108//1108 +f 1108//1108 1109//1109 1107//1107 +f 1108//1108 1110//1110 1109//1109 +f 1099//1099 1110//1110 1108//1108 +f 1099//1099 1101//1101 1110//1110 +f 1110//1110 1111//1111 1109//1109 +f 1110//1110 1112//1112 1111//1111 +f 1101//1101 1112//1112 1110//1110 +f 1101//1101 1103//1103 1112//1112 +f 1112//1112 1113//1113 1111//1111 +f 1112//1112 1114//1114 1113//1113 +f 1103//1103 1114//1114 1112//1112 +f 1103//1103 1105//1105 1114//1114 +f 1098//1098 1115//1115 1097//1097 +f 1098//1098 1116//1116 1115//1115 +f 1022//1022 1116//1116 1098//1098 +f 1022//1022 1027//1027 1116//1116 +f 1116//1116 1117//1117 1115//1115 +f 1116//1116 1118//1118 1117//1117 +f 1027//1027 1118//1118 1116//1116 +f 1027//1027 1028//1028 1118//1118 +f 1118//1118 1119//1119 1117//1117 +f 1118//1118 1120//1120 1119//1119 +f 1028//1028 1120//1120 1118//1118 +f 1028//1028 1031//1031 1120//1120 +f 1120//1120 1121//1121 1119//1119 +f 1120//1120 1122//1122 1121//1121 +f 1031//1031 1122//1122 1120//1120 +f 1031//1031 1032//1032 1122//1122 +f 1106//1106 1123//1123 1105//1105 +f 1106//1106 1124//1124 1123//1123 +f 1097//1097 1124//1124 1106//1106 +f 1097//1097 1115//1115 1124//1124 +f 1124//1124 1125//1125 1123//1123 +f 1124//1124 1126//1126 1125//1125 +f 1115//1115 1126//1126 1124//1124 +f 1115//1115 1117//1117 1126//1126 +f 1126//1126 1127//1127 1125//1125 +f 1126//1126 1128//1128 1127//1127 +f 1117//1117 1128//1128 1126//1126 +f 1117//1117 1119//1119 1128//1128 +f 1128//1128 1129//1129 1127//1127 +f 1128//1128 1130//1130 1129//1129 +f 1119//1119 1130//1130 1128//1128 +f 1119//1119 1121//1121 1130//1130 +f 1114//1114 1131//1131 1113//1113 +f 1114//1114 1132//1132 1131//1131 +f 1105//1105 1132//1132 1114//1114 +f 1105//1105 1123//1123 1132//1132 +f 1132//1132 1133//1133 1131//1131 +f 1132//1132 1134//1134 1133//1133 +f 1123//1123 1134//1134 1132//1132 +f 1123//1123 1125//1125 1134//1134 +f 1134//1134 1135//1135 1133//1133 +f 1134//1134 1136//1136 1135//1135 +f 1125//1125 1136//1136 1134//1134 +f 1125//1125 1127//1127 1136//1136 +f 1136//1136 1137//1137 1135//1135 +f 1127//1127 1129//1129 1136//1136 +f 1070//1070 1138//1138 1083//1083 +f 1070//1070 1107//1107 1138//1138 +f 1107//1107 1139//1139 1138//1138 +f 1107//1107 1109//1109 1139//1139 +f 1083//1083 1140//1140 1085//1085 +f 1083//1083 1138//1138 1140//1140 +f 1138//1138 1139//1139 1140//1140 +f 1109//1109 1141//1141 1139//1139 +f 1109//1109 1111//1111 1141//1141 +f 1111//1111 1142//1142 1141//1141 +f 1111//1111 1113//1113 1142//1142 +f 1139//1139 1141//1141 1140//1140 +f 1141//1141 1143//1143 1140//1140 +f 1141//1141 1142//1142 1143//1143 +f 1085//1085 1144//1144 1090//1090 +f 1085//1085 1140//1140 1144//1144 +f 1090//1090 1145//1145 1091//1091 +f 1090//1090 1144//1144 1145//1145 +f 1144//1144 1140//1140 1145//1145 +f 1140//1140 1143//1143 1146//1146 +f 1140//1140 1146//1146 1145//1145 +f 1113//1113 1147//1147 1142//1142 +f 1113//1113 1131//1131 1147//1147 +f 1131//1131 1148//1148 1147//1147 +f 1131//1131 1133//1133 1148//1148 +f 1142//1142 1147//1147 1143//1143 +f 1147//1147 1148//1148 1143//1143 +f 1133//1133 1149//1149 1148//1148 +f 1133//1133 1135//1135 1149//1149 +f 1135//1135 1150//1150 1149//1149 +f 1135//1135 1137//1137 1150//1150 +f 1148//1148 1151//1151 1143//1143 +f 1148//1148 1149//1149 1151//1151 +f 1149//1149 1150//1150 1151//1151 +f 1143//1143 1151//1151 1146//1146 +f 1151//1151 1152//1152 1146//1146 +f 179//179 902//902 337//337 +f 902//902 904//904 337//337 +f 337//337 904//904 338//338 +f 904//904 1153//1153 338//338 +f 904//904 912//912 1153//1153 +f 912//912 915//915 1154//1154 +f 912//912 1154//1154 1153//1153 +f 1153//1153 1154//1154 1155//1155 +f 338//338 1153//1153 1156//1156 +f 338//338 1156//1156 342//342 +f 342//342 1157//1157 343//343 +f 342//342 1156//1156 1157//1157 +f 1156//1156 1158//1158 1157//1157 +f 1156//1156 1153//1153 1159//1159 +f 1153//1153 1155//1155 1159//1159 +f 1156//1156 1159//1159 1158//1158 +f 1155//1155 1160//1160 1159//1159 +f 915//915 1161//1161 1154//1154 +f 915//915 990//990 1161//1161 +f 990//990 1162//1162 1161//1161 +f 990//990 991//991 1162//1162 +f 1154//1154 1161//1161 1163//1163 +f 1161//1161 1164//1164 1163//1163 +f 1161//1161 1162//1162 1164//1164 +f 994//994 1166//1166 1165//1165 +f 994//994 995//995 1166//1166 +f 991//991 1165//1165 1162//1162 +f 991//991 994//994 1165//1165 +f 995//995 1167//1167 1166//1166 +f 995//995 996//996 1167//1167 +f 1165//1165 1169//1169 1168//1168 +f 1165//1165 1166//1166 1169//1169 +f 1162//1162 1168//1168 1164//1164 +f 1162//1162 1165//1165 1168//1168 +f 1166//1166 1170//1170 1169//1169 +f 1166//1166 1167//1167 1170//1170 +f 996//996 1171//1171 1167//1167 +f 996//996 997//997 1171//1171 +f 1167//1167 1172//1172 1170//1170 +f 1167//1167 1171//1171 1172//1172 +f 1163//1163 1164//1164 1173//1173 +f 1154//1154 1174//1174 1155//1155 +f 1154//1154 1163//1163 1174//1174 +f 1163//1163 1173//1173 1174//1174 +f 1168//1168 1176//1176 1175//1175 +f 1168//1168 1169//1169 1176//1176 +f 1164//1164 1175//1175 1173//1173 +f 1164//1164 1168//1168 1175//1175 +f 1169//1169 1170//1170 1176//1176 +f 1170//1170 1172//1172 1177//1177 +f 1175//1175 1179//1179 1178//1178 +f 1175//1175 1176//1176 1179//1179 +f 1173//1173 1175//1175 1178//1178 +f 1176//1176 1180//1180 1179//1179 +f 1176//1176 1170//1170 1180//1180 +f 1170//1170 1177//1177 1180//1180 +f 1155//1155 1174//1174 1160//1160 +f 1174//1174 1173//1173 1181//1181 +f 1173//1173 1178//1178 1181//1181 +f 1180//1180 1177//1177 1182//1182 +f 343//343 1157//1157 384//384 +f 384//384 1157//1157 1183//1183 +f 1157//1157 1158//1158 1183//1183 +f 1158//1158 1184//1184 1183//1183 +f 1158//1158 1159//1159 1185//1185 +f 1159//1159 1160//1160 1185//1185 +f 1158//1158 1185//1185 1184//1184 +f 1185//1185 1160//1160 1186//1186 +f 1183//1183 1184//1184 1187//1187 +f 384//384 1187//1187 388//388 +f 384//384 1183//1183 1187//1187 +f 1184//1184 1185//1185 1189//1189 +f 1185//1185 1186//1186 1189//1189 +f 1184//1184 1189//1189 1187//1187 +f 1187//1187 1189//1189 1188//1188 +f 1189//1189 1190//1190 1188//1188 +f 1189//1189 1186//1186 1191//1191 +f 1189//1189 1191//1191 1190//1190 +f 1160//1160 1174//1174 1192//1192 +f 1174//1174 1181//1181 1192//1192 +f 1178//1178 1194//1194 1193//1193 +f 1178//1178 1179//1179 1194//1194 +f 1181//1181 1178//1178 1193//1193 +f 1179//1179 1180//1180 1194//1194 +f 1194//1194 1180//1180 1195//1195 +f 1180//1180 1182//1182 1196//1196 +f 1180//1180 1196//1196 1195//1195 +f 1160//1160 1192//1192 1186//1186 +f 1192//1192 1181//1181 1197//1197 +f 1181//1181 1193//1193 1197//1197 +f 1195//1195 1196//1196 1198//1198 +f 1186//1186 1192//1192 1199//1199 +f 1192//1192 1200//1200 1199//1199 +f 1192//1192 1197//1197 1200//1200 +f 1193//1193 1194//1194 1201//1201 +f 1197//1197 1201//1201 1200//1200 +f 1197//1197 1193//1193 1201//1201 +f 1195//1195 1198//1198 1202//1202 +f 1186//1186 1199//1199 1191//1191 +f 1201//1201 1194//1194 1203//1203 +f 1194//1194 1204//1204 1203//1203 +f 1194//1194 1195//1195 1204//1204 +f 1195//1195 1202//1202 1204//1204 +f 1202//1202 1198//1198 1205//1205 +f 1171//1171 1206//1206 1172//1172 +f 997//997 1207//1207 1171//1171 +f 997//997 1077//1077 1207//1207 +f 1171//1171 1207//1207 1206//1206 +f 1172//1172 1206//1206 1177//1177 +f 1077//1077 1088//1088 1207//1207 +f 1088//1088 1209//1209 1207//1207 +f 1088//1088 1087//1087 1209//1209 +f 1087//1087 1091//1091 1209//1209 +f 1207//1207 1209//1209 1208//1208 +f 1207//1207 1208//1208 1206//1206 +f 1208//1208 1209//1209 1210//1210 +f 1177//1177 1206//1206 1211//1211 +f 1177//1177 1211//1211 1212//1212 +f 1177//1177 1212//1212 1182//1182 +f 1211//1211 1213//1213 1212//1212 +f 1206//1206 1208//1208 1211//1211 +f 1208//1208 1210//1210 1211//1211 +f 1211//1211 1210//1210 1213//1213 +f 1210//1210 1214//1214 1213//1213 +f 1213//1213 1214//1214 1215//1215 +f 1091//1091 1216//1216 1209//1209 +f 1091//1091 1145//1145 1216//1216 +f 1145//1145 1146//1146 1216//1216 +f 1146//1146 1217//1217 1216//1216 +f 1209//1209 1216//1216 1218//1218 +f 1209//1209 1218//1218 1210//1210 +f 1216//1216 1217//1217 1218//1218 +f 1146//1146 1219//1219 1217//1217 +f 1146//1146 1152//1152 1219//1219 +f 1217//1217 1220//1220 1218//1218 +f 1217//1217 1219//1219 1221//1221 +f 1217//1217 1221//1221 1220//1220 +f 1210//1210 1218//1218 1214//1214 +f 1218//1218 1220//1220 1222//1222 +f 1214//1214 1223//1223 1215//1215 +f 1218//1218 1222//1222 1214//1214 +f 1214//1214 1222//1222 1223//1223 +f 1221//1221 1224//1224 1220//1220 +f 1220//1220 1225//1225 1222//1222 +f 1220//1220 1224//1224 1225//1225 +f 1182//1182 1212//1212 1196//1196 +f 1212//1212 1213//1213 1226//1226 +f 1196//1196 1212//1212 1226//1226 +f 1196//1196 1227//1227 1198//1198 +f 1196//1196 1226//1226 1227//1227 +f 1226//1226 1228//1228 1227//1227 +f 1226//1226 1213//1213 1228//1228 +f 1213//1213 1215//1215 1228//1228 +f 1228//1228 1215//1215 1229//1229 +f 1198//1198 1227//1227 1205//1205 +f 1205//1205 1227//1227 1231//1231 +f 1227//1227 1230//1230 1231//1231 +f 1228//1228 1230//1230 1227//1227 +f 1228//1228 1229//1229 1230//1230 +f 1229//1229 1232//1232 1230//1230 +f 1230//1230 1233//1233 1231//1231 +f 1230//1230 1232//1232 1233//1233 +f 1215//1215 1223//1223 1234//1234 +f 1223//1223 1222//1222 1234//1234 +f 1215//1215 1234//1234 1235//1235 +f 1215//1215 1235//1235 1229//1229 +f 1235//1235 1234//1234 1236//1236 +f 1222//1222 1225//1225 1234//1234 +f 1234//1234 1225//1225 1236//1236 +f 1225//1225 1239//1239 1236//1236 +f 1225//1225 1240//1240 1239//1239 +f 1225//1225 1237//1237 1240//1240 +f 1236//1236 1239//1239 1238//1238 +f 1239//1239 1240//1240 1241//1241 +f 1229//1229 1235//1235 1232//1232 +f 1235//1235 1236//1236 1232//1232 +f 1232//1232 1236//1236 1242//1242 +f 1232//1232 1243//1243 1233//1233 +f 1232//1232 1242//1242 1243//1243 +f 1242//1242 1244//1244 1243//1243 +f 1242//1242 1245//1245 1244//1244 +f 1236//1236 1238//1238 1246//1246 +f 1246//1246 1238//1238 1247//1247 +f 1238//1238 1239//1239 1248//1248 +f 1239//1239 1249//1249 1248//1248 +f 1239//1239 1241//1241 1249//1249 +f 1238//1238 1250//1250 1247//1247 +f 1238//1238 1248//1248 1250//1250 +f 1248//1248 1251//1251 1250//1250 +f 1248//1248 1249//1249 1251//1251 +f 1236//1236 1252//1252 1242//1242 +f 1236//1236 1246//1246 1252//1252 +f 1246//1246 1253//1253 1252//1252 +f 1246//1246 1247//1247 1253//1253 +f 1242//1242 1254//1254 1245//1245 +f 1242//1242 1252//1252 1254//1254 +f 1252//1252 1255//1255 1254//1254 +f 1252//1252 1253//1253 1255//1255 +f 1247//1247 1256//1256 1253//1253 +f 1247//1247 1250//1250 1256//1256 +f 1250//1250 1257//1257 1256//1256 +f 1250//1250 1251//1251 1257//1257 +f 1253//1253 1258//1258 1255//1255 +f 1253//1253 1256//1256 1258//1258 +f 1256//1256 1259//1259 1258//1258 +f 1256//1256 1257//1257 1259//1259 +f 307//307 308//308 1012//1012 +f 308//308 520//520 1012//1012 +f 520//520 521//521 1260//1260 +f 1012//1012 520//520 1261//1261 +f 520//520 1260//1260 1261//1261 +f 521//521 1262//1262 1260//1260 +f 521//521 522//522 1262//1262 +f 1260//1260 1263//1263 1261//1261 +f 1260//1260 1262//1262 1263//1263 +f 1012//1012 1261//1261 1024//1024 +f 1261//1261 1264//1264 1024//1024 +f 1024//1024 1265//1265 1030//1030 +f 1024//1024 1266//1266 1265//1265 +f 1030//1030 1267//1267 1032//1032 +f 1030//1030 1265//1265 1267//1267 +f 1265//1265 1268//1268 1267//1267 +f 1265//1265 1266//1266 1268//1268 +f 1024//1024 1269//1269 1266//1266 +f 1024//1024 1264//1264 1269//1269 +f 1264//1264 1270//1270 1269//1269 +f 1266//1266 1271//1271 1268//1268 +f 1266//1266 1269//1269 1271//1271 +f 1269//1269 1272//1272 1271//1271 +f 1269//1269 1270//1270 1272//1272 +f 1261//1261 1273//1273 1264//1264 +f 1261//1261 1263//1263 1273//1273 +f 1264//1264 1274//1274 1270//1270 +f 1264//1264 1273//1273 1274//1274 +f 1273//1273 1275//1275 1274//1274 +f 1270//1270 1276//1276 1272//1272 +f 1270//1270 1274//1274 1276//1276 +f 1274//1274 1277//1277 1276//1276 +f 1274//1274 1275//1275 1277//1277 +f 1273//1273 1278//1278 1275//1275 +f 1273//1273 1279//1279 1278//1278 +f 1275//1275 1280//1280 1277//1277 +f 1275//1275 1278//1278 1280//1280 +f 1278//1278 1281//1281 1280//1280 +f 1278//1278 1279//1279 1281//1281 +f 522//522 532//532 534//534 +f 522//522 534//534 1262//1262 +f 1262//1262 534//534 1282//1282 +f 1262//1262 1282//1282 1263//1263 +f 533//533 535//535 534//534 +f 534//534 1284//1284 1282//1282 +f 534//534 535//535 1284//1284 +f 535//535 537//537 1284//1284 +f 1282//1282 1284//1284 1283//1283 +f 1263//1263 1282//1282 1286//1286 +f 1263//1263 1286//1286 1273//1273 +f 1282//1282 1283//1283 1286//1286 +f 1273//1273 1287//1287 1279//1279 +f 1273//1273 1286//1286 1287//1287 +f 1286//1286 1288//1288 1287//1287 +f 1279//1279 1289//1289 1281//1281 +f 1279//1279 1287//1287 1289//1289 +f 1287//1287 1290//1290 1289//1289 +f 1287//1287 1288//1288 1290//1290 +f 1286//1286 1291//1291 1288//1288 +f 1286//1286 1292//1292 1291//1291 +f 1286//1286 1283//1283 1292//1292 +f 1288//1288 1293//1293 1290//1290 +f 1288//1288 1291//1291 1293//1293 +f 1291//1291 1294//1294 1293//1293 +f 1291//1291 1292//1292 1294//1294 +f 1283//1283 1284//1284 1295//1295 +f 1284//1284 1296//1296 1295//1295 +f 1284//1284 1285//1285 1296//1296 +f 1283//1283 1297//1297 1292//1292 +f 1283//1283 1298//1298 1297//1297 +f 1283//1283 1295//1295 1298//1298 +f 1292//1292 1299//1299 1294//1294 +f 1292//1292 1297//1297 1299//1299 +f 1297//1297 1300//1300 1299//1299 +f 1297//1297 1298//1298 1300//1300 +f 1295//1295 1301//1301 1298//1298 +f 1295//1295 1302//1302 1301//1301 +f 1295//1295 1296//1296 1302//1302 +f 1298//1298 1303//1303 1300//1300 +f 1298//1298 1301//1301 1303//1303 +f 1301//1301 1304//1304 1303//1303 +f 1301//1301 1302//1302 1304//1304 +f 1122//1122 1305//1305 1121//1121 +f 1122//1122 1306//1306 1305//1305 +f 1032//1032 1306//1306 1122//1122 +f 1032//1032 1267//1267 1306//1306 +f 1306//1306 1307//1307 1305//1305 +f 1306//1306 1308//1308 1307//1307 +f 1267//1267 1308//1308 1306//1306 +f 1267//1267 1268//1268 1308//1308 +f 1308//1308 1309//1309 1307//1307 +f 1308//1308 1310//1310 1309//1309 +f 1268//1268 1310//1310 1308//1308 +f 1268//1268 1271//1271 1310//1310 +f 1310//1310 1311//1311 1309//1309 +f 1271//1271 1272//1272 1310//1310 +f 1130//1130 1312//1312 1129//1129 +f 1130//1130 1313//1313 1312//1312 +f 1121//1121 1313//1313 1130//1130 +f 1121//1121 1305//1305 1313//1313 +f 1313//1313 1314//1314 1312//1312 +f 1313//1313 1315//1315 1314//1314 +f 1305//1305 1315//1315 1313//1313 +f 1305//1305 1307//1307 1315//1315 +f 1315//1315 1316//1316 1314//1314 +f 1315//1315 1317//1317 1316//1316 +f 1307//1307 1317//1317 1315//1315 +f 1307//1307 1309//1309 1317//1317 +f 1317//1317 1318//1318 1316//1316 +f 1317//1317 1319//1319 1318//1318 +f 1309//1309 1319//1319 1317//1317 +f 1309//1309 1311//1311 1319//1319 +f 1136//1136 1320//1320 1137//1137 +f 1136//1136 1321//1321 1320//1320 +f 1129//1129 1321//1321 1136//1136 +f 1129//1129 1312//1312 1321//1321 +f 1321//1321 1322//1322 1320//1320 +f 1321//1321 1323//1323 1322//1322 +f 1312//1312 1323//1323 1321//1321 +f 1312//1312 1314//1314 1323//1323 +f 1323//1323 1324//1324 1322//1322 +f 1314//1314 1316//1316 1323//1323 +f 1323//1323 1325//1325 1324//1324 +f 1323//1323 1326//1326 1325//1325 +f 1316//1316 1326//1326 1323//1323 +f 1316//1316 1318//1318 1326//1326 +f 1310//1310 1327//1327 1311//1311 +f 1310//1310 1328//1328 1327//1327 +f 1272//1272 1328//1328 1310//1310 +f 1272//1272 1276//1276 1328//1328 +f 1328//1328 1329//1329 1327//1327 +f 1328//1328 1330//1330 1329//1329 +f 1276//1276 1330//1330 1328//1328 +f 1276//1276 1277//1277 1330//1330 +f 1330//1330 1331//1331 1329//1329 +f 1330//1330 1332//1332 1331//1331 +f 1277//1277 1332//1332 1330//1330 +f 1277//1277 1280//1280 1332//1332 +f 1332//1332 1333//1333 1331//1331 +f 1332//1332 1334//1334 1333//1333 +f 1280//1280 1334//1334 1332//1332 +f 1280//1280 1281//1281 1334//1334 +f 1319//1319 1335//1335 1318//1318 +f 1319//1319 1336//1336 1335//1335 +f 1311//1311 1336//1336 1319//1319 +f 1311//1311 1327//1327 1336//1336 +f 1336//1336 1337//1337 1335//1335 +f 1336//1336 1338//1338 1337//1337 +f 1327//1327 1338//1338 1336//1336 +f 1327//1327 1329//1329 1338//1338 +f 1338//1338 1339//1339 1337//1337 +f 1338//1338 1340//1340 1339//1339 +f 1329//1329 1340//1340 1338//1338 +f 1329//1329 1331//1331 1340//1340 +f 1340//1340 1341//1341 1339//1339 +f 1340//1340 1342//1342 1341//1341 +f 1331//1331 1342//1342 1340//1340 +f 1331//1331 1333//1333 1342//1342 +f 1326//1326 1343//1343 1325//1325 +f 1318//1318 1335//1335 1326//1326 +f 1326//1326 1344//1344 1343//1343 +f 1326//1326 1345//1345 1344//1344 +f 1335//1335 1345//1345 1326//1326 +f 1335//1335 1337//1337 1345//1345 +f 1345//1345 1346//1346 1344//1344 +f 1345//1345 1347//1347 1346//1346 +f 1337//1337 1347//1347 1345//1345 +f 1337//1337 1339//1339 1347//1347 +f 1347//1347 1348//1348 1346//1346 +f 1347//1347 1349//1349 1348//1348 +f 1339//1339 1349//1349 1347//1347 +f 1339//1339 1341//1341 1349//1349 +f 1137//1137 1350//1350 1150//1150 +f 1137//1137 1320//1320 1350//1350 +f 1320//1320 1351//1351 1350//1350 +f 1320//1320 1322//1322 1351//1351 +f 1150//1150 1352//1352 1151//1151 +f 1150//1150 1350//1350 1352//1352 +f 1350//1350 1351//1351 1352//1352 +f 1322//1322 1353//1353 1351//1351 +f 1322//1322 1324//1324 1353//1353 +f 1324//1324 1354//1354 1353//1353 +f 1324//1324 1325//1325 1354//1354 +f 1351//1351 1355//1355 1352//1352 +f 1351//1351 1353//1353 1355//1355 +f 1353//1353 1354//1354 1355//1355 +f 1151//1151 1352//1352 1152//1152 +f 1355//1355 1356//1356 1352//1352 +f 1352//1352 1356//1356 1152//1152 +f 1325//1325 1357//1357 1354//1354 +f 1325//1325 1343//1343 1357//1357 +f 1343//1343 1358//1358 1357//1357 +f 1343//1343 1344//1344 1358//1358 +f 1354//1354 1357//1357 1355//1355 +f 1357//1357 1359//1359 1355//1355 +f 1357//1357 1358//1358 1359//1359 +f 1344//1344 1360//1360 1358//1358 +f 1344//1344 1346//1346 1360//1360 +f 1346//1346 1361//1361 1360//1360 +f 1346//1346 1348//1348 1361//1361 +f 1358//1358 1362//1362 1359//1359 +f 1358//1358 1360//1360 1362//1362 +f 1360//1360 1363//1363 1362//1362 +f 1360//1360 1361//1361 1363//1363 +f 1356//1356 1355//1355 1364//1364 +f 1359//1359 1365//1365 1355//1355 +f 1359//1359 1362//1362 1365//1365 +f 1362//1362 1366//1366 1365//1365 +f 1362//1362 1363//1363 1366//1366 +f 1355//1355 1365//1365 1364//1364 +f 1365//1365 1367//1367 1364//1364 +f 1365//1365 1366//1366 1367//1367 +f 1334//1334 1368//1368 1333//1333 +f 1334//1334 1369//1369 1368//1368 +f 1281//1281 1369//1369 1334//1334 +f 1281//1281 1289//1289 1369//1369 +f 1369//1369 1370//1370 1368//1368 +f 1369//1369 1371//1371 1370//1370 +f 1289//1289 1371//1371 1369//1369 +f 1289//1289 1290//1290 1371//1371 +f 1371//1371 1372//1372 1370//1370 +f 1371//1371 1373//1373 1372//1372 +f 1290//1290 1373//1373 1371//1371 +f 1290//1290 1293//1293 1373//1373 +f 1373//1373 1374//1374 1372//1372 +f 1293//1293 1294//1294 1373//1373 +f 1342//1342 1375//1375 1341//1341 +f 1342//1342 1376//1376 1375//1375 +f 1333//1333 1376//1376 1342//1342 +f 1333//1333 1368//1368 1376//1376 +f 1376//1376 1377//1377 1375//1375 +f 1376//1376 1378//1378 1377//1377 +f 1368//1368 1378//1378 1376//1376 +f 1368//1368 1370//1370 1378//1378 +f 1378//1378 1379//1379 1377//1377 +f 1378//1378 1380//1380 1379//1379 +f 1370//1370 1380//1380 1378//1378 +f 1370//1370 1372//1372 1380//1380 +f 1380//1380 1381//1381 1379//1379 +f 1380//1380 1382//1382 1381//1381 +f 1372//1372 1382//1382 1380//1380 +f 1372//1372 1374//1374 1382//1382 +f 1349//1349 1383//1383 1348//1348 +f 1349//1349 1384//1384 1383//1383 +f 1341//1341 1384//1384 1349//1349 +f 1341//1341 1375//1375 1384//1384 +f 1384//1384 1385//1385 1383//1383 +f 1384//1384 1386//1386 1385//1385 +f 1375//1375 1386//1386 1384//1384 +f 1375//1375 1377//1377 1386//1386 +f 1386//1386 1387//1387 1385//1385 +f 1386//1386 1388//1388 1387//1387 +f 1377//1377 1388//1388 1386//1386 +f 1377//1377 1379//1379 1388//1388 +f 1388//1388 1389//1389 1387//1387 +f 1388//1388 1390//1390 1389//1389 +f 1379//1379 1390//1390 1388//1388 +f 1379//1379 1381//1381 1390//1390 +f 1373//1373 1391//1391 1374//1374 +f 1373//1373 1392//1392 1391//1391 +f 1294//1294 1392//1392 1373//1373 +f 1294//1294 1299//1299 1392//1392 +f 1392//1392 1393//1393 1391//1391 +f 1299//1299 1300//1300 1392//1392 +f 1392//1392 1394//1394 1393//1393 +f 1392//1392 1395//1395 1394//1394 +f 1300//1300 1395//1395 1392//1392 +f 1300//1300 1303//1303 1395//1395 +f 1395//1395 1396//1396 1394//1394 +f 1303//1303 1304//1304 1395//1395 +f 1382//1382 1397//1397 1381//1381 +f 1382//1382 1398//1398 1397//1397 +f 1374//1374 1398//1398 1382//1382 +f 1374//1374 1391//1391 1398//1398 +f 1398//1398 1399//1399 1397//1397 +f 1398//1398 1400//1400 1399//1399 +f 1391//1391 1400//1400 1398//1398 +f 1391//1391 1393//1393 1400//1400 +f 1400//1400 1401//1401 1399//1399 +f 1400//1400 1402//1402 1401//1401 +f 1393//1393 1402//1402 1400//1400 +f 1393//1393 1394//1394 1402//1402 +f 1402//1402 1403//1403 1401//1401 +f 1402//1402 1404//1404 1403//1403 +f 1394//1394 1404//1404 1402//1402 +f 1394//1394 1396//1396 1404//1404 +f 1390//1390 1405//1405 1389//1389 +f 1381//1381 1397//1397 1390//1390 +f 1390//1390 1406//1406 1405//1405 +f 1390//1390 1407//1407 1406//1406 +f 1397//1397 1407//1407 1390//1390 +f 1397//1397 1399//1399 1407//1407 +f 1407//1407 1408//1408 1406//1406 +f 1399//1399 1401//1401 1407//1407 +f 1407//1407 1409//1409 1408//1408 +f 1407//1407 1410//1410 1409//1409 +f 1401//1401 1410//1410 1407//1407 +f 1401//1401 1403//1403 1410//1410 +f 1348//1348 1411//1411 1361//1361 +f 1348//1348 1383//1383 1411//1411 +f 1383//1383 1412//1412 1411//1411 +f 1383//1383 1385//1385 1412//1412 +f 1361//1361 1411//1411 1363//1363 +f 1411//1411 1413//1413 1363//1363 +f 1411//1411 1412//1412 1413//1413 +f 1385//1385 1414//1414 1412//1412 +f 1385//1385 1387//1387 1414//1414 +f 1387//1387 1415//1415 1414//1414 +f 1387//1387 1389//1389 1415//1415 +f 1412//1412 1414//1414 1413//1413 +f 1414//1414 1416//1416 1413//1413 +f 1414//1414 1415//1415 1416//1416 +f 1363//1363 1413//1413 1366//1366 +f 1413//1413 1417//1417 1366//1366 +f 1413//1413 1416//1416 1417//1417 +f 1366//1366 1417//1417 1418//1418 +f 1389//1389 1419//1419 1415//1415 +f 1389//1389 1405//1405 1419//1419 +f 1405//1405 1420//1420 1419//1419 +f 1405//1405 1406//1406 1420//1420 +f 1415//1415 1419//1419 1416//1416 +f 1419//1419 1420//1420 1416//1416 +f 1406//1406 1421//1421 1420//1420 +f 1406//1406 1408//1408 1421//1421 +f 1408//1408 1422//1422 1421//1421 +f 1408//1408 1409//1409 1422//1422 +f 1420//1420 1423//1423 1416//1416 +f 1420//1420 1421//1421 1423//1423 +f 1421//1421 1424//1424 1423//1423 +f 1421//1421 1422//1422 1424//1424 +f 1416//1416 1425//1425 1417//1417 +f 1417//1417 1426//1426 1418//1418 +f 1417//1417 1427//1427 1426//1426 +f 1417//1417 1425//1425 1427//1427 +f 1416//1416 1428//1428 1425//1425 +f 1416//1416 1423//1423 1428//1428 +f 1423//1423 1429//1429 1428//1428 +f 1423//1423 1424//1424 1429//1429 +f 1425//1425 1430//1430 1427//1427 +f 1425//1425 1428//1428 1430//1430 +f 1428//1428 1431//1431 1430//1430 +f 1428//1428 1429//1429 1431//1431 +f 1284//1284 537//537 1285//1285 +f 537//537 1432//1432 1285//1285 +f 537//537 655//655 1432//1432 +f 655//655 657//657 1432//1432 +f 658//658 662//662 1433//1433 +f 662//662 665//665 1433//1433 +f 665//665 1435//1435 1434//1434 +f 665//665 666//666 1435//1435 +f 1433//1433 665//665 1434//1434 +f 669//669 668//668 1436//1436 +f 666//666 669//669 1437//1437 +f 666//666 1437//1437 1435//1435 +f 669//669 1438//1438 1437//1437 +f 669//669 1436//1436 1438//1438 +f 1285//1285 1432//1432 1439//1439 +f 1285//1285 1439//1439 1296//1296 +f 1432//1432 1440//1440 1439//1439 +f 1432//1432 657//657 1440//1440 +f 657//657 1441//1441 1440//1440 +f 657//657 658//658 1441//1441 +f 1296//1296 1442//1442 1302//1302 +f 1296//1296 1443//1443 1442//1442 +f 1296//1296 1439//1439 1443//1443 +f 1302//1302 1444//1444 1304//1304 +f 1302//1302 1442//1442 1444//1444 +f 1442//1442 1445//1445 1444//1444 +f 1442//1442 1443//1443 1445//1445 +f 1439//1439 1446//1446 1443//1443 +f 1439//1439 1440//1440 1446//1446 +f 1440//1440 1447//1447 1446//1446 +f 1440//1440 1441//1441 1447//1447 +f 1443//1443 1448//1448 1445//1445 +f 1443//1443 1446//1446 1448//1448 +f 1446//1446 1449//1449 1448//1448 +f 1446//1446 1447//1447 1449//1449 +f 658//658 1433//1433 1441//1441 +f 1434//1434 1435//1435 1450//1450 +f 1441//1441 1433//1433 1451//1451 +f 1434//1434 1453//1453 1452//1452 +f 1434//1434 1450//1450 1453//1453 +f 1433//1433 1452//1452 1451//1451 +f 1433//1433 1434//1434 1452//1452 +f 1441//1441 1454//1454 1447//1447 +f 1441//1441 1451//1451 1454//1454 +f 1452//1452 1456//1456 1455//1455 +f 1452//1452 1453//1453 1456//1456 +f 1451//1451 1455//1455 1454//1454 +f 1451//1451 1452//1452 1455//1455 +f 1447//1447 1457//1457 1449//1449 +f 1447//1447 1454//1454 1457//1457 +f 1455//1455 1459//1459 1458//1458 +f 1455//1455 1456//1456 1459//1459 +f 1454//1454 1458//1458 1457//1457 +f 1454//1454 1455//1455 1458//1458 +f 1435//1435 1460//1460 1450//1450 +f 1435//1435 1437//1437 1460//1460 +f 1450//1450 1461//1461 1453//1453 +f 1450//1450 1460//1460 1461//1461 +f 1437//1437 1462//1462 1460//1460 +f 1437//1437 1438//1438 1462//1462 +f 1460//1460 1463//1463 1461//1461 +f 1460//1460 1462//1462 1463//1463 +f 1453//1453 1464//1464 1456//1456 +f 1453//1453 1461//1461 1464//1464 +f 1456//1456 1465//1465 1459//1459 +f 1456//1456 1464//1464 1465//1465 +f 1461//1461 1466//1466 1464//1464 +f 1461//1461 1463//1463 1466//1466 +f 1464//1464 1467//1467 1465//1465 +f 1464//1464 1466//1466 1467//1467 +f 668//668 673//673 1436//1436 +f 1436//1436 1468//1468 1438//1438 +f 1438//1438 1468//1468 1469//1469 +f 1436//1436 1470//1470 1468//1468 +f 1468//1468 1471//1471 1469//1469 +f 1468//1468 1470//1470 1471//1471 +f 673//673 1472//1472 1436//1436 +f 673//673 674//674 1472//1472 +f 1436//1436 1474//1474 1470//1470 +f 1436//1436 1472//1472 1474//1474 +f 1470//1470 1475//1475 1471//1471 +f 1470//1470 1474//1474 1475//1475 +f 1472//1472 1476//1476 1474//1474 +f 1472//1472 1473//1473 1476//1476 +f 1474//1474 1477//1477 1475//1475 +f 1474//1474 1476//1476 1477//1477 +f 1438//1438 1478//1478 1462//1462 +f 1438//1438 1469//1469 1478//1478 +f 1462//1462 1479//1479 1463//1463 +f 1462//1462 1478//1478 1479//1479 +f 1469//1469 1480//1480 1478//1478 +f 1469//1469 1471//1471 1480//1480 +f 1478//1478 1481//1481 1479//1479 +f 1478//1478 1480//1480 1481//1481 +f 1463//1463 1482//1482 1466//1466 +f 1463//1463 1479//1479 1482//1482 +f 1466//1466 1483//1483 1467//1467 +f 1466//1466 1482//1482 1483//1483 +f 1479//1479 1484//1484 1482//1482 +f 1479//1479 1481//1481 1484//1484 +f 1482//1482 1485//1485 1483//1483 +f 1482//1482 1484//1484 1485//1485 +f 1471//1471 1486//1486 1480//1480 +f 1471//1471 1475//1475 1486//1486 +f 1480//1480 1487//1487 1481//1481 +f 1480//1480 1486//1486 1487//1487 +f 1475//1475 1488//1488 1486//1486 +f 1475//1475 1477//1477 1488//1488 +f 1486//1486 1489//1489 1487//1487 +f 1486//1486 1488//1488 1489//1489 +f 1481//1481 1490//1490 1484//1484 +f 1481//1481 1487//1487 1490//1490 +f 1484//1484 1491//1491 1485//1485 +f 1484//1484 1490//1490 1491//1491 +f 1487//1487 1492//1492 1490//1490 +f 1487//1487 1489//1489 1492//1492 +f 1490//1490 1492//1492 1491//1491 +f 1395//1395 1493//1493 1396//1396 +f 1395//1395 1494//1494 1493//1493 +f 1304//1304 1494//1494 1395//1395 +f 1304//1304 1444//1444 1494//1494 +f 1494//1494 1495//1495 1493//1493 +f 1494//1494 1496//1496 1495//1495 +f 1444//1444 1496//1496 1494//1494 +f 1444//1444 1445//1445 1496//1496 +f 1496//1496 1497//1497 1495//1495 +f 1496//1496 1498//1498 1497//1497 +f 1445//1445 1498//1498 1496//1496 +f 1445//1445 1448//1448 1498//1498 +f 1498//1498 1499//1499 1497//1497 +f 1498//1498 1500//1500 1499//1499 +f 1448//1448 1500//1500 1498//1498 +f 1448//1448 1449//1449 1500//1500 +f 1404//1404 1501//1501 1403//1403 +f 1404//1404 1502//1502 1501//1501 +f 1396//1396 1502//1502 1404//1404 +f 1396//1396 1493//1493 1502//1502 +f 1502//1502 1503//1503 1501//1501 +f 1502//1502 1504//1504 1503//1503 +f 1493//1493 1504//1504 1502//1502 +f 1493//1493 1495//1495 1504//1504 +f 1504//1504 1505//1505 1503//1503 +f 1504//1504 1506//1506 1505//1505 +f 1495//1495 1506//1506 1504//1504 +f 1495//1495 1497//1497 1506//1506 +f 1506//1506 1507//1507 1505//1505 +f 1506//1506 1508//1508 1507//1507 +f 1499//1499 1507//1507 1508//1508 +f 1499//1499 1509//1509 1507//1507 +f 1497//1497 1508//1508 1506//1506 +f 1497//1497 1499//1499 1508//1508 +f 1509//1509 1510//1510 1507//1507 +f 1509//1509 1511//1511 1510//1510 +f 1410//1410 1512//1512 1409//1409 +f 1403//1403 1501//1501 1410//1410 +f 1410//1410 1513//1513 1512//1512 +f 1410//1410 1514//1514 1513//1513 +f 1501//1501 1514//1514 1410//1410 +f 1501//1501 1503//1503 1514//1514 +f 1514//1514 1515//1515 1513//1513 +f 1514//1514 1516//1516 1515//1515 +f 1503//1503 1516//1516 1514//1514 +f 1503//1503 1505//1505 1516//1516 +f 1516//1516 1517//1517 1515//1515 +f 1516//1516 1518//1518 1517//1517 +f 1507//1507 1517//1517 1518//1518 +f 1507//1507 1510//1510 1517//1517 +f 1505//1505 1518//1518 1516//1516 +f 1505//1505 1507//1507 1518//1518 +f 1500//1500 1519//1519 1499//1499 +f 1500//1500 1520//1520 1519//1519 +f 1449//1449 1520//1520 1500//1500 +f 1449//1449 1457//1457 1520//1520 +f 1520//1520 1521//1521 1519//1519 +f 1520//1520 1522//1522 1521//1521 +f 1458//1458 1521//1521 1522//1522 +f 1458//1458 1459//1459 1521//1521 +f 1457//1457 1522//1522 1520//1520 +f 1457//1457 1458//1458 1522//1522 +f 1499//1499 1523//1523 1509//1509 +f 1499//1499 1519//1519 1523//1523 +f 1519//1519 1524//1524 1523//1523 +f 1519//1519 1521//1521 1524//1524 +f 1459//1459 1524//1524 1521//1521 +f 1459//1459 1465//1465 1524//1524 +f 1509//1509 1525//1525 1511//1511 +f 1509//1509 1523//1523 1525//1525 +f 1523//1523 1526//1526 1525//1525 +f 1523//1523 1524//1524 1526//1526 +f 1465//1465 1526//1526 1524//1524 +f 1465//1465 1467//1467 1526//1526 +f 1511//1511 1527//1527 1510//1510 +f 1511//1511 1528//1528 1527//1527 +f 1528//1528 1529//1529 1527//1527 +f 1409//1409 1530//1530 1422//1422 +f 1409//1409 1512//1512 1530//1530 +f 1512//1512 1531//1531 1530//1530 +f 1512//1512 1513//1513 1531//1531 +f 1422//1422 1532//1532 1424//1424 +f 1422//1422 1530//1530 1532//1532 +f 1530//1530 1533//1533 1532//1532 +f 1530//1530 1531//1531 1533//1533 +f 1513//1513 1534//1534 1531//1531 +f 1513//1513 1515//1515 1534//1534 +f 1515//1515 1535//1535 1534//1534 +f 1515//1515 1517//1517 1535//1535 +f 1510//1510 1535//1535 1517//1517 +f 1510//1510 1527//1527 1535//1535 +f 1531//1531 1536//1536 1533//1533 +f 1531//1531 1534//1534 1536//1536 +f 1534//1534 1537//1537 1536//1536 +f 1534//1534 1535//1535 1537//1537 +f 1527//1527 1537//1537 1535//1535 +f 1527//1527 1529//1529 1537//1537 +f 1528//1528 1538//1538 1529//1529 +f 1528//1528 1539//1539 1538//1538 +f 1424//1424 1540//1540 1429//1429 +f 1424//1424 1532//1532 1540//1540 +f 1532//1532 1541//1541 1540//1540 +f 1532//1532 1533//1533 1541//1541 +f 1429//1429 1542//1542 1431//1431 +f 1429//1429 1540//1540 1542//1542 +f 1540//1540 1543//1543 1542//1542 +f 1540//1540 1541//1541 1543//1543 +f 1533//1533 1544//1544 1541//1541 +f 1533//1533 1536//1536 1544//1544 +f 1536//1536 1545//1545 1544//1544 +f 1536//1536 1537//1537 1545//1545 +f 1529//1529 1545//1545 1537//1537 +f 1529//1529 1538//1538 1545//1545 +f 1541//1541 1546//1546 1543//1543 +f 1541//1541 1544//1544 1546//1546 +f 1544//1544 1547//1547 1546//1546 +f 1544//1544 1545//1545 1547//1547 +f 1538//1538 1547//1547 1545//1545 +f 1511//1511 1548//1548 1528//1528 +f 1511//1511 1525//1525 1548//1548 +f 1525//1525 1549//1549 1548//1548 +f 1525//1525 1526//1526 1549//1549 +f 1467//1467 1549//1549 1526//1526 +f 1467//1467 1483//1483 1549//1549 +f 1548//1548 1549//1549 1550//1550 +f 1483//1483 1550//1550 1549//1549 +f 1483//1483 1485//1485 1550//1550 +f 1528//1528 1548//1548 1539//1539 +f 1485//1485 1491//1491 1550//1550 +f 1539//1539 1548//1548 1551//1551 +f 1548//1548 1550//1550 1551//1551 +f 1152//1152 1221//1221 1219//1219 +f 1152//1152 1552//1552 1221//1221 +f 1152//1152 1356//1356 1552//1552 +f 1552//1552 1554//1554 1221//1221 +f 1221//1221 1554//1554 1553//1553 +f 1356//1356 1364//1364 1552//1552 +f 1552//1552 1364//1364 1554//1554 +f 1364//1364 1556//1556 1554//1554 +f 1364//1364 1557//1557 1556//1556 +f 1364//1364 1367//1367 1557//1557 +f 1554//1554 1556//1556 1555//1555 +f 1221//1221 1553//1553 1224//1224 +f 1554//1554 1558//1558 1553//1553 +f 1224//1224 1553//1553 1559//1559 +f 1225//1225 1224//1224 1560//1560 +f 1224//1224 1559//1559 1560//1560 +f 1553//1553 1561//1561 1559//1559 +f 1553//1553 1558//1558 1561//1561 +f 1559//1559 1561//1561 1562//1562 +f 1554//1554 1555//1555 1558//1558 +f 1556//1556 1563//1563 1555//1555 +f 1555//1555 1564//1564 1558//1558 +f 1555//1555 1565//1565 1564//1564 +f 1555//1555 1563//1563 1565//1565 +f 1558//1558 1566//1566 1561//1561 +f 1558//1558 1567//1567 1566//1566 +f 1561//1561 1568//1568 1562//1562 +f 1561//1561 1566//1566 1568//1568 +f 1566//1566 1569//1569 1568//1568 +f 1566//1566 1567//1567 1569//1569 +f 1558//1558 1570//1570 1567//1567 +f 1558//1558 1564//1564 1570//1570 +f 1564//1564 1571//1571 1570//1570 +f 1564//1564 1565//1565 1571//1571 +f 1567//1567 1572//1572 1569//1569 +f 1567//1567 1570//1570 1572//1572 +f 1570//1570 1573//1573 1572//1572 +f 1570//1570 1571//1571 1573//1573 +f 1366//1366 1574//1574 1367//1367 +f 1366//1366 1575//1575 1574//1574 +f 1366//1366 1418//1418 1575//1575 +f 1418//1418 1576//1576 1575//1575 +f 1574//1574 1575//1575 1577//1577 +f 1575//1575 1578//1578 1577//1577 +f 1575//1575 1576//1576 1578//1578 +f 1367//1367 1579//1579 1557//1557 +f 1367//1367 1574//1574 1579//1579 +f 1557//1557 1580//1580 1556//1556 +f 1557//1557 1581//1581 1580//1580 +f 1557//1557 1579//1579 1581//1581 +f 1574//1574 1582//1582 1579//1579 +f 1574//1574 1577//1577 1582//1582 +f 1577//1577 1583//1583 1582//1582 +f 1577//1577 1578//1578 1583//1583 +f 1579//1579 1584//1584 1581//1581 +f 1579//1579 1582//1582 1584//1584 +f 1582//1582 1585//1585 1584//1584 +f 1582//1582 1583//1583 1585//1585 +f 1418//1418 1586//1586 1576//1576 +f 1418//1418 1426//1426 1586//1586 +f 1426//1426 1587//1587 1586//1586 +f 1426//1426 1427//1427 1587//1587 +f 1576//1576 1588//1588 1578//1578 +f 1576//1576 1586//1586 1588//1588 +f 1586//1586 1589//1589 1588//1588 +f 1586//1586 1587//1587 1589//1589 +f 1427//1427 1590//1590 1587//1587 +f 1427//1427 1430//1430 1590//1590 +f 1430//1430 1591//1591 1590//1590 +f 1430//1430 1431//1431 1591//1591 +f 1587//1587 1592//1592 1589//1589 +f 1587//1587 1590//1590 1592//1592 +f 1590//1590 1593//1593 1592//1592 +f 1590//1590 1591//1591 1593//1593 +f 1578//1578 1594//1594 1583//1583 +f 1578//1578 1588//1588 1594//1594 +f 1588//1588 1595//1595 1594//1594 +f 1588//1588 1589//1589 1595//1595 +f 1583//1583 1596//1596 1585//1585 +f 1583//1583 1594//1594 1596//1596 +f 1594//1594 1597//1597 1596//1596 +f 1594//1594 1595//1595 1597//1597 +f 1589//1589 1598//1598 1595//1595 +f 1589//1589 1592//1592 1598//1598 +f 1592//1592 1599//1599 1598//1598 +f 1592//1592 1593//1593 1599//1599 +f 1595//1595 1600//1600 1597//1597 +f 1595//1595 1598//1598 1600//1600 +f 1598//1598 1601//1601 1600//1600 +f 1598//1598 1599//1599 1601//1601 +f 1556//1556 1602//1602 1563//1563 +f 1556//1556 1580//1580 1602//1602 +f 1580//1580 1603//1603 1602//1602 +f 1580//1580 1581//1581 1603//1603 +f 1563//1563 1604//1604 1565//1565 +f 1563//1563 1602//1602 1604//1604 +f 1602//1602 1605//1605 1604//1604 +f 1602//1602 1603//1603 1605//1605 +f 1581//1581 1606//1606 1603//1603 +f 1581//1581 1584//1584 1606//1606 +f 1584//1584 1607//1607 1606//1606 +f 1584//1584 1585//1585 1607//1607 +f 1603//1603 1608//1608 1605//1605 +f 1603//1603 1606//1606 1608//1608 +f 1606//1606 1609//1609 1608//1608 +f 1606//1606 1607//1607 1609//1609 +f 1565//1565 1610//1610 1571//1571 +f 1565//1565 1604//1604 1610//1610 +f 1604//1604 1611//1611 1610//1610 +f 1604//1604 1605//1605 1611//1611 +f 1571//1571 1612//1612 1573//1573 +f 1571//1571 1610//1610 1612//1612 +f 1610//1610 1613//1613 1612//1612 +f 1610//1610 1611//1611 1613//1613 +f 1605//1605 1614//1614 1611//1611 +f 1605//1605 1608//1608 1614//1614 +f 1608//1608 1615//1615 1614//1614 +f 1608//1608 1609//1609 1615//1615 +f 1611//1611 1616//1616 1613//1613 +f 1611//1611 1614//1614 1616//1616 +f 1614//1614 1617//1617 1616//1616 +f 1614//1614 1615//1615 1617//1617 +f 1585//1585 1618//1618 1607//1607 +f 1585//1585 1596//1596 1618//1618 +f 1596//1596 1619//1619 1618//1618 +f 1596//1596 1597//1597 1619//1619 +f 1607//1607 1620//1620 1609//1609 +f 1607//1607 1618//1618 1620//1620 +f 1618//1618 1621//1621 1620//1620 +f 1618//1618 1619//1619 1621//1621 +f 1597//1597 1622//1622 1619//1619 +f 1597//1597 1600//1600 1622//1622 +f 1600//1600 1623//1623 1622//1622 +f 1600//1600 1601//1601 1623//1623 +f 1619//1619 1624//1624 1621//1621 +f 1619//1619 1622//1622 1624//1624 +f 1622//1622 1623//1623 1624//1624 +f 1609//1609 1625//1625 1615//1615 +f 1609//1609 1620//1620 1625//1625 +f 1620//1620 1626//1626 1625//1625 +f 1620//1620 1621//1621 1626//1626 +f 1615//1615 1627//1627 1617//1617 +f 1615//1615 1625//1625 1627//1627 +f 1625//1625 1626//1626 1627//1627 +f 1621//1621 1624//1624 1626//1626 +f 1225//1225 1560//1560 1237//1237 +f 1237//1237 1560//1560 1629//1629 +f 1560//1560 1559//1559 1630//1630 +f 1559//1559 1631//1631 1630//1630 +f 1559//1559 1562//1562 1631//1631 +f 1560//1560 1632//1632 1629//1629 +f 1560//1560 1630//1630 1632//1632 +f 1630//1630 1633//1633 1632//1632 +f 1630//1630 1631//1631 1633//1633 +f 1237//1237 1634//1634 1240//1240 +f 1237//1237 1635//1635 1634//1634 +f 1237//1237 1629//1629 1635//1635 +f 1240//1240 1636//1636 1241//1241 +f 1240//1240 1634//1634 1636//1636 +f 1634//1634 1637//1637 1636//1636 +f 1634//1634 1635//1635 1637//1637 +f 1629//1629 1638//1638 1635//1635 +f 1629//1629 1632//1632 1638//1638 +f 1632//1632 1639//1639 1638//1638 +f 1632//1632 1633//1633 1639//1639 +f 1635//1635 1640//1640 1637//1637 +f 1635//1635 1638//1638 1640//1640 +f 1638//1638 1641//1641 1640//1640 +f 1638//1638 1639//1639 1641//1641 +f 1562//1562 1642//1642 1631//1631 +f 1562//1562 1568//1568 1642//1642 +f 1568//1568 1643//1643 1642//1642 +f 1568//1568 1569//1569 1643//1643 +f 1631//1631 1644//1644 1633//1633 +f 1631//1631 1642//1642 1644//1644 +f 1642//1642 1645//1645 1644//1644 +f 1642//1642 1643//1643 1645//1645 +f 1569//1569 1646//1646 1643//1643 +f 1569//1569 1572//1572 1646//1646 +f 1572//1572 1647//1647 1646//1646 +f 1572//1572 1573//1573 1647//1647 +f 1643//1643 1648//1648 1645//1645 +f 1643//1643 1646//1646 1648//1648 +f 1646//1646 1649//1649 1648//1648 +f 1646//1646 1647//1647 1649//1649 +f 1633//1633 1650//1650 1639//1639 +f 1633//1633 1644//1644 1650//1650 +f 1644//1644 1651//1651 1650//1650 +f 1644//1644 1645//1645 1651//1651 +f 1639//1639 1652//1652 1641//1641 +f 1639//1639 1650//1650 1652//1652 +f 1650//1650 1653//1653 1652//1652 +f 1650//1650 1651//1651 1653//1653 +f 1645//1645 1654//1654 1651//1651 +f 1645//1645 1648//1648 1654//1654 +f 1648//1648 1655//1655 1654//1654 +f 1648//1648 1649//1649 1655//1655 +f 1651//1651 1656//1656 1653//1653 +f 1651//1651 1654//1654 1656//1656 +f 1654//1654 1657//1657 1656//1656 +f 1654//1654 1655//1655 1657//1657 +f 1241//1241 1658//1658 1249//1249 +f 1241//1241 1636//1636 1658//1658 +f 1636//1636 1659//1659 1658//1658 +f 1636//1636 1637//1637 1659//1659 +f 1249//1249 1660//1660 1251//1251 +f 1249//1249 1658//1658 1660//1660 +f 1658//1658 1661//1661 1660//1660 +f 1658//1658 1659//1659 1661//1661 +f 1637//1637 1662//1662 1659//1659 +f 1637//1637 1640//1640 1662//1662 +f 1640//1640 1663//1663 1662//1662 +f 1640//1640 1641//1641 1663//1663 +f 1659//1659 1664//1664 1661//1661 +f 1659//1659 1662//1662 1664//1664 +f 1662//1662 1665//1665 1664//1664 +f 1662//1662 1663//1663 1665//1665 +f 1251//1251 1666//1666 1257//1257 +f 1251//1251 1660//1660 1666//1666 +f 1660//1660 1667//1667 1666//1666 +f 1660//1660 1661//1661 1667//1667 +f 1257//1257 1668//1668 1259//1259 +f 1257//1257 1666//1666 1668//1668 +f 1666//1666 1669//1669 1668//1668 +f 1666//1666 1667//1667 1669//1669 +f 1661//1661 1670//1670 1667//1667 +f 1661//1661 1664//1664 1670//1670 +f 1664//1664 1671//1671 1670//1670 +f 1664//1664 1665//1665 1671//1671 +f 1667//1667 1672//1672 1669//1669 +f 1667//1667 1670//1670 1672//1672 +f 1670//1670 1673//1673 1672//1672 +f 1670//1670 1671//1671 1673//1673 +f 1641//1641 1674//1674 1663//1663 +f 1641//1641 1652//1652 1674//1674 +f 1652//1652 1675//1675 1674//1674 +f 1652//1652 1653//1653 1675//1675 +f 1663//1663 1676//1676 1665//1665 +f 1663//1663 1674//1674 1676//1676 +f 1674//1674 1677//1677 1676//1676 +f 1674//1674 1675//1675 1677//1677 +f 1653//1653 1678//1678 1675//1675 +f 1653//1653 1656//1656 1678//1678 +f 1656//1656 1657//1657 1678//1678 +f 1675//1675 1679//1679 1677//1677 +f 1675//1675 1678//1678 1679//1679 +f 1665//1665 1680//1680 1671//1671 +f 1665//1665 1676//1676 1680//1680 +f 1676//1676 1677//1677 1680//1680 +f 1671//1671 1680//1680 1673//1673 +f 1677//1677 1681//1681 1680//1680 +f 1677//1677 1679//1679 1681//1681 +f 1573//1573 1682//1682 1647//1647 +f 1573//1573 1612//1612 1682//1682 +f 1612//1612 1683//1683 1682//1682 +f 1612//1612 1613//1613 1683//1683 +f 1647//1647 1684//1684 1649//1649 +f 1647//1647 1682//1682 1684//1684 +f 1682//1682 1685//1685 1684//1684 +f 1682//1682 1683//1683 1685//1685 +f 1613//1613 1686//1686 1683//1683 +f 1613//1613 1616//1616 1686//1686 +f 1616//1616 1687//1687 1686//1686 +f 1616//1616 1617//1617 1687//1687 +f 1683//1683 1688//1688 1685//1685 +f 1683//1683 1686//1686 1688//1688 +f 1686//1686 1687//1687 1688//1688 +f 1649//1649 1689//1689 1655//1655 +f 1649//1649 1684//1684 1689//1689 +f 1684//1684 1690//1690 1689//1689 +f 1684//1684 1685//1685 1690//1690 +f 1655//1655 1691//1691 1657//1657 +f 1655//1655 1689//1689 1691//1691 +f 1689//1689 1690//1690 1691//1691 +f 1685//1685 1688//1688 1690//1690 +f 1688//1688 1687//1687 1690//1690 +f 1617//1617 1627//1627 1687//1687 +f 1627//1627 1692//1692 1687//1687 +f 1626//1626 1693//1693 1627//1627 +f 1626//1626 1628//1628 1693//1693 +f 1627//1627 1693//1693 1692//1692 +f 1687//1687 1692//1692 1690//1690 +f 1693//1693 1694//1694 1692//1692 +f 1657//1657 1691//1691 1678//1678 +f 1678//1678 1691//1691 1679//1679 +f 1679//1679 1691//1691 1696//1696 +f 1679//1679 1696//1696 1681//1681 +f 1691//1691 1695//1695 1696//1696 +f 1690//1690 1692//1692 1691//1691 +f 1691//1691 1692//1692 1695//1695 +f 1692//1692 1697//1697 1695//1695 +f 1692//1692 1694//1694 1697//1697 +f 1472//1472 1698//1698 1473//1473 +f 1472//1472 674//674 1698//1698 +f 1473//1473 1699//1699 1476//1476 +f 1473//1473 1698//1698 1699//1699 +f 1476//1476 1700//1700 1477//1477 +f 1476//1476 1699//1699 1700//1700 +f 1698//1698 1701//1701 1699//1699 +f 1699//1699 1702//1702 1700//1700 +f 1699//1699 1701//1701 1702//1702 +f 674//674 1703//1703 1698//1698 +f 674//674 755//755 1703//1703 +f 755//755 756//756 1704//1704 +f 755//755 1705//1705 1703//1703 +f 755//755 1704//1704 1705//1705 +f 1698//1698 1706//1706 1701//1701 +f 1698//1698 1703//1703 1706//1706 +f 1701//1701 1707//1707 1702//1702 +f 1701//1701 1706//1706 1707//1707 +f 1703//1703 1708//1708 1706//1706 +f 1703//1703 1705//1705 1708//1708 +f 1706//1706 1709//1709 1707//1707 +f 1706//1706 1708//1708 1709//1709 +f 1477//1477 1710//1710 1488//1488 +f 1477//1477 1700//1700 1710//1710 +f 1488//1488 1711//1711 1489//1489 +f 1488//1488 1710//1710 1711//1711 +f 1700//1700 1712//1712 1710//1710 +f 1700//1700 1702//1702 1712//1712 +f 1710//1710 1713//1713 1711//1711 +f 1710//1710 1712//1712 1713//1713 +f 1489//1489 1714//1714 1492//1492 +f 1489//1489 1711//1711 1714//1714 +f 1492//1492 1715//1715 1491//1491 +f 1492//1492 1714//1714 1715//1715 +f 1711//1711 1716//1716 1714//1714 +f 1711//1711 1713//1713 1716//1716 +f 1714//1714 1716//1716 1715//1715 +f 1702//1702 1717//1717 1712//1712 +f 1702//1702 1707//1707 1717//1717 +f 1712//1712 1718//1718 1713//1713 +f 1712//1712 1717//1717 1718//1718 +f 1707//1707 1719//1719 1717//1717 +f 1707//1707 1709//1709 1719//1719 +f 1717//1717 1719//1719 1718//1718 +f 1713//1713 1720//1720 1716//1716 +f 1713//1713 1718//1718 1720//1720 +f 1716//1716 1720//1720 1715//1715 +f 1720//1720 1721//1721 1715//1715 +f 756//756 1722//1722 1704//1704 +f 756//756 761//761 1722//1722 +f 1704//1704 1723//1723 1705//1705 +f 1704//1704 1722//1722 1723//1723 +f 761//761 1724//1724 1722//1722 +f 1722//1722 1725//1725 1723//1723 +f 1722//1722 1724//1724 1725//1725 +f 1705//1705 1726//1726 1708//1708 +f 1705//1705 1723//1723 1726//1726 +f 1708//1708 1727//1727 1709//1709 +f 1708//1708 1726//1726 1727//1727 +f 1723//1723 1728//1728 1726//1726 +f 1723//1723 1725//1725 1728//1728 +f 1726//1726 1729//1729 1727//1727 +f 1726//1726 1728//1728 1729//1729 +f 761//761 1730//1730 1724//1724 +f 761//761 763//763 1730//1730 +f 1724//1724 1731//1731 1725//1725 +f 1724//1724 1730//1730 1731//1731 +f 763//763 1732//1732 1730//1730 +f 763//763 765//765 1732//1732 +f 1730//1730 1733//1733 1731//1731 +f 1730//1730 1732//1732 1733//1733 +f 1725//1725 1734//1734 1728//1728 +f 1725//1725 1731//1731 1734//1734 +f 1728//1728 1735//1735 1729//1729 +f 1728//1728 1734//1734 1735//1735 +f 1731//1731 1736//1736 1734//1734 +f 1731//1731 1733//1733 1736//1736 +f 1734//1734 1737//1737 1735//1735 +f 1734//1734 1736//1736 1737//1737 +f 1709//1709 1738//1738 1719//1719 +f 1709//1709 1727//1727 1738//1738 +f 1719//1719 1739//1739 1718//1718 +f 1719//1719 1738//1738 1739//1739 +f 1727//1727 1740//1740 1738//1738 +f 1727//1727 1729//1729 1740//1740 +f 1738//1738 1741//1741 1739//1739 +f 1738//1738 1740//1740 1741//1741 +f 1718//1718 1739//1739 1720//1720 +f 1739//1739 1742//1742 1720//1720 +f 1739//1739 1741//1741 1742//1742 +f 1720//1720 1742//1742 1721//1721 +f 1729//1729 1743//1743 1740//1740 +f 1729//1729 1735//1735 1743//1743 +f 1740//1740 1744//1744 1741//1741 +f 1740//1740 1743//1743 1744//1744 +f 1735//1735 1744//1744 1743//1743 +f 1735//1735 1737//1737 1744//1744 +f 1741//1741 1744//1744 1742//1742 +f 1742//1742 1745//1745 1721//1721 +f 1539//1539 1746//1746 1538//1538 +f 1431//1431 1747//1747 1591//1591 +f 1431//1431 1542//1542 1747//1747 +f 1542//1542 1748//1748 1747//1747 +f 1542//1542 1543//1543 1748//1748 +f 1591//1591 1749//1749 1593//1593 +f 1591//1591 1747//1747 1749//1749 +f 1747//1747 1750//1750 1749//1749 +f 1747//1747 1748//1748 1750//1750 +f 1543//1543 1751//1751 1748//1748 +f 1543//1543 1546//1546 1751//1751 +f 1546//1546 1752//1752 1751//1751 +f 1546//1546 1547//1547 1752//1752 +f 1538//1538 1752//1752 1547//1547 +f 1538//1538 1746//1746 1752//1752 +f 1748//1748 1753//1753 1750//1750 +f 1748//1748 1751//1751 1753//1753 +f 1751//1751 1752//1752 1753//1753 +f 1539//1539 1754//1754 1746//1746 +f 1593//1593 1755//1755 1599//1599 +f 1593//1593 1749//1749 1755//1755 +f 1749//1749 1756//1756 1755//1755 +f 1749//1749 1750//1750 1756//1756 +f 1599//1599 1757//1757 1601//1601 +f 1599//1599 1755//1755 1757//1757 +f 1755//1755 1756//1756 1757//1757 +f 1750//1750 1753//1753 1756//1756 +f 1753//1753 1752//1752 1758//1758 +f 1746//1746 1758//1758 1752//1752 +f 1551//1551 1550//1550 1759//1759 +f 1491//1491 1759//1759 1550//1550 +f 1491//1491 1715//1715 1759//1759 +f 1539//1539 1551//1551 1754//1754 +f 1754//1754 1551//1551 1760//1760 +f 1551//1551 1759//1759 1760//1760 +f 1715//1715 1721//1721 1759//1759 +f 1754//1754 1761//1761 1746//1746 +f 1754//1754 1762//1762 1761//1761 +f 1601//1601 1757//1757 1623//1623 +f 1623//1623 1628//1628 1624//1624 +f 1623//1623 1757//1757 1628//1628 +f 1757//1757 1763//1763 1628//1628 +f 1757//1757 1756//1756 1763//1763 +f 1756//1756 1753//1753 1764//1764 +f 1753//1753 1758//1758 1764//1764 +f 1746//1746 1761//1761 1758//1758 +f 1756//1756 1764//1764 1763//1763 +f 1762//1762 1765//1765 1761//1761 +f 1762//1762 1766//1766 1765//1765 +f 1766//1766 1767//1767 1765//1765 +f 1766//1766 1768//1768 1767//1767 +f 1624//1624 1628//1628 1626//1626 +f 1761//1761 1765//1765 1758//1758 +f 1765//1765 1767//1767 1758//1758 +f 1760//1760 1759//1759 1769//1769 +f 1721//1721 1769//1769 1759//1759 +f 1754//1754 1760//1760 1762//1762 +f 1762//1762 1770//1770 1766//1766 +f 1762//1762 1760//1760 1770//1770 +f 1760//1760 1769//1769 1770//1770 +f 1766//1766 1771//1771 1768//1768 +f 1766//1766 1770//1770 1771//1771 +f 1770//1770 1772//1772 1771//1771 +f 1770//1770 1769//1769 1772//1772 +f 1721//1721 1772//1772 1769//1769 +f 1721//1721 1745//1745 1772//1772 +f 765//765 1773//1773 1732//1732 +f 765//765 815//815 1773//1773 +f 1732//1732 1774//1774 1733//1733 +f 1732//1732 1773//1773 1774//1774 +f 815//815 1775//1775 1773//1773 +f 815//815 817//817 1775//1775 +f 1773//1773 1776//1776 1774//1774 +f 1773//1773 1775//1775 1776//1776 +f 1733//1733 1777//1777 1736//1736 +f 1733//1733 1774//1774 1777//1777 +f 1736//1736 1777//1777 1737//1737 +f 1774//1774 1778//1778 1777//1777 +f 1774//1774 1776//1776 1778//1778 +f 1777//1777 1779//1779 1737//1737 +f 1777//1777 1778//1778 1779//1779 +f 817//817 1780//1780 1775//1775 +f 817//817 821//821 1780//1780 +f 1775//1775 1781//1781 1776//1776 +f 1775//1775 1780//1780 1781//1781 +f 821//821 1782//1782 1780//1780 +f 821//821 823//823 1782//1782 +f 1780//1780 1783//1783 1781//1781 +f 1780//1780 1782//1782 1783//1783 +f 1776//1776 1784//1784 1778//1778 +f 1776//1776 1781//1781 1784//1784 +f 1778//1778 1785//1785 1779//1779 +f 1778//1778 1784//1784 1785//1785 +f 1781//1781 1786//1786 1784//1784 +f 1781//1781 1783//1783 1786//1786 +f 1784//1784 1786//1786 1785//1785 +f 1737//1737 1779//1779 1744//1744 +f 1744//1744 1779//1779 1742//1742 +f 1779//1779 1785//1785 1787//1787 +f 1779//1779 1787//1787 1742//1742 +f 1742//1742 1787//1787 1745//1745 +f 823//823 1788//1788 1782//1782 +f 823//823 834//834 1788//1788 +f 1782//1782 1789//1789 1783//1783 +f 1782//1782 1788//1788 1789//1789 +f 834//834 1790//1790 1788//1788 +f 834//834 836//836 1790//1790 +f 1788//1788 1790//1790 1789//1789 +f 1783//1783 1791//1791 1786//1786 +f 1783//1783 1789//1789 1791//1791 +f 1786//1786 1791//1791 1785//1785 +f 1789//1789 1792//1792 1791//1791 +f 836//836 1793//1793 1790//1790 +f 836//836 842//842 1793//1793 +f 1790//1790 1792//1792 1789//1789 +f 1790//1790 1793//1793 1792//1792 +f 842//842 1794//1794 1793//1793 +f 842//842 844//844 1794//1794 +f 1793//1793 1795//1795 1792//1792 +f 1793//1793 1794//1794 1795//1795 +f 1785//1785 1796//1796 1787//1787 +f 1785//1785 1791//1791 1796//1796 +f 1787//1787 1797//1797 1745//1745 +f 1787//1787 1796//1796 1797//1797 +f 1791//1791 1798//1798 1796//1796 +f 1791//1791 1792//1792 1798//1798 +f 1796//1796 1799//1799 1797//1797 +f 1796//1796 1798//1798 1799//1799 +f 1798//1798 1800//1800 1799//1799 +f 1768//1768 1801//1801 1767//1767 +f 1768//1768 1802//1802 1801//1801 +f 1628//1628 1763//1763 1693//1693 +f 1764//1764 1758//1758 1803//1803 +f 1767//1767 1803//1803 1758//1758 +f 1767//1767 1801//1801 1803//1803 +f 1763//1763 1764//1764 1804//1804 +f 1764//1764 1803//1803 1804//1804 +f 1802//1802 1805//1805 1801//1801 +f 1802//1802 1806//1806 1805//1805 +f 1693//1693 1807//1807 1694//1694 +f 1693//1693 1763//1763 1807//1807 +f 1804//1804 1803//1803 1808//1808 +f 1801//1801 1808//1808 1803//1803 +f 1763//1763 1804//1804 1807//1807 +f 1801//1801 1805//1805 1808//1808 +f 1768//1768 1809//1809 1802//1802 +f 1768//1768 1771//1771 1809//1809 +f 1771//1771 1772//1772 1809//1809 +f 1802//1802 1809//1809 1806//1806 +f 1809//1809 1772//1772 1810//1810 +f 1745//1745 1810//1810 1772//1772 +f 1804//1804 1808//1808 1811//1811 +f 1805//1805 1811//1811 1808//1808 +f 1806//1806 1812//1812 1805//1805 +f 1697//1697 1694//1694 1813//1813 +f 1694//1694 1814//1814 1813//1813 +f 1694//1694 1807//1807 1814//1814 +f 1807//1807 1804//1804 1815//1815 +f 1804//1804 1811//1811 1815//1815 +f 1807//1807 1815//1815 1814//1814 +f 1806//1806 1809//1809 1816//1816 +f 1809//1809 1810//1810 1816//1816 +f 1745//1745 1797//1797 1810//1810 +f 1806//1806 1817//1817 1812//1812 +f 1806//1806 1816//1816 1817//1817 +f 1816//1816 1818//1818 1817//1817 +f 1816//1816 1810//1810 1818//1818 +f 1797//1797 1818//1818 1810//1810 +f 1797//1797 1799//1799 1818//1818 +f 1812//1812 1817//1817 1819//1819 +f 1817//1817 1820//1820 1819//1819 +f 1817//1817 1818//1818 1820//1820 +f 1799//1799 1820//1820 1818//1818 +f 1799//1799 1800//1800 1820//1820 +f 360//360 1821//1821 371//371 +f 360//360 1822//1822 1821//1821 +f 360//360 372//372 1822//1822 +f 371//371 1823//1823 373//373 +f 371//371 1821//1821 1823//1823 +f 1822//1822 1824//1824 1821//1821 +f 1821//1821 1825//1825 1823//1823 +f 1821//1821 1824//1824 1825//1825 +f 378//378 1826//1826 377//377 +f 378//378 1827//1827 1826//1826 +f 373//373 1827//1827 378//378 +f 373//373 1823//1823 1827//1827 +f 377//377 1828//1828 379//379 +f 377//377 1826//1826 1828//1828 +f 1827//1827 1829//1829 1826//1826 +f 1827//1827 1830//1830 1829//1829 +f 1823//1823 1830//1830 1827//1827 +f 1823//1823 1825//1825 1830//1830 +f 1826//1826 1831//1831 1828//1828 +f 1826//1826 1829//1829 1831//1831 +f 1822//1822 1832//1832 1824//1824 +f 1824//1824 1833//1833 1825//1825 +f 1824//1824 1832//1832 1833//1833 +f 372//372 362//362 1834//1834 +f 1830//1830 1835//1835 1829//1829 +f 1830//1830 1836//1836 1835//1835 +f 1825//1825 1836//1836 1830//1830 +f 1825//1825 1833//1833 1836//1836 +f 1829//1829 1837//1837 1831//1831 +f 1829//1829 1835//1835 1837//1837 +f 1836//1836 1838//1838 1835//1835 +f 1836//1836 1839//1839 1838//1838 +f 1833//1833 1839//1839 1836//1836 +f 1835//1835 1840//1840 1837//1837 +f 1835//1835 1838//1838 1840//1840 +f 1822//1822 1841//1841 1832//1832 +f 1822//1822 372//372 1841//1841 +f 1832//1832 1842//1842 1833//1833 +f 1841//1841 372//372 1843//1843 +f 372//372 1834//1834 1843//1843 +f 1839//1839 1844//1844 1838//1838 +f 1833//1833 1842//1842 1839//1839 +f 1838//1838 1845//1845 1840//1840 +f 1838//1838 1844//1844 1845//1845 +f 1839//1839 1846//1846 1844//1844 +f 1842//1842 1846//1846 1839//1839 +f 1841//1841 1847//1847 1832//1832 +f 1832//1832 1847//1847 1842//1842 +f 1843//1843 1834//1834 1848//1848 +f 1846//1846 1849//1849 1844//1844 +f 1844//1844 1850//1850 1845//1845 +f 1844//1844 1849//1849 1850//1850 +f 362//362 385//385 1851//1851 +f 385//385 386//386 1852//1852 +f 385//385 1852//1852 1851//1851 +f 362//362 1851//1851 1834//1834 +f 1851//1851 1852//1852 1853//1853 +f 1852//1852 1854//1854 1853//1853 +f 386//386 387//387 1852//1852 +f 387//387 1855//1855 1852//1852 +f 387//387 388//388 1855//1855 +f 1852//1852 1855//1855 1854//1854 +f 1854//1854 1855//1855 1856//1856 +f 1834//1834 1851//1851 1857//1857 +f 1851//1851 1853//1853 1857//1857 +f 1853//1853 1854//1854 1858//1858 +f 1834//1834 1857//1857 1848//1848 +f 1857//1857 1853//1853 1859//1859 +f 1853//1853 1860//1860 1859//1859 +f 1853//1853 1858//1858 1860//1860 +f 1854//1854 1856//1856 1861//1861 +f 1854//1854 1861//1861 1858//1858 +f 1858//1858 1861//1861 1862//1862 +f 1847//1847 1863//1863 1842//1842 +f 1841//1841 1843//1843 1864//1864 +f 1843//1843 1848//1848 1864//1864 +f 1846//1846 1865//1865 1849//1849 +f 1846//1846 1866//1866 1865//1865 +f 1842//1842 1866//1866 1846//1846 +f 1842//1842 1863//1863 1866//1866 +f 1849//1849 1865//1865 1850//1850 +f 1866//1866 1867//1867 1865//1865 +f 1866//1866 1868//1868 1867//1867 +f 1863//1863 1868//1868 1866//1866 +f 1865//1865 1869//1869 1850//1850 +f 1865//1865 1867//1867 1869//1869 +f 1841//1841 1870//1870 1847//1847 +f 1841//1841 1864//1864 1870//1870 +f 1870//1870 1871//1871 1847//1847 +f 1847//1847 1871//1871 1863//1863 +f 1864//1864 1848//1848 1872//1872 +f 1868//1868 1873//1873 1867//1867 +f 1867//1867 1874//1874 1869//1869 +f 1867//1867 1873//1873 1874//1874 +f 1870//1870 1864//1864 1875//1875 +f 1871//1871 1876//1876 1863//1863 +f 1864//1864 1872//1872 1875//1875 +f 1868//1868 1877//1877 1873//1873 +f 1863//1863 1877//1877 1868//1868 +f 1863//1863 1876//1876 1877//1877 +f 1873//1873 1878//1878 1874//1874 +f 1877//1877 1879//1879 1873//1873 +f 1873//1873 1879//1879 1878//1878 +f 1870//1870 1880//1880 1871//1871 +f 1870//1870 1881//1881 1880//1880 +f 1870//1870 1882//1882 1881//1881 +f 1870//1870 1875//1875 1882//1882 +f 1871//1871 1880//1880 1876//1876 +f 1875//1875 1883//1883 1882//1882 +f 1875//1875 1872//1872 1883//1883 +f 1881//1881 1884//1884 1880//1880 +f 1881//1881 1885//1885 1884//1884 +f 1881//1881 1886//1886 1885//1885 +f 1881//1881 1882//1882 1886//1886 +f 1880//1880 1887//1887 1876//1876 +f 1880//1880 1884//1884 1887//1887 +f 1882//1882 1888//1888 1886//1886 +f 1882//1882 1883//1883 1888//1888 +f 1877//1877 1889//1889 1879//1879 +f 1876//1876 1889//1889 1877//1877 +f 1876//1876 1887//1887 1889//1889 +f 1848//1848 1857//1857 1890//1890 +f 1857//1857 1859//1859 1890//1890 +f 1848//1848 1890//1890 1872//1872 +f 1890//1890 1859//1859 1891//1891 +f 1859//1859 1860//1860 1891//1891 +f 1858//1858 1862//1862 1860//1860 +f 1862//1862 1861//1861 1892//1892 +f 1860//1860 1893//1893 1891//1891 +f 1860//1860 1862//1862 1893//1893 +f 1862//1862 1892//1892 1893//1893 +f 1872//1872 1890//1890 1894//1894 +f 1890//1890 1895//1895 1894//1894 +f 1890//1890 1891//1891 1895//1895 +f 1872//1872 1894//1894 1883//1883 +f 1894//1894 1895//1895 1896//1896 +f 1883//1883 1897//1897 1888//1888 +f 1883//1883 1894//1894 1897//1897 +f 1894//1894 1896//1896 1897//1897 +f 1896//1896 1895//1895 1898//1898 +f 1891//1891 1899//1899 1895//1895 +f 1891//1891 1893//1893 1899//1899 +f 1895//1895 1900//1900 1898//1898 +f 1895//1895 1899//1899 1900//1900 +f 1899//1899 1901//1901 1900//1900 +f 379//379 1902//1902 420//420 +f 379//379 1828//1828 1902//1902 +f 420//420 1903//1903 421//421 +f 420//420 1902//1902 1903//1903 +f 1828//1828 1904//1904 1902//1902 +f 1828//1828 1831//1831 1904//1904 +f 1902//1902 1905//1905 1903//1903 +f 1902//1902 1904//1904 1905//1905 +f 1903//1903 1905//1905 1906//1906 +f 1831//1831 1907//1907 1904//1904 +f 1831//1831 1837//1837 1907//1907 +f 1904//1904 1908//1908 1905//1905 +f 1904//1904 1907//1907 1908//1908 +f 1837//1837 1909//1909 1907//1907 +f 1837//1837 1840//1840 1909//1909 +f 1907//1907 1909//1909 1908//1908 +f 1905//1905 1910//1910 1906//1906 +f 1905//1905 1908//1908 1910//1910 +f 1908//1908 1911//1911 1910//1910 +f 1908//1908 1909//1909 1911//1911 +f 421//421 1912//1912 424//424 +f 421//421 1903//1903 1912//1912 +f 1903//1903 1906//1906 1912//1912 +f 1912//1912 1906//1906 1913//1913 +f 1906//1906 1910//1910 1913//1913 +f 1840//1840 1914//1914 1909//1909 +f 1840//1840 1845//1845 1914//1914 +f 1909//1909 1914//1914 1915//1915 +f 1909//1909 1915//1915 1911//1911 +f 1914//1914 1917//1917 1915//1915 +f 1845//1845 1918//1918 1914//1914 +f 1845//1845 1850//1850 1918//1918 +f 1914//1914 1918//1918 1917//1917 +f 1917//1917 1919//1919 1915//1915 +f 1915//1915 1919//1919 1916//1916 +f 1911//1911 1915//1915 1916//1916 +f 1916//1916 1919//1919 1921//1921 +f 1916//1916 1921//1921 1911//1911 +f 1911//1911 1921//1921 1920//1920 +f 424//424 1912//1912 433//433 +f 433//433 1912//1912 1922//1922 +f 1912//1912 1913//1913 1922//1922 +f 1922//1922 1913//1913 1923//1923 +f 1913//1913 1910//1910 1924//1924 +f 1910//1910 1911//1911 1925//1925 +f 1910//1910 1925//1925 1924//1924 +f 1913//1913 1924//1924 1923//1923 +f 433//433 1922//1922 437//437 +f 1922//1922 1923//1923 1926//1926 +f 437//437 1922//1922 1927//1927 +f 437//437 1927//1927 438//438 +f 1922//1922 1926//1926 1927//1927 +f 1923//1923 1928//1928 1926//1926 +f 1923//1923 1924//1924 1928//1928 +f 1924//1924 1925//1925 1929//1929 +f 1924//1924 1929//1929 1928//1928 +f 1911//1911 1920//1920 1925//1925 +f 1925//1925 1920//1920 1930//1930 +f 1920//1920 1921//1921 1931//1931 +f 1920//1920 1931//1931 1930//1930 +f 1925//1925 1930//1930 1929//1929 +f 1930//1930 1932//1932 1929//1929 +f 1929//1929 1932//1932 1933//1933 +f 1933//1933 1932//1932 1934//1934 +f 1850//1850 1869//1869 1918//1918 +f 1869//1869 1935//1935 1918//1918 +f 1869//1869 1874//1874 1935//1935 +f 1918//1918 1935//1935 1917//1917 +f 1935//1935 1936//1936 1917//1917 +f 1917//1917 1936//1936 1919//1919 +f 1936//1936 1937//1937 1919//1919 +f 1919//1919 1937//1937 1921//1921 +f 1937//1937 1938//1938 1921//1921 +f 1921//1921 1938//1938 1931//1931 +f 1874//1874 1878//1878 1935//1935 +f 1878//1878 1939//1939 1935//1935 +f 1935//1935 1940//1940 1936//1936 +f 1935//1935 1939//1939 1940//1940 +f 1936//1936 1940//1940 1937//1937 +f 1937//1937 1940//1940 1941//1941 +f 1940//1940 1942//1942 1941//1941 +f 1937//1937 1941//1941 1938//1938 +f 1938//1938 1941//1941 1943//1943 +f 1941//1941 1944//1944 1943//1943 +f 1930//1930 1931//1931 1945//1945 +f 1930//1930 1946//1946 1932//1932 +f 1930//1930 1945//1945 1946//1946 +f 1938//1938 1947//1947 1931//1931 +f 1931//1931 1947//1947 1945//1945 +f 1932//1932 1946//1946 1948//1948 +f 1932//1932 1948//1948 1934//1934 +f 1946//1946 1949//1949 1948//1948 +f 1938//1938 1943//1943 1947//1947 +f 1947//1947 1943//1943 1950//1950 +f 1947//1947 1950//1950 1945//1945 +f 1945//1945 1949//1949 1946//1946 +f 1945//1945 1950//1950 1949//1949 +f 1949//1949 1952//1952 1948//1948 +f 1950//1950 1951//1951 1949//1949 +f 1949//1949 1951//1951 1952//1952 +f 1951//1951 1953//1953 1952//1952 +f 1954//1954 1956//1956 1955//1955 +f 1954//1954 1957//1957 1956//1956 +f 1954//1954 1958//1958 1957//1957 +f 1954//1954 1959//1959 1958//1958 +f 1954//1954 1960//1960 1959//1959 +f 1954//1954 1955//1955 1960//1960 +f 1957//1957 1961//1961 1956//1956 +f 1957//1957 1962//1962 1961//1961 +f 1957//1957 1963//1963 1962//1962 +f 1957//1957 1958//1958 1963//1963 +f 1955//1955 1965//1965 1964//1964 +f 1955//1955 1956//1956 1965//1965 +f 1955//1955 1966//1966 1960//1960 +f 1955//1955 1964//1964 1966//1966 +f 1956//1956 1967//1967 1965//1965 +f 1956//1956 1961//1961 1967//1967 +f 1959//1959 1968//1968 1958//1958 +f 1959//1959 1969//1969 1968//1968 +f 1959//1959 1970//1970 1969//1969 +f 1959//1959 1960//1960 1970//1970 +f 1958//1958 1971//1971 1963//1963 +f 1958//1958 1968//1968 1971//1971 +f 1960//1960 1972//1972 1970//1970 +f 1960//1960 1966//1966 1972//1972 +f 1969//1969 1973//1973 1968//1968 +f 1969//1969 1974//1974 1973//1973 +f 1969//1969 1975//1975 1974//1974 +f 1969//1969 1970//1970 1975//1975 +f 1968//1968 1976//1976 1971//1971 +f 1968//1968 1973//1973 1976//1976 +f 1970//1970 1977//1977 1975//1975 +f 1970//1970 1972//1972 1977//1977 +f 1885//1885 1978//1978 1884//1884 +f 1885//1885 1962//1962 1978//1978 +f 1885//1885 1961//1961 1962//1962 +f 1885//1885 1886//1886 1961//1961 +f 1884//1884 1979//1979 1887//1887 +f 1884//1884 1978//1978 1979//1979 +f 1886//1886 1967//1967 1961//1961 +f 1886//1886 1888//1888 1967//1967 +f 1962//1962 1980//1980 1978//1978 +f 1962//1962 1963//1963 1980//1980 +f 1978//1978 1981//1981 1979//1979 +f 1978//1978 1980//1980 1981//1981 +f 1887//1887 1979//1979 1889//1889 +f 1879//1879 1982//1982 1878//1878 +f 1889//1889 1983//1983 1879//1879 +f 1889//1889 1984//1984 1983//1983 +f 1979//1979 1984//1984 1889//1889 +f 1979//1979 1981//1981 1984//1984 +f 1879//1879 1985//1985 1982//1982 +f 1879//1879 1983//1983 1985//1985 +f 1963//1963 1986//1986 1980//1980 +f 1963//1963 1971//1971 1986//1986 +f 1980//1980 1987//1987 1981//1981 +f 1980//1980 1986//1986 1987//1987 +f 1971//1971 1988//1988 1986//1986 +f 1971//1971 1976//1976 1988//1988 +f 1986//1986 1989//1989 1987//1987 +f 1986//1986 1988//1988 1989//1989 +f 1984//1984 1990//1990 1983//1983 +f 1984//1984 1991//1991 1990//1990 +f 1981//1981 1991//1991 1984//1984 +f 1981//1981 1987//1987 1991//1991 +f 1983//1983 1992//1992 1985//1985 +f 1983//1983 1990//1990 1992//1992 +f 1987//1987 1993//1993 1991//1991 +f 1987//1987 1989//1989 1993//1993 +f 1991//1991 1992//1992 1990//1990 +f 1991//1991 1994//1994 1992//1992 +f 1991//1991 1995//1995 1994//1994 +f 1991//1991 1993//1993 1995//1995 +f 1996//1996 1998//1998 1997//1997 +f 1996//1996 1999//1999 1998//1998 +f 1974//1974 1997//1997 1973//1973 +f 1974//1974 1996//1996 1997//1997 +f 1974//1974 1999//1999 1996//1996 +f 1974//1974 1975//1975 1999//1999 +f 1997//1997 2001//2001 2000//2000 +f 1997//1997 1998//1998 2001//2001 +f 1973//1973 2000//2000 1976//1976 +f 1973//1973 1997//1997 2000//2000 +f 1975//1975 2002//2002 1999//1999 +f 1975//1975 1977//1977 2002//2002 +f 2003//2003 2005//2005 2004//2004 +f 2003//2003 2006//2006 2005//2005 +f 1999//1999 2004//2004 1998//1998 +f 1999//1999 2003//2003 2004//2004 +f 1999//1999 2006//2006 2003//2003 +f 1999//1999 2002//2002 2006//2006 +f 2004//2004 2008//2008 2007//2007 +f 2004//2004 2005//2005 2008//2008 +f 1998//1998 2007//2007 2001//2001 +f 1998//1998 2004//2004 2007//2007 +f 2000//2000 2010//2010 2009//2009 +f 2000//2000 2001//2001 2010//2010 +f 1976//1976 2009//2009 1988//1988 +f 1976//1976 2000//2000 2009//2009 +f 2009//2009 2012//2012 2011//2011 +f 2009//2009 2010//2010 2012//2012 +f 1988//1988 2011//2011 1989//1989 +f 1988//1988 2009//2009 2011//2011 +f 2007//2007 2014//2014 2013//2013 +f 2007//2007 2008//2008 2014//2014 +f 2001//2001 2013//2013 2010//2010 +f 2001//2001 2007//2007 2013//2013 +f 2013//2013 2016//2016 2015//2015 +f 2013//2013 2014//2014 2016//2016 +f 2010//2010 2015//2015 2012//2012 +f 2010//2010 2013//2013 2015//2015 +f 2011//2011 2018//2018 2017//2017 +f 2011//2011 2012//2012 2018//2018 +f 1989//1989 2017//2017 1993//1993 +f 1989//1989 2011//2011 2017//2017 +f 2017//2017 2020//2020 2019//2019 +f 2017//2017 2018//2018 2020//2020 +f 1993//1993 2019//2019 1995//1995 +f 1993//1993 2017//2017 2019//2019 +f 2015//2015 2022//2022 2021//2021 +f 2015//2015 2016//2016 2022//2022 +f 2012//2012 2021//2021 2018//2018 +f 2012//2012 2015//2015 2021//2021 +f 2021//2021 2024//2024 2023//2023 +f 2021//2021 2022//2022 2024//2024 +f 2018//2018 2023//2023 2020//2020 +f 2018//2018 2021//2021 2023//2023 +f 2025//2025 2027//2027 2026//2026 +f 2025//2025 2028//2028 2027//2027 +f 1964//1964 2028//2028 2025//2025 +f 1964//1964 1965//1965 2028//2028 +f 1964//1964 2026//2026 1966//1966 +f 1964//1964 2025//2025 2026//2026 +f 2028//2028 2029//2029 2027//2027 +f 2028//2028 2030//2030 2029//2029 +f 1965//1965 2030//2030 2028//2028 +f 1965//1965 1967//1967 2030//2030 +f 2026//2026 2032//2032 2031//2031 +f 2026//2026 2027//2027 2032//2032 +f 1966//1966 2031//2031 1972//1972 +f 1966//1966 2026//2026 2031//2031 +f 2027//2027 2033//2033 2032//2032 +f 2027//2027 2029//2029 2033//2033 +f 2031//2031 2035//2035 2034//2034 +f 2031//2031 2032//2032 2035//2035 +f 1972//1972 2034//2034 1977//1977 +f 1972//1972 2031//2031 2034//2034 +f 2032//2032 2036//2036 2035//2035 +f 2032//2032 2033//2033 2036//2036 +f 1888//1888 2030//2030 1967//1967 +f 1888//1888 1897//1897 2030//2030 +f 1897//1897 2037//2037 2030//2030 +f 1897//1897 1896//1896 2037//2037 +f 2030//2030 2038//2038 2029//2029 +f 2030//2030 2037//2037 2038//2038 +f 1896//1896 1898//1898 2037//2037 +f 2037//2037 2039//2039 2038//2038 +f 2037//2037 1898//1898 2039//2039 +f 1898//1898 2040//2040 2039//2039 +f 1898//1898 1900//1900 2040//2040 +f 2029//2029 2041//2041 2033//2033 +f 2029//2029 2038//2038 2041//2041 +f 2033//2033 2042//2042 2036//2036 +f 2033//2033 2041//2041 2042//2042 +f 2038//2038 2043//2043 2041//2041 +f 2038//2038 2039//2039 2043//2043 +f 2039//2039 2044//2044 2043//2043 +f 2039//2039 2040//2040 2044//2044 +f 2041//2041 2045//2045 2042//2042 +f 2041//2041 2043//2043 2045//2045 +f 2043//2043 2046//2046 2045//2045 +f 2043//2043 2044//2044 2046//2046 +f 1900//1900 2047//2047 2040//2040 +f 1900//1900 2048//2048 2047//2047 +f 1900//1900 1901//1901 2048//2048 +f 2040//2040 2049//2049 2044//2044 +f 2040//2040 2047//2047 2049//2049 +f 2047//2047 2048//2048 2049//2049 +f 2044//2044 2050//2050 2046//2046 +f 2044//2044 2049//2049 2050//2050 +f 2049//2049 2051//2051 2050//2050 +f 2049//2049 2048//2048 2051//2051 +f 2048//2048 1901//1901 2052//2052 +f 2048//2048 2053//2053 2051//2051 +f 2048//2048 2052//2052 2053//2053 +f 1977//1977 2054//2054 2002//2002 +f 1977//1977 2034//2034 2054//2054 +f 2034//2034 2056//2056 2055//2055 +f 2034//2034 2035//2035 2056//2056 +f 2034//2034 2057//2057 2054//2054 +f 2034//2034 2055//2055 2057//2057 +f 2035//2035 2042//2042 2056//2056 +f 2035//2035 2036//2036 2042//2042 +f 2006//2006 2058//2058 2005//2005 +f 2006//2006 2059//2059 2058//2058 +f 2002//2002 2059//2059 2006//2006 +f 2002//2002 2054//2054 2059//2059 +f 2005//2005 2060//2060 2008//2008 +f 2005//2005 2058//2058 2060//2060 +f 2059//2059 2061//2061 2058//2058 +f 2059//2059 2062//2062 2061//2061 +f 2054//2054 2062//2062 2059//2059 +f 2054//2054 2057//2057 2062//2062 +f 2058//2058 2063//2063 2060//2060 +f 2058//2058 2061//2061 2063//2063 +f 2055//2055 2065//2065 2064//2064 +f 2055//2055 2056//2056 2065//2065 +f 2055//2055 2066//2066 2057//2057 +f 2055//2055 2064//2064 2066//2066 +f 2056//2056 2045//2045 2065//2065 +f 2056//2056 2042//2042 2045//2045 +f 2064//2064 2068//2068 2067//2067 +f 2064//2064 2065//2065 2068//2068 +f 2064//2064 2069//2069 2066//2066 +f 2064//2064 2067//2067 2069//2069 +f 2065//2065 2046//2046 2068//2068 +f 2065//2065 2045//2045 2046//2046 +f 2062//2062 2070//2070 2061//2061 +f 2062//2062 2071//2071 2070//2070 +f 2057//2057 2071//2071 2062//2062 +f 2057//2057 2066//2066 2071//2071 +f 2061//2061 2072//2072 2063//2063 +f 2061//2061 2070//2070 2072//2072 +f 2071//2071 2073//2073 2070//2070 +f 2071//2071 2074//2074 2073//2073 +f 2066//2066 2074//2074 2071//2071 +f 2066//2066 2069//2069 2074//2074 +f 2070//2070 2075//2075 2072//2072 +f 2070//2070 2073//2073 2075//2075 +f 2008//2008 2076//2076 2014//2014 +f 2008//2008 2060//2060 2076//2076 +f 2014//2014 2077//2077 2016//2016 +f 2014//2014 2076//2076 2077//2077 +f 2060//2060 2078//2078 2076//2076 +f 2060//2060 2063//2063 2078//2078 +f 2076//2076 2079//2079 2077//2077 +f 2076//2076 2078//2078 2079//2079 +f 2016//2016 2077//2077 2022//2022 +f 2022//2022 2080//2080 2024//2024 +f 2022//2022 2077//2077 2080//2080 +f 2077//2077 2079//2079 2080//2080 +f 2063//2063 2081//2081 2078//2078 +f 2063//2063 2072//2072 2081//2081 +f 2078//2078 2081//2081 2079//2079 +f 2072//2072 2082//2082 2081//2081 +f 2072//2072 2075//2075 2082//2082 +f 2081//2081 2082//2082 2083//2083 +f 2079//2079 2081//2081 2084//2084 +f 2081//2081 2083//2083 2084//2084 +f 2085//2085 2087//2087 2086//2086 +f 2085//2085 2088//2088 2087//2087 +f 2067//2067 2088//2088 2085//2085 +f 2067//2067 2068//2068 2088//2088 +f 2067//2067 2086//2086 2069//2069 +f 2067//2067 2085//2085 2086//2086 +f 2088//2088 2089//2089 2087//2087 +f 2088//2088 2050//2050 2089//2089 +f 2068//2068 2050//2050 2088//2088 +f 2068//2068 2046//2046 2050//2050 +f 2074//2074 2090//2090 2073//2073 +f 2074//2074 2091//2091 2090//2090 +f 2086//2086 2090//2090 2091//2091 +f 2086//2086 2087//2087 2090//2090 +f 2069//2069 2091//2091 2074//2074 +f 2069//2069 2086//2086 2091//2091 +f 2073//2073 2092//2092 2075//2075 +f 2073//2073 2090//2090 2092//2092 +f 2087//2087 2092//2092 2090//2090 +f 2087//2087 2089//2089 2092//2092 +f 2050//2050 2093//2093 2089//2089 +f 2050//2050 2051//2051 2093//2093 +f 2075//2075 2094//2094 2082//2082 +f 2075//2075 2092//2092 2094//2094 +f 2082//2082 2095//2095 2083//2083 +f 2082//2082 2094//2094 2095//2095 +f 2092//2092 2096//2096 2094//2094 +f 2092//2092 2097//2097 2096//2096 +f 2089//2089 2097//2097 2092//2092 +f 2089//2089 2093//2093 2097//2097 +f 2094//2094 2098//2098 2095//2095 +f 2094//2094 2096//2096 2098//2098 +f 2051//2051 2099//2099 2093//2093 +f 2051//2051 2053//2053 2099//2099 +f 2053//2053 2100//2100 2099//2099 +f 2097//2097 2101//2101 2096//2096 +f 2097//2097 2102//2102 2101//2101 +f 2093//2093 2102//2102 2097//2097 +f 2093//2093 2099//2099 2102//2102 +f 2096//2096 2103//2103 2098//2098 +f 2096//2096 2101//2101 2103//2103 +f 2102//2102 2104//2104 2101//2101 +f 2102//2102 2105//2105 2104//2104 +f 2099//2099 2105//2105 2102//2102 +f 2099//2099 2100//2100 2105//2105 +f 2101//2101 2106//2106 2103//2103 +f 2101//2101 2104//2104 2106//2106 +f 2098//2098 2103//2103 2095//2095 +f 2103//2103 2106//2106 2107//2107 +f 1878//1878 1982//1982 1939//1939 +f 1939//1939 1942//1942 1940//1940 +f 1982//1982 2108//2108 1939//1939 +f 1982//1982 1985//1985 2108//2108 +f 1939//1939 2109//2109 1942//1942 +f 1939//1939 2108//2108 2109//2109 +f 1942//1942 2109//2109 2110//2110 +f 1942//1942 2110//2110 2111//2111 +f 1985//1985 2112//2112 2108//2108 +f 1985//1985 1992//1992 2112//2112 +f 2108//2108 2113//2113 2109//2109 +f 2108//2108 2112//2112 2113//2113 +f 1994//1994 2112//2112 1992//1992 +f 1994//1994 2114//2114 2112//2112 +f 1994//1994 2115//2115 2114//2114 +f 1994//1994 1995//1995 2115//2115 +f 2114//2114 2113//2113 2112//2112 +f 2114//2114 2116//2116 2113//2113 +f 2114//2114 2117//2117 2116//2116 +f 2114//2114 2115//2115 2117//2117 +f 2109//2109 2118//2118 2110//2110 +f 2109//2109 2113//2113 2118//2118 +f 2110//2110 2119//2119 2111//2111 +f 2110//2110 2118//2118 2119//2119 +f 2116//2116 2118//2118 2113//2113 +f 2116//2116 2120//2120 2118//2118 +f 2116//2116 2121//2121 2120//2120 +f 2116//2116 2117//2117 2121//2121 +f 2120//2120 2119//2119 2118//2118 +f 2120//2120 2122//2122 2119//2119 +f 2120//2120 2123//2123 2122//2122 +f 2120//2120 2121//2121 2123//2123 +f 1942//1942 1944//1944 1941//1941 +f 1942//1942 2124//2124 1944//1944 +f 1942//1942 2111//2111 2124//2124 +f 1944//1944 2124//2124 2125//2125 +f 1944//1944 2126//2126 1943//1943 +f 1944//1944 2125//2125 2127//2127 +f 1944//1944 2128//2128 2126//2126 +f 1944//1944 2127//2127 2128//2128 +f 2111//2111 2129//2129 2124//2124 +f 2111//2111 2119//2119 2129//2129 +f 2124//2124 2130//2130 2125//2125 +f 2124//2124 2129//2129 2130//2130 +f 2122//2122 2129//2129 2119//2119 +f 2122//2122 2131//2131 2129//2129 +f 2122//2122 2132//2132 2131//2131 +f 2122//2122 2123//2123 2132//2132 +f 2131//2131 2130//2130 2129//2129 +f 2131//2131 2133//2133 2130//2130 +f 2131//2131 2134//2134 2133//2133 +f 2131//2131 2132//2132 2134//2134 +f 2125//2125 2135//2135 2127//2127 +f 2125//2125 2130//2130 2135//2135 +f 2127//2127 2136//2136 2128//2128 +f 2127//2127 2135//2135 2136//2136 +f 2133//2133 2135//2135 2130//2130 +f 2133//2133 2137//2137 2135//2135 +f 2133//2133 2138//2138 2137//2137 +f 2133//2133 2134//2134 2138//2138 +f 2137//2137 2136//2136 2135//2135 +f 2137//2137 2139//2139 2136//2136 +f 2137//2137 2140//2140 2139//2139 +f 2137//2137 2138//2138 2140//2140 +f 2019//2019 2142//2142 2141//2141 +f 2019//2019 2020//2020 2142//2142 +f 1995//1995 2141//2141 2115//2115 +f 1995//1995 2019//2019 2141//2141 +f 2141//2141 2144//2144 2143//2143 +f 2141//2141 2142//2142 2144//2144 +f 2115//2115 2143//2143 2117//2117 +f 2115//2115 2141//2141 2143//2143 +f 2023//2023 2146//2146 2145//2145 +f 2023//2023 2024//2024 2146//2146 +f 2020//2020 2145//2145 2142//2142 +f 2020//2020 2023//2023 2145//2145 +f 2145//2145 2148//2148 2147//2147 +f 2145//2145 2146//2146 2148//2148 +f 2142//2142 2147//2147 2144//2144 +f 2142//2142 2145//2145 2147//2147 +f 2143//2143 2150//2150 2149//2149 +f 2143//2143 2144//2144 2150//2150 +f 2117//2117 2149//2149 2121//2121 +f 2117//2117 2143//2143 2149//2149 +f 2149//2149 2152//2152 2151//2151 +f 2149//2149 2150//2150 2152//2152 +f 2121//2121 2151//2151 2123//2123 +f 2121//2121 2149//2149 2151//2151 +f 2147//2147 2154//2154 2153//2153 +f 2147//2147 2148//2148 2154//2154 +f 2144//2144 2153//2153 2150//2150 +f 2144//2144 2147//2147 2153//2153 +f 2153//2153 2156//2156 2155//2155 +f 2153//2153 2154//2154 2156//2156 +f 2150//2150 2155//2155 2152//2152 +f 2150//2150 2153//2153 2155//2155 +f 2151//2151 2158//2158 2157//2157 +f 2151//2151 2152//2152 2158//2158 +f 2123//2123 2157//2157 2132//2132 +f 2123//2123 2151//2151 2157//2157 +f 2157//2157 2160//2160 2159//2159 +f 2157//2157 2158//2158 2160//2160 +f 2132//2132 2159//2159 2134//2134 +f 2132//2132 2157//2157 2159//2159 +f 2155//2155 2162//2162 2161//2161 +f 2155//2155 2156//2156 2162//2162 +f 2152//2152 2161//2161 2158//2158 +f 2152//2152 2155//2155 2161//2161 +f 2161//2161 2164//2164 2163//2163 +f 2161//2161 2162//2162 2164//2164 +f 2158//2158 2163//2163 2160//2160 +f 2158//2158 2161//2161 2163//2163 +f 2159//2159 2166//2166 2165//2165 +f 2159//2159 2160//2160 2166//2166 +f 2134//2134 2165//2165 2138//2138 +f 2134//2134 2159//2159 2165//2165 +f 2165//2165 2168//2168 2167//2167 +f 2165//2165 2166//2166 2168//2168 +f 2138//2138 2167//2167 2140//2140 +f 2138//2138 2165//2165 2167//2167 +f 2163//2163 2170//2170 2169//2169 +f 2163//2163 2164//2164 2170//2170 +f 2160//2160 2169//2169 2166//2166 +f 2160//2160 2163//2163 2169//2169 +f 2169//2169 2172//2172 2171//2171 +f 2169//2169 2170//2170 2172//2172 +f 2166//2166 2171//2171 2168//2168 +f 2166//2166 2169//2169 2171//2171 +f 1943//1943 2126//2126 1950//1950 +f 2126//2126 2128//2128 2173//2173 +f 2126//2126 2173//2173 2174//2174 +f 1950//1950 2126//2126 1951//1951 +f 2126//2126 2174//2174 2175//2175 +f 2126//2126 2175//2175 2176//2176 +f 2128//2128 2177//2177 2173//2173 +f 2128//2128 2136//2136 2177//2177 +f 2173//2173 2178//2178 2174//2174 +f 2173//2173 2177//2177 2178//2178 +f 2139//2139 2177//2177 2136//2136 +f 2139//2139 2179//2179 2177//2177 +f 2139//2139 2180//2180 2179//2179 +f 2139//2139 2140//2140 2180//2180 +f 2179//2179 2178//2178 2177//2177 +f 2179//2179 2181//2181 2178//2178 +f 2179//2179 2182//2182 2181//2181 +f 2179//2179 2180//2180 2182//2182 +f 2174//2174 2183//2183 2175//2175 +f 2174//2174 2178//2178 2183//2183 +f 2175//2175 2184//2184 2176//2176 +f 2175//2175 2183//2183 2184//2184 +f 2181//2181 2183//2183 2178//2178 +f 2181//2181 2185//2185 2183//2183 +f 2181//2181 2186//2186 2185//2185 +f 2181//2181 2182//2182 2186//2186 +f 2185//2185 2184//2184 2183//2183 +f 2185//2185 2187//2187 2184//2184 +f 2185//2185 2188//2188 2187//2187 +f 2185//2185 2186//2186 2188//2188 +f 1951//1951 2126//2126 1953//1953 +f 2126//2126 2176//2176 2189//2189 +f 2126//2126 2190//2190 1953//1953 +f 2126//2126 2189//2189 2190//2190 +f 1953//1953 2190//2190 2191//2191 +f 1953//1953 2191//2191 2192//2192 +f 2176//2176 2193//2193 2189//2189 +f 2176//2176 2184//2184 2193//2193 +f 2189//2189 2194//2194 2190//2190 +f 2189//2189 2193//2193 2194//2194 +f 2187//2187 2193//2193 2184//2184 +f 2187//2187 2195//2195 2193//2193 +f 2187//2187 2196//2196 2195//2195 +f 2187//2187 2188//2188 2196//2196 +f 2195//2195 2194//2194 2193//2193 +f 2195//2195 2197//2197 2194//2194 +f 2195//2195 2198//2198 2197//2197 +f 2195//2195 2196//2196 2198//2198 +f 2190//2190 2199//2199 2191//2191 +f 2190//2190 2194//2194 2199//2199 +f 2191//2191 2200//2200 2192//2192 +f 2191//2191 2199//2199 2200//2200 +f 2197//2197 2199//2199 2194//2194 +f 2197//2197 2201//2201 2199//2199 +f 2197//2197 2202//2202 2201//2201 +f 2197//2197 2198//2198 2202//2202 +f 2201//2201 2200//2200 2199//2199 +f 2201//2201 2203//2203 2200//2200 +f 2201//2201 2204//2204 2203//2203 +f 2201//2201 2202//2202 2204//2204 +f 2167//2167 2206//2206 2205//2205 +f 2167//2167 2168//2168 2206//2206 +f 2140//2140 2205//2205 2180//2180 +f 2140//2140 2167//2167 2205//2205 +f 2205//2205 2208//2208 2207//2207 +f 2205//2205 2206//2206 2208//2208 +f 2180//2180 2207//2207 2182//2182 +f 2180//2180 2205//2205 2207//2207 +f 2171//2171 2210//2210 2209//2209 +f 2171//2171 2172//2172 2210//2210 +f 2168//2168 2209//2209 2206//2206 +f 2168//2168 2171//2171 2209//2209 +f 2209//2209 2212//2212 2211//2211 +f 2209//2209 2210//2210 2212//2212 +f 2206//2206 2211//2211 2208//2208 +f 2206//2206 2209//2209 2211//2211 +f 2207//2207 2214//2214 2213//2213 +f 2207//2207 2208//2208 2214//2214 +f 2182//2182 2213//2213 2186//2186 +f 2182//2182 2207//2207 2213//2213 +f 2213//2213 2216//2216 2215//2215 +f 2213//2213 2214//2214 2216//2216 +f 2186//2186 2215//2215 2188//2188 +f 2186//2186 2213//2213 2215//2215 +f 2211//2211 2218//2218 2217//2217 +f 2211//2211 2212//2212 2218//2218 +f 2208//2208 2217//2217 2214//2214 +f 2208//2208 2211//2211 2217//2217 +f 2217//2217 2220//2220 2219//2219 +f 2217//2217 2218//2218 2220//2220 +f 2214//2214 2219//2219 2216//2216 +f 2214//2214 2217//2217 2219//2219 +f 2215//2215 2222//2222 2221//2221 +f 2215//2215 2216//2216 2222//2222 +f 2188//2188 2221//2221 2196//2196 +f 2188//2188 2215//2215 2221//2221 +f 2221//2221 2224//2224 2223//2223 +f 2221//2221 2222//2222 2224//2224 +f 2196//2196 2223//2223 2198//2198 +f 2196//2196 2221//2221 2223//2223 +f 2219//2219 2226//2226 2225//2225 +f 2219//2219 2220//2220 2226//2226 +f 2216//2216 2225//2225 2222//2222 +f 2216//2216 2219//2219 2225//2225 +f 2225//2225 2228//2228 2227//2227 +f 2225//2225 2226//2226 2228//2228 +f 2222//2222 2227//2227 2224//2224 +f 2222//2222 2225//2225 2227//2227 +f 2223//2223 2230//2230 2229//2229 +f 2223//2223 2224//2224 2230//2230 +f 2198//2198 2229//2229 2202//2202 +f 2198//2198 2223//2223 2229//2229 +f 2229//2229 2232//2232 2231//2231 +f 2229//2229 2230//2230 2232//2232 +f 2202//2202 2231//2231 2204//2204 +f 2202//2202 2229//2229 2231//2231 +f 2227//2227 2234//2234 2233//2233 +f 2227//2227 2228//2228 2234//2234 +f 2224//2224 2233//2233 2230//2230 +f 2224//2224 2227//2227 2233//2233 +f 2233//2233 2236//2236 2235//2235 +f 2233//2233 2234//2234 2236//2236 +f 2230//2230 2235//2235 2232//2232 +f 2230//2230 2233//2233 2235//2235 +f 2024//2024 2237//2237 2146//2146 +f 2024//2024 2080//2080 2237//2237 +f 2146//2146 2237//2237 2148//2148 +f 2080//2080 2238//2238 2237//2237 +f 2080//2080 2079//2079 2238//2238 +f 2148//2148 2237//2237 2154//2154 +f 2154//2154 2237//2237 2156//2156 +f 2079//2079 2084//2084 2238//2238 +f 2084//2084 2083//2083 2239//2239 +f 2084//2084 2239//2239 2240//2240 +f 2238//2238 2084//2084 2241//2241 +f 2084//2084 2242//2242 2241//2241 +f 2084//2084 2240//2240 2242//2242 +f 2241//2241 2242//2242 2243//2243 +f 2156//2156 2244//2244 2162//2162 +f 2156//2156 2237//2237 2244//2244 +f 2162//2162 2245//2245 2164//2164 +f 2162//2162 2244//2244 2245//2245 +f 2237//2237 2246//2246 2244//2244 +f 2237//2237 2238//2238 2246//2246 +f 2244//2244 2246//2246 2245//2245 +f 2164//2164 2247//2247 2170//2170 +f 2164//2164 2245//2245 2247//2247 +f 2170//2170 2247//2247 2172//2172 +f 2245//2245 2248//2248 2247//2247 +f 2245//2245 2246//2246 2248//2248 +f 2247//2247 2248//2248 2249//2249 +f 2238//2238 2241//2241 2246//2246 +f 2246//2246 2241//2241 2250//2250 +f 2241//2241 2243//2243 2251//2251 +f 2241//2241 2252//2252 2250//2250 +f 2241//2241 2251//2251 2252//2252 +f 2246//2246 2253//2253 2248//2248 +f 2246//2246 2250//2250 2253//2253 +f 2248//2248 2254//2254 2249//2249 +f 2248//2248 2253//2253 2254//2254 +f 2253//2253 2255//2255 2254//2254 +f 2253//2253 2250//2250 2255//2255 +f 2083//2083 2256//2256 2239//2239 +f 2083//2083 2095//2095 2256//2256 +f 2239//2239 2257//2257 2240//2240 +f 2239//2239 2256//2256 2257//2257 +f 2095//2095 2258//2258 2256//2256 +f 2256//2256 2259//2259 2257//2257 +f 2256//2256 2258//2258 2259//2259 +f 2240//2240 2260//2260 2242//2242 +f 2240//2240 2257//2257 2260//2260 +f 2242//2242 2261//2261 2243//2243 +f 2242//2242 2260//2260 2261//2261 +f 2257//2257 2262//2262 2260//2260 +f 2257//2257 2259//2259 2262//2262 +f 2260//2260 2263//2263 2261//2261 +f 2260//2260 2262//2262 2263//2263 +f 2095//2095 2264//2264 2258//2258 +f 2095//2095 2103//2103 2264//2264 +f 2258//2258 2264//2264 2259//2259 +f 2103//2103 2265//2265 2264//2264 +f 2103//2103 2107//2107 2265//2265 +f 2259//2259 2266//2266 2262//2262 +f 2259//2259 2264//2264 2266//2266 +f 2262//2262 2267//2267 2263//2263 +f 2262//2262 2266//2266 2267//2267 +f 2264//2264 2268//2268 2266//2266 +f 2264//2264 2265//2265 2268//2268 +f 2266//2266 2269//2269 2267//2267 +f 2266//2266 2268//2268 2269//2269 +f 2243//2243 2270//2270 2251//2251 +f 2243//2243 2261//2261 2270//2270 +f 2251//2251 2271//2271 2252//2252 +f 2251//2251 2270//2270 2271//2271 +f 2261//2261 2272//2272 2270//2270 +f 2261//2261 2263//2263 2272//2272 +f 2270//2270 2273//2273 2271//2271 +f 2270//2270 2272//2272 2273//2273 +f 2250//2250 2274//2274 2255//2255 +f 2250//2250 2252//2252 2274//2274 +f 2252//2252 2275//2275 2274//2274 +f 2252//2252 2271//2271 2275//2275 +f 2263//2263 2276//2276 2272//2272 +f 2263//2263 2267//2267 2276//2276 +f 2272//2272 2277//2277 2273//2273 +f 2272//2272 2276//2276 2277//2277 +f 2267//2267 2278//2278 2276//2276 +f 2267//2267 2269//2269 2278//2278 +f 2276//2276 2279//2279 2277//2277 +f 2276//2276 2278//2278 2279//2279 +f 2273//2273 2280//2280 2271//2271 +f 2273//2273 2277//2277 2280//2280 +f 2271//2271 2281//2281 2275//2275 +f 2271//2271 2280//2280 2281//2281 +f 2277//2277 2282//2282 2280//2280 +f 2277//2277 2279//2279 2282//2282 +f 2280//2280 2283//2283 2281//2281 +f 2280//2280 2282//2282 2283//2283 +f 2172//2172 2247//2247 2210//2210 +f 2210//2210 2284//2284 2212//2212 +f 2210//2210 2247//2247 2284//2284 +f 2247//2247 2249//2249 2285//2285 +f 2247//2247 2286//2286 2284//2284 +f 2247//2247 2285//2285 2286//2286 +f 2212//2212 2287//2287 2218//2218 +f 2212//2212 2284//2284 2287//2287 +f 2218//2218 2288//2288 2220//2220 +f 2218//2218 2287//2287 2288//2288 +f 2284//2284 2286//2286 2287//2287 +f 2287//2287 2289//2289 2288//2288 +f 2287//2287 2286//2286 2289//2289 +f 2249//2249 2290//2290 2285//2285 +f 2249//2249 2254//2254 2290//2290 +f 2285//2285 2291//2291 2286//2286 +f 2285//2285 2290//2290 2291//2291 +f 2254//2254 2292//2292 2290//2290 +f 2254//2254 2255//2255 2292//2292 +f 2290//2290 2293//2293 2291//2291 +f 2290//2290 2292//2292 2293//2293 +f 2286//2286 2291//2291 2294//2294 +f 2286//2286 2295//2295 2289//2289 +f 2286//2286 2294//2294 2295//2295 +f 2291//2291 2296//2296 2294//2294 +f 2291//2291 2293//2293 2296//2296 +f 2294//2294 2297//2297 2295//2295 +f 2294//2294 2296//2296 2297//2297 +f 2220//2220 2288//2288 2226//2226 +f 2226//2226 2288//2288 2228//2228 +f 2228//2228 2298//2298 2234//2234 +f 2228//2228 2288//2288 2298//2298 +f 2234//2234 2299//2299 2236//2236 +f 2234//2234 2298//2298 2299//2299 +f 2288//2288 2289//2289 2298//2298 +f 2298//2298 2300//2300 2299//2299 +f 2298//2298 2289//2289 2300//2300 +f 2289//2289 2301//2301 2300//2300 +f 2289//2289 2295//2295 2301//2301 +f 2295//2295 2297//2297 2302//2302 +f 2295//2295 2302//2302 2301//2301 +f 2255//2255 2303//2303 2292//2292 +f 2255//2255 2274//2274 2303//2303 +f 2292//2292 2304//2304 2293//2293 +f 2292//2292 2303//2303 2304//2304 +f 2274//2274 2305//2305 2303//2303 +f 2274//2274 2275//2275 2305//2305 +f 2303//2303 2306//2306 2304//2304 +f 2303//2303 2305//2305 2306//2306 +f 2293//2293 2307//2307 2296//2296 +f 2293//2293 2304//2304 2307//2307 +f 2296//2296 2308//2308 2297//2297 +f 2296//2296 2307//2307 2308//2308 +f 2304//2304 2309//2309 2307//2307 +f 2304//2304 2306//2306 2309//2309 +f 2307//2307 2310//2310 2308//2308 +f 2307//2307 2309//2309 2310//2310 +f 2275//2275 2311//2311 2305//2305 +f 2275//2275 2281//2281 2311//2311 +f 2305//2305 2312//2312 2306//2306 +f 2305//2305 2311//2311 2312//2312 +f 2281//2281 2313//2313 2311//2311 +f 2281//2281 2283//2283 2313//2313 +f 2311//2311 2314//2314 2312//2312 +f 2311//2311 2313//2313 2314//2314 +f 2306//2306 2315//2315 2309//2309 +f 2306//2306 2312//2312 2315//2315 +f 2309//2309 2316//2316 2310//2310 +f 2309//2309 2315//2315 2316//2316 +f 2312//2312 2317//2317 2315//2315 +f 2312//2312 2314//2314 2317//2317 +f 2315//2315 2318//2318 2316//2316 +f 2315//2315 2317//2317 2318//2318 +f 2297//2297 2308//2308 2319//2319 +f 2308//2308 2320//2320 2319//2319 +f 2308//2308 2310//2310 2320//2320 +f 2319//2319 2320//2320 2321//2321 +f 2297//2297 2319//2319 2302//2302 +f 2319//2319 2321//2321 2322//2322 +f 2310//2310 2323//2323 2320//2320 +f 2310//2310 2316//2316 2323//2323 +f 2320//2320 2323//2323 2321//2321 +f 2316//2316 2324//2324 2323//2323 +f 2316//2316 2318//2318 2324//2324 +f 2323//2323 2325//2325 2321//2321 +f 2323//2323 2324//2324 2325//2325 +f 2321//2321 2326//2326 2322//2322 +f 2321//2321 2327//2327 2326//2326 +f 2321//2321 2325//2325 2327//2327 +f 2326//2326 2328//2328 2322//2322 +f 2326//2326 2327//2327 2328//2328 +f 438//438 1927//1927 2329//2329 +f 438//438 2329//2329 701//701 +f 1927//1927 2330//2330 2329//2329 +f 1927//1927 1926//1926 2330//2330 +f 1926//1926 1928//1928 2331//2331 +f 1928//1928 1929//1929 2331//2331 +f 2331//2331 1929//1929 2332//2332 +f 1926//1926 2331//2331 2330//2330 +f 701//701 2329//2329 2333//2333 +f 2329//2329 2330//2330 2333//2333 +f 701//701 2333//2333 704//704 +f 2333//2333 2330//2330 2334//2334 +f 2330//2330 2331//2331 2335//2335 +f 2331//2331 2332//2332 2335//2335 +f 2335//2335 2332//2332 2336//2336 +f 2330//2330 2335//2335 2334//2334 +f 2335//2335 2336//2336 2337//2337 +f 1929//1929 1933//1933 2338//2338 +f 1929//1929 2338//2338 2332//2332 +f 1933//1933 1934//1934 2338//2338 +f 2338//2338 1934//1934 2339//2339 +f 2332//2332 2338//2338 2340//2340 +f 2332//2332 2340//2340 2336//2336 +f 2336//2336 2340//2340 2337//2337 +f 2338//2338 2339//2339 2340//2340 +f 704//704 2333//2333 2342//2342 +f 2333//2333 2334//2334 2342//2342 +f 2334//2334 2335//2335 2343//2343 +f 2335//2335 2344//2344 2343//2343 +f 2335//2335 2337//2337 2344//2344 +f 704//704 2345//2345 715//715 +f 704//704 2342//2342 2345//2345 +f 2342//2342 2334//2334 2346//2346 +f 2342//2342 2346//2346 2345//2345 +f 2334//2334 2343//2343 2346//2346 +f 2346//2346 2343//2343 2347//2347 +f 2343//2343 2348//2348 2347//2347 +f 2343//2343 2344//2344 2348//2348 +f 2340//2340 2349//2349 2337//2337 +f 2337//2337 2349//2349 2344//2344 +f 2340//2340 2341//2341 2349//2349 +f 2349//2349 2341//2341 2350//2350 +f 2349//2349 2350//2350 2351//2351 +f 2344//2344 2349//2349 2351//2351 +f 2344//2344 2351//2351 2352//2352 +f 2344//2344 2352//2352 2348//2348 +f 1934//1934 2354//2354 2339//2339 +f 2339//2339 2354//2354 2353//2353 +f 1934//1934 1948//1948 2354//2354 +f 2354//2354 2355//2355 2353//2353 +f 2339//2339 2353//2353 2340//2340 +f 2340//2340 2353//2353 2341//2341 +f 2341//2341 2353//2353 2356//2356 +f 2353//2353 2355//2355 2357//2357 +f 2353//2353 2357//2357 2356//2356 +f 1948//1948 1952//1952 2354//2354 +f 2354//2354 1952//1952 2358//2358 +f 1952//1952 1953//1953 2359//2359 +f 1952//1952 2359//2359 2358//2358 +f 2354//2354 2358//2358 2355//2355 +f 2355//2355 2358//2358 2360//2360 +f 2355//2355 2360//2360 2357//2357 +f 2358//2358 2361//2361 2360//2360 +f 2357//2357 2360//2360 2362//2362 +f 2341//2341 2356//2356 2350//2350 +f 2350//2350 2363//2363 2351//2351 +f 2350//2350 2356//2356 2363//2363 +f 2351//2351 2363//2363 2364//2364 +f 2351//2351 2364//2364 2352//2352 +f 2352//2352 2364//2364 2365//2365 +f 2357//2357 2362//2362 2356//2356 +f 2356//2356 2367//2367 2363//2363 +f 2356//2356 2362//2362 2367//2367 +f 2362//2362 2368//2368 2367//2367 +f 2367//2367 2368//2368 2369//2369 +f 2363//2363 2366//2366 2364//2364 +f 2363//2363 2367//2367 2366//2366 +f 2367//2367 2371//2371 2366//2366 +f 2367//2367 2369//2369 2371//2371 +f 2366//2366 2371//2371 2370//2370 +f 2371//2371 2372//2372 2370//2370 +f 715//715 2373//2373 793//793 +f 715//715 2345//2345 2373//2373 +f 793//793 2374//2374 794//794 +f 793//793 2373//2373 2374//2374 +f 2345//2345 2375//2375 2373//2373 +f 2345//2345 2346//2346 2375//2375 +f 2373//2373 2376//2376 2374//2374 +f 2373//2373 2375//2375 2376//2376 +f 799//799 2377//2377 798//798 +f 799//799 2378//2378 2377//2377 +f 799//799 2379//2379 2378//2378 +f 799//799 800//800 2379//2379 +f 794//794 2379//2379 800//800 +f 794//794 2374//2374 2379//2379 +f 2378//2378 2380//2380 2377//2377 +f 2378//2378 2381//2381 2380//2380 +f 2378//2378 2382//2382 2381//2381 +f 2378//2378 2379//2379 2382//2382 +f 2374//2374 2382//2382 2379//2379 +f 2374//2374 2376//2376 2382//2382 +f 2346//2346 2347//2347 2375//2375 +f 2375//2375 2383//2383 2376//2376 +f 2375//2375 2347//2347 2383//2383 +f 2347//2347 2384//2384 2383//2383 +f 2347//2347 2348//2348 2384//2384 +f 2381//2381 2385//2385 2380//2380 +f 2381//2381 2386//2386 2385//2385 +f 2381//2381 2387//2387 2386//2386 +f 2381//2381 2382//2382 2387//2387 +f 2376//2376 2387//2387 2382//2382 +f 2376//2376 2383//2383 2387//2387 +f 2386//2386 2388//2388 2385//2385 +f 2386//2386 2389//2389 2388//2388 +f 2386//2386 2390//2390 2389//2389 +f 2386//2386 2387//2387 2390//2390 +f 2383//2383 2390//2390 2387//2387 +f 2383//2383 2384//2384 2390//2390 +f 809//809 2391//2391 806//806 +f 809//809 2392//2392 2391//2391 +f 809//809 2377//2377 2392//2392 +f 809//809 798//798 2377//2377 +f 806//806 2391//2391 808//808 +f 2392//2392 2393//2393 2391//2391 +f 2392//2392 2380//2380 2393//2393 +f 2392//2392 2377//2377 2380//2380 +f 808//808 2394//2394 810//810 +f 2391//2391 2394//2394 808//808 +f 804//804 2395//2395 805//805 +f 2393//2393 2396//2396 2391//2391 +f 2393//2393 2397//2397 2396//2396 +f 2393//2393 2385//2385 2397//2397 +f 2393//2393 2380//2380 2385//2385 +f 2394//2394 2398//2398 810//810 +f 2391//2391 2398//2398 2394//2394 +f 2391//2391 2396//2396 2398//2398 +f 2397//2397 2399//2399 2396//2396 +f 2397//2397 2400//2400 2399//2399 +f 2397//2397 2388//2388 2400//2400 +f 2397//2397 2385//2385 2388//2388 +f 2398//2398 2401//2401 810//810 +f 2396//2396 2401//2401 2398//2398 +f 2396//2396 2399//2399 2401//2401 +f 810//810 2402//2402 804//804 +f 804//804 2402//2402 2395//2395 +f 2348//2348 2403//2403 2384//2384 +f 2389//2389 2404//2404 2388//2388 +f 2389//2389 2405//2405 2404//2404 +f 2389//2389 2406//2406 2405//2405 +f 2389//2389 2390//2390 2406//2406 +f 2384//2384 2406//2406 2390//2390 +f 2384//2384 2403//2403 2406//2406 +f 2405//2405 2407//2407 2404//2404 +f 2348//2348 2352//2352 2365//2365 +f 2348//2348 2408//2408 2403//2403 +f 2348//2348 2365//2365 2408//2408 +f 2405//2405 2409//2409 2407//2407 +f 2405//2405 2410//2410 2409//2409 +f 2405//2405 2411//2411 2410//2410 +f 2405//2405 2406//2406 2411//2411 +f 2403//2403 2411//2411 2406//2406 +f 2403//2403 2408//2408 2411//2411 +f 2410//2410 2412//2412 2409//2409 +f 2410//2410 2413//2413 2412//2412 +f 2410//2410 2411//2411 2413//2413 +f 2400//2400 2414//2414 2399//2399 +f 2400//2400 2415//2415 2414//2414 +f 2400//2400 2404//2404 2415//2415 +f 2400//2400 2388//2388 2404//2404 +f 2401//2401 2416//2416 810//810 +f 2399//2399 2414//2414 2401//2401 +f 2415//2415 2417//2417 2414//2414 +f 2415//2415 2407//2407 2417//2417 +f 2415//2415 2404//2404 2407//2407 +f 2401//2401 2418//2418 2416//2416 +f 2414//2414 2418//2418 2401//2401 +f 810//810 2416//2416 2402//2402 +f 2417//2417 2419//2419 2414//2414 +f 2417//2417 2420//2420 2419//2419 +f 2417//2417 2409//2409 2420//2420 +f 2417//2417 2407//2407 2409//2409 +f 2418//2418 2421//2421 2416//2416 +f 2414//2414 2421//2421 2418//2418 +f 2414//2414 2419//2419 2421//2421 +f 2420//2420 2409//2409 2412//2412 +f 2421//2421 2422//2422 2416//2416 +f 2419//2419 2422//2422 2421//2421 +f 2416//2416 2423//2423 2402//2402 +f 2402//2402 2424//2424 2395//2395 +f 2402//2402 2423//2423 2424//2424 +f 805//805 2425//2425 824//824 +f 805//805 2395//2395 2425//2425 +f 824//824 2426//2426 827//827 +f 824//824 2425//2425 2426//2426 +f 827//827 2427//2427 828//828 +f 827//827 2426//2426 2427//2427 +f 2426//2426 2428//2428 2427//2427 +f 2395//2395 2429//2429 2425//2425 +f 2425//2425 2430//2430 2426//2426 +f 2426//2426 2431//2431 2428//2428 +f 2426//2426 2430//2430 2431//2431 +f 2425//2425 2432//2432 2430//2430 +f 2425//2425 2429//2429 2432//2432 +f 2430//2430 2433//2433 2431//2431 +f 2430//2430 2432//2432 2433//2433 +f 828//828 2434//2434 839//839 +f 828//828 2427//2427 2434//2434 +f 839//839 2435//2435 840//840 +f 839//839 2434//2434 2435//2435 +f 2427//2427 2436//2436 2434//2434 +f 2427//2427 2428//2428 2436//2436 +f 2434//2434 2437//2437 2435//2435 +f 2434//2434 2436//2436 2437//2437 +f 840//840 2438//2438 843//843 +f 840//840 2435//2435 2438//2438 +f 843//843 2439//2439 844//844 +f 843//843 2438//2438 2439//2439 +f 2435//2435 2440//2440 2438//2438 +f 2435//2435 2437//2437 2440//2440 +f 2438//2438 2441//2441 2439//2439 +f 2438//2438 2440//2440 2441//2441 +f 2428//2428 2442//2442 2436//2436 +f 2428//2428 2431//2431 2442//2442 +f 2436//2436 2443//2443 2437//2437 +f 2436//2436 2442//2442 2443//2443 +f 2431//2431 2444//2444 2442//2442 +f 2431//2431 2433//2433 2444//2444 +f 2442//2442 2445//2445 2443//2443 +f 2442//2442 2444//2444 2445//2445 +f 2437//2437 2446//2446 2440//2440 +f 2437//2437 2443//2443 2446//2446 +f 2440//2440 2447//2447 2441//2441 +f 2440//2440 2446//2446 2447//2447 +f 2443//2443 2448//2448 2446//2446 +f 2443//2443 2445//2445 2448//2448 +f 2446//2446 2449//2449 2447//2447 +f 2446//2446 2448//2448 2449//2449 +f 2395//2395 2450//2450 2429//2429 +f 2429//2429 2450//2450 2451//2451 +f 2395//2395 2452//2452 2450//2450 +f 2450//2450 2453//2453 2451//2451 +f 2450//2450 2452//2452 2453//2453 +f 2429//2429 2454//2454 2432//2432 +f 2429//2429 2451//2451 2454//2454 +f 2432//2432 2455//2455 2433//2433 +f 2432//2432 2454//2454 2455//2455 +f 2451//2451 2456//2456 2454//2454 +f 2451//2451 2453//2453 2456//2456 +f 2454//2454 2457//2457 2455//2455 +f 2454//2454 2456//2456 2457//2457 +f 2395//2395 2458//2458 2452//2452 +f 2395//2395 2424//2424 2458//2458 +f 2452//2452 2459//2459 2453//2453 +f 2452//2452 2458//2458 2459//2459 +f 2458//2458 2460//2460 2459//2459 +f 2453//2453 2461//2461 2456//2456 +f 2453//2453 2459//2459 2461//2461 +f 2456//2456 2462//2462 2457//2457 +f 2456//2456 2461//2461 2462//2462 +f 2459//2459 2463//2463 2461//2461 +f 2459//2459 2460//2460 2463//2463 +f 2461//2461 2464//2464 2462//2462 +f 2461//2461 2463//2463 2464//2464 +f 2433//2433 2465//2465 2444//2444 +f 2433//2433 2455//2455 2465//2465 +f 2444//2444 2466//2466 2445//2445 +f 2444//2444 2465//2465 2466//2466 +f 2455//2455 2467//2467 2465//2465 +f 2455//2455 2457//2457 2467//2467 +f 2465//2465 2468//2468 2466//2466 +f 2465//2465 2467//2467 2468//2468 +f 2445//2445 2466//2466 2448//2448 +f 2466//2466 2469//2469 2448//2448 +f 2466//2466 2468//2468 2469//2469 +f 2448//2448 2469//2469 2449//2449 +f 2457//2457 2470//2470 2467//2467 +f 2457//2457 2462//2462 2470//2470 +f 2467//2467 2471//2471 2468//2468 +f 2467//2467 2470//2470 2471//2471 +f 2462//2462 2472//2472 2470//2470 +f 2462//2462 2464//2464 2472//2472 +f 2470//2470 2473//2473 2471//2471 +f 2470//2470 2472//2472 2473//2473 +f 2468//2468 2474//2474 2469//2469 +f 2468//2468 2471//2471 2474//2474 +f 2469//2469 2475//2475 2449//2449 +f 2469//2469 2474//2474 2475//2475 +f 2471//2471 2473//2473 2474//2474 +f 2365//2365 2477//2477 2408//2408 +f 2365//2365 2476//2476 2477//2477 +f 2413//2413 2478//2478 2412//2412 +f 2413//2413 2479//2479 2478//2478 +f 2413//2413 2411//2411 2479//2479 +f 2479//2479 2480//2480 2478//2478 +f 2479//2479 2481//2481 2480//2480 +f 2479//2479 2482//2482 2481//2481 +f 2479//2479 2411//2411 2482//2482 +f 2408//2408 2482//2482 2411//2411 +f 2408//2408 2477//2477 2482//2482 +f 2365//2365 2364//2364 2476//2476 +f 2476//2476 2483//2483 2477//2477 +f 2364//2364 2366//2366 2476//2476 +f 2476//2476 2484//2484 2483//2483 +f 2481//2481 2485//2485 2480//2480 +f 2481//2481 2486//2486 2485//2485 +f 2481//2481 2487//2487 2486//2486 +f 2481//2481 2482//2482 2487//2487 +f 2477//2477 2487//2487 2482//2482 +f 2477//2477 2483//2483 2487//2487 +f 2486//2486 2488//2488 2485//2485 +f 2486//2486 2489//2489 2488//2488 +f 2486//2486 2490//2490 2489//2489 +f 2486//2486 2487//2487 2490//2490 +f 2483//2483 2490//2490 2487//2487 +f 2483//2483 2484//2484 2490//2490 +f 2420//2420 2491//2491 2419//2419 +f 2420//2420 2492//2492 2491//2491 +f 2420//2420 2478//2478 2492//2492 +f 2420//2420 2412//2412 2478//2478 +f 2419//2419 2491//2491 2422//2422 +f 2492//2492 2493//2493 2491//2491 +f 2492//2492 2494//2494 2493//2493 +f 2492//2492 2480//2480 2494//2494 +f 2492//2492 2478//2478 2480//2480 +f 2422//2422 2495//2495 2416//2416 +f 2422//2422 2496//2496 2495//2495 +f 2491//2491 2496//2496 2422//2422 +f 2491//2491 2493//2493 2496//2496 +f 2423//2423 2497//2497 2424//2424 +f 2416//2416 2495//2495 2423//2423 +f 2423//2423 2498//2498 2497//2497 +f 2494//2494 2499//2499 2493//2493 +f 2494//2494 2500//2500 2499//2499 +f 2494//2494 2485//2485 2500//2500 +f 2494//2494 2480//2480 2485//2485 +f 2496//2496 2501//2501 2495//2495 +f 2493//2493 2501//2501 2496//2496 +f 2493//2493 2499//2499 2501//2501 +f 2500//2500 2502//2502 2499//2499 +f 2500//2500 2503//2503 2502//2502 +f 2500//2500 2488//2488 2503//2503 +f 2500//2500 2485//2485 2488//2488 +f 2501//2501 2504//2504 2495//2495 +f 2499//2499 2504//2504 2501//2501 +f 2499//2499 2502//2502 2504//2504 +f 2495//2495 2505//2505 2423//2423 +f 2423//2423 2506//2506 2498//2498 +f 2423//2423 2505//2505 2506//2506 +f 2505//2505 2507//2507 2506//2506 +f 2476//2476 2508//2508 2484//2484 +f 2366//2366 2370//2370 2476//2476 +f 2476//2476 2509//2509 2508//2508 +f 2476//2476 2370//2370 2509//2509 +f 2489//2489 2510//2510 2488//2488 +f 2489//2489 2511//2511 2510//2510 +f 2489//2489 2512//2512 2511//2511 +f 2489//2489 2490//2490 2512//2512 +f 2484//2484 2512//2512 2490//2490 +f 2484//2484 2508//2508 2512//2512 +f 2511//2511 2513//2513 2510//2510 +f 2511//2511 2514//2514 2513//2513 +f 2511//2511 2515//2515 2514//2514 +f 2511//2511 2512//2512 2515//2515 +f 2508//2508 2515//2515 2512//2512 +f 2508//2508 2509//2509 2515//2515 +f 2370//2370 2516//2516 2509//2509 +f 2514//2514 2517//2517 2513//2513 +f 2514//2514 2518//2518 2517//2517 +f 2514//2514 2519//2519 2518//2518 +f 2514//2514 2515//2515 2519//2519 +f 2509//2509 2519//2519 2515//2515 +f 2509//2509 2516//2516 2519//2519 +f 2518//2518 2520//2520 2517//2517 +f 2518//2518 2521//2521 2520//2520 +f 2518//2518 2522//2522 2521//2521 +f 2518//2518 2519//2519 2522//2522 +f 2516//2516 2522//2522 2519//2519 +f 2503//2503 2523//2523 2502//2502 +f 2503//2503 2524//2524 2523//2523 +f 2503//2503 2510//2510 2524//2524 +f 2503//2503 2488//2488 2510//2510 +f 2502//2502 2523//2523 2504//2504 +f 2524//2524 2525//2525 2523//2523 +f 2524//2524 2526//2526 2525//2525 +f 2524//2524 2513//2513 2526//2526 +f 2524//2524 2510//2510 2513//2513 +f 2504//2504 2527//2527 2495//2495 +f 2504//2504 2528//2528 2527//2527 +f 2523//2523 2528//2528 2504//2504 +f 2523//2523 2525//2525 2528//2528 +f 2495//2495 2529//2529 2505//2505 +f 2505//2505 2530//2530 2507//2507 +f 2505//2505 2529//2529 2530//2530 +f 2495//2495 2531//2531 2529//2529 +f 2495//2495 2527//2527 2531//2531 +f 2529//2529 2532//2532 2530//2530 +f 2529//2529 2531//2531 2532//2532 +f 2526//2526 2533//2533 2525//2525 +f 2526//2526 2534//2534 2533//2533 +f 2526//2526 2517//2517 2534//2534 +f 2526//2526 2513//2513 2517//2517 +f 2528//2528 2535//2535 2527//2527 +f 2528//2528 2536//2536 2535//2535 +f 2525//2525 2536//2536 2528//2528 +f 2525//2525 2533//2533 2536//2536 +f 2534//2534 2537//2537 2533//2533 +f 2534//2534 2520//2520 2537//2537 +f 2534//2534 2517//2517 2520//2520 +f 2536//2536 2538//2538 2535//2535 +f 2536//2536 2539//2539 2538//2538 +f 2533//2533 2539//2539 2536//2536 +f 2527//2527 2540//2540 2531//2531 +f 2527//2527 2535//2535 2540//2540 +f 2531//2531 2541//2541 2532//2532 +f 2531//2531 2540//2540 2541//2541 +f 2535//2535 2542//2542 2540//2540 +f 2535//2535 2538//2538 2542//2542 +f 2540//2540 2543//2543 2541//2541 +f 2540//2540 2542//2542 2543//2543 +f 2424//2424 2544//2544 2458//2458 +f 2424//2424 2497//2497 2544//2544 +f 2458//2458 2545//2545 2460//2460 +f 2458//2458 2544//2544 2545//2545 +f 2497//2497 2546//2546 2544//2544 +f 2497//2497 2498//2498 2546//2546 +f 2544//2544 2547//2547 2545//2545 +f 2544//2544 2546//2546 2547//2547 +f 2460//2460 2548//2548 2463//2463 +f 2460//2460 2545//2545 2548//2548 +f 2463//2463 2549//2549 2464//2464 +f 2463//2463 2548//2548 2549//2549 +f 2545//2545 2550//2550 2548//2548 +f 2545//2545 2547//2547 2550//2550 +f 2548//2548 2551//2551 2549//2549 +f 2548//2548 2550//2550 2551//2551 +f 2498//2498 2552//2552 2546//2546 +f 2498//2498 2506//2506 2552//2552 +f 2546//2546 2553//2553 2547//2547 +f 2546//2546 2552//2552 2553//2553 +f 2506//2506 2554//2554 2552//2552 +f 2506//2506 2507//2507 2554//2554 +f 2552//2552 2555//2555 2553//2553 +f 2552//2552 2554//2554 2555//2555 +f 2547//2547 2556//2556 2550//2550 +f 2547//2547 2553//2553 2556//2556 +f 2550//2550 2557//2557 2551//2551 +f 2550//2550 2556//2556 2557//2557 +f 2553//2553 2558//2558 2556//2556 +f 2553//2553 2555//2555 2558//2558 +f 2556//2556 2559//2559 2557//2557 +f 2556//2556 2558//2558 2559//2559 +f 2464//2464 2560//2560 2472//2472 +f 2464//2464 2549//2549 2560//2560 +f 2472//2472 2561//2561 2473//2473 +f 2472//2472 2560//2560 2561//2561 +f 2549//2549 2551//2551 2560//2560 +f 2560//2560 2562//2562 2561//2561 +f 2473//2473 2561//2561 2474//2474 +f 2474//2474 2561//2561 2475//2475 +f 2551//2551 2562//2562 2560//2560 +f 2551//2551 2557//2557 2562//2562 +f 2557//2557 2563//2563 2562//2562 +f 2557//2557 2559//2559 2563//2563 +f 2562//2562 2564//2564 2561//2561 +f 2562//2562 2563//2563 2564//2564 +f 2507//2507 2565//2565 2554//2554 +f 2507//2507 2530//2530 2565//2565 +f 2554//2554 2566//2566 2555//2555 +f 2554//2554 2565//2565 2566//2566 +f 2530//2530 2567//2567 2565//2565 +f 2530//2530 2532//2532 2567//2567 +f 2565//2565 2568//2568 2566//2566 +f 2565//2565 2567//2567 2568//2568 +f 2555//2555 2569//2569 2558//2558 +f 2555//2555 2566//2566 2569//2569 +f 2558//2558 2570//2570 2559//2559 +f 2558//2558 2569//2569 2570//2570 +f 2566//2566 2571//2571 2569//2569 +f 2566//2566 2568//2568 2571//2571 +f 2569//2569 2572//2572 2570//2570 +f 2569//2569 2571//2571 2572//2572 +f 2532//2532 2573//2573 2567//2567 +f 2532//2532 2541//2541 2573//2573 +f 2567//2567 2574//2574 2568//2568 +f 2567//2567 2573//2573 2574//2574 +f 2541//2541 2575//2575 2573//2573 +f 2541//2541 2543//2543 2575//2575 +f 2573//2573 2576//2576 2574//2574 +f 2573//2573 2575//2575 2576//2576 +f 2568//2568 2574//2574 2571//2571 +f 2571//2571 2577//2577 2572//2572 +f 2574//2574 2578//2578 2571//2571 +f 2574//2574 2576//2576 2578//2578 +f 2571//2571 2578//2578 2577//2577 +f 2559//2559 2572//2572 2563//2563 +f 2559//2559 2570//2570 2572//2572 +f 2572//2572 2579//2579 2563//2563 +f 2563//2563 2579//2579 2564//2564 +f 2572//2572 2577//2577 2579//2579 +f 1953//1953 2192//2192 2581//2581 +f 1953//1953 2582//2582 2359//2359 +f 1953//1953 2581//2581 2582//2582 +f 2358//2358 2359//2359 2361//2361 +f 2359//2359 2582//2582 2583//2583 +f 2359//2359 2584//2584 2361//2361 +f 2359//2359 2583//2583 2584//2584 +f 2192//2192 2585//2585 2581//2581 +f 2192//2192 2200//2200 2585//2585 +f 2581//2581 2586//2586 2582//2582 +f 2581//2581 2585//2585 2586//2586 +f 2203//2203 2585//2585 2200//2200 +f 2203//2203 2587//2587 2585//2585 +f 2203//2203 2588//2588 2587//2587 +f 2203//2203 2204//2204 2588//2588 +f 2587//2587 2586//2586 2585//2585 +f 2587//2587 2589//2589 2586//2586 +f 2587//2587 2590//2590 2589//2589 +f 2587//2587 2588//2588 2590//2590 +f 2582//2582 2591//2591 2583//2583 +f 2582//2582 2586//2586 2591//2591 +f 2583//2583 2592//2592 2584//2584 +f 2583//2583 2591//2591 2592//2592 +f 2589//2589 2591//2591 2586//2586 +f 2589//2589 2593//2593 2591//2591 +f 2589//2589 2594//2594 2593//2593 +f 2589//2589 2590//2590 2594//2594 +f 2593//2593 2592//2592 2591//2591 +f 2593//2593 2595//2595 2592//2592 +f 2593//2593 2596//2596 2595//2595 +f 2593//2593 2594//2594 2596//2596 +f 2361//2361 2584//2584 2597//2597 +f 2361//2361 2597//2597 2598//2598 +f 2360//2360 2361//2361 2362//2362 +f 2361//2361 2598//2598 2599//2599 +f 2361//2361 2599//2599 2600//2600 +f 2584//2584 2601//2601 2597//2597 +f 2584//2584 2592//2592 2601//2601 +f 2597//2597 2602//2602 2598//2598 +f 2597//2597 2601//2601 2602//2602 +f 2595//2595 2601//2601 2592//2592 +f 2595//2595 2603//2603 2601//2601 +f 2595//2595 2604//2604 2603//2603 +f 2595//2595 2596//2596 2604//2604 +f 2603//2603 2602//2602 2601//2601 +f 2603//2603 2605//2605 2602//2602 +f 2603//2603 2606//2606 2605//2605 +f 2603//2603 2604//2604 2606//2606 +f 2598//2598 2607//2607 2599//2599 +f 2598//2598 2602//2602 2607//2607 +f 2599//2599 2608//2608 2600//2600 +f 2599//2599 2607//2607 2608//2608 +f 2605//2605 2607//2607 2602//2602 +f 2605//2605 2609//2609 2607//2607 +f 2605//2605 2610//2610 2609//2609 +f 2605//2605 2606//2606 2610//2610 +f 2609//2609 2608//2608 2607//2607 +f 2609//2609 2611//2611 2608//2608 +f 2609//2609 2612//2612 2611//2611 +f 2609//2609 2610//2610 2612//2612 +f 2231//2231 2614//2614 2613//2613 +f 2231//2231 2232//2232 2614//2614 +f 2204//2204 2613//2613 2588//2588 +f 2204//2204 2231//2231 2613//2613 +f 2613//2613 2616//2616 2615//2615 +f 2613//2613 2614//2614 2616//2616 +f 2588//2588 2615//2615 2590//2590 +f 2588//2588 2613//2613 2615//2615 +f 2235//2235 2618//2618 2617//2617 +f 2235//2235 2236//2236 2618//2618 +f 2232//2232 2617//2617 2614//2614 +f 2232//2232 2235//2235 2617//2617 +f 2617//2617 2620//2620 2619//2619 +f 2617//2617 2618//2618 2620//2620 +f 2614//2614 2619//2619 2616//2616 +f 2614//2614 2617//2617 2619//2619 +f 2615//2615 2622//2622 2621//2621 +f 2615//2615 2616//2616 2622//2622 +f 2590//2590 2621//2621 2594//2594 +f 2590//2590 2615//2615 2621//2621 +f 2621//2621 2624//2624 2623//2623 +f 2621//2621 2622//2622 2624//2624 +f 2594//2594 2623//2623 2596//2596 +f 2594//2594 2621//2621 2623//2623 +f 2619//2619 2626//2626 2625//2625 +f 2619//2619 2620//2620 2626//2626 +f 2616//2616 2625//2625 2622//2622 +f 2616//2616 2619//2619 2625//2625 +f 2625//2625 2628//2628 2627//2627 +f 2625//2625 2626//2626 2628//2628 +f 2622//2622 2627//2627 2624//2624 +f 2622//2622 2625//2625 2627//2627 +f 2623//2623 2630//2630 2629//2629 +f 2623//2623 2624//2624 2630//2630 +f 2596//2596 2629//2629 2604//2604 +f 2596//2596 2623//2623 2629//2629 +f 2629//2629 2632//2632 2631//2631 +f 2629//2629 2630//2630 2632//2632 +f 2604//2604 2631//2631 2606//2606 +f 2604//2604 2629//2629 2631//2631 +f 2627//2627 2634//2634 2633//2633 +f 2627//2627 2628//2628 2634//2634 +f 2624//2624 2633//2633 2630//2630 +f 2624//2624 2627//2627 2633//2633 +f 2633//2633 2636//2636 2635//2635 +f 2633//2633 2634//2634 2636//2636 +f 2630//2630 2635//2635 2632//2632 +f 2630//2630 2633//2633 2635//2635 +f 2631//2631 2638//2638 2637//2637 +f 2631//2631 2632//2632 2638//2638 +f 2606//2606 2637//2637 2610//2610 +f 2606//2606 2631//2631 2637//2637 +f 2637//2637 2640//2640 2639//2639 +f 2637//2637 2638//2638 2640//2640 +f 2610//2610 2639//2639 2612//2612 +f 2610//2610 2637//2637 2639//2639 +f 2635//2635 2642//2642 2641//2641 +f 2635//2635 2636//2636 2642//2642 +f 2632//2632 2641//2641 2638//2638 +f 2632//2632 2635//2635 2641//2641 +f 2641//2641 2644//2644 2643//2643 +f 2641//2641 2642//2642 2644//2644 +f 2638//2638 2643//2643 2640//2640 +f 2638//2638 2641//2641 2643//2643 +f 2362//2362 2361//2361 2368//2368 +f 2361//2361 2645//2645 2368//2368 +f 2361//2361 2600//2600 2645//2645 +f 2368//2368 2645//2645 2646//2646 +f 2368//2368 2646//2646 2647//2647 +f 2368//2368 2648//2648 2369//2369 +f 2368//2368 2647//2647 2648//2648 +f 2600//2600 2649//2649 2645//2645 +f 2600//2600 2608//2608 2649//2649 +f 2645//2645 2650//2650 2646//2646 +f 2645//2645 2649//2649 2650//2650 +f 2611//2611 2649//2649 2608//2608 +f 2611//2611 2651//2651 2649//2649 +f 2611//2611 2652//2652 2651//2651 +f 2611//2611 2612//2612 2652//2652 +f 2651//2651 2650//2650 2649//2649 +f 2651//2651 2653//2653 2650//2650 +f 2651//2651 2654//2654 2653//2653 +f 2651//2651 2652//2652 2654//2654 +f 2646//2646 2655//2655 2647//2647 +f 2646//2646 2650//2650 2655//2655 +f 2647//2647 2656//2656 2648//2648 +f 2647//2647 2655//2655 2656//2656 +f 2653//2653 2655//2655 2650//2650 +f 2653//2653 2657//2657 2655//2655 +f 2653//2653 2658//2658 2657//2657 +f 2653//2653 2654//2654 2658//2658 +f 2657//2657 2656//2656 2655//2655 +f 2657//2657 2659//2659 2656//2656 +f 2657//2657 2660//2660 2659//2659 +f 2657//2657 2658//2658 2660//2660 +f 2369//2369 2648//2648 2661//2661 +f 2369//2369 2661//2661 2662//2662 +f 2369//2369 2663//2663 2371//2371 +f 2369//2369 2662//2662 2663//2663 +f 2371//2371 2664//2664 2372//2372 +f 2371//2371 2663//2663 2664//2664 +f 2648//2648 2665//2665 2661//2661 +f 2648//2648 2656//2656 2665//2665 +f 2661//2661 2666//2666 2662//2662 +f 2661//2661 2665//2665 2666//2666 +f 2659//2659 2665//2665 2656//2656 +f 2659//2659 2667//2667 2665//2665 +f 2659//2659 2668//2668 2667//2667 +f 2659//2659 2660//2660 2668//2668 +f 2667//2667 2666//2666 2665//2665 +f 2667//2667 2669//2669 2666//2666 +f 2667//2667 2670//2670 2669//2669 +f 2667//2667 2668//2668 2670//2670 +f 2662//2662 2671//2671 2663//2663 +f 2662//2662 2666//2666 2671//2671 +f 2663//2663 2672//2672 2664//2664 +f 2663//2663 2671//2671 2672//2672 +f 2669//2669 2671//2671 2666//2666 +f 2669//2669 2673//2673 2671//2671 +f 2669//2669 2674//2674 2673//2673 +f 2669//2669 2670//2670 2674//2674 +f 2673//2673 2672//2672 2671//2671 +f 2673//2673 2675//2675 2672//2672 +f 2673//2673 2676//2676 2675//2675 +f 2673//2673 2674//2674 2676//2676 +f 2639//2639 2678//2678 2677//2677 +f 2639//2639 2640//2640 2678//2678 +f 2612//2612 2677//2677 2652//2652 +f 2612//2612 2639//2639 2677//2677 +f 2677//2677 2680//2680 2679//2679 +f 2677//2677 2678//2678 2680//2680 +f 2652//2652 2679//2679 2654//2654 +f 2652//2652 2677//2677 2679//2679 +f 2643//2643 2644//2644 2681//2681 +f 2640//2640 2681//2681 2678//2678 +f 2640//2640 2643//2643 2681//2681 +f 2681//2681 2644//2644 2682//2682 +f 2678//2678 2682//2682 2680//2680 +f 2678//2678 2681//2681 2682//2682 +f 2679//2679 2684//2684 2683//2683 +f 2679//2679 2680//2680 2684//2684 +f 2654//2654 2683//2683 2658//2658 +f 2654//2654 2679//2679 2683//2683 +f 2683//2683 2686//2686 2685//2685 +f 2683//2683 2684//2684 2686//2686 +f 2658//2658 2685//2685 2660//2660 +f 2658//2658 2683//2683 2685//2685 +f 2682//2682 2688//2688 2687//2687 +f 2682//2682 2644//2644 2688//2688 +f 2680//2680 2687//2687 2684//2684 +f 2680//2680 2682//2682 2687//2687 +f 2687//2687 2688//2688 2689//2689 +f 2684//2684 2689//2689 2686//2686 +f 2684//2684 2687//2687 2689//2689 +f 2685//2685 2691//2691 2690//2690 +f 2685//2685 2686//2686 2691//2691 +f 2660//2660 2690//2690 2668//2668 +f 2660//2660 2685//2685 2690//2690 +f 2690//2690 2693//2693 2692//2692 +f 2690//2690 2691//2691 2693//2693 +f 2668//2668 2692//2692 2670//2670 +f 2668//2668 2690//2690 2692//2692 +f 2689//2689 2695//2695 2694//2694 +f 2689//2689 2688//2688 2695//2695 +f 2686//2686 2694//2694 2691//2691 +f 2686//2686 2689//2689 2694//2694 +f 2694//2694 2697//2697 2696//2696 +f 2694//2694 2695//2695 2697//2697 +f 2691//2691 2696//2696 2693//2693 +f 2691//2691 2694//2694 2696//2696 +f 2692//2692 2699//2699 2698//2698 +f 2692//2692 2693//2693 2699//2699 +f 2670//2670 2698//2698 2674//2674 +f 2670//2670 2692//2692 2698//2698 +f 2698//2698 2701//2701 2700//2700 +f 2698//2698 2699//2699 2701//2701 +f 2674//2674 2700//2700 2676//2676 +f 2674//2674 2698//2698 2700//2700 +f 2696//2696 2703//2703 2702//2702 +f 2696//2696 2697//2697 2703//2703 +f 2693//2693 2702//2702 2699//2699 +f 2693//2693 2696//2696 2702//2702 +f 2702//2702 2705//2705 2704//2704 +f 2702//2702 2703//2703 2705//2705 +f 2699//2699 2704//2704 2701//2701 +f 2699//2699 2702//2702 2704//2704 +f 2236//2236 2299//2299 2618//2618 +f 2618//2618 2706//2706 2620//2620 +f 2618//2618 2299//2299 2706//2706 +f 2299//2299 2300//2300 2706//2706 +f 2620//2620 2707//2707 2626//2626 +f 2620//2620 2706//2706 2707//2707 +f 2626//2626 2708//2708 2628//2628 +f 2626//2626 2707//2707 2708//2708 +f 2706//2706 2709//2709 2707//2707 +f 2706//2706 2300//2300 2709//2709 +f 2707//2707 2710//2710 2708//2708 +f 2707//2707 2709//2709 2710//2710 +f 2300//2300 2301//2301 2709//2709 +f 2709//2709 2711//2711 2710//2710 +f 2709//2709 2301//2301 2711//2711 +f 2301//2301 2712//2712 2711//2711 +f 2301//2301 2302//2302 2712//2712 +f 2628//2628 2713//2713 2634//2634 +f 2628//2628 2708//2708 2713//2713 +f 2634//2634 2713//2713 2636//2636 +f 2708//2708 2714//2714 2713//2713 +f 2708//2708 2710//2710 2714//2714 +f 2636//2636 2715//2715 2642//2642 +f 2636//2636 2713//2713 2715//2715 +f 2642//2642 2716//2716 2644//2644 +f 2642//2642 2715//2715 2716//2716 +f 2713//2713 2714//2714 2715//2715 +f 2715//2715 2714//2714 2716//2716 +f 2710//2710 2717//2717 2714//2714 +f 2710//2710 2711//2711 2717//2717 +f 2714//2714 2717//2717 2718//2718 +f 2711//2711 2719//2719 2717//2717 +f 2711//2711 2712//2712 2719//2719 +f 2717//2717 2720//2720 2718//2718 +f 2717//2717 2719//2719 2720//2720 +f 2718//2718 2720//2720 2721//2721 +f 2302//2302 2319//2319 2722//2722 +f 2319//2319 2322//2322 2722//2722 +f 2302//2302 2722//2722 2723//2723 +f 2302//2302 2723//2723 2712//2712 +f 2322//2322 2724//2724 2722//2722 +f 2322//2322 2725//2725 2724//2724 +f 2322//2322 2328//2328 2725//2725 +f 2722//2722 2724//2724 2726//2726 +f 2722//2722 2727//2727 2723//2723 +f 2722//2722 2726//2726 2727//2727 +f 2712//2712 2723//2723 2719//2719 +f 2719//2719 2728//2728 2720//2720 +f 2719//2719 2723//2723 2728//2728 +f 2720//2720 2728//2728 2729//2729 +f 2720//2720 2729//2729 2721//2721 +f 2723//2723 2727//2727 2728//2728 +f 2728//2728 2727//2727 2730//2730 +f 2728//2728 2730//2730 2729//2729 +f 2716//2716 2714//2714 2732//2732 +f 2644//2644 2733//2733 2688//2688 +f 2644//2644 2716//2716 2733//2733 +f 2716//2716 2732//2732 2733//2733 +f 2714//2714 2734//2734 2732//2732 +f 2714//2714 2718//2718 2734//2734 +f 2718//2718 2721//2721 2734//2734 +f 2688//2688 2733//2733 2695//2695 +f 2695//2695 2735//2735 2697//2697 +f 2695//2695 2733//2733 2735//2735 +f 2733//2733 2732//2732 2736//2736 +f 2733//2733 2736//2736 2735//2735 +f 2697//2697 2737//2737 2703//2703 +f 2697//2697 2735//2735 2737//2737 +f 2703//2703 2738//2738 2705//2705 +f 2703//2703 2737//2737 2738//2738 +f 2735//2735 2739//2739 2737//2737 +f 2735//2735 2736//2736 2739//2739 +f 2737//2737 2740//2740 2738//2738 +f 2737//2737 2739//2739 2740//2740 +f 2732//2732 2741//2741 2736//2736 +f 2732//2732 2734//2734 2741//2741 +f 2734//2734 2742//2742 2741//2741 +f 2734//2734 2721//2721 2742//2742 +f 2736//2736 2741//2741 2739//2739 +f 2739//2739 2743//2743 2740//2740 +f 2739//2739 2741//2741 2743//2743 +f 2741//2741 2742//2742 2743//2743 +f 2721//2721 2729//2729 2744//2744 +f 2721//2721 2744//2744 2745//2745 +f 2729//2729 2730//2730 2744//2744 +f 2730//2730 2731//2731 2744//2744 +f 2744//2744 2746//2746 2745//2745 +f 2721//2721 2745//2745 2742//2742 +f 2745//2745 2747//2747 2742//2742 +f 2745//2745 2746//2746 2747//2747 +f 2370//2370 2748//2748 2516//2516 +f 2370//2370 2372//2372 2748//2748 +f 2372//2372 2664//2664 2749//2749 +f 2372//2372 2750//2750 2748//2748 +f 2372//2372 2749//2749 2750//2750 +f 2521//2521 2751//2751 2520//2520 +f 2521//2521 2752//2752 2751//2751 +f 2521//2521 2753//2753 2752//2752 +f 2521//2521 2522//2522 2753//2753 +f 2516//2516 2753//2753 2522//2522 +f 2516//2516 2748//2748 2753//2753 +f 2752//2752 2754//2754 2751//2751 +f 2752//2752 2755//2755 2754//2754 +f 2752//2752 2756//2756 2755//2755 +f 2752//2752 2753//2753 2756//2756 +f 2748//2748 2756//2756 2753//2753 +f 2748//2748 2750//2750 2756//2756 +f 2664//2664 2757//2757 2749//2749 +f 2664//2664 2672//2672 2757//2757 +f 2749//2749 2758//2758 2750//2750 +f 2749//2749 2757//2757 2758//2758 +f 2675//2675 2757//2757 2672//2672 +f 2675//2675 2759//2759 2757//2757 +f 2675//2675 2760//2760 2759//2759 +f 2675//2675 2676//2676 2760//2760 +f 2759//2759 2758//2758 2757//2757 +f 2759//2759 2761//2761 2758//2758 +f 2759//2759 2762//2762 2761//2761 +f 2759//2759 2760//2760 2762//2762 +f 2755//2755 2763//2763 2754//2754 +f 2755//2755 2764//2764 2763//2763 +f 2755//2755 2765//2765 2764//2764 +f 2755//2755 2756//2756 2765//2765 +f 2750//2750 2765//2765 2756//2756 +f 2750//2750 2758//2758 2765//2765 +f 2761//2761 2765//2765 2758//2758 +f 2761//2761 2764//2764 2765//2765 +f 2761//2761 2766//2766 2764//2764 +f 2761//2761 2762//2762 2766//2766 +f 2764//2764 2767//2767 2763//2763 +f 2764//2764 2766//2766 2767//2767 +f 2537//2537 2768//2768 2533//2533 +f 2537//2537 2769//2769 2768//2768 +f 2537//2537 2751//2751 2769//2769 +f 2537//2537 2520//2520 2751//2751 +f 2539//2539 2770//2770 2538//2538 +f 2533//2533 2768//2768 2539//2539 +f 2769//2769 2771//2771 2768//2768 +f 2769//2769 2772//2772 2771//2771 +f 2769//2769 2754//2754 2772//2772 +f 2769//2769 2751//2751 2754//2754 +f 2539//2539 2773//2773 2770//2770 +f 2539//2539 2774//2774 2773//2773 +f 2768//2768 2774//2774 2539//2539 +f 2768//2768 2771//2771 2774//2774 +f 2538//2538 2775//2775 2542//2542 +f 2538//2538 2770//2770 2775//2775 +f 2542//2542 2776//2776 2543//2543 +f 2542//2542 2775//2775 2776//2776 +f 2770//2770 2777//2777 2775//2775 +f 2770//2770 2773//2773 2777//2777 +f 2775//2775 2778//2778 2776//2776 +f 2775//2775 2777//2777 2778//2778 +f 2772//2772 2779//2779 2771//2771 +f 2772//2772 2780//2780 2779//2779 +f 2772//2772 2763//2763 2780//2780 +f 2772//2772 2754//2754 2763//2763 +f 2774//2774 2781//2781 2773//2773 +f 2774//2774 2782//2782 2781//2781 +f 2771//2771 2782//2782 2774//2774 +f 2771//2771 2779//2779 2782//2782 +f 2780//2780 2783//2783 2779//2779 +f 2780//2780 2784//2784 2783//2783 +f 2780//2780 2767//2767 2784//2784 +f 2780//2780 2763//2763 2767//2767 +f 2782//2782 2785//2785 2781//2781 +f 2782//2782 2786//2786 2785//2785 +f 2779//2779 2786//2786 2782//2782 +f 2779//2779 2783//2783 2786//2786 +f 2773//2773 2787//2787 2777//2777 +f 2773//2773 2781//2781 2787//2787 +f 2777//2777 2788//2788 2778//2778 +f 2777//2777 2787//2787 2788//2788 +f 2781//2781 2789//2789 2787//2787 +f 2781//2781 2785//2785 2789//2789 +f 2787//2787 2790//2790 2788//2788 +f 2787//2787 2789//2789 2790//2790 +f 2700//2700 2792//2792 2791//2791 +f 2700//2700 2701//2701 2792//2792 +f 2676//2676 2791//2791 2760//2760 +f 2676//2676 2700//2700 2791//2791 +f 2791//2791 2794//2794 2793//2793 +f 2791//2791 2792//2792 2794//2794 +f 2760//2760 2793//2793 2762//2762 +f 2760//2760 2791//2791 2793//2793 +f 2704//2704 2796//2796 2795//2795 +f 2704//2704 2705//2705 2796//2796 +f 2701//2701 2795//2795 2792//2792 +f 2701//2701 2704//2704 2795//2795 +f 2795//2795 2798//2798 2797//2797 +f 2795//2795 2796//2796 2798//2798 +f 2792//2792 2797//2797 2794//2794 +f 2792//2792 2795//2795 2797//2797 +f 2793//2793 2800//2800 2799//2799 +f 2793//2793 2794//2794 2800//2800 +f 2762//2762 2799//2799 2766//2766 +f 2762//2762 2793//2793 2799//2799 +f 2766//2766 2801//2801 2767//2767 +f 2766//2766 2799//2799 2801//2801 +f 2799//2799 2802//2802 2801//2801 +f 2799//2799 2803//2803 2802//2802 +f 2799//2799 2804//2804 2803//2803 +f 2799//2799 2800//2800 2804//2804 +f 2797//2797 2805//2805 2804//2804 +f 2797//2797 2798//2798 2805//2805 +f 2794//2794 2804//2804 2800//2800 +f 2794//2794 2797//2797 2804//2804 +f 2806//2806 2808//2808 2807//2807 +f 2806//2806 2809//2809 2808//2808 +f 2803//2803 2807//2807 2802//2802 +f 2803//2803 2806//2806 2807//2807 +f 2803//2803 2809//2809 2806//2806 +f 2803//2803 2804//2804 2809//2809 +f 2809//2809 2810//2810 2808//2808 +f 2809//2809 2811//2811 2810//2810 +f 2804//2804 2811//2811 2809//2809 +f 2804//2804 2805//2805 2811//2811 +f 2784//2784 2812//2812 2783//2783 +f 2784//2784 2813//2813 2812//2812 +f 2784//2784 2801//2801 2813//2813 +f 2784//2784 2767//2767 2801//2801 +f 2786//2786 2814//2814 2785//2785 +f 2786//2786 2815//2815 2814//2814 +f 2783//2783 2815//2815 2786//2786 +f 2783//2783 2812//2812 2815//2815 +f 2813//2813 2816//2816 2812//2812 +f 2813//2813 2817//2817 2816//2816 +f 2813//2813 2802//2802 2817//2817 +f 2813//2813 2801//2801 2802//2802 +f 2815//2815 2818//2818 2814//2814 +f 2815//2815 2819//2819 2818//2818 +f 2812//2812 2819//2819 2815//2815 +f 2812//2812 2816//2816 2819//2819 +f 2785//2785 2820//2820 2789//2789 +f 2785//2785 2814//2814 2820//2820 +f 2789//2789 2821//2821 2790//2790 +f 2789//2789 2820//2820 2821//2821 +f 2814//2814 2822//2822 2820//2820 +f 2814//2814 2818//2818 2822//2822 +f 2820//2820 2823//2823 2821//2821 +f 2820//2820 2822//2822 2823//2823 +f 2824//2824 2826//2826 2825//2825 +f 2824//2824 2807//2807 2826//2826 +f 2817//2817 2825//2825 2816//2816 +f 2817//2817 2824//2824 2825//2825 +f 2817//2817 2807//2807 2824//2824 +f 2817//2817 2802//2802 2807//2807 +f 2825//2825 2828//2828 2827//2827 +f 2825//2825 2826//2826 2828//2828 +f 2819//2819 2828//2828 2818//2818 +f 2819//2819 2827//2827 2828//2828 +f 2816//2816 2827//2827 2819//2819 +f 2816//2816 2825//2825 2827//2827 +f 2807//2807 2829//2829 2826//2826 +f 2807//2807 2808//2808 2829//2829 +f 2826//2826 2830//2830 2828//2828 +f 2826//2826 2829//2829 2830//2830 +f 2818//2818 2830//2830 2822//2822 +f 2818//2818 2828//2828 2830//2830 +f 2808//2808 2831//2831 2829//2829 +f 2808//2808 2810//2810 2831//2831 +f 2829//2829 2832//2832 2830//2830 +f 2829//2829 2831//2831 2832//2832 +f 2822//2822 2832//2832 2823//2823 +f 2822//2822 2830//2830 2832//2832 +f 2543//2543 2833//2833 2575//2575 +f 2543//2543 2776//2776 2833//2833 +f 2575//2575 2834//2834 2576//2576 +f 2575//2575 2833//2833 2834//2834 +f 2776//2776 2835//2835 2833//2833 +f 2776//2776 2778//2778 2835//2835 +f 2833//2833 2836//2836 2834//2834 +f 2833//2833 2835//2835 2836//2836 +f 2576//2576 2837//2837 2578//2578 +f 2576//2576 2834//2834 2837//2837 +f 2578//2578 2837//2837 2577//2577 +f 2834//2834 2836//2836 2837//2837 +f 2778//2778 2838//2838 2835//2835 +f 2778//2778 2788//2788 2838//2838 +f 2835//2835 2839//2839 2836//2836 +f 2835//2835 2838//2838 2839//2839 +f 2788//2788 2790//2790 2838//2838 +f 2836//2836 2839//2839 2837//2837 +f 2837//2837 2839//2839 2840//2840 +f 2837//2837 2841//2841 2577//2577 +f 2577//2577 2580//2580 2579//2579 +f 2577//2577 2841//2841 2580//2580 +f 2837//2837 2840//2840 2841//2841 +f 2841//2841 2842//2842 2580//2580 +f 2705//2705 2843//2843 2796//2796 +f 2705//2705 2738//2738 2843//2843 +f 2796//2796 2844//2844 2798//2798 +f 2796//2796 2843//2843 2844//2844 +f 2738//2738 2845//2845 2843//2843 +f 2738//2738 2740//2740 2845//2845 +f 2843//2843 2846//2846 2844//2844 +f 2843//2843 2845//2845 2846//2846 +f 2798//2798 2847//2847 2805//2805 +f 2798//2798 2844//2844 2847//2847 +f 2844//2844 2848//2848 2847//2847 +f 2844//2844 2846//2846 2848//2848 +f 2740//2740 2849//2849 2845//2845 +f 2740//2740 2743//2743 2849//2849 +f 2845//2845 2850//2850 2846//2846 +f 2845//2845 2849//2849 2850//2850 +f 2743//2743 2851//2851 2849//2849 +f 2743//2743 2742//2742 2851//2851 +f 2849//2849 2851//2851 2850//2850 +f 2846//2846 2852//2852 2848//2848 +f 2846//2846 2850//2850 2852//2852 +f 2811//2811 2853//2853 2810//2810 +f 2811//2811 2854//2854 2853//2853 +f 2805//2805 2854//2854 2811//2811 +f 2805//2805 2847//2847 2854//2854 +f 2854//2854 2855//2855 2853//2853 +f 2854//2854 2856//2856 2855//2855 +f 2847//2847 2856//2856 2854//2854 +f 2847//2847 2848//2848 2856//2856 +f 2856//2856 2857//2857 2855//2855 +f 2856//2856 2858//2858 2857//2857 +f 2848//2848 2858//2858 2856//2856 +f 2848//2848 2852//2852 2858//2858 +f 2790//2790 2859//2859 2838//2838 +f 2790//2790 2821//2821 2859//2859 +f 2838//2838 2859//2859 2839//2839 +f 2821//2821 2860//2860 2859//2859 +f 2821//2821 2823//2823 2860//2860 +f 2839//2839 2859//2859 2840//2840 +f 2859//2859 2861//2861 2840//2840 +f 2859//2859 2860//2860 2861//2861 +f 2810//2810 2862//2862 2831//2831 +f 2810//2810 2853//2853 2862//2862 +f 2831//2831 2863//2863 2832//2832 +f 2831//2831 2862//2862 2863//2863 +f 2823//2823 2863//2863 2860//2860 +f 2823//2823 2832//2832 2863//2863 +f 2853//2853 2864//2864 2862//2862 +f 2853//2853 2855//2855 2864//2864 +f 2862//2862 2865//2865 2863//2863 +f 2862//2862 2864//2864 2865//2865 +f 2860//2860 2863//2863 2865//2865 +f 2855//2855 2857//2857 2864//2864 +f 2860//2860 2865//2865 2861//2861 +f 2742//2742 2747//2747 2851//2851 +f 2851//2851 2866//2866 2850//2850 +f 2850//2850 2867//2867 2852//2852 +f 2850//2850 2866//2866 2867//2867 +f 2747//2747 2868//2868 2851//2851 +f 2851//2851 2868//2868 2866//2866 +f 2852//2852 2867//2867 2858//2858 +f 2858//2858 2869//2869 2857//2857 +f 2858//2858 2870//2870 2869//2869 +f 2867//2867 2870//2870 2858//2858 +f 2841//2841 2840//2840 2842//2842 +f 2840//2840 2861//2861 2842//2842 +f 2857//2857 2871//2871 2864//2864 +f 2864//2864 2871//2871 2865//2865 +f 2857//2857 2869//2869 2871//2871 +f 2871//2871 2872//2872 2865//2865 +f 2861//2861 2865//2865 2872//2872 +f 1187//1187 1188//1188 388//388 +f 1855//1855 388//388 2873//2873 +f 1855//1855 2873//2873 1856//1856 +f 388//388 1188//1188 2873//2873 +f 1190//1190 2874//2874 1188//1188 +f 1190//1190 1191//1191 2874//2874 +f 1188//1188 2874//2874 2873//2873 +f 1856//1856 2875//2875 1861//1861 +f 1856//1856 2873//2873 2875//2875 +f 1861//1861 2875//2875 2876//2876 +f 2875//2875 2873//2873 2876//2876 +f 2873//2873 2877//2877 2876//2876 +f 2873//2873 2874//2874 2877//2877 +f 2876//2876 2877//2877 2878//2878 +f 1201//1201 1203//1203 2879//2879 +f 1200//1200 1201//1201 2879//2879 +f 1204//1204 1202//1202 2880//2880 +f 1202//1202 1205//1205 2880//2880 +f 1191//1191 1199//1199 2874//2874 +f 1199//1199 1200//1200 2881//2881 +f 2874//2874 1199//1199 2882//2882 +f 1199//1199 2881//2881 2882//2882 +f 2879//2879 1203//1203 2883//2883 +f 1200//1200 2879//2879 2881//2881 +f 1203//1203 2884//2884 2883//2883 +f 1203//1203 1204//1204 2884//2884 +f 1204//1204 2880//2880 2884//2884 +f 2874//2874 2882//2882 2877//2877 +f 2879//2879 2883//2883 2885//2885 +f 2881//2881 2879//2879 2885//2885 +f 2884//2884 2880//2880 2886//2886 +f 2880//2880 2887//2887 2886//2886 +f 2877//2877 2882//2882 2888//2888 +f 2882//2882 2881//2881 2888//2888 +f 2885//2885 2883//2883 2889//2889 +f 2883//2883 2890//2890 2889//2889 +f 2883//2883 2884//2884 2890//2890 +f 2884//2884 2886//2886 2890//2890 +f 1861//1861 2876//2876 1892//1892 +f 1892//1892 2876//2876 2891//2891 +f 1892//1892 2892//2892 1893//1893 +f 1892//1892 2891//2891 2892//2892 +f 2891//2891 2893//2893 2892//2892 +f 2876//2876 2878//2878 2891//2891 +f 2878//2878 2894//2894 2891//2891 +f 2878//2878 2877//2877 2894//2894 +f 2894//2894 2877//2877 2895//2895 +f 2891//2891 2895//2895 2893//2893 +f 2891//2891 2894//2894 2895//2895 +f 1893//1893 2892//2892 1899//1899 +f 1899//1899 2892//2892 2897//2897 +f 1899//1899 2897//2897 1901//1901 +f 2892//2892 2898//2898 2897//2897 +f 2892//2892 2893//2893 2898//2898 +f 2893//2893 2895//2895 2899//2899 +f 2895//2895 2896//2896 2899//2899 +f 2899//2899 2896//2896 2900//2900 +f 2893//2893 2901//2901 2898//2898 +f 2893//2893 2899//2899 2901//2901 +f 2898//2898 2901//2901 2902//2902 +f 2899//2899 2903//2903 2901//2901 +f 2899//2899 2900//2900 2903//2903 +f 2900//2900 2904//2904 2903//2903 +f 2900//2900 2896//2896 2904//2904 +f 2901//2901 2905//2905 2902//2902 +f 2901//2901 2903//2903 2905//2905 +f 2903//2903 2906//2906 2905//2905 +f 2903//2903 2904//2904 2906//2906 +f 2888//2888 2881//2881 2907//2907 +f 2877//2877 2888//2888 2895//2895 +f 2885//2885 2889//2889 2908//2908 +f 2881//2881 2908//2908 2907//2907 +f 2881//2881 2885//2885 2908//2908 +f 2890//2890 2886//2886 2910//2910 +f 2886//2886 2909//2909 2910//2910 +f 2895//2895 2888//2888 2911//2911 +f 2888//2888 2907//2907 2911//2911 +f 2895//2895 2911//2911 2896//2896 +f 2911//2911 2907//2907 2912//2912 +f 2908//2908 2889//2889 2913//2913 +f 2889//2889 2914//2914 2913//2913 +f 2889//2889 2890//2890 2914//2914 +f 2907//2907 2908//2908 2912//2912 +f 2890//2890 2910//2910 2914//2914 +f 2910//2910 2909//2909 2915//2915 +f 2910//2910 2915//2915 2916//2916 +f 2908//2908 2913//2913 2917//2917 +f 2912//2912 2908//2908 2917//2917 +f 2913//2913 2914//2914 2918//2918 +f 2914//2914 2910//2910 2919//2919 +f 2910//2910 2920//2920 2919//2919 +f 2910//2910 2916//2916 2920//2920 +f 2914//2914 2921//2921 2918//2918 +f 2914//2914 2919//2919 2921//2921 +f 2919//2919 2922//2922 2921//2921 +f 2919//2919 2920//2920 2922//2922 +f 2896//2896 2923//2923 2904//2904 +f 2896//2896 2911//2911 2923//2923 +f 2911//2911 2924//2924 2923//2923 +f 2911//2911 2912//2912 2924//2924 +f 2904//2904 2925//2925 2906//2906 +f 2904//2904 2923//2923 2925//2925 +f 2923//2923 2926//2926 2925//2925 +f 2923//2923 2924//2924 2926//2926 +f 2917//2917 2928//2928 2927//2927 +f 2917//2917 2913//2913 2928//2928 +f 2912//2912 2927//2927 2924//2924 +f 2912//2912 2917//2917 2927//2927 +f 2913//2913 2929//2929 2928//2928 +f 2913//2913 2918//2918 2929//2929 +f 2927//2927 2931//2931 2930//2930 +f 2927//2927 2928//2928 2931//2931 +f 2924//2924 2930//2930 2926//2926 +f 2924//2924 2927//2927 2930//2930 +f 2928//2928 2932//2932 2931//2931 +f 2928//2928 2929//2929 2932//2932 +f 2918//2918 2933//2933 2929//2929 +f 2918//2918 2921//2921 2933//2933 +f 2921//2921 2934//2934 2933//2933 +f 2921//2921 2922//2922 2934//2934 +f 2929//2929 2935//2935 2932//2932 +f 2929//2929 2933//2933 2935//2935 +f 2933//2933 2936//2936 2935//2935 +f 2933//2933 2934//2934 2936//2936 +f 1205//1205 1231//1231 2937//2937 +f 1205//1205 2937//2937 2880//2880 +f 1231//1231 2938//2938 2937//2937 +f 1231//1231 1233//1233 2938//2938 +f 1233//1233 2939//2939 2938//2938 +f 1233//1233 2940//2940 2939//2939 +f 2938//2938 2939//2939 2941//2941 +f 2939//2939 2940//2940 2942//2942 +f 2939//2939 2942//2942 2943//2943 +f 2880//2880 2937//2937 2887//2887 +f 2937//2937 2938//2938 2887//2887 +f 2887//2887 2938//2938 2944//2944 +f 2886//2886 2887//2887 2946//2946 +f 2887//2887 2945//2945 2946//2946 +f 2887//2887 2947//2947 2945//2945 +f 2887//2887 2944//2944 2947//2947 +f 2947//2947 2948//2948 2945//2945 +f 2938//2938 2949//2949 2944//2944 +f 2938//2938 2941//2941 2949//2949 +f 2941//2941 2939//2939 2950//2950 +f 2939//2939 2951//2951 2950//2950 +f 2939//2939 2943//2943 2951//2951 +f 2941//2941 2952//2952 2949//2949 +f 2941//2941 2950//2950 2952//2952 +f 2950//2950 2953//2953 2952//2952 +f 2950//2950 2951//2951 2953//2953 +f 2944//2944 2954//2954 2947//2947 +f 2944//2944 2955//2955 2954//2954 +f 2944//2944 2949//2949 2955//2955 +f 2947//2947 2956//2956 2948//2948 +f 2947//2947 2954//2954 2956//2956 +f 2954//2954 2957//2957 2956//2956 +f 2954//2954 2955//2955 2957//2957 +f 2949//2949 2958//2958 2955//2955 +f 2949//2949 2952//2952 2958//2958 +f 2952//2952 2959//2959 2958//2958 +f 2952//2952 2953//2953 2959//2959 +f 2955//2955 2960//2960 2957//2957 +f 2955//2955 2958//2958 2960//2960 +f 2958//2958 2961//2961 2960//2960 +f 2958//2958 2959//2959 2961//2961 +f 1233//1233 1243//1243 2940//2940 +f 2940//2940 1243//1243 2962//2962 +f 1243//1243 1244//1244 2963//2963 +f 1244//1244 2964//2964 2963//2963 +f 1244//1244 1245//1245 2964//2964 +f 1243//1243 2965//2965 2962//2962 +f 1243//1243 2963//2963 2965//2965 +f 2963//2963 2966//2966 2965//2965 +f 2963//2963 2964//2964 2966//2966 +f 2940//2940 2967//2967 2942//2942 +f 2940//2940 2968//2968 2967//2967 +f 2940//2940 2962//2962 2968//2968 +f 2942//2942 2969//2969 2943//2943 +f 2942//2942 2967//2967 2969//2969 +f 2967//2967 2970//2970 2969//2969 +f 2967//2967 2968//2968 2970//2970 +f 2962//2962 2971//2971 2968//2968 +f 2962//2962 2965//2965 2971//2971 +f 2965//2965 2972//2972 2971//2971 +f 2965//2965 2966//2966 2972//2972 +f 2968//2968 2973//2973 2970//2970 +f 2968//2968 2971//2971 2973//2973 +f 2971//2971 2974//2974 2973//2973 +f 2971//2971 2972//2972 2974//2974 +f 1245//1245 2975//2975 2964//2964 +f 1245//1245 1254//1254 2975//2975 +f 1254//1254 2976//2976 2975//2975 +f 1254//1254 1255//1255 2976//2976 +f 2964//2964 2977//2977 2966//2966 +f 2964//2964 2975//2975 2977//2977 +f 2975//2975 2978//2978 2977//2977 +f 2975//2975 2976//2976 2978//2978 +f 1255//1255 2979//2979 2976//2976 +f 1255//1255 1258//1258 2979//2979 +f 1258//1258 2980//2980 2979//2979 +f 1258//1258 1259//1259 2980//2980 +f 2976//2976 2981//2981 2978//2978 +f 2976//2976 2979//2979 2981//2981 +f 2979//2979 2982//2982 2981//2981 +f 2979//2979 2980//2980 2982//2982 +f 2966//2966 2983//2983 2972//2972 +f 2966//2966 2977//2977 2983//2983 +f 2977//2977 2984//2984 2983//2983 +f 2977//2977 2978//2978 2984//2984 +f 2972//2972 2985//2985 2974//2974 +f 2972//2972 2983//2983 2985//2985 +f 2983//2983 2986//2986 2985//2985 +f 2983//2983 2984//2984 2986//2986 +f 2978//2978 2987//2987 2984//2984 +f 2978//2978 2981//2981 2987//2987 +f 2981//2981 2988//2988 2987//2987 +f 2981//2981 2982//2982 2988//2988 +f 2984//2984 2989//2989 2986//2986 +f 2984//2984 2987//2987 2989//2989 +f 2987//2987 2990//2990 2989//2989 +f 2987//2987 2988//2988 2990//2990 +f 2943//2943 2991//2991 2951//2951 +f 2943//2943 2969//2969 2991//2991 +f 2969//2969 2992//2992 2991//2991 +f 2969//2969 2970//2970 2992//2992 +f 2951//2951 2993//2993 2953//2953 +f 2951//2951 2991//2991 2993//2993 +f 2991//2991 2994//2994 2993//2993 +f 2991//2991 2992//2992 2994//2994 +f 2970//2970 2995//2995 2992//2992 +f 2970//2970 2973//2973 2995//2995 +f 2973//2973 2996//2996 2995//2995 +f 2973//2973 2974//2974 2996//2996 +f 2992//2992 2997//2997 2994//2994 +f 2992//2992 2995//2995 2997//2997 +f 2995//2995 2998//2998 2997//2997 +f 2995//2995 2996//2996 2998//2998 +f 2953//2953 2999//2999 2959//2959 +f 2953//2953 2993//2993 2999//2999 +f 2993//2993 3000//3000 2999//2999 +f 2993//2993 2994//2994 3000//3000 +f 2959//2959 3001//3001 2961//2961 +f 2959//2959 2999//2999 3001//3001 +f 2999//2999 3002//3002 3001//3001 +f 2999//2999 3000//3000 3002//3002 +f 2994//2994 3003//3003 3000//3000 +f 2994//2994 2997//2997 3003//3003 +f 2997//2997 3004//3004 3003//3003 +f 2997//2997 2998//2998 3004//3004 +f 3000//3000 3005//3005 3002//3002 +f 3000//3000 3003//3003 3005//3005 +f 3003//3003 3006//3006 3005//3005 +f 3003//3003 3004//3004 3006//3006 +f 2974//2974 3007//3007 2996//2996 +f 2974//2974 2985//2985 3007//3007 +f 2985//2985 3008//3008 3007//3007 +f 2985//2985 2986//2986 3008//3008 +f 2996//2996 3009//3009 2998//2998 +f 2996//2996 3007//3007 3009//3009 +f 3007//3007 3010//3010 3009//3009 +f 3007//3007 3008//3008 3010//3010 +f 2986//2986 3011//3011 3008//3008 +f 2986//2986 2989//2989 3011//3011 +f 2989//2989 2990//2990 3011//3011 +f 3008//3008 3011//3011 3010//3010 +f 3011//3011 2990//2990 3010//3010 +f 2998//2998 3012//3012 3004//3004 +f 2998//2998 3009//3009 3012//3012 +f 3009//3009 3010//3010 3012//3012 +f 3004//3004 3012//3012 3006//3006 +f 3010//3010 2990//2990 3013//3013 +f 3012//3012 3010//3010 3013//3013 +f 2886//2886 2946//2946 2909//2909 +f 2946//2946 3014//3014 2909//2909 +f 2945//2945 3015//3015 2946//2946 +f 2945//2945 3016//3016 3015//3015 +f 2945//2945 2948//2948 3016//3016 +f 2946//2946 3017//3017 3014//3014 +f 2946//2946 3015//3015 3017//3017 +f 3015//3015 3018//3018 3017//3017 +f 3015//3015 3016//3016 3018//3018 +f 2909//2909 3019//3019 2915//2915 +f 2909//2909 3020//3020 3019//3019 +f 2909//2909 3014//3014 3020//3020 +f 2915//2915 3021//3021 2916//2916 +f 2915//2915 3019//3019 3021//3021 +f 3019//3019 3022//3022 3021//3021 +f 3019//3019 3020//3020 3022//3022 +f 3014//3014 3023//3023 3020//3020 +f 3014//3014 3017//3017 3023//3023 +f 3017//3017 3024//3024 3023//3023 +f 3017//3017 3018//3018 3024//3024 +f 3020//3020 3025//3025 3022//3022 +f 3020//3020 3023//3023 3025//3025 +f 3023//3023 3026//3026 3025//3025 +f 3023//3023 3024//3024 3026//3026 +f 2948//2948 3027//3027 3016//3016 +f 2948//2948 2956//2956 3027//3027 +f 2956//2956 3028//3028 3027//3027 +f 2956//2956 2957//2957 3028//3028 +f 3016//3016 3029//3029 3018//3018 +f 3016//3016 3027//3027 3029//3029 +f 3027//3027 3030//3030 3029//3029 +f 3027//3027 3028//3028 3030//3030 +f 2957//2957 3031//3031 3028//3028 +f 2957//2957 2960//2960 3031//3031 +f 2960//2960 3032//3032 3031//3031 +f 2960//2960 2961//2961 3032//3032 +f 3028//3028 3033//3033 3030//3030 +f 3028//3028 3031//3031 3033//3033 +f 3031//3031 3034//3034 3033//3033 +f 3031//3031 3032//3032 3034//3034 +f 3018//3018 3035//3035 3024//3024 +f 3018//3018 3029//3029 3035//3035 +f 3029//3029 3036//3036 3035//3035 +f 3029//3029 3030//3030 3036//3036 +f 3024//3024 3037//3037 3026//3026 +f 3024//3024 3035//3035 3037//3037 +f 3035//3035 3038//3038 3037//3037 +f 3035//3035 3036//3036 3038//3038 +f 3030//3030 3039//3039 3036//3036 +f 3030//3030 3033//3033 3039//3039 +f 3033//3033 3040//3040 3039//3039 +f 3033//3033 3034//3034 3040//3040 +f 3036//3036 3041//3041 3038//3038 +f 3036//3036 3039//3039 3041//3041 +f 3039//3039 3042//3042 3041//3041 +f 3039//3039 3040//3040 3042//3042 +f 2916//2916 3043//3043 2920//2920 +f 2916//2916 3021//3021 3043//3043 +f 3021//3021 3044//3044 3043//3043 +f 3021//3021 3022//3022 3044//3044 +f 2920//2920 3045//3045 2922//2922 +f 2920//2920 3043//3043 3045//3045 +f 3043//3043 3046//3046 3045//3045 +f 3043//3043 3044//3044 3046//3046 +f 3022//3022 3047//3047 3044//3044 +f 3022//3022 3025//3025 3047//3047 +f 3025//3025 3048//3048 3047//3047 +f 3025//3025 3026//3026 3048//3048 +f 3044//3044 3049//3049 3046//3046 +f 3044//3044 3047//3047 3049//3049 +f 3047//3047 3050//3050 3049//3049 +f 3047//3047 3048//3048 3050//3050 +f 2922//2922 3051//3051 2934//2934 +f 2922//2922 3045//3045 3051//3051 +f 3045//3045 3052//3052 3051//3051 +f 3045//3045 3046//3046 3052//3052 +f 2934//2934 3053//3053 2936//2936 +f 2934//2934 3051//3051 3053//3053 +f 3051//3051 3054//3054 3053//3053 +f 3051//3051 3052//3052 3054//3054 +f 3046//3046 3055//3055 3052//3052 +f 3046//3046 3049//3049 3055//3055 +f 3049//3049 3056//3056 3055//3055 +f 3049//3049 3050//3050 3056//3056 +f 3052//3052 3057//3057 3054//3054 +f 3052//3052 3055//3055 3057//3057 +f 3055//3055 3058//3058 3057//3057 +f 3055//3055 3056//3056 3058//3058 +f 3026//3026 3059//3059 3048//3048 +f 3026//3026 3037//3037 3059//3059 +f 3037//3037 3060//3060 3059//3059 +f 3037//3037 3038//3038 3060//3060 +f 3048//3048 3061//3061 3050//3050 +f 3048//3048 3059//3059 3061//3061 +f 3059//3059 3062//3062 3061//3061 +f 3059//3059 3060//3060 3062//3062 +f 3038//3038 3063//3063 3060//3060 +f 3038//3038 3041//3041 3063//3063 +f 3041//3041 3042//3042 3063//3063 +f 3060//3060 3063//3063 3062//3062 +f 3050//3050 3064//3064 3056//3056 +f 3050//3050 3061//3061 3064//3064 +f 3061//3061 3065//3065 3064//3064 +f 3061//3061 3062//3062 3065//3065 +f 3056//3056 3065//3065 3058//3058 +f 3056//3056 3064//3064 3065//3065 +f 3062//3062 3063//3063 3066//3066 +f 3062//3062 3066//3066 3065//3065 +f 2961//2961 3067//3067 3032//3032 +f 2961//2961 3001//3001 3067//3067 +f 3001//3001 3068//3068 3067//3067 +f 3001//3001 3002//3002 3068//3068 +f 3032//3032 3069//3069 3034//3034 +f 3032//3032 3067//3067 3069//3069 +f 3067//3067 3070//3070 3069//3069 +f 3067//3067 3068//3068 3070//3070 +f 3002//3002 3071//3071 3068//3068 +f 3002//3002 3005//3005 3071//3071 +f 3005//3005 3006//3006 3071//3071 +f 3068//3068 3071//3071 3070//3070 +f 3034//3034 3072//3072 3040//3040 +f 3034//3034 3069//3069 3072//3072 +f 3069//3069 3070//3070 3072//3072 +f 3040//3040 3072//3072 3042//3042 +f 3072//3072 3073//3073 3042//3042 +f 3072//3072 3070//3070 3073//3073 +f 3070//3070 3071//3071 3073//3073 +f 3006//3006 3012//3012 3013//3013 +f 3006//3006 3013//3013 3071//3071 +f 3013//3013 3075//3075 3071//3071 +f 3071//3071 3074//3074 3073//3073 +f 3071//3071 3075//3075 3074//3074 +f 3074//3074 3075//3075 3076//3076 +f 3075//3075 3077//3077 3076//3076 +f 3042//3042 3073//3073 3063//3063 +f 3073//3073 3074//3074 3078//3078 +f 3063//3063 3078//3078 3066//3066 +f 3063//3063 3073//3073 3078//3078 +f 3074//3074 3076//3076 3078//3078 +f 3078//3078 3076//3076 3079//3079 +f 3076//3076 3080//3080 3079//3079 +f 1901//1901 2897//2897 3081//3081 +f 2897//2897 3082//3082 3081//3081 +f 2897//2897 2898//2898 3082//3082 +f 1901//1901 3081//3081 2052//2052 +f 2052//2052 3083//3083 2053//2053 +f 3081//3081 3082//3082 3084//3084 +f 2052//2052 3081//3081 3083//3083 +f 3081//3081 3085//3085 3083//3083 +f 3081//3081 3084//3084 3085//3085 +f 2898//2898 3087//3087 3086//3086 +f 2898//2898 2902//2902 3087//3087 +f 2898//2898 3088//3088 3082//3082 +f 2898//2898 3086//3086 3088//3088 +f 3086//3086 3089//3089 3088//3088 +f 3086//3086 3087//3087 3089//3089 +f 2902//2902 3090//3090 3087//3087 +f 2902//2902 2905//2905 3090//3090 +f 2905//2905 3091//3091 3090//3090 +f 2905//2905 2906//2906 3091//3091 +f 3087//3087 3092//3092 3089//3089 +f 3087//3087 3090//3090 3092//3092 +f 3090//3090 3093//3093 3092//3092 +f 3090//3090 3091//3091 3093//3093 +f 3082//3082 3094//3094 3084//3084 +f 3082//3082 3088//3088 3094//3094 +f 3088//3088 3095//3095 3094//3094 +f 3088//3088 3089//3089 3095//3095 +f 3084//3084 3096//3096 3085//3085 +f 3084//3084 3094//3094 3096//3096 +f 3094//3094 3097//3097 3096//3096 +f 3094//3094 3095//3095 3097//3097 +f 3089//3089 3098//3098 3095//3095 +f 3089//3089 3092//3092 3098//3098 +f 3092//3092 3099//3099 3098//3098 +f 3092//3092 3093//3093 3099//3099 +f 3095//3095 3100//3100 3097//3097 +f 3095//3095 3098//3098 3100//3100 +f 3098//3098 3101//3101 3100//3100 +f 3098//3098 3099//3099 3101//3101 +f 2053//2053 3083//3083 2100//2100 +f 3083//3083 3102//3102 2100//2100 +f 3083//3083 3103//3103 3102//3102 +f 3083//3083 3085//3085 3103//3103 +f 2105//2105 3104//3104 2104//2104 +f 2105//2105 3105//3105 3104//3104 +f 2100//2100 3105//3105 2105//2105 +f 2100//2100 3102//3102 3105//3105 +f 2104//2104 3106//3106 2106//2106 +f 2104//2104 3104//3104 3106//3106 +f 3105//3105 3107//3107 3104//3104 +f 3102//3102 3107//3107 3105//3105 +f 3102//3102 3103//3103 3107//3107 +f 2106//2106 3106//3106 2107//2107 +f 3108//3108 3110//3110 3109//3109 +f 3108//3108 3111//3111 3110//3110 +f 3108//3108 3112//3112 3111//3111 +f 3108//3108 3113//3113 3112//3112 +f 3108//3108 3114//3114 3113//3113 +f 3108//3108 3109//3109 3114//3114 +f 3111//3111 3100//3100 3110//3110 +f 3111//3111 3097//3097 3100//3100 +f 3111//3111 3115//3115 3097//3097 +f 3111//3111 3112//3112 3115//3115 +f 3109//3109 3117//3117 3116//3116 +f 3109//3109 3110//3110 3117//3117 +f 3109//3109 3118//3118 3114//3114 +f 3109//3109 3116//3116 3118//3118 +f 3110//3110 3101//3101 3117//3117 +f 3110//3110 3100//3100 3101//3101 +f 3119//3119 3121//3121 3120//3120 +f 3119//3119 3122//3122 3121//3121 +f 3113//3113 3120//3120 3112//3112 +f 3113//3113 3119//3119 3120//3120 +f 3113//3113 3122//3122 3119//3119 +f 3113//3113 3114//3114 3122//3122 +f 3120//3120 3124//3124 3123//3123 +f 3120//3120 3121//3121 3124//3124 +f 3112//3112 3123//3123 3115//3115 +f 3112//3112 3120//3120 3123//3123 +f 3122//3122 3125//3125 3121//3121 +f 3122//3122 3126//3126 3125//3125 +f 3114//3114 3126//3126 3122//3122 +f 3114//3114 3118//3118 3126//3126 +f 3121//3121 3127//3127 3124//3124 +f 3121//3121 3125//3125 3127//3127 +f 3085//3085 3128//3128 3103//3103 +f 3085//3085 3096//3096 3128//3128 +f 3096//3096 3115//3115 3128//3128 +f 3096//3096 3097//3097 3115//3115 +f 3107//3107 3129//3129 3104//3104 +f 3107//3107 3130//3130 3129//3129 +f 3103//3103 3130//3130 3107//3107 +f 3103//3103 3128//3128 3130//3130 +f 3104//3104 3131//3131 3106//3106 +f 3104//3104 3129//3129 3131//3131 +f 3130//3130 3132//3132 3129//3129 +f 3130//3130 3123//3123 3132//3132 +f 3128//3128 3123//3123 3130//3130 +f 3128//3128 3115//3115 3123//3123 +f 3129//3129 3133//3133 3131//3131 +f 3129//3129 3132//3132 3133//3133 +f 3131//3131 3133//3133 3134//3134 +f 3123//3123 3135//3135 3132//3132 +f 3123//3123 3124//3124 3135//3135 +f 3132//3132 3136//3136 3133//3133 +f 3132//3132 3135//3135 3136//3136 +f 3124//3124 3137//3137 3135//3135 +f 3124//3124 3127//3127 3137//3137 +f 3135//3135 3138//3138 3136//3136 +f 3135//3135 3137//3137 3138//3138 +f 3133//3133 3139//3139 3134//3134 +f 3133//3133 3136//3136 3139//3139 +f 3134//3134 3139//3139 3140//3140 +f 3136//3136 3141//3141 3139//3139 +f 3136//3136 3138//3138 3141//3141 +f 3139//3139 3141//3141 3140//3140 +f 3142//3142 3144//3144 3143//3143 +f 3142//3142 3145//3145 3144//3144 +f 3142//3142 3146//3146 3145//3145 +f 3142//3142 3147//3147 3146//3146 +f 3142//3142 3148//3148 3147//3147 +f 3142//3142 3143//3143 3148//3148 +f 3145//3145 3149//3149 3144//3144 +f 3145//3145 3091//3091 3149//3149 +f 3145//3145 3093//3093 3091//3091 +f 3145//3145 3146//3146 3093//3093 +f 3143//3143 3151//3151 3150//3150 +f 3143//3143 3144//3144 3151//3151 +f 3143//3143 3152//3152 3148//3148 +f 3143//3143 3150//3150 3152//3152 +f 3144//3144 3153//3153 3151//3151 +f 3144//3144 3149//3149 3153//3153 +f 3154//3154 3156//3156 3155//3155 +f 3154//3154 3157//3157 3156//3156 +f 3150//3150 3157//3157 3154//3154 +f 3150//3150 3151//3151 3157//3157 +f 3150//3150 3155//3155 3152//3152 +f 3150//3150 3154//3154 3155//3155 +f 3157//3157 3158//3158 3156//3156 +f 3157//3157 3159//3159 3158//3158 +f 3151//3151 3159//3159 3157//3157 +f 3151//3151 3153//3153 3159//3159 +f 3147//3147 3160//3160 3146//3146 +f 3147//3147 3161//3161 3160//3160 +f 3147//3147 3162//3162 3161//3161 +f 3147//3147 3148//3148 3162//3162 +f 3146//3146 3099//3099 3093//3093 +f 3146//3146 3160//3160 3099//3099 +f 3148//3148 3163//3163 3162//3162 +f 3148//3148 3152//3152 3163//3163 +f 3161//3161 3117//3117 3160//3160 +f 3161//3161 3116//3116 3117//3117 +f 3161//3161 3164//3164 3116//3116 +f 3161//3161 3162//3162 3164//3164 +f 3160//3160 3101//3101 3099//3099 +f 3160//3160 3117//3117 3101//3101 +f 3162//3162 3165//3165 3164//3164 +f 3162//3162 3163//3163 3165//3165 +f 3155//3155 3167//3167 3166//3166 +f 3155//3155 3156//3156 3167//3167 +f 3152//3152 3166//3166 3163//3163 +f 3152//3152 3155//3155 3166//3166 +f 3156//3156 3168//3168 3167//3167 +f 3156//3156 3158//3158 3168//3168 +f 3166//3166 3170//3170 3169//3169 +f 3166//3166 3167//3167 3170//3170 +f 3163//3163 3169//3169 3165//3165 +f 3163//3163 3166//3166 3169//3169 +f 3167//3167 3171//3171 3170//3170 +f 3167//3167 3168//3168 3171//3171 +f 2906//2906 3149//3149 3091//3091 +f 2906//2906 2925//2925 3149//3149 +f 2925//2925 3153//3153 3149//3149 +f 2925//2925 2926//2926 3153//3153 +f 2930//2930 3172//3172 3159//3159 +f 2930//2930 2931//2931 3172//3172 +f 2926//2926 3159//3159 3153//3153 +f 2926//2926 2930//2930 3159//3159 +f 2931//2931 3173//3173 3172//3172 +f 2931//2931 2932//2932 3173//3173 +f 3159//3159 3174//3174 3158//3158 +f 3159//3159 3172//3172 3174//3174 +f 3172//3172 3175//3175 3174//3174 +f 3172//3172 3173//3173 3175//3175 +f 2932//2932 3176//3176 3173//3173 +f 2932//2932 2935//2935 3176//3176 +f 2935//2935 3177//3177 3176//3176 +f 2935//2935 2936//2936 3177//3177 +f 3173//3173 3178//3178 3175//3175 +f 3173//3173 3176//3176 3178//3178 +f 3176//3176 3179//3179 3178//3178 +f 3176//3176 3177//3177 3179//3179 +f 3158//3158 3180//3180 3168//3168 +f 3158//3158 3174//3174 3180//3180 +f 3174//3174 3181//3181 3180//3180 +f 3174//3174 3175//3175 3181//3181 +f 3168//3168 3182//3182 3171//3171 +f 3168//3168 3180//3180 3182//3182 +f 3180//3180 3183//3183 3182//3182 +f 3180//3180 3181//3181 3183//3183 +f 3175//3175 3184//3184 3181//3181 +f 3175//3175 3178//3178 3184//3184 +f 3178//3178 3185//3185 3184//3184 +f 3178//3178 3179//3179 3185//3185 +f 3181//3181 3186//3186 3183//3183 +f 3181//3181 3184//3184 3186//3186 +f 3184//3184 3187//3187 3186//3186 +f 3184//3184 3185//3185 3187//3187 +f 3116//3116 3188//3188 3118//3118 +f 3116//3116 3164//3164 3188//3188 +f 3164//3164 3189//3189 3188//3188 +f 3164//3164 3165//3165 3189//3189 +f 3126//3126 3190//3190 3125//3125 +f 3126//3126 3191//3191 3190//3190 +f 3118//3118 3191//3191 3126//3126 +f 3118//3118 3188//3188 3191//3191 +f 3125//3125 3192//3192 3127//3127 +f 3125//3125 3190//3190 3192//3192 +f 3191//3191 3193//3193 3190//3190 +f 3191//3191 3194//3194 3193//3193 +f 3189//3189 3193//3193 3194//3194 +f 3189//3189 3195//3195 3193//3193 +f 3188//3188 3194//3194 3191//3191 +f 3188//3188 3189//3189 3194//3194 +f 3190//3190 3196//3196 3192//3192 +f 3190//3190 3193//3193 3196//3196 +f 3195//3195 3196//3196 3193//3193 +f 3195//3195 3197//3197 3196//3196 +f 3189//3189 3198//3198 3195//3195 +f 3189//3189 3199//3199 3198//3198 +f 3169//3169 3198//3198 3199//3199 +f 3169//3169 3170//3170 3198//3198 +f 3165//3165 3199//3199 3189//3189 +f 3165//3165 3169//3169 3199//3199 +f 3195//3195 3200//3200 3197//3197 +f 3195//3195 3198//3198 3200//3200 +f 3170//3170 3200//3200 3198//3198 +f 3170//3170 3171//3171 3200//3200 +f 3127//3127 3201//3201 3137//3137 +f 3127//3127 3192//3192 3201//3201 +f 3137//3137 3202//3202 3138//3138 +f 3137//3137 3201//3201 3202//3202 +f 3192//3192 3203//3203 3201//3201 +f 3192//3192 3196//3196 3203//3203 +f 3197//3197 3203//3203 3196//3196 +f 3197//3197 3204//3204 3203//3203 +f 3201//3201 3205//3205 3202//3202 +f 3201//3201 3203//3203 3205//3205 +f 3204//3204 3205//3205 3203//3203 +f 3204//3204 3206//3206 3205//3205 +f 3138//3138 3207//3207 3141//3141 +f 3138//3138 3202//3202 3207//3207 +f 3202//3202 3208//3208 3207//3207 +f 3202//3202 3205//3205 3208//3208 +f 3206//3206 3208//3208 3205//3205 +f 3206//3206 3209//3209 3208//3208 +f 3207//3207 3208//3208 3210//3210 +f 3209//3209 3210//3210 3208//3208 +f 3209//3209 3211//3211 3210//3210 +f 3197//3197 3212//3212 3204//3204 +f 3197//3197 3200//3200 3212//3212 +f 3171//3171 3212//3212 3200//3200 +f 3171//3171 3182//3182 3212//3212 +f 3204//3204 3213//3213 3206//3206 +f 3204//3204 3212//3212 3213//3213 +f 3182//3182 3213//3213 3212//3212 +f 3182//3182 3183//3183 3213//3213 +f 3206//3206 3214//3214 3209//3209 +f 3206//3206 3213//3213 3214//3214 +f 3183//3183 3214//3214 3213//3213 +f 3183//3183 3186//3186 3214//3214 +f 3209//3209 3214//3214 3211//3211 +f 3186//3186 3187//3187 3214//3214 +f 2265//2265 3215//3215 2268//2268 +f 2268//2268 3215//3215 2269//2269 +f 2107//2107 3217//3217 2265//2265 +f 2107//2107 3106//3106 3217//3217 +f 2265//2265 3217//3217 3216//3216 +f 2265//2265 3216//3216 3215//3215 +f 2269//2269 3215//3215 2278//2278 +f 2278//2278 3218//3218 2279//2279 +f 2278//2278 3215//3215 3218//3218 +f 2279//2279 3219//3219 2282//2282 +f 2279//2279 3218//3218 3219//3219 +f 2282//2282 3220//3220 2283//2283 +f 2282//2282 3219//3219 3220//3220 +f 3218//3218 3220//3220 3219//3219 +f 3218//3218 3215//3215 3220//3220 +f 3215//3215 3216//3216 3222//3222 +f 3215//3215 3222//3222 3221//3221 +f 3215//3215 3221//3221 3220//3220 +f 3106//3106 3223//3223 3217//3217 +f 3106//3106 3131//3131 3223//3223 +f 3217//3217 3223//3223 3224//3224 +f 3131//3131 3134//3134 3223//3223 +f 3223//3223 3225//3225 3224//3224 +f 3217//3217 3226//3226 3216//3216 +f 3217//3217 3224//3224 3226//3226 +f 3216//3216 3226//3226 3222//3222 +f 3224//3224 3227//3227 3226//3226 +f 3224//3224 3225//3225 3227//3227 +f 3226//3226 3228//3228 3222//3222 +f 3226//3226 3227//3227 3228//3228 +f 3134//3134 3140//3140 3223//3223 +f 3223//3223 3229//3229 3225//3225 +f 3223//3223 3140//3140 3229//3229 +f 3140//3140 3141//3141 3230//3230 +f 3140//3140 3231//3231 3229//3229 +f 3140//3140 3230//3230 3231//3231 +f 3225//3225 3232//3232 3227//3227 +f 3225//3225 3229//3229 3232//3232 +f 3227//3227 3233//3233 3228//3228 +f 3227//3227 3232//3232 3233//3233 +f 3229//3229 3234//3234 3232//3232 +f 3229//3229 3231//3231 3234//3234 +f 3232//3232 3235//3235 3233//3233 +f 3232//3232 3234//3234 3235//3235 +f 3222//3222 3228//3228 3236//3236 +f 3222//3222 3237//3237 3221//3221 +f 3222//3222 3236//3236 3237//3237 +f 3237//3237 3236//3236 3238//3238 +f 3228//3228 3239//3239 3236//3236 +f 3228//3228 3233//3233 3239//3239 +f 3233//3233 3240//3240 3239//3239 +f 3233//3233 3235//3235 3240//3240 +f 3239//3239 3240//3240 3241//3241 +f 3236//3236 3242//3242 3238//3238 +f 3236//3236 3239//3239 3242//3242 +f 3239//3239 3241//3241 3243//3243 +f 3239//3239 3243//3243 3242//3242 +f 2283//2283 3244//3244 2313//2313 +f 2283//2283 3220//3220 3244//3244 +f 2313//2313 3245//3245 2314//2314 +f 2313//2313 3244//3244 3245//3245 +f 3220//3220 3246//3246 3244//3244 +f 3244//3244 3247//3247 3245//3245 +f 3244//3244 3246//3246 3247//3247 +f 2314//2314 3245//3245 2317//2317 +f 2317//2317 3248//3248 2318//2318 +f 3245//3245 3247//3247 2317//2317 +f 2317//2317 3249//3249 3248//3248 +f 2317//2317 3247//3247 3249//3249 +f 3220//3220 3221//3221 3246//3246 +f 3246//3246 3221//3221 3250//3250 +f 3247//3247 3246//3246 3250//3250 +f 3247//3247 3251//3251 3249//3249 +f 3247//3247 3250//3250 3251//3251 +f 2318//2318 3252//3252 2324//2324 +f 2318//2318 3248//3248 3252//3252 +f 2324//2324 3253//3253 2325//2325 +f 2324//2324 3252//3252 3253//3253 +f 3248//3248 3254//3254 3252//3252 +f 3248//3248 3249//3249 3254//3254 +f 3252//3252 3255//3255 3253//3253 +f 3252//3252 3254//3254 3255//3255 +f 2325//2325 3256//3256 2327//2327 +f 2325//2325 3253//3253 3256//3256 +f 2327//2327 3257//3257 2328//2328 +f 2327//2327 3256//3256 3257//3257 +f 3253//3253 3258//3258 3256//3256 +f 3253//3253 3255//3255 3258//3258 +f 3256//3256 3259//3259 3257//3257 +f 3256//3256 3258//3258 3259//3259 +f 3249//3249 3251//3251 3254//3254 +f 3254//3254 3260//3260 3255//3255 +f 3254//3254 3251//3251 3260//3260 +f 3255//3255 3261//3261 3258//3258 +f 3255//3255 3260//3260 3261//3261 +f 3258//3258 3262//3262 3259//3259 +f 3258//3258 3261//3261 3262//3262 +f 3260//3260 3263//3263 3261//3261 +f 3261//3261 3263//3263 3262//3262 +f 3221//3221 3237//3237 3250//3250 +f 3237//3237 3238//3238 3250//3250 +f 3250//3250 3238//3238 3264//3264 +f 3242//3242 3243//3243 3265//3265 +f 3238//3238 3242//3242 3266//3266 +f 3238//3238 3266//3266 3264//3264 +f 3242//3242 3267//3267 3266//3266 +f 3242//3242 3265//3265 3267//3267 +f 3251//3251 3250//3250 3260//3260 +f 3260//3260 3250//3250 3268//3268 +f 3250//3250 3264//3264 3268//3268 +f 3260//3260 3268//3268 3263//3263 +f 3268//3268 3264//3264 3269//3269 +f 3266//3266 3267//3267 3270//3270 +f 3264//3264 3266//3266 3271//3271 +f 3264//3264 3271//3271 3269//3269 +f 3266//3266 3270//3270 3271//3271 +f 2936//2936 3272//3272 3177//3177 +f 2936//2936 3053//3053 3272//3272 +f 3053//3053 3273//3273 3272//3272 +f 3053//3053 3054//3054 3273//3273 +f 3177//3177 3274//3274 3179//3179 +f 3177//3177 3272//3272 3274//3274 +f 3272//3272 3275//3275 3274//3274 +f 3272//3272 3273//3273 3275//3275 +f 3054//3054 3276//3276 3273//3273 +f 3054//3054 3057//3057 3276//3276 +f 3057//3057 3277//3277 3276//3276 +f 3057//3057 3058//3058 3277//3277 +f 3273//3273 3278//3278 3275//3275 +f 3273//3273 3276//3276 3278//3278 +f 3276//3276 3279//3279 3278//3278 +f 3276//3276 3277//3277 3279//3279 +f 3179//3179 3280//3280 3185//3185 +f 3179//3179 3274//3274 3280//3280 +f 3274//3274 3281//3281 3280//3280 +f 3274//3274 3275//3275 3281//3281 +f 3185//3185 3282//3282 3187//3187 +f 3185//3185 3280//3280 3282//3282 +f 3280//3280 3283//3283 3282//3282 +f 3280//3280 3281//3281 3283//3283 +f 3275//3275 3284//3284 3281//3281 +f 3275//3275 3278//3278 3284//3284 +f 3278//3278 3285//3285 3284//3284 +f 3278//3278 3279//3279 3285//3285 +f 3281//3281 3286//3286 3283//3283 +f 3281//3281 3284//3284 3286//3286 +f 3284//3284 3287//3287 3286//3286 +f 3284//3284 3285//3285 3287//3287 +f 3058//3058 3288//3288 3277//3277 +f 3058//3058 3065//3065 3288//3288 +f 3065//3065 3289//3289 3288//3288 +f 3277//3277 3290//3290 3279//3279 +f 3277//3277 3288//3288 3290//3290 +f 3288//3288 3291//3291 3290//3290 +f 3288//3288 3289//3289 3291//3291 +f 3065//3065 3066//3066 3289//3289 +f 3289//3289 3292//3292 3291//3291 +f 3289//3289 3293//3293 3292//3292 +f 3279//3279 3294//3294 3285//3285 +f 3279//3279 3290//3290 3294//3294 +f 3290//3290 3295//3295 3294//3294 +f 3290//3290 3291//3291 3295//3295 +f 3285//3285 3296//3296 3287//3287 +f 3285//3285 3294//3294 3296//3296 +f 3294//3294 3297//3297 3296//3296 +f 3294//3294 3295//3295 3297//3297 +f 3291//3291 3298//3298 3295//3295 +f 3291//3291 3292//3292 3298//3298 +f 3292//3292 3299//3299 3298//3298 +f 3292//3292 3293//3293 3299//3299 +f 3295//3295 3300//3300 3297//3297 +f 3295//3295 3298//3298 3300//3300 +f 3298//3298 3301//3301 3300//3300 +f 3298//3298 3299//3299 3301//3301 +f 3141//3141 3302//3302 3230//3230 +f 3141//3141 3207//3207 3302//3302 +f 3230//3230 3303//3303 3231//3231 +f 3230//3230 3302//3302 3303//3303 +f 3207//3207 3304//3304 3302//3302 +f 3207//3207 3210//3210 3304//3304 +f 3211//3211 3304//3304 3210//3210 +f 3211//3211 3305//3305 3304//3304 +f 3302//3302 3306//3306 3303//3303 +f 3302//3302 3304//3304 3306//3306 +f 3305//3305 3306//3306 3304//3304 +f 3305//3305 3307//3307 3306//3306 +f 3231//3231 3308//3308 3234//3234 +f 3231//3231 3303//3303 3308//3308 +f 3234//3234 3309//3309 3235//3235 +f 3234//3234 3308//3308 3309//3309 +f 3303//3303 3310//3310 3308//3308 +f 3303//3303 3306//3306 3310//3310 +f 3307//3307 3310//3310 3306//3306 +f 3307//3307 3311//3311 3310//3310 +f 3308//3308 3312//3312 3309//3309 +f 3308//3308 3310//3310 3312//3312 +f 3311//3311 3312//3312 3310//3310 +f 3311//3311 3313//3313 3312//3312 +f 3211//3211 3314//3314 3305//3305 +f 3211//3211 3214//3214 3314//3314 +f 3187//3187 3314//3314 3214//3214 +f 3187//3187 3282//3282 3314//3314 +f 3305//3305 3315//3315 3307//3307 +f 3305//3305 3314//3314 3315//3315 +f 3282//3282 3315//3315 3314//3314 +f 3282//3282 3283//3283 3315//3315 +f 3307//3307 3316//3316 3311//3311 +f 3307//3307 3315//3315 3316//3316 +f 3283//3283 3316//3316 3315//3315 +f 3283//3283 3286//3286 3316//3316 +f 3311//3311 3317//3317 3313//3313 +f 3311//3311 3316//3316 3317//3317 +f 3286//3286 3317//3317 3316//3316 +f 3286//3286 3287//3287 3317//3317 +f 3235//3235 3318//3318 3240//3240 +f 3235//3235 3309//3309 3318//3318 +f 3240//3240 3319//3319 3241//3241 +f 3240//3240 3318//3318 3319//3319 +f 3309//3309 3320//3320 3318//3318 +f 3309//3309 3312//3312 3320//3320 +f 3313//3313 3320//3320 3312//3312 +f 3313//3313 3321//3321 3320//3320 +f 3318//3318 3322//3322 3319//3319 +f 3318//3318 3320//3320 3322//3322 +f 3321//3321 3322//3322 3320//3320 +f 3321//3321 3323//3323 3322//3322 +f 3241//3241 3324//3324 3243//3243 +f 3241//3241 3319//3319 3324//3324 +f 3243//3243 3324//3324 3325//3325 +f 3319//3319 3326//3326 3324//3324 +f 3319//3319 3322//3322 3326//3326 +f 3323//3323 3326//3326 3322//3322 +f 3323//3323 3327//3327 3326//3326 +f 3324//3324 3328//3328 3325//3325 +f 3324//3324 3326//3326 3328//3328 +f 3327//3327 3328//3328 3326//3326 +f 3327//3327 3329//3329 3328//3328 +f 3313//3313 3330//3330 3321//3321 +f 3313//3313 3317//3317 3330//3330 +f 3287//3287 3330//3330 3317//3317 +f 3287//3287 3296//3296 3330//3330 +f 3321//3321 3331//3331 3323//3323 +f 3321//3321 3330//3330 3331//3331 +f 3296//3296 3331//3331 3330//3330 +f 3296//3296 3297//3297 3331//3331 +f 3323//3323 3332//3332 3327//3327 +f 3323//3323 3331//3331 3332//3332 +f 3297//3297 3332//3332 3331//3331 +f 3297//3297 3300//3300 3332//3332 +f 3327//3327 3333//3333 3329//3329 +f 3327//3327 3332//3332 3333//3333 +f 3300//3300 3333//3333 3332//3332 +f 3300//3300 3301//3301 3333//3333 +f 3289//3289 3066//3066 3293//3293 +f 3066//3066 3334//3334 3293//3293 +f 3078//3078 3079//3079 3066//3066 +f 3066//3066 3335//3335 3334//3334 +f 3066//3066 3079//3079 3335//3335 +f 3293//3293 3336//3336 3299//3299 +f 3293//3293 3334//3334 3336//3336 +f 3299//3299 3337//3337 3301//3301 +f 3299//3299 3336//3336 3337//3337 +f 3336//3336 3338//3338 3337//3337 +f 3334//3334 3339//3339 3336//3336 +f 3334//3334 3340//3340 3339//3339 +f 3334//3334 3335//3335 3340//3340 +f 3336//3336 3341//3341 3338//3338 +f 3336//3336 3339//3339 3341//3341 +f 3339//3339 3342//3342 3341//3341 +f 3339//3339 3340//3340 3342//3342 +f 3079//3079 3343//3343 3335//3335 +f 3079//3079 3080//3080 3343//3343 +f 3080//3080 3344//3344 3343//3343 +f 3335//3335 3345//3345 3340//3340 +f 3335//3335 3346//3346 3345//3345 +f 3335//3335 3343//3343 3346//3346 +f 3340//3340 3347//3347 3342//3342 +f 3340//3340 3345//3345 3347//3347 +f 3345//3345 3348//3348 3347//3347 +f 3345//3345 3346//3346 3348//3348 +f 3343//3343 3349//3349 3346//3346 +f 3343//3343 3350//3350 3349//3349 +f 3343//3343 3344//3344 3350//3350 +f 3346//3346 3351//3351 3348//3348 +f 3346//3346 3349//3349 3351//3351 +f 3349//3349 3352//3352 3351//3351 +f 3349//3349 3350//3350 3352//3352 +f 3243//3243 3353//3353 3265//3265 +f 3243//3243 3325//3325 3353//3353 +f 3265//3265 3353//3353 3354//3354 +f 3325//3325 3355//3355 3353//3353 +f 3325//3325 3328//3328 3355//3355 +f 3329//3329 3355//3355 3328//3328 +f 3329//3329 3356//3356 3355//3355 +f 3353//3353 3357//3357 3354//3354 +f 3353//3353 3355//3355 3357//3357 +f 3356//3356 3357//3357 3355//3355 +f 3356//3356 3358//3358 3357//3357 +f 3265//3265 3359//3359 3267//3267 +f 3265//3265 3354//3354 3359//3359 +f 3267//3267 3359//3359 3360//3360 +f 3354//3354 3361//3361 3359//3359 +f 3354//3354 3357//3357 3361//3361 +f 3358//3358 3361//3361 3357//3357 +f 3358//3358 3362//3362 3361//3361 +f 3359//3359 3363//3363 3360//3360 +f 3359//3359 3361//3361 3363//3363 +f 3362//3362 3363//3363 3361//3361 +f 3362//3362 3364//3364 3363//3363 +f 3329//3329 3365//3365 3356//3356 +f 3329//3329 3333//3333 3365//3365 +f 3301//3301 3365//3365 3333//3333 +f 3301//3301 3337//3337 3365//3365 +f 3356//3356 3366//3366 3358//3358 +f 3356//3356 3365//3365 3366//3366 +f 3337//3337 3366//3366 3365//3365 +f 3337//3337 3338//3338 3366//3366 +f 3358//3358 3367//3367 3362//3362 +f 3358//3358 3366//3366 3367//3367 +f 3338//3338 3367//3367 3366//3366 +f 3338//3338 3341//3341 3367//3367 +f 3362//3362 3368//3368 3364//3364 +f 3362//3362 3367//3367 3368//3368 +f 3341//3341 3368//3368 3367//3367 +f 3341//3341 3342//3342 3368//3368 +f 3267//3267 3369//3369 3270//3270 +f 3267//3267 3360//3360 3369//3369 +f 3270//3270 3369//3369 3370//3370 +f 3360//3360 3371//3371 3369//3369 +f 3360//3360 3363//3363 3371//3371 +f 3364//3364 3371//3371 3363//3363 +f 3364//3364 3372//3372 3371//3371 +f 3369//3369 3373//3373 3370//3370 +f 3369//3369 3371//3371 3373//3373 +f 3372//3372 3373//3373 3371//3371 +f 3372//3372 3374//3374 3373//3373 +f 3270//3270 3370//3370 3375//3375 +f 3270//3270 3375//3375 3376//3376 +f 3370//3370 3377//3377 3375//3375 +f 3370//3370 3373//3373 3377//3377 +f 3374//3374 3377//3377 3373//3373 +f 3374//3374 3378//3378 3377//3377 +f 3375//3375 3379//3379 3376//3376 +f 3375//3375 3377//3377 3379//3379 +f 3378//3378 3379//3379 3377//3377 +f 3378//3378 3380//3380 3379//3379 +f 3364//3364 3381//3381 3372//3372 +f 3364//3364 3368//3368 3381//3381 +f 3342//3342 3381//3381 3368//3368 +f 3342//3342 3347//3347 3381//3381 +f 3372//3372 3382//3382 3374//3374 +f 3372//3372 3381//3381 3382//3382 +f 3347//3347 3382//3382 3381//3381 +f 3347//3347 3348//3348 3382//3382 +f 3374//3374 3383//3383 3378//3378 +f 3374//3374 3382//3382 3383//3383 +f 3348//3348 3383//3383 3382//3382 +f 3348//3348 3351//3351 3383//3383 +f 3378//3378 3384//3384 3380//3380 +f 3378//3378 3383//3383 3384//3384 +f 3351//3351 3384//3384 3383//3383 +f 3351//3351 3352//3352 3384//3384 +f 1259//1259 3385//3385 2980//2980 +f 1259//1259 1668//1668 3385//3385 +f 1668//1668 3386//3386 3385//3385 +f 1668//1668 1669//1669 3386//3386 +f 2980//2980 3387//3387 2982//2982 +f 2980//2980 3385//3385 3387//3387 +f 3385//3385 3388//3388 3387//3387 +f 3385//3385 3386//3386 3388//3388 +f 1669//1669 3389//3389 3386//3386 +f 1669//1669 1672//1672 3389//3389 +f 1672//1672 1673//1673 3389//3389 +f 3386//3386 3389//3389 3388//3388 +f 3389//3389 1673//1673 3390//3390 +f 2982//2982 3391//3391 2988//2988 +f 2982//2982 3387//3387 3391//3391 +f 3387//3387 3388//3388 3391//3391 +f 2988//2988 3391//3391 2990//2990 +f 3391//3391 3392//3392 2990//2990 +f 3391//3391 3388//3388 3392//3392 +f 3389//3389 3390//3390 3388//3388 +f 3388//3388 3390//3390 3392//3392 +f 1680//1680 1681//1681 1673//1673 +f 1673//1673 1681//1681 3393//3393 +f 1673//1673 3393//3393 3390//3390 +f 2990//2990 3395//3395 3013//3013 +f 2990//2990 3392//3392 3395//3395 +f 3392//3392 3394//3394 3395//3395 +f 3392//3392 3390//3390 3394//3394 +f 3390//3390 3396//3396 3394//3394 +f 3390//3390 3393//3393 3396//3396 +f 3393//3393 3397//3397 3396//3396 +f 3394//3394 3396//3396 3398//3398 +f 1681//1681 1696//1696 3397//3397 +f 1696//1696 3399//3399 3397//3397 +f 1681//1681 3397//3397 3393//3393 +f 1696//1696 1695//1695 3399//3399 +f 1695//1695 3400//3400 3399//3399 +f 1695//1695 1697//1697 3400//3400 +f 3397//3397 3401//3401 3396//3396 +f 3397//3397 3399//3399 3401//3401 +f 3396//3396 3402//3402 3398//3398 +f 3396//3396 3401//3401 3402//3402 +f 3401//3401 3403//3403 3402//3402 +f 3399//3399 3404//3404 3401//3401 +f 3399//3399 3400//3400 3404//3404 +f 3400//3400 3405//3405 3404//3404 +f 3401//3401 3404//3404 3403//3403 +f 3404//3404 3405//3405 3406//3406 +f 3404//3404 3406//3406 3403//3403 +f 3395//3395 3407//3407 3013//3013 +f 3013//3013 3407//3407 3075//3075 +f 3395//3395 3394//3394 3407//3407 +f 3075//3075 3407//3407 3077//3077 +f 3394//3394 3398//3398 3407//3407 +f 3407//3407 3398//3398 3410//3410 +f 3407//3407 3410//3410 3408//3408 +f 3398//3398 3409//3409 3410//3410 +f 3077//3077 3407//3407 3408//3408 +f 3076//3076 3077//3077 3080//3080 +f 3080//3080 3077//3077 3411//3411 +f 3077//3077 3408//3408 3412//3412 +f 3077//3077 3412//3412 3411//3411 +f 3408//3408 3410//3410 3413//3413 +f 3410//3410 3409//3409 3413//3413 +f 3408//3408 3414//3414 3412//3412 +f 3408//3408 3413//3413 3414//3414 +f 3414//3414 3413//3413 3415//3415 +f 3413//3413 3416//3416 3415//3415 +f 3398//3398 3402//3402 3409//3409 +f 3402//3402 3403//3403 3417//3417 +f 3409//3409 3402//3402 3418//3418 +f 3402//3402 3417//3417 3418//3418 +f 3417//3417 3419//3419 3418//3418 +f 3403//3403 3420//3420 3417//3417 +f 3403//3403 3406//3406 3420//3420 +f 3417//3417 3420//3420 3419//3419 +f 3409//3409 3418//3418 3413//3413 +f 3413//3413 3418//3418 3416//3416 +f 3418//3418 3419//3419 3416//3416 +f 3419//3419 3421//3421 3416//3416 +f 3419//3419 3420//3420 3422//3422 +f 3420//3420 3423//3423 3422//3422 +f 3419//3419 3422//3422 3421//3421 +f 3422//3422 3423//3423 3424//3424 +f 844//844 3425//3425 1794//1794 +f 844//844 2439//2439 3425//3425 +f 1794//1794 3425//3425 1795//1795 +f 2439//2439 3426//3426 3425//3425 +f 2439//2439 2441//2441 3426//3426 +f 3425//3425 3427//3427 1795//1795 +f 3425//3425 3426//3426 3427//3427 +f 1795//1795 3428//3428 1792//1792 +f 1795//1795 3427//3427 3428//3428 +f 2441//2441 3427//3427 3426//3426 +f 2441//2441 2447//2447 3427//3427 +f 2447//2447 2449//2449 3427//3427 +f 1792//1792 3428//3428 1798//1798 +f 1798//1798 3428//3428 3429//3429 +f 1798//1798 3430//3430 1800//1800 +f 1798//1798 3429//3429 3430//3430 +f 3429//3429 3431//3431 3430//3430 +f 2449//2449 2475//2475 3427//3427 +f 3427//3427 3432//3432 3428//3428 +f 3427//3427 2475//2475 3432//3432 +f 2475//2475 3433//3433 3432//3432 +f 3428//3428 3434//3434 3429//3429 +f 3428//3428 3432//3432 3434//3434 +f 3429//3429 3434//3434 3431//3431 +f 3432//3432 3433//3433 3434//3434 +f 3434//3434 3435//3435 3431//3431 +f 3433//3433 3436//3436 3434//3434 +f 3434//3434 3436//3436 3435//3435 +f 1812//1812 3437//3437 1805//1805 +f 1697//1697 1813//1813 3400//3400 +f 1815//1815 1811//1811 3438//3438 +f 1805//1805 3438//3438 1811//1811 +f 1805//1805 3437//3437 3438//3438 +f 1812//1812 3439//3439 3437//3437 +f 1813//1813 1814//1814 3440//3440 +f 1814//1814 1815//1815 3441//3441 +f 1815//1815 3438//3438 3441//3441 +f 1814//1814 3441//3441 3440//3440 +f 1812//1812 1819//1819 3442//3442 +f 1819//1819 3443//3443 3442//3442 +f 1819//1819 1820//1820 3443//3443 +f 1800//1800 3443//3443 1820//1820 +f 1800//1800 3430//3430 3443//3443 +f 3442//3442 3443//3443 3444//3444 +f 3430//3430 3444//3444 3443//3443 +f 1812//1812 3445//3445 3439//3439 +f 1812//1812 3442//3442 3445//3445 +f 3442//3442 3444//3444 3445//3445 +f 3430//3430 3431//3431 3444//3444 +f 3445//3445 3444//3444 3446//3446 +f 3431//3431 3446//3446 3444//3444 +f 3439//3439 3447//3447 3437//3437 +f 3439//3439 3448//3448 3447//3447 +f 3400//3400 1813//1813 3405//3405 +f 1813//1813 3440//3440 3405//3405 +f 3441//3441 3438//3438 3449//3449 +f 3437//3437 3449//3449 3438//3438 +f 3437//3437 3447//3447 3449//3449 +f 3448//3448 3450//3450 3447//3447 +f 3448//3448 3451//3451 3450//3450 +f 3451//3451 3452//3452 3450//3450 +f 3440//3440 3441//3441 3453//3453 +f 3441//3441 3454//3454 3453//3453 +f 3441//3441 3449//3449 3454//3454 +f 3447//3447 3454//3454 3449//3449 +f 3447//3447 3450//3450 3454//3454 +f 3453//3453 3454//3454 3455//3455 +f 3450//3450 3455//3455 3454//3454 +f 3450//3450 3452//3452 3455//3455 +f 3439//3439 3445//3445 3448//3448 +f 3448//3448 3456//3456 3451//3451 +f 3448//3448 3445//3445 3456//3456 +f 3445//3445 3446//3446 3456//3456 +f 3431//3431 3435//3435 3446//3446 +f 3451//3451 3456//3456 3457//3457 +f 3456//3456 3446//3446 3457//3457 +f 2561//2561 2564//2564 2475//2475 +f 2475//2475 2564//2564 3458//3458 +f 2475//2475 3458//3458 3433//3433 +f 2564//2564 3459//3459 3458//3458 +f 3433//3433 3458//3458 3436//3436 +f 3436//3436 3460//3460 3435//3435 +f 3436//3436 3461//3461 3460//3460 +f 3436//3436 3458//3458 3461//3461 +f 2564//2564 2579//2579 3462//3462 +f 2564//2564 3462//3462 3459//3459 +f 2579//2579 2580//2580 3462//3462 +f 3462//3462 2580//2580 3463//3463 +f 3462//3462 3463//3463 3459//3459 +f 3459//3459 3463//3463 3464//3464 +f 3458//3458 3459//3459 3461//3461 +f 3461//3461 3465//3465 3460//3460 +f 3459//3459 3464//3464 3461//3461 +f 3461//3461 3464//3464 3466//3466 +f 3461//3461 3466//3466 3465//3465 +f 3451//3451 3467//3467 3452//3452 +f 3406//3406 3405//3405 3468//3468 +f 3405//3405 3469//3469 3468//3468 +f 3405//3405 3440//3440 3469//3469 +f 3406//3406 3468//3468 3420//3420 +f 3440//3440 3453//3453 3469//3469 +f 3467//3467 3470//3470 3452//3452 +f 3467//3467 3471//3471 3470//3470 +f 3469//3469 3453//3453 3472//3472 +f 3453//3453 3455//3455 3472//3472 +f 3472//3472 3455//3455 3473//3473 +f 3452//3452 3473//3473 3455//3455 +f 3452//3452 3470//3470 3473//3473 +f 3451//3451 3457//3457 3467//3467 +f 3457//3457 3446//3446 3474//3474 +f 3435//3435 3474//3474 3446//3446 +f 3435//3435 3460//3460 3474//3474 +f 3457//3457 3474//3474 3475//3475 +f 3460//3460 3475//3475 3474//3474 +f 3467//3467 3457//3457 3471//3471 +f 3420//3420 3468//3468 3423//3423 +f 3468//3468 3469//3469 3423//3423 +f 3471//3471 3476//3476 3470//3470 +f 3471//3471 3477//3477 3476//3476 +f 3423//3423 3469//3469 3478//3478 +f 3469//3469 3479//3479 3478//3478 +f 3469//3469 3472//3472 3479//3479 +f 3472//3472 3473//3473 3479//3479 +f 3470//3470 3476//3476 3473//3473 +f 3479//3479 3473//3473 3480//3480 +f 3476//3476 3480//3480 3473//3473 +f 3471//3471 3457//3457 3481//3481 +f 3457//3457 3475//3475 3481//3481 +f 3460//3460 3465//3465 3475//3475 +f 3471//3471 3482//3482 3477//3477 +f 3471//3471 3481//3481 3482//3482 +f 3481//3481 3483//3483 3482//3482 +f 3481//3481 3475//3475 3483//3483 +f 3465//3465 3483//3483 3475//3475 +f 2328//2328 3484//3484 2725//2725 +f 2328//2328 3257//3257 3484//3484 +f 2725//2725 3485//3485 2724//2724 +f 2725//2725 3484//3484 3485//3485 +f 3257//3257 3486//3486 3484//3484 +f 3257//3257 3259//3259 3486//3486 +f 3484//3484 3487//3487 3485//3485 +f 3484//3484 3486//3486 3487//3487 +f 2724//2724 3488//3488 2726//2726 +f 2724//2724 3485//3485 3488//3488 +f 2726//2726 3488//3488 2727//2727 +f 3485//3485 3489//3489 3488//3488 +f 3485//3485 3487//3487 3489//3489 +f 3488//3488 3490//3490 2727//2727 +f 3488//3488 3489//3489 3490//3490 +f 3259//3259 3491//3491 3486//3486 +f 3259//3259 3262//3262 3491//3491 +f 3486//3486 3492//3492 3487//3487 +f 3486//3486 3491//3491 3492//3492 +f 3262//3262 3493//3493 3491//3491 +f 3262//3262 3263//3263 3493//3493 +f 3491//3491 3494//3494 3492//3492 +f 3491//3491 3493//3493 3494//3494 +f 3487//3487 3495//3495 3489//3489 +f 3487//3487 3492//3492 3495//3495 +f 3489//3489 3496//3496 3490//3490 +f 3489//3489 3495//3495 3496//3496 +f 3492//3492 3497//3497 3495//3495 +f 3492//3492 3494//3494 3497//3497 +f 3495//3495 3498//3498 3496//3496 +f 3495//3495 3497//3497 3498//3498 +f 2727//2727 3499//3499 2730//2730 +f 2727//2727 3500//3500 3499//3499 +f 2727//2727 3490//3490 3500//3500 +f 3499//3499 3501//3501 2730//2730 +f 3499//3499 3500//3500 3501//3501 +f 2730//2730 3501//3501 3502//3502 +f 2730//2730 3503//3503 2731//2731 +f 2730//2730 3502//3502 3503//3503 +f 3490//3490 3504//3504 3500//3500 +f 3490//3490 3496//3496 3504//3504 +f 3500//3500 3505//3505 3501//3501 +f 3500//3500 3504//3504 3505//3505 +f 3496//3496 3506//3506 3504//3504 +f 3496//3496 3498//3498 3506//3506 +f 3504//3504 3507//3507 3505//3505 +f 3504//3504 3506//3506 3507//3507 +f 3501//3501 3508//3508 3502//3502 +f 3501//3501 3505//3505 3508//3508 +f 3502//3502 3509//3509 3503//3503 +f 3502//3502 3508//3508 3509//3509 +f 3505//3505 3510//3510 3508//3508 +f 3505//3505 3507//3507 3510//3510 +f 3508//3508 3511//3511 3509//3509 +f 3508//3508 3510//3510 3511//3511 +f 3263//3263 3512//3512 3493//3493 +f 3263//3263 3268//3268 3512//3512 +f 3493//3493 3512//3512 3494//3494 +f 3268//3268 3269//3269 3512//3512 +f 3494//3494 3512//3512 3497//3497 +f 3497//3497 3513//3513 3498//3498 +f 3497//3497 3512//3512 3513//3513 +f 3512//3512 3269//3269 3513//3513 +f 3271//3271 3270//3270 3514//3514 +f 3269//3269 3271//3271 3515//3515 +f 3271//3271 3514//3514 3516//3516 +f 3271//3271 3516//3516 3515//3515 +f 3498//3498 3517//3517 3506//3506 +f 3498//3498 3513//3513 3517//3517 +f 3506//3506 3518//3518 3507//3507 +f 3506//3506 3517//3517 3518//3518 +f 3513//3513 3519//3519 3517//3517 +f 3513//3513 3269//3269 3519//3519 +f 3517//3517 3519//3519 3518//3518 +f 3507//3507 3520//3520 3510//3510 +f 3507//3507 3518//3518 3520//3520 +f 3518//3518 3521//3521 3520//3520 +f 3518//3518 3519//3519 3521//3521 +f 3269//3269 3515//3515 3519//3519 +f 3515//3515 3516//3516 3522//3522 +f 3519//3519 3523//3523 3521//3521 +f 3519//3519 3515//3515 3523//3523 +f 3521//3521 3523//3523 3520//3520 +f 3515//3515 3522//3522 3523//3523 +f 2731//2731 3524//3524 2744//2744 +f 2744//2744 3524//3524 2746//2746 +f 3524//3524 3525//3525 2746//2746 +f 3503//3503 3526//3526 2731//2731 +f 3503//3503 3509//3509 3526//3526 +f 2731//2731 3526//3526 3524//3524 +f 3509//3509 3527//3527 3526//3526 +f 3509//3509 3511//3511 3527//3527 +f 3526//3526 3528//3528 3524//3524 +f 3526//3526 3527//3527 3528//3528 +f 3524//3524 3529//3529 3525//3525 +f 3524//3524 3530//3530 3529//3529 +f 3524//3524 3528//3528 3530//3530 +f 3529//3529 3531//3531 3525//3525 +f 3529//3529 3530//3530 3531//3531 +f 2746//2746 3532//3532 2747//2747 +f 2746//2746 3525//3525 3532//3532 +f 3525//3525 3533//3533 3532//3532 +f 3525//3525 3531//3531 3534//3534 +f 3525//3525 3534//3534 3533//3533 +f 3532//3532 3533//3533 3535//3535 +f 3511//3511 3536//3536 3527//3527 +f 3511//3511 3510//3510 3536//3536 +f 3527//3527 3537//3537 3528//3528 +f 3527//3527 3536//3536 3537//3537 +f 3510//3510 3538//3538 3536//3536 +f 3510//3510 3520//3520 3538//3538 +f 3536//3536 3539//3539 3537//3537 +f 3536//3536 3538//3538 3539//3539 +f 3528//3528 3540//3540 3530//3530 +f 3528//3528 3537//3537 3540//3540 +f 3530//3530 3541//3541 3531//3531 +f 3530//3530 3540//3540 3541//3541 +f 3537//3537 3542//3542 3540//3540 +f 3537//3537 3539//3539 3542//3542 +f 3540//3540 3543//3543 3541//3541 +f 3540//3540 3542//3542 3543//3543 +f 3520//3520 3523//3523 3538//3538 +f 3538//3538 3544//3544 3539//3539 +f 3538//3538 3523//3523 3544//3544 +f 3523//3523 3522//3522 3545//3545 +f 3523//3523 3546//3546 3544//3544 +f 3523//3523 3545//3545 3546//3546 +f 3539//3539 3547//3547 3542//3542 +f 3539//3539 3544//3544 3547//3547 +f 3542//3542 3548//3548 3543//3543 +f 3542//3542 3547//3547 3548//3548 +f 3544//3544 3549//3549 3547//3547 +f 3544//3544 3546//3546 3549//3549 +f 3547//3547 3550//3550 3548//3548 +f 3547//3547 3549//3549 3550//3550 +f 3531//3531 3551//3551 3534//3534 +f 3531//3531 3541//3541 3551//3551 +f 3534//3534 3552//3552 3533//3533 +f 3534//3534 3551//3551 3552//3552 +f 3541//3541 3553//3553 3551//3551 +f 3541//3541 3543//3543 3553//3553 +f 3551//3551 3554//3554 3552//3552 +f 3551//3551 3553//3553 3554//3554 +f 3533//3533 3552//3552 3555//3555 +f 3533//3533 3556//3556 3535//3535 +f 3533//3533 3555//3555 3556//3556 +f 3552//3552 3557//3557 3555//3555 +f 3552//3552 3554//3554 3557//3557 +f 3555//3555 3558//3558 3556//3556 +f 3555//3555 3557//3557 3558//3558 +f 3543//3543 3559//3559 3553//3553 +f 3543//3543 3548//3548 3559//3559 +f 3553//3553 3560//3560 3554//3554 +f 3553//3553 3559//3559 3560//3560 +f 3548//3548 3561//3561 3559//3559 +f 3548//3548 3550//3550 3561//3561 +f 3559//3559 3562//3562 3560//3560 +f 3559//3559 3561//3561 3562//3562 +f 3554//3554 3563//3563 3557//3557 +f 3554//3554 3560//3560 3563//3563 +f 3557//3557 3564//3564 3558//3558 +f 3557//3557 3563//3563 3564//3564 +f 3560//3560 3565//3565 3563//3563 +f 3560//3560 3562//3562 3565//3565 +f 3563//3563 3566//3566 3564//3564 +f 3563//3563 3565//3565 3566//3566 +f 3080//3080 3411//3411 3344//3344 +f 3411//3411 3567//3567 3344//3344 +f 3411//3411 3568//3568 3567//3567 +f 3411//3411 3412//3412 3568//3568 +f 3344//3344 3569//3569 3350//3350 +f 3344//3344 3570//3570 3569//3569 +f 3344//3344 3567//3567 3570//3570 +f 3350//3350 3571//3571 3352//3352 +f 3350//3350 3569//3569 3571//3571 +f 3569//3569 3572//3572 3571//3571 +f 3569//3569 3570//3570 3572//3572 +f 3567//3567 3573//3573 3570//3570 +f 3567//3567 3574//3574 3573//3573 +f 3567//3567 3568//3568 3574//3574 +f 3570//3570 3575//3575 3572//3572 +f 3570//3570 3573//3573 3575//3575 +f 3573//3573 3576//3576 3575//3575 +f 3573//3573 3574//3574 3576//3576 +f 3412//3412 3577//3577 3568//3568 +f 3412//3412 3414//3414 3577//3577 +f 3414//3414 3415//3415 3577//3577 +f 3415//3415 3416//3416 3578//3578 +f 3568//3568 3579//3579 3574//3574 +f 3568//3568 3577//3577 3579//3579 +f 3577//3577 3580//3580 3579//3579 +f 3577//3577 3415//3415 3580//3580 +f 3574//3574 3581//3581 3576//3576 +f 3574//3574 3579//3579 3581//3581 +f 3579//3579 3582//3582 3581//3581 +f 3579//3579 3580//3580 3582//3582 +f 3415//3415 3583//3583 3580//3580 +f 3415//3415 3578//3578 3583//3583 +f 3578//3578 3584//3584 3583//3583 +f 3580//3580 3585//3585 3582//3582 +f 3580//3580 3583//3583 3585//3585 +f 3583//3583 3586//3586 3585//3585 +f 3583//3583 3584//3584 3586//3586 +f 3270//3270 3587//3587 3514//3514 +f 3270//3270 3376//3376 3587//3587 +f 3514//3514 3587//3587 3588//3588 +f 3376//3376 3589//3589 3587//3587 +f 3376//3376 3379//3379 3589//3589 +f 3380//3380 3589//3589 3379//3379 +f 3380//3380 3590//3590 3589//3589 +f 3587//3587 3591//3591 3588//3588 +f 3587//3587 3589//3589 3591//3591 +f 3590//3590 3591//3591 3589//3589 +f 3590//3590 3592//3592 3591//3591 +f 3514//3514 3593//3593 3516//3516 +f 3514//3514 3588//3588 3593//3593 +f 3516//3516 3593//3593 3594//3594 +f 3588//3588 3595//3595 3593//3593 +f 3588//3588 3591//3591 3595//3595 +f 3592//3592 3595//3595 3591//3591 +f 3592//3592 3596//3596 3595//3595 +f 3593//3593 3597//3597 3594//3594 +f 3593//3593 3595//3595 3597//3597 +f 3596//3596 3597//3597 3595//3595 +f 3596//3596 3598//3598 3597//3597 +f 3380//3380 3599//3599 3590//3590 +f 3380//3380 3384//3384 3599//3599 +f 3352//3352 3599//3599 3384//3384 +f 3352//3352 3571//3571 3599//3599 +f 3590//3590 3600//3600 3592//3592 +f 3590//3590 3599//3599 3600//3600 +f 3571//3571 3600//3600 3599//3599 +f 3571//3571 3572//3572 3600//3600 +f 3592//3592 3601//3601 3596//3596 +f 3592//3592 3600//3600 3601//3601 +f 3572//3572 3601//3601 3600//3600 +f 3572//3572 3575//3575 3601//3601 +f 3596//3596 3602//3602 3598//3598 +f 3596//3596 3601//3601 3602//3602 +f 3575//3575 3602//3602 3601//3601 +f 3575//3575 3576//3576 3602//3602 +f 3516//3516 3594//3594 3603//3603 +f 3516//3516 3604//3604 3522//3522 +f 3516//3516 3603//3603 3604//3604 +f 3594//3594 3605//3605 3603//3603 +f 3594//3594 3597//3597 3605//3605 +f 3598//3598 3605//3605 3597//3597 +f 3598//3598 3606//3606 3605//3605 +f 3603//3603 3607//3607 3604//3604 +f 3603//3603 3605//3605 3607//3607 +f 3606//3606 3607//3607 3605//3605 +f 3606//3606 3608//3608 3607//3607 +f 3522//3522 3604//3604 3609//3609 +f 3522//3522 3609//3609 3610//3610 +f 3604//3604 3611//3611 3609//3609 +f 3604//3604 3607//3607 3611//3611 +f 3608//3608 3611//3611 3607//3607 +f 3608//3608 3612//3612 3611//3611 +f 3609//3609 3613//3613 3610//3610 +f 3609//3609 3611//3611 3613//3613 +f 3612//3612 3613//3613 3611//3611 +f 3612//3612 3614//3614 3613//3613 +f 3598//3598 3615//3615 3606//3606 +f 3598//3598 3602//3602 3615//3615 +f 3576//3576 3615//3615 3602//3602 +f 3576//3576 3581//3581 3615//3615 +f 3606//3606 3616//3616 3608//3608 +f 3606//3606 3615//3615 3616//3616 +f 3581//3581 3616//3616 3615//3615 +f 3581//3581 3582//3582 3616//3616 +f 3608//3608 3617//3617 3612//3612 +f 3608//3608 3616//3616 3617//3617 +f 3582//3582 3617//3617 3616//3616 +f 3582//3582 3585//3585 3617//3617 +f 3612//3612 3618//3618 3614//3614 +f 3612//3612 3617//3617 3618//3618 +f 3585//3585 3618//3618 3617//3617 +f 3585//3585 3586//3586 3618//3618 +f 3416//3416 3421//3421 3578//3578 +f 3584//3584 3619//3619 3586//3586 +f 3584//3584 3620//3620 3619//3619 +f 3578//3578 3621//3621 3584//3584 +f 3578//3578 3421//3421 3621//3621 +f 3584//3584 3622//3622 3620//3620 +f 3584//3584 3621//3621 3622//3622 +f 3621//3621 3623//3623 3622//3622 +f 3421//3421 3422//3422 3624//3624 +f 3422//3422 3424//3424 3624//3624 +f 3424//3424 3625//3625 3624//3624 +f 3421//3421 3624//3624 3621//3621 +f 3621//3621 3626//3626 3623//3623 +f 3621//3621 3627//3627 3626//3626 +f 3624//3624 3628//3628 3621//3621 +f 3621//3621 3629//3629 3627//3627 +f 3621//3621 3628//3628 3629//3629 +f 3628//3628 3630//3630 3629//3629 +f 3522//3522 3631//3631 3545//3545 +f 3522//3522 3610//3610 3631//3631 +f 3545//3545 3632//3632 3546//3546 +f 3545//3545 3631//3631 3632//3632 +f 3610//3610 3633//3633 3631//3631 +f 3610//3610 3613//3613 3633//3633 +f 3614//3614 3633//3633 3613//3613 +f 3614//3614 3634//3634 3633//3633 +f 3631//3631 3635//3635 3632//3632 +f 3631//3631 3633//3633 3635//3635 +f 3634//3634 3635//3635 3633//3633 +f 3546//3546 3636//3636 3549//3549 +f 3546//3546 3632//3632 3636//3636 +f 3549//3549 3637//3637 3550//3550 +f 3549//3549 3636//3636 3637//3637 +f 3632//3632 3638//3638 3636//3636 +f 3632//3632 3635//3635 3638//3638 +f 3634//3634 3638//3638 3635//3635 +f 3636//3636 3639//3639 3637//3637 +f 3636//3636 3638//3638 3639//3639 +f 3634//3634 3639//3639 3638//3638 +f 3634//3634 3640//3640 3639//3639 +f 3614//3614 3641//3641 3634//3634 +f 3614//3614 3618//3618 3641//3641 +f 3586//3586 3641//3641 3618//3618 +f 3586//3586 3619//3619 3641//3641 +f 3634//3634 3641//3641 3642//3642 +f 3619//3619 3642//3642 3641//3641 +f 3619//3619 3620//3620 3642//3642 +f 3634//3634 3642//3642 3643//3643 +f 3620//3620 3643//3643 3642//3642 +f 3620//3620 3622//3622 3643//3643 +f 3634//3634 3644//3644 3640//3640 +f 3634//3634 3643//3643 3644//3644 +f 3622//3622 3644//3644 3643//3643 +f 3622//3622 3623//3623 3644//3644 +f 3550//3550 3645//3645 3561//3561 +f 3550//3550 3637//3637 3645//3645 +f 3561//3561 3646//3646 3562//3562 +f 3561//3561 3645//3645 3646//3646 +f 3637//3637 3647//3647 3645//3645 +f 3637//3637 3639//3639 3647//3647 +f 3640//3640 3647//3647 3639//3639 +f 3640//3640 3648//3648 3647//3647 +f 3645//3645 3649//3649 3646//3646 +f 3645//3645 3647//3647 3649//3649 +f 3648//3648 3649//3649 3647//3647 +f 3562//3562 3650//3650 3565//3565 +f 3562//3562 3646//3646 3650//3650 +f 3565//3565 3651//3651 3566//3566 +f 3565//3565 3650//3650 3651//3651 +f 3646//3646 3652//3652 3650//3650 +f 3646//3646 3649//3649 3652//3652 +f 3648//3648 3652//3652 3649//3649 +f 3648//3648 3653//3653 3652//3652 +f 3650//3650 3654//3654 3651//3651 +f 3650//3650 3652//3652 3654//3654 +f 3653//3653 3654//3654 3652//3652 +f 3640//3640 3655//3655 3648//3648 +f 3640//3640 3644//3644 3655//3655 +f 3623//3623 3655//3655 3644//3644 +f 3623//3623 3626//3626 3655//3655 +f 3648//3648 3655//3655 3656//3656 +f 3626//3626 3656//3656 3655//3655 +f 3626//3626 3627//3627 3656//3656 +f 3648//3648 3657//3657 3653//3653 +f 3648//3648 3656//3656 3657//3657 +f 3627//3627 3657//3657 3656//3656 +f 3627//3627 3629//3629 3657//3657 +f 3653//3653 3657//3657 3658//3658 +f 3629//3629 3658//3658 3657//3657 +f 3629//3629 3630//3630 3658//3658 +f 2580//2580 3659//3659 3463//3463 +f 3463//3463 3659//3659 3660//3660 +f 3463//3463 3660//3660 3464//3464 +f 2580//2580 2842//2842 3659//3659 +f 3660//3660 3659//3659 3661//3661 +f 3464//3464 3660//3660 3466//3466 +f 3466//3466 3662//3662 3465//3465 +f 3660//3660 3661//3661 3663//3663 +f 3660//3660 3664//3664 3466//3466 +f 3660//3660 3663//3663 3664//3664 +f 3466//3466 3665//3665 3662//3662 +f 3466//3466 3664//3664 3665//3665 +f 3663//3663 3666//3666 3664//3664 +f 3664//3664 3667//3667 3665//3665 +f 3664//3664 3666//3666 3667//3667 +f 2747//2747 3532//3532 2868//2868 +f 3532//3532 3668//3668 2868//2868 +f 2868//2868 3669//3669 2866//2866 +f 2868//2868 3668//3668 3669//3669 +f 2866//2866 3670//3670 2867//2867 +f 2866//2866 3669//3669 3670//3670 +f 3532//3532 3535//3535 3668//3668 +f 3668//3668 3671//3671 3669//3669 +f 3669//3669 3672//3672 3670//3670 +f 3669//3669 3671//3671 3672//3672 +f 2870//2870 3673//3673 2869//2869 +f 2867//2867 3673//3673 2870//2870 +f 2867//2867 3670//3670 3673//3673 +f 3673//3673 3674//3674 2869//2869 +f 3673//3673 3675//3675 3674//3674 +f 3673//3673 3676//3676 3675//3675 +f 3670//3670 3676//3676 3673//3673 +f 3670//3670 3672//3672 3676//3676 +f 2842//2842 2861//2861 3677//3677 +f 3659//3659 2842//2842 3661//3661 +f 2842//2842 3677//3677 3661//3661 +f 2861//2861 2872//2872 3677//3677 +f 2869//2869 3678//3678 2871//2871 +f 2869//2869 3674//3674 3678//3678 +f 2871//2871 3678//3678 2872//2872 +f 3678//3678 3679//3679 2872//2872 +f 3677//3677 2872//2872 3679//3679 +f 3674//3674 3675//3675 3678//3678 +f 3535//3535 3556//3556 3668//3668 +f 3668//3668 3680//3680 3671//3671 +f 3556//3556 3681//3681 3668//3668 +f 3556//3556 3558//3558 3681//3681 +f 3668//3668 3682//3682 3680//3680 +f 3668//3668 3681//3681 3682//3682 +f 3671//3671 3683//3683 3672//3672 +f 3671//3671 3680//3680 3683//3683 +f 3680//3680 3684//3684 3683//3683 +f 3680//3680 3682//3682 3684//3684 +f 3558//3558 3685//3685 3681//3681 +f 3558//3558 3564//3564 3685//3685 +f 3681//3681 3686//3686 3682//3682 +f 3681//3681 3685//3685 3686//3686 +f 3564//3564 3687//3687 3685//3685 +f 3564//3564 3566//3566 3687//3687 +f 3685//3685 3688//3688 3686//3686 +f 3685//3685 3687//3687 3688//3688 +f 3682//3682 3689//3689 3684//3684 +f 3682//3682 3686//3686 3689//3689 +f 3686//3686 3690//3690 3689//3689 +f 3686//3686 3688//3688 3690//3690 +f 3676//3676 3691//3691 3675//3675 +f 3676//3676 3692//3692 3691//3691 +f 3672//3672 3692//3692 3676//3676 +f 3672//3672 3683//3683 3692//3692 +f 3692//3692 3693//3693 3691//3691 +f 3692//3692 3694//3694 3693//3693 +f 3683//3683 3694//3694 3692//3692 +f 3683//3683 3684//3684 3694//3694 +f 3694//3694 3695//3695 3693//3693 +f 3694//3694 3696//3696 3695//3695 +f 3684//3684 3696//3696 3694//3694 +f 3684//3684 3689//3689 3696//3696 +f 3696//3696 3697//3697 3695//3695 +f 3696//3696 3698//3698 3697//3697 +f 3689//3689 3698//3698 3696//3696 +f 3689//3689 3690//3690 3698//3698 +f 3661//3661 3677//3677 3699//3699 +f 3663//3663 3700//3700 3666//3666 +f 3663//3663 3661//3661 3700//3700 +f 3666//3666 3701//3701 3667//3667 +f 3666//3666 3700//3700 3701//3701 +f 3661//3661 3702//3702 3700//3700 +f 3661//3661 3699//3699 3702//3702 +f 3700//3700 3703//3703 3701//3701 +f 3700//3700 3702//3702 3703//3703 +f 3675//3675 3704//3704 3678//3678 +f 3675//3675 3691//3691 3704//3704 +f 3678//3678 3704//3704 3679//3679 +f 3677//3677 3679//3679 3699//3699 +f 3691//3691 3705//3705 3704//3704 +f 3691//3691 3693//3693 3705//3705 +f 3704//3704 3706//3706 3679//3679 +f 3704//3704 3705//3705 3706//3706 +f 3699//3699 3679//3679 3706//3706 +f 3693//3693 3707//3707 3705//3705 +f 3693//3693 3695//3695 3707//3707 +f 3705//3705 3708//3708 3706//3706 +f 3705//3705 3707//3707 3708//3708 +f 3699//3699 3708//3708 3702//3702 +f 3699//3699 3706//3706 3708//3708 +f 3695//3695 3709//3709 3707//3707 +f 3695//3695 3697//3697 3709//3709 +f 3707//3707 3710//3710 3708//3708 +f 3707//3707 3709//3709 3710//3710 +f 3702//3702 3710//3710 3703//3703 +f 3702//3702 3708//3708 3710//3710 +f 3477//3477 3711//3711 3476//3476 +f 3477//3477 3712//3712 3711//3711 +f 3424//3424 3423//3423 3625//3625 +f 3423//3423 3478//3478 3625//3625 +f 3476//3476 3711//3711 3480//3480 +f 3712//3712 3713//3713 3711//3711 +f 3712//3712 3714//3714 3713//3713 +f 3714//3714 3715//3715 3713//3713 +f 3714//3714 3716//3716 3715//3715 +f 3624//3624 3625//3625 3628//3628 +f 3625//3625 3717//3717 3628//3628 +f 3625//3625 3478//3478 3717//3717 +f 3628//3628 3718//3718 3630//3630 +f 3628//3628 3719//3719 3718//3718 +f 3628//3628 3717//3717 3719//3719 +f 3478//3478 3720//3720 3717//3717 +f 3478//3478 3479//3479 3720//3720 +f 3479//3479 3721//3721 3720//3720 +f 3479//3479 3480//3480 3721//3721 +f 3711//3711 3721//3721 3480//3480 +f 3711//3711 3713//3713 3721//3721 +f 3717//3717 3722//3722 3719//3719 +f 3717//3717 3720//3720 3722//3722 +f 3720//3720 3723//3723 3722//3722 +f 3720//3720 3721//3721 3723//3723 +f 3713//3713 3723//3723 3721//3721 +f 3713//3713 3715//3715 3723//3723 +f 3477//3477 3482//3482 3712//3712 +f 3465//3465 3662//3662 3483//3483 +f 3712//3712 3724//3724 3714//3714 +f 3712//3712 3482//3482 3724//3724 +f 3482//3482 3725//3725 3724//3724 +f 3482//3482 3483//3483 3725//3725 +f 3662//3662 3725//3725 3483//3483 +f 3662//3662 3665//3665 3725//3725 +f 3714//3714 3726//3726 3716//3716 +f 3714//3714 3724//3724 3726//3726 +f 3724//3724 3727//3727 3726//3726 +f 3724//3724 3725//3725 3727//3727 +f 3665//3665 3727//3727 3725//3725 +f 3665//3665 3667//3667 3727//3727 +f 3566//3566 3728//3728 3687//3687 +f 3566//3566 3651//3651 3728//3728 +f 3687//3687 3729//3729 3688//3688 +f 3687//3687 3728//3728 3729//3729 +f 3651//3651 3730//3730 3728//3728 +f 3651//3651 3654//3654 3730//3730 +f 3653//3653 3730//3730 3654//3654 +f 3653//3653 3731//3731 3730//3730 +f 3728//3728 3732//3732 3729//3729 +f 3728//3728 3730//3730 3732//3732 +f 3731//3731 3732//3732 3730//3730 +f 3731//3731 3733//3733 3732//3732 +f 3716//3716 3734//3734 3715//3715 +f 3716//3716 3735//3735 3734//3734 +f 3688//3688 3736//3736 3690//3690 +f 3688//3688 3729//3729 3736//3736 +f 3729//3729 3737//3737 3736//3736 +f 3729//3729 3732//3732 3737//3737 +f 3733//3733 3737//3737 3732//3732 +f 3733//3733 3738//3738 3737//3737 +f 3736//3736 3740//3740 3739//3739 +f 3736//3736 3737//3737 3740//3740 +f 3738//3738 3740//3740 3737//3737 +f 3738//3738 3734//3734 3740//3740 +f 3735//3735 3740//3740 3734//3734 +f 3735//3735 3739//3739 3740//3740 +f 3653//3653 3741//3741 3731//3731 +f 3653//3653 3658//3658 3741//3741 +f 3630//3630 3741//3741 3658//3658 +f 3630//3630 3718//3718 3741//3741 +f 3731//3731 3742//3742 3733//3733 +f 3731//3731 3741//3741 3742//3742 +f 3718//3718 3742//3742 3741//3741 +f 3718//3718 3719//3719 3742//3742 +f 3733//3733 3743//3743 3738//3738 +f 3733//3733 3742//3742 3743//3743 +f 3719//3719 3743//3743 3742//3742 +f 3719//3719 3722//3722 3743//3743 +f 3738//3738 3744//3744 3734//3734 +f 3738//3738 3743//3743 3744//3744 +f 3722//3722 3744//3744 3743//3743 +f 3722//3722 3723//3723 3744//3744 +f 3715//3715 3744//3744 3723//3723 +f 3715//3715 3734//3734 3744//3744 +f 3698//3698 3745//3745 3697//3697 +f 3698//3698 3746//3746 3745//3745 +f 3736//3736 3745//3745 3746//3746 +f 3736//3736 3739//3739 3745//3745 +f 3690//3690 3746//3746 3698//3698 +f 3690//3690 3736//3736 3746//3746 +f 3716//3716 3747//3747 3735//3735 +f 3716//3716 3726//3726 3747//3747 +f 3726//3726 3748//3748 3747//3747 +f 3726//3726 3727//3727 3748//3748 +f 3667//3667 3748//3748 3727//3727 +f 3667//3667 3701//3701 3748//3748 +f 3735//3735 3749//3749 3739//3739 +f 3735//3735 3747//3747 3749//3749 +f 3747//3747 3750//3750 3749//3749 +f 3747//3747 3748//3748 3750//3750 +f 3701//3701 3750//3750 3748//3748 +f 3701//3701 3703//3703 3750//3750 +f 3697//3697 3751//3751 3709//3709 +f 3697//3697 3745//3745 3751//3751 +f 3739//3739 3751//3751 3745//3745 +f 3739//3739 3749//3749 3751//3751 +f 3709//3709 3752//3752 3710//3710 +f 3709//3709 3751//3751 3752//3752 +f 3749//3749 3752//3752 3751//3751 +f 3749//3749 3750//3750 3752//3752 +f 3703//3703 3752//3752 3750//3750 +f 3703//3703 3710//3710 3752//3752 +# 7500 faces, 0 coords texture + +# End of File diff --git a/load/shapes/env_sphere.obj b/load/shapes/env_sphere.obj new file mode 100644 index 0000000..a7ca6e2 --- /dev/null +++ b/load/shapes/env_sphere.obj @@ -0,0 +1,10260 @@ +#### +# +# OBJ File Generated by Meshlab +# +#### +# Object env_sphere.obj +# +# Vertices: 2562 +# Faces: 5120 +# +#### +vn -2.512898 -5.744677 0.000000 +v 8.019361 18.321840 0.000000 +vn -2.095810 -5.903990 0.257773 +v 6.682801 18.832361 -0.826040 +vn -2.095810 -5.903990 -0.257773 +v 6.682801 18.832361 0.826040 +vn -2.503548 -5.726332 -0.511760 +v 7.992141 18.259651 1.646472 +vn -2.503548 -5.726332 0.511760 +v 7.992141 18.259651 -1.646472 +vn -1.675502 -6.042617 0.000000 +v 5.328095 19.277225 0.000000 +vn -2.081523 -5.865321 -0.765734 +v 6.646839 18.702608 2.456005 +vn -1.669944 -6.022530 -0.511362 +v 5.310369 19.213095 1.630021 +vn -1.657217 -5.964773 -1.004999 +v 5.257311 19.021132 3.249197 +vn -2.908926 -5.549281 0.254368 +v 9.284267 17.695200 -0.825984 +vn -2.908926 -5.549281 -0.254368 +v 9.284267 17.695200 0.825984 +vn -3.283337 -5.343650 -0.000000 +v 10.514623 17.013018 0.000000 +vn -1.669944 -6.022530 0.511362 +v 5.310369 19.213095 -1.630021 +vn -2.081523 -5.865321 0.765734 +v 6.646839 18.702608 -2.456005 +vn -1.657217 -5.964773 1.004999 +v 5.257311 19.021132 -3.249197 +vn -1.255827 -6.138454 -0.257591 +v 4.007356 19.577038 0.825018 +vn -1.255827 -6.138454 0.257591 +v 4.007356 19.577038 -0.825018 +vn -0.838586 -6.214565 0.000000 +v 2.670469 19.820913 0.000000 +vn -0.842190 -6.194839 -0.501472 +v 2.661422 19.753767 1.644849 +vn -0.842190 -6.194839 0.501472 +v 2.661422 19.753767 -1.644849 +vn -0.425953 -6.252691 -0.244263 +v 1.334826 19.938347 0.824968 +vn -0.425953 -6.252691 0.244263 +v 1.334826 19.938347 -0.824968 +vn 0.000000 -6.272241 0.000000 +v 0.000000 20.000000 0.000000 +vn -1.253311 -6.098812 -0.755588 +v 3.971610 19.447399 2.454590 +vn -1.253311 -6.098812 0.755588 +v 3.971610 19.447399 -2.454590 +vn -2.889551 -5.514426 -0.752105 +v 9.217632 17.586891 2.395110 +vn -2.472758 -5.673628 -1.009698 +v 7.882724 18.096779 3.220128 +vn -2.848145 -5.446983 -1.241979 +v 9.085237 17.370689 3.964544 +vn -3.242869 -5.277861 -0.982228 +v 10.385170 16.803558 3.128689 +vn -2.431471 -5.587787 -1.483699 +v 7.723748 17.820131 4.773539 +vn -3.192330 -5.196030 -1.465453 +v 10.224103 16.542946 4.668907 +vn -2.797106 -5.346992 -1.709715 +v 8.889277 17.052803 5.493875 +vn -3.136120 -5.074349 -1.938230 +v 10.000000 16.180340 6.180339 +vn -3.273394 -5.327210 -0.492892 +v 10.482208 16.960571 1.569182 +vn -2.050830 -5.794188 -1.248475 +v 6.510600 18.477591 4.023772 +vn -2.472757 -5.673628 1.009698 +v 7.882724 18.096779 -3.220128 +vn -2.889551 -5.514426 0.752105 +v 9.217632 17.586891 -2.395110 +vn -2.848145 -5.446982 1.241979 +v 9.085237 17.370689 -3.964544 +vn -2.431471 -5.587787 1.483699 +v 7.723748 17.820131 -4.773539 +vn -3.242869 -5.277861 0.982228 +v 10.385170 16.803558 -3.128689 +vn -2.797106 -5.346992 1.709715 +v 8.889277 17.052803 -5.493875 +vn -3.192330 -5.196029 1.465453 +v 10.224103 16.542946 -4.668907 +vn -3.136120 -5.074349 1.938230 +v 10.000000 16.180340 -6.180339 +vn -2.050830 -5.794188 1.248475 +v 6.510600 18.477591 -4.023772 +vn -3.273394 -5.327210 0.492892 +v 10.482208 16.960571 -1.569182 +vn -1.248226 -5.923720 1.641384 +v 3.981882 18.888651 -5.231008 +vn -1.244024 -5.787806 2.072776 +v 3.967734 18.453640 -6.612130 +vn -0.832569 -5.944967 1.818481 +v 2.651397 18.956436 -5.798588 +vn -0.834284 -6.060824 1.384288 +v 2.655850 19.327852 -4.402341 +vn -1.652689 -5.748219 1.890097 +v 5.281655 18.324884 -6.025178 +vn -0.828030 -5.798673 2.243998 +v 2.633107 18.486092 -7.164576 +vn -0.418771 -6.062376 1.555130 +v 1.331337 19.332863 -4.946515 +vn -0.416218 -5.936102 1.983849 +v 1.320848 18.923958 -6.335552 +vn -0.000000 -6.033158 1.717112 +v 0.000000 19.238768 -5.465332 +vn -1.653250 -5.872489 1.458363 +v 5.283024 18.720991 -4.649103 +vn -1.245518 -6.028229 1.206373 +v 3.966748 19.223763 -3.835599 +vn -1.234467 -5.623558 2.489557 +v 3.928245 17.928020 -7.947011 +vn -1.643653 -5.594511 2.312154 +v 5.253211 17.834839 -7.370367 +vn -1.627405 -5.411545 2.722905 +v 5.197838 17.253368 -8.677772 +vn -0.414218 -5.782665 2.395330 +v 1.319767 18.438375 -7.634430 +vn -0.825472 -5.625580 2.649500 +v 2.634973 17.936010 -8.447273 +vn -0.413402 -5.601478 2.793010 +v 1.316338 17.858534 -8.907301 +vn -0.000000 -5.738645 2.533132 +v 0.000000 18.300869 -8.067108 +vn -0.819977 -5.425444 3.039902 +v 2.624007 17.298586 -9.688834 +vn 0.000000 -5.549800 2.923838 +v 0.000000 17.699299 -9.313153 +vn -0.409468 -5.393398 3.176901 +v 1.315151 17.196957 -10.125960 +vn -0.000000 -5.336216 3.297963 +v 0.000000 17.013018 -10.514623 +vn -0.000000 -5.900161 2.130065 +v 0.000000 18.814846 -6.782451 +vn -1.226823 -5.431558 2.888279 +v 3.920305 17.317421 -9.205333 +vn -0.834924 -6.143886 0.950682 +v 2.665128 19.588524 -3.030978 +vn -0.418305 -6.156777 1.125752 +v 1.332088 19.629662 -3.591919 +vn -0.418798 -6.220297 0.693352 +v 1.334188 19.832952 -2.207700 +vn 0.000000 -6.212585 0.867423 +v 0.000000 19.808777 -2.759045 +vn -0.000000 -6.257732 0.435569 +v 0.000000 19.952137 -1.382832 +vn 0.000000 -6.137754 1.294962 +v 0.000000 19.570608 -4.122053 +vn -2.038370 -5.537967 2.127012 +v 6.497270 17.656738 -6.784176 +vn -2.044821 -5.681746 1.698438 +v 6.518579 18.116638 -5.412542 +vn -2.419802 -5.455983 1.930036 +v 7.718122 17.394506 -6.153188 +vn -2.404534 -5.294136 2.353504 +v 7.672275 16.878231 -7.500772 +vn -2.776486 -5.197208 2.151528 +v 8.857334 16.568937 -6.856966 +vn -2.021221 -5.365715 2.544154 +v 6.450493 17.106739 -8.108677 +vn -1.248226 -5.923719 -1.641384 +v 3.981882 18.888651 5.231008 +vn -0.832569 -5.944967 -1.818481 +v 2.651397 18.956436 5.798588 +vn -1.244024 -5.787806 -2.072776 +v 3.967734 18.453640 6.612130 +vn -1.652689 -5.748219 -1.890097 +v 5.281655 18.324884 6.025178 +vn -0.834284 -6.060824 -1.384288 +v 2.655850 19.327852 4.402341 +vn -0.828030 -5.798673 -2.243998 +v 2.633107 18.486092 7.164576 +vn -1.643653 -5.594511 -2.312154 +v 5.253211 17.834839 7.370367 +vn -1.234467 -5.623558 -2.489557 +v 3.928245 17.928020 7.947011 +vn -1.627405 -5.411545 -2.722905 +v 5.197838 17.253368 8.677772 +vn -1.245518 -6.028229 -1.206373 +v 3.966748 19.223763 3.835599 +vn -1.653250 -5.872489 -1.458363 +v 5.283024 18.720991 4.649103 +vn -0.416218 -5.936103 -1.983849 +v 1.320848 18.923958 6.335552 +vn -0.418771 -6.062376 -1.555130 +v 1.331337 19.332863 4.946515 +vn 0.000000 -6.033158 -1.717112 +v 0.000000 19.238768 5.465332 +vn -0.825472 -5.625579 -2.649500 +v 2.634973 17.936010 8.447273 +vn -0.414218 -5.782665 -2.395330 +v 1.319767 18.438375 7.634430 +vn -0.413402 -5.601479 -2.793010 +v 1.316338 17.858534 8.907301 +vn -0.819977 -5.425444 -3.039901 +v 2.624007 17.298586 9.688834 +vn 0.000000 -5.738645 -2.533132 +v 0.000000 18.300869 8.067108 +vn -0.409468 -5.393398 -3.176900 +v 1.315151 17.196957 10.125960 +vn 0.000000 -5.549800 -2.923838 +v 0.000000 17.699299 9.313153 +vn 0.000000 -5.336216 -3.297963 +v 0.000000 17.013018 10.514623 +vn -1.226823 -5.431558 -2.888279 +v 3.920305 17.317421 9.205333 +vn 0.000000 -5.900161 -2.130065 +v 0.000000 18.814846 6.782451 +vn -2.044821 -5.681746 -1.698438 +v 6.518579 18.116638 5.412542 +vn -2.038370 -5.537967 -2.127012 +v 6.497270 17.656738 6.784176 +vn -2.419802 -5.455983 -1.930036 +v 7.718122 17.394506 6.153188 +vn -2.404534 -5.294136 -2.353504 +v 7.672275 16.878231 7.500772 +vn -2.776486 -5.197208 -2.151528 +v 8.857334 16.568937 6.856966 +vn -2.021221 -5.365715 -2.544154 +v 6.450493 17.106739 8.108677 +vn -0.418305 -6.156777 -1.125752 +v 1.332088 19.629662 3.591919 +vn -0.834924 -6.143886 -0.950682 +v 2.665128 19.588524 3.030978 +vn -0.418799 -6.220297 -0.693352 +v 1.334188 19.832952 2.207700 +vn -0.000000 -6.212585 -0.867423 +v 0.000000 19.808777 2.759045 +vn -0.000000 -6.257732 -0.435569 +v 0.000000 19.952137 1.382832 +vn 0.000000 -6.137754 -1.294962 +v 0.000000 19.570608 4.122053 +vn -3.904042 -4.909290 -0.000000 +v 12.445830 15.655710 0.000000 +vn -4.186388 -4.663921 -0.254299 +v 13.350049 14.869917 0.813541 +vn -4.186388 -4.663921 0.254299 +v 13.350049 14.869917 -0.813541 +vn -3.892517 -4.892682 0.505807 +v 12.404793 15.604088 -1.622837 +vn -3.892517 -4.892682 -0.505807 +v 12.404793 15.604088 1.622837 +vn -4.458894 -4.411805 -0.000000 +v 14.225636 14.058142 0.000000 +vn -4.159910 -4.633387 0.757021 +v 13.256838 14.777726 -2.423851 +vn -4.444400 -4.397475 0.505710 +v 14.179382 14.012433 -1.611459 +vn -4.405752 -4.350312 1.005790 +v 14.040929 13.875610 -3.212440 +vn -3.605203 -5.126909 -0.251994 +v 11.489155 16.350460 0.813504 +vn -3.605203 -5.126909 0.251994 +v 11.489155 16.350460 -0.813504 +vn -4.444400 -4.397475 -0.505710 +v 14.179382 14.012433 1.611459 +vn -4.159910 -4.633387 -0.757021 +v 13.256838 14.777726 2.423851 +vn -4.405752 -4.350312 -1.005790 +v 14.040929 13.875610 3.212440 +vn -4.701194 -4.145186 0.254172 +v 14.987741 13.217676 -0.812842 +vn -4.701194 -4.145186 -0.254172 +v 14.987741 13.217676 0.812842 +vn -4.932586 -3.875302 0.000000 +v 15.728653 12.353520 0.000000 +vn -4.918670 -3.859880 0.506775 +v 15.676861 12.312842 -1.621726 +vn -4.918669 -3.859880 -0.506775 +v 15.676861 12.312842 1.621726 +vn -5.140334 -3.586368 0.253063 +v 16.384148 11.441113 -0.812808 +vn -5.140334 -3.586368 -0.253063 +v 16.384148 11.441113 0.812808 +vn -5.336216 -3.297963 0.000000 +v 17.013018 10.514623 0.000000 +vn -4.673337 -4.115106 0.758219 +v 14.894541 13.125638 -2.422881 +vn -4.673337 -4.115106 -0.758219 +v 14.894541 13.125638 2.422881 +vn -3.583054 -5.094194 0.747758 +v 11.422805 16.243389 -2.381564 +vn -3.859880 -4.842214 1.001257 +v 12.309114 15.436811 -3.192258 +vn -3.541666 -5.027469 1.236686 +v 11.290256 16.030073 -3.945489 +vn -3.808052 -4.758040 1.486083 +v 12.136502 15.173046 -4.741726 +vn -3.481249 -4.928013 1.715962 +v 11.094803 15.714300 -5.474133 +vn -4.116525 -4.565382 1.249185 +v 13.120113 14.559172 -3.986624 +vn -3.859880 -4.842213 -1.001257 +v 12.309114 15.436811 3.192258 +vn -3.583054 -5.094194 -0.747758 +v 11.422805 16.243389 2.381564 +vn -3.541666 -5.027468 -1.236686 +v 11.290256 16.030073 3.945489 +vn -3.808052 -4.758040 -1.486083 +v 12.136502 15.173046 4.741726 +vn -3.481249 -4.928013 -1.715962 +v 11.094803 15.714300 5.474133 +vn -4.116525 -4.565382 -1.249185 +v 13.120113 14.559172 3.986624 +vn 2.512898 -5.744677 -0.000000 +v -8.019361 18.321840 0.000000 +vn 2.095810 -5.903990 -0.257773 +v -6.682801 18.832361 0.826040 +vn 2.095810 -5.903990 0.257773 +v -6.682801 18.832361 -0.826040 +vn 2.503548 -5.726332 0.511760 +v -7.992141 18.259651 -1.646472 +vn 2.503548 -5.726332 -0.511760 +v -7.992141 18.259651 1.646472 +vn 1.675502 -6.042617 -0.000000 +v -5.328095 19.277225 0.000000 +vn 2.081523 -5.865321 0.765734 +v -6.646839 18.702608 -2.456005 +vn 1.669944 -6.022530 0.511362 +v -5.310369 19.213095 -1.630021 +vn 1.657217 -5.964773 1.004999 +v -5.257311 19.021132 -3.249197 +vn 2.908926 -5.549281 -0.254368 +v -9.284267 17.695200 0.825984 +vn 2.908926 -5.549281 0.254368 +v -9.284267 17.695200 -0.825984 +vn 3.283337 -5.343650 0.000000 +v -10.514623 17.013018 0.000000 +vn 1.669944 -6.022530 -0.511362 +v -5.310369 19.213095 1.630021 +vn 2.081523 -5.865321 -0.765734 +v -6.646839 18.702608 2.456005 +vn 1.657217 -5.964773 -1.004999 +v -5.257311 19.021132 3.249197 +vn 1.255827 -6.138454 0.257591 +v -4.007356 19.577038 -0.825018 +vn 1.255827 -6.138454 -0.257591 +v -4.007356 19.577038 0.825018 +vn 0.838586 -6.214565 -0.000000 +v -2.670469 19.820913 0.000000 +vn 0.842190 -6.194839 0.501472 +v -2.661422 19.753767 -1.644849 +vn 0.842190 -6.194839 -0.501472 +v -2.661422 19.753767 1.644849 +vn 0.425953 -6.252691 0.244263 +v -1.334826 19.938347 -0.824968 +vn 0.425953 -6.252691 -0.244263 +v -1.334826 19.938347 0.824968 +vn 1.253311 -6.098812 0.755588 +v -3.971610 19.447399 -2.454590 +vn 1.253311 -6.098812 -0.755588 +v -3.971610 19.447399 2.454590 +vn 2.889551 -5.514426 0.752105 +v -9.217632 17.586891 -2.395110 +vn 2.472758 -5.673628 1.009698 +v -7.882724 18.096779 -3.220128 +vn 2.848145 -5.446983 1.241979 +v -9.085237 17.370689 -3.964544 +vn 3.242869 -5.277861 0.982228 +v -10.385170 16.803558 -3.128689 +vn 2.431471 -5.587787 1.483699 +v -7.723748 17.820131 -4.773539 +vn 3.192330 -5.196030 1.465453 +v -10.224103 16.542946 -4.668907 +vn 2.797106 -5.346992 1.709715 +v -8.889277 17.052803 -5.493875 +vn 3.136120 -5.074349 1.938230 +v -10.000000 16.180340 -6.180339 +vn 3.273394 -5.327210 0.492892 +v -10.482208 16.960571 -1.569182 +vn 2.050830 -5.794188 1.248475 +v -6.510600 18.477591 -4.023772 +vn 2.472757 -5.673628 -1.009698 +v -7.882724 18.096779 3.220128 +vn 2.889551 -5.514426 -0.752105 +v -9.217632 17.586891 2.395110 +vn 2.848145 -5.446982 -1.241979 +v -9.085237 17.370689 3.964544 +vn 2.431471 -5.587787 -1.483699 +v -7.723748 17.820131 4.773539 +vn 3.242869 -5.277861 -0.982228 +v -10.385170 16.803558 3.128689 +vn 2.797106 -5.346992 -1.709715 +v -8.889277 17.052803 5.493875 +vn 3.192330 -5.196029 -1.465453 +v -10.224103 16.542946 4.668907 +vn 3.136120 -5.074349 -1.938230 +v -10.000000 16.180340 6.180339 +vn 2.050830 -5.794188 -1.248475 +v -6.510600 18.477591 4.023772 +vn 3.273394 -5.327210 -0.492892 +v -10.482208 16.960571 1.569182 +vn 1.248226 -5.923720 -1.641384 +v -3.981882 18.888651 5.231008 +vn 1.244024 -5.787806 -2.072776 +v -3.967734 18.453640 6.612130 +vn 0.832569 -5.944967 -1.818481 +v -2.651397 18.956436 5.798588 +vn 0.834284 -6.060824 -1.384288 +v -2.655850 19.327852 4.402341 +vn 1.652689 -5.748219 -1.890097 +v -5.281655 18.324884 6.025178 +vn 0.828030 -5.798673 -2.243998 +v -2.633107 18.486092 7.164576 +vn 0.418771 -6.062376 -1.555130 +v -1.331337 19.332863 4.946515 +vn 0.416218 -5.936102 -1.983849 +v -1.320848 18.923958 6.335552 +vn 1.653250 -5.872489 -1.458363 +v -5.283024 18.720991 4.649103 +vn 1.245518 -6.028229 -1.206373 +v -3.966748 19.223763 3.835599 +vn 1.234467 -5.623558 -2.489557 +v -3.928245 17.928020 7.947011 +vn 1.643653 -5.594511 -2.312154 +v -5.253211 17.834839 7.370367 +vn 1.627405 -5.411545 -2.722905 +v -5.197838 17.253368 8.677772 +vn 0.414218 -5.782665 -2.395330 +v -1.319767 18.438375 7.634430 +vn 0.825472 -5.625580 -2.649500 +v -2.634973 17.936010 8.447273 +vn 0.413402 -5.601478 -2.793010 +v -1.316338 17.858534 8.907301 +vn 0.819977 -5.425444 -3.039902 +v -2.624007 17.298586 9.688834 +vn 0.409468 -5.393398 -3.176901 +v -1.315151 17.196957 10.125960 +vn 1.226823 -5.431558 -2.888279 +v -3.920305 17.317421 9.205333 +vn 0.834924 -6.143886 -0.950682 +v -2.665128 19.588524 3.030978 +vn 0.418305 -6.156777 -1.125752 +v -1.332088 19.629662 3.591919 +vn 0.418798 -6.220297 -0.693352 +v -1.334188 19.832952 2.207700 +vn 2.038370 -5.537967 -2.127012 +v -6.497270 17.656738 6.784176 +vn 2.044821 -5.681746 -1.698438 +v -6.518579 18.116638 5.412542 +vn 2.419802 -5.455983 -1.930036 +v -7.718122 17.394506 6.153188 +vn 2.404534 -5.294136 -2.353504 +v -7.672275 16.878231 7.500772 +vn 2.776486 -5.197208 -2.151528 +v -8.857334 16.568937 6.856966 +vn 2.021221 -5.365715 -2.544154 +v -6.450493 17.106739 8.108677 +vn 1.248226 -5.923719 1.641384 +v -3.981882 18.888651 -5.231008 +vn 0.832569 -5.944967 1.818481 +v -2.651397 18.956436 -5.798588 +vn 1.244024 -5.787806 2.072776 +v -3.967734 18.453640 -6.612130 +vn 1.652689 -5.748219 1.890097 +v -5.281655 18.324884 -6.025178 +vn 0.834284 -6.060824 1.384288 +v -2.655850 19.327852 -4.402341 +vn 0.828030 -5.798673 2.243998 +v -2.633107 18.486092 -7.164576 +vn 1.643653 -5.594511 2.312154 +v -5.253211 17.834839 -7.370367 +vn 1.234467 -5.623558 2.489557 +v -3.928245 17.928020 -7.947011 +vn 1.627405 -5.411545 2.722905 +v -5.197838 17.253368 -8.677772 +vn 1.245518 -6.028229 1.206373 +v -3.966748 19.223763 -3.835599 +vn 1.653250 -5.872489 1.458363 +v -5.283024 18.720991 -4.649103 +vn 0.416218 -5.936103 1.983849 +v -1.320848 18.923958 -6.335552 +vn 0.418771 -6.062376 1.555130 +v -1.331337 19.332863 -4.946515 +vn 0.825472 -5.625579 2.649500 +v -2.634973 17.936010 -8.447273 +vn 0.414218 -5.782665 2.395330 +v -1.319767 18.438375 -7.634430 +vn 0.413402 -5.601479 2.793010 +v -1.316338 17.858534 -8.907301 +vn 0.819977 -5.425444 3.039901 +v -2.624007 17.298586 -9.688834 +vn 0.409468 -5.393398 3.176900 +v -1.315151 17.196957 -10.125960 +vn 1.226823 -5.431558 2.888279 +v -3.920305 17.317421 -9.205333 +vn 2.044821 -5.681746 1.698438 +v -6.518579 18.116638 -5.412542 +vn 2.038370 -5.537967 2.127012 +v -6.497270 17.656738 -6.784176 +vn 2.419802 -5.455983 1.930036 +v -7.718122 17.394506 -6.153188 +vn 2.404534 -5.294136 2.353504 +v -7.672275 16.878231 -7.500772 +vn 2.776486 -5.197208 2.151528 +v -8.857334 16.568937 -6.856966 +vn 2.021221 -5.365715 2.544154 +v -6.450493 17.106739 -8.108677 +vn 0.418305 -6.156777 1.125752 +v -1.332088 19.629662 -3.591919 +vn 0.834924 -6.143886 0.950682 +v -2.665128 19.588524 -3.030978 +vn 0.418799 -6.220297 0.693352 +v -1.334188 19.832952 -2.207700 +vn 3.904042 -4.909290 0.000000 +v -12.445830 15.655710 0.000000 +vn 4.186388 -4.663921 0.254299 +v -13.350049 14.869917 -0.813541 +vn 4.186388 -4.663921 -0.254299 +v -13.350049 14.869917 0.813541 +vn 3.892517 -4.892682 -0.505807 +v -12.404793 15.604088 1.622837 +vn 3.892517 -4.892682 0.505807 +v -12.404793 15.604088 -1.622837 +vn 4.458894 -4.411805 0.000000 +v -14.225636 14.058142 0.000000 +vn 4.159910 -4.633387 -0.757021 +v -13.256838 14.777726 2.423851 +vn 4.444400 -4.397475 -0.505710 +v -14.179382 14.012433 1.611459 +vn 4.405752 -4.350312 -1.005790 +v -14.040929 13.875610 3.212440 +vn 3.605203 -5.126909 0.251994 +v -11.489155 16.350460 -0.813504 +vn 3.605203 -5.126909 -0.251994 +v -11.489155 16.350460 0.813504 +vn 4.444400 -4.397475 0.505710 +v -14.179382 14.012433 -1.611459 +vn 4.159910 -4.633387 0.757021 +v -13.256838 14.777726 -2.423851 +vn 4.405752 -4.350312 1.005790 +v -14.040929 13.875610 -3.212440 +vn 4.701194 -4.145186 -0.254172 +v -14.987741 13.217676 0.812842 +vn 4.701194 -4.145186 0.254172 +v -14.987741 13.217676 -0.812842 +vn 4.932586 -3.875302 0.000000 +v -15.728653 12.353520 0.000000 +vn 4.918670 -3.859880 -0.506775 +v -15.676861 12.312842 1.621726 +vn 4.918669 -3.859880 0.506775 +v -15.676861 12.312842 -1.621726 +vn 5.140334 -3.586368 -0.253063 +v -16.384148 11.441113 0.812808 +vn 5.140334 -3.586368 0.253063 +v -16.384148 11.441113 -0.812808 +vn 5.336216 -3.297963 -0.000000 +v -17.013018 10.514623 0.000000 +vn 4.673337 -4.115106 -0.758219 +v -14.894541 13.125638 2.422881 +vn 4.673337 -4.115106 0.758219 +v -14.894541 13.125638 -2.422881 +vn 3.583054 -5.094194 -0.747758 +v -11.422805 16.243389 2.381564 +vn 3.859880 -4.842214 -1.001257 +v -12.309114 15.436811 3.192258 +vn 3.541666 -5.027469 -1.236686 +v -11.290256 16.030073 3.945489 +vn 3.808052 -4.758040 -1.486083 +v -12.136502 15.173046 4.741726 +vn 3.481249 -4.928013 -1.715962 +v -11.094803 15.714300 5.474133 +vn 4.116525 -4.565382 -1.249185 +v -13.120113 14.559172 3.986624 +vn 3.859880 -4.842213 1.001257 +v -12.309114 15.436811 -3.192258 +vn 3.583054 -5.094194 0.747758 +v -11.422805 16.243389 -2.381564 +vn 3.541666 -5.027468 1.236686 +v -11.290256 16.030073 -3.945489 +vn 3.808052 -4.758040 1.486083 +v -12.136502 15.173046 -4.741726 +vn 3.481249 -4.928013 1.715962 +v -11.094803 15.714300 -5.474133 +vn 4.116525 -4.565382 1.249185 +v -13.120113 14.559172 -3.986624 +vn -2.512898 5.744677 -0.000000 +v 8.019361 -18.321840 0.000000 +vn -2.095810 5.903990 -0.257773 +v 6.682801 -18.832361 0.826040 +vn -2.095810 5.903990 0.257773 +v 6.682801 -18.832361 -0.826040 +vn -2.503548 5.726332 0.511760 +v 7.992141 -18.259651 -1.646472 +vn -2.503548 5.726332 -0.511760 +v 7.992141 -18.259651 1.646472 +vn -1.675502 6.042617 -0.000000 +v 5.328095 -19.277225 0.000000 +vn -2.081523 5.865321 0.765734 +v 6.646839 -18.702608 -2.456005 +vn -1.669944 6.022530 0.511362 +v 5.310369 -19.213095 -1.630021 +vn -1.657217 5.964773 1.004999 +v 5.257311 -19.021132 -3.249197 +vn -2.908926 5.549281 -0.254368 +v 9.284267 -17.695200 0.825984 +vn -2.908926 5.549281 0.254368 +v 9.284267 -17.695200 -0.825984 +vn -3.283337 5.343650 0.000000 +v 10.514623 -17.013018 0.000000 +vn -1.669944 6.022530 -0.511362 +v 5.310369 -19.213095 1.630021 +vn -2.081523 5.865321 -0.765734 +v 6.646839 -18.702608 2.456005 +vn -1.657217 5.964773 -1.004999 +v 5.257311 -19.021132 3.249197 +vn -1.255827 6.138454 0.257591 +v 4.007356 -19.577038 -0.825018 +vn -1.255827 6.138454 -0.257591 +v 4.007356 -19.577038 0.825018 +vn -0.838586 6.214565 -0.000000 +v 2.670469 -19.820913 0.000000 +vn -0.842190 6.194839 0.501472 +v 2.661422 -19.753767 -1.644849 +vn -0.842190 6.194839 -0.501472 +v 2.661422 -19.753767 1.644849 +vn -0.425953 6.252691 0.244263 +v 1.334826 -19.938347 -0.824968 +vn -0.425953 6.252691 -0.244263 +v 1.334826 -19.938347 0.824968 +vn 0.000000 6.272241 0.000000 +v 0.000000 -20.000000 0.000000 +vn -1.253311 6.098812 0.755588 +v 3.971610 -19.447399 -2.454590 +vn -1.253311 6.098812 -0.755588 +v 3.971610 -19.447399 2.454590 +vn -2.889551 5.514426 0.752105 +v 9.217632 -17.586891 -2.395110 +vn -2.472758 5.673628 1.009698 +v 7.882724 -18.096779 -3.220128 +vn -2.848145 5.446983 1.241979 +v 9.085237 -17.370689 -3.964544 +vn -3.242869 5.277861 0.982228 +v 10.385170 -16.803558 -3.128689 +vn -2.431471 5.587787 1.483699 +v 7.723748 -17.820131 -4.773539 +vn -3.192330 5.196030 1.465453 +v 10.224103 -16.542946 -4.668907 +vn -2.797106 5.346992 1.709715 +v 8.889277 -17.052803 -5.493875 +vn -3.136120 5.074349 1.938230 +v 10.000000 -16.180340 -6.180339 +vn -3.273394 5.327210 0.492892 +v 10.482208 -16.960571 -1.569182 +vn -2.050830 5.794188 1.248475 +v 6.510600 -18.477591 -4.023772 +vn -2.472757 5.673628 -1.009698 +v 7.882724 -18.096779 3.220128 +vn -2.889551 5.514426 -0.752105 +v 9.217632 -17.586891 2.395110 +vn -2.848145 5.446982 -1.241979 +v 9.085237 -17.370689 3.964544 +vn -2.431471 5.587787 -1.483699 +v 7.723748 -17.820131 4.773539 +vn -3.242869 5.277861 -0.982228 +v 10.385170 -16.803558 3.128689 +vn -2.797106 5.346992 -1.709715 +v 8.889277 -17.052803 5.493875 +vn -3.192330 5.196029 -1.465453 +v 10.224103 -16.542946 4.668907 +vn -3.136120 5.074349 -1.938230 +v 10.000000 -16.180340 6.180339 +vn -2.050830 5.794188 -1.248475 +v 6.510600 -18.477591 4.023772 +vn -3.273394 5.327210 -0.492892 +v 10.482208 -16.960571 1.569182 +vn -1.248226 5.923720 -1.641384 +v 3.981882 -18.888651 5.231008 +vn -1.244024 5.787806 -2.072776 +v 3.967734 -18.453640 6.612130 +vn -0.832569 5.944967 -1.818481 +v 2.651397 -18.956436 5.798588 +vn -0.834284 6.060824 -1.384288 +v 2.655850 -19.327852 4.402341 +vn -1.652689 5.748219 -1.890097 +v 5.281655 -18.324884 6.025178 +vn -0.828030 5.798673 -2.243998 +v 2.633107 -18.486092 7.164576 +vn -0.418771 6.062376 -1.555130 +v 1.331337 -19.332863 4.946515 +vn -0.416218 5.936102 -1.983849 +v 1.320848 -18.923958 6.335552 +vn -0.000000 6.033158 -1.717112 +v 0.000000 -19.238768 5.465332 +vn -1.653250 5.872489 -1.458363 +v 5.283024 -18.720991 4.649103 +vn -1.245518 6.028229 -1.206373 +v 3.966748 -19.223763 3.835599 +vn -1.234467 5.623558 -2.489557 +v 3.928245 -17.928020 7.947011 +vn -1.643653 5.594511 -2.312154 +v 5.253211 -17.834839 7.370367 +vn -1.627405 5.411545 -2.722905 +v 5.197838 -17.253368 8.677772 +vn -0.414218 5.782665 -2.395330 +v 1.319767 -18.438375 7.634430 +vn -0.825472 5.625580 -2.649500 +v 2.634973 -17.936010 8.447273 +vn -0.413402 5.601478 -2.793010 +v 1.316338 -17.858534 8.907301 +vn -0.000000 5.738645 -2.533132 +v 0.000000 -18.300869 8.067108 +vn -0.819977 5.425444 -3.039902 +v 2.624007 -17.298586 9.688834 +vn 0.000000 5.549800 -2.923838 +v 0.000000 -17.699299 9.313153 +vn -0.409468 5.393398 -3.176901 +v 1.315151 -17.196957 10.125960 +vn -0.000000 5.336216 -3.297963 +v 0.000000 -17.013018 10.514623 +vn -0.000000 5.900161 -2.130065 +v 0.000000 -18.814846 6.782451 +vn -1.226823 5.431558 -2.888279 +v 3.920305 -17.317421 9.205333 +vn -0.834924 6.143886 -0.950682 +v 2.665128 -19.588524 3.030978 +vn -0.418305 6.156777 -1.125752 +v 1.332088 -19.629662 3.591919 +vn -0.418798 6.220297 -0.693352 +v 1.334188 -19.832952 2.207700 +vn 0.000000 6.212585 -0.867423 +v 0.000000 -19.808777 2.759045 +vn -0.000000 6.257732 -0.435569 +v 0.000000 -19.952137 1.382832 +vn 0.000000 6.137754 -1.294962 +v 0.000000 -19.570608 4.122053 +vn -2.038370 5.537967 -2.127012 +v 6.497270 -17.656738 6.784176 +vn -2.044821 5.681746 -1.698438 +v 6.518579 -18.116638 5.412542 +vn -2.419802 5.455983 -1.930036 +v 7.718122 -17.394506 6.153188 +vn -2.404534 5.294136 -2.353504 +v 7.672275 -16.878231 7.500772 +vn -2.776486 5.197208 -2.151528 +v 8.857334 -16.568937 6.856966 +vn -2.021221 5.365715 -2.544154 +v 6.450493 -17.106739 8.108677 +vn -1.248226 5.923719 1.641384 +v 3.981882 -18.888651 -5.231008 +vn -0.832569 5.944967 1.818481 +v 2.651397 -18.956436 -5.798588 +vn -1.244024 5.787806 2.072776 +v 3.967734 -18.453640 -6.612130 +vn -1.652689 5.748219 1.890097 +v 5.281655 -18.324884 -6.025178 +vn -0.834284 6.060824 1.384288 +v 2.655850 -19.327852 -4.402341 +vn -0.828030 5.798673 2.243998 +v 2.633107 -18.486092 -7.164576 +vn -1.643653 5.594511 2.312154 +v 5.253211 -17.834839 -7.370367 +vn -1.234467 5.623558 2.489557 +v 3.928245 -17.928020 -7.947011 +vn -1.627405 5.411545 2.722905 +v 5.197838 -17.253368 -8.677772 +vn -1.245518 6.028229 1.206373 +v 3.966748 -19.223763 -3.835599 +vn -1.653250 5.872489 1.458363 +v 5.283024 -18.720991 -4.649103 +vn -0.416218 5.936103 1.983849 +v 1.320848 -18.923958 -6.335552 +vn -0.418771 6.062376 1.555130 +v 1.331337 -19.332863 -4.946515 +vn 0.000000 6.033158 1.717112 +v 0.000000 -19.238768 -5.465332 +vn -0.825472 5.625579 2.649500 +v 2.634973 -17.936010 -8.447273 +vn -0.414218 5.782665 2.395330 +v 1.319767 -18.438375 -7.634430 +vn -0.413402 5.601479 2.793010 +v 1.316338 -17.858534 -8.907301 +vn -0.819977 5.425444 3.039901 +v 2.624007 -17.298586 -9.688834 +vn 0.000000 5.738645 2.533132 +v 0.000000 -18.300869 -8.067108 +vn -0.409468 5.393398 3.176900 +v 1.315151 -17.196957 -10.125960 +vn 0.000000 5.549800 2.923838 +v 0.000000 -17.699299 -9.313153 +vn 0.000000 5.336216 3.297963 +v 0.000000 -17.013018 -10.514623 +vn -1.226823 5.431558 2.888279 +v 3.920305 -17.317421 -9.205333 +vn 0.000000 5.900161 2.130065 +v 0.000000 -18.814846 -6.782451 +vn -2.044821 5.681746 1.698438 +v 6.518579 -18.116638 -5.412542 +vn -2.038370 5.537967 2.127012 +v 6.497270 -17.656738 -6.784176 +vn -2.419802 5.455983 1.930036 +v 7.718122 -17.394506 -6.153188 +vn -2.404534 5.294136 2.353504 +v 7.672275 -16.878231 -7.500772 +vn -2.776486 5.197208 2.151528 +v 8.857334 -16.568937 -6.856966 +vn -2.021221 5.365715 2.544154 +v 6.450493 -17.106739 -8.108677 +vn -0.418305 6.156777 1.125752 +v 1.332088 -19.629662 -3.591919 +vn -0.834924 6.143886 0.950682 +v 2.665128 -19.588524 -3.030978 +vn -0.418799 6.220297 0.693352 +v 1.334188 -19.832952 -2.207700 +vn -0.000000 6.212585 0.867423 +v 0.000000 -19.808777 -2.759045 +vn -0.000000 6.257732 0.435569 +v 0.000000 -19.952137 -1.382832 +vn 0.000000 6.137754 1.294962 +v 0.000000 -19.570608 -4.122053 +vn -3.904042 4.909290 0.000000 +v 12.445830 -15.655710 0.000000 +vn -4.186388 4.663921 0.254299 +v 13.350049 -14.869917 -0.813541 +vn -4.186388 4.663921 -0.254299 +v 13.350049 -14.869917 0.813541 +vn -3.892517 4.892682 -0.505807 +v 12.404793 -15.604088 1.622837 +vn -3.892517 4.892682 0.505807 +v 12.404793 -15.604088 -1.622837 +vn -4.458894 4.411805 0.000000 +v 14.225636 -14.058142 0.000000 +vn -4.159910 4.633387 -0.757021 +v 13.256838 -14.777726 2.423851 +vn -4.444400 4.397475 -0.505710 +v 14.179382 -14.012433 1.611459 +vn -4.405752 4.350312 -1.005790 +v 14.040929 -13.875610 3.212440 +vn -3.605203 5.126909 0.251994 +v 11.489155 -16.350460 -0.813504 +vn -3.605203 5.126909 -0.251994 +v 11.489155 -16.350460 0.813504 +vn -4.444400 4.397475 0.505710 +v 14.179382 -14.012433 -1.611459 +vn -4.159910 4.633387 0.757021 +v 13.256838 -14.777726 -2.423851 +vn -4.405752 4.350312 1.005790 +v 14.040929 -13.875610 -3.212440 +vn -4.701194 4.145186 -0.254172 +v 14.987741 -13.217676 0.812842 +vn -4.701194 4.145186 0.254172 +v 14.987741 -13.217676 -0.812842 +vn -4.932586 3.875302 0.000000 +v 15.728653 -12.353520 0.000000 +vn -4.918670 3.859880 -0.506775 +v 15.676861 -12.312842 1.621726 +vn -4.918669 3.859880 0.506775 +v 15.676861 -12.312842 -1.621726 +vn -5.140334 3.586368 -0.253063 +v 16.384148 -11.441113 0.812808 +vn -5.140334 3.586368 0.253063 +v 16.384148 -11.441113 -0.812808 +vn -5.336216 3.297963 -0.000000 +v 17.013018 -10.514623 0.000000 +vn -4.673337 4.115106 -0.758219 +v 14.894541 -13.125638 2.422881 +vn -4.673337 4.115106 0.758219 +v 14.894541 -13.125638 -2.422881 +vn -3.583054 5.094194 -0.747758 +v 11.422805 -16.243389 2.381564 +vn -3.859880 4.842214 -1.001257 +v 12.309114 -15.436811 3.192258 +vn -3.541666 5.027469 -1.236686 +v 11.290256 -16.030073 3.945489 +vn -3.808052 4.758040 -1.486083 +v 12.136502 -15.173046 4.741726 +vn -3.481249 4.928013 -1.715962 +v 11.094803 -15.714300 5.474133 +vn -4.116525 4.565382 -1.249185 +v 13.120113 -14.559172 3.986624 +vn -3.859880 4.842213 1.001257 +v 12.309114 -15.436811 -3.192258 +vn -3.583054 5.094194 0.747758 +v 11.422805 -16.243389 -2.381564 +vn -3.541666 5.027468 1.236686 +v 11.290256 -16.030073 -3.945489 +vn -3.808052 4.758040 1.486083 +v 12.136502 -15.173046 -4.741726 +vn -3.481249 4.928013 1.715962 +v 11.094803 -15.714300 -5.474133 +vn -4.116525 4.565382 1.249185 +v 13.120113 -14.559172 -3.986624 +vn 2.512898 5.744677 0.000000 +v -8.019361 -18.321840 0.000000 +vn 2.095810 5.903990 0.257773 +v -6.682801 -18.832361 -0.826040 +vn 2.095810 5.903990 -0.257773 +v -6.682801 -18.832361 0.826040 +vn 2.503548 5.726332 -0.511760 +v -7.992141 -18.259651 1.646472 +vn 2.503548 5.726332 0.511760 +v -7.992141 -18.259651 -1.646472 +vn 1.675502 6.042617 0.000000 +v -5.328095 -19.277225 0.000000 +vn 2.081523 5.865321 -0.765734 +v -6.646839 -18.702608 2.456005 +vn 1.669944 6.022530 -0.511362 +v -5.310369 -19.213095 1.630021 +vn 1.657217 5.964773 -1.004999 +v -5.257311 -19.021132 3.249197 +vn 2.908926 5.549281 0.254368 +v -9.284267 -17.695200 -0.825984 +vn 2.908926 5.549281 -0.254368 +v -9.284267 -17.695200 0.825984 +vn 3.283337 5.343650 -0.000000 +v -10.514623 -17.013018 0.000000 +vn 1.669944 6.022530 0.511362 +v -5.310369 -19.213095 -1.630021 +vn 2.081523 5.865321 0.765734 +v -6.646839 -18.702608 -2.456005 +vn 1.657217 5.964773 1.004999 +v -5.257311 -19.021132 -3.249197 +vn 1.255827 6.138454 -0.257591 +v -4.007356 -19.577038 0.825018 +vn 1.255827 6.138454 0.257591 +v -4.007356 -19.577038 -0.825018 +vn 0.838586 6.214565 0.000000 +v -2.670469 -19.820913 0.000000 +vn 0.842190 6.194839 -0.501472 +v -2.661422 -19.753767 1.644849 +vn 0.842190 6.194839 0.501472 +v -2.661422 -19.753767 -1.644849 +vn 0.425953 6.252691 -0.244263 +v -1.334826 -19.938347 0.824968 +vn 0.425953 6.252691 0.244263 +v -1.334826 -19.938347 -0.824968 +vn 1.253311 6.098812 -0.755588 +v -3.971610 -19.447399 2.454590 +vn 1.253311 6.098812 0.755588 +v -3.971610 -19.447399 -2.454590 +vn 2.889551 5.514426 -0.752105 +v -9.217632 -17.586891 2.395110 +vn 2.472758 5.673628 -1.009698 +v -7.882724 -18.096779 3.220128 +vn 2.848145 5.446983 -1.241979 +v -9.085237 -17.370689 3.964544 +vn 3.242869 5.277861 -0.982228 +v -10.385170 -16.803558 3.128689 +vn 2.431471 5.587787 -1.483699 +v -7.723748 -17.820131 4.773539 +vn 3.192330 5.196030 -1.465453 +v -10.224103 -16.542946 4.668907 +vn 2.797106 5.346992 -1.709715 +v -8.889277 -17.052803 5.493875 +vn 3.136120 5.074349 -1.938230 +v -10.000000 -16.180340 6.180339 +vn 3.273394 5.327210 -0.492892 +v -10.482208 -16.960571 1.569182 +vn 2.050830 5.794188 -1.248475 +v -6.510600 -18.477591 4.023772 +vn 2.472757 5.673628 1.009698 +v -7.882724 -18.096779 -3.220128 +vn 2.889551 5.514426 0.752105 +v -9.217632 -17.586891 -2.395110 +vn 2.848145 5.446982 1.241979 +v -9.085237 -17.370689 -3.964544 +vn 2.431471 5.587787 1.483699 +v -7.723748 -17.820131 -4.773539 +vn 3.242869 5.277861 0.982228 +v -10.385170 -16.803558 -3.128689 +vn 2.797106 5.346992 1.709715 +v -8.889277 -17.052803 -5.493875 +vn 3.192330 5.196029 1.465453 +v -10.224103 -16.542946 -4.668907 +vn 3.136120 5.074349 1.938230 +v -10.000000 -16.180340 -6.180339 +vn 2.050830 5.794188 1.248475 +v -6.510600 -18.477591 -4.023772 +vn 3.273394 5.327210 0.492892 +v -10.482208 -16.960571 -1.569182 +vn 1.248226 5.923720 1.641384 +v -3.981882 -18.888651 -5.231008 +vn 1.244024 5.787806 2.072776 +v -3.967734 -18.453640 -6.612130 +vn 0.832569 5.944967 1.818481 +v -2.651397 -18.956436 -5.798588 +vn 0.834284 6.060824 1.384288 +v -2.655850 -19.327852 -4.402341 +vn 1.652689 5.748219 1.890097 +v -5.281655 -18.324884 -6.025178 +vn 0.828030 5.798673 2.243998 +v -2.633107 -18.486092 -7.164576 +vn 0.418771 6.062376 1.555130 +v -1.331337 -19.332863 -4.946515 +vn 0.416218 5.936102 1.983849 +v -1.320848 -18.923958 -6.335552 +vn 1.653250 5.872489 1.458363 +v -5.283024 -18.720991 -4.649103 +vn 1.245518 6.028229 1.206373 +v -3.966748 -19.223763 -3.835599 +vn 1.234467 5.623558 2.489557 +v -3.928245 -17.928020 -7.947011 +vn 1.643653 5.594511 2.312154 +v -5.253211 -17.834839 -7.370367 +vn 1.627405 5.411545 2.722905 +v -5.197838 -17.253368 -8.677772 +vn 0.414218 5.782665 2.395330 +v -1.319767 -18.438375 -7.634430 +vn 0.825472 5.625580 2.649500 +v -2.634973 -17.936010 -8.447273 +vn 0.413402 5.601478 2.793010 +v -1.316338 -17.858534 -8.907301 +vn 0.819977 5.425444 3.039902 +v -2.624007 -17.298586 -9.688834 +vn 0.409468 5.393398 3.176901 +v -1.315151 -17.196957 -10.125960 +vn 1.226823 5.431558 2.888279 +v -3.920305 -17.317421 -9.205333 +vn 0.834924 6.143886 0.950682 +v -2.665128 -19.588524 -3.030978 +vn 0.418305 6.156777 1.125752 +v -1.332088 -19.629662 -3.591919 +vn 0.418798 6.220297 0.693352 +v -1.334188 -19.832952 -2.207700 +vn 2.038370 5.537967 2.127012 +v -6.497270 -17.656738 -6.784176 +vn 2.044821 5.681746 1.698438 +v -6.518579 -18.116638 -5.412542 +vn 2.419802 5.455983 1.930036 +v -7.718122 -17.394506 -6.153188 +vn 2.404534 5.294136 2.353504 +v -7.672275 -16.878231 -7.500772 +vn 2.776486 5.197208 2.151528 +v -8.857334 -16.568937 -6.856966 +vn 2.021221 5.365715 2.544154 +v -6.450493 -17.106739 -8.108677 +vn 1.248226 5.923719 -1.641384 +v -3.981882 -18.888651 5.231008 +vn 0.832569 5.944967 -1.818481 +v -2.651397 -18.956436 5.798588 +vn 1.244024 5.787806 -2.072776 +v -3.967734 -18.453640 6.612130 +vn 1.652689 5.748219 -1.890097 +v -5.281655 -18.324884 6.025178 +vn 0.834284 6.060824 -1.384288 +v -2.655850 -19.327852 4.402341 +vn 0.828030 5.798673 -2.243998 +v -2.633107 -18.486092 7.164576 +vn 1.643653 5.594511 -2.312154 +v -5.253211 -17.834839 7.370367 +vn 1.234467 5.623558 -2.489557 +v -3.928245 -17.928020 7.947011 +vn 1.627405 5.411545 -2.722905 +v -5.197838 -17.253368 8.677772 +vn 1.245518 6.028229 -1.206373 +v -3.966748 -19.223763 3.835599 +vn 1.653250 5.872489 -1.458363 +v -5.283024 -18.720991 4.649103 +vn 0.416218 5.936103 -1.983849 +v -1.320848 -18.923958 6.335552 +vn 0.418771 6.062376 -1.555130 +v -1.331337 -19.332863 4.946515 +vn 0.825472 5.625579 -2.649500 +v -2.634973 -17.936010 8.447273 +vn 0.414218 5.782665 -2.395330 +v -1.319767 -18.438375 7.634430 +vn 0.413402 5.601479 -2.793010 +v -1.316338 -17.858534 8.907301 +vn 0.819977 5.425444 -3.039901 +v -2.624007 -17.298586 9.688834 +vn 0.409468 5.393398 -3.176900 +v -1.315151 -17.196957 10.125960 +vn 1.226823 5.431558 -2.888279 +v -3.920305 -17.317421 9.205333 +vn 2.044821 5.681746 -1.698438 +v -6.518579 -18.116638 5.412542 +vn 2.038370 5.537967 -2.127012 +v -6.497270 -17.656738 6.784176 +vn 2.419802 5.455983 -1.930036 +v -7.718122 -17.394506 6.153188 +vn 2.404534 5.294136 -2.353504 +v -7.672275 -16.878231 7.500772 +vn 2.776486 5.197208 -2.151528 +v -8.857334 -16.568937 6.856966 +vn 2.021221 5.365715 -2.544154 +v -6.450493 -17.106739 8.108677 +vn 0.418305 6.156777 -1.125752 +v -1.332088 -19.629662 3.591919 +vn 0.834924 6.143886 -0.950682 +v -2.665128 -19.588524 3.030978 +vn 0.418799 6.220297 -0.693352 +v -1.334188 -19.832952 2.207700 +vn 3.904042 4.909290 -0.000000 +v -12.445830 -15.655710 0.000000 +vn 4.186388 4.663921 -0.254299 +v -13.350049 -14.869917 0.813541 +vn 4.186388 4.663921 0.254299 +v -13.350049 -14.869917 -0.813541 +vn 3.892517 4.892682 0.505807 +v -12.404793 -15.604088 -1.622837 +vn 3.892517 4.892682 -0.505807 +v -12.404793 -15.604088 1.622837 +vn 4.458894 4.411805 -0.000000 +v -14.225636 -14.058142 0.000000 +vn 4.159910 4.633387 0.757021 +v -13.256838 -14.777726 -2.423851 +vn 4.444400 4.397475 0.505710 +v -14.179382 -14.012433 -1.611459 +vn 4.405752 4.350312 1.005790 +v -14.040929 -13.875610 -3.212440 +vn 3.605203 5.126909 -0.251994 +v -11.489155 -16.350460 0.813504 +vn 3.605203 5.126909 0.251994 +v -11.489155 -16.350460 -0.813504 +vn 4.444400 4.397475 -0.505710 +v -14.179382 -14.012433 1.611459 +vn 4.159910 4.633387 -0.757021 +v -13.256838 -14.777726 2.423851 +vn 4.405752 4.350312 -1.005790 +v -14.040929 -13.875610 3.212440 +vn 4.701194 4.145186 0.254172 +v -14.987741 -13.217676 -0.812842 +vn 4.701194 4.145186 -0.254172 +v -14.987741 -13.217676 0.812842 +vn 4.932586 3.875302 0.000000 +v -15.728653 -12.353520 0.000000 +vn 4.918670 3.859880 0.506775 +v -15.676861 -12.312842 -1.621726 +vn 4.918669 3.859880 -0.506775 +v -15.676861 -12.312842 1.621726 +vn 5.140334 3.586368 0.253063 +v -16.384148 -11.441113 -0.812808 +vn 5.140334 3.586368 -0.253063 +v -16.384148 -11.441113 0.812808 +vn 5.336216 3.297963 0.000000 +v -17.013018 -10.514623 0.000000 +vn 4.673337 4.115106 0.758219 +v -14.894541 -13.125638 -2.422881 +vn 4.673337 4.115106 -0.758219 +v -14.894541 -13.125638 2.422881 +vn 3.583054 5.094194 0.747758 +v -11.422805 -16.243389 -2.381564 +vn 3.859880 4.842214 1.001257 +v -12.309114 -15.436811 -3.192258 +vn 3.541666 5.027469 1.236686 +v -11.290256 -16.030073 -3.945489 +vn 3.808052 4.758040 1.486083 +v -12.136502 -15.173046 -4.741726 +vn 3.481249 4.928013 1.715962 +v -11.094803 -15.714300 -5.474133 +vn 4.116525 4.565382 1.249185 +v -13.120113 -14.559172 -3.986624 +vn 3.859880 4.842213 -1.001257 +v -12.309114 -15.436811 3.192258 +vn 3.583054 5.094194 -0.747758 +v -11.422805 -16.243389 2.381564 +vn 3.541666 5.027468 -1.236686 +v -11.290256 -16.030073 3.945489 +vn 3.808052 4.758040 -1.486083 +v -12.136502 -15.173046 4.741726 +vn 3.481249 4.928013 -1.715962 +v -11.094803 -15.714300 5.474133 +vn 4.116525 4.565382 -1.249185 +v -13.120113 -14.559172 3.986624 +vn -5.744677 -0.000000 2.512897 +v 18.321840 0.000000 -8.019361 +vn -5.903990 -0.257773 2.095810 +v 18.832361 0.826040 -6.682801 +vn -5.903990 0.257773 2.095810 +v 18.832361 -0.826040 -6.682801 +vn -5.726332 0.511760 2.503548 +v 18.259651 -1.646472 -7.992141 +vn -5.726332 -0.511760 2.503548 +v 18.259651 1.646472 -7.992141 +vn -6.042617 -0.000000 1.675502 +v 19.277225 0.000000 -5.328095 +vn -5.865321 0.765734 2.081523 +v 18.702608 -2.456005 -6.646839 +vn -6.022530 0.511362 1.669944 +v 19.213095 -1.630021 -5.310369 +vn -5.964773 1.004999 1.657217 +v 19.021132 -3.249197 -5.257311 +vn -5.549281 -0.254368 2.908926 +v 17.695200 0.825984 -9.284267 +vn -5.549281 0.254368 2.908926 +v 17.695200 -0.825984 -9.284267 +vn -5.343651 0.000000 3.283337 +v 17.013018 0.000000 -10.514623 +vn -6.022530 -0.511362 1.669944 +v 19.213095 1.630021 -5.310369 +vn -5.865321 -0.765734 2.081523 +v 18.702608 2.456005 -6.646839 +vn -5.964773 -1.004999 1.657217 +v 19.021132 3.249197 -5.257311 +vn -6.138454 0.257591 1.255827 +v 19.577038 -0.825018 -4.007356 +vn -6.138454 -0.257591 1.255827 +v 19.577038 0.825018 -4.007356 +vn -6.214565 -0.000000 0.838586 +v 19.820913 0.000000 -2.670469 +vn -6.194839 0.501472 0.842190 +v 19.753767 -1.644849 -2.661422 +vn -6.194839 -0.501472 0.842190 +v 19.753767 1.644849 -2.661422 +vn -6.252691 0.244263 0.425953 +v 19.938347 -0.824968 -1.334826 +vn -6.252691 -0.244263 0.425953 +v 19.938347 0.824968 -1.334826 +vn -6.272241 0.000000 0.000000 +v 20.000000 0.000000 0.000000 +vn -6.098812 0.755587 1.253311 +v 19.447399 -2.454590 -3.971610 +vn -6.098812 -0.755587 1.253311 +v 19.447399 2.454590 -3.971610 +vn -5.514426 0.752105 2.889551 +v 17.586891 -2.395110 -9.217632 +vn -5.673628 1.009699 2.472758 +v 18.096779 -3.220128 -7.882724 +vn -5.446983 1.241979 2.848145 +v 17.370689 -3.964544 -9.085237 +vn -5.277861 0.982228 3.242869 +v 16.803558 -3.128689 -10.385170 +vn -5.587787 1.483699 2.431471 +v 17.820131 -4.773539 -7.723747 +vn -5.196029 1.465453 3.192329 +v 16.542946 -4.668907 -10.224103 +vn -5.346992 1.709714 2.797106 +v 17.052803 -5.493875 -8.889277 +vn -5.074349 1.938230 3.136120 +v 16.180340 -6.180339 -10.000000 +vn -5.327210 0.492892 3.273394 +v 16.960571 -1.569182 -10.482208 +vn -5.794188 1.248476 2.050831 +v 18.477591 -4.023772 -6.510600 +vn -5.673628 -1.009699 2.472758 +v 18.096779 3.220128 -7.882724 +vn -5.514426 -0.752105 2.889551 +v 17.586891 2.395110 -9.217632 +vn -5.446983 -1.241979 2.848145 +v 17.370689 3.964544 -9.085237 +vn -5.587787 -1.483699 2.431471 +v 17.820131 4.773539 -7.723747 +vn -5.277861 -0.982228 3.242869 +v 16.803558 3.128689 -10.385170 +vn -5.346992 -1.709714 2.797106 +v 17.052803 5.493875 -8.889277 +vn -5.196029 -1.465453 3.192329 +v 16.542946 4.668907 -10.224103 +vn -5.074349 -1.938230 3.136120 +v 16.180340 6.180339 -10.000000 +vn -5.794188 -1.248476 2.050831 +v 18.477591 4.023772 -6.510600 +vn -5.327210 -0.492892 3.273394 +v 16.960571 1.569182 -10.482208 +vn -5.923719 -1.641384 1.248226 +v 18.888653 5.231008 -3.981882 +vn -5.787805 -2.072779 1.244023 +v 18.453640 6.612130 -3.967734 +vn -5.944968 -1.818483 0.832567 +v 18.956436 5.798588 -2.651397 +vn -6.060824 -1.384287 0.834282 +v 19.327852 4.402341 -2.655850 +vn -5.748218 -1.890098 1.652691 +v 18.324884 6.025178 -5.281655 +vn -5.798673 -2.243998 0.828030 +v 18.486092 7.164576 -2.633107 +vn -6.062376 -1.555130 0.418771 +v 19.332863 4.946515 -1.331337 +vn -5.936102 -1.983849 0.416218 +v 18.923958 6.335552 -1.320848 +vn -6.033158 -1.717112 0.000000 +v 19.238768 5.465332 0.000000 +vn -5.872489 -1.458362 1.653253 +v 18.720991 4.649103 -5.283024 +vn -6.028230 -1.206370 1.245518 +v 19.223763 3.835599 -3.966748 +vn -5.623558 -2.489557 1.234467 +v 17.928020 7.947011 -3.928245 +vn -5.594511 -2.312154 1.643653 +v 17.834839 7.370367 -5.253211 +vn -5.411545 -2.722906 1.627405 +v 17.253368 8.677772 -5.197838 +vn -5.782665 -2.395330 0.414218 +v 18.438375 7.634430 -1.319767 +vn -5.625580 -2.649500 0.825472 +v 17.936010 8.447273 -2.634973 +vn -5.601478 -2.793010 0.413402 +v 17.858534 8.907301 -1.316338 +vn -5.738645 -2.533132 0.000000 +v 18.300869 8.067108 0.000000 +vn -5.425443 -3.039902 0.819978 +v 17.298586 9.688834 -2.624007 +vn -5.549800 -2.923838 -0.000000 +v 17.699299 9.313153 0.000000 +vn -5.393398 -3.176901 0.409468 +v 17.196957 10.125960 -1.315151 +vn -5.900161 -2.130065 0.000000 +v 18.814846 6.782451 0.000000 +vn -5.431557 -2.888280 1.226823 +v 17.317421 9.205333 -3.920305 +vn -6.143885 -0.950682 0.834924 +v 19.588524 3.030978 -2.665128 +vn -6.156778 -1.125752 0.418305 +v 19.629662 3.591919 -1.332088 +vn -6.220297 -0.693352 0.418799 +v 19.832952 2.207700 -1.334188 +vn -6.212585 -0.867423 -0.000000 +v 19.808777 2.759045 0.000000 +vn -6.257732 -0.435569 0.000000 +v 19.952137 1.382832 0.000000 +vn -6.137754 -1.294962 -0.000000 +v 19.570608 4.122053 0.000000 +vn -5.537967 -2.127011 2.038370 +v 17.656738 6.784176 -6.497270 +vn -5.681746 -1.698437 2.044821 +v 18.116638 5.412541 -6.518579 +vn -5.455983 -1.930035 2.419802 +v 17.394506 6.153189 -7.718122 +vn -5.294136 -2.353504 2.404533 +v 16.878231 7.500772 -7.672275 +vn -5.197209 -2.151528 2.776486 +v 16.568937 6.856966 -8.857334 +vn -5.365715 -2.544154 2.021221 +v 17.106739 8.108677 -6.450493 +vn -5.923719 1.641384 1.248226 +v 18.888653 -5.231008 -3.981882 +vn -5.944968 1.818483 0.832567 +v 18.956436 -5.798588 -2.651397 +vn -5.787805 2.072779 1.244023 +v 18.453640 -6.612130 -3.967734 +vn -5.748218 1.890098 1.652691 +v 18.324884 -6.025178 -5.281655 +vn -6.060824 1.384287 0.834282 +v 19.327852 -4.402341 -2.655850 +vn -5.798673 2.243998 0.828030 +v 18.486092 -7.164576 -2.633107 +vn -5.594511 2.312154 1.643653 +v 17.834839 -7.370367 -5.253211 +vn -5.623558 2.489557 1.234467 +v 17.928020 -7.947011 -3.928245 +vn -5.411545 2.722906 1.627405 +v 17.253368 -8.677772 -5.197838 +vn -6.028230 1.206370 1.245518 +v 19.223763 -3.835599 -3.966748 +vn -5.872489 1.458362 1.653253 +v 18.720991 -4.649103 -5.283024 +vn -5.936103 1.983849 0.416218 +v 18.923958 -6.335552 -1.320848 +vn -6.062376 1.555130 0.418771 +v 19.332863 -4.946515 -1.331337 +vn -6.033158 1.717112 -0.000000 +v 19.238768 -5.465332 0.000000 +vn -5.625579 2.649500 0.825472 +v 17.936010 -8.447273 -2.634973 +vn -5.782665 2.395330 0.414218 +v 18.438375 -7.634430 -1.319767 +vn -5.601478 2.793010 0.413402 +v 17.858534 -8.907301 -1.316338 +vn -5.425443 3.039902 0.819978 +v 17.298586 -9.688834 -2.624007 +vn -5.738645 2.533132 -0.000000 +v 18.300869 -8.067108 0.000000 +vn -5.393398 3.176900 0.409468 +v 17.196957 -10.125960 -1.315151 +vn -5.549800 2.923838 -0.000000 +v 17.699299 -9.313153 0.000000 +vn -5.431557 2.888280 1.226824 +v 17.317421 -9.205333 -3.920305 +vn -5.900161 2.130065 -0.000000 +v 18.814846 -6.782451 0.000000 +vn -5.681746 1.698437 2.044821 +v 18.116638 -5.412541 -6.518579 +vn -5.537967 2.127011 2.038370 +v 17.656738 -6.784176 -6.497270 +vn -5.455984 1.930035 2.419802 +v 17.394506 -6.153189 -7.718122 +vn -5.294136 2.353505 2.404533 +v 16.878231 -7.500772 -7.672275 +vn -5.197208 2.151528 2.776486 +v 16.568937 -6.856966 -8.857334 +vn -5.365715 2.544154 2.021221 +v 17.106739 -8.108677 -6.450493 +vn -6.156778 1.125752 0.418305 +v 19.629662 -3.591919 -1.332088 +vn -6.143886 0.950682 0.834924 +v 19.588524 -3.030978 -2.665128 +vn -6.220297 0.693352 0.418799 +v 19.832952 -2.207700 -1.334188 +vn -6.212585 0.867423 0.000000 +v 19.808777 -2.759045 0.000000 +vn -6.257732 0.435569 0.000000 +v 19.952137 -1.382832 0.000000 +vn -6.137754 1.294962 -0.000000 +v 19.570608 -4.122053 0.000000 +vn -4.909287 -0.000000 3.904046 +v 15.655710 0.000000 -12.445830 +vn -4.663924 0.254295 4.186388 +v 14.869915 -0.813541 -13.350048 +vn -4.663923 -0.254295 4.186388 +v 14.869915 0.813541 -13.350048 +vn -4.892680 -0.505806 3.892519 +v 15.604088 1.622837 -12.404793 +vn -4.892680 0.505806 3.892519 +v 15.604088 -1.622837 -12.404793 +vn -4.411809 0.000000 4.458891 +v 14.058142 0.000000 -14.225636 +vn -4.633388 -0.757020 4.159909 +v 14.777726 2.423851 -13.256838 +vn -4.397475 -0.505709 4.444399 +v 14.012434 1.611460 -14.179383 +vn -4.350310 -1.005794 4.405752 +v 13.875610 3.212440 -14.040929 +vn -5.126910 0.251994 3.605203 +v 16.350460 -0.813504 -11.489155 +vn -5.126910 -0.251994 3.605203 +v 16.350460 0.813504 -11.489155 +vn -4.397474 0.505709 4.444399 +v 14.012434 -1.611460 -14.179383 +vn -4.633389 0.757020 4.159909 +v 14.777726 -2.423851 -13.256838 +vn -4.350310 1.005794 4.405753 +v 13.875610 -3.212440 -14.040929 +vn -4.145185 -0.254173 4.701195 +v 13.217676 0.812842 -14.987741 +vn -4.145185 0.254173 4.701195 +v 13.217676 -0.812842 -14.987741 +vn -3.875301 0.000000 4.932586 +v 12.353520 0.000000 -15.728653 +vn -3.859881 -0.506775 4.918668 +v 12.312842 1.621726 -15.676861 +vn -3.859881 0.506775 4.918668 +v 12.312842 -1.621726 -15.676861 +vn -3.586367 -0.253063 5.140335 +v 11.441112 0.812808 -16.384148 +vn -3.586367 0.253063 5.140335 +v 11.441112 -0.812808 -16.384148 +vn -3.297965 -0.000000 5.336215 +v 10.514623 0.000000 -17.013018 +vn -4.115105 -0.758220 4.673338 +v 13.125638 2.422881 -14.894539 +vn -4.115105 0.758220 4.673338 +v 13.125638 -2.422881 -14.894539 +vn -5.094194 -0.747758 3.583054 +v 16.243389 2.381564 -11.422805 +vn -4.842214 -1.001257 3.859880 +v 15.436811 3.192258 -12.309114 +vn -5.027469 -1.236686 3.541666 +v 16.030073 3.945489 -11.290256 +vn -4.758040 -1.486083 3.808052 +v 15.173046 4.741726 -12.136502 +vn -4.928013 -1.715962 3.481248 +v 15.714300 5.474133 -11.094803 +vn -4.565381 -1.249186 4.116526 +v 14.559172 3.986624 -13.120113 +vn -4.842213 1.001257 3.859880 +v 15.436811 -3.192258 -12.309114 +vn -5.094194 0.747758 3.583054 +v 16.243389 -2.381564 -11.422805 +vn -5.027468 1.236686 3.541666 +v 16.030073 -3.945489 -11.290256 +vn -4.758040 1.486083 3.808052 +v 15.173046 -4.741726 -12.136502 +vn -4.928013 1.715962 3.481248 +v 15.714300 -5.474133 -11.094803 +vn -4.565381 1.249186 4.116526 +v 14.559172 -3.986624 -13.120113 +vn -5.744677 0.000000 -2.512897 +v 18.321840 0.000000 8.019361 +vn -5.903990 0.257773 -2.095810 +v 18.832361 -0.826040 6.682801 +vn -5.903990 -0.257773 -2.095810 +v 18.832361 0.826040 6.682801 +vn -5.726332 -0.511760 -2.503548 +v 18.259651 1.646472 7.992141 +vn -5.726332 0.511760 -2.503548 +v 18.259651 -1.646472 7.992141 +vn -6.042617 0.000000 -1.675502 +v 19.277225 0.000000 5.328095 +vn -5.865321 -0.765734 -2.081523 +v 18.702608 2.456005 6.646839 +vn -6.022530 -0.511362 -1.669944 +v 19.213095 1.630021 5.310369 +vn -5.964773 -1.004999 -1.657217 +v 19.021132 3.249197 5.257311 +vn -5.549281 0.254368 -2.908926 +v 17.695200 -0.825984 9.284267 +vn -5.549281 -0.254368 -2.908926 +v 17.695200 0.825984 9.284267 +vn -5.343651 -0.000000 -3.283337 +v 17.013018 0.000000 10.514623 +vn -6.022530 0.511362 -1.669944 +v 19.213095 -1.630021 5.310369 +vn -5.865321 0.765734 -2.081523 +v 18.702608 -2.456005 6.646839 +vn -5.964773 1.004999 -1.657217 +v 19.021132 -3.249197 5.257311 +vn -6.138454 -0.257591 -1.255827 +v 19.577038 0.825018 4.007356 +vn -6.138454 0.257591 -1.255827 +v 19.577038 -0.825018 4.007356 +vn -6.214565 0.000000 -0.838586 +v 19.820913 0.000000 2.670469 +vn -6.194839 -0.501472 -0.842190 +v 19.753767 1.644849 2.661422 +vn -6.194839 0.501472 -0.842190 +v 19.753767 -1.644849 2.661422 +vn -6.252691 -0.244263 -0.425953 +v 19.938347 0.824968 1.334826 +vn -6.252691 0.244263 -0.425953 +v 19.938347 -0.824968 1.334826 +vn -6.098812 -0.755587 -1.253311 +v 19.447399 2.454590 3.971610 +vn -6.098812 0.755587 -1.253311 +v 19.447399 -2.454590 3.971610 +vn -5.514426 -0.752105 -2.889551 +v 17.586891 2.395110 9.217632 +vn -5.673628 -1.009699 -2.472758 +v 18.096779 3.220128 7.882724 +vn -5.446983 -1.241979 -2.848145 +v 17.370689 3.964544 9.085237 +vn -5.277861 -0.982228 -3.242869 +v 16.803558 3.128689 10.385170 +vn -5.587787 -1.483699 -2.431471 +v 17.820131 4.773539 7.723747 +vn -5.196029 -1.465453 -3.192329 +v 16.542946 4.668907 10.224103 +vn -5.346992 -1.709714 -2.797106 +v 17.052803 5.493875 8.889277 +vn -5.074349 -1.938230 -3.136120 +v 16.180340 6.180339 10.000000 +vn -5.327210 -0.492892 -3.273394 +v 16.960571 1.569182 10.482208 +vn -5.794188 -1.248476 -2.050831 +v 18.477591 4.023772 6.510600 +vn -5.673628 1.009699 -2.472758 +v 18.096779 -3.220128 7.882724 +vn -5.514426 0.752105 -2.889551 +v 17.586891 -2.395110 9.217632 +vn -5.446983 1.241979 -2.848145 +v 17.370689 -3.964544 9.085237 +vn -5.587787 1.483699 -2.431471 +v 17.820131 -4.773539 7.723747 +vn -5.277861 0.982228 -3.242869 +v 16.803558 -3.128689 10.385170 +vn -5.346992 1.709714 -2.797106 +v 17.052803 -5.493875 8.889277 +vn -5.196029 1.465453 -3.192329 +v 16.542946 -4.668907 10.224103 +vn -5.074349 1.938230 -3.136120 +v 16.180340 -6.180339 10.000000 +vn -5.794188 1.248476 -2.050831 +v 18.477591 -4.023772 6.510600 +vn -5.327210 0.492892 -3.273394 +v 16.960571 -1.569182 10.482208 +vn -5.923719 1.641384 -1.248226 +v 18.888653 -5.231008 3.981882 +vn -5.787805 2.072779 -1.244023 +v 18.453640 -6.612130 3.967734 +vn -5.944968 1.818483 -0.832567 +v 18.956436 -5.798588 2.651397 +vn -6.060824 1.384287 -0.834282 +v 19.327852 -4.402341 2.655850 +vn -5.748218 1.890098 -1.652691 +v 18.324884 -6.025178 5.281655 +vn -5.798673 2.243998 -0.828030 +v 18.486092 -7.164576 2.633107 +vn -6.062376 1.555130 -0.418771 +v 19.332863 -4.946515 1.331337 +vn -5.936102 1.983849 -0.416218 +v 18.923958 -6.335552 1.320848 +vn -5.872489 1.458362 -1.653253 +v 18.720991 -4.649103 5.283024 +vn -6.028230 1.206370 -1.245518 +v 19.223763 -3.835599 3.966748 +vn -5.623558 2.489557 -1.234467 +v 17.928020 -7.947011 3.928245 +vn -5.594511 2.312154 -1.643653 +v 17.834839 -7.370367 5.253211 +vn -5.411545 2.722906 -1.627405 +v 17.253368 -8.677772 5.197838 +vn -5.782665 2.395330 -0.414218 +v 18.438375 -7.634430 1.319767 +vn -5.625580 2.649500 -0.825472 +v 17.936010 -8.447273 2.634973 +vn -5.601478 2.793010 -0.413402 +v 17.858534 -8.907301 1.316338 +vn -5.425443 3.039902 -0.819978 +v 17.298586 -9.688834 2.624007 +vn -5.393398 3.176901 -0.409468 +v 17.196957 -10.125960 1.315151 +vn -5.431557 2.888280 -1.226823 +v 17.317421 -9.205333 3.920305 +vn -6.143885 0.950682 -0.834924 +v 19.588524 -3.030978 2.665128 +vn -6.156778 1.125752 -0.418305 +v 19.629662 -3.591919 1.332088 +vn -6.220297 0.693352 -0.418799 +v 19.832952 -2.207700 1.334188 +vn -5.537967 2.127011 -2.038370 +v 17.656738 -6.784176 6.497270 +vn -5.681746 1.698437 -2.044821 +v 18.116638 -5.412541 6.518579 +vn -5.455983 1.930035 -2.419802 +v 17.394506 -6.153189 7.718122 +vn -5.294136 2.353504 -2.404533 +v 16.878231 -7.500772 7.672275 +vn -5.197209 2.151528 -2.776486 +v 16.568937 -6.856966 8.857334 +vn -5.365715 2.544154 -2.021221 +v 17.106739 -8.108677 6.450493 +vn -5.923719 -1.641384 -1.248226 +v 18.888653 5.231008 3.981882 +vn -5.944968 -1.818483 -0.832567 +v 18.956436 5.798588 2.651397 +vn -5.787805 -2.072779 -1.244023 +v 18.453640 6.612130 3.967734 +vn -5.748218 -1.890098 -1.652691 +v 18.324884 6.025178 5.281655 +vn -6.060824 -1.384287 -0.834282 +v 19.327852 4.402341 2.655850 +vn -5.798673 -2.243998 -0.828030 +v 18.486092 7.164576 2.633107 +vn -5.594511 -2.312154 -1.643653 +v 17.834839 7.370367 5.253211 +vn -5.623558 -2.489557 -1.234467 +v 17.928020 7.947011 3.928245 +vn -5.411545 -2.722906 -1.627405 +v 17.253368 8.677772 5.197838 +vn -6.028230 -1.206370 -1.245518 +v 19.223763 3.835599 3.966748 +vn -5.872489 -1.458362 -1.653253 +v 18.720991 4.649103 5.283024 +vn -5.936103 -1.983849 -0.416218 +v 18.923958 6.335552 1.320848 +vn -6.062376 -1.555130 -0.418771 +v 19.332863 4.946515 1.331337 +vn -5.625579 -2.649500 -0.825472 +v 17.936010 8.447273 2.634973 +vn -5.782665 -2.395330 -0.414218 +v 18.438375 7.634430 1.319767 +vn -5.601478 -2.793010 -0.413402 +v 17.858534 8.907301 1.316338 +vn -5.425443 -3.039902 -0.819978 +v 17.298586 9.688834 2.624007 +vn -5.393398 -3.176900 -0.409468 +v 17.196957 10.125960 1.315151 +vn -5.431557 -2.888280 -1.226824 +v 17.317421 9.205333 3.920305 +vn -5.681746 -1.698437 -2.044821 +v 18.116638 5.412541 6.518579 +vn -5.537967 -2.127011 -2.038370 +v 17.656738 6.784176 6.497270 +vn -5.455984 -1.930035 -2.419802 +v 17.394506 6.153189 7.718122 +vn -5.294136 -2.353505 -2.404533 +v 16.878231 7.500772 7.672275 +vn -5.197208 -2.151528 -2.776486 +v 16.568937 6.856966 8.857334 +vn -5.365715 -2.544154 -2.021221 +v 17.106739 8.108677 6.450493 +vn -6.156778 -1.125752 -0.418305 +v 19.629662 3.591919 1.332088 +vn -6.143886 -0.950682 -0.834924 +v 19.588524 3.030978 2.665128 +vn -6.220297 -0.693352 -0.418799 +v 19.832952 2.207700 1.334188 +vn -4.909287 0.000000 -3.904046 +v 15.655710 0.000000 12.445830 +vn -4.663924 -0.254295 -4.186388 +v 14.869915 0.813541 13.350048 +vn -4.663923 0.254295 -4.186388 +v 14.869915 -0.813541 13.350048 +vn -4.892680 0.505806 -3.892519 +v 15.604088 -1.622837 12.404793 +vn -4.892680 -0.505806 -3.892519 +v 15.604088 1.622837 12.404793 +vn -4.411809 0.000000 -4.458891 +v 14.058142 0.000000 14.225636 +vn -4.633388 0.757020 -4.159909 +v 14.777726 -2.423851 13.256838 +vn -4.397475 0.505709 -4.444399 +v 14.012434 -1.611460 14.179383 +vn -4.350310 1.005794 -4.405752 +v 13.875610 -3.212440 14.040929 +vn -5.126910 -0.251994 -3.605203 +v 16.350460 0.813504 11.489155 +vn -5.126910 0.251994 -3.605203 +v 16.350460 -0.813504 11.489155 +vn -4.397474 -0.505709 -4.444399 +v 14.012434 1.611460 14.179383 +vn -4.633389 -0.757020 -4.159909 +v 14.777726 2.423851 13.256838 +vn -4.350310 -1.005794 -4.405753 +v 13.875610 3.212440 14.040929 +vn -4.145185 0.254173 -4.701195 +v 13.217676 -0.812842 14.987741 +vn -4.145185 -0.254173 -4.701195 +v 13.217676 0.812842 14.987741 +vn -3.875301 -0.000000 -4.932586 +v 12.353520 0.000000 15.728653 +vn -3.859881 0.506775 -4.918668 +v 12.312842 -1.621726 15.676861 +vn -3.859881 -0.506775 -4.918668 +v 12.312842 1.621726 15.676861 +vn -3.586367 0.253063 -5.140335 +v 11.441112 -0.812808 16.384148 +vn -3.586367 -0.253063 -5.140335 +v 11.441112 0.812808 16.384148 +vn -3.297965 0.000000 -5.336215 +v 10.514623 0.000000 17.013018 +vn -4.115105 0.758220 -4.673338 +v 13.125638 -2.422881 14.894539 +vn -4.115105 -0.758220 -4.673338 +v 13.125638 2.422881 14.894539 +vn -5.094194 0.747758 -3.583054 +v 16.243389 -2.381564 11.422805 +vn -4.842214 1.001257 -3.859880 +v 15.436811 -3.192258 12.309114 +vn -5.027469 1.236686 -3.541666 +v 16.030073 -3.945489 11.290256 +vn -4.758040 1.486083 -3.808052 +v 15.173046 -4.741726 12.136502 +vn -4.928013 1.715962 -3.481248 +v 15.714300 -5.474133 11.094803 +vn -4.565381 1.249186 -4.116526 +v 14.559172 -3.986624 13.120113 +vn -4.842213 -1.001257 -3.859880 +v 15.436811 3.192258 12.309114 +vn -5.094194 -0.747758 -3.583054 +v 16.243389 2.381564 11.422805 +vn -5.027468 -1.236686 -3.541666 +v 16.030073 3.945489 11.290256 +vn -4.758040 -1.486083 -3.808052 +v 15.173046 4.741726 12.136502 +vn -4.928013 -1.715962 -3.481248 +v 15.714300 5.474133 11.094803 +vn -4.565381 -1.249186 -4.116526 +v 14.559172 3.986624 13.120113 +vn 5.744677 -0.000000 -2.512897 +v -18.321840 0.000000 8.019361 +vn 5.903990 -0.257773 -2.095810 +v -18.832361 0.826040 6.682801 +vn 5.903990 0.257773 -2.095810 +v -18.832361 -0.826040 6.682801 +vn 5.726332 0.511760 -2.503548 +v -18.259651 -1.646472 7.992141 +vn 5.726332 -0.511760 -2.503548 +v -18.259651 1.646472 7.992141 +vn 6.042617 -0.000000 -1.675502 +v -19.277225 0.000000 5.328095 +vn 5.865321 0.765734 -2.081523 +v -18.702608 -2.456005 6.646839 +vn 6.022530 0.511362 -1.669944 +v -19.213095 -1.630021 5.310369 +vn 5.964773 1.004999 -1.657217 +v -19.021132 -3.249197 5.257311 +vn 5.549281 -0.254368 -2.908926 +v -17.695200 0.825984 9.284267 +vn 5.549281 0.254368 -2.908926 +v -17.695200 -0.825984 9.284267 +vn 5.343651 0.000000 -3.283337 +v -17.013018 0.000000 10.514623 +vn 6.022530 -0.511362 -1.669944 +v -19.213095 1.630021 5.310369 +vn 5.865321 -0.765734 -2.081523 +v -18.702608 2.456005 6.646839 +vn 5.964773 -1.004999 -1.657217 +v -19.021132 3.249197 5.257311 +vn 6.138454 0.257591 -1.255827 +v -19.577038 -0.825018 4.007356 +vn 6.138454 -0.257591 -1.255827 +v -19.577038 0.825018 4.007356 +vn 6.214565 -0.000000 -0.838586 +v -19.820913 0.000000 2.670469 +vn 6.194839 0.501472 -0.842190 +v -19.753767 -1.644849 2.661422 +vn 6.194839 -0.501472 -0.842190 +v -19.753767 1.644849 2.661422 +vn 6.252691 0.244263 -0.425953 +v -19.938347 -0.824968 1.334826 +vn 6.252691 -0.244263 -0.425953 +v -19.938347 0.824968 1.334826 +vn 6.272241 0.000000 0.000000 +v -20.000000 0.000000 0.000000 +vn 6.098812 0.755587 -1.253311 +v -19.447399 -2.454590 3.971610 +vn 6.098812 -0.755587 -1.253311 +v -19.447399 2.454590 3.971610 +vn 5.514426 0.752105 -2.889551 +v -17.586891 -2.395110 9.217632 +vn 5.673628 1.009699 -2.472758 +v -18.096779 -3.220128 7.882724 +vn 5.446983 1.241979 -2.848145 +v -17.370689 -3.964544 9.085237 +vn 5.277861 0.982228 -3.242869 +v -16.803558 -3.128689 10.385170 +vn 5.587787 1.483699 -2.431471 +v -17.820131 -4.773539 7.723747 +vn 5.196029 1.465453 -3.192329 +v -16.542946 -4.668907 10.224103 +vn 5.346992 1.709714 -2.797106 +v -17.052803 -5.493875 8.889277 +vn 5.074349 1.938230 -3.136120 +v -16.180340 -6.180339 10.000000 +vn 5.327210 0.492892 -3.273394 +v -16.960571 -1.569182 10.482208 +vn 5.794188 1.248476 -2.050831 +v -18.477591 -4.023772 6.510600 +vn 5.673628 -1.009699 -2.472758 +v -18.096779 3.220128 7.882724 +vn 5.514426 -0.752105 -2.889551 +v -17.586891 2.395110 9.217632 +vn 5.446983 -1.241979 -2.848145 +v -17.370689 3.964544 9.085237 +vn 5.587787 -1.483699 -2.431471 +v -17.820131 4.773539 7.723747 +vn 5.277861 -0.982228 -3.242869 +v -16.803558 3.128689 10.385170 +vn 5.346992 -1.709714 -2.797106 +v -17.052803 5.493875 8.889277 +vn 5.196029 -1.465453 -3.192329 +v -16.542946 4.668907 10.224103 +vn 5.074349 -1.938230 -3.136120 +v -16.180340 6.180339 10.000000 +vn 5.794188 -1.248476 -2.050831 +v -18.477591 4.023772 6.510600 +vn 5.327210 -0.492892 -3.273394 +v -16.960571 1.569182 10.482208 +vn 5.923719 -1.641384 -1.248226 +v -18.888653 5.231008 3.981882 +vn 5.787805 -2.072779 -1.244023 +v -18.453640 6.612130 3.967734 +vn 5.944968 -1.818483 -0.832567 +v -18.956436 5.798588 2.651397 +vn 6.060824 -1.384287 -0.834282 +v -19.327852 4.402341 2.655850 +vn 5.748218 -1.890098 -1.652691 +v -18.324884 6.025178 5.281655 +vn 5.798673 -2.243998 -0.828030 +v -18.486092 7.164576 2.633107 +vn 6.062376 -1.555130 -0.418771 +v -19.332863 4.946515 1.331337 +vn 5.936102 -1.983849 -0.416218 +v -18.923958 6.335552 1.320848 +vn 6.033158 -1.717112 -0.000000 +v -19.238768 5.465332 0.000000 +vn 5.872489 -1.458362 -1.653253 +v -18.720991 4.649103 5.283024 +vn 6.028230 -1.206370 -1.245518 +v -19.223763 3.835599 3.966748 +vn 5.623558 -2.489557 -1.234467 +v -17.928020 7.947011 3.928245 +vn 5.594511 -2.312154 -1.643653 +v -17.834839 7.370367 5.253211 +vn 5.411545 -2.722906 -1.627405 +v -17.253368 8.677772 5.197838 +vn 5.782665 -2.395330 -0.414218 +v -18.438375 7.634430 1.319767 +vn 5.625580 -2.649500 -0.825472 +v -17.936010 8.447273 2.634973 +vn 5.601478 -2.793010 -0.413402 +v -17.858534 8.907301 1.316338 +vn 5.738645 -2.533132 -0.000000 +v -18.300869 8.067108 0.000000 +vn 5.425443 -3.039902 -0.819978 +v -17.298586 9.688834 2.624007 +vn 5.549800 -2.923838 0.000000 +v -17.699299 9.313153 0.000000 +vn 5.393398 -3.176901 -0.409468 +v -17.196957 10.125960 1.315151 +vn 5.900161 -2.130065 -0.000000 +v -18.814846 6.782451 0.000000 +vn 5.431557 -2.888280 -1.226823 +v -17.317421 9.205333 3.920305 +vn 6.143885 -0.950682 -0.834924 +v -19.588524 3.030978 2.665128 +vn 6.156778 -1.125752 -0.418305 +v -19.629662 3.591919 1.332088 +vn 6.220297 -0.693352 -0.418799 +v -19.832952 2.207700 1.334188 +vn 6.212585 -0.867423 0.000000 +v -19.808777 2.759045 0.000000 +vn 6.257732 -0.435569 -0.000000 +v -19.952137 1.382832 0.000000 +vn 6.137754 -1.294962 0.000000 +v -19.570608 4.122053 0.000000 +vn 5.537967 -2.127011 -2.038370 +v -17.656738 6.784176 6.497270 +vn 5.681746 -1.698437 -2.044821 +v -18.116638 5.412541 6.518579 +vn 5.455983 -1.930035 -2.419802 +v -17.394506 6.153189 7.718122 +vn 5.294136 -2.353504 -2.404533 +v -16.878231 7.500772 7.672275 +vn 5.197209 -2.151528 -2.776486 +v -16.568937 6.856966 8.857334 +vn 5.365715 -2.544154 -2.021221 +v -17.106739 8.108677 6.450493 +vn 5.923719 1.641384 -1.248226 +v -18.888653 -5.231008 3.981882 +vn 5.944968 1.818483 -0.832567 +v -18.956436 -5.798588 2.651397 +vn 5.787805 2.072779 -1.244023 +v -18.453640 -6.612130 3.967734 +vn 5.748218 1.890098 -1.652691 +v -18.324884 -6.025178 5.281655 +vn 6.060824 1.384287 -0.834282 +v -19.327852 -4.402341 2.655850 +vn 5.798673 2.243998 -0.828030 +v -18.486092 -7.164576 2.633107 +vn 5.594511 2.312154 -1.643653 +v -17.834839 -7.370367 5.253211 +vn 5.623558 2.489557 -1.234467 +v -17.928020 -7.947011 3.928245 +vn 5.411545 2.722906 -1.627405 +v -17.253368 -8.677772 5.197838 +vn 6.028230 1.206370 -1.245518 +v -19.223763 -3.835599 3.966748 +vn 5.872489 1.458362 -1.653253 +v -18.720991 -4.649103 5.283024 +vn 5.936103 1.983849 -0.416218 +v -18.923958 -6.335552 1.320848 +vn 6.062376 1.555130 -0.418771 +v -19.332863 -4.946515 1.331337 +vn 6.033158 1.717112 0.000000 +v -19.238768 -5.465332 0.000000 +vn 5.625579 2.649500 -0.825472 +v -17.936010 -8.447273 2.634973 +vn 5.782665 2.395330 -0.414218 +v -18.438375 -7.634430 1.319767 +vn 5.601478 2.793010 -0.413402 +v -17.858534 -8.907301 1.316338 +vn 5.425443 3.039902 -0.819978 +v -17.298586 -9.688834 2.624007 +vn 5.738645 2.533132 0.000000 +v -18.300869 -8.067108 0.000000 +vn 5.393398 3.176900 -0.409468 +v -17.196957 -10.125960 1.315151 +vn 5.549800 2.923838 0.000000 +v -17.699299 -9.313153 0.000000 +vn 5.431557 2.888280 -1.226824 +v -17.317421 -9.205333 3.920305 +vn 5.900161 2.130065 0.000000 +v -18.814846 -6.782451 0.000000 +vn 5.681746 1.698437 -2.044821 +v -18.116638 -5.412541 6.518579 +vn 5.537967 2.127011 -2.038370 +v -17.656738 -6.784176 6.497270 +vn 5.455984 1.930035 -2.419802 +v -17.394506 -6.153189 7.718122 +vn 5.294136 2.353505 -2.404533 +v -16.878231 -7.500772 7.672275 +vn 5.197208 2.151528 -2.776486 +v -16.568937 -6.856966 8.857334 +vn 5.365715 2.544154 -2.021221 +v -17.106739 -8.108677 6.450493 +vn 6.156778 1.125752 -0.418305 +v -19.629662 -3.591919 1.332088 +vn 6.143886 0.950682 -0.834924 +v -19.588524 -3.030978 2.665128 +vn 6.220297 0.693352 -0.418799 +v -19.832952 -2.207700 1.334188 +vn 6.212585 0.867423 -0.000000 +v -19.808777 -2.759045 0.000000 +vn 6.257732 0.435569 -0.000000 +v -19.952137 -1.382832 0.000000 +vn 6.137754 1.294962 0.000000 +v -19.570608 -4.122053 0.000000 +vn 4.909287 -0.000000 -3.904046 +v -15.655710 0.000000 12.445830 +vn 4.663924 0.254295 -4.186388 +v -14.869915 -0.813541 13.350048 +vn 4.663923 -0.254295 -4.186388 +v -14.869915 0.813541 13.350048 +vn 4.892680 -0.505806 -3.892519 +v -15.604088 1.622837 12.404793 +vn 4.892680 0.505806 -3.892519 +v -15.604088 -1.622837 12.404793 +vn 4.411809 0.000000 -4.458891 +v -14.058142 0.000000 14.225636 +vn 4.633388 -0.757020 -4.159909 +v -14.777726 2.423851 13.256838 +vn 4.397475 -0.505709 -4.444399 +v -14.012434 1.611460 14.179383 +vn 4.350310 -1.005794 -4.405752 +v -13.875610 3.212440 14.040929 +vn 5.126910 0.251994 -3.605203 +v -16.350460 -0.813504 11.489155 +vn 5.126910 -0.251994 -3.605203 +v -16.350460 0.813504 11.489155 +vn 4.397474 0.505709 -4.444399 +v -14.012434 -1.611460 14.179383 +vn 4.633389 0.757020 -4.159909 +v -14.777726 -2.423851 13.256838 +vn 4.350310 1.005794 -4.405753 +v -13.875610 -3.212440 14.040929 +vn 4.145185 -0.254173 -4.701195 +v -13.217676 0.812842 14.987741 +vn 4.145185 0.254173 -4.701195 +v -13.217676 -0.812842 14.987741 +vn 3.875301 0.000000 -4.932586 +v -12.353520 0.000000 15.728653 +vn 3.859881 -0.506775 -4.918668 +v -12.312842 1.621726 15.676861 +vn 3.859881 0.506775 -4.918668 +v -12.312842 -1.621726 15.676861 +vn 3.586367 -0.253063 -5.140335 +v -11.441112 0.812808 16.384148 +vn 3.586367 0.253063 -5.140335 +v -11.441112 -0.812808 16.384148 +vn 3.297965 -0.000000 -5.336215 +v -10.514623 0.000000 17.013018 +vn 4.115105 -0.758220 -4.673338 +v -13.125638 2.422881 14.894539 +vn 4.115105 0.758220 -4.673338 +v -13.125638 -2.422881 14.894539 +vn 5.094194 -0.747758 -3.583054 +v -16.243389 2.381564 11.422805 +vn 4.842214 -1.001257 -3.859880 +v -15.436811 3.192258 12.309114 +vn 5.027469 -1.236686 -3.541666 +v -16.030073 3.945489 11.290256 +vn 4.758040 -1.486083 -3.808052 +v -15.173046 4.741726 12.136502 +vn 4.928013 -1.715962 -3.481248 +v -15.714300 5.474133 11.094803 +vn 4.565381 -1.249186 -4.116526 +v -14.559172 3.986624 13.120113 +vn 4.842213 1.001257 -3.859880 +v -15.436811 -3.192258 12.309114 +vn 5.094194 0.747758 -3.583054 +v -16.243389 -2.381564 11.422805 +vn 5.027468 1.236686 -3.541666 +v -16.030073 -3.945489 11.290256 +vn 4.758040 1.486083 -3.808052 +v -15.173046 -4.741726 12.136502 +vn 4.928013 1.715962 -3.481248 +v -15.714300 -5.474133 11.094803 +vn 4.565381 1.249186 -4.116526 +v -14.559172 -3.986624 13.120113 +vn 5.744677 0.000000 2.512897 +v -18.321840 0.000000 -8.019361 +vn 5.903990 0.257773 2.095810 +v -18.832361 -0.826040 -6.682801 +vn 5.903990 -0.257773 2.095810 +v -18.832361 0.826040 -6.682801 +vn 5.726332 -0.511760 2.503548 +v -18.259651 1.646472 -7.992141 +vn 5.726332 0.511760 2.503548 +v -18.259651 -1.646472 -7.992141 +vn 6.042617 0.000000 1.675502 +v -19.277225 0.000000 -5.328095 +vn 5.865321 -0.765734 2.081523 +v -18.702608 2.456005 -6.646839 +vn 6.022530 -0.511362 1.669944 +v -19.213095 1.630021 -5.310369 +vn 5.964773 -1.004999 1.657217 +v -19.021132 3.249197 -5.257311 +vn 5.549281 0.254368 2.908926 +v -17.695200 -0.825984 -9.284267 +vn 5.549281 -0.254368 2.908926 +v -17.695200 0.825984 -9.284267 +vn 5.343651 -0.000000 3.283337 +v -17.013018 0.000000 -10.514623 +vn 6.022530 0.511362 1.669944 +v -19.213095 -1.630021 -5.310369 +vn 5.865321 0.765734 2.081523 +v -18.702608 -2.456005 -6.646839 +vn 5.964773 1.004999 1.657217 +v -19.021132 -3.249197 -5.257311 +vn 6.138454 -0.257591 1.255827 +v -19.577038 0.825018 -4.007356 +vn 6.138454 0.257591 1.255827 +v -19.577038 -0.825018 -4.007356 +vn 6.214565 0.000000 0.838586 +v -19.820913 0.000000 -2.670469 +vn 6.194839 -0.501472 0.842190 +v -19.753767 1.644849 -2.661422 +vn 6.194839 0.501472 0.842190 +v -19.753767 -1.644849 -2.661422 +vn 6.252691 -0.244263 0.425953 +v -19.938347 0.824968 -1.334826 +vn 6.252691 0.244263 0.425953 +v -19.938347 -0.824968 -1.334826 +vn 6.098812 -0.755587 1.253311 +v -19.447399 2.454590 -3.971610 +vn 6.098812 0.755587 1.253311 +v -19.447399 -2.454590 -3.971610 +vn 5.514426 -0.752105 2.889551 +v -17.586891 2.395110 -9.217632 +vn 5.673628 -1.009699 2.472758 +v -18.096779 3.220128 -7.882724 +vn 5.446983 -1.241979 2.848145 +v -17.370689 3.964544 -9.085237 +vn 5.277861 -0.982228 3.242869 +v -16.803558 3.128689 -10.385170 +vn 5.587787 -1.483699 2.431471 +v -17.820131 4.773539 -7.723747 +vn 5.196029 -1.465453 3.192329 +v -16.542946 4.668907 -10.224103 +vn 5.346992 -1.709714 2.797106 +v -17.052803 5.493875 -8.889277 +vn 5.074349 -1.938230 3.136120 +v -16.180340 6.180339 -10.000000 +vn 5.327210 -0.492892 3.273394 +v -16.960571 1.569182 -10.482208 +vn 5.794188 -1.248476 2.050831 +v -18.477591 4.023772 -6.510600 +vn 5.673628 1.009699 2.472758 +v -18.096779 -3.220128 -7.882724 +vn 5.514426 0.752105 2.889551 +v -17.586891 -2.395110 -9.217632 +vn 5.446983 1.241979 2.848145 +v -17.370689 -3.964544 -9.085237 +vn 5.587787 1.483699 2.431471 +v -17.820131 -4.773539 -7.723747 +vn 5.277861 0.982228 3.242869 +v -16.803558 -3.128689 -10.385170 +vn 5.346992 1.709714 2.797106 +v -17.052803 -5.493875 -8.889277 +vn 5.196029 1.465453 3.192329 +v -16.542946 -4.668907 -10.224103 +vn 5.074349 1.938230 3.136120 +v -16.180340 -6.180339 -10.000000 +vn 5.794188 1.248476 2.050831 +v -18.477591 -4.023772 -6.510600 +vn 5.327210 0.492892 3.273394 +v -16.960571 -1.569182 -10.482208 +vn 5.923719 1.641384 1.248226 +v -18.888653 -5.231008 -3.981882 +vn 5.787805 2.072779 1.244023 +v -18.453640 -6.612130 -3.967734 +vn 5.944968 1.818483 0.832567 +v -18.956436 -5.798588 -2.651397 +vn 6.060824 1.384287 0.834282 +v -19.327852 -4.402341 -2.655850 +vn 5.748218 1.890098 1.652691 +v -18.324884 -6.025178 -5.281655 +vn 5.798673 2.243998 0.828030 +v -18.486092 -7.164576 -2.633107 +vn 6.062376 1.555130 0.418771 +v -19.332863 -4.946515 -1.331337 +vn 5.936102 1.983849 0.416218 +v -18.923958 -6.335552 -1.320848 +vn 5.872489 1.458362 1.653253 +v -18.720991 -4.649103 -5.283024 +vn 6.028230 1.206370 1.245518 +v -19.223763 -3.835599 -3.966748 +vn 5.623558 2.489557 1.234467 +v -17.928020 -7.947011 -3.928245 +vn 5.594511 2.312154 1.643653 +v -17.834839 -7.370367 -5.253211 +vn 5.411545 2.722906 1.627405 +v -17.253368 -8.677772 -5.197838 +vn 5.782665 2.395330 0.414218 +v -18.438375 -7.634430 -1.319767 +vn 5.625580 2.649500 0.825472 +v -17.936010 -8.447273 -2.634973 +vn 5.601478 2.793010 0.413402 +v -17.858534 -8.907301 -1.316338 +vn 5.425443 3.039902 0.819978 +v -17.298586 -9.688834 -2.624007 +vn 5.393398 3.176901 0.409468 +v -17.196957 -10.125960 -1.315151 +vn 5.431557 2.888280 1.226823 +v -17.317421 -9.205333 -3.920305 +vn 6.143885 0.950682 0.834924 +v -19.588524 -3.030978 -2.665128 +vn 6.156778 1.125752 0.418305 +v -19.629662 -3.591919 -1.332088 +vn 6.220297 0.693352 0.418799 +v -19.832952 -2.207700 -1.334188 +vn 5.537967 2.127011 2.038370 +v -17.656738 -6.784176 -6.497270 +vn 5.681746 1.698437 2.044821 +v -18.116638 -5.412541 -6.518579 +vn 5.455983 1.930035 2.419802 +v -17.394506 -6.153189 -7.718122 +vn 5.294136 2.353504 2.404533 +v -16.878231 -7.500772 -7.672275 +vn 5.197209 2.151528 2.776486 +v -16.568937 -6.856966 -8.857334 +vn 5.365715 2.544154 2.021221 +v -17.106739 -8.108677 -6.450493 +vn 5.923719 -1.641384 1.248226 +v -18.888653 5.231008 -3.981882 +vn 5.944968 -1.818483 0.832567 +v -18.956436 5.798588 -2.651397 +vn 5.787805 -2.072779 1.244023 +v -18.453640 6.612130 -3.967734 +vn 5.748218 -1.890098 1.652691 +v -18.324884 6.025178 -5.281655 +vn 6.060824 -1.384287 0.834282 +v -19.327852 4.402341 -2.655850 +vn 5.798673 -2.243998 0.828030 +v -18.486092 7.164576 -2.633107 +vn 5.594511 -2.312154 1.643653 +v -17.834839 7.370367 -5.253211 +vn 5.623558 -2.489557 1.234467 +v -17.928020 7.947011 -3.928245 +vn 5.411545 -2.722906 1.627405 +v -17.253368 8.677772 -5.197838 +vn 6.028230 -1.206370 1.245518 +v -19.223763 3.835599 -3.966748 +vn 5.872489 -1.458362 1.653253 +v -18.720991 4.649103 -5.283024 +vn 5.936103 -1.983849 0.416218 +v -18.923958 6.335552 -1.320848 +vn 6.062376 -1.555130 0.418771 +v -19.332863 4.946515 -1.331337 +vn 5.625579 -2.649500 0.825472 +v -17.936010 8.447273 -2.634973 +vn 5.782665 -2.395330 0.414218 +v -18.438375 7.634430 -1.319767 +vn 5.601478 -2.793010 0.413402 +v -17.858534 8.907301 -1.316338 +vn 5.425443 -3.039902 0.819978 +v -17.298586 9.688834 -2.624007 +vn 5.393398 -3.176900 0.409468 +v -17.196957 10.125960 -1.315151 +vn 5.431557 -2.888280 1.226824 +v -17.317421 9.205333 -3.920305 +vn 5.681746 -1.698437 2.044821 +v -18.116638 5.412541 -6.518579 +vn 5.537967 -2.127011 2.038370 +v -17.656738 6.784176 -6.497270 +vn 5.455984 -1.930035 2.419802 +v -17.394506 6.153189 -7.718122 +vn 5.294136 -2.353505 2.404533 +v -16.878231 7.500772 -7.672275 +vn 5.197208 -2.151528 2.776486 +v -16.568937 6.856966 -8.857334 +vn 5.365715 -2.544154 2.021221 +v -17.106739 8.108677 -6.450493 +vn 6.156778 -1.125752 0.418305 +v -19.629662 3.591919 -1.332088 +vn 6.143886 -0.950682 0.834924 +v -19.588524 3.030978 -2.665128 +vn 6.220297 -0.693352 0.418799 +v -19.832952 2.207700 -1.334188 +vn 4.909287 0.000000 3.904046 +v -15.655710 0.000000 -12.445830 +vn 4.663924 -0.254295 4.186388 +v -14.869915 0.813541 -13.350048 +vn 4.663923 0.254295 4.186388 +v -14.869915 -0.813541 -13.350048 +vn 4.892680 0.505806 3.892519 +v -15.604088 -1.622837 -12.404793 +vn 4.892680 -0.505806 3.892519 +v -15.604088 1.622837 -12.404793 +vn 4.411809 0.000000 4.458891 +v -14.058142 0.000000 -14.225636 +vn 4.633388 0.757020 4.159909 +v -14.777726 -2.423851 -13.256838 +vn 4.397475 0.505709 4.444399 +v -14.012434 -1.611460 -14.179383 +vn 4.350310 1.005794 4.405752 +v -13.875610 -3.212440 -14.040929 +vn 5.126910 -0.251994 3.605203 +v -16.350460 0.813504 -11.489155 +vn 5.126910 0.251994 3.605203 +v -16.350460 -0.813504 -11.489155 +vn 4.397474 -0.505709 4.444399 +v -14.012434 1.611460 -14.179383 +vn 4.633389 -0.757020 4.159909 +v -14.777726 2.423851 -13.256838 +vn 4.350310 -1.005794 4.405753 +v -13.875610 3.212440 -14.040929 +vn 4.145185 0.254173 4.701195 +v -13.217676 -0.812842 -14.987741 +vn 4.145185 -0.254173 4.701195 +v -13.217676 0.812842 -14.987741 +vn 3.875301 -0.000000 4.932586 +v -12.353520 0.000000 -15.728653 +vn 3.859881 0.506775 4.918668 +v -12.312842 -1.621726 -15.676861 +vn 3.859881 -0.506775 4.918668 +v -12.312842 1.621726 -15.676861 +vn 3.586367 0.253063 5.140335 +v -11.441112 -0.812808 -16.384148 +vn 3.586367 -0.253063 5.140335 +v -11.441112 0.812808 -16.384148 +vn 3.297965 0.000000 5.336215 +v -10.514623 0.000000 -17.013018 +vn 4.115105 0.758220 4.673338 +v -13.125638 -2.422881 -14.894539 +vn 4.115105 -0.758220 4.673338 +v -13.125638 2.422881 -14.894539 +vn 5.094194 0.747758 3.583054 +v -16.243389 -2.381564 -11.422805 +vn 4.842214 1.001257 3.859880 +v -15.436811 -3.192258 -12.309114 +vn 5.027469 1.236686 3.541666 +v -16.030073 -3.945489 -11.290256 +vn 4.758040 1.486083 3.808052 +v -15.173046 -4.741726 -12.136502 +vn 4.928013 1.715962 3.481248 +v -15.714300 -5.474133 -11.094803 +vn 4.565381 1.249186 4.116526 +v -14.559172 -3.986624 -13.120113 +vn 4.842213 -1.001257 3.859880 +v -15.436811 3.192258 -12.309114 +vn 5.094194 -0.747758 3.583054 +v -16.243389 2.381564 -11.422805 +vn 5.027468 -1.236686 3.541666 +v -16.030073 3.945489 -11.290256 +vn 4.758040 -1.486083 3.808052 +v -15.173046 4.741726 -12.136502 +vn 4.928013 -1.715962 3.481248 +v -15.714300 5.474133 -11.094803 +vn 4.565381 -1.249186 4.116526 +v -14.559172 3.986624 -13.120113 +vn 0.000000 2.512897 -5.744678 +v 0.000000 -8.019361 18.321840 +vn -0.257773 2.095810 -5.903990 +v 0.826040 -6.682801 18.832361 +vn 0.257773 2.095810 -5.903990 +v -0.826040 -6.682801 18.832361 +vn 0.511760 2.503548 -5.726333 +v -1.646472 -7.992141 18.259651 +vn -0.511760 2.503547 -5.726332 +v 1.646472 -7.992141 18.259651 +vn 0.000000 1.675507 -6.042617 +v 0.000000 -5.328095 19.277225 +vn 0.765734 2.081523 -5.865321 +v -2.456005 -6.646839 18.702608 +vn 0.511364 1.669946 -6.022530 +v -1.630021 -5.310369 19.213095 +vn 1.004997 1.657220 -5.964773 +v -3.249197 -5.257311 19.021132 +vn -0.254368 2.908926 -5.549282 +v 0.825984 -9.284268 17.695200 +vn 0.254368 2.908926 -5.549282 +v -0.825984 -9.284268 17.695200 +vn -0.000000 3.283343 -5.343647 +v 0.000000 -10.514623 17.013018 +vn -0.511364 1.669946 -6.022529 +v 1.630021 -5.310369 19.213095 +vn -0.765734 2.081523 -5.865321 +v 2.456005 -6.646839 18.702608 +vn -1.004997 1.657220 -5.964773 +v 3.249197 -5.257311 19.021132 +vn 0.257593 1.255827 -6.138453 +v -0.825018 -4.007356 19.577040 +vn -0.257593 1.255827 -6.138453 +v 0.825018 -4.007356 19.577040 +vn -0.000000 0.838582 -6.214566 +v 0.000000 -2.670469 19.820913 +vn 0.501473 0.842188 -6.194839 +v -1.644849 -2.661422 19.753767 +vn -0.501473 0.842188 -6.194839 +v 1.644849 -2.661422 19.753767 +vn 0.244263 0.425953 -6.252691 +v -0.824968 -1.334826 19.938347 +vn -0.244263 0.425953 -6.252691 +v 0.824968 -1.334826 19.938347 +vn 0.000000 0.000000 -6.272241 +v 0.000000 0.000000 20.000000 +vn 0.755587 1.253312 -6.098812 +v -2.454590 -3.971610 19.447399 +vn -0.755587 1.253312 -6.098812 +v 2.454590 -3.971610 19.447399 +vn 0.752106 2.889551 -5.514426 +v -2.395110 -9.217632 17.586891 +vn 1.009699 2.472758 -5.673628 +v -3.220128 -7.882724 18.096779 +vn 1.241977 2.848146 -5.446984 +v -3.964544 -9.085237 17.370689 +vn 0.982228 3.242869 -5.277861 +v -3.128689 -10.385170 16.803558 +vn 1.483698 2.431469 -5.587789 +v -4.773539 -7.723747 17.820131 +vn 1.465451 3.192331 -5.196029 +v -4.668907 -10.224103 16.542946 +vn 1.709714 2.797105 -5.346992 +v -5.493875 -8.889277 17.052805 +vn 1.938231 3.136122 -5.074348 +v -6.180339 -10.000000 16.180340 +vn 0.492891 3.273397 -5.327209 +v -1.569182 -10.482208 16.960571 +vn 1.248476 2.050831 -5.794188 +v -4.023771 -6.510600 18.477591 +vn -1.009699 2.472757 -5.673628 +v 3.220128 -7.882724 18.096779 +vn -0.752106 2.889551 -5.514426 +v 2.395110 -9.217632 17.586891 +vn -1.241977 2.848145 -5.446984 +v 3.964544 -9.085237 17.370689 +vn -1.483698 2.431469 -5.587789 +v 4.773539 -7.723747 17.820131 +vn -0.982228 3.242869 -5.277861 +v 3.128689 -10.385170 16.803558 +vn -1.709714 2.797105 -5.346992 +v 5.493875 -8.889277 17.052805 +vn -1.465451 3.192331 -5.196029 +v 4.668907 -10.224103 16.542946 +vn -1.938231 3.136122 -5.074348 +v 6.180339 -10.000000 16.180340 +vn -1.248476 2.050831 -5.794188 +v 4.023771 -6.510600 18.477591 +vn -0.492891 3.273397 -5.327209 +v 1.569182 -10.482208 16.960571 +vn -1.641387 1.248226 -5.923718 +v 5.231008 -3.981882 18.888653 +vn -2.072779 1.244023 -5.787805 +v 6.612130 -3.967734 18.453640 +vn -1.818484 0.832564 -5.944968 +v 5.798588 -2.651397 18.956436 +vn -1.384288 0.834279 -6.060824 +v 4.402341 -2.655850 19.327852 +vn -1.890098 1.652691 -5.748218 +v 6.025178 -5.281655 18.324884 +vn -2.243997 0.828029 -5.798674 +v 7.164576 -2.633107 18.486092 +vn -1.555132 0.418770 -6.062375 +v 4.946515 -1.331337 19.332863 +vn -1.983850 0.416219 -5.936103 +v 6.335552 -1.320848 18.923956 +vn -1.717114 -0.000000 -6.033157 +v 5.465332 0.000000 19.238768 +vn -1.458363 1.653255 -5.872488 +v 4.649103 -5.283024 18.720991 +vn -1.206370 1.245518 -6.028229 +v 3.835600 -3.966748 19.223764 +vn -2.489557 1.234467 -5.623558 +v 7.947011 -3.928245 17.928020 +vn -2.312154 1.643652 -5.594511 +v 7.370367 -5.253211 17.834839 +vn -2.722905 1.627405 -5.411545 +v 8.677772 -5.197838 17.253368 +vn -2.395327 0.414218 -5.782666 +v 7.634430 -1.319767 18.438375 +vn -2.649500 0.825472 -5.625580 +v 8.447273 -2.634973 17.936010 +vn -2.793010 0.413402 -5.601478 +v 8.907301 -1.316338 17.858534 +vn -2.533132 0.000000 -5.738645 +v 8.067108 0.000000 18.300869 +vn -3.039902 0.819977 -5.425444 +v 9.688834 -2.624007 17.298586 +vn -2.923837 0.000000 -5.549800 +v 9.313153 0.000000 17.699299 +vn -3.176901 0.409467 -5.393398 +v 10.125960 -1.315151 17.196957 +vn -2.130062 0.000000 -5.900162 +v 6.782451 0.000000 18.814846 +vn -2.888279 1.226823 -5.431558 +v 9.205333 -3.920305 17.317421 +vn -0.950681 0.834922 -6.143886 +v 3.030978 -2.665128 19.588524 +vn -1.125752 0.418305 -6.156778 +v 3.591919 -1.332088 19.629662 +vn -0.693352 0.418798 -6.220297 +v 2.207700 -1.334188 19.832952 +vn -0.867423 -0.000000 -6.212585 +v 2.759045 0.000000 19.808777 +vn -0.435569 0.000000 -6.257732 +v 1.382832 0.000000 19.952137 +vn -1.294962 0.000000 -6.137754 +v 4.122053 0.000000 19.570608 +vn -2.127012 2.038372 -5.537966 +v 6.784176 -6.497270 17.656738 +vn -1.698437 2.044821 -5.681746 +v 5.412541 -6.518579 18.116638 +vn -1.930039 2.419799 -5.455983 +v 6.153189 -7.718122 17.394506 +vn -2.353505 2.404534 -5.294136 +v 7.500772 -7.672274 16.878229 +vn -2.151532 2.776484 -5.197208 +v 6.856966 -8.857334 16.568937 +vn -2.544152 2.021224 -5.365715 +v 8.108677 -6.450493 17.106739 +vn 1.641387 1.248226 -5.923718 +v -5.231008 -3.981882 18.888653 +vn 1.818484 0.832564 -5.944968 +v -5.798588 -2.651397 18.956436 +vn 2.072779 1.244023 -5.787805 +v -6.612130 -3.967734 18.453640 +vn 1.890098 1.652691 -5.748218 +v -6.025178 -5.281655 18.324884 +vn 1.384288 0.834279 -6.060824 +v -4.402341 -2.655850 19.327852 +vn 2.243997 0.828029 -5.798674 +v -7.164576 -2.633107 18.486092 +vn 2.312154 1.643653 -5.594511 +v -7.370367 -5.253211 17.834839 +vn 2.489557 1.234467 -5.623558 +v -7.947011 -3.928245 17.928020 +vn 2.722905 1.627405 -5.411545 +v -8.677772 -5.197838 17.253368 +vn 1.206370 1.245518 -6.028229 +v -3.835600 -3.966748 19.223764 +vn 1.458363 1.653255 -5.872488 +v -4.649103 -5.283024 18.720991 +vn 1.983850 0.416219 -5.936103 +v -6.335552 -1.320848 18.923956 +vn 1.555132 0.418770 -6.062375 +v -4.946515 -1.331337 19.332863 +vn 1.717114 0.000000 -6.033157 +v -5.465332 0.000000 19.238768 +vn 2.649500 0.825472 -5.625579 +v -8.447273 -2.634973 17.936010 +vn 2.395327 0.414218 -5.782666 +v -7.634430 -1.319767 18.438375 +vn 2.793010 0.413402 -5.601479 +v -8.907301 -1.316338 17.858534 +vn 3.039901 0.819977 -5.425444 +v -9.688834 -2.624007 17.298586 +vn 2.533132 -0.000000 -5.738645 +v -8.067108 0.000000 18.300869 +vn 3.176901 0.409467 -5.393398 +v -10.125960 -1.315151 17.196957 +vn 2.923837 0.000000 -5.549800 +v -9.313153 0.000000 17.699299 +vn 2.888279 1.226823 -5.431558 +v -9.205333 -3.920305 17.317421 +vn 2.130062 -0.000000 -5.900162 +v -6.782451 0.000000 18.814846 +vn 1.698437 2.044821 -5.681746 +v -5.412541 -6.518579 18.116638 +vn 2.127012 2.038372 -5.537966 +v -6.784176 -6.497270 17.656738 +vn 1.930039 2.419799 -5.455983 +v -6.153189 -7.718122 17.394506 +vn 2.353505 2.404533 -5.294137 +v -7.500772 -7.672274 16.878229 +vn 2.151532 2.776484 -5.197208 +v -6.856966 -8.857334 16.568937 +vn 2.544152 2.021225 -5.365715 +v -8.108677 -6.450493 17.106739 +vn 1.125752 0.418305 -6.156778 +v -3.591919 -1.332088 19.629662 +vn 0.950681 0.834922 -6.143886 +v -3.030978 -2.665128 19.588524 +vn 0.693351 0.418798 -6.220297 +v -2.207700 -1.334188 19.832952 +vn 0.867423 0.000000 -6.212585 +v -2.759045 0.000000 19.808777 +vn 0.435569 0.000000 -6.257732 +v -1.382832 0.000000 19.952137 +vn 1.294962 0.000000 -6.137754 +v -4.122053 0.000000 19.570608 +vn -0.000000 3.904041 -4.909289 +v 0.000000 -12.445830 15.655710 +vn 0.254295 4.186388 -4.663923 +v -0.813541 -13.350048 14.869915 +vn -0.254295 4.186388 -4.663923 +v 0.813541 -13.350048 14.869915 +vn -0.505804 3.892518 -4.892682 +v 1.622837 -12.404793 15.604088 +vn 0.505804 3.892517 -4.892682 +v -1.622837 -12.404793 15.604088 +vn -0.000000 4.458890 -4.411809 +v 0.000000 -14.225636 14.058142 +vn -0.757020 4.159909 -4.633388 +v 2.423851 -13.256838 14.777726 +vn -0.505709 4.444399 -4.397475 +v 1.611460 -14.179383 14.012434 +vn -1.005794 4.405752 -4.350310 +v 3.212440 -14.040929 13.875610 +vn 0.251991 3.605204 -5.126910 +v -0.813504 -11.489154 16.350458 +vn -0.251991 3.605204 -5.126911 +v 0.813504 -11.489154 16.350458 +vn 0.505709 4.444399 -4.397474 +v -1.611460 -14.179383 14.012434 +vn 0.757020 4.159909 -4.633389 +v -2.423851 -13.256838 14.777726 +vn 1.005794 4.405753 -4.350310 +v -3.212440 -14.040929 13.875610 +vn -0.254173 4.701195 -4.145185 +v 0.812842 -14.987741 13.217676 +vn 0.254173 4.701195 -4.145185 +v -0.812842 -14.987741 13.217676 +vn 0.000000 4.932585 -3.875302 +v 0.000000 -15.728653 12.353520 +vn -0.506775 4.918668 -3.859882 +v 1.621726 -15.676861 12.312842 +vn 0.506775 4.918668 -3.859882 +v -1.621726 -15.676861 12.312842 +vn -0.253063 5.140334 -3.586368 +v 0.812808 -16.384148 11.441113 +vn 0.253063 5.140334 -3.586368 +v -0.812808 -16.384148 11.441113 +vn -0.758220 4.673338 -4.115105 +v 2.422881 -14.894539 13.125638 +vn 0.758220 4.673338 -4.115105 +v -2.422881 -14.894539 13.125638 +vn -0.747755 3.583054 -5.094194 +v 2.381564 -11.422805 16.243389 +vn -1.001257 3.859880 -4.842214 +v 3.192258 -12.309114 15.436811 +vn -1.236686 3.541666 -5.027469 +v 3.945489 -11.290256 16.030073 +vn -1.486083 3.808052 -4.758040 +v 4.741726 -12.136502 15.173046 +vn -1.715962 3.481248 -4.928013 +v 5.474133 -11.094803 15.714300 +vn -1.249186 4.116526 -4.565381 +v 3.986624 -13.120113 14.559172 +vn 1.001257 3.859880 -4.842213 +v -3.192258 -12.309114 15.436811 +vn 0.747755 3.583054 -5.094194 +v -2.381564 -11.422805 16.243389 +vn 1.236686 3.541666 -5.027468 +v -3.945489 -11.290256 16.030073 +vn 1.486083 3.808052 -4.758040 +v -4.741726 -12.136502 15.173046 +vn 1.715962 3.481248 -4.928013 +v -5.474133 -11.094803 15.714300 +vn 1.249186 4.116526 -4.565381 +v -3.986624 -13.120113 14.559172 +vn 0.000000 -2.512897 -5.744678 +v 0.000000 8.019361 18.321840 +vn 0.257773 -2.095810 -5.903990 +v -0.826040 6.682801 18.832361 +vn -0.257773 -2.095810 -5.903990 +v 0.826040 6.682801 18.832361 +vn -0.511760 -2.503548 -5.726333 +v 1.646472 7.992141 18.259651 +vn 0.511760 -2.503547 -5.726332 +v -1.646472 7.992141 18.259651 +vn -0.000000 -1.675507 -6.042617 +v 0.000000 5.328095 19.277225 +vn -0.765734 -2.081523 -5.865321 +v 2.456005 6.646839 18.702608 +vn -0.511364 -1.669946 -6.022530 +v 1.630021 5.310369 19.213095 +vn -1.004997 -1.657220 -5.964773 +v 3.249197 5.257311 19.021132 +vn 0.254368 -2.908926 -5.549282 +v -0.825984 9.284268 17.695200 +vn -0.254368 -2.908926 -5.549282 +v 0.825984 9.284268 17.695200 +vn 0.000000 -3.283343 -5.343647 +v 0.000000 10.514623 17.013018 +vn 0.511364 -1.669946 -6.022529 +v -1.630021 5.310369 19.213095 +vn 0.765734 -2.081523 -5.865321 +v -2.456005 6.646839 18.702608 +vn 1.004997 -1.657220 -5.964773 +v -3.249197 5.257311 19.021132 +vn -0.257593 -1.255827 -6.138453 +v 0.825018 4.007356 19.577040 +vn 0.257593 -1.255827 -6.138453 +v -0.825018 4.007356 19.577040 +vn 0.000000 -0.838582 -6.214566 +v 0.000000 2.670469 19.820913 +vn -0.501473 -0.842188 -6.194839 +v 1.644849 2.661422 19.753767 +vn 0.501473 -0.842188 -6.194839 +v -1.644849 2.661422 19.753767 +vn -0.244263 -0.425953 -6.252691 +v 0.824968 1.334826 19.938347 +vn 0.244263 -0.425953 -6.252691 +v -0.824968 1.334826 19.938347 +vn -0.755587 -1.253312 -6.098812 +v 2.454590 3.971610 19.447399 +vn 0.755587 -1.253312 -6.098812 +v -2.454590 3.971610 19.447399 +vn -0.752106 -2.889551 -5.514426 +v 2.395110 9.217632 17.586891 +vn -1.009699 -2.472758 -5.673628 +v 3.220128 7.882724 18.096779 +vn -1.241977 -2.848146 -5.446984 +v 3.964544 9.085237 17.370689 +vn -0.982228 -3.242869 -5.277861 +v 3.128689 10.385170 16.803558 +vn -1.483698 -2.431469 -5.587789 +v 4.773539 7.723747 17.820131 +vn -1.465451 -3.192331 -5.196029 +v 4.668907 10.224103 16.542946 +vn -1.709714 -2.797105 -5.346992 +v 5.493875 8.889277 17.052805 +vn -1.938231 -3.136122 -5.074348 +v 6.180339 10.000000 16.180340 +vn -0.492891 -3.273397 -5.327209 +v 1.569182 10.482208 16.960571 +vn -1.248476 -2.050831 -5.794188 +v 4.023771 6.510600 18.477591 +vn 1.009699 -2.472757 -5.673628 +v -3.220128 7.882724 18.096779 +vn 0.752106 -2.889551 -5.514426 +v -2.395110 9.217632 17.586891 +vn 1.241977 -2.848145 -5.446984 +v -3.964544 9.085237 17.370689 +vn 1.483698 -2.431469 -5.587789 +v -4.773539 7.723747 17.820131 +vn 0.982228 -3.242869 -5.277861 +v -3.128689 10.385170 16.803558 +vn 1.709714 -2.797105 -5.346992 +v -5.493875 8.889277 17.052805 +vn 1.465451 -3.192331 -5.196029 +v -4.668907 10.224103 16.542946 +vn 1.938231 -3.136122 -5.074348 +v -6.180339 10.000000 16.180340 +vn 1.248476 -2.050831 -5.794188 +v -4.023771 6.510600 18.477591 +vn 0.492891 -3.273397 -5.327209 +v -1.569182 10.482208 16.960571 +vn 1.641387 -1.248226 -5.923718 +v -5.231008 3.981882 18.888653 +vn 2.072779 -1.244023 -5.787805 +v -6.612130 3.967734 18.453640 +vn 1.818484 -0.832564 -5.944968 +v -5.798588 2.651397 18.956436 +vn 1.384288 -0.834279 -6.060824 +v -4.402341 2.655850 19.327852 +vn 1.890098 -1.652691 -5.748218 +v -6.025178 5.281655 18.324884 +vn 2.243997 -0.828029 -5.798674 +v -7.164576 2.633107 18.486092 +vn 1.555132 -0.418770 -6.062375 +v -4.946515 1.331337 19.332863 +vn 1.983850 -0.416219 -5.936103 +v -6.335552 1.320848 18.923956 +vn 1.458363 -1.653255 -5.872488 +v -4.649103 5.283024 18.720991 +vn 1.206370 -1.245518 -6.028229 +v -3.835600 3.966748 19.223764 +vn 2.489557 -1.234467 -5.623558 +v -7.947011 3.928245 17.928020 +vn 2.312154 -1.643652 -5.594511 +v -7.370367 5.253211 17.834839 +vn 2.722905 -1.627405 -5.411545 +v -8.677772 5.197838 17.253368 +vn 2.395327 -0.414218 -5.782666 +v -7.634430 1.319767 18.438375 +vn 2.649500 -0.825472 -5.625580 +v -8.447273 2.634973 17.936010 +vn 2.793010 -0.413402 -5.601478 +v -8.907301 1.316338 17.858534 +vn 3.039902 -0.819977 -5.425444 +v -9.688834 2.624007 17.298586 +vn 3.176901 -0.409467 -5.393398 +v -10.125960 1.315151 17.196957 +vn 2.888279 -1.226823 -5.431558 +v -9.205333 3.920305 17.317421 +vn 0.950681 -0.834922 -6.143886 +v -3.030978 2.665128 19.588524 +vn 1.125752 -0.418305 -6.156778 +v -3.591919 1.332088 19.629662 +vn 0.693352 -0.418798 -6.220297 +v -2.207700 1.334188 19.832952 +vn 2.127012 -2.038372 -5.537966 +v -6.784176 6.497270 17.656738 +vn 1.698437 -2.044821 -5.681746 +v -5.412541 6.518579 18.116638 +vn 1.930039 -2.419799 -5.455983 +v -6.153189 7.718122 17.394506 +vn 2.353505 -2.404534 -5.294136 +v -7.500772 7.672274 16.878229 +vn 2.151532 -2.776484 -5.197208 +v -6.856966 8.857334 16.568937 +vn 2.544152 -2.021224 -5.365715 +v -8.108677 6.450493 17.106739 +vn -1.641387 -1.248226 -5.923718 +v 5.231008 3.981882 18.888653 +vn -1.818484 -0.832564 -5.944968 +v 5.798588 2.651397 18.956436 +vn -2.072779 -1.244023 -5.787805 +v 6.612130 3.967734 18.453640 +vn -1.890098 -1.652691 -5.748218 +v 6.025178 5.281655 18.324884 +vn -1.384288 -0.834279 -6.060824 +v 4.402341 2.655850 19.327852 +vn -2.243997 -0.828029 -5.798674 +v 7.164576 2.633107 18.486092 +vn -2.312154 -1.643653 -5.594511 +v 7.370367 5.253211 17.834839 +vn -2.489557 -1.234467 -5.623558 +v 7.947011 3.928245 17.928020 +vn -2.722905 -1.627405 -5.411545 +v 8.677772 5.197838 17.253368 +vn -1.206370 -1.245518 -6.028229 +v 3.835600 3.966748 19.223764 +vn -1.458363 -1.653255 -5.872488 +v 4.649103 5.283024 18.720991 +vn -1.983850 -0.416219 -5.936103 +v 6.335552 1.320848 18.923956 +vn -1.555132 -0.418770 -6.062375 +v 4.946515 1.331337 19.332863 +vn -2.649500 -0.825472 -5.625579 +v 8.447273 2.634973 17.936010 +vn -2.395327 -0.414218 -5.782666 +v 7.634430 1.319767 18.438375 +vn -2.793010 -0.413402 -5.601479 +v 8.907301 1.316338 17.858534 +vn -3.039901 -0.819977 -5.425444 +v 9.688834 2.624007 17.298586 +vn -3.176901 -0.409467 -5.393398 +v 10.125960 1.315151 17.196957 +vn -2.888279 -1.226823 -5.431558 +v 9.205333 3.920305 17.317421 +vn -1.698437 -2.044821 -5.681746 +v 5.412541 6.518579 18.116638 +vn -2.127012 -2.038372 -5.537966 +v 6.784176 6.497270 17.656738 +vn -1.930039 -2.419799 -5.455983 +v 6.153189 7.718122 17.394506 +vn -2.353505 -2.404533 -5.294137 +v 7.500772 7.672274 16.878229 +vn -2.151532 -2.776484 -5.197208 +v 6.856966 8.857334 16.568937 +vn -2.544152 -2.021225 -5.365715 +v 8.108677 6.450493 17.106739 +vn -1.125752 -0.418305 -6.156778 +v 3.591919 1.332088 19.629662 +vn -0.950681 -0.834922 -6.143886 +v 3.030978 2.665128 19.588524 +vn -0.693351 -0.418798 -6.220297 +v 2.207700 1.334188 19.832952 +vn 0.000000 -3.904041 -4.909289 +v 0.000000 12.445830 15.655710 +vn -0.254295 -4.186388 -4.663923 +v 0.813541 13.350048 14.869915 +vn 0.254295 -4.186388 -4.663923 +v -0.813541 13.350048 14.869915 +vn 0.505804 -3.892518 -4.892682 +v -1.622837 12.404793 15.604088 +vn -0.505804 -3.892517 -4.892682 +v 1.622837 12.404793 15.604088 +vn 0.000000 -4.458890 -4.411809 +v 0.000000 14.225636 14.058142 +vn 0.757020 -4.159909 -4.633388 +v -2.423851 13.256838 14.777726 +vn 0.505709 -4.444399 -4.397475 +v -1.611460 14.179383 14.012434 +vn 1.005794 -4.405752 -4.350310 +v -3.212440 14.040929 13.875610 +vn -0.251991 -3.605204 -5.126910 +v 0.813504 11.489154 16.350458 +vn 0.251991 -3.605204 -5.126911 +v -0.813504 11.489154 16.350458 +vn -0.505709 -4.444399 -4.397474 +v 1.611460 14.179383 14.012434 +vn -0.757020 -4.159909 -4.633389 +v 2.423851 13.256838 14.777726 +vn -1.005794 -4.405753 -4.350310 +v 3.212440 14.040929 13.875610 +vn 0.254173 -4.701195 -4.145185 +v -0.812842 14.987741 13.217676 +vn -0.254173 -4.701195 -4.145185 +v 0.812842 14.987741 13.217676 +vn -0.000000 -4.932585 -3.875302 +v 0.000000 15.728653 12.353520 +vn 0.506775 -4.918668 -3.859882 +v -1.621726 15.676861 12.312842 +vn -0.506775 -4.918668 -3.859882 +v 1.621726 15.676861 12.312842 +vn 0.253063 -5.140334 -3.586368 +v -0.812808 16.384148 11.441113 +vn -0.253063 -5.140334 -3.586368 +v 0.812808 16.384148 11.441113 +vn 0.758220 -4.673338 -4.115105 +v -2.422881 14.894539 13.125638 +vn -0.758220 -4.673338 -4.115105 +v 2.422881 14.894539 13.125638 +vn 0.747755 -3.583054 -5.094194 +v -2.381564 11.422805 16.243389 +vn 1.001257 -3.859880 -4.842214 +v -3.192258 12.309114 15.436811 +vn 1.236686 -3.541666 -5.027469 +v -3.945489 11.290256 16.030073 +vn 1.486083 -3.808052 -4.758040 +v -4.741726 12.136502 15.173046 +vn 1.715962 -3.481248 -4.928013 +v -5.474133 11.094803 15.714300 +vn 1.249186 -4.116526 -4.565381 +v -3.986624 13.120113 14.559172 +vn -1.001257 -3.859880 -4.842213 +v 3.192258 12.309114 15.436811 +vn -0.747755 -3.583054 -5.094194 +v 2.381564 11.422805 16.243389 +vn -1.236686 -3.541666 -5.027468 +v 3.945489 11.290256 16.030073 +vn -1.486083 -3.808052 -4.758040 +v 4.741726 12.136502 15.173046 +vn -1.715962 -3.481248 -4.928013 +v 5.474133 11.094803 15.714300 +vn -1.249186 -4.116526 -4.565381 +v 3.986624 13.120113 14.559172 +vn 0.000000 -2.512897 5.744678 +v 0.000000 8.019361 -18.321840 +vn -0.257773 -2.095810 5.903990 +v 0.826040 6.682801 -18.832361 +vn 0.257773 -2.095810 5.903990 +v -0.826040 6.682801 -18.832361 +vn 0.511760 -2.503548 5.726333 +v -1.646472 7.992141 -18.259651 +vn -0.511760 -2.503547 5.726332 +v 1.646472 7.992141 -18.259651 +vn 0.000000 -1.675507 6.042617 +v 0.000000 5.328095 -19.277225 +vn 0.765734 -2.081523 5.865321 +v -2.456005 6.646839 -18.702608 +vn 0.511364 -1.669946 6.022530 +v -1.630021 5.310369 -19.213095 +vn 1.004997 -1.657220 5.964773 +v -3.249197 5.257311 -19.021132 +vn -0.254368 -2.908926 5.549282 +v 0.825984 9.284268 -17.695200 +vn 0.254368 -2.908926 5.549282 +v -0.825984 9.284268 -17.695200 +vn -0.000000 -3.283343 5.343647 +v 0.000000 10.514623 -17.013018 +vn -0.511364 -1.669946 6.022529 +v 1.630021 5.310369 -19.213095 +vn -0.765734 -2.081523 5.865321 +v 2.456005 6.646839 -18.702608 +vn -1.004997 -1.657220 5.964773 +v 3.249197 5.257311 -19.021132 +vn 0.257593 -1.255827 6.138453 +v -0.825018 4.007356 -19.577040 +vn -0.257593 -1.255827 6.138453 +v 0.825018 4.007356 -19.577040 +vn -0.000000 -0.838582 6.214566 +v 0.000000 2.670469 -19.820913 +vn 0.501473 -0.842188 6.194839 +v -1.644849 2.661422 -19.753767 +vn -0.501473 -0.842188 6.194839 +v 1.644849 2.661422 -19.753767 +vn 0.244263 -0.425953 6.252691 +v -0.824968 1.334826 -19.938347 +vn -0.244263 -0.425953 6.252691 +v 0.824968 1.334826 -19.938347 +vn 0.000000 0.000000 6.272241 +v 0.000000 0.000000 -20.000000 +vn 0.755587 -1.253312 6.098812 +v -2.454590 3.971610 -19.447399 +vn -0.755587 -1.253312 6.098812 +v 2.454590 3.971610 -19.447399 +vn 0.752106 -2.889551 5.514426 +v -2.395110 9.217632 -17.586891 +vn 1.009699 -2.472758 5.673628 +v -3.220128 7.882724 -18.096779 +vn 1.241977 -2.848146 5.446984 +v -3.964544 9.085237 -17.370689 +vn 0.982228 -3.242869 5.277861 +v -3.128689 10.385170 -16.803558 +vn 1.483698 -2.431469 5.587789 +v -4.773539 7.723747 -17.820131 +vn 1.465451 -3.192331 5.196029 +v -4.668907 10.224103 -16.542946 +vn 1.709714 -2.797105 5.346992 +v -5.493875 8.889277 -17.052805 +vn 1.938231 -3.136122 5.074348 +v -6.180339 10.000000 -16.180340 +vn 0.492891 -3.273397 5.327209 +v -1.569182 10.482208 -16.960571 +vn 1.248476 -2.050831 5.794188 +v -4.023771 6.510600 -18.477591 +vn -1.009699 -2.472757 5.673628 +v 3.220128 7.882724 -18.096779 +vn -0.752106 -2.889551 5.514426 +v 2.395110 9.217632 -17.586891 +vn -1.241977 -2.848145 5.446984 +v 3.964544 9.085237 -17.370689 +vn -1.483698 -2.431469 5.587789 +v 4.773539 7.723747 -17.820131 +vn -0.982228 -3.242869 5.277861 +v 3.128689 10.385170 -16.803558 +vn -1.709714 -2.797105 5.346992 +v 5.493875 8.889277 -17.052805 +vn -1.465451 -3.192331 5.196029 +v 4.668907 10.224103 -16.542946 +vn -1.938231 -3.136122 5.074348 +v 6.180339 10.000000 -16.180340 +vn -1.248476 -2.050831 5.794188 +v 4.023771 6.510600 -18.477591 +vn -0.492891 -3.273397 5.327209 +v 1.569182 10.482208 -16.960571 +vn -1.641387 -1.248226 5.923718 +v 5.231008 3.981882 -18.888653 +vn -2.072779 -1.244023 5.787805 +v 6.612130 3.967734 -18.453640 +vn -1.818484 -0.832564 5.944968 +v 5.798588 2.651397 -18.956436 +vn -1.384288 -0.834279 6.060824 +v 4.402341 2.655850 -19.327852 +vn -1.890098 -1.652691 5.748218 +v 6.025178 5.281655 -18.324884 +vn -2.243997 -0.828029 5.798674 +v 7.164576 2.633107 -18.486092 +vn -1.555132 -0.418770 6.062375 +v 4.946515 1.331337 -19.332863 +vn -1.983850 -0.416219 5.936103 +v 6.335552 1.320848 -18.923956 +vn -1.717114 0.000000 6.033157 +v 5.465332 0.000000 -19.238768 +vn -1.458363 -1.653255 5.872488 +v 4.649103 5.283024 -18.720991 +vn -1.206370 -1.245518 6.028229 +v 3.835600 3.966748 -19.223764 +vn -2.489557 -1.234467 5.623558 +v 7.947011 3.928245 -17.928020 +vn -2.312154 -1.643652 5.594511 +v 7.370367 5.253211 -17.834839 +vn -2.722905 -1.627405 5.411545 +v 8.677772 5.197838 -17.253368 +vn -2.395327 -0.414218 5.782666 +v 7.634430 1.319767 -18.438375 +vn -2.649500 -0.825472 5.625580 +v 8.447273 2.634973 -17.936010 +vn -2.793010 -0.413402 5.601478 +v 8.907301 1.316338 -17.858534 +vn -2.533132 -0.000000 5.738645 +v 8.067108 0.000000 -18.300869 +vn -3.039902 -0.819977 5.425444 +v 9.688834 2.624007 -17.298586 +vn -2.923837 -0.000000 5.549800 +v 9.313153 0.000000 -17.699299 +vn -3.176901 -0.409467 5.393398 +v 10.125960 1.315151 -17.196957 +vn -2.130062 -0.000000 5.900162 +v 6.782451 0.000000 -18.814846 +vn -2.888279 -1.226823 5.431558 +v 9.205333 3.920305 -17.317421 +vn -0.950681 -0.834922 6.143886 +v 3.030978 2.665128 -19.588524 +vn -1.125752 -0.418305 6.156778 +v 3.591919 1.332088 -19.629662 +vn -0.693352 -0.418798 6.220297 +v 2.207700 1.334188 -19.832952 +vn -0.867423 0.000000 6.212585 +v 2.759045 0.000000 -19.808777 +vn -0.435569 -0.000000 6.257732 +v 1.382832 0.000000 -19.952137 +vn -1.294962 -0.000000 6.137754 +v 4.122053 0.000000 -19.570608 +vn -2.127012 -2.038372 5.537966 +v 6.784176 6.497270 -17.656738 +vn -1.698437 -2.044821 5.681746 +v 5.412541 6.518579 -18.116638 +vn -1.930039 -2.419799 5.455983 +v 6.153189 7.718122 -17.394506 +vn -2.353505 -2.404534 5.294136 +v 7.500772 7.672274 -16.878229 +vn -2.151532 -2.776484 5.197208 +v 6.856966 8.857334 -16.568937 +vn -2.544152 -2.021224 5.365715 +v 8.108677 6.450493 -17.106739 +vn 1.641387 -1.248226 5.923718 +v -5.231008 3.981882 -18.888653 +vn 1.818484 -0.832564 5.944968 +v -5.798588 2.651397 -18.956436 +vn 2.072779 -1.244023 5.787805 +v -6.612130 3.967734 -18.453640 +vn 1.890098 -1.652691 5.748218 +v -6.025178 5.281655 -18.324884 +vn 1.384288 -0.834279 6.060824 +v -4.402341 2.655850 -19.327852 +vn 2.243997 -0.828029 5.798674 +v -7.164576 2.633107 -18.486092 +vn 2.312154 -1.643653 5.594511 +v -7.370367 5.253211 -17.834839 +vn 2.489557 -1.234467 5.623558 +v -7.947011 3.928245 -17.928020 +vn 2.722905 -1.627405 5.411545 +v -8.677772 5.197838 -17.253368 +vn 1.206370 -1.245518 6.028229 +v -3.835600 3.966748 -19.223764 +vn 1.458363 -1.653255 5.872488 +v -4.649103 5.283024 -18.720991 +vn 1.983850 -0.416219 5.936103 +v -6.335552 1.320848 -18.923956 +vn 1.555132 -0.418770 6.062375 +v -4.946515 1.331337 -19.332863 +vn 1.717114 -0.000000 6.033157 +v -5.465332 0.000000 -19.238768 +vn 2.649500 -0.825472 5.625579 +v -8.447273 2.634973 -17.936010 +vn 2.395327 -0.414218 5.782666 +v -7.634430 1.319767 -18.438375 +vn 2.793010 -0.413402 5.601479 +v -8.907301 1.316338 -17.858534 +vn 3.039901 -0.819977 5.425444 +v -9.688834 2.624007 -17.298586 +vn 2.533132 0.000000 5.738645 +v -8.067108 0.000000 -18.300869 +vn 3.176901 -0.409467 5.393398 +v -10.125960 1.315151 -17.196957 +vn 2.923837 -0.000000 5.549800 +v -9.313153 0.000000 -17.699299 +vn 2.888279 -1.226823 5.431558 +v -9.205333 3.920305 -17.317421 +vn 2.130062 0.000000 5.900162 +v -6.782451 0.000000 -18.814846 +vn 1.698437 -2.044821 5.681746 +v -5.412541 6.518579 -18.116638 +vn 2.127012 -2.038372 5.537966 +v -6.784176 6.497270 -17.656738 +vn 1.930039 -2.419799 5.455983 +v -6.153189 7.718122 -17.394506 +vn 2.353505 -2.404533 5.294137 +v -7.500772 7.672274 -16.878229 +vn 2.151532 -2.776484 5.197208 +v -6.856966 8.857334 -16.568937 +vn 2.544152 -2.021225 5.365715 +v -8.108677 6.450493 -17.106739 +vn 1.125752 -0.418305 6.156778 +v -3.591919 1.332088 -19.629662 +vn 0.950681 -0.834922 6.143886 +v -3.030978 2.665128 -19.588524 +vn 0.693351 -0.418798 6.220297 +v -2.207700 1.334188 -19.832952 +vn 0.867423 -0.000000 6.212585 +v -2.759045 0.000000 -19.808777 +vn 0.435569 -0.000000 6.257732 +v -1.382832 0.000000 -19.952137 +vn 1.294962 -0.000000 6.137754 +v -4.122053 0.000000 -19.570608 +vn -0.000000 -3.904041 4.909289 +v 0.000000 12.445830 -15.655710 +vn 0.254295 -4.186388 4.663923 +v -0.813541 13.350048 -14.869915 +vn -0.254295 -4.186388 4.663923 +v 0.813541 13.350048 -14.869915 +vn -0.505804 -3.892518 4.892682 +v 1.622837 12.404793 -15.604088 +vn 0.505804 -3.892517 4.892682 +v -1.622837 12.404793 -15.604088 +vn -0.000000 -4.458890 4.411809 +v 0.000000 14.225636 -14.058142 +vn -0.757020 -4.159909 4.633388 +v 2.423851 13.256838 -14.777726 +vn -0.505709 -4.444399 4.397475 +v 1.611460 14.179383 -14.012434 +vn -1.005794 -4.405752 4.350310 +v 3.212440 14.040929 -13.875610 +vn 0.251991 -3.605204 5.126910 +v -0.813504 11.489154 -16.350458 +vn -0.251991 -3.605204 5.126911 +v 0.813504 11.489154 -16.350458 +vn 0.505709 -4.444399 4.397474 +v -1.611460 14.179383 -14.012434 +vn 0.757020 -4.159909 4.633389 +v -2.423851 13.256838 -14.777726 +vn 1.005794 -4.405753 4.350310 +v -3.212440 14.040929 -13.875610 +vn -0.254173 -4.701195 4.145185 +v 0.812842 14.987741 -13.217676 +vn 0.254173 -4.701195 4.145185 +v -0.812842 14.987741 -13.217676 +vn 0.000000 -4.932585 3.875302 +v 0.000000 15.728653 -12.353520 +vn -0.506775 -4.918668 3.859882 +v 1.621726 15.676861 -12.312842 +vn 0.506775 -4.918668 3.859882 +v -1.621726 15.676861 -12.312842 +vn -0.253063 -5.140334 3.586368 +v 0.812808 16.384148 -11.441113 +vn 0.253063 -5.140334 3.586368 +v -0.812808 16.384148 -11.441113 +vn -0.758220 -4.673338 4.115105 +v 2.422881 14.894539 -13.125638 +vn 0.758220 -4.673338 4.115105 +v -2.422881 14.894539 -13.125638 +vn -0.747755 -3.583054 5.094194 +v 2.381564 11.422805 -16.243389 +vn -1.001257 -3.859880 4.842214 +v 3.192258 12.309114 -15.436811 +vn -1.236686 -3.541666 5.027469 +v 3.945489 11.290256 -16.030073 +vn -1.486083 -3.808052 4.758040 +v 4.741726 12.136502 -15.173046 +vn -1.715962 -3.481248 4.928013 +v 5.474133 11.094803 -15.714300 +vn -1.249186 -4.116526 4.565381 +v 3.986624 13.120113 -14.559172 +vn 1.001257 -3.859880 4.842213 +v -3.192258 12.309114 -15.436811 +vn 0.747755 -3.583054 5.094194 +v -2.381564 11.422805 -16.243389 +vn 1.236686 -3.541666 5.027468 +v -3.945489 11.290256 -16.030073 +vn 1.486083 -3.808052 4.758040 +v -4.741726 12.136502 -15.173046 +vn 1.715962 -3.481248 4.928013 +v -5.474133 11.094803 -15.714300 +vn 1.249186 -4.116526 4.565381 +v -3.986624 13.120113 -14.559172 +vn 0.000000 2.512897 5.744678 +v 0.000000 -8.019361 -18.321840 +vn 0.257773 2.095810 5.903990 +v -0.826040 -6.682801 -18.832361 +vn -0.257773 2.095810 5.903990 +v 0.826040 -6.682801 -18.832361 +vn -0.511760 2.503548 5.726333 +v 1.646472 -7.992141 -18.259651 +vn 0.511760 2.503547 5.726332 +v -1.646472 -7.992141 -18.259651 +vn -0.000000 1.675507 6.042617 +v 0.000000 -5.328095 -19.277225 +vn -0.765734 2.081523 5.865321 +v 2.456005 -6.646839 -18.702608 +vn -0.511364 1.669946 6.022530 +v 1.630021 -5.310369 -19.213095 +vn -1.004997 1.657220 5.964773 +v 3.249197 -5.257311 -19.021132 +vn 0.254368 2.908926 5.549282 +v -0.825984 -9.284268 -17.695200 +vn -0.254368 2.908926 5.549282 +v 0.825984 -9.284268 -17.695200 +vn 0.000000 3.283343 5.343647 +v 0.000000 -10.514623 -17.013018 +vn 0.511364 1.669946 6.022529 +v -1.630021 -5.310369 -19.213095 +vn 0.765734 2.081523 5.865321 +v -2.456005 -6.646839 -18.702608 +vn 1.004997 1.657220 5.964773 +v -3.249197 -5.257311 -19.021132 +vn -0.257593 1.255827 6.138453 +v 0.825018 -4.007356 -19.577040 +vn 0.257593 1.255827 6.138453 +v -0.825018 -4.007356 -19.577040 +vn 0.000000 0.838582 6.214566 +v 0.000000 -2.670469 -19.820913 +vn -0.501473 0.842188 6.194839 +v 1.644849 -2.661422 -19.753767 +vn 0.501473 0.842188 6.194839 +v -1.644849 -2.661422 -19.753767 +vn -0.244263 0.425953 6.252691 +v 0.824968 -1.334826 -19.938347 +vn 0.244263 0.425953 6.252691 +v -0.824968 -1.334826 -19.938347 +vn -0.755587 1.253312 6.098812 +v 2.454590 -3.971610 -19.447399 +vn 0.755587 1.253312 6.098812 +v -2.454590 -3.971610 -19.447399 +vn -0.752106 2.889551 5.514426 +v 2.395110 -9.217632 -17.586891 +vn -1.009699 2.472758 5.673628 +v 3.220128 -7.882724 -18.096779 +vn -1.241977 2.848146 5.446984 +v 3.964544 -9.085237 -17.370689 +vn -0.982228 3.242869 5.277861 +v 3.128689 -10.385170 -16.803558 +vn -1.483698 2.431469 5.587789 +v 4.773539 -7.723747 -17.820131 +vn -1.465451 3.192331 5.196029 +v 4.668907 -10.224103 -16.542946 +vn -1.709714 2.797105 5.346992 +v 5.493875 -8.889277 -17.052805 +vn -1.938231 3.136122 5.074348 +v 6.180339 -10.000000 -16.180340 +vn -0.492891 3.273397 5.327209 +v 1.569182 -10.482208 -16.960571 +vn -1.248476 2.050831 5.794188 +v 4.023771 -6.510600 -18.477591 +vn 1.009699 2.472757 5.673628 +v -3.220128 -7.882724 -18.096779 +vn 0.752106 2.889551 5.514426 +v -2.395110 -9.217632 -17.586891 +vn 1.241977 2.848145 5.446984 +v -3.964544 -9.085237 -17.370689 +vn 1.483698 2.431469 5.587789 +v -4.773539 -7.723747 -17.820131 +vn 0.982228 3.242869 5.277861 +v -3.128689 -10.385170 -16.803558 +vn 1.709714 2.797105 5.346992 +v -5.493875 -8.889277 -17.052805 +vn 1.465451 3.192331 5.196029 +v -4.668907 -10.224103 -16.542946 +vn 1.938231 3.136122 5.074348 +v -6.180339 -10.000000 -16.180340 +vn 1.248476 2.050831 5.794188 +v -4.023771 -6.510600 -18.477591 +vn 0.492891 3.273397 5.327209 +v -1.569182 -10.482208 -16.960571 +vn 1.641387 1.248226 5.923718 +v -5.231008 -3.981882 -18.888653 +vn 2.072779 1.244023 5.787805 +v -6.612130 -3.967734 -18.453640 +vn 1.818484 0.832564 5.944968 +v -5.798588 -2.651397 -18.956436 +vn 1.384288 0.834279 6.060824 +v -4.402341 -2.655850 -19.327852 +vn 1.890098 1.652691 5.748218 +v -6.025178 -5.281655 -18.324884 +vn 2.243997 0.828029 5.798674 +v -7.164576 -2.633107 -18.486092 +vn 1.555132 0.418770 6.062375 +v -4.946515 -1.331337 -19.332863 +vn 1.983850 0.416219 5.936103 +v -6.335552 -1.320848 -18.923956 +vn 1.458363 1.653255 5.872488 +v -4.649103 -5.283024 -18.720991 +vn 1.206370 1.245518 6.028229 +v -3.835600 -3.966748 -19.223764 +vn 2.489557 1.234467 5.623558 +v -7.947011 -3.928245 -17.928020 +vn 2.312154 1.643652 5.594511 +v -7.370367 -5.253211 -17.834839 +vn 2.722905 1.627405 5.411545 +v -8.677772 -5.197838 -17.253368 +vn 2.395327 0.414218 5.782666 +v -7.634430 -1.319767 -18.438375 +vn 2.649500 0.825472 5.625580 +v -8.447273 -2.634973 -17.936010 +vn 2.793010 0.413402 5.601478 +v -8.907301 -1.316338 -17.858534 +vn 3.039902 0.819977 5.425444 +v -9.688834 -2.624007 -17.298586 +vn 3.176901 0.409467 5.393398 +v -10.125960 -1.315151 -17.196957 +vn 2.888279 1.226823 5.431558 +v -9.205333 -3.920305 -17.317421 +vn 0.950681 0.834922 6.143886 +v -3.030978 -2.665128 -19.588524 +vn 1.125752 0.418305 6.156778 +v -3.591919 -1.332088 -19.629662 +vn 0.693352 0.418798 6.220297 +v -2.207700 -1.334188 -19.832952 +vn 2.127012 2.038372 5.537966 +v -6.784176 -6.497270 -17.656738 +vn 1.698437 2.044821 5.681746 +v -5.412541 -6.518579 -18.116638 +vn 1.930039 2.419799 5.455983 +v -6.153189 -7.718122 -17.394506 +vn 2.353505 2.404534 5.294136 +v -7.500772 -7.672274 -16.878229 +vn 2.151532 2.776484 5.197208 +v -6.856966 -8.857334 -16.568937 +vn 2.544152 2.021224 5.365715 +v -8.108677 -6.450493 -17.106739 +vn -1.641387 1.248226 5.923718 +v 5.231008 -3.981882 -18.888653 +vn -1.818484 0.832564 5.944968 +v 5.798588 -2.651397 -18.956436 +vn -2.072779 1.244023 5.787805 +v 6.612130 -3.967734 -18.453640 +vn -1.890098 1.652691 5.748218 +v 6.025178 -5.281655 -18.324884 +vn -1.384288 0.834279 6.060824 +v 4.402341 -2.655850 -19.327852 +vn -2.243997 0.828029 5.798674 +v 7.164576 -2.633107 -18.486092 +vn -2.312154 1.643653 5.594511 +v 7.370367 -5.253211 -17.834839 +vn -2.489557 1.234467 5.623558 +v 7.947011 -3.928245 -17.928020 +vn -2.722905 1.627405 5.411545 +v 8.677772 -5.197838 -17.253368 +vn -1.206370 1.245518 6.028229 +v 3.835600 -3.966748 -19.223764 +vn -1.458363 1.653255 5.872488 +v 4.649103 -5.283024 -18.720991 +vn -1.983850 0.416219 5.936103 +v 6.335552 -1.320848 -18.923956 +vn -1.555132 0.418770 6.062375 +v 4.946515 -1.331337 -19.332863 +vn -2.649500 0.825472 5.625579 +v 8.447273 -2.634973 -17.936010 +vn -2.395327 0.414218 5.782666 +v 7.634430 -1.319767 -18.438375 +vn -2.793010 0.413402 5.601479 +v 8.907301 -1.316338 -17.858534 +vn -3.039901 0.819977 5.425444 +v 9.688834 -2.624007 -17.298586 +vn -3.176901 0.409467 5.393398 +v 10.125960 -1.315151 -17.196957 +vn -2.888279 1.226823 5.431558 +v 9.205333 -3.920305 -17.317421 +vn -1.698437 2.044821 5.681746 +v 5.412541 -6.518579 -18.116638 +vn -2.127012 2.038372 5.537966 +v 6.784176 -6.497270 -17.656738 +vn -1.930039 2.419799 5.455983 +v 6.153189 -7.718122 -17.394506 +vn -2.353505 2.404533 5.294137 +v 7.500772 -7.672274 -16.878229 +vn -2.151532 2.776484 5.197208 +v 6.856966 -8.857334 -16.568937 +vn -2.544152 2.021225 5.365715 +v 8.108677 -6.450493 -17.106739 +vn -1.125752 0.418305 6.156778 +v 3.591919 -1.332088 -19.629662 +vn -0.950681 0.834922 6.143886 +v 3.030978 -2.665128 -19.588524 +vn -0.693351 0.418798 6.220297 +v 2.207700 -1.334188 -19.832952 +vn 0.000000 3.904041 4.909289 +v 0.000000 -12.445830 -15.655710 +vn -0.254295 4.186388 4.663923 +v 0.813541 -13.350048 -14.869915 +vn 0.254295 4.186388 4.663923 +v -0.813541 -13.350048 -14.869915 +vn 0.505804 3.892518 4.892682 +v -1.622837 -12.404793 -15.604088 +vn -0.505804 3.892517 4.892682 +v 1.622837 -12.404793 -15.604088 +vn 0.000000 4.458890 4.411809 +v 0.000000 -14.225636 -14.058142 +vn 0.757020 4.159909 4.633388 +v -2.423851 -13.256838 -14.777726 +vn 0.505709 4.444399 4.397475 +v -1.611460 -14.179383 -14.012434 +vn 1.005794 4.405752 4.350310 +v -3.212440 -14.040929 -13.875610 +vn -0.251991 3.605204 5.126910 +v 0.813504 -11.489154 -16.350458 +vn 0.251991 3.605204 5.126911 +v -0.813504 -11.489154 -16.350458 +vn -0.505709 4.444399 4.397474 +v 1.611460 -14.179383 -14.012434 +vn -0.757020 4.159909 4.633389 +v 2.423851 -13.256838 -14.777726 +vn -1.005794 4.405753 4.350310 +v 3.212440 -14.040929 -13.875610 +vn 0.254173 4.701195 4.145185 +v -0.812842 -14.987741 -13.217676 +vn -0.254173 4.701195 4.145185 +v 0.812842 -14.987741 -13.217676 +vn -0.000000 4.932585 3.875302 +v 0.000000 -15.728653 -12.353520 +vn 0.506775 4.918668 3.859882 +v -1.621726 -15.676861 -12.312842 +vn -0.506775 4.918668 3.859882 +v 1.621726 -15.676861 -12.312842 +vn 0.253063 5.140334 3.586368 +v -0.812808 -16.384148 -11.441113 +vn -0.253063 5.140334 3.586368 +v 0.812808 -16.384148 -11.441113 +vn 0.758220 4.673338 4.115105 +v -2.422881 -14.894539 -13.125638 +vn -0.758220 4.673338 4.115105 +v 2.422881 -14.894539 -13.125638 +vn 0.747755 3.583054 5.094194 +v -2.381564 -11.422805 -16.243389 +vn 1.001257 3.859880 4.842214 +v -3.192258 -12.309114 -15.436811 +vn 1.236686 3.541666 5.027469 +v -3.945489 -11.290256 -16.030073 +vn 1.486083 3.808052 4.758040 +v -4.741726 -12.136502 -15.173046 +vn 1.715962 3.481248 4.928013 +v -5.474133 -11.094803 -15.714300 +vn 1.249186 4.116526 4.565381 +v -3.986624 -13.120113 -14.559172 +vn -1.001257 3.859880 4.842213 +v 3.192258 -12.309114 -15.436811 +vn -0.747755 3.583054 5.094194 +v 2.381564 -11.422805 -16.243389 +vn -1.236686 3.541666 5.027468 +v 3.945489 -11.290256 -16.030073 +vn -1.486083 3.808052 4.758040 +v 4.741726 -12.136502 -15.173046 +vn -1.715962 3.481248 4.928013 +v 5.474133 -11.094803 -15.714300 +vn -1.249186 4.116526 4.565381 +v 3.986624 -13.120113 -14.559172 +vn -3.808180 -3.648866 -3.391092 +v 12.149561 11.639040 10.813000 +vn -3.391092 -3.808180 -3.648866 +v 10.813000 12.149561 11.639040 +vn -3.648866 -3.391092 -3.808180 +v 11.639040 10.813000 12.149561 +vn -4.050829 -3.222783 -3.539067 +v 12.931556 10.267509 11.285085 +vn -3.539066 -4.050829 -3.222783 +v 11.285085 12.931556 10.267509 +vn -3.222781 -3.539067 -4.050830 +v 10.267509 11.285085 12.931556 +vn -3.879338 -2.956393 -3.941010 +v 12.384832 9.418341 12.566257 +vn -3.467759 -3.113603 -4.195378 +v 11.048363 9.928826 13.392240 +vn -3.686434 -2.681433 -4.307555 +v 11.755706 8.506508 13.763819 +vn -3.941009 -3.879337 -2.956395 +v 12.566257 12.384832 9.418341 +vn -4.195378 -3.467759 -3.113603 +v 13.392240 11.048363 9.928826 +vn -4.307555 -3.686433 -2.681436 +v 13.763819 11.755706 8.506508 +vn -2.956394 -3.941008 -3.879338 +v 9.418341 12.566257 12.384832 +vn -3.113602 -4.195380 -3.467758 +v 9.928826 13.392240 11.048363 +vn -2.681435 -4.307557 -3.686430 +v 8.506508 13.763819 11.755706 +vn -3.041669 -3.248904 -4.417799 +v 9.704166 10.359407 14.089423 +vn -2.784077 -3.665694 -4.258600 +v 8.879148 11.694313 13.579535 +vn -2.598835 -3.366420 -4.608398 +v 8.285454 10.735678 14.700221 +vn -2.846391 -2.951969 -4.745600 +v 9.079811 9.368597 15.158709 +vn -2.344920 -3.763369 -4.435673 +v 7.434960 12.030020 14.142137 +vn -2.398923 -3.060359 -4.921038 +v 7.653668 9.714244 15.717978 +vn -2.154660 -3.455584 -4.770076 +v 6.828700 11.049070 15.208119 +vn -3.276383 -2.825417 -4.540875 +v 10.449972 8.965189 14.505981 +vn -2.520795 -4.047984 -4.073896 +v 7.995381 12.936800 12.988962 +vn -4.417801 -3.041667 -3.248903 +v 14.089423 9.704166 10.359407 +vn -4.258600 -2.784074 -3.665695 +v 13.579535 8.879148 11.694315 +vn -4.608400 -2.598835 -3.366419 +v 14.700220 8.285454 10.735676 +vn -4.745599 -2.846390 -2.951971 +v 15.158709 9.079811 9.368597 +vn -4.435671 -2.344920 -3.763369 +v 14.142137 7.434960 12.030020 +vn -4.921036 -2.398924 -3.060361 +v 15.717978 7.653668 9.714244 +vn -4.770075 -2.154662 -3.455584 +v 15.208119 6.828700 11.049070 +vn -4.540875 -3.276382 -2.825419 +v 14.505981 10.449972 8.965189 +vn -4.073896 -2.520795 -4.047986 +v 12.988960 7.995381 12.936798 +vn -3.248901 -4.417801 -3.041668 +v 10.359406 14.089423 9.704166 +vn -3.665693 -4.258602 -2.784076 +v 11.694315 13.579535 8.879148 +vn -3.366419 -4.608400 -2.598835 +v 10.735676 14.700220 8.285454 +vn -2.951971 -4.745598 -2.846392 +v 9.368597 15.158709 9.079811 +vn -3.763369 -4.435673 -2.344918 +v 12.030020 14.142137 7.434960 +vn -3.060361 -4.921036 -2.398924 +v 9.714244 15.717978 7.653668 +vn -3.455583 -4.770075 -2.154662 +v 11.049070 15.208119 6.828700 +vn -2.825418 -4.540875 -3.276383 +v 8.965189 14.505980 10.449972 +vn -4.047986 -4.073896 -2.520792 +v 12.936800 12.988962 7.995381 +vn -2.019673 -4.675491 -3.661060 +v 6.442821 14.906769 11.673830 +vn -1.758578 -4.955239 -3.419898 +v 5.606387 15.802242 10.902181 +vn -1.601415 -4.700943 -3.831357 +v 5.103592 14.988701 12.218518 +vn -1.855697 -4.408134 -4.058400 +v 5.920092 14.046197 12.948238 +vn -2.168303 -4.913938 -3.239990 +v 6.923060 15.669035 10.322433 +vn -1.339784 -4.970641 -3.583779 +v 4.260457 15.852984 11.425034 +vn -1.434603 -4.418725 -4.214617 +v 4.578000 14.079649 13.446388 +vn -1.179160 -4.701635 -3.981258 +v 3.748636 14.995712 12.691586 +vn -2.423030 -4.626967 -3.473656 +v 7.734608 14.754243 11.067436 +vn -2.267286 -4.374976 -3.881390 +v 7.231835 13.940740 12.383713 +vn -1.491706 -5.207343 -3.163004 +v 4.744574 16.607172 10.084190 +vn -1.902463 -5.175744 -2.989734 +v 6.076022 16.503502 9.524514 +vn -0.924385 -4.957192 -3.730973 +v 2.948270 15.803402 11.897907 +vn -1.081469 -5.211365 -3.319712 +v 3.450634 16.616245 10.582703 +vn -0.668892 -5.188080 -3.461904 +v 2.129880 16.542194 11.037183 +vn -2.098691 -4.099066 -4.259270 +v 6.693831 13.069944 13.578262 +vn -1.678085 -4.118407 -4.423907 +v 5.347621 13.132392 14.104724 +vn -1.914318 -3.800496 -4.608671 +v 6.104250 12.114830 14.695885 +vn -2.296897 -5.119662 -2.803843 +v 7.320545 16.324652 8.939541 +vn -2.560835 -4.846821 -3.049374 +v 8.165719 15.451509 9.724810 +vn -2.678636 -5.037182 -2.607669 +v 8.542696 16.060318 8.311950 +vn -3.661060 -2.019672 -4.675491 +v 11.673830 6.442821 14.906769 +vn -3.419899 -1.758578 -4.955238 +v 10.902181 5.606387 15.802242 +vn -3.831357 -1.601415 -4.700943 +v 12.218518 5.103592 14.988701 +vn -4.058400 -1.855697 -4.408134 +v 12.948238 5.920092 14.046197 +vn -3.239991 -2.168304 -4.913937 +v 10.322433 6.923060 15.669035 +vn -3.583779 -1.339784 -4.970641 +v 11.425034 4.260457 15.852984 +vn -4.214617 -1.434603 -4.418725 +v 13.446388 4.578000 14.079649 +vn -3.981258 -1.179160 -4.701635 +v 12.691586 3.748636 14.995712 +vn -3.473657 -2.423028 -4.626968 +v 11.067436 7.734608 14.754243 +vn -3.881392 -2.267288 -4.374973 +v 12.383713 7.231835 13.940740 +vn -3.163005 -1.491705 -5.207343 +v 10.084190 4.744574 16.607172 +vn -2.989735 -1.902463 -5.175744 +v 9.524515 6.076023 16.503502 +vn -3.730973 -0.924385 -4.957192 +v 11.897907 2.948270 15.803402 +vn -3.319712 -1.081470 -5.211365 +v 10.582703 3.450634 16.616245 +vn -3.461904 -0.668891 -5.188080 +v 11.037183 2.129880 16.542194 +vn -4.259268 -2.098695 -4.099065 +v 13.578262 6.693831 13.069944 +vn -4.423907 -1.678085 -4.118407 +v 14.104724 5.347621 13.132392 +vn -4.608671 -1.914318 -3.800496 +v 14.695885 6.104250 12.114830 +vn -2.803840 -2.296899 -5.119662 +v 8.939541 7.320545 16.324652 +vn -3.049373 -2.560833 -4.846822 +v 9.724810 8.165719 15.451509 +vn -2.607668 -2.678634 -5.037184 +v 8.311950 8.542696 16.060318 +vn -4.675492 -3.661060 -2.019672 +v 14.906769 11.673830 6.442821 +vn -4.955238 -3.419896 -1.758581 +v 15.802244 10.902181 5.606388 +vn -4.700943 -3.831357 -1.601416 +v 14.988701 12.218518 5.103591 +vn -4.408133 -4.058400 -1.855701 +v 14.046197 12.948238 5.920092 +vn -4.913940 -3.239989 -2.168305 +v 15.669033 10.322433 6.923059 +vn -4.970642 -3.583779 -1.339780 +v 15.852985 11.425034 4.260457 +vn -4.418724 -4.214616 -1.434603 +v 14.079651 13.446389 4.578000 +vn -4.701637 -3.981256 -1.179160 +v 14.995712 12.691586 3.748636 +vn -4.626970 -3.473655 -2.423026 +v 14.754244 11.067437 7.734609 +vn -4.374974 -3.881392 -2.267285 +v 13.940740 12.383713 7.231835 +vn -5.207345 -3.163003 -1.491703 +v 16.607172 10.084189 4.744573 +vn -5.175743 -2.989735 -1.902465 +v 16.503502 9.524514 6.076022 +vn -4.957194 -3.730971 -0.924385 +v 15.803402 11.897906 2.948270 +vn -5.211366 -3.319712 -1.081469 +v 16.616245 10.582701 3.450634 +vn -5.188078 -3.461904 -0.668894 +v 16.542194 11.037183 2.129880 +vn -4.099067 -4.259270 -2.098692 +v 13.069943 13.578261 6.693831 +vn -4.118405 -4.423908 -1.678089 +v 13.132392 14.104724 5.347621 +vn -3.800497 -4.608670 -1.914319 +v 12.114830 14.695885 6.104250 +vn -5.119660 -2.803845 -2.296896 +v 16.324652 8.939541 7.320545 +vn -4.846823 -3.049373 -2.560831 +v 15.451509 9.724810 8.165719 +vn -5.037182 -2.607669 -2.678636 +v 16.060318 8.311950 8.542696 +vn 3.648866 -3.391092 -3.808180 +v -11.639040 10.813000 12.149561 +vn 3.391092 -3.808180 -3.648866 +v -10.813000 12.149561 11.639040 +vn 3.808180 -3.648866 -3.391092 +v -12.149561 11.639040 10.813000 +vn 4.050829 -3.222783 -3.539067 +v -12.931556 10.267509 11.285085 +vn 3.222781 -3.539068 -4.050830 +v -10.267509 11.285085 12.931556 +vn 3.539066 -4.050829 -3.222783 +v -11.285085 12.931556 10.267509 +vn 4.195378 -3.467759 -3.113603 +v -13.392240 11.048363 9.928826 +vn 3.941009 -3.879336 -2.956395 +v -12.566257 12.384832 9.418341 +vn 4.307555 -3.686433 -2.681436 +v -13.763819 11.755706 8.506508 +vn 3.467759 -3.113603 -4.195378 +v -11.048363 9.928826 13.392240 +vn 3.879337 -2.956392 -3.941010 +v -12.384832 9.418341 12.566257 +vn 3.686434 -2.681433 -4.307555 +v -11.755706 8.506508 13.763819 +vn 3.113602 -4.195380 -3.467758 +v -9.928826 13.392240 11.048363 +vn 2.956394 -3.941008 -3.879338 +v -9.418341 12.566257 12.384832 +vn 2.681435 -4.307558 -3.686430 +v -8.506508 13.763819 11.755706 +vn 3.665693 -4.258602 -2.784076 +v -11.694315 13.579535 8.879148 +vn 3.248901 -4.417801 -3.041668 +v -10.359406 14.089423 9.704166 +vn 3.366419 -4.608400 -2.598835 +v -10.735676 14.700220 8.285454 +vn 3.763369 -4.435673 -2.344918 +v -12.030020 14.142137 7.434960 +vn 2.951971 -4.745598 -2.846392 +v -9.368597 15.158709 9.079811 +vn 3.455583 -4.770075 -2.154662 +v -11.049070 15.208119 6.828700 +vn 3.060361 -4.921036 -2.398924 +v -9.714244 15.717978 7.653668 +vn 4.047986 -4.073896 -2.520792 +v -12.936800 12.988962 7.995381 +vn 2.825418 -4.540875 -3.276383 +v -8.965189 14.505980 10.449972 +vn 4.258600 -2.784074 -3.665695 +v -13.579535 8.879148 11.694315 +vn 4.417801 -3.041667 -3.248902 +v -14.089423 9.704166 10.359407 +vn 4.608400 -2.598835 -3.366419 +v -14.700220 8.285454 10.735676 +vn 4.435671 -2.344920 -3.763369 +v -14.142137 7.434960 12.030020 +vn 4.745599 -2.846390 -2.951971 +v -15.158709 9.079811 9.368597 +vn 4.770074 -2.154662 -3.455583 +v -15.208119 6.828700 11.049070 +vn 4.921036 -2.398924 -3.060361 +v -15.717978 7.653668 9.714244 +vn 4.073896 -2.520795 -4.047986 +v -12.988960 7.995381 12.936798 +vn 4.540874 -3.276382 -2.825419 +v -14.505981 10.449972 8.965189 +vn 2.784077 -3.665694 -4.258600 +v -8.879148 11.694313 13.579535 +vn 3.041669 -3.248904 -4.417799 +v -9.704166 10.359407 14.089423 +vn 2.598835 -3.366421 -4.608398 +v -8.285454 10.735678 14.700221 +vn 2.344920 -3.763369 -4.435673 +v -7.434960 12.030020 14.142137 +vn 2.846391 -2.951969 -4.745600 +v -9.079811 9.368597 15.158709 +vn 2.154660 -3.455584 -4.770075 +v -6.828700 11.049070 15.208119 +vn 2.398923 -3.060359 -4.921038 +v -7.653668 9.714244 15.717978 +vn 2.520795 -4.047983 -4.073896 +v -7.995381 12.936800 12.988962 +vn 3.276383 -2.825417 -4.540875 +v -10.449972 8.965189 14.505981 +vn 2.019672 -4.675491 -3.661060 +v -6.442821 14.906769 11.673830 +vn 1.601415 -4.700943 -3.831357 +v -5.103592 14.988701 12.218518 +vn 1.758578 -4.955239 -3.419898 +v -5.606387 15.802242 10.902181 +vn 2.168303 -4.913938 -3.239990 +v -6.923060 15.669035 10.322433 +vn 1.855697 -4.408134 -4.058400 +v -5.920092 14.046197 12.948238 +vn 1.339784 -4.970641 -3.583780 +v -4.260457 15.852984 11.425034 +vn 1.902463 -5.175744 -2.989735 +v -6.076022 16.503502 9.524514 +vn 1.491706 -5.207343 -3.163004 +v -4.744574 16.607172 10.084190 +vn 2.267286 -4.374976 -3.881390 +v -7.231835 13.940740 12.383713 +vn 2.423030 -4.626967 -3.473656 +v -7.734608 14.754243 11.067436 +vn 1.179160 -4.701635 -3.981258 +v -3.748636 14.995712 12.691586 +vn 1.434603 -4.418725 -4.214617 +v -4.578000 14.079649 13.446388 +vn 1.081469 -5.211364 -3.319712 +v -3.450634 16.616245 10.582703 +vn 0.924385 -4.957192 -3.730973 +v -2.948270 15.803402 11.897907 +vn 0.668892 -5.188079 -3.461904 +v -2.129880 16.542194 11.037183 +vn 2.560835 -4.846821 -3.049374 +v -8.165719 15.451509 9.724810 +vn 2.296897 -5.119662 -2.803843 +v -7.320545 16.324652 8.939541 +vn 2.678636 -5.037182 -2.607669 +v -8.542696 16.060318 8.311950 +vn 1.678085 -4.118407 -4.423907 +v -5.347621 13.132392 14.104724 +vn 2.098691 -4.099066 -4.259270 +v -6.693831 13.069944 13.578262 +vn 1.914318 -3.800496 -4.608671 +v -6.104250 12.114830 14.695885 +vn 4.675492 -3.661060 -2.019672 +v -14.906769 11.673830 6.442821 +vn 4.700943 -3.831357 -1.601416 +v -14.988701 12.218518 5.103591 +vn 4.955238 -3.419896 -1.758581 +v -15.802244 10.902181 5.606388 +vn 4.913939 -3.239989 -2.168305 +v -15.669033 10.322433 6.923059 +vn 4.408133 -4.058400 -1.855701 +v -14.046197 12.948238 5.920092 +vn 4.970642 -3.583779 -1.339779 +v -15.852985 11.425034 4.260457 +vn 5.175743 -2.989735 -1.902465 +v -16.503502 9.524514 6.076022 +vn 5.207345 -3.163003 -1.491704 +v -16.607172 10.084189 4.744573 +vn 4.374974 -3.881393 -2.267285 +v -13.940740 12.383713 7.231835 +vn 4.626970 -3.473655 -2.423026 +v -14.754244 11.067437 7.734609 +vn 4.701637 -3.981256 -1.179160 +v -14.995712 12.691586 3.748636 +vn 4.418724 -4.214616 -1.434603 +v -14.079651 13.446389 4.578000 +vn 5.211366 -3.319712 -1.081469 +v -16.616245 10.582701 3.450634 +vn 4.957194 -3.730971 -0.924385 +v -15.803402 11.897906 2.948270 +vn 5.188079 -3.461904 -0.668894 +v -16.542194 11.037183 2.129880 +vn 4.846823 -3.049373 -2.560831 +v -15.451509 9.724810 8.165719 +vn 5.119661 -2.803845 -2.296896 +v -16.324652 8.939541 7.320545 +vn 5.037182 -2.607669 -2.678636 +v -16.060318 8.311950 8.542696 +vn 4.118405 -4.423908 -1.678089 +v -13.132392 14.104724 5.347621 +vn 4.099067 -4.259270 -2.098692 +v -13.069943 13.578261 6.693831 +vn 3.800497 -4.608670 -1.914318 +v -12.114830 14.695885 6.104250 +vn 3.661060 -2.019672 -4.675491 +v -11.673830 6.442821 14.906769 +vn 3.831357 -1.601415 -4.700943 +v -12.218518 5.103592 14.988701 +vn 3.419899 -1.758578 -4.955238 +v -10.902181 5.606387 15.802242 +vn 3.239991 -2.168304 -4.913937 +v -10.322433 6.923060 15.669035 +vn 4.058401 -1.855697 -4.408134 +v -12.948238 5.920092 14.046197 +vn 3.583780 -1.339784 -4.970641 +v -11.425034 4.260457 15.852984 +vn 2.989734 -1.902463 -5.175744 +v -9.524515 6.076023 16.503502 +vn 3.163005 -1.491705 -5.207343 +v -10.084190 4.744574 16.607172 +vn 3.881392 -2.267288 -4.374973 +v -12.383713 7.231835 13.940740 +vn 3.473657 -2.423028 -4.626968 +v -11.067436 7.734608 14.754243 +vn 3.981258 -1.179160 -4.701635 +v -12.691586 3.748636 14.995712 +vn 4.214617 -1.434603 -4.418725 +v -13.446388 4.578000 14.079649 +vn 3.319712 -1.081469 -5.211365 +v -10.582703 3.450634 16.616245 +vn 3.730973 -0.924385 -4.957192 +v -11.897907 2.948270 15.803402 +vn 3.461904 -0.668891 -5.188080 +v -11.037183 2.129880 16.542194 +vn 3.049373 -2.560833 -4.846822 +v -9.724810 8.165719 15.451509 +vn 2.803840 -2.296899 -5.119663 +v -8.939541 7.320545 16.324652 +vn 2.607668 -2.678634 -5.037184 +v -8.311950 8.542696 16.060318 +vn 4.423907 -1.678085 -4.118408 +v -14.104724 5.347621 13.132392 +vn 4.259268 -2.098695 -4.099065 +v -13.578262 6.693831 13.069944 +vn 4.608671 -1.914318 -3.800496 +v -14.695885 6.104250 12.114830 +vn -3.648866 -3.391092 3.808180 +v 11.639040 10.813000 -12.149561 +vn -3.391092 -3.808180 3.648866 +v 10.813000 12.149561 -11.639040 +vn -3.808180 -3.648866 3.391092 +v 12.149561 11.639040 -10.813000 +vn -4.050829 -3.222783 3.539067 +v 12.931556 10.267509 -11.285085 +vn -3.222781 -3.539068 4.050830 +v 10.267509 11.285085 -12.931556 +vn -3.539066 -4.050829 3.222783 +v 11.285085 12.931556 -10.267509 +vn -4.195378 -3.467759 3.113603 +v 13.392240 11.048363 -9.928826 +vn -3.941009 -3.879336 2.956395 +v 12.566257 12.384832 -9.418341 +vn -4.307555 -3.686433 2.681436 +v 13.763819 11.755706 -8.506508 +vn -3.467759 -3.113603 4.195378 +v 11.048363 9.928826 -13.392240 +vn -3.879337 -2.956392 3.941010 +v 12.384832 9.418341 -12.566257 +vn -3.686434 -2.681433 4.307555 +v 11.755706 8.506508 -13.763819 +vn -3.113602 -4.195380 3.467758 +v 9.928826 13.392240 -11.048363 +vn -2.956394 -3.941008 3.879338 +v 9.418341 12.566257 -12.384832 +vn -2.681435 -4.307558 3.686430 +v 8.506508 13.763819 -11.755706 +vn -3.665693 -4.258602 2.784076 +v 11.694315 13.579535 -8.879148 +vn -3.248901 -4.417801 3.041668 +v 10.359406 14.089423 -9.704166 +vn -3.366419 -4.608400 2.598835 +v 10.735676 14.700220 -8.285454 +vn -3.763369 -4.435673 2.344918 +v 12.030020 14.142137 -7.434960 +vn -2.951971 -4.745598 2.846392 +v 9.368597 15.158709 -9.079811 +vn -3.455583 -4.770075 2.154662 +v 11.049070 15.208119 -6.828700 +vn -3.060361 -4.921036 2.398924 +v 9.714244 15.717978 -7.653668 +vn -4.047986 -4.073896 2.520792 +v 12.936800 12.988962 -7.995381 +vn -2.825418 -4.540875 3.276383 +v 8.965189 14.505980 -10.449972 +vn -4.258600 -2.784074 3.665695 +v 13.579535 8.879148 -11.694315 +vn -4.417801 -3.041667 3.248902 +v 14.089423 9.704166 -10.359407 +vn -4.608400 -2.598835 3.366419 +v 14.700220 8.285454 -10.735676 +vn -4.435671 -2.344920 3.763369 +v 14.142137 7.434960 -12.030020 +vn -4.745599 -2.846390 2.951971 +v 15.158709 9.079811 -9.368597 +vn -4.770074 -2.154662 3.455583 +v 15.208119 6.828700 -11.049070 +vn -4.921036 -2.398924 3.060361 +v 15.717978 7.653668 -9.714244 +vn -4.073896 -2.520795 4.047986 +v 12.988960 7.995381 -12.936798 +vn -4.540874 -3.276382 2.825419 +v 14.505981 10.449972 -8.965189 +vn -2.784077 -3.665694 4.258600 +v 8.879148 11.694313 -13.579535 +vn -3.041669 -3.248904 4.417799 +v 9.704166 10.359407 -14.089423 +vn -2.598835 -3.366421 4.608398 +v 8.285454 10.735678 -14.700221 +vn -2.344920 -3.763369 4.435673 +v 7.434960 12.030020 -14.142137 +vn -2.846391 -2.951969 4.745600 +v 9.079811 9.368597 -15.158709 +vn -2.154660 -3.455584 4.770075 +v 6.828700 11.049070 -15.208119 +vn -2.398923 -3.060359 4.921038 +v 7.653668 9.714244 -15.717978 +vn -2.520795 -4.047983 4.073896 +v 7.995381 12.936800 -12.988962 +vn -3.276383 -2.825417 4.540875 +v 10.449972 8.965189 -14.505981 +vn -2.019672 -4.675491 3.661060 +v 6.442821 14.906769 -11.673830 +vn -1.601415 -4.700943 3.831357 +v 5.103592 14.988701 -12.218518 +vn -1.758578 -4.955239 3.419898 +v 5.606387 15.802242 -10.902181 +vn -2.168303 -4.913938 3.239990 +v 6.923060 15.669035 -10.322433 +vn -1.855697 -4.408134 4.058400 +v 5.920092 14.046197 -12.948238 +vn -1.339784 -4.970641 3.583780 +v 4.260457 15.852984 -11.425034 +vn -1.902463 -5.175744 2.989735 +v 6.076022 16.503502 -9.524514 +vn -1.491706 -5.207343 3.163004 +v 4.744574 16.607172 -10.084190 +vn -2.267286 -4.374976 3.881390 +v 7.231835 13.940740 -12.383713 +vn -2.423030 -4.626967 3.473656 +v 7.734608 14.754243 -11.067436 +vn -1.179160 -4.701635 3.981258 +v 3.748636 14.995712 -12.691586 +vn -1.434603 -4.418725 4.214617 +v 4.578000 14.079649 -13.446388 +vn -1.081469 -5.211364 3.319712 +v 3.450634 16.616245 -10.582703 +vn -0.924385 -4.957192 3.730973 +v 2.948270 15.803402 -11.897907 +vn -0.668892 -5.188079 3.461904 +v 2.129880 16.542194 -11.037183 +vn -2.560835 -4.846821 3.049374 +v 8.165719 15.451509 -9.724810 +vn -2.296897 -5.119662 2.803843 +v 7.320545 16.324652 -8.939541 +vn -2.678636 -5.037182 2.607669 +v 8.542696 16.060318 -8.311950 +vn -1.678085 -4.118407 4.423907 +v 5.347621 13.132392 -14.104724 +vn -2.098691 -4.099066 4.259270 +v 6.693831 13.069944 -13.578262 +vn -1.914318 -3.800496 4.608671 +v 6.104250 12.114830 -14.695885 +vn -4.675492 -3.661060 2.019672 +v 14.906769 11.673830 -6.442821 +vn -4.700943 -3.831357 1.601416 +v 14.988701 12.218518 -5.103591 +vn -4.955238 -3.419896 1.758581 +v 15.802244 10.902181 -5.606388 +vn -4.913939 -3.239989 2.168305 +v 15.669033 10.322433 -6.923059 +vn -4.408133 -4.058400 1.855701 +v 14.046197 12.948238 -5.920092 +vn -4.970642 -3.583779 1.339779 +v 15.852985 11.425034 -4.260457 +vn -5.175743 -2.989735 1.902465 +v 16.503502 9.524514 -6.076022 +vn -5.207345 -3.163003 1.491704 +v 16.607172 10.084189 -4.744573 +vn -4.374974 -3.881393 2.267285 +v 13.940740 12.383713 -7.231835 +vn -4.626970 -3.473655 2.423026 +v 14.754244 11.067437 -7.734609 +vn -4.701637 -3.981256 1.179160 +v 14.995712 12.691586 -3.748636 +vn -4.418724 -4.214616 1.434603 +v 14.079651 13.446389 -4.578000 +vn -5.211366 -3.319712 1.081469 +v 16.616245 10.582701 -3.450634 +vn -4.957194 -3.730971 0.924385 +v 15.803402 11.897906 -2.948270 +vn -5.188079 -3.461904 0.668894 +v 16.542194 11.037183 -2.129880 +vn -4.846823 -3.049373 2.560831 +v 15.451509 9.724810 -8.165719 +vn -5.119661 -2.803845 2.296896 +v 16.324652 8.939541 -7.320545 +vn -5.037182 -2.607669 2.678636 +v 16.060318 8.311950 -8.542696 +vn -4.118405 -4.423908 1.678089 +v 13.132392 14.104724 -5.347621 +vn -4.099067 -4.259270 2.098692 +v 13.069943 13.578261 -6.693831 +vn -3.800497 -4.608670 1.914318 +v 12.114830 14.695885 -6.104250 +vn -3.661060 -2.019672 4.675491 +v 11.673830 6.442821 -14.906769 +vn -3.831357 -1.601415 4.700943 +v 12.218518 5.103592 -14.988701 +vn -3.419899 -1.758578 4.955238 +v 10.902181 5.606387 -15.802242 +vn -3.239991 -2.168304 4.913937 +v 10.322433 6.923060 -15.669035 +vn -4.058401 -1.855697 4.408134 +v 12.948238 5.920092 -14.046197 +vn -3.583780 -1.339784 4.970641 +v 11.425034 4.260457 -15.852984 +vn -2.989734 -1.902463 5.175744 +v 9.524515 6.076023 -16.503502 +vn -3.163005 -1.491705 5.207343 +v 10.084190 4.744574 -16.607172 +vn -3.881392 -2.267288 4.374973 +v 12.383713 7.231835 -13.940740 +vn -3.473657 -2.423028 4.626968 +v 11.067436 7.734608 -14.754243 +vn -3.981258 -1.179160 4.701635 +v 12.691586 3.748636 -14.995712 +vn -4.214617 -1.434603 4.418725 +v 13.446388 4.578000 -14.079649 +vn -3.319712 -1.081469 5.211365 +v 10.582703 3.450634 -16.616245 +vn -3.730973 -0.924385 4.957192 +v 11.897907 2.948270 -15.803402 +vn -3.461904 -0.668891 5.188080 +v 11.037183 2.129880 -16.542194 +vn -3.049373 -2.560833 4.846822 +v 9.724810 8.165719 -15.451509 +vn -2.803840 -2.296899 5.119663 +v 8.939541 7.320545 -16.324652 +vn -2.607668 -2.678634 5.037184 +v 8.311950 8.542696 -16.060318 +vn -4.423907 -1.678085 4.118408 +v 14.104724 5.347621 -13.132392 +vn -4.259268 -2.098695 4.099065 +v 13.578262 6.693831 -13.069944 +vn -4.608671 -1.914318 3.800496 +v 14.695885 6.104250 -12.114830 +vn 3.808180 -3.648866 3.391092 +v -12.149561 11.639040 -10.813000 +vn 3.391092 -3.808180 3.648866 +v -10.813000 12.149561 -11.639040 +vn 3.648866 -3.391092 3.808180 +v -11.639040 10.813000 -12.149561 +vn 4.050829 -3.222783 3.539067 +v -12.931556 10.267509 -11.285085 +vn 3.539066 -4.050829 3.222783 +v -11.285085 12.931556 -10.267509 +vn 3.222781 -3.539067 4.050830 +v -10.267509 11.285085 -12.931556 +vn 3.879338 -2.956393 3.941010 +v -12.384832 9.418341 -12.566257 +vn 3.467759 -3.113603 4.195378 +v -11.048363 9.928826 -13.392240 +vn 3.686434 -2.681433 4.307555 +v -11.755706 8.506508 -13.763819 +vn 3.941009 -3.879337 2.956395 +v -12.566257 12.384832 -9.418341 +vn 4.195378 -3.467759 3.113603 +v -13.392240 11.048363 -9.928826 +vn 4.307555 -3.686433 2.681436 +v -13.763819 11.755706 -8.506508 +vn 2.956394 -3.941008 3.879338 +v -9.418341 12.566257 -12.384832 +vn 3.113602 -4.195380 3.467758 +v -9.928826 13.392240 -11.048363 +vn 2.681435 -4.307557 3.686430 +v -8.506508 13.763819 -11.755706 +vn 3.041669 -3.248904 4.417799 +v -9.704166 10.359407 -14.089423 +vn 2.784077 -3.665694 4.258600 +v -8.879148 11.694313 -13.579535 +vn 2.598835 -3.366420 4.608398 +v -8.285454 10.735678 -14.700221 +vn 2.846391 -2.951969 4.745600 +v -9.079811 9.368597 -15.158709 +vn 2.344920 -3.763369 4.435673 +v -7.434960 12.030020 -14.142137 +vn 2.398923 -3.060359 4.921038 +v -7.653668 9.714244 -15.717978 +vn 2.154660 -3.455584 4.770076 +v -6.828700 11.049070 -15.208119 +vn 3.276383 -2.825417 4.540875 +v -10.449972 8.965189 -14.505981 +vn 2.520795 -4.047984 4.073896 +v -7.995381 12.936800 -12.988962 +vn 4.417801 -3.041667 3.248903 +v -14.089423 9.704166 -10.359407 +vn 4.258600 -2.784074 3.665695 +v -13.579535 8.879148 -11.694315 +vn 4.608400 -2.598835 3.366419 +v -14.700220 8.285454 -10.735676 +vn 4.745599 -2.846390 2.951971 +v -15.158709 9.079811 -9.368597 +vn 4.435671 -2.344920 3.763369 +v -14.142137 7.434960 -12.030020 +vn 4.921036 -2.398924 3.060361 +v -15.717978 7.653668 -9.714244 +vn 4.770075 -2.154662 3.455584 +v -15.208119 6.828700 -11.049070 +vn 4.540875 -3.276382 2.825419 +v -14.505981 10.449972 -8.965189 +vn 4.073896 -2.520795 4.047986 +v -12.988960 7.995381 -12.936798 +vn 3.248901 -4.417801 3.041668 +v -10.359406 14.089423 -9.704166 +vn 3.665693 -4.258602 2.784076 +v -11.694315 13.579535 -8.879148 +vn 3.366419 -4.608400 2.598835 +v -10.735676 14.700220 -8.285454 +vn 2.951971 -4.745598 2.846392 +v -9.368597 15.158709 -9.079811 +vn 3.763369 -4.435673 2.344918 +v -12.030020 14.142137 -7.434960 +vn 3.060361 -4.921036 2.398924 +v -9.714244 15.717978 -7.653668 +vn 3.455583 -4.770075 2.154662 +v -11.049070 15.208119 -6.828700 +vn 2.825418 -4.540875 3.276383 +v -8.965189 14.505980 -10.449972 +vn 4.047986 -4.073896 2.520792 +v -12.936800 12.988962 -7.995381 +vn 2.019673 -4.675491 3.661060 +v -6.442821 14.906769 -11.673830 +vn 1.758578 -4.955239 3.419898 +v -5.606387 15.802242 -10.902181 +vn 1.601415 -4.700943 3.831357 +v -5.103592 14.988701 -12.218518 +vn 1.855697 -4.408134 4.058400 +v -5.920092 14.046197 -12.948238 +vn 2.168303 -4.913938 3.239990 +v -6.923060 15.669035 -10.322433 +vn 1.339784 -4.970641 3.583779 +v -4.260457 15.852984 -11.425034 +vn 1.434603 -4.418725 4.214617 +v -4.578000 14.079649 -13.446388 +vn 1.179160 -4.701635 3.981258 +v -3.748636 14.995712 -12.691586 +vn 2.423030 -4.626967 3.473656 +v -7.734608 14.754243 -11.067436 +vn 2.267286 -4.374976 3.881390 +v -7.231835 13.940740 -12.383713 +vn 1.491706 -5.207343 3.163004 +v -4.744574 16.607172 -10.084190 +vn 1.902463 -5.175744 2.989734 +v -6.076022 16.503502 -9.524514 +vn 0.924385 -4.957192 3.730973 +v -2.948270 15.803402 -11.897907 +vn 1.081469 -5.211365 3.319712 +v -3.450634 16.616245 -10.582703 +vn 0.668892 -5.188080 3.461904 +v -2.129880 16.542194 -11.037183 +vn 2.098691 -4.099066 4.259270 +v -6.693831 13.069944 -13.578262 +vn 1.678085 -4.118407 4.423907 +v -5.347621 13.132392 -14.104724 +vn 1.914318 -3.800496 4.608671 +v -6.104250 12.114830 -14.695885 +vn 2.296897 -5.119662 2.803843 +v -7.320545 16.324652 -8.939541 +vn 2.560835 -4.846821 3.049374 +v -8.165719 15.451509 -9.724810 +vn 2.678636 -5.037182 2.607669 +v -8.542696 16.060318 -8.311950 +vn 3.661060 -2.019672 4.675491 +v -11.673830 6.442821 -14.906769 +vn 3.419899 -1.758578 4.955238 +v -10.902181 5.606387 -15.802242 +vn 3.831357 -1.601415 4.700943 +v -12.218518 5.103592 -14.988701 +vn 4.058400 -1.855697 4.408134 +v -12.948238 5.920092 -14.046197 +vn 3.239991 -2.168304 4.913937 +v -10.322433 6.923060 -15.669035 +vn 3.583779 -1.339784 4.970641 +v -11.425034 4.260457 -15.852984 +vn 4.214617 -1.434603 4.418725 +v -13.446388 4.578000 -14.079649 +vn 3.981258 -1.179160 4.701635 +v -12.691586 3.748636 -14.995712 +vn 3.473657 -2.423028 4.626968 +v -11.067436 7.734608 -14.754243 +vn 3.881392 -2.267288 4.374973 +v -12.383713 7.231835 -13.940740 +vn 3.163005 -1.491705 5.207343 +v -10.084190 4.744574 -16.607172 +vn 2.989735 -1.902463 5.175744 +v -9.524515 6.076023 -16.503502 +vn 3.730973 -0.924385 4.957192 +v -11.897907 2.948270 -15.803402 +vn 3.319712 -1.081470 5.211365 +v -10.582703 3.450634 -16.616245 +vn 3.461904 -0.668891 5.188080 +v -11.037183 2.129880 -16.542194 +vn 4.259268 -2.098695 4.099065 +v -13.578262 6.693831 -13.069944 +vn 4.423907 -1.678085 4.118407 +v -14.104724 5.347621 -13.132392 +vn 4.608671 -1.914318 3.800496 +v -14.695885 6.104250 -12.114830 +vn 2.803840 -2.296899 5.119662 +v -8.939541 7.320545 -16.324652 +vn 3.049373 -2.560833 4.846822 +v -9.724810 8.165719 -15.451509 +vn 2.607668 -2.678634 5.037184 +v -8.311950 8.542696 -16.060318 +vn 4.675492 -3.661060 2.019672 +v -14.906769 11.673830 -6.442821 +vn 4.955238 -3.419896 1.758581 +v -15.802244 10.902181 -5.606388 +vn 4.700943 -3.831357 1.601416 +v -14.988701 12.218518 -5.103591 +vn 4.408133 -4.058400 1.855701 +v -14.046197 12.948238 -5.920092 +vn 4.913940 -3.239989 2.168305 +v -15.669033 10.322433 -6.923059 +vn 4.970642 -3.583779 1.339780 +v -15.852985 11.425034 -4.260457 +vn 4.418724 -4.214616 1.434603 +v -14.079651 13.446389 -4.578000 +vn 4.701637 -3.981256 1.179160 +v -14.995712 12.691586 -3.748636 +vn 4.626970 -3.473655 2.423026 +v -14.754244 11.067437 -7.734609 +vn 4.374974 -3.881392 2.267285 +v -13.940740 12.383713 -7.231835 +vn 5.207345 -3.163003 1.491703 +v -16.607172 10.084189 -4.744573 +vn 5.175743 -2.989735 1.902465 +v -16.503502 9.524514 -6.076022 +vn 4.957194 -3.730971 0.924385 +v -15.803402 11.897906 -2.948270 +vn 5.211366 -3.319712 1.081469 +v -16.616245 10.582701 -3.450634 +vn 5.188078 -3.461904 0.668894 +v -16.542194 11.037183 -2.129880 +vn 4.099067 -4.259270 2.098692 +v -13.069943 13.578261 -6.693831 +vn 4.118405 -4.423908 1.678089 +v -13.132392 14.104724 -5.347621 +vn 3.800497 -4.608670 1.914319 +v -12.114830 14.695885 -6.104250 +vn 5.119660 -2.803845 2.296896 +v -16.324652 8.939541 -7.320545 +vn 4.846823 -3.049373 2.560831 +v -15.451509 9.724810 -8.165719 +vn 5.037182 -2.607669 2.678636 +v -16.060318 8.311950 -8.542696 +vn -3.648866 3.391092 -3.808180 +v 11.639040 -10.813000 12.149561 +vn -3.391092 3.808180 -3.648866 +v 10.813000 -12.149561 11.639040 +vn -3.808180 3.648866 -3.391092 +v 12.149561 -11.639040 10.813000 +vn -4.050829 3.222783 -3.539067 +v 12.931556 -10.267509 11.285085 +vn -3.222781 3.539068 -4.050830 +v 10.267509 -11.285085 12.931556 +vn -3.539066 4.050829 -3.222783 +v 11.285085 -12.931556 10.267509 +vn -4.195378 3.467759 -3.113603 +v 13.392240 -11.048363 9.928826 +vn -3.941009 3.879336 -2.956395 +v 12.566257 -12.384832 9.418341 +vn -4.307555 3.686433 -2.681436 +v 13.763819 -11.755706 8.506508 +vn -3.467759 3.113603 -4.195378 +v 11.048363 -9.928826 13.392240 +vn -3.879337 2.956392 -3.941010 +v 12.384832 -9.418341 12.566257 +vn -3.686434 2.681433 -4.307555 +v 11.755706 -8.506508 13.763819 +vn -3.113602 4.195380 -3.467758 +v 9.928826 -13.392240 11.048363 +vn -2.956394 3.941008 -3.879338 +v 9.418341 -12.566257 12.384832 +vn -2.681435 4.307558 -3.686430 +v 8.506508 -13.763819 11.755706 +vn -3.665693 4.258602 -2.784076 +v 11.694315 -13.579535 8.879148 +vn -3.248901 4.417801 -3.041668 +v 10.359406 -14.089423 9.704166 +vn -3.366419 4.608400 -2.598835 +v 10.735676 -14.700220 8.285454 +vn -3.763369 4.435673 -2.344918 +v 12.030020 -14.142137 7.434960 +vn -2.951971 4.745598 -2.846392 +v 9.368597 -15.158709 9.079811 +vn -3.455583 4.770075 -2.154662 +v 11.049070 -15.208119 6.828700 +vn -3.060361 4.921036 -2.398924 +v 9.714244 -15.717978 7.653668 +vn -4.047986 4.073896 -2.520792 +v 12.936800 -12.988962 7.995381 +vn -2.825418 4.540875 -3.276383 +v 8.965189 -14.505980 10.449972 +vn -4.258600 2.784074 -3.665695 +v 13.579535 -8.879148 11.694315 +vn -4.417801 3.041667 -3.248902 +v 14.089423 -9.704166 10.359407 +vn -4.608400 2.598835 -3.366419 +v 14.700220 -8.285454 10.735676 +vn -4.435671 2.344920 -3.763369 +v 14.142137 -7.434960 12.030020 +vn -4.745599 2.846390 -2.951971 +v 15.158709 -9.079811 9.368597 +vn -4.770074 2.154662 -3.455583 +v 15.208119 -6.828700 11.049070 +vn -4.921036 2.398924 -3.060361 +v 15.717978 -7.653668 9.714244 +vn -4.073896 2.520795 -4.047986 +v 12.988960 -7.995381 12.936798 +vn -4.540874 3.276382 -2.825419 +v 14.505981 -10.449972 8.965189 +vn -2.784077 3.665694 -4.258600 +v 8.879148 -11.694313 13.579535 +vn -3.041669 3.248904 -4.417799 +v 9.704166 -10.359407 14.089423 +vn -2.598835 3.366421 -4.608398 +v 8.285454 -10.735678 14.700221 +vn -2.344920 3.763369 -4.435673 +v 7.434960 -12.030020 14.142137 +vn -2.846391 2.951969 -4.745600 +v 9.079811 -9.368597 15.158709 +vn -2.154660 3.455584 -4.770075 +v 6.828700 -11.049070 15.208119 +vn -2.398923 3.060359 -4.921038 +v 7.653668 -9.714244 15.717978 +vn -2.520795 4.047983 -4.073896 +v 7.995381 -12.936800 12.988962 +vn -3.276383 2.825417 -4.540875 +v 10.449972 -8.965189 14.505981 +vn -2.019672 4.675491 -3.661060 +v 6.442821 -14.906769 11.673830 +vn -1.601415 4.700943 -3.831357 +v 5.103592 -14.988701 12.218518 +vn -1.758578 4.955239 -3.419898 +v 5.606387 -15.802242 10.902181 +vn -2.168303 4.913938 -3.239990 +v 6.923060 -15.669035 10.322433 +vn -1.855697 4.408134 -4.058400 +v 5.920092 -14.046197 12.948238 +vn -1.339784 4.970641 -3.583780 +v 4.260457 -15.852984 11.425034 +vn -1.902463 5.175744 -2.989735 +v 6.076022 -16.503502 9.524514 +vn -1.491706 5.207343 -3.163004 +v 4.744574 -16.607172 10.084190 +vn -2.267286 4.374976 -3.881390 +v 7.231835 -13.940740 12.383713 +vn -2.423030 4.626967 -3.473656 +v 7.734608 -14.754243 11.067436 +vn -1.179160 4.701635 -3.981258 +v 3.748636 -14.995712 12.691586 +vn -1.434603 4.418725 -4.214617 +v 4.578000 -14.079649 13.446388 +vn -1.081469 5.211364 -3.319712 +v 3.450634 -16.616245 10.582703 +vn -0.924385 4.957192 -3.730973 +v 2.948270 -15.803402 11.897907 +vn -0.668892 5.188079 -3.461904 +v 2.129880 -16.542194 11.037183 +vn -2.560835 4.846821 -3.049374 +v 8.165719 -15.451509 9.724810 +vn -2.296897 5.119662 -2.803843 +v 7.320545 -16.324652 8.939541 +vn -2.678636 5.037182 -2.607669 +v 8.542696 -16.060318 8.311950 +vn -1.678085 4.118407 -4.423907 +v 5.347621 -13.132392 14.104724 +vn -2.098691 4.099066 -4.259270 +v 6.693831 -13.069944 13.578262 +vn -1.914318 3.800496 -4.608671 +v 6.104250 -12.114830 14.695885 +vn -4.675492 3.661060 -2.019672 +v 14.906769 -11.673830 6.442821 +vn -4.700943 3.831357 -1.601416 +v 14.988701 -12.218518 5.103591 +vn -4.955238 3.419896 -1.758581 +v 15.802244 -10.902181 5.606388 +vn -4.913939 3.239989 -2.168305 +v 15.669033 -10.322433 6.923059 +vn -4.408133 4.058400 -1.855701 +v 14.046197 -12.948238 5.920092 +vn -4.970642 3.583779 -1.339779 +v 15.852985 -11.425034 4.260457 +vn -5.175743 2.989735 -1.902465 +v 16.503502 -9.524514 6.076022 +vn -5.207345 3.163003 -1.491704 +v 16.607172 -10.084189 4.744573 +vn -4.374974 3.881393 -2.267285 +v 13.940740 -12.383713 7.231835 +vn -4.626970 3.473655 -2.423026 +v 14.754244 -11.067437 7.734609 +vn -4.701637 3.981256 -1.179160 +v 14.995712 -12.691586 3.748636 +vn -4.418724 4.214616 -1.434603 +v 14.079651 -13.446389 4.578000 +vn -5.211366 3.319712 -1.081469 +v 16.616245 -10.582701 3.450634 +vn -4.957194 3.730971 -0.924385 +v 15.803402 -11.897906 2.948270 +vn -5.188079 3.461904 -0.668894 +v 16.542194 -11.037183 2.129880 +vn -4.846823 3.049373 -2.560831 +v 15.451509 -9.724810 8.165719 +vn -5.119661 2.803845 -2.296896 +v 16.324652 -8.939541 7.320545 +vn -5.037182 2.607669 -2.678636 +v 16.060318 -8.311950 8.542696 +vn -4.118405 4.423908 -1.678089 +v 13.132392 -14.104724 5.347621 +vn -4.099067 4.259270 -2.098692 +v 13.069943 -13.578261 6.693831 +vn -3.800497 4.608670 -1.914318 +v 12.114830 -14.695885 6.104250 +vn -3.661060 2.019672 -4.675491 +v 11.673830 -6.442821 14.906769 +vn -3.831357 1.601415 -4.700943 +v 12.218518 -5.103592 14.988701 +vn -3.419899 1.758578 -4.955238 +v 10.902181 -5.606387 15.802242 +vn -3.239991 2.168304 -4.913937 +v 10.322433 -6.923060 15.669035 +vn -4.058401 1.855697 -4.408134 +v 12.948238 -5.920092 14.046197 +vn -3.583780 1.339784 -4.970641 +v 11.425034 -4.260457 15.852984 +vn -2.989734 1.902463 -5.175744 +v 9.524515 -6.076023 16.503502 +vn -3.163005 1.491705 -5.207343 +v 10.084190 -4.744574 16.607172 +vn -3.881392 2.267288 -4.374973 +v 12.383713 -7.231835 13.940740 +vn -3.473657 2.423028 -4.626968 +v 11.067436 -7.734608 14.754243 +vn -3.981258 1.179160 -4.701635 +v 12.691586 -3.748636 14.995712 +vn -4.214617 1.434603 -4.418725 +v 13.446388 -4.578000 14.079649 +vn -3.319712 1.081469 -5.211365 +v 10.582703 -3.450634 16.616245 +vn -3.730973 0.924385 -4.957192 +v 11.897907 -2.948270 15.803402 +vn -3.461904 0.668891 -5.188080 +v 11.037183 -2.129880 16.542194 +vn -3.049373 2.560833 -4.846822 +v 9.724810 -8.165719 15.451509 +vn -2.803840 2.296899 -5.119663 +v 8.939541 -7.320545 16.324652 +vn -2.607668 2.678634 -5.037184 +v 8.311950 -8.542696 16.060318 +vn -4.423907 1.678085 -4.118408 +v 14.104724 -5.347621 13.132392 +vn -4.259268 2.098695 -4.099065 +v 13.578262 -6.693831 13.069944 +vn -4.608671 1.914318 -3.800496 +v 14.695885 -6.104250 12.114830 +vn 3.808180 3.648866 -3.391092 +v -12.149561 -11.639040 10.813000 +vn 3.391092 3.808180 -3.648866 +v -10.813000 -12.149561 11.639040 +vn 3.648866 3.391092 -3.808180 +v -11.639040 -10.813000 12.149561 +vn 4.050829 3.222783 -3.539067 +v -12.931556 -10.267509 11.285085 +vn 3.539066 4.050829 -3.222783 +v -11.285085 -12.931556 10.267509 +vn 3.222781 3.539067 -4.050830 +v -10.267509 -11.285085 12.931556 +vn 3.879338 2.956393 -3.941010 +v -12.384832 -9.418341 12.566257 +vn 3.467759 3.113603 -4.195378 +v -11.048363 -9.928826 13.392240 +vn 3.686434 2.681433 -4.307555 +v -11.755706 -8.506508 13.763819 +vn 3.941009 3.879337 -2.956395 +v -12.566257 -12.384832 9.418341 +vn 4.195378 3.467759 -3.113603 +v -13.392240 -11.048363 9.928826 +vn 4.307555 3.686433 -2.681436 +v -13.763819 -11.755706 8.506508 +vn 2.956394 3.941008 -3.879338 +v -9.418341 -12.566257 12.384832 +vn 3.113602 4.195380 -3.467758 +v -9.928826 -13.392240 11.048363 +vn 2.681435 4.307557 -3.686430 +v -8.506508 -13.763819 11.755706 +vn 3.041669 3.248904 -4.417799 +v -9.704166 -10.359407 14.089423 +vn 2.784077 3.665694 -4.258600 +v -8.879148 -11.694313 13.579535 +vn 2.598835 3.366420 -4.608398 +v -8.285454 -10.735678 14.700221 +vn 2.846391 2.951969 -4.745600 +v -9.079811 -9.368597 15.158709 +vn 2.344920 3.763369 -4.435673 +v -7.434960 -12.030020 14.142137 +vn 2.398923 3.060359 -4.921038 +v -7.653668 -9.714244 15.717978 +vn 2.154660 3.455584 -4.770076 +v -6.828700 -11.049070 15.208119 +vn 3.276383 2.825417 -4.540875 +v -10.449972 -8.965189 14.505981 +vn 2.520795 4.047984 -4.073896 +v -7.995381 -12.936800 12.988962 +vn 4.417801 3.041667 -3.248903 +v -14.089423 -9.704166 10.359407 +vn 4.258600 2.784074 -3.665695 +v -13.579535 -8.879148 11.694315 +vn 4.608400 2.598835 -3.366419 +v -14.700220 -8.285454 10.735676 +vn 4.745599 2.846390 -2.951971 +v -15.158709 -9.079811 9.368597 +vn 4.435671 2.344920 -3.763369 +v -14.142137 -7.434960 12.030020 +vn 4.921036 2.398924 -3.060361 +v -15.717978 -7.653668 9.714244 +vn 4.770075 2.154662 -3.455584 +v -15.208119 -6.828700 11.049070 +vn 4.540875 3.276382 -2.825419 +v -14.505981 -10.449972 8.965189 +vn 4.073896 2.520795 -4.047986 +v -12.988960 -7.995381 12.936798 +vn 3.248901 4.417801 -3.041668 +v -10.359406 -14.089423 9.704166 +vn 3.665693 4.258602 -2.784076 +v -11.694315 -13.579535 8.879148 +vn 3.366419 4.608400 -2.598835 +v -10.735676 -14.700220 8.285454 +vn 2.951971 4.745598 -2.846392 +v -9.368597 -15.158709 9.079811 +vn 3.763369 4.435673 -2.344918 +v -12.030020 -14.142137 7.434960 +vn 3.060361 4.921036 -2.398924 +v -9.714244 -15.717978 7.653668 +vn 3.455583 4.770075 -2.154662 +v -11.049070 -15.208119 6.828700 +vn 2.825418 4.540875 -3.276383 +v -8.965189 -14.505980 10.449972 +vn 4.047986 4.073896 -2.520792 +v -12.936800 -12.988962 7.995381 +vn 2.019673 4.675491 -3.661060 +v -6.442821 -14.906769 11.673830 +vn 1.758578 4.955239 -3.419898 +v -5.606387 -15.802242 10.902181 +vn 1.601415 4.700943 -3.831357 +v -5.103592 -14.988701 12.218518 +vn 1.855697 4.408134 -4.058400 +v -5.920092 -14.046197 12.948238 +vn 2.168303 4.913938 -3.239990 +v -6.923060 -15.669035 10.322433 +vn 1.339784 4.970641 -3.583779 +v -4.260457 -15.852984 11.425034 +vn 1.434603 4.418725 -4.214617 +v -4.578000 -14.079649 13.446388 +vn 1.179160 4.701635 -3.981258 +v -3.748636 -14.995712 12.691586 +vn 2.423030 4.626967 -3.473656 +v -7.734608 -14.754243 11.067436 +vn 2.267286 4.374976 -3.881390 +v -7.231835 -13.940740 12.383713 +vn 1.491706 5.207343 -3.163004 +v -4.744574 -16.607172 10.084190 +vn 1.902463 5.175744 -2.989734 +v -6.076022 -16.503502 9.524514 +vn 0.924385 4.957192 -3.730973 +v -2.948270 -15.803402 11.897907 +vn 1.081469 5.211365 -3.319712 +v -3.450634 -16.616245 10.582703 +vn 0.668892 5.188080 -3.461904 +v -2.129880 -16.542194 11.037183 +vn 2.098691 4.099066 -4.259270 +v -6.693831 -13.069944 13.578262 +vn 1.678085 4.118407 -4.423907 +v -5.347621 -13.132392 14.104724 +vn 1.914318 3.800496 -4.608671 +v -6.104250 -12.114830 14.695885 +vn 2.296897 5.119662 -2.803843 +v -7.320545 -16.324652 8.939541 +vn 2.560835 4.846821 -3.049374 +v -8.165719 -15.451509 9.724810 +vn 2.678636 5.037182 -2.607669 +v -8.542696 -16.060318 8.311950 +vn 3.661060 2.019672 -4.675491 +v -11.673830 -6.442821 14.906769 +vn 3.419899 1.758578 -4.955238 +v -10.902181 -5.606387 15.802242 +vn 3.831357 1.601415 -4.700943 +v -12.218518 -5.103592 14.988701 +vn 4.058400 1.855697 -4.408134 +v -12.948238 -5.920092 14.046197 +vn 3.239991 2.168304 -4.913937 +v -10.322433 -6.923060 15.669035 +vn 3.583779 1.339784 -4.970641 +v -11.425034 -4.260457 15.852984 +vn 4.214617 1.434603 -4.418725 +v -13.446388 -4.578000 14.079649 +vn 3.981258 1.179160 -4.701635 +v -12.691586 -3.748636 14.995712 +vn 3.473657 2.423028 -4.626968 +v -11.067436 -7.734608 14.754243 +vn 3.881392 2.267288 -4.374973 +v -12.383713 -7.231835 13.940740 +vn 3.163005 1.491705 -5.207343 +v -10.084190 -4.744574 16.607172 +vn 2.989735 1.902463 -5.175744 +v -9.524515 -6.076023 16.503502 +vn 3.730973 0.924385 -4.957192 +v -11.897907 -2.948270 15.803402 +vn 3.319712 1.081470 -5.211365 +v -10.582703 -3.450634 16.616245 +vn 3.461904 0.668891 -5.188080 +v -11.037183 -2.129880 16.542194 +vn 4.259268 2.098695 -4.099065 +v -13.578262 -6.693831 13.069944 +vn 4.423907 1.678085 -4.118407 +v -14.104724 -5.347621 13.132392 +vn 4.608671 1.914318 -3.800496 +v -14.695885 -6.104250 12.114830 +vn 2.803840 2.296899 -5.119662 +v -8.939541 -7.320545 16.324652 +vn 3.049373 2.560833 -4.846822 +v -9.724810 -8.165719 15.451509 +vn 2.607668 2.678634 -5.037184 +v -8.311950 -8.542696 16.060318 +vn 4.675492 3.661060 -2.019672 +v -14.906769 -11.673830 6.442821 +vn 4.955238 3.419896 -1.758581 +v -15.802244 -10.902181 5.606388 +vn 4.700943 3.831357 -1.601416 +v -14.988701 -12.218518 5.103591 +vn 4.408133 4.058400 -1.855701 +v -14.046197 -12.948238 5.920092 +vn 4.913940 3.239989 -2.168305 +v -15.669033 -10.322433 6.923059 +vn 4.970642 3.583779 -1.339780 +v -15.852985 -11.425034 4.260457 +vn 4.418724 4.214616 -1.434603 +v -14.079651 -13.446389 4.578000 +vn 4.701637 3.981256 -1.179160 +v -14.995712 -12.691586 3.748636 +vn 4.626970 3.473655 -2.423026 +v -14.754244 -11.067437 7.734609 +vn 4.374974 3.881392 -2.267285 +v -13.940740 -12.383713 7.231835 +vn 5.207345 3.163003 -1.491703 +v -16.607172 -10.084189 4.744573 +vn 5.175743 2.989735 -1.902465 +v -16.503502 -9.524514 6.076022 +vn 4.957194 3.730971 -0.924385 +v -15.803402 -11.897906 2.948270 +vn 5.211366 3.319712 -1.081469 +v -16.616245 -10.582701 3.450634 +vn 5.188078 3.461904 -0.668894 +v -16.542194 -11.037183 2.129880 +vn 4.099067 4.259270 -2.098692 +v -13.069943 -13.578261 6.693831 +vn 4.118405 4.423908 -1.678089 +v -13.132392 -14.104724 5.347621 +vn 3.800497 4.608670 -1.914319 +v -12.114830 -14.695885 6.104250 +vn 5.119660 2.803845 -2.296896 +v -16.324652 -8.939541 7.320545 +vn 4.846823 3.049373 -2.560831 +v -15.451509 -9.724810 8.165719 +vn 5.037182 2.607669 -2.678636 +v -16.060318 -8.311950 8.542696 +vn -3.808180 3.648866 3.391092 +v 12.149561 -11.639040 -10.813000 +vn -3.391092 3.808180 3.648866 +v 10.813000 -12.149561 -11.639040 +vn -3.648866 3.391092 3.808180 +v 11.639040 -10.813000 -12.149561 +vn -4.050829 3.222783 3.539067 +v 12.931556 -10.267509 -11.285085 +vn -3.539066 4.050829 3.222783 +v 11.285085 -12.931556 -10.267509 +vn -3.222781 3.539067 4.050830 +v 10.267509 -11.285085 -12.931556 +vn -3.879338 2.956393 3.941010 +v 12.384832 -9.418341 -12.566257 +vn -3.467759 3.113603 4.195378 +v 11.048363 -9.928826 -13.392240 +vn -3.686434 2.681433 4.307555 +v 11.755706 -8.506508 -13.763819 +vn -3.941009 3.879337 2.956395 +v 12.566257 -12.384832 -9.418341 +vn -4.195378 3.467759 3.113603 +v 13.392240 -11.048363 -9.928826 +vn -4.307555 3.686433 2.681436 +v 13.763819 -11.755706 -8.506508 +vn -2.956394 3.941008 3.879338 +v 9.418341 -12.566257 -12.384832 +vn -3.113602 4.195380 3.467758 +v 9.928826 -13.392240 -11.048363 +vn -2.681435 4.307557 3.686430 +v 8.506508 -13.763819 -11.755706 +vn -3.041669 3.248904 4.417799 +v 9.704166 -10.359407 -14.089423 +vn -2.784077 3.665694 4.258600 +v 8.879148 -11.694313 -13.579535 +vn -2.598835 3.366420 4.608398 +v 8.285454 -10.735678 -14.700221 +vn -2.846391 2.951969 4.745600 +v 9.079811 -9.368597 -15.158709 +vn -2.344920 3.763369 4.435673 +v 7.434960 -12.030020 -14.142137 +vn -2.398923 3.060359 4.921038 +v 7.653668 -9.714244 -15.717978 +vn -2.154660 3.455584 4.770076 +v 6.828700 -11.049070 -15.208119 +vn -3.276383 2.825417 4.540875 +v 10.449972 -8.965189 -14.505981 +vn -2.520795 4.047984 4.073896 +v 7.995381 -12.936800 -12.988962 +vn -4.417801 3.041667 3.248903 +v 14.089423 -9.704166 -10.359407 +vn -4.258600 2.784074 3.665695 +v 13.579535 -8.879148 -11.694315 +vn -4.608400 2.598835 3.366419 +v 14.700220 -8.285454 -10.735676 +vn -4.745599 2.846390 2.951971 +v 15.158709 -9.079811 -9.368597 +vn -4.435671 2.344920 3.763369 +v 14.142137 -7.434960 -12.030020 +vn -4.921036 2.398924 3.060361 +v 15.717978 -7.653668 -9.714244 +vn -4.770075 2.154662 3.455584 +v 15.208119 -6.828700 -11.049070 +vn -4.540875 3.276382 2.825419 +v 14.505981 -10.449972 -8.965189 +vn -4.073896 2.520795 4.047986 +v 12.988960 -7.995381 -12.936798 +vn -3.248901 4.417801 3.041668 +v 10.359406 -14.089423 -9.704166 +vn -3.665693 4.258602 2.784076 +v 11.694315 -13.579535 -8.879148 +vn -3.366419 4.608400 2.598835 +v 10.735676 -14.700220 -8.285454 +vn -2.951971 4.745598 2.846392 +v 9.368597 -15.158709 -9.079811 +vn -3.763369 4.435673 2.344918 +v 12.030020 -14.142137 -7.434960 +vn -3.060361 4.921036 2.398924 +v 9.714244 -15.717978 -7.653668 +vn -3.455583 4.770075 2.154662 +v 11.049070 -15.208119 -6.828700 +vn -2.825418 4.540875 3.276383 +v 8.965189 -14.505980 -10.449972 +vn -4.047986 4.073896 2.520792 +v 12.936800 -12.988962 -7.995381 +vn -2.019673 4.675491 3.661060 +v 6.442821 -14.906769 -11.673830 +vn -1.758578 4.955239 3.419898 +v 5.606387 -15.802242 -10.902181 +vn -1.601415 4.700943 3.831357 +v 5.103592 -14.988701 -12.218518 +vn -1.855697 4.408134 4.058400 +v 5.920092 -14.046197 -12.948238 +vn -2.168303 4.913938 3.239990 +v 6.923060 -15.669035 -10.322433 +vn -1.339784 4.970641 3.583779 +v 4.260457 -15.852984 -11.425034 +vn -1.434603 4.418725 4.214617 +v 4.578000 -14.079649 -13.446388 +vn -1.179160 4.701635 3.981258 +v 3.748636 -14.995712 -12.691586 +vn -2.423030 4.626967 3.473656 +v 7.734608 -14.754243 -11.067436 +vn -2.267286 4.374976 3.881390 +v 7.231835 -13.940740 -12.383713 +vn -1.491706 5.207343 3.163004 +v 4.744574 -16.607172 -10.084190 +vn -1.902463 5.175744 2.989734 +v 6.076022 -16.503502 -9.524514 +vn -0.924385 4.957192 3.730973 +v 2.948270 -15.803402 -11.897907 +vn -1.081469 5.211365 3.319712 +v 3.450634 -16.616245 -10.582703 +vn -0.668892 5.188080 3.461904 +v 2.129880 -16.542194 -11.037183 +vn -2.098691 4.099066 4.259270 +v 6.693831 -13.069944 -13.578262 +vn -1.678085 4.118407 4.423907 +v 5.347621 -13.132392 -14.104724 +vn -1.914318 3.800496 4.608671 +v 6.104250 -12.114830 -14.695885 +vn -2.296897 5.119662 2.803843 +v 7.320545 -16.324652 -8.939541 +vn -2.560835 4.846821 3.049374 +v 8.165719 -15.451509 -9.724810 +vn -2.678636 5.037182 2.607669 +v 8.542696 -16.060318 -8.311950 +vn -3.661060 2.019672 4.675491 +v 11.673830 -6.442821 -14.906769 +vn -3.419899 1.758578 4.955238 +v 10.902181 -5.606387 -15.802242 +vn -3.831357 1.601415 4.700943 +v 12.218518 -5.103592 -14.988701 +vn -4.058400 1.855697 4.408134 +v 12.948238 -5.920092 -14.046197 +vn -3.239991 2.168304 4.913937 +v 10.322433 -6.923060 -15.669035 +vn -3.583779 1.339784 4.970641 +v 11.425034 -4.260457 -15.852984 +vn -4.214617 1.434603 4.418725 +v 13.446388 -4.578000 -14.079649 +vn -3.981258 1.179160 4.701635 +v 12.691586 -3.748636 -14.995712 +vn -3.473657 2.423028 4.626968 +v 11.067436 -7.734608 -14.754243 +vn -3.881392 2.267288 4.374973 +v 12.383713 -7.231835 -13.940740 +vn -3.163005 1.491705 5.207343 +v 10.084190 -4.744574 -16.607172 +vn -2.989735 1.902463 5.175744 +v 9.524515 -6.076023 -16.503502 +vn -3.730973 0.924385 4.957192 +v 11.897907 -2.948270 -15.803402 +vn -3.319712 1.081470 5.211365 +v 10.582703 -3.450634 -16.616245 +vn -3.461904 0.668891 5.188080 +v 11.037183 -2.129880 -16.542194 +vn -4.259268 2.098695 4.099065 +v 13.578262 -6.693831 -13.069944 +vn -4.423907 1.678085 4.118407 +v 14.104724 -5.347621 -13.132392 +vn -4.608671 1.914318 3.800496 +v 14.695885 -6.104250 -12.114830 +vn -2.803840 2.296899 5.119662 +v 8.939541 -7.320545 -16.324652 +vn -3.049373 2.560833 4.846822 +v 9.724810 -8.165719 -15.451509 +vn -2.607668 2.678634 5.037184 +v 8.311950 -8.542696 -16.060318 +vn -4.675492 3.661060 2.019672 +v 14.906769 -11.673830 -6.442821 +vn -4.955238 3.419896 1.758581 +v 15.802244 -10.902181 -5.606388 +vn -4.700943 3.831357 1.601416 +v 14.988701 -12.218518 -5.103591 +vn -4.408133 4.058400 1.855701 +v 14.046197 -12.948238 -5.920092 +vn -4.913940 3.239989 2.168305 +v 15.669033 -10.322433 -6.923059 +vn -4.970642 3.583779 1.339780 +v 15.852985 -11.425034 -4.260457 +vn -4.418724 4.214616 1.434603 +v 14.079651 -13.446389 -4.578000 +vn -4.701637 3.981256 1.179160 +v 14.995712 -12.691586 -3.748636 +vn -4.626970 3.473655 2.423026 +v 14.754244 -11.067437 -7.734609 +vn -4.374974 3.881392 2.267285 +v 13.940740 -12.383713 -7.231835 +vn -5.207345 3.163003 1.491703 +v 16.607172 -10.084189 -4.744573 +vn -5.175743 2.989735 1.902465 +v 16.503502 -9.524514 -6.076022 +vn -4.957194 3.730971 0.924385 +v 15.803402 -11.897906 -2.948270 +vn -5.211366 3.319712 1.081469 +v 16.616245 -10.582701 -3.450634 +vn -5.188078 3.461904 0.668894 +v 16.542194 -11.037183 -2.129880 +vn -4.099067 4.259270 2.098692 +v 13.069943 -13.578261 -6.693831 +vn -4.118405 4.423908 1.678089 +v 13.132392 -14.104724 -5.347621 +vn -3.800497 4.608670 1.914319 +v 12.114830 -14.695885 -6.104250 +vn -5.119660 2.803845 2.296896 +v 16.324652 -8.939541 -7.320545 +vn -4.846823 3.049373 2.560831 +v 15.451509 -9.724810 -8.165719 +vn -5.037182 2.607669 2.678636 +v 16.060318 -8.311950 -8.542696 +vn 3.648866 3.391092 3.808180 +v -11.639040 -10.813000 -12.149561 +vn 3.391092 3.808180 3.648866 +v -10.813000 -12.149561 -11.639040 +vn 3.808180 3.648866 3.391092 +v -12.149561 -11.639040 -10.813000 +vn 4.050829 3.222783 3.539067 +v -12.931556 -10.267509 -11.285085 +vn 3.222781 3.539068 4.050830 +v -10.267509 -11.285085 -12.931556 +vn 3.539066 4.050829 3.222783 +v -11.285085 -12.931556 -10.267509 +vn 4.195378 3.467759 3.113603 +v -13.392240 -11.048363 -9.928826 +vn 3.941009 3.879336 2.956395 +v -12.566257 -12.384832 -9.418341 +vn 4.307555 3.686433 2.681436 +v -13.763819 -11.755706 -8.506508 +vn 3.467759 3.113603 4.195378 +v -11.048363 -9.928826 -13.392240 +vn 3.879337 2.956392 3.941010 +v -12.384832 -9.418341 -12.566257 +vn 3.686434 2.681433 4.307555 +v -11.755706 -8.506508 -13.763819 +vn 3.113602 4.195380 3.467758 +v -9.928826 -13.392240 -11.048363 +vn 2.956394 3.941008 3.879338 +v -9.418341 -12.566257 -12.384832 +vn 2.681435 4.307558 3.686430 +v -8.506508 -13.763819 -11.755706 +vn 3.665693 4.258602 2.784076 +v -11.694315 -13.579535 -8.879148 +vn 3.248901 4.417801 3.041668 +v -10.359406 -14.089423 -9.704166 +vn 3.366419 4.608400 2.598835 +v -10.735676 -14.700220 -8.285454 +vn 3.763369 4.435673 2.344918 +v -12.030020 -14.142137 -7.434960 +vn 2.951971 4.745598 2.846392 +v -9.368597 -15.158709 -9.079811 +vn 3.455583 4.770075 2.154662 +v -11.049070 -15.208119 -6.828700 +vn 3.060361 4.921036 2.398924 +v -9.714244 -15.717978 -7.653668 +vn 4.047986 4.073896 2.520792 +v -12.936800 -12.988962 -7.995381 +vn 2.825418 4.540875 3.276383 +v -8.965189 -14.505980 -10.449972 +vn 4.258600 2.784074 3.665695 +v -13.579535 -8.879148 -11.694315 +vn 4.417801 3.041667 3.248902 +v -14.089423 -9.704166 -10.359407 +vn 4.608400 2.598835 3.366419 +v -14.700220 -8.285454 -10.735676 +vn 4.435671 2.344920 3.763369 +v -14.142137 -7.434960 -12.030020 +vn 4.745599 2.846390 2.951971 +v -15.158709 -9.079811 -9.368597 +vn 4.770074 2.154662 3.455583 +v -15.208119 -6.828700 -11.049070 +vn 4.921036 2.398924 3.060361 +v -15.717978 -7.653668 -9.714244 +vn 4.073896 2.520795 4.047986 +v -12.988960 -7.995381 -12.936798 +vn 4.540874 3.276382 2.825419 +v -14.505981 -10.449972 -8.965189 +vn 2.784077 3.665694 4.258600 +v -8.879148 -11.694313 -13.579535 +vn 3.041669 3.248904 4.417799 +v -9.704166 -10.359407 -14.089423 +vn 2.598835 3.366421 4.608398 +v -8.285454 -10.735678 -14.700221 +vn 2.344920 3.763369 4.435673 +v -7.434960 -12.030020 -14.142137 +vn 2.846391 2.951969 4.745600 +v -9.079811 -9.368597 -15.158709 +vn 2.154660 3.455584 4.770075 +v -6.828700 -11.049070 -15.208119 +vn 2.398923 3.060359 4.921038 +v -7.653668 -9.714244 -15.717978 +vn 2.520795 4.047983 4.073896 +v -7.995381 -12.936800 -12.988962 +vn 3.276383 2.825417 4.540875 +v -10.449972 -8.965189 -14.505981 +vn 2.019672 4.675491 3.661060 +v -6.442821 -14.906769 -11.673830 +vn 1.601415 4.700943 3.831357 +v -5.103592 -14.988701 -12.218518 +vn 1.758578 4.955239 3.419898 +v -5.606387 -15.802242 -10.902181 +vn 2.168303 4.913938 3.239990 +v -6.923060 -15.669035 -10.322433 +vn 1.855697 4.408134 4.058400 +v -5.920092 -14.046197 -12.948238 +vn 1.339784 4.970641 3.583780 +v -4.260457 -15.852984 -11.425034 +vn 1.902463 5.175744 2.989735 +v -6.076022 -16.503502 -9.524514 +vn 1.491706 5.207343 3.163004 +v -4.744574 -16.607172 -10.084190 +vn 2.267286 4.374976 3.881390 +v -7.231835 -13.940740 -12.383713 +vn 2.423030 4.626967 3.473656 +v -7.734608 -14.754243 -11.067436 +vn 1.179160 4.701635 3.981258 +v -3.748636 -14.995712 -12.691586 +vn 1.434603 4.418725 4.214617 +v -4.578000 -14.079649 -13.446388 +vn 1.081469 5.211364 3.319712 +v -3.450634 -16.616245 -10.582703 +vn 0.924385 4.957192 3.730973 +v -2.948270 -15.803402 -11.897907 +vn 0.668892 5.188079 3.461904 +v -2.129880 -16.542194 -11.037183 +vn 2.560835 4.846821 3.049374 +v -8.165719 -15.451509 -9.724810 +vn 2.296897 5.119662 2.803843 +v -7.320545 -16.324652 -8.939541 +vn 2.678636 5.037182 2.607669 +v -8.542696 -16.060318 -8.311950 +vn 1.678085 4.118407 4.423907 +v -5.347621 -13.132392 -14.104724 +vn 2.098691 4.099066 4.259270 +v -6.693831 -13.069944 -13.578262 +vn 1.914318 3.800496 4.608671 +v -6.104250 -12.114830 -14.695885 +vn 4.675492 3.661060 2.019672 +v -14.906769 -11.673830 -6.442821 +vn 4.700943 3.831357 1.601416 +v -14.988701 -12.218518 -5.103591 +vn 4.955238 3.419896 1.758581 +v -15.802244 -10.902181 -5.606388 +vn 4.913939 3.239989 2.168305 +v -15.669033 -10.322433 -6.923059 +vn 4.408133 4.058400 1.855701 +v -14.046197 -12.948238 -5.920092 +vn 4.970642 3.583779 1.339779 +v -15.852985 -11.425034 -4.260457 +vn 5.175743 2.989735 1.902465 +v -16.503502 -9.524514 -6.076022 +vn 5.207345 3.163003 1.491704 +v -16.607172 -10.084189 -4.744573 +vn 4.374974 3.881393 2.267285 +v -13.940740 -12.383713 -7.231835 +vn 4.626970 3.473655 2.423026 +v -14.754244 -11.067437 -7.734609 +vn 4.701637 3.981256 1.179160 +v -14.995712 -12.691586 -3.748636 +vn 4.418724 4.214616 1.434603 +v -14.079651 -13.446389 -4.578000 +vn 5.211366 3.319712 1.081469 +v -16.616245 -10.582701 -3.450634 +vn 4.957194 3.730971 0.924385 +v -15.803402 -11.897906 -2.948270 +vn 5.188079 3.461904 0.668894 +v -16.542194 -11.037183 -2.129880 +vn 4.846823 3.049373 2.560831 +v -15.451509 -9.724810 -8.165719 +vn 5.119661 2.803845 2.296896 +v -16.324652 -8.939541 -7.320545 +vn 5.037182 2.607669 2.678636 +v -16.060318 -8.311950 -8.542696 +vn 4.118405 4.423908 1.678089 +v -13.132392 -14.104724 -5.347621 +vn 4.099067 4.259270 2.098692 +v -13.069943 -13.578261 -6.693831 +vn 3.800497 4.608670 1.914318 +v -12.114830 -14.695885 -6.104250 +vn 3.661060 2.019672 4.675491 +v -11.673830 -6.442821 -14.906769 +vn 3.831357 1.601415 4.700943 +v -12.218518 -5.103592 -14.988701 +vn 3.419899 1.758578 4.955238 +v -10.902181 -5.606387 -15.802242 +vn 3.239991 2.168304 4.913937 +v -10.322433 -6.923060 -15.669035 +vn 4.058401 1.855697 4.408134 +v -12.948238 -5.920092 -14.046197 +vn 3.583780 1.339784 4.970641 +v -11.425034 -4.260457 -15.852984 +vn 2.989734 1.902463 5.175744 +v -9.524515 -6.076023 -16.503502 +vn 3.163005 1.491705 5.207343 +v -10.084190 -4.744574 -16.607172 +vn 3.881392 2.267288 4.374973 +v -12.383713 -7.231835 -13.940740 +vn 3.473657 2.423028 4.626968 +v -11.067436 -7.734608 -14.754243 +vn 3.981258 1.179160 4.701635 +v -12.691586 -3.748636 -14.995712 +vn 4.214617 1.434603 4.418725 +v -13.446388 -4.578000 -14.079649 +vn 3.319712 1.081469 5.211365 +v -10.582703 -3.450634 -16.616245 +vn 3.730973 0.924385 4.957192 +v -11.897907 -2.948270 -15.803402 +vn 3.461904 0.668891 5.188080 +v -11.037183 -2.129880 -16.542194 +vn 3.049373 2.560833 4.846822 +v -9.724810 -8.165719 -15.451509 +vn 2.803840 2.296899 5.119663 +v -8.939541 -7.320545 -16.324652 +vn 2.607668 2.678634 5.037184 +v -8.311950 -8.542696 -16.060318 +vn 4.423907 1.678085 4.118408 +v -14.104724 -5.347621 -13.132392 +vn 4.259268 2.098695 4.099065 +v -13.578262 -6.693831 -13.069944 +vn 4.608671 1.914318 3.800496 +v -14.695885 -6.104250 -12.114830 +# 2562 vertices, 0 vertices normals + +f 2//2 1//1 3//3 +f 1//1 4//4 3//3 +f 2//2 5//5 1//1 +f 3//3 6//6 2//2 +f 3//3 7//7 8//8 +f 7//7 9//9 8//8 +f 3//3 4//4 7//7 +f 8//8 6//6 3//3 +f 1//1 10//10 11//11 +f 10//10 12//12 11//11 +f 1//1 5//5 10//10 +f 11//11 4//4 1//1 +f 2//2 13//13 14//14 +f 13//13 15//15 14//14 +f 2//2 6//6 13//13 +f 14//14 5//5 2//2 +f 17//17 16//16 18//18 +f 16//16 19//19 18//18 +f 17//17 6//6 16//16 +f 18//18 20//20 17//17 +f 18//18 21//21 22//22 +f 21//21 23//23 22//22 +f 18//18 19//19 21//21 +f 22//22 20//20 18//18 +f 16//16 8//8 24//24 +f 8//8 9//9 24//24 +f 16//16 6//6 8//8 +f 24//24 19//19 16//16 +f 17//17 25//25 13//13 +f 25//25 15//15 13//13 +f 17//17 20//20 25//25 +f 13//13 6//6 17//17 +f 27//27 26//26 28//28 +f 26//26 29//29 28//28 +f 27//27 4//4 26//26 +f 28//28 30//30 27//27 +f 28//28 31//31 32//32 +f 31//31 33//33 32//32 +f 28//28 29//29 31//31 +f 32//32 30//30 28//28 +f 26//26 11//11 34//34 +f 11//11 12//12 34//34 +f 26//26 4//4 11//11 +f 34//34 29//29 26//26 +f 27//27 35//35 7//7 +f 35//35 9//9 7//7 +f 27//27 30//30 35//35 +f 7//7 4//4 27//27 +f 37//37 36//36 38//38 +f 36//36 39//39 38//38 +f 37//37 5//5 36//36 +f 38//38 40//40 37//37 +f 38//38 41//41 42//42 +f 41//41 43//43 42//42 +f 38//38 39//39 41//41 +f 42//42 40//40 38//38 +f 36//36 14//14 44//44 +f 14//14 15//15 44//44 +f 36//36 5//5 14//14 +f 44//44 39//39 36//36 +f 37//37 45//45 10//10 +f 45//45 12//12 10//10 +f 37//37 40//40 45//45 +f 10//10 5//5 37//37 +f 47//47 46//46 48//48 +f 46//46 49//49 48//48 +f 47//47 50//50 46//46 +f 48//48 51//51 47//47 +f 48//48 52//52 53//53 +f 52//52 54//54 53//53 +f 48//48 49//49 52//52 +f 53//53 51//51 48//48 +f 46//46 55//55 56//56 +f 55//55 15//15 56//56 +f 46//46 50//50 55//55 +f 56//56 49//49 46//46 +f 47//47 57//57 58//58 +f 57//57 59//59 58//58 +f 47//47 51//51 57//57 +f 58//58 50//50 47//47 +f 61//61 60//60 62//62 +f 60//60 63//63 62//62 +f 61//61 51//51 60//60 +f 62//62 64//64 61//61 +f 62//62 65//65 66//66 +f 65//65 67//67 66//66 +f 62//62 63//63 65//65 +f 66//66 64//64 62//62 +f 60//60 53//53 68//68 +f 53//53 54//54 68//68 +f 60//60 51//51 53//53 +f 68//68 63//63 60//60 +f 61//61 69//69 57//57 +f 69//69 59//59 57//57 +f 61//61 64//64 69//69 +f 57//57 51//51 61//61 +f 71//71 70//70 72//72 +f 70//70 20//20 72//72 +f 71//71 49//49 70//70 +f 72//72 73//73 71//71 +f 72//72 22//22 74//74 +f 22//22 23//23 74//74 +f 72//72 20//20 22//22 +f 74//74 73//73 72//72 +f 70//70 56//56 25//25 +f 56//56 15//15 25//25 +f 70//70 49//49 56//56 +f 25//25 20//20 70//70 +f 71//71 75//75 52//52 +f 75//75 54//54 52//52 +f 71//71 73//73 75//75 +f 52//52 49//49 71//71 +f 77//77 76//76 78//78 +f 76//76 79//79 78//78 +f 77//77 50//50 76//76 +f 78//78 39//39 77//77 +f 78//78 80//80 41//41 +f 80//80 43//43 41//41 +f 78//78 79//79 80//80 +f 41//41 39//39 78//78 +f 76//76 58//58 81//81 +f 58//58 59//59 81//81 +f 76//76 50//50 58//58 +f 81//81 79//79 76//76 +f 77//77 44//44 55//55 +f 44//44 15//15 55//55 +f 77//77 39//39 44//44 +f 55//55 50//50 77//77 +f 83//83 82//82 84//84 +f 82//82 85//85 84//84 +f 83//83 86//86 82//82 +f 84//84 87//87 83//83 +f 84//84 88//88 89//89 +f 88//88 90//90 89//89 +f 84//84 85//85 88//88 +f 89//89 87//87 84//84 +f 82//82 91//91 92//92 +f 91//91 9//9 92//92 +f 82//82 86//86 91//91 +f 92//92 85//85 82//82 +f 83//83 93//93 94//94 +f 93//93 95//95 94//94 +f 83//83 87//87 93//93 +f 94//94 86//86 83//83 +f 97//97 96//96 98//98 +f 96//96 99//99 98//98 +f 97//97 87//87 96//96 +f 98//98 100//100 97//97 +f 98//98 101//101 102//102 +f 101//101 103//103 102//102 +f 98//98 99//99 101//101 +f 102//102 100//100 98//98 +f 96//96 89//89 104//104 +f 89//89 90//90 104//104 +f 96//96 87//87 89//89 +f 104//104 99//99 96//96 +f 97//97 105//105 93//93 +f 105//105 95//95 93//93 +f 97//97 100//100 105//105 +f 93//93 87//87 97//97 +f 107//107 106//106 108//108 +f 106//106 30//30 108//108 +f 107//107 85//85 106//106 +f 108//108 109//109 107//107 +f 108//108 32//32 110//110 +f 32//32 33//33 110//110 +f 108//108 30//30 32//32 +f 110//110 109//109 108//108 +f 106//106 92//92 35//35 +f 92//92 9//9 35//35 +f 106//106 85//85 92//92 +f 35//35 30//30 106//106 +f 107//107 111//111 88//88 +f 111//111 90//90 88//88 +f 107//107 109//109 111//111 +f 88//88 85//85 107//107 +f 113//113 112//112 114//114 +f 112//112 115//115 114//114 +f 113//113 86//86 112//112 +f 114//114 19//19 113//113 +f 114//114 116//116 21//21 +f 116//116 23//23 21//21 +f 114//114 115//115 116//116 +f 21//21 19//19 114//114 +f 112//112 94//94 117//117 +f 94//94 95//95 117//117 +f 112//112 86//86 94//94 +f 117//117 115//115 112//112 +f 113//113 24//24 91//91 +f 24//24 9//9 91//91 +f 113//113 19//19 24//24 +f 91//91 86//86 113//113 +f 119//119 118//118 120//120 +f 118//118 121//121 120//120 +f 119//119 122//122 118//118 +f 120//120 123//123 119//119 +f 120//120 124//124 125//125 +f 124//124 126//126 125//125 +f 120//120 121//121 124//124 +f 125//125 123//123 120//120 +f 118//118 127//127 128//128 +f 127//127 12//12 128//128 +f 118//118 122//122 127//127 +f 128//128 121//121 118//118 +f 119//119 129//129 130//130 +f 129//129 131//131 130//130 +f 119//119 123//123 129//129 +f 130//130 122//122 119//119 +f 133//133 132//132 134//134 +f 132//132 135//135 134//134 +f 133//133 123//123 132//132 +f 134//134 136//136 133//133 +f 134//134 137//137 138//138 +f 137//137 139//139 138//138 +f 134//134 135//135 137//137 +f 138//138 136//136 134//134 +f 132//132 125//125 140//140 +f 125//125 126//126 140//140 +f 132//132 123//123 125//125 +f 140//140 135//135 132//132 +f 133//133 141//141 129//129 +f 141//141 131//131 129//129 +f 133//133 136//136 141//141 +f 129//129 123//123 133//133 +f 143//143 142//142 144//144 +f 142//142 40//40 144//144 +f 143//143 121//121 142//142 +f 144//144 145//145 143//143 +f 144//144 42//42 146//146 +f 42//42 43//43 146//146 +f 144//144 40//40 42//42 +f 146//146 145//145 144//144 +f 142//142 128//128 45//45 +f 128//128 12//12 45//45 +f 142//142 121//121 128//128 +f 45//45 40//40 142//142 +f 143//143 147//147 124//124 +f 147//147 126//126 124//124 +f 143//143 145//145 147//147 +f 124//124 121//121 143//143 +f 149//149 148//148 150//150 +f 148//148 151//151 150//150 +f 149//149 122//122 148//148 +f 150//150 29//29 149//149 +f 150//150 152//152 31//31 +f 152//152 33//33 31//31 +f 150//150 151//151 152//152 +f 31//31 29//29 150//150 +f 148//148 130//130 153//153 +f 130//130 131//131 153//153 +f 148//148 122//122 130//130 +f 153//153 151//151 148//148 +f 149//149 34//34 127//127 +f 34//34 12//12 127//127 +f 149//149 29//29 34//34 +f 127//127 122//122 149//149 +f 155//155 154//154 156//156 +f 154//154 157//157 156//156 +f 155//155 158//158 154//154 +f 156//156 159//159 155//155 +f 156//156 160//160 161//161 +f 160//160 162//162 161//161 +f 156//156 157//157 160//160 +f 161//161 159//159 156//156 +f 154//154 163//163 164//164 +f 163//163 165//165 164//164 +f 154//154 158//158 163//163 +f 164//164 157//157 154//154 +f 155//155 166//166 167//167 +f 166//166 168//168 167//167 +f 155//155 159//159 166//166 +f 167//167 158//158 155//155 +f 170//170 169//169 171//171 +f 169//169 172//172 171//171 +f 170//170 159//159 169//169 +f 171//171 173//173 170//170 +f 171//171 174//174 175//175 +f 174//174 23//23 175//175 +f 171//171 172//172 174//174 +f 175//175 173//173 171//171 +f 169//169 161//161 176//176 +f 161//161 162//162 176//176 +f 169//169 159//159 161//161 +f 176//176 172//172 169//169 +f 170//170 177//177 166//166 +f 177//177 168//168 166//166 +f 170//170 173//173 177//177 +f 166//166 159//159 170//170 +f 179//179 178//178 180//180 +f 178//178 181//181 180//180 +f 179//179 157//157 178//178 +f 180//180 182//182 179//179 +f 180//180 183//183 184//184 +f 183//183 185//185 184//184 +f 180//180 181//181 183//183 +f 184//184 182//182 180//180 +f 178//178 164//164 186//186 +f 164//164 165//165 186//186 +f 178//178 157//157 164//164 +f 186//186 181//181 178//178 +f 179//179 187//187 160//160 +f 187//187 162//162 160//160 +f 179//179 182//182 187//187 +f 160//160 157//157 179//179 +f 189//189 188//188 190//190 +f 188//188 191//191 190//190 +f 189//189 158//158 188//188 +f 190//190 192//192 189//189 +f 190//190 193//193 194//194 +f 193//193 195//195 194//194 +f 190//190 191//191 193//193 +f 194//194 192//192 190//190 +f 188//188 167//167 196//196 +f 167//167 168//168 196//196 +f 188//188 158//158 167//167 +f 196//196 191//191 188//188 +f 189//189 197//197 163//163 +f 197//197 165//165 163//163 +f 189//189 192//192 197//197 +f 163//163 158//158 189//189 +f 199//199 198//198 200//200 +f 198//198 201//201 200//200 +f 199//199 202//202 198//198 +f 200//200 203//203 199//199 +f 200//200 204//204 205//205 +f 204//204 95//95 205//205 +f 200//200 201//201 204//204 +f 205//205 203//203 200//200 +f 198//198 206//206 207//207 +f 206//206 168//168 207//207 +f 198//198 202//202 206//206 +f 207//207 201//201 198//198 +f 199//199 208//208 209//209 +f 208//208 210//210 209//209 +f 199//199 203//203 208//208 +f 209//209 202//202 199//199 +f 212//212 211//211 213//213 +f 211//211 100//100 213//213 +f 212//212 203//203 211//211 +f 213//213 214//214 212//212 +f 213//213 102//102 215//215 +f 102//102 103//103 215//215 +f 213//213 100//100 102//102 +f 215//215 214//214 213//213 +f 211//211 205//205 105//105 +f 205//205 95//95 105//105 +f 211//211 203//203 205//205 +f 105//105 100//100 211//211 +f 212//212 216//216 208//208 +f 216//216 210//210 208//208 +f 212//212 214//214 216//216 +f 208//208 203//203 212//212 +f 218//218 217//217 219//219 +f 217//217 173//173 219//219 +f 218//218 201//201 217//217 +f 219//219 115//115 218//218 +f 219//219 175//175 116//116 +f 175//175 23//23 116//116 +f 219//219 173//173 175//175 +f 116//116 115//115 219//219 +f 217//217 207//207 177//177 +f 207//207 168//168 177//177 +f 217//217 201//201 207//207 +f 177//177 173//173 217//217 +f 218//218 117//117 204//204 +f 117//117 95//95 204//204 +f 218//218 115//115 117//117 +f 204//204 201//201 218//218 +f 221//221 220//220 222//222 +f 220//220 223//223 222//222 +f 221//221 202//202 220//220 +f 222//222 191//191 221//221 +f 222//222 224//224 193//193 +f 224//224 195//195 193//193 +f 222//222 223//223 224//224 +f 193//193 191//191 222//222 +f 220//220 209//209 225//225 +f 209//209 210//210 225//225 +f 220//220 202//202 209//209 +f 225//225 223//223 220//220 +f 221//221 196//196 206//206 +f 196//196 168//168 206//206 +f 221//221 191//191 196//196 +f 206//206 202//202 221//221 +f 227//227 226//226 228//228 +f 226//226 229//229 228//228 +f 227//227 230//230 226//226 +f 228//228 231//231 227//227 +f 228//228 232//232 233//233 +f 232//232 234//234 233//233 +f 228//228 229//229 232//232 +f 233//233 231//231 228//228 +f 226//226 235//235 236//236 +f 235//235 162//162 236//236 +f 226//226 230//230 235//235 +f 236//236 229//229 226//226 +f 227//227 237//237 238//238 +f 237//237 54//54 238//238 +f 227//227 231//231 237//237 +f 238//238 230//230 227//227 +f 240//240 239//239 241//241 +f 239//239 242//242 241//241 +f 240//240 231//231 239//239 +f 241//241 63//63 240//240 +f 241//241 243//243 65//65 +f 243//243 67//67 65//65 +f 241//241 242//242 243//243 +f 65//65 63//63 241//241 +f 239//239 233//233 244//244 +f 233//233 234//234 244//244 +f 239//239 231//231 233//233 +f 244//244 242//242 239//239 +f 240//240 68//68 237//237 +f 68//68 54//54 237//237 +f 240//240 63//63 68//68 +f 237//237 231//231 240//240 +f 246//246 245//245 247//247 +f 245//245 182//182 247//247 +f 246//246 229//229 245//245 +f 247//247 248//248 246//246 +f 247//247 184//184 249//249 +f 184//184 185//185 249//249 +f 247//247 182//182 184//184 +f 249//249 248//248 247//247 +f 245//245 236//236 187//187 +f 236//236 162//162 187//187 +f 245//245 229//229 236//236 +f 187//187 182//182 245//245 +f 246//246 250//250 232//232 +f 250//250 234//234 232//232 +f 246//246 248//248 250//250 +f 232//232 229//229 246//246 +f 252//252 251//251 253//253 +f 251//251 73//73 253//253 +f 252//252 230//230 251//251 +f 253//253 172//172 252//252 +f 253//253 74//74 174//174 +f 74//74 23//23 174//174 +f 253//253 73//73 74//74 +f 174//174 172//172 253//253 +f 251//251 238//238 75//75 +f 238//238 54//54 75//75 +f 251//251 230//230 238//238 +f 75//75 73//73 251//251 +f 252//252 176//176 235//235 +f 176//176 162//162 235//235 +f 252//252 172//172 176//176 +f 235//235 230//230 252//252 +f 255//255 254//254 256//256 +f 254//254 257//257 256//256 +f 255//255 258//258 254//254 +f 256//256 259//259 255//255 +f 256//256 260//260 261//261 +f 260//260 262//262 261//261 +f 256//256 257//257 260//260 +f 261//261 259//259 256//256 +f 254//254 263//263 264//264 +f 263//263 165//165 264//264 +f 254//254 258//258 263//263 +f 264//264 257//257 254//254 +f 255//255 265//265 266//266 +f 265//265 267//267 266//266 +f 255//255 259//259 265//265 +f 266//266 258//258 255//255 +f 269//269 268//268 270//270 +f 268//268 271//271 270//270 +f 269//269 259//259 268//268 +f 270//270 272//272 269//269 +f 270//270 273//273 274//274 +f 273//273 275//275 274//274 +f 270//270 271//271 273//273 +f 274//274 272//272 270//270 +f 268//268 261//261 276//276 +f 261//261 262//262 276//276 +f 268//268 259//259 261//261 +f 276//276 271//271 268//268 +f 269//269 277//277 265//265 +f 277//277 267//267 265//265 +f 269//269 272//272 277//277 +f 265//265 259//259 269//269 +f 279//279 278//278 280//280 +f 278//278 192//192 280//280 +f 279//279 257//257 278//278 +f 280//280 281//281 279//279 +f 280//280 194//194 282//282 +f 194//194 195//195 282//282 +f 280//280 192//192 194//194 +f 282//282 281//281 280//280 +f 278//278 264//264 197//197 +f 264//264 165//165 197//197 +f 278//278 257//257 264//264 +f 197//197 192//192 278//278 +f 279//279 283//283 260//260 +f 283//283 262//262 260//260 +f 279//279 281//281 283//283 +f 260//260 257//257 279//279 +f 285//285 284//284 286//286 +f 284//284 287//287 286//286 +f 285//285 258//258 284//284 +f 286//286 181//181 285//285 +f 286//286 288//288 183//183 +f 288//288 185//185 183//183 +f 286//286 287//287 288//288 +f 183//183 181//181 286//286 +f 284//284 266//266 289//289 +f 266//266 267//267 289//289 +f 284//284 258//258 266//266 +f 289//289 287//287 284//284 +f 285//285 186//186 263//263 +f 186//186 165//165 263//263 +f 285//285 181//181 186//186 +f 263//263 258//258 285//285 +f 291//291 290//290 292//292 +f 290//290 293//293 292//292 +f 291//291 294//294 290//290 +f 292//292 295//295 291//291 +f 292//292 296//296 297//297 +f 296//296 298//298 297//297 +f 292//292 293//293 296//296 +f 297//297 295//295 292//292 +f 290//290 299//299 300//300 +f 299//299 301//301 300//300 +f 290//290 294//294 299//299 +f 300//300 293//293 290//290 +f 291//291 302//302 303//303 +f 302//302 304//304 303//303 +f 291//291 295//295 302//302 +f 303//303 294//294 291//291 +f 306//306 305//305 307//307 +f 305//305 308//308 307//307 +f 306//306 295//295 305//305 +f 307//307 309//309 306//306 +f 307//307 310//310 311//311 +f 310//310 312//312 311//311 +f 307//307 308//308 310//310 +f 311//311 309//309 307//307 +f 305//305 297//297 313//313 +f 297//297 298//298 313//313 +f 305//305 295//295 297//297 +f 313//313 308//308 305//305 +f 306//306 314//314 302//302 +f 314//314 304//304 302//302 +f 306//306 309//309 314//314 +f 302//302 295//295 306//306 +f 316//316 315//315 317//317 +f 315//315 318//318 317//317 +f 316//316 293//293 315//315 +f 317//317 319//319 316//316 +f 317//317 320//320 321//321 +f 320//320 322//322 321//321 +f 317//317 318//318 320//320 +f 321//321 319//319 317//317 +f 315//315 300//300 323//323 +f 300//300 301//301 323//323 +f 315//315 293//293 300//300 +f 323//323 318//318 315//315 +f 316//316 324//324 296//296 +f 324//324 298//298 296//296 +f 316//316 319//319 324//324 +f 296//296 293//293 316//316 +f 326//326 325//325 327//327 +f 325//325 328//328 327//327 +f 326//326 294//294 325//325 +f 327//327 329//329 326//326 +f 327//327 330//330 331//331 +f 330//330 332//332 331//331 +f 327//327 328//328 330//330 +f 331//331 329//329 327//327 +f 325//325 303//303 333//333 +f 303//303 304//304 333//333 +f 325//325 294//294 303//303 +f 333//333 328//328 325//325 +f 326//326 334//334 299//299 +f 334//334 301//301 299//299 +f 326//326 329//329 334//334 +f 299//299 294//294 326//326 +f 336//336 335//335 337//337 +f 335//335 338//338 337//337 +f 336//336 339//339 335//335 +f 337//337 340//340 336//336 +f 337//337 341//341 342//342 +f 341//341 343//343 342//342 +f 337//337 338//338 341//341 +f 342//342 340//340 337//337 +f 335//335 344//344 345//345 +f 344//344 304//304 345//345 +f 335//335 339//339 344//344 +f 345//345 338//338 335//335 +f 336//336 346//346 347//347 +f 346//346 348//348 347//347 +f 336//336 340//340 346//346 +f 347//347 339//339 336//336 +f 350//350 349//349 351//351 +f 349//349 352//352 351//351 +f 350//350 340//340 349//349 +f 351//351 353//353 350//350 +f 351//351 354//354 355//355 +f 354//354 356//356 355//355 +f 351//351 352//352 354//354 +f 355//355 353//353 351//351 +f 349//349 342//342 357//357 +f 342//342 343//343 357//357 +f 349//349 340//340 342//342 +f 357//357 352//352 349//349 +f 350//350 358//358 346//346 +f 358//358 348//348 346//346 +f 350//350 353//353 358//358 +f 346//346 340//340 350//350 +f 360//360 359//359 361//361 +f 359//359 309//309 361//361 +f 360//360 338//338 359//359 +f 361//361 362//362 360//360 +f 361//361 311//311 363//363 +f 311//311 312//312 363//363 +f 361//361 309//309 311//311 +f 363//363 362//362 361//361 +f 359//359 345//345 314//314 +f 345//345 304//304 314//314 +f 359//359 338//338 345//345 +f 314//314 309//309 359//359 +f 360//360 364//364 341//341 +f 364//364 343//343 341//341 +f 360//360 362//362 364//364 +f 341//341 338//338 360//360 +f 366//366 365//365 367//367 +f 365//365 368//368 367//367 +f 366//366 339//339 365//365 +f 367//367 328//328 366//366 +f 367//367 369//369 330//330 +f 369//369 332//332 330//330 +f 367//367 368//368 369//369 +f 330//330 328//328 367//367 +f 365//365 347//347 370//370 +f 347//347 348//348 370//370 +f 365//365 339//339 347//347 +f 370//370 368//368 365//365 +f 366//366 333//333 344//344 +f 333//333 304//304 344//344 +f 366//366 328//328 333//333 +f 344//344 339//339 366//366 +f 372//372 371//371 373//373 +f 371//371 374//374 373//373 +f 372//372 375//375 371//371 +f 373//373 376//376 372//372 +f 373//373 377//377 378//378 +f 377//377 379//379 378//378 +f 373//373 374//374 377//377 +f 378//378 376//376 373//373 +f 371//371 380//380 381//381 +f 380//380 298//298 381//381 +f 371//371 375//375 380//380 +f 381//381 374//374 371//371 +f 372//372 382//382 383//383 +f 382//382 384//384 383//383 +f 372//372 376//376 382//382 +f 383//383 375//375 372//372 +f 386//386 385//385 387//387 +f 385//385 388//388 387//387 +f 386//386 376//376 385//385 +f 387//387 389//389 386//386 +f 387//387 390//390 391//391 +f 390//390 392//392 391//391 +f 387//387 388//388 390//390 +f 391//391 389//389 387//387 +f 385//385 378//378 393//393 +f 378//378 379//379 393//393 +f 385//385 376//376 378//378 +f 393//393 388//388 385//385 +f 386//386 394//394 382//382 +f 394//394 384//384 382//382 +f 386//386 389//389 394//394 +f 382//382 376//376 386//386 +f 396//396 395//395 397//397 +f 395//395 319//319 397//397 +f 396//396 374//374 395//395 +f 397//397 398//398 396//396 +f 397//397 321//321 399//399 +f 321//321 322//322 399//399 +f 397//397 319//319 321//321 +f 399//399 398//398 397//397 +f 395//395 381//381 324//324 +f 381//381 298//298 324//324 +f 395//395 374//374 381//381 +f 324//324 319//319 395//395 +f 396//396 400//400 377//377 +f 400//400 379//379 377//377 +f 396//396 398//398 400//400 +f 377//377 374//374 396//396 +f 402//402 401//401 403//403 +f 401//401 404//404 403//403 +f 402//402 375//375 401//401 +f 403//403 308//308 402//402 +f 403//403 405//405 310//310 +f 405//405 312//312 310//310 +f 403//403 404//404 405//405 +f 310//310 308//308 403//403 +f 401//401 383//383 406//406 +f 383//383 384//384 406//406 +f 401//401 375//375 383//383 +f 406//406 404//404 401//401 +f 402//402 313//313 380//380 +f 313//313 298//298 380//380 +f 402//402 308//308 313//313 +f 380//380 375//375 402//402 +f 408//408 407//407 409//409 +f 407//407 410//410 409//409 +f 408//408 411//411 407//407 +f 409//409 412//412 408//408 +f 409//409 413//413 414//414 +f 413//413 415//415 414//414 +f 409//409 410//410 413//413 +f 414//414 412//412 409//409 +f 407//407 416//416 417//417 +f 416//416 301//301 417//417 +f 407//407 411//411 416//416 +f 417//417 410//410 407//407 +f 408//408 418//418 419//419 +f 418//418 420//420 419//419 +f 408//408 412//412 418//418 +f 419//419 411//411 408//408 +f 422//422 421//421 423//423 +f 421//421 424//424 423//423 +f 422//422 412//412 421//421 +f 423//423 425//425 422//422 +f 423//423 426//426 427//427 +f 426//426 428//428 427//427 +f 423//423 424//424 426//426 +f 427//427 425//425 423//423 +f 421//421 414//414 429//429 +f 414//414 415//415 429//429 +f 421//421 412//412 414//414 +f 429//429 424//424 421//421 +f 422//422 430//430 418//418 +f 430//430 420//420 418//418 +f 422//422 425//425 430//430 +f 418//418 412//412 422//422 +f 432//432 431//431 433//433 +f 431//431 329//329 433//433 +f 432//432 410//410 431//431 +f 433//433 434//434 432//432 +f 433//433 331//331 435//435 +f 331//331 332//332 435//435 +f 433//433 329//329 331//331 +f 435//435 434//434 433//433 +f 431//431 417//417 334//334 +f 417//417 301//301 334//334 +f 431//431 410//410 417//417 +f 334//334 329//329 431//431 +f 432//432 436//436 413//413 +f 436//436 415//415 413//413 +f 432//432 434//434 436//436 +f 413//413 410//410 432//432 +f 438//438 437//437 439//439 +f 437//437 440//440 439//439 +f 438//438 411//411 437//437 +f 439//439 318//318 438//438 +f 439//439 441//441 320//320 +f 441//441 322//322 320//320 +f 439//439 440//440 441//441 +f 320//320 318//318 439//439 +f 437//437 419//419 442//442 +f 419//419 420//420 442//442 +f 437//437 411//411 419//419 +f 442//442 440//440 437//437 +f 438//438 323//323 416//416 +f 323//323 301//301 416//416 +f 438//438 318//318 323//323 +f 416//416 411//411 438//438 +f 444//444 443//443 445//445 +f 443//443 446//446 445//445 +f 444//444 447//447 443//443 +f 445//445 448//448 444//444 +f 445//445 449//449 450//450 +f 449//449 451//451 450//450 +f 445//445 446//446 449//449 +f 450//450 448//448 445//445 +f 443//443 452//452 453//453 +f 452//452 454//454 453//453 +f 443//443 447//447 452//452 +f 453//453 446//446 443//443 +f 444//444 455//455 456//456 +f 455//455 457//457 456//456 +f 444//444 448//448 455//455 +f 456//456 447//447 444//444 +f 459//459 458//458 460//460 +f 458//458 461//461 460//460 +f 459//459 448//448 458//458 +f 460//460 462//462 459//459 +f 460//460 463//463 464//464 +f 463//463 312//312 464//464 +f 460//460 461//461 463//463 +f 464//464 462//462 460//460 +f 458//458 450//450 465//465 +f 450//450 451//451 465//465 +f 458//458 448//448 450//450 +f 465//465 461//461 458//458 +f 459//459 466//466 455//455 +f 466//466 457//457 455//455 +f 459//459 462//462 466//466 +f 455//455 448//448 459//459 +f 468//468 467//467 469//469 +f 467//467 470//470 469//469 +f 468//468 446//446 467//467 +f 469//469 471//471 468//468 +f 469//469 472//472 473//473 +f 472//472 474//474 473//473 +f 469//469 470//470 472//472 +f 473//473 471//471 469//469 +f 467//467 453//453 475//475 +f 453//453 454//454 475//475 +f 467//467 446//446 453//453 +f 475//475 470//470 467//467 +f 468//468 476//476 449//449 +f 476//476 451//451 449//449 +f 468//468 471//471 476//476 +f 449//449 446//446 468//468 +f 478//478 477//477 479//479 +f 477//477 480//480 479//479 +f 478//478 447//447 477//477 +f 479//479 481//481 478//478 +f 479//479 482//482 483//483 +f 482//482 484//484 483//483 +f 479//479 480//480 482//482 +f 483//483 481//481 479//479 +f 477//477 456//456 485//485 +f 456//456 457//457 485//485 +f 477//477 447//447 456//456 +f 485//485 480//480 477//477 +f 478//478 486//486 452//452 +f 486//486 454//454 452//452 +f 478//478 481//481 486//486 +f 452//452 447//447 478//478 +f 488//488 487//487 489//489 +f 487//487 490//490 489//489 +f 488//488 491//491 487//487 +f 489//489 492//492 488//488 +f 489//489 493//493 494//494 +f 493//493 384//384 494//494 +f 489//489 490//490 493//493 +f 494//494 492//492 489//489 +f 487//487 495//495 496//496 +f 495//495 457//457 496//496 +f 487//487 491//491 495//495 +f 496//496 490//490 487//487 +f 488//488 497//497 498//498 +f 497//497 499//499 498//498 +f 488//488 492//492 497//497 +f 498//498 491//491 488//488 +f 501//501 500//500 502//502 +f 500//500 389//389 502//502 +f 501//501 492//492 500//500 +f 502//502 503//503 501//501 +f 502//502 391//391 504//504 +f 391//391 392//392 504//504 +f 502//502 389//389 391//391 +f 504//504 503//503 502//502 +f 500//500 494//494 394//394 +f 494//494 384//384 394//394 +f 500//500 492//492 494//494 +f 394//394 389//389 500//500 +f 501//501 505//505 497//497 +f 505//505 499//499 497//497 +f 501//501 503//503 505//505 +f 497//497 492//492 501//501 +f 507//507 506//506 508//508 +f 506//506 462//462 508//508 +f 507//507 490//490 506//506 +f 508//508 404//404 507//507 +f 508//508 464//464 405//405 +f 464//464 312//312 405//405 +f 508//508 462//462 464//464 +f 405//405 404//404 508//508 +f 506//506 496//496 466//466 +f 496//496 457//457 466//466 +f 506//506 490//490 496//496 +f 466//466 462//462 506//506 +f 507//507 406//406 493//493 +f 406//406 384//384 493//493 +f 507//507 404//404 406//406 +f 493//493 490//490 507//507 +f 510//510 509//509 511//511 +f 509//509 512//512 511//511 +f 510//510 491//491 509//509 +f 511//511 480//480 510//510 +f 511//511 513//513 482//482 +f 513//513 484//484 482//482 +f 511//511 512//512 513//513 +f 482//482 480//480 511//511 +f 509//509 498//498 514//514 +f 498//498 499//499 514//514 +f 509//509 491//491 498//498 +f 514//514 512//512 509//509 +f 510//510 485//485 495//495 +f 485//485 457//457 495//495 +f 510//510 480//480 485//485 +f 495//495 491//491 510//510 +f 516//516 515//515 517//517 +f 515//515 518//518 517//517 +f 516//516 519//519 515//515 +f 517//517 520//520 516//516 +f 517//517 521//521 522//522 +f 521//521 523//523 522//522 +f 517//517 518//518 521//521 +f 522//522 520//520 517//517 +f 515//515 524//524 525//525 +f 524//524 451//451 525//525 +f 515//515 519//519 524//524 +f 525//525 518//518 515//515 +f 516//516 526//526 527//527 +f 526//526 343//343 527//527 +f 516//516 520//520 526//526 +f 527//527 519//519 516//516 +f 529//529 528//528 530//530 +f 528//528 531//531 530//530 +f 529//529 520//520 528//528 +f 530//530 352//352 529//529 +f 530//530 532//532 354//354 +f 532//532 356//356 354//354 +f 530//530 531//531 532//532 +f 354//354 352//352 530//530 +f 528//528 522//522 533//533 +f 522//522 523//523 533//533 +f 528//528 520//520 522//522 +f 533//533 531//531 528//528 +f 529//529 357//357 526//526 +f 357//357 343//343 526//526 +f 529//529 352//352 357//357 +f 526//526 520//520 529//529 +f 535//535 534//534 536//536 +f 534//534 471//471 536//536 +f 535//535 518//518 534//534 +f 536//536 537//537 535//535 +f 536//536 473//473 538//538 +f 473//473 474//474 538//538 +f 536//536 471//471 473//473 +f 538//538 537//537 536//536 +f 534//534 525//525 476//476 +f 525//525 451//451 476//476 +f 534//534 518//518 525//525 +f 476//476 471//471 534//534 +f 535//535 539//539 521//521 +f 539//539 523//523 521//521 +f 535//535 537//537 539//539 +f 521//521 518//518 535//535 +f 541//541 540//540 542//542 +f 540//540 362//362 542//542 +f 541//541 519//519 540//540 +f 542//542 461//461 541//541 +f 542//542 363//363 463//463 +f 363//363 312//312 463//463 +f 542//542 362//362 363//363 +f 463//463 461//461 542//542 +f 540//540 527//527 364//364 +f 527//527 343//343 364//364 +f 540//540 519//519 527//527 +f 364//364 362//362 540//540 +f 541//541 465//465 524//524 +f 465//465 451//451 524//524 +f 541//541 461//461 465//465 +f 524//524 519//519 541//541 +f 544//544 543//543 545//545 +f 543//543 546//546 545//545 +f 544//544 547//547 543//543 +f 545//545 548//548 544//544 +f 545//545 549//549 550//550 +f 549//549 551//551 550//550 +f 545//545 546//546 549//549 +f 550//550 548//548 545//545 +f 543//543 552//552 553//553 +f 552//552 454//454 553//553 +f 543//543 547//547 552//552 +f 553//553 546//546 543//543 +f 544//544 554//554 555//555 +f 554//554 556//556 555//555 +f 544//544 548//548 554//554 +f 555//555 547//547 544//544 +f 558//558 557//557 559//559 +f 557//557 560//560 559//559 +f 558//558 548//548 557//557 +f 559//559 561//561 558//558 +f 559//559 562//562 563//563 +f 562//562 564//564 563//563 +f 559//559 560//560 562//562 +f 563//563 561//561 559//559 +f 557//557 550//550 565//565 +f 550//550 551//551 565//565 +f 557//557 548//548 550//550 +f 565//565 560//560 557//557 +f 558//558 566//566 554//554 +f 566//566 556//556 554//554 +f 558//558 561//561 566//566 +f 554//554 548//548 558//558 +f 568//568 567//567 569//569 +f 567//567 481//481 569//569 +f 568//568 546//546 567//567 +f 569//569 570//570 568//568 +f 569//569 483//483 571//571 +f 483//483 484//484 571//571 +f 569//569 481//481 483//483 +f 571//571 570//570 569//569 +f 567//567 553//553 486//486 +f 553//553 454//454 486//486 +f 567//567 546//546 553//553 +f 486//486 481//481 567//567 +f 568//568 572//572 549//549 +f 572//572 551//551 549//549 +f 568//568 570//570 572//572 +f 549//549 546//546 568//568 +f 574//574 573//573 575//575 +f 573//573 576//576 575//575 +f 574//574 547//547 573//573 +f 575//575 470//470 574//574 +f 575//575 577//577 472//472 +f 577//577 474//474 472//472 +f 575//575 576//576 577//577 +f 472//472 470//470 575//575 +f 573//573 555//555 578//578 +f 555//555 556//556 578//578 +f 573//573 547//547 555//555 +f 578//578 576//576 573//573 +f 574//574 475//475 552//552 +f 475//475 454//454 552//552 +f 574//574 470//470 475//475 +f 552//552 547//547 574//574 +f 580//580 579//579 581//581 +f 579//579 582//582 581//581 +f 580//580 583//583 579//579 +f 581//581 584//584 580//580 +f 581//581 585//585 586//586 +f 585//585 587//587 586//586 +f 581//581 582//582 585//585 +f 586//586 584//584 581//581 +f 579//579 588//588 589//589 +f 588//588 590//590 589//589 +f 579//579 583//583 588//588 +f 589//589 582//582 579//579 +f 580//580 591//591 592//592 +f 591//591 593//593 592//592 +f 580//580 584//584 591//591 +f 592//592 583//583 580//580 +f 595//595 594//594 596//596 +f 594//594 597//597 596//596 +f 595//595 584//584 594//594 +f 596//596 598//598 595//595 +f 596//596 599//599 600//600 +f 599//599 601//601 600//600 +f 596//596 597//597 599//599 +f 600//600 598//598 596//596 +f 594//594 586//586 602//602 +f 586//586 587//587 602//602 +f 594//594 584//584 586//586 +f 602//602 597//597 594//594 +f 595//595 603//603 591//591 +f 603//603 593//593 591//591 +f 595//595 598//598 603//603 +f 591//591 584//584 595//595 +f 605//605 604//604 606//606 +f 604//604 607//607 606//606 +f 605//605 582//582 604//604 +f 606//606 608//608 605//605 +f 606//606 609//609 610//610 +f 609//609 611//611 610//610 +f 606//606 607//607 609//609 +f 610//610 608//608 606//606 +f 604//604 589//589 612//612 +f 589//589 590//590 612//612 +f 604//604 582//582 589//589 +f 612//612 607//607 604//604 +f 605//605 613//613 585//585 +f 613//613 587//587 585//585 +f 605//605 608//608 613//613 +f 585//585 582//582 605//605 +f 615//615 614//614 616//616 +f 614//614 617//617 616//616 +f 615//615 583//583 614//614 +f 616//616 618//618 615//615 +f 616//616 619//619 620//620 +f 619//619 621//621 620//620 +f 616//616 617//617 619//619 +f 620//620 618//618 616//616 +f 614//614 592//592 622//622 +f 592//592 593//593 622//622 +f 614//614 583//583 592//592 +f 622//622 617//617 614//614 +f 615//615 623//623 588//588 +f 623//623 590//590 588//588 +f 615//615 618//618 623//623 +f 588//588 583//583 615//615 +f 625//625 624//624 626//626 +f 624//624 627//627 626//626 +f 625//625 628//628 624//624 +f 626//626 629//629 625//625 +f 626//626 630//630 631//631 +f 630//630 632//632 631//631 +f 626//626 627//627 630//630 +f 631//631 629//629 626//626 +f 624//624 633//633 634//634 +f 633//633 593//593 634//634 +f 624//624 628//628 633//633 +f 634//634 627//627 624//624 +f 625//625 635//635 636//636 +f 635//635 637//637 636//636 +f 625//625 629//629 635//635 +f 636//636 628//628 625//625 +f 639//639 638//638 640//640 +f 638//638 641//641 640//640 +f 639//639 629//629 638//638 +f 640//640 642//642 639//639 +f 640//640 643//643 644//644 +f 643//643 139//139 644//644 +f 640//640 641//641 643//643 +f 644//644 642//642 640//640 +f 638//638 631//631 645//645 +f 631//631 632//632 645//645 +f 638//638 629//629 631//631 +f 645//645 641//641 638//638 +f 639//639 646//646 635//635 +f 646//646 637//637 635//635 +f 639//639 642//642 646//646 +f 635//635 629//629 639//639 +f 648//648 647//647 649//649 +f 647//647 598//598 649//649 +f 648//648 627//627 647//647 +f 649//649 650//650 648//648 +f 649//649 600//600 651//651 +f 600//600 601//601 651//651 +f 649//649 598//598 600//600 +f 651//651 650//650 649//649 +f 647//647 634//634 603//603 +f 634//634 593//593 603//603 +f 647//647 627//627 634//634 +f 603//603 598//598 647//647 +f 648//648 652//652 630//630 +f 652//652 632//632 630//630 +f 648//648 650//650 652//652 +f 630//630 627//627 648//648 +f 654//654 653//653 655//655 +f 653//653 656//656 655//655 +f 654//654 628//628 653//653 +f 655//655 617//617 654//654 +f 655//655 657//657 619//619 +f 657//657 621//621 619//619 +f 655//655 656//656 657//657 +f 619//619 617//617 655//655 +f 653//653 636//636 658//658 +f 636//636 637//637 658//658 +f 653//653 628//628 636//636 +f 658//658 656//656 653//653 +f 654//654 622//622 633//633 +f 622//622 593//593 633//633 +f 654//654 617//617 622//622 +f 633//633 628//628 654//654 +f 660//660 659//659 661//661 +f 659//659 662//662 661//661 +f 660//660 663//663 659//659 +f 661//661 664//664 660//660 +f 661//661 665//665 666//666 +f 665//665 667//667 666//666 +f 661//661 662//662 665//665 +f 666//666 664//664 661//661 +f 659//659 668//668 669//669 +f 668//668 587//587 669//669 +f 659//659 663//663 668//668 +f 669//669 662//662 659//659 +f 660//660 670//670 671//671 +f 670//670 672//672 671//671 +f 660//660 664//664 670//670 +f 671//671 663//663 660//660 +f 674//674 673//673 675//675 +f 673//673 676//676 675//675 +f 674//674 664//664 673//673 +f 675//675 677//677 674//674 +f 675//675 678//678 679//679 +f 678//678 428//428 679//679 +f 675//675 676//676 678//678 +f 679//679 677//677 675//675 +f 673//673 666//666 680//680 +f 666//666 667//667 680//680 +f 673//673 664//664 666//666 +f 680//680 676//676 673//673 +f 674//674 681//681 670//670 +f 681//681 672//672 670//670 +f 674//674 677//677 681//681 +f 670//670 664//664 674//674 +f 683//683 682//682 684//684 +f 682//682 608//608 684//684 +f 683//683 662//662 682//682 +f 684//684 685//685 683//683 +f 684//684 610//610 686//686 +f 610//610 611//611 686//686 +f 684//684 608//608 610//610 +f 686//686 685//685 684//684 +f 682//682 669//669 613//613 +f 669//669 587//587 613//613 +f 682//682 662//662 669//669 +f 613//613 608//608 682//682 +f 683//683 687//687 665//665 +f 687//687 667//667 665//665 +f 683//683 685//685 687//687 +f 665//665 662//662 683//683 +f 689//689 688//688 690//690 +f 688//688 691//691 690//690 +f 689//689 663//663 688//688 +f 690//690 597//597 689//689 +f 690//690 692//692 599//599 +f 692//692 601//601 599//599 +f 690//690 691//691 692//692 +f 599//599 597//597 690//690 +f 688//688 671//671 693//693 +f 671//671 672//672 693//693 +f 688//688 663//663 671//671 +f 693//693 691//691 688//688 +f 689//689 602//602 668//668 +f 602//602 587//587 668//668 +f 689//689 597//597 602//602 +f 668//668 663//663 689//689 +f 695//695 694//694 696//696 +f 694//694 697//697 696//696 +f 695//695 698//698 694//694 +f 696//696 699//699 695//695 +f 696//696 700//700 701//701 +f 700//700 702//702 701//701 +f 696//696 697//697 700//700 +f 701//701 699//699 696//696 +f 694//694 703//703 704//704 +f 703//703 590//590 704//704 +f 694//694 698//698 703//703 +f 704//704 697//697 694//694 +f 695//695 705//705 706//706 +f 705//705 707//707 706//706 +f 695//695 699//699 705//705 +f 706//706 698//698 695//695 +f 709//709 708//708 710//710 +f 708//708 711//711 710//710 +f 709//709 699//699 708//708 +f 710//710 712//712 709//709 +f 710//710 713//713 714//714 +f 713//713 715//715 714//714 +f 710//710 711//711 713//713 +f 714//714 712//712 710//710 +f 708//708 701//701 716//716 +f 701//701 702//702 716//716 +f 708//708 699//699 701//701 +f 716//716 711//711 708//708 +f 709//709 717//717 705//705 +f 717//717 707//707 705//705 +f 709//709 712//712 717//717 +f 705//705 699//699 709//709 +f 719//719 718//718 720//720 +f 718//718 618//618 720//720 +f 719//719 697//697 718//718 +f 720//720 721//721 719//719 +f 720//720 620//620 722//722 +f 620//620 621//621 722//722 +f 720//720 618//618 620//620 +f 722//722 721//721 720//720 +f 718//718 704//704 623//623 +f 704//704 590//590 623//623 +f 718//718 697//697 704//704 +f 623//623 618//618 718//718 +f 719//719 723//723 700//700 +f 723//723 702//702 700//700 +f 719//719 721//721 723//723 +f 700//700 697//697 719//719 +f 725//725 724//724 726//726 +f 724//724 727//727 726//726 +f 725//725 698//698 724//724 +f 726//726 607//607 725//725 +f 726//726 728//728 609//609 +f 728//728 611//611 609//609 +f 726//726 727//727 728//728 +f 609//609 607//607 726//726 +f 724//724 706//706 729//729 +f 706//706 707//707 729//729 +f 724//724 698//698 706//706 +f 729//729 727//727 724//724 +f 725//725 612//612 703//703 +f 612//612 590//590 703//703 +f 725//725 607//607 612//612 +f 703//703 698//698 725//725 +f 731//731 730//730 732//732 +f 730//730 733//733 732//732 +f 731//731 734//734 730//730 +f 732//732 735//735 731//731 +f 732//732 736//736 737//737 +f 736//736 738//738 737//737 +f 732//732 733//733 736//736 +f 737//737 735//735 732//732 +f 730//730 739//739 740//740 +f 739//739 741//741 740//740 +f 730//730 734//734 739//739 +f 740//740 733//733 730//730 +f 731//731 742//742 743//743 +f 742//742 744//744 743//743 +f 731//731 735//735 742//742 +f 743//743 734//734 731//731 +f 746//746 745//745 747//747 +f 745//745 748//748 747//747 +f 746//746 735//735 745//745 +f 747//747 749//749 746//746 +f 747//747 750//750 751//751 +f 750//750 601//601 751//751 +f 747//747 748//748 750//750 +f 751//751 749//749 747//747 +f 745//745 737//737 752//752 +f 737//737 738//738 752//752 +f 745//745 735//735 737//737 +f 752//752 748//748 745//745 +f 746//746 753//753 742//742 +f 753//753 744//744 742//742 +f 746//746 749//749 753//753 +f 742//742 735//735 746//746 +f 755//755 754//754 756//756 +f 754//754 757//757 756//756 +f 755//755 733//733 754//754 +f 756//756 758//758 755//755 +f 756//756 759//759 760//760 +f 759//759 761//761 760//760 +f 756//756 757//757 759//759 +f 760//760 758//758 756//756 +f 754//754 740//740 762//762 +f 740//740 741//741 762//762 +f 754//754 733//733 740//740 +f 762//762 757//757 754//754 +f 755//755 763//763 736//736 +f 763//763 738//738 736//736 +f 755//755 758//758 763//763 +f 736//736 733//733 755//755 +f 765//765 764//764 766//766 +f 764//764 767//767 766//766 +f 765//765 734//734 764//764 +f 766//766 768//768 765//765 +f 766//766 769//769 770//770 +f 769//769 771//771 770//770 +f 766//766 767//767 769//769 +f 770//770 768//768 766//766 +f 764//764 743//743 772//772 +f 743//743 744//744 772//772 +f 764//764 734//734 743//743 +f 772//772 767//767 764//764 +f 765//765 773//773 739//739 +f 773//773 741//741 739//739 +f 765//765 768//768 773//773 +f 739//739 734//734 765//765 +f 775//775 774//774 776//776 +f 774//774 777//777 776//776 +f 775//775 778//778 774//774 +f 776//776 779//779 775//775 +f 776//776 780//780 781//781 +f 780//780 672//672 781//781 +f 776//776 777//777 780//780 +f 781//781 779//779 776//776 +f 774//774 782//782 783//783 +f 782//782 744//744 783//783 +f 774//774 778//778 782//782 +f 783//783 777//777 774//774 +f 775//775 784//784 785//785 +f 784//784 786//786 785//785 +f 775//775 779//779 784//784 +f 785//785 778//778 775//775 +f 788//788 787//787 789//789 +f 787//787 677//677 789//789 +f 788//788 779//779 787//787 +f 789//789 790//790 788//788 +f 789//789 679//679 791//791 +f 679//679 428//428 791//791 +f 789//789 677//677 679//679 +f 791//791 790//790 789//789 +f 787//787 781//781 681//681 +f 781//781 672//672 681//681 +f 787//787 779//779 781//781 +f 681//681 677//677 787//787 +f 788//788 792//792 784//784 +f 792//792 786//786 784//784 +f 788//788 790//790 792//792 +f 784//784 779//779 788//788 +f 794//794 793//793 795//795 +f 793//793 749//749 795//795 +f 794//794 777//777 793//793 +f 795//795 691//691 794//794 +f 795//795 751//751 692//692 +f 751//751 601//601 692//692 +f 795//795 749//749 751//751 +f 692//692 691//691 795//795 +f 793//793 783//783 753//753 +f 783//783 744//744 753//753 +f 793//793 777//777 783//783 +f 753//753 749//749 793//793 +f 794//794 693//693 780//780 +f 693//693 672//672 780//780 +f 794//794 691//691 693//693 +f 780//780 777//777 794//794 +f 797//797 796//796 798//798 +f 796//796 799//799 798//798 +f 797//797 778//778 796//796 +f 798//798 767//767 797//797 +f 798//798 800//800 769//769 +f 800//800 771//771 769//769 +f 798//798 799//799 800//800 +f 769//769 767//767 798//798 +f 796//796 785//785 801//801 +f 785//785 786//786 801//801 +f 796//796 778//778 785//785 +f 801//801 799//799 796//796 +f 797//797 772//772 782//782 +f 772//772 744//744 782//782 +f 797//797 767//767 772//772 +f 782//782 778//778 797//797 +f 803//803 802//802 804//804 +f 802//802 805//805 804//804 +f 803//803 806//806 802//802 +f 804//804 807//807 803//803 +f 804//804 808//808 809//809 +f 808//808 810//810 809//809 +f 804//804 805//805 808//808 +f 809//809 807//807 804//804 +f 802//802 811//811 812//812 +f 811//811 738//738 812//812 +f 802//802 806//806 811//811 +f 812//812 805//805 802//802 +f 803//803 813//813 814//814 +f 813//813 632//632 814//814 +f 803//803 807//807 813//813 +f 814//814 806//806 803//803 +f 816//816 815//815 817//817 +f 815//815 818//818 817//817 +f 816//816 807//807 815//815 +f 817//817 641//641 816//816 +f 817//817 819//819 643//643 +f 819//819 139//139 643//643 +f 817//817 818//818 819//819 +f 643//643 641//641 817//817 +f 815//815 809//809 820//820 +f 809//809 810//810 820//820 +f 815//815 807//807 809//809 +f 820//820 818//818 815//815 +f 816//816 645//645 813//813 +f 645//645 632//632 813//813 +f 816//816 641//641 645//645 +f 813//813 807//807 816//816 +f 822//822 821//821 823//823 +f 821//821 758//758 823//823 +f 822//822 805//805 821//821 +f 823//823 824//824 822//822 +f 823//823 760//760 825//825 +f 760//760 761//761 825//825 +f 823//823 758//758 760//760 +f 825//825 824//824 823//823 +f 821//821 812//812 763//763 +f 812//812 738//738 763//763 +f 821//821 805//805 812//812 +f 763//763 758//758 821//821 +f 822//822 826//826 808//808 +f 826//826 810//810 808//808 +f 822//822 824//824 826//826 +f 808//808 805//805 822//822 +f 828//828 827//827 829//829 +f 827//827 650//650 829//829 +f 828//828 806//806 827//827 +f 829//829 748//748 828//828 +f 829//829 651//651 750//750 +f 651//651 601//601 750//750 +f 829//829 650//650 651//651 +f 750//750 748//748 829//829 +f 827//827 814//814 652//652 +f 814//814 632//632 652//652 +f 827//827 806//806 814//814 +f 652//652 650//650 827//827 +f 828//828 752//752 811//811 +f 752//752 738//738 811//811 +f 828//828 748//748 752//752 +f 811//811 806//806 828//828 +f 831//831 830//830 832//832 +f 830//830 833//833 832//832 +f 831//831 834//834 830//830 +f 832//832 835//835 831//831 +f 832//832 836//836 837//837 +f 836//836 838//838 837//837 +f 832//832 833//833 836//836 +f 837//837 835//835 832//832 +f 830//830 839//839 840//840 +f 839//839 741//741 840//840 +f 830//830 834//834 839//839 +f 840//840 833//833 830//830 +f 831//831 841//841 842//842 +f 841//841 843//843 842//842 +f 831//831 835//835 841//841 +f 842//842 834//834 831//831 +f 845//845 844//844 846//846 +f 844//844 847//847 846//846 +f 845//845 835//835 844//844 +f 846//846 848//848 845//845 +f 846//846 849//849 850//850 +f 849//849 851//851 850//850 +f 846//846 847//847 849//849 +f 850//850 848//848 846//846 +f 844//844 837//837 852//852 +f 837//837 838//838 852//852 +f 844//844 835//835 837//837 +f 852//852 847//847 844//844 +f 845//845 853//853 841//841 +f 853//853 843//843 841//841 +f 845//845 848//848 853//853 +f 841//841 835//835 845//845 +f 855//855 854//854 856//856 +f 854//854 768//768 856//856 +f 855//855 833//833 854//854 +f 856//856 857//857 855//855 +f 856//856 770//770 858//858 +f 770//770 771//771 858//858 +f 856//856 768//768 770//770 +f 858//858 857//857 856//856 +f 854//854 840//840 773//773 +f 840//840 741//741 773//773 +f 854//854 833//833 840//840 +f 773//773 768//768 854//854 +f 855//855 859//859 836//836 +f 859//859 838//838 836//836 +f 855//855 857//857 859//859 +f 836//836 833//833 855//855 +f 861//861 860//860 862//862 +f 860//860 863//863 862//862 +f 861//861 834//834 860//860 +f 862//862 757//757 861//861 +f 862//862 864//864 759//759 +f 864//864 761//761 759//759 +f 862//862 863//863 864//864 +f 759//759 757//757 862//862 +f 860//860 842//842 865//865 +f 842//842 843//843 865//865 +f 860//860 834//834 842//842 +f 865//865 863//863 860//860 +f 861//861 762//762 839//839 +f 762//762 741//741 839//839 +f 861//861 757//757 762//762 +f 839//839 834//834 861//861 +f 867//867 866//866 868//868 +f 866//866 869//869 868//868 +f 867//867 870//870 866//866 +f 868//868 871//871 867//867 +f 868//868 872//872 873//873 +f 872//872 874//874 873//873 +f 868//868 869//869 872//872 +f 873//873 871//871 868//868 +f 866//866 875//875 876//876 +f 875//875 877//877 876//876 +f 866//866 870//870 875//875 +f 876//876 869//869 866//866 +f 867//867 878//878 879//879 +f 878//878 880//880 879//879 +f 867//867 871//871 878//878 +f 879//879 870//870 867//867 +f 882//882 881//881 883//883 +f 881//881 884//884 883//883 +f 882//882 871//871 881//881 +f 883//883 885//885 882//882 +f 883//883 886//886 887//887 +f 886//886 888//888 887//887 +f 883//883 884//884 886//886 +f 887//887 885//885 883//883 +f 881//881 873//873 889//889 +f 873//873 874//874 889//889 +f 881//881 871//871 873//873 +f 889//889 884//884 881//881 +f 882//882 890//890 878//878 +f 890//890 880//880 878//878 +f 882//882 885//885 890//890 +f 878//878 871//871 882//882 +f 892//892 891//891 893//893 +f 891//891 894//894 893//893 +f 892//892 869//869 891//891 +f 893//893 895//895 892//892 +f 893//893 896//896 897//897 +f 896//896 898//898 897//897 +f 893//893 894//894 896//896 +f 897//897 895//895 893//893 +f 891//891 876//876 899//899 +f 876//876 877//877 899//899 +f 891//891 869//869 876//876 +f 899//899 894//894 891//891 +f 892//892 900//900 872//872 +f 900//900 874//874 872//872 +f 892//892 895//895 900//900 +f 872//872 869//869 892//892 +f 902//902 901//901 903//903 +f 901//901 904//904 903//903 +f 902//902 870//870 901//901 +f 903//903 905//905 902//902 +f 903//903 906//906 907//907 +f 906//906 908//908 907//907 +f 903//903 904//904 906//906 +f 907//907 905//905 903//903 +f 901//901 879//879 909//909 +f 879//879 880//880 909//909 +f 901//901 870//870 879//879 +f 909//909 904//904 901//901 +f 902//902 910//910 875//875 +f 910//910 877//877 875//875 +f 902//902 905//905 910//910 +f 875//875 870//870 902//902 +f 912//912 911//911 913//913 +f 911//911 914//914 913//913 +f 912//912 915//915 911//911 +f 913//913 916//916 912//912 +f 913//913 917//917 918//918 +f 917//917 919//919 918//918 +f 913//913 914//914 917//917 +f 918//918 916//916 913//913 +f 911//911 920//920 921//921 +f 920//920 880//880 921//921 +f 911//911 915//915 920//920 +f 921//921 914//914 911//911 +f 912//912 922//922 923//923 +f 922//922 924//924 923//923 +f 912//912 916//916 922//922 +f 923//923 915//915 912//912 +f 926//926 925//925 927//927 +f 925//925 928//928 927//927 +f 926//926 916//916 925//925 +f 927//927 929//929 926//926 +f 927//927 930//930 931//931 +f 930//930 275//275 931//931 +f 927//927 928//928 930//930 +f 931//931 929//929 927//927 +f 925//925 918//918 932//932 +f 918//918 919//919 932//932 +f 925//925 916//916 918//918 +f 932//932 928//928 925//925 +f 926//926 933//933 922//922 +f 933//933 924//924 922//922 +f 926//926 929//929 933//933 +f 922//922 916//916 926//926 +f 935//935 934//934 936//936 +f 934//934 885//885 936//936 +f 935//935 914//914 934//934 +f 936//936 937//937 935//935 +f 936//936 887//887 938//938 +f 887//887 888//888 938//938 +f 936//936 885//885 887//887 +f 938//938 937//937 936//936 +f 934//934 921//921 890//890 +f 921//921 880//880 890//890 +f 934//934 914//914 921//921 +f 890//890 885//885 934//934 +f 935//935 939//939 917//917 +f 939//939 919//919 917//917 +f 935//935 937//937 939//939 +f 917//917 914//914 935//935 +f 941//941 940//940 942//942 +f 940//940 943//943 942//942 +f 941//941 915//915 940//940 +f 942//942 904//904 941//941 +f 942//942 944//944 906//906 +f 944//944 908//908 906//906 +f 942//942 943//943 944//944 +f 906//906 904//904 942//942 +f 940//940 923//923 945//945 +f 923//923 924//924 945//945 +f 940//940 915//915 923//923 +f 945//945 943//943 940//940 +f 941//941 909//909 920//920 +f 909//909 880//880 920//920 +f 941//941 904//904 909//909 +f 920//920 915//915 941//941 +f 947//947 946//946 948//948 +f 946//946 949//949 948//948 +f 947//947 950//950 946//946 +f 948//948 951//951 947//947 +f 948//948 952//952 953//953 +f 952//952 954//954 953//953 +f 948//948 949//949 952//952 +f 953//953 951//951 948//948 +f 946//946 955//955 956//956 +f 955//955 874//874 956//956 +f 946//946 950//950 955//955 +f 956//956 949//949 946//946 +f 947//947 957//957 958//958 +f 957//957 959//959 958//958 +f 947//947 951//951 957//957 +f 958//958 950//950 947//947 +f 961//961 960//960 962//962 +f 960//960 963//963 962//962 +f 961//961 951//951 960//960 +f 962//962 964//964 961//961 +f 962//962 965//965 966//966 +f 965//965 564//564 966//966 +f 962//962 963//963 965//965 +f 966//966 964//964 962//962 +f 960//960 953//953 967//967 +f 953//953 954//954 967//967 +f 960//960 951//951 953//953 +f 967//967 963//963 960//960 +f 961//961 968//968 957//957 +f 968//968 959//959 957//957 +f 961//961 964//964 968//968 +f 957//957 951//951 961//961 +f 970//970 969//969 971//971 +f 969//969 895//895 971//971 +f 970//970 949//949 969//969 +f 971//971 972//972 970//970 +f 971//971 897//897 973//973 +f 897//897 898//898 973//973 +f 971//971 895//895 897//897 +f 973//973 972//972 971//971 +f 969//969 956//956 900//900 +f 956//956 874//874 900//900 +f 969//969 949//949 956//956 +f 900//900 895//895 969//969 +f 970//970 974//974 952//952 +f 974//974 954//954 952//952 +f 970//970 972//972 974//974 +f 952//952 949//949 970//970 +f 976//976 975//975 977//977 +f 975//975 978//978 977//977 +f 976//976 950//950 975//975 +f 977//977 884//884 976//976 +f 977//977 979//979 886//886 +f 979//979 888//888 886//886 +f 977//977 978//978 979//979 +f 886//886 884//884 977//977 +f 975//975 958//958 980//980 +f 958//958 959//959 980//980 +f 975//975 950//950 958//958 +f 980//980 978//978 975//975 +f 976//976 889//889 955//955 +f 889//889 874//874 955//955 +f 976//976 884//884 889//889 +f 955//955 950//950 976//976 +f 982//982 981//981 983//983 +f 981//981 984//984 983//983 +f 982//982 985//985 981//981 +f 983//983 986//986 982//982 +f 983//983 987//987 988//988 +f 987//987 989//989 988//988 +f 983//983 984//984 987//987 +f 988//988 986//986 983//983 +f 981//981 990//990 991//991 +f 990//990 877//877 991//991 +f 981//981 985//985 990//990 +f 991//991 984//984 981//981 +f 982//982 992//992 993//993 +f 992//992 994//994 993//993 +f 982//982 986//986 992//992 +f 993//993 985//985 982//982 +f 996//996 995//995 997//997 +f 995//995 998//998 997//997 +f 996//996 986//986 995//995 +f 997//997 999//999 996//996 +f 997//997 1000//1000 1001//1001 +f 1000//1000 1002//1002 1001//1001 +f 997//997 998//998 1000//1000 +f 1001//1001 999//999 997//997 +f 995//995 988//988 1003//1003 +f 988//988 989//989 1003//1003 +f 995//995 986//986 988//988 +f 1003//1003 998//998 995//995 +f 996//996 1004//1004 992//992 +f 1004//1004 994//994 992//992 +f 996//996 999//999 1004//1004 +f 992//992 986//986 996//996 +f 1006//1006 1005//1005 1007//1007 +f 1005//1005 905//905 1007//1007 +f 1006//1006 984//984 1005//1005 +f 1007//1007 1008//1008 1006//1006 +f 1007//1007 907//907 1009//1009 +f 907//907 908//908 1009//1009 +f 1007//1007 905//905 907//907 +f 1009//1009 1008//1008 1007//1007 +f 1005//1005 991//991 910//910 +f 991//991 877//877 910//910 +f 1005//1005 984//984 991//991 +f 910//910 905//905 1005//1005 +f 1006//1006 1010//1010 987//987 +f 1010//1010 989//989 987//987 +f 1006//1006 1008//1008 1010//1010 +f 987//987 984//984 1006//1006 +f 1012//1012 1011//1011 1013//1013 +f 1011//1011 1014//1014 1013//1013 +f 1012//1012 985//985 1011//1011 +f 1013//1013 894//894 1012//1012 +f 1013//1013 1015//1015 896//896 +f 1015//1015 898//898 896//896 +f 1013//1013 1014//1014 1015//1015 +f 896//896 894//894 1013//1013 +f 1011//1011 993//993 1016//1016 +f 993//993 994//994 1016//1016 +f 1011//1011 985//985 993//993 +f 1016//1016 1014//1014 1011//1011 +f 1012//1012 899//899 990//990 +f 899//899 877//877 990//990 +f 1012//1012 894//894 899//899 +f 990//990 985//985 1012//1012 +f 1018//1018 1017//1017 1019//1019 +f 1017//1017 1020//1020 1019//1019 +f 1018//1018 1021//1021 1017//1017 +f 1019//1019 1022//1022 1018//1018 +f 1019//1019 1023//1023 1024//1024 +f 1023//1023 1025//1025 1024//1024 +f 1019//1019 1020//1020 1023//1023 +f 1024//1024 1022//1022 1019//1019 +f 1017//1017 1026//1026 1027//1027 +f 1026//1026 1028//1028 1027//1027 +f 1017//1017 1021//1021 1026//1026 +f 1027//1027 1020//1020 1017//1017 +f 1018//1018 1029//1029 1030//1030 +f 1029//1029 1031//1031 1030//1030 +f 1018//1018 1022//1022 1029//1029 +f 1030//1030 1021//1021 1018//1018 +f 1033//1033 1032//1032 1034//1034 +f 1032//1032 1035//1035 1034//1034 +f 1033//1033 1022//1022 1032//1032 +f 1034//1034 1036//1036 1033//1033 +f 1034//1034 1037//1037 1038//1038 +f 1037//1037 888//888 1038//1038 +f 1034//1034 1035//1035 1037//1037 +f 1038//1038 1036//1036 1034//1034 +f 1032//1032 1024//1024 1039//1039 +f 1024//1024 1025//1025 1039//1039 +f 1032//1032 1022//1022 1024//1024 +f 1039//1039 1035//1035 1032//1032 +f 1033//1033 1040//1040 1029//1029 +f 1040//1040 1031//1031 1029//1029 +f 1033//1033 1036//1036 1040//1040 +f 1029//1029 1022//1022 1033//1033 +f 1042//1042 1041//1041 1043//1043 +f 1041//1041 1044//1044 1043//1043 +f 1042//1042 1020//1020 1041//1041 +f 1043//1043 1045//1045 1042//1042 +f 1043//1043 1046//1046 1047//1047 +f 1046//1046 1048//1048 1047//1047 +f 1043//1043 1044//1044 1046//1046 +f 1047//1047 1045//1045 1043//1043 +f 1041//1041 1027//1027 1049//1049 +f 1027//1027 1028//1028 1049//1049 +f 1041//1041 1020//1020 1027//1027 +f 1049//1049 1044//1044 1041//1041 +f 1042//1042 1050//1050 1023//1023 +f 1050//1050 1025//1025 1023//1023 +f 1042//1042 1045//1045 1050//1050 +f 1023//1023 1020//1020 1042//1042 +f 1052//1052 1051//1051 1053//1053 +f 1051//1051 1054//1054 1053//1053 +f 1052//1052 1021//1021 1051//1051 +f 1053//1053 1055//1055 1052//1052 +f 1053//1053 1056//1056 1057//1057 +f 1056//1056 1058//1058 1057//1057 +f 1053//1053 1054//1054 1056//1056 +f 1057//1057 1055//1055 1053//1053 +f 1051//1051 1030//1030 1059//1059 +f 1030//1030 1031//1031 1059//1059 +f 1051//1051 1021//1021 1030//1030 +f 1059//1059 1054//1054 1051//1051 +f 1052//1052 1060//1060 1026//1026 +f 1060//1060 1028//1028 1026//1026 +f 1052//1052 1055//1055 1060//1060 +f 1026//1026 1021//1021 1052//1052 +f 1062//1062 1061//1061 1063//1063 +f 1061//1061 1064//1064 1063//1063 +f 1062//1062 1065//1065 1061//1061 +f 1063//1063 1066//1066 1062//1062 +f 1063//1063 1067//1067 1068//1068 +f 1067//1067 959//959 1068//1068 +f 1063//1063 1064//1064 1067//1067 +f 1068//1068 1066//1066 1063//1063 +f 1061//1061 1069//1069 1070//1070 +f 1069//1069 1031//1031 1070//1070 +f 1061//1061 1065//1065 1069//1069 +f 1070//1070 1064//1064 1061//1061 +f 1062//1062 1071//1071 1072//1072 +f 1071//1071 1073//1073 1072//1072 +f 1062//1062 1066//1066 1071//1071 +f 1072//1072 1065//1065 1062//1062 +f 1075//1075 1074//1074 1076//1076 +f 1074//1074 964//964 1076//1076 +f 1075//1075 1066//1066 1074//1074 +f 1076//1076 1077//1077 1075//1075 +f 1076//1076 966//966 1078//1078 +f 966//966 564//564 1078//1078 +f 1076//1076 964//964 966//966 +f 1078//1078 1077//1077 1076//1076 +f 1074//1074 1068//1068 968//968 +f 1068//1068 959//959 968//968 +f 1074//1074 1066//1066 1068//1068 +f 968//968 964//964 1074//1074 +f 1075//1075 1079//1079 1071//1071 +f 1079//1079 1073//1073 1071//1071 +f 1075//1075 1077//1077 1079//1079 +f 1071//1071 1066//1066 1075//1075 +f 1081//1081 1080//1080 1082//1082 +f 1080//1080 1036//1036 1082//1082 +f 1081//1081 1064//1064 1080//1080 +f 1082//1082 978//978 1081//1081 +f 1082//1082 1038//1038 979//979 +f 1038//1038 888//888 979//979 +f 1082//1082 1036//1036 1038//1038 +f 979//979 978//978 1082//1082 +f 1080//1080 1070//1070 1040//1040 +f 1070//1070 1031//1031 1040//1040 +f 1080//1080 1064//1064 1070//1070 +f 1040//1040 1036//1036 1080//1080 +f 1081//1081 980//980 1067//1067 +f 980//980 959//959 1067//1067 +f 1081//1081 978//978 980//980 +f 1067//1067 1064//1064 1081//1081 +f 1084//1084 1083//1083 1085//1085 +f 1083//1083 1086//1086 1085//1085 +f 1084//1084 1065//1065 1083//1083 +f 1085//1085 1054//1054 1084//1084 +f 1085//1085 1087//1087 1056//1056 +f 1087//1087 1058//1058 1056//1056 +f 1085//1085 1086//1086 1087//1087 +f 1056//1056 1054//1054 1085//1085 +f 1083//1083 1072//1072 1088//1088 +f 1072//1072 1073//1073 1088//1088 +f 1083//1083 1065//1065 1072//1072 +f 1088//1088 1086//1086 1083//1083 +f 1084//1084 1059//1059 1069//1069 +f 1059//1059 1031//1031 1069//1069 +f 1084//1084 1054//1054 1059//1059 +f 1069//1069 1065//1065 1084//1084 +f 1090//1090 1089//1089 1091//1091 +f 1089//1089 1092//1092 1091//1091 +f 1090//1090 1093//1093 1089//1089 +f 1091//1091 1094//1094 1090//1090 +f 1091//1091 1095//1095 1096//1096 +f 1095//1095 1097//1097 1096//1096 +f 1091//1091 1092//1092 1095//1095 +f 1096//1096 1094//1094 1091//1091 +f 1089//1089 1098//1098 1099//1099 +f 1098//1098 1025//1025 1099//1099 +f 1089//1089 1093//1093 1098//1098 +f 1099//1099 1092//1092 1089//1089 +f 1090//1090 1100//1100 1101//1101 +f 1100//1100 919//919 1101//1101 +f 1090//1090 1094//1094 1100//1100 +f 1101//1101 1093//1093 1090//1090 +f 1103//1103 1102//1102 1104//1104 +f 1102//1102 1105//1105 1104//1104 +f 1103//1103 1094//1094 1102//1102 +f 1104//1104 928//928 1103//1103 +f 1104//1104 1106//1106 930//930 +f 1106//1106 275//275 930//930 +f 1104//1104 1105//1105 1106//1106 +f 930//930 928//928 1104//1104 +f 1102//1102 1096//1096 1107//1107 +f 1096//1096 1097//1097 1107//1107 +f 1102//1102 1094//1094 1096//1096 +f 1107//1107 1105//1105 1102//1102 +f 1103//1103 932//932 1100//1100 +f 932//932 919//919 1100//1100 +f 1103//1103 928//928 932//932 +f 1100//1100 1094//1094 1103//1103 +f 1109//1109 1108//1108 1110//1110 +f 1108//1108 1045//1045 1110//1110 +f 1109//1109 1092//1092 1108//1108 +f 1110//1110 1111//1111 1109//1109 +f 1110//1110 1047//1047 1112//1112 +f 1047//1047 1048//1048 1112//1112 +f 1110//1110 1045//1045 1047//1047 +f 1112//1112 1111//1111 1110//1110 +f 1108//1108 1099//1099 1050//1050 +f 1099//1099 1025//1025 1050//1050 +f 1108//1108 1092//1092 1099//1099 +f 1050//1050 1045//1045 1108//1108 +f 1109//1109 1113//1113 1095//1095 +f 1113//1113 1097//1097 1095//1095 +f 1109//1109 1111//1111 1113//1113 +f 1095//1095 1092//1092 1109//1109 +f 1115//1115 1114//1114 1116//1116 +f 1114//1114 937//937 1116//1116 +f 1115//1115 1093//1093 1114//1114 +f 1116//1116 1035//1035 1115//1115 +f 1116//1116 938//938 1037//1037 +f 938//938 888//888 1037//1037 +f 1116//1116 937//937 938//938 +f 1037//1037 1035//1035 1116//1116 +f 1114//1114 1101//1101 939//939 +f 1101//1101 919//919 939//939 +f 1114//1114 1093//1093 1101//1101 +f 939//939 937//937 1114//1114 +f 1115//1115 1039//1039 1098//1098 +f 1039//1039 1025//1025 1098//1098 +f 1115//1115 1035//1035 1039//1039 +f 1098//1098 1093//1093 1115//1115 +f 1118//1118 1117//1117 1119//1119 +f 1117//1117 1120//1120 1119//1119 +f 1118//1118 1121//1121 1117//1117 +f 1119//1119 1122//1122 1118//1118 +f 1119//1119 1123//1123 1124//1124 +f 1123//1123 1125//1125 1124//1124 +f 1119//1119 1120//1120 1123//1123 +f 1124//1124 1122//1122 1119//1119 +f 1117//1117 1126//1126 1127//1127 +f 1126//1126 1028//1028 1127//1127 +f 1117//1117 1121//1121 1126//1126 +f 1127//1127 1120//1120 1117//1117 +f 1118//1118 1128//1128 1129//1129 +f 1128//1128 1130//1130 1129//1129 +f 1118//1118 1122//1122 1128//1128 +f 1129//1129 1121//1121 1118//1118 +f 1132//1132 1131//1131 1133//1133 +f 1131//1131 1134//1134 1133//1133 +f 1132//1132 1122//1122 1131//1131 +f 1133//1133 1135//1135 1132//1132 +f 1133//1133 1136//1136 1137//1137 +f 1136//1136 1138//1138 1137//1137 +f 1133//1133 1134//1134 1136//1136 +f 1137//1137 1135//1135 1133//1133 +f 1131//1131 1124//1124 1139//1139 +f 1124//1124 1125//1125 1139//1139 +f 1131//1131 1122//1122 1124//1124 +f 1139//1139 1134//1134 1131//1131 +f 1132//1132 1140//1140 1128//1128 +f 1140//1140 1130//1130 1128//1128 +f 1132//1132 1135//1135 1140//1140 +f 1128//1128 1122//1122 1132//1132 +f 1142//1142 1141//1141 1143//1143 +f 1141//1141 1055//1055 1143//1143 +f 1142//1142 1120//1120 1141//1141 +f 1143//1143 1144//1144 1142//1142 +f 1143//1143 1057//1057 1145//1145 +f 1057//1057 1058//1058 1145//1145 +f 1143//1143 1055//1055 1057//1057 +f 1145//1145 1144//1144 1143//1143 +f 1141//1141 1127//1127 1060//1060 +f 1127//1127 1028//1028 1060//1060 +f 1141//1141 1120//1120 1127//1127 +f 1060//1060 1055//1055 1141//1141 +f 1142//1142 1146//1146 1123//1123 +f 1146//1146 1125//1125 1123//1123 +f 1142//1142 1144//1144 1146//1146 +f 1123//1123 1120//1120 1142//1142 +f 1148//1148 1147//1147 1149//1149 +f 1147//1147 1150//1150 1149//1149 +f 1148//1148 1121//1121 1147//1147 +f 1149//1149 1044//1044 1148//1148 +f 1149//1149 1151//1151 1046//1046 +f 1151//1151 1048//1048 1046//1046 +f 1149//1149 1150//1150 1151//1151 +f 1046//1046 1044//1044 1149//1149 +f 1147//1147 1129//1129 1152//1152 +f 1129//1129 1130//1130 1152//1152 +f 1147//1147 1121//1121 1129//1129 +f 1152//1152 1150//1150 1147//1147 +f 1148//1148 1049//1049 1126//1126 +f 1049//1049 1028//1028 1126//1126 +f 1148//1148 1044//1044 1049//1049 +f 1126//1126 1121//1121 1148//1148 +f 1154//1154 1153//1153 1155//1155 +f 1153//1153 1156//1156 1155//1155 +f 1154//1154 1157//1157 1153//1153 +f 1155//1155 1158//1158 1154//1154 +f 1155//1155 1159//1159 1160//1160 +f 1159//1159 1161//1161 1160//1160 +f 1155//1155 1156//1156 1159//1159 +f 1160//1160 1158//1158 1155//1155 +f 1153//1153 1162//1162 1163//1163 +f 1162//1162 1164//1164 1163//1163 +f 1153//1153 1157//1157 1162//1162 +f 1163//1163 1156//1156 1153//1153 +f 1154//1154 1165//1165 1166//1166 +f 1165//1165 1167//1167 1166//1166 +f 1154//1154 1158//1158 1165//1165 +f 1166//1166 1157//1157 1154//1154 +f 1169//1169 1168//1168 1170//1170 +f 1168//1168 1171//1171 1170//1170 +f 1169//1169 1158//1158 1168//1168 +f 1170//1170 1172//1172 1169//1169 +f 1170//1170 1173//1173 1174//1174 +f 1173//1173 1175//1175 1174//1174 +f 1170//1170 1171//1171 1173//1173 +f 1174//1174 1172//1172 1170//1170 +f 1168//1168 1160//1160 1176//1176 +f 1160//1160 1161//1161 1176//1176 +f 1168//1168 1158//1158 1160//1160 +f 1176//1176 1171//1171 1168//1168 +f 1169//1169 1177//1177 1165//1165 +f 1177//1177 1167//1167 1165//1165 +f 1169//1169 1172//1172 1177//1177 +f 1165//1165 1158//1158 1169//1169 +f 1179//1179 1178//1178 1180//1180 +f 1178//1178 1181//1181 1180//1180 +f 1179//1179 1156//1156 1178//1178 +f 1180//1180 1182//1182 1179//1179 +f 1180//1180 1183//1183 1184//1184 +f 1183//1183 1185//1185 1184//1184 +f 1180//1180 1181//1181 1183//1183 +f 1184//1184 1182//1182 1180//1180 +f 1178//1178 1163//1163 1186//1186 +f 1163//1163 1164//1164 1186//1186 +f 1178//1178 1156//1156 1163//1163 +f 1186//1186 1181//1181 1178//1178 +f 1179//1179 1187//1187 1159//1159 +f 1187//1187 1161//1161 1159//1159 +f 1179//1179 1182//1182 1187//1187 +f 1159//1159 1156//1156 1179//1179 +f 1189//1189 1188//1188 1190//1190 +f 1188//1188 1191//1191 1190//1190 +f 1189//1189 1157//1157 1188//1188 +f 1190//1190 1192//1192 1189//1189 +f 1190//1190 1193//1193 1194//1194 +f 1193//1193 1195//1195 1194//1194 +f 1190//1190 1191//1191 1193//1193 +f 1194//1194 1192//1192 1190//1190 +f 1188//1188 1166//1166 1196//1196 +f 1166//1166 1167//1167 1196//1196 +f 1188//1188 1157//1157 1166//1166 +f 1196//1196 1191//1191 1188//1188 +f 1189//1189 1197//1197 1162//1162 +f 1197//1197 1164//1164 1162//1162 +f 1189//1189 1192//1192 1197//1197 +f 1162//1162 1157//1157 1189//1189 +f 1199//1199 1198//1198 1200//1200 +f 1198//1198 1201//1201 1200//1200 +f 1199//1199 1202//1202 1198//1198 +f 1200//1200 1203//1203 1199//1199 +f 1200//1200 1204//1204 1205//1205 +f 1204//1204 1206//1206 1205//1205 +f 1200//1200 1201//1201 1204//1204 +f 1205//1205 1203//1203 1200//1200 +f 1198//1198 1207//1207 1208//1208 +f 1207//1207 1167//1167 1208//1208 +f 1198//1198 1202//1202 1207//1207 +f 1208//1208 1201//1201 1198//1198 +f 1199//1199 1209//1209 1210//1210 +f 1209//1209 1211//1211 1210//1210 +f 1199//1199 1203//1203 1209//1209 +f 1210//1210 1202//1202 1199//1199 +f 1213//1213 1212//1212 1214//1214 +f 1212//1212 1215//1215 1214//1214 +f 1213//1213 1203//1203 1212//1212 +f 1214//1214 1216//1216 1213//1213 +f 1214//1214 1217//1217 1218//1218 +f 1217//1217 851//851 1218//1218 +f 1214//1214 1215//1215 1217//1217 +f 1218//1218 1216//1216 1214//1214 +f 1212//1212 1205//1205 1219//1219 +f 1205//1205 1206//1206 1219//1219 +f 1212//1212 1203//1203 1205//1205 +f 1219//1219 1215//1215 1212//1212 +f 1213//1213 1220//1220 1209//1209 +f 1220//1220 1211//1211 1209//1209 +f 1213//1213 1216//1216 1220//1220 +f 1209//1209 1203//1203 1213//1213 +f 1222//1222 1221//1221 1223//1223 +f 1221//1221 1172//1172 1223//1223 +f 1222//1222 1201//1201 1221//1221 +f 1223//1223 1224//1224 1222//1222 +f 1223//1223 1174//1174 1225//1225 +f 1174//1174 1175//1175 1225//1225 +f 1223//1223 1172//1172 1174//1174 +f 1225//1225 1224//1224 1223//1223 +f 1221//1221 1208//1208 1177//1177 +f 1208//1208 1167//1167 1177//1177 +f 1221//1221 1201//1201 1208//1208 +f 1177//1177 1172//1172 1221//1221 +f 1222//1222 1226//1226 1204//1204 +f 1226//1226 1206//1206 1204//1204 +f 1222//1222 1224//1224 1226//1226 +f 1204//1204 1201//1201 1222//1222 +f 1228//1228 1227//1227 1229//1229 +f 1227//1227 1230//1230 1229//1229 +f 1228//1228 1202//1202 1227//1227 +f 1229//1229 1191//1191 1228//1228 +f 1229//1229 1231//1231 1193//1193 +f 1231//1231 1195//1195 1193//1193 +f 1229//1229 1230//1230 1231//1231 +f 1193//1193 1191//1191 1229//1229 +f 1227//1227 1210//1210 1232//1232 +f 1210//1210 1211//1211 1232//1232 +f 1227//1227 1202//1202 1210//1210 +f 1232//1232 1230//1230 1227//1227 +f 1228//1228 1196//1196 1207//1207 +f 1196//1196 1167//1167 1207//1207 +f 1228//1228 1191//1191 1196//1196 +f 1207//1207 1202//1202 1228//1228 +f 1234//1234 1233//1233 1235//1235 +f 1233//1233 1236//1236 1235//1235 +f 1234//1234 1237//1237 1233//1233 +f 1235//1235 1238//1238 1234//1234 +f 1235//1235 1239//1239 1240//1240 +f 1239//1239 1241//1241 1240//1240 +f 1235//1235 1236//1236 1239//1239 +f 1240//1240 1238//1238 1235//1235 +f 1233//1233 1242//1242 1243//1243 +f 1242//1242 1161//1161 1243//1243 +f 1233//1233 1237//1237 1242//1242 +f 1243//1243 1236//1236 1233//1233 +f 1234//1234 1244//1244 1245//1245 +f 1244//1244 1246//1246 1245//1245 +f 1234//1234 1238//1238 1244//1244 +f 1245//1245 1237//1237 1234//1234 +f 1248//1248 1247//1247 1249//1249 +f 1247//1247 1250//1250 1249//1249 +f 1248//1248 1238//1238 1247//1247 +f 1249//1249 1251//1251 1248//1248 +f 1249//1249 1252//1252 1253//1253 +f 1252//1252 1002//1002 1253//1253 +f 1249//1249 1250//1250 1252//1252 +f 1253//1253 1251//1251 1249//1249 +f 1247//1247 1240//1240 1254//1254 +f 1240//1240 1241//1241 1254//1254 +f 1247//1247 1238//1238 1240//1240 +f 1254//1254 1250//1250 1247//1247 +f 1248//1248 1255//1255 1244//1244 +f 1255//1255 1246//1246 1244//1244 +f 1248//1248 1251//1251 1255//1255 +f 1244//1244 1238//1238 1248//1248 +f 1257//1257 1256//1256 1258//1258 +f 1256//1256 1182//1182 1258//1258 +f 1257//1257 1236//1236 1256//1256 +f 1258//1258 1259//1259 1257//1257 +f 1258//1258 1184//1184 1260//1260 +f 1184//1184 1185//1185 1260//1260 +f 1258//1258 1182//1182 1184//1184 +f 1260//1260 1259//1259 1258//1258 +f 1256//1256 1243//1243 1187//1187 +f 1243//1243 1161//1161 1187//1187 +f 1256//1256 1236//1236 1243//1243 +f 1187//1187 1182//1182 1256//1256 +f 1257//1257 1261//1261 1239//1239 +f 1261//1261 1241//1241 1239//1239 +f 1257//1257 1259//1259 1261//1261 +f 1239//1239 1236//1236 1257//1257 +f 1263//1263 1262//1262 1264//1264 +f 1262//1262 1265//1265 1264//1264 +f 1263//1263 1237//1237 1262//1262 +f 1264//1264 1171//1171 1263//1263 +f 1264//1264 1266//1266 1173//1173 +f 1266//1266 1175//1175 1173//1173 +f 1264//1264 1265//1265 1266//1266 +f 1173//1173 1171//1171 1264//1264 +f 1262//1262 1245//1245 1267//1267 +f 1245//1245 1246//1246 1267//1267 +f 1262//1262 1237//1237 1245//1245 +f 1267//1267 1265//1265 1262//1262 +f 1263//1263 1176//1176 1242//1242 +f 1176//1176 1161//1161 1242//1242 +f 1263//1263 1171//1171 1176//1176 +f 1242//1242 1237//1237 1263//1263 +f 1269//1269 1268//1268 1270//1270 +f 1268//1268 1271//1271 1270//1270 +f 1269//1269 1272//1272 1268//1268 +f 1270//1270 1273//1273 1269//1269 +f 1270//1270 1274//1274 1275//1275 +f 1274//1274 1276//1276 1275//1275 +f 1270//1270 1271//1271 1274//1274 +f 1275//1275 1273//1273 1270//1270 +f 1268//1268 1277//1277 1278//1278 +f 1277//1277 1164//1164 1278//1278 +f 1268//1268 1272//1272 1277//1277 +f 1278//1278 1271//1271 1268//1268 +f 1269//1269 1279//1279 1280//1280 +f 1279//1279 1281//1281 1280//1280 +f 1269//1269 1273//1273 1279//1279 +f 1280//1280 1272//1272 1269//1269 +f 1283//1283 1282//1282 1284//1284 +f 1282//1282 1285//1285 1284//1284 +f 1283//1283 1273//1273 1282//1282 +f 1284//1284 1286//1286 1283//1283 +f 1284//1284 1287//1287 1288//1288 +f 1287//1287 356//356 1288//1288 +f 1284//1284 1285//1285 1287//1287 +f 1288//1288 1286//1286 1284//1284 +f 1282//1282 1275//1275 1289//1289 +f 1275//1275 1276//1276 1289//1289 +f 1282//1282 1273//1273 1275//1275 +f 1289//1289 1285//1285 1282//1282 +f 1283//1283 1290//1290 1279//1279 +f 1290//1290 1281//1281 1279//1279 +f 1283//1283 1286//1286 1290//1290 +f 1279//1279 1273//1273 1283//1283 +f 1292//1292 1291//1291 1293//1293 +f 1291//1291 1192//1192 1293//1293 +f 1292//1292 1271//1271 1291//1291 +f 1293//1293 1294//1294 1292//1292 +f 1293//1293 1194//1194 1295//1295 +f 1194//1194 1195//1195 1295//1295 +f 1293//1293 1192//1192 1194//1194 +f 1295//1295 1294//1294 1293//1293 +f 1291//1291 1278//1278 1197//1197 +f 1278//1278 1164//1164 1197//1197 +f 1291//1291 1271//1271 1278//1278 +f 1197//1197 1192//1192 1291//1291 +f 1292//1292 1296//1296 1274//1274 +f 1296//1296 1276//1276 1274//1274 +f 1292//1292 1294//1294 1296//1296 +f 1274//1274 1271//1271 1292//1292 +f 1298//1298 1297//1297 1299//1299 +f 1297//1297 1300//1300 1299//1299 +f 1298//1298 1272//1272 1297//1297 +f 1299//1299 1181//1181 1298//1298 +f 1299//1299 1301//1301 1183//1183 +f 1301//1301 1185//1185 1183//1183 +f 1299//1299 1300//1300 1301//1301 +f 1183//1183 1181//1181 1299//1299 +f 1297//1297 1280//1280 1302//1302 +f 1280//1280 1281//1281 1302//1302 +f 1297//1297 1272//1272 1280//1280 +f 1302//1302 1300//1300 1297//1297 +f 1298//1298 1186//1186 1277//1277 +f 1186//1186 1164//1164 1277//1277 +f 1298//1298 1181//1181 1186//1186 +f 1277//1277 1272//1272 1298//1298 +f 1304//1304 1303//1303 1305//1305 +f 1303//1303 1306//1306 1305//1305 +f 1304//1304 1307//1307 1303//1303 +f 1305//1305 1308//1308 1304//1304 +f 1305//1305 1309//1309 1310//1310 +f 1309//1309 1311//1311 1310//1310 +f 1305//1305 1306//1306 1309//1309 +f 1310//1310 1308//1308 1305//1305 +f 1303//1303 1312//1312 1313//1313 +f 1312//1312 1314//1314 1313//1313 +f 1303//1303 1307//1307 1312//1312 +f 1313//1313 1306//1306 1303//1303 +f 1304//1304 1315//1315 1316//1316 +f 1315//1315 1317//1317 1316//1316 +f 1304//1304 1308//1308 1315//1315 +f 1316//1316 1307//1307 1304//1304 +f 1319//1319 1318//1318 1320//1320 +f 1318//1318 1321//1321 1320//1320 +f 1319//1319 1308//1308 1318//1318 +f 1320//1320 1322//1322 1319//1319 +f 1320//1320 1323//1323 1324//1324 +f 1323//1323 1175//1175 1324//1324 +f 1320//1320 1321//1321 1323//1323 +f 1324//1324 1322//1322 1320//1320 +f 1318//1318 1310//1310 1325//1325 +f 1310//1310 1311//1311 1325//1325 +f 1318//1318 1308//1308 1310//1310 +f 1325//1325 1321//1321 1318//1318 +f 1319//1319 1326//1326 1315//1315 +f 1326//1326 1317//1317 1315//1315 +f 1319//1319 1322//1322 1326//1326 +f 1315//1315 1308//1308 1319//1319 +f 1328//1328 1327//1327 1329//1329 +f 1327//1327 1330//1330 1329//1329 +f 1328//1328 1306//1306 1327//1327 +f 1329//1329 1331//1331 1328//1328 +f 1329//1329 1332//1332 1333//1333 +f 1332//1332 1334//1334 1333//1333 +f 1329//1329 1330//1330 1332//1332 +f 1333//1333 1331//1331 1329//1329 +f 1327//1327 1313//1313 1335//1335 +f 1313//1313 1314//1314 1335//1335 +f 1327//1327 1306//1306 1313//1313 +f 1335//1335 1330//1330 1327//1327 +f 1328//1328 1336//1336 1309//1309 +f 1336//1336 1311//1311 1309//1309 +f 1328//1328 1331//1331 1336//1336 +f 1309//1309 1306//1306 1328//1328 +f 1338//1338 1337//1337 1339//1339 +f 1337//1337 1340//1340 1339//1339 +f 1338//1338 1307//1307 1337//1337 +f 1339//1339 1341//1341 1338//1338 +f 1339//1339 1342//1342 1343//1343 +f 1342//1342 1344//1344 1343//1343 +f 1339//1339 1340//1340 1342//1342 +f 1343//1343 1341//1341 1339//1339 +f 1337//1337 1316//1316 1345//1345 +f 1316//1316 1317//1317 1345//1345 +f 1337//1337 1307//1307 1316//1316 +f 1345//1345 1340//1340 1337//1337 +f 1338//1338 1346//1346 1312//1312 +f 1346//1346 1314//1314 1312//1312 +f 1338//1338 1341//1341 1346//1346 +f 1312//1312 1307//1307 1338//1338 +f 1348//1348 1347//1347 1349//1349 +f 1347//1347 1350//1350 1349//1349 +f 1348//1348 1351//1351 1347//1347 +f 1349//1349 1352//1352 1348//1348 +f 1349//1349 1353//1353 1354//1354 +f 1353//1353 1246//1246 1354//1354 +f 1349//1349 1350//1350 1353//1353 +f 1354//1354 1352//1352 1349//1349 +f 1347//1347 1355//1355 1356//1356 +f 1355//1355 1317//1317 1356//1356 +f 1347//1347 1351//1351 1355//1355 +f 1356//1356 1350//1350 1347//1347 +f 1348//1348 1357//1357 1358//1358 +f 1357//1357 1359//1359 1358//1358 +f 1348//1348 1352//1352 1357//1357 +f 1358//1358 1351//1351 1348//1348 +f 1361//1361 1360//1360 1362//1362 +f 1360//1360 1251//1251 1362//1362 +f 1361//1361 1352//1352 1360//1360 +f 1362//1362 1363//1363 1361//1361 +f 1362//1362 1253//1253 1364//1364 +f 1253//1253 1002//1002 1364//1364 +f 1362//1362 1251//1251 1253//1253 +f 1364//1364 1363//1363 1362//1362 +f 1360//1360 1354//1354 1255//1255 +f 1354//1354 1246//1246 1255//1255 +f 1360//1360 1352//1352 1354//1354 +f 1255//1255 1251//1251 1360//1360 +f 1361//1361 1365//1365 1357//1357 +f 1365//1365 1359//1359 1357//1357 +f 1361//1361 1363//1363 1365//1365 +f 1357//1357 1352//1352 1361//1361 +f 1367//1367 1366//1366 1368//1368 +f 1366//1366 1322//1322 1368//1368 +f 1367//1367 1350//1350 1366//1366 +f 1368//1368 1265//1265 1367//1367 +f 1368//1368 1324//1324 1266//1266 +f 1324//1324 1175//1175 1266//1266 +f 1368//1368 1322//1322 1324//1324 +f 1266//1266 1265//1265 1368//1368 +f 1366//1366 1356//1356 1326//1326 +f 1356//1356 1317//1317 1326//1326 +f 1366//1366 1350//1350 1356//1356 +f 1326//1326 1322//1322 1366//1366 +f 1367//1367 1267//1267 1353//1353 +f 1267//1267 1246//1246 1353//1353 +f 1367//1367 1265//1265 1267//1267 +f 1353//1353 1350//1350 1367//1367 +f 1370//1370 1369//1369 1371//1371 +f 1369//1369 1372//1372 1371//1371 +f 1370//1370 1351//1351 1369//1369 +f 1371//1371 1340//1340 1370//1370 +f 1371//1371 1373//1373 1342//1342 +f 1373//1373 1344//1344 1342//1342 +f 1371//1371 1372//1372 1373//1373 +f 1342//1342 1340//1340 1371//1371 +f 1369//1369 1358//1358 1374//1374 +f 1358//1358 1359//1359 1374//1374 +f 1369//1369 1351//1351 1358//1358 +f 1374//1374 1372//1372 1369//1369 +f 1370//1370 1345//1345 1355//1355 +f 1345//1345 1317//1317 1355//1355 +f 1370//1370 1340//1340 1345//1345 +f 1355//1355 1351//1351 1370//1370 +f 1376//1376 1375//1375 1377//1377 +f 1375//1375 1378//1378 1377//1377 +f 1376//1376 1379//1379 1375//1375 +f 1377//1377 1380//1380 1376//1376 +f 1377//1377 1381//1381 1382//1382 +f 1381//1381 1383//1383 1382//1382 +f 1377//1377 1378//1378 1381//1381 +f 1382//1382 1380//1380 1377//1377 +f 1375//1375 1384//1384 1385//1385 +f 1384//1384 1311//1311 1385//1385 +f 1375//1375 1379//1379 1384//1384 +f 1385//1385 1378//1378 1375//1375 +f 1376//1376 1386//1386 1387//1387 +f 1386//1386 1206//1206 1387//1387 +f 1376//1376 1380//1380 1386//1386 +f 1387//1387 1379//1379 1376//1376 +f 1389//1389 1388//1388 1390//1390 +f 1388//1388 1391//1391 1390//1390 +f 1389//1389 1380//1380 1388//1388 +f 1390//1390 1215//1215 1389//1389 +f 1390//1390 1392//1392 1217//1217 +f 1392//1392 851//851 1217//1217 +f 1390//1390 1391//1391 1392//1392 +f 1217//1217 1215//1215 1390//1390 +f 1388//1388 1382//1382 1393//1393 +f 1382//1382 1383//1383 1393//1393 +f 1388//1388 1380//1380 1382//1382 +f 1393//1393 1391//1391 1388//1388 +f 1389//1389 1219//1219 1386//1386 +f 1219//1219 1206//1206 1386//1386 +f 1389//1389 1215//1215 1219//1219 +f 1386//1386 1380//1380 1389//1389 +f 1395//1395 1394//1394 1396//1396 +f 1394//1394 1331//1331 1396//1396 +f 1395//1395 1378//1378 1394//1394 +f 1396//1396 1397//1397 1395//1395 +f 1396//1396 1333//1333 1398//1398 +f 1333//1333 1334//1334 1398//1398 +f 1396//1396 1331//1331 1333//1333 +f 1398//1398 1397//1397 1396//1396 +f 1394//1394 1385//1385 1336//1336 +f 1385//1385 1311//1311 1336//1336 +f 1394//1394 1378//1378 1385//1385 +f 1336//1336 1331//1331 1394//1394 +f 1395//1395 1399//1399 1381//1381 +f 1399//1399 1383//1383 1381//1381 +f 1395//1395 1397//1397 1399//1399 +f 1381//1381 1378//1378 1395//1395 +f 1401//1401 1400//1400 1402//1402 +f 1400//1400 1224//1224 1402//1402 +f 1401//1401 1379//1379 1400//1400 +f 1402//1402 1321//1321 1401//1401 +f 1402//1402 1225//1225 1323//1323 +f 1225//1225 1175//1175 1323//1323 +f 1402//1402 1224//1224 1225//1225 +f 1323//1323 1321//1321 1402//1402 +f 1400//1400 1387//1387 1226//1226 +f 1387//1387 1206//1206 1226//1226 +f 1400//1400 1379//1379 1387//1387 +f 1226//1226 1224//1224 1400//1400 +f 1401//1401 1325//1325 1384//1384 +f 1325//1325 1311//1311 1384//1384 +f 1401//1401 1321//1321 1325//1325 +f 1384//1384 1379//1379 1401//1401 +f 1404//1404 1403//1403 1405//1405 +f 1403//1403 1406//1406 1405//1405 +f 1404//1404 1407//1407 1403//1403 +f 1405//1405 1408//1408 1404//1404 +f 1405//1405 1409//1409 1410//1410 +f 1409//1409 1411//1411 1410//1410 +f 1405//1405 1406//1406 1409//1409 +f 1410//1410 1408//1408 1405//1405 +f 1403//1403 1412//1412 1413//1413 +f 1412//1412 1314//1314 1413//1413 +f 1403//1403 1407//1407 1412//1412 +f 1413//1413 1406//1406 1403//1403 +f 1404//1404 1414//1414 1415//1415 +f 1414//1414 1416//1416 1415//1415 +f 1404//1404 1408//1408 1414//1414 +f 1415//1415 1407//1407 1404//1404 +f 1418//1418 1417//1417 1419//1419 +f 1417//1417 1420//1420 1419//1419 +f 1418//1418 1408//1408 1417//1417 +f 1419//1419 1421//1421 1418//1418 +f 1419//1419 1422//1422 1423//1423 +f 1422//1422 103//103 1423//1423 +f 1419//1419 1420//1420 1422//1422 +f 1423//1423 1421//1421 1419//1419 +f 1417//1417 1410//1410 1424//1424 +f 1410//1410 1411//1411 1424//1424 +f 1417//1417 1408//1408 1410//1410 +f 1424//1424 1420//1420 1417//1417 +f 1418//1418 1425//1425 1414//1414 +f 1425//1425 1416//1416 1414//1414 +f 1418//1418 1421//1421 1425//1425 +f 1414//1414 1408//1408 1418//1418 +f 1427//1427 1426//1426 1428//1428 +f 1426//1426 1341//1341 1428//1428 +f 1427//1427 1406//1406 1426//1426 +f 1428//1428 1429//1429 1427//1427 +f 1428//1428 1343//1343 1430//1430 +f 1343//1343 1344//1344 1430//1430 +f 1428//1428 1341//1341 1343//1343 +f 1430//1430 1429//1429 1428//1428 +f 1426//1426 1413//1413 1346//1346 +f 1413//1413 1314//1314 1346//1346 +f 1426//1426 1406//1406 1413//1413 +f 1346//1346 1341//1341 1426//1426 +f 1427//1427 1431//1431 1409//1409 +f 1431//1431 1411//1411 1409//1409 +f 1427//1427 1429//1429 1431//1431 +f 1409//1409 1406//1406 1427//1427 +f 1433//1433 1432//1432 1434//1434 +f 1432//1432 1435//1435 1434//1434 +f 1433//1433 1407//1407 1432//1432 +f 1434//1434 1330//1330 1433//1433 +f 1434//1434 1436//1436 1332//1332 +f 1436//1436 1334//1334 1332//1332 +f 1434//1434 1435//1435 1436//1436 +f 1332//1332 1330//1330 1434//1434 +f 1432//1432 1415//1415 1437//1437 +f 1415//1415 1416//1416 1437//1437 +f 1432//1432 1407//1407 1415//1415 +f 1437//1437 1435//1435 1432//1432 +f 1433//1433 1335//1335 1412//1412 +f 1335//1335 1314//1314 1412//1412 +f 1433//1433 1330//1330 1335//1335 +f 1412//1412 1407//1407 1433//1433 +f 1439//1439 1438//1438 1440//1440 +f 1438//1438 1441//1441 1440//1440 +f 1439//1439 1442//1442 1438//1438 +f 1440//1440 1443//1443 1439//1439 +f 1440//1440 1444//1444 1445//1445 +f 1444//1444 1446//1446 1445//1445 +f 1440//1440 1441//1441 1444//1444 +f 1445//1445 1443//1443 1440//1440 +f 1438//1438 1447//1447 1448//1448 +f 1447//1447 1449//1449 1448//1448 +f 1438//1438 1442//1442 1447//1447 +f 1448//1448 1441//1441 1438//1438 +f 1439//1439 1450//1450 1451//1451 +f 1450//1450 1452//1452 1451//1451 +f 1439//1439 1443//1443 1450//1450 +f 1451//1451 1442//1442 1439//1439 +f 1454//1454 1453//1453 1455//1455 +f 1453//1453 1456//1456 1455//1455 +f 1454//1454 1443//1443 1453//1453 +f 1455//1455 1457//1457 1454//1454 +f 1455//1455 1458//1458 1459//1459 +f 1458//1458 1460//1460 1459//1459 +f 1455//1455 1456//1456 1458//1458 +f 1459//1459 1457//1457 1455//1455 +f 1453//1453 1445//1445 1461//1461 +f 1445//1445 1446//1446 1461//1461 +f 1453//1453 1443//1443 1445//1445 +f 1461//1461 1456//1456 1453//1453 +f 1454//1454 1462//1462 1450//1450 +f 1462//1462 1452//1452 1450//1450 +f 1454//1454 1457//1457 1462//1462 +f 1450//1450 1443//1443 1454//1454 +f 1464//1464 1463//1463 1465//1465 +f 1463//1463 1466//1466 1465//1465 +f 1464//1464 1441//1441 1463//1463 +f 1465//1465 1467//1467 1464//1464 +f 1465//1465 1468//1468 1469//1469 +f 1468//1468 1470//1470 1469//1469 +f 1465//1465 1466//1466 1468//1468 +f 1469//1469 1467//1467 1465//1465 +f 1463//1463 1448//1448 1471//1471 +f 1448//1448 1449//1449 1471//1471 +f 1463//1463 1441//1441 1448//1448 +f 1471//1471 1466//1466 1463//1463 +f 1464//1464 1472//1472 1444//1444 +f 1472//1472 1446//1446 1444//1444 +f 1464//1464 1467//1467 1472//1472 +f 1444//1444 1441//1441 1464//1464 +f 1474//1474 1473//1473 1475//1475 +f 1473//1473 1476//1476 1475//1475 +f 1474//1474 1442//1442 1473//1473 +f 1475//1475 1477//1477 1474//1474 +f 1475//1475 1478//1478 1479//1479 +f 1478//1478 1480//1480 1479//1479 +f 1475//1475 1476//1476 1478//1478 +f 1479//1479 1477//1477 1475//1475 +f 1473//1473 1451//1451 1481//1481 +f 1451//1451 1452//1452 1481//1481 +f 1473//1473 1442//1442 1451//1451 +f 1481//1481 1476//1476 1473//1473 +f 1474//1474 1482//1482 1447//1447 +f 1482//1482 1449//1449 1447//1447 +f 1474//1474 1477//1477 1482//1482 +f 1447//1447 1442//1442 1474//1474 +f 1484//1484 1483//1483 1485//1485 +f 1483//1483 1486//1486 1485//1485 +f 1484//1484 1487//1487 1483//1483 +f 1485//1485 1488//1488 1484//1484 +f 1485//1485 1489//1489 1490//1490 +f 1489//1489 1491//1491 1490//1490 +f 1485//1485 1486//1486 1489//1489 +f 1490//1490 1488//1488 1485//1485 +f 1483//1483 1492//1492 1493//1493 +f 1492//1492 1452//1452 1493//1493 +f 1483//1483 1487//1487 1492//1492 +f 1493//1493 1486//1486 1483//1483 +f 1484//1484 1494//1494 1495//1495 +f 1494//1494 1496//1496 1495//1495 +f 1484//1484 1488//1488 1494//1494 +f 1495//1495 1487//1487 1484//1484 +f 1498//1498 1497//1497 1499//1499 +f 1497//1497 1500//1500 1499//1499 +f 1498//1498 1488//1488 1497//1497 +f 1499//1499 1501//1501 1498//1498 +f 1499//1499 1502//1502 1503//1503 +f 1502//1502 715//715 1503//1503 +f 1499//1499 1500//1500 1502//1502 +f 1503//1503 1501//1501 1499//1499 +f 1497//1497 1490//1490 1504//1504 +f 1490//1490 1491//1491 1504//1504 +f 1497//1497 1488//1488 1490//1490 +f 1504//1504 1500//1500 1497//1497 +f 1498//1498 1505//1505 1494//1494 +f 1505//1505 1496//1496 1494//1494 +f 1498//1498 1501//1501 1505//1505 +f 1494//1494 1488//1488 1498//1498 +f 1507//1507 1506//1506 1508//1508 +f 1506//1506 1457//1457 1508//1508 +f 1507//1507 1486//1486 1506//1506 +f 1508//1508 1509//1509 1507//1507 +f 1508//1508 1459//1459 1510//1510 +f 1459//1459 1460//1460 1510//1510 +f 1508//1508 1457//1457 1459//1459 +f 1510//1510 1509//1509 1508//1508 +f 1506//1506 1493//1493 1462//1462 +f 1493//1493 1452//1452 1462//1462 +f 1506//1506 1486//1486 1493//1493 +f 1462//1462 1457//1457 1506//1506 +f 1507//1507 1511//1511 1489//1489 +f 1511//1511 1491//1491 1489//1489 +f 1507//1507 1509//1509 1511//1511 +f 1489//1489 1486//1486 1507//1507 +f 1513//1513 1512//1512 1514//1514 +f 1512//1512 1515//1515 1514//1514 +f 1513//1513 1487//1487 1512//1512 +f 1514//1514 1476//1476 1513//1513 +f 1514//1514 1516//1516 1478//1478 +f 1516//1516 1480//1480 1478//1478 +f 1514//1514 1515//1515 1516//1516 +f 1478//1478 1476//1476 1514//1514 +f 1512//1512 1495//1495 1517//1517 +f 1495//1495 1496//1496 1517//1517 +f 1512//1512 1487//1487 1495//1495 +f 1517//1517 1515//1515 1512//1512 +f 1513//1513 1481//1481 1492//1492 +f 1481//1481 1452//1452 1492//1492 +f 1513//1513 1476//1476 1481//1481 +f 1492//1492 1487//1487 1513//1513 +f 1519//1519 1518//1518 1520//1520 +f 1518//1518 1521//1521 1520//1520 +f 1519//1519 1522//1522 1518//1518 +f 1520//1520 1523//1523 1519//1519 +f 1520//1520 1524//1524 1525//1525 +f 1524//1524 1526//1526 1525//1525 +f 1520//1520 1521//1521 1524//1524 +f 1525//1525 1523//1523 1520//1520 +f 1518//1518 1527//1527 1528//1528 +f 1527//1527 1446//1446 1528//1528 +f 1518//1518 1522//1522 1527//1527 +f 1528//1528 1521//1521 1518//1518 +f 1519//1519 1529//1529 1530//1530 +f 1529//1529 1531//1531 1530//1530 +f 1519//1519 1523//1523 1529//1529 +f 1530//1530 1522//1522 1519//1519 +f 1533//1533 1532//1532 1534//1534 +f 1532//1532 1535//1535 1534//1534 +f 1533//1533 1523//1523 1532//1532 +f 1534//1534 1536//1536 1533//1533 +f 1534//1534 1537//1537 1538//1538 +f 1537//1537 1138//1138 1538//1538 +f 1534//1534 1535//1535 1537//1537 +f 1538//1538 1536//1536 1534//1534 +f 1532//1532 1525//1525 1539//1539 +f 1525//1525 1526//1526 1539//1539 +f 1532//1532 1523//1523 1525//1525 +f 1539//1539 1535//1535 1532//1532 +f 1533//1533 1540//1540 1529//1529 +f 1540//1540 1531//1531 1529//1529 +f 1533//1533 1536//1536 1540//1540 +f 1529//1529 1523//1523 1533//1533 +f 1542//1542 1541//1541 1543//1543 +f 1541//1541 1467//1467 1543//1543 +f 1542//1542 1521//1521 1541//1541 +f 1543//1543 1544//1544 1542//1542 +f 1543//1543 1469//1469 1545//1545 +f 1469//1469 1470//1470 1545//1545 +f 1543//1543 1467//1467 1469//1469 +f 1545//1545 1544//1544 1543//1543 +f 1541//1541 1528//1528 1472//1472 +f 1528//1528 1446//1446 1472//1472 +f 1541//1541 1521//1521 1528//1528 +f 1472//1472 1467//1467 1541//1541 +f 1542//1542 1546//1546 1524//1524 +f 1546//1546 1526//1526 1524//1524 +f 1542//1542 1544//1544 1546//1546 +f 1524//1524 1521//1521 1542//1542 +f 1548//1548 1547//1547 1549//1549 +f 1547//1547 1550//1550 1549//1549 +f 1548//1548 1522//1522 1547//1547 +f 1549//1549 1456//1456 1548//1548 +f 1549//1549 1551//1551 1458//1458 +f 1551//1551 1460//1460 1458//1458 +f 1549//1549 1550//1550 1551//1551 +f 1458//1458 1456//1456 1549//1549 +f 1547//1547 1530//1530 1552//1552 +f 1530//1530 1531//1531 1552//1552 +f 1547//1547 1522//1522 1530//1530 +f 1552//1552 1550//1550 1547//1547 +f 1548//1548 1461//1461 1527//1527 +f 1461//1461 1446//1446 1527//1527 +f 1548//1548 1456//1456 1461//1461 +f 1527//1527 1522//1522 1548//1548 +f 1554//1554 1553//1553 1555//1555 +f 1553//1553 1556//1556 1555//1555 +f 1554//1554 1557//1557 1553//1553 +f 1555//1555 1558//1558 1554//1554 +f 1555//1555 1559//1559 1560//1560 +f 1559//1559 1561//1561 1560//1560 +f 1555//1555 1556//1556 1559//1559 +f 1560//1560 1558//1558 1555//1555 +f 1553//1553 1562//1562 1563//1563 +f 1562//1562 1449//1449 1563//1563 +f 1553//1553 1557//1557 1562//1562 +f 1563//1563 1556//1556 1553//1553 +f 1554//1554 1564//1564 1565//1565 +f 1564//1564 1566//1566 1565//1565 +f 1554//1554 1558//1558 1564//1564 +f 1565//1565 1557//1557 1554//1554 +f 1568//1568 1567//1567 1569//1569 +f 1567//1567 1570//1570 1569//1569 +f 1568//1568 1558//1558 1567//1567 +f 1569//1569 1571//1571 1568//1568 +f 1569//1569 1572//1572 1573//1573 +f 1572//1572 67//67 1573//1573 +f 1569//1569 1570//1570 1572//1572 +f 1573//1573 1571//1571 1569//1569 +f 1567//1567 1560//1560 1574//1574 +f 1560//1560 1561//1561 1574//1574 +f 1567//1567 1558//1558 1560//1560 +f 1574//1574 1570//1570 1567//1567 +f 1568//1568 1575//1575 1564//1564 +f 1575//1575 1566//1566 1564//1564 +f 1568//1568 1571//1571 1575//1575 +f 1564//1564 1558//1558 1568//1568 +f 1577//1577 1576//1576 1578//1578 +f 1576//1576 1477//1477 1578//1578 +f 1577//1577 1556//1556 1576//1576 +f 1578//1578 1579//1579 1577//1577 +f 1578//1578 1479//1479 1580//1580 +f 1479//1479 1480//1480 1580//1580 +f 1578//1578 1477//1477 1479//1479 +f 1580//1580 1579//1579 1578//1578 +f 1576//1576 1563//1563 1482//1482 +f 1563//1563 1449//1449 1482//1482 +f 1576//1576 1556//1556 1563//1563 +f 1482//1482 1477//1477 1576//1576 +f 1577//1577 1581//1581 1559//1559 +f 1581//1581 1561//1561 1559//1559 +f 1577//1577 1579//1579 1581//1581 +f 1559//1559 1556//1556 1577//1577 +f 1583//1583 1582//1582 1584//1584 +f 1582//1582 1585//1585 1584//1584 +f 1583//1583 1557//1557 1582//1582 +f 1584//1584 1466//1466 1583//1583 +f 1584//1584 1586//1586 1468//1468 +f 1586//1586 1470//1470 1468//1468 +f 1584//1584 1585//1585 1586//1586 +f 1468//1468 1466//1466 1584//1584 +f 1582//1582 1565//1565 1587//1587 +f 1565//1565 1566//1566 1587//1587 +f 1582//1582 1557//1557 1565//1565 +f 1587//1587 1585//1585 1582//1582 +f 1583//1583 1471//1471 1562//1562 +f 1471//1471 1449//1449 1562//1562 +f 1583//1583 1466//1466 1471//1471 +f 1562//1562 1557//1557 1583//1583 +f 1589//1589 1588//1588 1590//1590 +f 1588//1588 1591//1591 1590//1590 +f 1589//1589 1592//1592 1588//1588 +f 1590//1590 1593//1593 1589//1589 +f 1590//1590 1594//1594 1595//1595 +f 1594//1594 1596//1596 1595//1595 +f 1590//1590 1591//1591 1594//1594 +f 1595//1595 1593//1593 1590//1590 +f 1588//1588 1597//1597 1598//1598 +f 1597//1597 1599//1599 1598//1598 +f 1588//1588 1592//1592 1597//1597 +f 1598//1598 1591//1591 1588//1588 +f 1589//1589 1600//1600 1601//1601 +f 1600//1600 1602//1602 1601//1601 +f 1589//1589 1593//1593 1600//1600 +f 1601//1601 1592//1592 1589//1589 +f 1604//1604 1603//1603 1605//1605 +f 1603//1603 1606//1606 1605//1605 +f 1604//1604 1593//1593 1603//1603 +f 1605//1605 1607//1607 1604//1604 +f 1605//1605 1608//1608 1609//1609 +f 1608//1608 1460//1460 1609//1609 +f 1605//1605 1606//1606 1608//1608 +f 1609//1609 1607//1607 1605//1605 +f 1603//1603 1595//1595 1610//1610 +f 1595//1595 1596//1596 1610//1610 +f 1603//1603 1593//1593 1595//1595 +f 1610//1610 1606//1606 1603//1603 +f 1604//1604 1611//1611 1600//1600 +f 1611//1611 1602//1602 1600//1600 +f 1604//1604 1607//1607 1611//1611 +f 1600//1600 1593//1593 1604//1604 +f 1613//1613 1612//1612 1614//1614 +f 1612//1612 1615//1615 1614//1614 +f 1613//1613 1591//1591 1612//1612 +f 1614//1614 1616//1616 1613//1613 +f 1614//1614 1617//1617 1618//1618 +f 1617//1617 1619//1619 1618//1618 +f 1614//1614 1615//1615 1617//1617 +f 1618//1618 1616//1616 1614//1614 +f 1612//1612 1598//1598 1620//1620 +f 1598//1598 1599//1599 1620//1620 +f 1612//1612 1591//1591 1598//1598 +f 1620//1620 1615//1615 1612//1612 +f 1613//1613 1621//1621 1594//1594 +f 1621//1621 1596//1596 1594//1594 +f 1613//1613 1616//1616 1621//1621 +f 1594//1594 1591//1591 1613//1613 +f 1623//1623 1622//1622 1624//1624 +f 1622//1622 1625//1625 1624//1624 +f 1623//1623 1592//1592 1622//1622 +f 1624//1624 1626//1626 1623//1623 +f 1624//1624 1627//1627 1628//1628 +f 1627//1627 1629//1629 1628//1628 +f 1624//1624 1625//1625 1627//1627 +f 1628//1628 1626//1626 1624//1624 +f 1622//1622 1601//1601 1630//1630 +f 1601//1601 1602//1602 1630//1630 +f 1622//1622 1592//1592 1601//1601 +f 1630//1630 1625//1625 1622//1622 +f 1623//1623 1631//1631 1597//1597 +f 1631//1631 1599//1599 1597//1597 +f 1623//1623 1626//1626 1631//1631 +f 1597//1597 1592//1592 1623//1623 +f 1633//1633 1632//1632 1634//1634 +f 1632//1632 1635//1635 1634//1634 +f 1633//1633 1636//1636 1632//1632 +f 1634//1634 1637//1637 1633//1633 +f 1634//1634 1638//1638 1639//1639 +f 1638//1638 1531//1531 1639//1639 +f 1634//1634 1635//1635 1638//1638 +f 1639//1639 1637//1637 1634//1634 +f 1632//1632 1640//1640 1641//1641 +f 1640//1640 1602//1602 1641//1641 +f 1632//1632 1636//1636 1640//1640 +f 1641//1641 1635//1635 1632//1632 +f 1633//1633 1642//1642 1643//1643 +f 1642//1642 1644//1644 1643//1643 +f 1633//1633 1637//1637 1642//1642 +f 1643//1643 1636//1636 1633//1633 +f 1646//1646 1645//1645 1647//1647 +f 1645//1645 1536//1536 1647//1647 +f 1646//1646 1637//1637 1645//1645 +f 1647//1647 1648//1648 1646//1646 +f 1647//1647 1538//1538 1649//1649 +f 1538//1538 1138//1138 1649//1649 +f 1647//1647 1536//1536 1538//1538 +f 1649//1649 1648//1648 1647//1647 +f 1645//1645 1639//1639 1540//1540 +f 1639//1639 1531//1531 1540//1540 +f 1645//1645 1637//1637 1639//1639 +f 1540//1540 1536//1536 1645//1645 +f 1646//1646 1650//1650 1642//1642 +f 1650//1650 1644//1644 1642//1642 +f 1646//1646 1648//1648 1650//1650 +f 1642//1642 1637//1637 1646//1646 +f 1652//1652 1651//1651 1653//1653 +f 1651//1651 1607//1607 1653//1653 +f 1652//1652 1635//1635 1651//1651 +f 1653//1653 1550//1550 1652//1652 +f 1653//1653 1609//1609 1551//1551 +f 1609//1609 1460//1460 1551//1551 +f 1653//1653 1607//1607 1609//1609 +f 1551//1551 1550//1550 1653//1653 +f 1651//1651 1641//1641 1611//1611 +f 1641//1641 1602//1602 1611//1611 +f 1651//1651 1635//1635 1641//1641 +f 1611//1611 1607//1607 1651//1651 +f 1652//1652 1552//1552 1638//1638 +f 1552//1552 1531//1531 1638//1638 +f 1652//1652 1550//1550 1552//1552 +f 1638//1638 1635//1635 1652//1652 +f 1655//1655 1654//1654 1656//1656 +f 1654//1654 1657//1657 1656//1656 +f 1655//1655 1636//1636 1654//1654 +f 1656//1656 1625//1625 1655//1655 +f 1656//1656 1658//1658 1627//1627 +f 1658//1658 1629//1629 1627//1627 +f 1656//1656 1657//1657 1658//1658 +f 1627//1627 1625//1625 1656//1656 +f 1654//1654 1643//1643 1659//1659 +f 1643//1643 1644//1644 1659//1659 +f 1654//1654 1636//1636 1643//1643 +f 1659//1659 1657//1657 1654//1654 +f 1655//1655 1630//1630 1640//1640 +f 1630//1630 1602//1602 1640//1640 +f 1655//1655 1625//1625 1630//1630 +f 1640//1640 1636//1636 1655//1655 +f 1661//1661 1660//1660 1662//1662 +f 1660//1660 1663//1663 1662//1662 +f 1661//1661 1664//1664 1660//1660 +f 1662//1662 1665//1665 1661//1661 +f 1662//1662 1666//1666 1667//1667 +f 1666//1666 1668//1668 1667//1667 +f 1662//1662 1663//1663 1666//1666 +f 1667//1667 1665//1665 1662//1662 +f 1660//1660 1669//1669 1670//1670 +f 1669//1669 1596//1596 1670//1670 +f 1660//1660 1664//1664 1669//1669 +f 1670//1670 1663//1663 1660//1660 +f 1661//1661 1671//1671 1672//1672 +f 1671//1671 1491//1491 1672//1672 +f 1661//1661 1665//1665 1671//1671 +f 1672//1672 1664//1664 1661//1661 +f 1674//1674 1673//1673 1675//1675 +f 1673//1673 1676//1676 1675//1675 +f 1674//1674 1665//1665 1673//1673 +f 1675//1675 1500//1500 1674//1674 +f 1675//1675 1677//1677 1502//1502 +f 1677//1677 715//715 1502//1502 +f 1675//1675 1676//1676 1677//1677 +f 1502//1502 1500//1500 1675//1675 +f 1673//1673 1667//1667 1678//1678 +f 1667//1667 1668//1668 1678//1678 +f 1673//1673 1665//1665 1667//1667 +f 1678//1678 1676//1676 1673//1673 +f 1674//1674 1504//1504 1671//1671 +f 1504//1504 1491//1491 1671//1671 +f 1674//1674 1500//1500 1504//1504 +f 1671//1671 1665//1665 1674//1674 +f 1680//1680 1679//1679 1681//1681 +f 1679//1679 1616//1616 1681//1681 +f 1680//1680 1663//1663 1679//1679 +f 1681//1681 1682//1682 1680//1680 +f 1681//1681 1618//1618 1683//1683 +f 1618//1618 1619//1619 1683//1683 +f 1681//1681 1616//1616 1618//1618 +f 1683//1683 1682//1682 1681//1681 +f 1679//1679 1670//1670 1621//1621 +f 1670//1670 1596//1596 1621//1621 +f 1679//1679 1663//1663 1670//1670 +f 1621//1621 1616//1616 1679//1679 +f 1680//1680 1684//1684 1666//1666 +f 1684//1684 1668//1668 1666//1666 +f 1680//1680 1682//1682 1684//1684 +f 1666//1666 1663//1663 1680//1680 +f 1686//1686 1685//1685 1687//1687 +f 1685//1685 1509//1509 1687//1687 +f 1686//1686 1664//1664 1685//1685 +f 1687//1687 1606//1606 1686//1686 +f 1687//1687 1510//1510 1608//1608 +f 1510//1510 1460//1460 1608//1608 +f 1687//1687 1509//1509 1510//1510 +f 1608//1608 1606//1606 1687//1687 +f 1685//1685 1672//1672 1511//1511 +f 1672//1672 1491//1491 1511//1511 +f 1685//1685 1664//1664 1672//1672 +f 1511//1511 1509//1509 1685//1685 +f 1686//1686 1610//1610 1669//1669 +f 1610//1610 1596//1596 1669//1669 +f 1686//1686 1606//1606 1610//1610 +f 1669//1669 1664//1664 1686//1686 +f 1689//1689 1688//1688 1690//1690 +f 1688//1688 1691//1691 1690//1690 +f 1689//1689 1692//1692 1688//1688 +f 1690//1690 1693//1693 1689//1689 +f 1690//1690 1694//1694 1695//1695 +f 1694//1694 1696//1696 1695//1695 +f 1690//1690 1691//1691 1694//1694 +f 1695//1695 1693//1693 1690//1690 +f 1688//1688 1697//1697 1698//1698 +f 1697//1697 1599//1599 1698//1698 +f 1688//1688 1692//1692 1697//1697 +f 1698//1698 1691//1691 1688//1688 +f 1689//1689 1699//1699 1700//1700 +f 1699//1699 1701//1701 1700//1700 +f 1689//1689 1693//1693 1699//1699 +f 1700//1700 1692//1692 1689//1689 +f 1703//1703 1702//1702 1704//1704 +f 1702//1702 1705//1705 1704//1704 +f 1703//1703 1693//1693 1702//1702 +f 1704//1704 1706//1706 1703//1703 +f 1704//1704 1707//1707 1708//1708 +f 1707//1707 392//392 1708//1708 +f 1704//1704 1705//1705 1707//1707 +f 1708//1708 1706//1706 1704//1704 +f 1702//1702 1695//1695 1709//1709 +f 1695//1695 1696//1696 1709//1709 +f 1702//1702 1693//1693 1695//1695 +f 1709//1709 1705//1705 1702//1702 +f 1703//1703 1710//1710 1699//1699 +f 1710//1710 1701//1701 1699//1699 +f 1703//1703 1706//1706 1710//1710 +f 1699//1699 1693//1693 1703//1703 +f 1712//1712 1711//1711 1713//1713 +f 1711//1711 1626//1626 1713//1713 +f 1712//1712 1691//1691 1711//1711 +f 1713//1713 1714//1714 1712//1712 +f 1713//1713 1628//1628 1715//1715 +f 1628//1628 1629//1629 1715//1715 +f 1713//1713 1626//1626 1628//1628 +f 1715//1715 1714//1714 1713//1713 +f 1711//1711 1698//1698 1631//1631 +f 1698//1698 1599//1599 1631//1631 +f 1711//1711 1691//1691 1698//1698 +f 1631//1631 1626//1626 1711//1711 +f 1712//1712 1716//1716 1694//1694 +f 1716//1716 1696//1696 1694//1694 +f 1712//1712 1714//1714 1716//1716 +f 1694//1694 1691//1691 1712//1712 +f 1718//1718 1717//1717 1719//1719 +f 1717//1717 1720//1720 1719//1719 +f 1718//1718 1692//1692 1717//1717 +f 1719//1719 1615//1615 1718//1718 +f 1719//1719 1721//1721 1617//1617 +f 1721//1721 1619//1619 1617//1617 +f 1719//1719 1720//1720 1721//1721 +f 1617//1617 1615//1615 1719//1719 +f 1717//1717 1700//1700 1722//1722 +f 1700//1700 1701//1701 1722//1722 +f 1717//1717 1692//1692 1700//1700 +f 1722//1722 1720//1720 1717//1717 +f 1718//1718 1620//1620 1697//1697 +f 1620//1620 1599//1599 1697//1697 +f 1718//1718 1615//1615 1620//1620 +f 1697//1697 1692//1692 1718//1718 +f 1724//1724 1723//1723 1725//1725 +f 1723//1723 1726//1726 1725//1725 +f 1724//1724 1727//1727 1723//1723 +f 1725//1725 1728//1728 1724//1724 +f 1725//1725 1729//1729 1730//1730 +f 1729//1729 1731//1731 1730//1730 +f 1725//1725 1726//1726 1729//1729 +f 1730//1730 1728//1728 1725//1725 +f 1723//1723 1732//1732 1733//1733 +f 1732//1732 1734//1734 1733//1733 +f 1723//1723 1727//1727 1732//1732 +f 1733//1733 1726//1726 1723//1723 +f 1724//1724 1735//1735 1736//1736 +f 1735//1735 1737//1737 1736//1736 +f 1724//1724 1728//1728 1735//1735 +f 1736//1736 1727//1727 1724//1724 +f 1739//1739 1738//1738 1740//1740 +f 1738//1738 1741//1741 1740//1740 +f 1739//1739 1728//1728 1738//1738 +f 1740//1740 1742//1742 1739//1739 +f 1740//1740 1743//1743 1744//1744 +f 1743//1743 1334//1334 1744//1744 +f 1740//1740 1741//1741 1743//1743 +f 1744//1744 1742//1742 1740//1740 +f 1738//1738 1730//1730 1745//1745 +f 1730//1730 1731//1731 1745//1745 +f 1738//1738 1728//1728 1730//1730 +f 1745//1745 1741//1741 1738//1738 +f 1739//1739 1746//1746 1735//1735 +f 1746//1746 1737//1737 1735//1735 +f 1739//1739 1742//1742 1746//1746 +f 1735//1735 1728//1728 1739//1739 +f 1748//1748 1747//1747 1749//1749 +f 1747//1747 1750//1750 1749//1749 +f 1748//1748 1726//1726 1747//1747 +f 1749//1749 1751//1751 1748//1748 +f 1749//1749 1752//1752 1753//1753 +f 1752//1752 761//761 1753//1753 +f 1749//1749 1750//1750 1752//1752 +f 1753//1753 1751//1751 1749//1749 +f 1747//1747 1733//1733 1754//1754 +f 1733//1733 1734//1734 1754//1754 +f 1747//1747 1726//1726 1733//1733 +f 1754//1754 1750//1750 1747//1747 +f 1748//1748 1755//1755 1729//1729 +f 1755//1755 1731//1731 1729//1729 +f 1748//1748 1751//1751 1755//1755 +f 1729//1729 1726//1726 1748//1748 +f 1757//1757 1756//1756 1758//1758 +f 1756//1756 1759//1759 1758//1758 +f 1757//1757 1727//1727 1756//1756 +f 1758//1758 1760//1760 1757//1757 +f 1758//1758 1761//1761 1762//1762 +f 1761//1761 33//33 1762//1762 +f 1758//1758 1759//1759 1761//1761 +f 1762//1762 1760//1760 1758//1758 +f 1756//1756 1736//1736 1763//1763 +f 1736//1736 1737//1737 1763//1763 +f 1756//1756 1727//1727 1736//1736 +f 1763//1763 1759//1759 1756//1756 +f 1757//1757 1764//1764 1732//1732 +f 1764//1764 1734//1734 1732//1732 +f 1757//1757 1760//1760 1764//1764 +f 1732//1732 1727//1727 1757//1757 +f 1766//1766 1765//1765 1767//1767 +f 1765//1765 1768//1768 1767//1767 +f 1766//1766 1769//1769 1765//1765 +f 1767//1767 1770//1770 1766//1766 +f 1767//1767 1771//1771 1772//1772 +f 1771//1771 1416//1416 1772//1772 +f 1767//1767 1768//1768 1771//1771 +f 1772//1772 1770//1770 1767//1767 +f 1765//1765 1773//1773 1774//1774 +f 1773//1773 1737//1737 1774//1774 +f 1765//1765 1769//1769 1773//1773 +f 1774//1774 1768//1768 1765//1765 +f 1766//1766 1775//1775 1776//1776 +f 1775//1775 90//90 1776//1776 +f 1766//1766 1770//1770 1775//1775 +f 1776//1776 1769//1769 1766//1766 +f 1778//1778 1777//1777 1779//1779 +f 1777//1777 1421//1421 1779//1779 +f 1778//1778 1770//1770 1777//1777 +f 1779//1779 99//99 1778//1778 +f 1779//1779 1423//1423 101//101 +f 1423//1423 103//103 101//101 +f 1779//1779 1421//1421 1423//1423 +f 101//101 99//99 1779//1779 +f 1777//1777 1772//1772 1425//1425 +f 1772//1772 1416//1416 1425//1425 +f 1777//1777 1770//1770 1772//1772 +f 1425//1425 1421//1421 1777//1777 +f 1778//1778 104//104 1775//1775 +f 104//104 90//90 1775//1775 +f 1778//1778 99//99 104//104 +f 1775//1775 1770//1770 1778//1778 +f 1781//1781 1780//1780 1782//1782 +f 1780//1780 1742//1742 1782//1782 +f 1781//1781 1768//1768 1780//1780 +f 1782//1782 1435//1435 1781//1781 +f 1782//1782 1744//1744 1436//1436 +f 1744//1744 1334//1334 1436//1436 +f 1782//1782 1742//1742 1744//1744 +f 1436//1436 1435//1435 1782//1782 +f 1780//1780 1774//1774 1746//1746 +f 1774//1774 1737//1737 1746//1746 +f 1780//1780 1768//1768 1774//1774 +f 1746//1746 1742//1742 1780//1780 +f 1781//1781 1437//1437 1771//1771 +f 1437//1437 1416//1416 1771//1771 +f 1781//1781 1435//1435 1437//1437 +f 1771//1771 1768//1768 1781//1781 +f 1784//1784 1783//1783 1785//1785 +f 1783//1783 109//109 1785//1785 +f 1784//1784 1769//1769 1783//1783 +f 1785//1785 1759//1759 1784//1784 +f 1785//1785 110//110 1761//1761 +f 110//110 33//33 1761//1761 +f 1785//1785 109//109 110//110 +f 1761//1761 1759//1759 1785//1785 +f 1783//1783 1776//1776 111//111 +f 1776//1776 90//90 111//111 +f 1783//1783 1769//1769 1776//1776 +f 111//111 109//109 1783//1783 +f 1784//1784 1763//1763 1773//1773 +f 1763//1763 1737//1737 1773//1773 +f 1784//1784 1759//1759 1763//1763 +f 1773//1773 1769//1769 1784//1784 +f 1787//1787 1786//1786 1788//1788 +f 1786//1786 1789//1789 1788//1788 +f 1787//1787 1790//1790 1786//1786 +f 1788//1788 1791//1791 1787//1787 +f 1788//1788 1792//1792 1793//1793 +f 1792//1792 843//843 1793//1793 +f 1788//1788 1789//1789 1792//1792 +f 1793//1793 1791//1791 1788//1788 +f 1786//1786 1794//1794 1795//1795 +f 1794//1794 1731//1731 1795//1795 +f 1786//1786 1790//1790 1794//1794 +f 1795//1795 1789//1789 1786//1786 +f 1787//1787 1796//1796 1797//1797 +f 1796//1796 1383//1383 1797//1797 +f 1787//1787 1791//1791 1796//1796 +f 1797//1797 1790//1790 1787//1787 +f 1799//1799 1798//1798 1800//1800 +f 1798//1798 848//848 1800//1800 +f 1799//1799 1791//1791 1798//1798 +f 1800//1800 1391//1391 1799//1799 +f 1800//1800 850//850 1392//1392 +f 850//850 851//851 1392//1392 +f 1800//1800 848//848 850//850 +f 1392//1392 1391//1391 1800//1800 +f 1798//1798 1793//1793 853//853 +f 1793//1793 843//843 853//853 +f 1798//1798 1791//1791 1793//1793 +f 853//853 848//848 1798//1798 +f 1799//1799 1393//1393 1796//1796 +f 1393//1393 1383//1383 1796//1796 +f 1799//1799 1391//1391 1393//1393 +f 1796//1796 1791//1791 1799//1799 +f 1802//1802 1801//1801 1803//1803 +f 1801//1801 1751//1751 1803//1803 +f 1802//1802 1789//1789 1801//1801 +f 1803//1803 863//863 1802//1802 +f 1803//1803 1753//1753 864//864 +f 1753//1753 761//761 864//864 +f 1803//1803 1751//1751 1753//1753 +f 864//864 863//863 1803//1803 +f 1801//1801 1795//1795 1755//1755 +f 1795//1795 1731//1731 1755//1755 +f 1801//1801 1789//1789 1795//1795 +f 1755//1755 1751//1751 1801//1801 +f 1802//1802 865//865 1792//1792 +f 865//865 843//843 1792//1792 +f 1802//1802 863//863 865//865 +f 1792//1792 1789//1789 1802//1802 +f 1805//1805 1804//1804 1806//1806 +f 1804//1804 1397//1397 1806//1806 +f 1805//1805 1790//1790 1804//1804 +f 1806//1806 1741//1741 1805//1805 +f 1806//1806 1398//1398 1743//1743 +f 1398//1398 1334//1334 1743//1743 +f 1806//1806 1397//1397 1398//1398 +f 1743//1743 1741//1741 1806//1806 +f 1804//1804 1797//1797 1399//1399 +f 1797//1797 1383//1383 1399//1399 +f 1804//1804 1790//1790 1797//1797 +f 1399//1399 1397//1397 1804//1804 +f 1805//1805 1745//1745 1794//1794 +f 1745//1745 1731//1731 1794//1794 +f 1805//1805 1741//1741 1745//1745 +f 1794//1794 1790//1790 1805//1805 +f 1808//1808 1807//1807 1809//1809 +f 1807//1807 1810//1810 1809//1809 +f 1808//1808 1811//1811 1807//1807 +f 1809//1809 1812//1812 1808//1808 +f 1809//1809 1813//1813 1814//1814 +f 1813//1813 131//131 1814//1814 +f 1809//1809 1810//1810 1813//1813 +f 1814//1814 1812//1812 1809//1809 +f 1807//1807 1815//1815 1816//1816 +f 1815//1815 1734//1734 1816//1816 +f 1807//1807 1811//1811 1815//1815 +f 1816//1816 1810//1810 1807//1807 +f 1808//1808 1817//1817 1818//1818 +f 1817//1817 810//810 1818//1818 +f 1808//1808 1812//1812 1817//1817 +f 1818//1818 1811//1811 1808//1808 +f 1820//1820 1819//1819 1821//1821 +f 1819//1819 136//136 1821//1821 +f 1820//1820 1812//1812 1819//1819 +f 1821//1821 818//818 1820//1820 +f 1821//1821 138//138 819//819 +f 138//138 139//139 819//819 +f 1821//1821 136//136 138//138 +f 819//819 818//818 1821//1821 +f 1819//1819 1814//1814 141//141 +f 1814//1814 131//131 141//141 +f 1819//1819 1812//1812 1814//1814 +f 141//141 136//136 1819//1819 +f 1820//1820 820//820 1817//1817 +f 820//820 810//810 1817//1817 +f 1820//1820 818//818 820//820 +f 1817//1817 1812//1812 1820//1820 +f 1823//1823 1822//1822 1824//1824 +f 1822//1822 1760//1760 1824//1824 +f 1823//1823 1810//1810 1822//1822 +f 1824//1824 151//151 1823//1823 +f 1824//1824 1762//1762 152//152 +f 1762//1762 33//33 152//152 +f 1824//1824 1760//1760 1762//1762 +f 152//152 151//151 1824//1824 +f 1822//1822 1816//1816 1764//1764 +f 1816//1816 1734//1734 1764//1764 +f 1822//1822 1810//1810 1816//1816 +f 1764//1764 1760//1760 1822//1822 +f 1823//1823 153//153 1813//1813 +f 153//153 131//131 1813//1813 +f 1823//1823 151//151 153//153 +f 1813//1813 1810//1810 1823//1823 +f 1826//1826 1825//1825 1827//1827 +f 1825//1825 824//824 1827//1827 +f 1826//1826 1811//1811 1825//1825 +f 1827//1827 1750//1750 1826//1826 +f 1827//1827 825//825 1752//1752 +f 825//825 761//761 1752//1752 +f 1827//1827 824//824 825//825 +f 1752//1752 1750//1750 1827//1827 +f 1825//1825 1818//1818 826//826 +f 1818//1818 810//810 826//826 +f 1825//1825 1811//1811 1818//1818 +f 826//826 824//824 1825//1825 +f 1826//1826 1754//1754 1815//1815 +f 1754//1754 1734//1734 1815//1815 +f 1826//1826 1750//1750 1754//1754 +f 1815//1815 1811//1811 1826//1826 +f 1829//1829 1828//1828 1830//1830 +f 1828//1828 1831//1831 1830//1830 +f 1829//1829 1832//1832 1828//1828 +f 1830//1830 1833//1833 1829//1829 +f 1830//1830 1834//1834 1835//1835 +f 1834//1834 1836//1836 1835//1835 +f 1830//1830 1831//1831 1834//1834 +f 1835//1835 1833//1833 1830//1830 +f 1828//1828 1837//1837 1838//1838 +f 1837//1837 1839//1839 1838//1838 +f 1828//1828 1832//1832 1837//1837 +f 1838//1838 1831//1831 1828//1828 +f 1829//1829 1840//1840 1841//1841 +f 1840//1840 1842//1842 1841//1841 +f 1829//1829 1833//1833 1840//1840 +f 1841//1841 1832//1832 1829//1829 +f 1844//1844 1843//1843 1845//1845 +f 1843//1843 1846//1846 1845//1845 +f 1844//1844 1833//1833 1843//1843 +f 1845//1845 1847//1847 1844//1844 +f 1845//1845 1848//1848 1849//1849 +f 1848//1848 195//195 1849//1849 +f 1845//1845 1846//1846 1848//1848 +f 1849//1849 1847//1847 1845//1845 +f 1843//1843 1835//1835 1850//1850 +f 1835//1835 1836//1836 1850//1850 +f 1843//1843 1833//1833 1835//1835 +f 1850//1850 1846//1846 1843//1843 +f 1844//1844 1851//1851 1840//1840 +f 1851//1851 1842//1842 1840//1840 +f 1844//1844 1847//1847 1851//1851 +f 1840//1840 1833//1833 1844//1844 +f 1853//1853 1852//1852 1854//1854 +f 1852//1852 1855//1855 1854//1854 +f 1853//1853 1831//1831 1852//1852 +f 1854//1854 1856//1856 1853//1853 +f 1854//1854 1857//1857 1858//1858 +f 1857//1857 908//908 1858//1858 +f 1854//1854 1855//1855 1857//1857 +f 1858//1858 1856//1856 1854//1854 +f 1852//1852 1838//1838 1859//1859 +f 1838//1838 1839//1839 1859//1859 +f 1852//1852 1831//1831 1838//1838 +f 1859//1859 1855//1855 1852//1852 +f 1853//1853 1860//1860 1834//1834 +f 1860//1860 1836//1836 1834//1834 +f 1853//1853 1856//1856 1860//1860 +f 1834//1834 1831//1831 1853//1853 +f 1862//1862 1861//1861 1863//1863 +f 1861//1861 1864//1864 1863//1863 +f 1862//1862 1832//1832 1861//1861 +f 1863//1863 1865//1865 1862//1862 +f 1863//1863 1866//1866 1867//1867 +f 1866//1866 1344//1344 1867//1867 +f 1863//1863 1864//1864 1866//1866 +f 1867//1867 1865//1865 1863//1863 +f 1861//1861 1841//1841 1868//1868 +f 1841//1841 1842//1842 1868//1868 +f 1861//1861 1832//1832 1841//1841 +f 1868//1868 1864//1864 1861//1861 +f 1862//1862 1869//1869 1837//1837 +f 1869//1869 1839//1839 1837//1837 +f 1862//1862 1865//1865 1869//1869 +f 1837//1837 1832//1832 1862//1862 +f 1871//1871 1870//1870 1872//1872 +f 1870//1870 1873//1873 1872//1872 +f 1871//1871 1874//1874 1870//1870 +f 1872//1872 1875//1875 1871//1871 +f 1872//1872 1876//1876 1877//1877 +f 1876//1876 210//210 1877//1877 +f 1872//1872 1873//1873 1876//1876 +f 1877//1877 1875//1875 1872//1872 +f 1870//1870 1878//1878 1879//1879 +f 1878//1878 1842//1842 1879//1879 +f 1870//1870 1874//1874 1878//1878 +f 1879//1879 1873//1873 1870//1870 +f 1871//1871 1880//1880 1881//1881 +f 1880//1880 1411//1411 1881//1881 +f 1871//1871 1875//1875 1880//1880 +f 1881//1881 1874//1874 1871//1871 +f 1883//1883 1882//1882 1884//1884 +f 1882//1882 214//214 1884//1884 +f 1883//1883 1875//1875 1882//1882 +f 1884//1884 1420//1420 1883//1883 +f 1884//1884 215//215 1422//1422 +f 215//215 103//103 1422//1422 +f 1884//1884 214//214 215//215 +f 1422//1422 1420//1420 1884//1884 +f 1882//1882 1877//1877 216//216 +f 1877//1877 210//210 216//216 +f 1882//1882 1875//1875 1877//1877 +f 216//216 214//214 1882//1882 +f 1883//1883 1424//1424 1880//1880 +f 1424//1424 1411//1411 1880//1880 +f 1883//1883 1420//1420 1424//1424 +f 1880//1880 1875//1875 1883//1883 +f 1886//1886 1885//1885 1887//1887 +f 1885//1885 1847//1847 1887//1887 +f 1886//1886 1873//1873 1885//1885 +f 1887//1887 223//223 1886//1886 +f 1887//1887 1849//1849 224//224 +f 1849//1849 195//195 224//224 +f 1887//1887 1847//1847 1849//1849 +f 224//224 223//223 1887//1887 +f 1885//1885 1879//1879 1851//1851 +f 1879//1879 1842//1842 1851//1851 +f 1885//1885 1873//1873 1879//1879 +f 1851//1851 1847//1847 1885//1885 +f 1886//1886 225//225 1876//1876 +f 225//225 210//210 1876//1876 +f 1886//1886 223//223 225//225 +f 1876//1876 1873//1873 1886//1886 +f 1889//1889 1888//1888 1890//1890 +f 1888//1888 1429//1429 1890//1890 +f 1889//1889 1874//1874 1888//1888 +f 1890//1890 1864//1864 1889//1889 +f 1890//1890 1430//1430 1866//1866 +f 1430//1430 1344//1344 1866//1866 +f 1890//1890 1429//1429 1430//1430 +f 1866//1866 1864//1864 1890//1890 +f 1888//1888 1881//1881 1431//1431 +f 1881//1881 1411//1411 1431//1431 +f 1888//1888 1874//1874 1881//1881 +f 1431//1431 1429//1429 1888//1888 +f 1889//1889 1868//1868 1878//1878 +f 1868//1868 1842//1842 1878//1878 +f 1889//1889 1864//1864 1868//1868 +f 1878//1878 1874//1874 1889//1889 +f 1892//1892 1891//1891 1893//1893 +f 1891//1891 1894//1894 1893//1893 +f 1892//1892 1895//1895 1891//1891 +f 1893//1893 1896//1896 1892//1892 +f 1893//1893 1897//1897 1898//1898 +f 1897//1897 924//924 1898//1898 +f 1893//1893 1894//1894 1897//1897 +f 1898//1898 1896//1896 1893//1893 +f 1891//1891 1899//1899 1900//1900 +f 1899//1899 1836//1836 1900//1900 +f 1891//1891 1895//1895 1899//1899 +f 1900//1900 1894//1894 1891//1891 +f 1892//1892 1901//1901 1902//1902 +f 1901//1901 262//262 1902//1902 +f 1892//1892 1896//1896 1901//1901 +f 1902//1902 1895//1895 1892//1892 +f 1904//1904 1903//1903 1905//1905 +f 1903//1903 929//929 1905//1905 +f 1904//1904 1896//1896 1903//1903 +f 1905//1905 271//271 1904//1904 +f 1905//1905 931//931 273//273 +f 931//931 275//275 273//273 +f 1905//1905 929//929 931//931 +f 273//273 271//271 1905//1905 +f 1903//1903 1898//1898 933//933 +f 1898//1898 924//924 933//933 +f 1903//1903 1896//1896 1898//1898 +f 933//933 929//929 1903//1903 +f 1904//1904 276//276 1901//1901 +f 276//276 262//262 1901//1901 +f 1904//1904 271//271 276//276 +f 1901//1901 1896//1896 1904//1904 +f 1907//1907 1906//1906 1908//1908 +f 1906//1906 1856//1856 1908//1908 +f 1907//1907 1894//1894 1906//1906 +f 1908//1908 943//943 1907//1907 +f 1908//1908 1858//1858 944//944 +f 1858//1858 908//908 944//944 +f 1908//1908 1856//1856 1858//1858 +f 944//944 943//943 1908//1908 +f 1906//1906 1900//1900 1860//1860 +f 1900//1900 1836//1836 1860//1860 +f 1906//1906 1894//1894 1900//1900 +f 1860//1860 1856//1856 1906//1906 +f 1907//1907 945//945 1897//1897 +f 945//945 924//924 1897//1897 +f 1907//1907 943//943 945//945 +f 1897//1897 1894//1894 1907//1907 +f 1910//1910 1909//1909 1911//1911 +f 1909//1909 281//281 1911//1911 +f 1910//1910 1895//1895 1909//1909 +f 1911//1911 1846//1846 1910//1910 +f 1911//1911 282//282 1848//1848 +f 282//282 195//195 1848//1848 +f 1911//1911 281//281 282//282 +f 1848//1848 1846//1846 1911//1911 +f 1909//1909 1902//1902 283//283 +f 1902//1902 262//262 283//283 +f 1909//1909 1895//1895 1902//1902 +f 283//283 281//281 1909//1909 +f 1910//1910 1850//1850 1899//1899 +f 1850//1850 1836//1836 1899//1899 +f 1910//1910 1846//1846 1850//1850 +f 1899//1899 1895//1895 1910//1910 +f 1913//1913 1912//1912 1914//1914 +f 1912//1912 1915//1915 1914//1914 +f 1913//1913 1916//1916 1912//1912 +f 1914//1914 1917//1917 1913//1913 +f 1914//1914 1918//1918 1919//1919 +f 1918//1918 1359//1359 1919//1919 +f 1914//1914 1915//1915 1918//1918 +f 1919//1919 1917//1917 1914//1914 +f 1912//1912 1920//1920 1921//1921 +f 1920//1920 1839//1839 1921//1921 +f 1912//1912 1916//1916 1920//1920 +f 1921//1921 1915//1915 1912//1912 +f 1913//1913 1922//1922 1923//1923 +f 1922//1922 989//989 1923//1923 +f 1913//1913 1917//1917 1922//1922 +f 1923//1923 1916//1916 1913//1913 +f 1925//1925 1924//1924 1926//1926 +f 1924//1924 1363//1363 1926//1926 +f 1925//1925 1917//1917 1924//1924 +f 1926//1926 998//998 1925//1925 +f 1926//1926 1364//1364 1000//1000 +f 1364//1364 1002//1002 1000//1000 +f 1926//1926 1363//1363 1364//1364 +f 1000//1000 998//998 1926//1926 +f 1924//1924 1919//1919 1365//1365 +f 1919//1919 1359//1359 1365//1365 +f 1924//1924 1917//1917 1919//1919 +f 1365//1365 1363//1363 1924//1924 +f 1925//1925 1003//1003 1922//1922 +f 1003//1003 989//989 1922//1922 +f 1925//1925 998//998 1003//1003 +f 1922//1922 1917//1917 1925//1925 +f 1928//1928 1927//1927 1929//1929 +f 1927//1927 1865//1865 1929//1929 +f 1928//1928 1915//1915 1927//1927 +f 1929//1929 1372//1372 1928//1928 +f 1929//1929 1867//1867 1373//1373 +f 1867//1867 1344//1344 1373//1373 +f 1929//1929 1865//1865 1867//1867 +f 1373//1373 1372//1372 1929//1929 +f 1927//1927 1921//1921 1869//1869 +f 1921//1921 1839//1839 1869//1869 +f 1927//1927 1915//1915 1921//1921 +f 1869//1869 1865//1865 1927//1927 +f 1928//1928 1374//1374 1918//1918 +f 1374//1374 1359//1359 1918//1918 +f 1928//1928 1372//1372 1374//1374 +f 1918//1918 1915//1915 1928//1928 +f 1931//1931 1930//1930 1932//1932 +f 1930//1930 1008//1008 1932//1932 +f 1931//1931 1916//1916 1930//1930 +f 1932//1932 1855//1855 1931//1931 +f 1932//1932 1009//1009 1857//1857 +f 1009//1009 908//908 1857//1857 +f 1932//1932 1008//1008 1009//1009 +f 1857//1857 1855//1855 1932//1932 +f 1930//1930 1923//1923 1010//1010 +f 1923//1923 989//989 1010//1010 +f 1930//1930 1916//1916 1923//1923 +f 1010//1010 1008//1008 1930//1930 +f 1931//1931 1859//1859 1920//1920 +f 1859//1859 1839//1839 1920//1920 +f 1931//1931 1855//1855 1859//1859 +f 1920//1920 1916//1916 1931//1931 +f 1934//1934 1933//1933 1935//1935 +f 1933//1933 1936//1936 1935//1935 +f 1934//1934 1937//1937 1933//1933 +f 1935//1935 1938//1938 1934//1934 +f 1935//1935 1939//1939 1940//1940 +f 1939//1939 1941//1941 1940//1940 +f 1935//1935 1936//1936 1939//1939 +f 1940//1940 1938//1938 1935//1935 +f 1933//1933 1942//1942 1943//1943 +f 1942//1942 1944//1944 1943//1943 +f 1933//1933 1937//1937 1942//1942 +f 1943//1943 1936//1936 1933//1933 +f 1934//1934 1945//1945 1946//1946 +f 1945//1945 1947//1947 1946//1946 +f 1934//1934 1938//1938 1945//1945 +f 1946//1946 1937//1937 1934//1934 +f 1949//1949 1948//1948 1950//1950 +f 1948//1948 1951//1951 1950//1950 +f 1949//1949 1938//1938 1948//1948 +f 1950//1950 1952//1952 1949//1949 +f 1950//1950 1953//1953 1954//1954 +f 1953//1953 43//43 1954//1954 +f 1950//1950 1951//1951 1953//1953 +f 1954//1954 1952//1952 1950//1950 +f 1948//1948 1940//1940 1955//1955 +f 1940//1940 1941//1941 1955//1955 +f 1948//1948 1938//1938 1940//1940 +f 1955//1955 1951//1951 1948//1948 +f 1949//1949 1956//1956 1945//1945 +f 1956//1956 1947//1947 1945//1945 +f 1949//1949 1952//1952 1956//1956 +f 1945//1945 1938//1938 1949//1949 +f 1958//1958 1957//1957 1959//1959 +f 1957//1957 1960//1960 1959//1959 +f 1958//1958 1936//1936 1957//1957 +f 1959//1959 1961//1961 1958//1958 +f 1959//1959 1962//1962 1963//1963 +f 1962//1962 621//621 1963//1963 +f 1959//1959 1960//1960 1962//1962 +f 1963//1963 1961//1961 1959//1959 +f 1957//1957 1943//1943 1964//1964 +f 1943//1943 1944//1944 1964//1964 +f 1957//1957 1936//1936 1943//1943 +f 1964//1964 1960//1960 1957//1957 +f 1958//1958 1965//1965 1939//1939 +f 1965//1965 1941//1941 1939//1939 +f 1958//1958 1961//1961 1965//1965 +f 1939//1939 1936//1936 1958//1958 +f 1967//1967 1966//1966 1968//1968 +f 1966//1966 1969//1969 1968//1968 +f 1967//1967 1937//1937 1966//1966 +f 1968//1968 1970//1970 1967//1967 +f 1968//1968 1971//1971 1972//1972 +f 1971//1971 1480//1480 1972//1972 +f 1968//1968 1969//1969 1971//1971 +f 1972//1972 1970//1970 1968//1968 +f 1966//1966 1946//1946 1973//1973 +f 1946//1946 1947//1947 1973//1973 +f 1966//1966 1937//1937 1946//1946 +f 1973//1973 1969//1969 1966//1966 +f 1967//1967 1974//1974 1942//1942 +f 1974//1974 1944//1944 1942//1942 +f 1967//1967 1970//1970 1974//1974 +f 1942//1942 1937//1937 1967//1967 +f 1976//1976 1975//1975 1977//1977 +f 1975//1975 1978//1978 1977//1977 +f 1976//1976 1979//1979 1975//1975 +f 1977//1977 1980//1980 1976//1976 +f 1977//1977 1981//1981 1982//1982 +f 1981//1981 59//59 1982//1982 +f 1977//1977 1978//1978 1981//1981 +f 1982//1982 1980//1980 1977//1977 +f 1975//1975 1983//1983 1984//1984 +f 1983//1983 1947//1947 1984//1984 +f 1975//1975 1979//1979 1983//1983 +f 1984//1984 1978//1978 1975//1975 +f 1976//1976 1985//1985 1986//1986 +f 1985//1985 1561//1561 1986//1986 +f 1976//1976 1980//1980 1985//1985 +f 1986//1986 1979//1979 1976//1976 +f 1988//1988 1987//1987 1989//1989 +f 1987//1987 64//64 1989//1989 +f 1988//1988 1980//1980 1987//1987 +f 1989//1989 1570//1570 1988//1988 +f 1989//1989 66//66 1572//1572 +f 66//66 67//67 1572//1572 +f 1989//1989 64//64 66//66 +f 1572//1572 1570//1570 1989//1989 +f 1987//1987 1982//1982 69//69 +f 1982//1982 59//59 69//69 +f 1987//1987 1980//1980 1982//1982 +f 69//69 64//64 1987//1987 +f 1988//1988 1574//1574 1985//1985 +f 1574//1574 1561//1561 1985//1985 +f 1988//1988 1570//1570 1574//1574 +f 1985//1985 1980//1980 1988//1988 +f 1991//1991 1990//1990 1992//1992 +f 1990//1990 1952//1952 1992//1992 +f 1991//1991 1978//1978 1990//1990 +f 1992//1992 79//79 1991//1991 +f 1992//1992 1954//1954 80//80 +f 1954//1954 43//43 80//80 +f 1992//1992 1952//1952 1954//1954 +f 80//80 79//79 1992//1992 +f 1990//1990 1984//1984 1956//1956 +f 1984//1984 1947//1947 1956//1956 +f 1990//1990 1978//1978 1984//1984 +f 1956//1956 1952//1952 1990//1990 +f 1991//1991 81//81 1981//1981 +f 81//81 59//59 1981//1981 +f 1991//1991 79//79 81//81 +f 1981//1981 1978//1978 1991//1991 +f 1994//1994 1993//1993 1995//1995 +f 1993//1993 1579//1579 1995//1995 +f 1994//1994 1979//1979 1993//1993 +f 1995//1995 1969//1969 1994//1994 +f 1995//1995 1580//1580 1971//1971 +f 1580//1580 1480//1480 1971//1971 +f 1995//1995 1579//1579 1580//1580 +f 1971//1971 1969//1969 1995//1995 +f 1993//1993 1986//1986 1581//1581 +f 1986//1986 1561//1561 1581//1581 +f 1993//1993 1979//1979 1986//1986 +f 1581//1581 1579//1579 1993//1993 +f 1994//1994 1973//1973 1983//1983 +f 1973//1973 1947//1947 1983//1983 +f 1994//1994 1969//1969 1973//1973 +f 1983//1983 1979//1979 1994//1994 +f 1997//1997 1996//1996 1998//1998 +f 1996//1996 1999//1999 1998//1998 +f 1997//1997 2000//2000 1996//1996 +f 1998//1998 2001//2001 1997//1997 +f 1998//1998 2002//2002 2003//2003 +f 2002//2002 637//637 2003//2003 +f 1998//1998 1999//1999 2002//2002 +f 2003//2003 2001//2001 1998//1998 +f 1996//1996 2004//2004 2005//2005 +f 2004//2004 1941//1941 2005//2005 +f 1996//1996 2000//2000 2004//2004 +f 2005//2005 1999//1999 1996//1996 +f 1997//1997 2006//2006 2007//2007 +f 2006//2006 126//126 2007//2007 +f 1997//1997 2001//2001 2006//2006 +f 2007//2007 2000//2000 1997//1997 +f 2009//2009 2008//2008 2010//2010 +f 2008//2008 642//642 2010//2010 +f 2009//2009 2001//2001 2008//2008 +f 2010//2010 135//135 2009//2009 +f 2010//2010 644//644 137//137 +f 644//644 139//139 137//137 +f 2010//2010 642//642 644//644 +f 137//137 135//135 2010//2010 +f 2008//2008 2003//2003 646//646 +f 2003//2003 637//637 646//646 +f 2008//2008 2001//2001 2003//2003 +f 646//646 642//642 2008//2008 +f 2009//2009 140//140 2006//2006 +f 140//140 126//126 2006//2006 +f 2009//2009 135//135 140//140 +f 2006//2006 2001//2001 2009//2009 +f 2012//2012 2011//2011 2013//2013 +f 2011//2011 1961//1961 2013//2013 +f 2012//2012 1999//1999 2011//2011 +f 2013//2013 656//656 2012//2012 +f 2013//2013 1963//1963 657//657 +f 1963//1963 621//621 657//657 +f 2013//2013 1961//1961 1963//1963 +f 657//657 656//656 2013//2013 +f 2011//2011 2005//2005 1965//1965 +f 2005//2005 1941//1941 1965//1965 +f 2011//2011 1999//1999 2005//2005 +f 1965//1965 1961//1961 2011//2011 +f 2012//2012 658//658 2002//2002 +f 658//658 637//637 2002//2002 +f 2012//2012 656//656 658//658 +f 2002//2002 1999//1999 2012//2012 +f 2015//2015 2014//2014 2016//2016 +f 2014//2014 145//145 2016//2016 +f 2015//2015 2000//2000 2014//2014 +f 2016//2016 1951//1951 2015//2015 +f 2016//2016 146//146 1953//1953 +f 146//146 43//43 1953//1953 +f 2016//2016 145//145 146//146 +f 1953//1953 1951//1951 2016//2016 +f 2014//2014 2007//2007 147//147 +f 2007//2007 126//126 147//147 +f 2014//2014 2000//2000 2007//2007 +f 147//147 145//145 2014//2014 +f 2015//2015 1955//1955 2004//2004 +f 1955//1955 1941//1941 2004//2004 +f 2015//2015 1951//1951 1955//1955 +f 2004//2004 2000//2000 2015//2015 +f 2018//2018 2017//2017 2019//2019 +f 2017//2017 2020//2020 2019//2019 +f 2018//2018 2021//2021 2017//2017 +f 2019//2019 2022//2022 2018//2018 +f 2019//2019 2023//2023 2024//2024 +f 2023//2023 1496//1496 2024//2024 +f 2019//2019 2020//2020 2023//2023 +f 2024//2024 2022//2022 2019//2019 +f 2017//2017 2025//2025 2026//2026 +f 2025//2025 1944//1944 2026//2026 +f 2017//2017 2021//2021 2025//2025 +f 2026//2026 2020//2020 2017//2017 +f 2018//2018 2027//2027 2028//2028 +f 2027//2027 702//702 2028//2028 +f 2018//2018 2022//2022 2027//2027 +f 2028//2028 2021//2021 2018//2018 +f 2030//2030 2029//2029 2031//2031 +f 2029//2029 1501//1501 2031//2031 +f 2030//2030 2022//2022 2029//2029 +f 2031//2031 711//711 2030//2030 +f 2031//2031 1503//1503 713//713 +f 1503//1503 715//715 713//713 +f 2031//2031 1501//1501 1503//1503 +f 713//713 711//711 2031//2031 +f 2029//2029 2024//2024 1505//1505 +f 2024//2024 1496//1496 1505//1505 +f 2029//2029 2022//2022 2024//2024 +f 1505//1505 1501//1501 2029//2029 +f 2030//2030 716//716 2027//2027 +f 716//716 702//702 2027//2027 +f 2030//2030 711//711 716//716 +f 2027//2027 2022//2022 2030//2030 +f 2033//2033 2032//2032 2034//2034 +f 2032//2032 1970//1970 2034//2034 +f 2033//2033 2020//2020 2032//2032 +f 2034//2034 1515//1515 2033//2033 +f 2034//2034 1972//1972 1516//1516 +f 1972//1972 1480//1480 1516//1516 +f 2034//2034 1970//1970 1972//1972 +f 1516//1516 1515//1515 2034//2034 +f 2032//2032 2026//2026 1974//1974 +f 2026//2026 1944//1944 1974//1974 +f 2032//2032 2020//2020 2026//2026 +f 1974//1974 1970//1970 2032//2032 +f 2033//2033 1517//1517 2023//2023 +f 1517//1517 1496//1496 2023//2023 +f 2033//2033 1515//1515 1517//1517 +f 2023//2023 2020//2020 2033//2033 +f 2036//2036 2035//2035 2037//2037 +f 2035//2035 721//721 2037//2037 +f 2036//2036 2021//2021 2035//2035 +f 2037//2037 1960//1960 2036//2036 +f 2037//2037 722//722 1962//1962 +f 722//722 621//621 1962//1962 +f 2037//2037 721//721 722//722 +f 1962//1962 1960//1960 2037//2037 +f 2035//2035 2028//2028 723//723 +f 2028//2028 702//702 723//723 +f 2035//2035 2021//2021 2028//2028 +f 723//723 721//721 2035//2035 +f 2036//2036 1964//1964 2025//2025 +f 1964//1964 1944//1944 2025//2025 +f 2036//2036 1960//1960 1964//1964 +f 2025//2025 2021//2021 2036//2036 +f 2039//2039 2038//2038 2040//2040 +f 2038//2038 2041//2041 2040//2040 +f 2039//2039 2042//2042 2038//2038 +f 2040//2040 2043//2043 2039//2039 +f 2040//2040 2044//2044 2045//2045 +f 2044//2044 2046//2046 2045//2045 +f 2040//2040 2041//2041 2044//2044 +f 2045//2045 2043//2043 2040//2040 +f 2038//2038 2047//2047 2048//2048 +f 2047//2047 2049//2049 2048//2048 +f 2038//2038 2042//2042 2047//2047 +f 2048//2048 2041//2041 2038//2038 +f 2039//2039 2050//2050 2051//2051 +f 2050//2050 2052//2052 2051//2051 +f 2039//2039 2043//2043 2050//2050 +f 2051//2051 2042//2042 2039//2039 +f 2054//2054 2053//2053 2055//2055 +f 2053//2053 2056//2056 2055//2055 +f 2054//2054 2043//2043 2053//2053 +f 2055//2055 2057//2057 2054//2054 +f 2055//2055 2058//2058 2059//2059 +f 2058//2058 1470//1470 2059//2059 +f 2055//2055 2056//2056 2058//2058 +f 2059//2059 2057//2057 2055//2055 +f 2053//2053 2045//2045 2060//2060 +f 2045//2045 2046//2046 2060//2060 +f 2053//2053 2043//2043 2045//2045 +f 2060//2060 2056//2056 2053//2053 +f 2054//2054 2061//2061 2050//2050 +f 2061//2061 2052//2052 2050//2050 +f 2054//2054 2057//2057 2061//2061 +f 2050//2050 2043//2043 2054//2054 +f 2063//2063 2062//2062 2064//2064 +f 2062//2062 2065//2065 2064//2064 +f 2063//2063 2041//2041 2062//2062 +f 2064//2064 2066//2066 2063//2063 +f 2064//2064 2067//2067 2068//2068 +f 2067//2067 1048//1048 2068//2068 +f 2064//2064 2065//2065 2067//2067 +f 2068//2068 2066//2066 2064//2064 +f 2062//2062 2048//2048 2069//2069 +f 2048//2048 2049//2049 2069//2069 +f 2062//2062 2041//2041 2048//2048 +f 2069//2069 2065//2065 2062//2062 +f 2063//2063 2070//2070 2044//2044 +f 2070//2070 2046//2046 2044//2044 +f 2063//2063 2066//2066 2070//2070 +f 2044//2044 2041//2041 2063//2063 +f 2072//2072 2071//2071 2073//2073 +f 2071//2071 2074//2074 2073//2073 +f 2072//2072 2042//2042 2071//2071 +f 2073//2073 2075//2075 2072//2072 +f 2073//2073 2076//2076 2077//2077 +f 2076//2076 185//185 2077//2077 +f 2073//2073 2074//2074 2076//2076 +f 2077//2077 2075//2075 2073//2073 +f 2071//2071 2051//2051 2078//2078 +f 2051//2051 2052//2052 2078//2078 +f 2071//2071 2042//2042 2051//2051 +f 2078//2078 2074//2074 2071//2071 +f 2072//2072 2079//2079 2047//2047 +f 2079//2079 2049//2049 2047//2047 +f 2072//2072 2075//2075 2079//2079 +f 2047//2047 2042//2042 2072//2072 +f 2081//2081 2080//2080 2082//2082 +f 2080//2080 2083//2083 2082//2082 +f 2081//2081 2084//2084 2080//2080 +f 2082//2082 2085//2085 2081//2081 +f 2082//2082 2086//2086 2087//2087 +f 2086//2086 1566//1566 2087//2087 +f 2082//2082 2083//2083 2086//2086 +f 2087//2087 2085//2085 2082//2082 +f 2080//2080 2088//2088 2089//2089 +f 2088//2088 2052//2052 2089//2089 +f 2080//2080 2084//2084 2088//2088 +f 2089//2089 2083//2083 2080//2080 +f 2081//2081 2090//2090 2091//2091 +f 2090//2090 234//234 2091//2091 +f 2081//2081 2085//2085 2090//2090 +f 2091//2091 2084//2084 2081//2081 +f 2093//2093 2092//2092 2094//2094 +f 2092//2092 1571//1571 2094//2094 +f 2093//2093 2085//2085 2092//2092 +f 2094//2094 242//242 2093//2093 +f 2094//2094 1573//1573 243//243 +f 1573//1573 67//67 243//243 +f 2094//2094 1571//1571 1573//1573 +f 243//243 242//242 2094//2094 +f 2092//2092 2087//2087 1575//1575 +f 2087//2087 1566//1566 1575//1575 +f 2092//2092 2085//2085 2087//2087 +f 1575//1575 1571//1571 2092//2092 +f 2093//2093 244//244 2090//2090 +f 244//244 234//234 2090//2090 +f 2093//2093 242//242 244//244 +f 2090//2090 2085//2085 2093//2093 +f 2096//2096 2095//2095 2097//2097 +f 2095//2095 2057//2057 2097//2097 +f 2096//2096 2083//2083 2095//2095 +f 2097//2097 1585//1585 2096//2096 +f 2097//2097 2059//2059 1586//1586 +f 2059//2059 1470//1470 1586//1586 +f 2097//2097 2057//2057 2059//2059 +f 1586//1586 1585//1585 2097//2097 +f 2095//2095 2089//2089 2061//2061 +f 2089//2089 2052//2052 2061//2061 +f 2095//2095 2083//2083 2089//2089 +f 2061//2061 2057//2057 2095//2095 +f 2096//2096 1587//1587 2086//2086 +f 1587//1587 1566//1566 2086//2086 +f 2096//2096 1585//1585 1587//1587 +f 2086//2086 2083//2083 2096//2096 +f 2099//2099 2098//2098 2100//2100 +f 2098//2098 248//248 2100//2100 +f 2099//2099 2084//2084 2098//2098 +f 2100//2100 2074//2074 2099//2099 +f 2100//2100 249//249 2076//2076 +f 249//249 185//185 2076//2076 +f 2100//2100 248//248 249//249 +f 2076//2076 2074//2074 2100//2100 +f 2098//2098 2091//2091 250//250 +f 2091//2091 234//234 250//250 +f 2098//2098 2084//2084 2091//2091 +f 250//250 248//248 2098//2098 +f 2099//2099 2078//2078 2088//2088 +f 2078//2078 2052//2052 2088//2088 +f 2099//2099 2074//2074 2078//2078 +f 2088//2088 2084//2084 2099//2099 +f 2102//2102 2101//2101 2103//2103 +f 2101//2101 2104//2104 2103//2103 +f 2102//2102 2105//2105 2101//2101 +f 2103//2103 2106//2106 2102//2102 +f 2103//2103 2107//2107 2108//2108 +f 2107//2107 1130//1130 2108//2108 +f 2103//2103 2104//2104 2107//2107 +f 2108//2108 2106//2106 2103//2103 +f 2101//2101 2109//2109 2110//2110 +f 2109//2109 2046//2046 2110//2110 +f 2101//2101 2105//2105 2109//2109 +f 2110//2110 2104//2104 2101//2101 +f 2102//2102 2111//2111 2112//2112 +f 2111//2111 1526//1526 2112//2112 +f 2102//2102 2106//2106 2111//2111 +f 2112//2112 2105//2105 2102//2102 +f 2114//2114 2113//2113 2115//2115 +f 2113//2113 1135//1135 2115//2115 +f 2114//2114 2106//2106 2113//2113 +f 2115//2115 1535//1535 2114//2114 +f 2115//2115 1137//1137 1537//1537 +f 1137//1137 1138//1138 1537//1537 +f 2115//2115 1135//1135 1137//1137 +f 1537//1537 1535//1535 2115//2115 +f 2113//2113 2108//2108 1140//1140 +f 2108//2108 1130//1130 1140//1140 +f 2113//2113 2106//2106 2108//2108 +f 1140//1140 1135//1135 2113//2113 +f 2114//2114 1539//1539 2111//2111 +f 1539//1539 1526//1526 2111//2111 +f 2114//2114 1535//1535 1539//1539 +f 2111//2111 2106//2106 2114//2114 +f 2117//2117 2116//2116 2118//2118 +f 2116//2116 2066//2066 2118//2118 +f 2117//2117 2104//2104 2116//2116 +f 2118//2118 1150//1150 2117//2117 +f 2118//2118 2068//2068 1151//1151 +f 2068//2068 1048//1048 1151//1151 +f 2118//2118 2066//2066 2068//2068 +f 1151//1151 1150//1150 2118//2118 +f 2116//2116 2110//2110 2070//2070 +f 2110//2110 2046//2046 2070//2070 +f 2116//2116 2104//2104 2110//2110 +f 2070//2070 2066//2066 2116//2116 +f 2117//2117 1152//1152 2107//2107 +f 1152//1152 1130//1130 2107//2107 +f 2117//2117 1150//1150 1152//1152 +f 2107//2107 2104//2104 2117//2117 +f 2120//2120 2119//2119 2121//2121 +f 2119//2119 1544//1544 2121//2121 +f 2120//2120 2105//2105 2119//2119 +f 2121//2121 2056//2056 2120//2120 +f 2121//2121 1545//1545 2058//2058 +f 1545//1545 1470//1470 2058//2058 +f 2121//2121 1544//1544 1545//1545 +f 2058//2058 2056//2056 2121//2121 +f 2119//2119 2112//2112 1546//1546 +f 2112//2112 1526//1526 1546//1546 +f 2119//2119 2105//2105 2112//2112 +f 1546//1546 1544//1544 2119//2119 +f 2120//2120 2060//2060 2109//2109 +f 2060//2060 2046//2046 2109//2109 +f 2120//2120 2056//2056 2060//2060 +f 2109//2109 2105//2105 2120//2120 +f 2123//2123 2122//2122 2124//2124 +f 2122//2122 2125//2125 2124//2124 +f 2123//2123 2126//2126 2122//2122 +f 2124//2124 2127//2127 2123//2123 +f 2124//2124 2128//2128 2129//2129 +f 2128//2128 267//267 2129//2129 +f 2124//2124 2125//2125 2128//2128 +f 2129//2129 2127//2127 2124//2124 +f 2122//2122 2130//2130 2131//2131 +f 2130//2130 2049//2049 2131//2131 +f 2122//2122 2126//2126 2130//2130 +f 2131//2131 2125//2125 2122//2122 +f 2123//2123 2132//2132 2133//2133 +f 2132//2132 1097//1097 2133//2133 +f 2123//2123 2127//2127 2132//2132 +f 2133//2133 2126//2126 2123//2123 +f 2135//2135 2134//2134 2136//2136 +f 2134//2134 272//272 2136//2136 +f 2135//2135 2127//2127 2134//2134 +f 2136//2136 1105//1105 2135//2135 +f 2136//2136 274//274 1106//1106 +f 274//274 275//275 1106//1106 +f 2136//2136 272//272 274//274 +f 1106//1106 1105//1105 2136//2136 +f 2134//2134 2129//2129 277//277 +f 2129//2129 267//267 277//277 +f 2134//2134 2127//2127 2129//2129 +f 277//277 272//272 2134//2134 +f 2135//2135 1107//1107 2132//2132 +f 1107//1107 1097//1097 2132//2132 +f 2135//2135 1105//1105 1107//1107 +f 2132//2132 2127//2127 2135//2135 +f 2138//2138 2137//2137 2139//2139 +f 2137//2137 2075//2075 2139//2139 +f 2138//2138 2125//2125 2137//2137 +f 2139//2139 287//287 2138//2138 +f 2139//2139 2077//2077 288//288 +f 2077//2077 185//185 288//288 +f 2139//2139 2075//2075 2077//2077 +f 288//288 287//287 2139//2139 +f 2137//2137 2131//2131 2079//2079 +f 2131//2131 2049//2049 2079//2079 +f 2137//2137 2125//2125 2131//2131 +f 2079//2079 2075//2075 2137//2137 +f 2138//2138 289//289 2128//2128 +f 289//289 267//267 2128//2128 +f 2138//2138 287//287 289//289 +f 2128//2128 2125//2125 2138//2138 +f 2141//2141 2140//2140 2142//2142 +f 2140//2140 1111//1111 2142//2142 +f 2141//2141 2126//2126 2140//2140 +f 2142//2142 2065//2065 2141//2141 +f 2142//2142 1112//1112 2067//2067 +f 1112//1112 1048//1048 2067//2067 +f 2142//2142 1111//1111 1112//1112 +f 2067//2067 2065//2065 2142//2142 +f 2140//2140 2133//2133 1113//1113 +f 2133//2133 1097//1097 1113//1113 +f 2140//2140 2126//2126 2133//2133 +f 1113//1113 1111//1111 2140//2140 +f 2141//2141 2069//2069 2130//2130 +f 2069//2069 2049//2049 2130//2130 +f 2141//2141 2065//2065 2069//2069 +f 2130//2130 2126//2126 2141//2141 +f 2144//2144 2143//2143 2145//2145 +f 2143//2143 2146//2146 2145//2145 +f 2144//2144 2147//2147 2143//2143 +f 2145//2145 2148//2148 2144//2144 +f 2145//2145 2149//2149 2150//2150 +f 2149//2149 2151//2151 2150//2150 +f 2145//2145 2146//2146 2149//2149 +f 2150//2150 2148//2148 2145//2145 +f 2143//2143 2152//2152 2153//2153 +f 2152//2152 2154//2154 2153//2153 +f 2143//2143 2147//2147 2152//2152 +f 2153//2153 2146//2146 2143//2143 +f 2144//2144 2155//2155 2156//2156 +f 2155//2155 2157//2157 2156//2156 +f 2144//2144 2148//2148 2155//2155 +f 2156//2156 2147//2147 2144//2144 +f 2159//2159 2158//2158 2160//2160 +f 2158//2158 2161//2161 2160//2160 +f 2159//2159 2148//2148 2158//2158 +f 2160//2160 2162//2162 2159//2159 +f 2160//2160 2163//2163 2164//2164 +f 2163//2163 332//332 2164//2164 +f 2160//2160 2161//2161 2163//2163 +f 2164//2164 2162//2162 2160//2160 +f 2158//2158 2150//2150 2165//2165 +f 2150//2150 2151//2151 2165//2165 +f 2158//2158 2148//2148 2150//2150 +f 2165//2165 2161//2161 2158//2158 +f 2159//2159 2166//2166 2155//2155 +f 2166//2166 2157//2157 2155//2155 +f 2159//2159 2162//2162 2166//2166 +f 2155//2155 2148//2148 2159//2159 +f 2168//2168 2167//2167 2169//2169 +f 2167//2167 2170//2170 2169//2169 +f 2168//2168 2146//2146 2167//2167 +f 2169//2169 2171//2171 2168//2168 +f 2169//2169 2172//2172 2173//2173 +f 2172//2172 771//771 2173//2173 +f 2169//2169 2170//2170 2172//2172 +f 2173//2173 2171//2171 2169//2169 +f 2167//2167 2153//2153 2174//2174 +f 2153//2153 2154//2154 2174//2174 +f 2167//2167 2146//2146 2153//2153 +f 2174//2174 2170//2170 2167//2167 +f 2168//2168 2175//2175 2149//2149 +f 2175//2175 2151//2151 2149//2149 +f 2168//2168 2171//2171 2175//2175 +f 2149//2149 2146//2146 2168//2168 +f 2177//2177 2176//2176 2178//2178 +f 2176//2176 2179//2179 2178//2178 +f 2177//2177 2147//2147 2176//2176 +f 2178//2178 2180//2180 2177//2177 +f 2178//2178 2181//2181 2182//2182 +f 2181//2181 1195//1195 2182//2182 +f 2178//2178 2179//2179 2181//2181 +f 2182//2182 2180//2180 2178//2178 +f 2176//2176 2156//2156 2183//2183 +f 2156//2156 2157//2157 2183//2183 +f 2176//2176 2147//2147 2156//2156 +f 2183//2183 2179//2179 2176//2176 +f 2177//2177 2184//2184 2152//2152 +f 2184//2184 2154//2154 2152//2152 +f 2177//2177 2180//2180 2184//2184 +f 2152//2152 2147//2147 2177//2177 +f 2186//2186 2185//2185 2187//2187 +f 2185//2185 2188//2188 2187//2187 +f 2186//2186 2189//2189 2185//2185 +f 2187//2187 2190//2190 2186//2186 +f 2187//2187 2191//2191 2192//2192 +f 2191//2191 348//348 2192//2192 +f 2187//2187 2188//2188 2191//2191 +f 2192//2192 2190//2190 2187//2187 +f 2185//2185 2193//2193 2194//2194 +f 2193//2193 2157//2157 2194//2194 +f 2185//2185 2189//2189 2193//2193 +f 2194//2194 2188//2188 2185//2185 +f 2186//2186 2195//2195 2196//2196 +f 2195//2195 1276//1276 2196//2196 +f 2186//2186 2190//2190 2195//2195 +f 2196//2196 2189//2189 2186//2186 +f 2198//2198 2197//2197 2199//2199 +f 2197//2197 353//353 2199//2199 +f 2198//2198 2190//2190 2197//2197 +f 2199//2199 1285//1285 2198//2198 +f 2199//2199 355//355 1287//1287 +f 355//355 356//356 1287//1287 +f 2199//2199 353//353 355//355 +f 1287//1287 1285//1285 2199//2199 +f 2197//2197 2192//2192 358//358 +f 2192//2192 348//348 358//358 +f 2197//2197 2190//2190 2192//2192 +f 358//358 353//353 2197//2197 +f 2198//2198 1289//1289 2195//2195 +f 1289//1289 1276//1276 2195//2195 +f 2198//2198 1285//1285 1289//1289 +f 2195//2195 2190//2190 2198//2198 +f 2201//2201 2200//2200 2202//2202 +f 2200//2200 2162//2162 2202//2202 +f 2201//2201 2188//2188 2200//2200 +f 2202//2202 368//368 2201//2201 +f 2202//2202 2164//2164 369//369 +f 2164//2164 332//332 369//369 +f 2202//2202 2162//2162 2164//2164 +f 369//369 368//368 2202//2202 +f 2200//2200 2194//2194 2166//2166 +f 2194//2194 2157//2157 2166//2166 +f 2200//2200 2188//2188 2194//2194 +f 2166//2166 2162//2162 2200//2200 +f 2201//2201 370//370 2191//2191 +f 370//370 348//348 2191//2191 +f 2201//2201 368//368 370//370 +f 2191//2191 2188//2188 2201//2201 +f 2204//2204 2203//2203 2205//2205 +f 2203//2203 1294//1294 2205//2205 +f 2204//2204 2189//2189 2203//2203 +f 2205//2205 2179//2179 2204//2204 +f 2205//2205 1295//1295 2181//2181 +f 1295//1295 1195//1195 2181//2181 +f 2205//2205 1294//1294 1295//1295 +f 2181//2181 2179//2179 2205//2205 +f 2203//2203 2196//2196 1296//1296 +f 2196//2196 1276//1276 1296//1296 +f 2203//2203 2189//2189 2196//2196 +f 1296//1296 1294//1294 2203//2203 +f 2204//2204 2183//2183 2193//2193 +f 2183//2183 2157//2157 2193//2193 +f 2204//2204 2179//2179 2183//2183 +f 2193//2193 2189//2189 2204//2204 +f 2207//2207 2206//2206 2208//2208 +f 2206//2206 2209//2209 2208//2208 +f 2207//2207 2210//2210 2206//2206 +f 2208//2208 2211//2211 2207//2207 +f 2208//2208 2212//2212 2213//2213 +f 2212//2212 786//786 2213//2213 +f 2208//2208 2209//2209 2212//2212 +f 2213//2213 2211//2211 2208//2208 +f 2206//2206 2214//2214 2215//2215 +f 2214//2214 2151//2151 2215//2215 +f 2206//2206 2210//2210 2214//2214 +f 2215//2215 2209//2209 2206//2206 +f 2207//2207 2216//2216 2217//2217 +f 2216//2216 415//415 2217//2217 +f 2207//2207 2211//2211 2216//2216 +f 2217//2217 2210//2210 2207//2207 +f 2219//2219 2218//2218 2220//2220 +f 2218//2218 790//790 2220//2220 +f 2219//2219 2211//2211 2218//2218 +f 2220//2220 424//424 2219//2219 +f 2220//2220 791//791 426//426 +f 791//791 428//428 426//426 +f 2220//2220 790//790 791//791 +f 426//426 424//424 2220//2220 +f 2218//2218 2213//2213 792//792 +f 2213//2213 786//786 792//792 +f 2218//2218 2211//2211 2213//2213 +f 792//792 790//790 2218//2218 +f 2219//2219 429//429 2216//2216 +f 429//429 415//415 2216//2216 +f 2219//2219 424//424 429//429 +f 2216//2216 2211//2211 2219//2219 +f 2222//2222 2221//2221 2223//2223 +f 2221//2221 2171//2171 2223//2223 +f 2222//2222 2209//2209 2221//2221 +f 2223//2223 799//799 2222//2222 +f 2223//2223 2173//2173 800//800 +f 2173//2173 771//771 800//800 +f 2223//2223 2171//2171 2173//2173 +f 800//800 799//799 2223//2223 +f 2221//2221 2215//2215 2175//2175 +f 2215//2215 2151//2151 2175//2175 +f 2221//2221 2209//2209 2215//2215 +f 2175//2175 2171//2171 2221//2221 +f 2222//2222 801//801 2212//2212 +f 801//801 786//786 2212//2212 +f 2222//2222 799//799 801//801 +f 2212//2212 2209//2209 2222//2222 +f 2225//2225 2224//2224 2226//2226 +f 2224//2224 434//434 2226//2226 +f 2225//2225 2210//2210 2224//2224 +f 2226//2226 2161//2161 2225//2225 +f 2226//2226 435//435 2163//2163 +f 435//435 332//332 2163//2163 +f 2226//2226 434//434 435//435 +f 2163//2163 2161//2161 2226//2226 +f 2224//2224 2217//2217 436//436 +f 2217//2217 415//415 436//436 +f 2224//2224 2210//2210 2217//2217 +f 436//436 434//434 2224//2224 +f 2225//2225 2165//2165 2214//2214 +f 2165//2165 2151//2151 2214//2214 +f 2225//2225 2161//2161 2165//2165 +f 2214//2214 2210//2210 2225//2225 +f 2228//2228 2227//2227 2229//2229 +f 2227//2227 2230//2230 2229//2229 +f 2228//2228 2231//2231 2227//2227 +f 2229//2229 2232//2232 2228//2228 +f 2229//2229 2233//2233 2234//2234 +f 2233//2233 1211//1211 2234//2234 +f 2229//2229 2230//2230 2233//2233 +f 2234//2234 2232//2232 2229//2229 +f 2227//2227 2235//2235 2236//2236 +f 2235//2235 2154//2154 2236//2236 +f 2227//2227 2231//2231 2235//2235 +f 2236//2236 2230//2230 2227//2227 +f 2228//2228 2237//2237 2238//2238 +f 2237//2237 838//838 2238//2238 +f 2228//2228 2232//2232 2237//2237 +f 2238//2238 2231//2231 2228//2228 +f 2240//2240 2239//2239 2241//2241 +f 2239//2239 1216//1216 2241//2241 +f 2240//2240 2232//2232 2239//2239 +f 2241//2241 847//847 2240//2240 +f 2241//2241 1218//1218 849//849 +f 1218//1218 851//851 849//849 +f 2241//2241 1216//1216 1218//1218 +f 849//849 847//847 2241//2241 +f 2239//2239 2234//2234 1220//1220 +f 2234//2234 1211//1211 1220//1220 +f 2239//2239 2232//2232 2234//2234 +f 1220//1220 1216//1216 2239//2239 +f 2240//2240 852//852 2237//2237 +f 852//852 838//838 2237//2237 +f 2240//2240 847//847 852//852 +f 2237//2237 2232//2232 2240//2240 +f 2243//2243 2242//2242 2244//2244 +f 2242//2242 2180//2180 2244//2244 +f 2243//2243 2230//2230 2242//2242 +f 2244//2244 1230//1230 2243//2243 +f 2244//2244 2182//2182 1231//1231 +f 2182//2182 1195//1195 1231//1231 +f 2244//2244 2180//2180 2182//2182 +f 1231//1231 1230//1230 2244//2244 +f 2242//2242 2236//2236 2184//2184 +f 2236//2236 2154//2154 2184//2184 +f 2242//2242 2230//2230 2236//2236 +f 2184//2184 2180//2180 2242//2242 +f 2243//2243 1232//1232 2233//2233 +f 1232//1232 1211//1211 2233//2233 +f 2243//2243 1230//1230 1232//1232 +f 2233//2233 2230//2230 2243//2243 +f 2246//2246 2245//2245 2247//2247 +f 2245//2245 857//857 2247//2247 +f 2246//2246 2231//2231 2245//2245 +f 2247//2247 2170//2170 2246//2246 +f 2247//2247 858//858 2172//2172 +f 858//858 771//771 2172//2172 +f 2247//2247 857//857 858//858 +f 2172//2172 2170//2170 2247//2247 +f 2245//2245 2238//2238 859//859 +f 2238//2238 838//838 859//859 +f 2245//2245 2231//2231 2238//2238 +f 859//859 857//857 2245//2245 +f 2246//2246 2174//2174 2235//2235 +f 2174//2174 2154//2154 2235//2235 +f 2246//2246 2170//2170 2174//2174 +f 2235//2235 2231//2231 2246//2246 +f 2249//2249 2248//2248 2250//2250 +f 2248//2248 2251//2251 2250//2250 +f 2249//2249 2252//2252 2248//2248 +f 2250//2250 2253//2253 2249//2249 +f 2250//2250 2254//2254 2255//2255 +f 2254//2254 2256//2256 2255//2255 +f 2250//2250 2251//2251 2254//2254 +f 2255//2255 2253//2253 2250//2250 +f 2248//2248 2257//2257 2258//2258 +f 2257//2257 2259//2259 2258//2258 +f 2248//2248 2252//2252 2257//2257 +f 2258//2258 2251//2251 2248//2248 +f 2249//2249 2260//2260 2261//2261 +f 2260//2260 2262//2262 2261//2261 +f 2249//2249 2253//2253 2260//2260 +f 2261//2261 2252//2252 2249//2249 +f 2264//2264 2263//2263 2265//2265 +f 2263//2263 2266//2266 2265//2265 +f 2264//2264 2253//2253 2263//2263 +f 2265//2265 2267//2267 2264//2264 +f 2265//2265 2268//2268 2269//2269 +f 2268//2268 1185//1185 2269//2269 +f 2265//2265 2266//2266 2268//2268 +f 2269//2269 2267//2267 2265//2265 +f 2263//2263 2255//2255 2270//2270 +f 2255//2255 2256//2256 2270//2270 +f 2263//2263 2253//2253 2255//2255 +f 2270//2270 2266//2266 2263//2263 +f 2264//2264 2271//2271 2260//2260 +f 2271//2271 2262//2262 2260//2260 +f 2264//2264 2267//2267 2271//2271 +f 2260//2260 2253//2253 2264//2264 +f 2273//2273 2272//2272 2274//2274 +f 2272//2272 2275//2275 2274//2274 +f 2273//2273 2251//2251 2272//2272 +f 2274//2274 2276//2276 2273//2273 +f 2274//2274 2277//2277 2278//2278 +f 2277//2277 898//898 2278//2278 +f 2274//2274 2275//2275 2277//2277 +f 2278//2278 2276//2276 2274//2274 +f 2272//2272 2258//2258 2279//2279 +f 2258//2258 2259//2259 2279//2279 +f 2272//2272 2251//2251 2258//2258 +f 2279//2279 2275//2275 2272//2272 +f 2273//2273 2280//2280 2254//2254 +f 2280//2280 2256//2256 2254//2254 +f 2273//2273 2276//2276 2280//2280 +f 2254//2254 2251//2251 2273//2273 +f 2282//2282 2281//2281 2283//2283 +f 2281//2281 2284//2284 2283//2283 +f 2282//2282 2252//2252 2281//2281 +f 2283//2283 2285//2285 2282//2282 +f 2283//2283 2286//2286 2287//2287 +f 2286//2286 474//474 2287//2287 +f 2283//2283 2284//2284 2286//2286 +f 2287//2287 2285//2285 2283//2283 +f 2281//2281 2261//2261 2288//2288 +f 2261//2261 2262//2262 2288//2288 +f 2281//2281 2252//2252 2261//2261 +f 2288//2288 2284//2284 2281//2281 +f 2282//2282 2289//2289 2257//2257 +f 2289//2289 2259//2259 2257//2257 +f 2282//2282 2285//2285 2289//2289 +f 2257//2257 2252//2252 2282//2282 +f 2291//2291 2290//2290 2292//2292 +f 2290//2290 2293//2293 2292//2292 +f 2291//2291 2294//2294 2290//2290 +f 2292//2292 2295//2295 2291//2291 +f 2292//2292 2296//2296 2297//2297 +f 2296//2296 1281//1281 2297//2297 +f 2292//2292 2293//2293 2296//2296 +f 2297//2297 2295//2295 2292//2292 +f 2290//2290 2298//2298 2299//2299 +f 2298//2298 2262//2262 2299//2299 +f 2290//2290 2294//2294 2298//2298 +f 2299//2299 2293//2293 2290//2290 +f 2291//2291 2300//2300 2301//2301 +f 2300//2300 523//523 2301//2301 +f 2291//2291 2295//2295 2300//2300 +f 2301//2301 2294//2294 2291//2291 +f 2303//2303 2302//2302 2304//2304 +f 2302//2302 1286//1286 2304//2304 +f 2303//2303 2295//2295 2302//2302 +f 2304//2304 531//531 2303//2303 +f 2304//2304 1288//1288 532//532 +f 1288//1288 356//356 532//532 +f 2304//2304 1286//1286 1288//1288 +f 532//532 531//531 2304//2304 +f 2302//2302 2297//2297 1290//1290 +f 2297//2297 1281//1281 1290//1290 +f 2302//2302 2295//2295 2297//2297 +f 1290//1290 1286//1286 2302//2302 +f 2303//2303 533//533 2300//2300 +f 533//533 523//523 2300//2300 +f 2303//2303 531//531 533//533 +f 2300//2300 2295//2295 2303//2303 +f 2306//2306 2305//2305 2307//2307 +f 2305//2305 2267//2267 2307//2307 +f 2306//2306 2293//2293 2305//2305 +f 2307//2307 1300//1300 2306//2306 +f 2307//2307 2269//2269 1301//1301 +f 2269//2269 1185//1185 1301//1301 +f 2307//2307 2267//2267 2269//2269 +f 1301//1301 1300//1300 2307//2307 +f 2305//2305 2299//2299 2271//2271 +f 2299//2299 2262//2262 2271//2271 +f 2305//2305 2293//2293 2299//2299 +f 2271//2271 2267//2267 2305//2305 +f 2306//2306 1302//1302 2296//2296 +f 1302//1302 1281//1281 2296//2296 +f 2306//2306 1300//1300 1302//1302 +f 2296//2296 2293//2293 2306//2306 +f 2309//2309 2308//2308 2310//2310 +f 2308//2308 537//537 2310//2310 +f 2309//2309 2294//2294 2308//2308 +f 2310//2310 2284//2284 2309//2309 +f 2310//2310 538//538 2286//2286 +f 538//538 474//474 2286//2286 +f 2310//2310 537//537 538//538 +f 2286//2286 2284//2284 2310//2310 +f 2308//2308 2301//2301 539//539 +f 2301//2301 523//523 539//539 +f 2308//2308 2294//2294 2301//2301 +f 539//539 537//537 2308//2308 +f 2309//2309 2288//2288 2298//2298 +f 2288//2288 2262//2262 2298//2298 +f 2309//2309 2284//2284 2288//2288 +f 2298//2298 2294//2294 2309//2309 +f 2312//2312 2311//2311 2313//2313 +f 2311//2311 2314//2314 2313//2313 +f 2312//2312 2315//2315 2311//2311 +f 2313//2313 2316//2316 2312//2312 +f 2313//2313 2317//2317 2318//2318 +f 2317//2317 994//994 2318//2318 +f 2313//2313 2314//2314 2317//2317 +f 2318//2318 2316//2316 2313//2313 +f 2311//2311 2319//2319 2320//2320 +f 2319//2319 2256//2256 2320//2320 +f 2311//2311 2315//2315 2319//2319 +f 2320//2320 2314//2314 2311//2311 +f 2312//2312 2321//2321 2322//2322 +f 2321//2321 1241//1241 2322//2322 +f 2312//2312 2316//2316 2321//2321 +f 2322//2322 2315//2315 2312//2312 +f 2324//2324 2323//2323 2325//2325 +f 2323//2323 999//999 2325//2325 +f 2324//2324 2316//2316 2323//2323 +f 2325//2325 1250//1250 2324//2324 +f 2325//2325 1001//1001 1252//1252 +f 1001//1001 1002//1002 1252//1252 +f 2325//2325 999//999 1001//1001 +f 1252//1252 1250//1250 2325//2325 +f 2323//2323 2318//2318 1004//1004 +f 2318//2318 994//994 1004//1004 +f 2323//2323 2316//2316 2318//2318 +f 1004//1004 999//999 2323//2323 +f 2324//2324 1254//1254 2321//2321 +f 1254//1254 1241//1241 2321//2321 +f 2324//2324 1250//1250 1254//1254 +f 2321//2321 2316//2316 2324//2324 +f 2327//2327 2326//2326 2328//2328 +f 2326//2326 2276//2276 2328//2328 +f 2327//2327 2314//2314 2326//2326 +f 2328//2328 1014//1014 2327//2327 +f 2328//2328 2278//2278 1015//1015 +f 2278//2278 898//898 1015//1015 +f 2328//2328 2276//2276 2278//2278 +f 1015//1015 1014//1014 2328//2328 +f 2326//2326 2320//2320 2280//2280 +f 2320//2320 2256//2256 2280//2280 +f 2326//2326 2314//2314 2320//2320 +f 2280//2280 2276//2276 2326//2326 +f 2327//2327 1016//1016 2317//2317 +f 1016//1016 994//994 2317//2317 +f 2327//2327 1014//1014 1016//1016 +f 2317//2317 2314//2314 2327//2327 +f 2330//2330 2329//2329 2331//2331 +f 2329//2329 1259//1259 2331//2331 +f 2330//2330 2315//2315 2329//2329 +f 2331//2331 2266//2266 2330//2330 +f 2331//2331 1260//1260 2268//2268 +f 1260//1260 1185//1185 2268//2268 +f 2331//2331 1259//1259 1260//1260 +f 2268//2268 2266//2266 2331//2331 +f 2329//2329 2322//2322 1261//1261 +f 2322//2322 1241//1241 1261//1261 +f 2329//2329 2315//2315 2322//2322 +f 1261//1261 1259//1259 2329//2329 +f 2330//2330 2270//2270 2319//2319 +f 2270//2270 2256//2256 2319//2319 +f 2330//2330 2266//2266 2270//2270 +f 2319//2319 2315//2315 2330//2330 +f 2333//2333 2332//2332 2334//2334 +f 2332//2332 2335//2335 2334//2334 +f 2333//2333 2336//2336 2332//2332 +f 2334//2334 2337//2337 2333//2333 +f 2334//2334 2338//2338 2339//2339 +f 2338//2338 556//556 2339//2339 +f 2334//2334 2335//2335 2338//2338 +f 2339//2339 2337//2337 2334//2334 +f 2332//2332 2340//2340 2341//2341 +f 2340//2340 2259//2259 2341//2341 +f 2332//2332 2336//2336 2340//2340 +f 2341//2341 2335//2335 2332//2332 +f 2333//2333 2342//2342 2343//2343 +f 2342//2342 954//954 2343//2343 +f 2333//2333 2337//2337 2342//2342 +f 2343//2343 2336//2336 2333//2333 +f 2345//2345 2344//2344 2346//2346 +f 2344//2344 561//561 2346//2346 +f 2345//2345 2337//2337 2344//2344 +f 2346//2346 963//963 2345//2345 +f 2346//2346 563//563 965//965 +f 563//563 564//564 965//965 +f 2346//2346 561//561 563//563 +f 965//965 963//963 2346//2346 +f 2344//2344 2339//2339 566//566 +f 2339//2339 556//556 566//566 +f 2344//2344 2337//2337 2339//2339 +f 566//566 561//561 2344//2344 +f 2345//2345 967//967 2342//2342 +f 967//967 954//954 2342//2342 +f 2345//2345 963//963 967//967 +f 2342//2342 2337//2337 2345//2345 +f 2348//2348 2347//2347 2349//2349 +f 2347//2347 2285//2285 2349//2349 +f 2348//2348 2335//2335 2347//2347 +f 2349//2349 576//576 2348//2348 +f 2349//2349 2287//2287 577//577 +f 2287//2287 474//474 577//577 +f 2349//2349 2285//2285 2287//2287 +f 577//577 576//576 2349//2349 +f 2347//2347 2341//2341 2289//2289 +f 2341//2341 2259//2259 2289//2289 +f 2347//2347 2335//2335 2341//2341 +f 2289//2289 2285//2285 2347//2347 +f 2348//2348 578//578 2338//2338 +f 578//578 556//556 2338//2338 +f 2348//2348 576//576 578//578 +f 2338//2338 2335//2335 2348//2348 +f 2351//2351 2350//2350 2352//2352 +f 2350//2350 972//972 2352//2352 +f 2351//2351 2336//2336 2350//2350 +f 2352//2352 2275//2275 2351//2351 +f 2352//2352 973//973 2277//2277 +f 973//973 898//898 2277//2277 +f 2352//2352 972//972 973//973 +f 2277//2277 2275//2275 2352//2352 +f 2350//2350 2343//2343 974//974 +f 2343//2343 954//954 974//974 +f 2350//2350 2336//2336 2343//2343 +f 974//974 972//972 2350//2350 +f 2351//2351 2279//2279 2340//2340 +f 2279//2279 2259//2259 2340//2340 +f 2351//2351 2275//2275 2279//2279 +f 2340//2340 2336//2336 2351//2351 +f 2354//2354 2353//2353 2355//2355 +f 2353//2353 2356//2356 2355//2355 +f 2354//2354 2357//2357 2353//2353 +f 2355//2355 2358//2358 2354//2354 +f 2355//2355 2359//2359 2360//2360 +f 2359//2359 2361//2361 2360//2360 +f 2355//2355 2356//2356 2359//2359 +f 2360//2360 2358//2358 2355//2355 +f 2353//2353 2362//2362 2363//2363 +f 2362//2362 2364//2364 2363//2363 +f 2353//2353 2357//2357 2362//2362 +f 2363//2363 2356//2356 2353//2353 +f 2354//2354 2365//2365 2366//2366 +f 2365//2365 2367//2367 2366//2366 +f 2354//2354 2358//2358 2365//2365 +f 2366//2366 2357//2357 2354//2354 +f 2369//2369 2368//2368 2370//2370 +f 2368//2368 2371//2371 2370//2370 +f 2369//2369 2358//2358 2368//2368 +f 2370//2370 2372//2372 2369//2369 +f 2370//2370 2373//2373 2374//2374 +f 2373//2373 1619//1619 2374//2374 +f 2370//2370 2371//2371 2373//2373 +f 2374//2374 2372//2372 2370//2370 +f 2368//2368 2360//2360 2375//2375 +f 2360//2360 2361//2361 2375//2375 +f 2368//2368 2358//2358 2360//2360 +f 2375//2375 2371//2371 2368//2368 +f 2369//2369 2376//2376 2365//2365 +f 2376//2376 2367//2367 2365//2365 +f 2369//2369 2372//2372 2376//2376 +f 2365//2365 2358//2358 2369//2369 +f 2378//2378 2377//2377 2379//2379 +f 2377//2377 2380//2380 2379//2379 +f 2378//2378 2356//2356 2377//2377 +f 2379//2379 2381//2381 2378//2378 +f 2379//2379 2382//2382 2383//2383 +f 2382//2382 611//611 2383//2383 +f 2379//2379 2380//2380 2382//2382 +f 2383//2383 2381//2381 2379//2379 +f 2377//2377 2363//2363 2384//2384 +f 2363//2363 2364//2364 2384//2384 +f 2377//2377 2356//2356 2363//2363 +f 2384//2384 2380//2380 2377//2377 +f 2378//2378 2385//2385 2359//2359 +f 2385//2385 2361//2361 2359//2359 +f 2378//2378 2381//2381 2385//2385 +f 2359//2359 2356//2356 2378//2378 +f 2387//2387 2386//2386 2388//2388 +f 2386//2386 2389//2389 2388//2388 +f 2387//2387 2357//2357 2386//2386 +f 2388//2388 2390//2390 2387//2387 +f 2388//2388 2391//2391 2392//2392 +f 2391//2391 322//322 2392//2392 +f 2388//2388 2389//2389 2391//2391 +f 2392//2392 2390//2390 2388//2388 +f 2386//2386 2366//2366 2393//2393 +f 2366//2366 2367//2367 2393//2393 +f 2386//2386 2357//2357 2366//2366 +f 2393//2393 2389//2389 2386//2386 +f 2387//2387 2394//2394 2362//2362 +f 2394//2394 2364//2364 2362//2362 +f 2387//2387 2390//2390 2394//2394 +f 2362//2362 2357//2357 2387//2387 +f 2396//2396 2395//2395 2397//2397 +f 2395//2395 2398//2398 2397//2397 +f 2396//2396 2399//2399 2395//2395 +f 2397//2397 2400//2400 2396//2396 +f 2397//2397 2401//2401 2402//2402 +f 2401//2401 1701//1701 2402//2402 +f 2397//2397 2398//2398 2401//2401 +f 2402//2402 2400//2400 2397//2397 +f 2395//2395 2403//2403 2404//2404 +f 2403//2403 2367//2367 2404//2404 +f 2395//2395 2399//2399 2403//2403 +f 2404//2404 2398//2398 2395//2395 +f 2396//2396 2405//2405 2406//2406 +f 2405//2405 379//379 2406//2406 +f 2396//2396 2400//2400 2405//2405 +f 2406//2406 2399//2399 2396//2396 +f 2408//2408 2407//2407 2409//2409 +f 2407//2407 1706//1706 2409//2409 +f 2408//2408 2400//2400 2407//2407 +f 2409//2409 388//388 2408//2408 +f 2409//2409 1708//1708 390//390 +f 1708//1708 392//392 390//390 +f 2409//2409 1706//1706 1708//1708 +f 390//390 388//388 2409//2409 +f 2407//2407 2402//2402 1710//1710 +f 2402//2402 1701//1701 1710//1710 +f 2407//2407 2400//2400 2402//2402 +f 1710//1710 1706//1706 2407//2407 +f 2408//2408 393//393 2405//2405 +f 393//393 379//379 2405//2405 +f 2408//2408 388//388 393//393 +f 2405//2405 2400//2400 2408//2408 +f 2411//2411 2410//2410 2412//2412 +f 2410//2410 2372//2372 2412//2412 +f 2411//2411 2398//2398 2410//2410 +f 2412//2412 1720//1720 2411//2411 +f 2412//2412 2374//2374 1721//1721 +f 2374//2374 1619//1619 1721//1721 +f 2412//2412 2372//2372 2374//2374 +f 1721//1721 1720//1720 2412//2412 +f 2410//2410 2404//2404 2376//2376 +f 2404//2404 2367//2367 2376//2376 +f 2410//2410 2398//2398 2404//2404 +f 2376//2376 2372//2372 2410//2410 +f 2411//2411 1722//1722 2401//2401 +f 1722//1722 1701//1701 2401//2401 +f 2411//2411 1720//1720 1722//1722 +f 2401//2401 2398//2398 2411//2411 +f 2414//2414 2413//2413 2415//2415 +f 2413//2413 398//398 2415//2415 +f 2414//2414 2399//2399 2413//2413 +f 2415//2415 2389//2389 2414//2414 +f 2415//2415 399//399 2391//2391 +f 399//399 322//322 2391//2391 +f 2415//2415 398//398 399//399 +f 2391//2391 2389//2389 2415//2415 +f 2413//2413 2406//2406 400//400 +f 2406//2406 379//379 400//400 +f 2413//2413 2399//2399 2406//2406 +f 400//400 398//398 2413//2413 +f 2414//2414 2393//2393 2403//2403 +f 2393//2393 2367//2367 2403//2403 +f 2414//2414 2389//2389 2393//2393 +f 2403//2403 2399//2399 2414//2414 +f 2417//2417 2416//2416 2418//2418 +f 2416//2416 2419//2419 2418//2418 +f 2417//2417 2420//2420 2416//2416 +f 2418//2418 2421//2421 2417//2417 +f 2418//2418 2422//2422 2423//2423 +f 2422//2422 707//707 2423//2423 +f 2418//2418 2419//2419 2422//2422 +f 2423//2423 2421//2421 2418//2418 +f 2416//2416 2424//2424 2425//2425 +f 2424//2424 2361//2361 2425//2425 +f 2416//2416 2420//2420 2424//2424 +f 2425//2425 2419//2419 2416//2416 +f 2417//2417 2426//2426 2427//2427 +f 2426//2426 1668//1668 2427//2427 +f 2417//2417 2421//2421 2426//2426 +f 2427//2427 2420//2420 2417//2417 +f 2429//2429 2428//2428 2430//2430 +f 2428//2428 712//712 2430//2430 +f 2429//2429 2421//2421 2428//2428 +f 2430//2430 1676//1676 2429//2429 +f 2430//2430 714//714 1677//1677 +f 714//714 715//715 1677//1677 +f 2430//2430 712//712 714//714 +f 1677//1677 1676//1676 2430//2430 +f 2428//2428 2423//2423 717//717 +f 2423//2423 707//707 717//717 +f 2428//2428 2421//2421 2423//2423 +f 717//717 712//712 2428//2428 +f 2429//2429 1678//1678 2426//2426 +f 1678//1678 1668//1668 2426//2426 +f 2429//2429 1676//1676 1678//1678 +f 2426//2426 2421//2421 2429//2429 +f 2432//2432 2431//2431 2433//2433 +f 2431//2431 2381//2381 2433//2433 +f 2432//2432 2419//2419 2431//2431 +f 2433//2433 727//727 2432//2432 +f 2433//2433 2383//2383 728//728 +f 2383//2383 611//611 728//728 +f 2433//2433 2381//2381 2383//2383 +f 728//728 727//727 2433//2433 +f 2431//2431 2425//2425 2385//2385 +f 2425//2425 2361//2361 2385//2385 +f 2431//2431 2419//2419 2425//2425 +f 2385//2385 2381//2381 2431//2431 +f 2432//2432 729//729 2422//2422 +f 729//729 707//707 2422//2422 +f 2432//2432 727//727 729//729 +f 2422//2422 2419//2419 2432//2432 +f 2435//2435 2434//2434 2436//2436 +f 2434//2434 1682//1682 2436//2436 +f 2435//2435 2420//2420 2434//2434 +f 2436//2436 2371//2371 2435//2435 +f 2436//2436 1683//1683 2373//2373 +f 1683//1683 1619//1619 2373//2373 +f 2436//2436 1682//1682 1683//1683 +f 2373//2373 2371//2371 2436//2436 +f 2434//2434 2427//2427 1684//1684 +f 2427//2427 1668//1668 1684//1684 +f 2434//2434 2420//2420 2427//2427 +f 1684//1684 1682//1682 2434//2434 +f 2435//2435 2375//2375 2424//2424 +f 2375//2375 2361//2361 2424//2424 +f 2435//2435 2371//2371 2375//2375 +f 2424//2424 2420//2420 2435//2435 +f 2438//2438 2437//2437 2439//2439 +f 2437//2437 2440//2440 2439//2439 +f 2438//2438 2441//2441 2437//2437 +f 2439//2439 2442//2442 2438//2438 +f 2439//2439 2443//2443 2444//2444 +f 2443//2443 420//420 2444//2444 +f 2439//2439 2440//2440 2443//2443 +f 2444//2444 2442//2442 2439//2439 +f 2437//2437 2445//2445 2446//2446 +f 2445//2445 2364//2364 2446//2446 +f 2437//2437 2441//2441 2445//2445 +f 2446//2446 2440//2440 2437//2437 +f 2438//2438 2447//2447 2448//2448 +f 2447//2447 667//667 2448//2448 +f 2438//2438 2442//2442 2447//2447 +f 2448//2448 2441//2441 2438//2438 +f 2450//2450 2449//2449 2451//2451 +f 2449//2449 425//425 2451//2451 +f 2450//2450 2442//2442 2449//2449 +f 2451//2451 676//676 2450//2450 +f 2451//2451 427//427 678//678 +f 427//427 428//428 678//678 +f 2451//2451 425//425 427//427 +f 678//678 676//676 2451//2451 +f 2449//2449 2444//2444 430//430 +f 2444//2444 420//420 430//430 +f 2449//2449 2442//2442 2444//2444 +f 430//430 425//425 2449//2449 +f 2450//2450 680//680 2447//2447 +f 680//680 667//667 2447//2447 +f 2450//2450 676//676 680//680 +f 2447//2447 2442//2442 2450//2450 +f 2453//2453 2452//2452 2454//2454 +f 2452//2452 2390//2390 2454//2454 +f 2453//2453 2440//2440 2452//2452 +f 2454//2454 440//440 2453//2453 +f 2454//2454 2392//2392 441//441 +f 2392//2392 322//322 441//441 +f 2454//2454 2390//2390 2392//2392 +f 441//441 440//440 2454//2454 +f 2452//2452 2446//2446 2394//2394 +f 2446//2446 2364//2364 2394//2394 +f 2452//2452 2440//2440 2446//2446 +f 2394//2394 2390//2390 2452//2452 +f 2453//2453 442//442 2443//2443 +f 442//442 420//420 2443//2443 +f 2453//2453 440//440 442//442 +f 2443//2443 2440//2440 2453//2453 +f 2456//2456 2455//2455 2457//2457 +f 2455//2455 685//685 2457//2457 +f 2456//2456 2441//2441 2455//2455 +f 2457//2457 2380//2380 2456//2456 +f 2457//2457 686//686 2382//2382 +f 686//686 611//611 2382//2382 +f 2457//2457 685//685 686//686 +f 2382//2382 2380//2380 2457//2457 +f 2455//2455 2448//2448 687//687 +f 2448//2448 667//667 687//687 +f 2455//2455 2441//2441 2448//2448 +f 687//687 685//685 2455//2455 +f 2456//2456 2384//2384 2445//2445 +f 2384//2384 2364//2364 2445//2445 +f 2456//2456 2380//2380 2384//2384 +f 2445//2445 2441//2441 2456//2456 +f 2459//2459 2458//2458 2460//2460 +f 2458//2458 2461//2461 2460//2460 +f 2459//2459 2462//2462 2458//2458 +f 2460//2460 2463//2463 2459//2459 +f 2460//2460 2464//2464 2465//2465 +f 2464//2464 2466//2466 2465//2465 +f 2460//2460 2461//2461 2464//2464 +f 2465//2465 2463//2463 2460//2460 +f 2458//2458 2467//2467 2468//2468 +f 2467//2467 2469//2469 2468//2468 +f 2458//2458 2462//2462 2467//2467 +f 2468//2468 2461//2461 2458//2458 +f 2459//2459 2470//2470 2471//2471 +f 2470//2470 2472//2472 2471//2471 +f 2459//2459 2463//2463 2470//2470 +f 2471//2471 2462//2462 2459//2459 +f 2474//2474 2473//2473 2475//2475 +f 2473//2473 2476//2476 2475//2475 +f 2474//2474 2463//2463 2473//2473 +f 2475//2475 2477//2477 2474//2474 +f 2475//2475 2478//2478 2479//2479 +f 2478//2478 484//484 2479//2479 +f 2475//2475 2476//2476 2478//2478 +f 2479//2479 2477//2477 2475//2475 +f 2473//2473 2465//2465 2480//2480 +f 2465//2465 2466//2466 2480//2480 +f 2473//2473 2463//2463 2465//2465 +f 2480//2480 2476//2476 2473//2473 +f 2474//2474 2481//2481 2470//2470 +f 2481//2481 2472//2472 2470//2470 +f 2474//2474 2477//2477 2481//2481 +f 2470//2470 2463//2463 2474//2474 +f 2483//2483 2482//2482 2484//2484 +f 2482//2482 2485//2485 2484//2484 +f 2483//2483 2461//2461 2482//2482 +f 2484//2484 2486//2486 2483//2483 +f 2484//2484 2487//2487 2488//2488 +f 2487//2487 1058//1058 2488//2488 +f 2484//2484 2485//2485 2487//2487 +f 2488//2488 2486//2486 2484//2484 +f 2482//2482 2468//2468 2489//2489 +f 2468//2468 2469//2469 2489//2489 +f 2482//2482 2461//2461 2468//2468 +f 2489//2489 2485//2485 2482//2482 +f 2483//2483 2490//2490 2464//2464 +f 2490//2490 2466//2466 2464//2464 +f 2483//2483 2486//2486 2490//2490 +f 2464//2464 2461//2461 2483//2483 +f 2492//2492 2491//2491 2493//2493 +f 2491//2491 2494//2494 2493//2493 +f 2492//2492 2462//2462 2491//2491 +f 2493//2493 2495//2495 2492//2492 +f 2493//2493 2496//2496 2497//2497 +f 2496//2496 1629//1629 2497//2497 +f 2493//2493 2494//2494 2496//2496 +f 2497//2497 2495//2495 2493//2493 +f 2491//2491 2471//2471 2498//2498 +f 2471//2471 2472//2472 2498//2498 +f 2491//2491 2462//2462 2471//2471 +f 2498//2498 2494//2494 2491//2491 +f 2492//2492 2499//2499 2467//2467 +f 2499//2499 2469//2469 2467//2467 +f 2492//2492 2495//2495 2499//2499 +f 2467//2467 2462//2462 2492//2492 +f 2501//2501 2500//2500 2502//2502 +f 2500//2500 2503//2503 2502//2502 +f 2501//2501 2504//2504 2500//2500 +f 2502//2502 2505//2505 2501//2501 +f 2502//2502 2506//2506 2507//2507 +f 2506//2506 499//499 2507//2507 +f 2502//2502 2503//2503 2506//2506 +f 2507//2507 2505//2505 2502//2502 +f 2500//2500 2508//2508 2509//2509 +f 2508//2508 2472//2472 2509//2509 +f 2500//2500 2504//2504 2508//2508 +f 2509//2509 2503//2503 2500//2500 +f 2501//2501 2510//2510 2511//2511 +f 2510//2510 1696//1696 2511//2511 +f 2501//2501 2505//2505 2510//2510 +f 2511//2511 2504//2504 2501//2501 +f 2513//2513 2512//2512 2514//2514 +f 2512//2512 503//503 2514//2514 +f 2513//2513 2505//2505 2512//2512 +f 2514//2514 1705//1705 2513//2513 +f 2514//2514 504//504 1707//1707 +f 504//504 392//392 1707//1707 +f 2514//2514 503//503 504//504 +f 1707//1707 1705//1705 2514//2514 +f 2512//2512 2507//2507 505//505 +f 2507//2507 499//499 505//505 +f 2512//2512 2505//2505 2507//2507 +f 505//505 503//503 2512//2512 +f 2513//2513 1709//1709 2510//2510 +f 1709//1709 1696//1696 2510//2510 +f 2513//2513 1705//1705 1709//1709 +f 2510//2510 2505//2505 2513//2513 +f 2516//2516 2515//2515 2517//2517 +f 2515//2515 2477//2477 2517//2517 +f 2516//2516 2503//2503 2515//2515 +f 2517//2517 512//512 2516//2516 +f 2517//2517 2479//2479 513//513 +f 2479//2479 484//484 513//513 +f 2517//2517 2477//2477 2479//2479 +f 513//513 512//512 2517//2517 +f 2515//2515 2509//2509 2481//2481 +f 2509//2509 2472//2472 2481//2481 +f 2515//2515 2503//2503 2509//2509 +f 2481//2481 2477//2477 2515//2515 +f 2516//2516 514//514 2506//2506 +f 514//514 499//499 2506//2506 +f 2516//2516 512//512 514//514 +f 2506//2506 2503//2503 2516//2516 +f 2519//2519 2518//2518 2520//2520 +f 2518//2518 1714//1714 2520//2520 +f 2519//2519 2504//2504 2518//2518 +f 2520//2520 2494//2494 2519//2519 +f 2520//2520 1715//1715 2496//2496 +f 1715//1715 1629//1629 2496//2496 +f 2520//2520 1714//1714 1715//1715 +f 2496//2496 2494//2494 2520//2520 +f 2518//2518 2511//2511 1716//1716 +f 2511//2511 1696//1696 1716//1716 +f 2518//2518 2504//2504 2511//2511 +f 1716//1716 1714//1714 2518//2518 +f 2519//2519 2498//2498 2508//2508 +f 2498//2498 2472//2472 2508//2508 +f 2519//2519 2494//2494 2498//2498 +f 2508//2508 2504//2504 2519//2519 +f 2522//2522 2521//2521 2523//2523 +f 2521//2521 2524//2524 2523//2523 +f 2522//2522 2525//2525 2521//2521 +f 2523//2523 2526//2526 2522//2522 +f 2523//2523 2527//2527 2528//2528 +f 2527//2527 1073//1073 2528//2528 +f 2523//2523 2524//2524 2527//2527 +f 2528//2528 2526//2526 2523//2523 +f 2521//2521 2529//2529 2530//2530 +f 2529//2529 2466//2466 2530//2530 +f 2521//2521 2525//2525 2529//2529 +f 2530//2530 2524//2524 2521//2521 +f 2522//2522 2531//2531 2532//2532 +f 2531//2531 551//551 2532//2532 +f 2522//2522 2526//2526 2531//2531 +f 2532//2532 2525//2525 2522//2522 +f 2534//2534 2533//2533 2535//2535 +f 2533//2533 1077//1077 2535//2535 +f 2534//2534 2526//2526 2533//2533 +f 2535//2535 560//560 2534//2534 +f 2535//2535 1078//1078 562//562 +f 1078//1078 564//564 562//562 +f 2535//2535 1077//1077 1078//1078 +f 562//562 560//560 2535//2535 +f 2533//2533 2528//2528 1079//1079 +f 2528//2528 1073//1073 1079//1079 +f 2533//2533 2526//2526 2528//2528 +f 1079//1079 1077//1077 2533//2533 +f 2534//2534 565//565 2531//2531 +f 565//565 551//551 2531//2531 +f 2534//2534 560//560 565//565 +f 2531//2531 2526//2526 2534//2534 +f 2537//2537 2536//2536 2538//2538 +f 2536//2536 2486//2486 2538//2538 +f 2537//2537 2524//2524 2536//2536 +f 2538//2538 1086//1086 2537//2537 +f 2538//2538 2488//2488 1087//1087 +f 2488//2488 1058//1058 1087//1087 +f 2538//2538 2486//2486 2488//2488 +f 1087//1087 1086//1086 2538//2538 +f 2536//2536 2530//2530 2490//2490 +f 2530//2530 2466//2466 2490//2490 +f 2536//2536 2524//2524 2530//2530 +f 2490//2490 2486//2486 2536//2536 +f 2537//2537 1088//1088 2527//2527 +f 1088//1088 1073//1073 2527//2527 +f 2537//2537 1086//1086 1088//1088 +f 2527//2527 2524//2524 2537//2537 +f 2540//2540 2539//2539 2541//2541 +f 2539//2539 570//570 2541//2541 +f 2540//2540 2525//2525 2539//2539 +f 2541//2541 2476//2476 2540//2540 +f 2541//2541 571//571 2478//2478 +f 571//571 484//484 2478//2478 +f 2541//2541 570//570 571//571 +f 2478//2478 2476//2476 2541//2541 +f 2539//2539 2532//2532 572//572 +f 2532//2532 551//551 572//572 +f 2539//2539 2525//2525 2532//2532 +f 572//572 570//570 2539//2539 +f 2540//2540 2480//2480 2529//2529 +f 2480//2480 2466//2466 2529//2529 +f 2540//2540 2476//2476 2480//2480 +f 2529//2529 2525//2525 2540//2540 +f 2543//2543 2542//2542 2544//2544 +f 2542//2542 2545//2545 2544//2544 +f 2543//2543 2546//2546 2542//2542 +f 2544//2544 2547//2547 2543//2543 +f 2544//2544 2548//2548 2549//2549 +f 2548//2548 1644//1644 2549//2549 +f 2544//2544 2545//2545 2548//2548 +f 2549//2549 2547//2547 2544//2544 +f 2542//2542 2550//2550 2551//2551 +f 2550//2550 2469//2469 2551//2551 +f 2542//2542 2546//2546 2550//2550 +f 2551//2551 2545//2545 2542//2542 +f 2543//2543 2552//2552 2553//2553 +f 2552//2552 1125//1125 2553//2553 +f 2543//2543 2547//2547 2552//2552 +f 2553//2553 2546//2546 2543//2543 +f 2555//2555 2554//2554 2556//2556 +f 2554//2554 1648//1648 2556//2556 +f 2555//2555 2547//2547 2554//2554 +f 2556//2556 1134//1134 2555//2555 +f 2556//2556 1649//1649 1136//1136 +f 1649//1649 1138//1138 1136//1136 +f 2556//2556 1648//1648 1649//1649 +f 1136//1136 1134//1134 2556//2556 +f 2554//2554 2549//2549 1650//1650 +f 2549//2549 1644//1644 1650//1650 +f 2554//2554 2547//2547 2549//2549 +f 1650//1650 1648//1648 2554//2554 +f 2555//2555 1139//1139 2552//2552 +f 1139//1139 1125//1125 2552//2552 +f 2555//2555 1134//1134 1139//1139 +f 2552//2552 2547//2547 2555//2555 +f 2558//2558 2557//2557 2559//2559 +f 2557//2557 2495//2495 2559//2559 +f 2558//2558 2545//2545 2557//2557 +f 2559//2559 1657//1657 2558//2558 +f 2559//2559 2497//2497 1658//1658 +f 2497//2497 1629//1629 1658//1658 +f 2559//2559 2495//2495 2497//2497 +f 1658//1658 1657//1657 2559//2559 +f 2557//2557 2551//2551 2499//2499 +f 2551//2551 2469//2469 2499//2499 +f 2557//2557 2545//2545 2551//2551 +f 2499//2499 2495//2495 2557//2557 +f 2558//2558 1659//1659 2548//2548 +f 1659//1659 1644//1644 2548//2548 +f 2558//2558 1657//1657 1659//1659 +f 2548//2548 2545//2545 2558//2558 +f 2561//2561 2560//2560 2562//2562 +f 2560//2560 1144//1144 2562//2562 +f 2561//2561 2546//2546 2560//2560 +f 2562//2562 2485//2485 2561//2561 +f 2562//2562 1145//1145 2487//2487 +f 1145//1145 1058//1058 2487//2487 +f 2562//2562 1144//1144 1145//1145 +f 2487//2487 2485//2485 2562//2562 +f 2560//2560 2553//2553 1146//1146 +f 2553//2553 1125//1125 1146//1146 +f 2560//2560 2546//2546 2553//2553 +f 1146//1146 1144//1144 2560//2560 +f 2561//2561 2489//2489 2550//2550 +f 2489//2489 2469//2469 2550//2550 +f 2561//2561 2485//2485 2489//2489 +f 2550//2550 2546//2546 2561//2561 +# 5120 faces, 0 coords texture + +# End of File diff --git a/load/shapes/hand_prismatic.obj b/load/shapes/hand_prismatic.obj new file mode 100644 index 0000000..a242378 --- /dev/null +++ b/load/shapes/hand_prismatic.obj @@ -0,0 +1,7025 @@ +# WaveFront *.obj file (generated by Autodesk ATF) + +mtllib hand_b.mtl + +g hand_b + +v -30.000000 -70.000000 20.000000 +v -33.170058 -76.661997 20.000000 +v -36.524763 -83.308294 20.000000 +v -39.745509 -89.846520 20.000000 +v -41.200366 -93.042139 20.000000 +v -42.495146 -96.170044 20.000000 +v -43.588710 -99.215904 20.000000 +v -44.441737 -102.165426 20.000000 +v -45.017407 -105.004582 20.000000 +v -45.282052 -107.719810 20.000000 +v -45.205806 -110.298226 20.000000 +v -44.763281 -112.727842 20.000000 +v -43.934386 -114.997815 20.000000 +v -42.705233 -117.098725 20.000000 +v -41.069049 -119.022850 20.000000 +v -39.026968 -120.764413 20.000000 +v -36.588151 -122.319653 20.000000 +v -33.769355 -123.686753 20.000000 +v -30.594452 -124.865754 20.000000 +v -27.093907 -125.858462 20.000000 +v -23.304036 -126.668293 20.000000 +v -19.266051 -127.300063 20.000000 +v -15.025072 -127.759771 20.000000 +v -10.629147 -128.054387 20.000000 +v -6.128317 -128.191641 20.000000 +v -1.573726 -128.179841 20.000000 +v 7.491877 -127.744077 20.000000 +v 11.902916 -127.337937 20.000000 +v 16.169429 -126.818041 20.000000 +v 20.247579 -126.192836 20.000000 +v 24.097448 -125.470272 20.000000 +v 27.683941 -124.657605 20.000000 +v 30.977874 -123.761160 20.000000 +v 33.957089 -122.786095 20.000000 +v 36.607560 -121.736158 20.000000 +v 38.924203 -120.613520 20.000000 +v 40.911086 -119.418723 20.000000 +v 42.581477 -118.150685 20.000000 +v 43.957854 -116.806691 20.000000 +v 45.071499 -115.382486 20.000000 +v 45.961074 -113.872589 20.000000 +v 46.670837 -112.270672 20.000000 +v 47.248840 -110.569957 20.000000 +v 48.210085 -106.845075 20.000000 +v 49.238192 -102.649355 20.000000 +v 49.888053 -100.364129 20.000000 +v 50.677481 -97.951195 20.000000 +v 51.635632 -95.410557 20.000000 +v 52.784884 -92.744011 20.000000 +v 54.140445 -89.955190 20.000000 +v 55.710657 -87.049440 20.000000 +v 57.497746 -84.033584 20.000000 +v 59.498600 -80.915677 20.000000 +v 61.705514 -77.704769 20.000000 +v 64.106739 -74.410723 20.000000 +v 66.686884 -71.044064 20.000000 +v 69.427306 -67.615835 20.000000 +v 75.300653 -60.620497 20.000000 +v 81.529890 -53.517167 20.000000 +v 87.898414 -46.395228 20.000000 +v 94.186783 -39.335211 20.000000 +v 100.187529 -32.403713 20.000000 +v 105.721183 -25.647782 20.000000 +v 108.269095 -22.343324 20.000000 +v 110.655124 -19.088128 20.000000 +v 112.872376 -15.879880 20.000000 +v 114.918057 -12.714298 20.000000 +v 116.793496 -9.585168 20.000000 +v 118.504009 -6.484458 20.000000 +v 121.468813 -0.328528 20.000000 +v 123.917067 5.844433 20.000000 +v 125.987072 12.137940 20.000000 +v 127.838280 18.660921 20.000000 +v 129.639276 25.520800 20.000000 +v 131.554707 32.816084 20.000000 +v 132.602418 36.653491 20.000000 +v 133.731949 40.628841 20.000000 +v 134.956921 44.748634 20.000000 +v 136.288283 49.017443 20.000000 +v 137.733905 53.437677 20.000000 +v 139.298159 58.009344 20.000000 +v 140.981509 62.729815 20.000000 +v 142.780180 67.593630 20.000000 +v 144.686259 72.592523 20.000000 +v 146.688076 77.715604 20.000000 +v 150.915969 88.278794 20.000000 +v 155.311514 99.150901 20.000000 +v 159.690793 110.170197 20.000000 +v 163.853417 121.152008 20.000000 +v 165.789554 126.566442 20.000000 +v 167.595369 131.895085 20.000000 +v 169.246819 137.111228 20.000000 +v 170.721483 142.187926 20.000000 +v 171.999224 147.098203 20.000000 +v 173.062825 151.815255 20.000000 +v 173.898374 156.312652 20.000000 +v 174.495287 160.564528 20.000000 +v 174.846254 164.545763 20.000000 +v 174.947224 168.232176 20.000000 +v 174.797926 171.600724 20.000000 +v 174.403313 174.629728 20.000000 +v 173.775225 177.299103 20.000000 +v 172.933982 179.590588 20.000000 +v 171.908455 181.487937 20.000000 +v 170.733039 182.977034 20.000000 +v 169.443676 184.045986 20.000000 +v 168.766935 184.419823 20.000000 +v 168.073885 184.685220 20.000000 +v 167.367831 184.841356 20.000000 +v 166.651671 184.887570 20.000000 +v 165.927894 184.823362 20.000000 +v 165.198573 184.648394 20.000000 +v 163.729510 183.965676 20.000000 +v 162.252670 182.840138 20.000000 +v 160.769705 181.275358 20.000000 +v 159.276842 179.277890 20.000000 +v 157.766395 176.857408 20.000000 +v 156.228300 174.026831 20.000000 +v 154.651564 170.802468 20.000000 +v 153.025387 167.204175 20.000000 +v 151.340121 163.255532 20.000000 +v 149.588209 158.984008 20.000000 +v 147.765010 154.421068 20.000000 +v 145.869086 149.601978 20.000000 +v 143.902153 144.565414 20.000000 +v 141.869003 139.353062 20.000000 +v 137.637802 128.580291 20.000000 +v 133.267738 117.660994 20.000000 +v 128.882086 106.991891 20.000000 +v 126.727670 101.876737 20.000000 +v 124.624201 96.974061 20.000000 +v 122.591317 92.332238 20.000000 +v 120.648815 87.998073 20.000000 +v 118.816301 84.016367 20.000000 +v 117.112836 80.429484 20.000000 +v 115.556592 77.276921 20.000000 +v 114.164549 74.594826 20.000000 +v 112.952273 72.415484 20.000000 +v 111.933701 70.766784 20.000000 +v 111.500908 70.148807 20.000000 +v 111.120914 69.671693 20.000000 +v 110.794883 69.337471 20.000000 +v 110.652424 69.224483 20.000000 +v 110.523817 69.147820 20.000000 +v 110.409158 69.107633 20.000000 +v 110.357086 69.101260 20.000000 +v 110.308531 69.104053 20.000000 +v 110.263503 69.116025 20.000000 +v 110.222008 69.137187 20.000000 +v 110.184053 69.167549 20.000000 +v 110.149644 69.207118 20.000000 +v 110.091484 69.313904 20.000000 +v 110.047556 69.457580 20.000000 +v 110.002435 69.855619 20.000000 +v 110.014199 70.401023 20.000000 +v 110.082509 71.093185 20.000000 +v 110.206772 71.931125 20.000000 +v 110.386139 72.913508 20.000000 +v 110.619513 74.038662 20.000000 +v 110.905551 75.304597 20.000000 +v 111.629039 78.249394 20.000000 +v 112.541074 81.726390 20.000000 +v 113.622523 85.710147 20.000000 +v 114.851094 90.171595 20.000000 +v 116.201860 95.078255 20.000000 +v 117.647788 100.394463 20.000000 +v 119.160239 106.081614 20.000000 +v 120.709398 112.098496 20.000000 +v 122.264666 118.401647 20.000000 +v 123.795066 124.945714 20.000000 +v 125.269633 131.683808 20.000000 +v 126.657830 138.567820 20.000000 +v 127.929962 145.548720 20.000000 +v 129.057591 152.576861 20.000000 +v 130.013958 159.602282 20.000000 +v 130.774454 166.575029 20.000000 +v 131.317111 173.445480 20.000000 +v 131.623090 180.164678 20.000000 +v 131.677152 186.684658 20.000000 +v 131.468011 192.958764 20.000000 +v 130.988601 198.941958 20.000000 +v 130.236335 204.591136 20.000000 +v 129.213419 209.865431 20.000000 +v 127.927422 214.726547 20.000000 +v 126.392092 219.139086 20.000000 +v 124.628195 223.070889 20.000000 +v 122.664246 226.493365 20.000000 +v 120.536498 229.381788 20.000000 +v 118.288162 231.715557 20.000000 +v 115.968520 233.478456 20.000000 +v 113.631938 234.658894 20.000000 +v 112.475248 235.028367 20.000000 +v 111.336029 235.250030 20.000000 +v 110.221516 235.323768 20.000000 +v 109.138774 235.249758 20.000000 +v 108.094605 235.028467 20.000000 +v 107.095450 234.660657 20.000000 +v 106.147289 234.147374 20.000000 +v 105.255524 233.489960 20.000000 +v 104.424839 232.690055 20.000000 +v 103.659059 231.749603 20.000000 +v 102.961018 230.670860 20.000000 +v 102.332412 229.456400 20.000000 +v 101.283783 226.632247 20.000000 +v 100.499039 223.304303 20.000000 +v 99.941585 219.504721 20.000000 +v 99.559294 215.269622 20.000000 +v 99.293304 210.637866 20.000000 +v 99.086719 205.649837 20.000000 +v 98.890717 200.346527 20.000000 +v 98.665259 194.769263 20.000000 +v 98.378052 188.959647 20.000000 +v 98.003483 182.959485 20.000000 +v 97.521732 176.810701 20.000000 +v 96.918359 170.555181 20.000000 +v 95.314494 157.890204 20.000000 +v 93.174779 145.292040 20.000000 +v 91.917358 139.117323 20.000000 +v 90.549096 133.076637 20.000000 +v 89.084214 127.206926 20.000000 +v 87.539261 121.543829 20.000000 +v 85.932727 116.121520 20.000000 +v 84.284642 110.972544 20.000000 +v 82.616184 106.127660 20.000000 +v 80.949274 101.615685 20.000000 +v 79.306167 97.463362 20.000000 +v 77.709042 93.695218 20.000000 +v 76.179590 90.333422 20.000000 +v 74.738567 87.397618 20.000000 +v 73.405327 84.904747 20.000000 +v 72.197358 82.868860 20.000000 +v 71.129829 81.300950 20.000000 +v 70.215244 80.208826 20.000000 +v 69.818424 79.842742 20.000000 +v 69.463200 79.597063 20.000000 +v 69.301417 79.519401 20.000000 +v 69.150281 79.471845 20.000000 +v 69.009850 79.454370 20.000000 +v 68.880165 79.466936 20.000000 +v 68.761256 79.509493 20.000000 +v 68.653138 79.581974 20.000000 +v 68.555813 79.684304 20.000000 +v 68.469273 79.816392 20.000000 +v 68.328449 80.169423 20.000000 +v 68.230353 80.640114 20.000000 +v 68.160217 81.929739 20.000000 +v 68.252984 83.674078 20.000000 +v 68.500410 85.859346 20.000000 +v 68.892168 88.469371 20.000000 +v 69.416078 91.485764 20.000000 +v 70.058330 94.888100 20.000000 +v 70.803697 98.654086 20.000000 +v 71.635772 102.759741 20.000000 +v 72.537215 107.179586 20.000000 +v 73.490002 111.886837 20.000000 +v 74.475682 116.853590 20.000000 +v 75.475629 122.051023 20.000000 +v 76.471305 127.449575 20.000000 +v 77.444517 133.019145 20.000000 +v 79.254072 144.549350 20.000000 +v 80.775017 156.397016 20.000000 +v 81.897756 168.320284 20.000000 +v 82.536652 180.085013 20.000000 +v 82.654511 185.837805 20.000000 +v 82.630102 191.468542 20.000000 +v 82.459248 196.951729 20.000000 +v 82.139141 202.263012 20.000000 +v 81.668331 207.379288 20.000000 +v 81.046707 212.278811 20.000000 +v 80.275482 216.941312 20.000000 +v 79.357171 221.348110 20.000000 +v 78.295564 225.482237 20.000000 +v 77.095705 229.328544 20.000000 +v 75.763863 232.873807 20.000000 +v 74.307502 236.106817 20.000000 +v 72.735251 239.018468 20.000000 +v 71.056874 241.601852 20.000000 +v 69.283258 243.852389 20.000000 +v 67.426412 245.767982 20.000000 +v 65.499475 247.349176 20.000000 +v 63.516707 248.599308 20.000000 +v 61.493446 249.524567 20.000000 +v 59.446013 250.133969 20.000000 +v 57.391613 250.439313 20.000000 +v 55.348225 250.455115 20.000000 +v 53.334376 250.198310 20.000000 +v 51.368777 249.687660 20.000000 +v 49.469937 248.943113 20.000000 +v 47.655765 247.985151 20.000000 +v 45.943168 246.834135 20.000000 +v 44.347621 245.509611 20.000000 +v 42.882729 244.029618 20.000000 +v 41.559799 242.410005 20.000000 +v 40.387500 240.663879 20.000000 +v 39.371675 238.801301 20.000000 +v 38.515196 236.829043 20.000000 +v 37.817834 234.750363 20.000000 +v 37.276251 232.564984 20.000000 +v 36.884290 230.269541 20.000000 +v 36.633356 227.858166 20.000000 +v 36.512799 225.323085 20.000000 +v 36.510275 222.655174 20.000000 +v 36.612044 219.844423 20.000000 +v 36.803244 216.880359 20.000000 +v 37.068163 213.752467 20.000000 +v 37.390519 210.450620 20.000000 +v 37.753747 206.965517 20.000000 +v 38.141293 203.289132 20.000000 +v 38.536911 199.415157 20.000000 +v 38.924960 195.339466 20.000000 +v 39.290738 191.060635 20.000000 +v 39.620824 186.580489 20.000000 +v 39.903420 181.904656 20.000000 +v 40.128652 177.043032 20.000000 +v 40.288680 172.009865 20.000000 +v 40.377660 166.823556 20.000000 +v 40.391708 161.506460 20.000000 +v 40.188857 150.587493 20.000000 +v 39.684537 139.498630 20.000000 +v 38.905798 128.523376 20.000000 +v 38.426823 123.173642 20.000000 +v 37.896957 117.968403 20.000000 +v 37.323694 112.947481 20.000000 +v 36.715034 108.150518 20.000000 +v 36.079330 103.616526 20.000000 +v 35.425119 99.383431 20.000000 +v 34.760965 95.487627 20.000000 +v 34.095304 91.963541 20.000000 +v 33.436304 88.843248 20.000000 +v 32.791729 86.156077 20.000000 +v 32.168798 83.928231 20.000000 +v 31.574034 82.182347 20.000000 +v 31.013088 80.936994 20.000000 +v 30.746778 80.506579 20.000000 +v 30.490553 80.206151 20.000000 +v 30.366343 80.104991 20.000000 +v 30.244790 80.036655 20.000000 +v 30.125927 80.001206 20.000000 +v 30.067513 79.995830 20.000000 +v 30.009783 79.998689 20.000000 +v 29.952738 80.009787 20.000000 +v 29.896380 80.029125 20.000000 +v 29.785738 80.092515 20.000000 +v 29.677869 80.188838 20.000000 +v 29.572780 80.318054 20.000000 +v 29.370947 80.674903 20.000000 +v 29.180199 81.162332 20.000000 +v 28.831393 82.524428 20.000000 +v 28.524463 84.392259 20.000000 +v 28.256321 86.749000 20.000000 +v 28.022810 89.573479 20.000000 +v 27.818831 92.840631 20.000000 +v 27.638478 96.521945 20.000000 +v 27.475163 100.585898 20.000000 +v 27.321726 104.998337 20.000000 +v 27.170542 109.722840 20.000000 +v 27.013615 114.721068 20.000000 +v 26.842692 119.953138 20.000000 +v 26.649373 125.378011 20.000000 +v 26.425227 130.953912 20.000000 +v 25.851318 142.390443 20.000000 +v 25.057410 153.929017 20.000000 +v 23.986649 165.248761 20.000000 +v 23.332347 170.732691 20.000000 +v 22.592314 176.053513 20.000000 +v 21.762943 181.180337 20.000000 +v 20.841769 186.085585 20.000000 +v 19.827548 190.745254 20.000000 +v 18.720294 195.139035 20.000000 +v 17.521316 199.250410 20.000000 +v 16.233240 203.066708 20.000000 +v 14.859984 206.578950 20.000000 +v 13.406667 209.781421 20.000000 +v 11.879503 212.671219 20.000000 +v 10.285705 215.247800 20.000000 +v 8.633396 217.512596 20.000000 +v 6.931528 219.468706 20.000000 +v 5.189809 221.120616 20.000000 +v 3.418626 222.473903 20.000000 +v 1.628971 223.534897 20.000000 +v -0.167626 224.310257 20.000000 +v -1.959165 224.806537 20.000000 +v -3.733251 225.029752 20.000000 +v -5.477174 224.985056 20.000000 +v -7.178039 224.676617 20.000000 +v -8.822897 224.107554 20.000000 +v -10.398876 223.279875 20.000000 +v -11.893334 222.194509 20.000000 +v -13.294039 220.851541 20.000000 +v -14.589365 219.250515 20.000000 +v -15.768485 217.390742 20.000000 +v -16.821571 215.271594 20.000000 +v -17.739997 212.892753 20.000000 +v -18.516548 210.254453 20.000000 +v -19.145629 207.357721 20.000000 +v -19.623456 204.204601 20.000000 +v -19.948196 200.798360 20.000000 +v -20.120090 197.143676 20.000000 +v -20.141562 193.246823 20.000000 +v -20.017287 189.115817 20.000000 +v -19.754087 184.760393 20.000000 +v -19.360711 180.191884 20.000000 +v -18.847614 175.423090 20.000000 +v -18.226739 170.468161 20.000000 +v -17.511332 165.342499 20.000000 +v -16.715773 160.062685 20.000000 +v -15.855413 154.646413 20.000000 +v -14.005532 143.480353 20.000000 +v -12.097300 132.005012 20.000000 +v -10.270319 120.393362 20.000000 +v -8.662283 108.827759 20.000000 +v -7.403310 97.497177 20.000000 +v -6.941901 91.980212 20.000000 +v -6.610184 86.594482 20.000000 +v -6.419694 81.364257 20.000000 +v -6.380390 76.313705 20.000000 +v -6.500488 71.466802 20.000000 +v -6.786296 66.847237 20.000000 +v -7.242050 62.478315 20.000000 +v -7.869723 58.382878 20.000000 +v -8.668815 54.583228 20.000000 +v -9.636129 51.101071 20.000000 +v -10.765553 47.957437 20.000000 +v -12.048031 45.172517 20.000000 +v -13.471904 42.765288 20.000000 +v -15.023371 40.753076 20.000000 +v -16.686951 39.151118 20.000000 +v -18.445969 37.972111 20.000000 +v -20.283092 37.225721 20.000000 +v -22.180883 36.918082 20.000000 +v -24.122359 37.051299 20.000000 +v -26.091534 37.622954 20.000000 +v -28.073921 38.625659 20.000000 +v -30.057031 40.046621 20.000000 +v -32.030848 41.867216 20.000000 +v -33.988200 44.062725 20.000000 +v -35.924681 46.602691 20.000000 +v -37.838329 49.451600 20.000000 +v -39.729294 52.569591 20.000000 +v -41.599505 55.913154 20.000000 +v -45.292425 63.088762 20.000000 +v -48.956446 70.582761 20.000000 +v -52.639846 77.983619 20.000000 +v -54.503875 81.521489 20.000000 +v -56.389796 84.885546 20.000000 +v -58.301673 88.029530 20.000000 +v -60.242256 90.910229 20.000000 +v -62.212686 93.488128 20.000000 +v -64.212189 95.728072 20.000000 +v -66.237761 97.599942 20.000000 +v -68.283829 99.079372 20.000000 +v -70.341908 100.148469 20.000000 +v -72.400297 100.796475 20.000000 +v -74.444093 101.019899 20.000000 +v -76.455646 100.821944 20.000000 +v -78.415103 100.211783 20.000000 +v -80.300947 99.203843 20.000000 +v -82.090537 97.817081 20.000000 +v -83.760641 96.074252 20.000000 +v -85.287969 94.001184 20.000000 +v -86.649711 91.626042 20.000000 +v -87.824091 88.978571 20.000000 +v -88.790995 86.089281 20.000000 +v -89.532594 82.988620 20.000000 +v -90.033975 79.706150 20.000000 +v -90.283601 76.269902 20.000000 +v -90.273393 72.706129 20.000000 +v -89.998687 69.039200 20.000000 +v -89.458178 65.291503 20.000000 +v -88.653827 61.483387 20.000000 +v -87.590654 57.633227 20.000000 +v -86.276482 53.757546 20.000000 +v -84.721683 49.871124 20.000000 +v -82.938930 45.987115 20.000000 +v -80.942993 42.117108 20.000000 +v -78.750546 38.271174 20.000000 +v -76.379985 34.457912 20.000000 +v -71.185548 26.956751 20.000000 +v -65.533647 19.655181 20.000000 +v -59.612471 12.575396 20.000000 +v -53.617687 5.722494 20.000000 +v -47.745958 -0.913425 20.000000 +v -42.188316 -7.355216 20.000000 +v -39.583745 -10.513508 20.000000 +v -37.123314 -13.636676 20.000000 +v -34.826361 -16.730254 20.000000 +v -32.710718 -19.800112 20.000000 +v -30.792552 -22.852355 20.000000 +v -29.086219 -25.893209 20.000000 +v -27.604129 -28.928896 20.000000 +v -26.356608 -31.965517 20.000000 +v -25.351769 -35.008920 20.000000 +v -24.595371 -38.064585 20.000000 +v -24.090682 -41.137502 20.000000 +v -23.838337 -44.232057 20.000000 +v -23.836197 -47.351910 20.000000 +v -24.079211 -50.499884 20.000000 +v -24.559272 -53.677840 20.000000 +v -25.265077 -56.886556 20.000000 +v -26.181988 -60.125608 20.000000 +v -27.291888 -63.393251 20.000000 +v -30.000000 -70.000000 -20.000000 +v -33.170058 -76.661997 -20.000000 +v -36.524763 -83.308294 -20.000000 +v -39.745509 -89.846520 -20.000000 +v -41.200366 -93.042139 -20.000000 +v -42.495146 -96.170044 -20.000000 +v -43.588710 -99.215904 -20.000000 +v -44.441737 -102.165426 -20.000000 +v -45.017407 -105.004582 -20.000000 +v -45.282052 -107.719810 -20.000000 +v -45.205806 -110.298226 -20.000000 +v -44.763281 -112.727842 -20.000000 +v -43.934386 -114.997815 -20.000000 +v -42.705233 -117.098725 -20.000000 +v -41.069049 -119.022850 -20.000000 +v -39.026968 -120.764413 -20.000000 +v -36.588151 -122.319653 -20.000000 +v -33.769355 -123.686753 -20.000000 +v -30.594452 -124.865754 -20.000000 +v -27.093907 -125.858462 -20.000000 +v -23.304036 -126.668293 -20.000000 +v -19.266051 -127.300063 -20.000000 +v -15.025072 -127.759771 -20.000000 +v -10.629147 -128.054387 -20.000000 +v -6.128317 -128.191641 -20.000000 +v -1.573726 -128.179841 -20.000000 +v 7.491877 -127.744077 -20.000000 +v 11.902916 -127.337937 -20.000000 +v 16.169429 -126.818041 -20.000000 +v 20.247579 -126.192836 -20.000000 +v 24.097448 -125.470272 -20.000000 +v 27.683941 -124.657605 -20.000000 +v 30.977874 -123.761160 -20.000000 +v 33.957089 -122.786095 -20.000000 +v 36.607560 -121.736158 -20.000000 +v 38.924203 -120.613520 -20.000000 +v 40.911086 -119.418723 -20.000000 +v 42.581477 -118.150685 -20.000000 +v 43.957854 -116.806691 -20.000000 +v 45.071499 -115.382486 -20.000000 +v 45.961074 -113.872589 -20.000000 +v 46.670837 -112.270672 -20.000000 +v 47.248840 -110.569957 -20.000000 +v 48.210085 -106.845075 -20.000000 +v 49.238192 -102.649355 -20.000000 +v 49.888053 -100.364129 -20.000000 +v 50.677481 -97.951195 -20.000000 +v 51.635632 -95.410557 -20.000000 +v 52.784884 -92.744011 -20.000000 +v 54.140445 -89.955190 -20.000000 +v 55.710657 -87.049440 -20.000000 +v 57.497746 -84.033584 -20.000000 +v 59.498600 -80.915677 -20.000000 +v 61.705514 -77.704769 -20.000000 +v 64.106739 -74.410723 -20.000000 +v 66.686884 -71.044064 -20.000000 +v 69.427306 -67.615835 -20.000000 +v 75.300653 -60.620497 -20.000000 +v 81.529890 -53.517167 -20.000000 +v 87.898414 -46.395228 -20.000000 +v 94.186783 -39.335211 -20.000000 +v 100.187529 -32.403713 -20.000000 +v 105.721183 -25.647782 -20.000000 +v 108.269095 -22.343324 -20.000000 +v 110.655124 -19.088128 -20.000000 +v 112.872376 -15.879880 -20.000000 +v 114.918057 -12.714298 -20.000000 +v 116.793496 -9.585168 -20.000000 +v 118.504009 -6.484458 -20.000000 +v 121.468813 -0.328528 -20.000000 +v 123.917067 5.844433 -20.000000 +v 125.987072 12.137940 -20.000000 +v 127.838280 18.660921 -20.000000 +v 129.639276 25.520800 -20.000000 +v 131.554707 32.816084 -20.000000 +v 132.602418 36.653491 -20.000000 +v 133.731949 40.628841 -20.000000 +v 134.956921 44.748634 -20.000000 +v 136.288283 49.017443 -20.000000 +v 137.733905 53.437677 -20.000000 +v 139.298159 58.009344 -20.000000 +v 140.981509 62.729815 -20.000000 +v 142.780180 67.593630 -20.000000 +v 144.686259 72.592523 -20.000000 +v 146.688076 77.715604 -20.000000 +v 150.915969 88.278794 -20.000000 +v 155.311514 99.150901 -20.000000 +v 159.690793 110.170197 -20.000000 +v 163.853417 121.152008 -20.000000 +v 165.789554 126.566442 -20.000000 +v 167.595369 131.895085 -20.000000 +v 169.246819 137.111228 -20.000000 +v 170.721483 142.187926 -20.000000 +v 171.999224 147.098203 -20.000000 +v 173.062825 151.815255 -20.000000 +v 173.898374 156.312652 -20.000000 +v 174.495287 160.564528 -20.000000 +v 174.846254 164.545763 -20.000000 +v 174.947224 168.232176 -20.000000 +v 174.797926 171.600724 -20.000000 +v 174.403313 174.629728 -20.000000 +v 173.775225 177.299103 -20.000000 +v 172.933982 179.590588 -20.000000 +v 171.908455 181.487937 -20.000000 +v 170.733039 182.977034 -20.000000 +v 169.443676 184.045986 -20.000000 +v 168.766935 184.419823 -20.000000 +v 168.073885 184.685220 -20.000000 +v 167.367831 184.841356 -20.000000 +v 166.651671 184.887570 -20.000000 +v 165.927894 184.823362 -20.000000 +v 165.198573 184.648394 -20.000000 +v 163.729510 183.965676 -20.000000 +v 162.252670 182.840138 -20.000000 +v 160.769705 181.275358 -20.000000 +v 159.276842 179.277890 -20.000000 +v 157.766395 176.857408 -20.000000 +v 156.228300 174.026831 -20.000000 +v 154.651564 170.802468 -20.000000 +v 153.025387 167.204175 -20.000000 +v 151.340121 163.255532 -20.000000 +v 149.588209 158.984008 -20.000000 +v 147.765010 154.421068 -20.000000 +v 145.869086 149.601978 -20.000000 +v 143.902153 144.565414 -20.000000 +v 141.869003 139.353062 -20.000000 +v 137.637802 128.580291 -20.000000 +v 133.267738 117.660994 -20.000000 +v 128.882086 106.991891 -20.000000 +v 126.727670 101.876737 -20.000000 +v 124.624201 96.974061 -20.000000 +v 122.591317 92.332238 -20.000000 +v 120.648815 87.998073 -20.000000 +v 118.816301 84.016367 -20.000000 +v 117.112836 80.429484 -20.000000 +v 115.556592 77.276921 -20.000000 +v 114.164549 74.594826 -20.000000 +v 112.952273 72.415484 -20.000000 +v 111.933701 70.766784 -20.000000 +v 111.500908 70.148807 -20.000000 +v 111.120914 69.671693 -20.000000 +v 110.794883 69.337471 -20.000000 +v 110.652424 69.224483 -20.000000 +v 110.523817 69.147820 -20.000000 +v 110.409158 69.107633 -20.000000 +v 110.357086 69.101260 -20.000000 +v 110.308531 69.104053 -20.000000 +v 110.263503 69.116025 -20.000000 +v 110.222008 69.137187 -20.000000 +v 110.184053 69.167549 -20.000000 +v 110.149644 69.207118 -20.000000 +v 110.091484 69.313904 -20.000000 +v 110.047556 69.457580 -20.000000 +v 110.002435 69.855619 -20.000000 +v 110.014199 70.401023 -20.000000 +v 110.082509 71.093185 -20.000000 +v 110.206772 71.931125 -20.000000 +v 110.386139 72.913508 -20.000000 +v 110.619513 74.038662 -20.000000 +v 110.905551 75.304597 -20.000000 +v 111.629039 78.249394 -20.000000 +v 112.541074 81.726390 -20.000000 +v 113.622523 85.710147 -20.000000 +v 114.851094 90.171595 -20.000000 +v 116.201860 95.078255 -20.000000 +v 117.647788 100.394463 -20.000000 +v 119.160239 106.081614 -20.000000 +v 120.709398 112.098496 -20.000000 +v 122.264666 118.401647 -20.000000 +v 123.795066 124.945714 -20.000000 +v 125.269633 131.683808 -20.000000 +v 126.657830 138.567820 -20.000000 +v 127.929962 145.548720 -20.000000 +v 129.057591 152.576861 -20.000000 +v 130.013958 159.602282 -20.000000 +v 130.774454 166.575029 -20.000000 +v 131.317111 173.445480 -20.000000 +v 131.623090 180.164678 -20.000000 +v 131.677152 186.684658 -20.000000 +v 131.468011 192.958764 -20.000000 +v 130.988601 198.941958 -20.000000 +v 130.236335 204.591136 -20.000000 +v 129.213419 209.865431 -20.000000 +v 127.927422 214.726547 -20.000000 +v 126.392092 219.139086 -20.000000 +v 124.628195 223.070889 -20.000000 +v 122.664246 226.493365 -20.000000 +v 120.536498 229.381788 -20.000000 +v 118.288162 231.715557 -20.000000 +v 115.968520 233.478456 -20.000000 +v 113.631938 234.658894 -20.000000 +v 112.475248 235.028367 -20.000000 +v 111.336029 235.250030 -20.000000 +v 110.221516 235.323768 -20.000000 +v 109.138774 235.249758 -20.000000 +v 108.094605 235.028467 -20.000000 +v 107.095450 234.660657 -20.000000 +v 106.147289 234.147374 -20.000000 +v 105.255524 233.489960 -20.000000 +v 104.424839 232.690055 -20.000000 +v 103.659059 231.749603 -20.000000 +v 102.961018 230.670860 -20.000000 +v 102.332412 229.456400 -20.000000 +v 101.283783 226.632247 -20.000000 +v 100.499039 223.304303 -20.000000 +v 99.941585 219.504721 -20.000000 +v 99.559294 215.269622 -20.000000 +v 99.293304 210.637866 -20.000000 +v 99.086719 205.649837 -20.000000 +v 98.890717 200.346527 -20.000000 +v 98.665259 194.769263 -20.000000 +v 98.378052 188.959647 -20.000000 +v 98.003483 182.959485 -20.000000 +v 97.521732 176.810701 -20.000000 +v 96.918359 170.555181 -20.000000 +v 95.314494 157.890204 -20.000000 +v 93.174779 145.292040 -20.000000 +v 91.917358 139.117323 -20.000000 +v 90.549096 133.076637 -20.000000 +v 89.084214 127.206926 -20.000000 +v 87.539261 121.543829 -20.000000 +v 85.932727 116.121520 -20.000000 +v 84.284642 110.972544 -20.000000 +v 82.616184 106.127660 -20.000000 +v 80.949274 101.615685 -20.000000 +v 79.306167 97.463362 -20.000000 +v 77.709042 93.695218 -20.000000 +v 76.179590 90.333422 -20.000000 +v 74.738567 87.397618 -20.000000 +v 73.405327 84.904747 -20.000000 +v 72.197358 82.868860 -20.000000 +v 71.129829 81.300950 -20.000000 +v 70.215244 80.208826 -20.000000 +v 69.818424 79.842742 -20.000000 +v 69.463200 79.597063 -20.000000 +v 69.301417 79.519401 -20.000000 +v 69.150281 79.471845 -20.000000 +v 69.009850 79.454370 -20.000000 +v 68.880165 79.466936 -20.000000 +v 68.761256 79.509493 -20.000000 +v 68.653138 79.581974 -20.000000 +v 68.555813 79.684304 -20.000000 +v 68.469273 79.816392 -20.000000 +v 68.328449 80.169423 -20.000000 +v 68.230353 80.640114 -20.000000 +v 68.160217 81.929739 -20.000000 +v 68.252984 83.674078 -20.000000 +v 68.500410 85.859346 -20.000000 +v 68.892168 88.469371 -20.000000 +v 69.416078 91.485764 -20.000000 +v 70.058330 94.888100 -20.000000 +v 70.803697 98.654086 -20.000000 +v 71.635772 102.759741 -20.000000 +v 72.537215 107.179586 -20.000000 +v 73.490002 111.886837 -20.000000 +v 74.475682 116.853590 -20.000000 +v 75.475629 122.051023 -20.000000 +v 76.471305 127.449575 -20.000000 +v 77.444517 133.019145 -20.000000 +v 79.254072 144.549350 -20.000000 +v 80.775017 156.397016 -20.000000 +v 81.897756 168.320284 -20.000000 +v 82.536652 180.085013 -20.000000 +v 82.654511 185.837805 -20.000000 +v 82.630102 191.468542 -20.000000 +v 82.459248 196.951729 -20.000000 +v 82.139141 202.263012 -20.000000 +v 81.668331 207.379288 -20.000000 +v 81.046707 212.278811 -20.000000 +v 80.275482 216.941312 -20.000000 +v 79.357171 221.348110 -20.000000 +v 78.295564 225.482237 -20.000000 +v 77.095705 229.328544 -20.000000 +v 75.763863 232.873807 -20.000000 +v 74.307502 236.106817 -20.000000 +v 72.735251 239.018468 -20.000000 +v 71.056874 241.601852 -20.000000 +v 69.283258 243.852389 -20.000000 +v 67.426412 245.767982 -20.000000 +v 65.499475 247.349176 -20.000000 +v 63.516707 248.599308 -20.000000 +v 61.493446 249.524567 -20.000000 +v 59.446013 250.133969 -20.000000 +v 57.391613 250.439313 -20.000000 +v 55.348225 250.455115 -20.000000 +v 53.334376 250.198310 -20.000000 +v 51.368777 249.687660 -20.000000 +v 49.469937 248.943113 -20.000000 +v 47.655765 247.985151 -20.000000 +v 45.943168 246.834135 -20.000000 +v 44.347621 245.509611 -20.000000 +v 42.882729 244.029618 -20.000000 +v 41.559799 242.410005 -20.000000 +v 40.387500 240.663879 -20.000000 +v 39.371675 238.801301 -20.000000 +v 38.515196 236.829043 -20.000000 +v 37.817834 234.750363 -20.000000 +v 37.276251 232.564984 -20.000000 +v 36.884290 230.269541 -20.000000 +v 36.633356 227.858166 -20.000000 +v 36.512799 225.323085 -20.000000 +v 36.510275 222.655174 -20.000000 +v 36.612044 219.844423 -20.000000 +v 36.803244 216.880359 -20.000000 +v 37.068163 213.752467 -20.000000 +v 37.390519 210.450620 -20.000000 +v 37.753747 206.965517 -20.000000 +v 38.141293 203.289132 -20.000000 +v 38.536911 199.415157 -20.000000 +v 38.924960 195.339466 -20.000000 +v 39.290738 191.060635 -20.000000 +v 39.620824 186.580489 -20.000000 +v 39.903420 181.904656 -20.000000 +v 40.128652 177.043032 -20.000000 +v 40.288680 172.009865 -20.000000 +v 40.377660 166.823556 -20.000000 +v 40.391708 161.506460 -20.000000 +v 40.188857 150.587493 -20.000000 +v 39.684537 139.498630 -20.000000 +v 38.905798 128.523376 -20.000000 +v 38.426823 123.173642 -20.000000 +v 37.896957 117.968403 -20.000000 +v 37.323694 112.947481 -20.000000 +v 36.715034 108.150518 -20.000000 +v 36.079330 103.616526 -20.000000 +v 35.425119 99.383431 -20.000000 +v 34.760965 95.487627 -20.000000 +v 34.095304 91.963541 -20.000000 +v 33.436304 88.843248 -20.000000 +v 32.791729 86.156077 -20.000000 +v 32.168798 83.928231 -20.000000 +v 31.574034 82.182347 -20.000000 +v 31.013088 80.936994 -20.000000 +v 30.746778 80.506579 -20.000000 +v 30.490553 80.206151 -20.000000 +v 30.366343 80.104991 -20.000000 +v 30.244790 80.036655 -20.000000 +v 30.125927 80.001206 -20.000000 +v 30.067513 79.995830 -20.000000 +v 30.009783 79.998689 -20.000000 +v 29.952738 80.009787 -20.000000 +v 29.896380 80.029125 -20.000000 +v 29.785738 80.092515 -20.000000 +v 29.677869 80.188838 -20.000000 +v 29.572780 80.318054 -20.000000 +v 29.370947 80.674903 -20.000000 +v 29.180199 81.162332 -20.000000 +v 28.831393 82.524428 -20.000000 +v 28.524463 84.392259 -20.000000 +v 28.256321 86.749000 -20.000000 +v 28.022810 89.573479 -20.000000 +v 27.818831 92.840631 -20.000000 +v 27.638478 96.521945 -20.000000 +v 27.475163 100.585898 -20.000000 +v 27.321726 104.998337 -20.000000 +v 27.170542 109.722840 -20.000000 +v 27.013615 114.721068 -20.000000 +v 26.842692 119.953138 -20.000000 +v 26.649373 125.378011 -20.000000 +v 26.425227 130.953912 -20.000000 +v 25.851318 142.390443 -20.000000 +v 25.057410 153.929017 -20.000000 +v 23.986649 165.248761 -20.000000 +v 23.332347 170.732691 -20.000000 +v 22.592314 176.053513 -20.000000 +v 21.762943 181.180337 -20.000000 +v 20.841769 186.085585 -20.000000 +v 19.827548 190.745254 -20.000000 +v 18.720294 195.139035 -20.000000 +v 17.521316 199.250410 -20.000000 +v 16.233240 203.066708 -20.000000 +v 14.859984 206.578950 -20.000000 +v 13.406667 209.781421 -20.000000 +v 11.879503 212.671219 -20.000000 +v 10.285705 215.247800 -20.000000 +v 8.633396 217.512596 -20.000000 +v 6.931528 219.468706 -20.000000 +v 5.189809 221.120616 -20.000000 +v 3.418626 222.473903 -20.000000 +v 1.628971 223.534897 -20.000000 +v -0.167626 224.310257 -20.000000 +v -1.959165 224.806537 -20.000000 +v -3.733251 225.029752 -20.000000 +v -5.477174 224.985056 -20.000000 +v -7.178039 224.676617 -20.000000 +v -8.822897 224.107554 -20.000000 +v -10.398876 223.279875 -20.000000 +v -11.893334 222.194509 -20.000000 +v -13.294039 220.851541 -20.000000 +v -14.589365 219.250515 -20.000000 +v -15.768485 217.390742 -20.000000 +v -16.821571 215.271594 -20.000000 +v -17.739997 212.892753 -20.000000 +v -18.516548 210.254453 -20.000000 +v -19.145629 207.357721 -20.000000 +v -19.623456 204.204601 -20.000000 +v -19.948196 200.798360 -20.000000 +v -20.120090 197.143676 -20.000000 +v -20.141562 193.246823 -20.000000 +v -20.017287 189.115817 -20.000000 +v -19.754087 184.760393 -20.000000 +v -19.360711 180.191884 -20.000000 +v -18.847614 175.423090 -20.000000 +v -18.226739 170.468161 -20.000000 +v -17.511332 165.342499 -20.000000 +v -16.715773 160.062685 -20.000000 +v -15.855413 154.646413 -20.000000 +v -14.005532 143.480353 -20.000000 +v -12.097300 132.005012 -20.000000 +v -10.270319 120.393362 -20.000000 +v -8.662283 108.827759 -20.000000 +v -7.403310 97.497177 -20.000000 +v -6.941901 91.980212 -20.000000 +v -6.610184 86.594482 -20.000000 +v -6.419694 81.364257 -20.000000 +v -6.380390 76.313705 -20.000000 +v -6.500488 71.466802 -20.000000 +v -6.786296 66.847237 -20.000000 +v -7.242050 62.478315 -20.000000 +v -7.869723 58.382878 -20.000000 +v -8.668815 54.583228 -20.000000 +v -9.636129 51.101071 -20.000000 +v -10.765553 47.957437 -20.000000 +v -12.048031 45.172517 -20.000000 +v -13.471904 42.765288 -20.000000 +v -15.023371 40.753076 -20.000000 +v -16.686951 39.151118 -20.000000 +v -18.445969 37.972111 -20.000000 +v -20.283092 37.225721 -20.000000 +v -22.180883 36.918082 -20.000000 +v -24.122359 37.051299 -20.000000 +v -26.091534 37.622954 -20.000000 +v -28.073921 38.625659 -20.000000 +v -30.057031 40.046621 -20.000000 +v -32.030848 41.867216 -20.000000 +v -33.988200 44.062725 -20.000000 +v -35.924681 46.602691 -20.000000 +v -37.838329 49.451600 -20.000000 +v -39.729294 52.569591 -20.000000 +v -41.599505 55.913154 -20.000000 +v -45.292425 63.088762 -20.000000 +v -48.956446 70.582761 -20.000000 +v -52.639846 77.983619 -20.000000 +v -54.503875 81.521489 -20.000000 +v -56.389796 84.885546 -20.000000 +v -58.301673 88.029530 -20.000000 +v -60.242256 90.910229 -20.000000 +v -62.212686 93.488128 -20.000000 +v -64.212189 95.728072 -20.000000 +v -66.237761 97.599942 -20.000000 +v -68.283829 99.079372 -20.000000 +v -70.341908 100.148469 -20.000000 +v -72.400297 100.796475 -20.000000 +v -74.444093 101.019899 -20.000000 +v -76.455646 100.821944 -20.000000 +v -78.415103 100.211783 -20.000000 +v -80.300947 99.203843 -20.000000 +v -82.090537 97.817081 -20.000000 +v -83.760641 96.074252 -20.000000 +v -85.287969 94.001184 -20.000000 +v -86.649711 91.626042 -20.000000 +v -87.824091 88.978571 -20.000000 +v -88.790995 86.089281 -20.000000 +v -89.532594 82.988620 -20.000000 +v -90.033975 79.706150 -20.000000 +v -90.283601 76.269902 -20.000000 +v -90.273393 72.706129 -20.000000 +v -89.998687 69.039200 -20.000000 +v -89.458178 65.291503 -20.000000 +v -88.653827 61.483387 -20.000000 +v -87.590654 57.633227 -20.000000 +v -86.276482 53.757546 -20.000000 +v -84.721683 49.871124 -20.000000 +v -82.938930 45.987115 -20.000000 +v -80.942993 42.117108 -20.000000 +v -78.750546 38.271174 -20.000000 +v -76.379985 34.457912 -20.000000 +v -71.185548 26.956751 -20.000000 +v -65.533647 19.655181 -20.000000 +v -59.612471 12.575396 -20.000000 +v -53.617687 5.722494 -20.000000 +v -47.745958 -0.913425 -20.000000 +v -42.188316 -7.355216 -20.000000 +v -39.583745 -10.513508 -20.000000 +v -37.123314 -13.636676 -20.000000 +v -34.826361 -16.730254 -20.000000 +v -32.710718 -19.800112 -20.000000 +v -30.792552 -22.852355 -20.000000 +v -29.086219 -25.893209 -20.000000 +v -27.604129 -28.928896 -20.000000 +v -26.356608 -31.965517 -20.000000 +v -25.351769 -35.008920 -20.000000 +v -24.595371 -38.064585 -20.000000 +v -24.090682 -41.137502 -20.000000 +v -23.838337 -44.232057 -20.000000 +v -23.836197 -47.351910 -20.000000 +v -24.079211 -50.499884 -20.000000 +v -24.559272 -53.677840 -20.000000 +v -25.265077 -56.886556 -20.000000 +v -26.181988 -60.125608 -20.000000 +v -27.291888 -63.393251 -20.000000 +vt 7.553979 13.814570 0.000000 +vt 5.299888 18.953809 0.000000 +vt 7.236973 13.148370 0.000000 +vt 4.849805 18.967534 0.000000 +vt 6.966162 12.487695 0.000000 +vt 4.394346 18.966354 0.000000 +vt 3.487786 18.922778 0.000000 +vt 7.889450 14.479199 0.000000 +vt 6.163579 18.878376 0.000000 +vt 5.739481 18.924347 0.000000 +vt 8.211524 15.133022 0.000000 +vt 6.946364 18.734216 0.000000 +vt 6.567377 18.815199 0.000000 +vt 7.296419 18.634945 0.000000 +vt 8.357010 15.452584 0.000000 +vt 7.613909 18.517045 0.000000 +vt 8.486488 15.765374 0.000000 +vt 7.895789 18.380335 0.000000 +vt 8.595844 16.069960 0.000000 +vt 8.139670 18.224811 0.000000 +vt 8.681147 16.364913 0.000000 +vt 8.738714 16.648828 0.000000 +vt 8.343878 18.050655 0.000000 +vt 8.765179 16.920351 0.000000 +vt 8.507497 17.858243 0.000000 +vt 8.757554 17.178193 0.000000 +vt 8.630412 17.648152 0.000000 +vt 8.713302 17.421154 0.000000 +vt 3.046682 18.882164 0.000000 +vt 6.763481 11.837026 0.000000 +vt 6.855172 12.160931 0.000000 +vt 2.620031 18.830174 0.000000 +vt 6.692901 11.516154 0.000000 +vt 2.212216 18.767654 0.000000 +vt -0.926590 15.689426 0.000000 +vt -0.830775 15.943489 0.000000 +vt 1.827229 18.695397 0.000000 +vt 1.468579 18.614131 0.000000 +vt -0.751832 16.184783 0.000000 +vt 1.139186 18.524486 0.000000 +vt -0.686846 16.413305 0.000000 +vt 0.841265 18.426980 0.000000 +vt 0.576217 18.321986 0.000000 +vt -0.584035 16.832878 0.000000 +vt 0.344553 18.209722 0.000000 +vt 0.145865 18.090242 0.000000 +vt -0.021174 17.963439 0.000000 +vt -0.487911 17.205366 0.000000 +vt -0.430110 17.375437 0.000000 +vt -0.359134 17.535629 0.000000 +vt -0.158812 17.829039 0.000000 +vt -0.270176 17.686619 0.000000 +vt 6.644895 11.198358 0.000000 +vt -1.041515 15.422771 0.000000 +vt -1.177071 15.143889 0.000000 +vt 6.620593 10.883561 0.000000 +vt -1.334092 14.853314 0.000000 +vt 6.620807 10.571576 0.000000 +vt -1.512801 14.551728 0.000000 +vt -1.712887 14.239938 0.000000 +vt 6.646042 10.262120 0.000000 +vt -1.933578 13.918847 0.000000 +vt 6.696511 9.954829 0.000000 +vt -2.173700 13.589442 0.000000 +vt -2.431715 13.252776 0.000000 +vt -2.705757 12.909954 0.000000 +vt 6.081570 2.351159 0.000000 +vt 6.772150 9.649262 0.000000 +vt -3.293092 12.210420 0.000000 +vt -3.916016 11.500087 0.000000 +vt -4.552868 10.787893 0.000000 +vt -5.181705 10.081891 0.000000 +vt -5.781779 9.388741 0.000000 +vt -6.335145 8.713148 0.000000 +vt -6.589936 8.382702 0.000000 +vt -8.546855 4.282278 0.000000 +vt -8.726954 3.596290 0.000000 +vt -6.828539 8.057183 0.000000 +vt -7.050264 7.736358 0.000000 +vt -8.361734 4.934576 0.000000 +vt -7.254832 7.419800 0.000000 +vt -7.442376 7.106887 0.000000 +vt -7.613427 6.796816 0.000000 +vt -8.154733 5.563927 0.000000 +vt -7.909908 6.181223 0.000000 +vt -8.918497 2.866762 0.000000 +vt 5.905669 2.233258 0.000000 +vt 5.739311 2.073062 0.000000 +vt 5.584164 1.871841 0.000000 +vt -2.651043 -1.798324 0.000000 +vt 1.212494 -1.855295 0.000000 +vt -2.639152 -1.802579 0.000000 +vt 1.200339 -1.862129 0.000000 +vt -2.628340 -1.809827 0.000000 +vt 1.187918 -1.872245 0.000000 +vt -2.618608 -1.820060 0.000000 +vt 1.162296 -1.902288 0.000000 +vt -2.609954 -1.833269 0.000000 +vt 1.135665 -1.945329 0.000000 +vt -2.595871 -1.868572 0.000000 +vt 1.079570 -2.069865 0.000000 +vt 1.020094 -2.244453 0.000000 +vt -2.586062 -1.915641 0.000000 +vt 0.957801 -2.467238 0.000000 +vt 0.893343 -2.735955 0.000000 +vt -2.579048 -2.044604 0.000000 +vt 0.827443 -3.047984 0.000000 +vt -2.588325 -2.219038 0.000000 +vt 0.760877 -3.400393 0.000000 +vt -2.613068 -2.437565 0.000000 +vt 0.694462 -3.789973 0.000000 +vt -2.652243 -2.698567 0.000000 +vt -2.704634 -3.000206 0.000000 +vt -9.023268 2.483021 0.000000 +vt -6.815408 -0.766412 0.000000 +vt -6.803942 -0.762393 0.000000 +vt -6.798735 -0.761756 0.000000 +vt -6.828269 -0.774078 0.000000 +vt -9.136221 2.085486 0.000000 +vt -6.842515 -0.785377 0.000000 +vt -9.258719 1.673507 0.000000 +vt -6.875118 -0.818799 0.000000 +vt -6.913117 -0.866511 0.000000 +vt -9.391855 1.246626 0.000000 +vt -6.956397 -0.928308 0.000000 +vt -7.058254 -1.093178 0.000000 +vt -9.536417 0.804602 0.000000 +vt -7.179481 -1.311113 0.000000 +vt -7.318686 -1.579322 0.000000 +vt -9.692842 0.347436 0.000000 +vt -7.474310 -1.894578 0.000000 +vt -9.861177 -0.124612 0.000000 +vt -7.644657 -2.253267 0.000000 +vt -10.041045 -0.610993 0.000000 +vt -7.827908 -2.651437 0.000000 +vt -10.231652 -1.110882 0.000000 +vt -8.022158 -3.084854 0.000000 +vt -10.431834 -1.623190 0.000000 +vt -8.225447 -3.549036 0.000000 +vt -8.435794 -4.039304 0.000000 +vt -10.854623 -2.679509 0.000000 +vt -8.651235 -4.550819 0.000000 +vt -11.294178 -3.766720 0.000000 +vt -9.089800 -5.617729 0.000000 +vt -11.732106 -4.868650 0.000000 +vt -9.526807 -6.709659 0.000000 +vt -12.148368 -5.966831 0.000000 +vt -9.949927 -7.786936 0.000000 +vt -12.341982 -6.508274 0.000000 +vt -10.153242 -8.308171 0.000000 +vt -12.522563 -7.041138 0.000000 +vt -10.349935 -8.811828 0.000000 +vt -12.687708 -7.562753 0.000000 +vt -10.539528 -9.293737 0.000000 +vt -12.835175 -8.070423 0.000000 +vt -10.721847 -9.750031 0.000000 +vt -12.962949 -8.561450 0.000000 +vt -10.897039 -10.177183 0.000000 +vt -13.069309 -9.033155 0.000000 +vt -11.065565 -10.572047 0.000000 +vt -13.152864 -9.482895 0.000000 +vt -11.228183 -10.931877 0.000000 +vt -13.212555 -9.908083 0.000000 +vt -11.385857 -11.254313 0.000000 +vt -13.247652 -10.306206 0.000000 +vt -11.539666 -11.537371 0.000000 +vt -13.257749 -10.674848 0.000000 +vt -11.690711 -11.779419 0.000000 +vt -13.242819 -11.011702 0.000000 +vt -13.203358 -11.314603 0.000000 +vt -11.839997 -11.979166 0.000000 +vt -13.140549 -11.581540 0.000000 +vt -11.988294 -12.135644 0.000000 +vt -13.056425 -11.810689 0.000000 +vt -12.135978 -12.248198 0.000000 +vt -12.953872 -12.000424 0.000000 +vt -12.282884 -12.316469 0.000000 +vt -12.836330 -12.149333 0.000000 +vt -12.355816 -12.333966 0.000000 +vt -12.707394 -12.256229 0.000000 +vt -12.639720 -12.293612 0.000000 +vt -12.428194 -12.340387 0.000000 +vt -12.570415 -12.320152 0.000000 +vt -12.499810 -12.335766 0.000000 +vt -6.793880 -0.762035 0.000000 +vt -6.789377 -0.763233 0.000000 +vt -6.785227 -0.765349 0.000000 +vt -6.781432 -0.768385 0.000000 +vt -2.678055 -1.798814 0.000000 +vt -2.664012 -1.797067 0.000000 +vt -6.777991 -0.772342 0.000000 +vt -2.709347 -1.811336 0.000000 +vt -2.693168 -1.803570 0.000000 +vt -2.744869 -1.835904 0.000000 +vt -6.772175 -0.783020 0.000000 +vt -2.784551 -1.872513 0.000000 +vt -2.876009 -1.981725 0.000000 +vt -6.767782 -0.797388 0.000000 +vt -2.982762 -2.138516 0.000000 +vt -3.103559 -2.342105 0.000000 +vt -6.763270 -0.837192 0.000000 +vt -3.236883 -2.591392 0.000000 +vt -6.764446 -0.891732 0.000000 +vt -3.380986 -2.884972 0.000000 +vt -6.771277 -0.960948 0.000000 +vt -6.783704 -1.044743 0.000000 +vt -3.533931 -3.221152 0.000000 +vt -6.801640 -1.142981 0.000000 +vt -6.824978 -1.255496 0.000000 +vt -3.693643 -3.597966 0.000000 +vt -6.853582 -1.382090 0.000000 +vt -6.925930 -1.676569 0.000000 +vt -3.857954 -4.013198 0.000000 +vt -7.017134 -2.024269 0.000000 +vt -4.024645 -4.464396 0.000000 +vt -7.125279 -2.422645 0.000000 +vt -7.248136 -2.868789 0.000000 +vt -4.191491 -4.948884 0.000000 +vt -7.383213 -3.359456 0.000000 +vt -4.356299 -5.463782 0.000000 +vt -7.527805 -3.891076 0.000000 +vt -4.516953 -6.006013 0.000000 +vt -7.679050 -4.459791 0.000000 +vt -4.671448 -6.572323 0.000000 +vt -7.833966 -5.061480 0.000000 +vt -4.817936 -7.159294 0.000000 +vt -7.989493 -5.691795 0.000000 +vt -4.954762 -7.763362 0.000000 +vt -8.142533 -6.346201 0.000000 +vt -8.289990 -7.020011 0.000000 +vt -5.080504 -8.380834 0.000000 +vt -8.428810 -7.708412 0.000000 +vt -5.294476 -9.640650 0.000000 +vt -8.556023 -8.406502 0.000000 +vt -8.668786 -9.109316 0.000000 +vt -5.454862 -10.907148 0.000000 +vt -8.764422 -9.811858 0.000000 +vt -8.840472 -10.509133 0.000000 +vt -5.515200 -11.532700 0.000000 +vt -8.894738 -11.196178 0.000000 +vt -5.563375 -12.147578 0.000000 +vt -8.925336 -11.868098 0.000000 +vt -8.930742 -12.520096 0.000000 +vt -5.600832 -12.747595 0.000000 +vt -8.909828 -13.147506 0.000000 +vt -5.629552 -13.328556 0.000000 +vt -8.861887 -13.745826 0.000000 +vt -5.652098 -13.886283 0.000000 +vt -8.786660 -14.310744 0.000000 +vt -8.684368 -14.838173 0.000000 +vt -5.671698 -14.416614 0.000000 +vt -8.555769 -15.324285 0.000000 +vt -5.692357 -14.915417 0.000000 +vt -8.402236 -15.765539 0.000000 +vt -8.225846 -16.158719 0.000000 +vt -5.718956 -15.378592 0.000000 +vt -8.029451 -16.500967 0.000000 +vt -7.816676 -16.789809 0.000000 +vt -5.757185 -15.802102 0.000000 +vt -7.591843 -17.023186 0.000000 +vt -7.359879 -17.199476 0.000000 +vt -5.812930 -16.182060 0.000000 +vt -7.126220 -17.317519 0.000000 +vt -7.010551 -17.354467 0.000000 +vt -5.891405 -16.514855 0.000000 +vt -6.896629 -17.376633 0.000000 +vt -6.785178 -17.384007 0.000000 +vt -6.676904 -17.376606 0.000000 +vt -5.996268 -16.797270 0.000000 +vt -6.572487 -17.354477 0.000000 +vt -6.472572 -17.317696 0.000000 +vt -6.377755 -17.266367 0.000000 +vt -6.059128 -16.918716 0.000000 +vt -6.128932 -17.026590 0.000000 +vt -6.288579 -17.200626 0.000000 +vt -6.205510 -17.120636 0.000000 +vt 0.629040 -4.213283 0.000000 +vt -2.768859 -3.340440 0.000000 +vt 0.565470 -4.666682 0.000000 +vt -2.843396 -3.717039 0.000000 +vt 0.504604 -5.146378 0.000000 +vt -2.926604 -4.127604 0.000000 +vt 0.447278 -5.648470 0.000000 +vt -3.016748 -4.569589 0.000000 +vt -3.112027 -5.040314 0.000000 +vt 0.394291 -6.168994 0.000000 +vt -3.210595 -5.536989 0.000000 +vt 0.346394 -6.703968 0.000000 +vt -3.310589 -6.056732 0.000000 +vt 0.268520 -7.801493 0.000000 +vt -3.410157 -6.596587 0.000000 +vt -3.507478 -7.153544 0.000000 +vt 0.218088 -8.910379 0.000000 +vt -3.688434 -8.306565 0.000000 +vt 0.197803 -10.002276 0.000000 +vt -3.840528 -9.491332 0.000000 +vt 0.199207 -10.533986 0.000000 +vt -3.952802 -10.683658 0.000000 +vt 0.208105 -11.052616 0.000000 +vt 0.224108 -11.555933 0.000000 +vt -4.016692 -11.860131 0.000000 +vt 0.246631 -12.042096 0.000000 +vt -4.028478 -12.435411 0.000000 +vt 0.274891 -12.509679 0.000000 +vt -4.026037 -12.998484 0.000000 +vt 0.307900 -12.957693 0.000000 +vt -4.008951 -13.546803 0.000000 +vt -3.976941 -14.077931 0.000000 +vt 0.344477 -13.385577 0.000000 +vt -3.929860 -14.589559 0.000000 +vt 0.383282 -13.793146 0.000000 +vt -3.867697 -15.079511 0.000000 +vt 0.422844 -14.180543 0.000000 +vt -3.790575 -15.545761 0.000000 +vt 0.461599 -14.548182 0.000000 +vt -3.698744 -15.986441 0.000000 +vt -3.592583 -16.399854 0.000000 +vt 0.497922 -14.896692 0.000000 +vt -3.472597 -16.784484 0.000000 +vt 0.530157 -15.226877 0.000000 +vt -3.339413 -17.139011 0.000000 +vt -3.193777 -17.462312 0.000000 +vt 0.556649 -15.539666 0.000000 +vt -3.036552 -17.753477 0.000000 +vt -2.868714 -18.011815 0.000000 +vt 0.575769 -15.836072 0.000000 +vt -2.691352 -18.236869 0.000000 +vt 0.585946 -16.117147 0.000000 +vt 0.585694 -16.383938 0.000000 +vt 0.573638 -16.637447 0.000000 +vt 0.548544 -16.878584 0.000000 +vt 0.509348 -17.108128 0.000000 +vt 0.455190 -17.326666 0.000000 +vt 0.385454 -17.534534 0.000000 +vt 0.299806 -17.731760 0.000000 +vt 0.198223 -17.918018 0.000000 +vt 0.080994 -18.092630 0.000000 +vt -0.051299 -18.254592 0.000000 +vt -0.197789 -18.402591 0.000000 +vt -0.357343 -18.535043 0.000000 +vt -0.528603 -18.650145 0.000000 +vt -0.710020 -18.745941 0.000000 +vt -0.899904 -18.820396 0.000000 +vt -1.096464 -18.871461 0.000000 +vt -1.297849 -18.897141 0.000000 +vt -1.502188 -18.895561 0.000000 +vt -1.707628 -18.865027 0.000000 +vt -1.912371 -18.804087 0.000000 +vt -2.505668 -18.428428 0.000000 +vt -2.312974 -18.586548 0.000000 +vt -2.114697 -18.711561 0.000000 +vt 1.224381 -1.851751 0.000000 +vt 5.441777 1.631118 0.000000 +vt 1.230222 -1.851213 0.000000 +vt 5.313529 1.352626 0.000000 +vt 1.235995 -1.851499 0.000000 +vt 5.200586 1.038263 0.000000 +vt 1.241700 -1.852609 0.000000 +vt 1.247335 -1.854542 0.000000 +vt 5.103855 0.690047 0.000000 +vt 1.258400 -1.860881 0.000000 +vt 5.023946 0.310082 0.000000 +vt 1.269187 -1.870514 0.000000 +vt 4.961178 -0.099462 0.000000 +vt 1.279695 -1.883435 0.000000 +vt 4.915603 -0.536354 0.000000 +vt 1.299879 -1.919120 0.000000 +vt 4.887022 -0.998310 0.000000 +vt 1.318954 -1.967863 0.000000 +vt 1.353834 -2.104073 0.000000 +vt 4.875012 -1.483000 0.000000 +vt 1.384527 -2.290856 0.000000 +vt 4.878943 -1.988056 0.000000 +vt 1.411341 -2.526530 0.000000 +vt 1.434692 -2.808978 0.000000 +vt 4.897992 -2.511078 0.000000 +vt 1.455090 -3.135693 0.000000 +vt 4.931164 -3.049651 0.000000 +vt 1.473126 -3.503824 0.000000 +vt 1.489457 -3.910220 0.000000 +vt 4.977304 -3.601348 0.000000 +vt 1.504801 -4.351464 0.000000 +vt 1.519919 -4.823914 0.000000 +vt 5.103202 -4.734406 0.000000 +vt 1.535612 -5.323737 0.000000 +vt 1.552704 -5.846944 0.000000 +vt 5.264005 -5.890966 0.000000 +vt 1.572036 -6.389431 0.000000 +vt 1.594451 -6.947021 0.000000 +vt 5.446703 -7.052131 0.000000 +vt 1.651842 -8.090674 0.000000 +vt 5.637527 -8.199665 0.000000 +vt 1.731232 -9.244532 0.000000 +vt 5.822515 -9.316271 0.000000 +vt 1.838309 -10.376506 0.000000 +vt 1.903739 -10.924899 0.000000 +vt 5.908551 -9.857899 0.000000 +vt 1.977742 -11.456981 0.000000 +vt 5.988107 -10.385880 0.000000 +vt 2.060679 -11.969664 0.000000 +vt 6.059647 -10.898446 0.000000 +vt 2.152797 -12.460188 0.000000 +vt 6.121735 -11.393939 0.000000 +vt 2.254219 -12.926155 0.000000 +vt 6.173045 -11.870818 0.000000 +vt 2.364944 -13.365534 0.000000 +vt 6.212382 -12.327669 0.000000 +vt 2.484842 -13.776671 0.000000 +vt 2.613649 -14.158301 0.000000 +vt 6.238702 -12.763212 0.000000 +vt 2.750975 -14.509525 0.000000 +vt 6.251130 -13.176312 0.000000 +vt 2.896307 -14.829772 0.000000 +vt 6.248982 -13.565998 0.000000 +vt 3.049023 -15.118752 0.000000 +vt 3.208403 -15.376410 0.000000 +vt 6.231793 -13.931466 0.000000 +vt 3.373634 -15.602890 0.000000 +vt 6.199319 -14.272090 0.000000 +vt 3.543821 -15.798501 0.000000 +vt 3.717993 -15.963692 0.000000 +vt 6.151536 -14.587402 0.000000 +vt 3.895111 -16.099020 0.000000 +vt 4.074076 -16.205120 0.000000 +vt 6.088628 -14.877075 0.000000 +vt 4.253736 -16.282656 0.000000 +vt 4.432890 -16.332284 0.000000 +vt 6.010973 -15.140905 0.000000 +vt 4.610299 -16.354605 0.000000 +vt 4.784691 -16.350136 0.000000 +vt 4.954777 -16.319292 0.000000 +vt 5.919131 -15.378789 0.000000 +vt 5.119263 -16.262385 0.000000 +vt 5.276861 -16.179617 0.000000 +vt 5.426307 -16.071081 0.000000 +vt 5.813822 -15.590704 0.000000 +vt 5.695910 -15.776681 0.000000 +vt 5.566377 -15.936784 0.000000 +vt 6.265283 2.425798 0.000000 +vt 7.316229 8.433606 0.000000 +vt 7.145595 8.737691 0.000000 +vt 6.997386 9.041260 0.000000 +vt 6.455062 2.456562 0.000000 +vt 7.719610 7.821395 0.000000 +vt 7.508045 8.128381 0.000000 +vt 7.949305 7.512038 0.000000 +vt 6.649209 2.443240 0.000000 +vt 8.195348 7.199721 0.000000 +vt 6.846127 2.386075 0.000000 +vt 8.455805 6.883892 0.000000 +vt 7.044366 2.285804 0.000000 +vt 9.011569 6.239713 0.000000 +vt 7.242677 2.143708 0.000000 +vt 7.440058 1.961648 0.000000 +vt 9.598742 5.576121 0.000000 +vt 7.635793 1.742098 0.000000 +vt 10.198221 4.890830 0.000000 +vt 7.829442 1.488101 0.000000 +vt 8.020806 1.203210 0.000000 +vt 10.790338 4.182852 0.000000 +vt 8.209903 0.891411 0.000000 +vt 8.396924 0.557055 0.000000 +vt 11.355528 3.452695 0.000000 +vt 8.766216 -0.160506 0.000000 +vt 11.874972 2.702579 0.000000 +vt 9.132618 -0.909906 0.000000 +vt 12.112028 2.321253 0.000000 +vt 12.331273 1.936659 0.000000 +vt 9.500958 -1.649992 0.000000 +vt 12.530866 1.549658 0.000000 +vt 12.709142 1.161258 0.000000 +vt 9.687361 -2.003779 0.000000 +vt 12.864622 0.772615 0.000000 +vt 9.875953 -2.340185 0.000000 +vt 12.996039 0.385047 0.000000 +vt 13.102356 0.000031 0.000000 +vt 10.067141 -2.654583 0.000000 +vt 13.182791 -0.380780 0.000000 +vt 10.261199 -2.942653 0.000000 +vt 13.236842 -0.755550 0.000000 +vt 13.264313 -1.122243 0.000000 +vt 10.458242 -3.200443 0.000000 +vt 13.265334 -1.478620 0.000000 +vt 13.240371 -1.822245 0.000000 +vt 10.658192 -3.424437 0.000000 +vt 13.190233 -2.150492 0.000000 +vt 13.116073 -2.460558 0.000000 +vt 10.860750 -3.611624 0.000000 +vt 13.019383 -2.749487 0.000000 +vt 12.901945 -3.014234 0.000000 +vt 12.765770 -3.251748 0.000000 +vt 11.065356 -3.759567 0.000000 +vt 12.613038 -3.459055 0.000000 +vt 12.446027 -3.633338 0.000000 +vt 12.267068 -3.772014 0.000000 +vt 12.078484 -3.872808 0.000000 +vt 11.271164 -3.866477 0.000000 +vt 11.477003 -3.931277 0.000000 +vt 11.681383 -3.953620 0.000000 +vt 11.882538 -3.933824 0.000000 +vt 6.872634 9.344922 0.000000 +vt 303.272856 2.000000 0.000000 +vt 302.088197 2.000000 0.000000 +vt 303.272856 -2.000000 0.000000 +vt 302.088197 -2.000000 0.000000 +vt 300.903537 2.000000 0.000000 +vt 300.903537 -2.000000 0.000000 +vt 299.718878 2.000000 0.000000 +vt 299.718878 -2.000000 0.000000 +vt 299.126548 2.000000 0.000000 +vt 299.126548 -2.000000 0.000000 +vt 298.534218 2.000000 0.000000 +vt 298.534218 -2.000000 0.000000 +vt 297.941888 2.000000 0.000000 +vt 297.941888 -2.000000 0.000000 +vt 297.349558 2.000000 0.000000 +vt 297.349558 -2.000000 0.000000 +vt 296.757229 2.000000 0.000000 +vt 296.757229 -2.000000 0.000000 +vt 296.164899 2.000000 0.000000 +vt 296.164899 -2.000000 0.000000 +vt 295.572569 2.000000 0.000000 +vt 295.572569 -2.000000 0.000000 +vt 294.980239 2.000000 0.000000 +vt 294.980239 -2.000000 0.000000 +vt 294.387909 2.000000 0.000000 +vt 294.387909 -2.000000 0.000000 +vt 293.795580 2.000000 0.000000 +vt 293.795580 -2.000000 0.000000 +vt 293.203250 2.000000 0.000000 +vt 293.203250 -2.000000 0.000000 +vt 292.610920 2.000000 0.000000 +vt 292.610920 -2.000000 0.000000 +vt 292.018590 2.000000 0.000000 +vt 292.018590 -2.000000 0.000000 +vt 291.426260 2.000000 0.000000 +vt 291.426260 -2.000000 0.000000 +vt 290.833931 2.000000 0.000000 +vt 290.833931 -2.000000 0.000000 +vt 290.241601 2.000000 0.000000 +vt 290.241601 -2.000000 0.000000 +vt 289.649271 2.000000 0.000000 +vt 289.649271 -2.000000 0.000000 +vt 289.056941 2.000000 0.000000 +vt 289.056941 -2.000000 0.000000 +vt 288.464611 2.000000 0.000000 +vt 288.464611 -2.000000 0.000000 +vt 287.872282 2.000000 0.000000 +vt 287.872282 -2.000000 0.000000 +vt 287.279952 2.000000 0.000000 +vt 287.279952 -2.000000 0.000000 +vt 286.687622 2.000000 0.000000 +vt 286.687622 -2.000000 0.000000 +vt 285.502962 2.000000 0.000000 +vt 285.502962 -2.000000 0.000000 +vt 284.910633 2.000000 0.000000 +vt 284.910633 -2.000000 0.000000 +vt 284.318303 2.000000 0.000000 +vt 284.318303 -2.000000 0.000000 +vt 283.725973 2.000000 0.000000 +vt 283.725973 -2.000000 0.000000 +vt 283.133643 2.000000 0.000000 +vt 283.133643 -2.000000 0.000000 +vt 282.541313 2.000000 0.000000 +vt 282.541313 -2.000000 0.000000 +vt 281.948984 2.000000 0.000000 +vt 281.948984 -2.000000 0.000000 +vt 281.356654 2.000000 0.000000 +vt 281.356654 -2.000000 0.000000 +vt 280.764324 2.000000 0.000000 +vt 280.764324 -2.000000 0.000000 +vt 280.171994 2.000000 0.000000 +vt 280.171994 -2.000000 0.000000 +vt 279.579664 2.000000 0.000000 +vt 279.579664 -2.000000 0.000000 +vt 278.987335 2.000000 0.000000 +vt 278.987335 -2.000000 0.000000 +vt 278.395005 2.000000 0.000000 +vt 278.395005 -2.000000 0.000000 +vt 277.802675 2.000000 0.000000 +vt 277.802675 -2.000000 0.000000 +vt 277.210345 2.000000 0.000000 +vt 277.210345 -2.000000 0.000000 +vt 276.618015 2.000000 0.000000 +vt 276.618015 -2.000000 0.000000 +vt 276.025686 2.000000 0.000000 +vt 276.025686 -2.000000 0.000000 +vt 274.841026 2.000000 0.000000 +vt 274.841026 -2.000000 0.000000 +vt 273.656366 2.000000 0.000000 +vt 273.656366 -2.000000 0.000000 +vt 273.064037 2.000000 0.000000 +vt 273.064037 -2.000000 0.000000 +vt 272.471707 2.000000 0.000000 +vt 272.471707 -2.000000 0.000000 +vt 271.879377 2.000000 0.000000 +vt 271.879377 -2.000000 0.000000 +vt 271.287047 2.000000 0.000000 +vt 271.287047 -2.000000 0.000000 +vt 270.694717 2.000000 0.000000 +vt 270.694717 -2.000000 0.000000 +vt 270.102388 2.000000 0.000000 +vt 270.102388 -2.000000 0.000000 +vt 269.510058 2.000000 0.000000 +vt 269.510058 -2.000000 0.000000 +vt 268.917728 2.000000 0.000000 +vt 268.917728 -2.000000 0.000000 +vt 268.325398 2.000000 0.000000 +vt 268.325398 -2.000000 0.000000 +vt 267.733068 2.000000 0.000000 +vt 267.733068 -2.000000 0.000000 +vt 267.140739 2.000000 0.000000 +vt 267.140739 -2.000000 0.000000 +vt 266.548409 2.000000 0.000000 +vt 266.548409 -2.000000 0.000000 +vt 265.363749 2.000000 0.000000 +vt 265.363749 -2.000000 0.000000 +vt 264.179090 2.000000 0.000000 +vt 264.179090 -2.000000 0.000000 +vt 262.994430 2.000000 0.000000 +vt 262.994430 -2.000000 0.000000 +vt 261.809770 2.000000 0.000000 +vt 261.809770 -2.000000 0.000000 +vt 260.625111 2.000000 0.000000 +vt 260.625111 -2.000000 0.000000 +vt 259.440451 2.000000 0.000000 +vt 259.440451 -2.000000 0.000000 +vt 258.848121 2.000000 0.000000 +vt 258.848121 -2.000000 0.000000 +vt 258.255792 2.000000 0.000000 +vt 258.255792 -2.000000 0.000000 +vt 257.663462 2.000000 0.000000 +vt 257.663462 -2.000000 0.000000 +vt 257.071132 2.000000 0.000000 +vt 257.071132 -2.000000 0.000000 +vt 256.478802 2.000000 0.000000 +vt 256.478802 -2.000000 0.000000 +vt 255.886472 2.000000 0.000000 +vt 255.886472 -2.000000 0.000000 +vt 254.701813 2.000000 0.000000 +vt 254.701813 -2.000000 0.000000 +vt 253.517153 2.000000 0.000000 +vt 253.517153 -2.000000 0.000000 +vt 252.332494 2.000000 0.000000 +vt 252.332494 -2.000000 0.000000 +vt 251.147834 2.000000 0.000000 +vt 251.147834 -2.000000 0.000000 +vt 249.963175 2.000000 0.000000 +vt 249.963175 -2.000000 0.000000 +vt 248.778515 2.000000 0.000000 +vt 248.778515 -2.000000 0.000000 +vt 248.186185 2.000000 0.000000 +vt 248.186185 -2.000000 0.000000 +vt 247.593855 2.000000 0.000000 +vt 247.593855 -2.000000 0.000000 +vt 247.001526 2.000000 0.000000 +vt 247.001526 -2.000000 0.000000 +vt 246.409196 2.000000 0.000000 +vt 246.409196 -2.000000 0.000000 +vt 245.816866 2.000000 0.000000 +vt 245.816866 -2.000000 0.000000 +vt 245.224536 2.000000 0.000000 +vt 245.224536 -2.000000 0.000000 +vt 244.632206 2.000000 0.000000 +vt 244.632206 -2.000000 0.000000 +vt 244.039877 2.000000 0.000000 +vt 244.039877 -2.000000 0.000000 +vt 243.447547 2.000000 0.000000 +vt 243.447547 -2.000000 0.000000 +vt 242.855217 2.000000 0.000000 +vt 242.855217 -2.000000 0.000000 +vt 241.670557 2.000000 0.000000 +vt 241.670557 -2.000000 0.000000 +vt 240.485898 2.000000 0.000000 +vt 240.485898 -2.000000 0.000000 +vt 239.301238 2.000000 0.000000 +vt 239.301238 -2.000000 0.000000 +vt 238.116579 2.000000 0.000000 +vt 238.116579 -2.000000 0.000000 +vt 237.524249 2.000000 0.000000 +vt 237.524249 -2.000000 0.000000 +vt 236.931919 2.000000 0.000000 +vt 236.931919 -2.000000 0.000000 +vt 236.339589 2.000000 0.000000 +vt 236.339589 -2.000000 0.000000 +vt 235.747259 2.000000 0.000000 +vt 235.747259 -2.000000 0.000000 +vt 235.154930 2.000000 0.000000 +vt 235.154930 -2.000000 0.000000 +vt 234.562600 2.000000 0.000000 +vt 234.562600 -2.000000 0.000000 +vt 233.970270 2.000000 0.000000 +vt 233.970270 -2.000000 0.000000 +vt 233.377940 2.000000 0.000000 +vt 233.377940 -2.000000 0.000000 +vt 232.785610 2.000000 0.000000 +vt 232.785610 -2.000000 0.000000 +vt 232.193281 2.000000 0.000000 +vt 232.193281 -2.000000 0.000000 +vt 231.600951 2.000000 0.000000 +vt 231.600951 -2.000000 0.000000 +vt 231.008621 2.000000 0.000000 +vt 231.008621 -2.000000 0.000000 +vt 230.416291 2.000000 0.000000 +vt 230.416291 -2.000000 0.000000 +vt 229.823961 2.000000 0.000000 +vt 229.823961 -2.000000 0.000000 +vt 229.231632 2.000000 0.000000 +vt 229.231632 -2.000000 0.000000 +vt 228.639302 2.000000 0.000000 +vt 228.639302 -2.000000 0.000000 +vt 228.046972 2.000000 0.000000 +vt 228.046972 -2.000000 0.000000 +vt 227.750807 2.000000 0.000000 +vt 227.750807 -2.000000 0.000000 +vt 227.454642 2.000000 0.000000 +vt 227.454642 -2.000000 0.000000 +vt 227.158477 2.000000 0.000000 +vt 227.158477 -2.000000 0.000000 +vt 226.862312 2.000000 0.000000 +vt 226.862312 -2.000000 0.000000 +vt 226.566148 2.000000 0.000000 +vt 226.566148 -2.000000 0.000000 +vt 226.269983 2.000000 0.000000 +vt 226.269983 -2.000000 0.000000 +vt 225.677653 2.000000 0.000000 +vt 225.677653 -2.000000 0.000000 +vt 225.085323 2.000000 0.000000 +vt 225.085323 -2.000000 0.000000 +vt 224.492993 2.000000 0.000000 +vt 224.492993 -2.000000 0.000000 +vt 223.900663 2.000000 0.000000 +vt 223.900663 -2.000000 0.000000 +vt 223.308334 2.000000 0.000000 +vt 223.308334 -2.000000 0.000000 +vt 222.716004 2.000000 0.000000 +vt 222.716004 -2.000000 0.000000 +vt 222.123674 2.000000 0.000000 +vt 222.123674 -2.000000 0.000000 +vt 221.531344 2.000000 0.000000 +vt 221.531344 -2.000000 0.000000 +vt 220.939014 2.000000 0.000000 +vt 220.939014 -2.000000 0.000000 +vt 220.346685 2.000000 0.000000 +vt 220.346685 -2.000000 0.000000 +vt 219.754355 2.000000 0.000000 +vt 219.754355 -2.000000 0.000000 +vt 219.162025 2.000000 0.000000 +vt 219.162025 -2.000000 0.000000 +vt 218.569695 2.000000 0.000000 +vt 218.569695 -2.000000 0.000000 +vt 217.977365 2.000000 0.000000 +vt 217.977365 -2.000000 0.000000 +vt 216.792706 2.000000 0.000000 +vt 216.792706 -2.000000 0.000000 +vt 215.608046 2.000000 0.000000 +vt 215.608046 -2.000000 0.000000 +vt 214.423387 2.000000 0.000000 +vt 214.423387 -2.000000 0.000000 +vt 213.831057 2.000000 0.000000 +vt 213.831057 -2.000000 0.000000 +vt 213.238727 2.000000 0.000000 +vt 213.238727 -2.000000 0.000000 +vt 212.646397 2.000000 0.000000 +vt 212.646397 -2.000000 0.000000 +vt 212.054067 2.000000 0.000000 +vt 212.054067 -2.000000 0.000000 +vt 211.461738 2.000000 0.000000 +vt 211.461738 -2.000000 0.000000 +vt 210.869408 2.000000 0.000000 +vt 210.869408 -2.000000 0.000000 +vt 210.277078 2.000000 0.000000 +vt 210.277078 -2.000000 0.000000 +vt 209.684748 2.000000 0.000000 +vt 209.684748 -2.000000 0.000000 +vt 209.092418 2.000000 0.000000 +vt 209.092418 -2.000000 0.000000 +vt 208.500089 2.000000 0.000000 +vt 208.500089 -2.000000 0.000000 +vt 208.203924 2.000000 0.000000 +vt 208.203924 -2.000000 0.000000 +vt 207.907759 2.000000 0.000000 +vt 207.907759 -2.000000 0.000000 +vt 207.611594 2.000000 0.000000 +vt 207.611594 -2.000000 0.000000 +vt 207.463512 2.000000 0.000000 +vt 207.463512 -2.000000 0.000000 +vt 207.315429 2.000000 0.000000 +vt 207.315429 -2.000000 0.000000 +vt 207.167347 2.000000 0.000000 +vt 207.167347 -2.000000 0.000000 +vt 207.093305 2.000000 0.000000 +vt 207.093305 -2.000000 0.000000 +vt 207.019264 2.000000 0.000000 +vt 207.019264 -2.000000 0.000000 +vt 206.945223 2.000000 0.000000 +vt 206.945223 -2.000000 0.000000 +vt 206.871182 2.000000 0.000000 +vt 206.871182 -2.000000 0.000000 +vt 206.797141 2.000000 0.000000 +vt 206.797141 -2.000000 0.000000 +vt 206.723099 2.000000 0.000000 +vt 206.723099 -2.000000 0.000000 +vt 206.575017 2.000000 0.000000 +vt 206.575017 -2.000000 0.000000 +vt 206.426934 2.000000 0.000000 +vt 206.426934 -2.000000 0.000000 +vt 206.130770 2.000000 0.000000 +vt 206.130770 -2.000000 0.000000 +vt 205.834605 2.000000 0.000000 +vt 205.834605 -2.000000 0.000000 +vt 205.538440 2.000000 0.000000 +vt 205.538440 -2.000000 0.000000 +vt 205.242275 2.000000 0.000000 +vt 205.242275 -2.000000 0.000000 +vt 204.946110 2.000000 0.000000 +vt 204.946110 -2.000000 0.000000 +vt 204.649945 2.000000 0.000000 +vt 204.649945 -2.000000 0.000000 +vt 204.353780 2.000000 0.000000 +vt 204.353780 -2.000000 0.000000 +vt 203.761450 2.000000 0.000000 +vt 203.761450 -2.000000 0.000000 +vt 203.169121 2.000000 0.000000 +vt 203.169121 -2.000000 0.000000 +vt 202.576791 2.000000 0.000000 +vt 202.576791 -2.000000 0.000000 +vt 201.984461 2.000000 0.000000 +vt 201.984461 -2.000000 0.000000 +vt 201.392131 2.000000 0.000000 +vt 201.392131 -2.000000 0.000000 +vt 200.799801 2.000000 0.000000 +vt 200.799801 -2.000000 0.000000 +vt 200.207472 2.000000 0.000000 +vt 200.207472 -2.000000 0.000000 +vt 199.615142 2.000000 0.000000 +vt 199.615142 -2.000000 0.000000 +vt 199.022812 2.000000 0.000000 +vt 199.022812 -2.000000 0.000000 +vt 198.430482 2.000000 0.000000 +vt 198.430482 -2.000000 0.000000 +vt 197.838152 2.000000 0.000000 +vt 197.838152 -2.000000 0.000000 +vt 197.245823 2.000000 0.000000 +vt 197.245823 -2.000000 0.000000 +vt 196.653493 2.000000 0.000000 +vt 196.653493 -2.000000 0.000000 +vt 196.061163 2.000000 0.000000 +vt 196.061163 -2.000000 0.000000 +vt 195.468833 2.000000 0.000000 +vt 195.468833 -2.000000 0.000000 +vt 194.876503 2.000000 0.000000 +vt 194.876503 -2.000000 0.000000 +vt 194.284174 2.000000 0.000000 +vt 194.284174 -2.000000 0.000000 +vt 193.691844 2.000000 0.000000 +vt 193.691844 -2.000000 0.000000 +vt 193.099514 2.000000 0.000000 +vt 193.099514 -2.000000 0.000000 +vt 192.507184 2.000000 0.000000 +vt 192.507184 -2.000000 0.000000 +vt 191.914854 2.000000 0.000000 +vt 191.914854 -2.000000 0.000000 +vt 191.322525 2.000000 0.000000 +vt 191.322525 -2.000000 0.000000 +vt 190.730195 2.000000 0.000000 +vt 190.730195 -2.000000 0.000000 +vt 190.137865 2.000000 0.000000 +vt 190.137865 -2.000000 0.000000 +vt 189.545535 2.000000 0.000000 +vt 189.545535 -2.000000 0.000000 +vt 188.953205 2.000000 0.000000 +vt 188.953205 -2.000000 0.000000 +vt 188.360876 2.000000 0.000000 +vt 188.360876 -2.000000 0.000000 +vt 187.768546 2.000000 0.000000 +vt 187.768546 -2.000000 0.000000 +vt 187.176216 2.000000 0.000000 +vt 187.176216 -2.000000 0.000000 +vt 186.583886 2.000000 0.000000 +vt 186.583886 -2.000000 0.000000 +vt 185.991556 2.000000 0.000000 +vt 185.991556 -2.000000 0.000000 +vt 185.695391 2.000000 0.000000 +vt 185.695391 -2.000000 0.000000 +vt 185.399227 2.000000 0.000000 +vt 185.399227 -2.000000 0.000000 +vt 185.103062 2.000000 0.000000 +vt 185.103062 -2.000000 0.000000 +vt 184.806897 2.000000 0.000000 +vt 184.806897 -2.000000 0.000000 +vt 184.510732 2.000000 0.000000 +vt 184.510732 -2.000000 0.000000 +vt 184.214567 2.000000 0.000000 +vt 184.214567 -2.000000 0.000000 +vt 183.918402 2.000000 0.000000 +vt 183.918402 -2.000000 0.000000 +vt 183.622237 2.000000 0.000000 +vt 183.622237 -2.000000 0.000000 +vt 183.326072 2.000000 0.000000 +vt 183.326072 -2.000000 0.000000 +vt 183.029907 2.000000 0.000000 +vt 183.029907 -2.000000 0.000000 +vt 182.733743 2.000000 0.000000 +vt 182.733743 -2.000000 0.000000 +vt 182.437578 2.000000 0.000000 +vt 182.437578 -2.000000 0.000000 +vt 181.845248 2.000000 0.000000 +vt 181.845248 -2.000000 0.000000 +vt 181.252918 2.000000 0.000000 +vt 181.252918 -2.000000 0.000000 +vt 180.660588 2.000000 0.000000 +vt 180.660588 -2.000000 0.000000 +vt 180.068258 2.000000 0.000000 +vt 180.068258 -2.000000 0.000000 +vt 179.475929 2.000000 0.000000 +vt 179.475929 -2.000000 0.000000 +vt 178.883599 2.000000 0.000000 +vt 178.883599 -2.000000 0.000000 +vt 178.291269 2.000000 0.000000 +vt 178.291269 -2.000000 0.000000 +vt 177.698939 2.000000 0.000000 +vt 177.698939 -2.000000 0.000000 +vt 177.106609 2.000000 0.000000 +vt 177.106609 -2.000000 0.000000 +vt 176.514280 2.000000 0.000000 +vt 176.514280 -2.000000 0.000000 +vt 175.921950 2.000000 0.000000 +vt 175.921950 -2.000000 0.000000 +vt 175.329620 2.000000 0.000000 +vt 175.329620 -2.000000 0.000000 +vt 174.144960 2.000000 0.000000 +vt 174.144960 -2.000000 0.000000 +vt 172.960301 2.000000 0.000000 +vt 172.960301 -2.000000 0.000000 +vt 172.367971 2.000000 0.000000 +vt 172.367971 -2.000000 0.000000 +vt 171.775641 2.000000 0.000000 +vt 171.775641 -2.000000 0.000000 +vt 171.183311 2.000000 0.000000 +vt 171.183311 -2.000000 0.000000 +vt 170.590982 2.000000 0.000000 +vt 170.590982 -2.000000 0.000000 +vt 169.998652 2.000000 0.000000 +vt 169.998652 -2.000000 0.000000 +vt 169.406322 2.000000 0.000000 +vt 169.406322 -2.000000 0.000000 +vt 168.813992 2.000000 0.000000 +vt 168.813992 -2.000000 0.000000 +vt 168.221662 2.000000 0.000000 +vt 168.221662 -2.000000 0.000000 +vt 167.629333 2.000000 0.000000 +vt 167.629333 -2.000000 0.000000 +vt 167.037003 2.000000 0.000000 +vt 167.037003 -2.000000 0.000000 +vt 166.444673 2.000000 0.000000 +vt 166.444673 -2.000000 0.000000 +vt 165.852343 2.000000 0.000000 +vt 165.852343 -2.000000 0.000000 +vt 165.260013 2.000000 0.000000 +vt 165.260013 -2.000000 0.000000 +vt 164.667684 2.000000 0.000000 +vt 164.667684 -2.000000 0.000000 +vt 164.075354 2.000000 0.000000 +vt 164.075354 -2.000000 0.000000 +vt 163.483024 2.000000 0.000000 +vt 163.483024 -2.000000 0.000000 +vt 163.186859 2.000000 0.000000 +vt 163.186859 -2.000000 0.000000 +vt 162.890694 2.000000 0.000000 +vt 162.890694 -2.000000 0.000000 +vt 162.742612 2.000000 0.000000 +vt 162.742612 -2.000000 0.000000 +vt 162.594529 2.000000 0.000000 +vt 162.594529 -2.000000 0.000000 +vt 162.446447 2.000000 0.000000 +vt 162.446447 -2.000000 0.000000 +vt 162.298364 2.000000 0.000000 +vt 162.298364 -2.000000 0.000000 +vt 162.150282 2.000000 0.000000 +vt 162.150282 -2.000000 0.000000 +vt 162.002200 2.000000 0.000000 +vt 162.002200 -2.000000 0.000000 +vt 161.854117 2.000000 0.000000 +vt 161.854117 -2.000000 0.000000 +vt 161.706035 2.000000 0.000000 +vt 161.706035 -2.000000 0.000000 +vt 161.409870 2.000000 0.000000 +vt 161.409870 -2.000000 0.000000 +vt 161.113705 2.000000 0.000000 +vt 161.113705 -2.000000 0.000000 +vt 160.521375 2.000000 0.000000 +vt 160.521375 -2.000000 0.000000 +vt 159.929045 2.000000 0.000000 +vt 159.929045 -2.000000 0.000000 +vt 159.336716 2.000000 0.000000 +vt 159.336716 -2.000000 0.000000 +vt 158.744386 2.000000 0.000000 +vt 158.744386 -2.000000 0.000000 +vt 158.152056 2.000000 0.000000 +vt 158.152056 -2.000000 0.000000 +vt 157.559726 2.000000 0.000000 +vt 157.559726 -2.000000 0.000000 +vt 156.967396 2.000000 0.000000 +vt 156.967396 -2.000000 0.000000 +vt 156.375067 2.000000 0.000000 +vt 156.375067 -2.000000 0.000000 +vt 155.782737 2.000000 0.000000 +vt 155.782737 -2.000000 0.000000 +vt 155.190407 2.000000 0.000000 +vt 155.190407 -2.000000 0.000000 +vt 154.598077 2.000000 0.000000 +vt 154.598077 -2.000000 0.000000 +vt 154.005747 2.000000 0.000000 +vt 154.005747 -2.000000 0.000000 +vt 153.413418 2.000000 0.000000 +vt 153.413418 -2.000000 0.000000 +vt 152.821088 2.000000 0.000000 +vt 152.821088 -2.000000 0.000000 +vt 151.636428 2.000000 0.000000 +vt 151.636428 -2.000000 0.000000 +vt 150.451769 2.000000 0.000000 +vt 150.451769 -2.000000 0.000000 +vt 149.267109 2.000000 0.000000 +vt 149.267109 -2.000000 0.000000 +vt 148.082449 2.000000 0.000000 +vt 148.082449 -2.000000 0.000000 +vt 147.490120 2.000000 0.000000 +vt 147.490120 -2.000000 0.000000 +vt 146.897790 2.000000 0.000000 +vt 146.897790 -2.000000 0.000000 +vt 146.305460 2.000000 0.000000 +vt 146.305460 -2.000000 0.000000 +vt 145.713130 2.000000 0.000000 +vt 145.713130 -2.000000 0.000000 +vt 145.120800 2.000000 0.000000 +vt 145.120800 -2.000000 0.000000 +vt 144.528471 2.000000 0.000000 +vt 144.528471 -2.000000 0.000000 +vt 143.936141 2.000000 0.000000 +vt 143.936141 -2.000000 0.000000 +vt 143.343811 2.000000 0.000000 +vt 143.343811 -2.000000 0.000000 +vt 142.751481 2.000000 0.000000 +vt 142.751481 -2.000000 0.000000 +vt 142.159151 2.000000 0.000000 +vt 142.159151 -2.000000 0.000000 +vt 141.566822 2.000000 0.000000 +vt 141.566822 -2.000000 0.000000 +vt 140.974492 2.000000 0.000000 +vt 140.974492 -2.000000 0.000000 +vt 140.382162 2.000000 0.000000 +vt 140.382162 -2.000000 0.000000 +vt 139.789832 2.000000 0.000000 +vt 139.789832 -2.000000 0.000000 +vt 139.197502 2.000000 0.000000 +vt 139.197502 -2.000000 0.000000 +vt 138.605173 2.000000 0.000000 +vt 138.605173 -2.000000 0.000000 +vt 138.012843 2.000000 0.000000 +vt 138.012843 -2.000000 0.000000 +vt 137.420513 2.000000 0.000000 +vt 137.420513 -2.000000 0.000000 +vt 136.828183 2.000000 0.000000 +vt 136.828183 -2.000000 0.000000 +vt 136.235853 2.000000 0.000000 +vt 136.235853 -2.000000 0.000000 +vt 135.643524 2.000000 0.000000 +vt 135.643524 -2.000000 0.000000 +vt 135.051194 2.000000 0.000000 +vt 135.051194 -2.000000 0.000000 +vt 134.458864 2.000000 0.000000 +vt 134.458864 -2.000000 0.000000 +vt 133.866534 2.000000 0.000000 +vt 133.866534 -2.000000 0.000000 +vt 133.274204 2.000000 0.000000 +vt 133.274204 -2.000000 0.000000 +vt 132.681875 2.000000 0.000000 +vt 132.681875 -2.000000 0.000000 +vt 132.089545 2.000000 0.000000 +vt 132.089545 -2.000000 0.000000 +vt 131.497215 2.000000 0.000000 +vt 131.497215 -2.000000 0.000000 +vt 130.904885 2.000000 0.000000 +vt 130.904885 -2.000000 0.000000 +vt 130.312555 2.000000 0.000000 +vt 130.312555 -2.000000 0.000000 +vt 129.720226 2.000000 0.000000 +vt 129.720226 -2.000000 0.000000 +vt 129.127896 2.000000 0.000000 +vt 129.127896 -2.000000 0.000000 +vt 128.535566 2.000000 0.000000 +vt 128.535566 -2.000000 0.000000 +vt 127.943236 2.000000 0.000000 +vt 127.943236 -2.000000 0.000000 +vt 127.350906 2.000000 0.000000 +vt 127.350906 -2.000000 0.000000 +vt 126.758577 2.000000 0.000000 +vt 126.758577 -2.000000 0.000000 +vt 126.166247 2.000000 0.000000 +vt 126.166247 -2.000000 0.000000 +vt 125.573917 2.000000 0.000000 +vt 125.573917 -2.000000 0.000000 +vt 124.981587 2.000000 0.000000 +vt 124.981587 -2.000000 0.000000 +vt 124.389257 2.000000 0.000000 +vt 124.389257 -2.000000 0.000000 +vt 123.796928 2.000000 0.000000 +vt 123.796928 -2.000000 0.000000 +vt 123.204598 2.000000 0.000000 +vt 123.204598 -2.000000 0.000000 +vt 122.612268 2.000000 0.000000 +vt 122.612268 -2.000000 0.000000 +vt 122.019938 2.000000 0.000000 +vt 122.019938 -2.000000 0.000000 +vt 121.427608 2.000000 0.000000 +vt 121.427608 -2.000000 0.000000 +vt 120.835279 2.000000 0.000000 +vt 120.835279 -2.000000 0.000000 +vt 120.242949 2.000000 0.000000 +vt 120.242949 -2.000000 0.000000 +vt 119.650619 2.000000 0.000000 +vt 119.650619 -2.000000 0.000000 +vt 119.058289 2.000000 0.000000 +vt 119.058289 -2.000000 0.000000 +vt 118.465959 2.000000 0.000000 +vt 118.465959 -2.000000 0.000000 +vt 117.873630 2.000000 0.000000 +vt 117.873630 -2.000000 0.000000 +vt 117.281300 2.000000 0.000000 +vt 117.281300 -2.000000 0.000000 +vt 116.688970 2.000000 0.000000 +vt 116.688970 -2.000000 0.000000 +vt 116.096640 2.000000 0.000000 +vt 116.096640 -2.000000 0.000000 +vt 114.911981 2.000000 0.000000 +vt 114.911981 -2.000000 0.000000 +vt 113.727321 2.000000 0.000000 +vt 113.727321 -2.000000 0.000000 +vt 112.542662 2.000000 0.000000 +vt 112.542662 -2.000000 0.000000 +vt 111.950332 2.000000 0.000000 +vt 111.950332 -2.000000 0.000000 +vt 111.358002 2.000000 0.000000 +vt 111.358002 -2.000000 0.000000 +vt 110.765672 2.000000 0.000000 +vt 110.765672 -2.000000 0.000000 +vt 110.173342 2.000000 0.000000 +vt 110.173342 -2.000000 0.000000 +vt 109.581013 2.000000 0.000000 +vt 109.581013 -2.000000 0.000000 +vt 108.988683 2.000000 0.000000 +vt 108.988683 -2.000000 0.000000 +vt 108.396353 2.000000 0.000000 +vt 108.396353 -2.000000 0.000000 +vt 107.804023 2.000000 0.000000 +vt 107.804023 -2.000000 0.000000 +vt 107.211693 2.000000 0.000000 +vt 107.211693 -2.000000 0.000000 +vt 106.619364 2.000000 0.000000 +vt 106.619364 -2.000000 0.000000 +vt 106.027034 2.000000 0.000000 +vt 106.027034 -2.000000 0.000000 +vt 105.434704 2.000000 0.000000 +vt 105.434704 -2.000000 0.000000 +vt 104.842374 2.000000 0.000000 +vt 104.842374 -2.000000 0.000000 +vt 104.546209 2.000000 0.000000 +vt 104.546209 -2.000000 0.000000 +vt 104.250044 2.000000 0.000000 +vt 104.250044 -2.000000 0.000000 +vt 104.101962 2.000000 0.000000 +vt 104.101962 -2.000000 0.000000 +vt 103.953879 2.000000 0.000000 +vt 103.953879 -2.000000 0.000000 +vt 103.805797 2.000000 0.000000 +vt 103.805797 -2.000000 0.000000 +vt 103.731756 2.000000 0.000000 +vt 103.731756 -2.000000 0.000000 +vt 103.657715 2.000000 0.000000 +vt 103.657715 -2.000000 0.000000 +vt 103.583673 2.000000 0.000000 +vt 103.583673 -2.000000 0.000000 +vt 103.509632 2.000000 0.000000 +vt 103.509632 -2.000000 0.000000 +vt 103.361550 2.000000 0.000000 +vt 103.361550 -2.000000 0.000000 +vt 103.213467 2.000000 0.000000 +vt 103.213467 -2.000000 0.000000 +vt 103.065385 2.000000 0.000000 +vt 103.065385 -2.000000 0.000000 +vt 102.769220 2.000000 0.000000 +vt 102.769220 -2.000000 0.000000 +vt 102.473055 2.000000 0.000000 +vt 102.473055 -2.000000 0.000000 +vt 101.880725 2.000000 0.000000 +vt 101.880725 -2.000000 0.000000 +vt 101.288395 2.000000 0.000000 +vt 101.288395 -2.000000 0.000000 +vt 100.696066 2.000000 0.000000 +vt 100.696066 -2.000000 0.000000 +vt 100.103736 2.000000 0.000000 +vt 100.103736 -2.000000 0.000000 +vt 99.511406 2.000000 0.000000 +vt 99.511406 -2.000000 0.000000 +vt 98.919076 2.000000 0.000000 +vt 98.919076 -2.000000 0.000000 +vt 98.326746 2.000000 0.000000 +vt 98.326746 -2.000000 0.000000 +vt 97.734417 2.000000 0.000000 +vt 97.734417 -2.000000 0.000000 +vt 97.142087 2.000000 0.000000 +vt 97.142087 -2.000000 0.000000 +vt 96.549757 2.000000 0.000000 +vt 96.549757 -2.000000 0.000000 +vt 95.957427 2.000000 0.000000 +vt 95.957427 -2.000000 0.000000 +vt 95.365097 2.000000 0.000000 +vt 95.365097 -2.000000 0.000000 +vt 94.772768 2.000000 0.000000 +vt 94.772768 -2.000000 0.000000 +vt 93.588108 2.000000 0.000000 +vt 93.588108 -2.000000 0.000000 +vt 92.403448 2.000000 0.000000 +vt 92.403448 -2.000000 0.000000 +vt 91.218789 2.000000 0.000000 +vt 91.218789 -2.000000 0.000000 +vt 90.626459 2.000000 0.000000 +vt 90.626459 -2.000000 0.000000 +vt 90.034129 2.000000 0.000000 +vt 90.034129 -2.000000 0.000000 +vt 89.441799 2.000000 0.000000 +vt 89.441799 -2.000000 0.000000 +vt 88.849470 2.000000 0.000000 +vt 88.849470 -2.000000 0.000000 +vt 88.257140 2.000000 0.000000 +vt 88.257140 -2.000000 0.000000 +vt 87.664810 2.000000 0.000000 +vt 87.664810 -2.000000 0.000000 +vt 87.072480 2.000000 0.000000 +vt 87.072480 -2.000000 0.000000 +vt 86.480150 2.000000 0.000000 +vt 86.480150 -2.000000 0.000000 +vt 85.887821 2.000000 0.000000 +vt 85.887821 -2.000000 0.000000 +vt 85.295491 2.000000 0.000000 +vt 85.295491 -2.000000 0.000000 +vt 84.703161 2.000000 0.000000 +vt 84.703161 -2.000000 0.000000 +vt 84.110831 2.000000 0.000000 +vt 84.110831 -2.000000 0.000000 +vt 83.518501 2.000000 0.000000 +vt 83.518501 -2.000000 0.000000 +vt 82.926172 2.000000 0.000000 +vt 82.926172 -2.000000 0.000000 +vt 82.333842 2.000000 0.000000 +vt 82.333842 -2.000000 0.000000 +vt 81.741512 2.000000 0.000000 +vt 81.741512 -2.000000 0.000000 +vt 81.149182 2.000000 0.000000 +vt 81.149182 -2.000000 0.000000 +vt 80.556852 2.000000 0.000000 +vt 80.556852 -2.000000 0.000000 +vt 79.964523 2.000000 0.000000 +vt 79.964523 -2.000000 0.000000 +vt 79.372193 2.000000 0.000000 +vt 79.372193 -2.000000 0.000000 +vt 78.779863 2.000000 0.000000 +vt 78.779863 -2.000000 0.000000 +vt 78.187533 2.000000 0.000000 +vt 78.187533 -2.000000 0.000000 +vt 77.595203 2.000000 0.000000 +vt 77.595203 -2.000000 0.000000 +vt 77.002874 2.000000 0.000000 +vt 77.002874 -2.000000 0.000000 +vt 76.410544 2.000000 0.000000 +vt 76.410544 -2.000000 0.000000 +vt 75.818214 2.000000 0.000000 +vt 75.818214 -2.000000 0.000000 +vt 75.225884 2.000000 0.000000 +vt 75.225884 -2.000000 0.000000 +vt 74.633554 2.000000 0.000000 +vt 74.633554 -2.000000 0.000000 +vt 74.041225 2.000000 0.000000 +vt 74.041225 -2.000000 0.000000 +vt 73.448895 2.000000 0.000000 +vt 73.448895 -2.000000 0.000000 +vt 72.856565 2.000000 0.000000 +vt 72.856565 -2.000000 0.000000 +vt 72.264235 2.000000 0.000000 +vt 72.264235 -2.000000 0.000000 +vt 71.671905 2.000000 0.000000 +vt 71.671905 -2.000000 0.000000 +vt 71.079576 2.000000 0.000000 +vt 71.079576 -2.000000 0.000000 +vt 70.487246 2.000000 0.000000 +vt 70.487246 -2.000000 0.000000 +vt 69.894916 2.000000 0.000000 +vt 69.894916 -2.000000 0.000000 +vt 69.302586 2.000000 0.000000 +vt 69.302586 -2.000000 0.000000 +vt 68.710257 2.000000 0.000000 +vt 68.710257 -2.000000 0.000000 +vt 68.117927 2.000000 0.000000 +vt 68.117927 -2.000000 0.000000 +vt 67.525597 2.000000 0.000000 +vt 67.525597 -2.000000 0.000000 +vt 66.933267 2.000000 0.000000 +vt 66.933267 -2.000000 0.000000 +vt 66.340937 2.000000 0.000000 +vt 66.340937 -2.000000 0.000000 +vt 65.748608 2.000000 0.000000 +vt 65.748608 -2.000000 0.000000 +vt 65.156278 2.000000 0.000000 +vt 65.156278 -2.000000 0.000000 +vt 63.971618 2.000000 0.000000 +vt 63.971618 -2.000000 0.000000 +vt 62.786959 2.000000 0.000000 +vt 62.786959 -2.000000 0.000000 +vt 61.602299 2.000000 0.000000 +vt 61.602299 -2.000000 0.000000 +vt 60.417639 2.000000 0.000000 +vt 60.417639 -2.000000 0.000000 +vt 59.232980 2.000000 0.000000 +vt 59.232980 -2.000000 0.000000 +vt 58.640650 2.000000 0.000000 +vt 58.640650 -2.000000 0.000000 +vt 58.048320 2.000000 0.000000 +vt 58.048320 -2.000000 0.000000 +vt 57.455990 2.000000 0.000000 +vt 57.455990 -2.000000 0.000000 +vt 56.863661 2.000000 0.000000 +vt 56.863661 -2.000000 0.000000 +vt 56.271331 2.000000 0.000000 +vt 56.271331 -2.000000 0.000000 +vt 55.679001 2.000000 0.000000 +vt 55.679001 -2.000000 0.000000 +vt 55.086671 2.000000 0.000000 +vt 55.086671 -2.000000 0.000000 +vt 54.494341 2.000000 0.000000 +vt 54.494341 -2.000000 0.000000 +vt 53.902012 2.000000 0.000000 +vt 53.902012 -2.000000 0.000000 +vt 53.309682 2.000000 0.000000 +vt 53.309682 -2.000000 0.000000 +vt 52.717352 2.000000 0.000000 +vt 52.717352 -2.000000 0.000000 +vt 52.125022 2.000000 0.000000 +vt 52.125022 -2.000000 0.000000 +vt 51.532692 2.000000 0.000000 +vt 51.532692 -2.000000 0.000000 +vt 50.940363 2.000000 0.000000 +vt 50.940363 -2.000000 0.000000 +vt 50.348033 2.000000 0.000000 +vt 50.348033 -2.000000 0.000000 +vt 49.755703 2.000000 0.000000 +vt 49.755703 -2.000000 0.000000 +vt 49.163373 2.000000 0.000000 +vt 49.163373 -2.000000 0.000000 +vt 48.571043 2.000000 0.000000 +vt 48.571043 -2.000000 0.000000 +vt 47.978714 2.000000 0.000000 +vt 47.978714 -2.000000 0.000000 +vt 47.386384 2.000000 0.000000 +vt 47.386384 -2.000000 0.000000 +vt 46.794054 2.000000 0.000000 +vt 46.794054 -2.000000 0.000000 +vt 46.201724 2.000000 0.000000 +vt 46.201724 -2.000000 0.000000 +vt 45.609394 2.000000 0.000000 +vt 45.609394 -2.000000 0.000000 +vt 45.017065 2.000000 0.000000 +vt 45.017065 -2.000000 0.000000 +vt 44.424735 2.000000 0.000000 +vt 44.424735 -2.000000 0.000000 +vt 43.832405 2.000000 0.000000 +vt 43.832405 -2.000000 0.000000 +vt 43.240075 2.000000 0.000000 +vt 43.240075 -2.000000 0.000000 +vt 42.647745 2.000000 0.000000 +vt 42.647745 -2.000000 0.000000 +vt 41.463086 2.000000 0.000000 +vt 41.463086 -2.000000 0.000000 +vt 40.278426 2.000000 0.000000 +vt 40.278426 -2.000000 0.000000 +vt 39.093767 2.000000 0.000000 +vt 39.093767 -2.000000 0.000000 +vt 38.501437 2.000000 0.000000 +vt 38.501437 -2.000000 0.000000 +vt 37.909107 2.000000 0.000000 +vt 37.909107 -2.000000 0.000000 +vt 37.316777 2.000000 0.000000 +vt 37.316777 -2.000000 0.000000 +vt 36.724447 2.000000 0.000000 +vt 36.724447 -2.000000 0.000000 +vt 36.132118 2.000000 0.000000 +vt 36.132118 -2.000000 0.000000 +vt 35.539788 2.000000 0.000000 +vt 35.539788 -2.000000 0.000000 +vt 34.947458 2.000000 0.000000 +vt 34.947458 -2.000000 0.000000 +vt 34.355128 2.000000 0.000000 +vt 34.355128 -2.000000 0.000000 +vt 33.762798 2.000000 0.000000 +vt 33.762798 -2.000000 0.000000 +vt 33.170469 2.000000 0.000000 +vt 33.170469 -2.000000 0.000000 +vt 32.578139 2.000000 0.000000 +vt 32.578139 -2.000000 0.000000 +vt 31.985809 2.000000 0.000000 +vt 31.985809 -2.000000 0.000000 +vt 31.393479 2.000000 0.000000 +vt 31.393479 -2.000000 0.000000 +vt 30.801149 2.000000 0.000000 +vt 30.801149 -2.000000 0.000000 +vt 30.208820 2.000000 0.000000 +vt 30.208820 -2.000000 0.000000 +vt 29.616490 2.000000 0.000000 +vt 29.616490 -2.000000 0.000000 +vt 29.024160 2.000000 0.000000 +vt 29.024160 -2.000000 0.000000 +vt 28.431830 2.000000 0.000000 +vt 28.431830 -2.000000 0.000000 +vt 27.839500 2.000000 0.000000 +vt 27.839500 -2.000000 0.000000 +vt 27.247171 2.000000 0.000000 +vt 27.247171 -2.000000 0.000000 +vt 26.654841 2.000000 0.000000 +vt 26.654841 -2.000000 0.000000 +vt 26.062511 2.000000 0.000000 +vt 26.062511 -2.000000 0.000000 +vt 25.470181 2.000000 0.000000 +vt 25.470181 -2.000000 0.000000 +vt 24.877851 2.000000 0.000000 +vt 24.877851 -2.000000 0.000000 +vt 24.285522 2.000000 0.000000 +vt 24.285522 -2.000000 0.000000 +vt 23.693192 2.000000 0.000000 +vt 23.693192 -2.000000 0.000000 +vt 23.100862 2.000000 0.000000 +vt 23.100862 -2.000000 0.000000 +vt 22.508532 2.000000 0.000000 +vt 22.508532 -2.000000 0.000000 +vt 21.916203 2.000000 0.000000 +vt 21.916203 -2.000000 0.000000 +vt 21.323873 2.000000 0.000000 +vt 21.323873 -2.000000 0.000000 +vt 20.731543 2.000000 0.000000 +vt 20.731543 -2.000000 0.000000 +vt 20.139213 2.000000 0.000000 +vt 20.139213 -2.000000 0.000000 +vt 19.546883 2.000000 0.000000 +vt 19.546883 -2.000000 0.000000 +vt 18.954554 2.000000 0.000000 +vt 18.954554 -2.000000 0.000000 +vt 17.769894 2.000000 0.000000 +vt 17.769894 -2.000000 0.000000 +vt 16.585234 2.000000 0.000000 +vt 16.585234 -2.000000 0.000000 +vt 15.400575 2.000000 0.000000 +vt 15.400575 -2.000000 0.000000 +vt 14.215915 2.000000 0.000000 +vt 14.215915 -2.000000 0.000000 +vt 13.031256 2.000000 0.000000 +vt 13.031256 -2.000000 0.000000 +vt 11.846596 2.000000 0.000000 +vt 11.846596 -2.000000 0.000000 +vt 11.254266 2.000000 0.000000 +vt 11.254266 -2.000000 0.000000 +vt 10.661936 2.000000 0.000000 +vt 10.661936 -2.000000 0.000000 +vt 10.069607 2.000000 0.000000 +vt 10.069607 -2.000000 0.000000 +vt 9.477277 2.000000 0.000000 +vt 9.477277 -2.000000 0.000000 +vt 8.884947 2.000000 0.000000 +vt 8.884947 -2.000000 0.000000 +vt 8.292617 2.000000 0.000000 +vt 8.292617 -2.000000 0.000000 +vt 7.700287 2.000000 0.000000 +vt 7.700287 -2.000000 0.000000 +vt 7.107958 2.000000 0.000000 +vt 7.107958 -2.000000 0.000000 +vt 6.515628 2.000000 0.000000 +vt 6.515628 -2.000000 0.000000 +vt 5.923298 2.000000 0.000000 +vt 5.923298 -2.000000 0.000000 +vt 5.330968 2.000000 0.000000 +vt 5.330968 -2.000000 0.000000 +vt 4.738638 2.000000 0.000000 +vt 4.738638 -2.000000 0.000000 +vt 4.146309 2.000000 0.000000 +vt 4.146309 -2.000000 0.000000 +vt 3.553979 2.000000 0.000000 +vt 3.553979 -2.000000 0.000000 +vt 2.961649 2.000000 0.000000 +vt 2.961649 -2.000000 0.000000 +vt 2.369319 2.000000 0.000000 +vt 2.369319 -2.000000 0.000000 +vt 1.776989 2.000000 0.000000 +vt 1.776989 -2.000000 0.000000 +vt 1.184660 2.000000 0.000000 +vt 1.184660 -2.000000 0.000000 +vt 0.000000 2.000000 0.000000 +vt 0.000000 -2.000000 0.000000 +vt -6.966162 12.487695 0.000000 +vt -4.849805 18.967534 0.000000 +vt -7.236973 13.148370 0.000000 +vt -5.299888 18.953809 0.000000 +vt -7.553979 13.814570 0.000000 +vt -5.739481 18.924347 0.000000 +vt -6.163579 18.878376 0.000000 +vt -6.855172 12.160931 0.000000 +vt -3.487786 18.922778 0.000000 +vt -4.394346 18.966354 0.000000 +vt -6.763481 11.837026 0.000000 +vt -3.046682 18.882164 0.000000 +vt -2.620031 18.830174 0.000000 +vt -6.692901 11.516154 0.000000 +vt -2.212216 18.767654 0.000000 +vt 0.926590 15.689426 0.000000 +vt 0.830775 15.943489 0.000000 +vt -6.644895 11.198358 0.000000 +vt 1.041515 15.422771 0.000000 +vt 1.177071 15.143889 0.000000 +vt -6.620593 10.883561 0.000000 +vt 1.334092 14.853314 0.000000 +vt -6.620807 10.571576 0.000000 +vt 1.512801 14.551728 0.000000 +vt 1.712887 14.239938 0.000000 +vt -6.646042 10.262120 0.000000 +vt 1.933578 13.918847 0.000000 +vt -6.696511 9.954829 0.000000 +vt 2.173700 13.589442 0.000000 +vt 2.431715 13.252776 0.000000 +vt -6.772150 9.649262 0.000000 +vt 2.705757 12.909954 0.000000 +vt -6.265283 2.425798 0.000000 +vt 3.293092 12.210420 0.000000 +vt 3.916016 11.500087 0.000000 +vt 4.552868 10.787893 0.000000 +vt 5.181705 10.081891 0.000000 +vt 5.781779 9.388741 0.000000 +vt 6.335145 8.713148 0.000000 +vt 6.589936 8.382702 0.000000 +vt 8.546855 4.282278 0.000000 +vt 6.828539 8.057183 0.000000 +vt 7.050264 7.736358 0.000000 +vt 8.361734 4.934576 0.000000 +vt 7.254832 7.419800 0.000000 +vt 7.442376 7.106887 0.000000 +vt 7.613427 6.796816 0.000000 +vt 8.154733 5.563927 0.000000 +vt 7.909908 6.181223 0.000000 +vt -6.872634 9.344922 0.000000 +vt -6.997386 9.041260 0.000000 +vt -7.145595 8.737691 0.000000 +vt -7.316229 8.433606 0.000000 +vt -7.508045 8.128381 0.000000 +vt -7.719610 7.821395 0.000000 +vt -6.455062 2.456562 0.000000 +vt -7.949305 7.512038 0.000000 +vt -6.649209 2.443240 0.000000 +vt -8.195348 7.199721 0.000000 +vt -6.846127 2.386075 0.000000 +vt -8.455805 6.883892 0.000000 +vt -7.044366 2.285804 0.000000 +vt -9.011569 6.239713 0.000000 +vt -7.242677 2.143708 0.000000 +vt -7.440058 1.961648 0.000000 +vt -9.598742 5.576121 0.000000 +vt -7.635793 1.742098 0.000000 +vt -10.198221 4.890830 0.000000 +vt -7.829442 1.488101 0.000000 +vt -8.020806 1.203210 0.000000 +vt -10.790338 4.182852 0.000000 +vt -8.209903 0.891411 0.000000 +vt -8.396924 0.557055 0.000000 +vt -11.355528 3.452695 0.000000 +vt -8.766216 -0.160506 0.000000 +vt -11.874972 2.702579 0.000000 +vt -9.132618 -0.909906 0.000000 +vt -12.112028 2.321253 0.000000 +vt -12.331273 1.936659 0.000000 +vt -9.500958 -1.649992 0.000000 +vt -12.530866 1.549658 0.000000 +vt -12.709142 1.161258 0.000000 +vt -9.687361 -2.003779 0.000000 +vt -12.864622 0.772615 0.000000 +vt -9.875953 -2.340185 0.000000 +vt -12.996039 0.385047 0.000000 +vt -13.102356 0.000031 0.000000 +vt -10.067141 -2.654583 0.000000 +vt -13.182791 -0.380780 0.000000 +vt -10.261199 -2.942653 0.000000 +vt -13.236842 -0.755550 0.000000 +vt -13.264313 -1.122243 0.000000 +vt -10.458242 -3.200443 0.000000 +vt -13.265334 -1.478620 0.000000 +vt -13.240371 -1.822245 0.000000 +vt -10.658192 -3.424437 0.000000 +vt -13.190233 -2.150492 0.000000 +vt -13.116073 -2.460558 0.000000 +vt -10.860750 -3.611624 0.000000 +vt -13.019383 -2.749487 0.000000 +vt -12.901945 -3.014234 0.000000 +vt -12.765770 -3.251748 0.000000 +vt -11.065356 -3.759567 0.000000 +vt -12.613038 -3.459055 0.000000 +vt -12.446027 -3.633338 0.000000 +vt -12.267068 -3.772014 0.000000 +vt -12.078484 -3.872808 0.000000 +vt -11.271164 -3.866477 0.000000 +vt -11.477003 -3.931277 0.000000 +vt -11.681383 -3.953620 0.000000 +vt -11.882538 -3.933824 0.000000 +vt 8.726954 3.596290 0.000000 +vt -6.081570 2.351159 0.000000 +vt -5.905669 2.233258 0.000000 +vt -5.739311 2.073062 0.000000 +vt -5.584164 1.871841 0.000000 +vt 2.651043 -1.798324 0.000000 +vt -1.212494 -1.855295 0.000000 +vt 2.639152 -1.802579 0.000000 +vt -1.200339 -1.862129 0.000000 +vt 2.628340 -1.809827 0.000000 +vt -1.187918 -1.872245 0.000000 +vt 2.618608 -1.820060 0.000000 +vt -1.162296 -1.902288 0.000000 +vt 2.609954 -1.833269 0.000000 +vt -1.135665 -1.945329 0.000000 +vt 2.595871 -1.868572 0.000000 +vt -1.079570 -2.069865 0.000000 +vt -1.020094 -2.244453 0.000000 +vt -1.224381 -1.851751 0.000000 +vt -5.441777 1.631118 0.000000 +vt -1.230222 -1.851213 0.000000 +vt -5.313529 1.352626 0.000000 +vt -1.235995 -1.851499 0.000000 +vt -5.200586 1.038263 0.000000 +vt -1.241700 -1.852609 0.000000 +vt -1.247335 -1.854542 0.000000 +vt -5.103855 0.690047 0.000000 +vt -1.258400 -1.860881 0.000000 +vt -5.023946 0.310082 0.000000 +vt -1.269187 -1.870514 0.000000 +vt -4.961178 -0.099462 0.000000 +vt -1.279695 -1.883435 0.000000 +vt -4.915603 -0.536354 0.000000 +vt -1.299879 -1.919120 0.000000 +vt -4.887022 -0.998310 0.000000 +vt -1.318954 -1.967863 0.000000 +vt -1.353834 -2.104073 0.000000 +vt -4.875012 -1.483000 0.000000 +vt -1.384527 -2.290856 0.000000 +vt -4.878943 -1.988056 0.000000 +vt -1.411341 -2.526530 0.000000 +vt -1.434692 -2.808978 0.000000 +vt -4.897992 -2.511078 0.000000 +vt -1.455090 -3.135693 0.000000 +vt -4.931164 -3.049651 0.000000 +vt -1.473126 -3.503824 0.000000 +vt -1.489457 -3.910220 0.000000 +vt -4.977304 -3.601348 0.000000 +vt -1.504801 -4.351464 0.000000 +vt -1.519919 -4.823914 0.000000 +vt -5.103202 -4.734406 0.000000 +vt -1.535612 -5.323737 0.000000 +vt -1.552704 -5.846944 0.000000 +vt -5.264005 -5.890966 0.000000 +vt -1.572036 -6.389431 0.000000 +vt -1.594451 -6.947021 0.000000 +vt -5.446703 -7.052131 0.000000 +vt -1.651842 -8.090674 0.000000 +vt -5.637527 -8.199665 0.000000 +vt -1.731232 -9.244532 0.000000 +vt -5.822515 -9.316271 0.000000 +vt -1.838309 -10.376506 0.000000 +vt -1.903739 -10.924899 0.000000 +vt -5.908551 -9.857899 0.000000 +vt -1.977742 -11.456981 0.000000 +vt -5.988107 -10.385880 0.000000 +vt -2.060679 -11.969664 0.000000 +vt -6.059647 -10.898446 0.000000 +vt -2.152797 -12.460188 0.000000 +vt -6.121735 -11.393939 0.000000 +vt -2.254219 -12.926155 0.000000 +vt -6.173045 -11.870818 0.000000 +vt -2.364944 -13.365534 0.000000 +vt -6.212382 -12.327669 0.000000 +vt -2.484842 -13.776671 0.000000 +vt -2.613649 -14.158301 0.000000 +vt -6.238702 -12.763212 0.000000 +vt -2.750975 -14.509525 0.000000 +vt -6.251130 -13.176312 0.000000 +vt -2.896307 -14.829772 0.000000 +vt -6.248982 -13.565998 0.000000 +vt -3.049023 -15.118752 0.000000 +vt -3.208403 -15.376410 0.000000 +vt -6.231793 -13.931466 0.000000 +vt -3.373634 -15.602890 0.000000 +vt -6.199319 -14.272090 0.000000 +vt -3.543821 -15.798501 0.000000 +vt -3.717993 -15.963692 0.000000 +vt -6.151536 -14.587402 0.000000 +vt -3.895111 -16.099020 0.000000 +vt -4.074076 -16.205120 0.000000 +vt -6.088628 -14.877075 0.000000 +vt -4.253736 -16.282656 0.000000 +vt -4.432890 -16.332284 0.000000 +vt -6.010973 -15.140905 0.000000 +vt -4.610299 -16.354605 0.000000 +vt -4.784691 -16.350136 0.000000 +vt -4.954777 -16.319292 0.000000 +vt -5.919131 -15.378789 0.000000 +vt -5.119263 -16.262385 0.000000 +vt -5.276861 -16.179617 0.000000 +vt -5.426307 -16.071081 0.000000 +vt -5.813822 -15.590704 0.000000 +vt -5.695910 -15.776681 0.000000 +vt -5.566377 -15.936784 0.000000 +vt 2.586062 -1.915641 0.000000 +vt -0.957801 -2.467238 0.000000 +vt -0.893343 -2.735955 0.000000 +vt 2.579048 -2.044604 0.000000 +vt -0.827443 -3.047984 0.000000 +vt 2.588325 -2.219038 0.000000 +vt -0.760877 -3.400393 0.000000 +vt 2.613068 -2.437565 0.000000 +vt -0.694462 -3.789973 0.000000 +vt 2.652243 -2.698567 0.000000 +vt 2.704634 -3.000206 0.000000 +vt -0.629040 -4.213283 0.000000 +vt 2.768859 -3.340440 0.000000 +vt -0.565470 -4.666682 0.000000 +vt 2.843396 -3.717039 0.000000 +vt -0.504604 -5.146378 0.000000 +vt 2.926604 -4.127604 0.000000 +vt -0.447278 -5.648470 0.000000 +vt 3.016748 -4.569589 0.000000 +vt 3.112027 -5.040314 0.000000 +vt -0.394291 -6.168994 0.000000 +vt 3.210595 -5.536989 0.000000 +vt -0.346394 -6.703968 0.000000 +vt 3.310589 -6.056732 0.000000 +vt -0.268520 -7.801493 0.000000 +vt 3.410157 -6.596587 0.000000 +vt 3.507478 -7.153544 0.000000 +vt -0.218088 -8.910379 0.000000 +vt 3.688434 -8.306565 0.000000 +vt -0.197803 -10.002276 0.000000 +vt 3.840528 -9.491332 0.000000 +vt -0.199207 -10.533986 0.000000 +vt 3.952802 -10.683658 0.000000 +vt -0.208105 -11.052616 0.000000 +vt -0.224108 -11.555933 0.000000 +vt 4.016692 -11.860131 0.000000 +vt -0.246631 -12.042096 0.000000 +vt 4.028478 -12.435411 0.000000 +vt -0.274891 -12.509679 0.000000 +vt 4.026037 -12.998484 0.000000 +vt -0.307900 -12.957693 0.000000 +vt 4.008951 -13.546803 0.000000 +vt 3.976941 -14.077931 0.000000 +vt -0.344477 -13.385577 0.000000 +vt 3.929860 -14.589559 0.000000 +vt -0.383282 -13.793146 0.000000 +vt 3.867697 -15.079511 0.000000 +vt -0.422844 -14.180543 0.000000 +vt 3.790575 -15.545761 0.000000 +vt -0.461599 -14.548182 0.000000 +vt 3.698744 -15.986441 0.000000 +vt 3.592583 -16.399854 0.000000 +vt -0.497922 -14.896692 0.000000 +vt 3.472597 -16.784484 0.000000 +vt -0.530157 -15.226877 0.000000 +vt 3.339413 -17.139011 0.000000 +vt 3.193777 -17.462312 0.000000 +vt -0.556649 -15.539666 0.000000 +vt 3.036552 -17.753477 0.000000 +vt 2.868714 -18.011815 0.000000 +vt -0.575769 -15.836072 0.000000 +vt 2.691352 -18.236869 0.000000 +vt -0.585946 -16.117147 0.000000 +vt -0.585694 -16.383938 0.000000 +vt -0.573638 -16.637447 0.000000 +vt -0.548544 -16.878584 0.000000 +vt -0.509348 -17.108128 0.000000 +vt -0.455190 -17.326666 0.000000 +vt -0.385454 -17.534534 0.000000 +vt -0.299806 -17.731760 0.000000 +vt -0.198223 -17.918018 0.000000 +vt -0.080994 -18.092630 0.000000 +vt 0.051299 -18.254592 0.000000 +vt 0.197789 -18.402591 0.000000 +vt 0.357343 -18.535043 0.000000 +vt 0.528603 -18.650145 0.000000 +vt 0.710020 -18.745941 0.000000 +vt 0.899904 -18.820396 0.000000 +vt 1.096464 -18.871461 0.000000 +vt 1.297849 -18.897141 0.000000 +vt 1.502188 -18.895561 0.000000 +vt 1.707628 -18.865027 0.000000 +vt 1.912371 -18.804087 0.000000 +vt 2.505668 -18.428428 0.000000 +vt 2.312974 -18.586548 0.000000 +vt 2.114697 -18.711561 0.000000 +vt 2.664012 -1.797067 0.000000 +vt 2.678055 -1.798814 0.000000 +vt 2.693168 -1.803570 0.000000 +vt 6.781432 -0.768385 0.000000 +vt 2.709347 -1.811336 0.000000 +vt 6.777991 -0.772342 0.000000 +vt 2.744869 -1.835904 0.000000 +vt 6.772175 -0.783020 0.000000 +vt 2.784551 -1.872513 0.000000 +vt 2.876009 -1.981725 0.000000 +vt 6.767782 -0.797388 0.000000 +vt 2.982762 -2.138516 0.000000 +vt 3.103559 -2.342105 0.000000 +vt 6.763270 -0.837192 0.000000 +vt 3.236883 -2.591392 0.000000 +vt 6.764446 -0.891732 0.000000 +vt 3.380986 -2.884972 0.000000 +vt 6.771277 -0.960948 0.000000 +vt 6.783704 -1.044743 0.000000 +vt 3.533931 -3.221152 0.000000 +vt 6.801640 -1.142981 0.000000 +vt 6.824978 -1.255496 0.000000 +vt 3.693643 -3.597966 0.000000 +vt 6.853582 -1.382090 0.000000 +vt 6.925930 -1.676569 0.000000 +vt 3.857954 -4.013198 0.000000 +vt 7.017134 -2.024269 0.000000 +vt 4.024645 -4.464396 0.000000 +vt 7.125279 -2.422645 0.000000 +vt 7.248136 -2.868789 0.000000 +vt 4.191491 -4.948884 0.000000 +vt 7.383213 -3.359456 0.000000 +vt 4.356299 -5.463782 0.000000 +vt 7.527805 -3.891076 0.000000 +vt 4.516953 -6.006013 0.000000 +vt 7.679050 -4.459791 0.000000 +vt 4.671448 -6.572323 0.000000 +vt 7.833966 -5.061480 0.000000 +vt 4.817936 -7.159294 0.000000 +vt 7.989493 -5.691795 0.000000 +vt 4.954762 -7.763362 0.000000 +vt 8.142533 -6.346201 0.000000 +vt 8.289990 -7.020011 0.000000 +vt 5.080504 -8.380834 0.000000 +vt 8.428810 -7.708412 0.000000 +vt 5.294476 -9.640650 0.000000 +vt 8.556023 -8.406502 0.000000 +vt 8.668786 -9.109316 0.000000 +vt 5.454862 -10.907148 0.000000 +vt 8.764422 -9.811858 0.000000 +vt 8.840472 -10.509133 0.000000 +vt 5.515200 -11.532700 0.000000 +vt 8.894738 -11.196178 0.000000 +vt 5.563375 -12.147578 0.000000 +vt 8.925336 -11.868098 0.000000 +vt 8.930742 -12.520096 0.000000 +vt 5.600832 -12.747595 0.000000 +vt 8.909828 -13.147506 0.000000 +vt 5.629552 -13.328556 0.000000 +vt 8.861887 -13.745826 0.000000 +vt 5.652098 -13.886283 0.000000 +vt 8.786660 -14.310744 0.000000 +vt 8.684368 -14.838173 0.000000 +vt 5.671698 -14.416614 0.000000 +vt 8.555769 -15.324285 0.000000 +vt 5.692357 -14.915417 0.000000 +vt 8.402236 -15.765539 0.000000 +vt 8.225846 -16.158719 0.000000 +vt 5.718956 -15.378592 0.000000 +vt 8.029451 -16.500967 0.000000 +vt 7.816676 -16.789809 0.000000 +vt 5.757185 -15.802102 0.000000 +vt 7.591843 -17.023186 0.000000 +vt 7.359879 -17.199476 0.000000 +vt 5.812930 -16.182060 0.000000 +vt 7.126220 -17.317519 0.000000 +vt 7.010551 -17.354467 0.000000 +vt 5.891405 -16.514855 0.000000 +vt 6.896629 -17.376633 0.000000 +vt 6.785178 -17.384007 0.000000 +vt 6.676904 -17.376606 0.000000 +vt 5.996268 -16.797270 0.000000 +vt 6.572487 -17.354477 0.000000 +vt 6.472572 -17.317696 0.000000 +vt 6.377755 -17.266367 0.000000 +vt 6.059128 -16.918716 0.000000 +vt 6.128932 -17.026590 0.000000 +vt 6.205510 -17.120636 0.000000 +vt 6.288579 -17.200626 0.000000 +vt 6.785227 -0.765349 0.000000 +vt 6.789377 -0.763233 0.000000 +vt 6.793880 -0.762035 0.000000 +vt 6.798735 -0.761756 0.000000 +vt 8.918497 2.866762 0.000000 +vt 6.803942 -0.762393 0.000000 +vt 6.815408 -0.766412 0.000000 +vt 9.023268 2.483021 0.000000 +vt 6.828269 -0.774078 0.000000 +vt 9.136221 2.085486 0.000000 +vt 6.842515 -0.785377 0.000000 +vt 9.258719 1.673507 0.000000 +vt 6.875118 -0.818799 0.000000 +vt 6.913117 -0.866511 0.000000 +vt 9.391855 1.246626 0.000000 +vt 6.956397 -0.928308 0.000000 +vt 7.058254 -1.093178 0.000000 +vt 9.536417 0.804602 0.000000 +vt 7.179481 -1.311113 0.000000 +vt 7.318686 -1.579322 0.000000 +vt 9.692842 0.347436 0.000000 +vt 7.474310 -1.894578 0.000000 +vt 9.861177 -0.124612 0.000000 +vt 7.644657 -2.253267 0.000000 +vt 10.041045 -0.610993 0.000000 +vt 7.827908 -2.651437 0.000000 +vt 10.231652 -1.110882 0.000000 +vt 8.022158 -3.084854 0.000000 +vt 10.431834 -1.623190 0.000000 +vt 8.225447 -3.549036 0.000000 +vt 8.435794 -4.039304 0.000000 +vt 10.854623 -2.679509 0.000000 +vt 8.651235 -4.550819 0.000000 +vt 11.294178 -3.766720 0.000000 +vt 9.089800 -5.617729 0.000000 +vt 11.732106 -4.868650 0.000000 +vt 9.526807 -6.709659 0.000000 +vt 12.148368 -5.966831 0.000000 +vt 9.949927 -7.786936 0.000000 +vt 12.341982 -6.508274 0.000000 +vt 10.153242 -8.308171 0.000000 +vt 12.522563 -7.041138 0.000000 +vt 10.349935 -8.811828 0.000000 +vt 12.687708 -7.562753 0.000000 +vt 10.539528 -9.293737 0.000000 +vt 12.835175 -8.070423 0.000000 +vt 10.721847 -9.750031 0.000000 +vt 12.962949 -8.561450 0.000000 +vt 10.897039 -10.177183 0.000000 +vt 13.069309 -9.033155 0.000000 +vt 11.065565 -10.572047 0.000000 +vt 13.152864 -9.482895 0.000000 +vt 11.228183 -10.931877 0.000000 +vt 13.212555 -9.908083 0.000000 +vt 11.385857 -11.254313 0.000000 +vt 13.247652 -10.306206 0.000000 +vt 11.539666 -11.537371 0.000000 +vt 13.257749 -10.674848 0.000000 +vt 11.690711 -11.779419 0.000000 +vt 13.242819 -11.011702 0.000000 +vt 13.203358 -11.314603 0.000000 +vt 11.839997 -11.979166 0.000000 +vt 13.140549 -11.581540 0.000000 +vt 11.988294 -12.135644 0.000000 +vt 13.056425 -11.810689 0.000000 +vt 12.135978 -12.248198 0.000000 +vt 12.953872 -12.000424 0.000000 +vt 12.282884 -12.316469 0.000000 +vt 12.836330 -12.149333 0.000000 +vt 12.355816 -12.333966 0.000000 +vt 12.707394 -12.256229 0.000000 +vt 12.639720 -12.293612 0.000000 +vt 12.428194 -12.340387 0.000000 +vt 12.570415 -12.320152 0.000000 +vt 12.499810 -12.335766 0.000000 +vt 0.751832 16.184783 0.000000 +vt -1.468579 18.614131 0.000000 +vt -1.827229 18.695397 0.000000 +vt -1.139186 18.524486 0.000000 +vt 0.686846 16.413305 0.000000 +vt -0.841265 18.426980 0.000000 +vt -0.576217 18.321986 0.000000 +vt 0.584035 16.832878 0.000000 +vt -0.344553 18.209722 0.000000 +vt -0.145865 18.090242 0.000000 +vt 0.021174 17.963439 0.000000 +vt 0.487911 17.205366 0.000000 +vt 0.430110 17.375437 0.000000 +vt 0.359134 17.535629 0.000000 +vt 0.158812 17.829039 0.000000 +vt 0.270176 17.686619 0.000000 +vt -7.889450 14.479199 0.000000 +vt -6.567377 18.815199 0.000000 +vt -6.946364 18.734216 0.000000 +vt -8.211524 15.133022 0.000000 +vt -7.296419 18.634945 0.000000 +vt -8.357010 15.452584 0.000000 +vt -7.613909 18.517045 0.000000 +vt -8.486488 15.765374 0.000000 +vt -7.895789 18.380335 0.000000 +vt -8.595844 16.069960 0.000000 +vt -8.139670 18.224811 0.000000 +vt -8.681147 16.364913 0.000000 +vt -8.738714 16.648828 0.000000 +vt -8.343878 18.050655 0.000000 +vt -8.765179 16.920351 0.000000 +vt -8.507497 17.858243 0.000000 +vt -8.757554 17.178193 0.000000 +vt -8.630412 17.648152 0.000000 +vt -8.713302 17.421154 0.000000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn 0.000000 0.000000 0.100000 +vn -0.091239 0.040933 0.000000 +vn -0.089556 0.044493 0.000000 +vn -0.091239 0.040933 0.000000 +vn -0.089556 0.044493 0.000000 +vn -0.089233 0.045138 0.000000 +vn -0.089233 0.045138 0.000000 +vn -0.090446 0.042657 0.000000 +vn -0.090446 0.042657 0.000000 +vn -0.091643 0.040021 0.000000 +vn -0.091643 0.040021 0.000000 +vn -0.093205 0.036232 0.000000 +vn -0.093205 0.036232 0.000000 +vn -0.095060 0.031042 0.000000 +vn -0.095060 0.031042 0.000000 +vn -0.097045 0.024130 0.000000 +vn -0.097045 0.024130 0.000000 +vn -0.098849 0.015132 0.000000 +vn -0.098849 0.015132 0.000000 +vn -0.099930 0.003728 0.000000 +vn -0.099930 0.003728 0.000000 +vn -0.099484 -0.010146 0.000000 +vn -0.099484 -0.010146 0.000000 +vn -0.096564 -0.025988 0.000000 +vn -0.096564 -0.025988 0.000000 +vn -0.090511 -0.042517 0.000000 +vn -0.090511 -0.042517 0.000000 +vn -0.081491 -0.057959 0.000000 +vn -0.081491 -0.057959 0.000000 +vn -0.070588 -0.070833 0.000000 +vn -0.070588 -0.070833 0.000000 +vn -0.059236 -0.080567 0.000000 +vn -0.059236 -0.080567 0.000000 +vn -0.048538 -0.087430 0.000000 +vn -0.048538 -0.087430 0.000000 +vn -0.039044 -0.092063 0.000000 +vn -0.039044 -0.092063 0.000000 +vn -0.030879 -0.095113 0.000000 +vn -0.030879 -0.095113 0.000000 +vn -0.023944 -0.097091 0.000000 +vn -0.023944 -0.097091 0.000000 +vn -0.018057 -0.098356 0.000000 +vn -0.018057 -0.098356 0.000000 +vn -0.013021 -0.099149 0.000000 +vn -0.013021 -0.099149 0.000000 +vn -0.008656 -0.099625 0.000000 +vn -0.008656 -0.099625 0.000000 +vn -0.004809 -0.099884 0.000000 +vn -0.004809 -0.099884 0.000000 +vn -0.001351 -0.099991 0.000000 +vn -0.001351 -0.099991 0.000000 +vn 0.001828 -0.099983 0.000000 +vn 0.001828 -0.099983 0.000000 +vn 0.007729 -0.099701 0.000000 +vn 0.007729 -0.099701 0.000000 +vn 0.010626 -0.099434 0.000000 +vn 0.010626 -0.099434 0.000000 +vn 0.013605 -0.099070 0.000000 +vn 0.013605 -0.099070 0.000000 +vn 0.016765 -0.098585 0.000000 +vn 0.016765 -0.098585 0.000000 +vn 0.020219 -0.097935 0.000000 +vn 0.020219 -0.097935 0.000000 +vn 0.024105 -0.097051 0.000000 +vn 0.024105 -0.097051 0.000000 +vn 0.028584 -0.095828 0.000000 +vn 0.028584 -0.095828 0.000000 +vn 0.033845 -0.094099 0.000000 +vn 0.033845 -0.094099 0.000000 +vn 0.040079 -0.091617 0.000000 +vn 0.040079 -0.091617 0.000000 +vn 0.047436 -0.088033 0.000000 +vn 0.047436 -0.088033 0.000000 +vn 0.055909 -0.082911 0.000000 +vn 0.055909 -0.082911 0.000000 +vn 0.065181 -0.075838 0.000000 +vn 0.065181 -0.075838 0.000000 +vn 0.074485 -0.066723 0.000000 +vn 0.074485 -0.066723 0.000000 +vn 0.082752 -0.056143 0.000000 +vn 0.082752 -0.056143 0.000000 +vn 0.089107 -0.045386 0.000000 +vn 0.089107 -0.045386 0.000000 +vn 0.093316 -0.035946 0.000000 +vn 0.093316 -0.035946 0.000000 +vn 0.095737 -0.028886 0.000000 +vn 0.095737 -0.028886 0.000000 +vn 0.097334 -0.022935 0.000000 +vn 0.097334 -0.022935 0.000000 +vn 0.096635 -0.025721 0.000000 +vn 0.096635 -0.025721 0.000000 +vn 0.095675 -0.029092 0.000000 +vn 0.095675 -0.029092 0.000000 +vn 0.094356 -0.033122 0.000000 +vn 0.094356 -0.033122 0.000000 +vn 0.092737 -0.037414 0.000000 +vn 0.092737 -0.037414 0.000000 +vn 0.090907 -0.041664 0.000000 +vn 0.090907 -0.041664 0.000000 +vn 0.088964 -0.045665 0.000000 +vn 0.088964 -0.045665 0.000000 +vn 0.086999 -0.049307 0.000000 +vn 0.086999 -0.049307 0.000000 +vn 0.085083 -0.052544 0.000000 +vn 0.085083 -0.052544 0.000000 +vn 0.083267 -0.055376 0.000000 +vn 0.083267 -0.055376 0.000000 +vn 0.081587 -0.057823 0.000000 +vn 0.081587 -0.057823 0.000000 +vn 0.080064 -0.059914 0.000000 +vn 0.080064 -0.059914 0.000000 +vn 0.078713 -0.061678 0.000000 +vn 0.078713 -0.061678 0.000000 +vn 0.077543 -0.063143 0.000000 +vn 0.077543 -0.063143 0.000000 +vn 0.075762 -0.065270 0.000000 +vn 0.075762 -0.065270 0.000000 +vn 0.074738 -0.066440 0.000000 +vn 0.074738 -0.066440 0.000000 +vn 0.074478 -0.066731 0.000000 +vn 0.074478 -0.066731 0.000000 +vn 0.075004 -0.066139 0.000000 +vn 0.075004 -0.066139 0.000000 +vn 0.076349 -0.064581 0.000000 +vn 0.076349 -0.064581 0.000000 +vn 0.078522 -0.061922 0.000000 +vn 0.078522 -0.061922 0.000000 +vn 0.079898 -0.060136 0.000000 +vn 0.079898 -0.060136 0.000000 +vn 0.081439 -0.058031 0.000000 +vn 0.081439 -0.058031 0.000000 +vn 0.083114 -0.055607 0.000000 +vn 0.083114 -0.055607 0.000000 +vn 0.084877 -0.052877 0.000000 +vn 0.084877 -0.052877 0.000000 +vn 0.086672 -0.049880 0.000000 +vn 0.086672 -0.049880 0.000000 +vn 0.088437 -0.046679 0.000000 +vn 0.088437 -0.046679 0.000000 +vn 0.091637 -0.040033 0.000000 +vn 0.091637 -0.040033 0.000000 +vn 0.094106 -0.033824 0.000000 +vn 0.094106 -0.033824 0.000000 +vn 0.095717 -0.028953 0.000000 +vn 0.095717 -0.028953 0.000000 +vn 0.096558 -0.026011 0.000000 +vn 0.096558 -0.026011 0.000000 +vn 0.096797 -0.025107 0.000000 +vn 0.096797 -0.025107 0.000000 +vn 0.096583 -0.025917 0.000000 +vn 0.096583 -0.025917 0.000000 +vn 0.096343 -0.026796 0.000000 +vn 0.096343 -0.026796 0.000000 +vn 0.096032 -0.027889 0.000000 +vn 0.096032 -0.027889 0.000000 +vn 0.095666 -0.029121 0.000000 +vn 0.095666 -0.029121 0.000000 +vn 0.095260 -0.030423 0.000000 +vn 0.095260 -0.030423 0.000000 +vn 0.094832 -0.031733 0.000000 +vn 0.094832 -0.031733 0.000000 +vn 0.094400 -0.032994 0.000000 +vn 0.094400 -0.032994 0.000000 +vn 0.093986 -0.034157 0.000000 +vn 0.093986 -0.034157 0.000000 +vn 0.093607 -0.035182 0.000000 +vn 0.093607 -0.035182 0.000000 +vn 0.093280 -0.036040 0.000000 +vn 0.093280 -0.036040 0.000000 +vn 0.093017 -0.036714 0.000000 +vn 0.093017 -0.036714 0.000000 +vn 0.092718 -0.037461 0.000000 +vn 0.092718 -0.037461 0.000000 +vn 0.092760 -0.037358 0.000000 +vn 0.092760 -0.037358 0.000000 +vn 0.093159 -0.036351 0.000000 +vn 0.093159 -0.036351 0.000000 +vn 0.093914 -0.034353 0.000000 +vn 0.093914 -0.034353 0.000000 +vn 0.094421 -0.032933 0.000000 +vn 0.094421 -0.032933 0.000000 +vn 0.095010 -0.031194 0.000000 +vn 0.095010 -0.031194 0.000000 +vn 0.095673 -0.029098 0.000000 +vn 0.095673 -0.029098 0.000000 +vn 0.096396 -0.026603 0.000000 +vn 0.096396 -0.026603 0.000000 +vn 0.097161 -0.023660 0.000000 +vn 0.097161 -0.023660 0.000000 +vn 0.097937 -0.020209 0.000000 +vn 0.097937 -0.020209 0.000000 +vn 0.098683 -0.016175 0.000000 +vn 0.098683 -0.016175 0.000000 +vn 0.099342 -0.011449 0.000000 +vn 0.099342 -0.011449 0.000000 +vn 0.099826 -0.005888 0.000000 +vn 0.099826 -0.005888 0.000000 +vn 0.099998 0.000694 0.000000 +vn 0.099998 0.000694 0.000000 +vn 0.099638 0.008504 0.000000 +vn 0.099638 0.008504 0.000000 +vn 0.098415 0.017734 0.000000 +vn 0.098415 0.017734 0.000000 +vn 0.095848 0.028516 0.000000 +vn 0.095848 0.028516 0.000000 +vn 0.091271 0.040861 0.000000 +vn 0.091271 0.040861 0.000000 +vn 0.083744 0.054654 0.000000 +vn 0.083744 0.054654 0.000000 +vn 0.071894 0.069508 0.000000 +vn 0.071894 0.069508 0.000000 +vn 0.053961 0.084192 0.000000 +vn 0.053961 0.084192 0.000000 +vn 0.042275 0.090625 0.000000 +vn 0.042275 0.090625 0.000000 +vn 0.028844 0.095750 0.000000 +vn 0.028844 0.095750 0.000000 +vn 0.014091 0.099002 0.000000 +vn 0.014091 0.099002 0.000000 +vn -0.001239 0.099992 0.000000 +vn -0.001239 0.099992 0.000000 +vn -0.016229 0.098674 0.000000 +vn -0.016229 0.098674 0.000000 +vn -0.030044 0.095380 0.000000 +vn -0.030044 0.095380 0.000000 +vn -0.052307 0.085229 0.000000 +vn -0.052307 0.085229 0.000000 +vn -0.067290 0.073973 0.000000 +vn -0.067290 0.073973 0.000000 +vn -0.076790 0.064057 0.000000 +vn -0.076790 0.064057 0.000000 +vn -0.082749 0.056148 0.000000 +vn -0.082749 0.056148 0.000000 +vn -0.086528 0.050129 0.000000 +vn -0.086528 0.050129 0.000000 +vn -0.088964 0.045666 0.000000 +vn -0.088964 0.045666 0.000000 +vn -0.090556 0.042421 0.000000 +vn -0.090556 0.042421 0.000000 +vn -0.091602 0.040113 0.000000 +vn -0.091602 0.040113 0.000000 +vn -0.092284 0.038518 0.000000 +vn -0.092284 0.038518 0.000000 +vn -0.092718 0.037463 0.000000 +vn -0.092718 0.037463 0.000000 +vn -0.092979 0.036810 0.000000 +vn -0.092979 0.036810 0.000000 +vn -0.093117 0.036457 0.000000 +vn -0.093117 0.036457 0.000000 +vn -0.093167 0.036331 0.000000 +vn -0.093167 0.036331 0.000000 +vn -0.093151 0.036373 0.000000 +vn -0.093151 0.036373 0.000000 +vn -0.092981 0.036805 0.000000 +vn -0.092981 0.036805 0.000000 +vn -0.092682 0.037550 0.000000 +vn -0.092682 0.037550 0.000000 +vn -0.092278 0.038533 0.000000 +vn -0.092278 0.038533 0.000000 +vn -0.092034 0.039113 0.000000 +vn -0.092034 0.039113 0.000000 +vn -0.091755 0.039762 0.000000 +vn -0.091755 0.039762 0.000000 +vn -0.091434 0.040494 0.000000 +vn -0.091434 0.040494 0.000000 +vn -0.091058 0.041334 0.000000 +vn -0.091058 0.041334 0.000000 +vn -0.090601 0.042326 0.000000 +vn -0.090601 0.042326 0.000000 +vn -0.090024 0.043539 0.000000 +vn -0.090024 0.043539 0.000000 +vn -0.089255 0.045096 0.000000 +vn -0.089255 0.045096 0.000000 +vn -0.088152 0.047215 0.000000 +vn -0.088152 0.047215 0.000000 +vn -0.086405 0.050340 0.000000 +vn -0.086405 0.050340 0.000000 +vn -0.083186 0.055498 0.000000 +vn -0.083186 0.055498 0.000000 +vn -0.080304 0.059593 0.000000 +vn -0.080304 0.059593 0.000000 +vn -0.075445 0.065636 0.000000 +vn -0.075445 0.065636 0.000000 +vn -0.065968 0.075155 0.000000 +vn -0.065968 0.075155 0.000000 +vn -0.057333 0.081932 0.000000 +vn -0.057333 0.081932 0.000000 +vn -0.043308 0.090136 0.000000 +vn -0.043308 0.090136 0.000000 +vn -0.019937 0.097992 0.000000 +vn -0.019937 0.097992 0.000000 +vn -0.003559 0.099937 0.000000 +vn -0.003559 0.099937 0.000000 +vn 0.015581 0.098779 0.000000 +vn 0.015581 0.098779 0.000000 +vn 0.035758 0.093388 0.000000 +vn 0.035758 0.093388 0.000000 +vn 0.054407 0.083904 0.000000 +vn 0.054407 0.083904 0.000000 +vn 0.069489 0.071911 0.000000 +vn 0.069489 0.071911 0.000000 +vn 0.080433 0.059419 0.000000 +vn 0.080433 0.059419 0.000000 +vn 0.092602 0.037748 0.000000 +vn 0.092602 0.037748 0.000000 +vn 0.097519 0.022139 0.000000 +vn 0.097519 0.022139 0.000000 +vn 0.099938 0.003526 0.000000 +vn 0.099938 0.003526 0.000000 +vn 0.099791 -0.006468 0.000000 +vn 0.099791 -0.006468 0.000000 +vn 0.099216 -0.012499 0.000000 +vn 0.099216 -0.012499 0.000000 +vn 0.098635 -0.016465 0.000000 +vn 0.098635 -0.016465 0.000000 +vn 0.098133 -0.019232 0.000000 +vn 0.098133 -0.019232 0.000000 +vn 0.097718 -0.021241 0.000000 +vn 0.097718 -0.021241 0.000000 +vn 0.097380 -0.022738 0.000000 +vn 0.097380 -0.022738 0.000000 +vn 0.096893 -0.024734 0.000000 +vn 0.096893 -0.024734 0.000000 +vn 0.096596 -0.025868 0.000000 +vn 0.096596 -0.025868 0.000000 +vn 0.096442 -0.026438 0.000000 +vn 0.096442 -0.026438 0.000000 +vn 0.096398 -0.026599 0.000000 +vn 0.096398 -0.026599 0.000000 +vn 0.096441 -0.026439 0.000000 +vn 0.096441 -0.026439 0.000000 +vn 0.096557 -0.026015 0.000000 +vn 0.096557 -0.026015 0.000000 +vn 0.096732 -0.025356 0.000000 +vn 0.096732 -0.025356 0.000000 +vn 0.096957 -0.024483 0.000000 +vn 0.096957 -0.024483 0.000000 +vn 0.097223 -0.023402 0.000000 +vn 0.097223 -0.023402 0.000000 +vn 0.097524 -0.022113 0.000000 +vn 0.097524 -0.022113 0.000000 +vn 0.097853 -0.020612 0.000000 +vn 0.097853 -0.020612 0.000000 +vn 0.098200 -0.018888 0.000000 +vn 0.098200 -0.018888 0.000000 +vn 0.098557 -0.016928 0.000000 +vn 0.098557 -0.016928 0.000000 +vn 0.098912 -0.014711 0.000000 +vn 0.098912 -0.014711 0.000000 +vn 0.099251 -0.012214 0.000000 +vn 0.099251 -0.012214 0.000000 +vn 0.099556 -0.009410 0.000000 +vn 0.099556 -0.009410 0.000000 +vn 0.099803 -0.006267 0.000000 +vn 0.099803 -0.006267 0.000000 +vn 0.099962 -0.002749 0.000000 +vn 0.099962 -0.002749 0.000000 +vn 0.099993 0.001187 0.000000 +vn 0.099993 0.001187 0.000000 +vn 0.099844 0.005589 0.000000 +vn 0.099844 0.005589 0.000000 +vn 0.099446 0.010516 0.000000 +vn 0.099446 0.010516 0.000000 +vn 0.098706 0.016036 0.000000 +vn 0.098706 0.016036 0.000000 +vn 0.097501 0.022218 0.000000 +vn 0.097501 0.022218 0.000000 +vn 0.095664 0.029127 0.000000 +vn 0.095664 0.029127 0.000000 +vn 0.092979 0.036809 0.000000 +vn 0.092979 0.036809 0.000000 +vn 0.089164 0.045274 0.000000 +vn 0.089164 0.045274 0.000000 +vn 0.083857 0.054480 0.000000 +vn 0.083857 0.054480 0.000000 +vn 0.076572 0.064317 0.000000 +vn 0.076572 0.064317 0.000000 +vn 0.066667 0.074535 0.000000 +vn 0.066667 0.074535 0.000000 +vn 0.053318 0.084600 0.000000 +vn 0.053318 0.084600 0.000000 +vn 0.035615 0.093443 0.000000 +vn 0.035615 0.093443 0.000000 +vn 0.024913 0.096847 0.000000 +vn 0.024913 0.096847 0.000000 +vn 0.012982 0.099154 0.000000 +vn 0.012982 0.099154 0.000000 +vn -0.000017 0.100000 0.000000 +vn -0.000017 0.100000 0.000000 +vn -0.013747 0.099051 0.000000 +vn -0.013747 0.099051 0.000000 +vn -0.027689 0.096090 0.000000 +vn -0.027689 0.096090 0.000000 +vn -0.041205 0.091116 0.000000 +vn -0.041205 0.091116 0.000000 +vn -0.053663 0.084382 0.000000 +vn -0.053663 0.084382 0.000000 +vn -0.064575 0.076355 0.000000 +vn -0.064575 0.076355 0.000000 +vn -0.073681 0.067610 0.000000 +vn -0.073681 0.067610 0.000000 +vn -0.080959 0.058699 0.000000 +vn -0.080959 0.058699 0.000000 +vn -0.086562 0.050071 0.000000 +vn -0.086562 0.050071 0.000000 +vn -0.090736 0.042036 0.000000 +vn -0.090736 0.042036 0.000000 +vn -0.095885 0.028392 0.000000 +vn -0.095885 0.028392 0.000000 +vn -0.098316 0.018273 0.000000 +vn -0.098316 0.018273 0.000000 +vn -0.099352 0.011366 0.000000 +vn -0.099352 0.011366 0.000000 +vn -0.099751 0.007059 0.000000 +vn -0.099751 0.007059 0.000000 +vn -0.099889 0.004715 0.000000 +vn -0.099889 0.004715 0.000000 +vn -0.099929 0.003761 0.000000 +vn -0.099929 0.003761 0.000000 +vn -0.099929 0.003756 0.000000 +vn -0.099929 0.003756 0.000000 +vn -0.099903 0.004408 0.000000 +vn -0.099903 0.004408 0.000000 +vn -0.099847 0.005525 0.000000 +vn -0.099847 0.005525 0.000000 +vn -0.099756 0.006977 0.000000 +vn -0.099756 0.006977 0.000000 +vn -0.099623 0.008674 0.000000 +vn -0.099623 0.008674 0.000000 +vn -0.099442 0.010548 0.000000 +vn -0.099442 0.010548 0.000000 +vn -0.098925 0.014622 0.000000 +vn -0.098925 0.014622 0.000000 +vn -0.098201 0.018885 0.000000 +vn -0.098201 0.018885 0.000000 +vn -0.097764 0.021027 0.000000 +vn -0.097764 0.021027 0.000000 +vn -0.097281 0.023159 0.000000 +vn -0.097281 0.023159 0.000000 +vn -0.096753 0.025274 0.000000 +vn -0.096753 0.025274 0.000000 +vn -0.096181 0.027372 0.000000 +vn -0.096181 0.027372 0.000000 +vn -0.095564 0.029454 0.000000 +vn -0.095564 0.029454 0.000000 +vn -0.094899 0.031530 0.000000 +vn -0.094899 0.031530 0.000000 +vn -0.094181 0.033613 0.000000 +vn -0.094181 0.033613 0.000000 +vn -0.093400 0.035727 0.000000 +vn -0.093400 0.035727 0.000000 +vn -0.092538 0.037905 0.000000 +vn -0.092538 0.037905 0.000000 +vn -0.091563 0.040203 0.000000 +vn -0.091563 0.040203 0.000000 +vn -0.090422 0.042706 0.000000 +vn -0.090422 0.042706 0.000000 +vn -0.089023 0.045552 0.000000 +vn -0.089023 0.045552 0.000000 +vn -0.087183 0.048981 0.000000 +vn -0.087183 0.048981 0.000000 +vn -0.084527 0.053434 0.000000 +vn -0.084527 0.053434 0.000000 +vn -0.080155 0.059792 0.000000 +vn -0.080155 0.059792 0.000000 +vn -0.071452 0.069962 0.000000 +vn -0.071452 0.069962 0.000000 +vn -0.063094 0.077583 0.000000 +vn -0.063094 0.077583 0.000000 +vn -0.048522 0.087439 0.000000 +vn -0.048522 0.087439 0.000000 +vn -0.037148 0.092844 0.000000 +vn -0.037148 0.092844 0.000000 +vn -0.021764 0.097603 0.000000 +vn -0.021764 0.097603 0.000000 +vn -0.001811 0.099984 0.000000 +vn -0.001811 0.099984 0.000000 +vn 0.021655 0.097627 0.000000 +vn 0.021655 0.097627 0.000000 +vn 0.045207 0.089198 0.000000 +vn 0.045207 0.089198 0.000000 +vn 0.064811 0.076155 0.000000 +vn 0.064811 0.076155 0.000000 +vn 0.078689 0.061709 0.000000 +vn 0.078689 0.061709 0.000000 +vn 0.087536 0.048347 0.000000 +vn 0.087536 0.048347 0.000000 +vn 0.096049 0.027831 0.000000 +vn 0.096049 0.027831 0.000000 +vn 0.098961 0.014378 0.000000 +vn 0.098961 0.014378 0.000000 +vn 0.099997 -0.000823 0.000000 +vn 0.099997 -0.000823 0.000000 +vn 0.099622 -0.008692 0.000000 +vn 0.099622 -0.008692 0.000000 +vn 0.099115 -0.013273 0.000000 +vn 0.099115 -0.013273 0.000000 +vn 0.098692 -0.016119 0.000000 +vn 0.098692 -0.016119 0.000000 +vn 0.098380 -0.017928 0.000000 +vn 0.098380 -0.017928 0.000000 +vn 0.098168 -0.019055 0.000000 +vn 0.098168 -0.019055 0.000000 +vn 0.098041 -0.019697 0.000000 +vn 0.098041 -0.019697 0.000000 +vn 0.097985 -0.019971 0.000000 +vn 0.097985 -0.019971 0.000000 +vn 0.097989 -0.019953 0.000000 +vn 0.097989 -0.019953 0.000000 +vn 0.098043 -0.019689 0.000000 +vn 0.098043 -0.019689 0.000000 +vn 0.098137 -0.019213 0.000000 +vn 0.098137 -0.019213 0.000000 +vn 0.098265 -0.018547 0.000000 +vn 0.098265 -0.018547 0.000000 +vn 0.098420 -0.017705 0.000000 +vn 0.098420 -0.017705 0.000000 +vn 0.098596 -0.016699 0.000000 +vn 0.098596 -0.016699 0.000000 +vn 0.098983 -0.014222 0.000000 +vn 0.098983 -0.014222 0.000000 +vn 0.099376 -0.011151 0.000000 +vn 0.099376 -0.011151 0.000000 +vn 0.099719 -0.007495 0.000000 +vn 0.099719 -0.007495 0.000000 +vn 0.099948 -0.003224 0.000000 +vn 0.099948 -0.003224 0.000000 +vn 0.099997 -0.000834 0.000000 +vn 0.099997 -0.000834 0.000000 +vn 0.099985 0.001745 0.000000 +vn 0.099985 0.001745 0.000000 +vn 0.099897 0.004534 0.000000 +vn 0.099897 0.004534 0.000000 +vn 0.099714 0.007555 0.000000 +vn 0.099714 0.007555 0.000000 +vn 0.099411 0.010837 0.000000 +vn 0.099411 0.010837 0.000000 +vn 0.098956 0.014411 0.000000 +vn 0.098956 0.014411 0.000000 +vn 0.098309 0.018314 0.000000 +vn 0.098309 0.018314 0.000000 +vn 0.097416 0.022585 0.000000 +vn 0.097416 0.022585 0.000000 +vn 0.096210 0.027270 0.000000 +vn 0.096210 0.027270 0.000000 +vn 0.094601 0.032413 0.000000 +vn 0.094601 0.032413 0.000000 +vn 0.092475 0.038057 0.000000 +vn 0.092475 0.038057 0.000000 +vn 0.089686 0.044231 0.000000 +vn 0.089686 0.044231 0.000000 +vn 0.086052 0.050941 0.000000 +vn 0.086052 0.050941 0.000000 +vn 0.081356 0.058148 0.000000 +vn 0.081356 0.058148 0.000000 +vn 0.075356 0.065738 0.000000 +vn 0.075356 0.065738 0.000000 +vn 0.067820 0.073488 0.000000 +vn 0.067820 0.073488 0.000000 +vn 0.058583 0.081043 0.000000 +vn 0.058583 0.081043 0.000000 +vn 0.047629 0.087929 0.000000 +vn 0.047629 0.087929 0.000000 +vn 0.035164 0.093613 0.000000 +vn 0.035164 0.093613 0.000000 +vn 0.021637 0.097631 0.000000 +vn 0.021637 0.097631 0.000000 +vn 0.007674 0.099705 0.000000 +vn 0.007674 0.099705 0.000000 +vn -0.006067 0.099816 0.000000 +vn -0.006067 0.099816 0.000000 +vn -0.019062 0.098166 0.000000 +vn -0.019062 0.098166 0.000000 +vn -0.030999 0.095074 0.000000 +vn -0.030999 0.095074 0.000000 +vn -0.041764 0.090861 0.000000 +vn -0.041764 0.090861 0.000000 +vn -0.051385 0.085788 0.000000 +vn -0.051385 0.085788 0.000000 +vn -0.059955 0.080034 0.000000 +vn -0.059955 0.080034 0.000000 +vn -0.067585 0.073704 0.000000 +vn -0.067585 0.073704 0.000000 +vn -0.074363 0.066859 0.000000 +vn -0.074363 0.066859 0.000000 +vn -0.080337 0.059548 0.000000 +vn -0.080337 0.059548 0.000000 +vn -0.085512 0.051844 0.000000 +vn -0.085512 0.051844 0.000000 +vn -0.089865 0.043867 0.000000 +vn -0.089865 0.043867 0.000000 +vn -0.093373 0.035797 0.000000 +vn -0.093373 0.035797 0.000000 +vn -0.096037 0.027872 0.000000 +vn -0.096037 0.027872 0.000000 +vn -0.097907 0.020351 0.000000 +vn -0.097907 0.020351 0.000000 +vn -0.099088 0.013473 0.000000 +vn -0.099088 0.013473 0.000000 +vn -0.099725 0.007416 0.000000 +vn -0.099725 0.007416 0.000000 +vn -0.099974 0.002282 0.000000 +vn -0.099974 0.002282 0.000000 +vn -0.099982 -0.001900 0.000000 +vn -0.099982 -0.001900 0.000000 +vn -0.099867 -0.005158 0.000000 +vn -0.099867 -0.005158 0.000000 +vn -0.099714 -0.007558 0.000000 +vn -0.099714 -0.007558 0.000000 +vn -0.099577 -0.009185 0.000000 +vn -0.099577 -0.009185 0.000000 +vn -0.099485 -0.010135 0.000000 +vn -0.099485 -0.010135 0.000000 +vn -0.099447 -0.010505 0.000000 +vn -0.099447 -0.010505 0.000000 +vn -0.099459 -0.010389 0.000000 +vn -0.099459 -0.010389 0.000000 +vn -0.099511 -0.009874 0.000000 +vn -0.099511 -0.009874 0.000000 +vn -0.099590 -0.009042 0.000000 +vn -0.099590 -0.009042 0.000000 +vn -0.099682 -0.007966 0.000000 +vn -0.099682 -0.007966 0.000000 +vn -0.099774 -0.006714 0.000000 +vn -0.099774 -0.006714 0.000000 +vn -0.099857 -0.005346 0.000000 +vn -0.099857 -0.005346 0.000000 +vn -0.099923 -0.003911 0.000000 +vn -0.099923 -0.003911 0.000000 +vn -0.099970 -0.002450 0.000000 +vn -0.099970 -0.002450 0.000000 +vn -0.099995 -0.000989 0.000000 +vn -0.099995 -0.000989 0.000000 +vn -0.099999 0.000451 0.000000 +vn -0.099999 0.000451 0.000000 +vn -0.099948 0.003224 0.000000 +vn -0.099948 0.003224 0.000000 +vn -0.099830 0.005834 0.000000 +vn -0.099830 0.005834 0.000000 +vn -0.099654 0.008313 0.000000 +vn -0.099654 0.008313 0.000000 +vn -0.099545 0.009525 0.000000 +vn -0.099545 0.009525 0.000000 +vn -0.099422 0.010736 0.000000 +vn -0.099422 0.010736 0.000000 +vn -0.099282 0.011964 0.000000 +vn -0.099282 0.011964 0.000000 +vn -0.099121 0.013230 0.000000 +vn -0.099121 0.013230 0.000000 +vn -0.098933 0.014568 0.000000 +vn -0.098933 0.014568 0.000000 +vn -0.098708 0.016020 0.000000 +vn -0.098708 0.016020 0.000000 +vn -0.098430 0.017651 0.000000 +vn -0.098430 0.017651 0.000000 +vn -0.098068 0.019561 0.000000 +vn -0.098068 0.019561 0.000000 +vn -0.097571 0.021908 0.000000 +vn -0.097571 0.021908 0.000000 +vn -0.096831 0.024975 -0.000000 +vn -0.096831 0.024975 -0.000000 +vn -0.095612 0.029297 -0.000000 +vn -0.095612 0.029297 -0.000000 +vn -0.093284 0.036029 -0.000000 +vn -0.093284 0.036029 -0.000000 +vn -0.087700 0.048049 -0.000000 +vn -0.087700 0.048049 -0.000000 +vn -0.081353 0.058152 -0.000000 +vn -0.081353 0.058152 -0.000000 +vn -0.068353 0.072993 -0.000000 +vn -0.068353 0.072993 -0.000000 +vn -0.056778 0.082318 -0.000000 +vn -0.056778 0.082318 -0.000000 +vn -0.039638 0.091809 -0.000000 +vn -0.039638 0.091809 -0.000000 +vn -0.015952 0.098719 -0.000000 +vn -0.015952 0.098719 -0.000000 +vn -0.002167 0.099977 -0.000000 +vn -0.002167 0.099977 -0.000000 +vn 0.012072 0.099269 -0.000000 +vn 0.012072 0.099269 -0.000000 +vn 0.025921 0.096582 -0.000000 +vn 0.025921 0.096582 -0.000000 +vn 0.038628 0.092238 -0.000000 +vn 0.038628 0.092238 -0.000000 +vn 0.059011 0.080732 -0.000000 +vn 0.059011 0.080732 -0.000000 +vn 0.072712 0.068651 -0.000000 +vn 0.072712 0.068651 -0.000000 +vn 0.081462 0.058000 -0.000000 +vn 0.081462 0.058000 -0.000000 +vn 0.090683 0.042149 -0.000000 +vn 0.090683 0.042149 -0.000000 +vn 0.094811 0.031794 -0.000000 +vn 0.094811 0.031794 -0.000000 +vn 0.098011 0.019843 0.000000 +vn 0.098011 0.019843 0.000000 +vn 0.099093 0.013440 0.000000 +vn 0.099093 0.013440 0.000000 +vn 0.099539 0.009593 0.000000 +vn 0.099539 0.009593 0.000000 +vn 0.099746 0.007123 0.000000 +vn 0.099746 0.007123 0.000000 +vn 0.099849 0.005485 0.000000 +vn 0.099849 0.005485 0.000000 +vn 0.099903 0.004397 0.000000 +vn 0.099903 0.004397 0.000000 +vn 0.099932 0.003700 0.000000 +vn 0.099932 0.003700 0.000000 +vn 0.099946 0.003299 0.000000 +vn 0.099946 0.003299 0.000000 +vn 0.099951 0.003135 0.000000 +vn 0.099951 0.003135 0.000000 +vn 0.099950 0.003172 0.000000 +vn 0.099950 0.003172 0.000000 +vn 0.099943 0.003385 0.000000 +vn 0.099943 0.003385 0.000000 +vn 0.099929 0.003762 0.000000 +vn 0.099929 0.003762 0.000000 +vn 0.099908 0.004295 0.000000 +vn 0.099908 0.004295 0.000000 +vn 0.099830 0.005827 0.000000 +vn 0.099830 0.005827 0.000000 +vn 0.099678 0.008019 0.000000 +vn 0.099678 0.008019 0.000000 +vn 0.099397 0.010968 0.000000 +vn 0.099397 0.010968 0.000000 +vn 0.099181 0.012774 0.000000 +vn 0.099181 0.012774 0.000000 +vn 0.098894 0.014832 0.000000 +vn 0.098894 0.014832 0.000000 +vn 0.098515 0.017170 0.000000 +vn 0.098515 0.017170 0.000000 +vn 0.098017 0.019816 0.000000 +vn 0.098017 0.019816 0.000000 +vn 0.097366 0.022802 0.000000 +vn 0.097366 0.022802 0.000000 +vn 0.096517 0.026164 0.000000 +vn 0.096517 0.026164 0.000000 +vn 0.095415 0.029933 0.000000 +vn 0.095415 0.029933 0.000000 +vn 0.093992 0.034141 0.000000 +vn 0.093992 0.034141 0.000000 +vn 0.092160 0.038813 0.000000 +vn 0.092160 0.038813 0.000000 +vn 0.089815 0.043969 0.000000 +vn 0.089815 0.043969 0.000000 +vn 0.086824 0.049614 0.000000 +vn 0.086824 0.049614 0.000000 +vn 0.083031 0.055730 0.000000 +vn 0.083031 0.055730 0.000000 +vn 0.078253 0.062261 0.000000 +vn 0.078253 0.062261 0.000000 +vn 0.072290 0.069095 0.000000 +vn 0.072290 0.069095 0.000000 +vn 0.064943 0.076042 0.000000 +vn 0.064943 0.076042 0.000000 +vn 0.056043 0.082820 0.000000 +vn 0.056043 0.082820 0.000000 +vn 0.045494 0.089052 0.000000 +vn 0.045494 0.089052 0.000000 +vn 0.033321 0.094285 0.000000 +vn 0.033321 0.094285 0.000000 +vn 0.019708 0.098039 0.000000 +vn 0.019708 0.098039 0.000000 +vn 0.005018 0.099874 0.000000 +vn 0.005018 0.099874 0.000000 +vn -0.010220 0.099476 0.000000 +vn -0.010220 0.099476 0.000000 +vn -0.025362 0.096730 0.000000 +vn -0.025362 0.096730 0.000000 +vn -0.039753 0.091759 0.000000 +vn -0.039753 0.091759 0.000000 +vn -0.052832 0.084904 0.000000 +vn -0.052832 0.084904 0.000000 +vn -0.064210 0.076662 0.000000 +vn -0.064210 0.076662 0.000000 +vn -0.073699 0.067590 0.000000 +vn -0.073699 0.067590 0.000000 +vn -0.081306 0.058218 0.000000 +vn -0.081306 0.058218 0.000000 +vn -0.087183 0.048980 0.000000 +vn -0.087183 0.048980 0.000000 +vn -0.091569 0.040190 0.000000 +vn -0.091569 0.040190 0.000000 +vn -0.094728 0.032042 0.000000 +vn -0.094728 0.032042 0.000000 +vn -0.096917 0.024638 0.000000 +vn -0.096917 0.024638 0.000000 +vn -0.098365 0.018010 0.000000 +vn -0.098365 0.018010 0.000000 +vn -0.099260 0.012147 0.000000 +vn -0.099260 0.012147 0.000000 +vn -0.099754 0.007008 0.000000 +vn -0.099754 0.007008 0.000000 +vn -0.099968 0.002543 0.000000 +vn -0.099968 0.002543 0.000000 +vn -0.099991 -0.001304 0.000000 +vn -0.099991 -0.001304 0.000000 +vn -0.099895 -0.004590 0.000000 +vn -0.099895 -0.004590 0.000000 +vn -0.099728 -0.007370 0.000000 +vn -0.099728 -0.007370 0.000000 +vn -0.099529 -0.009698 0.000000 +vn -0.099529 -0.009698 0.000000 +vn -0.099323 -0.011620 0.000000 +vn -0.099323 -0.011620 0.000000 +vn -0.099128 -0.013179 0.000000 +vn -0.099128 -0.013179 0.000000 +vn -0.098957 -0.014409 0.000000 +vn -0.098957 -0.014409 0.000000 +vn -0.098817 -0.015338 0.000000 +vn -0.098817 -0.015338 0.000000 +vn -0.098713 -0.015991 0.000000 +vn -0.098713 -0.015991 0.000000 +vn -0.098624 -0.016531 0.000000 +vn -0.098624 -0.016531 0.000000 +vn -0.098691 -0.016125 0.000000 +vn -0.098691 -0.016125 0.000000 +vn -0.098897 -0.014810 0.000000 +vn -0.098897 -0.014810 0.000000 +vn -0.099207 -0.012567 0.000000 +vn -0.099207 -0.012567 0.000000 +vn -0.099564 -0.009324 0.000000 +vn -0.099564 -0.009324 0.000000 +vn -0.099734 -0.007287 0.000000 +vn -0.099734 -0.007287 0.000000 +vn -0.099878 -0.004943 0.000000 +vn -0.099878 -0.004943 0.000000 +vn -0.099974 -0.002262 0.000000 +vn -0.099974 -0.002262 0.000000 +vn -0.099997 0.000791 0.000000 +vn -0.099997 0.000791 0.000000 +vn -0.099909 0.004262 0.000000 +vn -0.099909 0.004262 0.000000 +vn -0.099663 0.008204 -0.000000 +vn -0.099663 0.008204 -0.000000 +vn -0.099193 0.012682 -0.000000 +vn -0.099193 0.012682 -0.000000 +vn -0.098408 0.017775 -0.000000 +vn -0.098408 0.017775 -0.000000 +vn -0.097182 0.023572 -0.000000 +vn -0.097182 0.023572 -0.000000 +vn -0.095339 0.030175 -0.000000 +vn -0.095339 0.030175 -0.000000 +vn -0.092624 0.037695 -0.000000 +vn -0.092624 0.037695 -0.000000 +vn -0.088669 0.046237 -0.000000 +vn -0.088669 0.046237 -0.000000 +vn -0.082942 0.055863 -0.000000 +vn -0.082942 0.055863 -0.000000 +vn -0.074703 0.066479 -0.000000 +vn -0.074703 0.066479 -0.000000 +vn -0.063049 0.077620 -0.000000 +vn -0.063049 0.077620 -0.000000 +vn -0.047192 0.088164 -0.000000 +vn -0.047192 0.088164 -0.000000 +vn -0.027155 0.096242 -0.000000 +vn -0.027155 0.096242 -0.000000 +vn -0.004531 0.099897 -0.000000 +vn -0.004531 0.099897 -0.000000 +vn 0.017755 0.098411 -0.000000 +vn 0.017755 0.098411 -0.000000 +vn 0.037043 0.092886 -0.000000 +vn 0.037043 0.092886 -0.000000 +vn 0.052195 0.085298 -0.000000 +vn 0.052195 0.085298 -0.000000 +vn 0.063428 0.077310 -0.000000 +vn 0.063428 0.077310 -0.000000 +vn 0.071526 0.069886 -0.000000 +vn 0.071526 0.069886 -0.000000 +vn 0.077305 0.063435 -0.000000 +vn 0.077305 0.063435 -0.000000 +vn 0.081429 0.058046 -0.000000 +vn 0.081429 0.058046 -0.000000 +vn 0.084377 0.053670 -0.000000 +vn 0.084377 0.053670 -0.000000 +vn 0.086481 0.050210 -0.000000 +vn 0.086481 0.050210 -0.000000 +vn 0.087962 0.047568 -0.000000 +vn 0.087962 0.047568 -0.000000 +vn 0.089590 0.044425 -0.000000 +vn 0.089590 0.044425 -0.000000 +vn 0.089882 0.043832 0.000000 +vn 0.089882 0.043832 0.000000 +vn 0.088941 0.045711 0.000000 +vn 0.088941 0.045711 0.000000 +vn 0.087922 0.047641 0.000000 +vn 0.087922 0.047641 0.000000 +vn 0.086427 0.050304 0.000000 +vn 0.086427 0.050304 0.000000 +vn 0.084309 0.053778 0.000000 +vn 0.084309 0.053778 0.000000 +vn 0.081352 0.058153 0.000000 +vn 0.081352 0.058153 0.000000 +vn 0.077241 0.063513 0.000000 +vn 0.077241 0.063513 0.000000 +vn 0.071526 0.069886 0.000000 +vn 0.071526 0.069886 0.000000 +vn 0.063609 0.077162 0.000000 +vn 0.063609 0.077162 0.000000 +vn 0.052794 0.084928 0.000000 +vn 0.052794 0.084928 0.000000 +vn 0.038507 0.092289 0.000000 +vn 0.038507 0.092289 0.000000 +vn 0.020753 0.097823 0.000000 +vn 0.020753 0.097823 0.000000 +vn 0.000575 0.099998 0.000000 +vn 0.000575 0.099998 0.000000 +vn -0.020002 0.097979 0.000000 +vn -0.020002 0.097979 0.000000 +vn -0.038837 0.092150 0.000000 +vn -0.038837 0.092150 0.000000 +vn -0.054622 0.083764 0.000000 +vn -0.054622 0.083764 0.000000 +vn -0.067097 0.074148 0.000000 +vn -0.067097 0.074148 0.000000 +vn -0.076647 0.064228 0.000000 +vn -0.076647 0.064228 0.000000 +vn -0.083854 0.054484 0.000000 +vn -0.083854 0.054484 0.000000 +vn -0.089252 0.045101 0.000000 +vn -0.089252 0.045101 0.000000 +vn -0.093254 0.036106 0.000000 +vn -0.093254 0.036106 0.000000 +vn -0.096154 0.027468 0.000000 +vn -0.096154 0.027468 0.000000 +vn -0.098149 0.019152 -0.000000 +vn -0.098149 0.019152 -0.000000 +vn -0.099377 0.011142 -0.000000 +vn -0.099377 0.011142 -0.000000 +vn -0.099941 0.003444 -0.000000 +vn -0.099941 0.003444 -0.000000 +vn -0.099923 -0.003919 0.000000 +vn -0.099923 -0.003919 0.000000 +vn -0.099402 -0.010920 0.000000 +vn -0.099402 -0.010920 0.000000 +vn -0.098453 -0.017524 0.000000 +vn -0.098453 -0.017524 0.000000 +vn -0.097151 -0.023700 0.000000 +vn -0.097151 -0.023700 0.000000 +vn -0.095572 -0.029427 0.000000 +vn -0.095572 -0.029427 0.000000 +vn -0.093790 -0.034692 0.000000 +vn -0.093790 -0.034692 0.000000 +vn -0.091871 -0.039494 0.000000 +vn -0.091871 -0.039494 0.000000 +vn -0.089878 -0.043840 0.000000 +vn -0.089878 -0.043840 0.000000 +vn -0.087867 -0.047743 0.000000 +vn -0.087867 -0.047743 0.000000 +vn -0.085886 -0.051221 0.000000 +vn -0.085886 -0.051221 0.000000 +vn -0.083978 -0.054292 0.000000 +vn -0.083978 -0.054292 0.000000 +vn -0.080526 -0.059292 0.000000 +vn -0.080526 -0.059292 0.000000 +vn -0.077746 -0.062893 0.000000 +vn -0.077746 -0.062893 0.000000 +vn -0.075817 -0.065205 0.000000 +vn -0.075817 -0.065205 0.000000 +vn -0.074888 -0.066270 0.000000 +vn -0.074888 -0.066270 0.000000 +vn -0.075096 -0.066035 0.000000 +vn -0.075096 -0.066035 0.000000 +vn -0.076562 -0.064329 0.000000 +vn -0.076562 -0.064329 0.000000 +vn -0.077796 -0.062831 0.000000 +vn -0.077796 -0.062831 0.000000 +vn -0.079368 -0.060834 0.000000 +vn -0.079368 -0.060834 0.000000 +vn -0.081266 -0.058274 0.000000 +vn -0.081266 -0.058274 0.000000 +vn -0.083463 -0.055081 0.000000 +vn -0.083463 -0.055081 0.000000 +vn -0.085908 -0.051183 0.000000 +vn -0.085908 -0.051183 0.000000 +vn -0.088521 -0.046519 0.000000 +vn -0.088521 -0.046519 0.000000 +vn -0.091186 -0.041050 0.000000 +vn -0.091186 -0.041050 0.000000 +vn -0.093757 -0.034779 0.000000 +vn -0.093757 -0.034779 0.000000 +vn -0.096066 -0.027773 0.000000 +vn -0.096066 -0.027773 0.000000 +vn -0.097945 -0.020170 0.000000 +vn -0.097945 -0.020170 0.000000 +vn -0.099255 -0.012182 0.000000 +vn -0.099255 -0.012182 0.000000 +vn -0.099917 -0.004073 0.000000 +vn -0.099917 -0.004073 0.000000 +vn -0.099925 0.003875 -0.000000 +vn -0.099925 0.003875 -0.000000 +vn -0.099347 0.011407 -0.000000 +vn -0.099347 0.011407 -0.000000 +vn -0.098308 0.018320 -0.000000 +vn -0.098308 0.018320 -0.000000 +vn -0.096957 0.024482 0.000000 +vn -0.096957 0.024482 0.000000 +vn -0.095449 0.029825 0.000000 +vn -0.095449 0.029825 0.000000 +vn -0.093921 0.034335 0.000000 +vn -0.093921 0.034335 0.000000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +vn 0.000000 -0.000000 -0.100000 +usemtl Steel_-_Satin +f 2/1/1 24/2/2 1/3/3 +f 1/3/3 24/2/2 25/4/4 +f 1/3/3 25/4/4 501/5/5 +f 501/5/5 25/4/4 26/6/6 +f 501/5/5 26/6/6 27/7/7 +f 3/8/8 22/9/9 2/1/1 +f 2/1/1 22/9/9 23/10/10 +f 2/1/1 23/10/10 24/2/2 +f 4/11/11 20/12/12 3/8/8 +f 3/8/8 20/12/12 21/13/13 +f 3/8/8 21/13/13 22/9/9 +f 20/12/12 4/11/11 19/14/14 +f 19/14/14 4/11/11 5/15/15 +f 19/14/14 5/15/15 18/16/16 +f 18/16/16 5/15/15 6/17/17 +f 18/16/16 6/17/17 17/18/18 +f 17/18/18 6/17/17 7/19/19 +f 17/18/18 7/19/19 16/20/20 +f 16/20/20 7/19/19 8/21/21 +f 16/20/20 8/21/21 9/22/22 +f 16/20/20 9/22/22 15/23/23 +f 15/23/23 9/22/22 10/24/24 +f 15/23/23 10/24/24 14/25/25 +f 14/25/25 10/24/24 11/26/26 +f 14/25/25 11/26/26 13/27/27 +f 13/27/27 11/26/26 12/28/28 +f 28/29/29 499/30/30 27/7/7 +f 27/7/7 499/30/30 500/31/31 +f 27/7/7 500/31/31 501/5/5 +f 28/29/29 29/32/32 499/30/30 +f 499/30/30 29/32/32 498/33/33 +f 498/33/33 29/32/32 30/34/34 +f 498/33/33 30/34/34 48/35/35 +f 48/35/35 30/34/34 47/36/36 +f 47/36/36 30/34/34 31/37/37 +f 47/36/36 31/37/37 32/38/38 +f 47/36/36 32/38/38 46/39/39 +f 46/39/39 32/38/38 33/40/40 +f 46/39/39 33/40/40 45/41/41 +f 45/41/41 33/40/40 34/42/42 +f 45/41/41 34/42/42 35/43/43 +f 45/41/41 35/43/43 44/44/44 +f 44/44/44 35/43/43 36/45/45 +f 44/44/44 36/45/45 37/46/46 +f 37/46/46 38/47/47 44/44/44 +f 44/44/44 38/47/47 43/48/48 +f 43/48/48 38/47/47 42/49/49 +f 42/49/49 38/47/47 41/50/50 +f 41/50/50 38/47/47 39/51/51 +f 41/50/50 39/51/51 40/52/52 +f 498/33/33 48/35/35 497/53/53 +f 497/53/53 48/35/35 49/54/54 +f 497/53/53 49/54/54 50/55/55 +f 497/53/53 50/55/55 496/56/56 +f 496/56/56 50/55/55 51/57/57 +f 496/56/56 51/57/57 495/58/58 +f 495/58/58 51/57/57 52/59/59 +f 495/58/58 52/59/59 53/60/60 +f 495/58/58 53/60/60 494/61/61 +f 494/61/61 53/60/60 54/62/62 +f 494/61/61 54/62/62 493/63/63 +f 493/63/63 54/62/62 55/64/64 +f 493/63/63 55/64/64 56/65/65 +f 57/66/66 428/67/67 56/65/65 +f 56/65/65 428/67/67 492/68/68 +f 56/65/65 492/68/68 493/63/63 +f 57/66/66 58/69/69 428/67/67 +f 428/67/67 58/69/69 59/70/70 +f 428/67/67 59/70/70 60/71/71 +f 60/71/71 61/72/72 428/67/67 +f 428/67/67 61/72/72 62/73/73 +f 428/67/67 62/73/73 63/74/74 +f 63/74/74 64/75/75 428/67/67 +f 428/67/67 64/75/75 73/76/76 +f 428/67/67 73/76/76 74/77/77 +f 64/75/75 65/78/78 73/76/76 +f 73/76/76 65/78/78 66/79/79 +f 73/76/76 66/79/79 72/80/80 +f 72/80/80 66/79/79 67/81/81 +f 72/80/80 67/81/81 68/82/82 +f 68/82/82 69/83/83 72/80/80 +f 72/80/80 69/83/83 71/84/84 +f 71/84/84 69/83/83 70/85/85 +f 74/77/77 75/86/86 428/67/67 +f 428/67/67 75/86/86 427/87/87 +f 427/87/87 75/86/86 426/88/88 +f 426/88/88 75/86/86 425/89/89 +f 425/89/89 75/86/86 239/90/90 +f 425/89/89 239/90/90 337/91/91 +f 337/91/91 239/90/90 240/92/92 +f 337/91/91 240/92/92 336/93/93 +f 336/93/93 240/92/92 241/94/94 +f 336/93/93 241/94/94 335/95/95 +f 335/95/95 241/94/94 242/96/96 +f 335/95/95 242/96/96 334/97/97 +f 334/97/97 242/96/96 243/98/98 +f 334/97/97 243/98/98 333/99/99 +f 333/99/99 243/98/98 244/100/100 +f 333/99/99 244/100/100 332/101/101 +f 332/101/101 244/100/100 331/102/102 +f 331/102/102 244/100/100 245/103/103 +f 331/102/102 245/103/103 330/104/104 +f 330/104/104 245/103/103 329/105/105 +f 329/105/105 245/103/103 246/106/106 +f 329/105/105 246/106/106 328/107/107 +f 328/107/107 246/106/106 247/108/108 +f 328/107/107 247/108/108 327/109/109 +f 327/109/109 247/108/108 248/110/110 +f 327/109/109 248/110/110 326/111/111 +f 326/111/111 248/110/110 249/112/112 +f 326/111/111 249/112/112 250/113/113 +f 76/114/114 144/115/115 75/86/86 +f 75/86/86 144/115/115 145/116/116 +f 75/86/86 145/116/116 146/117/117 +f 144/115/115 76/114/114 143/118/118 +f 143/118/118 76/114/114 77/119/119 +f 143/118/118 77/119/119 142/120/120 +f 142/120/120 77/119/119 78/121/121 +f 142/120/120 78/121/121 141/122/122 +f 141/122/122 78/121/121 140/123/123 +f 140/123/123 78/121/121 79/124/124 +f 140/123/123 79/124/124 139/125/125 +f 139/125/125 79/124/124 138/126/126 +f 138/126/126 79/124/124 80/127/127 +f 138/126/126 80/127/127 137/128/128 +f 137/128/128 80/127/127 136/129/129 +f 136/129/129 80/127/127 81/130/130 +f 136/129/129 81/130/130 135/131/131 +f 135/131/131 81/130/130 82/132/132 +f 135/131/131 82/132/132 134/133/133 +f 134/133/133 82/132/132 83/134/134 +f 134/133/133 83/134/134 133/135/135 +f 133/135/135 83/134/134 84/136/136 +f 133/135/135 84/136/136 132/137/137 +f 132/137/137 84/136/136 85/138/138 +f 132/137/137 85/138/138 131/139/139 +f 131/139/139 85/138/138 130/140/140 +f 130/140/140 85/138/138 86/141/141 +f 130/140/140 86/141/141 129/142/142 +f 129/142/142 86/141/141 87/143/143 +f 129/142/142 87/143/143 128/144/144 +f 128/144/144 87/143/143 88/145/145 +f 128/144/144 88/145/145 127/146/146 +f 127/146/146 88/145/145 89/147/147 +f 127/146/146 89/147/147 126/148/148 +f 126/148/148 89/147/147 90/149/149 +f 126/148/148 90/149/149 125/150/150 +f 125/150/150 90/149/149 91/151/151 +f 125/150/150 91/151/151 124/152/152 +f 124/152/152 91/151/151 92/153/153 +f 124/152/152 92/153/153 123/154/154 +f 123/154/154 92/153/153 93/155/155 +f 123/154/154 93/155/155 122/156/156 +f 122/156/156 93/155/155 94/157/157 +f 122/156/156 94/157/157 121/158/158 +f 121/158/158 94/157/157 95/159/159 +f 121/158/158 95/159/159 120/160/160 +f 120/160/160 95/159/159 96/161/161 +f 120/160/160 96/161/161 119/162/162 +f 119/162/162 96/161/161 97/163/163 +f 119/162/162 97/163/163 118/164/164 +f 118/164/164 97/163/163 98/165/165 +f 118/164/164 98/165/165 117/166/166 +f 117/166/166 98/165/165 99/167/167 +f 117/166/166 99/167/167 116/168/168 +f 116/168/168 99/167/167 100/169/169 +f 116/168/168 100/169/169 101/170/170 +f 116/168/168 101/170/170 115/171/171 +f 115/171/171 101/170/170 102/172/172 +f 115/171/171 102/172/172 114/173/173 +f 114/173/173 102/172/172 103/174/174 +f 114/173/173 103/174/174 113/175/175 +f 113/175/175 103/174/174 104/176/176 +f 113/175/175 104/176/176 112/177/177 +f 112/177/177 104/176/176 105/178/178 +f 112/177/177 105/178/178 111/179/179 +f 111/179/179 105/178/178 106/180/180 +f 111/179/179 106/180/180 107/181/181 +f 111/179/179 107/181/181 110/182/182 +f 110/182/182 107/181/181 108/183/183 +f 110/182/182 108/183/183 109/184/184 +f 146/117/117 147/185/185 75/86/86 +f 75/86/86 147/185/185 148/186/186 +f 75/86/86 148/186/186 149/187/187 +f 149/187/187 150/188/188 75/86/86 +f 75/86/86 150/188/188 237/189/189 +f 75/86/86 237/189/189 238/190/190 +f 151/191/191 235/192/192 150/188/188 +f 150/188/188 235/192/192 236/193/193 +f 150/188/188 236/193/193 237/189/189 +f 235/192/192 151/191/191 234/194/194 +f 234/194/194 151/191/191 152/195/195 +f 234/194/194 152/195/195 233/196/196 +f 233/196/196 152/195/195 232/197/197 +f 232/197/197 152/195/195 153/198/198 +f 232/197/197 153/198/198 231/199/199 +f 231/199/199 153/198/198 230/200/200 +f 230/200/200 153/198/198 154/201/201 +f 230/200/200 154/201/201 229/202/202 +f 229/202/202 154/201/201 155/203/203 +f 229/202/202 155/203/203 228/204/204 +f 228/204/204 155/203/203 156/205/205 +f 228/204/204 156/205/205 157/206/206 +f 228/204/204 157/206/206 227/207/207 +f 227/207/207 157/206/206 158/208/208 +f 227/207/207 158/208/208 159/209/209 +f 227/207/207 159/209/209 226/210/210 +f 226/210/210 159/209/209 160/211/211 +f 226/210/210 160/211/211 161/212/212 +f 226/210/210 161/212/212 225/213/213 +f 225/213/213 161/212/212 162/214/214 +f 225/213/213 162/214/214 224/215/215 +f 224/215/215 162/214/214 163/216/216 +f 224/215/215 163/216/216 164/217/217 +f 224/215/215 164/217/217 223/218/218 +f 223/218/218 164/217/217 165/219/219 +f 223/218/218 165/219/219 222/220/220 +f 222/220/220 165/219/219 166/221/221 +f 222/220/220 166/221/221 221/222/222 +f 221/222/222 166/221/221 167/223/223 +f 221/222/222 167/223/223 220/224/224 +f 220/224/224 167/223/223 168/225/225 +f 220/224/224 168/225/225 219/226/226 +f 219/226/226 168/225/225 169/227/227 +f 219/226/226 169/227/227 218/228/228 +f 218/228/228 169/227/227 170/229/229 +f 218/228/228 170/229/229 171/230/230 +f 218/228/228 171/230/230 217/231/231 +f 217/231/231 171/230/230 172/232/232 +f 217/231/231 172/232/232 216/233/233 +f 216/233/233 172/232/232 173/234/234 +f 216/233/233 173/234/234 174/235/235 +f 216/233/233 174/235/235 215/236/236 +f 215/236/236 174/235/235 175/237/237 +f 215/236/236 175/237/237 176/238/238 +f 215/236/236 176/238/238 214/239/239 +f 214/239/239 176/238/238 177/240/240 +f 214/239/239 177/240/240 213/241/241 +f 213/241/241 177/240/240 178/242/242 +f 213/241/241 178/242/242 179/243/243 +f 213/241/241 179/243/243 212/244/244 +f 212/244/244 179/243/243 180/245/245 +f 212/244/244 180/245/245 211/246/246 +f 211/246/246 180/245/245 181/247/247 +f 211/246/246 181/247/247 210/248/248 +f 210/248/248 181/247/247 182/249/249 +f 210/248/248 182/249/249 183/250/250 +f 210/248/248 183/250/250 209/251/251 +f 209/251/251 183/250/250 184/252/252 +f 209/251/251 184/252/252 208/253/253 +f 208/253/253 184/252/252 185/254/254 +f 208/253/253 185/254/254 186/255/255 +f 208/253/253 186/255/255 207/256/256 +f 207/256/256 186/255/255 187/257/257 +f 207/256/256 187/257/257 188/258/258 +f 207/256/256 188/258/258 206/259/259 +f 206/259/259 188/258/258 189/260/260 +f 206/259/259 189/260/260 190/261/261 +f 206/259/259 190/261/261 205/262/262 +f 205/262/262 190/261/261 191/263/263 +f 205/262/262 191/263/263 192/264/264 +f 205/262/262 192/264/264 204/265/265 +f 204/265/265 192/264/264 193/266/266 +f 204/265/265 193/266/266 194/267/267 +f 194/267/267 195/268/268 204/265/265 +f 204/265/265 195/268/268 203/269/269 +f 203/269/269 195/268/268 196/270/270 +f 203/269/269 196/270/270 197/271/271 +f 197/271/271 198/272/272 203/269/269 +f 203/269/269 198/272/272 202/273/273 +f 202/273/273 198/272/272 201/274/274 +f 201/274/274 198/272/272 199/275/275 +f 201/274/274 199/275/275 200/276/276 +f 238/190/190 239/90/90 75/86/86 +f 326/111/111 250/113/113 325/277/277 +f 325/277/277 250/113/113 251/278/278 +f 325/277/277 251/278/278 324/279/279 +f 324/279/279 251/278/278 252/280/280 +f 324/279/279 252/280/280 323/281/281 +f 323/281/281 252/280/280 253/282/282 +f 323/281/281 253/282/282 322/283/283 +f 322/283/283 253/282/282 254/284/284 +f 322/283/283 254/284/284 255/285/285 +f 322/283/283 255/285/285 321/286/286 +f 321/286/286 255/285/285 256/287/287 +f 321/286/286 256/287/287 320/288/288 +f 320/288/288 256/287/287 257/289/289 +f 320/288/288 257/289/289 319/290/290 +f 319/290/290 257/289/289 258/291/291 +f 319/290/290 258/291/291 259/292/292 +f 319/290/290 259/292/292 318/293/293 +f 318/293/293 259/292/292 260/294/294 +f 318/293/293 260/294/294 317/295/295 +f 317/295/295 260/294/294 261/296/296 +f 317/295/295 261/296/296 316/297/297 +f 316/297/297 261/296/296 262/298/298 +f 316/297/297 262/298/298 315/299/299 +f 315/299/299 262/298/298 314/300/300 +f 314/300/300 262/298/298 263/301/301 +f 314/300/300 263/301/301 313/302/302 +f 313/302/302 263/301/301 264/303/303 +f 313/302/302 264/303/303 312/304/304 +f 312/304/304 264/303/303 265/305/305 +f 312/304/304 265/305/305 311/306/306 +f 311/306/306 265/305/305 266/307/307 +f 311/306/306 266/307/307 267/308/308 +f 311/306/306 267/308/308 310/309/309 +f 310/309/309 267/308/308 268/310/310 +f 310/309/309 268/310/310 309/311/311 +f 309/311/311 268/310/310 269/312/312 +f 309/311/311 269/312/312 308/313/313 +f 308/313/313 269/312/312 270/314/314 +f 308/313/313 270/314/314 307/315/315 +f 307/315/315 270/314/314 271/316/316 +f 307/315/315 271/316/316 272/317/317 +f 307/315/315 272/317/317 306/318/318 +f 306/318/318 272/317/317 273/319/319 +f 306/318/318 273/319/319 305/320/320 +f 305/320/320 273/319/319 274/321/321 +f 305/320/320 274/321/321 275/322/322 +f 305/320/320 275/322/322 304/323/323 +f 304/323/323 275/322/322 276/324/324 +f 304/323/323 276/324/324 277/325/325 +f 304/323/323 277/325/325 303/326/326 +f 303/326/326 277/325/325 278/327/327 +f 303/326/326 278/327/327 302/328/328 +f 302/328/328 278/327/327 301/329/329 +f 301/329/329 278/327/327 300/330/330 +f 300/330/330 278/327/327 299/331/331 +f 299/331/331 278/327/327 298/332/332 +f 298/332/332 278/327/327 297/333/333 +f 297/333/333 278/327/327 296/334/334 +f 296/334/334 278/327/327 295/335/335 +f 295/335/335 278/327/327 294/336/336 +f 294/336/336 278/327/327 293/337/337 +f 293/337/337 278/327/327 292/338/338 +f 292/338/338 278/327/327 291/339/339 +f 291/339/339 278/327/327 290/340/340 +f 290/340/340 278/327/327 289/341/341 +f 289/341/341 278/327/327 288/342/342 +f 288/342/342 278/327/327 287/343/343 +f 287/343/343 278/327/327 286/344/344 +f 286/344/344 278/327/327 285/345/345 +f 285/345/345 278/327/327 284/346/346 +f 284/346/346 278/327/327 283/347/347 +f 283/347/347 278/327/327 282/348/348 +f 282/348/348 278/327/327 279/349/349 +f 282/348/348 279/349/349 280/350/350 +f 280/350/350 281/351/351 282/348/348 +f 337/91/91 338/352/352 425/89/89 +f 425/89/89 338/352/352 424/353/353 +f 424/353/353 338/352/352 339/354/354 +f 424/353/353 339/354/354 423/355/355 +f 423/355/355 339/354/354 340/356/356 +f 423/355/355 340/356/356 422/357/357 +f 422/357/357 340/356/356 341/358/358 +f 422/357/357 341/358/358 342/359/359 +f 422/357/357 342/359/359 421/360/360 +f 421/360/360 342/359/359 343/361/361 +f 421/360/360 343/361/361 420/362/362 +f 420/362/362 343/361/361 344/363/363 +f 420/362/362 344/363/363 419/364/364 +f 419/364/364 344/363/363 345/365/365 +f 419/364/364 345/365/365 418/366/366 +f 418/366/366 345/365/365 346/367/367 +f 418/366/366 346/367/367 417/368/368 +f 417/368/368 346/367/367 347/369/369 +f 417/368/368 347/369/369 348/370/370 +f 417/368/368 348/370/370 416/371/371 +f 416/371/371 348/370/370 349/372/372 +f 416/371/371 349/372/372 415/373/373 +f 415/373/373 349/372/372 350/374/374 +f 415/373/373 350/374/374 351/375/375 +f 415/373/373 351/375/375 414/376/376 +f 414/376/376 351/375/375 352/377/377 +f 414/376/376 352/377/377 413/378/378 +f 413/378/378 352/377/377 353/379/379 +f 413/378/378 353/379/379 354/380/380 +f 413/378/378 354/380/380 412/381/381 +f 412/381/381 354/380/380 355/382/382 +f 412/381/381 355/382/382 356/383/383 +f 412/381/381 356/383/383 411/384/384 +f 411/384/384 356/383/383 357/385/385 +f 411/384/384 357/385/385 358/386/386 +f 411/384/384 358/386/386 410/387/387 +f 410/387/387 358/386/386 359/388/388 +f 410/387/387 359/388/388 360/389/389 +f 410/387/387 360/389/389 409/390/390 +f 409/390/390 360/389/389 361/391/391 +f 409/390/390 361/391/391 408/392/392 +f 408/392/392 361/391/391 362/393/393 +f 408/392/392 362/393/393 407/394/394 +f 407/394/394 362/393/393 363/395/395 +f 407/394/394 363/395/395 364/396/396 +f 407/394/394 364/396/396 406/397/397 +f 406/397/397 364/396/396 365/398/398 +f 406/397/397 365/398/398 405/399/399 +f 405/399/399 365/398/398 366/400/400 +f 405/399/399 366/400/400 404/401/401 +f 404/401/401 366/400/400 367/402/402 +f 404/401/401 367/402/402 403/403/403 +f 403/403/403 367/402/402 368/404/404 +f 403/403/403 368/404/404 402/405/405 +f 402/405/405 368/404/404 369/406/406 +f 402/405/405 369/406/406 401/407/407 +f 401/407/407 369/406/406 370/408/408 +f 401/407/407 370/408/408 371/409/409 +f 401/407/407 371/409/409 400/410/410 +f 400/410/410 371/409/409 372/411/411 +f 400/410/410 372/411/411 399/412/412 +f 399/412/412 372/411/411 373/413/413 +f 399/412/412 373/413/413 398/414/414 +f 398/414/414 373/413/413 374/415/415 +f 398/414/414 374/415/415 375/416/416 +f 398/414/414 375/416/416 397/417/417 +f 397/417/417 375/416/416 376/418/418 +f 397/417/417 376/418/418 396/419/419 +f 396/419/419 376/418/418 377/420/420 +f 396/419/419 377/420/420 378/421/421 +f 396/419/419 378/421/421 395/422/422 +f 395/422/422 378/421/421 379/423/423 +f 395/422/422 379/423/423 380/424/424 +f 395/422/422 380/424/424 394/425/425 +f 394/425/425 380/424/424 381/426/426 +f 394/425/425 381/426/426 382/427/427 +f 394/425/425 382/427/427 393/428/428 +f 393/428/428 382/427/427 383/429/429 +f 393/428/428 383/429/429 384/430/430 +f 384/430/430 385/431/431 393/428/428 +f 393/428/428 385/431/431 392/432/432 +f 392/432/432 385/431/431 386/433/433 +f 392/432/432 386/433/433 387/434/434 +f 387/434/434 388/435/435 392/432/432 +f 392/432/432 388/435/435 391/436/436 +f 391/436/436 388/435/435 390/437/437 +f 390/437/437 388/435/435 389/438/438 +f 429/439/439 488/440/440 428/67/67 +f 428/67/67 488/440/440 489/441/441 +f 428/67/67 489/441/441 490/442/442 +f 430/443/443 486/444/444 429/439/439 +f 429/439/439 486/444/444 487/445/445 +f 429/439/439 487/445/445 488/440/440 +f 486/444/444 430/443/443 485/446/446 +f 485/446/446 430/443/443 431/447/447 +f 485/446/446 431/447/447 484/448/448 +f 484/448/448 431/447/447 432/449/449 +f 484/448/448 432/449/449 483/450/450 +f 483/450/450 432/449/449 433/451/451 +f 483/450/450 433/451/451 482/452/452 +f 482/452/452 433/451/451 434/453/453 +f 482/452/452 434/453/453 435/454/454 +f 482/452/452 435/454/454 481/455/455 +f 481/455/455 435/454/454 436/456/456 +f 481/455/455 436/456/456 480/457/457 +f 480/457/457 436/456/456 437/458/458 +f 480/457/457 437/458/458 438/459/459 +f 480/457/457 438/459/459 479/460/460 +f 479/460/460 438/459/459 439/461/461 +f 479/460/460 439/461/461 440/462/462 +f 479/460/460 440/462/462 478/463/463 +f 478/463/463 440/462/462 441/464/464 +f 478/463/463 441/464/464 477/465/465 +f 477/465/465 441/464/464 442/466/466 +f 477/465/465 442/466/466 476/467/467 +f 476/467/467 442/466/466 475/468/468 +f 475/468/468 442/466/466 443/469/469 +f 475/468/468 443/469/469 474/470/470 +f 474/470/470 443/469/469 473/471/471 +f 473/471/471 443/469/469 444/472/472 +f 473/471/471 444/472/472 472/473/473 +f 472/473/473 444/472/472 445/474/474 +f 472/473/473 445/474/474 471/475/475 +f 471/475/475 445/474/474 470/476/476 +f 470/476/476 445/474/474 446/477/477 +f 470/476/476 446/477/477 469/478/478 +f 469/478/478 446/477/477 447/479/479 +f 469/478/478 447/479/479 468/480/480 +f 468/480/480 447/479/479 467/481/481 +f 467/481/481 447/479/479 448/482/482 +f 467/481/481 448/482/482 466/483/483 +f 466/483/483 448/482/482 465/484/484 +f 465/484/484 448/482/482 449/485/485 +f 465/484/484 449/485/485 464/486/486 +f 464/486/486 449/485/485 463/487/487 +f 463/487/487 449/485/485 450/488/488 +f 463/487/487 450/488/488 462/489/489 +f 462/489/489 450/488/488 461/490/490 +f 461/490/490 450/488/488 460/491/491 +f 460/491/491 450/488/488 451/492/492 +f 460/491/491 451/492/492 459/493/493 +f 459/493/493 451/492/492 458/494/494 +f 458/494/494 451/492/492 457/495/495 +f 457/495/495 451/492/492 456/496/496 +f 456/496/496 451/492/492 452/497/497 +f 456/496/496 452/497/497 453/498/498 +f 453/498/498 454/499/499 456/496/496 +f 456/496/496 454/499/499 455/500/500 +f 490/442/442 491/501/501 428/67/67 +f 428/67/67 491/501/501 492/68/68 +f 502/502/502 503/503/503 1/504/504 +f 1/504/504 503/503/503 2/505/505 +f 2/505/505 503/503/503 504/506/506 +f 2/505/505 504/506/506 3/507/507 +f 3/507/507 504/506/506 505/508/508 +f 3/507/507 505/508/508 4/509/509 +f 4/509/509 505/508/508 506/510/510 +f 4/509/509 506/510/510 5/511/511 +f 5/511/511 506/510/510 507/512/512 +f 5/511/511 507/512/512 6/513/513 +f 6/513/513 507/512/512 508/514/514 +f 6/513/513 508/514/514 7/515/515 +f 7/515/515 508/514/514 509/516/516 +f 7/515/515 509/516/516 8/517/517 +f 8/517/517 509/516/516 510/518/518 +f 8/517/517 510/518/518 9/519/519 +f 9/519/519 510/518/518 511/520/520 +f 9/519/519 511/520/520 10/521/521 +f 10/521/521 511/520/520 512/522/522 +f 10/521/521 512/522/522 11/523/523 +f 11/523/523 512/522/522 513/524/524 +f 11/523/523 513/524/524 12/525/525 +f 12/525/525 513/524/524 514/526/526 +f 12/525/525 514/526/526 13/527/527 +f 13/527/527 514/526/526 515/528/528 +f 13/527/527 515/528/528 14/529/529 +f 14/529/529 515/528/528 516/530/530 +f 14/529/529 516/530/530 15/531/531 +f 15/531/531 516/530/530 517/532/532 +f 15/531/531 517/532/532 16/533/533 +f 16/533/533 517/532/532 518/534/534 +f 16/533/533 518/534/534 17/535/535 +f 17/535/535 518/534/534 519/536/536 +f 17/535/535 519/536/536 18/537/537 +f 18/537/537 519/536/536 520/538/538 +f 18/537/537 520/538/538 19/539/539 +f 19/539/539 520/538/538 521/540/540 +f 19/539/539 521/540/540 20/541/541 +f 20/541/541 521/540/540 522/542/542 +f 20/541/541 522/542/542 21/543/543 +f 21/543/543 522/542/542 523/544/544 +f 21/543/543 523/544/544 22/545/545 +f 22/545/545 523/544/544 524/546/546 +f 22/545/545 524/546/546 23/547/547 +f 23/547/547 524/546/546 525/548/548 +f 23/547/547 525/548/548 24/549/549 +f 24/549/549 525/548/548 526/550/550 +f 24/549/549 526/550/550 25/551/551 +f 25/551/551 526/550/550 527/552/552 +f 25/551/551 527/552/552 26/553/553 +f 26/553/553 527/552/552 528/554/554 +f 26/553/553 528/554/554 27/555/555 +f 27/555/555 528/554/554 529/556/556 +f 27/555/555 529/556/556 28/557/557 +f 28/557/557 529/556/556 530/558/558 +f 28/557/557 530/558/558 29/559/559 +f 29/559/559 530/558/558 531/560/560 +f 29/559/559 531/560/560 30/561/561 +f 30/561/561 531/560/560 532/562/562 +f 30/561/561 532/562/562 31/563/563 +f 31/563/563 532/562/562 533/564/564 +f 31/563/563 533/564/564 32/565/565 +f 32/565/565 533/564/564 534/566/566 +f 32/565/565 534/566/566 33/567/567 +f 33/567/567 534/566/566 535/568/568 +f 33/567/567 535/568/568 34/569/569 +f 34/569/569 535/568/568 536/570/570 +f 34/569/569 536/570/570 35/571/571 +f 35/571/571 536/570/570 537/572/572 +f 35/571/571 537/572/572 36/573/573 +f 36/573/573 537/572/572 538/574/574 +f 36/573/573 538/574/574 37/575/575 +f 37/575/575 538/574/574 539/576/576 +f 37/575/575 539/576/576 38/577/577 +f 38/577/577 539/576/576 540/578/578 +f 38/577/577 540/578/578 39/579/579 +f 39/579/579 540/578/578 541/580/580 +f 39/579/579 541/580/580 40/581/581 +f 40/581/581 541/580/580 542/582/582 +f 40/581/581 542/582/582 41/583/583 +f 41/583/583 542/582/582 543/584/584 +f 41/583/583 543/584/584 42/585/585 +f 42/585/585 543/584/584 544/586/586 +f 42/585/585 544/586/586 43/587/587 +f 43/587/587 544/586/586 545/588/588 +f 43/587/587 545/588/588 44/589/589 +f 44/589/589 545/588/588 546/590/590 +f 44/589/589 546/590/590 45/591/591 +f 45/591/591 546/590/590 547/592/592 +f 45/591/591 547/592/592 46/593/593 +f 46/593/593 547/592/592 548/594/594 +f 46/593/593 548/594/594 47/595/595 +f 47/595/595 548/594/594 549/596/596 +f 47/595/595 549/596/596 48/597/597 +f 48/597/597 549/596/596 550/598/598 +f 48/597/597 550/598/598 49/599/599 +f 49/599/599 550/598/598 551/600/600 +f 49/599/599 551/600/600 50/601/601 +f 50/601/601 551/600/600 552/602/602 +f 50/601/601 552/602/602 51/603/603 +f 51/603/603 552/602/602 553/604/604 +f 51/603/603 553/604/604 52/605/605 +f 52/605/605 553/604/604 554/606/606 +f 52/605/605 554/606/606 53/607/607 +f 53/607/607 554/606/606 555/608/608 +f 53/607/607 555/608/608 54/609/609 +f 54/609/609 555/608/608 556/610/610 +f 54/609/609 556/610/610 55/611/611 +f 55/611/611 556/610/610 557/612/612 +f 55/611/611 557/612/612 56/613/613 +f 56/613/613 557/612/612 558/614/614 +f 56/613/613 558/614/614 57/615/615 +f 57/615/615 558/614/614 559/616/616 +f 57/615/615 559/616/616 58/617/617 +f 58/617/617 559/616/616 560/618/618 +f 58/617/617 560/618/618 59/619/619 +f 59/619/619 560/618/618 561/620/620 +f 59/619/619 561/620/620 60/621/621 +f 60/621/621 561/620/620 562/622/622 +f 60/621/621 562/622/622 61/623/623 +f 61/623/623 562/622/622 563/624/624 +f 61/623/623 563/624/624 62/625/625 +f 62/625/625 563/624/624 564/626/626 +f 62/625/625 564/626/626 63/627/627 +f 63/627/627 564/626/626 565/628/628 +f 63/627/627 565/628/628 64/629/629 +f 64/629/629 565/628/628 566/630/630 +f 64/629/629 566/630/630 65/631/631 +f 65/631/631 566/630/630 567/632/632 +f 65/631/631 567/632/632 66/633/633 +f 66/633/633 567/632/632 568/634/634 +f 66/633/633 568/634/634 67/635/635 +f 67/635/635 568/634/634 569/636/636 +f 67/635/635 569/636/636 68/637/637 +f 68/637/637 569/636/636 570/638/638 +f 68/637/637 570/638/638 69/639/639 +f 69/639/639 570/638/638 571/640/640 +f 69/639/639 571/640/640 70/641/641 +f 70/641/641 571/640/640 572/642/642 +f 70/641/641 572/642/642 71/643/643 +f 71/643/643 572/642/642 573/644/644 +f 71/643/643 573/644/644 72/645/645 +f 72/645/645 573/644/644 574/646/646 +f 72/645/645 574/646/646 73/647/647 +f 73/647/647 574/646/646 575/648/648 +f 73/647/647 575/648/648 74/649/649 +f 74/649/649 575/648/648 576/650/650 +f 74/649/649 576/650/650 75/651/651 +f 75/651/651 576/650/650 577/652/652 +f 75/651/651 577/652/652 76/653/653 +f 76/653/653 577/652/652 578/654/654 +f 76/653/653 578/654/654 77/655/655 +f 77/655/655 578/654/654 579/656/656 +f 77/655/655 579/656/656 78/657/657 +f 78/657/657 579/656/656 580/658/658 +f 78/657/657 580/658/658 79/659/659 +f 79/659/659 580/658/658 581/660/660 +f 79/659/659 581/660/660 80/661/661 +f 80/661/661 581/660/660 582/662/662 +f 80/661/661 582/662/662 81/663/663 +f 81/663/663 582/662/662 583/664/664 +f 81/663/663 583/664/664 82/665/665 +f 82/665/665 583/664/664 584/666/666 +f 82/665/665 584/666/666 83/667/667 +f 83/667/667 584/666/666 585/668/668 +f 83/667/667 585/668/668 84/669/669 +f 84/669/669 585/668/668 586/670/670 +f 84/669/669 586/670/670 85/671/671 +f 85/671/671 586/670/670 587/672/672 +f 85/671/671 587/672/672 86/673/673 +f 86/673/673 587/672/672 588/674/674 +f 86/673/673 588/674/674 87/675/675 +f 87/675/675 588/674/674 589/676/676 +f 87/675/675 589/676/676 88/677/677 +f 88/677/677 589/676/676 590/678/678 +f 88/677/677 590/678/678 89/679/679 +f 89/679/679 590/678/678 591/680/680 +f 89/679/679 591/680/680 90/681/681 +f 90/681/681 591/680/680 592/682/682 +f 90/681/681 592/682/682 91/683/683 +f 91/683/683 592/682/682 593/684/684 +f 91/683/683 593/684/684 92/685/685 +f 92/685/685 593/684/684 594/686/686 +f 92/685/685 594/686/686 93/687/687 +f 93/687/687 594/686/686 595/688/688 +f 93/687/687 595/688/688 94/689/689 +f 94/689/689 595/688/688 596/690/690 +f 94/689/689 596/690/690 95/691/691 +f 95/691/691 596/690/690 597/692/692 +f 95/691/691 597/692/692 96/693/693 +f 96/693/693 597/692/692 598/694/694 +f 96/693/693 598/694/694 97/695/695 +f 97/695/695 598/694/694 599/696/696 +f 97/695/695 599/696/696 98/697/697 +f 98/697/697 599/696/696 600/698/698 +f 98/697/697 600/698/698 99/699/699 +f 99/699/699 600/698/698 601/700/700 +f 99/699/699 601/700/700 100/701/701 +f 100/701/701 601/700/700 602/702/702 +f 100/701/701 602/702/702 101/703/703 +f 101/703/703 602/702/702 603/704/704 +f 101/703/703 603/704/704 102/705/705 +f 102/705/705 603/704/704 604/706/706 +f 102/705/705 604/706/706 103/707/707 +f 103/707/707 604/706/706 605/708/708 +f 103/707/707 605/708/708 104/709/709 +f 104/709/709 605/708/708 606/710/710 +f 104/709/709 606/710/710 105/711/711 +f 105/711/711 606/710/710 607/712/712 +f 105/711/711 607/712/712 106/713/713 +f 106/713/713 607/712/712 608/714/714 +f 106/713/713 608/714/714 107/715/715 +f 107/715/715 608/714/714 609/716/716 +f 107/715/715 609/716/716 108/717/717 +f 108/717/717 609/716/716 610/718/718 +f 108/717/717 610/718/718 109/719/719 +f 109/719/719 610/718/718 611/720/720 +f 109/719/719 611/720/720 110/721/721 +f 110/721/721 611/720/720 612/722/722 +f 110/721/721 612/722/722 111/723/723 +f 111/723/723 612/722/722 613/724/724 +f 111/723/723 613/724/724 112/725/725 +f 112/725/725 613/724/724 614/726/726 +f 112/725/725 614/726/726 113/727/727 +f 113/727/727 614/726/726 615/728/728 +f 113/727/727 615/728/728 114/729/729 +f 114/729/729 615/728/728 616/730/730 +f 114/729/729 616/730/730 115/731/731 +f 115/731/731 616/730/730 617/732/732 +f 115/731/731 617/732/732 116/733/733 +f 116/733/733 617/732/732 618/734/734 +f 116/733/733 618/734/734 117/735/735 +f 117/735/735 618/734/734 619/736/736 +f 117/735/735 619/736/736 118/737/737 +f 118/737/737 619/736/736 620/738/738 +f 118/737/737 620/738/738 119/739/739 +f 119/739/739 620/738/738 621/740/740 +f 119/739/739 621/740/740 120/741/741 +f 120/741/741 621/740/740 622/742/742 +f 120/741/741 622/742/742 121/743/743 +f 121/743/743 622/742/742 623/744/744 +f 121/743/743 623/744/744 122/745/745 +f 122/745/745 623/744/744 624/746/746 +f 122/745/745 624/746/746 123/747/747 +f 123/747/747 624/746/746 625/748/748 +f 123/747/747 625/748/748 124/749/749 +f 124/749/749 625/748/748 626/750/750 +f 124/749/749 626/750/750 125/751/751 +f 125/751/751 626/750/750 627/752/752 +f 125/751/751 627/752/752 126/753/753 +f 126/753/753 627/752/752 628/754/754 +f 126/753/753 628/754/754 127/755/755 +f 127/755/755 628/754/754 629/756/756 +f 127/755/755 629/756/756 128/757/757 +f 128/757/757 629/756/756 630/758/758 +f 128/757/757 630/758/758 129/759/759 +f 129/759/759 630/758/758 631/760/760 +f 129/759/759 631/760/760 130/761/761 +f 130/761/761 631/760/760 632/762/762 +f 130/761/761 632/762/762 131/763/763 +f 131/763/763 632/762/762 633/764/764 +f 131/763/763 633/764/764 132/765/765 +f 132/765/765 633/764/764 634/766/766 +f 132/765/765 634/766/766 133/767/767 +f 133/767/767 634/766/766 635/768/768 +f 133/767/767 635/768/768 134/769/769 +f 134/769/769 635/768/768 636/770/770 +f 134/769/769 636/770/770 135/771/771 +f 135/771/771 636/770/770 637/772/772 +f 135/771/771 637/772/772 136/773/773 +f 136/773/773 637/772/772 638/774/774 +f 136/773/773 638/774/774 137/775/775 +f 137/775/775 638/774/774 639/776/776 +f 137/775/775 639/776/776 138/777/777 +f 138/777/777 639/776/776 640/778/778 +f 138/777/777 640/778/778 139/779/779 +f 139/779/779 640/778/778 641/780/780 +f 139/779/779 641/780/780 140/781/781 +f 140/781/781 641/780/780 642/782/782 +f 140/781/781 642/782/782 141/783/783 +f 141/783/783 642/782/782 643/784/784 +f 141/783/783 643/784/784 142/785/785 +f 142/785/785 643/784/784 644/786/786 +f 142/785/785 644/786/786 143/787/787 +f 143/787/787 644/786/786 645/788/788 +f 143/787/787 645/788/788 144/789/789 +f 144/789/789 645/788/788 646/790/790 +f 144/789/789 646/790/790 145/791/791 +f 145/791/791 646/790/790 647/792/792 +f 145/791/791 647/792/792 146/793/793 +f 146/793/793 647/792/792 648/794/794 +f 146/793/793 648/794/794 147/795/795 +f 147/795/795 648/794/794 649/796/796 +f 147/795/795 649/796/796 148/797/797 +f 148/797/797 649/796/796 650/798/798 +f 148/797/797 650/798/798 149/799/799 +f 149/799/799 650/798/798 651/800/800 +f 149/799/799 651/800/800 150/801/801 +f 150/801/801 651/800/800 652/802/802 +f 150/801/801 652/802/802 151/803/803 +f 151/803/803 652/802/802 653/804/804 +f 151/803/803 653/804/804 152/805/805 +f 152/805/805 653/804/804 654/806/806 +f 152/805/805 654/806/806 153/807/807 +f 153/807/807 654/806/806 655/808/808 +f 153/807/807 655/808/808 154/809/809 +f 154/809/809 655/808/808 656/810/810 +f 154/809/809 656/810/810 155/811/811 +f 155/811/811 656/810/810 657/812/812 +f 155/811/811 657/812/812 156/813/813 +f 156/813/813 657/812/812 658/814/814 +f 156/813/813 658/814/814 157/815/815 +f 157/815/815 658/814/814 659/816/816 +f 157/815/815 659/816/816 158/817/817 +f 158/817/817 659/816/816 660/818/818 +f 158/817/817 660/818/818 159/819/819 +f 159/819/819 660/818/818 661/820/820 +f 159/819/819 661/820/820 160/821/821 +f 160/821/821 661/820/820 662/822/822 +f 160/821/821 662/822/822 161/823/823 +f 161/823/823 662/822/822 663/824/824 +f 161/823/823 663/824/824 162/825/825 +f 162/825/825 663/824/824 664/826/826 +f 162/825/825 664/826/826 163/827/827 +f 163/827/827 664/826/826 665/828/828 +f 163/827/827 665/828/828 164/829/829 +f 164/829/829 665/828/828 666/830/830 +f 164/829/829 666/830/830 165/831/831 +f 165/831/831 666/830/830 667/832/832 +f 165/831/831 667/832/832 166/833/833 +f 166/833/833 667/832/832 668/834/834 +f 166/833/833 668/834/834 167/835/835 +f 167/835/835 668/834/834 669/836/836 +f 167/835/835 669/836/836 168/837/837 +f 168/837/837 669/836/836 670/838/838 +f 168/837/837 670/838/838 169/839/839 +f 169/839/839 670/838/838 671/840/840 +f 169/839/839 671/840/840 170/841/841 +f 170/841/841 671/840/840 672/842/842 +f 170/841/841 672/842/842 171/843/843 +f 171/843/843 672/842/842 673/844/844 +f 171/843/843 673/844/844 172/845/845 +f 172/845/845 673/844/844 674/846/846 +f 172/845/845 674/846/846 173/847/847 +f 173/847/847 674/846/846 675/848/848 +f 173/847/847 675/848/848 174/849/849 +f 174/849/849 675/848/848 676/850/850 +f 174/849/849 676/850/850 175/851/851 +f 175/851/851 676/850/850 677/852/852 +f 175/851/851 677/852/852 176/853/853 +f 176/853/853 677/852/852 678/854/854 +f 176/853/853 678/854/854 177/855/855 +f 177/855/855 678/854/854 679/856/856 +f 177/855/855 679/856/856 178/857/857 +f 178/857/857 679/856/856 680/858/858 +f 178/857/857 680/858/858 179/859/859 +f 179/859/859 680/858/858 681/860/860 +f 179/859/859 681/860/860 180/861/861 +f 180/861/861 681/860/860 682/862/862 +f 180/861/861 682/862/862 181/863/863 +f 181/863/863 682/862/862 683/864/864 +f 181/863/863 683/864/864 182/865/865 +f 182/865/865 683/864/864 684/866/866 +f 182/865/865 684/866/866 183/867/867 +f 183/867/867 684/866/866 685/868/868 +f 183/867/867 685/868/868 184/869/869 +f 184/869/869 685/868/868 686/870/870 +f 184/869/869 686/870/870 185/871/871 +f 185/871/871 686/870/870 687/872/872 +f 185/871/871 687/872/872 186/873/873 +f 186/873/873 687/872/872 688/874/874 +f 186/873/873 688/874/874 187/875/875 +f 187/875/875 688/874/874 689/876/876 +f 187/875/875 689/876/876 188/877/877 +f 188/877/877 689/876/876 690/878/878 +f 188/877/877 690/878/878 189/879/879 +f 189/879/879 690/878/878 691/880/880 +f 189/879/879 691/880/880 190/881/881 +f 190/881/881 691/880/880 692/882/882 +f 190/881/881 692/882/882 191/883/883 +f 191/883/883 692/882/882 693/884/884 +f 191/883/883 693/884/884 192/885/885 +f 192/885/885 693/884/884 694/886/886 +f 192/885/885 694/886/886 193/887/887 +f 193/887/887 694/886/886 695/888/888 +f 193/887/887 695/888/888 194/889/889 +f 194/889/889 695/888/888 696/890/890 +f 194/889/889 696/890/890 195/891/891 +f 195/891/891 696/890/890 697/892/892 +f 195/891/891 697/892/892 196/893/893 +f 196/893/893 697/892/892 698/894/894 +f 196/893/893 698/894/894 197/895/895 +f 197/895/895 698/894/894 699/896/896 +f 197/895/895 699/896/896 198/897/897 +f 198/897/897 699/896/896 700/898/898 +f 198/897/897 700/898/898 199/899/899 +f 199/899/899 700/898/898 701/900/900 +f 199/899/899 701/900/900 200/901/901 +f 200/901/901 701/900/900 702/902/902 +f 200/901/901 702/902/902 201/903/903 +f 201/903/903 702/902/902 703/904/904 +f 201/903/903 703/904/904 202/905/905 +f 202/905/905 703/904/904 704/906/906 +f 202/905/905 704/906/906 203/907/907 +f 203/907/907 704/906/906 705/908/908 +f 203/907/907 705/908/908 204/909/909 +f 204/909/909 705/908/908 706/910/910 +f 204/909/909 706/910/910 205/911/911 +f 205/911/911 706/910/910 707/912/912 +f 205/911/911 707/912/912 206/913/913 +f 206/913/913 707/912/912 708/914/914 +f 206/913/913 708/914/914 207/915/915 +f 207/915/915 708/914/914 709/916/916 +f 207/915/915 709/916/916 208/917/917 +f 208/917/917 709/916/916 710/918/918 +f 208/917/917 710/918/918 209/919/919 +f 209/919/919 710/918/918 711/920/920 +f 209/919/919 711/920/920 210/921/921 +f 210/921/921 711/920/920 712/922/922 +f 210/921/921 712/922/922 211/923/923 +f 211/923/923 712/922/922 713/924/924 +f 211/923/923 713/924/924 212/925/925 +f 212/925/925 713/924/924 714/926/926 +f 212/925/925 714/926/926 213/927/927 +f 213/927/927 714/926/926 715/928/928 +f 213/927/927 715/928/928 214/929/929 +f 214/929/929 715/928/928 716/930/930 +f 214/929/929 716/930/930 215/931/931 +f 215/931/931 716/930/930 717/932/932 +f 215/931/931 717/932/932 216/933/933 +f 216/933/933 717/932/932 718/934/934 +f 216/933/933 718/934/934 217/935/935 +f 217/935/935 718/934/934 719/936/936 +f 217/935/935 719/936/936 218/937/937 +f 218/937/937 719/936/936 720/938/938 +f 218/937/937 720/938/938 219/939/939 +f 219/939/939 720/938/938 721/940/940 +f 219/939/939 721/940/940 220/941/941 +f 220/941/941 721/940/940 722/942/942 +f 220/941/941 722/942/942 221/943/943 +f 221/943/943 722/942/942 723/944/944 +f 221/943/943 723/944/944 222/945/945 +f 222/945/945 723/944/944 724/946/946 +f 222/945/945 724/946/946 223/947/947 +f 223/947/947 724/946/946 725/948/948 +f 223/947/947 725/948/948 224/949/949 +f 224/949/949 725/948/948 726/950/950 +f 224/949/949 726/950/950 225/951/951 +f 225/951/951 726/950/950 727/952/952 +f 225/951/951 727/952/952 226/953/953 +f 226/953/953 727/952/952 728/954/954 +f 226/953/953 728/954/954 227/955/955 +f 227/955/955 728/954/954 729/956/956 +f 227/955/955 729/956/956 228/957/957 +f 228/957/957 729/956/956 730/958/958 +f 228/957/957 730/958/958 229/959/959 +f 229/959/959 730/958/958 731/960/960 +f 229/959/959 731/960/960 230/961/961 +f 230/961/961 731/960/960 732/962/962 +f 230/961/961 732/962/962 231/963/963 +f 231/963/963 732/962/962 733/964/964 +f 231/963/963 733/964/964 232/965/965 +f 232/965/965 733/964/964 734/966/966 +f 232/965/965 734/966/966 233/967/967 +f 233/967/967 734/966/966 735/968/968 +f 233/967/967 735/968/968 234/969/969 +f 234/969/969 735/968/968 736/970/970 +f 234/969/969 736/970/970 235/971/971 +f 235/971/971 736/970/970 737/972/972 +f 235/971/971 737/972/972 236/973/973 +f 236/973/973 737/972/972 738/974/974 +f 236/973/973 738/974/974 237/975/975 +f 237/975/975 738/974/974 739/976/976 +f 237/975/975 739/976/976 238/977/977 +f 238/977/977 739/976/976 740/978/978 +f 238/977/977 740/978/978 239/979/979 +f 239/979/979 740/978/978 741/980/980 +f 239/979/979 741/980/980 240/981/981 +f 240/981/981 741/980/980 742/982/982 +f 240/981/981 742/982/982 241/983/983 +f 241/983/983 742/982/982 743/984/984 +f 241/983/983 743/984/984 242/985/985 +f 242/985/985 743/984/984 744/986/986 +f 242/985/985 744/986/986 243/987/987 +f 243/987/987 744/986/986 745/988/988 +f 243/987/987 745/988/988 244/989/989 +f 244/989/989 745/988/988 746/990/990 +f 244/989/989 746/990/990 245/991/991 +f 245/991/991 746/990/990 747/992/992 +f 245/991/991 747/992/992 246/993/993 +f 246/993/993 747/992/992 748/994/994 +f 246/993/993 748/994/994 247/995/995 +f 247/995/995 748/994/994 749/996/996 +f 247/995/995 749/996/996 248/997/997 +f 248/997/997 749/996/996 750/998/998 +f 248/997/997 750/998/998 249/999/999 +f 249/999/999 750/998/998 751/1000/1000 +f 249/999/999 751/1000/1000 250/1001/1001 +f 250/1001/1001 751/1000/1000 752/1002/1002 +f 250/1001/1001 752/1002/1002 251/1003/1003 +f 251/1003/1003 752/1002/1002 753/1004/1004 +f 251/1003/1003 753/1004/1004 252/1005/1005 +f 252/1005/1005 753/1004/1004 754/1006/1006 +f 252/1005/1005 754/1006/1006 253/1007/1007 +f 253/1007/1007 754/1006/1006 755/1008/1008 +f 253/1007/1007 755/1008/1008 254/1009/1009 +f 254/1009/1009 755/1008/1008 756/1010/1010 +f 254/1009/1009 756/1010/1010 255/1011/1011 +f 255/1011/1011 756/1010/1010 757/1012/1012 +f 255/1011/1011 757/1012/1012 256/1013/1013 +f 256/1013/1013 757/1012/1012 758/1014/1014 +f 256/1013/1013 758/1014/1014 257/1015/1015 +f 257/1015/1015 758/1014/1014 759/1016/1016 +f 257/1015/1015 759/1016/1016 258/1017/1017 +f 258/1017/1017 759/1016/1016 760/1018/1018 +f 258/1017/1017 760/1018/1018 259/1019/1019 +f 259/1019/1019 760/1018/1018 761/1020/1020 +f 259/1019/1019 761/1020/1020 260/1021/1021 +f 260/1021/1021 761/1020/1020 762/1022/1022 +f 260/1021/1021 762/1022/1022 261/1023/1023 +f 261/1023/1023 762/1022/1022 763/1024/1024 +f 261/1023/1023 763/1024/1024 262/1025/1025 +f 262/1025/1025 763/1024/1024 764/1026/1026 +f 262/1025/1025 764/1026/1026 263/1027/1027 +f 263/1027/1027 764/1026/1026 765/1028/1028 +f 263/1027/1027 765/1028/1028 264/1029/1029 +f 264/1029/1029 765/1028/1028 766/1030/1030 +f 264/1029/1029 766/1030/1030 265/1031/1031 +f 265/1031/1031 766/1030/1030 767/1032/1032 +f 265/1031/1031 767/1032/1032 266/1033/1033 +f 266/1033/1033 767/1032/1032 768/1034/1034 +f 266/1033/1033 768/1034/1034 267/1035/1035 +f 267/1035/1035 768/1034/1034 769/1036/1036 +f 267/1035/1035 769/1036/1036 268/1037/1037 +f 268/1037/1037 769/1036/1036 770/1038/1038 +f 268/1037/1037 770/1038/1038 269/1039/1039 +f 269/1039/1039 770/1038/1038 771/1040/1040 +f 269/1039/1039 771/1040/1040 270/1041/1041 +f 270/1041/1041 771/1040/1040 772/1042/1042 +f 270/1041/1041 772/1042/1042 271/1043/1043 +f 271/1043/1043 772/1042/1042 773/1044/1044 +f 271/1043/1043 773/1044/1044 272/1045/1045 +f 272/1045/1045 773/1044/1044 774/1046/1046 +f 272/1045/1045 774/1046/1046 273/1047/1047 +f 273/1047/1047 774/1046/1046 775/1048/1048 +f 273/1047/1047 775/1048/1048 274/1049/1049 +f 274/1049/1049 775/1048/1048 776/1050/1050 +f 274/1049/1049 776/1050/1050 275/1051/1051 +f 275/1051/1051 776/1050/1050 777/1052/1052 +f 275/1051/1051 777/1052/1052 276/1053/1053 +f 276/1053/1053 777/1052/1052 778/1054/1054 +f 276/1053/1053 778/1054/1054 277/1055/1055 +f 277/1055/1055 778/1054/1054 779/1056/1056 +f 277/1055/1055 779/1056/1056 278/1057/1057 +f 278/1057/1057 779/1056/1056 780/1058/1058 +f 278/1057/1057 780/1058/1058 279/1059/1059 +f 279/1059/1059 780/1058/1058 781/1060/1060 +f 279/1059/1059 781/1060/1060 280/1061/1061 +f 280/1061/1061 781/1060/1060 782/1062/1062 +f 280/1061/1061 782/1062/1062 281/1063/1063 +f 281/1063/1063 782/1062/1062 783/1064/1064 +f 281/1063/1063 783/1064/1064 282/1065/1065 +f 282/1065/1065 783/1064/1064 784/1066/1066 +f 282/1065/1065 784/1066/1066 283/1067/1067 +f 283/1067/1067 784/1066/1066 785/1068/1068 +f 283/1067/1067 785/1068/1068 284/1069/1069 +f 284/1069/1069 785/1068/1068 786/1070/1070 +f 284/1069/1069 786/1070/1070 285/1071/1071 +f 285/1071/1071 786/1070/1070 787/1072/1072 +f 285/1071/1071 787/1072/1072 286/1073/1073 +f 286/1073/1073 787/1072/1072 788/1074/1074 +f 286/1073/1073 788/1074/1074 287/1075/1075 +f 287/1075/1075 788/1074/1074 789/1076/1076 +f 287/1075/1075 789/1076/1076 288/1077/1077 +f 288/1077/1077 789/1076/1076 790/1078/1078 +f 288/1077/1077 790/1078/1078 289/1079/1079 +f 289/1079/1079 790/1078/1078 791/1080/1080 +f 289/1079/1079 791/1080/1080 290/1081/1081 +f 290/1081/1081 791/1080/1080 792/1082/1082 +f 290/1081/1081 792/1082/1082 291/1083/1083 +f 291/1083/1083 792/1082/1082 793/1084/1084 +f 291/1083/1083 793/1084/1084 292/1085/1085 +f 292/1085/1085 793/1084/1084 794/1086/1086 +f 292/1085/1085 794/1086/1086 293/1087/1087 +f 293/1087/1087 794/1086/1086 795/1088/1088 +f 293/1087/1087 795/1088/1088 294/1089/1089 +f 294/1089/1089 795/1088/1088 796/1090/1090 +f 294/1089/1089 796/1090/1090 295/1091/1091 +f 295/1091/1091 796/1090/1090 797/1092/1092 +f 295/1091/1091 797/1092/1092 296/1093/1093 +f 296/1093/1093 797/1092/1092 798/1094/1094 +f 296/1093/1093 798/1094/1094 297/1095/1095 +f 297/1095/1095 798/1094/1094 799/1096/1096 +f 297/1095/1095 799/1096/1096 298/1097/1097 +f 298/1097/1097 799/1096/1096 800/1098/1098 +f 298/1097/1097 800/1098/1098 299/1099/1099 +f 299/1099/1099 800/1098/1098 801/1100/1100 +f 299/1099/1099 801/1100/1100 300/1101/1101 +f 300/1101/1101 801/1100/1100 802/1102/1102 +f 300/1101/1101 802/1102/1102 301/1103/1103 +f 301/1103/1103 802/1102/1102 803/1104/1104 +f 301/1103/1103 803/1104/1104 302/1105/1105 +f 302/1105/1105 803/1104/1104 804/1106/1106 +f 302/1105/1105 804/1106/1106 303/1107/1107 +f 303/1107/1107 804/1106/1106 805/1108/1108 +f 303/1107/1107 805/1108/1108 304/1109/1109 +f 304/1109/1109 805/1108/1108 806/1110/1110 +f 304/1109/1109 806/1110/1110 305/1111/1111 +f 305/1111/1111 806/1110/1110 807/1112/1112 +f 305/1111/1111 807/1112/1112 306/1113/1113 +f 306/1113/1113 807/1112/1112 808/1114/1114 +f 306/1113/1113 808/1114/1114 307/1115/1115 +f 307/1115/1115 808/1114/1114 809/1116/1116 +f 307/1115/1115 809/1116/1116 308/1117/1117 +f 308/1117/1117 809/1116/1116 810/1118/1118 +f 308/1117/1117 810/1118/1118 309/1119/1119 +f 309/1119/1119 810/1118/1118 811/1120/1120 +f 309/1119/1119 811/1120/1120 310/1121/1121 +f 310/1121/1121 811/1120/1120 812/1122/1122 +f 310/1121/1121 812/1122/1122 311/1123/1123 +f 311/1123/1123 812/1122/1122 813/1124/1124 +f 311/1123/1123 813/1124/1124 312/1125/1125 +f 312/1125/1125 813/1124/1124 814/1126/1126 +f 312/1125/1125 814/1126/1126 313/1127/1127 +f 313/1127/1127 814/1126/1126 815/1128/1128 +f 313/1127/1127 815/1128/1128 314/1129/1129 +f 314/1129/1129 815/1128/1128 816/1130/1130 +f 314/1129/1129 816/1130/1130 315/1131/1131 +f 315/1131/1131 816/1130/1130 817/1132/1132 +f 315/1131/1131 817/1132/1132 316/1133/1133 +f 316/1133/1133 817/1132/1132 818/1134/1134 +f 316/1133/1133 818/1134/1134 317/1135/1135 +f 317/1135/1135 818/1134/1134 819/1136/1136 +f 317/1135/1135 819/1136/1136 318/1137/1137 +f 318/1137/1137 819/1136/1136 820/1138/1138 +f 318/1137/1137 820/1138/1138 319/1139/1139 +f 319/1139/1139 820/1138/1138 821/1140/1140 +f 319/1139/1139 821/1140/1140 320/1141/1141 +f 320/1141/1141 821/1140/1140 822/1142/1142 +f 320/1141/1141 822/1142/1142 321/1143/1143 +f 321/1143/1143 822/1142/1142 823/1144/1144 +f 321/1143/1143 823/1144/1144 322/1145/1145 +f 322/1145/1145 823/1144/1144 824/1146/1146 +f 322/1145/1145 824/1146/1146 323/1147/1147 +f 323/1147/1147 824/1146/1146 825/1148/1148 +f 323/1147/1147 825/1148/1148 324/1149/1149 +f 324/1149/1149 825/1148/1148 826/1150/1150 +f 324/1149/1149 826/1150/1150 325/1151/1151 +f 325/1151/1151 826/1150/1150 827/1152/1152 +f 325/1151/1151 827/1152/1152 326/1153/1153 +f 326/1153/1153 827/1152/1152 828/1154/1154 +f 326/1153/1153 828/1154/1154 327/1155/1155 +f 327/1155/1155 828/1154/1154 829/1156/1156 +f 327/1155/1155 829/1156/1156 328/1157/1157 +f 328/1157/1157 829/1156/1156 830/1158/1158 +f 328/1157/1157 830/1158/1158 329/1159/1159 +f 329/1159/1159 830/1158/1158 831/1160/1160 +f 329/1159/1159 831/1160/1160 330/1161/1161 +f 330/1161/1161 831/1160/1160 832/1162/1162 +f 330/1161/1161 832/1162/1162 331/1163/1163 +f 331/1163/1163 832/1162/1162 833/1164/1164 +f 331/1163/1163 833/1164/1164 332/1165/1165 +f 332/1165/1165 833/1164/1164 834/1166/1166 +f 332/1165/1165 834/1166/1166 333/1167/1167 +f 333/1167/1167 834/1166/1166 835/1168/1168 +f 333/1167/1167 835/1168/1168 334/1169/1169 +f 334/1169/1169 835/1168/1168 836/1170/1170 +f 334/1169/1169 836/1170/1170 335/1171/1171 +f 335/1171/1171 836/1170/1170 837/1172/1172 +f 335/1171/1171 837/1172/1172 336/1173/1173 +f 336/1173/1173 837/1172/1172 838/1174/1174 +f 336/1173/1173 838/1174/1174 337/1175/1175 +f 337/1175/1175 838/1174/1174 839/1176/1176 +f 337/1175/1175 839/1176/1176 338/1177/1177 +f 338/1177/1177 839/1176/1176 840/1178/1178 +f 338/1177/1177 840/1178/1178 339/1179/1179 +f 339/1179/1179 840/1178/1178 841/1180/1180 +f 339/1179/1179 841/1180/1180 340/1181/1181 +f 340/1181/1181 841/1180/1180 842/1182/1182 +f 340/1181/1181 842/1182/1182 341/1183/1183 +f 341/1183/1183 842/1182/1182 843/1184/1184 +f 341/1183/1183 843/1184/1184 342/1185/1185 +f 342/1185/1185 843/1184/1184 844/1186/1186 +f 342/1185/1185 844/1186/1186 343/1187/1187 +f 343/1187/1187 844/1186/1186 845/1188/1188 +f 343/1187/1187 845/1188/1188 344/1189/1189 +f 344/1189/1189 845/1188/1188 846/1190/1190 +f 344/1189/1189 846/1190/1190 345/1191/1191 +f 345/1191/1191 846/1190/1190 847/1192/1192 +f 345/1191/1191 847/1192/1192 346/1193/1193 +f 346/1193/1193 847/1192/1192 848/1194/1194 +f 346/1193/1193 848/1194/1194 347/1195/1195 +f 347/1195/1195 848/1194/1194 849/1196/1196 +f 347/1195/1195 849/1196/1196 348/1197/1197 +f 348/1197/1197 849/1196/1196 850/1198/1198 +f 348/1197/1197 850/1198/1198 349/1199/1199 +f 349/1199/1199 850/1198/1198 851/1200/1200 +f 349/1199/1199 851/1200/1200 350/1201/1201 +f 350/1201/1201 851/1200/1200 852/1202/1202 +f 350/1201/1201 852/1202/1202 351/1203/1203 +f 351/1203/1203 852/1202/1202 853/1204/1204 +f 351/1203/1203 853/1204/1204 352/1205/1205 +f 352/1205/1205 853/1204/1204 854/1206/1206 +f 352/1205/1205 854/1206/1206 353/1207/1207 +f 353/1207/1207 854/1206/1206 855/1208/1208 +f 353/1207/1207 855/1208/1208 354/1209/1209 +f 354/1209/1209 855/1208/1208 856/1210/1210 +f 354/1209/1209 856/1210/1210 355/1211/1211 +f 355/1211/1211 856/1210/1210 857/1212/1212 +f 355/1211/1211 857/1212/1212 356/1213/1213 +f 356/1213/1213 857/1212/1212 858/1214/1214 +f 356/1213/1213 858/1214/1214 357/1215/1215 +f 357/1215/1215 858/1214/1214 859/1216/1216 +f 357/1215/1215 859/1216/1216 358/1217/1217 +f 358/1217/1217 859/1216/1216 860/1218/1218 +f 358/1217/1217 860/1218/1218 359/1219/1219 +f 359/1219/1219 860/1218/1218 861/1220/1220 +f 359/1219/1219 861/1220/1220 360/1221/1221 +f 360/1221/1221 861/1220/1220 862/1222/1222 +f 360/1221/1221 862/1222/1222 361/1223/1223 +f 361/1223/1223 862/1222/1222 863/1224/1224 +f 361/1223/1223 863/1224/1224 362/1225/1225 +f 362/1225/1225 863/1224/1224 864/1226/1226 +f 362/1225/1225 864/1226/1226 363/1227/1227 +f 363/1227/1227 864/1226/1226 865/1228/1228 +f 363/1227/1227 865/1228/1228 364/1229/1229 +f 364/1229/1229 865/1228/1228 866/1230/1230 +f 364/1229/1229 866/1230/1230 365/1231/1231 +f 365/1231/1231 866/1230/1230 867/1232/1232 +f 365/1231/1231 867/1232/1232 366/1233/1233 +f 366/1233/1233 867/1232/1232 868/1234/1234 +f 366/1233/1233 868/1234/1234 367/1235/1235 +f 367/1235/1235 868/1234/1234 869/1236/1236 +f 367/1235/1235 869/1236/1236 368/1237/1237 +f 368/1237/1237 869/1236/1236 870/1238/1238 +f 368/1237/1237 870/1238/1238 369/1239/1239 +f 369/1239/1239 870/1238/1238 871/1240/1240 +f 369/1239/1239 871/1240/1240 370/1241/1241 +f 370/1241/1241 871/1240/1240 872/1242/1242 +f 370/1241/1241 872/1242/1242 371/1243/1243 +f 371/1243/1243 872/1242/1242 873/1244/1244 +f 371/1243/1243 873/1244/1244 372/1245/1245 +f 372/1245/1245 873/1244/1244 874/1246/1246 +f 372/1245/1245 874/1246/1246 373/1247/1247 +f 373/1247/1247 874/1246/1246 875/1248/1248 +f 373/1247/1247 875/1248/1248 374/1249/1249 +f 374/1249/1249 875/1248/1248 876/1250/1250 +f 374/1249/1249 876/1250/1250 375/1251/1251 +f 375/1251/1251 876/1250/1250 877/1252/1252 +f 375/1251/1251 877/1252/1252 376/1253/1253 +f 376/1253/1253 877/1252/1252 878/1254/1254 +f 376/1253/1253 878/1254/1254 377/1255/1255 +f 377/1255/1255 878/1254/1254 879/1256/1256 +f 377/1255/1255 879/1256/1256 378/1257/1257 +f 378/1257/1257 879/1256/1256 880/1258/1258 +f 378/1257/1257 880/1258/1258 379/1259/1259 +f 379/1259/1259 880/1258/1258 881/1260/1260 +f 379/1259/1259 881/1260/1260 380/1261/1261 +f 380/1261/1261 881/1260/1260 882/1262/1262 +f 380/1261/1261 882/1262/1262 381/1263/1263 +f 381/1263/1263 882/1262/1262 883/1264/1264 +f 381/1263/1263 883/1264/1264 382/1265/1265 +f 382/1265/1265 883/1264/1264 884/1266/1266 +f 382/1265/1265 884/1266/1266 383/1267/1267 +f 383/1267/1267 884/1266/1266 885/1268/1268 +f 383/1267/1267 885/1268/1268 384/1269/1269 +f 384/1269/1269 885/1268/1268 886/1270/1270 +f 384/1269/1269 886/1270/1270 385/1271/1271 +f 385/1271/1271 886/1270/1270 887/1272/1272 +f 385/1271/1271 887/1272/1272 386/1273/1273 +f 386/1273/1273 887/1272/1272 888/1274/1274 +f 386/1273/1273 888/1274/1274 387/1275/1275 +f 387/1275/1275 888/1274/1274 889/1276/1276 +f 387/1275/1275 889/1276/1276 388/1277/1277 +f 388/1277/1277 889/1276/1276 890/1278/1278 +f 388/1277/1277 890/1278/1278 389/1279/1279 +f 389/1279/1279 890/1278/1278 891/1280/1280 +f 389/1279/1279 891/1280/1280 390/1281/1281 +f 390/1281/1281 891/1280/1280 892/1282/1282 +f 390/1281/1281 892/1282/1282 391/1283/1283 +f 391/1283/1283 892/1282/1282 893/1284/1284 +f 391/1283/1283 893/1284/1284 392/1285/1285 +f 392/1285/1285 893/1284/1284 894/1286/1286 +f 392/1285/1285 894/1286/1286 393/1287/1287 +f 393/1287/1287 894/1286/1286 895/1288/1288 +f 393/1287/1287 895/1288/1288 394/1289/1289 +f 394/1289/1289 895/1288/1288 896/1290/1290 +f 394/1289/1289 896/1290/1290 395/1291/1291 +f 395/1291/1291 896/1290/1290 897/1292/1292 +f 395/1291/1291 897/1292/1292 396/1293/1293 +f 396/1293/1293 897/1292/1292 898/1294/1294 +f 396/1293/1293 898/1294/1294 397/1295/1295 +f 397/1295/1295 898/1294/1294 899/1296/1296 +f 397/1295/1295 899/1296/1296 398/1297/1297 +f 398/1297/1297 899/1296/1296 900/1298/1298 +f 398/1297/1297 900/1298/1298 399/1299/1299 +f 399/1299/1299 900/1298/1298 901/1300/1300 +f 399/1299/1299 901/1300/1300 400/1301/1301 +f 400/1301/1301 901/1300/1300 902/1302/1302 +f 400/1301/1301 902/1302/1302 401/1303/1303 +f 401/1303/1303 902/1302/1302 903/1304/1304 +f 401/1303/1303 903/1304/1304 402/1305/1305 +f 402/1305/1305 903/1304/1304 904/1306/1306 +f 402/1305/1305 904/1306/1306 403/1307/1307 +f 403/1307/1307 904/1306/1306 905/1308/1308 +f 403/1307/1307 905/1308/1308 404/1309/1309 +f 404/1309/1309 905/1308/1308 906/1310/1310 +f 404/1309/1309 906/1310/1310 405/1311/1311 +f 405/1311/1311 906/1310/1310 907/1312/1312 +f 405/1311/1311 907/1312/1312 406/1313/1313 +f 406/1313/1313 907/1312/1312 908/1314/1314 +f 406/1313/1313 908/1314/1314 407/1315/1315 +f 407/1315/1315 908/1314/1314 909/1316/1316 +f 407/1315/1315 909/1316/1316 408/1317/1317 +f 408/1317/1317 909/1316/1316 910/1318/1318 +f 408/1317/1317 910/1318/1318 409/1319/1319 +f 409/1319/1319 910/1318/1318 911/1320/1320 +f 409/1319/1319 911/1320/1320 410/1321/1321 +f 410/1321/1321 911/1320/1320 912/1322/1322 +f 410/1321/1321 912/1322/1322 411/1323/1323 +f 411/1323/1323 912/1322/1322 913/1324/1324 +f 411/1323/1323 913/1324/1324 412/1325/1325 +f 412/1325/1325 913/1324/1324 914/1326/1326 +f 412/1325/1325 914/1326/1326 413/1327/1327 +f 413/1327/1327 914/1326/1326 915/1328/1328 +f 413/1327/1327 915/1328/1328 414/1329/1329 +f 414/1329/1329 915/1328/1328 916/1330/1330 +f 414/1329/1329 916/1330/1330 415/1331/1331 +f 415/1331/1331 916/1330/1330 917/1332/1332 +f 415/1331/1331 917/1332/1332 416/1333/1333 +f 416/1333/1333 917/1332/1332 918/1334/1334 +f 416/1333/1333 918/1334/1334 417/1335/1335 +f 417/1335/1335 918/1334/1334 919/1336/1336 +f 417/1335/1335 919/1336/1336 418/1337/1337 +f 418/1337/1337 919/1336/1336 920/1338/1338 +f 418/1337/1337 920/1338/1338 419/1339/1339 +f 419/1339/1339 920/1338/1338 921/1340/1340 +f 419/1339/1339 921/1340/1340 420/1341/1341 +f 420/1341/1341 921/1340/1340 922/1342/1342 +f 420/1341/1341 922/1342/1342 421/1343/1343 +f 421/1343/1343 922/1342/1342 923/1344/1344 +f 421/1343/1343 923/1344/1344 422/1345/1345 +f 422/1345/1345 923/1344/1344 924/1346/1346 +f 422/1345/1345 924/1346/1346 423/1347/1347 +f 423/1347/1347 924/1346/1346 925/1348/1348 +f 423/1347/1347 925/1348/1348 424/1349/1349 +f 424/1349/1349 925/1348/1348 926/1350/1350 +f 424/1349/1349 926/1350/1350 425/1351/1351 +f 425/1351/1351 926/1350/1350 927/1352/1352 +f 425/1351/1351 927/1352/1352 426/1353/1353 +f 426/1353/1353 927/1352/1352 928/1354/1354 +f 426/1353/1353 928/1354/1354 427/1355/1355 +f 427/1355/1355 928/1354/1354 929/1356/1356 +f 427/1355/1355 929/1356/1356 428/1357/1357 +f 428/1357/1357 929/1356/1356 930/1358/1358 +f 428/1357/1357 930/1358/1358 429/1359/1359 +f 429/1359/1359 930/1358/1358 931/1360/1360 +f 429/1359/1359 931/1360/1360 430/1361/1361 +f 430/1361/1361 931/1360/1360 932/1362/1362 +f 430/1361/1361 932/1362/1362 431/1363/1363 +f 431/1363/1363 932/1362/1362 933/1364/1364 +f 431/1363/1363 933/1364/1364 432/1365/1365 +f 432/1365/1365 933/1364/1364 934/1366/1366 +f 432/1365/1365 934/1366/1366 433/1367/1367 +f 433/1367/1367 934/1366/1366 935/1368/1368 +f 433/1367/1367 935/1368/1368 434/1369/1369 +f 434/1369/1369 935/1368/1368 936/1370/1370 +f 434/1369/1369 936/1370/1370 435/1371/1371 +f 435/1371/1371 936/1370/1370 937/1372/1372 +f 435/1371/1371 937/1372/1372 436/1373/1373 +f 436/1373/1373 937/1372/1372 938/1374/1374 +f 436/1373/1373 938/1374/1374 437/1375/1375 +f 437/1375/1375 938/1374/1374 939/1376/1376 +f 437/1375/1375 939/1376/1376 438/1377/1377 +f 438/1377/1377 939/1376/1376 940/1378/1378 +f 438/1377/1377 940/1378/1378 439/1379/1379 +f 439/1379/1379 940/1378/1378 941/1380/1380 +f 439/1379/1379 941/1380/1380 440/1381/1381 +f 440/1381/1381 941/1380/1380 942/1382/1382 +f 440/1381/1381 942/1382/1382 441/1383/1383 +f 441/1383/1383 942/1382/1382 943/1384/1384 +f 441/1383/1383 943/1384/1384 442/1385/1385 +f 442/1385/1385 943/1384/1384 944/1386/1386 +f 442/1385/1385 944/1386/1386 443/1387/1387 +f 443/1387/1387 944/1386/1386 945/1388/1388 +f 443/1387/1387 945/1388/1388 444/1389/1389 +f 444/1389/1389 945/1388/1388 946/1390/1390 +f 444/1389/1389 946/1390/1390 445/1391/1391 +f 445/1391/1391 946/1390/1390 947/1392/1392 +f 445/1391/1391 947/1392/1392 446/1393/1393 +f 446/1393/1393 947/1392/1392 948/1394/1394 +f 446/1393/1393 948/1394/1394 447/1395/1395 +f 447/1395/1395 948/1394/1394 949/1396/1396 +f 447/1395/1395 949/1396/1396 448/1397/1397 +f 448/1397/1397 949/1396/1396 950/1398/1398 +f 448/1397/1397 950/1398/1398 449/1399/1399 +f 449/1399/1399 950/1398/1398 951/1400/1400 +f 449/1399/1399 951/1400/1400 450/1401/1401 +f 450/1401/1401 951/1400/1400 952/1402/1402 +f 450/1401/1401 952/1402/1402 451/1403/1403 +f 451/1403/1403 952/1402/1402 953/1404/1404 +f 451/1403/1403 953/1404/1404 452/1405/1405 +f 452/1405/1405 953/1404/1404 954/1406/1406 +f 452/1405/1405 954/1406/1406 453/1407/1407 +f 453/1407/1407 954/1406/1406 955/1408/1408 +f 453/1407/1407 955/1408/1408 454/1409/1409 +f 454/1409/1409 955/1408/1408 956/1410/1410 +f 454/1409/1409 956/1410/1410 455/1411/1411 +f 455/1411/1411 956/1410/1410 957/1412/1412 +f 455/1411/1411 957/1412/1412 456/1413/1413 +f 456/1413/1413 957/1412/1412 958/1414/1414 +f 456/1413/1413 958/1414/1414 457/1415/1415 +f 457/1415/1415 958/1414/1414 959/1416/1416 +f 457/1415/1415 959/1416/1416 458/1417/1417 +f 458/1417/1417 959/1416/1416 960/1418/1418 +f 458/1417/1417 960/1418/1418 459/1419/1419 +f 459/1419/1419 960/1418/1418 961/1420/1420 +f 459/1419/1419 961/1420/1420 460/1421/1421 +f 460/1421/1421 961/1420/1420 962/1422/1422 +f 460/1421/1421 962/1422/1422 461/1423/1423 +f 461/1423/1423 962/1422/1422 963/1424/1424 +f 461/1423/1423 963/1424/1424 462/1425/1425 +f 462/1425/1425 963/1424/1424 964/1426/1426 +f 462/1425/1425 964/1426/1426 463/1427/1427 +f 463/1427/1427 964/1426/1426 965/1428/1428 +f 463/1427/1427 965/1428/1428 464/1429/1429 +f 464/1429/1429 965/1428/1428 966/1430/1430 +f 464/1429/1429 966/1430/1430 465/1431/1431 +f 465/1431/1431 966/1430/1430 967/1432/1432 +f 465/1431/1431 967/1432/1432 466/1433/1433 +f 466/1433/1433 967/1432/1432 968/1434/1434 +f 466/1433/1433 968/1434/1434 467/1435/1435 +f 467/1435/1435 968/1434/1434 969/1436/1436 +f 467/1435/1435 969/1436/1436 468/1437/1437 +f 468/1437/1437 969/1436/1436 970/1438/1438 +f 468/1437/1437 970/1438/1438 469/1439/1439 +f 469/1439/1439 970/1438/1438 971/1440/1440 +f 469/1439/1439 971/1440/1440 470/1441/1441 +f 470/1441/1441 971/1440/1440 972/1442/1442 +f 470/1441/1441 972/1442/1442 471/1443/1443 +f 471/1443/1443 972/1442/1442 973/1444/1444 +f 471/1443/1443 973/1444/1444 472/1445/1445 +f 472/1445/1445 973/1444/1444 974/1446/1446 +f 472/1445/1445 974/1446/1446 473/1447/1447 +f 473/1447/1447 974/1446/1446 975/1448/1448 +f 473/1447/1447 975/1448/1448 474/1449/1449 +f 474/1449/1449 975/1448/1448 976/1450/1450 +f 474/1449/1449 976/1450/1450 475/1451/1451 +f 475/1451/1451 976/1450/1450 977/1452/1452 +f 475/1451/1451 977/1452/1452 476/1453/1453 +f 476/1453/1453 977/1452/1452 978/1454/1454 +f 476/1453/1453 978/1454/1454 477/1455/1455 +f 477/1455/1455 978/1454/1454 979/1456/1456 +f 477/1455/1455 979/1456/1456 478/1457/1457 +f 478/1457/1457 979/1456/1456 980/1458/1458 +f 478/1457/1457 980/1458/1458 479/1459/1459 +f 479/1459/1459 980/1458/1458 981/1460/1460 +f 479/1459/1459 981/1460/1460 480/1461/1461 +f 480/1461/1461 981/1460/1460 982/1462/1462 +f 480/1461/1461 982/1462/1462 481/1463/1463 +f 481/1463/1463 982/1462/1462 983/1464/1464 +f 481/1463/1463 983/1464/1464 482/1465/1465 +f 482/1465/1465 983/1464/1464 984/1466/1466 +f 482/1465/1465 984/1466/1466 483/1467/1467 +f 483/1467/1467 984/1466/1466 985/1468/1468 +f 483/1467/1467 985/1468/1468 484/1469/1469 +f 484/1469/1469 985/1468/1468 986/1470/1470 +f 484/1469/1469 986/1470/1470 485/1471/1471 +f 485/1471/1471 986/1470/1470 987/1472/1472 +f 485/1471/1471 987/1472/1472 486/1473/1473 +f 486/1473/1473 987/1472/1472 988/1474/1474 +f 486/1473/1473 988/1474/1474 487/1475/1475 +f 487/1475/1475 988/1474/1474 989/1476/1476 +f 487/1475/1475 989/1476/1476 488/1477/1477 +f 488/1477/1477 989/1476/1476 990/1478/1478 +f 488/1477/1477 990/1478/1478 489/1479/1479 +f 489/1479/1479 990/1478/1478 991/1480/1480 +f 489/1479/1479 991/1480/1480 490/1481/1481 +f 490/1481/1481 991/1480/1480 992/1482/1482 +f 490/1481/1481 992/1482/1482 491/1483/1483 +f 491/1483/1483 992/1482/1482 993/1484/1484 +f 491/1483/1483 993/1484/1484 492/1485/1485 +f 492/1485/1485 993/1484/1484 994/1486/1486 +f 492/1485/1485 994/1486/1486 493/1487/1487 +f 493/1487/1487 994/1486/1486 995/1488/1488 +f 493/1487/1487 995/1488/1488 494/1489/1489 +f 494/1489/1489 995/1488/1488 996/1490/1490 +f 494/1489/1489 996/1490/1490 495/1491/1491 +f 495/1491/1491 996/1490/1490 997/1492/1492 +f 495/1491/1491 997/1492/1492 496/1493/1493 +f 496/1493/1493 997/1492/1492 998/1494/1494 +f 496/1493/1493 998/1494/1494 497/1495/1495 +f 497/1495/1495 998/1494/1494 999/1496/1496 +f 497/1495/1495 999/1496/1496 498/1497/1497 +f 498/1497/1497 999/1496/1496 1000/1498/1498 +f 498/1497/1497 1000/1498/1498 499/1499/1499 +f 499/1499/1499 1000/1498/1498 1001/1500/1500 +f 499/1499/1499 1001/1500/1500 500/1501/1501 +f 500/1501/1501 1001/1500/1500 1002/1502/1502 +f 500/1501/1501 1002/1502/1502 501/1503/1503 +f 501/1503/1503 1002/1502/1502 502/1504/502 +f 501/1503/1503 502/1504/502 1/1505/504 +f 1002/1506/1504 526/1507/1505 502/1508/1506 +f 502/1508/1506 526/1507/1505 525/1509/1507 +f 502/1508/1506 525/1509/1507 503/1510/1508 +f 503/1510/1508 525/1509/1507 524/1511/1509 +f 503/1510/1508 524/1511/1509 523/1512/1510 +f 1001/1513/1511 528/1514/1512 1002/1506/1504 +f 1002/1506/1504 528/1514/1512 527/1515/1513 +f 1002/1506/1504 527/1515/1513 526/1507/1505 +f 1001/1513/1511 1000/1516/1514 528/1514/1512 +f 528/1514/1512 1000/1516/1514 529/1517/1515 +f 529/1517/1515 1000/1516/1514 530/1518/1516 +f 530/1518/1516 1000/1516/1514 999/1519/1517 +f 530/1518/1516 999/1519/1517 531/1520/1518 +f 531/1520/1518 999/1519/1517 549/1521/1519 +f 531/1520/1518 549/1521/1519 548/1522/1520 +f 999/1519/1517 998/1523/1521 549/1521/1519 +f 549/1521/1519 998/1523/1521 550/1524/1522 +f 550/1524/1522 998/1523/1521 551/1525/1523 +f 551/1525/1523 998/1523/1521 997/1526/1524 +f 551/1525/1523 997/1526/1524 552/1527/1525 +f 552/1527/1525 997/1526/1524 996/1528/1526 +f 552/1527/1525 996/1528/1526 553/1529/1527 +f 553/1529/1527 996/1528/1526 554/1530/1528 +f 554/1530/1528 996/1528/1526 995/1531/1529 +f 554/1530/1528 995/1531/1529 555/1532/1530 +f 555/1532/1530 995/1531/1529 994/1533/1531 +f 555/1532/1530 994/1533/1531 556/1534/1532 +f 556/1534/1532 994/1533/1531 557/1535/1533 +f 557/1535/1533 994/1533/1531 993/1536/1534 +f 557/1535/1533 993/1536/1534 558/1537/1535 +f 558/1537/1535 993/1536/1534 930/1538/1536 +f 558/1537/1535 930/1538/1536 559/1539/1537 +f 559/1539/1537 930/1538/1536 560/1540/1538 +f 560/1540/1538 930/1538/1536 561/1541/1539 +f 561/1541/1539 930/1538/1536 562/1542/1540 +f 562/1542/1540 930/1538/1536 563/1543/1541 +f 563/1543/1541 930/1538/1536 564/1544/1542 +f 564/1544/1542 930/1538/1536 565/1545/1543 +f 565/1545/1543 930/1538/1536 574/1546/1544 +f 565/1545/1543 574/1546/1544 566/1547/1545 +f 566/1547/1545 574/1546/1544 567/1548/1546 +f 567/1548/1546 574/1546/1544 573/1549/1547 +f 567/1548/1546 573/1549/1547 568/1550/1548 +f 568/1550/1548 573/1549/1547 569/1551/1549 +f 569/1551/1549 573/1549/1547 570/1552/1550 +f 570/1552/1550 573/1549/1547 572/1553/1551 +f 570/1552/1550 572/1553/1551 571/1554/1552 +f 993/1536/1534 992/1555/1553 930/1538/1536 +f 930/1538/1536 992/1555/1553 991/1556/1554 +f 930/1538/1536 991/1556/1554 990/1557/1555 +f 990/1557/1555 989/1558/1556 930/1538/1536 +f 930/1538/1536 989/1558/1556 988/1559/1557 +f 930/1538/1536 988/1559/1557 987/1560/1558 +f 930/1538/1536 987/1560/1558 931/1561/1559 +f 931/1561/1559 987/1560/1558 986/1562/1560 +f 931/1561/1559 986/1562/1560 932/1563/1561 +f 932/1563/1561 986/1562/1560 985/1564/1562 +f 932/1563/1561 985/1564/1562 933/1565/1563 +f 933/1565/1563 985/1564/1562 984/1566/1564 +f 933/1565/1563 984/1566/1564 934/1567/1565 +f 934/1567/1565 984/1566/1564 983/1568/1566 +f 934/1567/1565 983/1568/1566 935/1569/1567 +f 935/1569/1567 983/1568/1566 936/1570/1568 +f 936/1570/1568 983/1568/1566 982/1571/1569 +f 936/1570/1568 982/1571/1569 937/1572/1570 +f 937/1572/1570 982/1571/1569 981/1573/1571 +f 937/1572/1570 981/1573/1571 938/1574/1572 +f 938/1574/1572 981/1573/1571 939/1575/1573 +f 939/1575/1573 981/1573/1571 980/1576/1574 +f 939/1575/1573 980/1576/1574 940/1577/1575 +f 940/1577/1575 980/1576/1574 941/1578/1576 +f 941/1578/1576 980/1576/1574 979/1579/1577 +f 941/1578/1576 979/1579/1577 942/1580/1578 +f 942/1580/1578 979/1579/1577 978/1581/1579 +f 942/1580/1578 978/1581/1579 943/1582/1580 +f 943/1582/1580 978/1581/1579 977/1583/1581 +f 943/1582/1580 977/1583/1581 976/1584/1582 +f 943/1582/1580 976/1584/1582 944/1585/1583 +f 944/1585/1583 976/1584/1582 975/1586/1584 +f 944/1585/1583 975/1586/1584 974/1587/1585 +f 944/1585/1583 974/1587/1585 945/1588/1586 +f 945/1588/1586 974/1587/1585 973/1589/1587 +f 945/1588/1586 973/1589/1587 946/1590/1588 +f 946/1590/1588 973/1589/1587 972/1591/1589 +f 946/1590/1588 972/1591/1589 971/1592/1590 +f 946/1590/1588 971/1592/1590 947/1593/1591 +f 947/1593/1591 971/1592/1590 970/1594/1592 +f 947/1593/1591 970/1594/1592 948/1595/1593 +f 948/1595/1593 970/1594/1592 969/1596/1594 +f 948/1595/1593 969/1596/1594 968/1597/1595 +f 948/1595/1593 968/1597/1595 949/1598/1596 +f 949/1598/1596 968/1597/1595 967/1599/1597 +f 949/1598/1596 967/1599/1597 966/1600/1598 +f 949/1598/1596 966/1600/1598 950/1601/1599 +f 950/1601/1599 966/1600/1598 965/1602/1600 +f 950/1601/1599 965/1602/1600 964/1603/1601 +f 950/1601/1599 964/1603/1601 951/1604/1602 +f 951/1604/1602 964/1603/1601 963/1605/1603 +f 951/1604/1602 963/1605/1603 962/1606/1604 +f 962/1606/1604 961/1607/1605 951/1604/1602 +f 951/1604/1602 961/1607/1605 952/1608/1606 +f 952/1608/1606 961/1607/1605 960/1609/1607 +f 952/1608/1606 960/1609/1607 959/1610/1608 +f 959/1610/1608 958/1611/1609 952/1608/1606 +f 952/1608/1606 958/1611/1609 957/1612/1610 +f 952/1608/1606 957/1612/1610 953/1613/1611 +f 953/1613/1611 957/1612/1610 954/1614/1612 +f 954/1614/1612 957/1612/1610 955/1615/1613 +f 955/1615/1613 957/1612/1610 956/1616/1614 +f 574/1546/1544 930/1538/1536 575/1617/1615 +f 575/1617/1615 930/1538/1536 929/1618/1616 +f 575/1617/1615 929/1618/1616 928/1619/1617 +f 928/1619/1617 927/1620/1618 575/1617/1615 +f 575/1617/1615 927/1620/1618 926/1621/1619 +f 575/1617/1615 926/1621/1619 740/1622/1620 +f 740/1622/1620 926/1621/1619 838/1623/1621 +f 740/1622/1620 838/1623/1621 741/1624/1622 +f 741/1624/1622 838/1623/1621 837/1625/1623 +f 741/1624/1622 837/1625/1623 742/1626/1624 +f 742/1626/1624 837/1625/1623 836/1627/1625 +f 742/1626/1624 836/1627/1625 743/1628/1626 +f 743/1628/1626 836/1627/1625 835/1629/1627 +f 743/1628/1626 835/1629/1627 744/1630/1628 +f 744/1630/1628 835/1629/1627 834/1631/1629 +f 744/1630/1628 834/1631/1629 745/1632/1630 +f 745/1632/1630 834/1631/1629 833/1633/1631 +f 745/1632/1630 833/1633/1631 832/1634/1632 +f 838/1623/1621 926/1621/1619 839/1635/1633 +f 839/1635/1633 926/1621/1619 925/1636/1634 +f 839/1635/1633 925/1636/1634 840/1637/1635 +f 840/1637/1635 925/1636/1634 924/1638/1636 +f 840/1637/1635 924/1638/1636 841/1639/1637 +f 841/1639/1637 924/1638/1636 923/1640/1638 +f 841/1639/1637 923/1640/1638 842/1641/1639 +f 842/1641/1639 923/1640/1638 843/1642/1640 +f 843/1642/1640 923/1640/1638 922/1643/1641 +f 843/1642/1640 922/1643/1641 844/1644/1642 +f 844/1644/1642 922/1643/1641 921/1645/1643 +f 844/1644/1642 921/1645/1643 845/1646/1644 +f 845/1646/1644 921/1645/1643 920/1647/1645 +f 845/1646/1644 920/1647/1645 846/1648/1646 +f 846/1648/1646 920/1647/1645 919/1649/1647 +f 846/1648/1646 919/1649/1647 847/1650/1648 +f 847/1650/1648 919/1649/1647 918/1651/1649 +f 847/1650/1648 918/1651/1649 848/1652/1650 +f 848/1652/1650 918/1651/1649 849/1653/1651 +f 849/1653/1651 918/1651/1649 917/1654/1652 +f 849/1653/1651 917/1654/1652 850/1655/1653 +f 850/1655/1653 917/1654/1652 916/1656/1654 +f 850/1655/1653 916/1656/1654 851/1657/1655 +f 851/1657/1655 916/1656/1654 852/1658/1656 +f 852/1658/1656 916/1656/1654 915/1659/1657 +f 852/1658/1656 915/1659/1657 853/1660/1658 +f 853/1660/1658 915/1659/1657 914/1661/1659 +f 853/1660/1658 914/1661/1659 854/1662/1660 +f 854/1662/1660 914/1661/1659 855/1663/1661 +f 855/1663/1661 914/1661/1659 913/1664/1662 +f 855/1663/1661 913/1664/1662 856/1665/1663 +f 856/1665/1663 913/1664/1662 857/1666/1664 +f 857/1666/1664 913/1664/1662 912/1667/1665 +f 857/1666/1664 912/1667/1665 858/1668/1666 +f 858/1668/1666 912/1667/1665 859/1669/1667 +f 859/1669/1667 912/1667/1665 911/1670/1668 +f 859/1669/1667 911/1670/1668 860/1671/1669 +f 860/1671/1669 911/1670/1668 861/1672/1670 +f 861/1672/1670 911/1670/1668 910/1673/1671 +f 861/1672/1670 910/1673/1671 862/1674/1672 +f 862/1674/1672 910/1673/1671 909/1675/1673 +f 862/1674/1672 909/1675/1673 863/1676/1674 +f 863/1676/1674 909/1675/1673 908/1677/1675 +f 863/1676/1674 908/1677/1675 864/1678/1676 +f 864/1678/1676 908/1677/1675 865/1679/1677 +f 865/1679/1677 908/1677/1675 907/1680/1678 +f 865/1679/1677 907/1680/1678 866/1681/1679 +f 866/1681/1679 907/1680/1678 906/1682/1680 +f 866/1681/1679 906/1682/1680 867/1683/1681 +f 867/1683/1681 906/1682/1680 905/1684/1682 +f 867/1683/1681 905/1684/1682 868/1685/1683 +f 868/1685/1683 905/1684/1682 904/1686/1684 +f 868/1685/1683 904/1686/1684 869/1687/1685 +f 869/1687/1685 904/1686/1684 903/1688/1686 +f 869/1687/1685 903/1688/1686 870/1689/1687 +f 870/1689/1687 903/1688/1686 902/1690/1688 +f 870/1689/1687 902/1690/1688 871/1691/1689 +f 871/1691/1689 902/1690/1688 872/1692/1690 +f 872/1692/1690 902/1690/1688 901/1693/1691 +f 872/1692/1690 901/1693/1691 873/1694/1692 +f 873/1694/1692 901/1693/1691 900/1695/1693 +f 873/1694/1692 900/1695/1693 874/1696/1694 +f 874/1696/1694 900/1695/1693 899/1697/1695 +f 874/1696/1694 899/1697/1695 875/1698/1696 +f 875/1698/1696 899/1697/1695 876/1699/1697 +f 876/1699/1697 899/1697/1695 898/1700/1698 +f 876/1699/1697 898/1700/1698 877/1701/1699 +f 877/1701/1699 898/1700/1698 897/1702/1700 +f 877/1701/1699 897/1702/1700 878/1703/1701 +f 878/1703/1701 897/1702/1700 879/1704/1702 +f 879/1704/1702 897/1702/1700 896/1705/1703 +f 879/1704/1702 896/1705/1703 880/1706/1704 +f 880/1706/1704 896/1705/1703 881/1707/1705 +f 881/1707/1705 896/1705/1703 895/1708/1706 +f 881/1707/1705 895/1708/1706 882/1709/1707 +f 882/1709/1707 895/1708/1706 883/1710/1708 +f 883/1710/1708 895/1708/1706 894/1711/1709 +f 883/1710/1708 894/1711/1709 884/1712/1710 +f 884/1712/1710 894/1711/1709 885/1713/1711 +f 885/1713/1711 894/1711/1709 886/1714/1712 +f 886/1714/1712 894/1711/1709 893/1715/1713 +f 886/1714/1712 893/1715/1713 887/1716/1714 +f 887/1716/1714 893/1715/1713 888/1717/1715 +f 888/1717/1715 893/1715/1713 889/1718/1716 +f 889/1718/1716 893/1715/1713 892/1719/1717 +f 889/1718/1716 892/1719/1717 891/1720/1718 +f 891/1720/1718 890/1721/1719 889/1718/1716 +f 745/1632/1630 832/1634/1632 746/1722/1720 +f 746/1722/1720 832/1634/1632 831/1723/1721 +f 746/1722/1720 831/1723/1721 830/1724/1722 +f 746/1722/1720 830/1724/1722 747/1725/1723 +f 747/1725/1723 830/1724/1722 829/1726/1724 +f 747/1725/1723 829/1726/1724 748/1727/1725 +f 748/1727/1725 829/1726/1724 828/1728/1726 +f 748/1727/1725 828/1728/1726 749/1729/1727 +f 749/1729/1727 828/1728/1726 827/1730/1728 +f 749/1729/1727 827/1730/1728 750/1731/1729 +f 750/1731/1729 827/1730/1728 751/1732/1730 +f 751/1732/1730 827/1730/1728 826/1733/1731 +f 751/1732/1730 826/1733/1731 752/1734/1732 +f 752/1734/1732 826/1733/1731 825/1735/1733 +f 752/1734/1732 825/1735/1733 753/1736/1734 +f 753/1736/1734 825/1735/1733 824/1737/1735 +f 753/1736/1734 824/1737/1735 754/1738/1736 +f 754/1738/1736 824/1737/1735 823/1739/1737 +f 754/1738/1736 823/1739/1737 755/1740/1738 +f 755/1740/1738 823/1739/1737 756/1741/1739 +f 756/1741/1739 823/1739/1737 822/1742/1740 +f 756/1741/1739 822/1742/1740 757/1743/1741 +f 757/1743/1741 822/1742/1740 821/1744/1742 +f 757/1743/1741 821/1744/1742 758/1745/1743 +f 758/1745/1743 821/1744/1742 820/1746/1744 +f 758/1745/1743 820/1746/1744 759/1747/1745 +f 759/1747/1745 820/1746/1744 760/1748/1746 +f 760/1748/1746 820/1746/1744 819/1749/1747 +f 760/1748/1746 819/1749/1747 761/1750/1748 +f 761/1750/1748 819/1749/1747 818/1751/1749 +f 761/1750/1748 818/1751/1749 762/1752/1750 +f 762/1752/1750 818/1751/1749 817/1753/1751 +f 762/1752/1750 817/1753/1751 763/1754/1752 +f 763/1754/1752 817/1753/1751 816/1755/1753 +f 763/1754/1752 816/1755/1753 815/1756/1754 +f 763/1754/1752 815/1756/1754 764/1757/1755 +f 764/1757/1755 815/1756/1754 814/1758/1756 +f 764/1757/1755 814/1758/1756 765/1759/1757 +f 765/1759/1757 814/1758/1756 813/1760/1758 +f 765/1759/1757 813/1760/1758 766/1761/1759 +f 766/1761/1759 813/1760/1758 812/1762/1760 +f 766/1761/1759 812/1762/1760 767/1763/1761 +f 767/1763/1761 812/1762/1760 768/1764/1762 +f 768/1764/1762 812/1762/1760 811/1765/1763 +f 768/1764/1762 811/1765/1763 769/1766/1764 +f 769/1766/1764 811/1765/1763 810/1767/1765 +f 769/1766/1764 810/1767/1765 770/1768/1766 +f 770/1768/1766 810/1767/1765 809/1769/1767 +f 770/1768/1766 809/1769/1767 771/1770/1768 +f 771/1770/1768 809/1769/1767 808/1771/1769 +f 771/1770/1768 808/1771/1769 772/1772/1770 +f 772/1772/1770 808/1771/1769 773/1773/1771 +f 773/1773/1771 808/1771/1769 807/1774/1772 +f 773/1773/1771 807/1774/1772 774/1775/1773 +f 774/1775/1773 807/1774/1772 806/1776/1774 +f 774/1775/1773 806/1776/1774 775/1777/1775 +f 775/1777/1775 806/1776/1774 776/1778/1776 +f 776/1778/1776 806/1776/1774 805/1779/1777 +f 776/1778/1776 805/1779/1777 777/1780/1778 +f 777/1780/1778 805/1779/1777 778/1781/1779 +f 778/1781/1779 805/1779/1777 804/1782/1780 +f 778/1781/1779 804/1782/1780 779/1783/1781 +f 779/1783/1781 804/1782/1780 803/1784/1782 +f 779/1783/1781 803/1784/1782 802/1785/1783 +f 802/1785/1783 801/1786/1784 779/1783/1781 +f 779/1783/1781 801/1786/1784 800/1787/1785 +f 779/1783/1781 800/1787/1785 799/1788/1786 +f 799/1788/1786 798/1789/1787 779/1783/1781 +f 779/1783/1781 798/1789/1787 797/1790/1788 +f 779/1783/1781 797/1790/1788 796/1791/1789 +f 796/1791/1789 795/1792/1790 779/1783/1781 +f 779/1783/1781 795/1792/1790 794/1793/1791 +f 779/1783/1781 794/1793/1791 793/1794/1792 +f 793/1794/1792 792/1795/1793 779/1783/1781 +f 779/1783/1781 792/1795/1793 791/1796/1794 +f 779/1783/1781 791/1796/1794 790/1797/1795 +f 790/1797/1795 789/1798/1796 779/1783/1781 +f 779/1783/1781 789/1798/1796 788/1799/1797 +f 779/1783/1781 788/1799/1797 787/1800/1798 +f 787/1800/1798 786/1801/1799 779/1783/1781 +f 779/1783/1781 786/1801/1799 785/1802/1800 +f 779/1783/1781 785/1802/1800 784/1803/1801 +f 784/1803/1801 783/1804/1802 779/1783/1781 +f 779/1783/1781 783/1804/1802 780/1805/1803 +f 780/1805/1803 783/1804/1802 781/1806/1804 +f 781/1806/1804 783/1804/1802 782/1807/1805 +f 740/1622/1620 739/1808/1806 575/1617/1615 +f 575/1617/1615 739/1808/1806 738/1809/1807 +f 575/1617/1615 738/1809/1807 737/1810/1808 +f 575/1617/1615 737/1810/1808 651/1811/1809 +f 651/1811/1809 737/1810/1808 736/1812/1810 +f 651/1811/1809 736/1812/1810 652/1813/1811 +f 652/1813/1811 736/1812/1810 735/1814/1812 +f 652/1813/1811 735/1814/1812 653/1815/1813 +f 653/1815/1813 735/1814/1812 734/1816/1814 +f 653/1815/1813 734/1816/1814 733/1817/1815 +f 653/1815/1813 733/1817/1815 654/1818/1816 +f 654/1818/1816 733/1817/1815 732/1819/1817 +f 654/1818/1816 732/1819/1817 731/1820/1818 +f 654/1818/1816 731/1820/1818 655/1821/1819 +f 655/1821/1819 731/1820/1818 730/1822/1820 +f 655/1821/1819 730/1822/1820 656/1823/1821 +f 656/1823/1821 730/1822/1820 729/1824/1822 +f 656/1823/1821 729/1824/1822 657/1825/1823 +f 657/1825/1823 729/1824/1822 658/1826/1824 +f 658/1826/1824 729/1824/1822 728/1827/1825 +f 658/1826/1824 728/1827/1825 659/1828/1826 +f 659/1828/1826 728/1827/1825 660/1829/1827 +f 660/1829/1827 728/1827/1825 727/1830/1828 +f 660/1829/1827 727/1830/1828 661/1831/1829 +f 661/1831/1829 727/1830/1828 662/1832/1830 +f 662/1832/1830 727/1830/1828 726/1833/1831 +f 662/1832/1830 726/1833/1831 663/1834/1832 +f 663/1834/1832 726/1833/1831 725/1835/1833 +f 663/1834/1832 725/1835/1833 664/1836/1834 +f 664/1836/1834 725/1835/1833 665/1837/1835 +f 665/1837/1835 725/1835/1833 724/1838/1836 +f 665/1837/1835 724/1838/1836 666/1839/1837 +f 666/1839/1837 724/1838/1836 723/1840/1838 +f 666/1839/1837 723/1840/1838 667/1841/1839 +f 667/1841/1839 723/1840/1838 722/1842/1840 +f 667/1841/1839 722/1842/1840 668/1843/1841 +f 668/1843/1841 722/1842/1840 721/1844/1842 +f 668/1843/1841 721/1844/1842 669/1845/1843 +f 669/1845/1843 721/1844/1842 720/1846/1844 +f 669/1845/1843 720/1846/1844 670/1847/1845 +f 670/1847/1845 720/1846/1844 719/1848/1846 +f 670/1847/1845 719/1848/1846 671/1849/1847 +f 671/1849/1847 719/1848/1846 672/1850/1848 +f 672/1850/1848 719/1848/1846 718/1851/1849 +f 672/1850/1848 718/1851/1849 673/1852/1850 +f 673/1852/1850 718/1851/1849 717/1853/1851 +f 673/1852/1850 717/1853/1851 674/1854/1852 +f 674/1854/1852 717/1853/1851 675/1855/1853 +f 675/1855/1853 717/1853/1851 716/1856/1854 +f 675/1855/1853 716/1856/1854 676/1857/1855 +f 676/1857/1855 716/1856/1854 677/1858/1856 +f 677/1858/1856 716/1856/1854 715/1859/1857 +f 677/1858/1856 715/1859/1857 678/1860/1858 +f 678/1860/1858 715/1859/1857 714/1861/1859 +f 678/1860/1858 714/1861/1859 679/1862/1860 +f 679/1862/1860 714/1861/1859 680/1863/1861 +f 680/1863/1861 714/1861/1859 713/1864/1862 +f 680/1863/1861 713/1864/1862 681/1865/1863 +f 681/1865/1863 713/1864/1862 712/1866/1864 +f 681/1865/1863 712/1866/1864 682/1867/1865 +f 682/1867/1865 712/1866/1864 711/1868/1866 +f 682/1867/1865 711/1868/1866 683/1869/1867 +f 683/1869/1867 711/1868/1866 684/1870/1868 +f 684/1870/1868 711/1868/1866 710/1871/1869 +f 684/1870/1868 710/1871/1869 685/1872/1870 +f 685/1872/1870 710/1871/1869 709/1873/1871 +f 685/1872/1870 709/1873/1871 686/1874/1872 +f 686/1874/1872 709/1873/1871 687/1875/1873 +f 687/1875/1873 709/1873/1871 708/1876/1874 +f 687/1875/1873 708/1876/1874 688/1877/1875 +f 688/1877/1875 708/1876/1874 689/1878/1876 +f 689/1878/1876 708/1876/1874 707/1879/1877 +f 689/1878/1876 707/1879/1877 690/1880/1878 +f 690/1880/1878 707/1879/1877 691/1881/1879 +f 691/1881/1879 707/1879/1877 706/1882/1880 +f 691/1881/1879 706/1882/1880 692/1883/1881 +f 692/1883/1881 706/1882/1880 693/1884/1882 +f 693/1884/1882 706/1882/1880 705/1885/1883 +f 693/1884/1882 705/1885/1883 694/1886/1884 +f 694/1886/1884 705/1885/1883 695/1887/1885 +f 695/1887/1885 705/1885/1883 696/1888/1886 +f 696/1888/1886 705/1885/1883 704/1889/1887 +f 696/1888/1886 704/1889/1887 697/1890/1888 +f 697/1890/1888 704/1889/1887 698/1891/1889 +f 698/1891/1889 704/1889/1887 699/1892/1890 +f 699/1892/1890 704/1889/1887 703/1893/1891 +f 699/1892/1890 703/1893/1891 702/1894/1892 +f 701/1895/1893 700/1896/1894 702/1894/1892 +f 702/1894/1892 700/1896/1894 699/1892/1890 +f 651/1811/1809 650/1897/1895 575/1617/1615 +f 575/1617/1615 650/1897/1895 649/1898/1896 +f 575/1617/1615 649/1898/1896 648/1899/1897 +f 648/1899/1897 647/1900/1898 575/1617/1615 +f 575/1617/1615 647/1900/1898 576/1901/1899 +f 576/1901/1899 647/1900/1898 646/1902/1900 +f 576/1901/1899 646/1902/1900 645/1903/1901 +f 576/1901/1899 645/1903/1901 577/1904/1902 +f 577/1904/1902 645/1903/1901 644/1905/1903 +f 577/1904/1902 644/1905/1903 578/1906/1904 +f 578/1906/1904 644/1905/1903 643/1907/1905 +f 578/1906/1904 643/1907/1905 579/1908/1906 +f 579/1908/1906 643/1907/1905 642/1909/1907 +f 579/1908/1906 642/1909/1907 641/1910/1908 +f 579/1908/1906 641/1910/1908 580/1911/1909 +f 580/1911/1909 641/1910/1908 640/1912/1910 +f 580/1911/1909 640/1912/1910 639/1913/1911 +f 580/1911/1909 639/1913/1911 581/1914/1912 +f 581/1914/1912 639/1913/1911 638/1915/1913 +f 581/1914/1912 638/1915/1913 637/1916/1914 +f 581/1914/1912 637/1916/1914 582/1917/1915 +f 582/1917/1915 637/1916/1914 636/1918/1916 +f 582/1917/1915 636/1918/1916 583/1919/1917 +f 583/1919/1917 636/1918/1916 635/1920/1918 +f 583/1919/1917 635/1920/1918 584/1921/1919 +f 584/1921/1919 635/1920/1918 634/1922/1920 +f 584/1921/1919 634/1922/1920 585/1923/1921 +f 585/1923/1921 634/1922/1920 633/1924/1922 +f 585/1923/1921 633/1924/1922 586/1925/1923 +f 586/1925/1923 633/1924/1922 632/1926/1924 +f 586/1925/1923 632/1926/1924 631/1927/1925 +f 586/1925/1923 631/1927/1925 587/1928/1926 +f 587/1928/1926 631/1927/1925 630/1929/1927 +f 587/1928/1926 630/1929/1927 588/1930/1928 +f 588/1930/1928 630/1929/1927 629/1931/1929 +f 588/1930/1928 629/1931/1929 589/1932/1930 +f 589/1932/1930 629/1931/1929 628/1933/1931 +f 589/1932/1930 628/1933/1931 590/1934/1932 +f 590/1934/1932 628/1933/1931 627/1935/1933 +f 590/1934/1932 627/1935/1933 591/1936/1934 +f 591/1936/1934 627/1935/1933 626/1937/1935 +f 591/1936/1934 626/1937/1935 592/1938/1936 +f 592/1938/1936 626/1937/1935 625/1939/1937 +f 592/1938/1936 625/1939/1937 593/1940/1938 +f 593/1940/1938 625/1939/1937 624/1941/1939 +f 593/1940/1938 624/1941/1939 594/1942/1940 +f 594/1942/1940 624/1941/1939 623/1943/1941 +f 594/1942/1940 623/1943/1941 595/1944/1942 +f 595/1944/1942 623/1943/1941 622/1945/1943 +f 595/1944/1942 622/1945/1943 596/1946/1944 +f 596/1946/1944 622/1945/1943 621/1947/1945 +f 596/1946/1944 621/1947/1945 597/1948/1946 +f 597/1948/1946 621/1947/1945 620/1949/1947 +f 597/1948/1946 620/1949/1947 598/1950/1948 +f 598/1950/1948 620/1949/1947 619/1951/1949 +f 598/1950/1948 619/1951/1949 599/1952/1950 +f 599/1952/1950 619/1951/1949 618/1953/1951 +f 599/1952/1950 618/1953/1951 600/1954/1952 +f 600/1954/1952 618/1953/1951 617/1955/1953 +f 600/1954/1952 617/1955/1953 601/1956/1954 +f 601/1956/1954 617/1955/1953 602/1957/1955 +f 602/1957/1955 617/1955/1953 616/1958/1956 +f 602/1957/1955 616/1958/1956 603/1959/1957 +f 603/1959/1957 616/1958/1956 615/1960/1958 +f 603/1959/1957 615/1960/1958 604/1961/1959 +f 604/1961/1959 615/1960/1958 614/1962/1960 +f 604/1961/1959 614/1962/1960 605/1963/1961 +f 605/1963/1961 614/1962/1960 613/1964/1962 +f 605/1963/1961 613/1964/1962 606/1965/1963 +f 606/1965/1963 613/1964/1962 612/1966/1964 +f 606/1965/1963 612/1966/1964 607/1967/1965 +f 607/1967/1965 612/1966/1964 608/1968/1966 +f 608/1968/1966 612/1966/1964 611/1969/1967 +f 608/1968/1966 611/1969/1967 609/1970/1968 +f 609/1970/1968 611/1969/1967 610/1971/1969 +f 547/1972/1970 533/1973/1971 548/1522/1520 +f 548/1522/1520 533/1973/1971 532/1974/1972 +f 548/1522/1520 532/1974/1972 531/1520/1518 +f 533/1973/1971 547/1972/1970 534/1975/1973 +f 534/1975/1973 547/1972/1970 546/1976/1974 +f 534/1975/1973 546/1976/1974 535/1977/1975 +f 535/1977/1975 546/1976/1974 536/1978/1976 +f 536/1978/1976 546/1976/1974 545/1979/1977 +f 536/1978/1976 545/1979/1977 537/1980/1978 +f 537/1980/1978 545/1979/1977 538/1981/1979 +f 538/1981/1979 545/1979/1977 539/1982/1980 +f 539/1982/1980 545/1979/1977 544/1983/1981 +f 539/1982/1980 544/1983/1981 543/1984/1982 +f 543/1984/1982 542/1985/1983 539/1982/1980 +f 539/1982/1980 542/1985/1983 540/1986/1984 +f 540/1986/1984 542/1985/1983 541/1987/1985 +f 503/1510/1508 523/1512/1510 504/1988/1986 +f 504/1988/1986 523/1512/1510 522/1989/1987 +f 504/1988/1986 522/1989/1987 521/1990/1988 +f 504/1988/1986 521/1990/1988 505/1991/1989 +f 505/1991/1989 521/1990/1988 520/1992/1990 +f 505/1991/1989 520/1992/1990 506/1993/1991 +f 506/1993/1991 520/1992/1990 519/1994/1992 +f 506/1993/1991 519/1994/1992 507/1995/1993 +f 507/1995/1993 519/1994/1992 518/1996/1994 +f 507/1995/1993 518/1996/1994 508/1997/1995 +f 508/1997/1995 518/1996/1994 517/1998/1996 +f 508/1997/1995 517/1998/1996 509/1999/1997 +f 509/1999/1997 517/1998/1996 510/2000/1998 +f 510/2000/1998 517/1998/1996 516/2001/1999 +f 510/2000/1998 516/2001/1999 511/2002/2000 +f 511/2002/2000 516/2001/1999 515/2003/2001 +f 511/2002/2000 515/2003/2001 512/2004/2002 +f 512/2004/2002 515/2003/2001 514/2005/2003 +f 512/2004/2002 514/2005/2003 513/2006/2004 +# 1002 vertices +# 2006 texture params +# 2004 normals +# 2000 facets + +# 1 groups diff --git a/load/shapes/human.obj b/load/shapes/human.obj new file mode 100644 index 0000000..56ecbd6 --- /dev/null +++ b/load/shapes/human.obj @@ -0,0 +1,11927 @@ +# object LowPolyMan1 + + +v -0.127664 0.162202 -0.094226 +v -0.127866 0.180706 -0.164116 +v -0.053822 0.221397 -0.004874 +v -0.104386 0.189647 -0.046655 +v -0.055820 0.245385 -0.005086 +v -0.135268 0.170529 -0.127130 +v -0.160561 0.237960 -0.136374 +v -0.083722 0.183394 -0.194935 +v -0.141604 0.245196 -0.184671 +v -0.094405 0.253595 -0.236615 +v -0.046628 0.181844 -0.214336 +v -0.047881 0.250794 -0.245129 +v -0.077033 0.305188 -0.000576 +v -0.095955 0.369933 -0.006801 +v -0.035819 0.371779 -0.277163 +v -0.000151 0.362266 -0.262798 +v -0.096206 0.419037 -0.027751 +v -0.000138 0.504277 -0.231505 +v -0.102657 0.481491 -0.236200 +v -0.161780 0.352446 -0.241624 +v -0.075983 0.478499 -0.083736 +v -0.172517 0.320999 -0.082961 +v -0.175138 0.299340 -0.152883 +v -0.569780 0.052245 -0.069255 +v -0.579043 0.034017 -0.093745 +v -0.583876 0.044325 -0.139784 +v -0.582540 0.050346 -0.159254 +v -0.605764 0.064401 -0.157574 +v -0.598158 0.065389 -0.073039 +v -0.606551 0.018701 -0.073197 +v -0.608882 0.018910 -0.093269 +v -0.615445 0.019935 -0.141370 +v -0.631673 0.004379 -0.143862 +v -0.645181 0.024773 -0.077307 +v -0.587846 0.037114 -0.052954 +v -0.605650 0.051361 -0.057089 +v -0.605283 0.022282 -0.066768 +v -0.619012 0.041707 -0.066422 +v -0.608081 0.016486 -0.055349 +v -0.610975 0.003102 -0.018967 +v -0.619929 0.013244 -0.021224 +v -0.613204 0.000313 -0.030857 +v -0.624119 0.007587 -0.029441 +v -0.615533 0.007696 -0.016431 +v -0.612134 0.000798 -0.024764 +v -0.619307 0.001698 -0.030616 +v -0.622540 0.010445 -0.023835 +v -0.577392 0.062075 -0.067108 +v -0.578613 0.042751 -0.060206 +v -0.592515 0.044125 -0.051292 +v -0.601758 0.060094 -0.065938 +v -0.587499 0.027583 -0.069273 +v -0.602834 0.021088 -0.070450 +v -0.592831 0.027122 -0.057239 +v -0.611614 0.057613 -0.076701 +v -0.613969 0.048064 -0.063795 +v -0.617801 0.045717 -0.073049 +v -0.614766 0.030495 -0.073615 +v -0.618097 0.025842 -0.065941 +v -0.618919 0.031670 -0.053069 +v -0.625161 0.019072 -0.055519 +v -0.611633 0.038364 -0.042356 +v -0.616708 0.037184 -0.047777 +v -0.597542 0.027645 -0.040162 +v -0.601920 0.033432 -0.039140 +v -0.600415 0.022838 -0.050245 +v -0.623257 0.019125 -0.039285 +v -0.608086 0.005436 -0.041765 +v -0.618192 0.022908 -0.030772 +v -0.605462 0.012637 -0.029710 +v -0.618926 0.002856 -0.022686 +v -0.584797 0.052608 -0.058609 +v -0.590442 0.026865 -0.063934 +v -0.611851 0.054224 -0.069473 +v -0.612876 0.030250 -0.071431 +v -0.622556 0.010332 -0.041282 +v -0.621314 0.022278 -0.035253 +v -0.610403 0.018225 -0.029155 +v -0.607578 0.005620 -0.036436 +v -0.624696 0.005143 -0.076122 +v -0.627620 0.001564 -0.095100 +v -0.648875 0.021950 -0.092944 +v -0.649464 -0.012644 -0.094099 +v -0.668125 -0.003882 -0.090333 +v -0.665580 -0.003138 -0.074914 +v -0.655518 -0.015386 -0.074509 +v -0.656405 -0.015406 -0.092671 +v -0.686453 -0.032671 -0.086433 +v -0.669195 -0.036845 -0.074794 +v -0.691531 -0.046283 -0.085091 +v -0.690262 -0.045188 -0.076209 +v -0.681022 -0.051090 -0.076483 +v -0.681705 -0.052759 -0.085813 +v -0.692509 -0.046883 -0.080292 +v -0.688870 -0.049273 -0.073985 +v -0.683215 -0.053487 -0.080507 +v -0.689853 -0.051410 -0.086190 +v -0.662191 0.003766 -0.090554 +v -0.633090 0.016008 -0.073213 +v -0.645284 -0.009141 -0.074035 +v -0.658745 0.005398 -0.075549 +v -0.659473 -0.008485 -0.072230 +v -0.664153 -0.008557 -0.093295 +v -0.670469 -0.011716 -0.074775 +v -0.671974 -0.011981 -0.088735 +v -0.658963 -0.022429 -0.074165 +v -0.684264 -0.030804 -0.075032 +v -0.690218 -0.052469 -0.080114 +v -0.652301 -0.001447 -0.072075 +v -0.656665 -0.003573 -0.093968 +v -0.664276 -0.015335 -0.072266 +v -0.667885 -0.017016 -0.092194 +v -0.674315 -0.030024 -0.072748 +v -0.683630 -0.037862 -0.090937 +v -0.652965 0.021462 -0.138987 +v -0.650416 0.021646 -0.100579 +v -0.645152 0.018971 -0.096749 +v -0.640816 -0.007529 -0.123215 +v -0.652278 0.021072 -0.124445 +v -0.652256 0.021078 -0.117648 +v -0.647263 0.017535 -0.122295 +v -0.650973 0.021549 -0.145365 +v -0.648463 0.017314 -0.142895 +v -0.651602 0.023397 -0.158664 +v -0.633994 0.005528 -0.160465 +v -0.670268 -0.002651 -0.096181 +v -0.671306 -0.003026 -0.114796 +v -0.672168 -0.038825 -0.091491 +v -0.688878 -0.033203 -0.109253 +v -0.699929 -0.051434 -0.094956 +v -0.696999 -0.054896 -0.091891 +v -0.689201 -0.058131 -0.093544 +v -0.690415 -0.059101 -0.106162 +v -0.700105 -0.053355 -0.102847 +v -0.665127 0.003322 -0.115390 +v -0.692356 -0.060916 -0.099102 +v -0.698280 -0.056166 -0.107016 +v -0.700934 -0.054348 -0.098184 +v -0.664059 0.004203 -0.098163 +v -0.673593 -0.012334 -0.095914 +v -0.661560 -0.023565 -0.091745 +v -0.674799 -0.012869 -0.112426 +v -0.689169 -0.033899 -0.093859 +v -0.698803 -0.058980 -0.098197 +v -0.662666 -0.020363 -0.142077 +v -0.659727 -0.016482 -0.119124 +v -0.670521 -0.026787 -0.141173 +v -0.672485 -0.000508 -0.137191 +v -0.671900 -0.001911 -0.120522 +v -0.674876 -0.039339 -0.114304 +v -0.686190 -0.024815 -0.131979 +v -0.685265 -0.049930 -0.118330 +v -0.685914 -0.049584 -0.127371 +v -0.696423 -0.042073 -0.128058 +v -0.695762 -0.042481 -0.118601 +v -0.666630 0.004546 -0.137972 +v -0.660345 -0.003287 -0.119168 +v -0.692594 -0.046417 -0.116363 +v -0.688479 -0.052506 -0.123300 +v -0.690825 -0.046510 -0.130584 +v -0.698151 -0.044985 -0.123018 +v -0.653177 -0.012960 -0.120193 +v -0.666911 -0.006069 -0.140325 +v -0.666247 0.003033 -0.121978 +v -0.666973 -0.008076 -0.118011 +v -0.664868 -0.025339 -0.117220 +v -0.676694 -0.009368 -0.135588 +v -0.676397 -0.010445 -0.120093 +v -0.678041 -0.037674 -0.133816 +v -0.689060 -0.028871 -0.118922 +v -0.696155 -0.049789 -0.122793 +v -0.659290 -0.002517 -0.141545 +v -0.671337 -0.014491 -0.139103 +v -0.671196 -0.016602 -0.116815 +v -0.685684 -0.035861 -0.114064 +v -0.647625 0.028834 -0.160002 +v -0.672861 0.000583 -0.142323 +v -0.667356 -0.020699 -0.156211 +v -0.670962 0.003393 -0.154793 +v -0.673681 -0.033371 -0.138988 +v -0.681510 -0.017250 -0.151896 +v -0.684229 -0.028128 -0.140962 +v -0.675609 -0.037067 -0.141281 +v -0.680172 -0.037337 -0.149693 +v -0.685018 -0.028229 -0.149009 +v -0.651027 0.003280 -0.162529 +v -0.664772 0.008166 -0.155916 +v -0.666451 0.005784 -0.143375 +v -0.659579 -0.016628 -0.157429 +v -0.674243 -0.014348 -0.157446 +v -0.676323 -0.007359 -0.141521 +v -0.671953 -0.026168 -0.154858 +v -0.674162 -0.004527 -0.153539 +v -0.683403 -0.030332 -0.153803 +v -0.681645 -0.033977 -0.139881 +v -0.683179 -0.019773 -0.140518 +v -0.678043 -0.035693 -0.152849 +v -0.678170 -0.039113 -0.144582 +v -0.685368 -0.033242 -0.150254 +v -0.687024 -0.029677 -0.144982 +v -0.667064 -0.009176 -0.159010 +v -0.678040 -0.019942 -0.156533 +v -0.679976 -0.027557 -0.137895 +v -0.683472 -0.036242 -0.144393 +v -0.647500 0.011199 -0.163730 +v -0.623239 0.012631 -0.161254 +v -0.639192 0.017384 -0.164601 +v -0.595585 0.057163 -0.164626 +v -0.627252 0.026759 -0.166587 +v -0.610201 0.021280 -0.160416 +v -0.626959 0.047597 -0.160096 +v -0.636780 0.039235 -0.160282 +v -0.625925 0.043809 -0.077169 +v -0.552844 0.072863 -0.090187 +v -0.581971 0.067217 -0.160070 +v -0.644813 0.029873 -0.093517 +v -0.647148 0.028201 -0.101114 +v -0.644055 0.026347 -0.097892 +v -0.649169 0.027200 -0.116555 +v -0.649613 0.027476 -0.126065 +v -0.646902 0.025176 -0.121088 +v -0.649921 0.028059 -0.139994 +v -0.648523 0.025102 -0.143123 +v -0.648032 0.028039 -0.146557 +v -0.631005 0.043379 -0.098409 +v -0.636394 0.044304 -0.123046 +v -0.636562 0.041116 -0.144213 +v -0.631635 0.049377 -0.142339 +v -0.623773 0.059869 -0.121913 +v -0.618304 0.058033 -0.098333 +v -0.639223 0.033518 -0.080923 +v -0.602181 0.071405 -0.100312 +v -0.611873 0.067453 -0.145950 +v -0.605271 0.076880 -0.120118 +v -0.587413 0.091207 -0.123826 +v -0.200414 0.488073 -0.147744 +v -0.187399 0.464919 -0.098470 +v -0.185426 0.408755 -0.074965 +v -0.191301 0.375907 -0.231650 +v -0.180079 0.436105 -0.226079 +v -0.178769 0.476247 -0.192993 +v -0.360896 0.250368 -0.099569 +v -0.563836 0.082390 -0.085985 +v -0.550197 0.063466 -0.109659 +v -0.554614 0.062313 -0.134595 +v -0.572220 0.058694 -0.155887 +v -0.592181 0.075766 -0.150929 +v -0.342911 0.344388 -0.107690 +v -0.399861 0.304947 -0.147072 +v -0.353078 0.357693 -0.143691 +v -0.328558 0.328556 -0.092676 +v -0.394421 0.286641 -0.114497 +v -0.306156 0.300430 -0.085240 +v -0.375666 0.268242 -0.103491 +v -0.300496 0.273354 -0.117640 +v -0.303640 0.275840 -0.188242 +v -0.366048 0.224663 -0.138193 +v -0.304432 0.304491 -0.222868 +v -0.345021 0.242598 -0.184167 +v -0.329556 0.334700 -0.215692 +v -0.361552 0.252213 -0.221523 +v -0.346119 0.354139 -0.182653 +v -0.379584 0.274566 -0.214679 +v -0.394850 0.296164 -0.186114 +v -0.454278 0.255257 -0.146496 +v -0.432410 0.249292 -0.110859 +v -0.413417 0.235484 -0.099004 +v -0.398796 0.206069 -0.103774 +v -0.393735 0.184951 -0.140771 +v -0.395510 0.187262 -0.178158 +v -0.403873 0.213355 -0.209454 +v -0.425904 0.235592 -0.205629 +v -0.444218 0.248587 -0.178434 +v -0.498744 0.186721 -0.110573 +v -0.510128 0.193301 -0.141333 +v -0.504035 0.182117 -0.167106 +v -0.487542 0.167722 -0.187629 +v -0.469939 0.142071 -0.182462 +v -0.455356 0.134155 -0.158735 +v -0.453842 0.135360 -0.128180 +v -0.480264 0.173980 -0.095309 +v -0.218048 0.346109 -0.074669 +v -0.240593 0.309443 -0.104652 +v -0.224103 0.333769 -0.181983 +v -0.230646 0.378097 -0.221937 +v -0.234703 0.431938 -0.213926 +v -0.236751 0.455378 -0.180857 +v -0.244278 0.466556 -0.148501 +v -0.230049 0.448807 -0.101096 +v -0.220036 0.403859 -0.077967 +v -0.288932 0.394150 -0.108031 +v -0.297023 0.406438 -0.145942 +v -0.294348 0.402199 -0.176526 +v -0.285624 0.388086 -0.203784 +v -0.261260 0.350237 -0.215635 +v -0.249861 0.321011 -0.187076 +v -0.263859 0.336606 -0.088180 +v -0.280742 0.372053 -0.091847 +v -0.153920 0.465742 -0.098039 +v -0.164933 0.418301 -0.061642 +v -0.167050 0.368290 -0.040071 +v -0.169907 0.308975 -0.206215 +v -0.154646 0.488756 -0.204306 +v -0.459110 0.152361 -0.100063 +v -0.000148 0.423641 -0.258150 +v -0.103152 0.367385 -0.266592 +v -0.104221 0.436110 -0.263544 +v -0.157571 0.431698 -0.237285 +v -0.038094 0.430859 -0.268997 +v -0.104406 0.505062 -0.135625 +v -0.165218 0.490359 -0.147167 +v -0.186341 0.357294 -0.063916 +v -0.184251 0.342362 -0.104190 +v -0.182736 0.347592 -0.205900 +v -0.064719 0.283408 -0.002247 +v -0.130863 0.292485 -0.023684 +v -0.108399 0.276391 -0.028384 +v -0.107726 0.215240 -0.043345 +v -0.147153 0.267055 -0.074446 +v -0.136324 0.190115 -0.091476 +v -0.108260 0.512168 -0.170637 +v -0.101323 0.515506 -0.192168 +v -0.061317 0.513749 -0.226628 +v -0.019991 0.503985 -0.233963 +v -0.036713 0.474800 -0.074463 +v -0.147010 0.039775 -0.115146 +v -0.078368 0.027237 -0.213887 +v -0.115371 0.025625 -0.045189 +v -0.035614 0.005898 -0.007263 +v -0.141839 0.037440 -0.084545 +v -0.109030 0.061416 -0.045648 +v -0.129167 0.071154 -0.086620 +v -0.139799 0.074066 -0.126922 +v -0.094029 0.051970 -0.189533 +v -0.053361 0.037223 -0.006709 +v -0.053119 0.130963 0.002185 +v -0.106604 0.133518 -0.042050 +v -0.044721 0.123460 -0.208526 +v -0.081553 0.127724 -0.196550 +v -0.124696 0.130299 -0.162457 +v -0.133502 0.132592 -0.127052 +v -0.124722 0.132783 -0.091331 +v 0.059110 0.536142 -0.187691 +v -0.000000 0.501925 -0.091811 +v 0.127556 0.162202 -0.094372 +v 0.127677 0.180706 -0.164263 +v 0.053816 0.221397 -0.004936 +v 0.104333 0.189647 -0.046775 +v 0.055815 0.245385 -0.005150 +v 0.000008 0.257699 0.013616 +v 0.135122 0.170529 -0.127286 +v 0.160404 0.237960 -0.136559 +v 0.083498 0.183394 -0.195031 +v 0.141392 0.245196 -0.184834 +v 0.094133 0.253595 -0.236724 +v 0.046382 0.181844 -0.214389 +v 0.047600 0.250794 -0.245184 +v -0.000127 0.178624 -0.221617 +v -0.000137 0.245617 -0.239184 +v 0.077032 0.305188 -0.000664 +v 0.095947 0.369933 -0.006912 +v 0.000010 0.310257 0.017409 +v 0.000004 0.367452 0.005975 +v 0.035501 0.371779 -0.277204 +v 0.096174 0.419037 -0.027862 +v -0.000012 0.417849 -0.021444 +v 0.102386 0.481491 -0.236318 +v 0.000006 0.227284 0.010030 +v 0.161502 0.352446 -0.241809 +v 0.075886 0.478500 -0.083823 +v 0.172422 0.320999 -0.083159 +v 0.174963 0.299340 -0.153085 +v 0.569700 0.052245 -0.069910 +v 0.578936 0.034018 -0.094410 +v 0.583715 0.044325 -0.140455 +v 0.582357 0.050346 -0.159923 +v 0.605583 0.064402 -0.158271 +v 0.598074 0.065389 -0.073727 +v 0.606467 0.018701 -0.073895 +v 0.608775 0.018910 -0.093969 +v 0.615282 0.019935 -0.142078 +v 0.631508 0.004379 -0.144589 +v 0.645092 0.024773 -0.078048 +v 0.587785 0.037114 -0.053630 +v 0.605584 0.051361 -0.057785 +v 0.605206 0.022282 -0.067464 +v 0.618935 0.041707 -0.067133 +v 0.608017 0.016486 -0.056048 +v 0.610953 0.003102 -0.019670 +v 0.619905 0.013244 -0.021937 +v 0.613168 0.000313 -0.031562 +v 0.624085 0.007587 -0.030159 +v 0.615514 0.007696 -0.017139 +v 0.612106 0.000798 -0.025468 +v 0.619272 0.001698 -0.031328 +v 0.622512 0.010445 -0.024551 +v 0.577315 0.062075 -0.067772 +v 0.578543 0.042751 -0.060871 +v 0.592456 0.044125 -0.051973 +v 0.601682 0.060094 -0.066630 +v 0.587419 0.027583 -0.069949 +v 0.602753 0.021088 -0.071143 +v 0.592765 0.027122 -0.057920 +v 0.611526 0.057614 -0.077405 +v 0.613895 0.048064 -0.064501 +v 0.617717 0.045717 -0.073759 +v 0.614681 0.030495 -0.074322 +v 0.618021 0.025843 -0.066652 +v 0.618858 0.031670 -0.053781 +v 0.625097 0.019072 -0.056238 +v 0.611584 0.038364 -0.043059 +v 0.616653 0.037185 -0.048486 +v 0.597496 0.027645 -0.040849 +v 0.601875 0.033433 -0.039832 +v 0.600357 0.022838 -0.050936 +v 0.623211 0.019126 -0.040002 +v 0.608038 0.005436 -0.042464 +v 0.618157 0.022908 -0.031482 +v 0.605428 0.012637 -0.030406 +v 0.618900 0.002856 -0.023398 +v 0.584730 0.052608 -0.059282 +v 0.590368 0.026866 -0.064613 +v 0.611771 0.054224 -0.070177 +v 0.612794 0.030250 -0.072136 +v 0.622508 0.010333 -0.041998 +v 0.621273 0.022278 -0.035967 +v 0.610369 0.018225 -0.029857 +v 0.607536 0.005620 -0.037135 +v 0.624609 0.005143 -0.076840 +v 0.627511 0.001564 -0.095822 +v 0.648768 0.021950 -0.093690 +v 0.649356 -0.012643 -0.094845 +v 0.668021 -0.003882 -0.091101 +v 0.665494 -0.003138 -0.075679 +v 0.655432 -0.015386 -0.075262 +v 0.656298 -0.015406 -0.093426 +v 0.686354 -0.032671 -0.087222 +v 0.669109 -0.036845 -0.075564 +v 0.691434 -0.046283 -0.085886 +v 0.690174 -0.045188 -0.077003 +v 0.680934 -0.051090 -0.077266 +v 0.681606 -0.052759 -0.086597 +v 0.692417 -0.046883 -0.081089 +v 0.688785 -0.049273 -0.074777 +v 0.683122 -0.053487 -0.081292 +v 0.689754 -0.051410 -0.086983 +v 0.662087 0.003766 -0.091315 +v 0.633005 0.016008 -0.073941 +v 0.645199 -0.009141 -0.074777 +v 0.658658 0.005398 -0.076306 +v 0.659390 -0.008485 -0.072989 +v 0.664046 -0.008557 -0.094058 +v 0.670383 -0.011716 -0.075545 +v 0.671872 -0.011981 -0.089507 +v 0.658878 -0.022429 -0.074923 +v 0.684177 -0.030804 -0.075818 +v 0.690126 -0.052469 -0.080908 +v 0.652218 -0.001447 -0.072825 +v 0.656557 -0.003573 -0.094723 +v 0.664193 -0.015335 -0.073030 +v 0.667779 -0.017016 -0.092962 +v 0.674231 -0.030024 -0.073524 +v 0.683526 -0.037862 -0.091723 +v 0.652805 0.021462 -0.139738 +v 0.650300 0.021646 -0.101327 +v 0.645041 0.018972 -0.097490 +v 0.640674 -0.007529 -0.123952 +v 0.652134 0.021072 -0.125195 +v 0.652121 0.021078 -0.118398 +v 0.647122 0.017535 -0.123039 +v 0.650806 0.021549 -0.146113 +v 0.648298 0.017314 -0.143641 +v 0.651420 0.023397 -0.159413 +v 0.633809 0.005528 -0.161193 +v 0.670157 -0.002651 -0.096952 +v 0.671174 -0.003026 -0.115568 +v 0.672062 -0.038825 -0.092263 +v 0.688752 -0.033202 -0.110045 +v 0.699820 -0.051434 -0.095760 +v 0.696894 -0.054895 -0.092692 +v 0.689093 -0.058131 -0.094336 +v 0.690293 -0.059101 -0.106956 +v 0.699986 -0.053355 -0.103651 +v 0.664995 0.003323 -0.116155 +v 0.692242 -0.060916 -0.099898 +v 0.698157 -0.056166 -0.107819 +v 0.700821 -0.054348 -0.098990 +v 0.663946 0.004204 -0.098926 +v 0.673482 -0.012334 -0.096689 +v 0.661454 -0.023565 -0.092505 +v 0.674670 -0.012869 -0.113202 +v 0.689061 -0.033898 -0.094652 +v 0.698690 -0.058980 -0.099001 +v 0.662503 -0.020363 -0.142839 +v 0.659590 -0.016482 -0.119882 +v 0.670359 -0.026787 -0.141944 +v 0.672327 -0.000508 -0.137965 +v 0.671762 -0.001911 -0.121295 +v 0.674744 -0.039339 -0.115080 +v 0.686038 -0.024815 -0.132768 +v 0.685129 -0.049930 -0.119118 +v 0.685766 -0.049584 -0.128159 +v 0.696276 -0.042073 -0.128859 +v 0.695625 -0.042480 -0.119401 +v 0.666472 0.004546 -0.138739 +v 0.660208 -0.003286 -0.119928 +v 0.692460 -0.046417 -0.117159 +v 0.688337 -0.052506 -0.124092 +v 0.696886 -0.046659 -0.129706 +v 0.698010 -0.044985 -0.123821 +v 0.653039 -0.012960 -0.120943 +v 0.666750 -0.006069 -0.141092 +v 0.666106 0.003033 -0.122744 +v 0.666837 -0.008076 -0.118778 +v 0.664733 -0.025339 -0.117984 +v 0.676538 -0.009368 -0.136366 +v 0.676259 -0.010445 -0.120870 +v 0.677887 -0.037674 -0.134595 +v 0.688923 -0.028871 -0.119714 +v 0.696014 -0.049789 -0.123594 +v 0.659127 -0.002517 -0.142303 +v 0.671177 -0.014491 -0.139875 +v 0.671062 -0.016602 -0.117587 +v 0.685553 -0.035861 -0.114852 +v 0.647441 0.028834 -0.160747 +v 0.672697 0.000583 -0.143097 +v 0.667177 -0.020699 -0.156979 +v 0.670784 0.003394 -0.155564 +v 0.672445 -0.031345 -0.139754 +v 0.681336 -0.017250 -0.152679 +v 0.684067 -0.028128 -0.141748 +v 0.674686 -0.036900 -0.142057 +v 0.678759 -0.037842 -0.150481 +v 0.684847 -0.028229 -0.149797 +v 0.650840 0.003280 -0.163278 +v 0.664593 0.008166 -0.156680 +v 0.666286 0.005785 -0.144141 +v 0.659398 -0.016628 -0.158187 +v 0.674061 -0.014348 -0.158221 +v 0.676160 -0.007359 -0.142299 +v 0.671775 -0.026168 -0.155631 +v 0.673985 -0.004527 -0.154314 +v 0.683226 -0.030332 -0.154589 +v 0.681484 -0.033977 -0.140665 +v 0.683017 -0.019773 -0.141304 +v 0.677867 -0.035693 -0.153629 +v 0.678003 -0.039112 -0.145362 +v 0.684994 -0.032429 -0.151049 +v 0.685352 -0.030434 -0.145772 +v 0.666881 -0.009176 -0.159776 +v 0.677860 -0.019942 -0.157312 +v 0.679817 -0.027556 -0.138677 +v 0.683306 -0.036242 -0.145179 +v 0.647311 0.011199 -0.164474 +v 0.623054 0.012631 -0.161970 +v 0.639003 0.017384 -0.165336 +v 0.595395 0.057163 -0.165311 +v 0.627060 0.026759 -0.167308 +v 0.610017 0.021281 -0.161117 +v 0.626775 0.047597 -0.160817 +v 0.636596 0.039235 -0.161014 +v 0.625837 0.043809 -0.077888 +v 0.552740 0.072863 -0.090822 +v 0.581786 0.067217 -0.160740 +v 0.644705 0.029873 -0.094258 +v 0.647032 0.028202 -0.101858 +v 0.643942 0.026347 -0.098632 +v 0.649035 0.027200 -0.117301 +v 0.649468 0.027476 -0.126812 +v 0.646763 0.025177 -0.121832 +v 0.649759 0.028059 -0.140741 +v 0.648359 0.025102 -0.143868 +v 0.647864 0.028039 -0.147302 +v 0.630892 0.043379 -0.099134 +v 0.636253 0.044304 -0.123778 +v 0.636396 0.041116 -0.144945 +v 0.631471 0.049377 -0.143065 +v 0.623632 0.059869 -0.122630 +v 0.618191 0.058033 -0.099044 +v 0.639130 0.033518 -0.081658 +v 0.602066 0.071405 -0.101004 +v 0.611705 0.067453 -0.146654 +v 0.605133 0.076880 -0.120814 +v 0.587271 0.091208 -0.124502 +v 0.200244 0.488073 -0.147974 +v 0.187286 0.464919 -0.098685 +v 0.185340 0.408755 -0.075178 +v 0.191035 0.375907 -0.231870 +v 0.179820 0.436105 -0.226285 +v 0.178547 0.476247 -0.193198 +v 0.360782 0.250368 -0.099984 +v 0.578255 0.087878 -0.096269 +v 0.563737 0.082390 -0.086633 +v 0.550071 0.063466 -0.110292 +v 0.554459 0.062314 -0.135233 +v 0.572041 0.058694 -0.156545 +v 0.342787 0.344388 -0.108084 +v 0.399692 0.304947 -0.147532 +v 0.352913 0.357693 -0.144097 +v 0.328452 0.328556 -0.093054 +v 0.394290 0.286641 -0.114951 +v 0.306058 0.300430 -0.085592 +v 0.393391 0.249030 -0.103898 +v 0.300360 0.273354 -0.117985 +v 0.303423 0.275840 -0.188591 +v 0.347071 0.243593 -0.135122 +v 0.304176 0.304491 -0.223218 +v 0.344809 0.242598 -0.184563 +v 0.329308 0.334700 -0.216070 +v 0.361298 0.252213 -0.221938 +v 0.345909 0.354139 -0.183051 +v 0.379337 0.274566 -0.215115 +v 0.412336 0.276442 -0.185666 +v 0.454109 0.255257 -0.147019 +v 0.432283 0.249293 -0.111356 +v 0.413303 0.235484 -0.099479 +v 0.398676 0.206069 -0.104233 +v 0.393573 0.184951 -0.141224 +v 0.395305 0.187262 -0.178612 +v 0.403632 0.213356 -0.209918 +v 0.425667 0.235592 -0.206119 +v 0.444013 0.248587 -0.178945 +v 0.498617 0.186721 -0.111146 +v 0.509965 0.193301 -0.141920 +v 0.503843 0.182118 -0.167685 +v 0.487326 0.167722 -0.188189 +v 0.469730 0.142071 -0.183002 +v 0.455174 0.134155 -0.159259 +v 0.453695 0.135360 -0.128702 +v 0.480154 0.173980 -0.095861 +v 0.217962 0.346109 -0.074919 +v 0.240473 0.309443 -0.104929 +v 0.223894 0.333770 -0.182240 +v 0.230391 0.378097 -0.222202 +v 0.234457 0.431938 -0.214196 +v 0.236543 0.455378 -0.181129 +v 0.244107 0.466556 -0.148782 +v 0.229933 0.448807 -0.101361 +v 0.219946 0.403859 -0.078219 +v 0.288808 0.394150 -0.108363 +v 0.296855 0.406438 -0.146283 +v 0.294145 0.402199 -0.176865 +v 0.285390 0.388086 -0.204112 +v 0.261012 0.350237 -0.215935 +v 0.249646 0.321011 -0.187363 +v 0.263758 0.336606 -0.088483 +v 0.280637 0.372053 -0.092170 +v 0.153807 0.465742 -0.098216 +v 0.164862 0.418301 -0.061831 +v 0.167004 0.368290 -0.040263 +v 0.169670 0.308976 -0.206411 +v 0.154411 0.488756 -0.204484 +v 0.458995 0.152361 -0.100591 +v 0.102846 0.367385 -0.266710 +v 0.103918 0.436110 -0.263664 +v 0.157298 0.431698 -0.237466 +v 0.037785 0.430859 -0.269041 +v 0.104246 0.505062 -0.135745 +v 0.165049 0.490359 -0.147357 +v 0.186267 0.357294 -0.064130 +v 0.184132 0.342362 -0.104402 +v 0.182499 0.347592 -0.206110 +v 0.064716 0.283408 -0.002322 +v 0.130836 0.292485 -0.023835 +v 0.108367 0.276391 -0.028509 +v 0.107676 0.215240 -0.043468 +v 0.000009 0.289063 0.015778 +v 0.147068 0.267055 -0.074615 +v 0.136219 0.190115 -0.091632 +v 0.108064 0.512168 -0.170761 +v 0.101102 0.515506 -0.192284 +v 0.061056 0.513749 -0.226633 +v 0.019446 0.503985 -0.233986 +v -0.000038 0.469953 -0.066447 +v 0.036627 0.474800 -0.074505 +v 0.147010 0.039776 -0.115146 +v -0.000000 0.000112 -0.000000 +v -0.000001 0.022962 -0.230166 +v 0.108978 0.061416 -0.045783 +v 0.129067 0.071154 -0.086768 +v 0.139654 0.074066 -0.127083 +v 0.130571 0.059849 -0.164796 +v 0.043946 0.051775 -0.216791 +v 0.000004 0.034474 0.006307 +v -0.000126 0.052462 -0.221207 +v 0.000008 0.133709 0.013499 +v 0.053122 0.130963 0.002124 +v 0.106556 0.133518 -0.042173 +v -0.000123 0.118316 -0.214713 +v 0.044482 0.123460 -0.208577 +v 0.081327 0.127724 -0.196644 +v 0.124509 0.130299 -0.162600 +v 0.133356 0.132592 -0.127205 +v 0.124618 0.132783 -0.091474 +v 0.073450 0.530103 -0.150903 +v 0.044945 0.538233 -0.200581 +v 0.067438 0.520779 -0.126053 +v -0.076911 0.015455 -0.022304 +v 0.053353 0.037223 -0.006770 +v 0.035614 0.005898 -0.007263 +v -0.044194 0.051770 -0.216749 +v -0.033681 0.022231 -0.232078 +v -0.130760 0.059849 -0.164645 +v -0.107976 0.030522 -0.191477 +v 0.093810 0.051971 -0.189641 +v -0.031206 0.539640 -0.209663 +v 0.015759 0.540427 -0.213640 +v -0.073450 0.530103 -0.150903 +v -0.379280 0.230352 -0.101945 +v -0.418970 0.285076 -0.147390 +v -0.413273 0.266529 -0.114314 +v -0.394374 0.248670 -0.103450 +v -0.347226 0.243593 -0.134722 +v -0.364152 0.223228 -0.182593 +v -0.380888 0.233293 -0.218910 +v -0.398632 0.255102 -0.212805 +v -0.413413 0.276083 -0.185196 +v 0.378299 0.230712 -0.102376 +v 0.417936 0.285435 -0.147866 +v 0.412277 0.266888 -0.114783 +v 0.375547 0.268242 -0.103922 +v 0.365025 0.225023 -0.138608 +v 0.363078 0.223588 -0.183006 +v 0.379772 0.233653 -0.219342 +v 0.397524 0.255462 -0.213258 +v 0.394636 0.296164 -0.186568 +v -0.543119 0.082458 -0.095335 +v -0.570905 0.077128 -0.159713 +v -0.576904 0.102217 -0.126103 +v -0.568454 0.098346 -0.098182 +v -0.578365 0.087878 -0.095604 +v -0.555304 0.092988 -0.090905 +v -0.539200 0.072955 -0.113452 +v -0.540804 0.071535 -0.134970 +v -0.559260 0.069217 -0.155401 +v -0.581012 0.085636 -0.151495 +v 0.543009 0.082458 -0.095959 +v 0.570721 0.077128 -0.160369 +v 0.576759 0.102218 -0.126766 +v 0.568341 0.098346 -0.098835 +v 0.555199 0.092988 -0.091544 +v 0.539070 0.072955 -0.114072 +v 0.540649 0.071535 -0.135592 +v 0.559082 0.069217 -0.156044 +v 0.580838 0.085636 -0.152163 +v 0.592007 0.075766 -0.151610 +v -0.072089 0.670401 -0.197513 +v -0.061205 0.751610 -0.184454 +v -0.079027 0.657982 -0.116899 +v -0.063548 0.754543 -0.127861 +v -0.000032 0.783720 -0.136257 +v -0.058667 0.675340 -0.053035 +v -0.015574 0.609261 -0.205473 +v -0.022154 0.645603 -0.220731 +v -0.025323 0.734119 -0.217114 +v -0.070312 0.727577 -0.190672 +v -0.044662 0.655173 -0.043041 +v -0.016058 0.641584 -0.033184 +v -0.044107 0.685848 -0.040094 +v -0.019309 0.708047 -0.037046 +v -0.006137 0.636928 -0.016046 +v -0.043548 0.644592 -0.040931 +v -0.006187 0.642704 -0.015641 +v -0.031122 0.551629 -0.055912 +v -0.029086 0.543827 -0.081111 +v -0.042201 0.554999 -0.092603 +v -0.056911 0.572767 -0.103167 +v -0.050358 0.578918 -0.180654 +v -0.006497 0.631572 -0.021964 +v -0.010855 0.635855 -0.022493 +v -0.017243 0.546263 -0.049130 +v -0.057589 0.660239 -0.054078 +v -0.013339 0.658850 -0.034949 +v -0.029508 0.644776 -0.036287 +v -0.052869 0.682347 -0.046085 +v -0.006781 0.680365 -0.033525 +v -0.011147 0.641404 -0.024126 +v -0.004243 0.660509 -0.026371 +v -0.043857 0.704878 -0.047635 +v -0.013628 0.755089 -0.053971 +v -0.062434 0.720249 -0.071703 +v -0.018974 0.725043 -0.044764 +v -0.023071 0.604084 -0.033335 +v -0.033702 0.566283 -0.041508 +v -0.010182 0.631960 -0.024930 +v -0.008083 0.658880 -0.031055 +v -0.044078 0.724279 -0.053681 +v -0.018456 0.687399 -0.030936 +v -0.015439 0.558389 -0.035205 +v -0.056174 0.601860 -0.175355 +v -0.038531 0.605496 -0.195709 +v -0.028071 0.681077 -0.223922 +v -0.055369 0.677544 -0.211567 +v -0.049654 0.640358 -0.204297 +v -0.023678 0.762484 -0.197172 +v -0.052930 0.730131 -0.210553 +v -0.069503 0.599931 -0.117776 +v -0.069469 0.596725 -0.146679 +v -0.086832 0.669059 -0.149766 +v -0.076648 0.616978 -0.119928 +v -0.082680 0.620739 -0.139879 +v -0.082516 0.720903 -0.161992 +v -0.083014 0.694091 -0.118094 +v -0.066206 0.608551 -0.083372 +v -0.072595 0.669132 -0.092082 +v -0.071590 0.656059 -0.092081 +v -0.061834 0.750801 -0.096648 +v -0.073059 0.716451 -0.089639 +v -0.061393 0.700454 -0.063076 +v -0.000058 0.778553 -0.170963 +v -0.016083 0.783591 -0.135882 +v -0.019476 0.777903 -0.169692 +v -0.037048 0.774229 -0.136046 +v 0.000002 0.779711 -0.088506 +v -0.017255 0.762654 -0.065521 +v -0.059815 0.667566 -0.056253 +v -0.071425 0.643862 -0.090087 +v -0.016191 0.582887 -0.205137 +v -0.043884 0.563032 -0.069225 +v -0.054528 0.637813 -0.050068 +v -0.047412 0.760359 -0.191727 +v -0.065212 0.755642 -0.161888 +v -0.074545 0.683779 -0.089506 +v -0.042990 0.772914 -0.165074 +v -0.035116 0.772059 -0.098693 +v -0.058341 0.586303 -0.081410 +v -0.062736 0.580147 -0.155598 +v -0.037497 0.582479 -0.198307 +v -0.067940 0.627122 -0.085043 +v -0.016929 0.616314 -0.056115 +v -0.010862 0.606167 -0.030142 +v -0.031214 0.604872 -0.048381 +v -0.015969 0.592860 -0.044510 +v -0.015374 0.602296 -0.062117 +v -0.005468 0.673062 -0.035781 +v -0.020510 0.628070 -0.030733 +v -0.015187 0.609278 -0.028509 +v -0.005991 0.627231 -0.028624 +v -0.026458 0.627140 -0.034099 +v -0.021511 0.608386 -0.030683 +v -0.044298 0.575463 -0.048874 +v -0.044385 0.603342 -0.043738 +v -0.034519 0.619806 -0.038709 +v -0.009068 0.603681 -0.030407 +v -0.005950 0.609633 -0.026936 +v -0.027599 0.606913 -0.033383 +v -0.025212 0.602826 -0.034005 +v -0.011940 0.598842 -0.029521 +v -0.087383 0.652073 -0.155481 +v -0.066635 0.636344 -0.185605 +v -0.082918 0.673041 -0.132883 +v -0.084628 0.696986 -0.152467 +v -0.077722 0.621555 -0.138413 +v -0.082199 0.672942 -0.141123 +v -0.079470 0.655915 -0.151805 +v -0.083376 0.653896 -0.137196 +v -0.087964 0.660638 -0.153741 +v -0.085485 0.672816 -0.142023 +v -0.080972 0.666903 -0.123873 +v -0.077836 0.644051 -0.116481 +v -0.079662 0.615917 -0.128402 +v -0.085482 0.636304 -0.149367 +v -0.084817 0.666534 -0.138847 +v -0.081806 0.636472 -0.131696 +v -0.031953 0.674781 -0.066098 +v -0.033131 0.688372 -0.035144 +v -0.029937 0.655064 -0.038268 +v -0.033062 0.684801 -0.039114 +v -0.022843 0.684538 -0.038584 +v -0.041333 0.684005 -0.041722 +v -0.031150 0.661376 -0.040779 +v -0.044754 0.663542 -0.045893 +v -0.011162 0.671233 -0.037584 +v -0.015067 0.681571 -0.036597 +v -0.018667 0.663273 -0.038313 +v -0.053602 0.670680 -0.052016 +v -0.048439 0.677761 -0.046147 +v -0.048013 0.670964 -0.046021 +v -0.044457 0.673485 -0.044163 +v -0.017896 0.672121 -0.043912 +v -0.026615 0.677148 -0.038429 +v -0.031621 0.668017 -0.039553 +v -0.032913 0.677503 -0.038386 +v -0.039805 0.675948 -0.040245 +v -0.043050 0.668941 -0.042195 +v -0.022578 0.675302 -0.039957 +v -0.019701 0.669796 -0.042492 +v -0.057884 0.748906 -0.082624 +v -0.013961 0.749630 -0.055855 +v -0.054592 0.701974 -0.211414 +v -0.073206 0.698593 -0.196701 +v -0.025722 0.701959 -0.222441 +v -0.079836 0.719539 -0.116203 +v -0.023993 0.762347 -0.072867 +v -0.015093 0.777296 -0.091661 +v -0.033799 0.767734 -0.091933 +v -0.027223 0.604076 -0.035529 +v -0.077242 0.627462 -0.116483 +v -0.039564 0.751003 -0.067577 +v -0.012383 0.581204 -0.034242 +v -0.028452 0.587964 -0.039186 +v -0.005971 0.620639 -0.026788 +v -0.017773 0.620603 -0.028631 +v -0.023764 0.620192 -0.031529 +v -0.031082 0.614470 -0.035501 +v -0.037165 0.604635 -0.039427 +v -0.025322 0.668658 -0.040459 +v -0.024683 0.661740 -0.040232 +v -0.036917 0.668448 -0.039757 +v -0.038011 0.661627 -0.042231 +v -0.032011 0.672662 -0.040329 +v -0.032012 0.679184 -0.042041 +v -0.028550 0.678310 -0.042043 +v -0.026016 0.675923 -0.042045 +v -0.025088 0.672662 -0.042046 +v -0.026016 0.669402 -0.042045 +v -0.028550 0.667015 -0.042044 +v -0.032012 0.666141 -0.042042 +v -0.035474 0.667015 -0.042040 +v -0.038009 0.669402 -0.042038 +v -0.038936 0.672662 -0.042037 +v -0.038009 0.675923 -0.042037 +v -0.035578 0.678253 -0.042039 +v -0.032015 0.682392 -0.046674 +v -0.026019 0.680879 -0.046678 +v -0.021630 0.678310 -0.046681 +v -0.020023 0.672663 -0.046682 +v -0.021630 0.667015 -0.046682 +v -0.026019 0.662881 -0.046679 +v -0.032015 0.661367 -0.046676 +v -0.038012 0.662881 -0.046672 +v -0.042401 0.667015 -0.046669 +v -0.044008 0.672663 -0.046667 +v -0.042401 0.678310 -0.046668 +v -0.038012 0.680879 -0.046670 +v -0.032022 0.683184 -0.056597 +v -0.025098 0.681436 -0.056602 +v -0.020029 0.678753 -0.056605 +v -0.018174 0.672663 -0.056607 +v -0.020029 0.666142 -0.056606 +v -0.025098 0.661368 -0.056603 +v -0.032022 0.659621 -0.056599 +v -0.038946 0.661368 -0.056595 +v -0.044015 0.666142 -0.056591 +v -0.045870 0.672663 -0.056589 +v -0.044015 0.678753 -0.056590 +v -0.038946 0.681436 -0.056593 +v -0.000098 0.676787 -0.225895 +v 0.071934 0.670401 -0.197617 +v 0.061069 0.751610 -0.184542 +v 0.000033 0.543699 -0.047235 +v 0.000057 0.637168 -0.013374 +v 0.078990 0.657982 -0.117013 +v 0.063495 0.754543 -0.127953 +v 0.000047 0.626810 -0.027754 +v 0.000046 0.686004 -0.028918 +v -0.000085 0.610452 -0.207714 +v -0.000093 0.734459 -0.218991 +v 0.058724 0.675340 -0.053121 +v 0.000026 0.765023 -0.056469 +v 0.015407 0.609261 -0.205495 +v 0.021965 0.645603 -0.220763 +v 0.025140 0.734119 -0.217151 +v 0.070167 0.727577 -0.190774 +v 0.000046 0.603341 -0.028713 +v 0.044733 0.655173 -0.043106 +v 0.016144 0.641584 -0.033207 +v 0.044183 0.685848 -0.040158 +v 0.000042 0.674709 -0.034534 +v 0.000058 0.643095 -0.012975 +v 0.019389 0.708047 -0.037074 +v 0.006247 0.636819 -0.016374 +v 0.043623 0.644592 -0.040994 +v 0.006298 0.642595 -0.015969 +v 0.031176 0.551629 -0.055957 +v 0.042203 0.554999 -0.092664 +v 0.000011 0.537853 -0.077328 +v 0.055469 0.554429 -0.115650 +v 0.050229 0.578918 -0.180727 +v -0.000084 0.583131 -0.207119 +v 0.000052 0.630604 -0.020565 +v 0.006598 0.631583 -0.022640 +v 0.010956 0.635855 -0.022509 +v 0.000043 0.556580 -0.032985 +v 0.017307 0.546263 -0.049155 +v 0.000046 0.606267 -0.028711 +v 0.057645 0.660239 -0.054161 +v 0.013423 0.658850 -0.034968 +v 0.029589 0.644776 -0.036330 +v 0.052936 0.682347 -0.046162 +v 0.006867 0.680365 -0.033535 +v 0.000044 0.680750 -0.032383 +v 0.011246 0.641404 -0.024142 +v 0.004338 0.660619 -0.026495 +v 0.000049 0.661083 -0.024811 +v 0.043922 0.704878 -0.047698 +v 0.013684 0.755089 -0.053990 +v 0.062464 0.720249 -0.071793 +v 0.019043 0.725043 -0.044791 +v 0.000035 0.748322 -0.044661 +v 0.000037 0.724032 -0.041327 +v 0.000042 0.707546 -0.034167 +v 0.023157 0.604084 -0.033368 +v 0.033777 0.566283 -0.041557 +v 0.010280 0.631960 -0.024945 +v 0.008173 0.658880 -0.031067 +v 0.044133 0.724279 -0.053744 +v 0.018545 0.687399 -0.030962 +v 0.015522 0.558388 -0.035227 +v 0.056052 0.601860 -0.175436 +v 0.038379 0.605496 -0.195764 +v 0.027878 0.681077 -0.223962 +v 0.055193 0.677544 -0.211647 +v 0.049490 0.640358 -0.204368 +v -0.000096 0.646377 -0.222535 +v -0.000079 0.763607 -0.199714 +v 0.023524 0.762484 -0.197206 +v 0.052756 0.730131 -0.210629 +v 0.069465 0.599931 -0.117877 +v 0.069389 0.596725 -0.146779 +v 0.086747 0.669059 -0.149891 +v 0.076607 0.616978 -0.120039 +v 0.082610 0.620739 -0.139998 +v 0.082413 0.720903 -0.162111 +v 0.082976 0.694091 -0.118214 +v 0.066219 0.608551 -0.083468 +v 0.072594 0.669132 -0.092187 +v 0.071589 0.656059 -0.092184 +v 0.061827 0.750801 -0.096737 +v 0.073063 0.716451 -0.089744 +v 0.061435 0.700454 -0.063165 +v 0.016019 0.783591 -0.135905 +v 0.019362 0.777903 -0.169720 +v 0.036983 0.774229 -0.136099 +v 0.017294 0.762654 -0.065546 +v 0.059867 0.667566 -0.056340 +v 0.071428 0.643862 -0.090191 +v 0.016027 0.582887 -0.205160 +v 0.043917 0.563032 -0.069288 +v 0.054589 0.637813 -0.050147 +v 0.047266 0.760359 -0.191795 +v 0.065109 0.755642 -0.161982 +v 0.074549 0.683779 -0.089613 +v 0.042882 0.772914 -0.165136 +v 0.035106 0.772059 -0.098743 +v 0.058357 0.586303 -0.081494 +v 0.061491 0.560521 -0.162107 +v 0.035220 0.562690 -0.201661 +v 0.067950 0.627122 -0.085141 +v 0.016981 0.616314 -0.056140 +v 0.000020 0.602082 -0.064010 +v 0.010953 0.606167 -0.030157 +v 0.000026 0.618587 -0.056085 +v 0.031277 0.604872 -0.048426 +v 0.016038 0.592860 -0.044533 +v 0.000037 0.590896 -0.042050 +v 0.015418 0.602296 -0.062139 +v 0.005551 0.673062 -0.035789 +v 0.020599 0.628070 -0.030762 +v 0.015280 0.609278 -0.028531 +v 0.006083 0.627231 -0.028633 +v 0.000048 0.609349 -0.025947 +v 0.026543 0.627140 -0.034137 +v 0.021600 0.608386 -0.030714 +v 0.044360 0.575463 -0.048938 +v 0.044455 0.603342 -0.043802 +v 0.034596 0.619806 -0.038759 +v 0.009158 0.603681 -0.030420 +v 0.000047 0.597737 -0.027157 +v 0.006045 0.609633 -0.026944 +v 0.027685 0.606913 -0.033423 +v 0.025297 0.602826 -0.034042 +v 0.012032 0.598842 -0.029538 +v 0.087290 0.652073 -0.155607 +v 0.066497 0.636344 -0.185701 +v 0.082858 0.673041 -0.133003 +v 0.084539 0.696986 -0.152589 +v 0.077654 0.621555 -0.138525 +v 0.082127 0.672942 -0.141241 +v 0.079382 0.655915 -0.151920 +v 0.083309 0.653896 -0.137317 +v 0.087873 0.660638 -0.153868 +v 0.085411 0.672816 -0.142146 +v 0.080925 0.666903 -0.123989 +v 0.077800 0.644051 -0.116594 +v 0.079609 0.615917 -0.128517 +v 0.085398 0.636304 -0.149491 +v 0.084748 0.666534 -0.138969 +v 0.081748 0.636472 -0.131814 +v 0.032004 0.674780 -0.066146 +v 0.033214 0.688372 -0.035192 +v 0.030015 0.655064 -0.038312 +v 0.033152 0.684801 -0.039163 +v 0.022935 0.684538 -0.038619 +v 0.041420 0.684005 -0.041783 +v 0.031239 0.661376 -0.040826 +v 0.044835 0.663542 -0.045959 +v 0.011255 0.671233 -0.037602 +v 0.015162 0.681571 -0.036621 +v 0.018759 0.663273 -0.038341 +v 0.053674 0.670680 -0.052094 +v 0.048520 0.677761 -0.046219 +v 0.048094 0.670964 -0.046092 +v 0.044541 0.673485 -0.044229 +v 0.017980 0.672121 -0.043940 +v 0.026707 0.677148 -0.038469 +v 0.031711 0.668017 -0.039600 +v 0.033005 0.677503 -0.038435 +v 0.039894 0.675948 -0.040305 +v 0.043136 0.668941 -0.042259 +v 0.022667 0.675301 -0.039991 +v 0.019787 0.669796 -0.042522 +v 0.057897 0.748906 -0.082708 +v 0.014014 0.749630 -0.055875 +v 0.000030 0.747331 -0.050313 +v 0.054417 0.701974 -0.211492 +v 0.073053 0.698593 -0.196806 +v 0.025530 0.701959 -0.222478 +v -0.000097 0.702191 -0.224327 +v 0.079800 0.719539 -0.116318 +v 0.024021 0.762347 -0.072902 +v 0.015093 0.777296 -0.091683 +v 0.033799 0.767734 -0.091982 +v 0.027305 0.604076 -0.035569 +v 0.077206 0.627462 -0.116595 +v 0.039599 0.751003 -0.067634 +v 0.012468 0.581204 -0.034260 +v 0.028530 0.587964 -0.039227 +v 0.000043 0.580734 -0.032492 +v 0.000048 0.620006 -0.026042 +v 0.006067 0.620639 -0.026796 +v 0.017866 0.620603 -0.028656 +v 0.023852 0.620192 -0.031563 +v 0.031164 0.614470 -0.035546 +v 0.037241 0.604635 -0.039480 +v 0.025411 0.668658 -0.040497 +v 0.024772 0.661740 -0.040269 +v 0.037007 0.668448 -0.039812 +v 0.038097 0.661627 -0.042287 +v 0.032100 0.672662 -0.040377 +v 0.032099 0.679184 -0.042089 +v 0.028637 0.678310 -0.042086 +v 0.026103 0.675923 -0.042084 +v 0.025175 0.672662 -0.042084 +v 0.026103 0.669402 -0.042085 +v 0.028637 0.667015 -0.042087 +v 0.032099 0.666141 -0.042090 +v 0.035561 0.667015 -0.042092 +v 0.038095 0.669402 -0.042094 +v 0.039023 0.672662 -0.042095 +v 0.038095 0.675923 -0.042094 +v 0.035664 0.678253 -0.042092 +v 0.032095 0.682392 -0.046722 +v 0.026099 0.680879 -0.046717 +v 0.021709 0.678310 -0.046714 +v 0.020103 0.672663 -0.046713 +v 0.021709 0.667015 -0.046715 +v 0.026099 0.662881 -0.046718 +v 0.032095 0.661367 -0.046723 +v 0.038092 0.662881 -0.046728 +v 0.042481 0.667015 -0.046731 +v 0.044088 0.672663 -0.046732 +v 0.042481 0.678310 -0.046731 +v 0.038092 0.680879 -0.046727 +v 0.032087 0.683184 -0.056645 +v 0.025163 0.681436 -0.056639 +v 0.020095 0.678753 -0.056636 +v 0.018239 0.672663 -0.056635 +v 0.020095 0.666142 -0.056637 +v 0.025163 0.661368 -0.056641 +v 0.032087 0.659621 -0.056647 +v 0.039011 0.661368 -0.056652 +v 0.044080 0.666142 -0.056656 +v 0.045935 0.672663 -0.056657 +v 0.044080 0.678753 -0.056655 +v 0.039011 0.681436 -0.056651 +v -0.059110 0.536142 -0.187691 +v -0.000000 0.540793 -0.215201 +v -0.015761 0.540427 -0.213639 +v -0.019405 0.503710 -0.094739 +v -0.053652 0.510650 -0.107282 +v -0.067438 0.520779 -0.126053 +v 0.036760 0.506119 -0.098931 +v 0.053653 0.510651 -0.107282 +v 0.069888 0.534194 -0.173645 +v 0.031204 0.539639 -0.209663 +v 0.000054 0.651588 -0.019541 +v -0.005060 0.651072 -0.020503 +v 0.005450 0.651030 -0.020527 +v -0.008961 0.653875 -0.029071 +v 0.009099 0.653615 -0.028981 +v -0.044945 0.538234 -0.200581 +v -0.069979 0.534194 -0.173645 +v -0.036761 0.506119 -0.098931 +v 0.019407 0.503710 -0.094739 +v -0.019039 0.528723 -0.092293 +v 0.018894 0.528699 -0.092317 +v 0.029103 0.543827 -0.081147 +v -0.030515 0.530993 -0.094523 +v -0.044222 0.542698 -0.104226 +v -0.060671 0.577603 -0.114659 +v -0.055594 0.554467 -0.115571 +v -0.049037 0.559436 -0.185459 +v -0.016353 0.563053 -0.206814 +v -0.061693 0.560558 -0.162033 +v -0.035495 0.562693 -0.201621 +v 0.044100 0.542623 -0.104284 +v 0.000003 0.525816 -0.089923 +v 0.060640 0.577603 -0.114748 +v 0.056898 0.572766 -0.103251 +v 0.048786 0.559405 -0.185517 +v -0.000087 0.563295 -0.208635 +v 0.016069 0.563047 -0.206832 +v 0.062645 0.580147 -0.155692 +v 0.037343 0.582479 -0.198361 +v -0.018386 0.540657 -0.079483 +v 0.018406 0.540657 -0.079510 +v 0.030377 0.530945 -0.094559 +v -0.054008 -1.023267 0.058280 +v -0.053875 -1.019497 -0.098477 +v -0.052182 -1.025302 -0.183592 +v -0.056552 -0.984331 0.061582 +v -0.050063 -0.986603 -0.188346 +v -0.061851 -0.971665 -0.021494 +v -0.051384 -0.934447 -0.119392 +v -0.058887 -0.945675 -0.179407 +v -0.144446 -1.022927 0.009822 +v -0.138144 -1.023189 -0.103660 +v -0.107777 -1.025302 -0.189892 +v -0.148120 -0.996891 0.023939 +v -0.108298 -0.986603 -0.194946 +v -0.126523 -0.969577 -0.042150 +v -0.106810 -0.919285 -0.118071 +v -0.087129 -0.982397 0.039202 +v -0.050612 -1.012663 0.069840 +v -0.048398 -0.997260 0.017903 +v -0.047957 -1.007436 -0.093380 +v -0.035009 -0.993002 -0.152236 +v -0.045749 -1.015444 -0.188593 +v -0.060245 -0.976436 0.017278 +v -0.049392 -0.990584 -0.089226 +v -0.045354 -0.976382 -0.111982 +v -0.046130 -0.938519 -0.145639 +v -0.149402 -1.022799 -0.011141 +v -0.141364 -1.026759 -0.104488 +v -0.152459 -0.988819 -0.020623 +v -0.154324 -1.011496 0.027624 +v -0.125143 -1.024561 -0.161251 +v -0.112586 -1.015444 -0.196167 +v -0.126097 -0.993001 -0.162558 +v -0.115698 -0.952748 -0.078685 +v -0.135732 -0.996015 -0.099154 +v -0.100619 -0.953507 -0.185326 +v -0.115914 -0.932232 -0.155602 +v -0.080541 -1.023234 -0.196666 +v -0.088924 -1.023521 0.045618 +v -0.078705 -0.983456 -0.203756 +v -0.078400 -0.963474 -0.193137 +v -0.064053 -0.954450 -0.066174 +v -0.085754 -0.966158 -0.024493 +v -0.083614 -0.918276 -0.106240 +v -0.078716 -0.985736 0.064674 +v -0.088583 -1.013195 0.051338 +v -0.094789 -0.987499 0.054849 +v -0.137324 -0.979199 -0.003107 +v -0.045868 -1.009409 0.018352 +v -0.042018 -1.016213 -0.153749 +v -0.038565 -0.965290 -0.149602 +v -0.156628 -1.016314 -0.025175 +v -0.129312 -1.025680 -0.163642 +v -0.125129 -0.960322 -0.116559 +v -0.124576 -0.956369 -0.159349 +v -0.056451 -1.023708 0.010343 +v -0.047342 -1.025321 -0.152891 +v -0.078236 -1.014755 -0.207990 +v -0.084167 -0.946504 -0.059295 +v -0.080332 -1.011881 0.072639 +v -0.088661 -0.975762 0.018667 +v -0.096911 -1.010717 0.063253 +v -0.065590 -0.925280 -0.113490 +v -0.060074 -0.928202 -0.176268 +v -0.116127 -0.922458 -0.126731 +v -0.050583 -0.916337 -0.145797 +v -0.085472 -0.909166 -0.109680 +v -0.113136 -0.892587 -0.149974 +v -0.109849 -0.908280 -0.124949 +v -0.145043 -0.562023 -0.125875 +v -0.122185 -0.546247 -0.183284 +v -0.060644 -0.544830 -0.204434 +v -0.041675 -0.557398 -0.184476 +v -0.060371 -0.565272 -0.098772 +v -0.099880 -0.568266 -0.095805 +v -0.123218 -0.568617 -0.104718 +v -0.145037 -0.301060 -0.188530 +v -0.039816 -0.326413 -0.214205 +v -0.019856 -0.326657 -0.173975 +v -0.032114 -0.321735 -0.069483 +v -0.108269 -0.327572 -0.020507 +v -0.157381 -0.308309 -0.037951 +v -0.161664 -0.075796 -0.078405 +v -0.141717 -0.143118 -0.202602 +v -0.006795 -0.188792 -0.165049 +v -0.141950 -0.123913 -0.035426 +v -0.123269 -0.514012 -0.177661 +v -0.060979 -0.519103 -0.199029 +v -0.040047 -0.521169 -0.169962 +v -0.132717 -0.521209 -0.082313 +v -0.133205 -0.468069 -0.071620 +v -0.128226 -0.726484 -0.112291 +v -0.129178 -0.628715 -0.109370 +v -0.143095 -0.615276 -0.166692 +v -0.091656 -0.597593 -0.226202 +v -0.072020 -0.631150 -0.098420 +v -0.147549 -0.451850 -0.140665 +v -0.148835 -0.514309 -0.105984 +v -0.096928 -0.460695 -0.186829 +v -0.072888 -0.516818 -0.074711 +v -0.102878 -0.474245 -0.063309 +v -0.069259 -0.479324 -0.072039 +v -0.158830 -0.071360 -0.144433 +v -0.176351 -0.298950 -0.075707 +v -0.092756 -0.178134 -0.229314 +v -0.100302 -0.149874 -0.010657 +v -0.059412 -0.163812 -0.011064 +v -0.078879 -0.568527 -0.094434 +v -0.102108 -0.533240 -0.074641 +v -0.052894 -0.531406 -0.095574 +v -0.149367 -0.455330 -0.090932 +v -0.131013 -0.454819 -0.169377 +v -0.060398 -0.467660 -0.192855 +v -0.121717 -0.699838 -0.211199 +v -0.145271 -0.724266 -0.139070 +v -0.051164 -0.690694 -0.234382 +v -0.100441 -0.728470 -0.102869 +v -0.150952 -0.623217 -0.136152 +v -0.125414 -0.602301 -0.206868 +v -0.101952 -0.631573 -0.096529 +v -0.052899 -0.596161 -0.229923 +v -0.135257 -0.715480 -0.169709 +v -0.095122 -0.693080 -0.230532 +v -0.070383 -0.729433 -0.102982 +v -0.140130 -0.513627 -0.147916 +v -0.094687 -0.495355 -0.190319 +v -0.168611 -0.291251 -0.125298 +v -0.097955 -0.319669 -0.216247 +v -0.136533 -0.552918 -0.155305 +v -0.093476 -0.540929 -0.197755 +v -0.067799 -0.331967 -0.036170 +v -0.037189 -0.620733 -0.143264 +v -0.044665 -0.475259 -0.133758 +v -0.017814 -0.182802 -0.075832 +v -0.045613 -0.465457 -0.175693 +v -0.050419 -0.479313 -0.096414 +v -0.053568 -0.725923 -0.113337 +v -0.029152 -0.699729 -0.200271 +v -0.031525 -0.613234 -0.194269 +v -0.054296 -0.626606 -0.104539 +v -0.040766 -0.718681 -0.158571 +v -0.042791 -0.507920 -0.129623 +v -0.023189 -0.315617 -0.112990 +v -0.051913 -0.562346 -0.125906 +v -0.140073 0.015557 -0.074754 +v -0.097912 -0.011932 -0.033867 +v -0.070180 -0.026392 -0.246002 +v -0.148792 0.018553 -0.119882 +v -0.040980 -0.049840 -0.007746 +v -0.027534 -0.104454 -0.004349 +v -0.030194 -0.165148 -0.021126 +v -0.037018 -0.111794 -0.260200 +v -0.089623 -0.147067 -0.246144 +v -0.044163 -0.186943 -0.236371 +v -0.100893 -0.017523 -0.227799 +v -0.140017 -0.080981 -0.205152 +v -0.120593 -0.164074 -0.214966 +v -0.036030 -0.035533 -0.255037 +v -0.012468 -0.188884 -0.241165 +v -0.043415 -0.159670 -0.254493 +v -0.119812 -0.129423 -0.235071 +v -0.109818 -0.095944 -0.239225 +v -0.083565 -0.108541 -0.252395 +v 0.054094 -1.023268 0.058201 +v 0.053733 -1.019497 -0.098555 +v 0.051917 -1.025302 -0.183668 +v 0.056643 -0.984331 0.061500 +v 0.049790 -0.986603 -0.188419 +v 0.061821 -0.971665 -0.021584 +v 0.051212 -0.934447 -0.119466 +v 0.058627 -0.945675 -0.179492 +v 0.144462 -1.022927 0.009612 +v 0.137995 -1.023189 -0.103861 +v 0.107502 -1.025302 -0.190049 +v 0.148149 -0.996915 0.023724 +v 0.108016 -0.986602 -0.195103 +v 0.126463 -0.969578 -0.042334 +v 0.106640 -0.919285 -0.118226 +v 0.087187 -0.982397 0.039076 +v 0.050715 -1.012663 0.069766 +v 0.048425 -0.997260 0.017832 +v 0.047822 -1.007436 -0.093449 +v 0.034789 -0.993002 -0.152286 +v 0.045477 -1.015444 -0.188659 +v 0.060271 -0.976436 0.017190 +v 0.049263 -0.990584 -0.089297 +v 0.045193 -0.976382 -0.112048 +v 0.045920 -0.938518 -0.145706 +v 0.149387 -1.022799 -0.011358 +v 0.141213 -1.026759 -0.104694 +v 0.152430 -0.988819 -0.020845 +v 0.154366 -1.011496 0.027400 +v 0.124910 -1.024561 -0.161433 +v 0.112303 -1.015444 -0.196330 +v 0.125862 -0.993001 -0.162741 +v 0.115584 -0.952748 -0.078853 +v 0.135589 -0.996016 -0.099351 +v 0.100351 -0.953507 -0.185472 +v 0.115689 -0.932232 -0.155771 +v 0.080257 -1.023234 -0.196783 +v 0.088991 -1.023521 0.045489 +v 0.078410 -0.983456 -0.203870 +v 0.078120 -0.963474 -0.193251 +v 0.063958 -0.954450 -0.066267 +v 0.085720 -0.966158 -0.024618 +v 0.083461 -0.918276 -0.106361 +v 0.078812 -0.985736 0.064559 +v 0.088658 -1.013195 0.051210 +v 0.094868 -0.987476 0.054711 +v 0.137321 -0.979199 -0.003307 +v 0.045896 -1.009409 0.018286 +v 0.041796 -1.016213 -0.153810 +v 0.038349 -0.965290 -0.149658 +v 0.156593 -1.016314 -0.025403 +v 0.129076 -1.025680 -0.163830 +v 0.124961 -0.960322 -0.116741 +v 0.124346 -0.956369 -0.159529 +v 0.056468 -1.023708 0.010261 +v 0.047121 -1.025321 -0.152959 +v 0.077935 -1.014755 -0.208104 +v 0.084082 -0.946504 -0.059417 +v 0.080439 -1.011881 0.072522 +v 0.088690 -0.975762 0.018538 +v 0.097004 -1.010717 0.063112 +v 0.065427 -0.925280 -0.113585 +v 0.059819 -0.928202 -0.176355 +v 0.115944 -0.922458 -0.126899 +v 0.050372 -0.916337 -0.145870 +v 0.089234 -0.922897 -0.181914 +v 0.085314 -0.909166 -0.109804 +v 0.112989 -0.912270 -0.149209 +v 0.062663 -0.910781 -0.118722 +v 0.107197 -0.890971 -0.124615 +v 0.144861 -0.562023 -0.126086 +v 0.121920 -0.546247 -0.183461 +v 0.060348 -0.544830 -0.204522 +v 0.041408 -0.557398 -0.184537 +v 0.060229 -0.565272 -0.098860 +v 0.099742 -0.568266 -0.095950 +v 0.123067 -0.568617 -0.104897 +v 0.144764 -0.301059 -0.188740 +v 0.039506 -0.326413 -0.214263 +v 0.019604 -0.326657 -0.174004 +v 0.032015 -0.321735 -0.069529 +v 0.108241 -0.327572 -0.020664 +v 0.157327 -0.308309 -0.038180 +v 0.164586 -0.116328 -0.078541 +v 0.141424 -0.143118 -0.202808 +v 0.006557 -0.188792 -0.165059 +v 0.141901 -0.123913 -0.035641 +v 0.123012 -0.514012 -0.177840 +v 0.060691 -0.519103 -0.199117 +v 0.039801 -0.521169 -0.170020 +v 0.132599 -0.521209 -0.082506 +v 0.133102 -0.468069 -0.071814 +v 0.128064 -0.726484 -0.112477 +v 0.129020 -0.628715 -0.109558 +v 0.142854 -0.615276 -0.166899 +v 0.091328 -0.597593 -0.226335 +v 0.071878 -0.631150 -0.098524 +v 0.147346 -0.451850 -0.140879 +v 0.148682 -0.514309 -0.106200 +v 0.096658 -0.460696 -0.186969 +v 0.072781 -0.516818 -0.074817 +v 0.102787 -0.474245 -0.063459 +v 0.069156 -0.479324 -0.072140 +v 0.164758 -0.123935 -0.137073 +v 0.176266 -0.298950 -0.075963 +v 0.092424 -0.178134 -0.229449 +v 0.100289 -0.149874 -0.010687 +v 0.057115 -0.134559 -0.010195 +v 0.078743 -0.568527 -0.094549 +v 0.102001 -0.533240 -0.074789 +v 0.052757 -0.531406 -0.095651 +v 0.149236 -0.455330 -0.091149 +v 0.130768 -0.454819 -0.169567 +v 0.060119 -0.467660 -0.192943 +v 0.121411 -0.699838 -0.211375 +v 0.145070 -0.724266 -0.139281 +v 0.050825 -0.690694 -0.234456 +v 0.100293 -0.728470 -0.103015 +v 0.150755 -0.623217 -0.136371 +v 0.125115 -0.602301 -0.207050 +v 0.101813 -0.631573 -0.096677 +v 0.052566 -0.596161 -0.230000 +v 0.135012 -0.715480 -0.169905 +v 0.094788 -0.693080 -0.230670 +v 0.070235 -0.729434 -0.103084 +v 0.142139 -0.493691 -0.145270 +v 0.093533 -0.515405 -0.193180 +v 0.168430 -0.291251 -0.125543 +v 0.097642 -0.319669 -0.216389 +v 0.136309 -0.552918 -0.155503 +v 0.093190 -0.540929 -0.197891 +v 0.067748 -0.331967 -0.036268 +v 0.036983 -0.620733 -0.143318 +v 0.044472 -0.475259 -0.133823 +v 0.017705 -0.182802 -0.075858 +v 0.045359 -0.465457 -0.175759 +v 0.050280 -0.479313 -0.096488 +v 0.053405 -0.725923 -0.113415 +v 0.028862 -0.699729 -0.200314 +v 0.031244 -0.613234 -0.194314 +v 0.054145 -0.626606 -0.104618 +v 0.040537 -0.718681 -0.158630 +v 0.043903 -0.528167 -0.127707 +v 0.023026 -0.315617 -0.113023 +v 0.051732 -0.562346 -0.125981 +v 0.139972 0.015557 -0.074950 +v 0.097862 -0.011932 -0.034009 +v 0.069822 -0.026392 -0.246104 +v 0.133567 0.007230 -0.184650 +v 0.148606 0.018554 -0.120098 +v 0.040970 -0.049840 -0.007806 +v 0.000004 -0.061922 0.004438 +v -0.000014 -0.163598 -0.019994 +v -0.000049 -0.175797 -0.068381 +v -0.000121 -0.190864 -0.167212 +v -0.000188 -0.037937 -0.258789 +v -0.000184 -0.168693 -0.254515 +v 0.027529 -0.104454 -0.004389 +v 0.030164 -0.165148 -0.021167 +v 0.000004 -0.118106 0.004723 +v 0.036641 -0.111794 -0.260253 +v 0.089273 -0.147067 -0.246274 +v 0.043821 -0.186943 -0.236435 +v 0.100563 -0.017523 -0.227945 +v 0.139721 -0.080981 -0.205355 +v 0.120282 -0.164074 -0.215140 +v 0.035659 -0.035533 -0.255089 +v -0.000193 -0.110148 -0.266359 +v 0.012118 -0.188884 -0.241182 +v -0.000188 -0.155566 -0.263214 +v 0.043053 -0.159670 -0.254556 +v 0.119478 -0.129423 -0.235244 +v 0.109472 -0.095944 -0.239384 +v 0.083200 -0.108541 -0.252516 +v 0.137206 0.035712 -0.160737 +v 0.078367 0.027237 -0.213888 +v 0.115371 0.025625 -0.045189 +v 0.141840 0.037440 -0.084545 +v 0.076912 0.015455 -0.022305 +v -0.133834 0.007230 -0.184456 +v -0.137208 0.035712 -0.160736 +v 0.107976 0.030522 -0.191477 +v 0.033680 0.022231 -0.232078 +v -0.125257 -0.493979 -0.174612 +v -0.060898 -0.499221 -0.196077 +v -0.041161 -0.501256 -0.168871 +v -0.134103 -0.501728 -0.076556 +v -0.149490 -0.494883 -0.099829 +v -0.074971 -0.536071 -0.079267 +v -0.102673 -0.513958 -0.068363 +v -0.050826 -0.511268 -0.095211 +v -0.142349 -0.493691 -0.145063 +v -0.093813 -0.515405 -0.193044 +v -0.044087 -0.528167 -0.127643 +v 0.125005 -0.493979 -0.174794 +v 0.060615 -0.499221 -0.196165 +v 0.040917 -0.501256 -0.168930 +v 0.133993 -0.501728 -0.076751 +v 0.149346 -0.494883 -0.100046 +v 0.074857 -0.536071 -0.079376 +v 0.102575 -0.513958 -0.068512 +v 0.050689 -0.511268 -0.095285 +v 0.139917 -0.513627 -0.148119 +v 0.094412 -0.495355 -0.190457 +v 0.042604 -0.507920 -0.129685 +v -0.060282 -0.907854 -0.177231 +v -0.051541 -0.896258 -0.147507 +v -0.090130 -0.902992 -0.181849 +v -0.089497 -0.922896 -0.181784 +v -0.087784 -0.889510 -0.111920 +v -0.113189 -0.912270 -0.149050 +v -0.064245 -0.890906 -0.119148 +v -0.062834 -0.910781 -0.118631 +v -0.107377 -0.890971 -0.124459 +v 0.060026 -0.907854 -0.177318 +v 0.051328 -0.896258 -0.147582 +v 0.089867 -0.902992 -0.181980 +v 0.087623 -0.889510 -0.112047 +v 0.112919 -0.892587 -0.150138 +v 0.064073 -0.890906 -0.119241 +v 0.109651 -0.908280 -0.125108 +v -0.164678 -0.116328 -0.078302 +v -0.141129 -0.119543 -0.203997 +v -0.133766 -0.089568 -0.034224 +v -0.164954 -0.123935 -0.136834 +v -0.090767 -0.160587 -0.237114 +v -0.099638 -0.114048 -0.011734 +v -0.057127 -0.134559 -0.010112 +v -0.026165 -0.162185 -0.027625 +v -0.027654 -0.143560 -0.015979 +v -0.043776 -0.171099 -0.246116 +v -0.119264 -0.146104 -0.223663 +v -0.004996 -0.171018 -0.251623 +v -0.010027 -0.180430 -0.232598 +v 0.161571 -0.075796 -0.078639 +v 0.140834 -0.119543 -0.204201 +v 0.133717 -0.089568 -0.034431 +v 0.158634 -0.071360 -0.144670 +v 0.090424 -0.160587 -0.237246 +v 0.099622 -0.114048 -0.011879 +v 0.059397 -0.163812 -0.011151 +v -0.000004 -0.151524 -0.006764 +v -0.000171 -0.178472 -0.236339 +v 0.027632 -0.143560 -0.016019 +v 0.026126 -0.162185 -0.027663 +v 0.043420 -0.171099 -0.246180 +v 0.118940 -0.146104 -0.223836 +v 0.009690 -0.180430 -0.232612 +v 0.004632 -0.171018 -0.251630 +# 1629 vertices + +vn -0.420545 -0.102247 0.901492 +vn -0.658733 -0.195123 0.726635 +vn -0.745610 -0.062099 0.663483 +vn -0.461383 -0.002613 0.887197 +vn -0.828899 -0.323500 0.456372 +vn -0.942361 -0.331759 -0.043483 +vn -0.984632 -0.173076 -0.023328 +vn -0.916856 -0.235284 0.322516 +vn -0.508972 -0.222926 -0.831416 +vn -0.813520 -0.206949 -0.543468 +vn -0.749817 -0.414171 -0.515981 +vn -0.382389 -0.416234 -0.824941 +vn -0.749817 -0.414171 -0.515981 +vn -0.813520 -0.206949 -0.543468 +vn -0.984632 -0.173076 -0.023328 +vn -0.942361 -0.331759 -0.043483 +vn -0.066082 -0.337280 -0.939082 +vn -0.284373 -0.216073 -0.934048 +vn -0.508972 -0.222926 -0.831416 +vn -0.382389 -0.416234 -0.824941 +vn -0.306125 -0.103476 0.946351 +vn -0.287068 0.211927 0.934173 +vn -0.656996 0.062838 0.751271 +vn -0.570010 -0.384709 0.726008 +vn 0.000575 0.032493 0.999472 +vn 0.000542 0.334694 0.942327 +vn -0.287068 0.211927 0.934173 +vn -0.306125 -0.103476 0.946351 +vn -0.000570 -0.128906 -0.991657 +vn -0.000551 -0.284235 -0.958754 +vn -0.066082 -0.337280 -0.939082 +vn 0.099801 -0.058340 -0.993296 +vn -0.287068 0.211927 0.934173 +vn -0.225843 0.543274 0.808609 +vn -0.461275 0.434803 0.773415 +vn -0.656996 0.062838 0.751271 +vn 0.000475 0.563061 0.826415 +vn -0.225843 0.543274 0.808609 +vn -0.287068 0.211927 0.934173 +vn 0.000542 0.334694 0.942327 +vn -0.461383 -0.002613 0.887197 +vn 0.000574 -0.045920 0.998945 +vn 0.000573 -0.078211 0.996937 +vn -0.420545 -0.102247 0.901492 +vn -0.284373 -0.216073 -0.934048 +vn -0.066082 -0.337280 -0.939082 +vn -0.000551 -0.284235 -0.958754 +vn -0.000565 -0.179587 -0.983742 +vn -0.382389 -0.416234 -0.824941 +vn -0.249955 -0.095160 -0.963570 +vn 0.099801 -0.058340 -0.993296 +vn -0.066082 -0.337280 -0.939082 +vn -0.221210 0.649233 -0.727711 +vn -0.275749 0.532234 -0.800431 +vn -0.463733 0.751397 -0.469418 +vn -0.400790 0.890303 -0.216168 +vn -0.382389 -0.416234 -0.824941 +vn -0.749817 -0.414171 -0.515981 +vn -0.524815 -0.251634 -0.813173 +vn -0.249955 -0.095160 -0.963570 +vn 0.000475 0.563061 0.826415 +vn 0.000374 0.636964 0.770893 +vn -0.108844 0.624369 0.773509 +vn -0.216668 0.699186 0.681317 +vn -0.225843 0.543274 0.808609 +vn -0.216668 0.699186 0.681317 +vn -0.161299 0.755139 0.635411 +vn -0.461275 0.434803 0.773415 +vn -0.225843 0.543274 0.808609 +vn -0.942361 -0.331759 -0.043483 +vn -0.828899 -0.323500 0.456372 +vn -0.881039 -0.358616 0.308490 +vn -0.967421 -0.237966 -0.086419 +vn -0.749817 -0.414171 -0.515981 +vn -0.942361 -0.331759 -0.043483 +vn -0.967421 -0.237966 -0.086419 +vn -0.807908 -0.405967 -0.427173 +vn 0.724402 -0.227237 0.650849 +vn 0.821668 -0.178557 0.541276 +vn 0.655659 -0.754382 -0.031927 +vn 0.697004 -0.704446 0.133946 +vn 0.552007 -0.818010 -0.161701 +vn 0.614141 -0.769805 -0.173870 +vn 0.543746 -0.464860 -0.698746 +vn 0.501294 -0.454824 -0.736098 +vn 0.544948 -0.655740 -0.522529 +vn 0.543746 -0.464860 -0.698746 +vn 0.614141 -0.769805 -0.173870 +vn 0.629686 -0.775939 -0.037621 +vn -0.041658 -0.004722 0.999121 +vn -0.563949 -0.700862 0.436754 +vn 0.351193 -0.906280 0.235204 +vn 0.413121 -0.579063 0.702864 +vn 0.351193 -0.906280 0.235204 +vn -0.563949 -0.700862 0.436754 +vn -0.561512 -0.813219 -0.152899 +vn 0.149449 -0.974225 -0.168967 +vn -0.561512 -0.813219 -0.152899 +vn -0.563949 -0.700862 0.436754 +vn -0.901764 0.010894 0.432091 +vn -0.931519 -0.363614 0.007572 +vn -0.901764 0.010894 0.432091 +vn -0.563949 -0.700862 0.436754 +vn -0.041658 -0.004722 0.999121 +vn -0.488354 0.507817 0.709671 +vn 0.284734 0.530930 0.798148 +vn 0.297798 0.478701 0.825931 +vn 0.771697 -0.228994 0.593335 +vn 0.821668 -0.178557 0.541276 +vn 0.771697 -0.228994 0.593335 +vn 0.297798 0.478701 0.825931 +vn 0.346115 0.500752 0.793380 +vn 0.747055 -0.172355 0.642030 +vn 0.346115 0.500752 0.793380 +vn 0.297798 0.478701 0.825931 +vn -0.303570 0.775714 0.553275 +vn -0.280704 0.756243 0.591017 +vn 0.284734 0.530930 0.798148 +vn -0.346628 0.820331 0.454870 +vn -0.303570 0.775714 0.553275 +vn 0.297798 0.478701 0.825931 +vn 0.618771 -0.776482 0.119154 +vn 0.553213 -0.805278 0.213266 +vn 0.052806 -0.936840 0.345748 +vn 0.231005 -0.753844 0.615106 +vn 0.052806 -0.936840 0.345748 +vn 0.553213 -0.805278 0.213266 +vn 0.641205 -0.742145 0.195133 +vn -0.015660 -0.999583 -0.024260 +vn 0.641205 -0.742145 0.195133 +vn 0.553213 -0.805278 0.213266 +vn 0.771697 -0.228994 0.593335 +vn 0.747055 -0.172355 0.642030 +vn 0.771697 -0.228994 0.593335 +vn 0.553213 -0.805278 0.213266 +vn 0.618771 -0.776482 0.119154 +vn 0.821668 -0.178557 0.541276 +vn -0.623052 0.732429 0.274505 +vn -0.697254 0.629103 0.343609 +vn -0.303570 0.775714 0.553275 +vn -0.346628 0.820331 0.454870 +vn -0.303570 0.775714 0.553275 +vn -0.697254 0.629103 0.343609 +vn -0.734628 0.593386 0.328961 +vn -0.280704 0.756243 0.591017 +vn -0.734628 0.593386 0.328961 +vn -0.697254 0.629103 0.343609 +vn -0.796191 0.317878 0.514813 +vn -0.965092 0.251371 0.073547 +vn -0.623052 0.732429 0.274505 +vn -0.576735 0.495443 0.649548 +vn -0.796191 0.317878 0.514813 +vn -0.697254 0.629103 0.343609 +vn -0.407630 -0.111973 0.906256 +vn -0.794517 -0.577835 -0.186678 +vn -0.796191 0.317878 0.514813 +vn -0.576735 0.495443 0.649548 +vn -0.796191 0.317878 0.514813 +vn -0.794517 -0.577835 -0.186678 +vn -0.716645 -0.419006 -0.557544 +vn -0.965092 0.251371 0.073547 +vn -0.716645 -0.419006 -0.557544 +vn -0.794517 -0.577835 -0.186678 +vn 0.052806 -0.936840 0.345748 +vn -0.015660 -0.999583 -0.024260 +vn 0.052806 -0.936840 0.345748 +vn -0.794517 -0.577835 -0.186678 +vn -0.407630 -0.111973 0.906256 +vn 0.231005 -0.753844 0.615106 +vn -0.716645 -0.419006 -0.557544 +vn -0.859698 -0.281706 -0.426101 +vn -0.945307 0.326069 0.008595 +vn -0.965092 0.251371 0.073547 +vn 0.260718 -0.829715 -0.493557 +vn -0.859698 -0.281706 -0.426101 +vn -0.716645 -0.419006 -0.557544 +vn -0.015660 -0.999583 -0.024260 +vn -0.734628 0.593386 0.328961 +vn -0.796475 0.545628 0.260612 +vn -0.280598 0.715408 0.639888 +vn -0.280704 0.756243 0.591017 +vn -0.945307 0.326069 0.008595 +vn -0.796475 0.545628 0.260612 +vn -0.734628 0.593386 0.328961 +vn -0.965092 0.251371 0.073547 +vn 0.346115 0.500752 0.793380 +vn 0.325782 0.496483 0.804594 +vn 0.826822 -0.122530 0.548955 +vn 0.747055 -0.172355 0.642030 +vn -0.280598 0.715408 0.639888 +vn 0.325782 0.496483 0.804594 +vn 0.346115 0.500752 0.793380 +vn -0.280704 0.756243 0.591017 +vn 0.641205 -0.742145 0.195133 +vn 0.725214 -0.687997 0.026920 +vn 0.260718 -0.829715 -0.493557 +vn -0.015660 -0.999583 -0.024260 +vn 0.826822 -0.122530 0.548955 +vn 0.725214 -0.687997 0.026920 +vn 0.641205 -0.742145 0.195133 +vn 0.747055 -0.172355 0.642030 +vn -0.859698 -0.281706 -0.426101 +vn -0.805279 -0.562445 -0.187567 +vn -0.979555 0.169189 0.108844 +vn -0.945307 0.326069 0.008595 +vn -0.561512 -0.813219 -0.152899 +vn -0.931519 -0.363614 0.007572 +vn -0.979555 0.169189 0.108844 +vn -0.805279 -0.562445 -0.187567 +vn -0.561512 -0.813219 -0.152899 +vn -0.805279 -0.562445 -0.187567 +vn 0.420934 -0.813867 -0.400543 +vn 0.149449 -0.974225 -0.168967 +vn 0.420934 -0.813867 -0.400543 +vn -0.805279 -0.562445 -0.187567 +vn -0.859698 -0.281706 -0.426101 +vn 0.260718 -0.829715 -0.493557 +vn -0.796475 0.545628 0.260612 +vn -0.841413 0.449886 0.299377 +vn -0.362763 0.640174 0.677186 +vn -0.280598 0.715408 0.639888 +vn -0.362763 0.640174 0.677186 +vn -0.841413 0.449886 0.299377 +vn -0.901764 0.010894 0.432091 +vn -0.488354 0.507817 0.709671 +vn -0.901764 0.010894 0.432091 +vn -0.841413 0.449886 0.299377 +vn -0.979555 0.169189 0.108844 +vn -0.931519 -0.363614 0.007572 +vn -0.979555 0.169189 0.108844 +vn -0.841413 0.449886 0.299377 +vn -0.796475 0.545628 0.260612 +vn -0.945307 0.326069 0.008595 +vn 0.325782 0.496483 0.804594 +vn 0.368437 0.504893 0.780601 +vn 0.886615 -0.041202 0.460669 +vn 0.826822 -0.122530 0.548955 +vn 0.886615 -0.041202 0.460669 +vn 0.368437 0.504893 0.780601 +vn -0.041658 -0.004722 0.999121 +vn 0.413121 -0.579063 0.702864 +vn -0.041658 -0.004722 0.999121 +vn 0.368437 0.504893 0.780601 +vn -0.362763 0.640174 0.677186 +vn -0.488354 0.507817 0.709671 +vn -0.362763 0.640174 0.677186 +vn 0.368437 0.504893 0.780601 +vn 0.325782 0.496483 0.804594 +vn -0.280598 0.715408 0.639888 +vn 0.725214 -0.687997 0.026920 +vn 0.836101 -0.548129 0.022157 +vn 0.420934 -0.813867 -0.400543 +vn 0.260718 -0.829715 -0.493557 +vn 0.420934 -0.813867 -0.400543 +vn 0.836101 -0.548129 0.022157 +vn 0.351193 -0.906280 0.235204 +vn 0.149449 -0.974225 -0.168967 +vn 0.351193 -0.906280 0.235204 +vn 0.836101 -0.548129 0.022157 +vn 0.886615 -0.041202 0.460669 +vn 0.413121 -0.579063 0.702864 +vn 0.886615 -0.041202 0.460669 +vn 0.836101 -0.548129 0.022157 +vn 0.725214 -0.687997 0.026920 +vn 0.826822 -0.122530 0.548955 +vn -0.972739 0.214044 0.089243 +vn -0.586548 -0.794360 0.157967 +vn -0.413593 -0.397072 0.819313 +vn -0.845449 0.240912 0.476632 +vn -0.413593 -0.397072 0.819313 +vn -0.586548 -0.794360 0.157967 +vn 0.197182 -0.968326 0.153176 +vn 0.436900 -0.699105 0.566013 +vn 0.197182 -0.968326 0.153176 +vn -0.586548 -0.794360 0.157967 +vn -0.538232 -0.579995 -0.611483 +vn 0.331937 -0.811919 -0.480214 +vn -0.538232 -0.579995 -0.611483 +vn -0.586548 -0.794360 0.157967 +vn -0.972739 0.214044 0.089243 +vn -0.858956 0.117782 -0.498318 +vn -0.042890 0.039333 0.998305 +vn -0.049066 0.072608 0.996153 +vn 0.431517 -0.629503 0.646157 +vn 0.441194 -0.646124 0.622793 +vn -0.588759 0.499698 0.635346 +vn -0.049066 0.072608 0.996153 +vn -0.042890 0.039333 0.998305 +vn -0.596058 0.472447 0.649237 +vn -0.910556 0.411051 0.043879 +vn -0.734688 0.678384 -0.005353 +vn -0.726545 0.488522 -0.483195 +vn -0.838227 0.420801 -0.346847 +vn 0.431517 -0.629503 0.646157 +vn -0.049066 0.072608 0.996153 +vn -0.056730 0.028637 0.997979 +vn 0.587771 -0.524607 0.615884 +vn -0.056730 0.028637 0.997979 +vn -0.049066 0.072608 0.996153 +vn -0.588759 0.499698 0.635346 +vn -0.638466 0.457373 0.619008 +vn -0.726545 0.488522 -0.483195 +vn -0.734688 0.678384 -0.005353 +vn -0.826479 0.557075 0.081245 +vn -0.770827 0.430953 -0.469154 +vn -0.056730 0.028637 0.997979 +vn -0.057557 0.022446 0.998090 +vn 0.699354 -0.425013 0.574689 +vn 0.587771 -0.524607 0.615884 +vn 0.699354 -0.425013 0.574689 +vn -0.057557 0.022446 0.998090 +vn -0.037159 -0.013217 0.999222 +vn 0.632794 -0.501013 0.590388 +vn -0.037159 -0.013217 0.999222 +vn -0.057557 0.022446 0.998090 +vn -0.658412 0.417302 0.626381 +vn -0.685548 0.387704 0.616205 +vn -0.658412 0.417302 0.626381 +vn -0.057557 0.022446 0.998090 +vn -0.056730 0.028637 0.997979 +vn -0.638466 0.457373 0.619008 +vn -0.826479 0.557075 0.081245 +vn -0.852338 0.522739 0.016239 +vn -0.796072 0.413373 -0.442031 +vn -0.770827 0.430953 -0.469154 +vn -0.796072 0.413373 -0.442031 +vn -0.852338 0.522739 0.016239 +vn -0.933649 0.195429 0.300177 +vn -0.846919 0.404766 -0.344807 +vn 0.632794 -0.501013 0.590388 +vn -0.037159 -0.013217 0.999222 +vn -0.413593 -0.397072 0.819313 +vn 0.436900 -0.699105 0.566013 +vn -0.413593 -0.397072 0.819313 +vn -0.037159 -0.013217 0.999222 +vn -0.685548 0.387704 0.616205 +vn -0.845449 0.240912 0.476632 +vn -0.846919 0.404766 -0.344807 +vn -0.933649 0.195429 0.300177 +vn -0.538232 -0.579995 -0.611483 +vn -0.858956 0.117782 -0.498318 +vn -0.538232 -0.579995 -0.611483 +vn -0.933649 0.195429 0.300177 +vn 0.763637 -0.640508 -0.081289 +vn 0.331937 -0.811919 -0.480214 +vn 0.618771 -0.776482 0.119154 +vn 0.655659 -0.754382 -0.031927 +vn 0.821668 -0.178557 0.541276 +vn -0.588173 0.582795 0.560716 +vn -0.734688 0.678384 -0.005353 +vn -0.910556 0.411051 0.043879 +vn -0.704674 0.492857 0.510418 +vn -0.892717 0.394592 0.217610 +vn -0.713224 0.697313 0.071170 +vn -0.692393 0.511132 -0.509249 +vn -0.752082 0.478806 -0.452899 +vn -0.826479 0.557075 0.081245 +vn -0.734688 0.678384 -0.005353 +vn -0.588173 0.582795 0.560716 +vn -0.652870 0.475129 0.589927 +vn -0.692393 0.511132 -0.509249 +vn -0.713224 0.697313 0.071170 +vn -0.825413 0.549531 0.129261 +vn -0.771282 0.413671 -0.483736 +vn -0.933649 0.195429 0.300177 +vn -0.852338 0.522739 0.016239 +vn -0.702225 0.414391 0.578930 +vn -0.680383 0.474049 0.558889 +vn -0.702225 0.414391 0.578930 +vn -0.852338 0.522739 0.016239 +vn -0.826479 0.557075 0.081245 +vn -0.652870 0.475129 0.589927 +vn -0.825413 0.549531 0.129261 +vn -0.823129 0.542441 0.167975 +vn -0.834671 0.382760 -0.396004 +vn -0.771282 0.413671 -0.483736 +vn -0.834671 0.382760 -0.396004 +vn -0.823129 0.542441 0.167975 +vn -0.967238 0.225901 0.115846 +vn -0.824097 0.447709 -0.347018 +vn -0.419212 -0.307556 0.854208 +vn -0.933649 0.195429 0.300177 +vn -0.680383 0.474049 0.558889 +vn -0.876853 0.227367 0.423594 +vn 0.763637 -0.640508 -0.081289 +vn -0.933649 0.195429 0.300177 +vn -0.419212 -0.307556 0.854208 +vn 0.370192 -0.717444 0.590112 +vn -0.618786 -0.402892 -0.674375 +vn -0.967238 0.225901 0.115846 +vn 0.715892 -0.686943 -0.124933 +vn 0.262655 -0.811684 -0.521710 +vn -0.824097 0.447709 -0.347018 +vn -0.967238 0.225901 0.115846 +vn -0.618786 -0.402892 -0.674375 +vn -0.950295 0.132965 -0.281531 +vn -0.903281 0.424345 0.063363 +vn -0.674710 0.732287 0.092314 +vn -0.639475 0.533918 -0.553176 +vn -0.818058 0.399612 -0.413631 +vn -0.498814 0.597922 0.627434 +vn -0.713224 0.697313 0.071170 +vn -0.892717 0.394592 0.217610 +vn -0.714103 0.405822 0.570408 +vn -0.396087 -0.362939 0.843440 +vn -0.700988 -0.713095 0.010589 +vn 0.072412 -0.996522 -0.041234 +vn 0.341310 -0.795650 0.500449 +vn 0.072412 -0.996522 -0.041234 +vn -0.700988 -0.713095 0.010589 +vn -0.297040 -0.471297 -0.830450 +vn 0.407393 -0.769388 -0.492009 +vn -0.297040 -0.471297 -0.830450 +vn -0.700988 -0.713095 0.010589 +vn -0.999258 -0.037970 0.006434 +vn -0.856122 0.086555 -0.509474 +vn -0.999258 -0.037970 0.006434 +vn -0.700988 -0.713095 0.010589 +vn -0.396087 -0.362939 0.843440 +vn -0.788974 0.206752 0.578596 +vn -0.639475 0.533918 -0.553176 +vn -0.674710 0.732287 0.092314 +vn -0.757962 0.643380 0.107496 +vn -0.720267 0.486930 -0.494079 +vn -0.825413 0.549531 0.129261 +vn -0.713224 0.697313 0.071170 +vn -0.498814 0.597922 0.627434 +vn -0.578740 0.542478 0.608915 +vn -0.757962 0.643380 0.107496 +vn -0.851502 0.516599 0.089831 +vn -0.790126 0.363031 -0.493872 +vn -0.720267 0.486930 -0.494079 +vn -0.790126 0.363031 -0.493872 +vn -0.851502 0.516599 0.089831 +vn -0.997794 -0.066265 0.004069 +vn -0.824604 0.372952 -0.425366 +vn -0.967238 0.225901 0.115846 +vn -0.823129 0.542441 0.167975 +vn -0.668428 0.459175 0.585117 +vn -0.772584 0.458851 0.438828 +vn -0.668428 0.459175 0.585117 +vn -0.823129 0.542441 0.167975 +vn -0.825413 0.549531 0.129261 +vn -0.578740 0.542478 0.608915 +vn 0.715892 -0.686943 -0.124933 +vn -0.967238 0.225901 0.115846 +vn -0.396087 -0.362939 0.843440 +vn 0.341310 -0.795650 0.500449 +vn -0.297040 -0.471297 -0.830450 +vn -0.997794 -0.066265 0.004069 +vn 0.412808 -0.671143 -0.615757 +vn 0.407393 -0.769388 -0.492009 +vn -0.824604 0.372952 -0.425366 +vn -0.997794 -0.066265 0.004069 +vn -0.297040 -0.471297 -0.830450 +vn -0.856122 0.086555 -0.509474 +vn -0.396087 -0.362939 0.843440 +vn -0.967238 0.225901 0.115846 +vn -0.772584 0.458851 0.438828 +vn -0.788974 0.206752 0.578596 +vn -0.112452 -0.082966 -0.990188 +vn -0.756584 0.450302 -0.474139 +vn -0.638563 0.523088 -0.564461 +vn -0.264365 -0.005120 -0.964409 +vn 0.416666 -0.624420 -0.660673 +vn -0.112452 -0.082966 -0.990188 +vn -0.264365 -0.005120 -0.964409 +vn -0.451113 0.600250 0.660452 +vn -0.674710 0.732287 0.092314 +vn -0.903281 0.424345 0.063363 +vn -0.763837 0.426569 0.484348 +vn 0.356508 -0.673468 -0.647567 +vn -0.199290 -0.018208 -0.979771 +vn -0.112452 -0.082966 -0.990188 +vn 0.416666 -0.624420 -0.660673 +vn -0.112452 -0.082966 -0.990188 +vn -0.199290 -0.018208 -0.979771 +vn -0.632219 0.558811 -0.536683 +vn -0.756584 0.450302 -0.474139 +vn -0.757962 0.643380 0.107496 +vn -0.674710 0.732287 0.092314 +vn -0.451113 0.600250 0.660452 +vn -0.627185 0.511296 0.587550 +vn -0.344442 0.054777 -0.937208 +vn -0.199290 -0.018208 -0.979771 +vn 0.356508 -0.673468 -0.647567 +vn 0.315603 -0.583520 -0.748264 +vn -0.632219 0.558811 -0.536683 +vn -0.199290 -0.018208 -0.979771 +vn -0.344442 0.054777 -0.937208 +vn -0.695491 0.530864 -0.484227 +vn -0.997794 -0.066265 0.004069 +vn -0.851502 0.516599 0.089831 +vn -0.675566 0.418377 0.607100 +vn -0.808951 0.279565 0.517147 +vn -0.675566 0.418377 0.607100 +vn -0.851502 0.516599 0.089831 +vn -0.757962 0.643380 0.107496 +vn -0.627185 0.511296 0.587550 +vn -0.593609 -0.133073 -0.793675 +vn -0.461983 0.052079 -0.885358 +vn 0.459367 -0.532600 -0.710858 +vn 0.268060 -0.670126 -0.692153 +vn 0.459367 -0.532600 -0.710858 +vn -0.461983 0.052079 -0.885358 +vn -0.344442 0.054777 -0.937208 +vn 0.315603 -0.583520 -0.748264 +vn -0.344442 0.054777 -0.937208 +vn -0.461983 0.052079 -0.885358 +vn -0.873775 0.345707 -0.342058 +vn -0.695491 0.530864 -0.484227 +vn -0.873775 0.345707 -0.342058 +vn -0.461983 0.052079 -0.885358 +vn -0.593609 -0.133073 -0.793675 +vn -0.830215 0.328709 -0.450215 +vn -0.448390 -0.437676 0.779350 +vn -0.997794 -0.066265 0.004069 +vn -0.808951 0.279565 0.517147 +vn -0.773018 0.094169 0.627355 +vn 0.631320 -0.774381 -0.042056 +vn -0.997794 -0.066265 0.004069 +vn -0.448390 -0.437676 0.779350 +vn 0.655869 -0.723061 0.216836 +vn -0.818675 -0.408062 -0.404050 +vn -0.593609 -0.133073 -0.793675 +vn 0.268060 -0.670126 -0.692153 +vn -0.313992 -0.879053 -0.358713 +vn -0.830215 0.328709 -0.450215 +vn -0.593609 -0.133073 -0.793675 +vn -0.818675 -0.408062 -0.404050 +vn -0.923096 0.293717 -0.248242 +vn -0.818675 -0.408062 -0.404050 +vn -0.661111 -0.725647 0.190707 +vn -0.964600 0.212222 0.156553 +vn -0.923096 0.293717 -0.248242 +vn -0.964600 0.212222 0.156553 +vn -0.661111 -0.725647 0.190707 +vn -0.448390 -0.437676 0.779350 +vn -0.773018 0.094169 0.627355 +vn -0.448390 -0.437676 0.779350 +vn -0.661111 -0.725647 0.190707 +vn 0.189759 -0.978869 0.076207 +vn 0.655869 -0.723061 0.216836 +vn 0.189759 -0.978869 0.076207 +vn -0.661111 -0.725647 0.190707 +vn -0.818675 -0.408062 -0.404050 +vn -0.313992 -0.879053 -0.358713 +vn -0.264365 -0.005120 -0.964409 +vn -0.079954 -0.050590 -0.995514 +vn 0.459913 -0.659646 -0.594429 +vn 0.416666 -0.624420 -0.660673 +vn 0.459913 -0.659646 -0.594429 +vn -0.079954 -0.050590 -0.995514 +vn -0.033226 -0.020744 -0.999233 +vn 0.544948 -0.655740 -0.522529 +vn -0.560969 0.584293 -0.586443 +vn -0.503535 0.567576 -0.651391 +vn -0.033226 -0.020744 -0.999233 +vn -0.079954 -0.050590 -0.995514 +vn -0.503535 0.567576 -0.651391 +vn -0.340623 0.656383 -0.673155 +vn 0.050063 0.205697 -0.977334 +vn -0.033226 -0.020744 -0.999233 +vn 0.544948 -0.655740 -0.522529 +vn -0.033226 -0.020744 -0.999233 +vn 0.050063 0.205697 -0.977334 +vn 0.543746 -0.464860 -0.698746 +vn 0.724402 -0.227237 0.650849 +vn 0.154844 0.481118 0.862872 +vn 0.284734 0.530930 0.798148 +vn 0.821668 -0.178557 0.541276 +vn 0.154844 0.481118 0.862872 +vn -0.466790 0.731836 0.496511 +vn -0.346628 0.820331 0.454870 +vn 0.284734 0.530930 0.798148 +vn 0.466742 -0.884349 0.008835 +vn 0.643462 -0.765202 -0.020549 +vn 0.664287 -0.746585 -0.036505 +vn 0.496802 -0.867512 -0.024733 +vn 0.664287 -0.746585 -0.036505 +vn 0.643462 -0.765202 -0.020549 +vn 0.834100 -0.546792 -0.072768 +vn 0.823420 -0.556776 -0.109453 +vn 0.823420 -0.556776 -0.109453 +vn 0.834100 -0.546792 -0.072768 +vn 0.763637 -0.640508 -0.081289 +vn 0.715892 -0.686943 -0.124933 +vn 0.262655 -0.811684 -0.521710 +vn 0.715892 -0.686943 -0.124933 +vn 0.763637 -0.640508 -0.081289 +vn 0.370192 -0.717444 0.590112 +vn 0.108961 -0.991840 0.066187 +vn 0.441194 -0.646124 0.622793 +vn 0.431517 -0.629503 0.646157 +vn 0.466742 -0.884349 0.008835 +vn 0.607426 -0.794265 -0.013328 +vn 0.431517 -0.629503 0.646157 +vn 0.587771 -0.524607 0.615884 +vn 0.643462 -0.765202 -0.020549 +vn 0.466742 -0.884349 0.008835 +vn 0.587771 -0.524607 0.615884 +vn 0.699354 -0.425013 0.574689 +vn 0.834100 -0.546792 -0.072768 +vn 0.643462 -0.765202 -0.020549 +vn 0.699354 -0.425013 0.574689 +vn 0.632794 -0.501013 0.590388 +vn 0.763637 -0.640508 -0.081289 +vn 0.834100 -0.546792 -0.072768 +vn 0.331937 -0.811919 -0.480214 +vn 0.763637 -0.640508 -0.081289 +vn 0.632794 -0.501013 0.590388 +vn 0.436900 -0.699105 0.566013 +vn 0.197182 -0.968326 0.153176 +vn 0.231005 -0.753844 0.615106 +vn 0.441194 -0.646124 0.622793 +vn 0.607426 -0.794265 -0.013328 +vn 0.570989 -0.816575 -0.084721 +vn 0.613861 -0.788432 -0.039353 +vn 0.496802 -0.867512 -0.024733 +vn 0.664287 -0.746585 -0.036505 +vn 0.774578 -0.620447 -0.122779 +vn 0.631320 -0.774381 -0.042056 +vn 0.774578 -0.620447 -0.122779 +vn 0.664287 -0.746585 -0.036505 +vn 0.823420 -0.556776 -0.109453 +vn 0.412808 -0.671143 -0.615757 +vn 0.631320 -0.774381 -0.042056 +vn 0.823420 -0.556776 -0.109453 +vn 0.715892 -0.686943 -0.124933 +vn 0.407393 -0.769388 -0.492009 +vn 0.412808 -0.671143 -0.615757 +vn 0.715892 -0.686943 -0.124933 +vn 0.341310 -0.795650 0.500449 +vn 0.072412 -0.996522 -0.041234 +vn 0.459913 -0.659646 -0.594429 +vn 0.544948 -0.655740 -0.522529 +vn 0.629686 -0.775939 -0.037621 +vn 0.642719 -0.759739 -0.098534 +vn 0.416666 -0.624420 -0.660673 +vn 0.613861 -0.788432 -0.039353 +vn 0.315603 -0.583520 -0.748264 +vn 0.356508 -0.673468 -0.647567 +vn 0.459367 -0.532600 -0.710858 +vn 0.315603 -0.583520 -0.748264 +vn 0.613861 -0.788432 -0.039353 +vn 0.774578 -0.620447 -0.122779 +vn 0.268060 -0.670126 -0.692153 +vn 0.459367 -0.532600 -0.710858 +vn 0.774578 -0.620447 -0.122779 +vn 0.631320 -0.774381 -0.042056 +vn 0.189759 -0.978869 0.076207 +vn -0.313992 -0.879053 -0.358713 +vn 0.268060 -0.670126 -0.692153 +vn 0.631320 -0.774381 -0.042056 +vn 0.655869 -0.723061 0.216836 +vn -0.773018 0.094169 0.627355 +vn -0.808951 0.279565 0.517147 +vn -0.830215 0.328709 -0.450215 +vn -0.923096 0.293717 -0.248242 +vn -0.964600 0.212222 0.156553 +vn -0.830215 0.328709 -0.450215 +vn -0.808951 0.279565 0.517147 +vn -0.675566 0.418377 0.607100 +vn -0.873775 0.345707 -0.342058 +vn -0.873775 0.345707 -0.342058 +vn -0.675566 0.418377 0.607100 +vn -0.627185 0.511296 0.587550 +vn -0.695491 0.530864 -0.484227 +vn -0.695491 0.530864 -0.484227 +vn -0.627185 0.511296 0.587550 +vn -0.451113 0.600250 0.660452 +vn -0.632219 0.558811 -0.536683 +vn -0.632219 0.558811 -0.536683 +vn -0.451113 0.600250 0.660452 +vn -0.763837 0.426569 0.484348 +vn -0.756584 0.450302 -0.474139 +vn -0.788974 0.206752 0.578596 +vn -0.772584 0.458851 0.438828 +vn -0.824604 0.372952 -0.425366 +vn -0.856122 0.086555 -0.509474 +vn -0.999258 -0.037970 0.006434 +vn -0.824604 0.372952 -0.425366 +vn -0.772584 0.458851 0.438828 +vn -0.668428 0.459175 0.585117 +vn -0.790126 0.363031 -0.493872 +vn -0.790126 0.363031 -0.493872 +vn -0.668428 0.459175 0.585117 +vn -0.578740 0.542478 0.608915 +vn -0.720267 0.486930 -0.494079 +vn -0.639475 0.533918 -0.553176 +vn -0.720267 0.486930 -0.494079 +vn -0.578740 0.542478 0.608915 +vn -0.498814 0.597922 0.627434 +vn -0.639475 0.533918 -0.553176 +vn -0.498814 0.597922 0.627434 +vn -0.714103 0.405822 0.570408 +vn -0.818058 0.399612 -0.413631 +vn -0.876853 0.227367 0.423594 +vn -0.680383 0.474049 0.558889 +vn -0.824097 0.447709 -0.347018 +vn -0.950295 0.132965 -0.281531 +vn -0.990921 -0.091182 0.098795 +vn -0.834671 0.382760 -0.396004 +vn -0.824097 0.447709 -0.347018 +vn -0.680383 0.474049 0.558889 +vn -0.702225 0.414391 0.578930 +vn -0.771282 0.413671 -0.483736 +vn -0.834671 0.382760 -0.396004 +vn -0.702225 0.414391 0.578930 +vn -0.652870 0.475129 0.589927 +vn -0.771282 0.413671 -0.483736 +vn -0.652870 0.475129 0.589927 +vn -0.588173 0.582795 0.560716 +vn -0.692393 0.511132 -0.509249 +vn -0.692393 0.511132 -0.509249 +vn -0.588173 0.582795 0.560716 +vn -0.704674 0.492857 0.510418 +vn -0.752082 0.478806 -0.452899 +vn -0.845449 0.240912 0.476632 +vn -0.685548 0.387704 0.616205 +vn -0.846919 0.404766 -0.344807 +vn -0.858956 0.117782 -0.498318 +vn -0.972739 0.214044 0.089243 +vn -0.846919 0.404766 -0.344807 +vn -0.685548 0.387704 0.616205 +vn -0.658412 0.417302 0.626381 +vn -0.796072 0.413373 -0.442031 +vn -0.796072 0.413373 -0.442031 +vn -0.658412 0.417302 0.626381 +vn -0.638466 0.457373 0.619008 +vn -0.770827 0.430953 -0.469154 +vn -0.726545 0.488522 -0.483195 +vn -0.770827 0.430953 -0.469154 +vn -0.638466 0.457373 0.619008 +vn -0.588759 0.499698 0.635346 +vn -0.726545 0.488522 -0.483195 +vn -0.588759 0.499698 0.635346 +vn -0.596058 0.472447 0.649237 +vn -0.838227 0.420801 -0.346847 +vn -0.079954 -0.050590 -0.995514 +vn -0.264365 -0.005120 -0.964409 +vn -0.638563 0.523088 -0.564461 +vn -0.560969 0.584293 -0.586443 +vn -0.803954 0.568429 -0.174776 +vn -0.838227 0.420801 -0.346847 +vn -0.596058 0.472447 0.649237 +vn -0.681433 0.675460 0.281786 +vn -0.704674 0.492857 0.510418 +vn -0.744929 0.501073 0.440462 +vn -0.852066 0.467966 -0.234503 +vn -0.752082 0.478806 -0.452899 +vn -0.811491 0.517691 0.271069 +vn -0.799392 0.520326 -0.300387 +vn -0.818058 0.399612 -0.413631 +vn -0.714103 0.405822 0.570408 +vn -0.801733 0.571689 0.174346 +vn -0.638563 0.523088 -0.564461 +vn -0.756584 0.450302 -0.474139 +vn -0.763837 0.426569 0.484348 +vn -0.744929 0.501073 0.440462 +vn -0.718320 0.676715 0.161472 +vn -0.776753 0.628899 0.033764 +vn -0.852066 0.467966 -0.234503 +vn -0.718320 0.676715 0.161472 +vn -0.803954 0.568429 -0.174776 +vn -0.681433 0.675460 0.281786 +vn -0.576735 0.495443 0.649548 +vn -0.811491 0.517691 0.271069 +vn -0.776753 0.628899 0.033764 +vn -0.768071 0.632969 -0.097048 +vn -0.799392 0.520326 -0.300387 +vn -0.801733 0.571689 0.174346 +vn -0.768071 0.632969 -0.097048 +vn -0.560969 0.584293 -0.586443 +vn -0.638563 0.523088 -0.564461 +vn -0.909097 0.375531 -0.180332 +vn -0.903281 0.424345 0.063363 +vn -0.818058 0.399612 -0.413631 +vn -0.799392 0.520326 -0.300387 +vn -0.909097 0.375531 -0.180332 +vn -0.801733 0.571689 0.174346 +vn -0.763837 0.426569 0.484348 +vn -0.903281 0.424345 0.063363 +vn -0.799392 0.520326 -0.300387 +vn -0.768071 0.632969 -0.097048 +vn -0.909097 0.375531 -0.180332 +vn -0.909097 0.375531 -0.180332 +vn -0.768071 0.632969 -0.097048 +vn -0.801733 0.571689 0.174346 +vn -0.852066 0.467966 -0.234503 +vn -0.941871 0.328955 0.068318 +vn -0.892717 0.394592 0.217610 +vn -0.752082 0.478806 -0.452899 +vn -0.941871 0.328955 0.068318 +vn -0.811491 0.517691 0.271069 +vn -0.714103 0.405822 0.570408 +vn -0.892717 0.394592 0.217610 +vn -0.852066 0.467966 -0.234503 +vn -0.776753 0.628899 0.033764 +vn -0.941871 0.328955 0.068318 +vn -0.941871 0.328955 0.068318 +vn -0.776753 0.628899 0.033764 +vn -0.811491 0.517691 0.271069 +vn -0.886879 0.428691 0.172248 +vn -0.910556 0.411051 0.043879 +vn -0.838227 0.420801 -0.346847 +vn -0.803954 0.568429 -0.174776 +vn -0.744929 0.501073 0.440462 +vn -0.704674 0.492857 0.510418 +vn -0.910556 0.411051 0.043879 +vn -0.886879 0.428691 0.172248 +vn -0.803954 0.568429 -0.174776 +vn -0.718320 0.676715 0.161472 +vn -0.886879 0.428691 0.172248 +vn -0.886879 0.428691 0.172248 +vn -0.718320 0.676715 0.161472 +vn -0.744929 0.501073 0.440462 +vn -0.665254 0.715995 0.211630 +vn -0.718320 0.676715 0.161472 +vn -0.576735 0.495443 0.649548 +vn -0.623052 0.732429 0.274505 +vn -0.716219 0.695190 0.061161 +vn -0.776753 0.628899 0.033764 +vn -0.718320 0.676715 0.161472 +vn -0.665254 0.715995 0.211630 +vn -0.716219 0.695190 0.061161 +vn -0.790818 0.602819 -0.105909 +vn -0.768071 0.632969 -0.097048 +vn -0.776753 0.628899 0.033764 +vn -0.503535 0.567576 -0.651391 +vn -0.560969 0.584293 -0.586443 +vn -0.768071 0.632969 -0.097048 +vn -0.790818 0.602819 -0.105909 +vn -0.346628 0.820331 0.454870 +vn -0.601944 0.752898 0.266099 +vn -0.665254 0.715995 0.211630 +vn -0.623052 0.732429 0.274505 +vn -0.581940 0.760985 -0.286789 +vn -0.340623 0.656383 -0.673155 +vn -0.503535 0.567576 -0.651391 +vn -0.790818 0.602819 -0.105909 +vn -0.601944 0.752898 0.266099 +vn -0.645783 0.756184 0.105596 +vn -0.716219 0.695190 0.061161 +vn -0.665254 0.715995 0.211630 +vn -0.645783 0.756184 0.105596 +vn -0.581940 0.760985 -0.286789 +vn -0.790818 0.602819 -0.105909 +vn -0.716219 0.695190 0.061161 +vn -0.346628 0.820331 0.454870 +vn -0.466790 0.731836 0.496511 +vn -0.601944 0.752898 0.266099 +vn -0.466790 0.731836 0.496511 +vn -0.657243 0.753656 0.005925 +vn -0.645783 0.756184 0.105596 +vn -0.601944 0.752898 0.266099 +vn -0.657243 0.753656 0.005925 +vn -0.415748 0.686848 -0.596149 +vn -0.581940 0.760985 -0.286789 +vn -0.645783 0.756184 0.105596 +vn -0.581940 0.760985 -0.286789 +vn -0.415748 0.686848 -0.596149 +vn -0.340623 0.656383 -0.673155 +vn 0.501294 -0.454824 -0.736098 +vn 0.543746 -0.464860 -0.698746 +vn 0.050063 0.205697 -0.977334 +vn 0.010946 0.215371 -0.976471 +vn 0.050063 0.205697 -0.977334 +vn -0.340623 0.656383 -0.673155 +vn -0.415748 0.686848 -0.596149 +vn 0.010946 0.215371 -0.976471 +vn -0.616983 -0.771119 0.157185 +vn 0.108961 -0.991840 0.066187 +vn 0.370192 -0.717444 0.590112 +vn -0.419212 -0.307556 0.854208 +vn 0.262655 -0.811684 -0.521710 +vn 0.108961 -0.991840 0.066187 +vn -0.616983 -0.771119 0.157185 +vn -0.618786 -0.402892 -0.674375 +vn -0.990921 -0.091182 0.098795 +vn -0.616983 -0.771119 0.157185 +vn -0.419212 -0.307556 0.854208 +vn -0.876853 0.227367 0.423594 +vn -0.618786 -0.402892 -0.674375 +vn -0.616983 -0.771119 0.157185 +vn -0.990921 -0.091182 0.098795 +vn -0.950295 0.132965 -0.281531 +vn 0.614141 -0.769805 -0.173870 +vn 0.552007 -0.818010 -0.161701 +vn 0.697004 -0.704446 0.133946 +vn 0.655659 -0.754382 -0.031927 +vn 0.570989 -0.816575 -0.084721 +vn 0.607426 -0.794265 -0.013328 +vn 0.477791 -0.865382 -0.151098 +vn 0.642719 -0.759739 -0.098534 +vn 0.629686 -0.775939 -0.037621 +vn 0.496802 -0.867512 -0.024733 +vn 0.613861 -0.788432 -0.039353 +vn 0.642719 -0.759739 -0.098534 +vn 0.477791 -0.865382 -0.151098 +vn 0.631320 -0.774381 -0.042056 +vn 0.412808 -0.671143 -0.615757 +vn -0.997794 -0.066265 0.004069 +vn -0.576735 0.495443 0.649548 +vn -0.681433 0.675460 0.281786 +vn -0.596058 0.472447 0.649237 +vn -0.042890 0.039333 0.998305 +vn -0.407630 -0.111973 0.906256 +vn -0.042890 0.039333 0.998305 +vn 0.441194 -0.646124 0.622793 +vn 0.231005 -0.753844 0.615106 +vn -0.407630 -0.111973 0.906256 +vn 0.629686 -0.775939 -0.037621 +vn 0.614141 -0.769805 -0.173870 +vn 0.655659 -0.754382 -0.031927 +vn 0.570989 -0.816575 -0.084721 +vn 0.496802 -0.867512 -0.024733 +vn 0.477791 -0.865382 -0.151098 +vn 0.607426 -0.794265 -0.013328 +vn 0.466742 -0.884349 0.008835 +vn 0.356508 -0.673468 -0.647567 +vn 0.416666 -0.624420 -0.660673 +vn 0.642719 -0.759739 -0.098534 +vn 0.613861 -0.788432 -0.039353 +vn 0.570989 -0.816575 -0.084721 +vn 0.655659 -0.754382 -0.031927 +vn 0.618771 -0.776482 0.119154 +vn 0.231005 -0.753844 0.615106 +vn -0.697136 0.714167 0.062989 +vn -0.776302 0.630041 -0.020069 +vn -0.561180 0.543642 0.624124 +vn -0.437712 0.554287 0.707936 +vn -0.437712 0.554287 0.707936 +vn -0.561180 0.543642 0.624124 +vn -0.138660 0.177919 0.974227 +vn -0.015743 0.191566 0.981353 +vn 0.724968 -0.667716 0.169047 +vn 0.623246 -0.738682 0.256736 +vn 0.558444 -0.785622 -0.266342 +vn 0.634654 -0.684003 -0.359657 +vn 0.634654 -0.684003 -0.359657 +vn 0.558444 -0.785622 -0.266342 +vn 0.214626 -0.542534 -0.812153 +vn 0.133055 -0.433586 -0.891235 +vn 0.133055 -0.433586 -0.891235 +vn 0.214626 -0.542534 -0.812153 +vn -0.375829 0.060199 -0.924732 +vn -0.456766 0.256019 -0.851951 +vn -0.456766 0.256019 -0.851951 +vn -0.375829 0.060199 -0.924732 +vn -0.684203 0.461667 -0.564562 +vn -0.652946 0.566106 -0.503175 +vn -0.652946 0.566106 -0.503175 +vn -0.684203 0.461667 -0.564562 +vn -0.776302 0.630041 -0.020069 +vn -0.697136 0.714167 0.062989 +vn -0.601265 0.798930 0.013831 +vn -0.692606 0.715317 0.092831 +vn -0.571037 0.560641 0.599665 +vn -0.421854 0.606759 0.673709 +vn -0.561545 0.527712 0.637328 +vn -0.703315 0.699843 0.124773 +vn -0.736867 0.668136 0.103057 +vn -0.542435 0.438600 0.716516 +vn -0.421854 0.606759 0.673709 +vn -0.571037 0.560641 0.599665 +vn -0.318821 0.259100 0.911713 +vn -0.224749 0.231621 0.946488 +vn -0.326271 0.236371 0.915246 +vn -0.561545 0.527712 0.637328 +vn -0.542435 0.438600 0.716516 +vn -0.267472 0.118163 0.956293 +vn -0.318821 0.259100 0.911713 +vn -0.045727 -0.239788 0.969748 +vn -0.010394 -0.435545 0.900107 +vn -0.224749 0.231621 0.946488 +vn 0.165807 -0.327025 0.930356 +vn -0.326271 0.236371 0.915246 +vn -0.267472 0.118163 0.956293 +vn 0.250676 -0.430650 0.867007 +vn 0.612619 -0.761006 0.213466 +vn 0.442043 -0.822222 0.358537 +vn 0.165807 -0.327025 0.930356 +vn 0.250676 -0.430650 0.867007 +vn -0.045727 -0.239788 0.969748 +vn 0.364186 -0.830795 0.420890 +vn -0.010394 -0.435545 0.900107 +vn 0.364186 -0.830795 0.420890 +vn 0.551076 -0.690654 -0.468308 +vn 0.328289 -0.852710 -0.406339 +vn 0.566253 -0.755783 -0.328862 +vn 0.442043 -0.822222 0.358537 +vn 0.612619 -0.761006 0.213466 +vn 0.650372 -0.727473 -0.218630 +vn 0.328289 -0.852710 -0.406339 +vn 0.551076 -0.690654 -0.468308 +vn 0.179494 -0.194857 -0.964268 +vn -0.168176 -0.206062 -0.963979 +vn 0.277836 -0.273180 -0.920967 +vn 0.566253 -0.755783 -0.328862 +vn 0.650372 -0.727473 -0.218630 +vn 0.248404 -0.342848 -0.905953 +vn -0.168176 -0.206062 -0.963979 +vn 0.179494 -0.194857 -0.964268 +vn -0.436554 0.451571 -0.778141 +vn -0.372836 0.508954 -0.775860 +vn -0.353931 0.378650 -0.855194 +vn 0.277836 -0.273180 -0.920967 +vn 0.248404 -0.342848 -0.905953 +vn -0.397658 0.322470 -0.859000 +vn -0.372836 0.508954 -0.775860 +vn -0.436554 0.451571 -0.778141 +vn -0.637629 0.694259 -0.333816 +vn -0.499355 0.728707 -0.468648 +vn -0.653372 0.638455 -0.406792 +vn -0.353931 0.378650 -0.855194 +vn -0.397658 0.322470 -0.859000 +vn -0.653075 0.589966 -0.474798 +vn -0.499355 0.728707 -0.468648 +vn -0.637629 0.694259 -0.333816 +vn -0.692606 0.715317 0.092831 +vn -0.601265 0.798930 0.013831 +vn -0.703315 0.699843 0.124773 +vn -0.653372 0.638455 -0.406792 +vn -0.653075 0.589966 -0.474798 +vn -0.736867 0.668136 0.103057 +vn -0.684062 0.721488 0.107305 +vn -0.697136 0.714167 0.062989 +vn -0.437712 0.554287 0.707936 +vn -0.427881 0.538043 0.726242 +vn -0.427881 0.538043 0.726242 +vn -0.437712 0.554287 0.707936 +vn -0.015743 0.191566 0.981353 +vn -0.082532 0.179349 0.980318 +vn -0.082532 0.179349 0.980318 +vn -0.015743 0.191566 0.981353 +vn 0.454618 -0.400437 0.795596 +vn 0.367235 -0.362062 0.856767 +vn 0.367235 -0.362062 0.856767 +vn 0.454618 -0.400437 0.795596 +vn 0.724968 -0.667716 0.169047 +vn 0.732807 -0.651433 0.196542 +vn 0.732807 -0.651433 0.196542 +vn 0.724968 -0.667716 0.169047 +vn 0.634654 -0.684003 -0.359657 +vn 0.679524 -0.693652 -0.238944 +vn 0.679524 -0.693652 -0.238944 +vn 0.634654 -0.684003 -0.359657 +vn 0.133055 -0.433586 -0.891235 +vn 0.178936 -0.425558 -0.887064 +vn 0.178936 -0.425558 -0.887064 +vn 0.133055 -0.433586 -0.891235 +vn -0.456766 0.256019 -0.851951 +vn -0.415964 0.283323 -0.864119 +vn -0.415964 0.283323 -0.864119 +vn -0.456766 0.256019 -0.851951 +vn -0.652946 0.566106 -0.503175 +vn -0.637010 0.589820 -0.496317 +vn -0.637010 0.589820 -0.496317 +vn -0.652946 0.566106 -0.503175 +vn -0.697136 0.714167 0.062989 +vn -0.684062 0.721488 0.107305 +vn -0.531094 0.592074 0.606125 +vn -0.561180 0.543642 0.624124 +vn -0.776302 0.630041 -0.020069 +vn -0.763422 0.645821 0.010088 +vn -0.763422 0.645821 0.010088 +vn -0.776302 0.630041 -0.020069 +vn -0.684203 0.461667 -0.564562 +vn -0.614473 0.511045 -0.601046 +vn -0.614473 0.511045 -0.601046 +vn -0.684203 0.461667 -0.564562 +vn -0.375829 0.060199 -0.924732 +vn -0.165523 0.002066 -0.986204 +vn -0.165523 0.002066 -0.986204 +vn -0.375829 0.060199 -0.924732 +vn 0.214626 -0.542534 -0.812153 +vn 0.374441 -0.582602 -0.721366 +vn 0.374441 -0.582602 -0.721366 +vn 0.214626 -0.542534 -0.812153 +vn 0.558444 -0.785622 -0.266342 +vn 0.551869 -0.818158 -0.161422 +vn 0.551869 -0.818158 -0.161422 +vn 0.558444 -0.785622 -0.266342 +vn 0.623246 -0.738682 0.256736 +vn 0.630576 -0.743269 0.223438 +vn 0.008435 0.242393 0.970141 +vn -0.138660 0.177919 0.974227 +vn -0.561180 0.543642 0.624124 +vn -0.531094 0.592074 0.606125 +vn -0.351470 -0.244915 -0.903596 +vn 0.328289 -0.852710 -0.406339 +vn -0.168176 -0.206062 -0.963979 +vn -0.351470 -0.244915 -0.903596 +vn -0.168176 -0.206062 -0.963979 +vn -0.372836 0.508954 -0.775860 +vn -0.348627 0.398323 -0.848409 +vn -0.348627 0.398323 -0.848409 +vn -0.372836 0.508954 -0.775860 +vn -0.499355 0.728707 -0.468648 +vn -0.443611 0.763889 -0.468704 +vn -0.271108 0.961171 0.051493 +vn -0.443611 0.763889 -0.468704 +vn -0.499355 0.728707 -0.468648 +vn -0.601265 0.798930 0.013831 +vn -0.271108 0.961171 0.051493 +vn -0.601265 0.798930 0.013831 +vn -0.421854 0.606759 0.673709 +vn -0.182057 0.719769 0.669916 +vn -0.182057 0.719769 0.669916 +vn -0.421854 0.606759 0.673709 +vn -0.224749 0.231621 0.946488 +vn -0.403413 0.246960 0.881061 +vn -0.561545 0.527712 0.637328 +vn -0.571037 0.560641 0.599665 +vn -0.692606 0.715317 0.092831 +vn -0.703315 0.699843 0.124773 +vn -0.703315 0.699843 0.124773 +vn -0.692606 0.715317 0.092831 +vn -0.637629 0.694259 -0.333816 +vn -0.653372 0.638455 -0.406792 +vn -0.653372 0.638455 -0.406792 +vn -0.637629 0.694259 -0.333816 +vn -0.436554 0.451571 -0.778141 +vn -0.353931 0.378650 -0.855194 +vn -0.353931 0.378650 -0.855194 +vn -0.436554 0.451571 -0.778141 +vn 0.179494 -0.194857 -0.964268 +vn 0.277836 -0.273180 -0.920967 +vn 0.277836 -0.273180 -0.920967 +vn 0.179494 -0.194857 -0.964268 +vn 0.551076 -0.690654 -0.468308 +vn 0.566253 -0.755783 -0.328862 +vn 0.566253 -0.755783 -0.328862 +vn 0.551076 -0.690654 -0.468308 +vn 0.364186 -0.830795 0.420890 +vn 0.442043 -0.822222 0.358537 +vn 0.442043 -0.822222 0.358537 +vn 0.364186 -0.830795 0.420890 +vn -0.045727 -0.239788 0.969748 +vn 0.165807 -0.327025 0.930356 +vn 0.165807 -0.327025 0.930356 +vn -0.045727 -0.239788 0.969748 +vn -0.318821 0.259100 0.911713 +vn -0.326271 0.236371 0.915246 +vn -0.326271 0.236371 0.915246 +vn -0.318821 0.259100 0.911713 +vn -0.571037 0.560641 0.599665 +vn -0.561545 0.527712 0.637328 +vn -0.271108 0.961171 0.051493 +vn -0.182057 0.719769 0.669916 +vn -0.161299 0.755139 0.635411 +vn -0.230546 0.957471 0.173485 +vn -0.182057 0.719769 0.669916 +vn -0.403413 0.246960 0.881061 +vn -0.461275 0.434803 0.773415 +vn -0.161299 0.755139 0.635411 +vn -0.351470 -0.244915 -0.903596 +vn -0.348627 0.398323 -0.848409 +vn -0.399854 0.283826 -0.871527 +vn -0.524815 -0.251634 -0.813173 +vn -0.348627 0.398323 -0.848409 +vn -0.443611 0.763889 -0.468704 +vn -0.463733 0.751397 -0.469418 +vn -0.399854 0.283826 -0.871527 +vn -0.443611 0.763889 -0.468704 +vn -0.271108 0.961171 0.051493 +vn -0.230546 0.957471 0.173485 +vn -0.463733 0.751397 -0.469418 +vn 0.623246 -0.738682 0.256736 +vn 0.405976 -0.405973 0.818761 +vn 0.528698 -0.378765 0.759615 +vn 0.630576 -0.743269 0.223438 +vn -0.138660 0.177919 0.974227 +vn 0.008435 0.242393 0.970141 +vn 0.528698 -0.378765 0.759615 +vn 0.405976 -0.405973 0.818761 +vn 0.454618 -0.400437 0.795596 +vn -0.015743 0.191566 0.981353 +vn -0.138660 0.177919 0.974227 +vn 0.405976 -0.405973 0.818761 +vn 0.724968 -0.667716 0.169047 +vn 0.454618 -0.400437 0.795596 +vn 0.405976 -0.405973 0.818761 +vn 0.623246 -0.738682 0.256736 +vn -0.000701 0.232528 -0.972590 +vn 0.041371 0.441000 -0.896553 +vn -0.001015 0.392546 -0.919732 +vn 0.099801 -0.058340 -0.993296 +vn 0.090541 0.269919 -0.958617 +vn -0.000701 0.232528 -0.972590 +vn -0.000570 -0.128906 -0.991657 +vn 0.090541 0.269919 -0.958617 +vn -0.244114 0.291018 -0.925050 +vn -0.275749 0.532234 -0.800431 +vn -0.221210 0.649233 -0.727711 +vn -0.249955 -0.095160 -0.963570 +vn -0.244114 0.291018 -0.925050 +vn 0.090541 0.269919 -0.958617 +vn 0.099801 -0.058340 -0.993296 +vn -0.524815 -0.251634 -0.813173 +vn -0.399854 0.283826 -0.871527 +vn -0.244114 0.291018 -0.925050 +vn -0.249955 -0.095160 -0.963570 +vn -0.466594 0.444958 0.764397 +vn -0.685876 0.501536 0.527291 +vn -0.343824 0.851783 0.395285 +vn -0.216668 0.699186 0.681317 +vn -0.423210 0.902827 0.076142 +vn -0.343824 0.851783 0.395285 +vn -0.685876 0.501536 0.527291 +vn -0.735536 0.624649 0.262297 +vn -0.161299 0.755139 0.635411 +vn -0.216668 0.699186 0.681317 +vn -0.343824 0.851783 0.395285 +vn -0.230546 0.957471 0.173485 +vn -0.230546 0.957471 0.173485 +vn -0.343824 0.851783 0.395285 +vn -0.423210 0.902827 0.076142 +vn -0.463733 0.751397 -0.469418 +vn -0.403413 0.246960 0.881061 +vn -0.224749 0.231621 0.946488 +vn -0.010394 -0.435545 0.900107 +vn -0.564862 -0.316222 0.762191 +vn -0.461275 0.434803 0.773415 +vn -0.403413 0.246960 0.881061 +vn -0.564862 -0.316222 0.762191 +vn -0.656996 0.062838 0.751271 +vn -0.443445 -0.874802 0.195136 +vn -0.564862 -0.316222 0.762191 +vn -0.010394 -0.435545 0.900107 +vn 0.364186 -0.830795 0.420890 +vn -0.881039 -0.358616 0.308490 +vn -0.656996 0.062838 0.751271 +vn -0.564862 -0.316222 0.762191 +vn -0.443445 -0.874802 0.195136 +vn -0.443445 -0.874802 0.195136 +vn 0.364186 -0.830795 0.420890 +vn 0.328289 -0.852710 -0.406339 +vn -0.585434 -0.663764 -0.465494 +vn -0.443445 -0.874802 0.195136 +vn -0.585434 -0.663764 -0.465494 +vn -0.807908 -0.405967 -0.427173 +vn -0.967421 -0.237966 -0.086419 +vn -0.881039 -0.358616 0.308490 +vn -0.585434 -0.663764 -0.465494 +vn 0.328289 -0.852710 -0.406339 +vn -0.351470 -0.244915 -0.903596 +vn -0.524815 -0.251634 -0.813173 +vn -0.749817 -0.414171 -0.515981 +vn -0.807908 -0.405967 -0.427173 +vn -0.524815 -0.251634 -0.813173 +vn -0.275749 0.532234 -0.800431 +vn -0.244114 0.291018 -0.925050 +vn -0.399854 0.283826 -0.871527 +vn -0.463733 0.751397 -0.469418 +vn -0.807908 -0.405967 -0.427173 +vn -0.585434 -0.663764 -0.465494 +vn -0.524815 -0.251634 -0.813173 +vn -0.570010 -0.384709 0.726008 +vn -0.488029 -0.474212 0.732770 +vn -0.331854 -0.223091 0.916571 +vn -0.306125 -0.103476 0.946351 +vn -0.331854 -0.223091 0.916571 +vn -0.488029 -0.474212 0.732770 +vn -0.658733 -0.195123 0.726635 +vn -0.420545 -0.102247 0.901492 +vn 0.000572 -0.098098 0.995177 +vn -0.331854 -0.223091 0.916571 +vn -0.420545 -0.102247 0.901492 +vn 0.000573 -0.078211 0.996937 +vn -0.306125 -0.103476 0.946351 +vn -0.331854 -0.223091 0.916571 +vn 0.000572 -0.098098 0.995177 +vn 0.000575 0.032493 0.999472 +vn -0.828899 -0.323500 0.456372 +vn -0.916856 -0.235284 0.322516 +vn -0.658733 -0.195123 0.726635 +vn -0.488029 -0.474212 0.732770 +vn -0.488029 -0.474212 0.732770 +vn -0.570010 -0.384709 0.726008 +vn -0.828899 -0.323500 0.456372 +vn -0.745610 -0.062099 0.663483 +vn -0.658733 -0.195123 0.726635 +vn -0.916856 -0.235284 0.322516 +vn -0.937340 -0.139217 0.319393 +vn -0.828899 -0.323500 0.456372 +vn -0.570010 -0.384709 0.726008 +vn -0.656996 0.062838 0.751271 +vn -0.881039 -0.358616 0.308490 +vn -0.916856 -0.235284 0.322516 +vn -0.984632 -0.173076 -0.023328 +vn -0.937340 -0.139217 0.319393 +vn -0.601844 0.631016 -0.489493 +vn -0.575169 0.552841 -0.602949 +vn -0.221210 0.649233 -0.727711 +vn -0.400790 0.890303 -0.216168 +vn -0.400790 0.890303 -0.216168 +vn -0.463733 0.751397 -0.469418 +vn -0.423210 0.902827 0.076142 +vn -0.001015 0.392546 -0.919732 +vn 0.041371 0.441000 -0.896553 +vn -0.159340 0.373496 -0.913844 +vn 0.000229 0.345201 -0.938529 +vn 0.041371 0.441000 -0.896553 +vn -0.000701 0.232528 -0.972590 +vn 0.090541 0.269919 -0.958617 +vn -0.221210 0.649233 -0.727711 +vn -0.216668 0.699186 0.681317 +vn -0.108844 0.624369 0.773509 +vn -0.266153 0.338300 0.902616 +vn -0.466594 0.444958 0.764397 +vn -0.878324 0.182015 -0.442061 +vn -0.989059 0.147299 0.008122 +vn -0.987073 0.157230 -0.031080 +vn -0.788462 0.091572 -0.608229 +vn -0.268066 0.259020 -0.927927 +vn -0.000610 0.195575 -0.980689 +vn -0.000197 0.377039 -0.926197 +vn -0.098420 0.417784 -0.903200 +vn -0.419274 0.446184 -0.790651 +vn -0.564584 0.416180 -0.712769 +vn -0.525044 0.226459 -0.820393 +vn -0.268066 0.259020 -0.927927 +vn -0.915396 0.186519 0.356736 +vn -0.901354 0.219064 0.373593 +vn -0.987073 0.157230 -0.031080 +vn -0.989059 0.147299 0.008122 +vn -0.915396 0.186519 0.356736 +vn -0.684555 0.031966 0.728260 +vn -0.738973 0.084569 0.668407 +vn -0.901354 0.219064 0.373593 +vn -0.276124 -0.081154 0.957690 +vn 0.000181 -0.063346 0.997992 +vn 0.000412 -0.122194 0.992506 +vn -0.393015 -0.107306 0.913250 +vn -0.684555 0.031966 0.728260 +vn -0.460708 -0.051446 0.886059 +vn -0.393015 -0.107306 0.913250 +vn -0.738973 0.084569 0.668407 +vn -0.461383 -0.002613 0.887197 +vn -0.426359 -0.000613 0.904554 +vn 0.000575 -0.009569 0.999954 +vn 0.000574 -0.045920 0.998945 +vn -0.745610 -0.062099 0.663483 +vn -0.803956 0.029998 0.593931 +vn -0.426359 -0.000613 0.904554 +vn -0.461383 -0.002613 0.887197 +vn -0.393015 -0.107306 0.913250 +vn 0.000412 -0.122194 0.992506 +vn 0.000575 -0.009569 0.999954 +vn -0.426359 -0.000613 0.904554 +vn -0.738973 0.084569 0.668407 +vn -0.393015 -0.107306 0.913250 +vn -0.426359 -0.000613 0.904554 +vn -0.803956 0.029998 0.593931 +vn -0.937340 -0.139217 0.319393 +vn -0.951877 0.003410 0.306463 +vn -0.803956 0.029998 0.593931 +vn -0.745610 -0.062099 0.663483 +vn -0.951877 0.003410 0.306463 +vn -0.901354 0.219064 0.373593 +vn -0.738973 0.084569 0.668407 +vn -0.803956 0.029998 0.593931 +vn -0.999753 0.022121 -0.002238 +vn -0.951877 0.003410 0.306463 +vn -0.937340 -0.139217 0.319393 +vn -0.984632 -0.173076 -0.023328 +vn -0.987073 0.157230 -0.031080 +vn -0.901354 0.219064 0.373593 +vn -0.951877 0.003410 0.306463 +vn -0.999753 0.022121 -0.002238 +vn -0.813520 -0.206949 -0.543468 +vn -0.837327 0.011967 -0.546571 +vn -0.999753 0.022121 -0.002238 +vn -0.984632 -0.173076 -0.023328 +vn -0.837327 0.011967 -0.546571 +vn -0.788462 0.091572 -0.608229 +vn -0.987073 0.157230 -0.031080 +vn -0.999753 0.022121 -0.002238 +vn -0.466614 -0.021209 -0.884207 +vn -0.837327 0.011967 -0.546571 +vn -0.813520 -0.206949 -0.543468 +vn -0.508972 -0.222926 -0.831416 +vn -0.466614 -0.021209 -0.884207 +vn -0.525044 0.226459 -0.820393 +vn -0.788462 0.091572 -0.608229 +vn -0.837327 0.011967 -0.546571 +vn -0.284373 -0.216073 -0.934048 +vn -0.249520 -0.023512 -0.968084 +vn -0.466614 -0.021209 -0.884207 +vn -0.508972 -0.222926 -0.831416 +vn -0.249520 -0.023512 -0.968084 +vn -0.268066 0.259020 -0.927927 +vn -0.525044 0.226459 -0.820393 +vn -0.466614 -0.021209 -0.884207 +vn -0.000565 -0.179587 -0.983742 +vn -0.000555 0.005160 -0.999987 +vn -0.249520 -0.023512 -0.968084 +vn -0.284373 -0.216073 -0.934048 +vn -0.000555 0.005160 -0.999987 +vn -0.000610 0.195575 -0.980689 +vn -0.268066 0.259020 -0.927927 +vn -0.249520 -0.023512 -0.968084 +vn 0.421581 -0.102247 0.901008 +vn 0.462403 -0.002613 0.886666 +vn 0.746372 -0.062098 0.662625 +vn 0.659568 -0.195123 0.725877 +vn 0.829423 -0.323500 0.455419 +vn 0.917226 -0.235284 0.321462 +vn 0.984605 -0.173076 -0.024461 +vn 0.942311 -0.331759 -0.044567 +vn 0.508015 -0.222926 -0.832000 +vn 0.381440 -0.416234 -0.825380 +vn 0.749224 -0.414171 -0.516842 +vn 0.812894 -0.206949 -0.544403 +vn 0.749224 -0.414171 -0.516842 +vn 0.942311 -0.331759 -0.044567 +vn 0.984605 -0.173076 -0.024461 +vn 0.812894 -0.206949 -0.544403 +vn 0.065002 -0.337281 -0.939157 +vn 0.381440 -0.416234 -0.825380 +vn 0.508015 -0.222926 -0.832000 +vn 0.283298 -0.216073 -0.934374 +vn 0.657859 0.062838 0.750515 +vn 0.288142 0.211927 0.933842 +vn 0.307213 -0.103476 0.945998 +vn 0.570844 -0.384710 0.725352 +vn 0.000575 0.032493 0.999472 +vn 0.307213 -0.103476 0.945998 +vn 0.288142 0.211927 0.933842 +vn 0.000542 0.334694 0.942327 +vn -0.000570 -0.128906 -0.991657 +vn -0.100943 -0.058340 -0.993180 +vn 0.065002 -0.337281 -0.939157 +vn -0.000551 -0.284235 -0.958754 +vn 0.288142 0.211927 0.933842 +vn 0.657859 0.062838 0.750515 +vn 0.462164 0.434804 0.772884 +vn 0.226772 0.543274 0.808349 +vn 0.000475 0.563061 0.826415 +vn 0.000542 0.334694 0.942327 +vn 0.288142 0.211927 0.933842 +vn 0.226772 0.543274 0.808349 +vn 0.462403 -0.002613 0.886666 +vn 0.421581 -0.102247 0.901008 +vn 0.000573 -0.078211 0.996937 +vn 0.000574 -0.045920 0.998945 +vn 0.283298 -0.216073 -0.934374 +vn -0.000565 -0.179587 -0.983742 +vn -0.000551 -0.284235 -0.958754 +vn 0.065002 -0.337281 -0.939157 +vn 0.381440 -0.416234 -0.825380 +vn 0.065002 -0.337281 -0.939157 +vn -0.100943 -0.058340 -0.993180 +vn 0.248847 -0.095160 -0.963857 +vn 0.220663 0.648797 -0.728265 +vn 0.412926 0.880051 -0.234525 +vn 0.463138 0.751419 -0.469971 +vn 0.274510 0.532662 -0.800572 +vn 0.381440 -0.416234 -0.825380 +vn 0.248847 -0.095160 -0.963857 +vn 0.523879 -0.251634 -0.813776 +vn 0.749224 -0.414171 -0.516842 +vn 0.000475 0.563061 0.826415 +vn 0.226772 0.543274 0.808349 +vn 0.217742 0.698791 0.681380 +vn 0.109766 0.623986 0.773688 +vn 0.000374 0.636964 0.770893 +vn 0.217742 0.698791 0.681380 +vn 0.226772 0.543274 0.808349 +vn 0.462164 0.434804 0.772884 +vn 0.162026 0.755142 0.635223 +vn 0.942311 -0.331759 -0.044567 +vn 0.967321 -0.237966 -0.087532 +vn 0.881393 -0.358616 0.307477 +vn 0.829423 -0.323500 0.455419 +vn 0.749224 -0.414171 -0.516842 +vn 0.807416 -0.405966 -0.428101 +vn 0.967321 -0.237966 -0.087532 +vn 0.942311 -0.331759 -0.044567 +vn -0.713554 -0.231038 0.661409 +vn -0.681547 -0.718432 0.139105 +vn -0.655695 -0.754382 -0.031172 +vn -0.821045 -0.178558 0.542219 +vn -0.549363 -0.812256 -0.196061 +vn -0.508598 -0.450417 -0.733793 +vn -0.544549 -0.464860 -0.698120 +vn -0.614340 -0.769805 -0.173166 +vn -0.545548 -0.655738 -0.521904 +vn -0.629728 -0.775939 -0.036898 +vn -0.614340 -0.769805 -0.173166 +vn -0.544549 -0.464860 -0.698120 +vn 0.042805 -0.004721 0.999072 +vn -0.412320 -0.579058 0.703337 +vn -0.350922 -0.906279 0.235610 +vn 0.564451 -0.700861 0.436107 +vn -0.350922 -0.906279 0.235610 +vn -0.149640 -0.974226 -0.168793 +vn 0.561336 -0.813220 -0.153544 +vn 0.564451 -0.700861 0.436107 +vn 0.561336 -0.813220 -0.153544 +vn 0.931528 -0.363612 0.006499 +vn 0.902262 0.010893 0.431050 +vn 0.564451 -0.700861 0.436107 +vn 0.902262 0.010893 0.431050 +vn 0.489174 0.507815 0.709107 +vn 0.042805 -0.004721 0.999072 +vn 0.564451 -0.700861 0.436107 +vn -0.283816 0.530930 0.798474 +vn -0.821045 -0.178558 0.542219 +vn -0.771014 -0.228994 0.594221 +vn -0.296849 0.478701 0.826273 +vn -0.771014 -0.228994 0.594221 +vn -0.746318 -0.172358 0.642886 +vn -0.345202 0.500752 0.793777 +vn -0.296849 0.478701 0.826273 +vn -0.345202 0.500752 0.793777 +vn 0.281380 0.756242 0.590697 +vn 0.304207 0.775714 0.552925 +vn -0.296849 0.478701 0.826273 +vn -0.283816 0.530930 0.798474 +vn -0.296849 0.478701 0.826273 +vn 0.304207 0.775714 0.552925 +vn 0.347150 0.820331 0.454471 +vn -0.618633 -0.776483 0.119865 +vn -0.230297 -0.753848 0.615367 +vn -0.052401 -0.936839 0.345814 +vn -0.552967 -0.805279 0.213900 +vn -0.052401 -0.936839 0.345814 +vn 0.015627 -0.999583 -0.024282 +vn -0.640979 -0.742147 0.195869 +vn -0.552967 -0.805279 0.213900 +vn -0.640979 -0.742147 0.195869 +vn -0.746318 -0.172358 0.642886 +vn -0.771014 -0.228994 0.594221 +vn -0.552967 -0.805279 0.213900 +vn -0.771014 -0.228994 0.594221 +vn -0.821045 -0.178558 0.542219 +vn -0.618633 -0.776483 0.119865 +vn -0.552967 -0.805279 0.213900 +vn 0.623368 0.732429 0.273789 +vn 0.347150 0.820331 0.454471 +vn 0.304207 0.775714 0.552925 +vn 0.697648 0.629103 0.342807 +vn 0.304207 0.775714 0.552925 +vn 0.281380 0.756242 0.590697 +vn 0.735004 0.593387 0.328118 +vn 0.697648 0.629103 0.342807 +vn 0.735004 0.593387 0.328118 +vn 0.965176 0.251374 0.072438 +vn 0.796783 0.317878 0.513898 +vn 0.697648 0.629103 0.342807 +vn 0.623368 0.732429 0.273789 +vn 0.697648 0.629103 0.342807 +vn 0.796783 0.317878 0.513898 +vn 0.577481 0.495443 0.648886 +vn 0.408673 -0.111974 0.905786 +vn 0.577481 0.495443 0.648886 +vn 0.796783 0.317878 0.513898 +vn 0.794298 -0.577839 -0.187598 +vn 0.796783 0.317878 0.513898 +vn 0.965176 0.251374 0.072438 +vn 0.716004 -0.419004 -0.558368 +vn 0.794298 -0.577839 -0.187598 +vn 0.716004 -0.419004 -0.558368 +vn 0.015627 -0.999583 -0.024282 +vn -0.052401 -0.936839 0.345814 +vn 0.794298 -0.577839 -0.187598 +vn -0.052401 -0.936839 0.345814 +vn -0.230297 -0.753848 0.615367 +vn 0.408673 -0.111974 0.905786 +vn 0.794298 -0.577839 -0.187598 +vn 0.716004 -0.419004 -0.558368 +vn 0.965176 0.251374 0.072438 +vn 0.945316 0.326070 0.007511 +vn 0.859206 -0.281712 -0.427088 +vn -0.261285 -0.829716 -0.493256 +vn 0.015627 -0.999583 -0.024282 +vn 0.716004 -0.419004 -0.558368 +vn 0.859206 -0.281712 -0.427088 +vn 0.735004 0.593387 0.328118 +vn 0.281380 0.756242 0.590697 +vn 0.281331 0.715409 0.639565 +vn 0.796769 0.545632 0.259701 +vn 0.945316 0.326070 0.007511 +vn 0.965176 0.251374 0.072438 +vn 0.735004 0.593387 0.328118 +vn 0.796769 0.545632 0.259701 +vn -0.345202 0.500752 0.793777 +vn -0.746318 -0.172358 0.642886 +vn -0.826190 -0.122532 0.549906 +vn -0.324855 0.496485 0.804967 +vn 0.281331 0.715409 0.639565 +vn 0.281380 0.756242 0.590697 +vn -0.345202 0.500752 0.793777 +vn -0.324855 0.496485 0.804967 +vn -0.640979 -0.742147 0.195869 +vn 0.015627 -0.999583 -0.024282 +vn -0.261285 -0.829716 -0.493256 +vn -0.725181 -0.687998 0.027753 +vn -0.826190 -0.122532 0.549906 +vn -0.746318 -0.172358 0.642886 +vn -0.640979 -0.742147 0.195869 +vn -0.725181 -0.687998 0.027753 +vn 0.859206 -0.281712 -0.427088 +vn 0.945316 0.326070 0.007511 +vn 0.979679 0.169190 0.107720 +vn 0.805063 -0.562445 -0.188491 +vn 0.561336 -0.813220 -0.153544 +vn 0.805063 -0.562445 -0.188491 +vn 0.979679 0.169190 0.107720 +vn 0.931528 -0.363612 0.006499 +vn 0.561336 -0.813220 -0.153544 +vn -0.149640 -0.974226 -0.168793 +vn -0.421395 -0.813866 -0.400061 +vn 0.805063 -0.562445 -0.188491 +vn -0.421395 -0.813866 -0.400061 +vn -0.261285 -0.829716 -0.493256 +vn 0.859206 -0.281712 -0.427088 +vn 0.805063 -0.562445 -0.188491 +vn 0.796769 0.545632 0.259701 +vn 0.281331 0.715409 0.639565 +vn 0.363547 0.640174 0.676765 +vn 0.841758 0.449886 0.298407 +vn 0.363547 0.640174 0.676765 +vn 0.489174 0.507815 0.709107 +vn 0.902262 0.010893 0.431050 +vn 0.841758 0.449886 0.298407 +vn 0.902262 0.010893 0.431050 +vn 0.931528 -0.363612 0.006499 +vn 0.979679 0.169190 0.107720 +vn 0.841758 0.449886 0.298407 +vn 0.979679 0.169190 0.107720 +vn 0.945316 0.326070 0.007511 +vn 0.796769 0.545632 0.259701 +vn 0.841758 0.449886 0.298407 +vn -0.324855 0.496485 0.804967 +vn -0.826190 -0.122532 0.549906 +vn -0.886085 -0.041200 0.461688 +vn -0.367539 0.504894 0.781023 +vn -0.886085 -0.041200 0.461688 +vn -0.412320 -0.579058 0.703337 +vn 0.042805 -0.004721 0.999072 +vn -0.367539 0.504894 0.781023 +vn 0.042805 -0.004721 0.999072 +vn 0.489174 0.507815 0.709107 +vn 0.363547 0.640174 0.676765 +vn -0.367539 0.504894 0.781023 +vn 0.363547 0.640174 0.676765 +vn 0.281331 0.715409 0.639565 +vn -0.324855 0.496485 0.804967 +vn -0.367539 0.504894 0.781023 +vn -0.725181 -0.687998 0.027753 +vn -0.261285 -0.829716 -0.493256 +vn -0.421395 -0.813866 -0.400061 +vn -0.836070 -0.548135 0.023116 +vn -0.421395 -0.813866 -0.400061 +vn -0.149640 -0.974226 -0.168793 +vn -0.350922 -0.906279 0.235610 +vn -0.836070 -0.548135 0.023116 +vn -0.350922 -0.906279 0.235610 +vn -0.412320 -0.579058 0.703337 +vn -0.886085 -0.041200 0.461688 +vn -0.836070 -0.548135 0.023116 +vn -0.886085 -0.041200 0.461688 +vn -0.826190 -0.122532 0.549906 +vn -0.725181 -0.687998 0.027753 +vn -0.836070 -0.548135 0.023116 +vn 0.972842 0.214040 0.088124 +vn 0.845996 0.240919 0.475655 +vn 0.414542 -0.397068 0.818836 +vn 0.586738 -0.794355 0.157289 +vn 0.414542 -0.397068 0.818836 +vn -0.436244 -0.699110 0.566512 +vn -0.197006 -0.968327 0.153400 +vn 0.586738 -0.794355 0.157289 +vn -0.197006 -0.968327 0.153400 +vn -0.332488 -0.811919 -0.479832 +vn 0.537526 -0.579997 -0.612103 +vn 0.586738 -0.794355 0.157289 +vn 0.537526 -0.579997 -0.612103 +vn 0.858385 0.117775 -0.499303 +vn 0.972842 0.214040 0.088124 +vn 0.586738 -0.794355 0.157289 +vn 0.044037 0.039332 0.998255 +vn -0.440477 -0.646124 0.623300 +vn -0.430774 -0.629503 0.646653 +vn 0.050211 0.072609 0.996096 +vn 0.589486 0.499700 0.634670 +vn 0.596805 0.472448 0.648550 +vn 0.044037 0.039332 0.998255 +vn 0.050211 0.072609 0.996096 +vn 0.910609 0.411043 0.042832 +vn 0.837829 0.420800 -0.347808 +vn 0.725988 0.488525 -0.484030 +vn 0.734680 0.678385 -0.006196 +vn -0.430774 -0.629503 0.646653 +vn -0.587058 -0.524610 0.616561 +vn 0.057881 0.028640 0.997913 +vn 0.050211 0.072609 0.996096 +vn 0.057881 0.028640 0.997913 +vn 0.639177 0.457378 0.618270 +vn 0.589486 0.499700 0.634670 +vn 0.050211 0.072609 0.996096 +vn 0.725988 0.488525 -0.484030 +vn 0.770284 0.430957 -0.470041 +vn 0.826570 0.557077 0.080295 +vn 0.734680 0.678385 -0.006196 +vn 0.057881 0.028640 0.997913 +vn -0.587058 -0.524610 0.616561 +vn -0.698691 -0.425015 0.575494 +vn 0.058703 0.022445 0.998023 +vn -0.698691 -0.425015 0.575494 +vn -0.632114 -0.501013 0.591116 +vn 0.038312 -0.013214 0.999178 +vn 0.058703 0.022445 0.998023 +vn 0.038312 -0.013214 0.999178 +vn 0.686253 0.387703 0.615422 +vn 0.659133 0.417299 0.625624 +vn 0.058703 0.022445 0.998023 +vn 0.659133 0.417299 0.625624 +vn 0.639177 0.457378 0.618270 +vn 0.057881 0.028640 0.997913 +vn 0.058703 0.022445 0.998023 +vn 0.826570 0.557077 0.080295 +vn 0.770284 0.430957 -0.470041 +vn 0.795563 0.413375 -0.442945 +vn 0.852357 0.522737 0.015258 +vn 0.795563 0.413375 -0.442945 +vn 0.846523 0.404766 -0.345778 +vn 0.933995 0.195426 0.299101 +vn 0.852357 0.522737 0.015258 +vn -0.632114 -0.501013 0.591116 +vn -0.436244 -0.699110 0.566512 +vn 0.414542 -0.397068 0.818836 +vn 0.038312 -0.013214 0.999178 +vn 0.414542 -0.397068 0.818836 +vn 0.845996 0.240919 0.475655 +vn 0.686253 0.387703 0.615422 +vn 0.038312 -0.013214 0.999178 +vn 0.846523 0.404766 -0.345778 +vn 0.858385 0.117775 -0.499303 +vn 0.537526 -0.579997 -0.612103 +vn 0.933995 0.195426 0.299101 +vn 0.537526 -0.579997 -0.612103 +vn -0.332488 -0.811919 -0.479832 +vn -0.763731 -0.640507 -0.080411 +vn 0.933995 0.195426 0.299101 +vn -0.618633 -0.776483 0.119865 +vn -0.821045 -0.178558 0.542219 +vn -0.655695 -0.754382 -0.031172 +vn 0.588820 0.582794 0.560037 +vn 0.705260 0.492854 0.509611 +vn 0.910609 0.411043 0.042832 +vn 0.734680 0.678385 -0.006196 +vn 0.892971 0.394582 0.216583 +vn 0.751562 0.478800 -0.453767 +vn 0.691806 0.511133 -0.510047 +vn 0.713307 0.697312 0.070348 +vn 0.826570 0.557077 0.080295 +vn 0.653550 0.475124 0.589177 +vn 0.588820 0.582794 0.560037 +vn 0.734680 0.678385 -0.006196 +vn 0.691806 0.511133 -0.510047 +vn 0.770725 0.413671 -0.484623 +vn 0.825561 0.549531 0.128310 +vn 0.713307 0.697312 0.070348 +vn 0.933995 0.195426 0.299101 +vn 0.681024 0.474048 0.558108 +vn 0.702890 0.414389 0.578124 +vn 0.852357 0.522737 0.015258 +vn 0.702890 0.414389 0.578124 +vn 0.653550 0.475124 0.589177 +vn 0.826570 0.557077 0.080295 +vn 0.852357 0.522737 0.015258 +vn 0.825561 0.549531 0.128310 +vn 0.770725 0.413671 -0.484623 +vn 0.834215 0.382761 -0.396963 +vn 0.823322 0.542442 0.167024 +vn 0.834215 0.382761 -0.396963 +vn 0.823699 0.447708 -0.347961 +vn 0.967370 0.225900 0.114735 +vn 0.823322 0.542442 0.167024 +vn 0.420194 -0.307557 0.853725 +vn 0.877334 0.227378 0.422593 +vn 0.681024 0.474048 0.558108 +vn 0.933995 0.195426 0.299101 +vn -0.763731 -0.640507 -0.080411 +vn -0.369512 -0.717447 0.590534 +vn 0.420194 -0.307557 0.853725 +vn 0.933995 0.195426 0.299101 +vn 0.618004 -0.402898 -0.675089 +vn -0.263251 -0.811685 -0.521408 +vn -0.716040 -0.686939 -0.124101 +vn 0.967370 0.225900 0.114735 +vn 0.823699 0.447708 -0.347961 +vn 0.949974 0.132943 -0.282622 +vn 0.618004 -0.402898 -0.675089 +vn 0.967370 0.225900 0.114735 +vn 0.903355 0.424341 0.062325 +vn 0.817581 0.399613 -0.414573 +vn 0.638840 0.533919 -0.553908 +vn 0.674817 0.732286 0.091537 +vn 0.499529 0.597922 0.626865 +vn 0.714759 0.405819 0.569588 +vn 0.892971 0.394582 0.216583 +vn 0.713307 0.697312 0.070348 +vn 0.397057 -0.362939 0.842984 +vn -0.340702 -0.795639 0.500880 +vn -0.089578 -0.995398 -0.034042 +vn 0.643799 -0.746421 0.168459 +vn -0.089578 -0.995398 -0.034042 +vn -0.375416 -0.744543 -0.552013 +vn 0.670923 -0.372911 -0.640937 +vn 0.643799 -0.746421 0.168459 +vn 0.670923 -0.372911 -0.640937 +vn 0.859937 0.368606 -0.353040 +vn 0.980861 0.055672 0.186580 +vn 0.643799 -0.746421 0.168459 +vn 0.980861 0.055672 0.186580 +vn 0.789637 0.206756 0.577689 +vn 0.397057 -0.362939 0.842984 +vn 0.643799 -0.746421 0.168459 +vn 0.638840 0.533919 -0.553908 +vn 0.719703 0.486924 -0.494907 +vn 0.758090 0.643374 0.106628 +vn 0.674817 0.732286 0.091537 +vn 0.825561 0.549531 0.128310 +vn 0.579438 0.542481 0.608248 +vn 0.499529 0.597922 0.626865 +vn 0.713307 0.697312 0.070348 +vn 0.758090 0.643374 0.106628 +vn 0.719703 0.486924 -0.494907 +vn 0.789559 0.363030 -0.494779 +vn 0.851606 0.516596 0.088853 +vn 0.789559 0.363030 -0.494779 +vn 0.815971 0.407130 -0.410411 +vn 0.993674 -0.111162 -0.015963 +vn 0.851606 0.516596 0.088853 +vn 0.967370 0.225900 0.114735 +vn 0.773088 0.458852 0.437938 +vn 0.669101 0.459176 0.584347 +vn 0.823322 0.542442 0.167024 +vn 0.669101 0.459176 0.584347 +vn 0.579438 0.542481 0.608248 +vn 0.825561 0.549531 0.128310 +vn 0.823322 0.542442 0.167024 +vn -0.716040 -0.686939 -0.124101 +vn -0.340702 -0.795639 0.500880 +vn 0.397057 -0.362939 0.842984 +vn 0.967370 0.225900 0.114735 +vn 0.670923 -0.372911 -0.640937 +vn -0.375416 -0.744543 -0.552013 +vn -0.401612 -0.650344 -0.644795 +vn 0.993674 -0.111162 -0.015963 +vn 0.815971 0.407130 -0.410411 +vn 0.859937 0.368606 -0.353040 +vn 0.670923 -0.372911 -0.640937 +vn 0.993674 -0.111162 -0.015963 +vn 0.397057 -0.362939 0.842984 +vn 0.789637 0.206756 0.577689 +vn 0.773088 0.458852 0.437938 +vn 0.967370 0.225900 0.114735 +vn 0.111314 -0.082966 -0.990316 +vn 0.263267 -0.005118 -0.964710 +vn 0.637915 0.523088 -0.565193 +vn 0.756039 0.450301 -0.475011 +vn -0.417426 -0.624420 -0.660193 +vn 0.263267 -0.005118 -0.964710 +vn 0.111314 -0.082966 -0.990316 +vn 0.451872 0.600249 0.659934 +vn 0.764386 0.426576 0.483475 +vn 0.903355 0.424341 0.062325 +vn 0.674817 0.732286 0.091537 +vn -0.357252 -0.673469 -0.647156 +vn -0.417426 -0.624420 -0.660193 +vn 0.111314 -0.082966 -0.990316 +vn 0.198163 -0.018210 -0.980000 +vn 0.111314 -0.082966 -0.990316 +vn 0.756039 0.450301 -0.475011 +vn 0.631602 0.558810 -0.537410 +vn 0.198163 -0.018210 -0.980000 +vn 0.758090 0.643374 0.106628 +vn 0.627861 0.511296 0.586829 +vn 0.451872 0.600249 0.659934 +vn 0.674817 0.732286 0.091537 +vn 0.343359 0.054776 -0.937605 +vn -0.316464 -0.583516 -0.747903 +vn -0.357252 -0.673469 -0.647156 +vn 0.198163 -0.018210 -0.980000 +vn 0.631602 0.558810 -0.537410 +vn 0.694933 0.530865 -0.485027 +vn 0.343359 0.054776 -0.937605 +vn 0.198163 -0.018210 -0.980000 +vn 0.993674 -0.111162 -0.015963 +vn 0.809545 0.279568 0.516215 +vn 0.676263 0.418376 0.606325 +vn 0.851606 0.516596 0.088853 +vn 0.676263 0.418376 0.606325 +vn 0.627861 0.511296 0.586829 +vn 0.758090 0.643374 0.106628 +vn 0.851606 0.516596 0.088853 +vn 0.604244 -0.164126 -0.779712 +vn -0.241168 -0.674750 -0.697532 +vn -0.460186 -0.532597 -0.710330 +vn 0.460964 0.052078 -0.885890 +vn -0.460186 -0.532597 -0.710330 +vn -0.316464 -0.583516 -0.747903 +vn 0.343359 0.054776 -0.937605 +vn 0.460964 0.052078 -0.885890 +vn 0.343359 0.054776 -0.937605 +vn 0.694933 0.530865 -0.485027 +vn 0.873379 0.345708 -0.343067 +vn 0.460964 0.052078 -0.885890 +vn 0.873379 0.345708 -0.343067 +vn 0.829756 0.328557 -0.451170 +vn 0.604244 -0.164126 -0.779712 +vn 0.460964 0.052078 -0.885890 +vn 0.455506 -0.431676 0.778569 +vn 0.818514 0.032014 0.573594 +vn 0.809545 0.279568 0.516215 +vn 0.993674 -0.111162 -0.015963 +vn -0.714177 -0.694431 -0.087842 +vn -0.720645 -0.668723 0.182975 +vn 0.455506 -0.431676 0.778569 +vn 0.993674 -0.111162 -0.015963 +vn 0.867938 -0.354475 -0.347894 +vn 0.023601 -0.926419 -0.375753 +vn -0.241168 -0.674750 -0.697532 +vn 0.604244 -0.164126 -0.779712 +vn 0.829756 0.328557 -0.451170 +vn 0.961006 0.213069 -0.176266 +vn 0.867938 -0.354475 -0.347894 +vn 0.604244 -0.164126 -0.779712 +vn 0.867938 -0.354475 -0.347894 +vn 0.961006 0.213069 -0.176266 +vn 0.983605 -0.022258 0.178956 +vn 0.708495 -0.691086 0.142955 +vn 0.983605 -0.022258 0.178956 +vn 0.818514 0.032014 0.573594 +vn 0.455506 -0.431676 0.778569 +vn 0.708495 -0.691086 0.142955 +vn 0.455506 -0.431676 0.778569 +vn -0.720645 -0.668723 0.182975 +vn -0.173470 -0.982283 0.070907 +vn 0.708495 -0.691086 0.142955 +vn -0.173470 -0.982283 0.070907 +vn 0.023601 -0.926419 -0.375753 +vn 0.867938 -0.354475 -0.347894 +vn 0.708495 -0.691086 0.142955 +vn 0.263267 -0.005118 -0.964710 +vn -0.417426 -0.624420 -0.660193 +vn -0.460598 -0.659646 -0.593900 +vn 0.078808 -0.050592 -0.995605 +vn -0.460598 -0.659646 -0.593900 +vn -0.545548 -0.655738 -0.521904 +vn 0.032077 -0.020743 -0.999270 +vn 0.078808 -0.050592 -0.995605 +vn 0.560294 0.584294 -0.587087 +vn 0.078808 -0.050592 -0.995605 +vn 0.032077 -0.020743 -0.999270 +vn 0.502785 0.567576 -0.651970 +vn 0.502785 0.567576 -0.651970 +vn 0.032077 -0.020743 -0.999270 +vn -0.051188 0.205696 -0.977276 +vn 0.339847 0.656382 -0.673548 +vn -0.545548 -0.655738 -0.521904 +vn -0.544549 -0.464860 -0.698120 +vn -0.051188 0.205696 -0.977276 +vn 0.032077 -0.020743 -0.999270 +vn -0.713554 -0.231038 0.661409 +vn -0.821045 -0.178558 0.542219 +vn -0.283816 0.530930 0.798474 +vn -0.149062 0.496084 0.855384 +vn -0.149062 0.496084 0.855384 +vn -0.283816 0.530930 0.798474 +vn 0.347150 0.820331 0.454471 +vn 0.456615 0.736508 0.499058 +vn -0.466731 -0.884350 0.009371 +vn -0.496834 -0.867509 -0.024164 +vn -0.663703 -0.747121 -0.036163 +vn -0.643483 -0.765204 -0.019810 +vn -0.663703 -0.747121 -0.036163 +vn -0.823047 -0.556806 -0.112077 +vn -0.834184 -0.546790 -0.071810 +vn -0.643483 -0.765204 -0.019810 +vn -0.823047 -0.556806 -0.112077 +vn -0.716040 -0.686939 -0.124101 +vn -0.763731 -0.640507 -0.080411 +vn -0.834184 -0.546790 -0.071810 +vn -0.263251 -0.811685 -0.521408 +vn -0.108876 -0.991841 0.066313 +vn -0.369512 -0.717447 0.590534 +vn -0.763731 -0.640507 -0.080411 +vn -0.716040 -0.686939 -0.124101 +vn -0.440477 -0.646124 0.623300 +vn -0.607440 -0.794265 -0.012631 +vn -0.466731 -0.884350 0.009371 +vn -0.430774 -0.629503 0.646653 +vn -0.430774 -0.629503 0.646653 +vn -0.466731 -0.884350 0.009371 +vn -0.643483 -0.765204 -0.019810 +vn -0.587058 -0.524610 0.616561 +vn -0.587058 -0.524610 0.616561 +vn -0.643483 -0.765204 -0.019810 +vn -0.834184 -0.546790 -0.071810 +vn -0.698691 -0.425015 0.575494 +vn -0.698691 -0.425015 0.575494 +vn -0.834184 -0.546790 -0.071810 +vn -0.763731 -0.640507 -0.080411 +vn -0.632114 -0.501013 0.591116 +vn -0.332488 -0.811919 -0.479832 +vn -0.197006 -0.968327 0.153400 +vn -0.436244 -0.699110 0.566512 +vn -0.632114 -0.501013 0.591116 +vn -0.763731 -0.640507 -0.080411 +vn -0.230297 -0.753848 0.615367 +vn -0.571086 -0.816575 -0.084065 +vn -0.607440 -0.794265 -0.012631 +vn -0.440477 -0.646124 0.623300 +vn -0.613906 -0.788432 -0.038648 +vn -0.773126 -0.622912 -0.119407 +vn -0.663703 -0.747121 -0.036163 +vn -0.496834 -0.867509 -0.024164 +vn -0.714177 -0.694431 -0.087842 +vn -0.823047 -0.556806 -0.112077 +vn -0.663703 -0.747121 -0.036163 +vn -0.773126 -0.622912 -0.119407 +vn -0.401612 -0.650344 -0.644795 +vn -0.716040 -0.686939 -0.124101 +vn -0.823047 -0.556806 -0.112077 +vn -0.714177 -0.694431 -0.087842 +vn -0.375416 -0.744543 -0.552013 +vn -0.089578 -0.995398 -0.034042 +vn -0.340702 -0.795639 0.500880 +vn -0.716040 -0.686939 -0.124101 +vn -0.401612 -0.650344 -0.644795 +vn -0.460598 -0.659646 -0.593900 +vn -0.417426 -0.624420 -0.660193 +vn -0.642831 -0.759740 -0.097793 +vn -0.629728 -0.775939 -0.036898 +vn -0.545548 -0.655738 -0.521904 +vn -0.613906 -0.788432 -0.038648 +vn -0.357252 -0.673469 -0.647156 +vn -0.316464 -0.583516 -0.747903 +vn -0.460186 -0.532597 -0.710330 +vn -0.773126 -0.622912 -0.119407 +vn -0.613906 -0.788432 -0.038648 +vn -0.316464 -0.583516 -0.747903 +vn -0.241168 -0.674750 -0.697532 +vn -0.714177 -0.694431 -0.087842 +vn -0.773126 -0.622912 -0.119407 +vn -0.460186 -0.532597 -0.710330 +vn -0.173470 -0.982283 0.070907 +vn -0.720645 -0.668723 0.182975 +vn -0.714177 -0.694431 -0.087842 +vn -0.241168 -0.674750 -0.697532 +vn 0.023601 -0.926419 -0.375753 +vn 0.818514 0.032014 0.573594 +vn 0.983605 -0.022258 0.178956 +vn 0.961006 0.213069 -0.176266 +vn 0.829756 0.328557 -0.451170 +vn 0.809545 0.279568 0.516215 +vn 0.829756 0.328557 -0.451170 +vn 0.873379 0.345708 -0.343067 +vn 0.676263 0.418376 0.606325 +vn 0.809545 0.279568 0.516215 +vn 0.873379 0.345708 -0.343067 +vn 0.694933 0.530865 -0.485027 +vn 0.627861 0.511296 0.586829 +vn 0.676263 0.418376 0.606325 +vn 0.694933 0.530865 -0.485027 +vn 0.631602 0.558810 -0.537410 +vn 0.451872 0.600249 0.659934 +vn 0.627861 0.511296 0.586829 +vn 0.631602 0.558810 -0.537410 +vn 0.756039 0.450301 -0.475011 +vn 0.764386 0.426576 0.483475 +vn 0.451872 0.600249 0.659934 +vn 0.789637 0.206756 0.577689 +vn 0.980861 0.055672 0.186580 +vn 0.859937 0.368606 -0.353040 +vn 0.815971 0.407130 -0.410411 +vn 0.773088 0.458852 0.437938 +vn 0.815971 0.407130 -0.410411 +vn 0.789559 0.363030 -0.494779 +vn 0.669101 0.459176 0.584347 +vn 0.773088 0.458852 0.437938 +vn 0.789559 0.363030 -0.494779 +vn 0.719703 0.486924 -0.494907 +vn 0.579438 0.542481 0.608248 +vn 0.669101 0.459176 0.584347 +vn 0.638840 0.533919 -0.553908 +vn 0.499529 0.597922 0.626865 +vn 0.579438 0.542481 0.608248 +vn 0.719703 0.486924 -0.494907 +vn 0.638840 0.533919 -0.553908 +vn 0.817581 0.399613 -0.414573 +vn 0.714759 0.405819 0.569588 +vn 0.499529 0.597922 0.626865 +vn 0.877334 0.227378 0.422593 +vn 0.991033 -0.091183 0.097666 +vn 0.949974 0.132943 -0.282622 +vn 0.823699 0.447708 -0.347961 +vn 0.681024 0.474048 0.558108 +vn 0.834215 0.382761 -0.396963 +vn 0.702890 0.414389 0.578124 +vn 0.681024 0.474048 0.558108 +vn 0.823699 0.447708 -0.347961 +vn 0.770725 0.413671 -0.484623 +vn 0.653550 0.475124 0.589177 +vn 0.702890 0.414389 0.578124 +vn 0.834215 0.382761 -0.396963 +vn 0.770725 0.413671 -0.484623 +vn 0.691806 0.511133 -0.510047 +vn 0.588820 0.582794 0.560037 +vn 0.653550 0.475124 0.589177 +vn 0.691806 0.511133 -0.510047 +vn 0.751562 0.478800 -0.453767 +vn 0.705260 0.492854 0.509611 +vn 0.588820 0.582794 0.560037 +vn 0.845996 0.240919 0.475655 +vn 0.972842 0.214040 0.088124 +vn 0.858385 0.117775 -0.499303 +vn 0.846523 0.404766 -0.345778 +vn 0.686253 0.387703 0.615422 +vn 0.846523 0.404766 -0.345778 +vn 0.795563 0.413375 -0.442945 +vn 0.659133 0.417299 0.625624 +vn 0.686253 0.387703 0.615422 +vn 0.795563 0.413375 -0.442945 +vn 0.770284 0.430957 -0.470041 +vn 0.639177 0.457378 0.618270 +vn 0.659133 0.417299 0.625624 +vn 0.725988 0.488525 -0.484030 +vn 0.589486 0.499700 0.634670 +vn 0.639177 0.457378 0.618270 +vn 0.770284 0.430957 -0.470041 +vn 0.725988 0.488525 -0.484030 +vn 0.837829 0.420800 -0.347808 +vn 0.596805 0.472448 0.648550 +vn 0.589486 0.499700 0.634670 +vn 0.078808 -0.050592 -0.995605 +vn 0.560294 0.584294 -0.587087 +vn 0.637915 0.523088 -0.565193 +vn 0.263267 -0.005118 -0.964710 +vn 0.803752 0.568434 -0.175687 +vn 0.681757 0.675459 0.281003 +vn 0.596805 0.472448 0.648550 +vn 0.837829 0.420800 -0.347808 +vn 0.705260 0.492854 0.509611 +vn 0.751562 0.478800 -0.453767 +vn 0.851798 0.467962 -0.235482 +vn 0.745438 0.501070 0.439603 +vn 0.811803 0.517692 0.270130 +vn 0.714759 0.405819 0.569588 +vn 0.817581 0.399613 -0.414573 +vn 0.799048 0.520326 -0.301304 +vn 0.801930 0.571693 0.173423 +vn 0.764386 0.426576 0.483475 +vn 0.756039 0.450301 -0.475011 +vn 0.637915 0.523088 -0.565193 +vn 0.745438 0.501070 0.439603 +vn 0.851798 0.467962 -0.235482 +vn 0.776793 0.628898 0.032871 +vn 0.718506 0.676714 0.160646 +vn 0.718506 0.676714 0.160646 +vn 0.577481 0.495443 0.648886 +vn 0.681757 0.675459 0.281003 +vn 0.803752 0.568434 -0.175687 +vn 0.811803 0.517692 0.270130 +vn 0.799048 0.520326 -0.301304 +vn 0.767959 0.632968 -0.097930 +vn 0.776793 0.628898 0.032871 +vn 0.801930 0.571693 0.173423 +vn 0.637915 0.523088 -0.565193 +vn 0.560294 0.584294 -0.587087 +vn 0.767959 0.632968 -0.097930 +vn 0.908888 0.375536 -0.181369 +vn 0.799048 0.520326 -0.301304 +vn 0.817581 0.399613 -0.414573 +vn 0.903355 0.424341 0.062325 +vn 0.908888 0.375536 -0.181369 +vn 0.903355 0.424341 0.062325 +vn 0.764386 0.426576 0.483475 +vn 0.801930 0.571693 0.173423 +vn 0.799048 0.520326 -0.301304 +vn 0.908888 0.375536 -0.181369 +vn 0.767959 0.632968 -0.097930 +vn 0.908888 0.375536 -0.181369 +vn 0.801930 0.571693 0.173423 +vn 0.767959 0.632968 -0.097930 +vn 0.851798 0.467962 -0.235482 +vn 0.751562 0.478800 -0.453767 +vn 0.892971 0.394582 0.216583 +vn 0.941952 0.328945 0.067236 +vn 0.941952 0.328945 0.067236 +vn 0.892971 0.394582 0.216583 +vn 0.714759 0.405819 0.569588 +vn 0.811803 0.517692 0.270130 +vn 0.851798 0.467962 -0.235482 +vn 0.941952 0.328945 0.067236 +vn 0.776793 0.628898 0.032871 +vn 0.941952 0.328945 0.067236 +vn 0.811803 0.517692 0.270130 +vn 0.776793 0.628898 0.032871 +vn 0.887076 0.428686 0.171241 +vn 0.803752 0.568434 -0.175687 +vn 0.837829 0.420800 -0.347808 +vn 0.910609 0.411043 0.042832 +vn 0.745438 0.501070 0.439603 +vn 0.887076 0.428686 0.171241 +vn 0.910609 0.411043 0.042832 +vn 0.705260 0.492854 0.509611 +vn 0.803752 0.568434 -0.175687 +vn 0.887076 0.428686 0.171241 +vn 0.718506 0.676714 0.160646 +vn 0.887076 0.428686 0.171241 +vn 0.745438 0.501070 0.439603 +vn 0.718506 0.676714 0.160646 +vn 0.665497 0.715995 0.210867 +vn 0.623368 0.732429 0.273789 +vn 0.577481 0.495443 0.648886 +vn 0.718506 0.676714 0.160646 +vn 0.716290 0.695190 0.060337 +vn 0.665497 0.715995 0.210867 +vn 0.718506 0.676714 0.160646 +vn 0.776793 0.628898 0.032871 +vn 0.716290 0.695190 0.060337 +vn 0.776793 0.628898 0.032871 +vn 0.767959 0.632968 -0.097930 +vn 0.790696 0.602818 -0.106820 +vn 0.502785 0.567576 -0.651970 +vn 0.790696 0.602818 -0.106820 +vn 0.767959 0.632968 -0.097930 +vn 0.560294 0.584294 -0.587087 +vn 0.347150 0.820331 0.454471 +vn 0.623368 0.732429 0.273789 +vn 0.665497 0.715995 0.210867 +vn 0.602248 0.752899 0.265408 +vn 0.581609 0.760985 -0.287459 +vn 0.790696 0.602818 -0.106820 +vn 0.502785 0.567576 -0.651970 +vn 0.339847 0.656382 -0.673548 +vn 0.602248 0.752899 0.265408 +vn 0.665497 0.715995 0.210867 +vn 0.716290 0.695190 0.060337 +vn 0.645903 0.756185 0.104853 +vn 0.645903 0.756185 0.104853 +vn 0.716290 0.695190 0.060337 +vn 0.790696 0.602818 -0.106820 +vn 0.581609 0.760985 -0.287459 +vn 0.347150 0.820331 0.454471 +vn 0.602248 0.752899 0.265408 +vn 0.456615 0.736508 0.499058 +vn 0.456615 0.736508 0.499058 +vn 0.602248 0.752899 0.265408 +vn 0.645903 0.756185 0.104853 +vn 0.662035 0.749140 0.022331 +vn 0.662035 0.749140 0.022331 +vn 0.645903 0.756185 0.104853 +vn 0.581609 0.760985 -0.287459 +vn 0.425201 0.679736 -0.597631 +vn 0.581609 0.760985 -0.287459 +vn 0.339847 0.656382 -0.673548 +vn 0.425201 0.679736 -0.597631 +vn -0.508598 -0.450417 -0.733793 +vn -0.013068 0.206095 -0.978445 +vn -0.051188 0.205696 -0.977276 +vn -0.544549 -0.464860 -0.698120 +vn -0.051188 0.205696 -0.977276 +vn -0.013068 0.206095 -0.978445 +vn 0.425201 0.679736 -0.597631 +vn 0.339847 0.656382 -0.673548 +vn 0.617160 -0.771122 0.156476 +vn 0.420194 -0.307557 0.853725 +vn -0.369512 -0.717447 0.590534 +vn -0.108876 -0.991841 0.066313 +vn -0.263251 -0.811685 -0.521408 +vn 0.618004 -0.402898 -0.675089 +vn 0.617160 -0.771122 0.156476 +vn -0.108876 -0.991841 0.066313 +vn 0.991033 -0.091183 0.097666 +vn 0.877334 0.227378 0.422593 +vn 0.420194 -0.307557 0.853725 +vn 0.617160 -0.771122 0.156476 +vn 0.618004 -0.402898 -0.675089 +vn 0.949974 0.132943 -0.282622 +vn 0.991033 -0.091183 0.097666 +vn 0.617160 -0.771122 0.156476 +vn -0.614340 -0.769805 -0.173166 +vn -0.655695 -0.754382 -0.031172 +vn -0.681547 -0.718432 0.139105 +vn -0.549363 -0.812256 -0.196061 +vn -0.571086 -0.816575 -0.084065 +vn -0.629728 -0.775939 -0.036898 +vn -0.642831 -0.759740 -0.097793 +vn -0.477963 -0.865382 -0.150548 +vn -0.607440 -0.794265 -0.012631 +vn -0.496834 -0.867509 -0.024164 +vn -0.477963 -0.865382 -0.150548 +vn -0.642831 -0.759740 -0.097793 +vn -0.613906 -0.788432 -0.038648 +vn -0.714177 -0.694431 -0.087842 +vn 0.993674 -0.111162 -0.015963 +vn -0.401612 -0.650344 -0.644795 +vn 0.577481 0.495443 0.648886 +vn 0.408673 -0.111974 0.905786 +vn 0.044037 0.039332 0.998255 +vn 0.596805 0.472448 0.648550 +vn 0.681757 0.675459 0.281003 +vn 0.044037 0.039332 0.998255 +vn 0.408673 -0.111974 0.905786 +vn -0.230297 -0.753848 0.615367 +vn -0.440477 -0.646124 0.623300 +vn -0.629728 -0.775939 -0.036898 +vn -0.571086 -0.816575 -0.084065 +vn -0.655695 -0.754382 -0.031172 +vn -0.614340 -0.769805 -0.173166 +vn -0.496834 -0.867509 -0.024164 +vn -0.466731 -0.884350 0.009371 +vn -0.607440 -0.794265 -0.012631 +vn -0.477963 -0.865382 -0.150548 +vn -0.357252 -0.673469 -0.647156 +vn -0.613906 -0.788432 -0.038648 +vn -0.642831 -0.759740 -0.097793 +vn -0.417426 -0.624420 -0.660193 +vn -0.571086 -0.816575 -0.084065 +vn -0.230297 -0.753848 0.615367 +vn -0.618633 -0.776483 0.119865 +vn -0.655695 -0.754382 -0.031172 +vn 0.695228 0.716140 0.061655 +vn 0.437494 0.556228 0.706548 +vn 0.561897 0.543642 0.623478 +vn 0.776278 0.630042 -0.020960 +vn 0.437494 0.556228 0.706548 +vn 0.020233 0.190880 0.981405 +vn 0.139780 0.177919 0.974067 +vn 0.561897 0.543642 0.623478 +vn -0.721407 -0.671257 0.170251 +vn -0.632103 -0.686318 -0.359741 +vn -0.558749 -0.785622 -0.265701 +vn -0.622950 -0.738682 0.257453 +vn -0.632103 -0.686318 -0.359741 +vn -0.132867 -0.430829 -0.892599 +vn -0.215560 -0.542534 -0.811905 +vn -0.558749 -0.785622 -0.265701 +vn -0.132867 -0.430829 -0.892599 +vn 0.452903 0.259603 -0.852927 +vn 0.374765 0.060199 -0.925163 +vn -0.215560 -0.542534 -0.811905 +vn 0.452903 0.259603 -0.852927 +vn 0.649656 0.569305 -0.503825 +vn 0.683553 0.461668 -0.565348 +vn 0.374765 0.060199 -0.925163 +vn 0.649656 0.569305 -0.503825 +vn 0.695228 0.716140 0.061655 +vn 0.776278 0.630042 -0.020960 +vn 0.683553 0.461668 -0.565348 +vn 0.601281 0.798930 0.013139 +vn 0.422628 0.606758 0.673223 +vn 0.571726 0.560641 0.599008 +vn 0.692712 0.715317 0.092035 +vn 0.562278 0.527712 0.636682 +vn 0.547339 0.435841 0.714467 +vn 0.743195 0.661785 0.098498 +vn 0.703458 0.699843 0.123964 +vn 0.422628 0.606758 0.673223 +vn 0.225837 0.231621 0.946229 +vn 0.319869 0.259100 0.911346 +vn 0.571726 0.560641 0.599008 +vn 0.327323 0.236371 0.914871 +vn 0.269070 0.132160 0.954010 +vn 0.547339 0.435841 0.714467 +vn 0.562278 0.527712 0.636682 +vn 0.319869 0.259100 0.911346 +vn 0.225837 0.231621 0.946229 +vn 0.011430 -0.435545 0.900094 +vn 0.046842 -0.239788 0.969695 +vn -0.164738 -0.327025 0.930546 +vn -0.272383 -0.415020 0.868082 +vn 0.269070 0.132160 0.954010 +vn 0.327323 0.236371 0.914871 +vn -0.621717 -0.754764 0.209284 +vn -0.272383 -0.415020 0.868082 +vn -0.164738 -0.327025 0.930546 +vn -0.441630 -0.822222 0.359045 +vn 0.046842 -0.239788 0.969695 +vn 0.011430 -0.435545 0.900094 +vn -0.363702 -0.830795 0.421308 +vn -0.363702 -0.830795 0.421308 +vn -0.328756 -0.852710 -0.405961 +vn -0.551615 -0.690654 -0.467674 +vn -0.566630 -0.755783 -0.328211 +vn -0.657356 -0.722325 -0.214779 +vn -0.621717 -0.754764 0.209284 +vn -0.441630 -0.822222 0.359045 +vn -0.328756 -0.852710 -0.405961 +vn 0.167067 -0.206063 -0.964171 +vn -0.180604 -0.194857 -0.964061 +vn -0.551615 -0.690654 -0.467674 +vn -0.278895 -0.273181 -0.920646 +vn -0.244231 -0.335794 -0.909722 +vn -0.657356 -0.722325 -0.214779 +vn -0.566630 -0.755783 -0.328211 +vn 0.167067 -0.206063 -0.964171 +vn 0.371944 0.508954 -0.776288 +vn 0.435659 0.451572 -0.778642 +vn -0.180604 -0.194857 -0.964061 +vn 0.352948 0.378650 -0.855601 +vn 0.401514 0.316773 -0.859326 +vn -0.244231 -0.335794 -0.909722 +vn -0.278895 -0.273181 -0.920646 +vn 0.371944 0.508954 -0.776288 +vn 0.498816 0.728706 -0.469222 +vn 0.637245 0.694260 -0.334549 +vn 0.435659 0.451572 -0.778642 +vn 0.652904 0.638456 -0.407543 +vn 0.660664 0.584071 -0.471577 +vn 0.401514 0.316773 -0.859326 +vn 0.352948 0.378650 -0.855601 +vn 0.498816 0.728706 -0.469222 +vn 0.601281 0.798930 0.013139 +vn 0.692712 0.715317 0.092035 +vn 0.637245 0.694260 -0.334549 +vn 0.703458 0.699843 0.123964 +vn 0.743195 0.661785 0.098498 +vn 0.660664 0.584071 -0.471577 +vn 0.652904 0.638456 -0.407543 +vn 0.685737 0.720675 0.101942 +vn 0.428608 0.535488 0.727700 +vn 0.437494 0.556228 0.706548 +vn 0.695228 0.716140 0.061655 +vn 0.428608 0.535488 0.727700 +vn 0.106538 0.176211 0.978570 +vn 0.020233 0.190880 0.981405 +vn 0.437494 0.556228 0.706548 +vn 0.106538 0.176211 0.978570 +vn -0.358998 -0.381640 0.851746 +vn -0.449060 -0.402215 0.797852 +vn 0.020233 0.190880 0.981405 +vn -0.358998 -0.381640 0.851746 +vn -0.732870 -0.653381 0.189724 +vn -0.721407 -0.671257 0.170251 +vn -0.449060 -0.402215 0.797852 +vn -0.732870 -0.653381 0.189724 +vn -0.681657 -0.693776 -0.232418 +vn -0.632103 -0.686318 -0.359741 +vn -0.721407 -0.671257 0.170251 +vn -0.681657 -0.693776 -0.232418 +vn -0.180529 -0.423215 -0.887862 +vn -0.132867 -0.430829 -0.892599 +vn -0.632103 -0.686318 -0.359741 +vn -0.180529 -0.423215 -0.887862 +vn 0.410938 0.282403 -0.866821 +vn 0.452903 0.259603 -0.852927 +vn -0.132867 -0.430829 -0.892599 +vn 0.410938 0.282403 -0.866821 +vn 0.637327 0.590818 -0.494721 +vn 0.649656 0.569305 -0.503825 +vn 0.452903 0.259603 -0.852927 +vn 0.637327 0.590818 -0.494721 +vn 0.685737 0.720675 0.101942 +vn 0.695228 0.716140 0.061655 +vn 0.649656 0.569305 -0.503825 +vn 0.531814 0.576138 0.620676 +vn 0.758704 0.651289 0.013827 +vn 0.776278 0.630042 -0.020960 +vn 0.561897 0.543642 0.623478 +vn 0.758704 0.651289 0.013827 +vn 0.597265 0.517657 -0.612622 +vn 0.683553 0.461668 -0.565348 +vn 0.776278 0.630042 -0.020960 +vn 0.597265 0.517657 -0.612622 +vn 0.156834 0.000135 -0.987625 +vn 0.374765 0.060199 -0.925163 +vn 0.683553 0.461668 -0.565348 +vn 0.156834 0.000135 -0.987625 +vn -0.375600 -0.605626 -0.701528 +vn -0.215560 -0.542534 -0.811905 +vn 0.374765 0.060199 -0.925163 +vn -0.375600 -0.605626 -0.701528 +vn -0.554378 -0.813098 -0.177583 +vn -0.558749 -0.785622 -0.265701 +vn -0.215560 -0.542534 -0.811905 +vn -0.554378 -0.813098 -0.177583 +vn -0.647860 -0.727870 0.224682 +vn -0.622950 -0.738682 0.257453 +vn -0.558749 -0.785622 -0.265701 +vn 0.008091 0.241446 0.970380 +vn 0.531814 0.576138 0.620676 +vn 0.561897 0.543642 0.623478 +vn 0.139780 0.177919 0.974067 +vn 0.350430 -0.244916 -0.903999 +vn 0.167067 -0.206063 -0.964171 +vn -0.328756 -0.852710 -0.405961 +vn 0.350430 -0.244916 -0.903999 +vn 0.347651 0.398323 -0.848809 +vn 0.371944 0.508954 -0.776288 +vn 0.167067 -0.206063 -0.964171 +vn 0.347651 0.398323 -0.848809 +vn 0.443071 0.763889 -0.469214 +vn 0.498816 0.728706 -0.469222 +vn 0.371944 0.508954 -0.776288 +vn 0.498816 0.728706 -0.469222 +vn 0.443071 0.763889 -0.469214 +vn 0.271167 0.961170 0.051181 +vn 0.601281 0.798930 0.013139 +vn 0.271167 0.961170 0.051181 +vn 0.182828 0.719769 0.669707 +vn 0.422628 0.606758 0.673223 +vn 0.601281 0.798930 0.013139 +vn 0.182828 0.719769 0.669707 +vn 0.404426 0.246960 0.880597 +vn 0.225837 0.231621 0.946229 +vn 0.422628 0.606758 0.673223 +vn 0.562278 0.527712 0.636682 +vn 0.703458 0.699843 0.123964 +vn 0.692712 0.715317 0.092035 +vn 0.571726 0.560641 0.599008 +vn 0.703458 0.699843 0.123964 +vn 0.652904 0.638456 -0.407543 +vn 0.637245 0.694260 -0.334549 +vn 0.692712 0.715317 0.092035 +vn 0.652904 0.638456 -0.407543 +vn 0.352948 0.378650 -0.855601 +vn 0.435659 0.451572 -0.778642 +vn 0.637245 0.694260 -0.334549 +vn 0.352948 0.378650 -0.855601 +vn -0.278895 -0.273181 -0.920646 +vn -0.180604 -0.194857 -0.964061 +vn 0.435659 0.451572 -0.778642 +vn -0.278895 -0.273181 -0.920646 +vn -0.566630 -0.755783 -0.328211 +vn -0.551615 -0.690654 -0.467674 +vn -0.180604 -0.194857 -0.964061 +vn -0.566630 -0.755783 -0.328211 +vn -0.441630 -0.822222 0.359045 +vn -0.363702 -0.830795 0.421308 +vn -0.551615 -0.690654 -0.467674 +vn -0.441630 -0.822222 0.359045 +vn -0.164738 -0.327025 0.930546 +vn 0.046842 -0.239788 0.969695 +vn -0.363702 -0.830795 0.421308 +vn -0.164738 -0.327025 0.930546 +vn 0.327323 0.236371 0.914871 +vn 0.319869 0.259100 0.911346 +vn 0.046842 -0.239788 0.969695 +vn 0.327323 0.236371 0.914871 +vn 0.562278 0.527712 0.636682 +vn 0.571726 0.560641 0.599008 +vn 0.319869 0.259100 0.911346 +vn 0.271167 0.961170 0.051181 +vn 0.230738 0.957473 0.173222 +vn 0.162026 0.755142 0.635223 +vn 0.182828 0.719769 0.669707 +vn 0.182828 0.719769 0.669707 +vn 0.162026 0.755142 0.635223 +vn 0.462164 0.434804 0.772884 +vn 0.404426 0.246960 0.880597 +vn 0.350430 -0.244916 -0.903999 +vn 0.523879 -0.251634 -0.813776 +vn 0.398852 0.283827 -0.871986 +vn 0.347651 0.398323 -0.848809 +vn 0.347651 0.398323 -0.848809 +vn 0.398852 0.283827 -0.871986 +vn 0.463138 0.751419 -0.469971 +vn 0.443071 0.763889 -0.469214 +vn 0.443071 0.763889 -0.469214 +vn 0.463138 0.751419 -0.469971 +vn 0.230738 0.957473 0.173222 +vn 0.271167 0.961170 0.051181 +vn -0.622950 -0.738682 0.257453 +vn -0.647860 -0.727870 0.224682 +vn -0.533794 -0.361713 0.764348 +vn -0.405034 -0.405973 0.819227 +vn 0.139780 0.177919 0.974067 +vn -0.405034 -0.405973 0.819227 +vn -0.533794 -0.361713 0.764348 +vn 0.008091 0.241446 0.970380 +vn -0.449060 -0.402215 0.797852 +vn -0.405034 -0.405973 0.819227 +vn 0.139780 0.177919 0.974067 +vn 0.020233 0.190880 0.981405 +vn -0.721407 -0.671257 0.170251 +vn -0.622950 -0.738682 0.257453 +vn -0.405034 -0.405973 0.819227 +vn -0.449060 -0.402215 0.797852 +vn -0.000701 0.232528 -0.972590 +vn -0.001015 0.392546 -0.919732 +vn -0.042895 0.440997 -0.896483 +vn -0.100943 -0.058340 -0.993180 +vn -0.000570 -0.128906 -0.991657 +vn -0.000701 0.232528 -0.972590 +vn -0.091431 0.269838 -0.958555 +vn -0.091431 0.269838 -0.958555 +vn 0.220663 0.648797 -0.728265 +vn 0.274510 0.532662 -0.800572 +vn 0.243050 0.291018 -0.925330 +vn 0.248847 -0.095160 -0.963857 +vn -0.100943 -0.058340 -0.993180 +vn -0.091431 0.269838 -0.958555 +vn 0.243050 0.291018 -0.925330 +vn 0.523879 -0.251634 -0.813776 +vn 0.248847 -0.095160 -0.963857 +vn 0.243050 0.291018 -0.925330 +vn 0.398852 0.283827 -0.871986 +vn 0.345244 0.851346 0.394988 +vn 0.690993 0.471928 0.547551 +vn 0.466729 0.445414 0.764049 +vn 0.217742 0.698791 0.681380 +vn 0.162026 0.755142 0.635223 +vn 0.230738 0.957473 0.173222 +vn 0.345244 0.851346 0.394988 +vn 0.217742 0.698791 0.681380 +vn 0.230738 0.957473 0.173222 +vn 0.463138 0.751419 -0.469971 +vn 0.432583 0.897932 0.081184 +vn 0.345244 0.851346 0.394988 +vn 0.404426 0.246960 0.880597 +vn 0.565738 -0.316221 0.761541 +vn 0.011430 -0.435545 0.900094 +vn 0.225837 0.231621 0.946229 +vn 0.462164 0.434804 0.772884 +vn 0.657859 0.062838 0.750515 +vn 0.565738 -0.316221 0.761541 +vn 0.404426 0.246960 0.880597 +vn 0.443669 -0.874802 0.194626 +vn -0.363702 -0.830795 0.421308 +vn 0.011430 -0.435545 0.900094 +vn 0.565738 -0.316221 0.761541 +vn 0.881393 -0.358616 0.307477 +vn 0.443669 -0.874802 0.194626 +vn 0.565738 -0.316221 0.761541 +vn 0.657859 0.062838 0.750515 +vn 0.443669 -0.874802 0.194626 +vn 0.584898 -0.663764 -0.466166 +vn -0.328756 -0.852710 -0.405961 +vn -0.363702 -0.830795 0.421308 +vn 0.443669 -0.874802 0.194626 +vn 0.881393 -0.358616 0.307477 +vn 0.967321 -0.237966 -0.087532 +vn 0.807416 -0.405966 -0.428101 +vn 0.584898 -0.663764 -0.466166 +vn 0.584898 -0.663764 -0.466166 +vn 0.523879 -0.251634 -0.813776 +vn 0.350430 -0.244916 -0.903999 +vn -0.328756 -0.852710 -0.405961 +vn 0.749224 -0.414171 -0.516842 +vn 0.523879 -0.251634 -0.813776 +vn 0.807416 -0.405966 -0.428101 +vn 0.274510 0.532662 -0.800572 +vn 0.463138 0.751419 -0.469971 +vn 0.398852 0.283827 -0.871986 +vn 0.243050 0.291018 -0.925330 +vn 0.807416 -0.405966 -0.428101 +vn 0.523879 -0.251634 -0.813776 +vn 0.584898 -0.663764 -0.466166 +vn 0.570844 -0.384710 0.725352 +vn 0.307213 -0.103476 0.945998 +vn 0.332908 -0.223091 0.916189 +vn 0.488871 -0.474212 0.732208 +vn 0.332908 -0.223091 0.916189 +vn 0.421581 -0.102247 0.901008 +vn 0.659568 -0.195123 0.725877 +vn 0.488871 -0.474212 0.732208 +vn 0.000572 -0.098098 0.995177 +vn 0.000573 -0.078211 0.996937 +vn 0.421581 -0.102247 0.901008 +vn 0.332908 -0.223091 0.916189 +vn 0.307213 -0.103476 0.945998 +vn 0.000575 0.032493 0.999472 +vn 0.000572 -0.098098 0.995177 +vn 0.332908 -0.223091 0.916189 +vn 0.659568 -0.195123 0.725877 +vn 0.917226 -0.235284 0.321462 +vn 0.829423 -0.323500 0.455419 +vn 0.488871 -0.474212 0.732208 +vn 0.488871 -0.474212 0.732208 +vn 0.829423 -0.323500 0.455419 +vn 0.570844 -0.384710 0.725352 +vn 0.746372 -0.062098 0.662625 +vn 0.937707 -0.139217 0.318315 +vn 0.917226 -0.235284 0.321462 +vn 0.659568 -0.195123 0.725877 +vn 0.829423 -0.323500 0.455419 +vn 0.881393 -0.358616 0.307477 +vn 0.657859 0.062838 0.750515 +vn 0.570844 -0.384710 0.725352 +vn 0.917226 -0.235284 0.321462 +vn 0.937707 -0.139217 0.318315 +vn 0.984605 -0.173076 -0.024461 +vn 0.687191 0.701165 -0.190097 +vn 0.432583 0.897932 0.081184 +vn 0.412926 0.880051 -0.234525 +vn 0.591313 0.638714 -0.492335 +vn 0.591313 0.638714 -0.492335 +vn 0.412926 0.880051 -0.234525 +vn 0.220663 0.648797 -0.728265 +vn 0.574776 0.554227 -0.602051 +vn 0.412926 0.880051 -0.234525 +vn 0.432583 0.897932 0.081184 +vn 0.463138 0.751419 -0.469971 +vn 0.316158 0.454103 -0.832967 +vn -0.042895 0.440997 -0.896483 +vn 0.159840 0.373554 -0.913733 +vn -0.091431 0.269838 -0.958555 +vn -0.000701 0.232528 -0.972590 +vn -0.042895 0.440997 -0.896483 +vn 0.220663 0.648797 -0.728265 +vn 0.000374 0.636964 0.770893 +vn 0.109766 0.623986 0.773688 +vn 0.148881 0.287616 0.946103 +vn 0.000016 0.321676 0.946850 +vn 0.813550 0.131047 -0.566535 +vn 0.988288 0.147519 -0.039047 +vn 0.988717 0.149788 0.001261 +vn 0.899150 0.172332 -0.402282 +vn 0.271823 0.257859 -0.927157 +vn 0.098931 0.417737 -0.903166 +vn -0.000197 0.377039 -0.926197 +vn -0.000610 0.195575 -0.980689 +vn 0.271823 0.257859 -0.927157 +vn 0.480040 0.213712 -0.850816 +vn 0.536221 0.375538 -0.755936 +vn 0.424136 0.482434 -0.766398 +vn 0.915926 0.184498 0.356427 +vn 0.988717 0.149788 0.001261 +vn 0.988288 0.147519 -0.039047 +vn 0.901300 0.220970 0.372599 +vn 0.739212 0.086498 0.667895 +vn 0.685345 0.030617 0.727575 +vn 0.915926 0.184498 0.356427 +vn 0.901300 0.220970 0.372599 +vn 0.276387 -0.081106 0.957618 +vn 0.393602 -0.106172 0.913129 +vn 0.000412 -0.122194 0.992506 +vn 0.000181 -0.063346 0.997992 +vn 0.685345 0.030617 0.727575 +vn 0.739212 0.086498 0.667895 +vn 0.393602 -0.106172 0.913129 +vn 0.461221 -0.051894 0.885767 +vn 0.462403 -0.002613 0.886666 +vn 0.000574 -0.045920 0.998945 +vn 0.000575 -0.009569 0.999954 +vn 0.427412 -0.000626 0.904057 +vn 0.746372 -0.062098 0.662625 +vn 0.462403 -0.002613 0.886666 +vn 0.427412 -0.000626 0.904057 +vn 0.804635 0.029958 0.593014 +vn 0.393602 -0.106172 0.913129 +vn 0.427412 -0.000626 0.904057 +vn 0.000575 -0.009569 0.999954 +vn 0.000412 -0.122194 0.992506 +vn 0.739212 0.086498 0.667895 +vn 0.804635 0.029958 0.593014 +vn 0.427412 -0.000626 0.904057 +vn 0.393602 -0.106172 0.913129 +vn 0.937707 -0.139217 0.318315 +vn 0.746372 -0.062098 0.662625 +vn 0.804635 0.029958 0.593014 +vn 0.952226 0.003402 0.305375 +vn 0.952226 0.003402 0.305375 +vn 0.804635 0.029958 0.593014 +vn 0.739212 0.086498 0.667895 +vn 0.901300 0.220970 0.372599 +vn 0.999750 0.022122 -0.003387 +vn 0.984605 -0.173076 -0.024461 +vn 0.937707 -0.139217 0.318315 +vn 0.952226 0.003402 0.305375 +vn 0.988288 0.147519 -0.039047 +vn 0.999750 0.022122 -0.003387 +vn 0.952226 0.003402 0.305375 +vn 0.901300 0.220970 0.372599 +vn 0.812894 -0.206949 -0.544403 +vn 0.984605 -0.173076 -0.024461 +vn 0.999750 0.022122 -0.003387 +vn 0.836698 0.011967 -0.547533 +vn 0.836698 0.011967 -0.547533 +vn 0.999750 0.022122 -0.003387 +vn 0.988288 0.147519 -0.039047 +vn 0.813550 0.131047 -0.566535 +vn 0.465597 -0.021209 -0.884743 +vn 0.508015 -0.222926 -0.832000 +vn 0.812894 -0.206949 -0.544403 +vn 0.836698 0.011967 -0.547533 +vn 0.465597 -0.021209 -0.884743 +vn 0.836698 0.011967 -0.547533 +vn 0.813550 0.131047 -0.566535 +vn 0.480040 0.213712 -0.850816 +vn 0.283298 -0.216073 -0.934374 +vn 0.508015 -0.222926 -0.832000 +vn 0.465597 -0.021209 -0.884743 +vn 0.248395 -0.023548 -0.968373 +vn 0.248395 -0.023548 -0.968373 +vn 0.465597 -0.021209 -0.884743 +vn 0.480040 0.213712 -0.850816 +vn 0.271823 0.257859 -0.927157 +vn -0.000565 -0.179587 -0.983742 +vn 0.283298 -0.216073 -0.934374 +vn 0.248395 -0.023548 -0.968373 +vn -0.000555 0.005160 -0.999987 +vn -0.000555 0.005160 -0.999987 +vn 0.248395 -0.023548 -0.968373 +vn 0.271823 0.257859 -0.927157 +vn -0.000610 0.195575 -0.980689 +vn -0.276124 -0.081154 0.957690 +vn -0.393015 -0.107306 0.913250 +vn -0.460708 -0.051446 0.886059 +vn 0.461221 -0.051894 0.885767 +vn 0.393602 -0.106172 0.913129 +vn 0.276387 -0.081106 0.957618 +vn -0.419274 0.446184 -0.790651 +vn -0.268066 0.259020 -0.927927 +vn -0.098420 0.417784 -0.903200 +vn 0.098931 0.417737 -0.903166 +vn 0.271823 0.257859 -0.927157 +vn 0.424136 0.482434 -0.766398 +vn -0.525044 0.226459 -0.820393 +vn -0.564584 0.416180 -0.712769 +vn -0.878324 0.182015 -0.442061 +vn -0.788462 0.091572 -0.608229 +vn 0.813550 0.131047 -0.566535 +vn 0.899150 0.172332 -0.402282 +vn 0.536221 0.375538 -0.755936 +vn 0.480040 0.213712 -0.850816 +vn 0.690993 0.471928 0.547551 +vn 0.345244 0.851346 0.394988 +vn 0.432583 0.897932 0.081184 +vn 0.776559 0.591232 0.217718 +vn 0.432583 0.897932 0.081184 +vn 0.687191 0.701165 -0.190097 +vn 0.776559 0.591232 0.217718 +vn -0.423210 0.902827 0.076142 +vn -0.735536 0.624649 0.262297 +vn -0.704101 0.671716 -0.230301 +vn -0.423210 0.902827 0.076142 +vn -0.704101 0.671716 -0.230301 +vn -0.601844 0.631016 -0.489493 +vn -0.400790 0.890303 -0.216168 +vn 0.269188 0.337063 0.902179 +vn 0.109766 0.623986 0.773688 +vn 0.217742 0.698791 0.681380 +vn 0.466729 0.445414 0.764049 +vn 0.109766 0.623986 0.773688 +vn 0.269188 0.337063 0.902179 +vn 0.148881 0.287616 0.946103 +vn -0.150552 0.290239 0.945037 +vn -0.108844 0.624369 0.773509 +vn 0.000374 0.636964 0.770893 +vn 0.000016 0.321676 0.946850 +vn -0.108844 0.624369 0.773509 +vn -0.150552 0.290239 0.945037 +vn -0.266153 0.338300 0.902616 +vn 0.159840 0.373554 -0.913733 +vn -0.042895 0.440997 -0.896483 +vn -0.001015 0.392546 -0.919732 +vn 0.000229 0.345201 -0.938529 +vn -0.221210 0.649233 -0.727711 +vn -0.575169 0.552841 -0.602949 +vn -0.315758 0.453448 -0.833476 +vn 0.041371 0.441000 -0.896553 +vn 0.220663 0.648797 -0.728265 +vn -0.042895 0.440997 -0.896483 +vn 0.316158 0.454103 -0.832967 +vn 0.574776 0.554227 -0.602051 +vn -0.315758 0.453448 -0.833476 +vn -0.159340 0.373496 -0.913844 +vn 0.041371 0.441000 -0.896553 +vn -0.427881 0.538043 0.726242 +vn -0.542435 0.438600 0.716516 +vn -0.736867 0.668136 0.103057 +vn -0.684062 0.721488 0.107305 +vn -0.082532 0.179349 0.980318 +vn -0.267472 0.118163 0.956293 +vn -0.542435 0.438600 0.716516 +vn -0.427881 0.538043 0.726242 +vn 0.367235 -0.362062 0.856767 +vn 0.250676 -0.430650 0.867007 +vn -0.267472 0.118163 0.956293 +vn -0.082532 0.179349 0.980318 +vn 0.732807 -0.651433 0.196542 +vn 0.612619 -0.761006 0.213466 +vn 0.250676 -0.430650 0.867007 +vn 0.367235 -0.362062 0.856767 +vn 0.679524 -0.693652 -0.238944 +vn 0.650372 -0.727473 -0.218630 +vn 0.612619 -0.761006 0.213466 +vn 0.732807 -0.651433 0.196542 +vn 0.178936 -0.425558 -0.887064 +vn 0.248404 -0.342848 -0.905953 +vn 0.650372 -0.727473 -0.218630 +vn 0.679524 -0.693652 -0.238944 +vn -0.415964 0.283323 -0.864119 +vn -0.397658 0.322470 -0.859000 +vn 0.248404 -0.342848 -0.905953 +vn 0.178936 -0.425558 -0.887064 +vn -0.637010 0.589820 -0.496317 +vn -0.653075 0.589966 -0.474798 +vn -0.397658 0.322470 -0.859000 +vn -0.415964 0.283323 -0.864119 +vn -0.684062 0.721488 0.107305 +vn -0.736867 0.668136 0.103057 +vn -0.653075 0.589966 -0.474798 +vn -0.637010 0.589820 -0.496317 +vn 0.685737 0.720675 0.101942 +vn 0.743195 0.661785 0.098498 +vn 0.547339 0.435841 0.714467 +vn 0.428608 0.535488 0.727700 +vn 0.428608 0.535488 0.727700 +vn 0.547339 0.435841 0.714467 +vn 0.269070 0.132160 0.954010 +vn 0.106538 0.176211 0.978570 +vn 0.106538 0.176211 0.978570 +vn 0.269070 0.132160 0.954010 +vn -0.272383 -0.415020 0.868082 +vn -0.358998 -0.381640 0.851746 +vn -0.358998 -0.381640 0.851746 +vn -0.272383 -0.415020 0.868082 +vn -0.621717 -0.754764 0.209284 +vn -0.732870 -0.653381 0.189724 +vn -0.732870 -0.653381 0.189724 +vn -0.621717 -0.754764 0.209284 +vn -0.657356 -0.722325 -0.214779 +vn -0.681657 -0.693776 -0.232418 +vn -0.244231 -0.335794 -0.909722 +vn -0.180529 -0.423215 -0.887862 +vn -0.681657 -0.693776 -0.232418 +vn -0.657356 -0.722325 -0.214779 +vn -0.180529 -0.423215 -0.887862 +vn -0.244231 -0.335794 -0.909722 +vn 0.401514 0.316773 -0.859326 +vn 0.410938 0.282403 -0.866821 +vn 0.410938 0.282403 -0.866821 +vn 0.401514 0.316773 -0.859326 +vn 0.660664 0.584071 -0.471577 +vn 0.637327 0.590818 -0.494721 +vn 0.637327 0.590818 -0.494721 +vn 0.660664 0.584071 -0.471577 +vn 0.743195 0.661785 0.098498 +vn 0.685737 0.720675 0.101942 +vn -0.614473 0.511045 -0.601046 +vn -0.415748 0.686848 -0.596149 +vn -0.657243 0.753656 0.005925 +vn -0.763422 0.645821 0.010088 +vn 0.374441 -0.582602 -0.721366 +vn 0.501294 -0.454824 -0.736098 +vn 0.010946 0.215371 -0.976471 +vn -0.165523 0.002066 -0.986204 +vn -0.466790 0.731836 0.496511 +vn -0.531094 0.592074 0.606125 +vn -0.763422 0.645821 0.010088 +vn -0.657243 0.753656 0.005925 +vn -0.415748 0.686848 -0.596149 +vn -0.614473 0.511045 -0.601046 +vn -0.165523 0.002066 -0.986204 +vn 0.010946 0.215371 -0.976471 +vn 0.501294 -0.454824 -0.736098 +vn 0.374441 -0.582602 -0.721366 +vn 0.551869 -0.818158 -0.161422 +vn 0.552007 -0.818010 -0.161701 +vn 0.552007 -0.818010 -0.161701 +vn 0.551869 -0.818158 -0.161422 +vn 0.630576 -0.743269 0.223438 +vn 0.697004 -0.704446 0.133946 +vn 0.528698 -0.378765 0.759615 +vn 0.724402 -0.227237 0.650849 +vn 0.697004 -0.704446 0.133946 +vn 0.630576 -0.743269 0.223438 +vn 0.008435 0.242393 0.970141 +vn 0.154844 0.481118 0.862872 +vn 0.724402 -0.227237 0.650849 +vn 0.528698 -0.378765 0.759615 +vn 0.154844 0.481118 0.862872 +vn 0.008435 0.242393 0.970141 +vn -0.531094 0.592074 0.606125 +vn -0.466790 0.731836 0.496511 +vn 0.758704 0.651289 0.013827 +vn 0.662035 0.749140 0.022331 +vn 0.425201 0.679736 -0.597631 +vn 0.597265 0.517657 -0.612622 +vn 0.156834 0.000135 -0.987625 +vn -0.013068 0.206095 -0.978445 +vn -0.508598 -0.450417 -0.733793 +vn -0.375600 -0.605626 -0.701528 +vn 0.662035 0.749140 0.022331 +vn 0.758704 0.651289 0.013827 +vn 0.531814 0.576138 0.620676 +vn 0.456615 0.736508 0.499058 +vn -0.013068 0.206095 -0.978445 +vn 0.156834 0.000135 -0.987625 +vn 0.597265 0.517657 -0.612622 +vn 0.425201 0.679736 -0.597631 +vn -0.549363 -0.812256 -0.196061 +vn -0.554378 -0.813098 -0.177583 +vn -0.375600 -0.605626 -0.701528 +vn -0.508598 -0.450417 -0.733793 +vn -0.681547 -0.718432 0.139105 +vn -0.647860 -0.727870 0.224682 +vn -0.554378 -0.813098 -0.177583 +vn -0.549363 -0.812256 -0.196061 +vn -0.647860 -0.727870 0.224682 +vn -0.681547 -0.718432 0.139105 +vn -0.713554 -0.231038 0.661409 +vn -0.533794 -0.361713 0.764348 +vn -0.533794 -0.361713 0.764348 +vn -0.713554 -0.231038 0.661409 +vn -0.149062 0.496084 0.855384 +vn 0.008091 0.241446 0.970380 +vn 0.456615 0.736508 0.499058 +vn 0.531814 0.576138 0.620676 +vn 0.008091 0.241446 0.970380 +vn -0.149062 0.496084 0.855384 +vn -0.159340 0.373496 -0.913844 +vn -0.189763 0.182170 -0.964782 +vn 0.000819 0.182644 -0.983179 +vn 0.000229 0.345201 -0.938529 +vn -0.731100 -0.169840 0.660792 +vn -0.926967 -0.099770 0.361633 +vn -0.685876 0.501536 0.527291 +vn -0.466594 0.444958 0.764397 +vn -0.214407 -0.326272 0.920639 +vn 0.000665 -0.398570 0.917138 +vn 0.019597 -0.799590 0.600227 +vn -0.404780 -0.708965 0.577514 +vn -0.542986 -0.366814 0.755389 +vn -0.404780 -0.708965 0.577514 +vn 0.019597 -0.799590 0.600227 +vn 0.017267 -0.391736 0.919916 +vn -0.214407 -0.326272 0.920639 +vn -0.347206 -0.635041 0.690052 +vn -0.461988 0.139777 0.875802 +vn -0.461988 0.139777 0.875802 +vn -0.347206 -0.635041 0.690052 +vn -0.747132 -0.174619 0.641329 +vn -0.747132 -0.174619 0.641329 +vn -0.347206 -0.635041 0.690052 +vn -0.404780 -0.708965 0.577514 +vn -0.542986 -0.366814 0.755389 +vn -0.404780 -0.708965 0.577514 +vn -0.347206 -0.635041 0.690052 +vn -0.214407 -0.326272 0.920639 +vn -0.683823 -0.132725 0.717475 +vn -0.480975 0.006920 0.876707 +vn -0.492258 0.057831 0.868526 +vn -0.797357 -0.051259 0.601328 +vn -0.470901 0.160068 0.867543 +vn -0.783489 -0.014678 0.621232 +vn -0.797357 -0.051259 0.601328 +vn -0.492258 0.057831 0.868526 +vn -0.446349 0.297701 0.843888 +vn -0.269509 0.236052 0.933619 +vn -0.262335 0.117726 0.957769 +vn -0.585255 0.200432 0.785687 +vn -0.262335 0.117726 0.957769 +vn -0.269509 0.236052 0.933619 +vn -0.470901 0.160068 0.867543 +vn -0.492258 0.057831 0.868526 +vn -0.450568 0.086783 0.888514 +vn -0.461988 0.139777 0.875802 +vn -0.585255 0.200432 0.785687 +vn -0.262335 0.117726 0.957769 +vn -0.492258 0.057831 0.868526 +vn -0.480975 0.006920 0.876707 +vn -0.450568 0.086783 0.888514 +vn -0.262335 0.117726 0.957769 +vn 0.000695 -0.179132 0.983825 +vn -0.270062 -0.315024 0.909850 +vn 0.000643 -0.454797 0.890595 +vn 0.021168 0.278787 0.960120 +vn -0.619556 0.233594 0.749389 +vn -0.542986 -0.366814 0.755389 +vn 0.017267 -0.391736 0.919916 +vn -0.747132 -0.174619 0.641329 +vn -0.849191 0.194333 0.491029 +vn -0.585255 0.200432 0.785687 +vn -0.461988 0.139777 0.875802 +vn -0.619556 0.233594 0.749389 +vn -0.849191 0.194333 0.491029 +vn -0.747132 -0.174619 0.641329 +vn -0.542986 -0.366814 0.755389 +vn -0.446349 0.297701 0.843888 +vn -0.585255 0.200432 0.785687 +vn -0.849191 0.194333 0.491029 +vn -0.684205 0.375789 0.625016 +vn -0.675227 0.357499 0.645185 +vn -0.327997 0.059850 0.942781 +vn -0.579374 0.457574 0.674502 +vn 0.002232 0.555040 0.831821 +vn 0.000720 0.063814 0.997962 +vn -0.608276 -0.053897 0.791894 +vn -0.420625 -0.244198 0.873751 +vn -0.539622 0.285323 0.792085 +vn -0.815355 0.165762 0.554724 +vn -0.539622 0.285323 0.792085 +vn -0.420625 -0.244198 0.873751 +vn -0.304700 -0.121164 0.944710 +vn -0.815355 0.165762 0.554724 +vn -0.539622 0.285323 0.792085 +vn -0.528819 0.371325 0.763196 +vn -0.781651 0.279337 0.557668 +vn -0.528819 0.371325 0.763196 +vn -0.539622 0.285323 0.792085 +vn -0.255565 0.318870 0.912693 +vn -0.247908 0.415140 0.875329 +vn -0.561174 0.229698 0.795187 +vn 0.000632 -0.481810 0.876276 +vn 0.000673 -0.373351 0.927690 +vn -0.697628 0.252399 0.670529 +vn -0.255565 0.318870 0.912693 +vn -0.257377 -0.279331 0.925058 +vn 0.000695 -0.179132 0.983825 +vn 0.000684 0.319207 0.947685 +vn -0.247908 0.415140 0.875329 +vn -0.255565 0.318870 0.912693 +vn 0.000684 0.319207 0.947685 +vn 0.000668 0.380630 0.924727 +vn -0.576772 -0.321954 0.750786 +vn -0.614262 -0.716011 0.331678 +vn -0.332145 -0.836972 0.434923 +vn -0.302347 -0.397916 0.866169 +vn -0.332145 -0.836972 0.434923 +vn -0.267016 -0.847806 0.458179 +vn 0.001086 -0.891990 0.452054 +vn 0.000327 -0.892183 0.451674 +vn -0.267016 -0.847806 0.458179 +vn -0.332145 -0.836972 0.434923 +vn -0.614262 -0.716011 0.331678 +vn -0.568340 -0.717376 0.402940 +vn -0.000700 -0.247080 -0.968995 +vn -0.241742 -0.264177 -0.933687 +vn -0.258590 -0.009147 -0.965944 +vn -0.000722 -0.032345 -0.999476 +vn -0.241742 -0.264177 -0.933687 +vn -0.569904 -0.299610 -0.765143 +vn -0.522263 -0.099053 -0.847012 +vn -0.258590 -0.009147 -0.965944 +vn -0.817021 -0.295073 -0.495387 +vn -0.569904 -0.299610 -0.765143 +vn -0.561329 -0.195413 -0.804191 +vn -0.802888 -0.244557 -0.543657 +vn -0.561329 -0.195413 -0.804191 +vn -0.569904 -0.299610 -0.765143 +vn -0.241742 -0.264177 -0.933687 +vn -0.229329 -0.219158 -0.948356 +vn -0.229329 -0.219158 -0.948356 +vn -0.241742 -0.264177 -0.933687 +vn -0.000700 -0.247080 -0.968995 +vn -0.000706 -0.217152 -0.976138 +vn -0.173546 0.376499 -0.910017 +vn -0.162030 0.738019 -0.655038 +vn -0.000482 0.745088 -0.666966 +vn -0.000672 0.363687 -0.931521 +vn -0.731373 0.563872 -0.383591 +vn -0.430679 0.713086 -0.553194 +vn -0.516881 0.297423 -0.802729 +vn -0.840285 0.268403 -0.471042 +vn -0.516881 0.297423 -0.802729 +vn -0.430679 0.713086 -0.553194 +vn -0.162030 0.738019 -0.655038 +vn -0.173546 0.376499 -0.910017 +vn -0.838125 0.086307 -0.538607 +vn -0.518863 0.064350 -0.852432 +vn -0.522263 -0.099053 -0.847012 +vn -0.806981 -0.188121 -0.559815 +vn -0.208384 0.105701 -0.972319 +vn -0.258590 -0.009147 -0.965944 +vn -0.522263 -0.099053 -0.847012 +vn -0.518863 0.064350 -0.852432 +vn -0.208384 0.105701 -0.972319 +vn -0.518863 0.064350 -0.852432 +vn -0.516881 0.297423 -0.802729 +vn -0.173546 0.376499 -0.910017 +vn -0.518863 0.064350 -0.852432 +vn -0.838125 0.086307 -0.538607 +vn -0.840285 0.268403 -0.471042 +vn -0.516881 0.297423 -0.802729 +vn -0.000717 0.116407 -0.993201 +vn -0.000722 -0.032345 -0.999476 +vn -0.258590 -0.009147 -0.965944 +vn -0.208384 0.105701 -0.972319 +vn -0.000717 0.116407 -0.993201 +vn -0.208384 0.105701 -0.972319 +vn -0.173546 0.376499 -0.910017 +vn -0.000672 0.363687 -0.931521 +vn -0.936072 -0.305249 -0.174909 +vn -0.926905 -0.360430 0.104582 +vn -0.947053 -0.247150 0.204956 +vn -0.953968 -0.241253 -0.178160 +vn -0.817021 -0.295073 -0.495387 +vn -0.802888 -0.244557 -0.543657 +vn -0.936072 -0.305249 -0.174909 +vn -0.953968 -0.241253 -0.178160 +vn -0.752997 0.651758 0.090594 +vn -0.769668 0.633012 -0.083111 +vn -0.964115 0.198868 -0.175880 +vn -0.951677 0.265524 0.154300 +vn -0.964115 0.198868 -0.175880 +vn -0.769668 0.633012 -0.083111 +vn -0.731373 0.563872 -0.383591 +vn -0.840285 0.268403 -0.471042 +vn -0.995263 -0.013472 -0.096280 +vn -0.838125 0.086307 -0.538607 +vn -0.806981 -0.188121 -0.559815 +vn -0.993035 -0.106917 -0.049509 +vn -0.945951 -0.112772 0.304072 +vn -0.957185 -0.023165 0.288548 +vn -0.820506 -0.061029 0.568371 +vn -0.763062 -0.121900 0.634725 +vn -0.986903 0.001952 0.161306 +vn -0.970364 -0.078336 0.228600 +vn -0.945951 -0.112772 0.304072 +vn -0.942277 -0.067797 0.327900 +vn -0.914024 0.194572 0.355953 +vn -0.951677 0.265524 0.154300 +vn -0.986903 0.001952 0.161306 +vn -0.942277 -0.067797 0.327900 +vn -0.914024 0.194572 0.355953 +vn -0.942277 -0.067797 0.327900 +vn -0.815355 0.165762 0.554724 +vn -0.781651 0.279337 0.557668 +vn -0.000233 0.945651 -0.325182 +vn -0.157018 0.944995 -0.286932 +vn -0.215369 0.976504 -0.007534 +vn -0.000024 0.999434 -0.033655 +vn -0.162030 0.738019 -0.655038 +vn -0.157018 0.944995 -0.286932 +vn -0.000233 0.945651 -0.325182 +vn -0.000482 0.745088 -0.666966 +vn -0.469939 0.881306 0.049577 +vn -0.432353 0.891540 -0.135012 +vn -0.769668 0.633012 -0.083111 +vn -0.752997 0.651758 0.090594 +vn -0.769668 0.633012 -0.083111 +vn -0.432353 0.891540 -0.135012 +vn -0.430679 0.713086 -0.553194 +vn -0.731373 0.563872 -0.383591 +vn -0.430679 0.713086 -0.553194 +vn -0.432353 0.891540 -0.135012 +vn -0.157018 0.944995 -0.286932 +vn -0.162030 0.738019 -0.655038 +vn -0.157018 0.944995 -0.286932 +vn -0.432353 0.891540 -0.135012 +vn -0.469939 0.881306 0.049577 +vn -0.215369 0.976504 -0.007534 +vn -0.215369 0.976504 -0.007534 +vn -0.292150 0.908273 0.299480 +vn 0.000225 0.950317 0.311285 +vn -0.000024 0.999434 -0.033655 +vn -0.554445 0.623532 0.551179 +vn 0.000452 0.780227 0.625496 +vn 0.000225 0.950317 0.311285 +vn -0.292150 0.908273 0.299480 +vn -0.820506 -0.061029 0.568371 +vn -0.957185 -0.023165 0.288548 +vn -0.952803 -0.038498 0.301138 +vn -0.783489 -0.014678 0.621232 +vn -0.763306 0.606800 0.221716 +vn -0.688379 0.565562 0.454175 +vn -0.449089 0.756911 0.474769 +vn -0.456513 0.843637 0.282617 +vn -0.763306 0.606800 0.221716 +vn -0.456513 0.843637 0.282617 +vn -0.469939 0.881306 0.049577 +vn -0.752997 0.651758 0.090594 +vn -0.292150 0.908273 0.299480 +vn -0.215369 0.976504 -0.007534 +vn -0.469939 0.881306 0.049577 +vn -0.456513 0.843637 0.282617 +vn -0.845832 0.016082 -0.533207 +vn -0.967558 -0.138641 -0.211209 +vn -0.936072 -0.305249 -0.174909 +vn -0.802888 -0.244557 -0.543657 +vn -0.936072 -0.305249 -0.174909 +vn -0.967558 -0.138641 -0.211209 +vn -0.948771 -0.295484 0.111900 +vn -0.926905 -0.360430 0.104582 +vn -0.222745 0.056621 -0.973231 +vn -0.586920 0.079221 -0.805760 +vn -0.561329 -0.195413 -0.804191 +vn -0.229329 -0.219158 -0.948356 +vn -0.561329 -0.195413 -0.804191 +vn -0.586920 0.079221 -0.805760 +vn -0.845832 0.016082 -0.533207 +vn -0.802888 -0.244557 -0.543657 +vn 0.000467 0.032128 -0.999484 +vn -0.222745 0.056621 -0.973231 +vn -0.229329 -0.219158 -0.948356 +vn -0.000706 -0.217152 -0.976138 +vn -0.798946 -0.479049 0.363589 +vn -0.819015 -0.538508 0.198051 +vn -0.901345 -0.342700 0.264828 +vn -0.892515 -0.367661 0.261233 +vn -0.797357 -0.051259 0.601328 +vn -0.941776 -0.078890 0.326856 +vn -0.927288 -0.201691 0.315370 +vn -0.683823 -0.132725 0.717475 +vn -0.952803 -0.038498 0.301138 +vn -0.941776 -0.078890 0.326856 +vn -0.797357 -0.051259 0.601328 +vn -0.783489 -0.014678 0.621232 +vn 0.327729 -0.355545 0.875318 +vn 0.355491 0.316171 0.879580 +vn 0.000685 0.315554 0.948907 +vn 0.000650 -0.432841 0.901470 +vn -0.000284 -0.919092 -0.394042 +vn -0.000297 -0.911907 -0.410396 +vn 0.182819 -0.909457 -0.373450 +vn 0.261231 -0.876858 -0.403582 +vn 0.409101 0.760686 -0.503978 +vn 0.164570 0.732877 -0.660157 +vn 0.331843 0.941261 -0.062511 +vn 0.737021 0.589954 0.329779 +vn 0.164570 0.732877 -0.660157 +vn -0.000492 0.731129 -0.682239 +vn -0.000127 0.984199 -0.177068 +vn 0.331843 0.941261 -0.062511 +vn 0.000685 0.315554 0.948907 +vn 0.355491 0.316171 0.879580 +vn 0.331843 0.941261 -0.062511 +vn -0.000127 0.984199 -0.177068 +vn -0.819015 -0.538508 0.198051 +vn -0.798946 -0.479049 0.363589 +vn -0.568340 -0.717376 0.402940 +vn -0.614262 -0.716011 0.331678 +vn -0.787186 -0.259928 0.559264 +vn -0.819015 -0.538508 0.198051 +vn -0.614262 -0.716011 0.331678 +vn -0.576772 -0.321954 0.750786 +vn -0.815355 0.165762 0.554724 +vn -0.942277 -0.067797 0.327900 +vn -0.763062 -0.121900 0.634725 +vn -0.608276 -0.053897 0.791894 +vn -0.763062 -0.121900 0.634725 +vn -0.942277 -0.067797 0.327900 +vn -0.945951 -0.112772 0.304072 +vn -0.926905 -0.360430 0.104582 +vn -0.948771 -0.295484 0.111900 +vn -0.892515 -0.367661 0.261233 +vn -0.901345 -0.342700 0.264828 +vn -0.927288 -0.201691 0.315370 +vn -0.332145 -0.836972 0.434923 +vn 0.000327 -0.892183 0.451674 +vn 0.000654 -0.425161 0.905118 +vn -0.302347 -0.397916 0.866169 +vn 0.355491 0.316171 0.879580 +vn 0.737021 0.589954 0.329779 +vn 0.331843 0.941261 -0.062511 +vn -0.129905 -0.582980 0.802034 +vn 0.000537 -0.667725 0.744408 +vn 0.000681 -0.333691 0.942682 +vn -0.162135 -0.280679 0.946008 +vn -0.205933 -0.333290 0.920059 +vn -0.295933 -0.260956 0.918872 +vn -0.129905 -0.582980 0.802034 +vn -0.305793 -0.196498 0.931600 +vn -0.129905 -0.582980 0.802034 +vn -0.295933 -0.260956 0.918872 +vn -0.422882 -0.286905 0.859568 +vn -0.252462 -0.001336 0.967606 +vn -0.172375 0.273962 0.946167 +vn -0.305793 -0.196498 0.931600 +vn -0.422450 0.034790 0.905718 +vn 0.000723 -0.015835 0.999874 +vn 0.000696 0.267650 0.963516 +vn -0.172375 0.273962 0.946167 +vn -0.252462 -0.001336 0.967606 +vn -0.162135 -0.280679 0.946008 +vn -0.205933 -0.333290 0.920059 +vn -0.129905 -0.582980 0.802034 +vn -0.787186 -0.259928 0.559264 +vn -0.901345 -0.342700 0.264828 +vn -0.819015 -0.538508 0.198051 +vn 0.379199 -0.851277 -0.362677 +vn 0.261231 -0.876858 -0.403582 +vn 0.182819 -0.909457 -0.373450 +vn 0.207106 -0.964711 -0.162602 +vn -0.806981 -0.188121 -0.559815 +vn -0.968004 -0.122272 -0.219130 +vn -0.993035 -0.106917 -0.049509 +vn -0.968004 -0.122272 -0.219130 +vn -0.806981 -0.188121 -0.559815 +vn -0.817021 -0.295073 -0.495387 +vn -0.953968 -0.241253 -0.178160 +vn -0.817021 -0.295073 -0.495387 +vn -0.806981 -0.188121 -0.559815 +vn -0.522263 -0.099053 -0.847012 +vn -0.569904 -0.299610 -0.765143 +vn -0.993035 -0.106917 -0.049509 +vn -0.970364 -0.078336 0.228600 +vn -0.986903 0.001952 0.161306 +vn -0.995263 -0.013472 -0.096280 +vn 0.707351 -0.665672 -0.237771 +vn 0.362799 -0.573391 -0.734574 +vn 0.369431 -0.648414 -0.665642 +vn 0.766368 -0.611778 -0.195980 +vn 0.179824 0.926462 -0.330653 +vn 0.320732 0.235753 -0.917361 +vn 0.506176 0.023910 -0.862099 +vn 0.829476 0.160165 -0.535086 +vn 0.812533 0.226416 -0.537145 +vn 0.320732 0.235753 -0.917361 +vn 0.369431 -0.648414 -0.665642 +vn 0.362799 -0.573391 -0.734574 +vn 0.651107 -0.286955 -0.702650 +vn 0.506176 0.023910 -0.862099 +vn 0.971519 0.236564 0.013705 +vn 0.975880 0.218196 0.006964 +vn 0.940937 0.334828 0.050283 +vn 0.913606 0.399639 0.074918 +vn -0.974312 -0.066435 0.215181 +vn -0.972718 -0.072410 0.220400 +vn -0.971797 -0.053835 0.229591 +vn -0.971236 -0.027612 0.236511 +vn -0.975686 0.026041 0.217620 +vn -0.987977 0.067075 0.139295 +vn -0.974312 -0.066435 0.215181 +vn -0.971236 -0.027612 0.236511 +vn -0.971551 -0.031210 0.234764 +vn -0.959591 0.088056 0.267268 +vn -0.975686 0.026041 0.217620 +vn -0.971236 -0.027612 0.236511 +vn -0.971797 -0.053835 0.229591 +vn -0.970364 -0.078336 0.228600 +vn -0.971551 -0.031210 0.234764 +vn -0.971236 -0.027612 0.236511 +vn -0.960582 -0.079233 0.266468 +vn -0.947053 -0.247150 0.204956 +vn -0.961591 -0.085567 0.260807 +vn -0.967384 -0.043335 0.249581 +vn -0.970475 -0.041712 0.237566 +vn -0.976541 -0.038925 0.211784 +vn -0.969415 -0.025766 0.244070 +vn -0.960582 -0.079233 0.266468 +vn -0.970475 -0.041712 0.237566 +vn -0.971797 -0.053835 0.229591 +vn -0.972718 -0.072410 0.220400 +vn -0.976541 -0.038925 0.211784 +vn -0.970475 -0.041712 0.237566 +vn -0.967384 -0.043335 0.249581 +vn -0.970364 -0.078336 0.228600 +vn -0.971797 -0.053835 0.229591 +vn -0.970475 -0.041712 0.237566 +vn -0.034210 0.999301 -0.015052 +vn 0.179824 0.926462 -0.330653 +vn 0.047673 0.950525 -0.306967 +vn 0.047673 0.950525 -0.306967 +vn 0.179824 0.926462 -0.330653 +vn 0.812533 0.226416 -0.537145 +vn -0.957185 -0.023165 0.288548 +vn -0.945951 -0.112772 0.304072 +vn -0.970364 -0.078336 0.228600 +vn -0.967384 -0.043335 0.249581 +vn -0.257377 -0.279331 0.925058 +vn -0.304700 -0.121164 0.944710 +vn -0.183617 -0.408218 0.894228 +vn -0.149278 -0.571323 0.807035 +vn -0.149278 -0.571323 0.807035 +vn -0.183617 -0.408218 0.894228 +vn -0.156940 0.078611 0.984475 +vn 0.135418 -0.048303 0.989610 +vn -0.420625 -0.244198 0.873751 +vn -0.298449 -0.430913 0.851611 +vn -0.183617 -0.408218 0.894228 +vn -0.304700 -0.121164 0.944710 +vn -0.183617 -0.408218 0.894228 +vn -0.298449 -0.430913 0.851611 +vn -0.488775 0.059643 0.870369 +vn -0.156940 0.078611 0.984475 +vn -0.519517 -0.020259 0.854220 +vn -0.488775 0.059643 0.870369 +vn -0.298449 -0.430913 0.851611 +vn -0.458421 -0.206271 0.864467 +vn -0.320569 -0.501595 0.803516 +vn -0.270062 -0.315024 0.909850 +vn 0.000695 -0.179132 0.983825 +vn -0.257377 -0.279331 0.925058 +vn -0.149278 -0.571323 0.807035 +vn -0.270062 -0.315024 0.909850 +vn -0.320569 -0.501595 0.803516 +vn -0.470254 0.054309 0.880858 +vn -0.327997 0.059850 0.942781 +vn -0.405532 -0.048067 0.912816 +vn 0.048683 0.544282 0.837489 +vn -0.317292 0.305967 0.897613 +vn -0.470254 0.054309 0.880858 +vn -0.470254 0.054309 0.880858 +vn -0.317292 0.305967 0.897613 +vn -0.446349 0.297701 0.843888 +vn -0.327997 0.059850 0.942781 +vn -0.446349 0.297701 0.843888 +vn -0.317292 0.305967 0.897613 +vn -0.149262 0.379768 0.912961 +vn -0.470901 0.160068 0.867543 +vn -0.269509 0.236052 0.933619 +vn -0.205976 0.079130 0.975352 +vn -0.296240 -0.056409 0.953446 +vn -0.661302 -0.161914 0.732437 +vn -0.568750 -0.148914 0.808918 +vn -0.509533 0.020016 0.860218 +vn -0.538143 -0.302485 0.786705 +vn -0.568750 -0.148914 0.808918 +vn -0.820506 -0.061029 0.568371 +vn -0.783489 -0.014678 0.621232 +vn -0.470901 0.160068 0.867543 +vn -0.509533 0.020016 0.860218 +vn -0.458421 -0.206271 0.864467 +vn -0.568750 -0.148914 0.808918 +vn -0.661302 -0.161914 0.732437 +vn -0.519517 -0.020259 0.854220 +vn -0.608276 -0.053897 0.791894 +vn -0.763062 -0.121900 0.634725 +vn -0.568750 -0.148914 0.808918 +vn -0.458421 -0.206271 0.864467 +vn -0.568750 -0.148914 0.808918 +vn -0.763062 -0.121900 0.634725 +vn -0.820506 -0.061029 0.568371 +vn -0.211840 -0.969428 0.123824 +vn 0.060485 -0.993180 0.099679 +vn -0.028439 -0.093181 0.995243 +vn 0.060485 -0.993180 0.099679 +vn 0.266162 -0.955918 0.124014 +vn -0.028439 -0.093181 0.995243 +vn 0.266162 -0.955918 0.124014 +vn 0.421073 -0.887412 0.187611 +vn -0.028439 -0.093181 0.995243 +vn -0.400538 -0.901914 0.161621 +vn -0.211840 -0.969428 0.123824 +vn -0.028439 -0.093181 0.995243 +vn -0.845111 -0.118955 0.521188 +vn -0.400538 -0.901914 0.161621 +vn -0.028439 -0.093181 0.995243 +vn -0.329947 0.874350 0.355875 +vn -0.845111 -0.118955 0.521188 +vn -0.028439 -0.093181 0.995243 +vn 0.714006 0.306588 0.629444 +vn 0.062476 0.962455 0.264154 +vn -0.028439 -0.093181 0.995243 +vn 0.421073 -0.887412 0.187611 +vn 0.714006 0.306588 0.629444 +vn -0.028439 -0.093181 0.995243 +vn -0.534523 0.168105 -0.828267 +vn -0.189763 0.182170 -0.964782 +vn -0.159340 0.373496 -0.913844 +vn -0.315758 0.453448 -0.833476 +vn -0.575169 0.552841 -0.602949 +vn -0.797398 0.220972 -0.561541 +vn -0.534523 0.168105 -0.828267 +vn -0.315758 0.453448 -0.833476 +vn -0.731100 -0.169840 0.660792 +vn -0.466594 0.444958 0.764397 +vn -0.266153 0.338300 0.902616 +vn -0.495863 -0.304383 0.813309 +vn -0.270062 -0.315024 0.909850 +vn -0.327997 0.059850 0.942781 +vn 0.000720 0.063814 0.997962 +vn 0.000643 -0.454797 0.890595 +vn -0.608276 -0.053897 0.791894 +vn -0.458421 -0.206271 0.864467 +vn -0.298449 -0.430913 0.851611 +vn -0.420625 -0.244198 0.873751 +vn -0.247908 0.415140 0.875329 +vn 0.000668 0.380630 0.924727 +vn 0.000632 -0.481810 0.876276 +vn -0.561174 0.229698 0.795187 +vn -0.995263 -0.013472 -0.096280 +vn -0.986903 0.001952 0.161306 +vn -0.951677 0.265524 0.154300 +vn -0.964115 0.198868 -0.175880 +vn -0.763306 0.606800 0.221716 +vn -0.752997 0.651758 0.090594 +vn -0.951677 0.265524 0.154300 +vn -0.914024 0.194572 0.355953 +vn -0.840285 0.268403 -0.471042 +vn -0.838125 0.086307 -0.538607 +vn -0.995263 -0.013472 -0.096280 +vn -0.964115 0.198868 -0.175880 +vn 0.327729 -0.355545 0.875318 +vn 0.737021 0.589954 0.329779 +vn 0.355491 0.316171 0.879580 +vn -0.554445 0.623532 0.551179 +vn -0.485037 0.688118 0.539660 +vn -0.561174 0.229698 0.795187 +vn -0.697628 0.252399 0.670529 +vn -0.449089 0.756911 0.474769 +vn -0.554445 0.623532 0.551179 +vn -0.292150 0.908273 0.299480 +vn -0.456513 0.843637 0.282617 +vn -0.554445 0.623532 0.551179 +vn -0.449089 0.756911 0.474769 +vn -0.485037 0.688118 0.539660 +vn -0.688379 0.565562 0.454175 +vn -0.763306 0.606800 0.221716 +vn -0.914024 0.194572 0.355953 +vn -0.781651 0.279337 0.557668 +vn -0.435133 -0.146473 0.888372 +vn -0.683823 -0.132725 0.717475 +vn -0.422450 0.034790 0.905718 +vn -0.435133 -0.146473 0.888372 +vn -0.422450 0.034790 0.905718 +vn -0.305793 -0.196498 0.931600 +vn -0.422882 -0.286905 0.859568 +vn -0.947053 -0.247150 0.204956 +vn -0.926905 -0.360430 0.104582 +vn -0.927288 -0.201691 0.315370 +vn -0.941776 -0.078890 0.326856 +vn -0.941776 -0.078890 0.326856 +vn -0.952803 -0.038498 0.301138 +vn -0.961591 -0.085567 0.260807 +vn -0.947053 -0.247150 0.204956 +vn -0.952803 -0.038498 0.301138 +vn -0.957185 -0.023165 0.288548 +vn -0.967384 -0.043335 0.249581 +vn -0.961591 -0.085567 0.260807 +vn -0.458485 0.608416 0.647782 +vn -0.528819 0.371325 0.763196 +vn -0.247908 0.415140 0.875329 +vn -0.561174 0.229698 0.795187 +vn -0.781651 0.279337 0.557668 +vn -0.528819 0.371325 0.763196 +vn -0.458485 0.608416 0.647782 +vn -0.688379 0.565562 0.454175 +vn -0.458485 0.608416 0.647782 +vn -0.561174 0.229698 0.795187 +vn -0.485037 0.688118 0.539660 +vn -0.449089 0.756911 0.474769 +vn -0.449089 0.756911 0.474769 +vn -0.688379 0.565562 0.454175 +vn -0.458485 0.608416 0.647782 +vn -0.327997 0.059850 0.942781 +vn -0.675227 0.357499 0.645185 +vn -0.579374 0.457574 0.674502 +vn -0.327997 0.059850 0.942781 +vn -0.446349 0.297701 0.843888 +vn -0.675227 0.357499 0.645185 +vn -0.697628 0.252399 0.670529 +vn 0.000673 -0.373351 0.927690 +vn 0.000452 0.780227 0.625496 +vn -0.554445 0.623532 0.551179 +vn -0.901345 -0.342700 0.264828 +vn -0.787186 -0.259928 0.559264 +vn -0.683823 -0.132725 0.717475 +vn -0.927288 -0.201691 0.315370 +vn -0.403036 -0.135960 0.905029 +vn -0.248127 -0.126773 0.960397 +vn -0.252462 -0.001336 0.967606 +vn -0.422450 0.034790 0.905718 +vn -0.576772 -0.321954 0.750786 +vn -0.302347 -0.397916 0.866169 +vn -0.248127 -0.126773 0.960397 +vn -0.403036 -0.135960 0.905029 +vn -0.248127 -0.126773 0.960397 +vn 0.000704 -0.161113 0.986936 +vn 0.000723 -0.015835 0.999874 +vn -0.252462 -0.001336 0.967606 +vn -0.302347 -0.397916 0.866169 +vn 0.000654 -0.425161 0.905118 +vn 0.000704 -0.161113 0.986936 +vn -0.248127 -0.126773 0.960397 +vn -0.683823 -0.132725 0.717475 +vn -0.403036 -0.135960 0.905029 +vn -0.422450 0.034790 0.905718 +vn -0.787186 -0.259928 0.559264 +vn -0.576772 -0.321954 0.750786 +vn -0.403036 -0.135960 0.905029 +vn -0.683823 -0.132725 0.717475 +vn -0.320569 -0.501595 0.803516 +vn 0.110312 -0.381901 0.917596 +vn -0.405532 -0.048067 0.912816 +vn -0.470254 0.054309 0.880858 +vn -0.135662 0.126805 0.982607 +vn 0.000717 0.110457 0.993881 +vn 0.000665 -0.398570 0.917138 +vn -0.214407 -0.326272 0.920639 +vn -0.274834 0.078552 0.958277 +vn -0.135662 0.126805 0.982607 +vn -0.214407 -0.326272 0.920639 +vn -0.461988 0.139777 0.875802 +vn -0.481984 0.058731 0.874210 +vn -0.274834 0.078552 0.958277 +vn -0.461988 0.139777 0.875802 +vn -0.450568 0.086783 0.888514 +vn -0.480975 0.006920 0.876707 +vn -0.552984 0.060822 0.830969 +vn -0.481984 0.058731 0.874210 +vn -0.450568 0.086783 0.888514 +vn -0.480975 0.006920 0.876707 +vn -0.683823 -0.132725 0.717475 +vn -0.454675 -0.316276 0.832610 +vn -0.552984 0.060822 0.830969 +vn -0.162135 -0.280679 0.946008 +vn 0.000681 -0.333691 0.942682 +vn 0.000717 0.110457 0.993881 +vn -0.135662 0.126805 0.982607 +vn -0.205933 -0.333290 0.920059 +vn -0.162135 -0.280679 0.946008 +vn -0.135662 0.126805 0.982607 +vn -0.274834 0.078552 0.958277 +vn -0.295933 -0.260956 0.918872 +vn -0.205933 -0.333290 0.920059 +vn -0.274834 0.078552 0.958277 +vn -0.481984 0.058731 0.874210 +vn -0.422882 -0.286905 0.859568 +vn -0.295933 -0.260956 0.918872 +vn -0.481984 0.058731 0.874210 +vn -0.552984 0.060822 0.830969 +vn -0.552984 0.060822 0.830969 +vn -0.454675 -0.316276 0.832610 +vn -0.422882 -0.286905 0.859568 +vn 0.048437 0.200283 0.978540 +vn -0.149262 0.379768 0.912961 +vn -0.317292 0.305967 0.897613 +vn 0.048683 0.544282 0.837489 +vn -0.052758 -0.171266 0.983811 +vn -0.205976 0.079130 0.975352 +vn -0.149262 0.379768 0.912961 +vn 0.048437 0.200283 0.978540 +vn -0.296240 -0.056409 0.953446 +vn -0.205976 0.079130 0.975352 +vn -0.052758 -0.171266 0.983811 +vn -0.207198 -0.304045 0.929853 +vn -0.538143 -0.302485 0.786705 +vn -0.509533 0.020016 0.860218 +vn -0.296240 -0.056409 0.953446 +vn -0.207198 -0.304045 0.929853 +vn -0.028439 -0.093181 0.995243 +vn -0.082098 0.964361 0.251530 +vn -0.329947 0.874350 0.355875 +vn -0.028439 -0.093181 0.995243 +vn 0.005073 0.969046 0.246830 +vn -0.082098 0.964361 0.251530 +vn -0.028439 -0.093181 0.995243 +vn 0.028873 0.970644 0.238783 +vn 0.005073 0.969046 0.246830 +vn -0.028439 -0.093181 0.995243 +vn 0.062476 0.962455 0.264154 +vn 0.028873 0.970644 0.238783 +vn 0.000666 -0.000052 1.000000 +vn 0.246344 0.526104 0.813959 +vn -0.002070 0.608432 0.793604 +vn 0.000666 -0.000052 1.000000 +vn 0.433888 0.266016 0.860800 +vn 0.246344 0.526104 0.813959 +vn 0.000666 -0.000052 1.000000 +vn 0.504870 -0.000065 0.863196 +vn 0.433888 0.266016 0.860800 +vn 0.000666 -0.000052 1.000000 +vn 0.433889 -0.266143 0.860760 +vn 0.504870 -0.000065 0.863196 +vn 0.000666 -0.000052 1.000000 +vn 0.247003 -0.454041 0.856058 +vn 0.433889 -0.266143 0.860760 +vn 0.000666 -0.000052 1.000000 +vn 0.000545 -0.520498 0.853863 +vn 0.247003 -0.454041 0.856058 +vn 0.000666 -0.000052 1.000000 +vn -0.245903 -0.454039 0.856376 +vn 0.000545 -0.520498 0.853863 +vn 0.000666 -0.000052 1.000000 +vn -0.432780 -0.266138 0.861320 +vn -0.245903 -0.454039 0.856376 +vn 0.000666 -0.000052 1.000000 +vn -0.503755 -0.000065 0.863847 +vn -0.432780 -0.266138 0.861320 +vn 0.000666 -0.000052 1.000000 +vn -0.436559 0.296941 0.849260 +vn -0.503755 -0.000065 0.863847 +vn 0.000666 -0.000052 1.000000 +vn -0.277411 0.524309 0.805074 +vn -0.436559 0.296941 0.849260 +vn 0.000666 -0.000052 1.000000 +vn -0.002070 0.608432 0.793604 +vn -0.277411 0.524309 0.805074 +vn -0.002070 0.608432 0.793604 +vn 0.246344 0.526104 0.813959 +vn 0.356628 0.868017 0.345489 +vn -0.000315 0.945921 0.324398 +vn 0.246344 0.526104 0.813959 +vn 0.433888 0.266016 0.860800 +vn 0.717649 0.548762 0.428766 +vn 0.356628 0.868017 0.345489 +vn 0.433888 0.266016 0.860800 +vn 0.504870 -0.000065 0.863196 +vn 0.886188 -0.000037 0.463326 +vn 0.717649 0.548762 0.428766 +vn 0.504870 -0.000065 0.863196 +vn 0.433889 -0.266143 0.860760 +vn 0.759322 -0.460531 0.459719 +vn 0.886188 -0.000037 0.463326 +vn 0.433889 -0.266143 0.860760 +vn 0.247003 -0.454041 0.856058 +vn 0.429482 -0.781430 0.452673 +vn 0.759322 -0.460531 0.459719 +vn 0.247003 -0.454041 0.856058 +vn 0.000545 -0.520498 0.853863 +vn 0.000288 -0.893346 0.449370 +vn 0.429482 -0.781430 0.452673 +vn 0.000545 -0.520498 0.853863 +vn -0.245903 -0.454039 0.856376 +vn -0.428897 -0.781424 0.453237 +vn 0.000288 -0.893346 0.449370 +vn -0.245903 -0.454039 0.856376 +vn -0.432780 -0.266138 0.861320 +vn -0.758722 -0.460525 0.460714 +vn -0.428897 -0.781424 0.453237 +vn -0.432780 -0.266138 0.861320 +vn -0.503755 -0.000065 0.863847 +vn -0.886471 0.001913 0.462779 +vn -0.758722 -0.460525 0.460714 +vn -0.503755 -0.000065 0.863847 +vn -0.436559 0.296941 0.849260 +vn -0.708422 0.556870 0.433628 +vn -0.886471 0.001913 0.462779 +vn -0.436559 0.296941 0.849260 +vn -0.277411 0.524309 0.805074 +vn -0.369602 0.855103 0.363584 +vn -0.708422 0.556870 0.433628 +vn -0.277411 0.524309 0.805074 +vn -0.002070 0.608432 0.793604 +vn -0.000315 0.945921 0.324398 +vn -0.369602 0.855103 0.363584 +vn -0.000315 0.945921 0.324398 +vn 0.356628 0.868017 0.345489 +vn 0.362235 0.928137 0.085717 +vn 0.000051 0.996837 0.079478 +vn 0.356628 0.868017 0.345489 +vn 0.717649 0.548762 0.428766 +vn 0.776693 0.613016 0.144773 +vn 0.362235 0.928137 0.085717 +vn 0.717649 0.548762 0.428766 +vn 0.886188 -0.000037 0.463326 +vn 0.983735 0.005908 0.179528 +vn 0.776693 0.613016 0.144773 +vn 0.886188 -0.000037 0.463326 +vn 0.759322 -0.460531 0.459719 +vn 0.841193 -0.509732 0.180463 +vn 0.983735 0.005908 0.179528 +vn 0.759322 -0.460531 0.459719 +vn 0.429482 -0.781430 0.452673 +vn 0.474346 -0.862667 0.175504 +vn 0.841193 -0.509732 0.180463 +vn 0.429482 -0.781430 0.452673 +vn 0.000288 -0.893346 0.449370 +vn 0.000108 -0.984861 0.173343 +vn 0.474346 -0.862667 0.175504 +vn 0.000288 -0.893346 0.449370 +vn -0.428897 -0.781424 0.453237 +vn -0.474126 -0.862660 0.176131 +vn 0.000108 -0.984861 0.173343 +vn -0.428897 -0.781424 0.453237 +vn -0.758722 -0.460525 0.460714 +vn -0.840958 -0.509725 0.181577 +vn -0.474126 -0.862660 0.176131 +vn -0.758722 -0.460525 0.460714 +vn -0.886471 0.001913 0.462779 +vn -0.982808 0.008812 0.184421 +vn -0.840958 -0.509725 0.181577 +vn -0.886471 0.001913 0.462779 +vn -0.708422 0.556870 0.433628 +vn -0.773355 0.614172 0.157209 +vn -0.982808 0.008812 0.184421 +vn -0.708422 0.556870 0.433628 +vn -0.369602 0.855103 0.363584 +vn -0.367858 0.925057 0.094603 +vn -0.773355 0.614172 0.157209 +vn -0.369602 0.855103 0.363584 +vn -0.000315 0.945921 0.324398 +vn 0.000051 0.996837 0.079478 +vn -0.367858 0.925057 0.094603 +vn 0.159840 0.373554 -0.913733 +vn 0.000229 0.345201 -0.938529 +vn 0.000819 0.182644 -0.983179 +vn 0.193199 0.189257 -0.962734 +vn 0.740955 -0.161751 0.651784 +vn 0.466729 0.445414 0.764049 +vn 0.690993 0.471928 0.547551 +vn 0.913481 -0.096705 0.395222 +vn 0.214568 -0.317568 0.923640 +vn 0.399484 -0.707042 0.583528 +vn 0.019597 -0.799590 0.600227 +vn 0.000665 -0.398570 0.917138 +vn 0.551062 -0.377095 0.744399 +vn 0.017267 -0.391736 0.919916 +vn 0.019597 -0.799590 0.600227 +vn 0.399484 -0.707042 0.583528 +vn 0.214568 -0.317568 0.923640 +vn 0.463255 0.139777 0.875133 +vn 0.315029 -0.629567 0.710213 +vn 0.463255 0.139777 0.875133 +vn 0.732030 -0.187484 0.654968 +vn 0.315029 -0.629567 0.710213 +vn 0.732030 -0.187484 0.654968 +vn 0.551062 -0.377095 0.744399 +vn 0.399484 -0.707042 0.583528 +vn 0.315029 -0.629567 0.710213 +vn 0.399484 -0.707042 0.583528 +vn 0.214568 -0.317568 0.923640 +vn 0.315029 -0.629567 0.710213 +vn 0.684865 -0.132727 0.716480 +vn 0.798232 -0.051260 0.600165 +vn 0.493517 0.057832 0.867811 +vn 0.482244 0.006920 0.876009 +vn 0.472182 0.159858 0.866885 +vn 0.493517 0.057832 0.867811 +vn 0.798232 -0.051260 0.600165 +vn 0.784491 -0.014886 0.619961 +vn 0.447497 0.297567 0.843327 +vn 0.586395 0.200433 0.784836 +vn 0.263718 0.117727 0.957389 +vn 0.270841 0.235905 0.933270 +vn 0.263718 0.117727 0.957389 +vn 0.493517 0.057832 0.867811 +vn 0.472182 0.159858 0.866885 +vn 0.270841 0.235905 0.933270 +vn 0.451854 0.086784 0.887860 +vn 0.263718 0.117727 0.957389 +vn 0.586395 0.200433 0.784836 +vn 0.463255 0.139777 0.875133 +vn 0.493517 0.057832 0.867811 +vn 0.263718 0.117727 0.957389 +vn 0.451854 0.086784 0.887860 +vn 0.482244 0.006920 0.876009 +vn 0.000695 -0.179132 0.983825 +vn 0.000643 -0.454797 0.890595 +vn 0.271100 -0.315190 0.909483 +vn 0.021168 0.278787 0.960120 +vn 0.017267 -0.391736 0.919916 +vn 0.551062 -0.377095 0.744399 +vn 0.628850 0.220050 0.745738 +vn 0.732030 -0.187484 0.654968 +vn 0.463255 0.139777 0.875133 +vn 0.586395 0.200433 0.784836 +vn 0.848615 0.189936 0.493737 +vn 0.628850 0.220050 0.745738 +vn 0.551062 -0.377095 0.744399 +vn 0.732030 -0.187484 0.654968 +vn 0.848615 0.189936 0.493737 +vn 0.447497 0.297567 0.843327 +vn 0.674724 0.357826 0.645529 +vn 0.689655 0.378147 0.617560 +vn 0.848615 0.189936 0.493737 +vn 0.586395 0.200433 0.784836 +vn 0.329181 0.059692 0.942378 +vn 0.000720 0.063814 0.997962 +vn 0.002232 0.555040 0.831821 +vn 0.582098 0.460288 0.670296 +vn 0.609533 -0.053656 0.790943 +vn 0.816163 0.165758 0.553536 +vn 0.540771 0.285326 0.791300 +vn 0.421921 -0.244099 0.873154 +vn 0.540771 0.285326 0.791300 +vn 0.256884 0.318872 0.912322 +vn 0.258674 -0.279151 0.924750 +vn 0.306120 -0.121023 0.944269 +vn 0.816163 0.165758 0.553536 +vn 0.782462 0.279339 0.556528 +vn 0.529926 0.371328 0.762427 +vn 0.540771 0.285326 0.791300 +vn 0.529926 0.371328 0.762427 +vn 0.249173 0.415142 0.874969 +vn 0.256884 0.318872 0.912322 +vn 0.540771 0.285326 0.791300 +vn 0.562326 0.229699 0.794372 +vn 0.698603 0.252400 0.669513 +vn 0.000673 -0.373351 0.927690 +vn 0.000632 -0.481810 0.876276 +vn 0.256884 0.318872 0.912322 +vn 0.000684 0.319207 0.947685 +vn 0.000695 -0.179132 0.983825 +vn 0.258674 -0.279151 0.924750 +vn 0.249173 0.415142 0.874969 +vn 0.000668 0.380630 0.924727 +vn 0.000684 0.319207 0.947685 +vn 0.256884 0.318872 0.912322 +vn 0.577868 -0.321937 0.749950 +vn 0.303595 -0.397909 0.865736 +vn 0.327659 -0.835368 0.441361 +vn 0.624572 -0.703383 0.339356 +vn 0.327659 -0.835368 0.441361 +vn 0.000327 -0.892183 0.451674 +vn 0.001086 -0.891990 0.452054 +vn 0.251478 -0.857380 0.449065 +vn 0.577350 -0.713795 0.396438 +vn 0.624572 -0.703383 0.339356 +vn 0.327659 -0.835368 0.441361 +vn 0.251478 -0.857380 0.449065 +vn -0.000700 -0.247080 -0.968995 +vn -0.000722 -0.032345 -0.999476 +vn 0.257193 -0.009147 -0.966317 +vn 0.240392 -0.264176 -0.934036 +vn 0.240392 -0.264176 -0.934036 +vn 0.257193 -0.009147 -0.966317 +vn 0.521035 -0.099052 -0.847769 +vn 0.568793 -0.299607 -0.765970 +vn 0.816298 -0.295071 -0.496579 +vn 0.802103 -0.244525 -0.544829 +vn 0.560163 -0.195390 -0.805010 +vn 0.568793 -0.299607 -0.765970 +vn 0.560163 -0.195390 -0.805010 +vn 0.227957 -0.219149 -0.948688 +vn 0.240392 -0.264176 -0.934036 +vn 0.568793 -0.299607 -0.765970 +vn 0.227957 -0.219149 -0.948688 +vn -0.000706 -0.217152 -0.976138 +vn -0.000700 -0.247080 -0.968995 +vn 0.240392 -0.264176 -0.934036 +vn 0.172231 0.376498 -0.910267 +vn -0.000672 0.363687 -0.931521 +vn -0.000482 0.745088 -0.666966 +vn 0.161084 0.738018 -0.655272 +vn 0.730814 0.563869 -0.384660 +vn 0.839597 0.268402 -0.472268 +vn 0.515717 0.297421 -0.803478 +vn 0.429877 0.713084 -0.553821 +vn 0.515717 0.297421 -0.803478 +vn 0.172231 0.376498 -0.910267 +vn 0.161084 0.738018 -0.655272 +vn 0.429877 0.713084 -0.553821 +vn 0.837339 0.086307 -0.539828 +vn 0.806164 -0.188119 -0.560991 +vn 0.521035 -0.099052 -0.847769 +vn 0.517628 0.064350 -0.853183 +vn 0.206979 0.105701 -0.972619 +vn 0.517628 0.064350 -0.853183 +vn 0.521035 -0.099052 -0.847769 +vn 0.257193 -0.009147 -0.966317 +vn 0.206979 0.105701 -0.972619 +vn 0.172231 0.376498 -0.910267 +vn 0.515717 0.297421 -0.803478 +vn 0.517628 0.064350 -0.853183 +vn 0.517628 0.064350 -0.853183 +vn 0.515717 0.297421 -0.803478 +vn 0.839597 0.268402 -0.472268 +vn 0.837339 0.086307 -0.539828 +vn -0.000717 0.116407 -0.993201 +vn 0.206979 0.105701 -0.972619 +vn 0.257193 -0.009147 -0.966317 +vn -0.000722 -0.032345 -0.999476 +vn -0.000717 0.116407 -0.993201 +vn -0.000672 0.363687 -0.931521 +vn 0.172231 0.376498 -0.910267 +vn 0.206979 0.105701 -0.972619 +vn 0.935834 -0.305189 -0.176279 +vn 0.953707 -0.241253 -0.179556 +vn 0.947352 -0.247150 0.203570 +vn 0.927129 -0.360268 0.103144 +vn 0.816298 -0.295071 -0.496579 +vn 0.953707 -0.241253 -0.179556 +vn 0.935834 -0.305189 -0.176279 +vn 0.802103 -0.244525 -0.544829 +vn 0.753128 0.651759 0.089491 +vn 0.951901 0.265525 0.152906 +vn 0.963857 0.198868 -0.177291 +vn 0.769546 0.633011 -0.084238 +vn 0.963857 0.198868 -0.177291 +vn 0.839597 0.268402 -0.472268 +vn 0.730814 0.563869 -0.384660 +vn 0.769546 0.633011 -0.084238 +vn 0.995121 -0.013472 -0.097737 +vn 0.992961 -0.106917 -0.050963 +vn 0.806164 -0.188119 -0.560991 +vn 0.837339 0.086307 -0.539828 +vn 0.946394 -0.112772 0.302689 +vn 0.764233 -0.121637 0.633365 +vn 0.821528 -0.061007 0.566895 +vn 0.957606 -0.023166 0.287147 +vn 0.987138 0.001952 0.159861 +vn 0.942754 -0.067799 0.326524 +vn 0.946394 -0.112772 0.302689 +vn 0.970697 -0.078336 0.227179 +vn 0.914543 0.194574 0.354616 +vn 0.942754 -0.067799 0.326524 +vn 0.987138 0.001952 0.159861 +vn 0.951901 0.265525 0.152906 +vn 0.914543 0.194574 0.354616 +vn 0.782462 0.279339 0.556528 +vn 0.816163 0.165758 0.553536 +vn 0.942754 -0.067799 0.326524 +vn -0.000233 0.945651 -0.325182 +vn -0.000024 0.999434 -0.033655 +vn 0.215359 0.976503 -0.007850 +vn 0.156604 0.944994 -0.287161 +vn 0.161084 0.738018 -0.655272 +vn -0.000482 0.745088 -0.666966 +vn -0.000233 0.945651 -0.325182 +vn 0.156604 0.944994 -0.287161 +vn 0.470010 0.881306 0.048889 +vn 0.753128 0.651759 0.089491 +vn 0.769546 0.633011 -0.084238 +vn 0.432155 0.891539 -0.135645 +vn 0.769546 0.633011 -0.084238 +vn 0.730814 0.563869 -0.384660 +vn 0.429877 0.713084 -0.553821 +vn 0.432155 0.891539 -0.135645 +vn 0.429877 0.713084 -0.553821 +vn 0.161084 0.738018 -0.655272 +vn 0.156604 0.944994 -0.287161 +vn 0.432155 0.891539 -0.135645 +vn 0.156604 0.944994 -0.287161 +vn 0.215359 0.976503 -0.007850 +vn 0.470010 0.881306 0.048889 +vn 0.432155 0.891539 -0.135645 +vn 0.215359 0.976503 -0.007850 +vn -0.000024 0.999434 -0.033655 +vn 0.000225 0.950317 0.311285 +vn 0.292583 0.908275 0.299053 +vn 0.555245 0.623535 0.550370 +vn 0.292583 0.908275 0.299053 +vn 0.000225 0.950317 0.311285 +vn 0.000452 0.780227 0.625496 +vn 0.821528 -0.061007 0.566895 +vn 0.784491 -0.014886 0.619961 +vn 0.953243 -0.038498 0.299744 +vn 0.957606 -0.023166 0.287147 +vn 0.763627 0.606803 0.220599 +vn 0.456922 0.843638 0.281951 +vn 0.449776 0.756913 0.474115 +vn 0.689038 0.565566 0.453170 +vn 0.763627 0.606803 0.220599 +vn 0.753128 0.651759 0.089491 +vn 0.470010 0.881306 0.048889 +vn 0.456922 0.843638 0.281951 +vn 0.292583 0.908275 0.299053 +vn 0.456922 0.843638 0.281951 +vn 0.470010 0.881306 0.048889 +vn 0.215359 0.976503 -0.007850 +vn 0.843701 -0.000516 -0.536814 +vn 0.802103 -0.244525 -0.544829 +vn 0.935834 -0.305189 -0.176279 +vn 0.964908 -0.126135 -0.230308 +vn 0.935834 -0.305189 -0.176279 +vn 0.927129 -0.360268 0.103144 +vn 0.949731 -0.288356 0.121906 +vn 0.964908 -0.126135 -0.230308 +vn 0.225933 0.049028 -0.972908 +vn 0.227957 -0.219149 -0.948688 +vn 0.560163 -0.195390 -0.805010 +vn 0.588367 0.062153 -0.806202 +vn 0.560163 -0.195390 -0.805010 +vn 0.802103 -0.244525 -0.544829 +vn 0.843701 -0.000516 -0.536814 +vn 0.588367 0.062153 -0.806202 +vn 0.000467 0.032128 -0.999484 +vn -0.000706 -0.217152 -0.976138 +vn 0.227957 -0.219149 -0.948688 +vn 0.225933 0.049028 -0.972908 +vn 0.809061 -0.469281 0.353829 +vn 0.890759 -0.373555 0.258854 +vn 0.901704 -0.342647 0.263671 +vn 0.819319 -0.538475 0.196880 +vn 0.798232 -0.051260 0.600165 +vn 0.684865 -0.132727 0.716480 +vn 0.927748 -0.201693 0.314014 +vn 0.942253 -0.078890 0.325478 +vn 0.953243 -0.038498 0.299744 +vn 0.784491 -0.014886 0.619961 +vn 0.798232 -0.051260 0.600165 +vn 0.942253 -0.078890 0.325478 +vn -0.326463 -0.355542 0.875792 +vn 0.000650 -0.432841 0.901470 +vn 0.000685 0.315554 0.948907 +vn -0.354216 0.316173 0.880094 +vn -0.000284 -0.919092 -0.394042 +vn -0.261813 -0.876860 -0.403200 +vn -0.183360 -0.909458 -0.373182 +vn -0.000297 -0.911907 -0.410396 +vn -0.409831 0.760689 -0.503380 +vn -0.736540 0.589957 0.330848 +vn -0.331933 0.941261 -0.062028 +vn -0.165522 0.732880 -0.659916 +vn -0.165522 0.732880 -0.659916 +vn -0.331933 0.941261 -0.062028 +vn -0.000127 0.984199 -0.177068 +vn -0.000492 0.731129 -0.682239 +vn 0.000685 0.315554 0.948907 +vn -0.000127 0.984199 -0.177068 +vn -0.331933 0.941261 -0.062028 +vn -0.354216 0.316173 0.880094 +vn 0.819319 -0.538475 0.196880 +vn 0.624572 -0.703383 0.339356 +vn 0.577350 -0.713795 0.396438 +vn 0.809061 -0.469281 0.353829 +vn 0.788008 -0.259913 0.558112 +vn 0.577868 -0.321937 0.749950 +vn 0.624572 -0.703383 0.339356 +vn 0.819319 -0.538475 0.196880 +vn 0.816163 0.165758 0.553536 +vn 0.609533 -0.053656 0.790943 +vn 0.764233 -0.121637 0.633365 +vn 0.942754 -0.067799 0.326524 +vn 0.764233 -0.121637 0.633365 +vn 0.946394 -0.112772 0.302689 +vn 0.942754 -0.067799 0.326524 +vn 0.901704 -0.342647 0.263671 +vn 0.890759 -0.373555 0.258854 +vn 0.949731 -0.288356 0.121906 +vn 0.927129 -0.360268 0.103144 +vn 0.927748 -0.201693 0.314014 +vn 0.327659 -0.835368 0.441361 +vn 0.303595 -0.397909 0.865736 +vn 0.000654 -0.425161 0.905118 +vn 0.000327 -0.892183 0.451674 +vn -0.354216 0.316173 0.880094 +vn -0.331933 0.941261 -0.062028 +vn -0.736540 0.589957 0.330848 +vn 0.131061 -0.582984 0.801843 +vn 0.163500 -0.280681 0.945773 +vn 0.000681 -0.333691 0.942682 +vn 0.000537 -0.667725 0.744408 +vn 0.207262 -0.333294 0.919760 +vn 0.131061 -0.582984 0.801843 +vn 0.297260 -0.260959 0.918443 +vn 0.307140 -0.196501 0.931157 +vn 0.424126 -0.286904 0.858955 +vn 0.297260 -0.260959 0.918443 +vn 0.131061 -0.582984 0.801843 +vn 0.253859 -0.001335 0.967240 +vn 0.423762 0.034787 0.905105 +vn 0.307140 -0.196501 0.931157 +vn 0.173741 0.273966 0.945916 +vn 0.000723 -0.015835 0.999874 +vn 0.253859 -0.001335 0.967240 +vn 0.173741 0.273966 0.945916 +vn 0.000696 0.267650 0.963516 +vn 0.163500 -0.280681 0.945773 +vn 0.131061 -0.582984 0.801843 +vn 0.207262 -0.333294 0.919760 +vn 0.788008 -0.259913 0.558112 +vn 0.819319 -0.538475 0.196880 +vn 0.901704 -0.342647 0.263671 +vn -0.379724 -0.851280 -0.362121 +vn -0.207340 -0.964712 -0.162296 +vn -0.183360 -0.909458 -0.373182 +vn -0.261813 -0.876860 -0.403200 +vn 0.806164 -0.188119 -0.560991 +vn 0.992961 -0.106917 -0.050963 +vn 0.967682 -0.122272 -0.220546 +vn 0.967682 -0.122272 -0.220546 +vn 0.953707 -0.241253 -0.179556 +vn 0.816298 -0.295071 -0.496579 +vn 0.806164 -0.188119 -0.560991 +vn 0.816298 -0.295071 -0.496579 +vn 0.568793 -0.299607 -0.765970 +vn 0.521035 -0.099052 -0.847769 +vn 0.806164 -0.188119 -0.560991 +vn 0.992961 -0.106917 -0.050963 +vn 0.995121 -0.013472 -0.097737 +vn 0.987138 0.001952 0.159861 +vn 0.970697 -0.078336 0.227179 +vn -0.707697 -0.665673 -0.236734 +vn -0.766654 -0.611778 -0.194856 +vn -0.370393 -0.648415 -0.665106 +vn -0.363860 -0.573397 -0.734045 +vn -0.180305 0.926460 -0.330397 +vn -0.813316 0.226417 -0.535959 +vn -0.830253 0.160169 -0.533878 +vn -0.507424 0.023912 -0.861365 +vn -0.322063 0.235752 -0.916895 +vn -0.322063 0.235752 -0.916895 +vn -0.507424 0.023912 -0.861365 +vn -0.652126 -0.286958 -0.701703 +vn -0.363860 -0.573397 -0.734045 +vn -0.370393 -0.648415 -0.665106 +vn -0.971498 0.236564 0.015127 +vn -0.913497 0.399635 0.076254 +vn -0.940863 0.334826 0.051660 +vn -0.975869 0.218195 0.008393 +vn 0.974626 -0.066437 0.213754 +vn 0.971582 -0.027611 0.235089 +vn 0.972132 -0.053835 0.228168 +vn 0.973040 -0.072411 0.218976 +vn 0.976004 0.026042 0.216191 +vn 0.971582 -0.027611 0.235089 +vn 0.974626 -0.066437 0.213754 +vn 0.988180 0.067077 0.137846 +vn 0.971894 -0.031210 0.233342 +vn 0.971582 -0.027611 0.235089 +vn 0.976004 0.026042 0.216191 +vn 0.959981 0.088056 0.265863 +vn 0.972132 -0.053835 0.228168 +vn 0.971582 -0.027611 0.235089 +vn 0.971894 -0.031210 0.233342 +vn 0.970697 -0.078336 0.227179 +vn 0.960970 -0.079234 0.265062 +vn 0.970822 -0.041711 0.236145 +vn 0.967748 -0.043335 0.248164 +vn 0.961972 -0.085568 0.259400 +vn 0.947352 -0.247150 0.203570 +vn 0.976850 -0.038925 0.210354 +vn 0.970822 -0.041711 0.236145 +vn 0.960970 -0.079234 0.265062 +vn 0.969771 -0.025766 0.242652 +vn 0.972132 -0.053835 0.228168 +vn 0.970822 -0.041711 0.236145 +vn 0.976850 -0.038925 0.210354 +vn 0.973040 -0.072411 0.218976 +vn 0.967748 -0.043335 0.248164 +vn 0.970822 -0.041711 0.236145 +vn 0.972132 -0.053835 0.228168 +vn 0.970697 -0.078336 0.227179 +vn 0.034185 0.999301 -0.015112 +vn -0.048117 0.950525 -0.306898 +vn -0.180305 0.926460 -0.330397 +vn -0.048117 0.950525 -0.306898 +vn -0.813316 0.226417 -0.535959 +vn -0.180305 0.926460 -0.330397 +vn 0.957606 -0.023166 0.287147 +vn 0.967748 -0.043335 0.248164 +vn 0.970697 -0.078336 0.227179 +vn 0.946394 -0.112772 0.302689 +vn 0.258674 -0.279151 0.924750 +vn 0.150362 -0.571286 0.806860 +vn 0.184895 -0.408101 0.894018 +vn 0.306120 -0.121023 0.944269 +vn 0.150362 -0.571286 0.806860 +vn -0.133974 -0.048295 0.989807 +vn 0.158362 0.078611 0.984247 +vn 0.184895 -0.408101 0.894018 +vn 0.421921 -0.244099 0.873154 +vn 0.306120 -0.121023 0.944269 +vn 0.184895 -0.408101 0.894018 +vn 0.299737 -0.430804 0.851214 +vn 0.184895 -0.408101 0.894018 +vn 0.158362 0.078611 0.984247 +vn 0.490035 0.059642 0.869660 +vn 0.299737 -0.430804 0.851214 +vn 0.520755 -0.020261 0.853466 +vn 0.459862 -0.206072 0.863748 +vn 0.299737 -0.430804 0.851214 +vn 0.490035 0.059642 0.869660 +vn 0.321678 -0.501525 0.803117 +vn 0.150362 -0.571286 0.806860 +vn 0.258674 -0.279151 0.924750 +vn 0.000695 -0.179132 0.983825 +vn 0.271100 -0.315190 0.909483 +vn 0.271100 -0.315190 0.909483 +vn 0.329181 0.059692 0.942378 +vn 0.471238 0.054153 0.880342 +vn 0.321678 -0.501525 0.803117 +vn 0.406871 -0.048047 0.912221 +vn 0.471238 0.054153 0.880342 +vn 0.318494 0.305712 0.897275 +vn -0.047480 0.544281 0.837558 +vn 0.471238 0.054153 0.880342 +vn 0.329181 0.059692 0.942378 +vn 0.447497 0.297567 0.843327 +vn 0.318494 0.305712 0.897275 +vn 0.447497 0.297567 0.843327 +vn 0.270841 0.235905 0.933270 +vn 0.207388 0.078941 0.975068 +vn 0.150559 0.379736 0.912761 +vn 0.472182 0.159858 0.866885 +vn 0.510857 0.019763 0.859438 +vn 0.297673 -0.056529 0.952993 +vn 0.662327 -0.161908 0.731511 +vn 0.539283 -0.302488 0.785923 +vn 0.510857 0.019763 0.859438 +vn 0.570310 -0.148895 0.807823 +vn 0.570310 -0.148895 0.807823 +vn 0.510857 0.019763 0.859438 +vn 0.472182 0.159858 0.866885 +vn 0.784491 -0.014886 0.619961 +vn 0.821528 -0.061007 0.566895 +vn 0.459862 -0.206072 0.863748 +vn 0.520755 -0.020261 0.853466 +vn 0.662327 -0.161908 0.731511 +vn 0.570310 -0.148895 0.807823 +vn 0.609533 -0.053656 0.790943 +vn 0.459862 -0.206072 0.863748 +vn 0.570310 -0.148895 0.807823 +vn 0.764233 -0.121637 0.633365 +vn 0.570310 -0.148895 0.807823 +vn 0.821528 -0.061007 0.566895 +vn 0.764233 -0.121637 0.633365 +vn 0.212007 -0.969431 0.123514 +vn 0.029888 -0.093176 0.995201 +vn -0.060343 -0.993179 0.099770 +vn -0.060343 -0.993179 0.099770 +vn 0.029888 -0.093176 0.995201 +vn -0.265982 -0.955917 0.124406 +vn -0.265982 -0.955917 0.124406 +vn 0.029888 -0.093176 0.995201 +vn -0.420804 -0.887408 0.188232 +vn 0.400757 -0.901921 0.161037 +vn 0.029888 -0.093176 0.995201 +vn 0.212007 -0.969431 0.123514 +vn 0.845865 -0.118955 0.519964 +vn 0.029888 -0.093176 0.995201 +vn 0.400757 -0.901921 0.161037 +vn 0.330444 0.874363 0.355383 +vn 0.029888 -0.093176 0.995201 +vn 0.845865 -0.118955 0.519964 +vn -0.713085 0.306597 0.630482 +vn 0.029888 -0.093176 0.995201 +vn -0.062092 0.962456 0.264241 +vn -0.420804 -0.887408 0.188232 +vn 0.029888 -0.093176 0.995201 +vn -0.713085 0.306597 0.630482 +vn 0.776559 0.591232 0.217718 +vn 0.952582 0.220397 -0.209794 +vn 0.913481 -0.096705 0.395222 +vn 0.690993 0.471928 0.547551 +vn 0.534028 0.183727 -0.825263 +vn 0.316158 0.454103 -0.832967 +vn 0.159840 0.373554 -0.913733 +vn 0.193199 0.189257 -0.962734 +vn 0.271100 -0.315190 0.909483 +vn 0.000643 -0.454797 0.890595 +vn 0.000720 0.063814 0.997962 +vn 0.329181 0.059692 0.942378 +vn 0.609533 -0.053656 0.790943 +vn 0.421921 -0.244099 0.873154 +vn 0.299737 -0.430804 0.851214 +vn 0.459862 -0.206072 0.863748 +vn 0.249173 0.415142 0.874969 +vn 0.562326 0.229699 0.794372 +vn 0.000632 -0.481810 0.876276 +vn 0.000668 0.380630 0.924727 +vn 0.995121 -0.013472 -0.097737 +vn 0.963857 0.198868 -0.177291 +vn 0.951901 0.265525 0.152906 +vn 0.987138 0.001952 0.159861 +vn 0.763627 0.606803 0.220599 +vn 0.914543 0.194574 0.354616 +vn 0.951901 0.265525 0.152906 +vn 0.753128 0.651759 0.089491 +vn 0.839597 0.268402 -0.472268 +vn 0.963857 0.198868 -0.177291 +vn 0.995121 -0.013472 -0.097737 +vn 0.837339 0.086307 -0.539828 +vn -0.326463 -0.355542 0.875792 +vn -0.354216 0.316173 0.880094 +vn -0.736540 0.589957 0.330848 +vn 0.555245 0.623535 0.550370 +vn 0.698603 0.252400 0.669513 +vn 0.562326 0.229699 0.794372 +vn 0.485819 0.688123 0.538950 +vn 0.449776 0.756913 0.474115 +vn 0.456922 0.843638 0.281951 +vn 0.292583 0.908275 0.299053 +vn 0.555245 0.623535 0.550370 +vn 0.555245 0.623535 0.550370 +vn 0.485819 0.688123 0.538950 +vn 0.449776 0.756913 0.474115 +vn 0.689038 0.565566 0.453170 +vn 0.782462 0.279339 0.556528 +vn 0.914543 0.194574 0.354616 +vn 0.763627 0.606803 0.220599 +vn 0.436419 -0.146470 0.887742 +vn 0.684865 -0.132727 0.716480 +vn 0.455882 -0.316273 0.831951 +vn 0.436419 -0.146470 0.887742 +vn 0.424126 -0.286904 0.858955 +vn 0.307140 -0.196501 0.931157 +vn 0.423762 0.034787 0.905105 +vn 0.947352 -0.247150 0.203570 +vn 0.942253 -0.078890 0.325478 +vn 0.927748 -0.201693 0.314014 +vn 0.927129 -0.360268 0.103144 +vn 0.942253 -0.078890 0.325478 +vn 0.947352 -0.247150 0.203570 +vn 0.961972 -0.085568 0.259400 +vn 0.953243 -0.038498 0.299744 +vn 0.953243 -0.038498 0.299744 +vn 0.961972 -0.085568 0.259400 +vn 0.967748 -0.043335 0.248164 +vn 0.957606 -0.023166 0.287147 +vn 0.249173 0.415142 0.874969 +vn 0.529926 0.371328 0.762427 +vn 0.459422 0.608419 0.647115 +vn 0.562326 0.229699 0.794372 +vn 0.782462 0.279339 0.556528 +vn 0.689038 0.565566 0.453170 +vn 0.459422 0.608419 0.647115 +vn 0.529926 0.371328 0.762427 +vn 0.459422 0.608419 0.647115 +vn 0.449776 0.756913 0.474115 +vn 0.485819 0.688123 0.538950 +vn 0.562326 0.229699 0.794372 +vn 0.449776 0.756913 0.474115 +vn 0.459422 0.608419 0.647115 +vn 0.689038 0.565566 0.453170 +vn 0.329181 0.059692 0.942378 +vn 0.582098 0.460288 0.670296 +vn 0.674724 0.357826 0.645529 +vn 0.329181 0.059692 0.942378 +vn 0.674724 0.357826 0.645529 +vn 0.447497 0.297567 0.843327 +vn 0.698603 0.252400 0.669513 +vn 0.555245 0.623535 0.550370 +vn 0.000452 0.780227 0.625496 +vn 0.000673 -0.373351 0.927690 +vn 0.901704 -0.342647 0.263671 +vn 0.927748 -0.201693 0.314014 +vn 0.684865 -0.132727 0.716480 +vn 0.788008 -0.259913 0.558112 +vn 0.404345 -0.135957 0.904445 +vn 0.423762 0.034787 0.905105 +vn 0.253859 -0.001335 0.967240 +vn 0.249507 -0.126772 0.960039 +vn 0.577868 -0.321937 0.749950 +vn 0.404345 -0.135957 0.904445 +vn 0.249507 -0.126772 0.960039 +vn 0.303595 -0.397909 0.865736 +vn 0.249507 -0.126772 0.960039 +vn 0.253859 -0.001335 0.967240 +vn 0.000723 -0.015835 0.999874 +vn 0.000704 -0.161113 0.986936 +vn 0.303595 -0.397909 0.865736 +vn 0.249507 -0.126772 0.960039 +vn 0.000704 -0.161113 0.986936 +vn 0.000654 -0.425161 0.905118 +vn 0.684865 -0.132727 0.716480 +vn 0.423762 0.034787 0.905105 +vn 0.404345 -0.135957 0.904445 +vn 0.788008 -0.259913 0.558112 +vn 0.684865 -0.132727 0.716480 +vn 0.404345 -0.135957 0.904445 +vn 0.577868 -0.321937 0.749950 +vn 0.321678 -0.501525 0.803117 +vn 0.471238 0.054153 0.880342 +vn 0.406871 -0.048047 0.912221 +vn -0.108985 -0.381903 0.917754 +vn 0.137081 0.126805 0.982410 +vn 0.214568 -0.317568 0.923640 +vn 0.000665 -0.398570 0.917138 +vn 0.000717 0.110457 0.993881 +vn 0.276219 0.078553 0.957879 +vn 0.463255 0.139777 0.875133 +vn 0.214568 -0.317568 0.923640 +vn 0.137081 0.126805 0.982410 +vn 0.483250 0.058732 0.873510 +vn 0.451854 0.086784 0.887860 +vn 0.463255 0.139777 0.875133 +vn 0.276219 0.078553 0.957879 +vn 0.482244 0.006920 0.876009 +vn 0.451854 0.086784 0.887860 +vn 0.483250 0.058732 0.873510 +vn 0.554189 0.060822 0.830166 +vn 0.482244 0.006920 0.876009 +vn 0.554189 0.060822 0.830166 +vn 0.455882 -0.316273 0.831951 +vn 0.684865 -0.132727 0.716480 +vn 0.163500 -0.280681 0.945773 +vn 0.137081 0.126805 0.982410 +vn 0.000717 0.110457 0.993881 +vn 0.000681 -0.333691 0.942682 +vn 0.207262 -0.333294 0.919760 +vn 0.276219 0.078553 0.957879 +vn 0.137081 0.126805 0.982410 +vn 0.163500 -0.280681 0.945773 +vn 0.297260 -0.260959 0.918443 +vn 0.483250 0.058732 0.873510 +vn 0.276219 0.078553 0.957879 +vn 0.207262 -0.333294 0.919760 +vn 0.424126 -0.286904 0.858955 +vn 0.554189 0.060822 0.830166 +vn 0.483250 0.058732 0.873510 +vn 0.297260 -0.260959 0.918443 +vn 0.554189 0.060822 0.830166 +vn 0.424126 -0.286904 0.858955 +vn 0.455882 -0.316273 0.831951 +vn -0.047024 0.200281 0.978609 +vn -0.047480 0.544281 0.837558 +vn 0.318494 0.305712 0.897275 +vn 0.150559 0.379736 0.912761 +vn 0.054178 -0.171268 0.983734 +vn -0.047024 0.200281 0.978609 +vn 0.150559 0.379736 0.912761 +vn 0.207388 0.078941 0.975068 +vn 0.297673 -0.056529 0.952993 +vn 0.208543 -0.304047 0.929551 +vn 0.054178 -0.171268 0.983734 +vn 0.207388 0.078941 0.975068 +vn 0.539283 -0.302488 0.785923 +vn 0.208543 -0.304047 0.929551 +vn 0.297673 -0.056529 0.952993 +vn 0.510857 0.019763 0.859438 +vn 0.029888 -0.093176 0.995201 +vn 0.330444 0.874363 0.355383 +vn 0.082461 0.964362 0.251408 +vn 0.029888 -0.093176 0.995201 +vn 0.082461 0.964362 0.251408 +vn -0.004717 0.969046 0.246835 +vn 0.029888 -0.093176 0.995201 +vn -0.004717 0.969046 0.246835 +vn -0.028528 0.970644 0.238822 +vn 0.029888 -0.093176 0.995201 +vn -0.028528 0.970644 0.238822 +vn -0.062092 0.962456 0.264241 +vn 0.000779 -0.000052 1.000000 +vn 0.003216 0.608431 0.793600 +vn -0.245168 0.526103 0.814315 +vn 0.000779 -0.000052 1.000000 +vn -0.245168 0.526103 0.814315 +vn -0.432641 0.266015 0.861428 +vn 0.000779 -0.000052 1.000000 +vn -0.432641 0.266015 0.861428 +vn -0.503618 -0.000065 0.863926 +vn 0.000779 -0.000052 1.000000 +vn -0.503618 -0.000065 0.863926 +vn -0.432642 -0.266142 0.861388 +vn 0.000779 -0.000052 1.000000 +vn -0.432642 -0.266142 0.861388 +vn -0.245768 -0.454039 0.856415 +vn 0.000779 -0.000052 1.000000 +vn -0.245768 -0.454039 0.856415 +vn 0.000687 -0.520502 0.853860 +vn 0.000779 -0.000052 1.000000 +vn 0.000687 -0.520502 0.853860 +vn 0.247146 -0.454037 0.856019 +vn 0.000779 -0.000052 1.000000 +vn 0.247146 -0.454037 0.856019 +vn 0.434026 -0.266140 0.860692 +vn 0.000779 -0.000052 1.000000 +vn 0.434026 -0.266140 0.860692 +vn 0.505006 -0.000066 0.863116 +vn 0.000779 -0.000052 1.000000 +vn 0.505006 -0.000066 0.863116 +vn 0.437788 0.296943 0.848626 +vn 0.000779 -0.000052 1.000000 +vn 0.437788 0.296943 0.848626 +vn 0.278576 0.524311 0.804670 +vn 0.000779 -0.000052 1.000000 +vn 0.278576 0.524311 0.804670 +vn 0.003216 0.608431 0.793600 +vn 0.003216 0.608431 0.793600 +vn 0.000784 0.945921 0.324397 +vn -0.356129 0.868015 0.346008 +vn -0.245168 0.526103 0.814315 +vn -0.245168 0.526103 0.814315 +vn -0.356129 0.868015 0.346008 +vn -0.717024 0.548762 0.429810 +vn -0.432641 0.266015 0.861428 +vn -0.432641 0.266015 0.861428 +vn -0.717024 0.548762 0.429810 +vn -0.885511 -0.000037 0.464618 +vn -0.503618 -0.000065 0.863926 +vn -0.503618 -0.000065 0.863926 +vn -0.885511 -0.000037 0.464618 +vn -0.758652 -0.460529 0.460826 +vn -0.432642 -0.266142 0.861388 +vn -0.432642 -0.266142 0.861388 +vn -0.758652 -0.460529 0.460826 +vn -0.428826 -0.781428 0.453299 +vn -0.245768 -0.454039 0.856415 +vn -0.245768 -0.454039 0.856415 +vn -0.428826 -0.781428 0.453299 +vn 0.000361 -0.893347 0.449368 +vn 0.000687 -0.520502 0.853860 +vn 0.000687 -0.520502 0.853860 +vn 0.000361 -0.893347 0.449368 +vn 0.429555 -0.781426 0.452610 +vn 0.247146 -0.454037 0.856019 +vn 0.247146 -0.454037 0.856019 +vn 0.429555 -0.781426 0.452610 +vn 0.759392 -0.460528 0.459607 +vn 0.434026 -0.266140 0.860692 +vn 0.434026 -0.266140 0.860692 +vn 0.759392 -0.460528 0.459607 +vn 0.887146 0.001914 0.461486 +vn 0.505006 -0.000066 0.863116 +vn 0.505006 -0.000066 0.863116 +vn 0.887146 0.001914 0.461486 +vn 0.709053 0.556874 0.432592 +vn 0.437788 0.296943 0.848626 +vn 0.437788 0.296943 0.848626 +vn 0.709053 0.556874 0.432592 +vn 0.370130 0.855105 0.363041 +vn 0.278576 0.524311 0.804670 +vn 0.278576 0.524311 0.804670 +vn 0.370130 0.855105 0.363041 +vn 0.000784 0.945921 0.324397 +vn 0.003216 0.608431 0.793600 +vn 0.000784 0.945921 0.324397 +vn 0.000063 0.996837 0.079476 +vn -0.362118 0.928133 0.086248 +vn -0.356129 0.868015 0.346008 +vn -0.356129 0.868015 0.346008 +vn -0.362118 0.928133 0.086248 +vn -0.776485 0.613011 0.145908 +vn -0.717024 0.548762 0.429810 +vn -0.717024 0.548762 0.429810 +vn -0.776485 0.613011 0.145908 +vn -0.983471 0.005909 0.180967 +vn -0.885511 -0.000037 0.464618 +vn -0.885511 -0.000037 0.464618 +vn -0.983471 0.005909 0.180967 +vn -0.840930 -0.509729 0.181695 +vn -0.758652 -0.460529 0.460826 +vn -0.758652 -0.460529 0.460826 +vn -0.840930 -0.509729 0.181695 +vn -0.474094 -0.862664 0.176198 +vn -0.428826 -0.781428 0.453299 +vn -0.428826 -0.781428 0.453299 +vn -0.474094 -0.862664 0.176198 +vn 0.000139 -0.984861 0.173343 +vn 0.000361 -0.893347 0.449368 +vn 0.000361 -0.893347 0.449368 +vn 0.000139 -0.984861 0.173343 +vn 0.474378 -0.862663 0.175436 +vn 0.429555 -0.781426 0.452610 +vn 0.429555 -0.781426 0.452610 +vn 0.474378 -0.862663 0.175436 +vn 0.841221 -0.509728 0.180345 +vn 0.759392 -0.460528 0.459607 +vn 0.759392 -0.460528 0.459607 +vn 0.841221 -0.509728 0.180345 +vn 0.983077 0.008814 0.182982 +vn 0.887146 0.001914 0.461486 +vn 0.887146 0.001914 0.461486 +vn 0.983077 0.008814 0.182982 +vn 0.773582 0.614176 0.156072 +vn 0.709053 0.556874 0.432592 +vn 0.709053 0.556874 0.432592 +vn 0.773582 0.614176 0.156072 +vn 0.367998 0.925057 0.094057 +vn 0.370130 0.855105 0.363041 +vn 0.370130 0.855105 0.363041 +vn 0.367998 0.925057 0.094057 +vn 0.000063 0.996837 0.079476 +vn 0.000784 0.945921 0.324397 +vn -0.550993 0.456308 0.698705 +vn 0.003562 0.516894 0.856042 +vn 0.002232 0.555040 0.831821 +vn -0.579374 0.457574 0.674502 +vn -0.684205 0.375789 0.625016 +vn -0.550993 0.456308 0.698705 +vn -0.579374 0.457574 0.674502 +vn -0.675227 0.357499 0.645185 +vn -0.619556 0.233594 0.749389 +vn 0.021168 0.278787 0.960120 +vn 0.003562 0.516894 0.856042 +vn -0.550993 0.456308 0.698705 +vn -0.849191 0.194333 0.491029 +vn -0.619556 0.233594 0.749389 +vn -0.550993 0.456308 0.698705 +vn -0.684205 0.375789 0.625016 +vn 0.002232 0.555040 0.831821 +vn 0.003562 0.516894 0.856042 +vn 0.558497 0.444356 0.700449 +vn 0.582098 0.460288 0.670296 +vn 0.582098 0.460288 0.670296 +vn 0.558497 0.444356 0.700449 +vn 0.689655 0.378147 0.617560 +vn 0.674724 0.357826 0.645529 +vn 0.003562 0.516894 0.856042 +vn 0.021168 0.278787 0.960120 +vn 0.628850 0.220050 0.745738 +vn 0.558497 0.444356 0.700449 +vn 0.558497 0.444356 0.700449 +vn 0.628850 0.220050 0.745738 +vn 0.848615 0.189936 0.493737 +vn 0.689655 0.378147 0.617560 +vn -0.149278 -0.571323 0.807035 +vn 0.135418 -0.048303 0.989610 +vn 0.110312 -0.381901 0.917596 +vn -0.320569 -0.501595 0.803516 +vn 0.150362 -0.571286 0.806860 +vn 0.321678 -0.501525 0.803117 +vn -0.108985 -0.381903 0.917754 +vn -0.133974 -0.048295 0.989807 +vn 0.740955 -0.161751 0.651784 +vn 0.497219 -0.310664 0.810100 +vn 0.269188 0.337063 0.902179 +vn 0.466729 0.445414 0.764049 +vn 0.001367 -0.416255 0.909247 +vn -0.224281 -0.424545 0.877189 +vn -0.150552 0.290239 0.945037 +vn 0.000016 0.321676 0.946850 +vn -0.575169 0.552841 -0.602949 +vn -0.601844 0.631016 -0.489493 +vn -0.797398 0.220972 -0.561541 +vn 0.534028 0.183727 -0.825263 +vn 0.792133 0.235678 -0.563011 +vn 0.574776 0.554227 -0.602051 +vn 0.316158 0.454103 -0.832967 +vn 0.591313 0.638714 -0.492335 +vn 0.574776 0.554227 -0.602051 +vn 0.792133 0.235678 -0.563011 +vn -0.704101 0.671716 -0.230301 +vn -0.962033 0.207886 -0.176849 +vn -0.797398 0.220972 -0.561541 +vn -0.601844 0.631016 -0.489493 +vn 0.776559 0.591232 0.217718 +vn 0.687191 0.701165 -0.190097 +vn 0.952582 0.220397 -0.209794 +vn 0.792133 0.235678 -0.563011 +vn 0.952582 0.220397 -0.209794 +vn 0.687191 0.701165 -0.190097 +vn 0.591313 0.638714 -0.492335 +vn -0.685876 0.501536 0.527291 +vn -0.926967 -0.099770 0.361633 +vn -0.962033 0.207886 -0.176849 +vn -0.735536 0.624649 0.262297 +vn -0.704101 0.671716 -0.230301 +vn -0.735536 0.624649 0.262297 +vn -0.962033 0.207886 -0.176849 +vn -0.266153 0.338300 0.902616 +vn -0.150552 0.290239 0.945037 +vn -0.224281 -0.424545 0.877189 +vn -0.495863 -0.304383 0.813309 +vn 0.001367 -0.416255 0.909247 +vn 0.000016 0.321676 0.946850 +vn 0.148881 0.287616 0.946103 +vn 0.216296 -0.424126 0.879393 +vn 0.148881 0.287616 0.946103 +vn 0.269188 0.337063 0.902179 +vn 0.497219 -0.310664 0.810100 +vn 0.216296 -0.424126 0.879393 +vn -0.892515 -0.367661 0.261233 +vn -0.948771 -0.295484 0.111900 +vn -0.926967 -0.099770 0.361633 +vn 0.913481 -0.096705 0.395222 +vn 0.949731 -0.288356 0.121906 +vn 0.890759 -0.373555 0.258854 +vn -0.267016 -0.847806 0.458179 +vn -0.224281 -0.424545 0.877189 +vn 0.001367 -0.416255 0.909247 +vn 0.001086 -0.891990 0.452054 +vn 0.000467 0.032128 -0.999484 +vn 0.000819 0.182644 -0.983179 +vn -0.189763 0.182170 -0.964782 +vn -0.222745 0.056621 -0.973231 +vn -0.892515 -0.367661 0.261233 +vn -0.926967 -0.099770 0.361633 +vn -0.731100 -0.169840 0.660792 +vn -0.798946 -0.479049 0.363589 +vn -0.962033 0.207886 -0.176849 +vn -0.967558 -0.138641 -0.211209 +vn -0.845832 0.016082 -0.533207 +vn -0.797398 0.220972 -0.561541 +vn -0.926967 -0.099770 0.361633 +vn -0.948771 -0.295484 0.111900 +vn -0.967558 -0.138641 -0.211209 +vn -0.962033 0.207886 -0.176849 +vn -0.534523 0.168105 -0.828267 +vn -0.586920 0.079221 -0.805760 +vn -0.222745 0.056621 -0.973231 +vn -0.189763 0.182170 -0.964782 +vn -0.797398 0.220972 -0.561541 +vn -0.845832 0.016082 -0.533207 +vn -0.586920 0.079221 -0.805760 +vn -0.534523 0.168105 -0.828267 +vn -0.495863 -0.304383 0.813309 +vn -0.568340 -0.717376 0.402940 +vn -0.798946 -0.479049 0.363589 +vn -0.731100 -0.169840 0.660792 +vn 0.001086 -0.891990 0.452054 +vn 0.001367 -0.416255 0.909247 +vn 0.216296 -0.424126 0.879393 +vn 0.251478 -0.857380 0.449065 +vn 0.225933 0.049028 -0.972908 +vn 0.193199 0.189257 -0.962734 +vn 0.000819 0.182644 -0.983179 +vn 0.000467 0.032128 -0.999484 +vn 0.809061 -0.469281 0.353829 +vn 0.740955 -0.161751 0.651784 +vn 0.913481 -0.096705 0.395222 +vn 0.890759 -0.373555 0.258854 +vn 0.792133 0.235678 -0.563011 +vn 0.843701 -0.000516 -0.536814 +vn 0.964908 -0.126135 -0.230308 +vn 0.952582 0.220397 -0.209794 +vn 0.952582 0.220397 -0.209794 +vn 0.964908 -0.126135 -0.230308 +vn 0.949731 -0.288356 0.121906 +vn 0.913481 -0.096705 0.395222 +vn 0.193199 0.189257 -0.962734 +vn 0.225933 0.049028 -0.972908 +vn 0.588367 0.062153 -0.806202 +vn 0.534028 0.183727 -0.825263 +vn 0.534028 0.183727 -0.825263 +vn 0.588367 0.062153 -0.806202 +vn 0.843701 -0.000516 -0.536814 +vn 0.792133 0.235678 -0.563011 +vn 0.740955 -0.161751 0.651784 +vn 0.809061 -0.469281 0.353829 +vn 0.577350 -0.713795 0.396438 +vn 0.497219 -0.310664 0.810100 +vn -0.568340 -0.717376 0.402940 +vn -0.495863 -0.304383 0.813309 +vn -0.224281 -0.424545 0.877189 +vn -0.267016 -0.847806 0.458179 +vn 0.251478 -0.857380 0.449065 +vn 0.216296 -0.424126 0.879393 +vn 0.497219 -0.310664 0.810100 +vn 0.577350 -0.713795 0.396438 +vn 0.941086 0.336195 0.036466 +vn 0.517815 0.684061 0.513739 +vn 0.631978 -0.267473 0.727366 +vn 0.977669 -0.207623 0.032506 +vn 0.970240 -0.223104 0.094124 +vn 0.976143 0.156103 0.150918 +vn 0.941086 0.336195 0.036466 +vn 0.977669 -0.207623 0.032506 +vn 0.451211 -0.892327 -0.012677 +vn 0.515119 -0.853929 0.073874 +vn 0.970240 -0.223104 0.094124 +vn 0.977669 -0.207623 0.032506 +vn 0.631978 -0.267473 0.727366 +vn 0.468142 -0.816605 0.337637 +vn 0.451211 -0.892327 -0.012677 +vn 0.977669 -0.207623 0.032506 +vn 0.997505 -0.015969 -0.068764 +vn 0.976143 0.156103 0.150918 +vn 0.970240 -0.223104 0.094124 +vn 0.915897 -0.401148 0.014585 +vn 0.760438 -0.297817 -0.577095 +vn 0.734019 0.201073 -0.648679 +vn 0.997505 -0.015969 -0.068764 +vn 0.915897 -0.401148 0.014585 +vn 0.508060 -0.860333 0.041254 +vn 0.381111 -0.867975 -0.318391 +vn 0.760438 -0.297817 -0.577095 +vn 0.915897 -0.401148 0.014585 +vn 0.970240 -0.223104 0.094124 +vn 0.515119 -0.853929 0.073874 +vn 0.508060 -0.860333 0.041254 +vn 0.915897 -0.401148 0.014585 +vn 0.976143 0.156103 0.150918 +vn 0.618770 0.774019 0.134232 +vn 0.517727 0.846729 0.122513 +vn 0.941086 0.336195 0.036466 +vn 0.941086 0.336195 0.036466 +vn 0.517727 0.846729 0.122513 +vn 0.517815 0.684061 0.513739 +vn 0.971424 0.220896 -0.086837 +vn 0.875556 0.340156 0.343068 +vn 0.959754 0.143129 0.241631 +vn 0.971099 0.202990 -0.125545 +vn 0.971424 0.220896 -0.086837 +vn 0.971099 0.202990 -0.125545 +vn 0.653148 0.275672 -0.705268 +vn 0.997505 -0.015969 -0.068764 +vn 0.734019 0.201073 -0.648679 +vn 0.653148 0.275672 -0.705268 +vn 0.971099 0.202990 -0.125545 +vn 0.959754 0.143129 0.241631 +vn 0.976143 0.156103 0.150918 +vn 0.997505 -0.015969 -0.068764 +vn 0.971099 0.202990 -0.125545 +vn -0.454472 -0.887005 -0.081715 +vn 0.421124 -0.903096 0.084092 +vn -0.418729 -0.907239 0.039796 +vn -0.947544 -0.313270 -0.063420 +vn -0.800679 0.594248 -0.076049 +vn -0.946868 0.300380 -0.114946 +vn -0.454472 -0.887005 -0.081715 +vn -0.947544 -0.313270 -0.063420 +vn -0.805695 -0.242644 0.540351 +vn -0.661021 0.599474 0.451312 +vn -0.800679 0.594248 -0.076049 +vn -0.947544 -0.313270 -0.063420 +vn -0.418729 -0.907239 0.039796 +vn -0.318809 -0.934088 0.160752 +vn -0.805695 -0.242644 0.540351 +vn -0.947544 -0.313270 -0.063420 +vn -0.614983 -0.252799 -0.746920 +vn -0.256463 -0.885901 -0.386531 +vn 0.128704 -0.991380 -0.024504 +vn -0.586138 -0.745105 -0.318215 +vn -0.937048 0.147540 -0.316501 +vn -0.623718 0.232674 -0.746216 +vn -0.614983 -0.252799 -0.746920 +vn -0.586138 -0.745105 -0.318215 +vn -0.454472 -0.887005 -0.081715 +vn -0.946868 0.300380 -0.114946 +vn -0.937048 0.147540 -0.316501 +vn -0.586138 -0.745105 -0.318215 +vn 0.128704 -0.991380 -0.024504 +vn 0.421124 -0.903096 0.084092 +vn -0.454472 -0.887005 -0.081715 +vn -0.586138 -0.745105 -0.318215 +vn -0.955503 0.289437 0.056928 +vn -0.703932 0.658195 0.266944 +vn -0.613216 0.440012 0.656015 +vn -0.908106 0.343949 0.238836 +vn -0.946868 0.300380 -0.114946 +vn -0.602024 0.792671 0.096121 +vn -0.703932 0.658195 0.266944 +vn -0.955503 0.289437 0.056928 +vn -0.542734 0.293514 -0.786949 +vn -0.623718 0.232674 -0.746216 +vn -0.937048 0.147540 -0.316501 +vn -0.916107 0.213001 -0.339675 +vn -0.542734 0.293514 -0.786949 +vn -0.916107 0.213001 -0.339675 +vn -0.887262 0.304879 -0.346144 +vn -0.955503 0.289437 0.056928 +vn -0.908106 0.343949 0.238836 +vn -0.887262 0.304879 -0.346144 +vn -0.916107 0.213001 -0.339675 +vn -0.937048 0.147540 -0.316501 +vn -0.946868 0.300380 -0.114946 +vn -0.955503 0.289437 0.056928 +vn -0.916107 0.213001 -0.339675 +vn -0.132058 -0.938964 0.317658 +vn 0.451211 -0.892327 -0.012677 +vn 0.468142 -0.816605 0.337637 +vn 0.381111 -0.867975 -0.318391 +vn 0.508060 -0.860333 0.041254 +vn 0.029324 -0.912697 -0.407583 +vn -0.418729 -0.907239 0.039796 +vn 0.421124 -0.903096 0.084092 +vn 0.515119 -0.853929 0.073874 +vn 0.451211 -0.892327 -0.012677 +vn -0.132058 -0.938964 0.317658 +vn -0.318809 -0.934088 0.160752 +vn -0.418729 -0.907239 0.039796 +vn 0.451211 -0.892327 -0.012677 +vn 0.128704 -0.991380 -0.024504 +vn -0.256463 -0.885901 -0.386531 +vn 0.029324 -0.912697 -0.407583 +vn 0.508060 -0.860333 0.041254 +vn 0.515119 -0.853929 0.073874 +vn 0.421124 -0.903096 0.084092 +vn 0.128704 -0.991380 -0.024504 +vn 0.508060 -0.860333 0.041254 +vn 0.091197 0.251407 -0.963576 +vn 0.734019 0.201073 -0.648679 +vn 0.760438 -0.297817 -0.577095 +vn 0.101862 -0.343325 -0.933677 +vn 0.760438 -0.297817 -0.577095 +vn 0.381111 -0.867975 -0.318391 +vn 0.029324 -0.912697 -0.407583 +vn 0.101862 -0.343325 -0.933677 +vn 0.653148 0.275672 -0.705268 +vn 0.734019 0.201073 -0.648679 +vn 0.091197 0.251407 -0.963576 +vn 0.062077 0.417011 -0.906779 +vn -0.614983 -0.252799 -0.746920 +vn -0.623718 0.232674 -0.746216 +vn 0.091197 0.251407 -0.963576 +vn 0.101862 -0.343325 -0.933677 +vn 0.029324 -0.912697 -0.407583 +vn -0.256463 -0.885901 -0.386531 +vn -0.614983 -0.252799 -0.746920 +vn 0.101862 -0.343325 -0.933677 +vn 0.091197 0.251407 -0.963576 +vn -0.623718 0.232674 -0.746216 +vn -0.542734 0.293514 -0.786949 +vn 0.062077 0.417011 -0.906779 +vn -0.012092 0.957954 0.286668 +vn 0.618770 0.774019 0.134232 +vn 0.733076 0.589230 0.339717 +vn 0.020762 0.864750 0.501773 +vn 0.733076 0.589230 0.339717 +vn 0.533736 0.484776 0.692906 +vn 0.046454 0.631637 0.773871 +vn 0.020762 0.864750 0.501773 +vn -0.703932 0.658195 0.266944 +vn -0.602024 0.792671 0.096121 +vn -0.012092 0.957954 0.286668 +vn 0.020762 0.864750 0.501773 +vn 0.046454 0.631637 0.773871 +vn -0.613216 0.440012 0.656015 +vn -0.703932 0.658195 0.266944 +vn 0.020762 0.864750 0.501773 +vn -0.425614 0.626636 0.652824 +vn 0.517815 0.684061 0.513739 +vn 0.517727 0.846729 0.122513 +vn -0.086371 0.967890 0.236071 +vn -0.425614 0.626636 0.652824 +vn -0.086371 0.967890 0.236071 +vn -0.317107 0.852496 0.415565 +vn 0.517727 0.846729 0.122513 +vn 0.618770 0.774019 0.134232 +vn -0.012092 0.957954 0.286668 +vn -0.086371 0.967890 0.236071 +vn -0.132058 -0.938964 0.317658 +vn 0.468142 -0.816605 0.337637 +vn 0.631978 -0.267473 0.727366 +vn -0.435114 -0.315534 0.843276 +vn -0.132058 -0.938964 0.317658 +vn -0.435114 -0.315534 0.843276 +vn -0.171181 -0.154302 0.973082 +vn -0.425614 0.626636 0.652824 +vn -0.317107 0.852496 0.415565 +vn -0.171181 -0.154302 0.973082 +vn -0.435114 -0.315534 0.843276 +vn 0.631978 -0.267473 0.727366 +vn 0.517815 0.684061 0.513739 +vn -0.425614 0.626636 0.652824 +vn -0.435114 -0.315534 0.843276 +vn -0.317107 0.852496 0.415565 +vn -0.086371 0.967890 0.236071 +vn 0.214138 0.614879 0.758992 +vn -0.445863 0.876724 0.180446 +vn -0.661021 0.599474 0.451312 +vn 0.214138 0.614879 0.758992 +vn -0.086371 0.967890 0.236071 +vn -0.012092 0.957954 0.286668 +vn -0.602024 0.792671 0.096121 +vn -0.445863 0.876724 0.180446 +vn -0.086371 0.967890 0.236071 +vn -0.171181 -0.154302 0.973082 +vn 0.112010 -0.232597 0.966102 +vn -0.132058 -0.938964 0.317658 +vn -0.805695 -0.242644 0.540351 +vn -0.318809 -0.934088 0.160752 +vn -0.132058 -0.938964 0.317658 +vn 0.112010 -0.232597 0.966102 +vn 0.214138 0.614879 0.758992 +vn -0.661021 0.599474 0.451312 +vn -0.805695 -0.242644 0.540351 +vn 0.112010 -0.232597 0.966102 +vn -0.171181 -0.154302 0.973082 +vn -0.317107 0.852496 0.415565 +vn 0.214138 0.614879 0.758992 +vn 0.112010 -0.232597 0.966102 +vn 0.733076 0.589230 0.339717 +vn 0.976143 0.156103 0.150918 +vn 0.959754 0.143129 0.241631 +vn 0.875556 0.340156 0.343068 +vn 0.533736 0.484776 0.692906 +vn 0.976143 0.156103 0.150918 +vn 0.733076 0.589230 0.339717 +vn 0.618770 0.774019 0.134232 +vn -0.445863 0.876724 0.180446 +vn -0.800679 0.594248 -0.076049 +vn -0.661021 0.599474 0.451312 +vn -0.445863 0.876724 0.180446 +vn -0.602024 0.792671 0.096121 +vn -0.946868 0.300380 -0.114946 +vn -0.800679 0.594248 -0.076049 +vn 0.875556 0.340156 0.343068 +vn 0.675986 0.213366 0.705349 +vn 0.533736 0.484776 0.692906 +vn -0.613216 0.440012 0.656015 +vn -0.836146 0.204295 0.509041 +vn -0.908106 0.343949 0.238836 +vn 0.988092 0.153837 -0.002936 +vn 0.675986 0.213366 0.705349 +vn 0.875556 0.340156 0.343068 +vn 0.971424 0.220896 -0.086837 +vn -0.972061 0.088503 -0.217406 +vn -0.318346 0.169586 -0.932682 +vn -0.542734 0.293514 -0.786949 +vn -0.887262 0.304879 -0.346144 +vn -0.318346 0.169586 -0.932682 +vn 0.662063 0.102790 -0.742366 +vn 0.653148 0.275672 -0.705268 +vn 0.062077 0.417011 -0.906779 +vn 0.675986 0.213366 0.705349 +vn -0.081297 0.241531 0.966982 +vn 0.046454 0.631637 0.773871 +vn 0.533736 0.484776 0.692906 +vn 0.662063 0.102790 -0.742366 +vn 0.988092 0.153837 -0.002936 +vn 0.971424 0.220896 -0.086837 +vn 0.653148 0.275672 -0.705268 +vn -0.836146 0.204295 0.509041 +vn -0.972061 0.088503 -0.217406 +vn -0.887262 0.304879 -0.346144 +vn -0.908106 0.343949 0.238836 +vn 0.062077 0.417011 -0.906779 +vn -0.542734 0.293514 -0.786949 +vn -0.318346 0.169586 -0.932682 +vn -0.081297 0.241531 0.966982 +vn -0.836146 0.204295 0.509041 +vn -0.613216 0.440012 0.656015 +vn 0.046454 0.631637 0.773871 +vn 0.976186 0.114765 -0.184092 +vn 0.974963 -0.070393 -0.210931 +vn 0.432043 -0.073689 -0.898838 +vn 0.440710 0.247892 -0.862742 +vn -0.614808 -0.032918 0.787989 +vn -0.623484 -0.083739 0.777339 +vn -0.162723 -0.065856 0.984471 +vn -0.193949 -0.051174 0.979676 +vn -0.982397 0.004551 0.186747 +vn -0.987300 -0.120121 0.103967 +vn -0.623484 -0.083739 0.777339 +vn -0.614808 -0.032918 0.787989 +vn 0.927777 -0.050804 -0.369660 +vn 0.962261 0.064130 -0.264465 +vn 0.378008 0.098116 -0.920589 +vn 0.357457 -0.041828 -0.932992 +vn -0.572385 -0.164164 0.803384 +vn -0.608905 -0.185921 0.771147 +vn -0.078828 -0.220010 0.972307 +vn -0.046488 -0.194997 0.979702 +vn -0.951553 -0.118009 0.283937 +vn -0.971322 -0.093211 0.218736 +vn -0.608905 -0.185921 0.771147 +vn -0.572385 -0.164164 0.803384 +vn 0.536773 -0.168197 -0.826792 +vn 0.599077 -0.428081 -0.676648 +vn 0.708695 -0.691170 -0.141547 +vn 0.553564 -0.832719 0.012053 +vn 0.972411 -0.132753 -0.191818 +vn -0.700378 0.074446 0.709880 +vn -0.679218 -0.099136 0.727211 +vn -0.041872 -0.161380 0.986004 +vn -0.252280 -0.017184 0.967502 +vn -0.968733 0.074927 0.236522 +vn -0.984728 -0.067495 0.160482 +vn -0.679218 -0.099136 0.727211 +vn -0.700378 0.074446 0.709880 +vn 0.970391 0.040722 -0.238084 +vn 0.958106 0.169050 -0.231203 +vn 0.369961 0.339768 -0.864689 +vn 0.384048 0.166187 -0.908234 +vn -0.619917 -0.343285 0.705591 +vn -0.557380 -0.199719 0.805878 +vn -0.215821 -0.268494 0.938793 +vn -0.142794 -0.406776 0.902299 +vn -0.969999 -0.154176 0.187968 +vn -0.974911 -0.051772 0.216489 +vn -0.557380 -0.199719 0.805878 +vn -0.619917 -0.343285 0.705591 +vn -0.572385 -0.164164 0.803384 +vn -0.679218 -0.099136 0.727211 +vn -0.984728 -0.067495 0.160482 +vn -0.951553 -0.118009 0.283937 +vn -0.046488 -0.194997 0.979702 +vn -0.041872 -0.161380 0.986004 +vn -0.679218 -0.099136 0.727211 +vn -0.572385 -0.164164 0.803384 +vn 0.357457 -0.041828 -0.932992 +vn 0.536773 -0.168197 -0.826792 +vn 0.972411 -0.132753 -0.191818 +vn 0.927777 -0.050804 -0.369660 +vn 0.974963 -0.070393 -0.210931 +vn 0.995091 -0.041600 0.089797 +vn 0.667279 -0.122966 -0.734587 +vn 0.432043 -0.073689 -0.898838 +vn -0.623484 -0.083739 0.777339 +vn -0.800442 -0.042804 0.597881 +vn -0.124478 -0.008348 0.992187 +vn -0.162723 -0.065856 0.984471 +vn -0.987300 -0.120121 0.103967 +vn -0.974680 -0.105436 -0.197183 +vn -0.800442 -0.042804 0.597881 +vn -0.623484 -0.083739 0.777339 +vn -0.614808 -0.032918 0.787989 +vn -0.557380 -0.199719 0.805878 +vn -0.974911 -0.051772 0.216489 +vn -0.982397 0.004551 0.186747 +vn -0.193949 -0.051174 0.979676 +vn -0.215821 -0.268494 0.938793 +vn -0.557380 -0.199719 0.805878 +vn -0.614808 -0.032918 0.787989 +vn 0.440710 0.247892 -0.862742 +vn 0.369961 0.339768 -0.864689 +vn 0.958106 0.169050 -0.231203 +vn 0.976186 0.114765 -0.184092 +vn -0.948974 0.054914 -0.310537 +vn -0.734667 0.153568 -0.660818 +vn -0.772948 -0.096415 -0.627101 +vn -0.933173 -0.110487 -0.342025 +vn -0.987300 -0.120121 0.103967 +vn -0.982397 0.004551 0.186747 +vn -0.948974 0.054914 -0.310537 +vn -0.933173 -0.110487 -0.342025 +vn -0.304721 0.233404 -0.923400 +vn 0.440710 0.247892 -0.862742 +vn 0.432043 -0.073689 -0.898838 +vn -0.339660 -0.076252 -0.937452 +vn -0.772948 -0.096415 -0.627101 +vn -0.734667 0.153568 -0.660818 +vn -0.304721 0.233404 -0.923400 +vn -0.339660 -0.076252 -0.937452 +vn 0.210820 -0.055780 0.975932 +vn -0.193949 -0.051174 0.979676 +vn -0.162723 -0.065856 0.984471 +vn 0.274031 -0.063927 0.959594 +vn 0.795343 -0.054977 0.603661 +vn 0.688547 -0.011214 0.725105 +vn 0.210820 -0.055780 0.975932 +vn 0.274031 -0.063927 0.959594 +vn -0.953573 -0.077617 -0.290988 +vn -0.719599 -0.079486 -0.689826 +vn -0.687879 0.019719 -0.725557 +vn -0.937924 -0.060819 -0.341468 +vn -0.971322 -0.093211 0.218736 +vn -0.951553 -0.118009 0.283937 +vn -0.953573 -0.077617 -0.290988 +vn -0.937924 -0.060819 -0.341468 +vn -0.332294 -0.063559 -0.941032 +vn 0.357457 -0.041828 -0.932992 +vn 0.378008 0.098116 -0.920589 +vn -0.308431 0.094046 -0.946586 +vn -0.687879 0.019719 -0.725557 +vn -0.719599 -0.079486 -0.689826 +vn -0.332294 -0.063559 -0.941032 +vn -0.308431 0.094046 -0.946586 +vn -0.046488 -0.194997 0.979702 +vn -0.078828 -0.220010 0.972307 +vn 0.454970 -0.157486 0.876471 +vn 0.546456 -0.171649 0.819709 +vn 0.454970 -0.157486 0.876471 +vn 0.867663 -0.027609 0.496385 +vn 0.912942 -0.103720 0.394690 +vn 0.546456 -0.171649 0.819709 +vn -0.983137 0.055766 -0.174160 +vn -0.824015 -0.048173 -0.564516 +vn -0.780156 -0.087912 -0.619377 +vn -0.967300 -0.058331 -0.246836 +vn -0.984728 -0.067495 0.160482 +vn -0.968733 0.074927 0.236522 +vn -0.983137 0.055766 -0.174160 +vn -0.967300 -0.058331 -0.246836 +vn 0.536773 -0.168197 -0.826792 +vn -0.171202 -0.330803 -0.928041 +vn 0.599077 -0.428081 -0.676648 +vn -0.780156 -0.087912 -0.619377 +vn -0.563692 -0.178817 -0.806397 +vn -0.370881 -0.225097 -0.900987 +vn -0.275067 -0.125087 -0.953253 +vn -0.252280 -0.017184 0.967502 +vn -0.041872 -0.161380 0.986004 +vn 0.505431 -0.180708 0.843732 +vn 0.143522 -0.097512 0.984831 +vn 0.505431 -0.180708 0.843732 +vn 0.882241 -0.162652 0.441809 +vn 0.656108 -0.212522 0.724125 +vn 0.143522 -0.097512 0.984831 +vn -0.934049 -0.019489 -0.356612 +vn -0.688806 0.073683 -0.721191 +vn -0.718617 0.200543 -0.665862 +vn -0.935876 0.075327 -0.344183 +vn -0.974911 -0.051772 0.216489 +vn -0.969999 -0.154176 0.187968 +vn -0.934049 -0.019489 -0.356612 +vn -0.935876 0.075327 -0.344183 +vn -0.312962 0.143125 -0.938920 +vn 0.384048 0.166187 -0.908234 +vn 0.369961 0.339768 -0.864689 +vn -0.325606 0.281138 -0.902742 +vn -0.718617 0.200543 -0.665862 +vn -0.688806 0.073683 -0.721191 +vn -0.312962 0.143125 -0.938920 +vn -0.325606 0.281138 -0.902742 +vn -0.142794 -0.406776 0.902299 +vn -0.215821 -0.268494 0.938793 +vn 0.155637 -0.217103 0.963661 +vn 0.377006 -0.350774 0.857219 +vn 0.155637 -0.217103 0.963661 +vn 0.663195 -0.107310 0.740713 +vn 0.820438 -0.206790 0.533029 +vn 0.377006 -0.350774 0.857219 +vn -0.951553 -0.118009 0.283937 +vn -0.984728 -0.067495 0.160482 +vn -0.967300 -0.058331 -0.246836 +vn -0.953573 -0.077617 -0.290988 +vn -0.967300 -0.058331 -0.246836 +vn -0.780156 -0.087912 -0.619377 +vn -0.719599 -0.079486 -0.689826 +vn -0.953573 -0.077617 -0.290988 +vn 0.546456 -0.171649 0.819709 +vn 0.912942 -0.103720 0.394690 +vn 0.882241 -0.162652 0.441809 +vn 0.505431 -0.180708 0.843732 +vn -0.041872 -0.161380 0.986004 +vn -0.046488 -0.194997 0.979702 +vn 0.546456 -0.171649 0.819709 +vn 0.505431 -0.180708 0.843732 +vn -0.719599 -0.079486 -0.689826 +vn -0.780156 -0.087912 -0.619377 +vn -0.275067 -0.125087 -0.953253 +vn -0.332294 -0.063559 -0.941032 +vn -0.275067 -0.125087 -0.953253 +vn 0.536773 -0.168197 -0.826792 +vn 0.357457 -0.041828 -0.932992 +vn -0.332294 -0.063559 -0.941032 +vn -0.772948 -0.096415 -0.627101 +vn -0.418351 -0.145107 -0.896620 +vn -0.974680 -0.105436 -0.197183 +vn -0.933173 -0.110487 -0.342025 +vn -0.987300 -0.120121 0.103967 +vn -0.933173 -0.110487 -0.342025 +vn -0.974680 -0.105436 -0.197183 +vn 0.432043 -0.073689 -0.898838 +vn 0.667279 -0.122966 -0.734587 +vn -0.418351 -0.145107 -0.896620 +vn -0.339660 -0.076252 -0.937452 +vn -0.772948 -0.096415 -0.627101 +vn -0.339660 -0.076252 -0.937452 +vn -0.418351 -0.145107 -0.896620 +vn -0.162723 -0.065856 0.984471 +vn -0.124478 -0.008348 0.992187 +vn 0.653178 -0.001657 0.757203 +vn 0.274031 -0.063927 0.959594 +vn 0.795343 -0.054977 0.603661 +vn 0.274031 -0.063927 0.959594 +vn 0.653178 -0.001657 0.757203 +vn -0.982397 0.004551 0.186747 +vn -0.974911 -0.051772 0.216489 +vn -0.935876 0.075327 -0.344183 +vn -0.948974 0.054914 -0.310537 +vn -0.935876 0.075327 -0.344183 +vn -0.718617 0.200543 -0.665862 +vn -0.734667 0.153568 -0.660818 +vn -0.948974 0.054914 -0.310537 +vn 0.688547 -0.011214 0.725105 +vn 0.663195 -0.107310 0.740713 +vn 0.155637 -0.217103 0.963661 +vn 0.210820 -0.055780 0.975932 +vn 0.155637 -0.217103 0.963661 +vn -0.215821 -0.268494 0.938793 +vn -0.193949 -0.051174 0.979676 +vn 0.210820 -0.055780 0.975932 +vn -0.734667 0.153568 -0.660818 +vn -0.718617 0.200543 -0.665862 +vn -0.325606 0.281138 -0.902742 +vn -0.304721 0.233404 -0.923400 +vn -0.325606 0.281138 -0.902742 +vn 0.369961 0.339768 -0.864689 +vn 0.440710 0.247892 -0.862742 +vn -0.304721 0.233404 -0.923400 +vn 0.962931 0.067578 0.261146 +vn 0.688547 -0.011214 0.725105 +vn 0.795343 -0.054977 0.603661 +vn 0.965707 -0.057165 0.253263 +vn 0.974963 -0.070393 -0.210931 +vn 0.976186 0.114765 -0.184092 +vn 0.962931 0.067578 0.261146 +vn 0.965707 -0.057165 0.253263 +vn 0.996842 -0.030091 0.073488 +vn 0.912942 -0.103720 0.394690 +vn 0.867663 -0.027609 0.496385 +vn 0.988599 0.020607 0.149157 +vn 0.962261 0.064130 -0.264465 +vn 0.927777 -0.050804 -0.369660 +vn 0.996842 -0.030091 0.073488 +vn 0.988599 0.020607 0.149157 +vn 0.763885 -0.603900 0.227562 +vn 0.460252 -0.660805 0.592879 +vn 0.656108 -0.212522 0.724125 +vn 0.882241 -0.162652 0.441809 +vn 0.986774 -0.110525 0.118579 +vn 0.972411 -0.132753 -0.191818 +vn 0.553564 -0.832719 0.012053 +vn 0.763885 -0.603900 0.227562 +vn 0.986774 -0.110525 0.118579 +vn 0.976319 -0.124876 0.176654 +vn 0.820438 -0.206790 0.533029 +vn 0.663195 -0.107310 0.740713 +vn 0.967973 -0.045709 0.246858 +vn 0.958106 0.169050 -0.231203 +vn 0.970391 0.040722 -0.238084 +vn 0.976319 -0.124876 0.176654 +vn 0.967973 -0.045709 0.246858 +vn 0.927777 -0.050804 -0.369660 +vn 0.972411 -0.132753 -0.191818 +vn 0.986774 -0.110525 0.118579 +vn 0.996842 -0.030091 0.073488 +vn 0.986774 -0.110525 0.118579 +vn 0.882241 -0.162652 0.441809 +vn 0.912942 -0.103720 0.394690 +vn 0.996842 -0.030091 0.073488 +vn 0.795343 -0.054977 0.603661 +vn 0.653178 -0.001657 0.757203 +vn 0.995091 -0.041600 0.089797 +vn 0.965707 -0.057165 0.253263 +vn 0.974963 -0.070393 -0.210931 +vn 0.965707 -0.057165 0.253263 +vn 0.995091 -0.041600 0.089797 +vn 0.976186 0.114765 -0.184092 +vn 0.958106 0.169050 -0.231203 +vn 0.967973 -0.045709 0.246858 +vn 0.962931 0.067578 0.261146 +vn 0.967973 -0.045709 0.246858 +vn 0.663195 -0.107310 0.740713 +vn 0.688547 -0.011214 0.725105 +vn 0.962931 0.067578 0.261146 +vn -0.995140 0.092190 -0.034603 +vn -0.805656 0.286029 -0.518754 +vn -0.890124 0.088249 -0.447091 +vn -0.839208 0.019467 -0.543462 +vn -0.960294 0.160353 -0.228301 +vn -0.268994 0.058176 0.961383 +vn -0.506569 0.098620 0.856541 +vn -0.302266 0.066680 0.950888 +vn 0.026110 -0.091847 0.995431 +vn -0.636286 0.170956 0.752272 +vn -0.302266 0.066680 0.950888 +vn -0.506569 0.098620 0.856541 +vn -0.636286 0.170956 0.752272 +vn -0.506569 0.098620 0.856541 +vn -0.880668 0.123979 0.457224 +vn -0.953536 0.153374 0.259318 +vn -0.880668 0.123979 0.457224 +vn -0.995140 0.092190 -0.034603 +vn -0.960294 0.160353 -0.228301 +vn -0.953536 0.153374 0.259318 +vn 0.763885 -0.603900 0.227562 +vn 0.000143 -0.980348 0.197274 +vn -0.035968 -0.826657 0.561555 +vn 0.460252 -0.660805 0.592879 +vn -0.460708 -0.051446 0.886059 +vn -0.684555 0.031966 0.728260 +vn -0.506569 0.098620 0.856541 +vn -0.268994 0.058176 0.961383 +vn 0.553564 -0.832719 0.012053 +vn 0.708695 -0.691170 -0.141547 +vn -0.010982 -0.939488 -0.342406 +vn -0.000031 -0.999098 -0.042459 +vn -0.880668 0.123979 0.457224 +vn -0.506569 0.098620 0.856541 +vn -0.684555 0.031966 0.728260 +vn -0.915396 0.186519 0.356736 +vn -0.995140 0.092190 -0.034603 +vn -0.880668 0.123979 0.457224 +vn -0.915396 0.186519 0.356736 +vn -0.989059 0.147299 0.008122 +vn -0.805656 0.286029 -0.518754 +vn -0.995140 0.092190 -0.034603 +vn -0.989059 0.147299 0.008122 +vn -0.878324 0.182015 -0.442061 +vn -0.138585 0.228782 -0.963563 +vn -0.098420 0.417784 -0.903200 +vn -0.000197 0.377039 -0.926197 +vn -0.000747 0.259274 -0.965804 +vn 0.000143 -0.980348 0.197274 +vn 0.763885 -0.603900 0.227562 +vn 0.553564 -0.832719 0.012053 +vn -0.000031 -0.999098 -0.042459 +vn 0.000713 -0.190636 0.981661 +vn -0.254211 -0.089786 0.962972 +vn -0.079732 -0.361764 0.928854 +vn -0.025712 -0.534408 0.844835 +vn -0.268994 0.058176 0.961383 +vn -0.254211 -0.089786 0.962972 +vn 0.000713 -0.190636 0.981661 +vn 0.000727 0.032249 0.999480 +vn -0.177844 -0.008778 -0.984020 +vn -0.000729 0.007239 -0.999974 +vn -0.000679 -0.317264 -0.948337 +vn -0.202858 -0.370495 -0.906412 +vn -0.185589 -0.532329 -0.825943 +vn -0.414405 -0.408979 -0.813022 +vn -0.365119 -0.314025 -0.876400 +vn -0.202858 -0.370495 -0.906412 +vn -0.000679 -0.317264 -0.948337 +vn 0.078679 -0.735606 -0.672824 +vn -0.185589 -0.532329 -0.825943 +vn -0.202858 -0.370495 -0.906412 +vn -0.668644 -0.301378 -0.679770 +vn -0.839208 0.019467 -0.543462 +vn -0.890124 0.088249 -0.447091 +vn -0.716716 -0.187886 -0.671578 +vn -0.365119 -0.314025 -0.876400 +vn -0.414405 -0.408979 -0.813022 +vn -0.668644 -0.301378 -0.679770 +vn -0.716716 -0.187886 -0.671578 +vn 0.078679 -0.735606 -0.672824 +vn -0.000679 -0.317264 -0.948337 +vn -0.004068 -0.673364 -0.739300 +vn -0.547187 0.319300 -0.773714 +vn -0.560755 0.120143 -0.819219 +vn -0.890124 0.088249 -0.447091 +vn -0.805656 0.286029 -0.518754 +vn -0.890124 0.088249 -0.447091 +vn -0.560755 0.120143 -0.819219 +vn -0.716716 -0.187886 -0.671578 +vn -0.301425 0.274090 -0.913246 +vn -0.286872 0.007202 -0.957942 +vn -0.560755 0.120143 -0.819219 +vn -0.547187 0.319300 -0.773714 +vn -0.286872 0.007202 -0.957942 +vn -0.365119 -0.314025 -0.876400 +vn -0.716716 -0.187886 -0.671578 +vn -0.560755 0.120143 -0.819219 +vn -0.301425 0.274090 -0.913246 +vn -0.138585 0.228782 -0.963563 +vn -0.177844 -0.008778 -0.984020 +vn -0.286872 0.007202 -0.957942 +vn -0.177844 -0.008778 -0.984020 +vn -0.202858 -0.370495 -0.906412 +vn -0.365119 -0.314025 -0.876400 +vn -0.286872 0.007202 -0.957942 +vn -0.000729 0.007239 -0.999974 +vn -0.177844 -0.008778 -0.984020 +vn -0.138585 0.228782 -0.963563 +vn -0.000747 0.259274 -0.965804 +vn 0.026110 -0.091847 0.995431 +vn -0.079732 -0.361764 0.928854 +vn -0.254211 -0.089786 0.962972 +vn -0.268994 0.058176 0.961383 +vn -0.370881 -0.225097 -0.900987 +vn -0.171202 -0.330803 -0.928041 +vn 0.536773 -0.168197 -0.826792 +vn -0.275067 -0.125087 -0.953253 +vn -0.563692 -0.178817 -0.806397 +vn -0.780156 -0.087912 -0.619377 +vn -0.824015 -0.048173 -0.564516 +vn -0.941032 0.336195 0.037833 +vn -0.977620 -0.207624 0.033927 +vn -0.630921 -0.267472 0.728284 +vn -0.517067 0.684062 0.514491 +vn -0.970102 -0.223104 0.095533 +vn -0.977620 -0.207624 0.033927 +vn -0.941032 0.336195 0.037833 +vn -0.975923 0.156104 0.152336 +vn -0.451229 -0.892327 -0.012021 +vn -0.977620 -0.207624 0.033927 +vn -0.970102 -0.223104 0.095533 +vn -0.515012 -0.853929 0.074623 +vn -0.630921 -0.267472 0.728284 +vn -0.977620 -0.207624 0.033927 +vn -0.451229 -0.892327 -0.012021 +vn -0.467651 -0.816605 0.338319 +vn -0.997604 -0.015969 -0.067314 +vn -0.915876 -0.401145 0.015915 +vn -0.970102 -0.223104 0.095533 +vn -0.975923 0.156104 0.152336 +vn -0.761276 -0.297816 -0.575990 +vn -0.915876 -0.401145 0.015915 +vn -0.997604 -0.015969 -0.067314 +vn -0.734962 0.201072 -0.647612 +vn -0.508001 -0.860332 0.041993 +vn -0.915876 -0.401145 0.015915 +vn -0.761276 -0.297816 -0.575990 +vn -0.381577 -0.867973 -0.317839 +vn -0.970102 -0.223104 0.095533 +vn -0.915876 -0.401145 0.015915 +vn -0.508001 -0.860332 0.041993 +vn -0.515012 -0.853929 0.074623 +vn -0.975923 0.156104 0.152336 +vn -0.941032 0.336195 0.037833 +vn -0.517548 0.846729 0.123265 +vn -0.618575 0.774019 0.135131 +vn -0.941032 0.336195 0.037833 +vn -0.517067 0.684062 0.514491 +vn -0.517548 0.846729 0.123265 +vn -0.971549 0.220896 -0.085425 +vn -0.971281 0.202989 -0.124133 +vn -0.959402 0.143129 0.243026 +vn -0.875056 0.340156 0.344340 +vn -0.971549 0.220896 -0.085425 +vn -0.654172 0.275672 -0.704318 +vn -0.971281 0.202989 -0.124133 +vn -0.997604 -0.015969 -0.067314 +vn -0.971281 0.202989 -0.124133 +vn -0.654172 0.275672 -0.704318 +vn -0.734962 0.201072 -0.647612 +vn -0.959402 0.143129 0.243026 +vn -0.971281 0.202989 -0.124133 +vn -0.997604 -0.015969 -0.067314 +vn -0.975923 0.156104 0.152336 +vn 0.454362 -0.887000 -0.082377 +vn 0.947451 -0.313270 -0.064797 +vn 0.418786 -0.907239 0.039186 +vn -0.420993 -0.903101 0.084702 +vn 0.800566 0.594262 -0.077122 +vn 0.947451 -0.313270 -0.064797 +vn 0.454362 -0.887000 -0.082377 +vn 0.946700 0.300380 -0.116322 +vn 0.806554 -0.242345 0.539203 +vn 0.947451 -0.313270 -0.064797 +vn 0.800566 0.594262 -0.077122 +vn 0.661573 0.599632 0.450291 +vn 0.418786 -0.907239 0.039186 +vn 0.947451 -0.313270 -0.064797 +vn 0.806554 -0.242345 0.539203 +vn 0.319044 -0.934088 0.160285 +vn 0.613898 -0.252795 -0.747812 +vn 0.585674 -0.745105 -0.319068 +vn -0.128738 -0.991380 -0.024319 +vn 0.255907 -0.885898 -0.386907 +vn 0.936587 0.147540 -0.317863 +vn 0.585674 -0.745105 -0.319068 +vn 0.613898 -0.252795 -0.747812 +vn 0.622634 0.232674 -0.747122 +vn 0.454362 -0.887000 -0.082377 +vn 0.585674 -0.745105 -0.319068 +vn 0.936587 0.147540 -0.317863 +vn 0.946700 0.300380 -0.116322 +vn -0.128738 -0.991380 -0.024319 +vn 0.585674 -0.745105 -0.319068 +vn 0.454362 -0.887000 -0.082377 +vn -0.420993 -0.903101 0.084702 +vn 0.955585 0.289437 0.055540 +vn 0.908320 0.344429 0.237324 +vn 0.614199 0.440286 0.654911 +vn 0.704319 0.658195 0.265921 +vn 0.946700 0.300380 -0.116322 +vn 0.955585 0.289437 0.055540 +vn 0.704319 0.658195 0.265921 +vn 0.602164 0.792671 0.095246 +vn 0.541586 0.293492 -0.787748 +vn 0.915612 0.213001 -0.341006 +vn 0.936587 0.147540 -0.317863 +vn 0.622634 0.232674 -0.747122 +vn 0.541586 0.293492 -0.787748 +vn 0.886881 0.304671 -0.347299 +vn 0.915612 0.213001 -0.341006 +vn 0.955585 0.289437 0.055540 +vn 0.915612 0.213001 -0.341006 +vn 0.886881 0.304671 -0.347299 +vn 0.908320 0.344429 0.237324 +vn 0.936587 0.147540 -0.317863 +vn 0.915612 0.213001 -0.341006 +vn 0.955585 0.289437 0.055540 +vn 0.946700 0.300380 -0.116322 +vn 0.132521 -0.938964 0.317467 +vn -0.467651 -0.816605 0.338319 +vn -0.451229 -0.892327 -0.012021 +vn -0.381577 -0.867973 -0.317839 +vn -0.029915 -0.912695 -0.407544 +vn -0.508001 -0.860332 0.041993 +vn 0.418786 -0.907239 0.039186 +vn -0.451229 -0.892327 -0.012021 +vn -0.515012 -0.853929 0.074623 +vn -0.420993 -0.903101 0.084702 +vn 0.132521 -0.938964 0.317467 +vn -0.451229 -0.892327 -0.012021 +vn 0.418786 -0.907239 0.039186 +vn 0.319044 -0.934088 0.160285 +vn -0.128738 -0.991380 -0.024319 +vn -0.508001 -0.860332 0.041993 +vn -0.029915 -0.912695 -0.407544 +vn 0.255907 -0.885898 -0.386907 +vn -0.515012 -0.853929 0.074623 +vn -0.508001 -0.860332 0.041993 +vn -0.128738 -0.991380 -0.024319 +vn -0.420993 -0.903101 0.084702 +vn -0.092596 0.251407 -0.963442 +vn -0.103218 -0.343323 -0.933529 +vn -0.761276 -0.297816 -0.575990 +vn -0.734962 0.201072 -0.647612 +vn -0.761276 -0.297816 -0.575990 +vn -0.103218 -0.343323 -0.933529 +vn -0.029915 -0.912695 -0.407544 +vn -0.381577 -0.867973 -0.317839 +vn -0.654172 0.275672 -0.704318 +vn -0.063393 0.417011 -0.906688 +vn -0.092596 0.251407 -0.963442 +vn -0.734962 0.201072 -0.647612 +vn 0.613898 -0.252795 -0.747812 +vn -0.103218 -0.343323 -0.933529 +vn -0.092596 0.251407 -0.963442 +vn 0.622634 0.232674 -0.747122 +vn -0.029915 -0.912695 -0.407544 +vn -0.103218 -0.343323 -0.933529 +vn 0.613898 -0.252795 -0.747812 +vn 0.255907 -0.885898 -0.386907 +vn -0.092596 0.251407 -0.963442 +vn -0.063393 0.417011 -0.906688 +vn 0.541586 0.293492 -0.787748 +vn 0.622634 0.232674 -0.747122 +vn 0.012508 0.957954 0.286650 +vn -0.020031 0.864750 0.501803 +vn -0.732581 0.589230 0.340783 +vn -0.618575 0.774019 0.135131 +vn -0.732581 0.589230 0.340783 +vn -0.020031 0.864750 0.501803 +vn -0.045329 0.631637 0.773938 +vn -0.532728 0.484777 0.693680 +vn 0.704319 0.658195 0.265921 +vn -0.020031 0.864750 0.501803 +vn 0.012508 0.957954 0.286650 +vn 0.602164 0.792671 0.095246 +vn -0.045329 0.631637 0.773938 +vn -0.020031 0.864750 0.501803 +vn 0.704319 0.658195 0.265921 +vn 0.614199 0.440286 0.654911 +vn 0.426563 0.626636 0.652205 +vn 0.086559 0.967941 0.235792 +vn -0.517548 0.846729 0.123265 +vn -0.517067 0.684062 0.514491 +vn 0.426563 0.626636 0.652205 +vn 0.316491 0.852873 0.415260 +vn 0.086559 0.967941 0.235792 +vn -0.517548 0.846729 0.123265 +vn 0.086559 0.967941 0.235792 +vn 0.012508 0.957954 0.286650 +vn -0.618575 0.774019 0.135131 +vn 0.132521 -0.938964 0.317467 +vn 0.436338 -0.315535 0.842643 +vn -0.630921 -0.267472 0.728284 +vn -0.467651 -0.816605 0.338319 +vn 0.132521 -0.938964 0.317467 +vn 0.172572 -0.154376 0.972824 +vn 0.436338 -0.315535 0.842643 +vn 0.426563 0.626636 0.652205 +vn 0.436338 -0.315535 0.842643 +vn 0.172572 -0.154376 0.972824 +vn 0.316491 0.852873 0.415260 +vn -0.630921 -0.267472 0.728284 +vn 0.436338 -0.315535 0.842643 +vn 0.426563 0.626636 0.652205 +vn -0.517067 0.684062 0.514491 +vn 0.316491 0.852873 0.415260 +vn -0.213073 0.615024 0.759174 +vn 0.086559 0.967941 0.235792 +vn 0.446343 0.876587 0.179926 +vn 0.086559 0.967941 0.235792 +vn -0.213073 0.615024 0.759174 +vn 0.661573 0.599632 0.450291 +vn 0.012508 0.957954 0.286650 +vn 0.086559 0.967941 0.235792 +vn 0.446343 0.876587 0.179926 +vn 0.602164 0.792671 0.095246 +vn 0.172572 -0.154376 0.972824 +vn 0.132521 -0.938964 0.317467 +vn -0.110615 -0.232734 0.966229 +vn 0.806554 -0.242345 0.539203 +vn -0.110615 -0.232734 0.966229 +vn 0.132521 -0.938964 0.317467 +vn 0.319044 -0.934088 0.160285 +vn -0.213073 0.615024 0.759174 +vn -0.110615 -0.232734 0.966229 +vn 0.806554 -0.242345 0.539203 +vn 0.661573 0.599632 0.450291 +vn 0.172572 -0.154376 0.972824 +vn -0.110615 -0.232734 0.966229 +vn -0.213073 0.615024 0.759174 +vn 0.316491 0.852873 0.415260 +vn -0.732581 0.589230 0.340783 +vn -0.532728 0.484777 0.693680 +vn -0.875056 0.340156 0.344340 +vn -0.959402 0.143129 0.243026 +vn -0.975923 0.156104 0.152336 +vn -0.975923 0.156104 0.152336 +vn -0.618575 0.774019 0.135131 +vn -0.732581 0.589230 0.340783 +vn 0.446343 0.876587 0.179926 +vn 0.661573 0.599632 0.450291 +vn 0.800566 0.594262 -0.077122 +vn 0.446343 0.876587 0.179926 +vn 0.800566 0.594262 -0.077122 +vn 0.946700 0.300380 -0.116322 +vn 0.602164 0.792671 0.095246 +vn -0.875056 0.340156 0.344340 +vn -0.532728 0.484777 0.693680 +vn -0.683223 0.203367 0.701319 +vn 0.614199 0.440286 0.654911 +vn 0.908320 0.344429 0.237324 +vn 0.843836 0.220140 0.489367 +vn -0.988408 0.151803 0.002482 +vn -0.971549 0.220896 -0.085425 +vn -0.875056 0.340156 0.344340 +vn -0.683223 0.203367 0.701319 +vn 0.972857 0.101098 -0.208157 +vn 0.886881 0.304671 -0.347299 +vn 0.541586 0.293492 -0.787748 +vn 0.310553 0.175872 -0.934145 +vn 0.310553 0.175872 -0.934145 +vn -0.063393 0.417011 -0.906688 +vn -0.654172 0.275672 -0.704318 +vn -0.659416 0.105065 -0.744401 +vn -0.683223 0.203367 0.701319 +vn -0.532728 0.484777 0.693680 +vn -0.045329 0.631637 0.773938 +vn 0.093435 0.225841 0.969673 +vn -0.659416 0.105065 -0.744401 +vn -0.654172 0.275672 -0.704318 +vn -0.971549 0.220896 -0.085425 +vn -0.988408 0.151803 0.002482 +vn 0.843836 0.220140 0.489367 +vn 0.908320 0.344429 0.237324 +vn 0.886881 0.304671 -0.347299 +vn 0.972857 0.101098 -0.208157 +vn -0.063393 0.417011 -0.906688 +vn 0.310553 0.175872 -0.934145 +vn 0.541586 0.293492 -0.787748 +vn 0.093435 0.225841 0.969673 +vn -0.045329 0.631637 0.773938 +vn 0.614199 0.440286 0.654911 +vn 0.843836 0.220140 0.489367 +vn -0.976452 0.114765 -0.182674 +vn -0.441964 0.247892 -0.862101 +vn -0.438024 -0.084201 -0.895011 +vn -0.970920 -0.091751 -0.221125 +vn 0.615952 -0.032919 0.787095 +vn 0.195372 -0.051174 0.979393 +vn 0.164153 -0.065856 0.984234 +vn 0.624612 -0.083739 0.776433 +vn 0.982668 0.004551 0.185320 +vn 0.615952 -0.032919 0.787095 +vn 0.624612 -0.083739 0.776433 +vn 0.987450 -0.120121 0.102532 +vn -0.928313 -0.050804 -0.368312 +vn -0.358812 -0.041828 -0.932472 +vn -0.382069 0.099455 -0.918767 +vn -0.964996 0.055416 -0.256344 +vn 0.573541 -0.164184 0.802555 +vn 0.047911 -0.194997 0.979633 +vn 0.073598 -0.224041 0.971797 +vn 0.608801 -0.183273 0.771863 +vn 0.951971 -0.118058 0.282512 +vn 0.573541 -0.164184 0.802555 +vn 0.608801 -0.183273 0.771863 +vn 0.973241 -0.095404 0.209048 +vn -0.553546 -0.832719 0.012858 +vn -0.706847 -0.693997 -0.136878 +vn -0.605803 -0.436353 -0.665281 +vn -0.537973 -0.168197 -0.826011 +vn -0.972688 -0.132753 -0.190404 +vn 0.715149 0.085831 0.693682 +vn 0.261605 -0.026704 0.964806 +vn 0.043425 -0.161559 0.985907 +vn 0.680090 -0.099130 0.726396 +vn 0.963289 0.082329 0.255530 +vn 0.715149 0.085831 0.693682 +vn 0.680090 -0.099130 0.726396 +vn 0.984955 -0.067548 0.159065 +vn -0.972898 0.049362 -0.225906 +vn -0.387242 0.164775 -0.907134 +vn -0.371217 0.339766 -0.864151 +vn -0.958441 0.169049 -0.229810 +vn 0.620543 -0.346200 0.703614 +vn 0.134954 -0.401861 0.905701 +vn 0.217185 -0.268494 0.938478 +vn 0.558550 -0.199720 0.805068 +vn 0.974242 -0.143751 0.173750 +vn 0.620543 -0.346200 0.703614 +vn 0.558550 -0.199720 0.805068 +vn 0.975225 -0.051772 0.215072 +vn 0.573541 -0.164184 0.802555 +vn 0.951971 -0.118058 0.282512 +vn 0.984955 -0.067548 0.159065 +vn 0.680090 -0.099130 0.726396 +vn 0.047911 -0.194997 0.979633 +vn 0.573541 -0.164184 0.802555 +vn 0.680090 -0.099130 0.726396 +vn 0.043425 -0.161559 0.985907 +vn -0.358812 -0.041828 -0.932472 +vn -0.928313 -0.050804 -0.368312 +vn -0.972688 -0.132753 -0.190404 +vn -0.537973 -0.168197 -0.826011 +vn -0.996776 -0.026086 0.075877 +vn -0.970920 -0.091751 -0.221125 +vn -0.438024 -0.084201 -0.895011 +vn -0.666800 -0.108640 -0.737276 +vn 0.624612 -0.083739 0.776433 +vn 0.164153 -0.065856 0.984234 +vn 0.133722 0.003757 0.991012 +vn 0.809581 -0.052422 0.584662 +vn 0.987450 -0.120121 0.102532 +vn 0.624612 -0.083739 0.776433 +vn 0.809581 -0.052422 0.584662 +vn 0.975627 -0.117769 -0.185156 +vn 0.615952 -0.032919 0.787095 +vn 0.982668 0.004551 0.185320 +vn 0.975225 -0.051772 0.215072 +vn 0.558550 -0.199720 0.805068 +vn 0.195372 -0.051174 0.979393 +vn 0.615952 -0.032919 0.787095 +vn 0.558550 -0.199720 0.805068 +vn 0.217185 -0.268494 0.938478 +vn -0.441964 0.247892 -0.862101 +vn -0.976452 0.114765 -0.182674 +vn -0.958441 0.169049 -0.229810 +vn -0.371217 0.339766 -0.864151 +vn 0.948522 0.054914 -0.311916 +vn 0.932675 -0.110487 -0.343381 +vn 0.772036 -0.096415 -0.628223 +vn 0.733706 0.153569 -0.661885 +vn 0.987450 -0.120121 0.102532 +vn 0.932675 -0.110487 -0.343381 +vn 0.948522 0.054914 -0.311916 +vn 0.982668 0.004551 0.185320 +vn 0.303379 0.233404 -0.923842 +vn 0.338298 -0.076252 -0.937945 +vn -0.438024 -0.084201 -0.895011 +vn -0.441964 0.247892 -0.862101 +vn 0.772036 -0.096415 -0.628223 +vn 0.338298 -0.076252 -0.937945 +vn 0.303379 0.233404 -0.923842 +vn 0.733706 0.153569 -0.661885 +vn -0.209402 -0.055780 0.976237 +vn -0.272636 -0.063927 0.959991 +vn 0.164153 -0.065856 0.984234 +vn 0.195372 -0.051174 0.979393 +vn -0.794465 -0.054976 0.604816 +vn -0.272636 -0.063927 0.959991 +vn -0.209402 -0.055780 0.976237 +vn -0.687493 -0.011215 0.726105 +vn 0.953149 -0.077617 -0.292373 +vn 0.940399 -0.068993 -0.333001 +vn 0.686248 0.022172 -0.727030 +vn 0.718596 -0.079486 -0.690871 +vn 0.973241 -0.095404 0.209048 +vn 0.940399 -0.068993 -0.333001 +vn 0.953149 -0.077617 -0.292373 +vn 0.951971 -0.118058 0.282512 +vn 0.330926 -0.063559 -0.941514 +vn 0.307294 0.096539 -0.946705 +vn -0.382069 0.099455 -0.918767 +vn -0.358812 -0.041828 -0.932472 +vn 0.686248 0.022172 -0.727030 +vn 0.307294 0.096539 -0.946705 +vn 0.330926 -0.063559 -0.941514 +vn 0.718596 -0.079486 -0.690871 +vn 0.047911 -0.194997 0.979633 +vn -0.545265 -0.171649 0.820502 +vn -0.464208 -0.179694 0.867307 +vn 0.073598 -0.224041 0.971797 +vn -0.464208 -0.179694 0.867307 +vn -0.545265 -0.171649 0.820502 +vn -0.912367 -0.103720 0.396016 +vn -0.864080 -0.047140 0.501142 +vn 0.981477 0.053649 -0.183916 +vn 0.966881 -0.058364 -0.248465 +vn 0.779255 -0.087914 -0.620510 +vn 0.783558 -0.019686 -0.621006 +vn 0.984955 -0.067548 0.159065 +vn 0.966881 -0.058364 -0.248465 +vn 0.981477 0.053649 -0.183916 +vn 0.963289 0.082329 0.255530 +vn -0.537973 -0.168197 -0.826011 +vn -0.605803 -0.436353 -0.665281 +vn 0.186180 -0.326168 -0.926796 +vn 0.779255 -0.087914 -0.620510 +vn 0.273683 -0.125087 -0.953651 +vn 0.355525 -0.223958 -0.907439 +vn 0.576019 -0.159327 -0.801759 +vn 0.261605 -0.026704 0.964806 +vn -0.124400 -0.122089 0.984692 +vn -0.504263 -0.180833 0.844404 +vn 0.043425 -0.161559 0.985907 +vn -0.504263 -0.180833 0.844404 +vn -0.124400 -0.122089 0.984692 +vn -0.638633 -0.208072 0.740847 +vn -0.881536 -0.163369 0.442951 +vn 0.936988 -0.015712 -0.349007 +vn 0.935375 0.075327 -0.345542 +vn 0.717649 0.200543 -0.666905 +vn 0.687872 0.071417 -0.722310 +vn 0.975225 -0.051772 0.215072 +vn 0.935375 0.075327 -0.345542 +vn 0.936988 -0.015712 -0.349007 +vn 0.974242 -0.143751 0.173750 +vn 0.313097 0.140323 -0.939297 +vn 0.324294 0.281138 -0.903214 +vn -0.371217 0.339766 -0.864151 +vn -0.387242 0.164775 -0.907134 +vn 0.717649 0.200543 -0.666905 +vn 0.324294 0.281138 -0.903214 +vn 0.313097 0.140323 -0.939297 +vn 0.687872 0.071417 -0.722310 +vn 0.134954 -0.401861 0.905701 +vn -0.386528 -0.330934 0.860859 +vn -0.154237 -0.217103 0.963886 +vn 0.217185 -0.268494 0.938478 +vn -0.154237 -0.217103 0.963886 +vn -0.386528 -0.330934 0.860859 +vn -0.812551 -0.182988 0.553423 +vn -0.662119 -0.107311 0.741676 +vn 0.951971 -0.118058 0.282512 +vn 0.953149 -0.077617 -0.292373 +vn 0.966881 -0.058364 -0.248465 +vn 0.984955 -0.067548 0.159065 +vn 0.966881 -0.058364 -0.248465 +vn 0.953149 -0.077617 -0.292373 +vn 0.718596 -0.079486 -0.690871 +vn 0.779255 -0.087914 -0.620510 +vn -0.545265 -0.171649 0.820502 +vn -0.504263 -0.180833 0.844404 +vn -0.881536 -0.163369 0.442951 +vn -0.912367 -0.103720 0.396016 +vn 0.043425 -0.161559 0.985907 +vn -0.504263 -0.180833 0.844404 +vn -0.545265 -0.171649 0.820502 +vn 0.047911 -0.194997 0.979633 +vn 0.718596 -0.079486 -0.690871 +vn 0.330926 -0.063559 -0.941514 +vn 0.273683 -0.125087 -0.953651 +vn 0.779255 -0.087914 -0.620510 +vn 0.273683 -0.125087 -0.953651 +vn 0.330926 -0.063559 -0.941514 +vn -0.358812 -0.041828 -0.932472 +vn -0.537973 -0.168197 -0.826011 +vn 0.772036 -0.096415 -0.628223 +vn 0.932675 -0.110487 -0.343381 +vn 0.975627 -0.117769 -0.185156 +vn 0.413934 -0.149952 -0.897871 +vn 0.987450 -0.120121 0.102532 +vn 0.975627 -0.117769 -0.185156 +vn 0.932675 -0.110487 -0.343381 +vn -0.438024 -0.084201 -0.895011 +vn 0.338298 -0.076252 -0.937945 +vn 0.413934 -0.149952 -0.897871 +vn -0.666800 -0.108640 -0.737276 +vn 0.772036 -0.096415 -0.628223 +vn 0.413934 -0.149952 -0.897871 +vn 0.338298 -0.076252 -0.937945 +vn 0.164153 -0.065856 0.984234 +vn -0.272636 -0.063927 0.959991 +vn -0.661958 0.011078 0.749459 +vn 0.133722 0.003757 0.991012 +vn -0.794465 -0.054976 0.604816 +vn -0.661958 0.011078 0.749459 +vn -0.272636 -0.063927 0.959991 +vn 0.982668 0.004551 0.185320 +vn 0.948522 0.054914 -0.311916 +vn 0.935375 0.075327 -0.345542 +vn 0.975225 -0.051772 0.215072 +vn 0.935375 0.075327 -0.345542 +vn 0.948522 0.054914 -0.311916 +vn 0.733706 0.153569 -0.661885 +vn 0.717649 0.200543 -0.666905 +vn -0.687493 -0.011215 0.726105 +vn -0.209402 -0.055780 0.976237 +vn -0.154237 -0.217103 0.963886 +vn -0.662119 -0.107311 0.741676 +vn -0.154237 -0.217103 0.963886 +vn -0.209402 -0.055780 0.976237 +vn 0.195372 -0.051174 0.979393 +vn 0.217185 -0.268494 0.938478 +vn 0.733706 0.153569 -0.661885 +vn 0.303379 0.233404 -0.923842 +vn 0.324294 0.281138 -0.903214 +vn 0.717649 0.200543 -0.666905 +vn 0.324294 0.281138 -0.903214 +vn 0.303379 0.233404 -0.923842 +vn -0.441964 0.247892 -0.862101 +vn -0.371217 0.339766 -0.864151 +vn -0.962550 0.067578 0.262545 +vn -0.965338 -0.057165 0.254666 +vn -0.794465 -0.054976 0.604816 +vn -0.687493 -0.011215 0.726105 +vn -0.970920 -0.091751 -0.221125 +vn -0.965338 -0.057165 0.254666 +vn -0.962550 0.067578 0.262545 +vn -0.976452 0.114765 -0.182674 +vn -0.996734 -0.030091 0.074936 +vn -0.989798 0.006180 0.142345 +vn -0.864080 -0.047140 0.501142 +vn -0.912367 -0.103720 0.396016 +vn -0.964996 0.055416 -0.256344 +vn -0.989798 0.006180 0.142345 +vn -0.996734 -0.030091 0.074936 +vn -0.928313 -0.050804 -0.368312 +vn -0.881536 -0.163369 0.442951 +vn -0.638633 -0.208072 0.740847 +vn -0.503680 -0.590874 0.630218 +vn -0.770646 -0.600364 0.213702 +vn -0.986601 -0.110525 0.120012 +vn -0.972688 -0.132753 -0.190404 +vn -0.986601 -0.110525 0.120012 +vn -0.770646 -0.600364 0.213702 +vn -0.553546 -0.832719 0.012858 +vn -0.977316 -0.111934 0.179789 +vn -0.967613 -0.045710 0.248265 +vn -0.662119 -0.107311 0.741676 +vn -0.812551 -0.182988 0.553423 +vn -0.958441 0.169049 -0.229810 +vn -0.967613 -0.045710 0.248265 +vn -0.977316 -0.111934 0.179789 +vn -0.972898 0.049362 -0.225906 +vn -0.928313 -0.050804 -0.368312 +vn -0.996734 -0.030091 0.074936 +vn -0.986601 -0.110525 0.120012 +vn -0.972688 -0.132753 -0.190404 +vn -0.986601 -0.110525 0.120012 +vn -0.996734 -0.030091 0.074936 +vn -0.912367 -0.103720 0.396016 +vn -0.881536 -0.163369 0.442951 +vn -0.794465 -0.054976 0.604816 +vn -0.965338 -0.057165 0.254666 +vn -0.996776 -0.026086 0.075877 +vn -0.661958 0.011078 0.749459 +vn -0.970920 -0.091751 -0.221125 +vn -0.996776 -0.026086 0.075877 +vn -0.965338 -0.057165 0.254666 +vn -0.976452 0.114765 -0.182674 +vn -0.962550 0.067578 0.262545 +vn -0.967613 -0.045710 0.248265 +vn -0.958441 0.169049 -0.229810 +vn -0.967613 -0.045710 0.248265 +vn -0.962550 0.067578 0.262545 +vn -0.687493 -0.011215 0.726105 +vn -0.662119 -0.107311 0.741676 +vn 0.995398 0.088594 -0.036514 +vn 0.958811 0.160716 -0.234203 +vn 0.844068 0.000276 -0.536236 +vn 0.889508 0.088259 -0.448315 +vn 0.805160 0.285082 -0.520044 +vn 0.270292 0.057758 0.961044 +vn -0.024754 -0.065990 0.997513 +vn 0.293137 0.078667 0.952829 +vn 0.508424 0.096496 0.855683 +vn 0.653051 0.165931 0.738912 +vn 0.508424 0.096496 0.855683 +vn 0.293137 0.078667 0.952829 +vn 0.882299 0.119304 0.455319 +vn 0.508424 0.096496 0.855683 +vn 0.653051 0.165931 0.738912 +vn 0.951083 0.147747 0.271317 +vn 0.882299 0.119304 0.455319 +vn 0.951083 0.147747 0.271317 +vn 0.958811 0.160716 -0.234203 +vn 0.995398 0.088594 -0.036514 +vn -0.770646 -0.600364 0.213702 +vn -0.503680 -0.590874 0.630218 +vn -0.035968 -0.826657 0.561555 +vn 0.000143 -0.980348 0.197274 +vn 0.000181 -0.063346 0.997992 +vn 0.000727 0.032249 0.999480 +vn 0.270292 0.057758 0.961044 +vn 0.276387 -0.081106 0.957618 +vn 0.424136 0.482434 -0.766398 +vn 0.536221 0.375538 -0.755936 +vn 0.805160 0.285082 -0.520044 +vn 0.546122 0.318880 -0.774640 +vn 0.300115 0.273948 -0.913719 +vn -0.553546 -0.832719 0.012858 +vn -0.000031 -0.999098 -0.042459 +vn -0.010982 -0.939488 -0.342406 +vn -0.706847 -0.693997 -0.136878 +vn 0.882299 0.119304 0.455319 +vn 0.915926 0.184498 0.356427 +vn 0.685345 0.030617 0.727575 +vn 0.508424 0.096496 0.855683 +vn 0.995398 0.088594 -0.036514 +vn 0.988717 0.149788 0.001261 +vn 0.915926 0.184498 0.356427 +vn 0.882299 0.119304 0.455319 +vn 0.805160 0.285082 -0.520044 +vn 0.899150 0.172332 -0.402282 +vn 0.988717 0.149788 0.001261 +vn 0.995398 0.088594 -0.036514 +vn 0.000143 -0.980348 0.197274 +vn -0.000031 -0.999098 -0.042459 +vn -0.553546 -0.832719 0.012858 +vn -0.770646 -0.600364 0.213702 +vn 0.000713 -0.190636 0.981661 +vn -0.025712 -0.534408 0.844835 +vn 0.062750 -0.321972 0.944667 +vn 0.255608 -0.089786 0.962602 +vn 0.270292 0.057758 0.961044 +vn 0.000727 0.032249 0.999480 +vn 0.000713 -0.190636 0.981661 +vn 0.255608 -0.089786 0.962602 +vn 0.176413 -0.008764 -0.984277 +vn 0.201557 -0.370523 -0.906690 +vn -0.000679 -0.317264 -0.948337 +vn -0.000729 0.007239 -0.999974 +vn 0.203791 -0.532546 -0.821501 +vn 0.201557 -0.370523 -0.906690 +vn 0.363878 -0.314074 -0.876898 +vn 0.398984 -0.416833 -0.816739 +vn -0.000679 -0.317264 -0.948337 +vn 0.201557 -0.370523 -0.906690 +vn 0.203791 -0.532546 -0.821501 +vn -0.048419 -0.716826 -0.695568 +vn 0.703071 -0.304762 -0.642504 +vn 0.715830 -0.187920 -0.672513 +vn 0.889508 0.088259 -0.448315 +vn 0.844068 0.000276 -0.536236 +vn 0.363878 -0.314074 -0.876898 +vn 0.715830 -0.187920 -0.672513 +vn 0.703071 -0.304762 -0.642504 +vn 0.398984 -0.416833 -0.816739 +vn -0.048419 -0.716826 -0.695568 +vn -0.004068 -0.673364 -0.739300 +vn -0.000679 -0.317264 -0.948337 +vn 0.546122 0.318880 -0.774640 +vn 0.805160 0.285082 -0.520044 +vn 0.889508 0.088259 -0.448315 +vn 0.559540 0.120190 -0.820043 +vn 0.889508 0.088259 -0.448315 +vn 0.715830 -0.187920 -0.672513 +vn 0.559540 0.120190 -0.820043 +vn 0.300115 0.273948 -0.913719 +vn 0.546122 0.318880 -0.774640 +vn 0.559540 0.120190 -0.820043 +vn 0.285465 0.007227 -0.958362 +vn 0.285465 0.007227 -0.958362 +vn 0.559540 0.120190 -0.820043 +vn 0.715830 -0.187920 -0.672513 +vn 0.363878 -0.314074 -0.876898 +vn 0.300115 0.273948 -0.913719 +vn 0.285465 0.007227 -0.958362 +vn 0.176413 -0.008764 -0.984277 +vn 0.137208 0.228824 -0.963750 +vn 0.176413 -0.008764 -0.984277 +vn 0.285465 0.007227 -0.958362 +vn 0.363878 -0.314074 -0.876898 +vn 0.201557 -0.370523 -0.906690 +vn -0.000729 0.007239 -0.999974 +vn -0.000747 0.259274 -0.965804 +vn 0.137208 0.228824 -0.963750 +vn 0.176413 -0.008764 -0.984277 +vn -0.024754 -0.065990 0.997513 +vn 0.270292 0.057758 0.961044 +vn 0.255608 -0.089786 0.962602 +vn 0.062750 -0.321972 0.944667 +vn 0.355525 -0.223958 -0.907439 +vn 0.273683 -0.125087 -0.953651 +vn -0.537973 -0.168197 -0.826011 +vn 0.186180 -0.326168 -0.926796 +vn 0.576019 -0.159327 -0.801759 +vn 0.783558 -0.019686 -0.621006 +vn 0.779255 -0.087914 -0.620510 +vn -0.564584 0.416180 -0.712769 +vn -0.805656 0.286029 -0.518754 +vn -0.878324 0.182015 -0.442061 +vn 0.899150 0.172332 -0.402282 +vn 0.805160 0.285082 -0.520044 +vn 0.536221 0.375538 -0.755936 +vn -0.268994 0.058176 0.961383 +vn -0.276124 -0.081154 0.957690 +vn -0.460708 -0.051446 0.886059 +vn 0.000181 -0.063346 0.997992 +vn -0.276124 -0.081154 0.957690 +vn -0.268994 0.058176 0.961383 +vn 0.000727 0.032249 0.999480 +vn 0.270292 0.057758 0.961044 +vn 0.461221 -0.051894 0.885767 +vn 0.276387 -0.081106 0.957618 +vn 0.508424 0.096496 0.855683 +vn 0.685345 0.030617 0.727575 +vn 0.461221 -0.051894 0.885767 +vn 0.270292 0.057758 0.961044 +vn -0.098420 0.417784 -0.903200 +vn -0.138585 0.228782 -0.963563 +vn -0.301425 0.274090 -0.913246 +vn -0.419274 0.446184 -0.790651 +vn -0.000197 0.377039 -0.926197 +vn 0.098931 0.417737 -0.903166 +vn 0.137208 0.228824 -0.963750 +vn -0.000747 0.259274 -0.965804 +vn 0.098931 0.417737 -0.903166 +vn 0.424136 0.482434 -0.766398 +vn 0.300115 0.273948 -0.913719 +vn 0.137208 0.228824 -0.963750 +vn -0.419274 0.446184 -0.790651 +vn -0.301425 0.274090 -0.913246 +vn -0.547187 0.319300 -0.773714 +vn -0.805656 0.286029 -0.518754 +vn -0.564584 0.416180 -0.712769 +vn -0.969999 -0.154176 0.187968 +vn -0.971322 -0.093211 0.218736 +vn -0.937924 -0.060819 -0.341468 +vn -0.934049 -0.019489 -0.356612 +vn -0.688806 0.073683 -0.721191 +vn -0.687879 0.019719 -0.725557 +vn -0.308431 0.094046 -0.946586 +vn -0.312962 0.143125 -0.938920 +vn 0.384048 0.166187 -0.908234 +vn 0.378008 0.098116 -0.920589 +vn 0.962261 0.064130 -0.264465 +vn 0.970391 0.040722 -0.238084 +vn 0.820438 -0.206790 0.533029 +vn 0.867663 -0.027609 0.496385 +vn 0.454970 -0.157486 0.876471 +vn 0.377006 -0.350774 0.857219 +vn -0.142794 -0.406776 0.902299 +vn -0.078828 -0.220010 0.972307 +vn -0.608905 -0.185921 0.771147 +vn -0.619917 -0.343285 0.705591 +vn -0.619917 -0.343285 0.705591 +vn -0.608905 -0.185921 0.771147 +vn -0.971322 -0.093211 0.218736 +vn -0.969999 -0.154176 0.187968 +vn -0.687879 0.019719 -0.725557 +vn -0.688806 0.073683 -0.721191 +vn -0.934049 -0.019489 -0.356612 +vn -0.937924 -0.060819 -0.341468 +vn 0.378008 0.098116 -0.920589 +vn 0.384048 0.166187 -0.908234 +vn -0.312962 0.143125 -0.938920 +vn -0.308431 0.094046 -0.946586 +vn -0.078828 -0.220010 0.972307 +vn -0.142794 -0.406776 0.902299 +vn 0.377006 -0.350774 0.857219 +vn 0.454970 -0.157486 0.876471 +vn 0.976319 -0.124876 0.176654 +vn 0.988599 0.020607 0.149157 +vn 0.867663 -0.027609 0.496385 +vn 0.820438 -0.206790 0.533029 +vn 0.970391 0.040722 -0.238084 +vn 0.962261 0.064130 -0.264465 +vn 0.988599 0.020607 0.149157 +vn 0.976319 -0.124876 0.176654 +vn 0.936988 -0.015712 -0.349007 +vn 0.940399 -0.068993 -0.333001 +vn 0.973241 -0.095404 0.209048 +vn 0.974242 -0.143751 0.173750 +vn 0.313097 0.140323 -0.939297 +vn 0.307294 0.096539 -0.946705 +vn 0.686248 0.022172 -0.727030 +vn 0.687872 0.071417 -0.722310 +vn -0.972898 0.049362 -0.225906 +vn -0.964996 0.055416 -0.256344 +vn -0.382069 0.099455 -0.918767 +vn -0.387242 0.164775 -0.907134 +vn -0.386528 -0.330934 0.860859 +vn -0.464208 -0.179694 0.867307 +vn -0.864080 -0.047140 0.501142 +vn -0.812551 -0.182988 0.553423 +vn 0.620543 -0.346200 0.703614 +vn 0.608801 -0.183273 0.771863 +vn 0.073598 -0.224041 0.971797 +vn 0.134954 -0.401861 0.905701 +vn 0.974242 -0.143751 0.173750 +vn 0.973241 -0.095404 0.209048 +vn 0.608801 -0.183273 0.771863 +vn 0.620543 -0.346200 0.703614 +vn 0.940399 -0.068993 -0.333001 +vn 0.936988 -0.015712 -0.349007 +vn 0.687872 0.071417 -0.722310 +vn 0.686248 0.022172 -0.727030 +vn 0.307294 0.096539 -0.946705 +vn 0.313097 0.140323 -0.939297 +vn -0.387242 0.164775 -0.907134 +vn -0.382069 0.099455 -0.918767 +vn -0.464208 -0.179694 0.867307 +vn -0.386528 -0.330934 0.860859 +vn 0.134954 -0.401861 0.905701 +vn 0.073598 -0.224041 0.971797 +vn -0.812551 -0.182988 0.553423 +vn -0.864080 -0.047140 0.501142 +vn -0.989798 0.006180 0.142345 +vn -0.977316 -0.111934 0.179789 +vn -0.977316 -0.111934 0.179789 +vn -0.989798 0.006180 0.142345 +vn -0.964996 0.055416 -0.256344 +vn -0.972898 0.049362 -0.225906 +vn 0.653178 -0.001657 0.757203 +vn 0.675986 0.213366 0.705349 +vn 0.988092 0.153837 -0.002936 +vn 0.995091 -0.041600 0.089797 +vn 0.667279 -0.122966 -0.734587 +vn 0.662063 0.102790 -0.742366 +vn -0.318346 0.169586 -0.932682 +vn -0.418351 -0.145107 -0.896620 +vn -0.124478 -0.008348 0.992187 +vn -0.081297 0.241531 0.966982 +vn 0.675986 0.213366 0.705349 +vn 0.653178 -0.001657 0.757203 +vn 0.995091 -0.041600 0.089797 +vn 0.988092 0.153837 -0.002936 +vn 0.662063 0.102790 -0.742366 +vn 0.667279 -0.122966 -0.734587 +vn -0.081297 0.241531 0.966982 +vn -0.124478 -0.008348 0.992187 +vn -0.800442 -0.042804 0.597881 +vn -0.836146 0.204295 0.509041 +vn -0.974680 -0.105436 -0.197183 +vn -0.972061 0.088503 -0.217406 +vn -0.836146 0.204295 0.509041 +vn -0.800442 -0.042804 0.597881 +vn -0.972061 0.088503 -0.217406 +vn -0.974680 -0.105436 -0.197183 +vn -0.418351 -0.145107 -0.896620 +vn -0.318346 0.169586 -0.932682 +vn -0.996776 -0.026086 0.075877 +vn -0.988408 0.151803 0.002482 +vn -0.683223 0.203367 0.701319 +vn -0.661958 0.011078 0.749459 +vn 0.413934 -0.149952 -0.897871 +vn 0.310553 0.175872 -0.934145 +vn -0.659416 0.105065 -0.744401 +vn -0.666800 -0.108640 -0.737276 +vn -0.661958 0.011078 0.749459 +vn -0.683223 0.203367 0.701319 +vn 0.093435 0.225841 0.969673 +vn 0.133722 0.003757 0.991012 +vn -0.666800 -0.108640 -0.737276 +vn -0.659416 0.105065 -0.744401 +vn -0.988408 0.151803 0.002482 +vn -0.996776 -0.026086 0.075877 +vn 0.843836 0.220140 0.489367 +vn 0.809581 -0.052422 0.584662 +vn 0.133722 0.003757 0.991012 +vn 0.093435 0.225841 0.969673 +vn 0.809581 -0.052422 0.584662 +vn 0.843836 0.220140 0.489367 +vn 0.972857 0.101098 -0.208157 +vn 0.975627 -0.117769 -0.185156 +vn 0.310553 0.175872 -0.934145 +vn 0.413934 -0.149952 -0.897871 +vn 0.975627 -0.117769 -0.185156 +vn 0.972857 0.101098 -0.208157 +vn 0.656108 -0.212522 0.724125 +vn 0.460252 -0.660805 0.592879 +vn -0.079732 -0.361764 0.928854 +vn 0.599077 -0.428081 -0.676648 +vn 0.078679 -0.735606 -0.672824 +vn 0.708695 -0.691170 -0.141547 +vn -0.638633 -0.208072 0.740847 +vn 0.062750 -0.321972 0.944667 +vn -0.503680 -0.590874 0.630218 +vn -0.605803 -0.436353 -0.665281 +vn -0.706847 -0.693997 -0.136878 +vn -0.048419 -0.716826 -0.695568 +vn -0.839208 0.019467 -0.543462 +vn -0.824015 -0.048173 -0.564516 +vn -0.983137 0.055766 -0.174160 +vn -0.960294 0.160353 -0.228301 +vn 0.078679 -0.735606 -0.672824 +vn 0.599077 -0.428081 -0.676648 +vn -0.171202 -0.330803 -0.928041 +vn -0.185589 -0.532329 -0.825943 +vn -0.302266 0.066680 0.950888 +vn -0.252280 -0.017184 0.967502 +vn 0.143522 -0.097512 0.984831 +vn 0.026110 -0.091847 0.995431 +vn -0.636286 0.170956 0.752272 +vn -0.700378 0.074446 0.709880 +vn -0.252280 -0.017184 0.967502 +vn -0.302266 0.066680 0.950888 +vn -0.953536 0.153374 0.259318 +vn -0.968733 0.074927 0.236522 +vn -0.700378 0.074446 0.709880 +vn -0.636286 0.170956 0.752272 +vn -0.960294 0.160353 -0.228301 +vn -0.983137 0.055766 -0.174160 +vn -0.968733 0.074927 0.236522 +vn -0.953536 0.153374 0.259318 +vn -0.414405 -0.408979 -0.813022 +vn -0.370881 -0.225097 -0.900987 +vn -0.563692 -0.178817 -0.806397 +vn -0.668644 -0.301378 -0.679770 +vn 0.026110 -0.091847 0.995431 +vn 0.143522 -0.097512 0.984831 +vn 0.656108 -0.212522 0.724125 +vn -0.079732 -0.361764 0.928854 +vn -0.079732 -0.361764 0.928854 +vn 0.460252 -0.660805 0.592879 +vn -0.035968 -0.826657 0.561555 +vn -0.025712 -0.534408 0.844835 +vn -0.004068 -0.673364 -0.739300 +vn -0.010982 -0.939488 -0.342406 +vn 0.708695 -0.691170 -0.141547 +vn 0.078679 -0.735606 -0.672824 +vn -0.185589 -0.532329 -0.825943 +vn -0.171202 -0.330803 -0.928041 +vn -0.370881 -0.225097 -0.900987 +vn -0.414405 -0.408979 -0.813022 +vn -0.668644 -0.301378 -0.679770 +vn -0.563692 -0.178817 -0.806397 +vn -0.824015 -0.048173 -0.564516 +vn -0.839208 0.019467 -0.543462 +vn 0.958811 0.160716 -0.234203 +vn 0.981477 0.053649 -0.183916 +vn 0.783558 -0.019686 -0.621006 +vn 0.844068 0.000276 -0.536236 +vn 0.203791 -0.532546 -0.821501 +vn 0.186180 -0.326168 -0.926796 +vn -0.605803 -0.436353 -0.665281 +vn -0.048419 -0.716826 -0.695568 +vn -0.024754 -0.065990 0.997513 +vn -0.124400 -0.122089 0.984692 +vn 0.261605 -0.026704 0.964806 +vn 0.293137 0.078667 0.952829 +vn 0.293137 0.078667 0.952829 +vn 0.261605 -0.026704 0.964806 +vn 0.715149 0.085831 0.693682 +vn 0.653051 0.165931 0.738912 +vn 0.653051 0.165931 0.738912 +vn 0.715149 0.085831 0.693682 +vn 0.963289 0.082329 0.255530 +vn 0.951083 0.147747 0.271317 +vn 0.951083 0.147747 0.271317 +vn 0.963289 0.082329 0.255530 +vn 0.981477 0.053649 -0.183916 +vn 0.958811 0.160716 -0.234203 +vn 0.703071 -0.304762 -0.642504 +vn 0.576019 -0.159327 -0.801759 +vn 0.355525 -0.223958 -0.907439 +vn 0.398984 -0.416833 -0.816739 +vn 0.062750 -0.321972 0.944667 +vn -0.638633 -0.208072 0.740847 +vn -0.124400 -0.122089 0.984692 +vn -0.024754 -0.065990 0.997513 +vn -0.025712 -0.534408 0.844835 +vn -0.035968 -0.826657 0.561555 +vn -0.503680 -0.590874 0.630218 +vn 0.062750 -0.321972 0.944667 +vn -0.048419 -0.716826 -0.695568 +vn -0.706847 -0.693997 -0.136878 +vn -0.010982 -0.939488 -0.342406 +vn -0.004068 -0.673364 -0.739300 +vn 0.398984 -0.416833 -0.816739 +vn 0.355525 -0.223958 -0.907439 +vn 0.186180 -0.326168 -0.926796 +vn 0.203791 -0.532546 -0.821501 +vn 0.844068 0.000276 -0.536236 +vn 0.783558 -0.019686 -0.621006 +vn 0.576019 -0.159327 -0.801759 +vn 0.703071 -0.304762 -0.642504 +vn -0.304700 -0.121164 0.944710 +vn -0.257377 -0.279331 0.925058 +vn -0.255565 0.318870 0.912693 +vn -0.539622 0.285323 0.792085 +vn -0.149262 0.379768 0.912961 +vn -0.205976 0.079130 0.975352 +vn -0.269509 0.236052 0.933619 +vn -0.446349 0.297701 0.843888 +vn -0.296240 -0.056409 0.953446 +vn -0.509533 0.020016 0.860218 +vn -0.470901 0.160068 0.867543 +vn -0.435133 -0.146473 0.888372 +vn -0.422882 -0.286905 0.859568 +vn -0.454675 -0.316276 0.832610 +vn -0.454675 -0.316276 0.832610 +vn -0.683823 -0.132725 0.717475 +vn -0.435133 -0.146473 0.888372 +vn 0.306120 -0.121023 0.944269 +vn 0.421921 -0.244099 0.873154 +vn 0.540771 0.285326 0.791300 +vn 0.150559 0.379736 0.912761 +vn 0.318494 0.305712 0.897275 +vn 0.447497 0.297567 0.843327 +vn 0.297673 -0.056529 0.952993 +vn 0.207388 0.078941 0.975068 +vn 0.270841 0.235905 0.933270 +vn 0.472182 0.159858 0.866885 +vn 0.436419 -0.146470 0.887742 +vn 0.423762 0.034787 0.905105 +vn 0.684865 -0.132727 0.716480 +vn 0.455882 -0.316273 0.831951 +vn 0.424126 -0.286904 0.858955 +vn 0.436419 -0.146470 0.887742 +# 6614 vertex normals + +vt 0.695744 0.750160 0.102329 +vt 0.546731 0.825136 0.318489 +vt 0.611881 0.846413 0.422182 +vt 0.731885 0.594539 0.245966 +vt 0.579039 0.832567 0.336701 +vt 0.612683 0.861424 0.422905 +vt 0.526975 0.828764 0.367812 +vt 0.526233 0.858173 0.442356 +vt 0.751194 0.590005 0.490116 +vt 0.750947 0.620045 0.429038 +vt 0.700277 0.595738 0.042648 +vt 0.729952 0.623271 0.110248 +vt 0.700915 0.627014 -0.232524 +vt 0.665075 0.595048 -0.085312 +vt 0.665782 0.625767 -0.288577 +vt 0.665448 0.672570 -0.499967 +vt 0.638491 0.673046 -0.405017 +vt 0.610683 0.891191 0.461394 +vt 0.604912 0.913411 0.459002 +vt 0.598881 0.942145 0.382641 +vt 0.579575 0.966097 0.195018 +vt 0.638490 0.737016 -0.256860 +vt 0.638489 0.751532 -0.148288 +vt 0.546412 0.892058 0.433462 +vt 0.527138 0.882611 0.509205 +vt 0.535764 0.949021 0.553994 +vt 0.700425 0.728543 -0.229697 +vt 0.736140 0.668671 -0.265768 +vt 0.750582 0.645008 0.320024 +vt 0.750614 0.679122 -0.200007 +vt 0.751548 0.705940 -0.163158 +vt 0.544434 0.943815 0.467935 +vt 0.776004 0.834317 0.667064 +vt 0.554434 0.930733 0.470741 +vt 0.525984 0.948276 0.626986 +vt 0.746418 0.723823 0.055299 +vt 0.189225 0.398830 -0.317209 +vt 0.196333 0.380978 -0.411627 +vt 0.224598 0.364871 -0.193590 +vt 0.239415 0.357500 -0.134343 +vt 0.237439 0.459228 0.218001 +vt 0.189267 0.416374 0.090521 +vt 0.166750 0.383133 -0.167419 +vt 0.180972 0.372324 -0.126540 +vt 0.207866 0.349818 -0.005479 +vt 0.197660 0.341737 0.050464 +vt 0.161572 0.439368 0.346470 +vt 0.165966 0.402883 -0.225271 +vt 0.166106 0.412180 0.013985 +vt 0.163992 0.390560 -0.139823 +vt 0.163876 0.422566 0.115982 +vt 0.151574 0.393087 -0.172130 +vt 0.127072 0.404625 -0.305131 +vt 0.126097 0.410515 -0.308736 +vt 0.127852 0.397509 -0.306339 +vt 0.129031 0.418824 -0.317662 +vt 0.125052 0.401546 -0.317278 +vt 0.121532 0.393402 -0.187608 +vt 0.115557 0.407866 -0.477865 +vt 0.177810 0.401088 -0.300543 +vt 0.121473 0.423415 -0.499999 +vt 0.181708 0.387791 -0.359743 +vt 0.168382 0.387804 -0.196095 +vt 0.164407 0.397087 -0.278495 +vt 0.126647 0.415592 -0.303003 +vt 0.187743 0.408216 -0.352753 +vt 0.166168 0.407725 -0.346273 +vt 0.160576 0.382038 0.126436 +vt 0.157687 0.386557 0.216277 +vt 0.178251 0.413985 0.076212 +vt 0.146982 0.387349 0.142718 +vt 0.182991 0.423562 0.223541 +vt 0.165154 0.417776 0.119651 +vt 0.156116 0.403092 -0.194094 +vt 0.154494 0.398678 -0.211979 +vt 0.174199 0.424973 0.155409 +vt 0.137612 0.395690 -0.321130 +vt 0.169693 0.429159 -0.138455 +vt 0.138699 0.403484 -0.266836 +vt 0.115570 0.400819 -0.178164 +vt 0.175276 0.394987 -0.321158 +vt 0.159777 0.428707 -0.035026 +vt 0.161078 0.385241 0.092162 +vt 0.134909 0.390159 -0.017869 +vt 0.155261 0.420764 -0.041662 +vt 0.138007 0.398982 -0.326933 +vt 0.157176 0.375610 -0.053092 +vt 0.169991 0.365516 -0.053622 +vt 0.150293 0.427610 -0.119711 +vt 0.158685 0.358133 0.112588 +vt 0.155964 0.412455 -0.075005 +vt 0.155470 0.416326 0.002362 +vt 0.141418 0.364113 0.174921 +vt 0.153184 0.354571 0.189058 +vt 0.155973 0.407431 -0.334907 +vt 0.127730 0.354749 0.109380 +vt 0.138018 0.420500 -0.154680 +vt 0.138750 0.411574 -0.191381 +vt 0.121594 0.346674 0.110875 +vt 0.128311 0.340816 0.099480 +vt 0.116166 0.414808 -0.489127 +vt 0.113713 0.344974 0.264049 +vt 0.123797 0.342715 0.114429 +vt 0.123058 0.335449 0.251236 +vt 0.178304 0.407561 -0.360105 +vt 0.150817 0.379099 0.231171 +vt 0.145809 0.367956 0.091500 +vt 0.176760 0.419365 0.175392 +vt 0.135707 0.368583 0.332924 +vt 0.168749 0.427754 -0.177914 +vt 0.134209 0.426034 -0.304587 +vt 0.138391 0.415063 -0.142316 +vt 0.137194 0.360886 0.136300 +vt 0.138915 0.407824 -0.411122 +vt 0.117052 0.338315 0.242953 +vt 0.140364 0.371822 0.310393 +vt 0.167344 0.446915 0.372169 +vt 0.130516 0.365143 0.319161 +vt 0.150367 0.457131 0.333909 +vt 0.120748 0.358854 0.285383 +vt 0.132386 0.339076 0.332111 +vt 0.929876 0.979973 0.193088 +vt 0.809759 0.980121 0.202913 +vt 0.853709 0.979864 0.172218 +vt 0.853753 0.834299 0.483885 +vt 0.879078 0.834287 0.433914 +vt 0.902456 0.834255 0.437624 +vt 0.786977 0.840604 0.485226 +vt 0.144077 0.451086 0.297578 +vt 0.133911 0.469132 0.232312 +vt 0.809521 0.834146 0.423417 +vt 0.830941 0.834538 0.382281 +vt 0.929938 0.912474 0.228157 +vt 0.879643 0.980064 0.190317 +vt 0.902315 0.980051 0.196235 +vt 0.957728 0.979918 0.175709 +vt 0.757022 0.979923 0.172541 +vt 0.786941 0.980071 0.197571 +vt 0.830784 0.980209 0.187392 +vt 0.879436 0.895741 0.428400 +vt 0.853597 0.912230 0.434506 +vt 0.853596 0.895992 0.496550 +vt 0.902572 0.895830 0.364954 +vt 0.879642 0.912584 0.338668 +vt 0.929987 0.895981 0.329580 +vt 0.902316 0.912535 0.236296 +vt 0.958102 0.896010 0.246817 +vt 0.981932 0.895893 0.312584 +vt 0.957975 0.917567 0.150619 +vt 0.787043 0.895875 0.448873 +vt 0.981896 0.911588 0.298991 +vt 0.809717 0.895775 0.484391 +vt 0.787128 0.912600 0.466417 +vt 0.830892 0.895951 0.496090 +vt 0.809812 0.912631 0.461023 +vt 0.830808 0.912455 0.448006 +vt 0.853472 0.932609 0.424491 +vt 0.879533 0.932616 0.319577 +vt 0.902265 0.932623 0.244566 +vt 0.929781 0.932761 0.209395 +vt 0.957665 0.932784 0.243498 +vt 0.981769 0.932680 0.327800 +vt 0.786883 0.932341 0.417357 +vt 0.809851 0.932433 0.433483 +vt 0.830901 0.932571 0.414463 +vt 0.879488 0.952266 0.284789 +vt 0.910552 0.562843 0.382286 +vt 0.910468 0.709731 0.187386 +vt 0.910738 0.623934 0.496074 +vt 0.762277 0.709440 0.172528 +vt 0.910729 0.646655 0.436955 +vt 0.985925 0.624401 0.312578 +vt 0.910694 0.661524 0.414448 +vt 0.853739 0.952293 0.353511 +vt 0.830758 0.952371 0.331311 +vt 0.809589 0.952321 0.337726 +vt 0.786885 0.952372 0.315146 +vt 0.981856 0.952347 0.275521 +vt 0.552049 0.955227 0.384362 +vt 0.565377 0.941824 0.436792 +vt 0.568678 0.912686 0.482378 +vt 0.744137 0.649303 -0.032052 +vt 0.735575 0.729396 -0.019305 +vt 0.957791 0.952329 0.227023 +vt 0.638491 0.700389 -0.374303 +vt 0.700715 0.670612 -0.430405 +vt 0.701361 0.705944 -0.410255 +vt 0.733599 0.703977 -0.237072 +vt 0.665021 0.703605 -0.446037 +vt 0.526038 0.904745 0.655352 +vt 0.525456 0.965231 0.624581 +vt 0.541262 0.974357 0.330246 +vt 0.902319 0.952450 0.229364 +vt 0.929684 0.855005 0.462476 +vt 0.957874 0.877706 0.373140 +vt 0.540156 0.965532 0.474889 +vt 0.553596 0.912215 0.484488 +vt 0.546187 0.901372 0.461804 +vt 0.534979 0.916416 0.675471 +vt 0.613550 0.878007 0.442512 +vt 0.571309 0.885652 0.454442 +vt 0.579476 0.872720 0.400287 +vt 0.752120 0.666507 -0.029994 +vt 0.732827 0.740277 0.200495 +vt 0.699632 0.742017 0.058373 +vt 0.644731 0.751542 -0.132132 +vt 0.667395 0.741246 -0.172462 +vt 0.579449 0.848278 0.352583 +vt 0.545756 0.864941 0.377813 +vt 0.545434 0.837310 0.340355 +vt 0.910681 0.681566 0.331298 +vt 0.762192 0.624401 0.312578 +vt 0.126816 0.475071 0.116572 +vt 0.910323 0.586153 0.503572 +vt 0.185199 0.351546 0.039683 +vt 0.985937 0.640596 0.298988 +vt 0.910642 0.607079 0.488513 +vt 0.762165 0.640615 0.298988 +vt 0.985772 0.661334 0.327792 +vt 0.762118 0.661334 0.327792 +vt 0.985852 0.681933 0.275508 +vt 0.762198 0.681933 0.275508 +vt 0.985630 0.586298 0.304942 +vt 0.762240 0.584807 0.304942 +vt 0.985900 0.607087 0.294844 +vt 0.121787 0.468931 0.109721 +vt 0.762307 0.607318 0.294844 +vt 0.985786 0.562819 0.475576 +vt 0.122663 0.472268 0.125737 +vt 0.116542 0.467908 0.019972 +vt 0.124955 0.477815 0.005221 +vt 0.155200 0.454668 0.340821 +vt 0.158357 0.434961 -0.017879 +vt 0.209389 0.332110 0.103886 +vt 0.149530 0.447324 0.301268 +vt 0.139376 0.446592 0.099265 +vt 0.139174 0.343944 0.131239 +vt 0.153961 0.461349 0.186276 +vt 0.139451 0.454674 0.256498 +vt 0.123780 0.331402 0.321258 +vt 0.129964 0.333391 0.149758 +vt 0.650351 0.736887 -0.247650 +vt 0.734228 0.525195 0.304447 +vt 0.751568 0.525663 0.500000 +vt 0.526934 0.974602 0.436071 +vt 0.592529 0.981983 0.105908 +vt 0.602911 0.964484 0.126643 +vt 0.524422 0.755667 0.385575 +vt 0.679476 0.524448 -0.100882 +vt 0.137725 0.327984 0.156470 +vt 0.578730 0.756050 0.356974 +vt 0.623963 0.755929 0.396294 +vt 0.751595 0.549807 0.491432 +vt 0.706510 0.535796 0.074846 +vt 0.547564 0.755871 0.338127 +vt 0.579118 0.774136 0.365899 +vt 0.665672 0.571815 -0.046977 +vt 0.982101 0.855746 0.304963 +vt 0.787055 0.855283 0.411650 +vt 0.809529 0.855159 0.491615 +vt 0.830741 0.855080 0.503581 +vt 0.853719 0.855237 0.572429 +vt 0.879188 0.855051 0.501325 +vt 0.902299 0.855069 0.429101 +vt 0.879382 0.877535 0.451487 +vt 0.853621 0.877614 0.496084 +vt 0.830803 0.877576 0.488526 +vt 0.809738 0.877644 0.468334 +vt 0.786953 0.877705 0.388687 +vt 0.982063 0.877592 0.294855 +vt 0.929713 0.877735 0.330867 +vt 0.902595 0.877694 0.390833 +vt 0.547085 0.775718 0.324108 +vt 0.700339 0.573715 0.031967 +vt 0.731826 0.574861 0.256910 +vt 0.751334 0.575881 0.490626 +vt 0.720235 0.750000 0.195896 +vt 0.525979 0.776289 0.377870 +vt 0.612292 0.771063 0.413994 +vt 0.612286 0.810213 0.451666 +vt 0.667630 0.751481 -0.061474 +vt 0.145507 0.459808 0.280679 +vt 0.128716 0.463575 0.220109 +vt 0.131683 0.329585 0.163832 +vt 0.135437 0.323268 0.324999 +vt 0.117656 0.474644 -0.004315 +vt 0.145041 0.442955 0.073325 +vt 0.159161 0.458185 0.122441 +vt 0.148148 0.351434 0.163398 +vt 0.134185 0.449859 0.083419 +vt 0.149092 0.464178 0.125231 +vt 0.127215 0.325628 0.295624 +vt 0.184501 0.331469 0.224409 +vt 0.167211 0.340336 0.228792 +vt 0.178577 0.327602 0.266429 +vt 0.123740 0.458447 0.044533 +vt 0.136219 0.473300 0.098328 +vt 0.155218 0.333401 0.168530 +vt 0.194573 0.471109 0.441378 +vt 0.150866 0.325738 0.195791 +vt 0.157189 0.320968 0.211016 +vt 0.175744 0.454169 0.396443 +vt 0.171596 0.450570 0.255599 +vt 0.188829 0.466315 0.422467 +vt 0.181993 0.460650 0.422198 +vt 0.142994 0.323600 0.363339 +vt 0.151049 0.321621 0.213649 +vt 0.152318 0.316097 0.380956 +vt 0.186494 0.463901 0.272893 +vt 0.173820 0.343726 0.168985 +vt 0.202086 0.476986 0.405102 +vt 0.198995 0.474258 0.291918 +vt 0.209857 0.482693 0.445583 +vt 0.162985 0.337600 0.193489 +vt 0.158056 0.463876 0.393420 +vt 0.166002 0.471111 0.407036 +vt 0.165893 0.323907 0.242752 +vt 0.148008 0.481968 0.269617 +vt 0.144792 0.318008 0.376143 +vt 0.131406 0.481824 0.194888 +vt 0.126804 0.481829 0.085833 +vt 0.136182 0.486438 0.168289 +vt 0.147047 0.328750 0.392628 +vt 0.170432 0.468132 0.389120 +vt 0.135460 0.489855 0.090140 +vt 0.191089 0.321087 0.296644 +vt 0.131570 0.484886 0.168528 +vt 0.173820 0.323986 0.202162 +vt 0.162461 0.461586 0.382792 +vt 0.153145 0.467045 0.305668 +vt 0.167664 0.317353 0.200820 +vt 0.172138 0.312782 0.352343 +vt 0.161435 0.474300 0.319980 +vt 0.208822 0.323609 0.352693 +vt 0.138816 0.475613 0.264413 +vt 0.128739 0.486524 0.056322 +vt 0.195495 0.323430 0.224125 +vt 0.197568 0.316917 0.495238 +vt 0.179365 0.481003 0.468234 +vt 0.186767 0.318216 0.298139 +vt 0.172300 0.475737 0.435533 +vt 0.180061 0.309207 0.429605 +vt 0.160753 0.315670 0.351682 +vt 0.164697 0.489405 0.349080 +vt 0.177197 0.313728 0.269392 +vt 0.168397 0.314451 0.225353 +vt 0.171225 0.307591 0.499999 +vt 0.154420 0.495449 0.273970 +vt 0.203289 0.320096 0.447395 +vt 0.190371 0.313002 0.481950 +vt 0.578925 0.750160 0.102277 +vt 0.579137 0.809888 0.354232 +vt 0.526752 0.809469 0.363634 +vt 0.929844 0.952393 0.208685 +vt 0.546905 0.809557 0.311450 +vt 0.580055 0.982024 0.149130 +vt 0.541569 0.981201 0.251699 +vt 0.545088 0.594539 0.245847 +vt 0.525775 0.590004 0.489990 +vt 0.526023 0.620045 0.428888 +vt 0.576699 0.595738 0.042570 +vt 0.547023 0.623271 0.110115 +vt 0.576065 0.627014 -0.232612 +vt 0.611959 0.595048 -0.085356 +vt 0.611255 0.625766 -0.288621 +vt 0.638489 0.593614 -0.133230 +vt 0.639057 0.980912 0.006366 +vt 0.730838 0.825150 0.318511 +vt 0.665709 0.846413 0.422168 +vt 0.698554 0.832567 0.336691 +vt 0.638490 0.623460 -0.249176 +vt 0.611591 0.672569 -0.500000 +vt 0.664906 0.861424 0.422891 +vt 0.639055 0.863204 0.483028 +vt 0.750580 0.828784 0.367854 +vt 0.546497 0.740498 0.200394 +vt 0.929756 0.834448 0.566160 +vt 0.576555 0.728543 -0.229793 +vt 0.957905 0.834357 0.456447 +vt 0.540840 0.668671 -0.265919 +vt 0.751323 0.858192 0.442404 +vt 0.966318 0.562955 0.667053 +vt 0.666907 0.891191 0.461375 +vt 0.672679 0.913411 0.458981 +vt 0.526390 0.645008 0.319861 +vt 0.339181 0.399006 0.119067 +vt 0.325031 0.378583 0.249378 +vt 0.310072 0.367736 0.056031 +vt 0.294143 0.359262 -0.010286 +vt 0.292257 0.458386 0.151084 +vt 0.338557 0.416515 0.251479 +vt 0.360799 0.380761 0.150102 +vt 0.344232 0.370277 0.118709 +vt 0.324114 0.352977 0.026034 +vt 0.335759 0.341293 0.049329 +vt 0.367099 0.440023 0.373155 +vt 0.363223 0.402902 0.119826 +vt 0.363600 0.412392 0.210649 +vt 0.368983 0.390678 0.118739 +vt 0.366639 0.423031 0.251141 +vt 0.380268 0.392235 0.164887 +vt 0.406087 0.404007 0.312024 +vt 0.406703 0.411946 -0.002894 +vt 0.406479 0.397443 0.321791 +vt 0.406690 0.418060 -0.036622 +vt 0.406770 0.401280 0.328191 +vt 0.413328 0.393239 0.237281 +vt 0.419263 0.408486 -0.125919 +vt 0.348310 0.402276 0.146681 +vt 0.413153 0.422349 -0.183665 +vt 0.343087 0.393031 0.244091 +vt 0.361279 0.387538 0.160307 +vt 0.365258 0.395967 0.193755 +vt 0.406980 0.414582 -0.008689 +vt 0.340082 0.407378 -0.069822 +vt 0.363057 0.407429 -0.054852 +vt 0.369717 0.382497 -0.092023 +vt 0.372887 0.386153 -0.132378 +vt 0.347962 0.414319 0.249403 +vt 0.384068 0.386701 -0.055086 +vt 0.345088 0.422740 0.330812 +vt 0.365033 0.417701 0.269150 +vt 0.377271 0.403646 0.138294 +vt 0.378047 0.397131 0.167386 +vt 0.353842 0.425537 0.271138 +vt 0.393073 0.393820 0.309752 +vt 0.360975 0.431026 0.028856 +vt 0.392260 0.404404 0.247341 +vt 0.418781 0.400575 0.227765 +vt 0.348871 0.395143 0.222077 +vt 0.368022 0.428635 0.116710 +vt 0.368368 0.384901 -0.067860 +vt 0.397804 0.388522 0.088549 +vt 0.378458 0.421630 0.149765 +vt 0.392287 0.398861 0.313781 +vt 0.370157 0.375049 0.126584 +vt 0.360408 0.364346 0.137819 +vt 0.380991 0.427661 0.067688 +vt 0.371901 0.356516 0.082926 +vt 0.377690 0.411466 0.159253 +vt 0.377874 0.417015 0.202714 +vt 0.388066 0.362511 0.055391 +vt 0.377017 0.353637 0.043035 +vt 0.377239 0.407700 -0.034084 +vt 0.399278 0.353319 0.183147 +vt 0.392304 0.419787 0.078960 +vt 0.391993 0.411311 0.076664 +vt 0.406714 0.345785 0.237720 +vt 0.401637 0.341391 0.250306 +vt 0.417962 0.415870 -0.155697 +vt 0.413371 0.347975 0.128939 +vt 0.405696 0.342686 0.244081 +vt 0.407416 0.337351 0.143829 +vt 0.348249 0.407328 -0.069586 +vt 0.378548 0.377766 -0.104954 +vt 0.383098 0.365972 0.086578 +vt 0.350898 0.420154 0.306602 +vt 0.394511 0.367950 -0.076575 +vt 0.360631 0.427443 0.004125 +vt 0.396975 0.425908 -0.050047 +vt 0.392224 0.415930 0.102004 +vt 0.391666 0.359975 0.108796 +vt 0.392388 0.407607 -0.090073 +vt 0.412843 0.340004 0.154509 +vt 0.389620 0.370602 -0.089125 +vt 0.360964 0.447743 0.352318 +vt 0.399109 0.364668 -0.040553 +vt 0.379233 0.457321 0.292209 +vt 0.405662 0.359877 0.039462 +vt 0.399723 0.338007 0.036035 +vt 0.385451 0.451132 0.301605 +vt 0.397132 0.468607 0.183592 +vt 0.404495 0.472970 0.080670 +vt 0.346464 0.350593 0.106625 +vt 0.409035 0.467927 0.097532 +vt 0.407657 0.471241 0.097626 +vt 0.413814 0.467906 0.029855 +vt 0.407326 0.476886 -0.012230 +vt 0.375742 0.454497 0.307984 +vt 0.371043 0.435959 0.098474 +vt 0.321479 0.332446 0.006472 +vt 0.380613 0.448202 0.315321 +vt 0.390487 0.446284 0.152303 +vt 0.390469 0.344096 0.173574 +vt 0.376325 0.460900 0.168678 +vt 0.390378 0.454462 0.258845 +vt 0.407518 0.332838 0.109886 +vt 0.400164 0.333735 0.236580 +vt 0.392121 0.328853 0.233818 +vt 0.384408 0.460536 0.244448 +vt 0.401753 0.462928 0.203372 +vt 0.398634 0.329554 0.237197 +vt 0.395708 0.323559 0.109864 +vt 0.412613 0.473830 -0.006939 +vt 0.384762 0.443462 0.143587 +vt 0.371908 0.458002 0.126856 +vt 0.381912 0.350646 0.092276 +vt 0.395534 0.449838 0.130449 +vt 0.381479 0.463429 0.113431 +vt 0.406313 0.326591 0.141936 +vt 0.345614 0.332958 0.030712 +vt 0.361941 0.339913 0.016385 +vt 0.351808 0.328156 0.028045 +vt 0.408283 0.458940 0.079003 +vt 0.395000 0.472118 0.065935 +vt 0.377284 0.332407 0.146952 +vt 0.335569 0.470718 0.297539 +vt 0.381620 0.325070 0.169639 +vt 0.375239 0.320051 0.156415 +vt 0.354536 0.454476 0.352439 +vt 0.357857 0.450769 0.252452 +vt 0.339838 0.467321 0.316243 +vt 0.348974 0.460366 0.331640 +vt 0.387690 0.323374 0.044545 +vt 0.380413 0.321208 0.167016 +vt 0.378333 0.316177 0.046499 +vt 0.344635 0.464697 0.204647 +vt 0.357110 0.343055 0.042255 +vt 0.327219 0.476933 0.256028 +vt 0.331736 0.474237 0.171244 +vt 0.320996 0.482995 0.258359 +vt 0.367663 0.337212 0.074952 +vt 0.372440 0.463597 0.324903 +vt 0.364633 0.470107 0.291802 +vt 0.365632 0.322725 0.087726 +vt 0.383428 0.481195 0.158258 +vt 0.385244 0.318063 0.048165 +vt 0.402463 0.481723 0.108862 +vt 0.407834 0.481860 0.029648 +vt 0.398579 0.486029 0.068162 +vt 0.385244 0.327436 -0.015975 +vt 0.360743 0.467773 0.286341 +vt 0.399292 0.489781 -0.003686 +vt 0.338648 0.320692 -0.018453 +vt 0.402003 0.484252 0.077587 +vt 0.357708 0.324400 0.070186 +vt 0.367262 0.460480 0.322422 +vt 0.377342 0.467083 0.246075 +vt 0.362484 0.317875 0.111396 +vt 0.357848 0.312895 0.015434 +vt 0.370273 0.472820 0.218084 +vt 0.321592 0.323792 -0.150859 +vt 0.393022 0.474045 0.188675 +vt 0.407060 0.487664 -0.012739 +vt 0.332325 0.323986 0.013711 +vt 0.332840 0.316645 -0.175895 +vt 0.352754 0.480543 0.289673 +vt 0.343402 0.317142 0.002219 +vt 0.357722 0.475827 0.301512 +vt 0.346776 0.309970 -0.068889 +vt 0.369037 0.314726 -0.000362 +vt 0.365606 0.489357 0.177516 +vt 0.350716 0.314515 0.059049 +vt 0.361636 0.314716 0.103174 +vt 0.360751 0.307750 -0.096589 +vt 0.377803 0.494414 0.105457 +vt 0.326658 0.320067 -0.164547 +vt 0.338941 0.313701 -0.144956 +vt 0.365894 0.319180 -0.064740 +vt 0.368348 0.311153 0.008223 +vt 0.314990 0.328488 -0.214819 +vt 0.315931 0.337814 0.032052 +vt 0.308399 0.332764 -0.204121 +vt 0.280166 0.353807 -0.241669 +vt 0.298402 0.339420 -0.195123 +vt 0.310395 0.344749 0.062857 +vt 0.383473 0.489791 0.112595 +vt 0.347873 0.477996 0.271464 +vt 0.357629 0.471031 0.124351 +vt 0.311034 0.399031 0.034329 +vt 0.271594 0.363378 -0.222116 +vt 0.389442 0.489558 0.021937 +vt 0.380641 0.499887 -0.000747 +vt 0.382487 0.493164 0.103380 +vt 0.347801 0.483637 0.131699 +vt 0.353326 0.473639 0.283143 +vt 0.362033 0.473418 0.157727 +vt 0.357155 0.483224 0.237063 +vt 0.363336 0.478534 0.254480 +vt 0.375869 0.484838 0.195017 +vt 0.388547 0.495896 0.013256 +vt 0.343619 0.481315 0.068095 +vt 0.353192 0.486285 0.086963 +vt 0.367399 0.476049 0.108738 +vt 0.380829 0.483297 0.067685 +vt 0.316454 0.479433 0.270234 +vt 0.344411 0.486172 0.297366 +vt 0.336184 0.490896 0.278639 +vt 0.349141 0.497797 0.164537 +vt 0.360306 0.494566 0.086138 +vt 0.356349 0.500773 0.077410 +vt 0.811054 0.709429 0.193080 +vt 0.932341 0.709911 0.202914 +vt 0.887357 0.709517 0.172209 +vt 0.887411 0.562968 0.483886 +vt 0.862713 0.562817 0.433931 +vt 0.837079 0.562721 0.437620 +vt 0.954447 0.571958 0.485231 +vt 0.313353 0.489709 -0.020726 +vt 0.301773 0.389518 0.181476 +vt 0.293076 0.380644 0.144103 +vt 0.282940 0.368139 -0.004860 +vt 0.329107 0.487954 0.251267 +vt 0.932145 0.562902 0.423429 +vt 0.811112 0.641380 0.228150 +vt 0.862771 0.709694 0.190321 +vt 0.837071 0.709554 0.196240 +vt 0.785992 0.709492 0.175691 +vt 0.985759 0.709440 0.172528 +vt 0.954460 0.709762 0.197572 +vt 0.862773 0.624387 0.428405 +vt 0.887379 0.641090 0.434492 +vt 0.887214 0.623961 0.496537 +vt 0.836567 0.624240 0.364967 +vt 0.862702 0.641416 0.338671 +vt 0.811626 0.624413 0.329575 +vt 0.836753 0.648035 0.225673 +vt 0.786085 0.624305 0.246779 +vt 0.786133 0.640602 0.150817 +vt 0.954606 0.624021 0.448883 +vt 0.931932 0.624433 0.484388 +vt 0.954770 0.641318 0.466426 +vt 0.932059 0.641476 0.461024 +vt 0.887539 0.661341 0.424473 +vt 0.862456 0.661287 0.319579 +vt 0.837094 0.661492 0.244576 +vt 0.810943 0.661257 0.209378 +vt 0.786199 0.661286 0.243468 +vt 0.954339 0.661528 0.417364 +vt 0.932329 0.661327 0.433481 +vt 0.862757 0.681649 0.284787 +vt 0.887470 0.681563 0.353493 +vt 0.932045 0.681845 0.337725 +vt 0.954335 0.681795 0.315148 +vt 0.786260 0.681900 0.226995 +vt 0.837140 0.681809 0.229372 +vt 0.811582 0.586145 0.462447 +vt 0.786229 0.607170 0.373092 +vt 0.954400 0.586197 0.411661 +vt 0.932220 0.586345 0.491613 +vt 0.887232 0.586190 0.572420 +vt 0.862494 0.586194 0.501338 +vt 0.639055 0.890936 0.500000 +vt 0.639055 0.914544 0.448913 +vt 0.678719 0.942151 0.382624 +vt 0.526366 0.679122 -0.200186 +vt 0.525430 0.705940 -0.163326 +vt 0.837020 0.586199 0.429111 +vt 0.982047 0.834352 0.475598 +vt 0.530557 0.723823 0.055132 +vt 0.532839 0.649303 -0.032210 +vt 0.541401 0.729396 -0.019449 +vt 0.612018 0.703605 -0.446072 +vt 0.639055 0.942090 0.326378 +vt 0.639055 0.849045 0.466991 +vt 0.698034 0.966104 0.195032 +vt 0.862761 0.607087 0.451495 +vt 0.887349 0.607350 0.496075 +vt 0.731155 0.892075 0.433475 +vt 0.750417 0.882629 0.509260 +vt 0.741845 0.949031 0.554049 +vt 0.733178 0.943826 0.467960 +vt 0.723169 0.930739 0.470749 +vt 0.751623 0.948285 0.627052 +vt 0.725563 0.955238 0.384386 +vt 0.577343 0.742017 0.058278 +vt 0.616926 0.751511 -0.082918 +vt 0.609640 0.741246 -0.172519 +vt 0.626629 0.736887 -0.247669 +vt 0.712229 0.941832 0.436790 +vt 0.708897 0.912697 0.482363 +vt 0.751514 0.904761 0.655419 +vt 0.166517 0.320215 0.411014 +vt 0.163529 0.310504 0.351003 +vt 0.216683 0.328323 0.401787 +vt 0.215472 0.336228 0.023514 +vt 0.222287 0.332105 0.349128 +vt 0.247535 0.352960 0.171443 +vt 0.229986 0.337379 0.279977 +vt 0.221736 0.342106 -0.073395 +vt 0.149615 0.490902 0.255226 +vt 0.183340 0.478677 0.436306 +vt 0.173185 0.471519 0.196137 +vt 0.217047 0.399327 -0.316566 +vt 0.256616 0.363023 0.084084 +vt 0.143331 0.492893 0.134280 +vt 0.152477 0.499184 0.154561 +vt 0.149702 0.494252 0.261352 +vt 0.183613 0.484099 0.276610 +vt 0.176602 0.473715 0.405683 +vt 0.168861 0.473855 0.246757 +vt 0.174676 0.484426 0.409964 +vt 0.167098 0.478880 0.387733 +vt 0.155120 0.485923 0.340296 +vt 0.145527 0.497427 0.149020 +vt 0.187784 0.481947 0.188006 +vt 0.178493 0.487010 0.229231 +vt 0.163774 0.476766 0.193952 +vt 0.150900 0.484407 0.167998 +vt 0.214249 0.478935 0.455023 +vt 0.187021 0.486320 0.492237 +vt 0.195985 0.490567 0.500001 +vt 0.183577 0.498031 0.378203 +vt 0.171949 0.495568 0.260509 +vt 0.176709 0.500701 0.273772 +vt 0.214744 0.486873 0.122023 +vt 0.223822 0.392129 -0.486948 +vt 0.236655 0.379012 -0.430293 +vt 0.247297 0.367748 -0.190759 +vt 0.200161 0.488316 0.457370 +vt 0.190596 0.483960 0.452136 +vt 0.200167 0.496362 0.286129 +vt 0.182605 0.489387 0.434134 +vt 0.191366 0.493042 0.437282 +vt 0.185918 0.502620 0.210569 +vt 0.168887 0.495518 0.120859 +vt 0.174822 0.493425 0.370561 +vt 0.175750 0.505335 0.291610 +vt 0.172740 0.498912 0.289153 +vt 0.205037 0.493643 0.231049 +vt 0.195158 0.499126 0.270831 +vt 0.170497 0.492253 0.189165 +vt 0.167531 0.501559 0.120078 +vt 0.218545 0.484645 0.178542 +vt 0.225852 0.479482 0.117919 +vt 0.244768 0.463116 -0.086641 +vt 0.236477 0.471895 0.038309 +vt 0.229359 0.467583 0.356714 +vt 0.221052 0.474421 0.412062 +vt 0.173852 0.429340 0.279010 +vt 0.255468 0.451073 -0.187213 +vt 0.171991 0.443399 0.418658 +vt 0.179421 0.451221 0.436680 +vt 0.175368 0.448667 0.349521 +vt 0.185988 0.458619 0.459120 +vt 0.191931 0.463263 0.471704 +vt 0.188692 0.460936 0.384859 +vt 0.199115 0.468198 0.486464 +vt 0.576268 0.670612 -0.430501 +vt 0.575621 0.705944 -0.410352 +vt 0.543381 0.703977 -0.237219 +vt 0.752150 0.962653 0.624644 +vt 0.202935 0.471222 0.414103 +vt 0.206449 0.474252 0.450462 +vt 0.185617 0.440925 0.368010 +vt 0.734168 0.973372 0.330289 +vt 0.739572 0.960994 0.474941 +vt 0.723980 0.912226 0.484488 +vt 0.982126 0.979805 0.172541 +vt 0.199933 0.453824 0.483871 +vt 0.211962 0.465122 0.437303 +vt 0.219585 0.460469 0.472743 +vt 0.206518 0.447886 0.487640 +vt 0.731370 0.901392 0.461833 +vt 0.742574 0.916432 0.675540 +vt 0.524856 0.666507 -0.030165 +vt 0.757219 0.895844 0.312584 +vt 0.932300 0.607393 0.468329 +vt 0.954776 0.607073 0.388697 +vt 0.664040 0.878007 0.442496 +vt 0.706283 0.885652 0.454421 +vt 0.757177 0.911613 0.298991 +vt 0.193637 0.434549 0.356109 +vt 0.810937 0.607386 0.330860 +vt 0.837076 0.607114 0.390847 +vt 0.811000 0.681765 0.208670 +vt 0.811098 0.562715 0.566120 +vt 0.786197 0.562703 0.456386 +vt 0.762310 0.562819 0.475576 +vt 0.698116 0.872720 0.400269 +vt 0.571552 0.524697 0.060501 +vt 0.525401 0.525663 0.499865 +vt 0.624407 0.524323 -0.217922 +vt 0.698144 0.848278 0.352571 +vt 0.639055 0.879078 0.492706 +vt 0.731813 0.864957 0.377820 +vt 0.638490 0.524339 -0.248683 +vt 0.168513 0.435979 0.369950 +vt 0.205967 0.427795 0.259728 +vt 0.230501 0.451752 0.380796 +vt 0.218144 0.438261 0.402949 +vt 0.231058 0.428505 0.288660 +vt 0.212862 0.408193 -0.292951 +vt 0.245025 0.442221 0.138390 +vt 0.338371 0.483202 0.272666 +vt 0.329131 0.497411 0.087469 +vt 0.349101 0.488646 0.244378 +vt 0.341068 0.493077 0.223283 +vt 0.345870 0.502524 0.016291 +vt 0.367164 0.496125 -0.023887 +vt 0.356179 0.492408 0.181267 +vt 0.359057 0.505419 0.077862 +vt 0.361537 0.499141 0.095993 +vt 0.323563 0.494420 0.050397 +vt 0.334420 0.499596 0.070028 +vt 0.361600 0.491199 0.040877 +vt 0.367777 0.499825 -0.038115 +vt 0.306397 0.485664 0.030134 +vt 0.298556 0.481018 -0.008004 +vt 0.280400 0.464430 -0.102477 +vt 0.288721 0.474630 -0.058191 +vt 0.300554 0.466978 0.224128 +vt 0.309145 0.474129 0.252743 +vt 0.354265 0.430161 0.350950 +vt 0.273037 0.454273 -0.152282 +vt 0.355473 0.445493 0.397154 +vt 0.349367 0.451159 0.390716 +vt 0.353809 0.449231 0.330505 +vt 0.343425 0.457770 0.370553 +vt 0.336455 0.464355 0.358514 +vt 0.341125 0.461427 0.301913 +vt 0.331742 0.468413 0.338408 +vt 0.327572 0.471733 0.273044 +vt 0.323051 0.475237 0.296516 +vt 0.343021 0.441837 0.367880 +vt 0.329254 0.454898 0.398996 +vt 0.318413 0.464663 0.311133 +vt 0.311458 0.457831 0.353847 +vt 0.322031 0.447980 0.427060 +vt 0.332539 0.436581 0.380525 +vt 0.360913 0.436351 0.395074 +vt 0.323946 0.430822 0.323685 +vt 0.300970 0.450986 0.303409 +vt 0.312465 0.440409 0.392877 +vt 0.297332 0.431520 0.320125 +vt 0.309604 0.417863 0.214506 +vt 0.312235 0.407451 -0.039012 +vt 0.732136 0.837324 0.340374 +vt 0.752132 0.973461 0.436119 +vt 0.660452 0.981529 0.045700 +vt 0.639058 0.964463 0.123458 +vt 0.674697 0.964490 0.126649 +vt 0.754030 0.755688 0.385616 +vt 0.698520 0.756050 0.356966 +vt 0.674809 0.756052 0.373023 +vt 0.639087 0.755767 0.418114 +vt 0.730012 0.755882 0.338143 +vt 0.698512 0.774136 0.365888 +vt 0.730551 0.775733 0.324124 +vt 0.751492 0.776309 0.377912 +vt 0.639071 0.773584 0.450287 +vt 0.639055 0.810034 0.482468 +vt 0.664726 0.810213 0.451652 +vt 0.698456 0.809888 0.354220 +vt 0.750803 0.809489 0.363675 +vt 0.730665 0.809571 0.311469 +vt 0.697551 0.982030 0.149159 +vt 0.752471 0.982440 0.316203 +vt 0.726965 0.982091 0.251734 +vt 0.525374 0.549807 0.491302 +vt 0.546579 0.542310 0.242897 +vt 0.611112 0.537233 -0.093649 +vt 0.638489 0.537739 -0.115203 +vt 0.638489 0.569524 -0.087679 +vt 0.611362 0.571815 -0.047018 +vt 0.576637 0.573715 0.031891 +vt 0.545146 0.574861 0.256793 +vt 0.525635 0.575881 0.490502 +vt 0.611205 0.751481 -0.061512 +vt 0.757155 0.932510 0.327800 +vt 0.757118 0.952348 0.275521 +vt 0.757180 0.855196 0.304963 +vt 0.757214 0.877750 0.294855 +vt 0.757238 0.834338 0.475598 +vt 0.602683 0.756052 0.373034 +vt 0.665298 0.771063 0.413980 +vt 0.653881 0.755929 0.396287 +vt 0.665922 0.537231 -0.093628 +vt 0.652598 0.524323 -0.217913 +vt 0.597538 0.524448 -0.100909 +vt 0.730393 0.542310 0.243019 +vt 0.705506 0.524697 0.061009 +vt 0.570466 0.535796 0.074758 +vt 0.542744 0.525195 0.304322 +vt 0.661152 0.751511 -0.082886 +vt 0.632246 0.751542 -0.132138 +vt 0.528559 0.981076 0.316279 +vt 0.735460 0.749474 0.255185 +vt 0.557530 0.749852 0.195867 +vt 0.557529 0.749853 0.357666 +vt 0.617184 0.981527 0.045693 +vt 0.684915 0.981988 0.105949 +vt 0.732782 0.740304 0.436071 +vt 0.544090 0.749815 0.316203 +vt 0.929900 0.918417 0.213621 +vt 0.853577 0.917444 0.425395 +vt 0.879636 0.918985 0.325256 +vt 0.902278 0.919128 0.225663 +vt 0.958042 0.912018 0.150847 +vt 0.981870 0.917334 0.301245 +vt 0.757184 0.917350 0.301245 +vt 0.787128 0.918367 0.458170 +vt 0.809830 0.918262 0.453200 +vt 0.830814 0.917703 0.436969 +vt 0.811023 0.647288 0.213611 +vt 0.887424 0.646392 0.425379 +vt 0.862637 0.647798 0.325258 +vt 0.836632 0.641395 0.236305 +vt 0.786150 0.646182 0.150591 +vt 0.762153 0.646386 0.301241 +vt 0.985764 0.646404 0.301241 +vt 0.954700 0.647327 0.458178 +vt 0.932125 0.647136 0.453201 +vt 0.910736 0.641293 0.447992 +vt 0.219012 0.417639 0.066406 +vt 0.285203 0.443581 0.123587 +vt 0.216657 0.399264 0.509401 +vt 0.256732 0.363078 0.509728 +vt 0.230998 0.428562 0.475878 +vt 0.212915 0.408251 0.508980 +vt 0.223816 0.391914 0.487613 +vt 0.236563 0.379025 0.470765 +vt 0.247775 0.367590 0.536310 +vt 0.245050 0.442231 0.472495 +vt 0.311516 0.398574 0.509346 +vt 0.272986 0.454208 0.509720 +vt 0.296776 0.432045 0.475996 +vt 0.309406 0.418091 0.503214 +vt 0.312077 0.408087 0.509025 +vt 0.302345 0.389174 0.487490 +vt 0.293475 0.380492 0.470649 +vt 0.282957 0.368715 0.536260 +vt 0.282854 0.400890 0.475163 +vt 0.268601 0.437077 0.476995 +vt 0.277770 0.421635 0.487881 +vt 0.280018 0.412868 0.507165 +vt 0.281352 0.406968 0.476617 +vt 0.281305 0.393381 0.499051 +vt 0.240180 0.403111 0.475209 +vt 0.259427 0.375786 0.477023 +vt 0.245373 0.421345 0.487763 +vt 0.240915 0.413883 0.507035 +vt 0.218593 0.417267 0.503099 +vt 0.239486 0.408092 0.476544 +vt 0.243802 0.396308 0.499173 +vt 0.276983 0.387661 0.520339 +vt 0.272654 0.382048 0.519340 +vt 0.272845 0.429206 0.448296 +vt 0.245736 0.391040 0.520465 +vt 0.284626 0.443593 0.472543 +vt 0.252159 0.382835 0.519415 +vt 0.252040 0.429346 0.448261 +vt 0.255475 0.451088 0.509728 +vt 0.260707 0.436934 0.477023 +vt 0.271836 0.362927 0.509720 +vt 0.266734 0.375722 0.476995 +vt 0.067165 0.798912 0.549747 +vt 0.087321 0.914337 0.462712 +vt 0.142750 0.795677 0.449486 +vt 0.130970 0.918811 0.363351 +vt 0.026739 0.977697 0.078417 +vt 0.184806 0.803207 0.460588 +vt 0.042048 0.690385 0.413466 +vt 0.038955 0.742751 0.492039 +vt 0.044302 0.888188 0.480721 +vt 0.088984 0.877742 0.521069 +vt 0.201497 0.764511 0.440620 +vt 0.230036 0.746958 0.416572 +vt 0.203368 0.823061 0.450246 +vt 0.230884 0.848163 0.403476 +vt 0.242317 0.741449 0.486806 +vt 0.199663 0.747820 0.445221 +vt 0.242461 0.750087 0.488727 +vt 0.213012 0.600898 0.352166 +vt 0.200184 0.581246 0.241899 +vt 0.173726 0.600113 0.281231 +vt 0.153045 0.643054 0.345246 +vt 0.079774 0.652335 0.402256 +vt 0.241285 0.731778 0.457578 +vt 0.235191 0.739510 0.460881 +vt 0.230315 0.592726 0.350380 +vt 0.185420 0.773150 0.449660 +vt 0.235492 0.770785 0.405293 +vt 0.216208 0.748855 0.426255 +vt 0.193402 0.815978 0.458166 +vt 0.242937 0.807477 0.406656 +vt 0.234865 0.745850 0.453500 +vt 0.245411 0.775190 0.438592 +vt 0.205276 0.843337 0.420398 +vt 0.232998 0.927281 0.318201 +vt 0.178887 0.866739 0.420419 +vt 0.229328 0.874042 0.368105 +vt 0.230123 0.673851 0.426426 +vt 0.216428 0.621037 0.416212 +vt 0.235764 0.730028 0.449016 +vt 0.240331 0.770397 0.418976 +vt 0.202080 0.872878 0.398640 +vt 0.230839 0.822368 0.430002 +vt 0.235093 0.609016 0.408661 +vt 0.079193 0.673785 0.413171 +vt 0.058418 0.684650 0.419616 +vt 0.038888 0.807837 0.515956 +vt 0.054905 0.802294 0.534931 +vt 0.054527 0.737979 0.488195 +vt 0.051854 0.930894 0.388903 +vt 0.066756 0.881626 0.522999 +vt 0.140159 0.683413 0.395235 +vt 0.095341 0.678481 0.414946 +vt 0.110913 0.794529 0.513647 +vt 0.131761 0.690798 0.435777 +vt 0.108908 0.707101 0.479636 +vt 0.109975 0.867581 0.509731 +vt 0.140510 0.837655 0.472033 +vt 0.158031 0.685493 0.413201 +vt 0.163445 0.791490 0.432562 +vt 0.164218 0.768689 0.427116 +vt 0.159828 0.913164 0.367735 +vt 0.161905 0.860882 0.438637 +vt 0.065339 0.529140 0.372725 +vt 0.065339 0.545273 0.364670 +vt 0.073279 0.543112 0.364670 +vt 0.079092 0.537207 0.364670 +vt 0.081219 0.529140 0.364670 +vt 0.079092 0.521074 0.364670 +vt 0.073279 0.515169 0.364670 +vt 0.065339 0.513007 0.364670 +vt 0.057399 0.515169 0.364670 +vt 0.051587 0.521074 0.364669 +vt 0.049459 0.529140 0.364669 +vt 0.051587 0.537207 0.364669 +vt 0.057162 0.542972 0.364670 +vt 0.065339 0.557083 0.342876 +vt 0.079092 0.553339 0.342877 +vt 0.089159 0.543112 0.342877 +vt 0.092844 0.529140 0.342877 +vt 0.089159 0.515169 0.342877 +vt 0.079092 0.504941 0.342877 +vt 0.065339 0.501197 0.342876 +vt 0.051587 0.504941 0.342876 +vt 0.041519 0.515169 0.342876 +vt 0.037834 0.529140 0.342876 +vt 0.041519 0.543112 0.342876 +vt 0.051587 0.553339 0.342876 +vt 0.065339 0.561406 0.296201 +vt 0.081219 0.557083 0.296202 +vt 0.092844 0.545273 0.296202 +vt 0.097099 0.529140 0.296202 +vt 0.092844 0.513007 0.296202 +vt 0.081219 0.501197 0.296202 +vt 0.065339 0.496875 0.296201 +vt 0.049459 0.501197 0.296201 +vt 0.037834 0.513007 0.296200 +vt 0.033579 0.529140 0.296200 +vt 0.037834 0.545273 0.296200 +vt 0.049459 0.557083 0.296201 +vt 0.184973 0.836598 0.438769 +vt 0.026749 0.955367 0.241660 +vt 0.118524 0.977596 0.119224 +vt 0.057960 0.954377 0.260331 +vt 0.113512 0.948786 0.224329 +vt 0.250585 0.960742 0.146182 +vt 0.224294 0.939440 0.272554 +vt 0.182573 0.785646 0.452147 +vt 0.166286 0.750348 0.429169 +vt 0.042944 0.656503 0.407259 +vt 0.193030 0.615859 0.344085 +vt 0.185097 0.740801 0.450644 +vt 0.074518 0.927660 0.433272 +vt 0.103520 0.920480 0.420708 +vt 0.165803 0.811203 0.446851 +vt 0.087372 0.946780 0.324749 +vt 0.171206 0.945533 0.222483 +vt 0.163780 0.647190 0.377221 +vt 0.099995 0.659247 0.404637 +vt 0.058224 0.655661 0.422336 +vt 0.169118 0.720391 0.419088 +vt 0.244945 0.683906 0.313713 +vt 0.237658 0.687545 0.425272 +vt 0.241678 0.678654 0.379083 +vt 0.246065 0.671588 0.364664 +vt 0.244930 0.678633 0.284136 +vt 0.244234 0.795022 0.395438 +vt 0.226662 0.726543 0.433941 +vt 0.236623 0.695640 0.437058 +vt 0.244858 0.721221 0.429249 +vt 0.215678 0.721294 0.429364 +vt 0.230555 0.691258 0.435737 +vt 0.442605 0.536955 0.372703 +vt 0.442604 0.552936 0.364648 +vt 0.434676 0.550795 0.364650 +vt 0.428872 0.544946 0.364652 +vt 0.426748 0.536955 0.364653 +vt 0.428872 0.528965 0.364652 +vt 0.434676 0.523115 0.364650 +vt 0.442604 0.520974 0.364648 +vt 0.450533 0.523115 0.364645 +vt 0.456337 0.528965 0.364643 +vt 0.458461 0.536955 0.364643 +vt 0.456337 0.544946 0.364643 +vt 0.450769 0.550657 0.364645 +vt 0.442603 0.564635 0.342854 +vt 0.428870 0.560927 0.342859 +vt 0.418818 0.550795 0.342862 +vt 0.415138 0.536955 0.342863 +vt 0.418818 0.523115 0.342862 +vt 0.428870 0.512983 0.342859 +vt 0.442603 0.509275 0.342854 +vt 0.456335 0.512983 0.342850 +vt 0.466388 0.523115 0.342847 +vt 0.470067 0.536955 0.342846 +vt 0.466388 0.550795 0.342847 +vt 0.456335 0.560927 0.342850 +vt 0.442599 0.568917 0.296179 +vt 0.426743 0.564635 0.296184 +vt 0.415135 0.552936 0.296188 +vt 0.410886 0.536955 0.296189 +vt 0.415135 0.520974 0.296188 +vt 0.426743 0.509275 0.296184 +vt 0.442599 0.504993 0.296179 +vt 0.458456 0.509275 0.296174 +vt 0.470064 0.520974 0.296170 +vt 0.474313 0.536955 0.296169 +vt 0.470064 0.552936 0.296170 +vt 0.458456 0.564635 0.296174 +vt 0.192792 0.646271 0.417264 +vt 0.185750 0.683212 0.437051 +vt 0.204104 0.705115 0.428109 +vt 0.244994 0.662398 0.422674 +vt 0.245227 0.696286 0.437155 +vt 0.224364 0.683373 0.434825 +vt 0.226198 0.659310 0.427354 +vt 0.239179 0.652061 0.429091 +vt 0.100068 0.764025 0.524675 +vt 0.067747 0.731585 0.489741 +vt 0.122085 0.801735 0.475545 +vt 0.113589 0.842847 0.505357 +vt 0.099198 0.699568 0.450634 +vt 0.111453 0.817258 0.478164 +vt 0.093029 0.770738 0.476512 +vt 0.118987 0.767096 0.481190 +vt 0.102909 0.779288 0.525246 +vt 0.115905 0.801326 0.497321 +vt 0.128241 0.795132 0.460799 +vt 0.143119 0.755343 0.442777 +vt 0.125152 0.698383 0.454794 +vt 0.101423 0.748033 0.505753 +vt 0.118027 0.789961 0.490637 +vt 0.122579 0.736806 0.468562 +vt 0.212192 0.795007 0.313876 +vt 0.215173 0.824120 0.439615 +vt 0.217103 0.764327 0.418687 +vt 0.212725 0.815043 0.425342 +vt 0.223181 0.814593 0.404525 +vt 0.204072 0.813685 0.438451 +vt 0.213904 0.775092 0.413464 +vt 0.199095 0.778785 0.433601 +vt 0.236300 0.791902 0.391934 +vt 0.232168 0.809533 0.402197 +vt 0.227749 0.778327 0.398410 +vt 0.189279 0.790957 0.441631 +vt 0.195965 0.803034 0.445573 +vt 0.196369 0.791443 0.444511 +vt 0.200228 0.798630 0.439137 +vt 0.226998 0.793416 0.370912 +vt 0.219322 0.803554 0.412904 +vt 0.213932 0.786418 0.419819 +vt 0.213156 0.804160 0.428014 +vt 0.206083 0.802522 0.439617 +vt 0.202379 0.787992 0.442061 +vt 0.222922 0.800690 0.396432 +vt 0.225412 0.789450 0.381363 +vt 0.173233 0.910375 0.372205 +vt 0.232081 0.911480 0.310091 +vt 0.062111 0.838749 0.531766 +vt 0.074499 0.845288 0.551988 +vt 0.039394 0.838235 0.505321 +vt 0.141112 0.865546 0.454186 +vt 0.210945 0.930843 0.258627 +vt 0.209451 0.953546 0.156850 +vt 0.181006 0.939044 0.232006 +vt 0.217128 0.672987 0.424640 +vt 0.146972 0.719328 0.439401 +vt 0.197548 0.913569 0.332325 +vt 0.238233 0.633998 0.407615 +vt 0.221756 0.643336 0.411378 +vt 0.243969 0.711564 0.437854 +vt 0.231675 0.710522 0.439640 +vt 0.224992 0.709006 0.435716 +vt 0.216386 0.703852 0.433241 +vt 0.204739 0.688779 0.432270 +vt 0.219951 0.787510 0.401286 +vt 0.220702 0.775713 0.400939 +vt 0.208875 0.787153 0.433159 +vt 0.206781 0.775520 0.426319 +vt 0.026914 0.807638 0.500000 +vt 0.432287 0.799071 0.549748 +vt 0.413799 0.914480 0.462718 +vt 0.250563 0.588823 0.345303 +vt 0.250562 0.741525 0.498125 +vt 0.359328 0.795147 0.449518 +vt 0.370150 0.918954 0.363380 +vt 0.250562 0.720581 0.431988 +vt 0.250563 0.817095 0.426493 +vt 0.026751 0.692199 0.414458 +vt 0.026752 0.888217 0.467548 +vt 0.316315 0.803207 0.460630 +vt 0.250563 0.943049 0.296875 +vt 0.459073 0.690528 0.413466 +vt 0.462166 0.742898 0.492037 +vt 0.456819 0.888334 0.480720 +vt 0.412136 0.877885 0.521073 +vt 0.250761 0.661989 0.427486 +vt 0.299626 0.764511 0.440655 +vt 0.271088 0.746958 0.416586 +vt 0.297755 0.823061 0.450281 +vt 0.250563 0.797831 0.400083 +vt 0.250562 0.750661 0.500000 +vt 0.270241 0.848163 0.403493 +vt 0.258807 0.741449 0.486811 +vt 0.301458 0.747820 0.445255 +vt 0.258663 0.750087 0.488732 +vt 0.288111 0.600898 0.352194 +vt 0.328103 0.600162 0.281269 +vt 0.250566 0.568059 0.203562 +vt 0.357024 0.626091 0.345059 +vt 0.421590 0.652481 0.402262 +vt 0.026813 0.656818 0.406078 +vt 0.250562 0.729424 0.462668 +vt 0.259839 0.731778 0.457583 +vt 0.265933 0.739510 0.460890 +vt 0.250562 0.606263 0.409565 +vt 0.270809 0.592726 0.350396 +vt 0.250761 0.689550 0.427496 +vt 0.315701 0.773150 0.449701 +vt 0.265634 0.770785 0.405305 +vt 0.284916 0.748855 0.426280 +vt 0.307719 0.815978 0.458205 +vt 0.258190 0.807477 0.406662 +vt 0.250563 0.808135 0.410197 +vt 0.266259 0.745850 0.453510 +vt 0.255715 0.775190 0.438595 +vt 0.250563 0.776710 0.445270 +vt 0.295846 0.843336 0.420433 +vt 0.268127 0.927281 0.318214 +vt 0.322231 0.866738 0.420461 +vt 0.271797 0.874042 0.368123 +vt 0.250563 0.921256 0.352422 +vt 0.250563 0.872504 0.368111 +vt 0.250562 0.847401 0.401799 +vt 0.271039 0.673851 0.426446 +vt 0.284695 0.621037 0.416241 +vt 0.265360 0.730028 0.449025 +vt 0.260796 0.770397 0.418983 +vt 0.299042 0.872878 0.398676 +vt 0.270286 0.822368 0.430018 +vt 0.266031 0.609016 0.408674 +vt 0.423595 0.673939 0.413180 +vt 0.442702 0.684799 0.419618 +vt 0.462234 0.807987 0.515953 +vt 0.446216 0.802450 0.534929 +vt 0.445606 0.738134 0.488195 +vt 0.026752 0.744641 0.484184 +vt 0.026751 0.932604 0.376887 +vt 0.449266 0.931037 0.388904 +vt 0.434365 0.881772 0.522998 +vt 0.360961 0.683521 0.395268 +vt 0.405778 0.678647 0.414966 +vt 0.390207 0.794680 0.513667 +vt 0.369359 0.690950 0.435809 +vt 0.392212 0.707262 0.479660 +vt 0.391145 0.867724 0.509746 +vt 0.362277 0.837751 0.472065 +vt 0.343090 0.685574 0.413242 +vt 0.336564 0.787669 0.432602 +vt 0.336291 0.768992 0.427156 +vt 0.341293 0.913259 0.367773 +vt 0.339215 0.860954 0.438678 +vt 0.316146 0.836598 0.438811 +vt 0.384844 0.977388 0.119244 +vt 0.443158 0.954520 0.260336 +vt 0.387606 0.948930 0.224353 +vt 0.276832 0.939440 0.272573 +vt 0.318547 0.785646 0.452189 +vt 0.334833 0.750420 0.429210 +vt 0.458200 0.656638 0.407259 +vt 0.308703 0.615859 0.344122 +vt 0.316023 0.740801 0.450684 +vt 0.426602 0.927803 0.433275 +vt 0.397599 0.920623 0.420722 +vt 0.335313 0.811203 0.446892 +vt 0.413747 0.946923 0.324760 +vt 0.329918 0.945628 0.222518 +vt 0.337338 0.647190 0.377262 +vt 0.396549 0.627815 0.409313 +vt 0.441839 0.627261 0.439906 +vt 0.332991 0.720486 0.419129 +vt 0.256578 0.683906 0.313730 +vt 0.250762 0.678530 0.261463 +vt 0.264012 0.687545 0.425282 +vt 0.250762 0.684992 0.298733 +vt 0.259844 0.678654 0.379110 +vt 0.255458 0.671588 0.364679 +vt 0.250762 0.670649 0.364760 +vt 0.256594 0.678633 0.284152 +vt 0.256892 0.795022 0.395443 +vt 0.274462 0.726543 0.433959 +vt 0.264899 0.695640 0.437071 +vt 0.256266 0.721221 0.429254 +vt 0.250761 0.696486 0.440497 +vt 0.285446 0.721294 0.429387 +vt 0.270967 0.691258 0.435756 +vt 0.308330 0.646271 0.417299 +vt 0.315372 0.683212 0.437086 +vt 0.297019 0.705114 0.428138 +vt 0.256528 0.662398 0.422682 +vt 0.250482 0.650052 0.434810 +vt 0.256295 0.696286 0.437160 +vt 0.276780 0.683373 0.434848 +vt 0.274766 0.659310 0.427376 +vt 0.261786 0.652061 0.429101 +vt 0.401037 0.764184 0.524693 +vt 0.433373 0.731748 0.489746 +vt 0.379035 0.801887 0.475571 +vt 0.387531 0.842990 0.505375 +vt 0.398960 0.699738 0.450658 +vt 0.388680 0.817418 0.478188 +vt 0.408091 0.770905 0.476530 +vt 0.382133 0.767248 0.481215 +vt 0.398211 0.779446 0.525264 +vt 0.385215 0.801477 0.497344 +vt 0.371893 0.795283 0.460829 +vt 0.358000 0.755436 0.442810 +vt 0.375969 0.698534 0.454823 +vt 0.400699 0.748195 0.505772 +vt 0.383093 0.790112 0.490661 +vt 0.378009 0.736957 0.468589 +vt 0.288420 0.795353 0.313907 +vt 0.285951 0.824120 0.439642 +vt 0.284022 0.764327 0.418712 +vt 0.288399 0.815043 0.425370 +vt 0.277945 0.814593 0.404546 +vt 0.297051 0.813685 0.438484 +vt 0.287221 0.775092 0.413491 +vt 0.302027 0.778785 0.433637 +vt 0.264827 0.791902 0.391945 +vt 0.268958 0.809533 0.402211 +vt 0.273376 0.778327 0.398428 +vt 0.311842 0.790957 0.441670 +vt 0.305157 0.803034 0.445611 +vt 0.304753 0.791443 0.444548 +vt 0.300895 0.798630 0.439173 +vt 0.274128 0.793416 0.370929 +vt 0.281803 0.803554 0.412928 +vt 0.287192 0.786418 0.419847 +vt 0.287968 0.804160 0.428042 +vt 0.295041 0.802522 0.439650 +vt 0.298743 0.787992 0.442095 +vt 0.278203 0.800690 0.396453 +vt 0.275714 0.789450 0.381382 +vt 0.327885 0.910375 0.372245 +vt 0.269044 0.911480 0.310106 +vt 0.250563 0.907981 0.325839 +vt 0.439010 0.838899 0.531765 +vt 0.426621 0.845432 0.551991 +vt 0.461727 0.838384 0.505319 +vt 0.026752 0.839081 0.492634 +vt 0.360007 0.865653 0.454219 +vt 0.290180 0.930843 0.258653 +vt 0.291815 0.953605 0.156874 +vt 0.320114 0.939044 0.232041 +vt 0.284394 0.672987 0.424664 +vt 0.354146 0.719419 0.439434 +vt 0.303573 0.913569 0.332360 +vt 0.262925 0.633998 0.407626 +vt 0.279122 0.643336 0.411403 +vt 0.250579 0.633152 0.406241 +vt 0.250570 0.711557 0.440046 +vt 0.256681 0.711564 0.437859 +vt 0.269457 0.710522 0.439655 +vt 0.276316 0.709006 0.435736 +vt 0.284745 0.703852 0.433267 +vt 0.296782 0.688779 0.432300 +vt 0.281174 0.787510 0.401309 +vt 0.280423 0.775713 0.400961 +vt 0.292248 0.787153 0.433190 +vt 0.294342 0.775520 0.426351 +vt 0.088751 0.581736 0.444564 +vt 0.026752 0.593144 0.484801 +vt 0.045615 0.590622 0.476979 +vt 0.207903 0.538027 0.163410 +vt 0.150099 0.546500 0.301356 +vt 0.114912 0.570736 0.443864 +vt 0.062177 0.587810 0.481246 +vt 0.126969 0.562318 0.404690 +vt 0.424404 0.584931 0.451913 +vt 0.250568 0.534281 0.130774 +vt 0.455506 0.590766 0.476978 +vt 0.334939 0.543212 0.236484 +vt 0.351020 0.546571 0.301391 +vt 0.400572 0.578186 0.458972 +vt 0.438944 0.587954 0.481245 +vt 0.374151 0.562461 0.404716 +vt 0.250574 0.977851 0.078417 +vt 0.474351 0.977478 0.078417 +vt 0.474368 0.955510 0.241660 +vt 0.474533 0.807781 0.500000 +vt 0.474370 0.692342 0.414458 +vt 0.474370 0.888361 0.467548 +vt 0.474370 0.657063 0.406078 +vt 0.474370 0.744785 0.484184 +vt 0.474370 0.932747 0.376887 +vt 0.474370 0.839224 0.492634 +vt 0.474370 0.593287 0.484801 +vt 0.250562 0.766221 0.475436 +vt 0.238765 0.763367 0.428863 +vt 0.262441 0.763002 0.429384 +vt 0.244574 0.766708 1.000000 +vt 0.256553 0.766708 1.000000 +vt 0.076728 0.584785 0.451887 +vt 0.412368 0.581879 0.444572 +vt 0.100566 0.578038 0.458982 +vt 0.386208 0.570879 0.443883 +vt 0.166194 0.543178 0.236397 +vt 0.293224 0.538027 0.163430 +vt 0.205694 0.562364 0.179979 +vt 0.295431 0.562339 0.179988 +vt 0.300991 0.581252 0.241936 +vt 0.187621 0.566690 0.206754 +vt 0.161324 0.584005 0.262499 +vt 0.145515 0.655239 0.352230 +vt 0.144112 0.626035 0.344972 +vt 0.080784 0.625859 0.411713 +vt 0.043865 0.628075 0.425629 +vt 0.104571 0.627732 0.409251 +vt 0.059281 0.627120 0.439900 +vt 0.340406 0.583981 0.262623 +vt 0.250567 0.554662 0.148788 +vt 0.355605 0.655346 0.352265 +vt 0.348074 0.643128 0.345282 +vt 0.420045 0.625945 0.411770 +vt 0.474370 0.629191 0.426642 +vt 0.026778 0.629072 0.426642 +vt 0.457181 0.628248 0.425642 +vt 0.401125 0.659400 0.404654 +vt 0.442897 0.655809 0.422338 +vt 0.211375 0.575536 0.227518 +vt 0.289751 0.575535 0.227538 +vt 0.313594 0.566659 0.206845 +vt 0.514000 0.159062 -0.318660 +vt 0.511759 0.093125 -0.124181 +vt 0.521291 0.038291 -0.424909 +vt 0.713940 0.167427 -0.082932 +vt 0.678185 0.028331 -0.217480 +vt 0.697640 0.122638 -0.025700 +vt 0.692982 0.073611 0.210288 +vt 0.674186 0.036846 0.097241 +vt 0.582034 0.161787 -0.301231 +vt 0.588018 0.117135 -0.315253 +vt 0.584415 0.044593 -0.424909 +vt 0.617525 0.161334 -0.125087 +vt 0.616504 0.044003 -0.218983 +vt 0.638548 0.129628 -0.017794 +vt 0.645208 0.098598 0.327367 +vt 0.676266 0.166816 -0.077927 +vt 0.495367 0.185871 0.230118 +vt 0.731226 0.185424 -0.294023 +vt 0.494523 0.093231 0.500002 +vt 0.720112 0.138498 -0.201647 +vt 0.495722 0.017135 0.085202 +vt 0.731144 0.074299 -0.330966 +vt 0.714087 0.031446 -0.249476 +vt 0.683181 0.017357 -0.436370 +vt 0.699904 0.143182 -0.043743 +vt 0.586981 0.137415 -0.294695 +vt 0.712205 0.091059 -0.201217 +vt 0.588716 0.079142 -0.386457 +vt 0.599753 0.017313 0.085202 +vt 0.703654 0.062792 -0.104325 +vt 0.691620 0.050438 0.166979 +vt 0.600506 0.119753 -0.480126 +vt 0.614745 0.136637 -0.152871 +vt 0.599642 0.187510 -0.302136 +vt 0.555930 0.033677 -0.317946 +vt 0.538727 0.160184 -0.331834 +vt 0.612350 0.078493 -0.251826 +vt 0.642461 0.114857 0.092380 +vt 0.614544 0.117447 -0.244698 +vt 0.631627 0.050386 0.036226 +vt 0.629977 0.072241 0.211869 +vt 0.534844 0.176795 0.202560 +vt 0.642214 0.032580 -0.200064 +vt 0.650367 0.040786 -0.043602 +vt 0.494724 0.131902 0.398322 +vt 0.495803 0.037880 0.045557 +vt 0.692182 0.104848 0.083932 +vt 0.673998 0.132220 0.015297 +vt 0.666355 0.099426 0.339934 +vt 0.511944 0.132089 -0.341659 +vt 0.515176 0.058314 -0.425768 +vt 0.555096 0.017151 0.120777 +vt 0.691106 0.172394 -0.051876 +vt 0.526550 0.185901 0.270606 +vt 0.676359 0.179747 -0.305687 +vt 0.541366 0.187030 0.330826 +vt 0.659067 0.174189 -0.069454 +vt 0.629787 0.146925 -0.072143 +vt 0.731591 0.138169 -0.293613 +vt 0.731017 0.017470 -0.425968 +vt 0.702695 0.041239 -0.038053 +vt 0.601000 0.140309 -0.363345 +vt 0.601137 0.082244 -0.500001 +vt 0.625581 0.099813 0.017457 +vt 0.621124 0.075957 0.027357 +vt 0.527816 0.192061 0.234074 +vt 0.726886 0.192547 0.219303 +vt 0.668888 0.047854 -0.500000 +vt 0.590547 0.191947 0.189750 +vt 0.667383 0.192722 0.071265 +vt 0.632982 0.192139 0.158538 +vt 0.682951 0.192857 0.143212 +vt 0.649441 0.192433 0.111095 +vt 0.632877 0.296170 0.322689 +vt 0.589372 0.296134 0.272979 +vt 0.527451 0.295998 0.313597 +vt 0.496087 0.296071 0.330192 +vt 0.696380 0.295902 0.197276 +vt 0.667143 0.296189 0.145010 +vt 0.649199 0.296063 0.220523 +vt 0.589384 0.377030 0.386115 +vt 0.527431 0.377102 0.412606 +vt 0.496118 0.377022 0.419400 +vt 0.696568 0.376834 0.390354 +vt 0.667594 0.376868 0.422402 +vt 0.649168 0.376858 0.520750 +vt 0.628068 0.453216 0.481000 +vt 0.588555 0.441106 0.402913 +vt 0.502503 0.406201 0.479002 +vt 0.651193 0.441912 0.491378 +vt 0.589630 0.309000 0.263493 +vt 0.527392 0.308519 0.295534 +vt 0.496110 0.309291 0.310212 +vt 0.649443 0.310178 0.309810 +vt 0.649162 0.335326 0.335768 +vt 0.649533 0.236791 0.236887 +vt 0.649392 0.275579 0.245318 +vt 0.614806 0.275911 0.338054 +vt 0.556977 0.275646 0.352464 +vt 0.682481 0.275942 0.150725 +vt 0.614797 0.335431 0.338330 +vt 0.632960 0.309839 0.356895 +vt 0.556990 0.335707 0.212499 +vt 0.682444 0.317804 0.224556 +vt 0.667438 0.335663 0.262447 +vt 0.682292 0.335705 0.241932 +vt 0.614163 0.458635 0.418362 +vt 0.628211 0.371109 0.553456 +vt 0.550519 0.419844 0.364548 +vt 0.668029 0.438379 0.451719 +vt 0.692784 0.436930 0.470788 +vt 0.682579 0.295987 0.144229 +vt 0.667068 0.309381 0.221793 +vt 0.696448 0.309286 0.238933 +vt 0.632716 0.335661 0.376657 +vt 0.589624 0.335415 0.281212 +vt 0.527394 0.335215 0.278214 +vt 0.589474 0.237098 0.352048 +vt 0.632724 0.237237 0.324879 +vt 0.527380 0.236868 0.436239 +vt 0.667493 0.237121 0.124169 +vt 0.632863 0.275822 0.356218 +vt 0.645513 0.017403 -0.439353 +vt 0.589472 0.275777 0.350904 +vt 0.667561 0.275802 0.148463 +vt 0.527448 0.275655 0.417103 +vt 0.614839 0.237000 0.302759 +vt 0.557393 0.236916 0.369932 +vt 0.682294 0.237097 0.144161 +vt 0.614917 0.309650 0.301346 +vt 0.752250 0.168715 -0.100685 +vt 0.557119 0.318461 0.222776 +vt 0.726687 0.295609 0.330192 +vt 0.746599 0.192791 0.218856 +vt 0.557171 0.376915 0.320043 +vt 0.614748 0.295740 0.288395 +vt 0.557144 0.296081 0.248781 +vt 0.682527 0.376862 0.367688 +vt 0.712169 0.276015 0.293200 +vt 0.711941 0.335590 0.247393 +vt 0.723520 0.426144 0.447800 +vt 0.496036 0.335340 0.293154 +vt 0.696520 0.335708 0.249126 +vt 0.696683 0.237423 0.206905 +vt 0.496048 0.237135 0.421993 +vt 0.496225 0.275739 0.397969 +vt 0.696407 0.276022 0.215473 +vt 0.712193 0.237133 0.288136 +vt 0.712115 0.318975 0.257977 +vt 0.712127 0.376893 0.374704 +vt 0.712155 0.295887 0.206813 +vt 0.632783 0.489925 0.347999 +vt 0.671783 0.485636 0.357088 +vt 0.540019 0.482097 0.440226 +vt 0.614569 0.489821 0.343525 +vt 0.708750 0.479915 0.526896 +vt 0.715736 0.457078 0.579501 +vt 0.714171 0.431947 0.527602 +vt 0.519697 0.453878 0.559068 +vt 0.545703 0.443088 0.418730 +vt 0.529815 0.416567 0.463366 +vt 0.561277 0.484630 0.365987 +vt 0.589006 0.465782 0.401824 +vt 0.572712 0.428072 0.363607 +vt 0.520091 0.480135 0.548401 +vt 0.514212 0.416333 0.592339 +vt 0.524713 0.441711 0.517561 +vt 0.568236 0.447726 0.419192 +vt 0.960400 0.157613 -0.318660 +vt 0.964034 0.092158 -0.124182 +vt 0.952805 0.039622 -0.424909 +vt 0.789308 0.026876 -0.203132 +vt 0.770889 0.119898 -0.033785 +vt 0.772145 0.071812 0.216021 +vt 0.798443 0.035931 0.109373 +vt 0.852628 0.162992 -0.150659 +vt 0.894801 0.159192 -0.301231 +vt 0.884820 0.115649 -0.315253 +vt 0.893252 0.043029 -0.424909 +vt 0.854136 0.042746 -0.211990 +vt 0.827290 0.129239 -0.032377 +vt 0.820875 0.095726 0.325201 +vt 0.784908 0.166345 -0.097175 +vt 0.735497 0.185992 -0.312069 +vt 0.980416 0.187028 0.230118 +vt 0.748380 0.138327 -0.212846 +vt 0.980351 0.091876 0.500002 +vt 0.736047 0.074694 -0.328247 +vt 0.979221 0.018007 0.085202 +vt 0.751519 0.031610 -0.237543 +vt 0.781511 0.018053 -0.421483 +vt 0.765111 0.141258 -0.056458 +vt 0.753524 0.088473 -0.199161 +vt 0.889164 0.137775 -0.294696 +vt 0.762486 0.063993 -0.098813 +vt 0.885260 0.077808 -0.386457 +vt 0.779859 0.047990 0.176712 +vt 0.870390 0.116997 -0.489205 +vt 0.854867 0.138524 -0.173849 +vt 0.870609 0.187614 -0.329475 +vt 0.870959 0.018099 -0.431649 +vt 0.919194 0.033551 -0.317946 +vt 0.934870 0.158185 -0.331834 +vt 0.859534 0.073769 -0.251398 +vt 0.822070 0.109598 0.083936 +vt 0.854870 0.115312 -0.253548 +vt 0.844514 0.049827 0.043209 +vt 0.842741 0.068967 0.213065 +vt 0.828625 0.030969 -0.187805 +vt 0.935839 0.176408 0.202559 +vt 0.822417 0.035588 -0.032557 +vt 0.778545 0.102725 0.081174 +vt 0.980299 0.130700 0.398322 +vt 0.979653 0.038726 0.045557 +vt 0.792788 0.129187 0.004248 +vt 0.870590 0.142068 0.040836 +vt 0.799609 0.095839 0.339553 +vt 0.769911 0.171779 -0.073116 +vt 0.963579 0.130958 -0.341659 +vt 0.959051 0.058501 -0.425769 +vt 0.921874 0.017945 0.120777 +vt 0.783575 0.180784 -0.326758 +vt 0.947324 0.186929 0.270605 +vt 0.801202 0.172638 -0.091368 +vt 0.928031 0.186903 0.330826 +vt 0.835048 0.147107 -0.093148 +vt 0.735360 0.138163 -0.304554 +vt 0.736077 0.017903 -0.414909 +vt 0.764648 0.041749 -0.026853 +vt 0.870431 0.080967 -0.500000 +vt 0.842772 0.099107 0.012390 +vt 0.852975 0.071470 0.027722 +vt 0.822692 0.017740 -0.426605 +vt 0.803593 0.047345 -0.499998 +vt 0.918559 0.192288 0.189793 +vt 0.805323 0.192602 0.071221 +vt 0.846223 0.192749 0.158510 +vt 0.791343 0.192810 0.143218 +vt 0.825645 0.192542 0.111048 +vt 0.845522 0.297168 0.322635 +vt 0.888850 0.297237 0.272958 +vt 0.950580 0.297133 0.313670 +vt 0.980163 0.296980 0.330258 +vt 0.776792 0.297335 0.197252 +vt 0.805389 0.297393 0.144961 +vt 0.825625 0.297276 0.220475 +vt 0.888381 0.377215 0.386068 +vt 0.959619 0.377188 0.412682 +vt 0.980167 0.377108 0.419447 +vt 0.776703 0.377394 0.390307 +vt 0.805380 0.377250 0.422365 +vt 0.825760 0.377462 0.520717 +vt 0.850742 0.440352 0.502525 +vt 0.888756 0.441500 0.402874 +vt 0.971871 0.404244 0.479034 +vt 0.823240 0.441185 0.492542 +vt 0.888739 0.309839 0.263468 +vt 0.950666 0.309388 0.295606 +vt 0.980277 0.310048 0.310267 +vt 0.825881 0.310805 0.309766 +vt 0.826162 0.335955 0.335727 +vt 0.825822 0.237033 0.236837 +vt 0.825940 0.275628 0.245268 +vt 0.866436 0.275672 0.338003 +vt 0.918790 0.275358 0.352505 +vt 0.790549 0.275509 0.150694 +vt 0.866203 0.336038 0.338275 +vt 0.845327 0.310808 0.356843 +vt 0.918821 0.335852 0.212528 +vt 0.790646 0.318511 0.224511 +vt 0.805473 0.335773 0.262404 +vt 0.790778 0.335853 0.241886 +vt 0.867795 0.438968 0.439456 +vt 0.853303 0.375399 0.558001 +vt 0.926970 0.418506 0.364588 +vt 0.804605 0.439987 0.450730 +vt 0.781700 0.447362 0.482045 +vt 0.790605 0.297282 0.144189 +vt 0.805331 0.310238 0.221748 +vt 0.776812 0.309993 0.238908 +vt 0.845595 0.335767 0.376609 +vt 0.888607 0.335935 0.281174 +vt 0.950666 0.335748 0.278285 +vt 0.888485 0.237045 0.352037 +vt 0.845368 0.237327 0.324823 +vt 0.950497 0.236989 0.436318 +vt 0.805218 0.237257 0.124118 +vt 0.845368 0.275347 0.356161 +vt 0.888449 0.275562 0.350886 +vt 0.805381 0.275386 0.148414 +vt 0.950783 0.275392 0.417181 +vt 0.866240 0.237152 0.302716 +vt 0.918764 0.237080 0.369968 +vt 0.790655 0.237286 0.144136 +vt 0.866321 0.317962 0.311470 +vt 0.918824 0.309329 0.231843 +vt 0.670576 0.116349 0.147948 +vt 0.726720 0.377281 0.419400 +vt 0.692500 0.187756 -0.285971 +vt 0.731182 0.411171 0.479002 +vt 0.866275 0.377381 0.456240 +vt 0.918981 0.377219 0.320074 +vt 0.866172 0.297099 0.288348 +vt 0.918837 0.297280 0.248818 +vt 0.789941 0.377116 0.367634 +vt 0.761331 0.275407 0.293229 +vt 0.761244 0.335893 0.247414 +vt 0.750188 0.424276 0.447755 +vt 0.980115 0.335936 0.293216 +vt 0.776947 0.336003 0.249101 +vt 0.776757 0.237313 0.206902 +vt 0.980534 0.237081 0.422063 +vt 0.980301 0.275466 0.398037 +vt 0.776776 0.275628 0.215458 +vt 0.761211 0.237329 0.288184 +vt 0.761340 0.309774 0.250743 +vt 0.761250 0.377235 0.374693 +vt 0.761243 0.297215 0.206826 +vt 0.838614 0.489688 0.347961 +vt 0.813327 0.484735 0.357046 +vt 0.939643 0.480586 0.440292 +vt 0.892972 0.492322 0.325640 +vt 0.865946 0.490298 0.343473 +vt 0.766097 0.481914 0.526826 +vt 0.737944 0.484141 0.706309 +vt 0.737968 0.448341 0.649324 +vt 0.738006 0.437972 0.550450 +vt 0.980722 0.406480 0.517660 +vt 0.980869 0.478523 0.689678 +vt 0.980701 0.427618 0.677094 +vt 0.760563 0.458644 0.579424 +vt 0.761025 0.432558 0.526380 +vt 0.737990 0.467719 0.707062 +vt 0.952255 0.452763 0.559152 +vt 0.929687 0.439192 0.424161 +vt 0.953275 0.415724 0.463446 +vt 0.564214 0.458445 0.418356 +vt 0.541342 0.456653 0.449501 +vt 0.677050 0.151162 -0.037207 +vt 0.657576 0.186422 -0.281091 +vt 0.688970 0.089930 0.282940 +vt 0.495811 0.410598 0.517629 +vt 0.922147 0.484959 0.366014 +vt 0.896955 0.462981 0.401788 +vt 0.908442 0.422748 0.363600 +vt 0.953226 0.479320 0.548485 +vt 0.980706 0.453309 0.707106 +vt 0.962933 0.415076 0.592420 +vt 0.495945 0.479935 0.689594 +vt 0.981706 0.439067 0.700987 +vt 0.950792 0.437328 0.518404 +vt 0.495884 0.428540 0.677011 +vt 0.913389 0.445526 0.419107 +vt 0.746639 0.297357 0.330258 +vt 0.918118 0.458019 0.418370 +vt 0.932526 0.453842 0.449553 +vt 0.882274 0.502638 0.293365 +vt 0.864082 0.502702 0.317245 +vt 0.938668 0.502566 0.416130 +vt 0.824138 0.501874 0.345577 +vt 0.755503 0.502237 0.572154 +vt 0.737948 0.502600 0.692552 +vt 0.844240 0.502321 0.310234 +vt 0.980628 0.502593 0.639957 +vt 0.668853 0.047780 0.251948 +vt 0.495875 0.454758 0.707019 +vt 0.494230 0.440382 0.703599 +vt 0.578185 0.502579 0.327252 +vt 0.614659 0.502784 0.317295 +vt 0.515755 0.502779 0.545669 +vt 0.654851 0.502843 0.345613 +vt 0.691856 0.502724 0.441112 +vt 0.632729 0.503042 0.310276 +vt 0.634150 0.084611 0.299512 +vt 0.495860 0.502787 0.639881 +vt 0.680646 0.057456 0.355926 +vt 0.726655 0.309263 0.310212 +vt 0.746798 0.377159 0.419447 +vt 0.664974 0.089380 0.428170 +vt 0.726544 0.335395 0.293154 +vt 0.743778 0.410998 0.479034 +vt 0.647182 0.072130 0.432558 +vt 0.727028 0.237152 0.421993 +vt 0.647578 0.074297 0.436851 +vt 0.726970 0.276040 0.397969 +vt 0.746657 0.310126 0.310267 +vt 0.737900 0.424128 0.517644 +vt 0.797522 0.111631 0.141533 +vt 0.768454 0.189030 -0.308538 +vt 0.746891 0.335885 0.293216 +vt 0.786471 0.152309 -0.054084 +vt 0.798118 0.187739 -0.304811 +vt 0.746667 0.237268 0.422063 +vt 0.782703 0.087145 0.285971 +vt 0.803563 0.047266 0.263592 +vt 0.746394 0.275415 0.398037 +vt 0.838204 0.086309 0.297107 +vt 0.791950 0.055539 0.365140 +vt 0.823381 0.054632 0.298608 +vt 0.802428 0.086886 0.427999 +vt 0.824085 0.072883 0.432602 +vt 0.788334 0.072863 0.415234 +vt 0.824188 0.075855 0.436651 +vt 0.614985 0.377135 0.456300 +vt 0.720317 0.502643 0.572192 +vt 0.784832 0.501933 0.441056 +vt 0.591230 0.487350 0.325673 +vt 0.601258 0.502610 0.293440 +vt 0.908442 0.502589 0.327252 +vt 0.548847 0.502704 0.416025 +vt 0.966879 0.502571 0.545751 +vt 0.589682 0.317675 0.265571 +vt 0.527379 0.318749 0.286575 +vt 0.496096 0.318138 0.302445 +vt 0.726613 0.318228 0.302445 +vt 0.649402 0.318606 0.328411 +vt 0.632917 0.317499 0.366122 +vt 0.682508 0.309054 0.204389 +vt 0.667139 0.317671 0.244465 +vt 0.696480 0.319028 0.249465 +vt 0.614922 0.317607 0.311523 +vt 0.557159 0.308527 0.231807 +vt 0.712117 0.309347 0.250730 +vt 0.888686 0.318386 0.265542 +vt 0.950686 0.319464 0.286647 +vt 0.980256 0.318827 0.302500 +vt 0.746689 0.318894 0.302500 +vt 0.825988 0.319155 0.328368 +vt 0.845359 0.318273 0.366072 +vt 0.790605 0.310015 0.204345 +vt 0.805353 0.318297 0.244421 +vt 0.776853 0.319487 0.249439 +vt 0.866320 0.310133 0.301295 +vt 0.918820 0.318999 0.222810 +vt 0.761336 0.319252 0.257992 +vt 0.649490 0.055311 0.290390 +vt 0.682337 0.076550 0.411114 +vt 0.980495 0.192339 0.218856 +vt 0.950771 0.192047 0.234143 +vt 0.950497 0.236989 0.436318 +vt 0.980534 0.237081 0.422063 +vt 0.950771 0.192047 0.234143 +vt 0.918591 0.192334 0.189793 +vt 0.950497 0.236989 0.436318 +vt 0.918764 0.237080 0.369968 +vt 0.791937 0.055456 -0.193345 +vt 0.823314 0.054583 -0.362873 +vt 0.802440 0.086856 -0.008018 +vt 0.823989 0.072855 -0.088222 +vt 0.788300 0.072887 -0.049760 +vt 0.813642 0.072094 0.462246 +vt 0.804597 0.061735 0.025895 +vt 0.799784 0.064822 0.325609 +vt 0.811449 0.062652 0.151558 +vt 0.806073 0.075142 0.500002 +vt 0.815241 0.067104 0.420473 +vt 0.800818 0.072267 0.463920 +vt 0.824229 0.075944 0.014902 +vt 0.680673 0.057327 -0.193350 +vt 0.664940 0.089429 -0.008022 +vt 0.657584 0.065748 0.420468 +vt 0.647543 0.074331 0.014897 +vt 0.668739 0.059796 0.025893 +vt 0.673708 0.066813 0.325605 +vt 0.659049 0.059643 0.151561 +vt 0.649570 0.055298 -0.362871 +vt 0.664027 0.075060 0.499999 +vt 0.647123 0.072081 -0.088225 +vt 0.670315 0.073385 0.463923 +vt 0.682316 0.076734 -0.049757 +vt 0.659323 0.072013 0.462245 +vt 0.496094 0.192082 0.217834 +vt 0.496048 0.237135 0.421993 +vt 0.629745 0.437244 0.507006 +vt 0.588615 0.450544 0.403601 +vt 0.653392 0.454957 0.471892 +vt 0.613880 0.438855 0.437205 +vt 0.547232 0.431364 0.392665 +vt 0.667695 0.450717 0.442261 +vt 0.694819 0.447950 0.482643 +vt 0.718246 0.433745 0.522357 +vt 0.717047 0.440491 0.545317 +vt 0.527073 0.429838 0.494840 +vt 0.570197 0.437013 0.385253 +vt 0.503963 0.427064 0.649556 +vt 0.511828 0.417381 0.588152 +vt 0.850537 0.455563 0.479323 +vt 0.890716 0.450195 0.403563 +vt 0.822369 0.454378 0.471249 +vt 0.867656 0.458303 0.418461 +vt 0.928611 0.428426 0.392708 +vt 0.807349 0.452021 0.442162 +vt 0.783708 0.435865 0.470728 +vt 0.737967 0.454310 0.677967 +vt 0.980723 0.417303 0.639688 +vt 0.495896 0.418311 0.639614 +vt 0.759137 0.440866 0.545244 +vt 0.757496 0.433375 0.521106 +vt 0.951816 0.426994 0.494921 +vt 0.910868 0.433145 0.385250 +vt 0.964337 0.415947 0.588226 +vt 0.972540 0.425815 0.649638 +# 1940 texture coords + +g LowPolyMan1 +s 1 +f 5/6/1 318/208/2 4/5/3 3/3/4 +f 319/209/5 7/8/6 6/7/7 320/210/8 +f 8/11/9 2/4/10 9/12/11 10/13/12 +f 9/12/13 2/4/14 6/9/15 7/10/16 +f 12/15/17 11/14/18 8/11/19 10/13/20 +f 13/18/21 14/19/22 301/181/23 316/201/24 +f 362/643/25 363/644/26 14/19/27 13/18/28 +f 16/17/29 359/371/30 12/15/31 15/16/32 +f 14/19/33 17/20/34 300/180/35 301/181/36 +f 366/654/37 17/20/38 14/19/39 363/644/40 +f 3/3/41 368/655/42 350/374/43 5/6/44 +f 11/14/45 12/15/46 359/371/47 358/366/48 +f 10/13/49 306/186/50 15/16/51 12/15/52 +f 323/207/53 19/27/54 303/183/55 322/205/56 +f 10/13/57 9/12/58 20/28/59 306/186/60 +f 366/654/61 674/831/62 325/247/63 21/21/64 17/20/65 +f 21/21/66 299/179/67 300/180/68 17/20/69 +f 7/8/70 319/209/71 22/24/72 23/25/73 +f 9/12/74 7/10/75 23/29/76 302/182/77 +f 214/684/78 24/37/79 25/38/80 244/707/81 +f 245/708/82 26/39/83 27/40/84 246/709/85 +f 210/680/86 27/40/87 26/39/88 32/45/89 +f 44/59/90 71/80/91 45/57/92 40/53/93 +f 45/57/94 71/80/95 46/58/96 42/55/97 +f 46/61/98 71/101/99 47/65/100 43/56/101 +f 47/65/102 71/101/103 44/59/104 41/54/105 +f 48/66/106 72/105/107 49/60/108 24/37/109 +f 49/60/110 72/105/111 50/67/112 35/48/113 +f 50/67/114 72/105/115 51/70/116 36/49/117 +f 48/66/118 29/42/119 51/70/120 72/105/121 +f 52/62/122 73/81/123 53/63/124 30/43/125 +f 53/63/126 73/81/127 54/64/128 37/50/129 +f 54/64/130 73/81/131 49/60/132 35/48/133 +f 49/60/134 73/81/135 52/62/136 24/37/137 +f 55/72/138 74/108/139 51/70/140 29/42/141 +f 51/70/142 74/108/143 56/73/144 36/49/145 +f 56/73/146 74/108/147 57/76/148 38/51/149 +f 55/72/150 213/730/151 57/76/152 74/108/153 +f 58/78/154 75/110/155 57/76/156 213/730/157 +f 57/76/158 75/110/159 59/82/160 38/51/161 +f 59/69/162 75/83/163 53/63/164 37/50/165 +f 53/63/166 75/83/167 58/68/168 30/43/169 +f 59/82/170 61/89/171 60/85/172 38/51/173 +f 39/52/174 61/71/175 59/69/176 37/50/177 +f 56/73/178 63/92/179 62/91/180 36/49/181 +f 60/85/182 63/92/183 56/73/184 38/51/185 +f 50/67/186 65/95/187 64/74/188 35/48/189 +f 62/91/190 65/95/191 50/67/192 36/49/193 +f 54/64/194 66/75/195 39/52/196 37/50/197 +f 64/74/198 66/75/199 54/64/200 35/48/201 +f 61/89/202 76/111/203 67/97/204 60/85/205 +f 46/61/206 43/56/207 67/97/208 76/111/209 +f 46/58/210 76/84/211 68/77/212 42/55/213 +f 68/77/214 76/84/215 61/71/216 39/52/217 +f 63/92/218 77/112/219 69/98/220 62/91/221 +f 69/98/222 77/112/223 47/65/224 41/54/225 +f 47/65/226 77/112/227 67/97/228 43/56/229 +f 67/97/230 77/112/231 63/92/232 60/85/233 +f 65/95/234 78/114/235 70/79/236 64/74/237 +f 70/79/238 78/114/239 44/59/240 40/53/241 +f 44/59/242 78/114/243 69/98/244 41/54/245 +f 69/98/246 78/114/247 65/95/248 62/91/249 +f 66/75/250 79/86/251 68/77/252 39/52/253 +f 68/77/254 79/86/255 45/57/256 42/55/257 +f 45/57/258 79/86/259 70/79/260 40/53/261 +f 70/79/262 79/86/263 66/75/264 64/74/265 +f 94/229/266 108/286/267 95/230/268 91/226/269 +f 95/102/270 108/115/271 96/103/272 92/99/273 +f 96/103/274 108/115/275 97/104/276 93/100/277 +f 97/231/278 108/286/279 94/229/280 90/213/281 +f 99/106/282 109/116/283 100/107/284 80/87/285 +f 101/235/286 109/287/287 99/233/288 34/47/289 +f 117/303/290 110/288/291 98/232/292 82/117/293 +f 100/107/294 109/116/295 102/109/296 86/93/297 +f 102/236/298 109/287/299 101/235/300 85/129/301 +f 98/232/302 110/288/303 103/238/304 84/119/305 +f 102/109/306 111/118/307 106/113/308 86/93/309 +f 106/113/310 111/118/311 113/120/312 89/96/313 +f 113/296/314 111/290/315 104/239/316 107/283/317 +f 104/239/318 111/290/319 102/236/320 85/129/321 +f 103/238/322 112/291/323 105/282/324 84/119/325 +f 105/282/326 112/291/327 114/297/328 88/130/329 +f 89/96/330 113/120/331 95/102/332 92/99/333 +f 95/230/334 113/296/335 107/283/336 91/226/337 +f 88/130/338 114/297/339 97/231/340 90/213/341 +f 97/104/342 114/121/343 128/237/344 93/100/345 +f 52/62/346 25/38/347 24/37/348 +f 139/329/349 110/288/350 117/303/351 116/302/352 +f 121/309/353 157/683/354 135/324/355 120/305/356 +f 103/238/357 110/288/358 139/329/359 126/315/360 +f 135/324/361 157/683/362 165/691/363 127/316/364 +f 114/297/365 112/291/366 140/330/367 143/335/368 +f 140/330/369 112/291/370 103/238/371 126/315/372 +f 165/691/373 174/698/374 142/333/375 127/316/376 +f 142/333/377 174/698/378 175/699/379 129/318/380 +f 131/321/381 114/297/382 143/335/383 130/320/384 +f 128/237/385 114/121/386 131/240/387 132/241/388 +f 137/285/389 175/323/390 150/298/391 133/250/392 +f 129/318/393 175/699/394 137/325/395 134/322/396 +f 123/312/397 172/696/398 156/682/399 115/299/400 +f 164/690/401 157/683/402 121/309/403 119/304/404 +f 158/306/405 171/319/406 159/307/407 152/300/408 +f 159/307/409 171/319/410 160/308/411 153/301/412 +f 160/687/413 171/695/414 161/688/415 154/348/416 +f 161/688/417 171/695/418 158/686/419 155/681/420 +f 156/682/421 172/696/422 163/689/423 148/339/424 +f 165/691/425 157/683/426 164/690/427 149/341/428 +f 163/689/429 173/697/430 167/692/431 148/339/432 +f 167/692/433 173/697/434 203/722/435 151/344/436 +f 175/699/437 174/698/438 168/693/439 170/694/440 +f 168/693/441 174/698/442 165/691/443 149/341/444 +f 150/298/445 175/323/446 158/306/447 152/300/448 +f 160/308/449 203/673/450 169/317/451 153/301/452 +f 151/344/453 203/722/454 160/687/455 154/348/456 +f 158/686/457 175/699/458 170/694/459 155/681/460 +f 186/706/461 124/313/462 176/700/463 205/724/464 +f 125/234/465 186/334/466 205/675/467 +f 188/711/468 172/696/469 123/312/470 122/311/471 +f 189/337/472 201/349/473 186/334/474 125/234/475 +f 186/706/476 201/720/477 187/710/478 124/313/479 +f 163/689/480 172/696/481 188/711/482 177/701/483 +f 190/338/484 201/349/485 189/337/486 178/326/487 +f 187/710/488 201/720/489 190/712/490 179/702/491 +f 203/722/492 173/697/493 191/713/494 196/717/495 +f 191/713/496 173/697/497 163/689/498 177/701/499 +f 194/342/500 202/350/501 192/340/502 197/345/503 +f 192/340/504 202/350/505 190/338/506 178/326/507 +f 190/712/508 202/721/509 193/714/510 179/702/511 +f 193/714/512 202/721/513 194/715/514 181/703/515 +f 195/716/516 203/722/517 196/717/518 182/704/519 +f 180/328/520 203/673/521 195/343/522 183/331/523 +f 199/347/524 194/342/525 197/345/526 184/332/527 +f 181/703/528 194/715/529 199/718/530 185/705/531 +f 199/718/532 204/723/533 200/719/534 185/705/535 +f 200/719/536 204/723/537 195/716/538 182/704/539 +f 195/343/540 204/674/541 198/346/542 183/331/543 +f 198/346/544 204/674/545 199/347/546 184/332/547 +f 205/675/548 207/677/549 206/676/550 125/234/551 +f 206/676/552 207/677/553 209/679/554 210/680/555 +f 212/729/556 211/728/557 209/727/558 207/725/559 +f 211/728/560 28/41/561 208/726/562 209/727/563 +f 210/680/564 209/679/565 208/678/566 27/40/567 +f 214/684/568 243/783/569 48/66/570 24/37/571 +f 243/783/572 731/905/573 29/42/574 48/66/575 +f 83/90/576 87/94/577 146/294/578 162/310/579 +f 146/294/580 87/94/581 141/289/582 166/314/583 +f 166/314/584 141/289/585 128/237/586 150/298/587 +f 133/250/588 150/298/589 128/237/590 132/241/591 136/284/592 +f 80/87/593 100/107/594 83/90/595 81/88/596 +f 100/107/597 86/93/598 87/94/599 83/90/600 +f 86/93/601 106/113/602 141/289/603 87/94/604 +f 106/113/605 89/96/606 128/237/607 141/289/608 +f 93/100/609 128/237/610 89/96/611 92/99/612 96/103/613 +f 30/43/614 80/87/615 81/88/616 31/44/617 +f 145/293/618 162/310/619 146/294/620 147/295/621 +f 180/328/622 147/295/623 146/294/624 166/314/625 +f 169/317/626 180/328/627 166/314/628 150/298/629 +f 153/301/630 169/317/631 150/298/632 152/300/633 159/307/634 +f 206/676/635 210/680/636 32/45/637 33/46/638 125/234/639 +f 145/293/640 178/326/641 189/337/642 +f 192/340/643 178/326/644 145/293/645 147/295/646 +f 197/345/647 192/340/648 147/295/649 180/328/650 +f 198/346/651 184/332/652 197/345/653 180/328/654 183/331/655 +f 182/704/656 196/717/657 181/703/658 185/705/659 200/719/660 +f 181/703/661 196/717/662 191/713/663 193/714/664 +f 193/714/665 191/713/666 177/701/667 179/702/668 +f 179/702/669 177/701/670 188/711/671 187/710/672 +f 187/710/673 188/711/674 122/311/675 124/313/676 +f 155/681/677 170/694/678 151/344/679 154/348/680 161/688/681 +f 151/344/682 170/694/683 168/693/684 167/692/685 +f 167/692/686 168/693/687 149/341/688 148/339/689 +f 156/682/690 148/339/691 149/341/692 164/690/693 +f 156/682/694 164/690/695 119/304/696 115/299/697 +f 130/320/698 143/335/699 129/318/700 134/322/701 138/327/702 +f 142/333/703 129/318/704 143/335/705 140/330/706 +f 127/316/707 142/333/708 140/330/709 126/315/710 +f 127/316/711 126/315/712 139/329/713 135/324/714 +f 135/324/715 139/329/716 116/302/717 120/305/718 +f 91/226/719 107/283/720 88/130/721 90/213/722 94/229/723 +f 88/130/724 107/283/725 104/239/726 105/282/727 +f 105/282/728 104/239/729 85/129/730 84/119/731 +f 98/232/732 84/119/733 85/129/734 101/235/735 +f 98/232/736 101/235/737 34/47/738 82/117/739 +f 207/725/740 205/724/741 176/700/742 212/729/743 +f 216/732/744 82/117/745 34/47/746 231/778/747 +f 116/302/748 217/733/749 219/735/750 120/305/751 +f 220/736/752 222/738/753 115/299/754 119/304/755 +f 224/744/756 176/700/757 124/313/758 122/311/759 +f 217/733/760 225/745/761 226/750/762 219/735/763 +f 225/745/764 216/732/765 231/778/766 213/730/767 +f 220/736/768 226/750/769 227/751/770 222/738/771 +f 224/744/772 227/751/773 212/729/774 176/700/775 +f 223/743/776 123/312/777 115/299/778 222/738/779 +f 223/743/780 224/744/781 122/311/782 123/312/783 +f 222/738/784 227/751/785 223/743/786 +f 223/743/787 227/751/788 224/744/789 +f 219/735/790 221/737/791 121/309/792 120/305/793 +f 221/737/794 220/736/795 119/304/796 121/309/797 +f 219/735/798 226/750/799 221/737/800 +f 221/737/801 226/750/802 220/736/803 +f 218/734/804 117/303/805 82/117/806 216/732/807 +f 217/733/808 116/302/809 117/303/810 218/734/811 +f 216/732/812 225/745/813 218/734/814 +f 218/734/815 225/745/816 217/733/817 +f 230/763/818 225/745/819 213/730/820 55/72/821 +f 229/753/822 226/750/823 225/745/824 230/763/825 +f 229/753/826 228/752/827 227/751/828 226/750/829 +f 211/728/830 212/729/831 227/751/832 228/752/833 +f 29/42/834 232/779/835 230/763/836 55/72/837 +f 233/780/838 28/41/839 211/728/840 228/752/841 +f 232/779/842 234/781/843 229/753/844 230/763/845 +f 234/781/846 233/780/847 228/752/848 229/753/849 +f 29/42/850 731/905/851 232/779/852 +f 731/905/853 235/782/854 234/781/855 232/779/856 +f 235/782/857 247/784/858 233/780/859 234/781/860 +f 233/780/861 247/784/862 28/41/863 +f 246/709/864 27/40/865 208/678/866 215/685/867 +f 208/726/868 28/41/869 247/784/870 215/731/871 +f 144/292/872 136/284/873 132/241/874 131/240/875 +f 133/250/876 136/284/877 144/292/878 137/285/879 +f 138/327/880 144/336/881 131/321/882 130/320/883 +f 137/325/884 144/336/885 138/327/886 134/322/887 +f 26/39/888 245/708/889 244/707/890 25/38/891 +f 31/44/892 81/88/893 118/215/894 33/46/895 32/45/896 +f 162/310/897 145/293/898 33/46/899 118/215/900 +f 180/328/901 169/317/902 203/673/903 +f 213/730/904 231/778/905 34/47/906 99/233/907 58/78/908 +f 99/106/909 80/87/910 30/43/911 58/68/912 +f 32/45/913 26/39/914 25/38/915 31/44/916 +f 162/310/917 118/215/918 81/88/919 83/90/920 +f 189/337/921 125/234/922 33/46/923 145/293/924 +f 31/44/925 25/38/926 52/62/927 30/43/928 +f 265/157/929 275/174/930 274/166/931 266/158/932 +f 266/158/933 274/166/934 281/193/935 267/159/936 +f 269/161/937 280/184/938 279/178/939 270/162/940 +f 270/860/941 279/861/942 278/177/943 271/163/944 +f 271/163/945 278/177/946 277/176/947 272/164/948 +f 272/164/949 277/176/950 276/175/951 273/165/952 +f 273/165/953 276/175/954 275/174/955 265/157/956 +f 288/262/957 292/266/958 291/265/959 289/263/960 +f 248/140/961 250/142/962 249/141/963 252/144/964 +f 289/263/965 291/265/966 298/272/967 290/264/968 +f 251/143/969 248/140/970 252/144/971 254/146/972 +f 298/272/973 297/271/974 282/194/975 290/264/976 +f 253/145/977 251/143/978 254/146/979 242/133/980 +f 713/889/981 255/147/982 253/145/983 242/133/984 +f 297/271/985 283/195/986 282/194/987 +f 283/195/988 296/270/989 284/258/990 +f 256/148/991 255/147/992 713/889/993 259/151/994 +f 284/862/995 296/863/996 295/269/997 285/259/998 +f 258/150/999 256/757/1000 259/762/1001 261/153/1002 +f 285/259/1003 295/269/1004 294/268/1005 286/260/1006 +f 260/152/1007 258/150/1008 261/153/1009 263/155/1010 +f 286/260/1011 294/268/1012 293/267/1013 287/261/1014 +f 262/154/1015 260/152/1016 263/155/1017 264/156/1018 +f 287/261/1019 293/267/1020 292/266/1021 288/262/1022 +f 250/142/1023 262/154/1024 264/156/1025 249/141/1026 +f 710/886/1027 265/157/1028 266/158/1029 711/887/1030 +f 711/887/1031 266/158/1032 267/159/1033 712/888/1034 +f 712/888/1035 267/159/1036 268/160/1037 709/885/1038 +f 709/885/1039 268/160/1040 269/161/1041 257/149/1042 +f 257/149/1043 269/161/1044 270/162/1045 714/890/1046 +f 714/891/1047 270/860/1048 271/163/1049 715/892/1050 +f 715/892/1051 271/163/1052 272/164/1053 716/893/1054 +f 716/893/1055 272/164/1056 273/165/1057 717/894/1058 +f 717/894/1059 273/165/1060 265/157/1061 710/886/1062 +f 730/134/1063 274/166/1064 275/174/1065 729/124/1066 +f 729/124/1067 275/174/1068 276/175/1069 736/139/1070 +f 736/139/1071 276/175/1072 277/176/1073 728/123/1074 +f 728/123/1075 277/176/1076 278/177/1077 735/138/1078 +f 735/138/1079 278/177/1080 279/861/1081 734/137/1082 +f 734/749/1083 279/178/1084 280/184/1085 733/136/1086 +f 732/135/1087 281/193/1088 274/166/1089 730/134/1090 +f 239/128/1091 284/862/1092 285/259/1093 +f 239/128/1094 285/259/1095 286/260/1096 240/131/1097 +f 240/131/1098 286/260/1099 287/261/1100 241/132/1101 +f 236/125/1102 241/132/1103 287/261/1104 288/262/1105 +f 236/125/1106 288/262/1107 289/263/1108 237/126/1109 +f 237/126/1110 289/263/1111 290/264/1112 238/127/1113 +f 248/140/1114 291/265/1115 292/266/1116 250/142/1117 +f 250/142/1118 292/266/1119 293/267/1120 262/154/1121 +f 262/154/1122 293/267/1123 294/268/1124 260/152/1125 +f 260/152/1126 294/268/1127 295/269/1128 258/150/1129 +f 258/150/1130 295/269/1131 296/863/1132 256/757/1133 +f 256/148/1134 296/270/1135 283/195/1136 255/147/1137 +f 255/147/1138 283/195/1139 297/271/1140 253/145/1141 +f 253/145/1142 297/271/1143 298/272/1144 251/143/1145 +f 251/143/1146 298/272/1147 291/265/1148 248/140/1149 +f 236/26/1150 237/32/1151 299/179/1152 311/196/1153 +f 237/32/1154 238/34/1155 300/180/1156 299/179/1157 +f 239/30/1158 240/31/1159 308/188/1160 20/28/1161 +f 240/31/1162 241/36/1163 303/183/1164 308/188/1165 +f 241/35/1166 236/26/1167 311/196/1168 303/191/1169 +f 280/184/1170 304/354/1171 727/122/1172 733/136/1173 +f 281/193/1174 732/135/1175 727/122/1176 304/354/1177 +f 268/160/1178 267/159/1179 281/193/1180 304/354/1181 +f 269/161/1182 268/160/1183 304/354/1184 280/184/1185 +f 305/185/1186 324/242/1187 18/22/1188 +f 15/16/1189 309/189/1190 305/185/1191 16/17/1192 +f 309/189/1193 307/187/1194 19/27/1195 323/207/1196 +f 306/186/1197 307/187/1198 309/189/1199 15/16/1200 +f 20/28/1201 308/188/1202 307/187/1203 306/186/1204 +f 1181/356/1205 1182/357/1206 310/192/1207 21/21/1208 +f 321/245/1209 310/192/1210 1182/357/1211 708/877/1212 +f 299/179/1213 21/21/1214 310/192/1215 311/196/1216 +f 311/196/1217 310/192/1218 321/245/1219 303/191/1220 +f 238/127/1221 290/264/1222 282/194/1223 312/377/1224 +f 300/180/1225 238/34/1226 312/197/1227 301/181/1228 +f 313/379/1229 312/377/1230 282/194/1231 283/195/1232 +f 22/24/1233 301/181/1234 312/197/1235 313/198/1236 +f 313/379/1237 283/195/1238 284/258/1239 314/649/1240 +f 313/198/1241 314/199/1242 302/190/1243 23/25/1244 22/24/1245 +f 314/864/1246 284/862/1247 239/128/1248 20/33/1249 +f 9/12/1250 302/182/1251 20/28/1252 +f 19/27/1253 307/187/1254 308/188/1255 303/183/1256 +f 302/182/1257 314/203/1258 20/28/1259 +f 316/201/1260 317/202/1261 315/200/1262 13/18/1263 +f 315/200/1264 317/202/1265 318/208/1266 5/6/1267 +f 667/775/1268 315/200/1269 5/6/1270 350/374/1271 +f 13/18/1272 315/200/1273 667/775/1274 362/643/1275 +f 319/209/1276 320/210/1277 318/208/1278 317/202/1279 +f 317/202/1280 316/201/1281 319/209/1282 +f 4/5/1283 318/208/1284 320/210/1285 1/2/1286 +f 319/209/1287 316/201/1288 301/181/1289 22/24/1290 +f 320/210/1291 6/7/1292 1/2/1293 +f 1177/1/1294 1192/281/1295 323/207/1296 322/205/1297 +f 322/205/1298 303/183/1299 321/204/1300 +f 18/22/1301 324/242/1302 1179/206/1303 1178/23/1304 +f 324/242/1305 305/185/1306 309/189/1307 323/207/1308 +f 21/21/1309 325/247/1310 1194/246/1311 1181/356/1312 +f 1561/243/1313 326/244/1314 333/253/1315 703/871/1316 +f 701/868/1317 685/853/1318 678/777/1319 702/869/1320 +f 327/249/1321 704/872/1322 334/254/1323 701/868/1324 +f 330/255/1325 332/273/1326 333/278/1327 326/248/1328 +f 330/255/1329 328/251/1330 331/256/1331 332/273/1332 +f 329/252/1333 677/836/1334 684/841/1335 335/279/1336 +f 328/251/1337 698/865/1338 335/279/1339 331/256/1340 +f 3/3/1341 336/280/1342 686/842/1343 368/655/1344 +f 4/5/1345 337/352/1346 336/280/1347 3/3/1348 +f 335/279/1349 684/841/1350 686/842/1351 336/280/1352 +f 331/256/1353 335/279/1354 336/280/1355 337/352/1356 +f 1/2/1357 342/355/1358 337/352/1359 4/5/1360 +f 342/355/1361 332/273/1362 331/256/1363 337/352/1364 +f 341/353/1365 342/355/1366 1/2/1367 6/7/1368 +f 333/278/1369 332/273/1370 342/355/1371 341/353/1372 +f 2/4/1373 340/275/1374 341/276/1375 6/9/1376 +f 340/275/1377 703/871/1378 333/253/1379 341/276/1380 +f 339/274/1381 340/275/1382 2/4/1383 8/11/1384 +f 339/274/1385 334/254/1386 703/871/1387 340/275/1388 +f 11/14/1389 338/257/1390 339/274/1391 8/11/1392 +f 338/257/1393 701/868/1394 334/254/1395 339/274/1396 +f 358/366/1397 689/854/1398 338/257/1399 11/14/1400 +f 689/854/1401 685/853/1402 701/868/1403 338/257/1404 +f 349/373/1405 347/369/1406 348/370/1407 666/774/1408 +f 668/776/1409 669/828/1410 351/375/1411 352/381/1412 +f 353/361/1413 355/363/1414 354/362/1415 346/358/1416 +f 354/362/1417 352/360/1418 351/359/1419 346/358/1420 +f 357/365/1421 355/363/1422 353/361/1423 356/364/1424 +f 650/671/1425 361/384/1426 360/383/1427 664/761/1428 +f 362/643/1429 360/383/1430 361/384/1431 363/644/1432 +f 16/17/1433 364/372/1434 357/365/1435 359/371/1436 +f 361/384/1437 650/671/1438 649/670/1439 365/645/1440 +f 366/654/1441 363/644/1442 361/384/1443 365/645/1444 +f 347/369/1445 349/373/1446 350/374/1447 368/655/1448 +f 356/364/1449 358/366/1450 359/371/1451 357/365/1452 +f 355/363/1453 357/365/1454 364/372/1455 654/739/1456 +f 672/668/1457 671/666/1458 652/652/1459 367/378/1460 +f 355/363/1461 654/739/1462 369/380/1463 354/362/1464 +f 366/654/1465 365/645/1466 370/656/1467 675/832/1468 674/831/1469 +f 370/656/1470 365/645/1471 649/670/1472 648/665/1473 +f 352/381/1474 372/660/1475 371/659/1476 668/776/1477 +f 354/362/1478 651/651/1479 372/385/1480 352/360/1481 +f 563/570/1482 594/600/1483 374/387/1484 373/386/1485 +f 595/601/1486 596/602/1487 376/389/1488 375/388/1489 +f 559/566/1490 381/394/1491 375/388/1492 376/389/1493 +f 393/408/1494 389/402/1495 394/406/1496 420/429/1497 +f 394/406/1498 391/404/1499 395/407/1500 420/429/1501 +f 395/410/1502 392/405/1503 396/414/1504 420/450/1505 +f 396/414/1506 390/403/1507 393/408/1508 420/450/1509 +f 397/415/1510 373/386/1511 398/409/1512 421/454/1513 +f 398/409/1514 384/397/1515 399/416/1516 421/454/1517 +f 399/416/1518 385/398/1519 400/419/1520 421/454/1521 +f 397/415/1522 421/454/1523 400/419/1524 378/391/1525 +f 401/411/1526 379/392/1527 402/412/1528 422/430/1529 +f 402/412/1530 386/399/1531 403/413/1532 422/430/1533 +f 403/413/1534 384/397/1535 398/409/1536 422/430/1537 +f 398/409/1538 373/386/1539 401/411/1540 422/430/1541 +f 404/421/1542 378/391/1543 400/419/1544 423/457/1545 +f 400/419/1546 385/398/1547 405/422/1548 423/457/1549 +f 405/422/1550 387/400/1551 406/425/1552 423/457/1553 +f 404/421/1554 423/457/1555 406/425/1556 562/804/1557 +f 407/427/1558 562/804/1559 406/425/1560 424/459/1561 +f 406/425/1562 387/400/1563 408/431/1564 424/459/1565 +f 408/418/1566 386/399/1567 402/412/1568 424/432/1569 +f 402/412/1570 379/392/1571 407/417/1572 424/432/1573 +f 408/431/1574 387/400/1575 409/434/1576 410/438/1577 +f 388/401/1578 386/399/1579 408/418/1580 410/420/1581 +f 405/422/1582 385/398/1583 411/440/1584 412/441/1585 +f 409/434/1586 387/400/1587 405/422/1588 412/441/1589 +f 399/416/1590 384/397/1591 413/423/1592 414/444/1593 +f 411/440/1594 385/398/1595 399/416/1596 414/444/1597 +f 403/413/1598 386/399/1599 388/401/1600 415/424/1601 +f 413/423/1602 384/397/1603 403/413/1604 415/424/1605 +f 410/438/1606 409/434/1607 416/446/1608 425/460/1609 +f 395/410/1610 425/460/1611 416/446/1612 392/405/1613 +f 395/407/1614 391/404/1615 417/426/1616 425/433/1617 +f 417/426/1618 388/401/1619 410/420/1620 425/433/1621 +f 412/441/1622 411/440/1623 418/447/1624 426/461/1625 +f 418/447/1626 390/403/1627 396/414/1628 426/461/1629 +f 396/414/1630 392/405/1631 416/446/1632 426/461/1633 +f 416/446/1634 409/434/1635 412/441/1636 426/461/1637 +f 414/444/1638 413/423/1639 419/428/1640 427/463/1641 +f 419/428/1642 389/402/1643 393/408/1644 427/463/1645 +f 393/408/1646 390/403/1647 418/447/1648 427/463/1649 +f 418/447/1650 411/440/1651 414/444/1652 427/463/1653 +f 415/424/1654 388/401/1655 417/426/1656 428/435/1657 +f 417/426/1658 391/404/1659 394/406/1660 428/435/1661 +f 394/406/1662 389/402/1663 419/428/1664 428/435/1665 +f 419/428/1666 413/423/1667 415/424/1668 428/435/1669 +f 443/476/1670 440/475/1671 444/477/1672 457/494/1673 +f 444/451/1674 441/448/1675 445/452/1676 457/464/1677 +f 445/452/1678 442/449/1679 446/453/1680 457/464/1681 +f 446/478/1682 439/473/1683 443/476/1684 457/494/1685 +f 448/455/1686 429/436/1687 449/456/1688 458/465/1689 +f 450/482/1690 383/396/1691 448/480/1692 458/495/1693 +f 466/511/1694 431/466/1695 447/479/1696 459/496/1697 +f 449/456/1698 435/442/1699 451/458/1700 458/465/1701 +f 451/483/1702 434/471/1703 450/482/1704 458/495/1705 +f 447/479/1706 433/468/1707 452/485/1708 459/496/1709 +f 451/458/1710 435/442/1711 455/462/1712 460/467/1713 +f 455/462/1714 438/445/1715 462/469/1716 460/467/1717 +f 462/504/1718 456/491/1719 453/486/1720 460/498/1721 +f 453/486/1722 434/471/1723 451/483/1724 460/498/1725 +f 452/485/1726 433/468/1727 454/490/1728 461/499/1729 +f 454/490/1730 437/472/1731 463/505/1732 461/499/1733 +f 438/445/1734 441/448/1735 444/451/1736 462/469/1737 +f 444/477/1738 440/475/1739 456/491/1740 462/504/1741 +f 437/472/1742 439/473/1743 446/478/1744 463/505/1745 +f 446/453/1746 442/449/1747 477/484/1748 463/470/1749 +f 401/411/1750 373/386/1751 374/387/1752 +f 488/537/1753 465/510/1754 466/511/1755 459/496/1756 +f 470/517/1757 469/513/1758 484/532/1759 506/569/1760 +f 452/485/1761 475/523/1762 488/537/1763 459/496/1764 +f 484/532/1765 476/524/1766 514/577/1767 506/569/1768 +f 463/505/1769 492/543/1770 489/538/1771 461/499/1772 +f 489/538/1773 475/523/1774 452/485/1775 461/499/1776 +f 514/577/1777 476/524/1778 491/541/1779 523/584/1780 +f 491/541/1781 478/526/1782 524/585/1783 523/584/1784 +f 480/529/1785 479/528/1786 492/543/1787 463/505/1788 +f 477/484/1789 481/488/1790 480/487/1791 463/470/1792 +f 486/493/1793 482/489/1794 499/506/1795 524/531/1796 +f 478/526/1797 483/530/1798 486/533/1799 524/585/1800 +f 472/520/1801 464/507/1802 505/568/1803 521/582/1804 +f 513/576/1805 468/512/1806 470/517/1807 506/569/1808 +f 507/514/1809 501/508/1810 508/515/1811 520/527/1812 +f 508/515/1813 502/509/1814 509/516/1815 520/527/1816 +f 509/573/1817 503/556/1818 510/574/1819 520/581/1820 +f 510/574/1821 504/567/1822 507/572/1823 520/581/1824 +f 505/568/1825 497/547/1826 512/575/1827 521/582/1828 +f 514/577/1829 498/549/1830 513/576/1831 506/569/1832 +f 512/575/1833 497/547/1834 516/578/1835 522/583/1836 +f 516/578/1837 500/552/1838 552/796/1839 522/583/1840 +f 524/585/1841 519/580/1842 517/579/1843 523/584/1844 +f 517/579/1845 498/549/1846 514/577/1847 523/584/1848 +f 499/506/1849 501/508/1850 507/514/1851 524/531/1852 +f 509/516/1853 502/509/1854 518/525/1855 552/559/1856 +f 500/552/1857 503/556/1858 509/573/1859 552/796/1860 +f 507/572/1861 504/567/1862 519/580/1863 524/585/1864 +f 535/599/1865 554/798/1866 525/586/1867 473/521/1868 +f 474/481/1869 554/561/1870 535/542/1871 +f 537/785/1872 471/519/1873 472/520/1874 521/582/1875 +f 538/545/1876 474/481/1877 535/542/1878 550/557/1879 +f 535/599/1880 473/521/1881 536/603/1882 550/794/1883 +f 512/575/1884 526/587/1885 537/785/1886 521/582/1887 +f 539/546/1888 527/534/1889 538/545/1890 550/557/1891 +f 536/603/1892 528/588/1893 539/786/1894 550/794/1895 +f 552/796/1896 545/791/1897 540/787/1898 522/583/1899 +f 540/787/1900 526/587/1901 512/575/1902 522/583/1903 +f 543/550/1904 546/553/1905 541/548/1906 551/558/1907 +f 541/548/1908 527/534/1909 539/546/1910 551/558/1911 +f 539/786/1912 528/588/1913 542/788/1914 551/795/1915 +f 542/788/1916 530/589/1917 543/789/1918 551/795/1919 +f 544/790/1920 531/590/1921 545/791/1922 552/796/1923 +f 529/536/1924 532/539/1925 544/551/1926 552/559/1927 +f 548/555/1928 533/540/1929 546/553/1930 543/550/1931 +f 530/589/1932 534/591/1933 548/792/1934 543/789/1935 +f 548/792/1936 534/591/1937 549/793/1938 553/797/1939 +f 549/793/1940 531/590/1941 544/790/1942 553/797/1943 +f 544/551/1944 532/539/1945 547/554/1946 553/560/1947 +f 547/554/1948 533/540/1949 548/555/1950 553/560/1951 +f 554/561/1952 474/481/1953 555/562/1954 556/563/1955 +f 555/562/1956 559/566/1957 558/565/1958 556/563/1959 +f 561/803/1960 556/799/1961 558/801/1962 560/802/1963 +f 560/802/1964 558/801/1965 557/800/1966 377/390/1967 +f 559/566/1968 376/389/1969 557/564/1970 558/565/1971 +f 563/570/1972 373/386/1973 397/415/1974 593/827/1975 +f 593/827/1976 397/415/1977 378/391/1978 592/826/1979 +f 432/439/1980 511/518/1981 495/502/1982 436/443/1983 +f 495/502/1984 515/522/1985 490/497/1986 436/443/1987 +f 515/522/1988 499/506/1989 477/484/1990 490/497/1991 +f 482/489/1992 485/492/1993 481/488/1994 477/484/1995 499/506/1996 +f 429/436/1997 430/437/1998 432/439/1999 449/456/2000 +f 449/456/2001 432/439/2002 436/443/2003 435/442/2004 +f 435/442/2005 436/443/2006 490/497/2007 455/462/2008 +f 455/462/2009 490/497/2010 477/484/2011 438/445/2012 +f 442/449/2013 445/452/2014 441/448/2015 438/445/2016 477/484/2017 +f 379/392/2018 380/393/2019 430/437/2020 429/436/2021 +f 494/501/2022 496/503/2023 495/502/2024 511/518/2025 +f 529/536/2026 515/522/2027 495/502/2028 496/503/2029 +f 518/525/2030 499/506/2031 515/522/2032 529/536/2033 +f 502/509/2034 508/515/2035 501/508/2036 499/506/2037 518/525/2038 +f 555/562/2039 474/481/2040 382/395/2041 381/394/2042 559/566/2043 +f 494/501/2044 538/545/2045 527/534/2046 +f 541/548/2047 496/503/2048 494/501/2049 527/534/2050 +f 546/553/2051 529/536/2052 496/503/2053 541/548/2054 +f 547/554/2055 532/539/2056 529/536/2057 546/553/2058 533/540/2059 +f 531/590/2060 549/793/2061 534/591/2062 530/589/2063 545/791/2064 +f 530/589/2065 542/788/2066 540/787/2067 545/791/2068 +f 542/788/2069 528/588/2070 526/587/2071 540/787/2072 +f 528/588/2073 536/603/2074 537/785/2075 526/587/2076 +f 536/603/2077 473/521/2078 471/519/2079 537/785/2080 +f 504/567/2081 510/574/2082 503/556/2083 500/552/2084 519/580/2085 +f 500/552/2086 516/578/2087 517/579/2088 519/580/2089 +f 516/578/2090 497/547/2091 498/549/2092 517/579/2093 +f 505/568/2094 513/576/2095 498/549/2096 497/547/2097 +f 505/568/2098 464/507/2099 468/512/2100 513/576/2101 +f 479/528/2102 487/535/2103 483/530/2104 478/526/2105 492/543/2106 +f 491/541/2107 489/538/2108 492/543/2109 478/526/2110 +f 476/524/2111 475/523/2112 489/538/2113 491/541/2114 +f 476/524/2115 484/532/2116 488/537/2117 475/523/2118 +f 484/532/2119 469/513/2120 465/510/2121 488/537/2122 +f 440/475/2123 443/476/2124 439/473/2125 437/472/2126 456/491/2127 +f 437/472/2128 454/490/2129 453/486/2130 456/491/2131 +f 454/490/2132 433/468/2133 434/471/2134 453/486/2135 +f 447/479/2136 450/482/2137 434/471/2138 433/468/2139 +f 447/479/2140 431/466/2141 383/396/2142 450/482/2143 +f 556/799/2144 561/803/2145 525/586/2146 554/798/2147 +f 565/806/2148 580/821/2149 383/396/2150 431/466/2151 +f 465/510/2152 469/513/2153 568/809/2154 566/807/2155 +f 569/810/2156 468/512/2157 464/507/2158 571/812/2159 +f 573/814/2160 471/519/2161 473/521/2162 525/586/2163 +f 566/807/2164 568/809/2165 575/816/2166 574/815/2167 +f 574/815/2168 562/804/2169 580/821/2170 565/806/2171 +f 569/810/2172 571/812/2173 576/817/2174 575/816/2175 +f 573/814/2176 525/586/2177 561/803/2178 576/817/2179 +f 572/813/2180 571/812/2181 464/507/2182 472/520/2183 +f 572/813/2184 472/520/2185 471/519/2186 573/814/2187 +f 571/812/2188 572/813/2189 576/817/2190 +f 572/813/2191 573/814/2192 576/817/2193 +f 568/809/2194 469/513/2195 470/517/2196 570/811/2197 +f 570/811/2198 470/517/2199 468/512/2200 569/810/2201 +f 568/809/2202 570/811/2203 575/816/2204 +f 570/811/2205 569/810/2206 575/816/2207 +f 567/808/2208 565/806/2209 431/466/2210 466/511/2211 +f 566/807/2212 567/808/2213 466/511/2214 465/510/2215 +f 565/806/2216 567/808/2217 574/815/2218 +f 567/808/2219 566/807/2220 574/815/2221 +f 579/820/2222 404/421/2223 562/804/2224 574/815/2225 +f 578/819/2226 579/820/2227 574/815/2228 575/816/2229 +f 578/819/2230 575/816/2231 576/817/2232 577/818/2233 +f 560/802/2234 577/818/2235 576/817/2236 561/803/2237 +f 378/391/2238 404/421/2239 579/820/2240 581/822/2241 +f 582/823/2242 577/818/2243 560/802/2244 377/390/2245 +f 581/822/2246 579/820/2247 578/819/2248 583/824/2249 +f 583/824/2250 578/819/2251 577/818/2252 582/823/2253 +f 378/391/2254 581/822/2255 592/826/2256 +f 592/826/2257 581/822/2258 583/824/2259 584/825/2260 +f 584/825/2261 583/824/2262 582/823/2263 746/906/2264 +f 582/823/2265 377/390/2266 746/906/2267 +f 596/602/2268 564/571/2269 557/564/2270 376/389/2271 +f 557/800/2272 564/805/2273 746/906/2274 377/390/2275 +f 493/500/2276 480/487/2277 481/488/2278 485/492/2279 +f 482/489/2280 486/493/2281 493/500/2282 485/492/2283 +f 487/535/2284 479/528/2285 480/529/2286 493/544/2287 +f 486/533/2288 483/530/2289 487/535/2290 493/544/2291 +f 375/388/2292 374/387/2293 594/600/2294 595/601/2295 +f 380/393/2296 381/394/2297 382/395/2298 467/474/2299 430/437/2300 +f 511/518/2301 467/474/2302 382/395/2303 494/501/2304 +f 529/536/2305 552/559/2306 518/525/2307 +f 562/804/2308 407/427/2309 448/480/2310 383/396/2311 580/821/2312 +f 448/455/2313 407/417/2314 379/392/2315 429/436/2316 +f 381/394/2317 380/393/2318 374/387/2319 375/388/2320 +f 511/518/2321 432/439/2322 430/437/2323 467/474/2324 +f 538/545/2325 494/501/2326 382/395/2327 474/481/2328 +f 380/393/2329 379/392/2330 401/411/2331 374/387/2332 +f 614/624/2333 615/625/2334 623/631/2335 624/632/2336 +f 615/625/2337 616/626/2338 630/636/2339 623/631/2340 +f 618/628/2341 619/220/2342 628/222/2343 629/635/2344 +f 619/219/2345 620/629/2346 627/634/2347 628/221/2348 +f 620/629/2349 621/630/2350 626/633/2351 627/634/2352 +f 621/630/2353 622/173/2354 625/211/2355 626/633/2356 +f 622/173/2357 614/624/2358 624/632/2359 625/211/2360 +f 637/641/2361 638/642/2362 640/657/2363 641/658/2364 +f 597/611/2365 601/615/2366 598/612/2367 599/613/2368 +f 638/642/2369 639/648/2370 647/765/2371 640/657/2372 +f 600/614/2373 721/898/2374 601/615/2375 597/611/2376 +f 647/765/2377 639/648/2378 631/637/2379 646/764/2380 +f 602/616/2381 591/605/2382 721/898/2383 600/614/2384 +f 606/619/2385 591/605/2386 602/616/2387 604/618/2388 +f 646/764/2389 631/637/2390 632/638/2391 +f 632/638/2392 633/224/2393 645/227/2394 +f 605/212/2395 608/218/2396 606/619/2397 604/618/2398 +f 633/223/2399 634/639/2400 644/759/2401 645/225/2402 +f 607/620/2403 610/622/2404 608/216/2405 605/172/2406 +f 634/639/2407 635/640/2408 643/758/2409 644/759/2410 +f 609/621/2411 612/623/2412 610/622/2413 607/620/2414 +f 635/640/2415 636/214/2416 642/217/2417 643/758/2418 +f 611/169/2419 726/904/2420 612/623/2421 609/621/2422 +f 636/214/2423 637/641/2424 641/658/2425 642/217/2426 +f 599/613/2427 598/612/2428 726/904/2429 611/169/2430 +f 719/896/2431 720/897/2432 615/625/2433 614/624/2434 +f 720/897/2435 603/617/2436 616/626/2437 615/625/2438 +f 603/617/2439 718/895/2440 617/627/2441 616/626/2442 +f 718/895/2443 722/899/2444 618/628/2445 617/627/2446 +f 722/899/2447 723/900/2448 619/220/2449 618/628/2450 +f 723/901/2451 724/902/2452 620/629/2453 619/219/2454 +f 724/902/2455 725/903/2456 621/630/2457 620/629/2458 +f 725/903/2459 613/171/2460 622/173/2461 621/630/2462 +f 613/171/2463 719/896/2464 614/624/2465 622/173/2466 +f 740/606/2467 739/594/2468 624/632/2469 623/631/2470 +f 739/594/2471 745/168/2472 625/211/2473 624/632/2474 +f 745/168/2475 738/593/2476 626/633/2477 625/211/2478 +f 738/593/2479 744/610/2480 627/634/2481 626/633/2482 +f 744/610/2483 743/609/2484 628/221/2485 627/634/2486 +f 743/170/2487 742/608/2488 629/635/2489 628/222/2490 +f 741/607/2491 740/606/2492 623/631/2493 630/636/2494 +f 588/598/2495 634/639/2496 633/223/2497 +f 588/598/2498 589/604/2499 635/640/2500 634/639/2501 +f 589/604/2502 590/167/2503 636/214/2504 635/640/2505 +f 636/214/2506 590/167/2507 585/595/2508 637/641/2509 +f 585/595/2510 586/596/2511 638/642/2512 637/641/2513 +f 586/596/2514 587/597/2515 639/648/2516 638/642/2517 +f 597/611/2518 599/613/2519 641/658/2520 640/657/2521 +f 599/613/2522 611/169/2523 642/217/2524 641/658/2525 +f 611/169/2526 609/621/2527 643/758/2528 642/217/2529 +f 609/621/2530 607/620/2531 644/759/2532 643/758/2533 +f 607/620/2534 605/172/2535 645/225/2536 644/759/2537 +f 605/212/2538 604/618/2539 632/638/2540 645/227/2541 +f 604/618/2542 602/616/2543 646/764/2544 632/638/2545 +f 602/616/2546 600/614/2547 647/765/2548 646/764/2549 +f 600/614/2550 597/611/2551 640/657/2552 647/765/2553 +f 585/661/2554 659/747/2555 648/665/2556 586/662/2557 +f 586/662/2558 648/665/2559 649/670/2560 587/663/2561 +f 588/646/2562 369/380/2563 656/741/2564 589/647/2565 +f 589/647/2566 656/741/2567 652/652/2568 590/650/2569 +f 590/664/2570 652/742/2571 659/747/2572 585/661/2573 +f 629/635/2574 742/608/2575 737/592/2576 653/766/2577 +f 630/636/2578 653/766/2579 737/592/2580 741/607/2581 +f 617/627/2582 653/766/2583 630/636/2584 616/626/2585 +f 618/628/2586 629/635/2587 653/766/2588 617/627/2589 +f 305/185/2590 18/22/2591 673/669/2592 +f 364/372/2593 16/17/2594 305/185/2595 657/653/2596 +f 657/653/2597 672/668/2598 367/378/2599 655/740/2600 +f 654/739/2601 364/372/2602 657/653/2603 655/740/2604 +f 369/380/2605 654/739/2606 655/740/2607 656/741/2608 +f 658/746/2609 697/849/2610 1184/847/2611 370/656/2612 +f 648/665/2613 659/747/2614 658/746/2615 370/656/2616 +f 659/747/2617 652/742/2618 670/829/2619 658/746/2620 +f 587/597/2621 660/767/2622 631/637/2623 639/648/2624 +f 649/670/2625 650/671/2626 660/748/2627 587/663/2628 +f 661/768/2629 632/638/2630 631/637/2631 660/767/2632 +f 371/659/2633 661/754/2634 660/748/2635 650/671/2636 +f 661/768/2637 662/769/2638 633/224/2639 632/638/2640 +f 661/754/2641 371/659/2642 372/660/2643 651/672/2644 662/755/2645 +f 662/228/2646 369/382/2647 588/598/2648 633/223/2649 +f 354/362/2650 369/380/2651 651/651/2652 +f 367/378/2653 652/652/2654 656/741/2655 655/740/2656 +f 651/651/2657 369/380/2658 662/756/2659 +f 664/761/2660 360/383/2661 663/760/2662 665/770/2663 +f 663/760/2664 349/373/2665 666/774/2666 665/770/2667 +f 667/775/2668 350/374/2669 349/373/2670 663/760/2671 +f 360/383/2672 362/643/2673 667/775/2674 663/760/2675 +f 666/774/2676 669/828/2677 668/776/2678 665/770/2679 +f 665/770/2680 668/776/2681 664/761/2682 +f 348/370/2683 345/368/2684 669/828/2685 666/774/2686 +f 668/776/2687 371/659/2688 650/671/2689 664/761/2690 +f 669/828/2691 345/368/2692 351/375/2693 +f 1185/879/2694 670/376/2695 671/666/2696 343/351/2697 +f 343/351/2698 671/666/2699 672/668/2700 696/859/2701 +f 671/666/2702 670/376/2703 652/652/2704 +f 1186/667/2705 673/669/2706 707/876/2707 +f 657/653/2708 305/185/2709 673/669/2710 672/668/2711 +f 674/831/2712 675/832/2713 1195/830/2714 344/367/2715 +f 682/851/2716 681/850/2717 676/772/2718 1555/874/2719 +f 683/852/2720 1563/773/2721 678/777/2722 685/853/2723 +f 683/852/2724 705/873/2725 1562/771/2726 1556/870/2727 +f 1558/837/2728 676/833/2729 681/840/2730 680/839/2731 +f 679/838/2732 1557/834/2733 1558/837/2734 680/839/2735 +f 700/867/2736 699/866/2737 684/841/2738 677/836/2739 +f 1557/834/2740 679/838/2741 699/866/2742 1559/835/2743 +f 347/369/2744 368/655/2745 686/842/2746 687/843/2747 +f 348/370/2748 347/369/2749 687/843/2750 688/844/2751 +f 699/866/2752 687/843/2753 686/842/2754 684/841/2755 +f 679/838/2756 688/844/2757 687/843/2758 699/866/2759 +f 345/368/2760 348/370/2761 688/844/2762 694/846/2763 +f 694/846/2764 688/844/2765 679/838/2766 680/839/2767 +f 693/845/2768 351/375/2769 345/368/2770 694/846/2771 +f 681/840/2772 693/845/2773 694/846/2774 680/839/2775 +f 346/358/2776 351/359/2777 693/858/2778 692/857/2779 +f 692/857/2780 693/858/2781 681/850/2782 682/851/2783 +f 691/856/2784 353/361/2785 346/358/2786 692/857/2787 +f 691/856/2788 692/857/2789 682/851/2790 705/873/2791 +f 356/364/2792 353/361/2793 691/856/2794 690/855/2795 +f 690/855/2796 691/856/2797 705/873/2798 683/852/2799 +f 358/366/2800 356/364/2801 690/855/2802 689/854/2803 +f 689/854/2804 690/855/2805 683/852/2806 685/853/2807 +f 329/252/2808 335/279/2809 698/865/2810 +f 1559/835/2811 699/866/2812 700/867/2813 +f 327/249/2814 701/868/2815 702/869/2816 +f 1563/773/2817 683/852/2818 1556/870/2819 +f 334/254/2820 704/872/2821 1561/243/2822 703/871/2823 +f 682/851/2824 1555/874/2825 1562/771/2826 705/873/2827 +f 697/849/2828 658/746/2829 670/829/2830 695/848/2831 +f 670/376/2832 1185/880/2833 695/884/2834 +f 321/883/2835 708/878/2836 1193/277/2837 +f 321/204/2838 1193/277/2839 1177/1/2840 322/205/2841 +f 1183/882/2842 675/832/2843 370/656/2844 1184/847/2845 +f 675/832/2846 1183/882/2847 1195/830/2848 +f 1180/881/2849 325/247/2850 674/831/2851 344/367/2852 +f 325/247/2853 1180/881/2854 1194/246/2855 +f 707/876/2856 673/669/2857 18/22/2858 1178/23/2859 +f 323/207/2860 1192/281/2861 706/875/2862 324/242/2863 +f 672/668/2864 673/669/2865 1186/667/2866 696/859/2867 +f 706/875/2868 1179/206/2869 324/242/2870 +f 711/887/2871 252/144/2872 249/141/2873 710/886/2874 +f 712/888/2875 254/146/2876 252/144/2877 711/887/2878 +f 709/885/2879 242/133/2880 254/146/2881 712/888/2882 +f 257/149/2883 713/889/2884 242/133/2885 709/885/2886 +f 714/890/2887 259/151/2888 713/889/2889 257/149/2890 +f 715/892/2891 261/153/2892 259/762/2893 714/891/2894 +f 716/893/2895 263/155/2896 261/153/2897 715/892/2898 +f 717/894/2899 264/156/2900 263/155/2901 716/893/2902 +f 710/886/2903 249/141/2904 264/156/2905 717/894/2906 +f 719/896/2907 598/612/2908 601/615/2909 720/897/2910 +f 720/897/2911 601/615/2912 721/898/2913 603/617/2914 +f 603/617/2915 721/898/2916 591/605/2917 718/895/2918 +f 718/895/2919 591/605/2920 606/619/2921 722/899/2922 +f 722/899/2923 606/619/2924 608/218/2925 723/900/2926 +f 610/622/2927 724/902/2928 723/901/2929 608/216/2930 +f 724/902/2931 610/622/2932 612/623/2933 725/903/2934 +f 725/903/2935 612/623/2936 726/904/2937 613/171/2938 +f 613/171/2939 726/904/2940 598/612/2941 719/896/2942 +f 736/942/2943 247/914/2944 235/909/2945 729/931/2946 +f 735/941/2947 246/913/2948 215/908/2949 728/930/2950 +f 731/933/2951 730/932/2952 729/931/2953 235/909/2954 +f 247/914/2955 736/942/2956 728/944/2957 215/943/2958 +f 246/913/2959 735/941/2960 734/939/2961 245/912/2962 +f 245/912/2963 734/939/2964 733/935/2965 244/911/2966 +f 727/929/2967 214/907/2968 244/911/2969 733/935/2970 +f 732/934/2971 243/910/2972 214/907/2973 727/929/2974 +f 243/910/2975 732/934/2976 730/932/2977 731/933/2978 +f 739/925/2979 584/917/2980 746/940/2981 745/938/2982 +f 738/946/2983 564/945/2984 596/922/2985 744/937/2986 +f 584/917/2987 739/925/2988 740/926/2989 592/918/2990 +f 564/916/2991 738/924/2992 745/938/2993 746/940/2994 +f 595/921/2995 743/936/2996 744/937/2997 596/922/2998 +f 594/920/2999 742/928/3000 743/936/3001 595/921/3002 +f 742/928/3003 594/920/3004 563/915/3005 737/923/3006 +f 737/923/3007 563/915/3008 593/919/3009 741/927/3010 +f 592/918/3011 740/926/3012 741/927/3013 593/919/3014 +f 1179/1379/3015 1204/1423/3016 1212/1432/3017 1178/1378/3018 +f 1200/1419/3019 1202/1421/3020 1182/1384/3021 1181/1381/3022 +f 838/1075/3023 955/1192/3024 981/1218/3025 769/969/3026 +f 761/961/3027 769/969/3028 981/1218/3029 952/1189/3030 +f 838/1075/3031 785/985/3032 836/1073/3033 +f 836/1073/3034 785/985/3035 770/970/3036 +f 770/970/3037 785/985/3038 769/969/3039 761/961/3040 +f 769/969/3041 785/985/3042 838/1075/3043 +f 842/1116/3044 843/1117/3045 762/962/3046 820/1057/3047 +f 757/957/3048 772/972/3049 820/1057/3050 762/962/3051 +f 773/973/3052 867/1141/3053 774/974/3054 758/958/3055 +f 774/974/3056 867/1141/3057 757/957/3058 762/962/3059 +f 839/1076/3060 836/1073/3061 758/958/3062 774/974/3063 +f 762/962/3064 843/1117/3065 839/1076/3066 774/974/3067 +f 956/1193/3068 776/976/3069 992/1229/3070 +f 970/1207/3071 763/963/3072 761/961/3073 952/1189/3074 +f 770/970/3075 777/977/3076 758/958/3077 836/1073/3078 +f 763/963/3079 777/977/3080 770/970/3081 761/961/3082 +f 773/973/3083 758/958/3084 777/977/3085 1190/1405/3086 786/986/3087 +f 835/1072/3088 778/978/3089 995/1232/3090 969/1206/3091 +f 775/975/3092 759/959/3093 779/979/3094 809/1046/3095 +f 779/979/3096 759/959/3097 866/1140/3098 +f 809/1046/3099 779/979/3100 787/987/3101 781/981/3102 +f 787/987/3103 779/979/3104 760/960/3105 782/982/3106 +f 889/1163/3107 1115/1352/3108 1000/1237/3109 780/980/3110 +f 760/960/3111 788/988/3112 956/1193/3113 1002/1239/3114 +f 782/982/3115 760/960/3116 1002/1239/3117 1001/1238/3118 +f 784/984/3119 764/964/3120 771/971/3121 789/989/3122 +f 771/971/3123 1216/1436/3124 977/1214/3125 951/1188/3126 +f 1216/1436/3127 771/971/3128 764/964/3129 765/965/3130 +f 1015/1252/3131 754/954/3132 792/992/3133 948/1185/3134 +f 754/954/3135 794/994/3136 793/993/3137 792/992/3138 +f 850/1124/3139 794/994/3140 791/991/3141 790/990/3142 +f 791/991/3143 794/994/3144 754/954/3145 753/953/3146 +f 753/953/3147 754/954/3148 1015/1252/3149 957/1194/3150 +f 755/955/3151 795/995/3152 1016/1253/3153 958/1195/3154 +f 748/948/3155 821/1058/3156 796/996/3157 756/956/3158 +f 796/996/3159 821/1058/3160 795/995/3161 755/955/3162 +f 891/1165/3163 890/1164/3164 793/993/3165 747/947/3166 +f 892/1166/3167 792/992/3168 793/993/3169 890/1164/3170 +f 892/1166/3171 890/1164/3172 796/996/3173 755/955/3174 +f 890/1164/3175 891/1165/3176 756/956/3177 796/996/3178 +f 1119/1356/3179 948/1185/3180 792/992/3181 892/1166/3182 +f 1119/1356/3183 892/1166/3184 755/955/3185 958/1195/3186 +f 798/998/3187 797/997/3188 800/1000/3189 853/1127/3190 +f 850/1124/3191 790/990/3192 798/998/3193 853/1127/3194 +f 750/950/3195 822/1059/3196 802/1002/3197 893/1167/3198 +f 802/1002/3199 822/1059/3200 748/948/3201 756/956/3202 +f 852/1126/3203 891/1165/3204 747/947/3205 854/1128/3206 +f 805/1005/3207 806/1006/3208 816/1053/3209 752/952/3210 +f 803/1003/3211 749/949/3212 805/1005/3213 823/1060/3214 +f 808/1008/3215 893/1167/3216 803/1003/3217 823/1060/3218 +f 808/1008/3219 823/1060/3220 809/1046/3221 781/981/3222 +f 810/1047/3223 812/1049/3224 811/1048/3225 751/951/3226 +f 795/995/3227 812/1049/3228 810/1047/3229 1016/1253/3230 +f 813/1050/3231 824/1061/3232 822/1059/3233 750/950/3234 +f 822/1059/3235 824/1061/3236 821/1058/3237 748/948/3238 +f 821/1058/3239 824/1061/3240 812/1049/3241 795/995/3242 +f 812/1049/3243 824/1061/3244 813/1050/3245 811/1048/3246 +f 811/1048/3247 895/1169/3248 814/1051/3249 751/1393/3250 +f 815/1052/3251 960/1197/3252 814/1051/3253 895/1169/3254 +f 816/1053/3255 806/1006/3256 817/1054/3257 772/972/3258 +f 807/1007/3259 888/1162/3260 896/1170/3261 825/1062/3262 +f 807/1007/3263 825/1062/3264 813/1050/3265 750/950/3266 +f 895/1169/3267 811/1048/3268 813/1050/3269 825/1062/3270 +f 768/968/3271 827/1064/3272 798/998/3273 790/990/3274 +f 798/998/3275 827/1064/3276 1201/1420/3277 797/997/3278 +f 818/1055/3279 828/1065/3280 791/991/3281 753/953/3282 +f 791/991/3283 828/1065/3284 768/968/3285 790/990/3286 +f 980/1217/3287 818/1055/3288 753/953/3289 957/1194/3290 +f 766/966/3291 819/1056/3292 826/1063/3293 767/967/3294 +f 820/1057/3295 829/1066/3296 804/1004/3297 842/1116/3298 +f 817/1054/3299 829/1066/3300 820/1057/3301 772/972/3302 +s 2 +f 830/1067/3303 834/1071/3304 1051/1288/3305 1053/1290/3306 +s 4 +f 1053/1290/3307 986/1223/3308 831/1068/3309 830/1067/3310 +s 2 +f 783/983/3311 844/1118/3312 833/1070/3313 832/1069/3314 +f 844/1118/3315 965/1202/3316 1056/1293/3317 833/1070/3318 +f 1051/1288/3319 834/1071/3320 833/1070/3321 1056/1293/3322 +s 1 +f 819/1056/3323 766/966/3324 765/965/3325 764/964/3326 +f 841/1115/3327 819/1056/3328 764/964/3329 784/984/3330 +f 809/1046/3331 823/1060/3332 752/952/3333 775/975/3334 +f 752/952/3335 823/1060/3336 805/1005/3337 +f 797/997/3338 1201/1420/3339 767/967/3340 826/1063/3341 804/1004/3342 +f 771/971/3343 951/1188/3344 984/1221/3345 789/989/3346 +s 2 +f 834/1071/3347 832/1069/3348 833/1070/3349 +s 1 +f 831/1068/3350 986/1223/3351 1062/1299/3352 845/1119/3353 +f 837/1074/3354 840/1077/3355 831/1068/3356 +f 783/983/3357 831/1068/3358 840/1077/3359 846/1120/3360 +f 848/1122/3361 844/1118/3362 783/983/3363 847/1121/3364 +f 1069/1306/3365 965/1202/3366 844/1118/3367 848/1122/3368 +f 845/1119/3369 837/1074/3370 831/1068/3371 +f 841/1115/3372 826/1063/3373 819/1056/3374 +s 4 +f 832/1069/3375 830/1067/3376 831/1068/3377 783/983/3378 +s 1 +f 747/947/3379 855/1129/3380 854/1128/3381 +f 855/1129/3382 747/947/3383 850/1124/3384 853/1127/3385 +f 850/1124/3386 747/947/3387 793/993/3388 794/994/3389 +f 854/1128/3390 749/949/3391 803/1003/3392 852/1126/3393 +s 2 +f 861/1135/3394 801/1001/3395 853/1127/3396 800/1000/3397 +f 854/1128/3398 855/1129/3399 849/1123/3400 857/1131/3401 799/999/3402 +f 855/1129/3403 853/1127/3404 801/1001/3405 862/1136/3406 849/1123/3407 +s 4 +f 859/1133/3408 749/949/3409 854/1128/3410 851/1125/3411 +s 1 +f 857/1131/3412 849/1123/3413 856/1130/3414 863/1137/3415 +f 858/1132/3416 799/999/3417 857/1131/3418 863/1137/3419 +f 859/1133/3420 851/1125/3421 858/1132/3422 863/1137/3423 +f 856/1130/3424 749/949/3425 859/1133/3426 863/1137/3427 +f 861/1135/3428 800/1000/3429 898/1172/3430 860/1134/3431 864/1138/3432 +f 862/1136/3433 801/1001/3434 861/1135/3435 864/1138/3436 +f 856/1130/3437 849/1123/3438 862/1136/3439 864/1138/3440 +f 860/1134/3441 749/949/3442 856/1130/3443 864/1138/3444 +s 2 +f 851/1125/3445 854/1128/3446 858/1132/3447 +f 858/1132/3448 854/1128/3449 799/999/3450 +s 1 +f 806/1006/3451 805/1005/3452 749/949/3453 860/1134/3454 +f 788/988/3455 866/1140/3456 868/1142/3457 869/1143/3458 +f 869/1143/3459 868/1142/3460 883/1157/3461 881/1155/3462 +f 759/959/3463 870/1144/3464 868/1142/3465 866/1140/3466 +f 868/1142/3467 870/1144/3468 884/1158/3469 883/1157/3470 +f 879/1153/3471 884/1158/3472 870/1144/3473 877/1151/3474 +f 874/1148/3475 776/976/3476 956/1193/3477 788/988/3478 869/1143/3479 +f 776/976/3480 874/1148/3481 873/1147/3482 835/1072/3483 +f 880/1154/3484 887/1161/3485 875/1149/3486 873/1147/3487 +f 873/1147/3488 875/1149/3489 773/973/3490 835/1072/3491 +f 773/973/3492 875/1149/3493 908/1182/3494 +f 757/957/3495 867/1141/3496 871/1145/3497 910/1184/3498 +f 878/1152/3499 876/1150/3500 872/1146/3501 885/1159/3502 +f 876/1150/3503 816/1053/3504 772/972/3505 757/957/3506 872/1146/3507 +f 877/1151/3508 876/1150/3509 878/1152/3510 879/1153/3511 +f 775/975/3512 752/952/3513 876/1150/3514 877/1151/3515 +f 876/1150/3516 752/952/3517 816/1053/3518 +s 2 +f 881/1155/3519 883/1157/3520 865/1139/3521 +f 883/1157/3522 884/1158/3523 865/1139/3524 +f 884/1158/3525 879/1153/3526 865/1139/3527 +f 886/1160/3528 881/1155/3529 865/1139/3530 +f 880/1154/3531 886/1160/3532 865/1139/3533 +f 887/1161/3534 880/1154/3535 865/1139/3536 +f 878/1152/3537 885/1159/3538 865/1139/3539 +f 879/1153/3540 878/1152/3541 865/1139/3542 +s 1 +f 1206/1425/3543 1204/1423/3544 1179/1379/3545 706/1383/3546 +f 1192/1409/3547 1203/1422/3548 1206/1425/3549 706/1383/3550 +f 1200/1419/3551 1181/1381/3552 1194/1413/3553 1199/1418/3554 +f 776/976/3555 835/1072/3556 969/1206/3557 992/1229/3558 +f 775/975/3559 877/1151/3560 870/1144/3561 759/959/3562 +f 782/982/3563 1001/1238/3564 1115/1352/3565 889/1163/3566 +f 852/1126/3567 803/1003/3568 893/1167/3569 802/1002/3570 +f 807/1007/3571 750/950/3572 893/1167/3573 808/1008/3574 +f 756/956/3575 891/1165/3576 852/1126/3577 802/1002/3578 +s 2 +f 830/1067/3579 832/1069/3580 834/1071/3581 +s 1 +f 815/1052/3582 894/1168/3583 889/1163/3584 780/980/3585 +f 896/1170/3586 815/1052/3587 895/1169/3588 825/1062/3589 +f 815/1052/3590 896/1170/3591 894/1168/3592 +f 888/1162/3593 807/1007/3594 808/1008/3595 781/981/3596 +f 897/1171/3597 842/1116/3598 847/1121/3599 +f 897/1171/3600 847/1121/3601 783/983/3602 846/1120/3603 +f 800/1000/3604 797/997/3605 804/1004/3606 829/1066/3607 +f 829/1066/3608 817/1054/3609 898/1172/3610 800/1000/3611 +f 817/1054/3612 806/1006/3613 860/1134/3614 898/1172/3615 +f 899/1173/3616 787/987/3617 782/982/3618 889/1163/3619 +f 781/981/3620 787/987/3621 899/1173/3622 888/1162/3623 +f 899/1173/3624 889/1163/3625 894/1168/3626 896/1170/3627 +f 896/1170/3628 888/1162/3629 899/1173/3630 +f 835/1072/3631 786/986/3632 778/978/3633 +f 835/1072/3634 773/973/3635 786/986/3636 +f 780/980/3637 1000/1237/3638 960/1197/3639 815/1052/3640 +f 826/1063/3641 841/1115/3642 842/1116/3643 804/1004/3644 +f 901/1175/3645 900/1174/3646 848/1122/3647 847/1121/3648 +f 784/984/3649 789/989/3650 900/1174/3651 901/1175/3652 +f 900/1174/3653 1129/1366/3654 1069/1306/3655 848/1122/3656 +f 789/989/3657 984/1221/3658 1129/1366/3659 900/1174/3660 +f 842/1116/3661 901/1175/3662 847/1121/3663 +f 841/1115/3664 784/984/3665 901/1175/3666 842/1116/3667 +f 874/1148/3668 886/1160/3669 880/1154/3670 873/1147/3671 +f 902/1176/3672 1130/1367/3673 955/1192/3674 838/1075/3675 +f 903/1177/3676 902/1176/3677 838/1075/3678 836/1073/3679 +f 904/1178/3680 903/1177/3681 836/1073/3682 839/1076/3683 +f 843/1117/3684 905/1179/3685 904/1178/3686 839/1076/3687 +f 843/1117/3688 842/1116/3689 906/1180/3690 905/1179/3691 +f 845/1119/3692 1062/1299/3693 1130/1367/3694 902/1176/3695 +f 837/1074/3696 845/1119/3697 902/1176/3698 903/1177/3699 +f 840/1077/3700 837/1074/3701 903/1177/3702 904/1178/3703 +f 846/1120/3704 840/1077/3705 904/1178/3706 905/1179/3707 +f 905/1179/3708 906/1180/3709 846/1120/3710 +f 907/1181/3711 908/1182/3712 875/1149/3713 887/1161/3714 +f 882/1156/3715 871/1145/3716 908/1182/3717 907/1181/3718 +f 910/1184/3719 871/1145/3720 882/1156/3721 909/1183/3722 +f 885/1159/3723 872/1146/3724 910/1184/3725 909/1183/3726 +s 2 +f 865/1139/3727 907/1181/3728 887/1161/3729 +f 865/1139/3730 882/1156/3731 907/1181/3732 +f 865/1139/3733 909/1183/3734 882/1156/3735 +f 865/1139/3736 885/1159/3737 909/1183/3738 +s 1 +f 911/1009/3739 913/1011/3740 912/1010/3741 +f 911/1009/3742 914/1012/3743 913/1011/3744 +f 911/1009/3745 915/1013/3746 914/1012/3747 +f 911/1009/3748 916/1014/3749 915/1013/3750 +f 911/1009/3751 917/1015/3752 916/1014/3753 +f 911/1009/3754 918/1016/3755 917/1015/3756 +f 911/1009/3757 919/1017/3758 918/1016/3759 +f 911/1009/3760 920/1018/3761 919/1017/3762 +f 911/1009/3763 921/1019/3764 920/1018/3765 +f 911/1009/3766 922/1020/3767 921/1019/3768 +f 911/1009/3769 923/1021/3770 922/1020/3771 +f 911/1009/3772 912/1010/3773 923/1021/3774 +f 912/1010/3775 913/1011/3776 925/1023/3777 924/1022/3778 +f 913/1011/3779 914/1012/3780 926/1024/3781 925/1023/3782 +f 914/1012/3783 915/1013/3784 927/1025/3785 926/1024/3786 +f 915/1013/3787 916/1014/3788 928/1026/3789 927/1025/3790 +f 916/1014/3791 917/1015/3792 929/1027/3793 928/1026/3794 +f 917/1015/3795 918/1016/3796 930/1028/3797 929/1027/3798 +f 918/1016/3799 919/1017/3800 931/1029/3801 930/1028/3802 +f 919/1017/3803 920/1018/3804 932/1030/3805 931/1029/3806 +f 920/1018/3807 921/1019/3808 933/1031/3809 932/1030/3810 +f 921/1019/3811 922/1020/3812 934/1032/3813 933/1031/3814 +f 922/1020/3815 923/1021/3816 935/1033/3817 934/1032/3818 +f 923/1021/3819 912/1010/3820 924/1022/3821 935/1033/3822 +f 924/1022/3823 925/1023/3824 937/1035/3825 936/1034/3826 +f 925/1023/3827 926/1024/3828 938/1036/3829 937/1035/3830 +f 926/1024/3831 927/1025/3832 939/1037/3833 938/1036/3834 +f 927/1025/3835 928/1026/3836 940/1038/3837 939/1037/3838 +f 928/1026/3839 929/1027/3840 941/1039/3841 940/1038/3842 +f 929/1027/3843 930/1028/3844 942/1040/3845 941/1039/3846 +f 930/1028/3847 931/1029/3848 943/1041/3849 942/1040/3850 +f 931/1029/3851 932/1030/3852 944/1042/3853 943/1041/3854 +f 932/1030/3855 933/1031/3856 945/1043/3857 944/1042/3858 +f 933/1031/3859 934/1032/3860 946/1044/3861 945/1043/3862 +f 934/1032/3863 935/1033/3864 947/1045/3865 946/1044/3866 +f 935/1033/3867 924/1022/3868 936/1034/3869 947/1045/3870 +f 707/1387/3871 1178/1403/3872 1212/1431/3873 1213/1433/3874 +f 1207/1426/3875 1184/1389/3876 697/1392/3877 978/1215/3878 +f 1061/1298/3879 982/1219/3880 981/1218/3881 955/1192/3882 +f 972/1209/3883 952/1189/3884 981/1218/3885 982/1219/3886 +f 1061/1298/3887 1059/1296/3888 1005/1242/3889 +f 1059/1296/3890 983/1220/3891 1005/1242/3892 +f 983/1220/3893 972/1209/3894 982/1219/3895 1005/1242/3896 +f 982/1219/3897 1061/1298/3898 1005/1242/3899 +f 1066/1303/3900 1040/1277/3901 973/1210/3902 1067/1304/3903 +f 966/1203/3904 973/1210/3905 1040/1277/3906 987/1224/3907 +f 988/1225/3908 967/1204/3909 989/1226/3910 1092/1329/3911 +f 989/1226/3912 973/1210/3913 966/1203/3914 1092/1329/3915 +f 1063/1300/3916 989/1226/3917 967/1204/3918 1059/1296/3919 +f 973/1210/3920 989/1226/3921 1063/1300/3922 1067/1304/3923 +f 956/1193/3924 992/1229/3925 991/1228/3926 +f 970/1207/3927 952/1189/3928 972/1209/3929 974/1211/3930 +f 983/1220/3931 1059/1296/3932 967/1204/3933 993/1230/3934 +f 974/1211/3935 972/1209/3936 983/1220/3937 993/1230/3938 +f 988/1225/3939 1006/1243/3940 1191/1406/3941 993/1230/3942 967/1204/3943 +f 1058/1295/3944 969/1206/3945 995/1232/3946 994/1231/3947 +f 990/1227/3948 1031/1268/3949 996/1233/3950 968/1205/3951 +f 996/1233/3952 971/1208/3953 1008/1245/3954 1091/1328/3955 +f 1031/1268/3956 998/1235/3957 1007/1244/3958 996/1233/3959 +f 1007/1244/3960 999/1236/3961 971/1208/3962 996/1233/3963 +f 1114/1351/3964 997/1234/3965 1000/1237/3966 1115/1352/3967 +f 971/1208/3968 1002/1239/3969 956/1193/3970 1008/1245/3971 +f 999/1236/3972 1001/1238/3973 1002/1239/3974 971/1208/3975 +f 1004/1241/3976 1009/1246/3977 985/1222/3978 975/1212/3979 +f 985/1222/3980 951/1188/3981 977/1214/3982 1217/1437/3983 +f 1198/1417/3984 975/1212/3985 985/1222/3986 1217/1437/3987 +f 1015/1400/3988 948/1396/3989 1012/1249/3990 962/1199/3991 +f 962/1199/3992 1012/1249/3993 1013/1250/3994 1014/1251/3995 +f 1075/1312/3996 1010/1247/3997 1011/1248/3998 1014/1251/3999 +f 1011/1248/4000 961/1198/4001 962/1199/4002 1014/1251/4003 +f 961/1198/4004 957/1397/4005 1015/1400/4006 962/1199/4007 +f 963/1200/4008 958/1398/4009 1016/1401/4010 1017/1254/4011 +f 950/1187/4012 964/1201/4013 1018/1255/4014 1041/1278/4015 +f 1018/1255/4016 963/1200/4017 1017/1254/4018 1041/1278/4019 +f 1117/1354/4020 949/1186/4021 1013/1250/4022 1116/1353/4023 +f 1118/1355/4024 1116/1353/4025 1013/1250/4026 1012/1249/4027 +f 1118/1355/4028 963/1200/4029 1018/1255/4030 1116/1353/4031 +f 1116/1353/4032 1018/1255/4033 964/1201/4034 1117/1354/4035 +f 1119/1402/4036 1118/1355/4037 1012/1249/4038 948/1396/4039 +f 1119/1402/4040 958/1398/4041 963/1200/4042 1118/1355/4043 +f 1020/1257/4044 1078/1315/4045 1022/1259/4046 1019/1256/4047 +f 1075/1312/4048 1078/1315/4049 1020/1257/4050 1010/1247/4051 +f 954/1191/4052 1120/1357/4053 1024/1261/4054 1042/1279/4055 +f 1024/1261/4056 964/1201/4057 950/1187/4058 1042/1279/4059 +f 1077/1314/4060 1079/1316/4061 949/1186/4062 1117/1354/4063 +f 1027/1264/4064 959/1196/4065 1036/1273/4066 1028/1265/4067 +f 1025/1262/4068 1043/1280/4069 1027/1264/4070 953/1190/4071 +f 1030/1267/4072 1043/1280/4073 1025/1262/4074 1120/1357/4075 +f 1030/1267/4076 998/1235/4077 1031/1268/4078 1043/1280/4079 +f 810/1395/4080 751/1394/4081 1032/1269/4082 1033/1270/4083 +f 1017/1254/4084 1016/1401/4085 810/1395/4086 1033/1270/4087 +f 1034/1271/4088 954/1191/4089 1042/1279/4090 1044/1281/4091 +f 1042/1279/4092 950/1187/4093 1041/1278/4094 1044/1281/4095 +f 1041/1278/4096 1017/1254/4097 1033/1270/4098 1044/1281/4099 +f 1033/1270/4100 1032/1269/4101 1034/1271/4102 1044/1281/4103 +f 1032/1269/4104 751/1393/4105 814/1051/4106 1122/1359/4107 +f 1035/1272/4108 1122/1359/4109 814/1051/4110 960/1197/4111 +f 1036/1273/4112 987/1224/4113 1037/1274/4114 1028/1265/4115 +f 1029/1266/4116 1045/1282/4117 1123/1360/4118 1113/1350/4119 +f 1029/1266/4120 954/1191/4121 1034/1271/4122 1045/1282/4123 +f 1122/1359/4124 1045/1282/4125 1034/1271/4126 1032/1269/4127 +f 979/1216/4128 1010/1247/4129 1020/1257/4130 1214/1434/4131 +f 1020/1257/4132 1019/1256/4133 1209/1428/4134 1214/1434/4135 +f 1038/1275/4136 961/1198/4137 1011/1248/4138 1215/1435/4139 +f 1011/1248/4140 1010/1247/4141 979/1216/4142 1215/1435/4143 +f 980/1399/4144 957/1397/4145 961/1198/4146 1038/1275/4147 +f 976/1213/4148 1210/1429/4149 1046/1283/4150 1039/1276/4151 +f 1040/1277/4152 1066/1303/4153 1026/1263/4154 1049/1286/4155 +f 1037/1274/4156 987/1224/4157 1040/1277/4158 1049/1286/4159 +s 2 +f 1050/1287/4160 1053/1290/4161 1051/1288/4162 1057/1294/4163 +s 4 +f 1053/1290/4164 1050/1287/4165 1052/1289/4166 986/1223/4167 +s 2 +f 1003/1240/4168 1054/1291/4169 1055/1292/4170 1068/1305/4171 +f 1068/1305/4172 1055/1292/4173 1056/1293/4174 965/1202/4175 +f 1051/1288/4176 1056/1293/4177 1055/1292/4178 1057/1294/4179 +s 1 +f 1039/1276/4180 975/1212/4181 1198/1417/4182 976/1213/4183 +f 1065/1302/4184 1004/1241/4185 975/1212/4186 1039/1276/4187 +f 1031/1268/4188 990/1227/4189 959/1196/4190 1043/1280/4191 +f 959/1196/4192 1027/1264/4193 1043/1280/4194 +f 1046/1283/4195 1210/1429/4196 1209/1428/4197 1019/1256/4198 1026/1263/4199 +f 985/1222/4200 1009/1246/4201 984/1221/4202 951/1188/4203 +s 2 +f 1057/1294/4204 1055/1292/4205 1054/1291/4206 +s 1 +f 1052/1289/4207 1070/1307/4208 1062/1299/4209 986/1223/4210 +f 1060/1297/4211 1052/1289/4212 1064/1301/4213 +f 1003/1240/4214 1071/1308/4215 1064/1301/4216 1052/1289/4217 +f 1073/1310/4218 1072/1309/4219 1003/1240/4220 1068/1305/4221 +f 1069/1306/4222 1073/1310/4223 1068/1305/4224 965/1202/4225 +f 1070/1307/4226 1052/1289/4227 1060/1297/4228 +f 1065/1302/4229 1039/1276/4230 1046/1283/4231 +s 4 +f 1054/1291/4232 1003/1240/4233 1052/1289/4234 1050/1287/4235 +s 1 +f 949/1186/4236 1079/1316/4237 1080/1317/4238 +f 1080/1317/4239 1078/1315/4240 1075/1312/4241 949/1186/4242 +f 1075/1312/4243 1014/1251/4244 1013/1250/4245 949/1186/4246 +f 1079/1316/4247 1077/1314/4248 1025/1262/4249 953/1190/4250 +s 2 +f 1086/1323/4251 1022/1259/4252 1078/1315/4253 1023/1260/4254 +f 1079/1316/4255 1021/1258/4256 1082/1319/4257 1074/1311/4258 1080/1317/4259 +f 1080/1317/4260 1074/1311/4261 1087/1324/4262 1023/1260/4263 1078/1315/4264 +s 4 +f 1084/1321/4265 1076/1313/4266 1079/1316/4267 953/1190/4268 +s 1 +f 1082/1319/4269 1088/1325/4270 1081/1318/4271 1074/1311/4272 +f 1083/1320/4273 1088/1325/4274 1082/1319/4275 1021/1258/4276 +f 1084/1321/4277 1088/1325/4278 1083/1320/4279 1076/1313/4280 +f 1081/1318/4281 1088/1325/4282 1084/1321/4283 953/1190/4284 +f 1086/1323/4285 1089/1326/4286 1085/1322/4287 1125/1362/4288 1022/1259/4289 +f 1087/1324/4290 1089/1326/4291 1086/1323/4292 1023/1260/4293 +f 1081/1318/4294 1089/1326/4295 1087/1324/4296 1074/1311/4297 +f 1085/1322/4298 1089/1326/4299 1081/1318/4300 953/1190/4301 +s 2 +f 1076/1313/4302 1083/1320/4303 1079/1316/4304 +f 1083/1320/4305 1021/1258/4306 1079/1316/4307 +s 1 +f 1028/1265/4308 1085/1322/4309 953/1190/4310 1027/1264/4311 +f 1008/1245/4312 1094/1331/4313 1093/1330/4314 1091/1328/4315 +f 1094/1331/4316 1106/1343/4317 1108/1345/4318 1093/1330/4319 +f 968/1205/4320 1091/1328/4321 1093/1330/4322 1095/1332/4323 +f 1093/1330/4324 1108/1345/4325 1109/1346/4326 1095/1332/4327 +f 1104/1341/4328 1102/1339/4329 1095/1332/4330 1109/1346/4331 +f 1099/1336/4332 1094/1331/4333 1008/1245/4334 956/1193/4335 991/1228/4336 +f 991/1228/4337 1058/1295/4338 1098/1335/4339 1099/1336/4340 +f 1105/1342/4341 1098/1335/4342 1100/1337/4343 1112/1349/4344 +f 1098/1335/4345 1058/1295/4346 988/1225/4347 1100/1337/4348 +f 988/1225/4349 1092/1329/4350 1096/1333/4351 1137/1374/4352 +f 966/1203/4353 1097/1334/4354 1139/1376/4355 +f 1103/1340/4356 1110/1347/4357 1097/1334/4358 1101/1338/4359 +f 1101/1338/4360 1097/1334/4361 966/1203/4362 987/1224/4363 1036/1273/4364 +f 1102/1339/4365 1104/1341/4366 1103/1340/4367 1101/1338/4368 +f 990/1227/4369 1102/1339/4370 1101/1338/4371 959/1196/4372 +f 1101/1338/4373 1036/1273/4374 959/1196/4375 +s 2 +f 1106/1343/4376 1090/1327/4377 1108/1345/4378 +f 1108/1345/4379 1090/1327/4380 1109/1346/4381 +f 1109/1346/4382 1090/1327/4383 1104/1341/4384 +f 1111/1348/4385 1090/1327/4386 1106/1343/4387 +f 1105/1342/4388 1090/1327/4389 1111/1348/4390 +f 1112/1349/4391 1090/1327/4392 1105/1342/4393 +f 1103/1340/4394 1090/1327/4395 1110/1347/4396 +f 1104/1341/4397 1090/1327/4398 1103/1340/4399 +s 1 +f 695/1412/4400 1047/1284/4401 978/1215/4402 697/1392/4403 +f 1048/1285/4404 1186/1391/4405 707/1387/4406 1213/1433/4407 +f 991/1228/4408 992/1229/4409 969/1206/4410 1058/1295/4411 +f 990/1227/4412 968/1205/4413 1095/1332/4414 1102/1339/4415 +f 999/1236/4416 1114/1351/4417 1115/1352/4418 1001/1238/4419 +f 1077/1314/4420 1024/1261/4421 1120/1357/4422 1025/1262/4423 +f 1029/1266/4424 1030/1267/4425 1120/1357/4426 954/1191/4427 +f 964/1201/4428 1024/1261/4429 1077/1314/4430 1117/1354/4431 +s 2 +f 1050/1287/4432 1057/1294/4433 1054/1291/4434 +s 1 +f 1035/1272/4435 997/1234/4436 1114/1351/4437 1121/1358/4438 +f 1123/1360/4439 1045/1282/4440 1122/1359/4441 1035/1272/4442 +f 1035/1272/4443 1121/1358/4444 1123/1360/4445 +f 1113/1350/4446 998/1235/4447 1030/1267/4448 1029/1266/4449 +f 1124/1361/4450 1066/1303/4451 1135/1372/4452 +f 1124/1361/4453 1071/1308/4454 1003/1240/4455 1072/1309/4456 +f 1022/1259/4457 1049/1286/4458 1026/1263/4459 1019/1256/4460 +f 1049/1286/4461 1022/1259/4462 1125/1362/4463 1037/1274/4464 +f 1037/1274/4465 1125/1362/4466 1085/1322/4467 1028/1265/4468 +f 999/1236/4469 1007/1244/4470 1126/1363/4471 1114/1351/4472 +f 998/1235/4473 1113/1350/4474 1126/1363/4475 1007/1244/4476 +f 1126/1363/4477 1123/1360/4478 1121/1358/4479 1114/1351/4480 +f 1123/1360/4481 1126/1363/4482 1113/1350/4483 +f 1058/1295/4484 994/1231/4485 1006/1243/4486 +f 1058/1295/4487 1006/1243/4488 988/1225/4489 +f 997/1234/4490 1035/1272/4491 960/1197/4492 1000/1237/4493 +f 1046/1283/4494 1026/1263/4495 1066/1303/4496 1065/1302/4497 +f 1128/1365/4498 1072/1309/4499 1073/1310/4500 1127/1364/4501 +f 1004/1241/4502 1128/1365/4503 1127/1364/4504 1009/1246/4505 +f 1127/1364/4506 1073/1310/4507 1069/1306/4508 1129/1366/4509 +f 1009/1246/4510 1127/1364/4511 1129/1366/4512 984/1221/4513 +f 1066/1303/4514 1072/1309/4515 1128/1365/4516 +f 1065/1302/4517 1066/1303/4518 1128/1365/4519 1004/1241/4520 +f 1099/1336/4521 1098/1335/4522 1105/1342/4523 1111/1348/4524 +f 1131/1368/4525 1061/1298/4526 955/1192/4527 1130/1367/4528 +f 1132/1369/4529 1059/1296/4530 1061/1298/4531 1131/1368/4532 +f 1133/1370/4533 1063/1300/4534 1059/1296/4535 1132/1369/4536 +f 1067/1304/4537 1063/1300/4538 1133/1370/4539 1134/1371/4540 +f 1067/1304/4541 1134/1371/4542 1135/1372/4543 1066/1303/4544 +f 1070/1307/4545 1131/1368/4546 1130/1367/4547 1062/1299/4548 +f 1060/1297/4549 1132/1369/4550 1131/1368/4551 1070/1307/4552 +f 1064/1301/4553 1133/1370/4554 1132/1369/4555 1060/1297/4556 +f 1071/1308/4557 1134/1371/4558 1133/1370/4559 1064/1301/4560 +f 1134/1371/4561 1071/1308/4562 1135/1372/4563 +f 1136/1373/4564 1112/1349/4565 1100/1337/4566 1137/1374/4567 +f 1107/1344/4568 1136/1373/4569 1137/1374/4570 1096/1333/4571 +f 1139/1376/4572 1138/1375/4573 1107/1344/4574 1096/1333/4575 +f 1110/1347/4576 1138/1375/4577 1139/1376/4578 1097/1334/4579 +s 2 +f 1090/1327/4580 1112/1349/4581 1136/1373/4582 +f 1090/1327/4583 1136/1373/4584 1107/1344/4585 +f 1090/1327/4586 1107/1344/4587 1138/1375/4588 +f 1090/1327/4589 1138/1375/4590 1110/1347/4591 +s 1 +f 1140/1078/4592 1141/1079/4593 1142/1080/4594 +f 1140/1078/4595 1142/1080/4596 1143/1081/4597 +f 1140/1078/4598 1143/1081/4599 1144/1082/4600 +f 1140/1078/4601 1144/1082/4602 1145/1083/4603 +f 1140/1078/4604 1145/1083/4605 1146/1084/4606 +f 1140/1078/4607 1146/1084/4608 1147/1085/4609 +f 1140/1078/4610 1147/1085/4611 1148/1086/4612 +f 1140/1078/4613 1148/1086/4614 1149/1087/4615 +f 1140/1078/4616 1149/1087/4617 1150/1088/4618 +f 1140/1078/4619 1150/1088/4620 1151/1089/4621 +f 1140/1078/4622 1151/1089/4623 1152/1090/4624 +f 1140/1078/4625 1152/1090/4626 1141/1079/4627 +f 1141/1079/4628 1153/1091/4629 1154/1092/4630 1142/1080/4631 +f 1142/1080/4632 1154/1092/4633 1155/1093/4634 1143/1081/4635 +f 1143/1081/4636 1155/1093/4637 1156/1094/4638 1144/1082/4639 +f 1144/1082/4640 1156/1094/4641 1157/1095/4642 1145/1083/4643 +f 1145/1083/4644 1157/1095/4645 1158/1096/4646 1146/1084/4647 +f 1146/1084/4648 1158/1096/4649 1159/1097/4650 1147/1085/4651 +f 1147/1085/4652 1159/1097/4653 1160/1098/4654 1148/1086/4655 +f 1148/1086/4656 1160/1098/4657 1161/1099/4658 1149/1087/4659 +f 1149/1087/4660 1161/1099/4661 1162/1100/4662 1150/1088/4663 +f 1150/1088/4664 1162/1100/4665 1163/1101/4666 1151/1089/4667 +f 1151/1089/4668 1163/1101/4669 1164/1102/4670 1152/1090/4671 +f 1152/1090/4672 1164/1102/4673 1153/1091/4674 1141/1079/4675 +f 1153/1091/4676 1165/1103/4677 1166/1104/4678 1154/1092/4679 +f 1154/1092/4680 1166/1104/4681 1167/1105/4682 1155/1093/4683 +f 1155/1093/4684 1167/1105/4685 1168/1106/4686 1156/1094/4687 +f 1156/1094/4688 1168/1106/4689 1169/1107/4690 1157/1095/4691 +f 1157/1095/4692 1169/1107/4693 1170/1108/4694 1158/1096/4695 +f 1158/1096/4696 1170/1108/4697 1171/1109/4698 1159/1097/4699 +f 1159/1097/4700 1171/1109/4701 1172/1110/4702 1160/1098/4703 +f 1160/1098/4704 1172/1110/4705 1173/1111/4706 1161/1099/4707 +f 1161/1099/4708 1173/1111/4709 1174/1112/4710 1162/1100/4711 +f 1162/1100/4712 1174/1112/4713 1175/1113/4714 1163/1101/4715 +f 1163/1101/4716 1175/1113/4717 1176/1114/4718 1164/1102/4719 +f 1164/1102/4720 1176/1114/4721 1165/1103/4722 1153/1091/4723 +f 1188/1407/4724 1187/1404/4725 995/1232/4726 778/978/4727 +f 1190/1405/4728 1188/1407/4729 778/978/4730 786/986/4731 +f 763/963/4732 970/1207/4733 1187/1404/4734 1188/1407/4735 +f 777/977/4736 763/963/4737 1188/1407/4738 1190/1405/4739 +f 995/1232/4740 1187/1404/4741 1189/1408/4742 994/1231/4743 +f 994/1231/4744 1189/1408/4745 1191/1406/4746 1006/1243/4747 +f 1187/1404/4748 970/1207/4749 974/1211/4750 1189/1408/4751 +f 1189/1408/4752 974/1211/4753 993/1230/4754 1191/1406/4755 +f 869/1143/4756 881/1155/4757 886/1160/4758 874/1148/4759 +f 1094/1331/4760 1099/1336/4761 1111/1348/4762 1106/1343/4763 +f 1207/1426/4764 1218/1438/4765 1183/1388/4766 1184/1389/4767 +f 1208/1427/4768 1196/1415/4769 1180/1380/4770 344/1386/4771 +f 1192/1409/4772 1177/1377/4773 1203/1422/4774 +f 1048/1285/4775 1211/1430/4776 696/1385/4777 1186/1391/4778 +f 343/1410/4779 696/1385/4780 1211/1430/4781 +f 1193/1411/4782 1205/1424/4783 1203/1422/4784 1177/1377/4785 +f 695/1412/4786 1185/1390/4787 1047/1284/4788 +f 1211/1430/4789 1047/1284/4790 1185/1390/4791 343/1410/4792 +f 1182/1384/4793 1202/1421/4794 1205/1424/4795 708/1382/4796 +f 1193/1411/4797 708/1382/4798 1205/1424/4799 +f 1194/1413/4800 1180/1380/4801 1196/1415/4802 1199/1418/4803 +f 1208/1427/4804 344/1386/4805 1195/1414/4806 1197/1416/4807 +f 1195/1414/4808 1183/1388/4809 1218/1438/4810 1197/1416/4811 +f 767/967/4812 1201/1420/4813 1202/1421/4814 +f 978/1215/4815 1209/1428/4816 1210/1429/4817 +f 1216/1436/4818 1196/1415/4819 1208/1427/4820 977/1214/4821 +f 980/1217/4822 1212/1432/4823 1204/1423/4824 818/1055/4825 +f 767/967/4826 1202/1421/4827 1200/1419/4828 766/966/4829 +f 1205/1424/4830 827/1064/4831 768/968/4832 1203/1422/4833 +f 1202/1421/4834 1201/1420/4835 827/1064/4836 1205/1424/4837 +f 1206/1425/4838 828/1065/4839 818/1055/4840 1204/1423/4841 +f 1203/1422/4842 768/968/4843 828/1065/4844 1206/1425/4845 +f 1199/1418/4846 765/965/4847 766/966/4848 1200/1419/4849 +f 977/1214/4850 1208/1427/4851 1197/1416/4852 1217/1437/4853 +f 1038/1275/4854 1213/1433/4855 1212/1431/4856 980/1399/4857 +f 976/1213/4858 1207/1426/4859 978/1215/4860 1210/1429/4861 +f 1211/1430/4862 979/1216/4863 1214/1434/4864 1047/1284/4865 +f 1047/1284/4866 1214/1434/4867 1209/1428/4868 978/1215/4869 +f 1213/1433/4870 1038/1275/4871 1215/1435/4872 1048/1285/4873 +f 1048/1285/4874 1215/1435/4875 979/1216/4876 1211/1430/4877 +f 1207/1426/4878 976/1213/4879 1198/1417/4880 1218/1438/4881 +f 765/965/4882 1199/1418/4883 1196/1415/4884 1216/1436/4885 +f 1217/1437/4886 1197/1416/4887 1218/1438/4888 1198/1417/4889 +f 1236/1458/4890 1222/1442/4891 1235/1456/4892 1266/1497/4893 +f 1237/1460/4894 1241/1465/4895 1236/1458/4896 1266/1497/4897 +f 1273/1488/4898 1220/1440/4899 1237/1457/4900 1266/1483/4901 +f 1235/1455/4902 1219/1439/4903 1273/1488/4904 1266/1483/4905 +f 1238/1461/4906 1241/1465/4907 1237/1460/4908 1267/1498/4909 +f 1239/1462/4910 1223/1443/4911 1238/1461/4912 1267/1498/4913 +f 1274/1489/4914 1221/1441/4915 1239/1459/4916 1267/1484/4917 +f 1237/1457/4918 1220/1440/4919 1274/1489/4920 1267/1484/4921 +f 1241/1465/4922 1224/1444/4923 1240/1463/4924 1236/1458/4925 +f 1236/1458/4926 1240/1463/4927 1222/1442/4928 +f 1243/1469/4929 1225/1445/4930 1242/1468/4931 1268/1499/4932 +f 1243/1469/4933 1268/1499/4934 1226/1446/4935 +f 1238/1461/4936 1223/1443/4937 1226/1446/4938 1268/1499/4939 +f 1242/1468/4940 1241/1465/4941 1238/1461/4942 1268/1499/4943 +f 1245/1470/4944 1228/1448/4945 1244/1464/4946 1269/1500/4947 +f 1246/1471/4948 1252/1477/4949 1245/1470/4950 1269/1500/4951 +f 1247/1472/4952 1230/1450/4953 1246/1471/4954 1269/1500/4955 +f 1244/1464/4956 1227/1447/4957 1247/1472/4958 1269/1500/4959 +f 1249/1467/4960 1229/1449/4961 1248/1466/4962 1270/1501/4963 +f 1250/1475/4964 1231/1451/4965 1249/1467/4966 1270/1501/4967 +f 1245/1470/4968 1252/1477/4969 1250/1475/4970 1270/1501/4971 +f 1248/1466/4972 1228/1448/4973 1245/1470/4974 1270/1501/4975 +f 1271/1502/4976 1251/1476/4977 1233/1453/4978 1282/1812/4979 +f 1252/1477/4980 1232/1452/4981 1251/1476/4982 1271/1502/4983 +f 1253/1478/4984 1231/1451/4985 1250/1475/4986 1272/1503/4987 +f 1253/1478/4988 1272/1503/4989 1254/1479/4990 +f 1271/1502/4991 1282/1812/4992 1254/1479/4993 1272/1503/4994 +f 1250/1475/4995 1252/1477/4996 1271/1502/4997 1272/1503/4998 +f 1256/1474/4999 1273/1488/5000 1219/1439/5001 +f 1221/1441/5002 1274/1489/5003 1255/1473/5004 +f 1244/1464/5005 1228/1448/5006 1220/1440/5007 1273/1488/5008 +f 1256/1474/5009 1227/1447/5010 1244/1464/5011 1273/1488/5012 +f 1248/1466/5013 1229/1449/5014 1255/1473/5015 1274/1489/5016 +f 1220/1440/5017 1228/1448/5018 1248/1466/5019 1274/1489/5020 +f 1257/1481/5021 1223/1443/5022 1239/1462/5023 1275/1561/5024 +f 1239/1459/5025 1221/1441/5026 1255/1473/5027 1275/1490/5028 +f 1226/1446/5029 1223/1443/5030 1257/1481/5031 1258/1482/5032 +f 1249/1467/5033 1231/1451/5034 1257/1481/5035 1275/1561/5036 +f 1255/1473/5037 1229/1449/5038 1249/1467/5039 1275/1490/5040 +f 1257/1481/5041 1231/1451/5042 1253/1478/5043 1258/1482/5044 +f 1260/1486/5045 1224/1444/5046 1259/1485/5047 1276/1735/5048 +f 1259/1485/5049 1280/1779/5050 1261/1487/5051 1276/1735/5052 +f 1251/1476/5053 1232/1452/5054 1260/1486/5055 1276/1735/5056 +f 1261/1487/5057 1233/1453/5058 1251/1476/5059 1276/1735/5060 +f 1262/1491/5061 1222/1442/5062 1240/1463/5063 1278/1777/5064 +f 1262/1491/5065 1278/1777/5066 1234/1454/5067 +f 1240/1463/5068 1224/1444/5069 1260/1486/5070 1278/1777/5071 +f 1256/1474/5072 1219/1439/5073 1235/1455/5074 1277/1492/5075 +f 1256/1474/5076 1277/1492/5077 1263/1480/5078 +f 1262/1491/5079 1234/1454/5080 1263/1493/5081 1277/1737/5082 +f 1235/1456/5083 1222/1442/5084 1262/1491/5085 1277/1737/5086 +f 1234/1454/5087 1278/1777/5088 1264/1495/5089 +f 1265/1496/5090 1230/1450/5091 1264/1495/5092 1278/1777/5093 +f 1260/1486/5094 1232/1452/5095 1265/1496/5096 1278/1777/5097 +f 1263/1480/5098 1279/1494/5099 1256/1474/5100 +f 1247/1472/5101 1227/1447/5102 1256/1474/5103 1279/1494/5104 +f 1264/1495/5105 1230/1450/5106 1247/1472/5107 1279/1778/5108 +f 1263/1493/5109 1234/1454/5110 1264/1495/5111 1279/1778/5112 +f 1259/1485/5113 1241/1465/5114 1242/1468/5115 1225/1445/5116 1280/1779/5117 +f 1241/1465/5118 1259/1485/5119 1224/1444/5120 +f 1265/1496/5121 1246/1471/5122 1230/1450/5123 +f 1265/1496/5124 1232/1452/5125 1252/1477/5126 1246/1471/5127 +f 1225/1445/5128 1593/1875/5129 1280/1779/5130 +f 1233/1453/5131 1286/1822/5132 1282/1812/5133 +f 1283/1814/5134 1593/1875/5135 1225/1445/5136 1243/1469/5137 +f 1591/1820/5138 1589/1874/5139 1253/1478/5140 1254/1479/5141 +f 1589/1874/5142 1281/1803/5143 1226/1446/5144 1258/1482/5145 +f 1593/1875/5146 1284/1817/5147 1261/1487/5148 1280/1779/5149 +f 1281/1803/5150 1283/1814/5151 1243/1469/5152 1226/1446/5153 +f 1286/1822/5154 1591/1820/5155 1254/1479/5156 1282/1812/5157 +f 1258/1482/5158 1253/1478/5159 1589/1874/5160 +f 1284/1817/5161 1286/1822/5162 1233/1453/5163 1261/1487/5164 +f 1356/1584/5165 1355/1583/5166 1333/1558/5167 1338/1564/5168 +f 1310/1535/5169 1309/1534/5170 1334/1559/5171 1337/1563/5172 +f 1335/1560/5173 1332/1557/5174 1309/1534/5175 1310/1535/5176 +f 1352/1580/5177 1566/1852/5178 1565/1851/5179 1330/1555/5180 +f 1308/1533/5181 1567/1854/5182 1570/1857/5183 1318/1543/5184 +f 1328/1553/5185 1568/1855/5186 1567/1854/5187 1308/1533/5188 +f 1295/1520/5189 1376/1604/5190 1614/1924/5191 1302/1527/5192 1296/1521/5193 +f 1303/1528/5194 1299/1524/5195 1298/1523/5196 1323/1548/5197 +f 1602/1912/5198 1321/1546/5199 1299/1524/5200 1303/1528/5201 +f 1306/1531/5202 1290/1515/5203 1289/1514/5204 1305/1530/5205 +f 1307/1532/5206 1293/1518/5207 1292/1517/5208 1326/1551/5209 +f 1315/1540/5210 1287/1512/5211 1293/1518/5212 1307/1532/5213 +f 1308/1533/5214 1299/1524/5215 1321/1546/5216 1328/1553/5217 +f 1318/1543/5218 1298/1523/5219 1299/1524/5220 1308/1533/5221 +f 1330/1555/5222 1295/1520/5223 1296/1521/5224 1352/1580/5225 +f 1355/1911/5226 1587/1910/5227 1586/1504/5228 1333/1558/5229 +f 1309/1534/5230 1594/1511/5231 1590/1508/5232 1334/1559/5233 +f 1332/1557/5234 1285/1509/5235 1594/1511/5236 1309/1534/5237 +f 1310/1535/5238 1293/1518/5239 1287/1512/5240 1335/1560/5241 +f 1337/1563/5242 1292/1517/5243 1293/1518/5244 1310/1535/5245 +f 1338/1564/5246 1289/1514/5247 1290/1515/5248 1356/1584/5249 +f 1311/1536/5250 1336/1562/5251 1331/1556/5252 1339/1565/5253 +f 1332/1557/5254 1335/1560/5255 1311/1536/5256 1339/1565/5257 +f 1312/1537/5258 1338/1564/5259 1333/1558/5260 1340/1566/5261 +f 1331/1556/5262 1336/1562/5263 1312/1537/5264 1340/1566/5265 +f 1313/1538/5266 1337/1563/5267 1334/1559/5268 1341/1567/5269 +f 1354/1582/5270 1357/1585/5271 1313/1538/5272 1341/1567/5273 +f 1314/1539/5274 1329/1554/5275 1564/1850/5276 1572/1859/5277 +f 1568/1855/5278 1328/1553/5279 1314/1539/5280 1572/1859/5281 +f 1316/1541/5282 1330/1555/5283 1565/1851/5284 1343/1570/5285 +f 1564/1850/5286 1329/1554/5287 1316/1541/5288 1343/1570/5289 +f 1318/1543/5290 1570/1857/5291 1317/1542/5292 1319/1544/5293 +f 1317/1542/5294 1571/1858/5295 1353/1581/5296 1319/1544/5297 +f 1605/1915/5298 1301/1526/5299 1294/1519/5300 1344/1842/5301 +f 1321/1546/5302 1602/1912/5303 1605/1915/5304 1344/1842/5305 +f 1295/1520/5306 1371/1599/5307 1376/1604/5308 +f 1294/1519/5309 1374/1602/5310 1322/1547/5311 1345/1573/5312 +f 1323/1548/5313 1298/1523/5314 1348/1576/5315 1324/1549/5316 +f 1348/1576/5317 1297/1522/5318 1368/1596/5319 1324/1549/5320 +f 1342/1568/5321 1304/1529/5322 1288/1513/5323 1346/1574/5324 +f 1287/1512/5325 1315/1540/5326 1342/1568/5327 1346/1574/5328 +f 1573/1860/5329 1305/1530/5330 1289/1514/5331 1347/1575/5332 +f 1288/1513/5333 1304/1529/5334 1573/1860/5335 1347/1575/5336 +f 1326/1551/5337 1292/1517/5338 1325/1550/5339 1569/1856/5340 +f 1325/1550/5341 1291/1516/5342 1327/1552/5343 1569/1856/5344 +f 1328/1553/5345 1321/1546/5346 1344/1842/5347 1314/1539/5348 +f 1344/1842/5349 1294/1519/5350 1329/1554/5351 1314/1539/5352 +f 1319/1544/5353 1353/1581/5354 1297/1522/5355 1348/1576/5356 +f 1298/1523/5357 1318/1543/5358 1319/1544/5359 1348/1576/5360 +f 1329/1554/5361 1294/1519/5362 1345/1573/5363 1316/1541/5364 +f 1345/1573/5365 1295/1520/5366 1330/1555/5367 1316/1541/5368 +f 1331/1556/5369 1588/1507/5370 1285/1509/5371 1339/1565/5372 +f 1332/1557/5373 1339/1565/5374 1285/1509/5375 +f 1333/1558/5376 1586/1504/5377 1588/1507/5378 1340/1566/5379 +f 1331/1556/5380 1340/1566/5381 1588/1507/5382 +f 1334/1559/5383 1590/1508/5384 1592/1510/5385 1341/1567/5386 +f 1354/1582/5387 1341/1567/5388 1592/1510/5389 +f 1335/1560/5390 1287/1512/5391 1346/1574/5392 1311/1536/5393 +f 1346/1574/5394 1288/1513/5395 1336/1562/5396 1311/1536/5397 +f 1357/1585/5398 1291/1516/5399 1325/1550/5400 1313/1538/5401 +f 1325/1550/5402 1292/1517/5403 1337/1563/5404 1313/1538/5405 +f 1336/1562/5406 1288/1513/5407 1347/1575/5408 1312/1537/5409 +f 1347/1575/5410 1289/1514/5411 1338/1564/5412 1312/1537/5413 +f 1349/1577/5414 1357/1585/5415 1354/1582/5416 1358/1586/5417 +f 1355/1821/5418 1356/1823/5419 1349/1577/5420 1358/1586/5421 +f 1350/1578/5422 1353/1581/5423 1571/1858/5424 1359/1587/5425 +f 1566/1853/5426 1352/1818/5427 1350/1578/5428 1359/1587/5429 +f 1351/1579/5430 1609/1919/5431 1368/1596/5432 1297/1522/5433 1360/1588/5434 +f 1296/1736/5435 1302/1738/5436 1351/1579/5437 1360/1588/5438 +f 1574/1861/5439 1327/1552/5440 1291/1516/5441 1361/1589/5442 +f 1290/1571/5443 1306/1815/5444 1574/1861/5445 1361/1589/5446 +f 1352/1818/5447 1296/1736/5448 1360/1588/5449 1350/1578/5450 +f 1360/1588/5451 1297/1522/5452 1353/1581/5453 1350/1578/5454 +f 1354/1582/5455 1592/1510/5456 1587/1505/5457 1358/1586/5458 +f 1355/1821/5459 1358/1586/5460 1587/1505/5461 +f 1356/1823/5462 1290/1571/5463 1361/1589/5464 1349/1577/5465 +f 1361/1589/5466 1291/1516/5467 1357/1585/5468 1349/1577/5469 +f 1365/1593/5470 1560/1845/5471 1373/1601/5472 1603/1913/5473 1320/1545/5474 +f 1366/1594/5475 1363/1591/5476 1607/1917/5477 1608/1918/5478 +f 1604/1914/5479 1607/1917/5480 1363/1591/5481 +f 1604/1914/5482 1363/1591/5483 1362/1590/5484 1300/1525/5485 +f 1362/1590/5486 1365/1593/5487 1320/1545/5488 1300/1525/5489 +f 1351/1579/5490 1534/1765/5491 1533/1764/5492 1609/1919/5493 +f 698/1810/5494 328/1809/5495 1363/1591/5496 1366/1594/5497 +f 1302/1527/5498 1614/1924/5499 1623/1934/5500 1535/1780/5501 +f 1362/1590/5502 1363/1591/5503 328/1809/5504 330/1811/5505 +f 1365/1593/5506 1362/1590/5507 330/1811/5508 326/1807/5509 +f 1560/1845/5510 1365/1593/5511 326/1807/5512 1561/1846/5513 +f 1375/1603/5514 702/1808/5515 678/1813/5516 1536/1787/5517 +f 1534/1765/5518 1351/1579/5519 1302/1738/5520 1535/1825/5521 +f 1540/1771/5522 1367/1595/5523 1610/1920/5524 1622/1932/5525 +f 1366/1594/5526 1367/1595/5527 1540/1771/5528 1532/1763/5529 +f 1369/1597/5530 1548/1804/5531 1550/1805/5532 1377/1605/5533 +f 1611/1921/5534 1606/1916/5535 1370/1598/5536 1377/1605/5537 +f 1550/1805/5538 1613/1923/5539 1611/1921/5540 1377/1605/5541 +f 1612/1922/5542 1603/1913/5543 1373/1601/5544 1378/1606/5545 +f 1370/1598/5546 1606/1916/5547 1612/1922/5548 1378/1606/5549 +f 1613/1923/5550 1550/1805/5551 1537/1790/5552 +f 1372/1600/5553 1379/1775/5554 1373/1601/5555 1560/1845/5556 +f 1373/1601/5557 1379/1775/5558 1378/1606/5559 +f 1364/1592/5560 1380/1776/5561 1379/1775/5562 1372/1600/5563 +f 1380/1776/5564 1370/1598/5565 1378/1606/5566 1379/1775/5567 +f 1364/1592/5568 1375/1603/5569 1369/1597/5570 1380/1776/5571 +f 1369/1597/5572 1377/1605/5573 1370/1598/5574 1380/1776/5575 +f 1548/1804/5576 1369/1597/5577 1375/1603/5578 1536/1787/5579 +f 1608/1918/5580 1610/1920/5581 1367/1595/5582 1366/1594/5583 +f 1322/1547/5584 1371/1599/5585 1295/1520/5586 1345/1573/5587 +f 1374/1602/5588 1294/1519/5589 1301/1526/5590 +f 1398/1624/5591 1428/1665/5592 1397/1622/5593 1384/1569/5594 +f 1399/1626/5595 1428/1665/5596 1398/1624/5597 1403/1631/5598 +f 1435/1657/5599 1428/1651/5600 1399/1625/5601 1382/1608/5602 +f 1397/1623/5603 1428/1651/5604 1435/1657/5605 1381/1607/5606 +f 1400/1628/5607 1429/1666/5608 1399/1626/5609 1403/1631/5610 +f 1401/1629/5611 1429/1666/5612 1400/1628/5613 1385/1610/5614 +f 1436/1658/5615 1429/1652/5616 1401/1627/5617 1383/1609/5618 +f 1399/1625/5619 1429/1652/5620 1436/1658/5621 1382/1608/5622 +f 1403/1631/5623 1398/1624/5624 1402/1630/5625 1386/1611/5626 +f 1398/1624/5627 1384/1569/5628 1402/1630/5629 +f 1405/1635/5630 1430/1667/5631 1404/1633/5632 1387/1612/5633 +f 1405/1635/5634 1388/1613/5635 1430/1667/5636 +f 1400/1628/5637 1430/1667/5638 1388/1613/5639 1385/1610/5640 +f 1404/1633/5641 1430/1667/5642 1400/1628/5643 1403/1631/5644 +f 1407/1636/5645 1431/1654/5646 1406/1632/5647 1390/1616/5648 +f 1408/1637/5649 1431/1654/5650 1407/1636/5651 1414/1644/5652 +f 1409/1638/5653 1431/1654/5654 1408/1637/5655 1392/1614/5656 +f 1406/1632/5657 1431/1654/5658 1409/1638/5659 1389/1615/5660 +f 1411/1639/5661 1432/1668/5662 1410/1634/5663 1391/1617/5664 +f 1412/1642/5665 1432/1668/5666 1411/1639/5667 1393/1618/5668 +f 1407/1636/5669 1432/1668/5670 1412/1642/5671 1414/1644/5672 +f 1410/1634/5673 1432/1668/5674 1407/1636/5675 1390/1616/5676 +f 1433/1669/5677 1444/1835/5678 1395/1620/5679 1413/1643/5680 +f 1414/1644/5681 1433/1669/5682 1413/1643/5683 1394/1619/5684 +f 1415/1645/5685 1434/1670/5686 1412/1642/5687 1393/1618/5688 +f 1415/1645/5689 1416/1646/5690 1434/1670/5691 +f 1433/1669/5692 1434/1670/5693 1416/1646/5694 1444/1835/5695 +f 1412/1642/5696 1434/1670/5697 1433/1669/5698 1414/1644/5699 +f 1418/1641/5700 1381/1607/5701 1435/1657/5702 +f 1383/1609/5703 1417/1640/5704 1436/1658/5705 +f 1406/1632/5706 1435/1657/5707 1382/1608/5708 1390/1616/5709 +f 1418/1641/5710 1435/1657/5711 1406/1632/5712 1389/1615/5713 +f 1410/1634/5714 1436/1658/5715 1417/1640/5716 1391/1617/5717 +f 1382/1608/5718 1436/1658/5719 1410/1634/5720 1390/1616/5721 +f 1419/1647/5722 1437/1671/5723 1401/1629/5724 1385/1610/5725 +f 1401/1627/5726 1437/1659/5727 1417/1640/5728 1383/1609/5729 +f 1388/1613/5730 1420/1649/5731 1419/1647/5732 1385/1610/5733 +f 1411/1639/5734 1437/1671/5735 1419/1647/5736 1393/1618/5737 +f 1417/1640/5738 1437/1659/5739 1411/1639/5740 1391/1617/5741 +f 1419/1647/5742 1420/1649/5743 1415/1645/5744 1393/1618/5745 +f 1422/1653/5746 1438/1826/5747 1421/1650/5748 1386/1611/5749 +f 1421/1650/5750 1438/1826/5751 1423/1655/5752 1442/1832/5753 +f 1413/1643/5754 1438/1826/5755 1422/1653/5756 1394/1619/5757 +f 1423/1655/5758 1438/1826/5759 1413/1643/5760 1395/1620/5761 +f 1424/1656/5762 1440/1829/5763 1402/1630/5764 1384/1569/5765 +f 1424/1656/5766 1396/1621/5767 1440/1829/5768 +f 1402/1630/5769 1440/1829/5770 1422/1653/5771 1386/1611/5772 +f 1418/1641/5773 1439/1661/5774 1397/1623/5775 1381/1607/5776 +f 1418/1641/5777 1425/1648/5778 1439/1661/5779 +f 1424/1656/5780 1439/1827/5781 1425/1660/5782 1396/1621/5783 +f 1397/1622/5784 1439/1827/5785 1424/1656/5786 1384/1569/5787 +f 1396/1621/5788 1426/1662/5789 1440/1829/5790 +f 1427/1664/5791 1440/1829/5792 1426/1662/5793 1392/1614/5794 +f 1422/1653/5795 1440/1829/5796 1427/1664/5797 1394/1619/5798 +f 1425/1648/5799 1418/1641/5800 1441/1663/5801 +f 1409/1638/5802 1441/1663/5803 1418/1641/5804 1389/1615/5805 +f 1426/1662/5806 1441/1830/5807 1409/1638/5808 1392/1614/5809 +f 1425/1660/5810 1441/1830/5811 1426/1662/5812 1396/1621/5813 +f 1421/1650/5814 1442/1832/5815 1387/1612/5816 1404/1633/5817 1403/1631/5818 +f 1403/1631/5819 1386/1611/5820 1421/1650/5821 +f 1427/1664/5822 1392/1614/5823 1408/1637/5824 +f 1427/1664/5825 1408/1637/5826 1414/1644/5827 1394/1619/5828 +f 1387/1612/5829 1442/1832/5830 1449/1840/5831 +f 1395/1620/5832 1444/1835/5833 1601/1841/5834 +f 1445/1836/5835 1405/1635/5836 1387/1612/5837 1449/1840/5838 +f 1448/1839/5839 1416/1646/5840 1415/1645/5841 1446/1837/5842 +f 1446/1837/5843 1420/1649/5844 1388/1613/5845 1443/1833/5846 +f 1449/1840/5847 1442/1832/5848 1423/1655/5849 1447/1838/5850 +f 1443/1833/5851 1388/1613/5852 1405/1635/5853 1445/1836/5854 +f 1601/1841/5855 1444/1835/5856 1416/1646/5857 1448/1839/5858 +f 1420/1649/5859 1446/1837/5860 1415/1645/5861 +f 1447/1838/5862 1423/1655/5863 1395/1620/5864 1601/1841/5865 +f 1520/1751/5866 1502/1729/5867 1497/1724/5868 1519/1750/5869 +f 1474/1701/5870 1501/1728/5871 1498/1725/5872 1473/1700/5873 +f 1499/1726/5874 1474/1701/5875 1473/1700/5876 1496/1723/5877 +f 1516/1747/5878 1494/1721/5879 1576/1863/5880 1577/1864/5881 +f 1472/1699/5882 1482/1709/5883 1581/1869/5884 1578/1866/5885 +f 1492/1719/5886 1472/1699/5887 1578/1866/5888 1579/1867/5889 +f 1466/1693/5890 1628/1939/5891 1549/1786/5892 1459/1686/5893 1460/1687/5894 +f 1467/1694/5895 1487/1714/5896 1462/1689/5897 1463/1690/5898 +f 1464/1691/5899 1467/1694/5900 1463/1690/5901 1485/1712/5902 +f 1470/1697/5903 1469/1696/5904 1453/1680/5905 1454/1681/5906 +f 1471/1698/5907 1490/1717/5908 1456/1683/5909 1457/1684/5910 +f 1479/1706/5911 1471/1698/5912 1457/1684/5913 1451/1678/5914 +f 1472/1699/5915 1492/1719/5916 1485/1712/5917 1463/1690/5918 +f 1482/1709/5919 1472/1699/5920 1463/1690/5921 1462/1689/5922 +f 1494/1721/5923 1516/1747/5924 1460/1687/5925 1459/1686/5926 +f 1596/1876/5927 1519/1879/5928 1497/1878/5929 1595/1877/5930 +f 1473/1700/5931 1498/1725/5932 1598/1674/5933 1450/1677/5934 +f 1496/1723/5935 1473/1700/5936 1450/1677/5937 1599/1675/5938 +f 1474/1701/5939 1499/1726/5940 1451/1678/5941 1457/1684/5942 +f 1501/1728/5943 1474/1701/5944 1457/1684/5945 1456/1683/5946 +f 1502/1729/5947 1520/1751/5948 1454/1681/5949 1453/1680/5950 +f 1475/1702/5951 1503/1730/5952 1495/1722/5953 1500/1727/5954 +f 1496/1723/5955 1503/1730/5956 1475/1702/5957 1499/1726/5958 +f 1476/1703/5959 1504/1731/5960 1497/1724/5961 1502/1729/5962 +f 1495/1722/5963 1504/1731/5964 1476/1703/5965 1500/1727/5966 +f 1477/1704/5967 1505/1732/5968 1498/1725/5969 1501/1728/5970 +f 1518/1749/5971 1505/1732/5972 1477/1704/5973 1521/1752/5974 +f 1478/1705/5975 1506/1733/5976 1575/1862/5977 1493/1720/5978 +f 1579/1867/5979 1506/1733/5980 1478/1705/5981 1492/1719/5982 +f 1480/1707/5983 1584/1872/5984 1576/1863/5985 1494/1721/5986 +f 1575/1862/5987 1584/1872/5988 1480/1707/5989 1493/1720/5990 +f 1482/1709/5991 1483/1710/5992 1481/1708/5993 1581/1869/5994 +f 1481/1708/5995 1483/1710/5996 1517/1748/5997 1582/1870/5998 +f 1484/1711/5999 1508/1739/6000 1458/1685/6001 1465/1692/6002 +f 1485/1712/6003 1508/1739/6004 1484/1711/6005 1464/1691/6006 +f 1459/1686/6007 1549/1786/6008 1543/1774/6009 +f 1458/1685/6010 1509/1740/6011 1486/1713/6012 1546/1783/6013 +f 1487/1714/6014 1621/1931/6015 1512/1743/6016 1462/1689/6017 +f 1512/1743/6018 1621/1931/6019 1539/1770/6020 1461/1688/6021 +f 1583/1871/6022 1510/1741/6023 1452/1679/6024 1468/1695/6025 +f 1451/1678/6026 1510/1741/6027 1583/1871/6028 1479/1706/6029 +f 1507/1734/6030 1511/1742/6031 1453/1680/6032 1469/1696/6033 +f 1452/1679/6034 1511/1742/6035 1507/1734/6036 1468/1695/6037 +f 1490/1717/6038 1580/1868/6039 1489/1716/6040 1456/1683/6041 +f 1489/1716/6042 1580/1868/6043 1491/1718/6044 1455/1682/6045 +f 1492/1719/6046 1478/1705/6047 1508/1739/6048 1485/1712/6049 +f 1508/1739/6050 1478/1705/6051 1493/1720/6052 1458/1685/6053 +f 1483/1710/6054 1512/1743/6055 1461/1688/6056 1517/1748/6057 +f 1462/1689/6058 1512/1743/6059 1483/1710/6060 1482/1709/6061 +f 1493/1720/6062 1480/1707/6063 1509/1740/6064 1458/1685/6065 +f 1509/1740/6066 1480/1707/6067 1494/1721/6068 1459/1686/6069 +f 1495/1722/6070 1503/1730/6071 1599/1675/6072 1597/1673/6073 +f 1496/1723/6074 1599/1675/6075 1503/1730/6076 +f 1497/1882/6077 1504/1883/6078 1597/1881/6079 1595/1880/6080 +f 1495/1722/6081 1597/1673/6082 1504/1731/6083 +f 1498/1725/6084 1505/1732/6085 1600/1676/6086 1598/1674/6087 +f 1518/1749/6088 1600/1676/6089 1505/1732/6090 +f 1499/1726/6091 1475/1702/6092 1510/1741/6093 1451/1678/6094 +f 1510/1741/6095 1475/1702/6096 1500/1727/6097 1452/1679/6098 +f 1521/1752/6099 1477/1704/6100 1489/1716/6101 1455/1682/6102 +f 1489/1716/6103 1477/1704/6104 1501/1728/6105 1456/1683/6106 +f 1500/1727/6107 1476/1703/6108 1511/1742/6109 1452/1679/6110 +f 1511/1742/6111 1476/1703/6112 1502/1729/6113 1453/1680/6114 +f 1513/1744/6115 1522/1753/6116 1518/1749/6117 1521/1752/6118 +f 1519/1831/6119 1522/1753/6120 1513/1744/6121 1520/1834/6122 +f 1514/1745/6123 1585/1873/6124 1582/1870/6125 1517/1748/6126 +f 1577/1865/6127 1585/1873/6128 1514/1745/6129 1516/1828/6130 +f 1461/1688/6131 1539/1770/6132 1625/1936/6133 1515/1746/6134 1524/1755/6135 +f 1460/1816/6136 1524/1755/6137 1515/1746/6138 1466/1819/6139 +f 1523/1754/6140 1525/1756/6141 1455/1682/6142 1491/1718/6143 +f 1454/1792/6144 1525/1756/6145 1523/1754/6146 1470/1824/6147 +f 1516/1828/6148 1514/1745/6149 1524/1755/6150 1460/1816/6151 +f 1524/1755/6152 1514/1745/6153 1517/1748/6154 1461/1688/6155 +f 1518/1749/6156 1522/1753/6157 1596/1572/6158 1600/1676/6159 +f 1519/1831/6160 1596/1572/6161 1522/1753/6162 +f 1520/1834/6163 1513/1744/6164 1525/1756/6165 1454/1792/6166 +f 1525/1756/6167 1513/1744/6168 1521/1752/6169 1455/1682/6170 +f 1530/1761/6171 1618/1928/6172 1616/1926/6173 1545/1782/6174 1529/1760/6175 +f 1531/1762/6176 1488/1715/6177 1620/1930/6178 1527/1758/6179 +f 1617/1927/6180 1527/1758/6181 1620/1930/6182 +f 1526/1757/6183 1527/1758/6184 1617/1927/6185 1615/1925/6186 +f 1526/1757/6187 1615/1925/6188 1618/1928/6189 1530/1761/6190 +f 1515/1746/6191 1625/1936/6192 1533/1764/6193 1534/1765/6194 +f 677/1800/6195 1532/1763/6196 1531/1762/6197 700/1799/6198 +f 1556/1797/6199 1562/1847/6200 1529/1760/6201 1544/1781/6202 1528/1759/6203 +f 1466/1693/6204 1535/1766/6205 1623/1933/6206 1628/1939/6207 +f 1526/1757/6208 1558/1801/6209 1557/1798/6210 1527/1758/6211 +f 1530/1761/6212 676/1796/6213 1558/1801/6214 1526/1757/6215 +f 1529/1760/6216 1555/1795/6217 676/1796/6218 1530/1761/6219 +f 1534/1765/6220 1535/1825/6221 1466/1819/6222 1515/1746/6223 +f 1540/1771/6224 1622/1932/6225 1624/1935/6226 1538/1769/6227 +f 1531/1762/6228 1532/1763/6229 1540/1771/6230 1538/1769/6231 +f 1541/1772/6232 1551/1789/6233 1550/1788/6234 1548/1785/6235 +f 1626/1937/6236 1551/1789/6237 1542/1773/6238 1619/1929/6239 +f 1550/1788/6240 1551/1789/6241 1626/1937/6242 1629/1940/6243 +f 1627/1938/6244 1552/1791/6245 1545/1782/6246 1616/1926/6247 +f 1542/1773/6248 1552/1791/6249 1627/1938/6250 1619/1929/6251 +f 1629/1940/6252 1537/1768/6253 1550/1788/6254 +f 1544/1781/6255 1529/1760/6256 1545/1782/6257 1553/1793/6258 +f 1545/1782/6259 1552/1791/6260 1553/1793/6261 +f 1528/1759/6262 1544/1781/6263 1553/1793/6264 1554/1794/6265 +f 1554/1794/6266 1553/1793/6267 1552/1791/6268 1542/1773/6269 +f 1528/1759/6270 1554/1794/6271 1541/1772/6272 1547/1784/6273 +f 1541/1772/6274 1554/1794/6275 1542/1773/6276 1551/1789/6277 +f 1548/1785/6278 1536/1767/6279 1547/1784/6280 1541/1772/6281 +f 1488/1715/6282 1531/1762/6283 1538/1769/6284 1624/1935/6285 +f 1486/1713/6286 1509/1740/6287 1459/1686/6288 1543/1774/6289 +f 1546/1783/6290 1465/1692/6291 1458/1685/6292 +f 704/1806/6293 1560/1845/6294 1561/1846/6295 +f 1555/1795/6296 1529/1760/6297 1562/1847/6298 +f 1366/1594/6299 329/1843/6300 698/1810/6301 +f 677/1800/6302 329/1843/6303 1366/1594/6304 1532/1763/6305 +f 1531/1762/6306 1559/1844/6307 700/1799/6308 +f 1527/1758/6309 1557/1798/6310 1559/1844/6311 1531/1762/6312 +f 702/1808/6313 1375/1603/6314 1364/1592/6315 327/1848/6316 +f 678/1802/6317 1563/1849/6318 1547/1784/6319 1536/1767/6320 +f 1563/1849/6321 1556/1797/6322 1528/1759/6323 1547/1784/6324 +f 327/1848/6325 1364/1592/6326 1372/1600/6327 1560/1845/6328 704/1806/6329 +f 1315/1540/6330 1568/1855/6331 1572/1859/6332 1342/1568/6333 +f 1304/1529/6334 1564/1850/6335 1343/1570/6336 1573/1860/6337 +f 1305/1530/6338 1565/1851/6339 1566/1852/6340 1306/1531/6341 +f 1327/1552/6342 1571/1858/6343 1317/1542/6344 1569/1856/6345 +f 1326/1551/6346 1570/1857/6347 1567/1854/6348 1307/1532/6349 +f 1307/1532/6350 1567/1854/6351 1568/1855/6352 1315/1540/6353 +f 1564/1850/6354 1304/1529/6355 1342/1568/6356 1572/1859/6357 +f 1565/1851/6358 1305/1530/6359 1573/1860/6360 1343/1570/6361 +f 1570/1857/6362 1326/1551/6363 1569/1856/6364 1317/1542/6365 +f 1574/1861/6366 1359/1587/6367 1571/1858/6368 1327/1552/6369 +f 1306/1815/6370 1566/1853/6371 1359/1587/6372 1574/1861/6373 +f 1583/1871/6374 1506/1733/6375 1579/1867/6376 1479/1706/6377 +f 1507/1734/6378 1584/1872/6379 1575/1862/6380 1468/1695/6381 +f 1470/1697/6382 1577/1864/6383 1576/1863/6384 1469/1696/6385 +f 1580/1868/6386 1481/1708/6387 1582/1870/6388 1491/1718/6389 +f 1471/1698/6390 1578/1866/6391 1581/1869/6392 1490/1717/6393 +f 1479/1706/6394 1579/1867/6395 1578/1866/6396 1471/1698/6397 +f 1506/1733/6398 1583/1871/6399 1468/1695/6400 1575/1862/6401 +f 1584/1872/6402 1507/1734/6403 1469/1696/6404 1576/1863/6405 +f 1481/1708/6406 1580/1868/6407 1490/1717/6408 1581/1869/6409 +f 1491/1718/6410 1582/1870/6411 1585/1873/6412 1523/1754/6413 +f 1523/1754/6414 1585/1873/6415 1577/1865/6416 1470/1824/6417 +f 1592/1907/6418 1593/1908/6419 1283/1897/6420 1587/1902/6421 +f 1586/1901/6422 1281/1506/6423 1589/1904/6424 1588/1903/6425 +f 1590/1905/6426 1284/1898/6427 1593/1908/6428 1592/1907/6429 +f 1587/1902/6430 1283/1897/6431 1281/1506/6432 1586/1901/6433 +f 1284/1898/6434 1590/1905/6435 1594/1909/6436 1286/1900/6437 +f 1285/1899/6438 1591/1906/6439 1286/1900/6440 1594/1909/6441 +f 1591/1906/6442 1285/1899/6443 1588/1903/6444 1589/1904/6445 +f 1596/1891/6446 1445/1884/6447 1449/1888/6448 1600/1895/6449 +f 1597/1892/6450 1446/1885/6451 1443/1672/6452 1595/1890/6453 +f 1600/1895/6454 1449/1888/6455 1447/1886/6456 1598/1893/6457 +f 1595/1890/6458 1443/1672/6459 1445/1884/6460 1596/1891/6461 +f 1601/1896/6462 1450/1889/6463 1598/1893/6464 1447/1886/6465 +f 1450/1889/6466 1601/1896/6467 1448/1887/6468 1599/1894/6469 +f 1446/1885/6470 1597/1892/6471 1599/1894/6472 1448/1887/6473 +f 1368/1596/6474 1609/1919/6475 1610/1920/6476 +f 1376/1604/6477 1613/1923/6478 1614/1924/6479 +f 1539/1770/6480 1624/1935/6481 1625/1936/6482 +f 1549/1786/6483 1628/1939/6484 1629/1940/6485 +f 1603/1913/6486 1301/1526/6487 1605/1915/6488 1320/1545/6489 +f 1613/1923/6490 1376/1604/6491 1371/1599/6492 1611/1921/6493 +f 1607/1917/6494 1323/1548/6495 1324/1549/6496 1608/1918/6497 +f 1604/1914/6498 1303/1528/6499 1323/1548/6500 1607/1917/6501 +f 1300/1525/6502 1602/1912/6503 1303/1528/6504 1604/1914/6505 +f 1320/1545/6506 1605/1915/6507 1602/1912/6508 1300/1525/6509 +f 1606/1916/6510 1322/1547/6511 1374/1602/6512 1612/1922/6513 +f 1608/1918/6514 1324/1549/6515 1368/1596/6516 1610/1920/6517 +f 1610/1920/6518 1609/1919/6519 1533/1764/6520 1622/1932/6521 +f 1537/1768/6522 1623/1933/6523 1614/1924/6524 1613/1923/6525 +f 1611/1921/6526 1371/1599/6527 1322/1547/6528 1606/1916/6529 +f 1612/1922/6530 1374/1602/6531 1301/1526/6532 1603/1913/6533 +f 1618/1928/6534 1484/1711/6535 1465/1692/6536 1616/1926/6537 +f 1626/1937/6538 1543/1774/6539 1549/1786/6540 1629/1940/6541 +f 1488/1715/6542 1621/1931/6543 1487/1714/6544 1620/1930/6545 +f 1620/1930/6546 1487/1714/6547 1467/1694/6548 1617/1927/6549 +f 1617/1927/6550 1467/1694/6551 1464/1691/6552 1615/1925/6553 +f 1615/1925/6554 1464/1691/6555 1484/1711/6556 1618/1928/6557 +f 1627/1938/6558 1546/1783/6559 1486/1713/6560 1619/1929/6561 +f 1624/1935/6562 1539/1770/6563 1621/1931/6564 1488/1715/6565 +f 1622/1932/6566 1533/1764/6567 1625/1936/6568 1624/1935/6569 +f 1629/1940/6570 1628/1939/6571 1623/1933/6572 1537/1768/6573 +f 1619/1929/6574 1486/1713/6575 1543/1774/6576 1626/1937/6577 +f 1616/1926/6578 1465/1692/6579 1546/1783/6580 1627/1938/6581 +f 866/1140/6582 788/988/6583 760/960/6584 779/979/6585 +f 908/1182/6586 871/1145/6587 867/1141/6588 773/973/6589 +f 910/1184/6590 872/1146/6591 757/957/6592 +f 897/1171/6593 846/1120/6594 906/1180/6595 +f 906/1180/6596 842/1116/6597 897/1171/6598 +f 1091/1328/6599 968/1205/6600 996/1233/6601 +f 1137/1374/6602 1100/1337/6603 988/1225/6604 +f 1139/1376/6605 1096/1333/6606 1092/1329/6607 966/1203/6608 +f 1124/1361/6609 1072/1309/6610 1066/1303/6611 +f 1135/1372/6612 1071/1308/6613 1124/1361/6614 +# 1482 polygons - 212 triangles diff --git a/load/shapes/nascar.obj b/load/shapes/nascar.obj new file mode 100644 index 0000000..3983a0f --- /dev/null +++ b/load/shapes/nascar.obj @@ -0,0 +1,15016 @@ +#### +# +# OBJ File Generated by Meshlab +# +#### +# Object car_0016.obj +# +# Vertices: 3750 +# Faces: 7500 +# +#### +vn 0.830884 -0.552878 0.062913 +v 0.254231 -0.616278 2.189653 +vn 0.521308 -0.840006 0.150424 +v 0.217572 -0.622085 2.281372 +vn 0.917321 -0.287361 0.275583 +v 0.241804 -0.602119 2.256097 +vn 0.990535 -0.038294 0.131809 +v 0.256734 -0.582279 2.199004 +vn 0.184749 -0.980757 -0.063113 +v 0.223781 -0.628333 2.206223 +vn 0.955336 0.027335 0.294255 +v 0.223235 -0.479170 2.299403 +vn 0.547315 -0.630444 -0.550442 +v 0.251395 -0.618697 2.174747 +vn 0.843537 -0.171774 -0.508861 +v 0.255833 -0.589681 2.172969 +vn 0.154641 -0.436599 -0.886266 +v 0.230338 -0.590719 2.164359 +vn 0.972327 -0.037959 -0.230521 +v 0.257048 -0.540576 2.174076 +vn 0.730379 -0.506551 -0.458207 +v 0.232175 -0.538355 2.131079 +vn 0.962139 -0.093475 -0.256031 +v 0.249803 -0.479968 2.139639 +vn 0.983939 0.020307 0.177346 +v 0.256068 -0.320716 2.198391 +vn 0.987216 0.037346 0.154954 +v 0.254669 -0.257735 2.195639 +vn 0.996082 0.084952 0.024579 +v 0.257437 -0.301737 2.169350 +vn 0.998371 -0.023561 -0.051966 +v 0.246472 -0.333353 2.105947 +vn 0.998333 -0.043720 -0.037684 +v 0.252763 -0.239162 2.122158 +vn 0.969697 0.073853 0.232882 +v 0.248637 -0.150902 2.187351 +vn 0.999986 -0.004756 0.002109 +v 0.256237 -0.174483 2.118378 +vn 0.924347 0.204232 0.322293 +v 0.250655 -0.077689 2.162537 +vn 0.998543 0.015881 0.051581 +v 0.257206 -0.119720 2.135109 +vn 0.998591 -0.013158 0.051407 +v 0.251405 -0.242109 2.046096 +vn 0.990295 0.047076 -0.130764 +v 0.252368 -0.119358 2.078709 +vn 0.870039 0.278984 0.406448 +v 0.234106 -0.076793 2.192439 +vn 0.978939 0.164336 0.121127 +v 0.253136 -0.060455 2.132269 +vn 0.992493 -0.042838 -0.114558 +v 0.251757 -0.073853 2.078879 +vn 0.994096 -0.067947 -0.084602 +v 0.239421 -0.092607 2.041220 +vn 0.888560 0.334822 0.313616 +v 0.242540 -0.024417 2.130047 +vn 0.999714 0.023799 0.002141 +v 0.254365 -0.005239 2.044450 +vn 0.477451 -0.398932 0.782875 +v -0.098108 -0.622344 2.810297 +vn 0.264239 0.406398 0.874653 +v -0.133047 -0.601484 2.812489 +vn 0.589626 0.154461 0.792769 +v -0.076451 -0.606755 2.784579 +vn 0.213540 -0.591275 0.777685 +v -0.147081 -0.625731 2.822635 +vn 0.272729 -0.856073 0.439042 +v -0.077272 -0.626536 2.773419 +vn 0.030379 -0.996915 0.072373 +v -0.146092 -0.629929 2.786409 +vn 0.146288 0.189377 0.970946 +v -0.185390 -0.607533 2.830842 +vn 0.194576 -0.857604 0.476083 +v -0.309043 -0.624504 2.837496 +vn 0.129437 0.569004 0.812084 +v -0.185449 -0.583499 2.814181 +vn 0.051177 0.535482 0.842995 +v -0.182483 -0.541842 2.784809 +vn 0.318424 0.469380 0.823583 +v -0.127928 -0.560032 2.786009 +vn 0.090587 0.654258 0.750827 +v -0.339764 -0.574791 2.824320 +vn 0.033173 0.657093 0.753079 +v -0.239562 -0.547057 2.788959 +vn 0.506228 -0.382036 0.773163 +v 0.015060 -0.624192 2.741405 +vn 0.422581 0.438946 0.792939 +v -0.020982 -0.603368 2.747249 +vn 0.553453 0.294259 0.779167 +v 0.042509 -0.607428 2.708880 +vn 0.381307 -0.553006 0.740803 +v -0.029646 -0.625262 2.759669 +vn 0.404518 -0.792736 0.455999 +v 0.037953 -0.628234 2.709262 +vn 0.460305 -0.519425 0.719942 +v 0.080376 -0.621122 2.691079 +vn 0.617952 -0.140368 0.773584 +v 0.120130 -0.612713 2.665929 +vn 0.223310 -0.941896 0.250927 +v 0.104163 -0.625662 2.655989 +vn 0.054771 -0.997072 0.053355 +v 0.054118 -0.629905 2.654197 +vn 0.425019 0.560393 0.710857 +v 0.048579 -0.583468 2.683980 +vn 0.534051 0.373972 0.758244 +v 0.016386 -0.539828 2.677753 +vn 0.494499 0.444270 0.747058 +v 0.096290 -0.559564 2.641599 +vn 0.503372 0.409973 0.760617 +v -0.014868 -0.552826 2.711729 +vn 0.703468 -0.529107 0.474530 +v 0.145136 -0.620595 2.637402 +vn 0.700741 0.380825 0.603269 +v 0.145852 -0.585007 2.620496 +vn 0.930774 0.032376 0.364159 +v 0.162210 -0.598287 2.605139 +vn 0.104315 -0.993225 0.051212 +v 0.116628 -0.629187 2.597158 +vn 0.951765 -0.089025 0.293630 +v 0.172734 -0.600917 2.555909 +vn 0.448855 -0.864600 0.225823 +v 0.159379 -0.624649 2.548279 +vn 0.782652 0.347486 0.516439 +v 0.141171 -0.542045 2.594689 +vn 0.933150 0.227852 0.278054 +v 0.159427 -0.546658 2.552549 +vn 0.507137 0.279714 0.815213 +v 0.101791 -0.500614 2.608659 +vn 0.791745 0.116637 0.599613 +v 0.129986 -0.460201 2.576199 +vn 0.934084 0.123133 0.335149 +v 0.151652 -0.475698 2.538132 +vn 0.544811 0.203008 0.813615 +v 0.070193 -0.484489 2.616918 +vn 0.593828 0.203508 0.778429 +v 0.047771 -0.483795 2.641519 +vn 0.570674 0.244103 0.784057 +v 0.004787 -0.503787 2.672259 +vn 0.525880 0.555836 0.643814 +v -0.048528 -0.574537 2.739867 +vn 0.507726 0.419152 0.752679 +v -0.079217 -0.552574 2.750339 +vn 0.559176 0.254545 0.789005 +v -0.109466 -0.488780 2.735633 +vn 0.408031 0.240956 0.880597 +v -0.127313 -0.482244 2.752509 +vn 0.437091 0.260504 0.860865 +v -0.076150 -0.500817 2.725129 +vn 0.565923 0.148857 0.810909 +v -0.034297 -0.460902 2.691499 +vn 0.016477 -0.999328 0.032732 +v -0.350696 -0.630052 2.798667 +vn -0.253422 0.489185 0.834551 +v -0.179180 -0.489312 2.756889 +vn -0.136955 0.739833 0.658703 +v -0.234592 -0.514702 2.761079 +vn -0.310684 0.857916 0.409213 +v -0.232068 -0.492523 2.724449 +vn -0.636918 0.674615 0.373136 +v -0.191864 -0.464734 2.712729 +vn -0.590455 0.724858 0.354885 +v -0.221326 -0.467906 2.671069 +vn -0.938273 0.320098 0.131079 +v -0.170832 -0.443043 2.709581 +vn 0.610945 -0.012331 0.791577 +v 0.107919 -0.424679 2.594121 +vn 0.819140 -0.039094 0.572260 +v 0.129510 -0.395585 2.574779 +vn 0.930255 0.016490 0.366544 +v 0.147252 -0.415885 2.537589 +vn 0.821530 0.040521 0.568724 +v 0.129708 -0.311155 2.584926 +vn 0.934868 0.003619 0.354977 +v 0.146077 -0.327567 2.547218 +vn 0.633292 -0.000126 0.773913 +v 0.106047 -0.322004 2.610144 +vn 0.557367 0.181212 0.810249 +v 0.089167 -0.267343 2.615537 +vn 0.719027 0.314663 0.619667 +v 0.123257 -0.185575 2.563324 +vn 0.916598 0.102773 0.386374 +v 0.142294 -0.239591 2.543573 +vn 0.544403 -0.062202 0.836514 +v 0.037262 -0.406734 2.643295 +vn 0.521419 -0.057680 0.851349 +v 0.026274 -0.365992 2.655221 +vn 0.565958 0.006089 0.824412 +v 0.069544 -0.442162 2.615709 +vn 0.531034 0.025392 0.846970 +v -0.000017 -0.433719 2.663639 +vn 0.500244 0.081766 0.862015 +v 0.041882 -0.302647 2.646211 +vn 0.476189 0.289079 0.830468 +v 0.056551 -0.228128 2.620960 +vn 0.490855 0.180564 0.852325 +v -0.005709 -0.271425 2.670538 +vn 0.502487 0.358614 0.786704 +v 0.100485 -0.182503 2.577749 +vn 0.848950 0.258491 0.460941 +v 0.133931 -0.179425 2.541189 +vn 0.469527 0.336779 0.816164 +v -0.060913 -0.189414 2.673342 +vn 0.456225 0.555982 0.694797 +v 0.010034 -0.138342 2.612159 +vn 0.361401 0.531265 0.766255 +v -0.018144 -0.142803 2.627639 +vn 0.438220 0.508423 0.741261 +v 0.045135 -0.143570 2.588439 +vn 0.499425 0.652193 0.570280 +v 0.079948 -0.129587 2.565293 +vn 0.588331 0.496022 0.638615 +v 0.100725 -0.144246 2.554179 +vn 0.344163 0.743036 0.573977 +v 0.053591 -0.103655 2.544889 +vn 0.347192 0.707492 0.615559 +v -0.019163 -0.115718 2.604704 +vn 0.335313 0.751362 0.568348 +v -0.012493 -0.070337 2.533789 +vn 0.524419 -0.002082 0.851458 +v -0.048384 -0.410868 2.696844 +vn 0.506223 -0.001809 0.862401 +v -0.066171 -0.349191 2.711539 +vn 0.538425 0.062724 0.840336 +v -0.112644 -0.435922 2.732809 +vn 0.503972 0.101945 0.857682 +v -0.081039 -0.306949 2.717367 +vn 0.481259 0.252366 0.839465 +v -0.059105 -0.243883 2.692227 +vn 0.428521 0.179757 0.885470 +v -0.142261 -0.273060 2.749294 +vn -0.983855 0.049649 0.171945 +v -0.170914 -0.431120 2.724419 +vn -0.597094 -0.169680 0.784020 +v -0.166685 -0.409032 2.751559 +vn 0.305449 -0.081057 0.948752 +v -0.143698 -0.396367 2.752989 +vn -0.023475 -0.189536 0.981593 +v -0.176820 -0.354754 2.767409 +vn 0.409459 0.014394 0.912215 +v -0.145933 -0.337410 2.757829 +vn -0.882680 -0.454676 0.118934 +v -0.174070 -0.388944 2.739166 +vn -0.493204 -0.802240 0.336394 +v -0.233188 -0.338926 2.726539 +vn -0.513016 -0.635374 0.577160 +v -0.213490 -0.330128 2.760305 +vn -0.893776 -0.060749 0.444381 +v -0.189629 -0.417202 2.678589 +vn -0.656609 -0.720058 0.224460 +v -0.223832 -0.359130 2.675039 +vn 0.180121 0.053580 0.982184 +v -0.187247 -0.300704 2.769919 +vn 0.273526 0.249100 0.929049 +v -0.185191 -0.245818 2.758809 +vn 0.400299 0.323510 0.857381 +v -0.156363 -0.213495 2.737545 +vn -0.109929 -0.287550 0.951436 +v -0.239539 -0.299865 2.769179 +vn 0.112646 0.151417 0.982030 +v -0.253662 -0.245987 2.773905 +vn -0.585643 0.697250 0.413358 +v -0.250063 -0.463344 2.595769 +vn -0.895637 0.196270 0.399140 +v -0.218965 -0.421153 2.613249 +vn -0.711266 -0.645902 0.277328 +v -0.228691 -0.367405 2.612389 +vn -0.384556 0.567128 0.728342 +v -0.268127 -0.452865 2.561049 +vn -0.659001 0.186285 0.728708 +v -0.245118 -0.419435 2.570469 +vn -0.701210 -0.280341 0.655525 +v -0.232112 -0.385369 2.573539 +vn 0.456583 0.565773 0.686610 +v -0.108659 -0.136984 2.678260 +vn 0.456625 0.493036 0.740547 +v -0.075324 -0.150271 2.662529 +vn 0.293352 0.407660 0.864730 +v -0.192448 -0.174419 2.736782 +vn 0.146512 0.349730 0.925323 +v -0.238104 -0.185695 2.749569 +vn 0.279221 0.537659 0.795587 +v -0.185796 -0.143099 2.715929 +vn 0.133744 0.511932 0.848550 +v -0.255931 -0.149388 2.737318 +vn 0.252633 0.735623 0.628518 +v -0.171295 -0.112076 2.685741 +vn 0.165222 0.822310 0.544525 +v -0.200317 -0.092250 2.663174 +vn 0.326336 0.748010 0.577914 +v -0.129391 -0.108779 2.658159 +vn 0.130740 0.747969 0.650730 +v -0.240805 -0.108299 2.699879 +vn 0.312205 0.745322 0.589086 +v -0.122741 -0.067425 2.593470 +vn 0.191807 0.756827 0.624838 +v -0.196344 -0.062493 2.621235 +vn 0.274185 0.649399 0.709297 +v -0.181871 -0.018794 2.571533 +vn 0.118147 0.694723 0.709507 +v -0.270449 -0.031300 2.602055 +vn 0.179736 0.462136 0.868404 +v -0.338088 -0.612872 2.858104 +vn 0.245791 0.162906 0.955535 +v -0.304594 -0.607917 2.844519 +vn 0.241413 -0.510854 0.825074 +v -0.337366 -0.623493 2.860992 +vn 0.037821 -0.992816 0.113516 +v -0.363815 -0.628814 2.839562 +vn 0.059527 0.741110 0.668739 +v -0.411170 -0.540313 2.800357 +vn 0.073584 0.262776 0.962047 +v -0.478194 -0.614769 2.872099 +vn 0.062391 -0.574487 0.816132 +v -0.535920 -0.626500 2.875785 +vn 0.075594 0.514703 0.854029 +v -0.536309 -0.600887 2.868088 +vn 0.071719 0.783056 0.617802 +v -0.501573 -0.533222 2.801812 +vn 0.001941 -0.998734 0.050257 +v -0.686545 -0.630031 2.851604 +vn 0.002441 -0.686790 0.726852 +v -0.696904 -0.626747 2.885503 +vn 0.064311 0.190307 0.979616 +v -0.633948 -0.612848 2.886099 +vn 0.040151 0.790845 0.610698 +v -0.654160 -0.531810 2.816147 +vn 0.056144 0.925188 0.375333 +v -0.551106 -0.512492 2.771907 +vn 0.049815 0.894633 0.444016 +v -0.480566 -0.523865 2.782249 +vn -0.054648 0.139405 0.988726 +v -0.798844 -0.614487 2.885859 +vn 0.012419 0.609007 0.793067 +v -0.691684 -0.589769 2.871815 +vn -0.015945 0.786492 0.617394 +v -0.738208 -0.530235 2.816148 +vn -0.011669 0.928315 0.371611 +v -0.757522 -0.511155 2.781998 +vn 0.017569 0.850014 0.526466 +v -0.297843 -0.521308 2.763919 +vn -0.057229 0.956779 0.285129 +v -0.298029 -0.505001 2.724383 +vn 0.032382 0.881975 0.470181 +v -0.410128 -0.518149 2.769407 +vn -0.138899 0.976920 0.162278 +v -0.297421 -0.497114 2.676622 +vn 0.010821 0.966539 0.256293 +v -0.441907 -0.502363 2.729874 +vn -0.170527 0.944537 0.280660 +v -0.295589 -0.490120 2.621336 +vn -0.061893 0.780045 0.622655 +v -0.296438 -0.463832 2.571687 +vn 0.068014 -0.997586 0.014009 +v 0.177092 -0.629903 2.263335 +vn 0.023725 0.979402 0.200520 +v -0.539079 -0.500854 2.727518 +vn -0.022139 -0.996586 0.079541 +v -1.036505 -0.630072 2.823730 +vn 0.001422 0.985880 0.167450 +v -0.756096 -0.500925 2.738668 +vn -0.088981 -0.995803 0.021416 +v -1.613219 -0.629911 2.263120 +vn -0.002213 0.956948 0.290250 +v -0.937817 -0.488961 2.620814 +vn 0.006015 0.742598 0.669711 +v -1.070633 -0.463283 2.571597 +vn 0.236352 -0.178309 0.955167 +v -0.394607 -0.276744 2.799772 +vn 0.174215 0.089078 0.980670 +v -0.358806 -0.252869 2.786579 +vn 0.221515 -0.629714 0.744575 +v -0.366155 -0.289073 2.778509 +vn 0.098560 -0.795463 0.597934 +v -0.429491 -0.297046 2.793049 +vn 0.089694 0.277567 0.956510 +v -0.529971 -0.244885 2.802254 +vn 0.079679 -0.125499 0.988889 +v -0.542760 -0.284990 2.810787 +vn 0.063603 -0.774270 0.629651 +v -0.528073 -0.297531 2.804373 +vn 0.036316 -0.236415 0.970973 +v -0.663514 -0.282297 2.819160 +vn 0.060759 0.208831 0.976062 +v -0.654359 -0.249200 2.816715 +vn -0.058393 -0.228308 0.971836 +v -0.797965 -0.283335 2.817867 +vn -0.033049 0.179493 0.983204 +v -0.751877 -0.250612 2.819050 +vn -0.001916 -0.813891 0.581015 +v -0.719223 -0.299073 2.810971 +vn 0.038188 0.392202 0.919086 +v -0.684713 -0.176239 2.792018 +vn 0.070546 -0.420948 0.904337 +v -0.316592 -0.281294 2.773499 +vn -0.209195 -0.766056 0.607779 +v -0.269309 -0.307652 2.756419 +vn 0.012785 -0.875564 0.482933 +v -0.335875 -0.300883 2.757829 +vn -0.184854 -0.957407 0.221811 +v -0.308287 -0.314625 2.717779 +vn -0.318092 -0.926318 0.201871 +v -0.281596 -0.327396 2.675109 +vn 0.818678 -0.199385 0.538527 +v -0.375997 -0.307313 2.717479 +vn -0.084946 -0.977327 0.193950 +v -0.353884 -0.313420 2.676764 +vn 0.078227 -0.964363 0.252753 +v -0.396882 -0.302251 2.762274 +vn -0.258966 -0.899912 0.350848 +v -0.283882 -0.344697 2.607199 +vn -0.072050 -0.906119 0.416842 +v -0.354129 -0.332316 2.607959 +vn -0.309170 -0.580653 0.753164 +v -0.266713 -0.371512 2.564049 +vn -0.050873 -0.612586 0.788765 +v -0.335504 -0.367043 2.559575 +vn 0.095709 0.371670 0.923418 +v -0.440216 -0.198163 2.775337 +vn 0.138187 0.667712 0.731482 +v -0.301133 -0.123834 2.725801 +vn 0.094267 0.780781 0.617653 +v -0.301466 -0.105311 2.703784 +vn 0.088840 0.796777 0.597708 +v -0.312529 -0.071588 2.655375 +vn 0.086149 0.514031 0.853434 +v -0.476864 -0.142012 2.753976 +vn 0.063228 0.661692 0.747105 +v -0.446262 -0.121128 2.737543 +vn 0.058802 0.712594 0.699108 +v -0.482324 -0.113928 2.732461 +vn 0.081977 0.758981 0.645932 +v -0.574648 -0.065341 2.679856 +vn 0.089216 0.730403 0.677164 +v -0.387123 -0.044279 2.631676 +vn 0.104678 0.647718 0.754655 +v -0.366135 -0.010565 2.596122 +vn 0.021451 -0.587342 0.809054 +v -1.056242 -0.367157 2.559649 +vn 0.088918 0.503423 0.859452 +v -0.554559 -0.147555 2.767288 +vn 0.004494 0.707912 0.706286 +v -0.710482 -0.111858 2.753029 +vn 0.042934 0.739574 0.671704 +v -0.657370 -0.063326 2.686435 +vn 0.043720 0.535919 0.843137 +v -0.686165 -0.141552 2.774410 +vn -0.028780 0.789745 0.612759 +v -0.742123 -0.088111 2.719237 +vn -0.035289 0.735318 0.676802 +v -0.753707 -0.060062 2.684317 +vn 0.113295 0.698287 0.706795 +v -0.588500 -0.034104 2.647883 +vn 0.069188 0.642131 0.763466 +v -0.660807 -0.006792 2.633577 +vn -0.014825 0.659649 0.751427 +v -0.730905 -0.016760 2.643782 +vn 0.817019 -0.502205 0.283319 +v 0.185886 -0.620980 2.526085 +vn 0.959578 0.220427 0.174990 +v 0.184896 -0.595473 2.492219 +vn 0.774342 -0.614998 0.148904 +v 0.193230 -0.624690 2.474739 +vn 0.110501 -0.993025 0.041121 +v 0.159194 -0.629408 2.497691 +vn 0.977368 0.012676 0.211167 +v 0.206270 -0.595670 2.406844 +vn 0.682348 -0.722226 0.113092 +v 0.205857 -0.622688 2.380493 +vn 0.967524 0.191049 0.165524 +v 0.174266 -0.553591 2.496289 +vn 0.825886 0.402351 0.395001 +v 0.179021 -0.564471 2.465225 +vn 0.929945 0.164067 0.329066 +v 0.189396 -0.538851 2.430879 +vn 0.949600 0.100741 0.296836 +v 0.173941 -0.503876 2.454009 +vn 0.970398 -0.137063 0.198849 +v 0.226932 -0.591162 2.317989 +vn 0.959979 0.102583 0.260610 +v 0.213967 -0.545644 2.351002 +vn 0.948658 0.053998 0.311660 +v 0.186893 -0.471345 2.413765 +vn 0.222869 0.128151 -0.966388 +v -0.115743 -0.629240 2.208744 +vn -0.049893 -0.492478 -0.868893 +v 0.182613 -0.590597 2.164119 +vn -0.045008 -0.314527 -0.948181 +v 0.122869 -0.589898 2.163729 +vn -0.084279 -0.847001 -0.524867 +v 0.182839 -0.557947 2.132069 +vn -0.410769 -0.658549 -0.630540 +v 0.120550 -0.534975 2.143149 +vn 0.984216 -0.169724 -0.050121 +v 0.242079 -0.492627 2.102694 +vn 0.827296 -0.537264 0.164100 +v 0.231040 -0.527819 2.070789 +vn 0.227451 -0.973196 0.033995 +v 0.200630 -0.546861 2.091019 +vn -0.339943 -0.897495 0.280966 +v 0.128629 -0.532065 2.088949 +vn -0.485439 -0.855058 -0.182274 +v 0.101865 -0.505667 2.122531 +vn 0.076691 -0.240886 -0.967519 +v 0.063716 -0.590075 2.163789 +vn 0.025480 -0.471544 -0.881474 +v 0.003813 -0.590772 2.164169 +vn 0.101437 -0.242484 -0.964838 +v 0.063782 -0.541535 2.165789 +vn -0.024197 -0.878603 -0.476939 +v 0.063473 -0.502047 2.140069 +vn 0.477383 -0.716299 -0.508941 +v 0.004418 -0.538646 2.130849 +vn 0.460312 -0.627126 -0.628352 +v 0.034829 -0.512264 2.146269 +vn 0.035899 -0.998324 -0.045387 +v -0.211760 -0.629012 2.179277 +vn -0.064031 -0.486487 -0.871338 +v -0.056819 -0.590509 2.164089 +vn 0.173926 -0.765720 -0.619211 +v -0.115727 -0.619455 2.176064 +vn 0.209542 -0.323699 -0.922665 +v -0.115557 -0.589819 2.164059 +vn -0.141054 -0.821972 -0.551784 +v -0.047860 -0.557640 2.131369 +vn -0.321436 -0.399438 -0.858561 +v -0.103322 -0.531434 2.142459 +vn 0.461712 -0.882114 0.093259 +v 0.034503 -0.507626 2.120999 +vn 0.324706 -0.857053 0.400032 +v 0.014267 -0.535992 2.077819 +vn 0.049956 -0.996025 0.073741 +v -0.027362 -0.546623 2.091029 +vn -0.830486 -0.546016 -0.110268 +v -0.068911 -0.530892 2.075099 +vn -0.907419 -0.110196 -0.405521 +v -0.084065 -0.479851 2.088778 +vn -0.459463 -0.080293 -0.884560 +v -0.119295 -0.459297 2.137799 +vn 0.661271 -0.212459 -0.719431 +v -0.164212 -0.589255 2.136319 +vn 0.414025 -0.835808 -0.360566 +v -0.182741 -0.621334 2.139239 +vn 0.930647 -0.158850 -0.329640 +v -0.192972 -0.587479 2.088161 +vn 0.648526 -0.755572 -0.092327 +v -0.214235 -0.618278 2.047214 +vn 0.112120 -0.993241 -0.030016 +v -0.246121 -0.628786 2.074209 +vn 0.584255 -0.048730 -0.810106 +v -0.164246 -0.539841 2.136909 +vn 0.501570 -0.015130 -0.864984 +v -0.165005 -0.442709 2.138314 +vn 0.956369 0.006305 0.292093 +v 0.167173 -0.426595 2.472814 +vn 0.952808 0.013431 0.303277 +v 0.173625 -0.328804 2.458539 +vn 0.950332 0.062823 0.304830 +v 0.190664 -0.269284 2.397820 +vn 0.943576 0.119411 0.308877 +v 0.181479 -0.181406 2.398845 +vn 0.907296 0.287830 0.306540 +v 0.152717 -0.138669 2.472351 +vn 0.712932 0.491811 0.499850 +v 0.128963 -0.122782 2.517319 +vn 0.518731 0.710074 0.476144 +v 0.115779 -0.110022 2.516027 +vn 0.449715 0.755593 0.476273 +v 0.094258 -0.076817 2.472609 +vn 0.654835 0.643141 0.396939 +v 0.119931 -0.067058 2.426529 +vn 0.773964 0.504423 0.382801 +v 0.152608 -0.075113 2.371858 +vn 0.359575 0.764141 0.535532 +v 0.048728 -0.070793 2.498055 +vn 0.385729 0.664997 0.639525 +v -0.008719 -0.023237 2.476218 +vn 0.549252 0.617863 0.562643 +v 0.081636 -0.015772 2.407293 +vn 0.911144 0.253176 0.325144 +v 0.177607 -0.145602 2.392749 +vn 0.928399 0.196104 0.315624 +v 0.220607 -0.130086 2.267694 +vn 0.859089 0.338640 0.383783 +v 0.189870 -0.108576 2.342257 +vn 0.812801 0.475496 0.336538 +v 0.187920 -0.064306 2.289846 +vn 0.745105 0.493980 0.448109 +v 0.118897 -0.005704 2.340741 +vn 0.717502 0.542215 0.437257 +v 0.116284 -0.022947 2.367039 +vn 0.768655 0.467275 0.436833 +v 0.142027 -0.007358 2.307319 +vn 0.411916 0.644016 0.644646 +v -0.050340 -0.018836 2.492809 +vn 0.411134 0.656835 0.632089 +v -0.075506 -0.019516 2.514149 +vn -0.092824 -0.956676 0.275961 +v 0.080332 -0.500562 2.106639 +vn 0.836254 0.399390 0.375721 +v 0.200154 -0.058691 2.248599 +vn 0.814322 0.399487 0.421059 +v 0.206214 -0.018101 2.199969 +vn -0.439133 -0.035636 -0.897715 +v -0.119490 -0.343715 2.135603 +vn -0.877790 -0.134530 -0.459767 +v -0.083843 -0.299362 2.087408 +vn -0.499106 -0.284890 -0.818371 +v -0.119432 -0.279864 2.130519 +vn -0.482889 -0.449284 -0.751639 +v -0.113813 -0.232547 2.083669 +vn 0.259888 -0.360016 -0.896017 +v -0.154130 -0.270379 2.138179 +vn 0.921733 -0.123415 -0.367664 +v -0.192725 -0.299909 2.088450 +vn 0.532635 -0.093725 -0.841139 +v -0.165558 -0.299600 2.132879 +vn 0.534892 -0.518968 -0.666755 +v -0.167962 -0.239911 2.092619 +vn -0.286438 -0.064850 -0.955901 +v -0.121167 -0.158373 2.065589 +vn 0.416705 -0.202073 -0.886297 +v -0.157249 -0.180097 2.059249 +vn -0.504341 -0.206341 -0.838488 +v -0.115331 -0.096739 2.063279 +vn 0.454102 0.060332 -0.888904 +v -0.161447 -0.116704 2.067869 +vn 0.421432 -0.233350 -0.876324 +v -0.160460 -0.084709 2.078518 +vn -0.113204 -0.993390 -0.019027 +v -1.185984 -0.628732 2.105062 +vn -0.030411 -0.998698 -0.040965 +v -1.200049 -0.629246 2.206463 +vn -0.158113 0.107796 0.981519 +v -0.296943 -0.421675 2.541781 +vn 0.980409 -0.131427 0.146717 +v 0.244476 -0.500326 2.042649 +vn 0.993096 -0.074118 0.090922 +v 0.253207 -0.524327 1.972875 +vn 0.784281 -0.448734 0.428416 +v 0.239650 -0.552911 2.029279 +vn 0.951634 -0.211931 0.222439 +v 0.245133 -0.565667 1.988060 +vn 0.612125 -0.539119 0.578493 +v 0.229727 -0.585959 2.006059 +vn 0.992024 -0.105168 0.069487 +v 0.253145 -0.605673 1.887961 +vn 0.752644 -0.483618 0.446812 +v 0.239694 -0.611661 1.974620 +vn 0.999248 -0.005386 -0.038394 +v 0.255823 -0.471952 1.964543 +vn 0.936791 -0.275251 0.216010 +v 0.244878 -0.624114 1.928430 +vn 0.629577 -0.641903 0.437713 +v 0.230223 -0.638944 1.945170 +vn 0.795990 -0.534991 0.283168 +v 0.242104 -0.665505 1.890739 +vn 0.999666 -0.019110 0.017414 +v 0.255929 -0.602905 1.833654 +vn 0.999208 0.032749 -0.022610 +v 0.255664 -0.543189 1.906270 +vn 0.989273 0.087885 -0.116687 +v 0.251608 -0.487072 1.913120 +vn 0.992310 0.111726 -0.053269 +v 0.253231 -0.551332 1.846860 +vn 0.945156 0.253512 -0.205943 +v 0.241181 -0.493936 1.852288 +vn 0.953550 -0.274819 0.123360 +v 0.244405 -0.682787 1.811270 +vn 0.589142 -0.737729 0.329647 +v 0.229276 -0.695613 1.845069 +vn 0.983491 -0.179845 0.020043 +v 0.250308 -0.671411 1.745255 +vn 0.697312 -0.693800 0.179994 +v 0.237686 -0.714364 1.793300 +vn 0.715205 -0.696719 -0.055356 +v 0.238908 -0.720369 1.687436 +vn 0.999990 0.000134 0.004582 +v 0.258042 -0.608246 1.680148 +vn 0.961831 0.266364 -0.062695 +v 0.246558 -0.550686 1.781805 +vn 0.952356 0.267847 -0.145862 +v 0.246640 -0.529651 1.812178 +vn 0.969508 0.245058 -0.001315 +v 0.252903 -0.567890 1.718363 +vn 0.928496 -0.356306 -0.104603 +v 0.246354 -0.685738 1.632891 +vn 0.815028 -0.502232 -0.288951 +v 0.241342 -0.674460 1.543835 +vn 0.564999 -0.768088 -0.301360 +v 0.220678 -0.713750 1.615070 +vn 0.999257 -0.033002 -0.019918 +v 0.260068 -0.573576 1.572822 +vn 0.936530 0.333601 0.107807 +v 0.246283 -0.546791 1.657860 +vn 0.959983 0.247093 0.131822 +v 0.255688 -0.534881 1.589875 +vn 0.902279 0.371312 0.219135 +v 0.233011 -0.496254 1.604078 +vn 0.903431 0.411285 0.121065 +v 0.226040 -0.503083 1.657520 +vn 0.994078 -0.018932 0.107004 +v 0.249727 -0.355303 2.057791 +vn 0.994586 -0.027103 0.100324 +v 0.254957 -0.396435 2.017907 +vn 0.994312 -0.010185 -0.106016 +v 0.255349 -0.332399 1.972528 +vn 0.995958 0.007834 0.089477 +v 0.256784 -0.252605 2.007876 +vn 0.996223 -0.043644 -0.075067 +v 0.258770 -0.235936 1.968570 +vn 0.950940 0.125376 -0.282833 +v 0.243191 -0.430217 1.909056 +vn 0.945840 0.002036 -0.324628 +v 0.248069 -0.329437 1.939076 +vn 0.857374 -0.118439 -0.500881 +v 0.233838 -0.278114 1.908493 +vn 0.919835 -0.185798 -0.345519 +v 0.244150 -0.228254 1.909480 +vn 0.996931 0.048937 0.061105 +v 0.252310 -0.183987 2.013029 +vn 0.993076 0.114414 0.026626 +v 0.248044 -0.136099 2.023682 +vn 0.998043 0.043629 0.044797 +v 0.259902 -0.141987 1.932652 +vn 0.985500 -0.079300 -0.150005 +v 0.243773 -0.021203 2.003169 +vn 0.999198 0.034465 0.020364 +v 0.242358 -0.064459 1.995364 +vn 0.974450 -0.170090 -0.146684 +v 0.257526 -0.129578 1.872819 +vn 0.895976 -0.297152 -0.330041 +v 0.227925 -0.191206 1.854773 +vn 0.886277 -0.351167 -0.301986 +v 0.241195 -0.161370 1.851270 +vn 0.908326 -0.207252 -0.363304 +v 0.223170 -0.229242 1.863560 +vn 0.989737 0.124434 0.070267 +v 0.245504 -0.020042 1.926157 +vn 0.994197 0.042796 0.098695 +v 0.243185 0.003882 1.903664 +vn 0.999833 -0.013500 -0.012292 +v 0.259439 -0.057058 1.803271 +vn 0.992526 0.105434 0.061456 +v 0.251271 -0.007074 1.837970 +vn 0.878043 -0.437913 -0.193062 +v 0.234600 -0.128713 1.787306 +vn 0.929190 -0.347478 -0.125959 +v 0.247245 -0.106968 1.784220 +vn 0.906156 -0.361625 -0.219336 +v 0.223562 -0.165466 1.800950 +vn 0.992793 0.119845 -0.000029 +v 0.255175 -0.008894 1.743759 +vn 0.998648 -0.051429 -0.007581 +v 0.255744 -0.053215 1.676618 +vn 0.959569 -0.280229 0.026461 +v 0.250631 -0.087403 1.676639 +vn 0.887193 -0.456304 -0.068385 +v 0.230442 -0.129108 1.740816 +vn 0.892021 -0.443587 0.086770 +v 0.220880 -0.147985 1.669478 +vn 0.994141 0.103514 -0.031136 +v 0.252617 -0.008342 1.612392 +vn 0.999954 -0.000805 0.009598 +v 0.255775 -0.065682 1.552140 +vn 0.985745 -0.144133 0.086788 +v 0.252453 -0.106366 1.576279 +vn 0.904564 -0.393804 0.163349 +v 0.236786 -0.131648 1.623230 +vn 0.967838 -0.198032 -0.155153 +v 0.245672 -0.649635 1.542190 +vn 0.432754 -0.829920 -0.352075 +v 0.224661 -0.687447 1.545260 +vn 0.844725 -0.433566 -0.313784 +v 0.243142 -0.621141 1.472293 +vn 0.596246 -0.655907 -0.462901 +v 0.228727 -0.647060 1.489540 +vn 0.880873 0.308712 0.358830 +v 0.237776 -0.467190 1.550501 +vn 0.934499 0.226589 0.274533 +v 0.250512 -0.477783 1.532930 +vn 0.999984 -0.005639 0.001033 +v 0.260460 -0.505516 1.493922 +vn 0.775702 -0.370132 -0.511165 +v 0.243152 -0.566547 1.412655 +vn 0.964915 -0.118901 -0.234097 +v 0.246909 -0.538032 1.419580 +vn 0.776909 -0.454750 -0.435448 +v 0.240584 -0.595178 1.435700 +vn 0.995630 -0.033791 -0.087053 +v 0.258034 -0.433442 1.431526 +vn 0.784209 -0.243757 -0.570612 +v 0.241486 -0.476993 1.351933 +vn 0.597032 -0.437742 -0.672260 +v 0.226529 -0.532024 1.376060 +vn 0.910812 0.129142 0.392102 +v 0.242305 -0.382177 1.494959 +vn 0.984180 0.088794 0.153317 +v 0.257373 -0.423718 1.471910 +vn 0.957363 0.038120 0.286361 +v 0.250265 -0.345433 1.469983 +vn 0.938513 -0.093013 0.332479 +v 0.244538 -0.253627 1.493055 +vn 0.888554 -0.092237 0.449405 +v 0.198253 -0.288158 1.576836 +vn 0.986521 -0.024436 0.161801 +v 0.252521 -0.242428 1.464754 +vn 0.999943 -0.004905 -0.009452 +v 0.258629 -0.344114 1.414836 +vn 0.933598 -0.093210 -0.345986 +v 0.246226 -0.413512 1.356523 +vn 0.977994 -0.099097 -0.183594 +v 0.249542 -0.358514 1.360344 +vn 0.999601 -0.008002 -0.027099 +v 0.255108 -0.191020 1.428751 +vn 0.999511 -0.006914 -0.030509 +v 0.255560 -0.298091 1.363650 +vn 0.996999 0.074174 -0.022173 +v 0.252089 -0.238623 1.362560 +vn 0.962930 -0.191748 0.189734 +v 0.249143 -0.158591 1.536295 +vn 0.892709 -0.390838 0.224313 +v 0.202186 -0.200630 1.631137 +vn 0.892126 -0.259957 0.369505 +v 0.227736 -0.199772 1.559450 +vn 0.997659 -0.047175 0.049504 +v 0.255411 -0.136737 1.488715 +vn 0.984015 0.176069 0.026711 +v 0.248516 -0.012448 1.544800 +vn 0.999209 0.005366 0.039393 +v 0.256090 -0.060833 1.483150 +vn 0.989626 0.048690 0.135163 +v 0.239612 0.025309 1.512794 +vn 0.985113 0.090295 0.146285 +v 0.255190 0.006675 1.481350 +vn 0.998977 -0.044291 -0.009081 +v 0.255572 -0.091519 1.380826 +vn 0.991008 -0.034496 -0.129276 +v 0.248606 -0.183095 1.387100 +vn 0.993728 -0.105812 -0.036164 +v 0.245900 -0.157704 1.349260 +vn 0.984105 0.147654 0.098665 +v 0.246442 -0.208826 1.330081 +vn 0.992560 -0.119250 -0.024568 +v 0.255246 -0.119334 1.353040 +vn 0.999950 -0.005728 0.008206 +v 0.260944 -0.055947 1.418060 +vn 0.999855 -0.015122 0.007793 +v 0.259755 0.008418 1.358256 +vn 0.794116 -0.604585 -0.062105 +v 0.227734 -0.358260 1.287920 +vn 0.601317 -0.305811 -0.738171 +v 0.227294 -0.415409 1.332540 +vn 0.989117 -0.147132 0.000449 +v 0.253584 -0.301316 1.298029 +vn 0.985541 0.071140 0.153778 +v 0.252809 -0.214863 1.310016 +vn 0.995345 -0.054838 0.079250 +v 0.260747 -0.237931 1.239640 +vn 0.935894 -0.285671 0.206144 +v 0.251030 -0.326004 1.272346 +vn 0.969230 -0.229743 -0.088378 +v 0.242884 -0.446771 1.193873 +vn 0.909813 -0.380953 0.164664 +v 0.235455 -0.472386 1.196420 +vn 0.841100 -0.334392 0.425126 +v 0.243650 -0.443930 1.221160 +vn 0.415198 -0.285481 0.863777 +v 0.204370 -0.468962 1.237120 +vn 0.385143 -0.298398 0.873283 +v 0.220529 -0.418962 1.247350 +vn 0.920166 -0.182159 0.346573 +v 0.250451 -0.396370 1.226500 +vn 0.725032 -0.420589 0.545375 +v 0.235558 -0.369586 1.255770 +vn 0.982466 -0.118134 0.144240 +v 0.256473 -0.337317 1.226030 +vn 0.994510 -0.101105 -0.026967 +v 0.258229 -0.329453 1.177100 +vn 0.980138 -0.183641 -0.074868 +v 0.249382 -0.352716 1.114993 +vn 0.968278 -0.203084 -0.145587 +v 0.239114 -0.417114 1.132030 +vn 0.999135 -0.041531 0.001998 +v 0.262625 -0.259288 1.179459 +vn 0.999419 -0.026814 -0.021044 +v 0.258882 -0.237061 1.066992 +vn 0.998527 0.004069 0.054111 +v 0.264300 -0.127818 1.242235 +vn 0.998547 -0.020678 0.049756 +v 0.264141 -0.184393 1.231000 +vn 0.996766 -0.033905 0.072856 +v 0.259589 -0.094268 1.286399 +vn 0.999514 0.029221 -0.010899 +v 0.261235 0.001114 1.301480 +vn 0.998241 0.048858 -0.033576 +v 0.260013 -0.028274 1.252974 +vn 0.999554 0.026617 -0.013570 +v 0.258818 -0.123145 1.066914 +vn 0.997067 0.073940 -0.019763 +v 0.256026 -0.063822 1.091881 +vn 0.993140 0.113423 -0.028435 +v 0.250765 -0.008959 1.100268 +vn 0.203328 -0.763595 0.612847 +v 0.198928 -0.647152 1.959576 +vn 0.004973 -0.724568 0.689185 +v 0.160665 -0.621669 1.987062 +vn 0.195949 -0.660061 0.725206 +v 0.200821 -0.593959 2.014955 +vn 0.297280 -0.756458 0.582576 +v 0.210566 -0.560040 2.038099 +vn -0.016500 -0.787364 0.616268 +v 0.161603 -0.563528 2.040589 +vn -0.057731 -0.681791 0.729266 +v 0.103036 -0.562825 2.040799 +vn -0.162120 -0.784393 0.598702 +v -0.028870 -0.647946 1.957536 +vn -0.350881 -0.681210 0.642523 +v -0.049692 -0.622107 1.988342 +vn -0.171217 -0.658028 0.733269 +v -0.028250 -0.594399 2.016062 +vn 0.063513 -0.645489 0.761124 +v 0.043576 -0.562812 2.041449 +vn 0.048021 -0.756078 0.652717 +v 0.063690 -0.525389 2.064229 +vn 0.041435 -0.788576 0.613539 +v -0.016425 -0.563809 2.041559 +vn 0.248989 -0.831108 0.497257 +v 0.202739 -0.668600 1.928057 +vn 0.089986 -0.907195 0.410974 +v 0.180273 -0.691346 1.885584 +vn 0.179064 -0.925162 0.334679 +v 0.203695 -0.714917 1.828341 +vn 0.002062 -0.958533 0.284975 +v 0.079783 -0.714165 1.822562 +vn -0.226780 -0.902367 0.366477 +v -0.035084 -0.696903 1.877029 +vn -0.280761 -0.790983 0.543616 +v -0.048860 -0.671419 1.923988 +vn -0.162228 -0.924975 0.343663 +v -0.028134 -0.709090 1.846763 +vn -0.858304 -0.375124 0.350137 +v -0.064003 -0.615300 1.980356 +vn -0.832160 -0.448892 0.325586 +v -0.062277 -0.636658 1.944560 +vn -0.864438 -0.351817 0.359125 +v -0.061874 -0.577417 2.006072 +vn -0.336961 -0.792313 0.508623 +v -0.050748 -0.563744 2.039929 +vn -0.999648 -0.025328 -0.007943 +v -0.065921 -0.526370 1.989647 +vn -0.994375 -0.023848 -0.103201 +v -0.066228 -0.478842 2.020637 +vn 0.980312 -0.188783 -0.057872 +v -0.202705 -0.586396 2.021342 +vn -0.804088 -0.488378 0.339013 +v -0.063100 -0.666146 1.918833 +vn -0.999199 -0.034071 0.020973 +v -0.065588 -0.637400 1.892247 +vn -0.861436 -0.451075 0.233364 +v -0.062564 -0.696320 1.832120 +vn -1.000000 -0.000443 -0.000475 +v -0.066220 -0.430473 1.823656 +vn 0.254828 -0.964999 0.061967 +v 0.217935 -0.728583 1.742551 +vn 0.028015 -0.987001 0.158254 +v 0.177361 -0.727214 1.773868 +vn 0.029484 -0.999441 0.015762 +v 0.174544 -0.731443 1.725031 +vn -0.065636 -0.991550 0.111897 +v -0.036446 -0.727921 1.765219 +vn -0.117541 -0.992698 0.027107 +v -0.035116 -0.731237 1.717659 +vn 0.288967 -0.918289 -0.270636 +v 0.211030 -0.723742 1.624024 +vn 0.035259 -0.996605 -0.074395 +v 0.176999 -0.729080 1.669179 +vn 0.067386 -0.949830 -0.305420 +v 0.176327 -0.713469 1.588131 +vn 0.002995 -0.978715 -0.205204 +v 0.098163 -0.722922 1.627857 +vn -0.061653 -0.996388 -0.058393 +v -0.038116 -0.730444 1.666654 +vn -0.229237 -0.927891 -0.294054 +v -0.039085 -0.709237 1.573897 +vn -0.106192 -0.955215 -0.276201 +v -0.037823 -0.725313 1.630963 +vn 0.893312 0.447466 -0.042048 +v 0.202405 -0.465320 1.727646 +vn -0.195394 -0.910725 0.363869 +v -0.047194 -0.719239 1.812661 +vn -0.709232 -0.675747 0.200885 +v -0.063997 -0.721002 1.798447 +vn -0.872307 -0.461130 -0.162604 +v -0.064571 -0.703708 1.611550 +vn -0.620113 -0.753531 -0.218290 +v -0.060951 -0.726532 1.640363 +vn -0.999872 -0.015150 0.005068 +v -0.065850 -0.645122 1.767089 +vn -1.000000 0.000121 -0.000964 +v -0.065945 -0.432766 1.680815 +vn 0.242558 -0.969706 0.028909 +v -0.246064 -0.630625 1.304193 +vn -0.998977 -0.039341 -0.022309 +v -0.066005 -0.645726 1.546337 +vn 0.983754 -0.174316 0.042922 +v -0.203311 -0.589005 1.362573 +vn 0.636863 -0.764812 0.097299 +v -0.214698 -0.619748 1.342366 +vn 0.999533 -0.019863 0.023206 +v -0.202512 -0.271208 1.417424 +vn 0.906410 0.109358 -0.407997 +v 0.196153 -0.362368 1.834995 +vn 0.899949 -0.091244 -0.426341 +v 0.197140 -0.301653 1.835892 +vn -0.963600 -0.053468 -0.261945 +v -0.066051 -0.239501 2.020510 +vn 0.386043 -0.390256 0.835865 +v -0.202660 -0.239688 2.021233 +vn 0.929034 -0.061293 -0.364882 +v -0.202594 -0.180269 2.021307 +vn -0.925818 -0.057720 -0.373536 +v -0.065729 -0.179823 2.020069 +vn -0.855379 -0.163265 -0.491601 +v -0.074414 -0.118613 2.025979 +vn -0.998855 -0.014714 -0.045514 +v -0.066280 -0.119762 1.961242 +vn -0.410395 -0.631915 -0.657464 +v -0.116484 -0.047667 2.030789 +vn -0.944059 -0.229594 -0.236726 +v -0.065744 -0.061346 1.959620 +vn -0.401770 -0.677821 -0.615743 +v -0.116313 0.018412 1.968840 +vn 0.194141 -0.682027 -0.705087 +v -0.126870 -0.013766 1.992060 +vn 0.917981 -0.098049 -0.384313 +v -0.203694 -0.120111 2.020009 +vn 0.517390 -0.582279 -0.627103 +v -0.168142 0.001241 1.976733 +vn 0.562758 -0.587242 -0.581765 +v -0.168121 -0.055967 2.032659 +vn 0.955624 -0.263729 -0.131261 +v -0.203121 -0.001096 1.901721 +vn -0.998900 -0.044975 -0.013288 +v -0.066313 -0.059916 1.901630 +vn -0.852234 -0.471652 -0.226365 +v -0.074609 0.007081 1.902580 +vn -0.999733 -0.016569 0.016106 +v -0.066288 -0.059713 1.602554 +vn -0.968837 -0.236198 -0.074600 +v -0.065937 -0.000727 1.841330 +vn 0.983620 -0.172581 -0.052034 +v -0.202807 -0.000434 1.841630 +vn 0.895353 0.349520 -0.276004 +v 0.195511 -0.428151 1.790200 +vn 0.954589 0.094106 -0.282674 +v 0.170612 -0.362936 1.773790 +vn 0.927267 0.304508 -0.217833 +v 0.171951 -0.400431 1.760270 +vn 0.901540 0.423443 0.089005 +v 0.178912 -0.425554 1.696815 +vn 0.994149 0.106287 -0.019247 +v 0.163515 -0.357751 1.720460 +vn 0.921853 -0.186207 -0.339872 +v 0.172824 -0.273543 1.782635 +vn 0.880894 -0.368458 -0.297093 +v 0.194014 -0.227094 1.785370 +vn 0.995458 -0.054794 -0.077854 +v 0.162520 -0.300570 1.723680 +vn 0.924347 -0.346718 -0.159278 +v 0.172966 -0.245992 1.749120 +vn 0.882594 0.399777 0.247398 +v 0.191378 -0.427308 1.653900 +vn 0.965777 0.208802 0.153873 +v 0.171888 -0.376607 1.656650 +vn 0.908975 0.276497 0.311952 +v 0.213055 -0.429172 1.591950 +vn 0.814243 0.352538 0.461221 +v 0.179121 -0.376632 1.617158 +vn 0.860981 0.167292 0.480338 +v 0.195759 -0.359853 1.589320 +vn 0.989437 -0.037740 0.139966 +v 0.161866 -0.305389 1.667640 +vn 0.952261 -0.294461 0.080571 +v 0.168188 -0.248818 1.686320 +vn 0.914744 -0.234501 0.329017 +v 0.182132 -0.259732 1.621350 +vn 0.921231 0.013808 0.388770 +v 0.175214 -0.325082 1.614130 +vn 0.892034 -0.451662 -0.016648 +v 0.190614 -0.203250 1.704990 +vn -0.999780 -0.015269 0.014380 +v -0.065842 -0.181490 1.484015 +vn 0.996962 -0.054238 0.055902 +v -0.202537 -0.059951 1.542360 +vn -0.975778 -0.183803 0.118630 +v -0.065947 -0.002359 1.603449 +vn 0.998842 -0.046644 0.011828 +v -0.202551 -0.000319 1.661980 +vn 0.999803 -0.019347 -0.004440 +v -0.202666 0.009079 1.744940 +vn -0.999992 -0.003743 -0.001634 +v -0.065964 -0.119064 1.541547 +vn 0.983257 -0.176281 0.046152 +v -0.202802 -0.000466 1.602370 +vn 0.026022 -0.999427 0.021664 +v -0.247894 -0.631316 1.244971 +vn -0.001172 -0.999999 -0.000450 +v -1.138511 -0.632195 0.942097 +vn 0.101188 -0.925824 -0.364157 +v 0.181717 -0.700889 1.552128 +vn 0.309415 -0.790561 -0.528465 +v 0.205982 -0.677018 1.503153 +vn 0.144499 -0.774256 -0.616155 +v 0.180690 -0.659297 1.476321 +vn -0.220305 -0.802446 -0.554569 +v -0.038109 -0.651659 1.462527 +vn -0.128902 -0.847651 -0.514657 +v -0.037913 -0.680765 1.510158 +vn 0.376765 -0.721448 -0.581000 +v 0.215339 -0.615212 1.426820 +vn 0.113046 -0.778435 -0.617462 +v 0.181522 -0.637710 1.449870 +vn 0.353011 -0.601869 -0.716335 +v 0.212435 -0.594974 1.403406 +vn -0.001922 -0.640241 -0.768171 +v 0.176616 -0.576767 1.388076 +vn 0.004569 -0.699671 -0.714450 +v 0.083547 -0.608158 1.418534 +vn 0.148129 -0.514408 -0.844655 +v 0.180511 -0.549716 1.366758 +vn -0.168071 -0.583037 -0.794871 +v -0.039987 -0.579027 1.390817 +vn -0.678662 -0.510603 -0.527923 +v -0.063262 -0.611867 1.419384 +vn -0.200048 -0.595907 -0.777737 +v -0.039264 -0.545382 1.365273 +vn -0.684007 -0.626077 -0.374383 +v -0.061741 -0.683625 1.521133 +vn -0.850967 -0.439086 -0.288198 +v -0.063095 -0.651369 1.490790 +vn -0.999757 -0.015009 0.016154 +v -0.065544 -0.361392 1.425034 +vn 0.969474 0.044671 0.241091 +v -0.202721 -0.553558 1.316810 +vn -0.998851 -0.047799 -0.003596 +v -0.066045 -0.426241 1.363260 +vn -0.867981 -0.324935 -0.375534 +v -0.063157 -0.541173 1.379570 +vn 0.973417 -0.034368 0.226445 +v -0.202483 -0.420683 1.317380 +vn 0.367671 -0.454059 -0.811571 +v 0.209768 -0.500522 1.340850 +vn 0.372314 -0.251432 -0.893400 +v 0.215118 -0.471374 1.334160 +vn 0.046209 -0.316870 -0.947342 +v 0.177971 -0.469518 1.328616 +vn 0.061268 -0.464007 -0.883710 +v 0.176739 -0.507663 1.344090 +vn -0.041220 -0.430072 -0.901853 +v -0.027895 -0.510894 1.344206 +vn -0.175431 -0.285211 -0.942273 +v -0.032572 -0.472580 1.329598 +vn 0.362663 -0.799418 0.478964 +v 0.144238 -0.618051 1.216180 +vn 0.106570 -0.864050 0.491997 +v 0.088644 -0.627067 1.225660 +vn 0.102475 -0.336353 0.936144 +v 0.078080 -0.601194 1.248450 +vn 0.302544 -0.333930 0.892725 +v 0.139648 -0.589801 1.237070 +vn 0.722823 -0.602040 0.339228 +v 0.180592 -0.600645 1.207410 +vn 0.504061 -0.863209 -0.028158 +v 0.153044 -0.618708 1.162833 +vn 0.180469 -0.981613 0.062183 +v 0.117938 -0.631164 1.178208 +vn 0.822825 -0.562172 -0.083202 +v 0.165005 -0.597903 1.096277 +vn 0.749467 -0.325773 0.576344 +v 0.191083 -0.563318 1.218440 +vn 0.190550 -0.113633 0.975078 +v 0.134518 -0.540119 1.247970 +vn 0.595039 -0.230037 0.770072 +v 0.196188 -0.517798 1.227520 +vn 0.914900 -0.383170 0.127036 +v 0.215278 -0.525298 1.187880 +vn 0.894792 -0.439409 -0.079167 +v 0.193902 -0.563870 1.167900 +vn 0.106020 -0.038852 0.993605 +v 0.135269 -0.477894 1.248841 +vn 0.026479 -0.017945 0.999488 +v 0.058599 -0.547626 1.249090 +vn 0.913401 -0.390785 -0.113956 +v 0.203991 -0.526565 1.116744 +vn 0.958105 -0.273294 -0.085701 +v 0.223756 -0.461132 1.088192 +vn 0.033099 -0.901519 0.431472 +v -0.085198 -0.629668 1.221188 +vn 0.077312 -0.442594 0.893383 +v -0.088957 -0.608166 1.242706 +vn 0.143103 -0.014119 0.989607 +v -0.107675 -0.555389 1.249214 +vn 0.163218 -0.000634 0.986590 +v -0.120637 -0.487107 1.249261 +vn -0.677079 -0.381782 -0.629131 +v -0.061466 -0.523400 1.353348 +vn 0.906841 -0.257447 0.333707 +v -0.197063 -0.601510 1.310770 +vn 0.357414 -0.905297 0.229546 +v -0.202924 -0.625062 1.283520 +vn 0.519169 -0.649738 0.555250 +v -0.175884 -0.616788 1.268340 +vn 0.367769 0.046199 0.928769 +v -0.192577 -0.630801 1.230270 +vn 0.680413 -0.036181 0.731935 +v -0.175225 -0.581251 1.272960 +vn 0.762339 0.039191 0.645990 +v -0.187296 -0.519926 1.279630 +vn 0.052616 -0.967658 0.246719 +v -0.135742 -0.630990 1.219678 +vn 0.257343 -0.554038 0.791718 +v -0.135584 -0.612144 1.247850 +vn 0.359175 -0.054641 0.931669 +v -0.149955 -0.571217 1.261480 +vn 0.422939 0.018637 0.905967 +v -0.160942 -0.500631 1.261700 +vn -0.976504 -0.118782 0.179809 +v -0.065693 -0.180147 1.423586 +vn 0.996943 -0.055553 0.054936 +v -0.202565 -0.119922 1.482510 +vn -0.977646 -0.124968 0.169092 +v -0.065438 -0.360042 1.363960 +vn -0.990829 -0.015546 0.134224 +v -0.065784 -0.299594 1.422760 +vn -0.908412 -0.079683 0.410412 +v -0.074409 -0.298144 1.357420 +vn -0.886556 -0.045051 0.460423 +v -0.083662 -0.236838 1.353250 +vn -0.160355 -0.576131 0.801473 +v -0.202623 -0.359650 1.362980 +vn 0.958210 -0.046141 0.282320 +v -0.202818 -0.299706 1.363520 +vn 0.945413 -0.034633 0.324030 +v -0.197726 -0.238474 1.359670 +vn -0.981987 -0.133495 0.133717 +v -0.065391 -0.120390 1.483000 +vn -0.981795 -0.137763 0.130766 +v -0.065892 -0.060500 1.542880 +vn -0.884856 -0.327799 0.331024 +v -0.074708 0.001078 1.539830 +vn -0.883790 -0.331280 0.330406 +v -0.074531 -0.057109 1.479420 +vn -0.140866 -0.717973 0.681668 +v -0.131143 0.004703 1.477370 +vn 0.913409 -0.308940 0.265027 +v -0.203084 -0.000960 1.543170 +vn 0.921217 -0.274503 0.275695 +v -0.202878 -0.060744 1.483250 +vn 0.694479 -0.513679 0.503818 +v -0.180094 -0.011341 1.493760 +vn -0.886252 -0.332264 0.322736 +v -0.074345 -0.117212 1.419790 +vn -0.898005 -0.253534 0.359595 +v -0.083832 -0.179053 1.358400 +vn -0.225541 -0.714668 0.662103 +v -0.127283 -0.117779 1.358810 +vn -0.139133 -0.697596 0.702852 +v -0.131266 -0.055523 1.417840 +vn -0.643093 -0.540585 0.542401 +v -0.099497 -0.032179 1.454710 +vn -0.631708 -0.561176 0.534815 +v -0.099715 -0.092107 1.394880 +vn 0.991667 -0.047142 0.119894 +v -0.202622 -0.179863 1.422920 +vn 0.917312 -0.266522 0.295813 +v -0.202915 -0.120662 1.423450 +vn 0.900664 -0.261341 0.347139 +v -0.192671 -0.178992 1.358050 +vn 0.687310 -0.517564 0.509640 +v -0.174917 -0.130782 1.372500 +vn 0.695086 -0.506979 0.509733 +v -0.179934 -0.071249 1.433860 +vn 0.248296 -0.682082 0.687832 +v -0.142892 -0.027603 1.449930 +vn 0.249150 -0.665618 0.703475 +v -0.142901 -0.087717 1.390390 +vn 0.168322 -0.431102 -0.886464 +v 0.180693 -0.417159 1.312750 +vn 0.166458 -0.889059 -0.426457 +v 0.180545 -0.382068 1.286335 +vn -0.009244 -0.444219 -0.895870 +v 0.009886 -0.416826 1.313787 +vn 0.235546 -0.713567 0.659804 +v 0.196279 -0.381974 1.266260 +vn -0.018260 -0.867123 0.497760 +v 0.076943 -0.377615 1.266419 +vn -0.240985 -0.872250 -0.425565 +v -0.044729 -0.379287 1.286244 +vn -0.098087 -0.862461 0.496528 +v -0.047432 -0.375386 1.266745 +vn 0.037893 -0.242624 0.969380 +v 0.158939 -0.421885 1.248526 +vn 0.089730 -0.168628 0.981587 +v -0.099881 -0.415052 1.248674 +vn -0.235518 -0.419218 -0.876805 +v -0.039471 -0.419585 1.316320 +vn -0.803799 -0.232354 -0.547649 +v -0.062486 -0.440056 1.334420 +vn -0.790373 -0.612151 0.024100 +v -0.076589 -0.368335 1.308210 +vn -0.269123 -0.433037 0.860262 +v -0.127245 -0.299131 1.300280 +vn -0.459123 -0.042260 0.887367 +v -0.115405 -0.238058 1.317050 +vn -0.075898 -0.348676 0.934165 +v -0.118260 -0.358600 1.266750 +vn -0.551925 -0.510247 0.659566 +v -0.104808 -0.327667 1.277310 +vn 0.896490 -0.257277 0.360713 +v -0.197850 -0.360440 1.311140 +vn 0.762125 -0.030733 0.646700 +v -0.187755 -0.449902 1.279580 +vn 0.570077 -0.196377 0.797777 +v -0.175649 -0.380230 1.273070 +vn 0.710074 -0.301370 0.636374 +v -0.174763 -0.310525 1.314760 +vn 0.443012 -0.076528 0.893243 +v -0.160645 -0.257449 1.314000 +vn 0.365214 -0.473113 0.801738 +v -0.151824 -0.328514 1.282880 +vn 0.339341 -0.079374 0.937308 +v -0.153959 -0.424394 1.261790 +vn -0.336551 -0.147143 0.930098 +v -0.119446 -0.176857 1.310930 +vn -0.607856 -0.508733 0.609673 +v -0.105623 -0.149036 1.326640 +vn 0.519293 -0.129881 0.844669 +v -0.170157 -0.196898 1.312580 +vn 0.316029 -0.582303 0.749032 +v -0.147205 -0.148285 1.325080 +vn 0.001724 -0.999997 -0.001561 +v -0.303641 -0.632211 0.934640 +vn 0.995130 -0.097393 -0.015179 +v 0.254893 -0.292318 1.027241 +vn 0.985131 -0.171093 -0.015606 +v 0.249420 -0.333367 1.016587 +vn 0.973293 -0.228469 -0.022425 +v 0.230622 -0.416972 1.010477 +vn 0.980877 0.192740 -0.027033 +v 0.240607 0.061268 1.059246 +vn 0.999533 0.023225 0.019860 +v 0.258895 -0.120547 -0.471550 +vn 0.993027 0.117887 -0.000074 +v 0.251414 -0.012646 0.503599 +vn 0.997627 0.068856 0.000109 +v 0.256051 -0.064140 0.525769 +vn 0.995127 -0.094818 0.027058 +v 0.254880 -0.292680 -0.462673 +vn 0.985521 -0.166943 0.029638 +v 0.249294 -0.334095 -0.449425 +vn 0.999181 -0.031807 0.025003 +v 0.258902 -0.237516 -0.475968 +vn 0.592622 -0.805168 -0.022430 +v 0.142226 -0.617174 1.014109 +vn 0.988027 0.145070 -0.052518 +v 0.109085 -0.630881 1.028666 +vn 0.830493 -0.555603 -0.039840 +v 0.160617 -0.594633 1.021091 +vn 0.925189 -0.377342 -0.040486 +v 0.200080 -0.517340 1.028594 +vn 0.890764 -0.453285 -0.032740 +v 0.181566 -0.556541 1.018461 +vn 0.955275 -0.295204 -0.017461 +v 0.217578 -0.468628 1.002860 +vn 0.000933 -0.999999 -0.000497 +v -0.124445 -0.631290 0.797901 +vn 0.004259 -0.999983 0.003924 +v 0.061145 -0.631272 -0.437063 +vn 0.830058 -0.557677 0.000277 +v 0.161066 -0.593712 0.109801 +vn 0.170185 -0.985242 0.018285 +v 0.108731 -0.630992 -0.483739 +vn 0.924127 -0.382085 0.000049 +v 0.200576 -0.516289 0.092159 +vn 0.956646 -0.291252 0.000077 +v 0.217478 -0.469020 0.062698 +vn 0.892564 -0.450796 0.010607 +v 0.182285 -0.555098 -0.387812 +vn 0.598278 -0.801288 0.000460 +v 0.142055 -0.617195 0.099171 +vn 0.973900 -0.225159 0.028669 +v 0.230758 -0.416572 -0.428193 +vn -0.003075 -0.999995 -0.000327 +v -1.483099 -0.631259 0.727399 +vn 0.892295 0.312660 0.325658 +v 0.242708 0.048124 2.060287 +vn 0.806224 0.433992 0.402063 +v 0.218242 0.047284 2.106981 +vn 0.185727 0.614793 0.766508 +v -0.219335 0.010668 2.559392 +vn 0.130604 0.610673 0.781038 +v -0.255554 0.051718 2.533608 +vn 0.313053 0.600592 0.735722 +v -0.180752 0.031310 2.529646 +vn 0.113812 0.638401 0.761243 +v -0.536089 0.056635 2.567686 +vn 0.035942 0.606651 0.794155 +v -0.686694 0.021156 2.615173 +vn 0.113927 0.680280 0.724044 +v -0.580193 0.074991 2.559619 +vn 0.094793 0.819415 0.565307 +v -0.594509 0.108970 2.522190 +vn 0.105457 0.723710 0.681999 +v -0.535049 0.085633 2.540188 +vn 0.033518 0.653775 0.755946 +v -0.689503 0.075078 2.573030 +vn 0.071522 0.763598 0.641718 +v -0.659591 0.099226 2.547359 +vn -0.043064 0.753326 0.656236 +v -0.753560 0.099033 2.550916 +vn 0.430788 0.637292 0.638968 +v 0.043378 0.067760 2.359368 +vn 0.523459 0.670282 0.526035 +v 0.072691 0.082824 2.325891 +vn 0.422719 0.612035 0.668372 +v -0.030490 0.040817 2.431518 +vn 0.418519 0.654761 0.629389 +v -0.002545 0.075207 2.383302 +vn 0.348942 0.756811 0.552699 +v -0.032829 0.103901 2.369009 +vn 0.373121 0.805192 0.460920 +v 0.046912 0.112594 2.299549 +vn 0.647296 0.564421 0.512286 +v 0.095127 0.078026 2.300179 +vn 0.390537 0.768814 0.506366 +v 0.020220 0.109071 2.330319 +vn 0.361079 0.588823 0.723124 +v -0.158291 0.052481 2.503138 +vn 0.430340 0.595011 0.678800 +v -0.077371 0.033407 2.467429 +vn 0.419845 0.655347 0.627893 +v -0.112035 0.080620 2.450165 +vn 0.290644 0.761402 0.579476 +v -0.159272 0.106922 2.449293 +vn 0.399486 0.688830 0.604917 +v -0.073249 0.085790 2.415249 +vn 0.231314 0.683740 0.692093 +v -0.217643 0.081978 2.504266 +vn 0.122624 0.783967 0.608571 +v -0.249889 0.102419 2.487387 +vn 0.277950 0.723627 0.631750 +v -0.186974 0.090757 2.478189 +vn 0.193977 0.849323 0.490941 +v -0.190943 0.124217 2.434814 +vn 0.125847 0.856162 0.501148 +v -0.243193 0.121337 2.456727 +vn 0.304553 0.824870 0.476274 +v -0.091238 0.127405 2.370017 +vn 0.242666 0.888884 0.388585 +v -0.143290 0.166234 2.324235 +vn 0.291967 0.870018 0.397271 +v -0.019166 0.129661 2.315629 +vn 0.174619 0.916818 0.359101 +v -0.194513 0.174425 2.332873 +vn 0.134334 0.935916 0.325601 +v -0.213661 0.177452 2.334851 +vn 0.068121 0.965380 0.251796 +v -0.249467 0.190310 2.298482 +vn 0.703605 0.543551 0.457703 +v 0.118892 0.084625 2.263233 +vn 0.801573 0.435298 0.409874 +v 0.156253 0.049849 2.221921 +vn 0.494950 0.785524 0.371451 +v 0.097703 0.115260 2.244449 +vn 0.788681 0.438190 0.431243 +v 0.183318 0.043382 2.179147 +vn 0.660404 0.688430 0.299883 +v 0.125903 0.110645 2.216139 +vn 0.727969 0.565086 0.388250 +v 0.150539 0.092923 2.183719 +vn 0.470575 0.748055 0.467946 +v 0.079014 0.112389 2.279309 +vn 0.324309 0.892271 0.314128 +v 0.061680 0.130118 2.247791 +vn 0.464188 0.838941 0.284090 +v 0.106640 0.129593 2.190969 +vn 0.265610 0.920503 0.286575 +v -0.036634 0.167591 2.228321 +vn 0.752286 0.506713 0.421078 +v 0.179012 0.085669 2.148026 +vn 0.689104 0.654928 0.310170 +v 0.181163 0.114134 2.100983 +vn 0.729604 0.566959 0.382407 +v 0.210509 0.094601 2.064679 +vn 0.518097 0.781465 0.347690 +v 0.130192 0.131212 2.154577 +vn 0.366935 0.886287 0.282586 +v 0.102764 0.168867 2.079029 +vn 0.564577 0.772127 0.291673 +v 0.166575 0.136131 2.072979 +vn 0.271394 0.927661 0.256497 +v 0.063696 0.177064 2.094862 +vn 0.213127 0.954015 0.210790 +v 0.018410 0.188601 2.096382 +vn 0.212943 0.950510 0.226244 +v -0.004237 0.183057 2.133709 +vn 0.196034 0.955848 0.218920 +v -0.106855 0.190172 2.214797 +vn 0.226809 0.942251 0.246414 +v -0.124167 0.183067 2.253059 +vn 0.217039 0.952130 0.215275 +v -0.064154 0.182993 2.193599 +vn 0.190618 0.950234 0.246414 +v -0.161275 0.188378 2.275346 +vn 0.056194 0.979822 0.191811 +v -0.243923 0.200785 2.252979 +vn 0.109858 0.981576 0.156332 +v -0.179694 0.205818 2.186487 +vn 0.213746 0.955752 0.202114 +v -0.040367 0.188139 2.156767 +vn 0.149275 0.977215 0.150890 +v -0.106176 0.208522 2.105289 +vn 0.043830 0.989688 0.136368 +v -0.249906 0.221082 2.112990 +vn 0.062161 0.890599 0.450520 +v -0.588277 0.131805 2.479697 +vn 0.076023 0.833990 0.546517 +v -0.526802 0.114538 2.505061 +vn 0.043410 0.916781 0.397024 +v -0.650457 0.172990 2.401700 +vn 0.045721 0.932458 0.358374 +v -0.351343 0.177351 2.353808 +vn 0.033281 0.976414 0.213326 +v -0.491151 0.195659 2.307510 +vn 0.033573 0.958704 0.282417 +v -0.587438 0.188108 2.353739 +vn 0.033379 0.870688 0.490701 +v -0.675921 0.119704 2.517906 +vn -0.020577 0.912166 0.409303 +v -0.735470 0.171780 2.409001 +vn 0.013313 0.946857 0.321380 +v -0.684015 0.181953 2.383037 +vn 0.004771 0.981480 0.191504 +v -0.689160 0.200335 2.310026 +vn 0.021577 0.986931 0.159694 +v -0.459514 0.203318 2.260310 +vn 0.018188 0.989916 0.140483 +v -0.438558 0.233224 2.046637 +vn 0.002499 0.989992 0.141098 +v -0.701691 0.229494 2.104509 +vn 0.999862 -0.012045 0.011462 +v 0.254673 0.041114 1.999790 +vn 0.883859 0.355412 0.304099 +v 0.247788 0.082605 2.020957 +vn 0.735040 0.624026 0.265154 +v 0.241444 0.112960 1.986176 +vn 0.994240 -0.107056 -0.005088 +v 0.250383 0.063653 1.939020 +vn 0.986490 0.038374 -0.159262 +v 0.236559 0.014453 1.936826 +vn 0.906376 0.396970 0.144563 +v 0.250858 0.111334 1.952020 +vn 0.996189 0.077060 0.040862 +v 0.257935 0.104328 1.896960 +vn 0.998417 -0.016829 -0.053662 +v 0.246887 0.056407 1.836730 +vn 0.985144 -0.148678 -0.085944 +v 0.250688 0.110643 1.822098 +vn 0.956906 -0.274264 -0.095450 +v 0.244370 0.096652 1.815866 +vn 0.761225 0.621732 0.184353 +v 0.245315 0.131967 1.915809 +vn 0.548828 0.809008 0.210462 +v 0.204997 0.154831 1.940247 +vn 0.453835 0.873497 0.176175 +v 0.175387 0.184485 1.886950 +vn 0.526267 0.838657 0.140350 +v 0.223674 0.180503 1.770466 +vn 0.881348 0.460897 0.103921 +v 0.253266 0.151377 1.813250 +vn 0.999716 -0.021330 -0.010652 +v 0.241722 0.073316 1.777031 +vn 0.990628 0.136391 0.007264 +v 0.246963 0.035157 1.765356 +vn 0.996328 -0.084700 0.012506 +v 0.254872 0.140288 1.731279 +vn 0.599200 0.798218 0.061711 +v 0.235085 0.178954 1.727345 +vn 0.878911 0.476978 -0.002616 +v 0.255137 0.162394 1.695893 +vn 0.995341 -0.095683 -0.011863 +v 0.244853 0.083414 1.660370 +vn 0.999417 0.034085 -0.001780 +v 0.242819 0.059519 1.619976 +vn 0.957688 0.281258 -0.061060 +v 0.258314 0.149203 1.640955 +vn 0.673904 0.734771 -0.077237 +v 0.207442 0.191728 1.605612 +vn 0.826764 0.551712 -0.109886 +v 0.253199 0.135075 1.545538 +vn 0.992972 0.098534 -0.065563 +v 0.258539 0.122734 1.539194 +vn 0.984942 -0.139699 0.101845 +v 0.245155 0.089802 1.577325 +vn 0.997240 0.074245 0.000265 +v 0.255390 0.104586 1.483490 +vn 0.988100 -0.024261 0.151887 +v 0.252746 0.054042 1.476580 +vn 0.762083 0.646055 -0.042913 +v 0.207332 0.178779 1.467127 +vn 0.998578 0.040650 0.034478 +v 0.260258 0.061042 1.416860 +vn 0.968924 0.247109 -0.011066 +v 0.257841 0.102548 1.425700 +vn 0.995094 0.097097 -0.018955 +v 0.261534 0.058110 1.360980 +vn 0.932461 0.354656 -0.068817 +v 0.249737 0.106287 1.368220 +vn 0.852302 0.516441 -0.082882 +v 0.243428 0.129196 1.404120 +vn 0.821096 0.569577 -0.037196 +v 0.215556 0.160062 1.351029 +vn 0.877425 0.477317 -0.047892 +v 0.237466 0.124982 1.279130 +vn 0.994652 0.082054 -0.062725 +v 0.257619 0.052645 1.302666 +vn 0.959985 0.265528 -0.089013 +v 0.248344 0.093610 1.246675 +vn 0.986366 0.150227 -0.067190 +v 0.247477 0.055663 1.184410 +vn 0.931482 0.354299 -0.082544 +v 0.234662 0.109453 1.184080 +vn 0.967376 0.248847 -0.047518 +v 0.241307 0.081219 1.136045 +vn 0.590354 0.742616 0.316234 +v 0.201008 0.134158 2.013978 +vn 0.459109 0.845733 0.271945 +v 0.151801 0.163809 2.023178 +vn 0.316496 0.921659 0.224442 +v 0.127926 0.189091 1.977632 +vn 0.297875 0.925852 0.232528 +v 0.111191 0.182946 2.013229 +vn 0.240200 0.947215 0.212339 +v 0.079483 0.187886 2.039279 +vn 0.148339 0.975374 0.163222 +v 0.003154 0.205959 2.009800 +vn 0.158992 0.973066 0.166925 +v 0.068010 0.206170 1.943480 +vn 0.246849 0.952645 0.177577 +v 0.112447 0.220303 1.821926 +vn 0.400148 0.900867 0.168287 +v 0.163335 0.210336 1.783619 +vn 0.121846 0.980130 0.156519 +v -0.038783 0.237057 1.831277 +vn 0.137717 0.980908 0.137305 +v -0.108685 0.225939 1.980405 +vn -0.128887 -0.947103 -0.293912 +v -0.140291 0.059429 1.937500 +vn 0.492270 -0.800824 -0.341103 +v -0.170478 0.052284 1.928463 +vn 0.042608 0.989684 0.136783 +v -0.243193 0.241180 1.959467 +vn 0.099325 0.985306 0.138949 +v -0.161682 0.241836 1.917864 +vn -0.461355 -0.844756 -0.271181 +v -0.120401 0.039823 1.903420 +vn -0.460527 -0.733884 -0.499328 +v -0.116575 0.077793 1.843890 +vn -0.250868 -0.927632 -0.276702 +v -0.132435 0.115252 1.812405 +vn 0.537745 -0.721009 -0.437008 +v -0.167804 0.069156 1.851030 +vn 0.094970 0.985768 0.138714 +v -0.142853 0.267557 1.723710 +vn 0.331528 0.936366 0.115356 +v 0.139904 0.233811 1.709613 +vn 0.151841 0.978754 0.137789 +v 0.086312 0.242001 1.726120 +vn 0.411961 0.910293 0.040671 +v 0.151077 0.234508 1.643239 +vn 0.589179 0.807905 -0.012576 +v 0.179884 0.215752 1.625602 +vn 0.203567 0.977491 0.055432 +v 0.111836 0.245548 1.640207 +vn 0.128221 0.988166 0.084183 +v 0.042594 0.253972 1.667351 +vn 0.130370 0.990728 0.038229 +v 0.031758 0.259129 1.594296 +vn -0.843399 -0.525456 -0.112135 +v -0.083671 0.068499 1.784160 +vn -0.439063 -0.898274 -0.018115 +v -0.124197 0.108990 1.784140 +vn -0.851844 -0.523709 -0.009530 +v -0.083703 0.069074 1.705612 +vn -0.390750 -0.920493 -0.002789 +v -0.129906 0.106022 1.721860 +vn 0.936403 -0.322291 -0.138848 +v -0.198256 0.062444 1.782700 +vn 0.567414 -0.781154 -0.260461 +v -0.170626 0.105033 1.802550 +vn 0.969762 -0.243423 0.017533 +v -0.203281 0.058608 1.722070 +vn 0.442481 -0.896563 -0.019630 +v -0.170097 0.111951 1.745590 +vn -0.369880 -0.929071 -0.003895 +v -0.124580 0.108602 1.662630 +vn -0.892422 -0.376728 0.248311 +v -0.083905 0.059263 1.603200 +vn -0.352166 -0.913901 0.201901 +v -0.119421 0.105475 1.601270 +vn 0.956494 -0.285359 0.060746 +v -0.197846 0.061292 1.661590 +vn 0.454821 -0.889979 0.032782 +v -0.169970 0.111355 1.681850 +vn 0.890792 -0.363758 0.272341 +v -0.192820 0.061460 1.602370 +vn 0.517312 -0.828502 0.214412 +v -0.170342 0.105251 1.621050 +vn 0.039145 0.993115 0.110412 +v -0.243658 0.280774 1.679017 +vn 0.084810 0.990845 0.105040 +v -0.158728 0.277483 1.659016 +vn 0.094562 0.994146 0.052257 +v -0.154059 0.282769 1.592196 +vn 0.039115 0.997621 0.056764 +v -0.237617 0.288934 1.576832 +vn 0.014257 0.991466 0.129586 +v -0.631936 0.274482 1.789868 +vn 0.018566 0.993396 0.113227 +v -0.498439 0.279079 1.728197 +vn -0.002280 0.989488 0.144598 +v -0.730891 0.252114 1.949344 +vn -0.010934 0.991200 0.131921 +v -0.764378 0.275442 1.784326 +vn 0.010740 0.997662 0.067484 +v -0.587850 0.288942 1.634533 +vn 0.010707 0.998131 0.060162 +v -0.422877 0.288982 1.600988 +vn 0.000293 0.994323 0.106399 +v -0.721564 0.282346 1.731962 +vn 0.000688 0.997662 0.068331 +v -0.720003 0.288568 1.661150 +vn 0.682665 0.730310 -0.024825 +v 0.174835 0.218445 1.535671 +vn 0.711946 0.700380 -0.050990 +v 0.195293 0.193935 1.518406 +vn 0.770892 0.636943 -0.005349 +v 0.165283 0.228115 1.340800 +vn 0.181008 0.982235 0.049505 +v 0.106086 0.253586 1.465338 +vn 0.433744 0.900268 0.037191 +v 0.145561 0.241464 1.494662 +vn 0.201274 0.977520 0.062794 +v 0.109920 0.259058 1.376487 +vn 0.554617 0.831409 0.034043 +v 0.144244 0.251266 1.307052 +vn -0.208965 -0.699782 0.683110 +v -0.127561 0.061747 1.540420 +vn -0.618539 -0.610937 0.494131 +v -0.105709 0.088577 1.574070 +vn -0.636396 -0.541970 0.548879 +v -0.099984 0.024785 1.515740 +vn 0.683270 -0.536033 0.495793 +v -0.174938 0.046688 1.554480 +vn 0.302241 -0.767882 0.564807 +v -0.147434 0.091005 1.572880 +vn 0.240194 -0.724133 0.646481 +v -0.143273 0.030443 1.510330 +vn 0.089689 0.995505 0.030435 +v -0.219659 0.294855 1.338553 +vn 0.106165 0.992529 0.060123 +v -0.207903 0.296393 1.227780 +vn 0.866323 0.497491 -0.044575 +v 0.211949 0.156573 1.199173 +vn 0.803679 0.595034 0.005816 +v 0.164222 0.231129 1.156361 +vn 0.885329 0.464745 -0.014345 +v 0.205403 0.164711 1.123950 +vn 0.325443 0.943424 0.063548 +v 0.105735 0.276576 1.143606 +vn 0.111885 0.987800 0.108321 +v 0.057847 0.285435 1.138036 +vn 0.627418 0.776229 0.061761 +v 0.139902 0.261717 1.062088 +vn 0.095803 0.987457 0.125501 +v -0.170896 0.296767 1.170413 +vn 0.084728 0.980984 0.174617 +v -0.038663 0.296534 1.096261 +vn 0.116755 0.970984 0.208708 +v -0.215954 0.306248 1.141208 +vn 0.111912 0.986403 0.120350 +v -0.256074 0.306915 1.178526 +vn 0.125515 0.960060 0.250063 +v -0.178836 0.308611 1.116470 +vn 0.006940 0.999045 0.043129 +v -0.480011 0.298710 1.405965 +vn 0.027494 0.998467 0.048040 +v -0.315649 0.300466 1.333534 +vn 0.001350 0.999063 0.043260 +v -0.665089 0.297676 1.452357 +vn -0.000243 0.994714 0.102682 +v -0.705831 0.306454 1.246675 +vn -0.002744 0.998894 0.046937 +v -0.830099 0.303101 1.305810 +vn 0.054395 0.995785 0.073850 +v -0.304072 0.305725 1.239409 +vn 0.030856 0.984334 0.173594 +v -0.367559 0.315342 1.173068 +vn 0.067698 0.961132 0.267661 +v -0.336728 0.327188 1.114875 +vn 0.021177 0.951889 0.305709 +v -0.562552 0.331662 1.120979 +vn 0.000892 0.978522 0.206139 +v -0.701307 0.316803 1.183427 +vn -0.014256 0.944595 0.327927 +v -0.758893 0.333279 1.121658 +vn 0.978255 0.207403 0.000925 +v 0.240501 0.061583 0.521164 +vn 0.976093 0.217351 0.001252 +v 0.239434 0.068145 0.439506 +vn 0.968635 0.248487 0.000645 +v 0.238321 0.074875 0.105337 +vn 0.945361 0.325444 -0.019435 +v 0.226241 0.112277 1.044746 +vn 0.904783 0.425825 -0.006447 +v 0.207378 0.159110 1.042723 +vn 0.835975 0.548181 0.025347 +v 0.169123 0.229099 0.990822 +vn 0.864728 0.501770 0.021711 +v 0.157207 0.254840 0.859384 +vn 0.399082 0.909198 0.118715 +v 0.105398 0.282691 1.062794 +vn 0.483956 0.854549 0.188504 +v 0.103128 0.295176 0.998754 +vn 0.720236 0.688987 0.080982 +v 0.139732 0.266651 0.988638 +vn 0.160245 0.968234 0.191951 +v 0.056789 0.296854 1.052810 +vn 0.206759 0.921951 0.327501 +v 0.055042 0.312837 0.991362 +vn 0.803181 0.591778 0.068547 +v 0.138134 0.281866 0.885692 +vn 0.257905 0.890084 0.375812 +v 0.045658 0.347112 0.919890 +vn 0.511755 0.826986 0.232813 +v 0.080814 0.335612 0.911854 +vn 0.690850 0.705957 0.156051 +v 0.104393 0.324646 0.871882 +vn 0.201085 0.890870 0.407327 +v -0.018851 0.406999 0.816766 +vn 0.382227 0.860972 0.335604 +v 0.046958 0.366094 0.870284 +vn 0.135488 0.948122 0.287590 +v -0.094632 0.310923 1.060255 +vn 0.158493 0.904704 0.395462 +v -0.098488 0.340411 0.988488 +vn 0.134250 0.924463 0.356855 +v -0.227498 0.339513 1.044533 +vn 0.124339 0.894683 0.429048 +v -0.272793 0.355734 1.023872 +vn 0.131259 0.895350 0.425581 +v -0.288910 0.424526 0.883258 +vn 0.944881 0.327409 0.001922 +v 0.226523 0.111515 0.478631 +vn 0.815867 0.572693 0.079895 +v 0.082386 0.393633 0.650764 +vn 0.548311 0.788763 0.277863 +v 0.066965 0.367182 0.842770 +vn 0.401688 0.850731 0.338975 +v 0.034123 0.397447 0.802795 +vn 0.625229 0.757007 0.189812 +v 0.072597 0.370849 0.805906 +vn 0.386783 0.855456 0.344375 +v 0.020328 0.419416 0.768707 +vn -0.386699 0.694692 0.606520 +v 0.096922 0.370022 0.620447 +vn 0.699901 0.692705 0.174064 +v 0.051341 0.434506 0.628991 +vn 0.328049 0.883224 0.335111 +v -0.026269 0.486609 0.641097 +vn 0.550804 0.799048 0.241115 +v 0.012081 0.465372 0.643266 +vn 0.180544 0.894594 0.408785 +v -0.089608 0.470525 0.708891 +vn 0.119103 0.895224 0.429405 +v -0.318053 0.481036 0.775097 +vn 0.121405 0.896428 0.426237 +v -0.329588 0.539587 0.654536 +vn 0.061538 0.922935 0.380006 +v -0.359824 0.345798 1.064583 +vn 0.059834 0.898322 0.435244 +v -0.386515 0.480812 0.787957 +vn 0.010840 0.910982 0.412303 +v -0.675451 0.353471 1.073959 +vn 0.024562 0.901350 0.432395 +v -0.541195 0.492830 0.775858 +vn 0.002678 0.903001 0.429629 +v -0.697882 0.438940 0.895018 +vn 0.002626 0.903780 0.427989 +v -0.689985 0.559228 0.639994 +vn 0.010306 0.903039 0.429435 +v -0.544932 0.601771 0.547362 +vn 0.643080 0.739257 0.199867 +v 0.025519 0.474154 0.573260 +vn 0.803804 0.587873 0.091135 +v 0.059167 0.440424 0.568497 +vn 0.860117 0.509325 0.028034 +v 0.029247 0.499492 0.418394 +vn 0.940470 0.339876 0.001020 +v 0.226109 0.112229 0.142634 +vn 0.907236 0.420576 -0.006132 +v 0.207231 0.159356 -0.345115 +vn 0.472905 0.830755 0.293611 +v -0.017017 0.505017 0.569273 +vn 0.584507 0.774593 0.241571 +v -0.033464 0.579548 0.380822 +vn 0.755666 0.641792 0.130656 +v 0.004804 0.537384 0.403883 +vn 0.287479 0.881670 0.374183 +v -0.068325 0.519644 0.587593 +vn 0.352220 0.828074 0.436159 +v -0.045477 0.535484 0.538419 +vn 0.242454 0.884443 0.398719 +v -0.067900 0.543754 0.534095 +vn 0.167717 0.894339 0.414764 +v -0.290021 0.599938 0.512175 +vn 0.161283 0.901895 0.400716 +v -0.319450 0.647378 0.422092 +vn 0.399803 0.861387 0.313321 +v -0.078899 0.594023 0.416031 +vn 0.511495 0.818689 0.261000 +v -0.041056 0.568979 0.432487 +vn 0.266377 0.889171 0.372046 +v -0.104513 0.604070 0.415656 +vn 0.188156 0.907697 0.375077 +v -0.186199 0.665410 0.318169 +vn 0.156648 0.920833 0.357111 +v -0.269200 0.666311 0.355242 +vn 0.826685 0.561403 0.037665 +v -0.035622 0.622959 0.208954 +vn 0.686258 0.712246 0.147498 +v -0.052597 0.641039 0.230689 +vn 0.398275 0.858364 0.323400 +v -0.100494 0.654473 0.287145 +vn 0.249189 0.912789 0.323607 +v -0.139661 0.676639 0.265994 +vn 0.487555 0.848196 0.207012 +v -0.089350 0.671035 0.223347 +vn 0.140713 0.940303 0.309888 +v -0.204290 0.686617 0.271126 +vn 0.284400 0.933221 0.219582 +v -0.131735 0.690966 0.214121 +vn 0.734132 0.678518 0.025756 +v -0.061753 0.658961 0.142490 +vn 0.318087 0.945786 0.065645 +v -0.129395 0.702652 0.133298 +vn 0.538415 0.840322 0.062986 +v -0.089294 0.683640 0.142271 +vn 0.111855 0.967600 0.226359 +v -0.204615 0.703917 0.214452 +vn 0.129089 0.984617 0.117755 +v -0.185126 0.712044 0.157421 +vn 0.120964 0.897081 0.424986 +v -0.339985 0.600885 0.528420 +vn 0.036114 0.913040 0.406269 +v -0.425618 0.658396 0.425280 +vn 0.096372 0.917283 0.386398 +v -0.380522 0.660517 0.414645 +vn 0.051065 0.948568 0.312427 +v -0.439934 0.687311 0.353941 +vn 0.001219 0.912112 0.409939 +v -0.711488 0.660572 0.426982 +vn -0.001134 0.929797 0.368071 +v -0.737358 0.678767 0.384159 +vn 0.107123 0.949082 0.296257 +v -0.340080 0.686522 0.325970 +vn 0.099965 0.961529 0.255868 +v -0.320178 0.698076 0.279649 +vn 0.056542 0.976194 0.209400 +v -0.470661 0.714676 0.255320 +vn 0.079818 0.982263 0.169669 +v -0.334351 0.711529 0.224903 +vn 0.070329 0.995885 0.057149 +v -0.362869 0.719837 0.164229 +vn 0.072173 0.993809 0.084470 +v -0.392051 0.721915 0.184994 +vn 0.048362 0.988252 0.144982 +v -0.478010 0.721079 0.218479 +vn 0.015200 0.942788 0.333047 +v -0.566834 0.697959 0.330698 +vn -0.021360 0.947914 0.317810 +v -0.834674 0.699629 0.326512 +vn 0.013070 0.970574 0.240449 +v -0.664450 0.724914 0.252928 +vn 0.030475 0.991224 0.128630 +v -0.653129 0.731080 0.215067 +vn 0.033042 0.998630 0.040576 +v -0.654702 0.735663 0.162404 +vn -0.028800 0.989957 0.138401 +v -0.781563 0.731214 0.213359 +vn 0.000943 0.999027 0.044094 +v -0.712662 0.736623 0.160927 +vn -0.084956 -0.601654 0.794226 +v -0.868325 -0.627181 2.878371 +vn -0.042446 0.630351 0.775149 +v -0.776037 -0.588309 2.868741 +vn -0.067347 0.508440 0.858460 +v -0.887206 -0.602660 2.869954 +vn -0.068549 0.410210 0.909411 +v -0.952557 -0.611745 2.871675 +vn -0.053433 0.738451 0.672186 +v -0.949421 -0.543621 2.809345 +vn -0.059834 0.894888 0.442260 +v -0.892712 -0.513663 2.774269 +vn -0.040867 0.760041 0.648589 +v -0.982950 -0.536034 2.799424 +vn -0.042941 0.861284 0.506306 +v -0.949574 -0.525355 2.784369 +vn -0.223374 -0.391798 0.892523 +v -1.045421 -0.623195 2.867341 +vn -0.169918 -0.770417 0.614479 +v -1.081660 -0.623859 2.843049 +vn -0.270133 0.333208 0.903327 +v -1.066520 -0.607067 2.853079 +vn -0.153096 -0.628187 0.762852 +v -1.274841 -0.625951 2.821166 +vn -0.117833 0.224027 0.967433 +v -1.145437 -0.605457 2.838360 +vn -0.027015 -0.996754 0.075840 +v -1.305961 -0.629965 2.785208 +vn -0.159002 0.182796 0.970208 +v -1.248627 -0.608073 2.827530 +vn -0.057583 0.648897 0.758694 +v -1.134001 -0.560491 2.808228 +vn 0.047631 0.603319 0.796076 +v -1.195209 -0.531990 2.784253 +vn -0.018036 0.971054 0.238177 +v -0.969927 -0.501659 2.726496 +vn -0.023381 0.890061 0.455240 +v -1.015891 -0.517768 2.770957 +vn 0.215256 0.943212 0.253013 +v -1.132713 -0.504770 2.725890 +vn 0.181673 0.949907 0.254306 +v -1.134284 -0.490116 2.620036 +vn 0.069605 0.815670 0.574315 +v -1.132580 -0.520703 2.765219 +vn 0.567120 0.646505 0.510299 +v -1.207870 -0.467728 2.728209 +vn 0.635364 0.753357 0.169606 +v -1.187710 -0.469637 2.677019 +vn 0.668398 0.721598 0.180391 +v -1.179480 -0.466241 2.614079 +vn 0.084355 0.679712 0.728612 +v -1.133780 -0.463755 2.571059 +vn 0.394507 0.739580 0.545330 +v -1.162830 -0.470832 2.583129 +vn -0.056339 -0.773610 0.631152 +v -0.932655 -0.297220 2.803693 +vn -0.085344 0.278984 0.956496 +v -0.914527 -0.249723 2.802829 +vn -0.125291 -0.276072 0.952935 +v -0.971464 -0.284329 2.805979 +vn -0.054015 0.495067 0.867174 +v -0.770771 -0.148649 2.779213 +vn -0.100669 0.368046 0.924342 +v -0.911544 -0.198673 2.783658 +vn -0.221709 -0.356078 0.907774 +v -1.046045 -0.282277 2.800089 +vn -0.069343 -0.920919 0.383535 +v -0.999228 -0.299586 2.783176 +vn -0.207614 -0.508941 0.835389 +v -1.080990 -0.284244 2.782419 +vn -0.165253 0.205408 0.964624 +v -1.075216 -0.248590 2.784803 +vn 0.063337 -0.976323 0.206840 +v -1.078445 -0.313523 2.676586 +vn 0.041704 -0.901896 0.429934 +v -1.077636 -0.332427 2.607855 +vn -0.104350 0.468249 0.877413 +v -0.883430 -0.146687 2.766253 +vn -0.101045 0.685805 0.720737 +v -0.915305 -0.118432 2.743242 +vn -0.094283 0.539968 0.836388 +v -0.949322 -0.138843 2.752529 +vn -0.055449 0.770469 0.635061 +v -0.950070 -0.104131 2.721382 +vn -0.079615 0.785518 0.613696 +v -0.980964 -0.069605 2.669214 +vn -0.073545 0.642187 0.763012 +v -0.772795 -0.007783 2.633775 +vn -0.089066 0.685010 0.723069 +v -0.863862 -0.035957 2.645757 +vn -0.072628 -0.948959 0.306924 +v -1.053478 -0.301484 2.759345 +vn -0.007450 -0.275265 0.961339 +v -1.153030 -0.281634 2.771759 +vn 0.037820 -0.872917 0.486400 +v -1.113930 -0.300564 2.757989 +vn -0.025886 -0.098989 0.994752 +v -1.208510 -0.290569 2.772879 +vn -0.121059 0.173107 0.977435 +v -1.189190 -0.247313 2.772819 +vn 0.249597 -0.650549 0.717277 +v -1.183065 -0.315015 2.761495 +vn 0.316495 -0.927135 0.200630 +v -1.144950 -0.325783 2.674659 +vn 0.642091 -0.592651 0.486296 +v -1.217240 -0.349728 2.735019 +vn 0.745879 -0.608880 0.270055 +v -1.203650 -0.356917 2.693739 +vn 0.285718 -0.877384 0.385438 +v -1.142240 -0.337063 2.612259 +vn 0.756118 -0.603038 0.254225 +v -1.197900 -0.360033 2.636059 +vn 0.143819 -0.608576 0.780353 +v -1.117820 -0.366085 2.564519 +vn 0.576007 -0.434056 0.692684 +v -1.174800 -0.380659 2.573299 +vn -0.082004 0.443297 0.892616 +v -1.015513 -0.151376 2.754789 +vn -0.086840 0.640650 0.762906 +v -1.106806 -0.123526 2.729740 +vn -0.090613 0.795866 0.598654 +v -1.128328 -0.071750 2.652718 +vn -0.129921 0.390348 0.911454 +v -1.198148 -0.163995 2.740578 +vn -0.236715 0.484557 0.842122 +v -1.230730 -0.148324 2.728630 +vn -0.121588 0.769031 0.627540 +v -1.178356 -0.108516 2.702722 +vn -0.173085 0.828121 0.533158 +v -1.232428 -0.090175 2.659086 +vn -0.087376 0.732386 0.675260 +v -1.063118 -0.045509 2.629047 +vn -0.106528 0.679953 0.725476 +v -1.127267 -0.025617 2.600845 +vn -0.196064 0.758971 0.620904 +v -1.227229 -0.063071 2.621735 +vn -0.168495 0.659522 0.732557 +v -1.203428 -0.022376 2.585730 +vn -0.409069 -0.395896 0.822148 +v -1.329374 -0.625064 2.812187 +vn -0.177696 0.497354 0.849154 +v -1.278246 -0.595399 2.815545 +vn -0.154240 0.426732 0.891128 +v -1.247560 -0.534605 2.783169 +vn -0.502595 0.444978 0.741210 +v -1.346256 -0.611335 2.792145 +vn -0.385752 0.446192 0.807532 +v -1.303010 -0.554455 2.774779 +vn -0.409865 -0.634190 0.655602 +v -1.371230 -0.625818 2.777139 +vn 0.169097 0.378821 0.909890 +v -1.247255 -0.477542 2.760828 +vn -0.547397 0.287878 0.785801 +v -1.334361 -0.520396 2.736277 +vn -0.518038 0.143021 0.843316 +v -1.333349 -0.480751 2.728008 +vn -0.334236 0.217072 0.917151 +v -1.288680 -0.481658 2.756329 +vn -0.481032 -0.379728 0.790199 +v -1.450660 -0.626199 2.739047 +vn -0.432783 0.545872 0.717442 +v -1.442576 -0.612852 2.732622 +vn -0.049112 -0.996663 0.065200 +v -1.442285 -0.630038 2.712709 +vn -0.447826 0.525613 0.723313 +v -1.362121 -0.580620 2.756298 +vn -0.487523 0.432530 0.758445 +v -1.414610 -0.557990 2.710409 +vn -0.610554 0.256028 0.749449 +v -1.445020 -0.518020 2.666219 +vn -0.585233 0.123792 0.801360 +v -1.433170 -0.479772 2.668679 +vn -0.495349 0.187226 0.848278 +v -1.397010 -0.483010 2.693209 +vn -0.508561 -0.442367 0.738699 +v -1.513623 -0.624163 2.693306 +vn -0.482312 -0.706709 0.517626 +v -1.548060 -0.625329 2.661289 +vn -0.617216 0.344022 0.707596 +v -1.565194 -0.602566 2.648235 +vn -0.469057 0.426959 0.773105 +v -1.478403 -0.544938 2.655650 +vn -0.460860 0.499902 0.733284 +v -1.527540 -0.568298 2.643359 +vn -0.104447 -0.993473 0.045840 +v -1.553177 -0.629916 2.592421 +vn -0.552688 0.161131 0.817663 +v -1.478800 -0.486915 2.635049 +vn -0.738291 0.376661 0.559512 +v -1.572258 -0.554135 2.600665 +vn -0.533299 0.227698 0.814706 +v -1.526430 -0.487989 2.607599 +vn -0.509392 0.009946 0.860477 +v -1.500816 -0.445474 2.613430 +vn -0.745880 -0.446193 0.494545 +v -1.580500 -0.620112 2.638330 +vn -0.928781 0.134227 0.345468 +v -1.592510 -0.599112 2.603829 +vn -0.621908 -0.732758 0.276217 +v -1.598890 -0.623564 2.551199 +vn -0.953116 0.102719 0.284638 +v -1.605160 -0.599712 2.547689 +vn -0.935371 0.225560 0.272404 +v -1.590160 -0.546256 2.552099 +vn -0.935767 0.109489 0.335190 +v -1.582478 -0.476762 2.537282 +vn -0.754816 0.195192 0.626221 +v -1.562330 -0.482378 2.578499 +vn 0.536067 -0.232972 0.811392 +v -1.251630 -0.382862 2.752879 +vn 0.002039 -0.066872 0.997759 +v -1.267280 -0.399944 2.755159 +vn -0.193064 -0.024770 0.980873 +v -1.254141 -0.311221 2.768839 +vn 0.228261 -0.407699 0.884126 +v -1.228770 -0.330153 2.762819 +vn 0.880850 -0.049763 0.470772 +v -1.235420 -0.404559 2.719449 +vn 0.694088 0.241262 0.678258 +v -1.248320 -0.441523 2.747039 +vn -0.381728 -0.003096 0.924269 +v -1.292803 -0.413694 2.748076 +vn -0.398054 -0.045670 0.916224 +v -1.289175 -0.358119 2.753591 +vn 0.956483 0.173164 0.234849 +v -1.220150 -0.422215 2.675849 +vn -0.254654 0.242580 0.936112 +v -1.239326 -0.246388 2.761646 +vn -0.454140 0.102447 0.885020 +v -1.287575 -0.304165 2.752991 +vn -0.467824 0.247351 0.848503 +v -1.472732 -0.250644 2.636709 +vn -0.315514 0.357758 0.878897 +v -1.268567 -0.233299 2.748516 +vn -0.520611 -0.013292 0.853690 +v -1.407377 -0.413045 2.680441 +vn -0.510299 -0.037100 0.859196 +v -1.429861 -0.357064 2.672609 +vn -0.496240 0.064810 0.865763 +v -1.470696 -0.305741 2.648140 +vn 0.935183 0.126256 0.330896 +v -1.208640 -0.421910 2.612949 +vn 0.683272 0.307001 0.662487 +v -1.183370 -0.440399 2.575879 +vn -0.427504 0.347099 0.834723 +v -1.297535 -0.188897 2.715184 +vn -0.411378 0.524357 0.745532 +v -1.305655 -0.133906 2.685218 +vn -0.291313 0.675567 0.677308 +v -1.267788 -0.120355 2.695823 +vn -0.297380 0.773802 0.559282 +v -1.301586 -0.110425 2.661908 +vn -0.475246 0.332471 0.814619 +v -1.425431 -0.181081 2.638756 +vn -0.450997 0.438465 0.777399 +v -1.394450 -0.144852 2.641014 +vn -0.297013 0.759495 0.578750 +v -1.296055 -0.068066 2.597077 +vn -0.277085 0.645928 0.711337 +v -1.240140 -0.022414 2.573939 +vn -0.361132 0.633997 0.683836 +v -1.287246 -0.022544 2.552509 +vn -0.351886 0.714676 0.604495 +v -1.375938 -0.118129 2.632414 +vn -0.385433 0.673762 0.630465 +v -1.437023 -0.119425 2.598431 +vn -0.351318 0.765938 0.538438 +v -1.450432 -0.070625 2.511643 +vn -0.569307 -0.083046 0.817919 +v -1.480970 -0.414153 2.633119 +vn -0.675125 -0.110617 0.729363 +v -1.537788 -0.350811 2.606757 +vn -0.595331 -0.079246 0.799563 +v -1.521280 -0.414094 2.606199 +vn -0.672784 0.053548 0.737899 +v -1.540640 -0.299868 2.605379 +vn -0.513052 0.155870 0.844086 +v -1.507883 -0.275466 2.625727 +vn -0.552159 0.321530 0.769246 +v -1.526139 -0.178744 2.579648 +vn -0.928236 0.011652 0.371809 +v -1.579702 -0.404839 2.533219 +vn -0.784212 0.006489 0.620458 +v -1.558180 -0.414537 2.572239 +vn -0.844771 -0.030716 0.534245 +v -1.560449 -0.333424 2.581338 +vn -0.933373 0.029773 0.357670 +v -1.575343 -0.302293 2.545992 +vn -0.928172 0.088108 0.361571 +v -1.573190 -0.243413 2.544029 +vn -0.763927 0.194529 0.615284 +v -1.556908 -0.233413 2.576909 +vn -0.444223 0.507839 0.738082 +v -1.476180 -0.140088 2.589199 +vn -0.775882 0.275685 0.567454 +v -1.559506 -0.149944 2.540660 +vn -0.494442 0.460579 0.737153 +v -1.530330 -0.140710 2.559249 +vn -0.355869 0.735663 0.576330 +v -1.519292 -0.114488 2.544236 +vn -0.318083 0.779899 0.539054 +v -1.481940 -0.105548 2.549839 +vn -0.836804 0.196314 0.511096 +v -1.562940 -0.188482 2.545669 +vn 0.044916 0.146346 0.988213 +v -1.074390 -0.421499 2.541853 +vn 0.239236 0.086007 0.967145 +v -1.137510 -0.420325 2.546879 +vn -0.137543 -0.989994 0.031527 +v -1.599190 -0.629247 2.498079 +vn -0.810655 -0.506020 0.294589 +v -1.618150 -0.623426 2.526461 +vn -0.934385 0.275446 0.225952 +v -1.615432 -0.588004 2.484049 +vn -0.736952 -0.664917 0.121604 +v -1.636133 -0.622854 2.403881 +vn -0.973741 0.065609 0.217999 +v -1.635947 -0.599515 2.413715 +vn -0.951466 0.200431 0.233536 +v -1.603520 -0.547179 2.488829 +vn -0.952692 0.099853 0.287068 +v -1.608112 -0.499152 2.440207 +vn -0.941019 0.186271 0.282465 +v -1.621637 -0.550083 2.430803 +vn -0.621578 -0.758602 0.195357 +v -1.657131 -0.620041 2.262406 +vn -0.970822 -0.120592 0.207273 +v -1.662336 -0.588917 2.297235 +vn -0.945476 0.021600 0.324975 +v -1.652823 -0.476838 2.300565 +vn -0.958792 0.049898 0.279692 +v -1.662440 -0.523208 2.276209 +vn -0.182259 -0.982257 -0.044198 +v -1.658269 -0.629052 2.208101 +vn -0.376818 -0.862736 -0.337187 +v -1.246930 -0.617545 2.146079 +vn -0.566437 -0.332242 -0.754165 +v -1.264990 -0.574774 2.132059 +vn -0.180437 -0.522503 -0.833326 +v -1.311350 -0.590529 2.159869 +vn -0.092197 -0.794490 -0.600238 +v -1.314818 -0.619334 2.175400 +vn -0.614392 -0.784918 -0.080159 +v -1.221682 -0.618239 2.072101 +vn -0.940470 -0.220325 -0.258790 +v -1.238050 -0.588532 2.084419 +vn -0.489324 0.008369 -0.872062 +v -1.260475 -0.519316 2.128667 +vn 0.315398 -0.411292 -0.855198 +v -1.321920 -0.537037 2.121569 +vn 0.345054 -0.017005 -0.938428 +v -1.303880 -0.479702 2.127909 +vn -0.968252 0.019627 -0.249205 +v -1.234810 -0.545640 2.080105 +vn -0.967935 -0.012784 -0.250876 +v -1.234609 -0.361287 2.080186 +vn -0.070850 -0.509564 -0.857510 +v -1.375070 -0.590562 2.163749 +vn -0.044328 -0.315783 -0.947795 +v -1.434890 -0.589792 2.163369 +vn -0.131183 -0.851071 -0.508398 +v -1.375150 -0.557342 2.130239 +vn -0.420415 -0.661608 -0.620907 +v -1.435550 -0.532787 2.143109 +vn 0.856954 -0.026505 -0.514710 +v -1.346997 -0.477967 2.088573 +vn 0.934603 -0.258450 -0.244377 +v -1.358300 -0.523527 2.064219 +vn 0.251367 -0.963381 -0.093333 +v -1.371910 -0.547751 2.087589 +vn -0.363732 -0.880315 0.304540 +v -1.427970 -0.531694 2.087079 +vn -0.386225 -0.880053 -0.276294 +v -1.462373 -0.498923 2.126128 +vn 0.080654 -0.251009 -0.964619 +v -1.494040 -0.590018 2.163429 +vn 0.023351 -0.491633 -0.870489 +v -1.553970 -0.590703 2.163809 +vn -0.631935 -0.585658 -0.507604 +v -1.685155 -0.619404 2.176059 +vn 0.117324 -0.235296 -0.964816 +v -1.493980 -0.541477 2.165779 +vn 0.022651 -0.861086 -0.507954 +v -1.494180 -0.501986 2.139729 +vn 0.477891 -0.733754 -0.482933 +v -1.553500 -0.538164 2.128859 +vn 0.467280 -0.619515 -0.630753 +v -1.522930 -0.512250 2.146169 +vn -0.065777 -0.505257 -0.860458 +v -1.614330 -0.590476 2.163699 +vn -0.194616 -0.280433 -0.939937 +v -1.661260 -0.590027 2.164079 +vn -0.173225 -0.862938 -0.474691 +v -1.612550 -0.557298 2.129839 +vn -0.760930 -0.419021 -0.495386 +v -1.662730 -0.531444 2.142989 +vn 0.469757 -0.875932 0.109868 +v -1.523170 -0.507246 2.118119 +vn 0.308350 -0.854573 0.417881 +v -1.543310 -0.538079 2.073779 +vn 0.064161 -0.990420 0.122275 +v -1.592070 -0.549006 2.087549 +vn -0.756985 -0.615297 0.219963 +v -1.654590 -0.531675 2.070699 +vn -0.984829 -0.164195 -0.056137 +v -1.674826 -0.471141 2.103826 +vn -0.976654 -0.089434 -0.195316 +v -1.680610 -0.459128 2.139519 +vn -0.411354 0.646062 0.642956 +v -1.418208 -0.021138 2.473177 +vn -0.439910 0.576473 0.688591 +v -1.364200 0.032126 2.461042 +vn -0.958081 -0.002356 0.286488 +v -1.598651 -0.425070 2.469981 +vn -0.949240 0.090765 0.301172 +v -1.603450 -0.219574 2.439590 +vn -0.953075 0.005559 0.302683 +v -1.655612 -0.361124 2.295049 +vn -0.984722 0.030191 0.171495 +v -1.686392 -0.301162 2.194629 +vn -0.984445 0.036655 0.171827 +v -1.685241 -0.239737 2.189492 +vn -0.474908 0.756680 0.449330 +v -1.530980 -0.082247 2.469749 +vn -0.334703 0.736546 0.587771 +v -1.474880 -0.042566 2.456689 +vn -0.659864 0.639061 0.395196 +v -1.554010 -0.062817 2.408489 +vn -0.530636 0.635783 0.560539 +v -1.510595 -0.030050 2.422323 +vn -0.910077 0.277009 0.308264 +v -1.581493 -0.140281 2.479614 +vn -0.893516 0.288141 0.344389 +v -1.604960 -0.130344 2.394714 +vn -0.647534 0.598610 0.471557 +v -1.555882 -0.119875 2.524267 +vn -0.731922 0.594465 0.333019 +v -1.571450 -0.102160 2.449999 +vn -0.700231 0.564418 0.437160 +v -1.563434 -0.043208 2.355605 +vn -0.727544 0.500764 0.468952 +v -1.542970 -0.014955 2.358899 +vn -0.931834 0.185614 0.311820 +v -1.628133 -0.128326 2.333701 +vn -0.923506 0.179794 0.338838 +v -1.665044 -0.118466 2.219496 +vn -0.736930 0.553587 0.387912 +v -1.587850 -0.078588 2.368499 +vn -0.776977 0.449010 0.441245 +v -1.605421 -0.020199 2.251992 +vn -0.759740 0.480323 0.438275 +v -1.571830 -0.015220 2.313979 +vn -0.815056 0.382667 0.435027 +v -1.557096 0.036342 2.288765 +vn -0.845010 0.373864 0.382340 +v -1.616141 -0.106140 2.353954 +vn -0.483854 -0.010965 -0.875080 +v -1.262330 -0.356074 2.129763 +vn 0.387768 0.016331 -0.921612 +v -1.303584 -0.358062 2.127100 +vn -0.592275 -0.278317 -0.756141 +v -1.264160 -0.279903 2.126489 +vn 0.448479 0.006690 -0.893768 +v -1.307880 -0.299645 2.128479 +vn 0.197948 -0.279978 -0.939377 +v -1.298683 -0.270346 2.137849 +vn -0.929464 -0.170956 -0.326912 +v -1.238660 -0.299552 2.083669 +vn -0.528469 -0.459321 -0.713964 +v -1.273270 -0.232527 2.083819 +vn 0.850122 -0.096829 -0.517606 +v -1.347110 -0.299567 2.087839 +vn 0.514001 -0.447321 -0.731920 +v -1.322080 -0.239839 2.092549 +vn -0.428135 -0.064360 -0.901420 +v -1.269620 -0.158379 2.065699 +vn 0.349947 -0.240798 -0.905292 +v -1.312710 -0.178703 2.065959 +vn -0.513303 -0.234605 -0.825518 +v -1.264288 -0.094964 2.070307 +vn 0.458175 -0.061034 -0.886764 +v -1.313170 -0.118630 2.060289 +vn 0.106970 -0.308050 -0.945337 +v -1.292410 -0.086580 2.076919 +vn -0.088510 -0.948267 0.304885 +v -1.475110 -0.497495 2.105219 +vn -0.998499 0.003260 -0.054682 +v -1.688526 -0.333322 2.169860 +vn -0.993259 -0.083287 -0.080622 +v -1.678154 -0.268065 2.114306 +vn -0.959757 0.069713 0.272041 +v -1.678298 -0.184636 2.196458 +vn -0.937434 0.192318 0.290226 +v -1.682667 -0.085831 2.158849 +vn -0.844196 0.390255 0.367470 +v -1.635026 -0.066396 2.248852 +vn -0.870235 0.288708 0.399173 +v -1.665210 -0.068398 2.184249 +vn -0.896783 0.303559 0.321921 +v -1.677688 -0.040556 2.136233 +vn -0.822783 -0.534122 0.194273 +v -1.684101 -0.617476 2.210939 +vn -0.992672 -0.004632 0.120751 +v -1.687314 -0.570260 2.198855 +vn -0.951783 -0.082638 0.295433 +v -1.679320 -0.588873 2.231779 +vn -0.889043 -0.097649 -0.447288 +v -1.686970 -0.559817 2.172579 +vn -0.969721 -0.064935 -0.235424 +v -1.687640 -0.499804 2.173799 +vn -0.996049 -0.062325 -0.063261 +v -1.685310 -0.248291 2.141889 +vn -0.998121 -0.010771 0.060322 +v -1.689340 -0.180125 2.139329 +vn -0.992493 0.047669 0.112630 +v -1.690820 -0.117960 2.141849 +vn -0.997594 -0.069269 0.002983 +v -1.681070 -0.241192 2.079799 +vn -0.998443 -0.007671 -0.055247 +v -1.689130 -0.179919 2.086669 +vn -0.992942 0.032104 -0.114177 +v -1.685300 -0.130830 2.083979 +vn -0.947612 -0.215010 -0.236224 +v -1.679083 -0.072990 2.064682 +vn -0.998106 0.007969 -0.060997 +v -1.688490 -0.073886 2.097249 +vn -0.997274 0.066777 0.031404 +v -1.688307 -0.008782 2.057866 +vn -0.157889 -0.987396 0.010972 +v -1.187566 -0.630557 1.330820 +vn -0.978632 -0.205311 -0.011233 +v -1.234328 -0.588358 2.021614 +vn 0.806451 -0.439292 0.395801 +v -1.369510 -0.617720 1.980820 +vn 0.400218 -0.732163 0.551147 +v -1.382184 -0.642722 1.962128 +vn 0.442417 -0.594680 0.671284 +v -1.381066 -0.594991 2.013099 +vn 0.965944 -0.174033 0.191479 +v -1.366860 -0.577149 1.996730 +vn 0.999082 -0.036900 0.021742 +v -1.364716 -0.624725 1.904744 +vn 0.972609 -0.153701 0.174377 +v -1.366091 -0.632241 1.936221 +vn 0.786593 -0.548775 0.283050 +v -1.369990 -0.558500 2.034379 +vn 0.029741 -0.778234 0.627269 +v -1.403570 -0.564853 2.038049 +vn 0.998895 -0.045455 -0.011984 +v -1.364680 -0.527897 2.005662 +vn 0.993647 -0.008221 -0.112242 +v -1.364659 -0.479214 2.019707 +vn -0.063211 -0.682792 0.727873 +v -1.454670 -0.564433 2.038189 +vn -0.633555 -0.771197 0.062152 +v -1.220707 -0.619752 1.362977 +vn -0.964106 -0.213119 0.158369 +v -1.234608 -0.588147 1.364211 +vn 0.686950 -0.626480 0.368270 +v -1.370220 -0.667784 1.918650 +vn 0.050786 -0.851867 0.521290 +v -1.402735 -0.669449 1.924516 +vn 0.835721 -0.495595 0.236548 +v -1.368480 -0.681592 1.873830 +vn 0.169977 -0.896695 0.408712 +v -1.393963 -0.687642 1.890207 +vn 0.984276 -0.153436 0.087506 +v -1.365567 -0.694611 1.812482 +vn 0.022863 -0.974293 0.224120 +v -1.380020 -0.704745 1.848640 +vn 0.620586 -0.737150 0.267361 +v -1.370732 -0.716219 1.815164 +vn -0.209549 -0.716241 0.665648 +v -1.630836 -0.622119 1.986140 +vn -0.075829 -0.800990 0.593856 +v -1.595808 -0.645023 1.956995 +vn 0.056438 -0.641554 0.764999 +v -1.514000 -0.564814 2.037559 +vn 0.049779 -0.739237 0.671603 +v -1.493710 -0.527663 2.060459 +vn 0.051862 -0.778073 0.626030 +v -1.574120 -0.565273 2.037439 +vn -0.075895 -0.671131 0.737443 +v -1.592940 -0.596795 2.012819 +vn -0.734622 -0.492953 0.466184 +v -1.668552 -0.614755 1.977783 +vn -0.596888 -0.646898 0.474601 +v -1.655520 -0.634642 1.943140 +vn -0.606179 -0.534779 0.588693 +v -1.655790 -0.581688 1.999150 +vn -0.221910 -0.804302 0.551230 +v -1.629790 -0.565420 2.037469 +vn -0.769631 -0.525854 0.362139 +v -1.668463 -0.557436 2.030195 +vn -0.128933 -0.784469 0.606617 +v -1.631943 -0.668783 1.923430 +vn -0.067252 -0.925023 0.373912 +v -1.591035 -0.702581 1.858763 +vn 0.012223 -0.950842 0.309434 +v -1.511916 -0.706818 1.842049 +vn -0.423139 -0.733878 0.531391 +v -1.653675 -0.670959 1.915426 +vn -0.850374 -0.426451 0.308226 +v -1.671420 -0.664573 1.895660 +vn -0.580448 -0.745625 0.327296 +v -1.653280 -0.696389 1.831950 +vn -0.791168 -0.600833 0.114251 +v -1.671680 -0.677405 1.866760 +vn 0.709827 -0.703626 0.032502 +v -1.368859 -0.726087 1.727270 +vn 0.056343 -0.989356 0.134163 +v -1.392861 -0.724550 1.768749 +vn 0.076480 -0.996466 0.034741 +v -1.394516 -0.730336 1.719890 +vn 0.893302 -0.397283 -0.210186 +v -1.366869 -0.701223 1.601433 +vn 0.640008 -0.745432 -0.186335 +v -1.369687 -0.722064 1.624853 +vn 0.071912 -0.995079 -0.068164 +v -1.397860 -0.729087 1.673241 +vn 0.195694 -0.922308 -0.333244 +v -1.395284 -0.710145 1.580555 +vn 0.998102 -0.052681 -0.031890 +v -1.364567 -0.621559 1.490313 +vn 0.003068 -0.971270 0.237961 +v -1.474067 -0.718736 1.800438 +vn -0.022101 -0.998884 0.041728 +v -1.606582 -0.729058 1.717854 +vn -0.079478 -0.953697 0.290078 +v -1.635681 -0.720514 1.802644 +vn -0.427271 -0.813962 0.393581 +v -1.652313 -0.718819 1.804853 +vn -0.744767 -0.652871 0.138133 +v -1.666760 -0.714916 1.773070 +vn -0.235991 -0.971046 0.037120 +v -1.650280 -0.726633 1.718110 +vn -0.774719 -0.632210 0.010938 +v -1.670480 -0.718013 1.712482 +vn -0.196292 -0.975831 -0.096033 +v -1.640831 -0.727865 1.665204 +vn -0.153066 -0.945418 -0.287671 +v -1.612545 -0.713176 1.588730 +vn -0.061803 -0.972306 -0.225393 +v -1.607258 -0.724132 1.628628 +vn -0.723910 -0.669316 -0.167246 +v -1.670226 -0.716359 1.656940 +vn -0.595591 -0.752639 -0.280724 +v -1.657320 -0.700756 1.605740 +vn -0.373353 -0.889007 -0.265092 +v -1.640050 -0.725177 1.635600 +vn -0.930398 0.349011 -0.112029 +v -1.674115 -0.535363 1.781607 +vn -0.897560 0.440634 0.015083 +v -1.665496 -0.528097 1.707663 +vn -0.893149 0.438368 -0.100586 +v -1.631756 -0.456782 1.753208 +vn -0.901972 0.405353 0.148781 +v -1.668063 -0.523284 1.640141 +vn -0.977110 -0.069429 -0.201088 +v -1.234903 -0.240752 2.021157 +vn -1.000000 -0.000933 0.000178 +v -1.234952 -0.210514 1.674929 +vn 0.998909 -0.013105 -0.044825 +v -1.364584 -0.119821 1.961439 +vn 0.973382 -0.036944 -0.226192 +v -1.364726 -0.239745 2.020847 +vn -0.953686 -0.017554 -0.300290 +v -1.234750 -0.179707 2.020419 +vn -0.948953 -0.095191 -0.300711 +v -1.234729 -0.119786 2.019879 +vn -0.532315 -0.590937 -0.606163 +v -1.266416 -0.040775 2.017818 +vn 0.424116 -0.574072 -0.700404 +v -1.316483 -0.054874 2.036151 +vn -0.942257 -0.300239 -0.148352 +v -1.235219 -0.001288 1.902826 +vn -0.621478 -0.546680 -0.561165 +v -1.263850 0.009544 1.964970 +vn 0.931010 -0.068741 -0.358463 +v -1.365110 -0.180073 2.020249 +vn 0.839060 -0.175256 -0.515037 +v -1.356490 -0.118957 2.026219 +vn 0.945206 -0.226478 -0.235146 +v -1.365160 -0.061440 1.960430 +vn 0.388200 -0.678547 -0.623597 +v -1.315780 0.011006 1.975750 +vn -0.987153 -0.151414 -0.051026 +v -1.235242 -0.000031 1.841369 +vn 0.998995 -0.042963 -0.012773 +v -1.364591 -0.060021 1.901542 +vn 0.866832 -0.454316 -0.205423 +v -1.356530 0.007097 1.903390 +vn 0.964552 -0.251270 -0.080646 +v -1.364990 -0.000895 1.841540 +vn -0.893948 0.106264 -0.435390 +v -1.642795 -0.367600 1.866205 +vn -0.897458 0.218205 -0.383348 +v -1.629235 -0.394240 1.826147 +vn -0.890238 -0.100832 -0.444194 +v -1.658134 -0.277945 1.894211 +vn -0.913689 -0.237139 -0.330058 +v -1.652940 -0.222130 1.857670 +vn -0.781351 -0.355258 -0.513110 +v -1.665233 -0.215581 1.889775 +vn -0.958566 0.225031 0.174676 +v -1.670812 -0.107683 2.031537 +vn -0.991548 -0.127151 0.025792 +v -1.670408 -0.026706 1.976208 +vn 0.999744 -0.015936 0.016080 +v -1.364575 -0.059888 1.602182 +vn -0.988945 -0.048411 0.140156 +v -1.234911 -0.359863 1.363652 +vn 0.999728 -0.016763 0.016222 +v -1.364575 -0.179698 1.482355 +vn -0.999654 -0.022531 0.013611 +v -1.235455 0.007431 1.688061 +vn 0.981454 -0.166070 0.095757 +v -1.364590 -0.001918 1.602868 +vn -0.991028 -0.120179 0.058492 +v -1.235089 -0.000271 1.602248 +vn -0.890918 0.362154 -0.274060 +v -1.643404 -0.450402 1.812030 +vn -0.933291 0.302049 -0.194251 +v -1.608230 -0.404758 1.761840 +vn -0.963046 0.069138 -0.260313 +v -1.598460 -0.340386 1.776290 +vn -0.921765 0.385133 0.044970 +v -1.606250 -0.413496 1.699370 +vn -0.993646 0.112503 -0.003382 +v -1.594460 -0.357060 1.720120 +vn -0.933883 -0.184270 -0.306441 +v -1.602280 -0.272435 1.775460 +vn -0.902883 -0.035368 -0.428430 +v -1.617680 -0.320600 1.820720 +vn -0.891537 -0.406194 -0.200420 +v -1.606794 -0.237829 1.754864 +vn -0.878510 -0.326109 -0.349104 +v -1.623990 -0.236856 1.794200 +vn -0.998775 -0.035405 -0.034570 +v -1.593270 -0.300891 1.722890 +vn -0.843822 0.407619 0.349016 +v -1.608475 -0.403098 1.645512 +vn -0.972507 0.128755 0.194041 +v -1.602940 -0.365032 1.645830 +vn -0.863256 0.464367 0.197871 +v -1.624610 -0.432304 1.660500 +vn -0.909641 0.275195 0.311162 +v -1.658592 -0.447649 1.560259 +vn -0.910345 0.288537 0.296679 +v -1.644290 -0.428141 1.591400 +vn -0.880039 0.213899 0.424004 +v -1.623420 -0.366925 1.594220 +vn -0.937374 0.015630 0.347974 +v -1.603185 -0.324468 1.613575 +vn -0.978281 -0.082099 0.190332 +v -1.599960 -0.293077 1.651120 +vn -0.952985 -0.287361 0.096137 +v -1.594060 -0.255059 1.687260 +vn -0.926719 -0.223271 0.302229 +v -1.615195 -0.259161 1.613477 +vn -0.893894 -0.070839 0.442645 +v -1.620630 -0.295765 1.586480 +vn -0.908652 -0.376223 0.181127 +v -1.615980 -0.227092 1.653900 +vn -0.905469 -0.384042 -0.180658 +v -1.655040 -0.157619 1.789970 +vn -0.870146 -0.394919 -0.294762 +v -1.661215 -0.159550 1.825918 +vn -0.903764 -0.425562 -0.045914 +v -1.626873 -0.194769 1.719696 +vn -0.857653 -0.507434 -0.083318 +v -1.666896 -0.114975 1.734660 +vn -0.898736 -0.424545 0.109707 +v -1.643880 -0.165072 1.660200 +vn -0.955517 -0.294288 0.019530 +v -1.681067 -0.087052 1.682180 +vn -0.968505 -0.192919 0.157418 +v -1.680211 -0.129431 1.569425 +vn -0.964178 -0.237258 0.118615 +v -1.677308 -0.113142 1.599810 +vn -0.105293 -0.993231 0.049040 +v -1.194630 -0.631316 1.242897 +vn -0.992994 0.009370 0.117790 +v -1.234805 -0.424071 1.362214 +vn 0.691453 -0.615356 -0.378456 +v -1.369397 -0.673791 1.503758 +vn 0.855609 -0.392895 -0.336998 +v -1.367650 -0.646517 1.483690 +vn 0.217588 -0.773828 -0.594849 +v -1.392556 -0.661157 1.477893 +vn 0.067200 -0.894027 -0.442944 +v -1.392986 -0.680635 1.510280 +vn 0.680863 -0.498098 -0.536958 +v -1.367414 -0.601342 1.409708 +vn 0.192386 -0.774683 -0.602374 +v -1.393597 -0.639086 1.449469 +vn 0.210437 -0.533945 -0.818913 +v -1.390587 -0.558118 1.373781 +vn 0.840599 -0.294960 -0.454304 +v -1.367890 -0.527550 1.370550 +vn 0.997341 -0.052799 -0.050228 +v -1.364840 -0.477478 1.368200 +vn -0.016764 -0.882944 -0.469180 +v -1.598253 -0.681825 1.516005 +vn -0.071910 -0.813718 -0.576794 +v -1.604465 -0.650941 1.463708 +vn -0.258665 -0.853838 -0.451722 +v -1.637527 -0.686486 1.522789 +vn -0.407624 -0.871293 -0.273296 +v -1.646070 -0.690996 1.548970 +vn -0.781012 -0.578370 -0.235600 +v -1.670880 -0.673919 1.540390 +vn -0.953483 -0.290799 -0.079415 +v -1.678433 -0.662817 1.601105 +vn -0.409345 -0.770382 -0.488824 +v -1.652110 -0.664387 1.498070 +vn -0.338536 -0.645990 -0.684171 +v -1.643420 -0.609057 1.416046 +vn -0.112122 -0.572910 -0.811913 +v -1.612607 -0.575259 1.387812 +vn -0.119846 -0.574072 -0.809987 +v -1.610040 -0.542640 1.365028 +vn -0.460082 -0.675068 -0.576721 +v -1.651460 -0.622854 1.439680 +vn -0.806869 -0.321612 -0.495508 +v -1.672173 -0.557174 1.401831 +vn -0.598208 -0.429427 -0.676564 +v -1.657210 -0.530739 1.375310 +vn -0.590588 -0.780070 0.206631 +v -1.237170 -0.614718 1.304380 +vn -0.819619 -0.228390 0.525417 +v -1.257660 -0.578124 1.305290 +vn -0.401499 -0.796619 0.451880 +v -1.283800 -0.604162 1.241440 +vn -0.557751 -0.316457 0.767312 +v -1.302080 -0.556665 1.266900 +vn -0.796771 0.056009 0.601680 +v -1.254550 -0.529404 1.305530 +vn -0.864278 0.057397 0.499729 +v -1.251103 -0.446717 1.304446 +vn -0.392210 0.028725 0.919427 +v -1.305600 -0.507509 1.267740 +vn -0.394361 0.052471 0.917456 +v -1.291170 -0.460621 1.267530 +vn 0.624273 -0.379607 -0.682775 +v -1.370793 -0.496447 1.339406 +vn 0.809375 -0.247142 -0.532760 +v -1.368830 -0.471175 1.334710 +vn 0.124083 -0.489226 -0.863285 +v -1.394148 -0.509081 1.342889 +vn -0.016028 -0.393006 -0.919396 +v -1.434255 -0.469391 1.326625 +vn -0.148913 -0.969194 0.196182 +v -1.255030 -0.631199 1.183340 +vn -0.174271 -0.621548 0.763746 +v -1.379250 -0.587639 1.217920 +vn -0.218338 -0.273560 0.936746 +v -1.383140 -0.530841 1.241370 +vn -0.124877 -0.942733 0.309290 +v -1.325640 -0.623801 1.179480 +vn -0.019401 -0.998711 0.046892 +v -1.314723 -0.631255 1.122964 +vn -0.164787 -0.144035 0.975756 +v -1.379380 -0.480222 1.248950 +vn -0.124011 -0.222725 0.966961 +v -1.356940 -0.440624 1.259030 +vn 0.000277 -0.536763 0.843733 +v -1.451280 -0.584350 1.213340 +vn -0.045639 -0.252149 0.966612 +v -1.462010 -0.520524 1.234740 +vn -0.024852 -0.900586 0.433967 +v -1.399970 -0.619181 1.173090 +vn 0.099849 -0.524516 0.845525 +v -1.509140 -0.594297 1.209990 +vn 0.065413 -0.230819 0.970795 +v -1.530292 -0.533286 1.232494 +vn 0.063304 -0.921250 0.383786 +v -1.503574 -0.629325 1.174026 +vn 0.111096 0.078471 0.990707 +v -1.411438 -0.631088 1.118559 +vn -0.082288 -0.182563 0.979745 +v -1.458080 -0.457169 1.247290 +vn -0.136445 -0.350620 0.926525 +v -1.434080 -0.418720 1.259220 +vn 0.020406 -0.110675 0.993647 +v -1.555283 -0.457634 1.244895 +vn -0.137093 -0.196175 0.970938 +v -1.504660 -0.408423 1.249150 +vn 0.035816 -0.389012 -0.920536 +v -1.553700 -0.467483 1.325770 +vn -0.341605 -0.516828 -0.784981 +v -1.639128 -0.517437 1.349397 +vn -0.070153 -0.466490 -0.881740 +v -1.611650 -0.467984 1.326230 +vn -0.890891 -0.210066 -0.402722 +v -1.673220 -0.445448 1.344319 +vn 0.141489 -0.606826 0.782140 +v -1.552990 -0.606502 1.211030 +vn -0.072188 -0.739549 0.669221 +v -1.587390 -0.612102 1.213010 +vn -0.156450 -0.362650 0.918699 +v -1.601190 -0.565366 1.235130 +vn -0.187568 -0.963426 0.191389 +v -1.561190 -0.630094 1.175270 +vn -0.138390 -0.990298 -0.012600 +v -1.539857 -0.631091 1.129003 +vn 0.118716 -0.108518 0.986980 +v -1.606672 -0.421888 1.249051 +vn -0.508593 -0.752257 0.418859 +v -1.603214 -0.612993 1.208577 +vn -0.492809 -0.866335 -0.081262 +v -1.583281 -0.618599 1.157302 +vn -0.778162 -0.522568 0.348405 +v -1.631481 -0.563112 1.216729 +vn -0.827917 -0.555205 -0.079377 +v -1.596824 -0.595019 1.091857 +vn -0.426186 -0.245963 0.870556 +v -1.638580 -0.514089 1.242760 +vn -0.251981 -0.241791 0.937039 +v -1.645260 -0.449571 1.248790 +vn -0.872175 -0.413765 0.260978 +v -1.646218 -0.535546 1.220188 +vn -0.971879 -0.227299 0.061530 +v -1.675030 -0.447154 1.213155 +vn -0.852471 -0.258190 0.454567 +v -1.668470 -0.460208 1.226150 +vn -0.914060 -0.396495 -0.085355 +v -1.630334 -0.530271 1.092443 +vn -0.955041 -0.270170 -0.122086 +v -1.659833 -0.461332 1.138162 +vn -0.993800 -0.070123 0.086286 +v -1.235322 -0.180750 1.422385 +vn 0.996445 -0.015971 0.082720 +v -1.364594 -0.299252 1.421640 +vn -0.966335 -0.006232 0.257213 +v -1.234576 -0.257751 1.362164 +vn 0.999722 -0.017071 0.016254 +v -1.364580 -0.359458 1.422460 +vn 0.996581 -0.018234 0.080589 +v -1.364770 -0.419002 1.364600 +vn 0.980864 -0.091212 0.172006 +v -1.364760 -0.359788 1.363440 +vn 0.921573 -0.124488 0.367705 +v -1.355960 -0.298020 1.357200 +vn 0.854510 -0.055275 0.516486 +v -1.347100 -0.236831 1.353340 +vn -0.995878 -0.062520 0.065717 +v -1.235136 -0.119838 1.482436 +vn -0.995795 -0.064269 0.065285 +v -1.234870 -0.060086 1.542520 +vn -0.959422 -0.221648 0.174305 +v -1.234560 -0.001039 1.543250 +vn -0.963980 -0.191340 0.184749 +v -1.234490 -0.060778 1.483310 +vn -0.339300 -0.673339 0.656879 +v -1.270630 0.002861 1.475450 +vn 0.124125 0.701404 -0.701872 +v -1.364580 -0.119795 1.542300 +vn 0.988216 -0.107986 0.108482 +v -1.364680 -0.120257 1.482770 +vn 0.988834 -0.103951 0.106780 +v -1.364660 -0.060276 1.542670 +vn 0.873381 -0.352608 0.335966 +v -1.356580 -0.000614 1.537080 +vn 0.876194 -0.340977 0.340615 +v -1.356040 -0.056901 1.479190 +vn 0.544036 -0.591215 0.595389 +v -1.325890 -0.005773 1.482680 +vn -0.963216 -0.180451 0.199129 +v -1.234580 -0.120723 1.423520 +vn -0.953087 -0.211306 0.216737 +v -1.238840 -0.180022 1.362190 +vn -0.335804 -0.662829 0.669248 +v -1.273350 -0.117757 1.358580 +vn -0.349279 -0.659567 0.665564 +v -1.270300 -0.055428 1.417760 +vn -0.588814 -0.575802 0.567230 +v -1.253890 -0.025576 1.447820 +vn -0.591808 -0.546572 0.592471 +v -1.253720 -0.085796 1.388460 +vn 0.546360 -0.589647 0.594816 +v -1.325410 -0.063507 1.425760 +vn 0.308411 -0.663486 0.681666 +v -1.299540 -0.031559 1.454050 +vn 0.317389 -0.644625 0.695501 +v -1.299520 -0.091567 1.394350 +vn 0.982122 -0.097001 0.161331 +v -1.364740 -0.180076 1.423170 +vn 0.870757 -0.337528 0.357570 +v -1.356050 -0.117031 1.419610 +vn 0.831411 -0.229756 0.505932 +v -1.347110 -0.178960 1.358480 +vn 0.590272 -0.557517 0.583741 +v -1.325240 -0.126930 1.368710 +vn -0.906584 0.109717 0.407513 +v -1.659365 -0.362370 1.517393 +vn -0.899434 -0.052266 0.433921 +v -1.655270 -0.294097 1.523050 +vn -0.933805 -0.144570 0.327274 +v -1.672292 -0.221701 1.512292 +vn -0.966850 -0.033007 0.253204 +v -1.678092 -0.288189 1.471242 +vn -0.951445 -0.207122 0.227714 +v -1.674745 -0.173473 1.535059 +vn -0.930014 -0.140492 0.339611 +v -1.246080 -0.358314 1.305040 +vn -0.379013 0.074555 0.922383 +v -1.280440 -0.411562 1.267420 +vn -0.402398 -0.076626 0.912252 +v -1.272650 -0.358255 1.266660 +vn -0.431675 -0.418112 0.799274 +v -1.273470 -0.299051 1.300070 +vn -0.506069 -0.060007 0.860403 +v -1.260650 -0.237135 1.314120 +vn -0.557129 -0.421243 0.715654 +v -1.264990 -0.328016 1.276440 +vn 0.627516 -0.387284 0.675452 +v -1.325370 -0.308692 1.308160 +vn 0.470773 -0.163962 0.866885 +v -1.312530 -0.259208 1.321000 +vn 0.308546 -0.473944 0.824728 +v -1.302910 -0.328945 1.276550 +vn 0.813109 -0.578263 -0.066825 +v -1.357920 -0.415414 1.308930 +vn 0.032240 -0.675958 -0.736235 +v -1.398060 -0.428939 1.304900 +vn 0.862263 -0.256831 0.436509 +v -1.347640 -0.360238 1.306490 +vn -0.404048 -0.613520 -0.678482 +v -1.442580 -0.403746 1.295050 +vn 0.456955 -0.184055 0.870239 +v -1.322120 -0.373288 1.268390 +vn 0.223431 -0.344248 0.911905 +v -1.332900 -0.413320 1.269630 +vn -0.114226 -0.907853 0.403429 +v -1.389760 -0.412659 1.269530 +vn -0.484372 -0.282135 0.828121 +v -1.464250 -0.384147 1.271910 +vn -0.604961 -0.025607 0.795843 +v -1.468130 -0.348343 1.266880 +vn -0.813596 -0.307175 -0.493664 +v -1.461110 -0.338576 1.284270 +vn -0.789468 -0.612687 0.036801 +v -1.459617 -0.321330 1.274487 +vn -0.415177 -0.177794 0.892198 +v -1.264520 -0.178621 1.317180 +vn -0.671589 -0.465906 0.576107 +v -1.253390 -0.150563 1.332520 +vn 0.370917 -0.127377 0.919889 +v -1.303370 -0.198051 1.317140 +vn 0.264394 -0.504172 0.822135 +v -1.294790 -0.149356 1.329480 +vn -0.076459 -0.240607 -0.967606 +v -1.494720 -0.416358 1.310700 +vn -0.136543 -0.300896 -0.943831 +v -1.495430 -0.360430 1.303540 +vn 0.149441 -0.191269 -0.970094 +v -1.553790 -0.416235 1.310200 +vn 0.074551 -0.279454 -0.957260 +v -1.554200 -0.360034 1.303200 +vn -0.064558 -0.692270 -0.718745 +v -1.501998 -0.321410 1.282206 +vn -0.290962 -0.876697 0.383070 +v -1.487790 -0.312974 1.265290 +vn 0.062421 -0.993668 0.093420 +v -1.547880 -0.309560 1.265690 +vn 0.287751 -0.507546 -0.812155 +v -1.615870 -0.413353 1.288380 +vn 0.421213 0.163332 -0.892133 +v -1.619150 -0.359764 1.289440 +vn -0.763801 -0.416242 -0.493306 +v -1.660640 -0.416425 1.310230 +vn -0.744316 -0.470513 0.473931 +v -1.661230 -0.409665 1.260440 +vn -0.783314 0.288796 0.550469 +v -1.662350 -0.357358 1.267860 +vn -0.794826 0.009700 -0.606760 +v -1.660950 -0.349269 1.298570 +vn 0.465193 0.231610 0.854372 +v -1.626120 -0.355209 1.262200 +vn 0.622211 -0.515473 0.589186 +v -1.628000 -0.403540 1.258850 +vn 0.053711 -0.705093 -0.707077 +v -1.612430 -0.322052 1.282510 +vn -0.481973 -0.715374 -0.505907 +v -1.656060 -0.320077 1.284920 +vn 0.161772 -0.909338 0.383320 +v -1.600480 -0.315867 1.265710 +vn -0.237775 -0.677192 0.696329 +v -1.646160 -0.320566 1.265130 +vn -0.077531 0.007712 0.996960 +v -1.545080 -0.368367 1.249180 +vn -0.134650 -0.209404 0.968514 +v -1.522470 -0.335189 1.248420 +vn 0.148966 -0.294306 0.944030 +v -1.581478 -0.336334 1.248668 +vn -0.993056 0.114457 0.027178 +v -1.673924 -0.213328 1.342820 +vn -0.985895 0.032608 0.164158 +v -1.679363 -0.196945 1.305451 +vn -0.991750 -0.118133 -0.049757 +v -1.673213 -0.160362 1.345762 +vn -0.979421 -0.158180 0.125355 +v -1.674227 -0.477794 2.053122 +vn -0.964957 -0.161059 0.207165 +v -1.676420 -0.529921 2.009139 +vn -0.992708 -0.046733 0.111120 +v -1.684333 -0.441500 2.009922 +vn -0.885463 -0.322272 0.334807 +v -1.677290 -0.563339 1.984250 +vn -0.958978 -0.211447 0.188816 +v -1.677990 -0.586442 1.950070 +vn -0.995169 -0.060850 0.077051 +v -1.685000 -0.532700 1.952620 +vn -0.999829 -0.016884 0.007537 +v -1.686707 -0.464242 1.967589 +vn -0.862650 -0.428110 0.269365 +v -1.676470 -0.620163 1.925020 +vn -0.965498 -0.204909 0.160702 +v -1.678870 -0.627759 1.892510 +vn -0.996087 -0.075603 0.045780 +v -1.685479 -0.590965 1.879658 +vn -0.965653 -0.255362 0.048010 +v -1.678450 -0.651789 1.839940 +vn -0.999971 0.007574 0.000936 +v -1.686880 -0.543217 1.904720 +vn -0.993368 0.057566 -0.099526 +v -1.683270 -0.486274 1.914110 +vn -0.993370 0.099815 -0.057028 +v -1.683940 -0.550387 1.847360 +vn -0.955887 0.206236 -0.209158 +v -1.676753 -0.487869 1.870900 +vn -0.934768 -0.316841 0.160689 +v -1.675393 -0.683573 1.790965 +vn -0.988516 -0.148947 0.025522 +v -1.683734 -0.647593 1.754850 +vn -0.999871 0.003447 0.015662 +v -1.688189 -0.603043 1.760562 +vn -0.976479 0.213799 -0.027901 +v -1.684000 -0.565082 1.777313 +vn -0.999461 -0.031667 0.008705 +v -1.689980 -0.604133 1.637859 +vn -0.948485 0.311179 0.059538 +v -1.680090 -0.552525 1.666030 +vn -0.971521 0.200093 0.126927 +v -1.687890 -0.549101 1.595780 +vn -0.995439 -0.027647 0.091305 +v -1.679481 -0.383849 2.059323 +vn -0.994685 -0.009076 -0.102560 +v -1.686152 -0.325555 1.973470 +vn -0.997734 0.000760 0.067276 +v -1.687385 -0.256356 2.012708 +vn -0.995881 -0.047498 -0.077238 +v -1.689140 -0.235324 1.967190 +vn -0.965626 0.096191 -0.241481 +v -1.680351 -0.425922 1.926103 +vn -0.939428 -0.009570 -0.342612 +v -1.677020 -0.319105 1.935290 +vn -0.919857 -0.150115 -0.362393 +v -1.676960 -0.239430 1.917570 +vn -0.997994 0.040326 0.048812 +v -1.683300 -0.182801 2.014509 +vn -0.993296 0.113722 -0.020733 +v -1.678820 -0.129544 2.035149 +vn -0.998871 0.033637 0.033557 +v -1.690404 -0.148954 1.937579 +vn -0.980142 -0.092991 -0.175140 +v -1.676770 -0.020770 2.008709 +vn -0.988222 0.117635 0.097870 +v -1.677178 -0.038042 1.945117 +vn -0.975922 -0.153885 -0.154583 +v -1.688017 -0.148412 1.892131 +vn -0.886868 -0.329279 -0.324099 +v -1.671960 -0.168394 1.858000 +vn -0.993352 0.068518 0.092506 +v -1.676850 0.001683 1.878840 +vn -0.993068 -0.117474 0.004112 +v -1.669247 0.025725 1.922262 +vn -0.999777 -0.017158 -0.012301 +v -1.690615 -0.055628 1.801862 +vn -0.995437 0.084516 0.044300 +v -1.679719 0.010297 1.835192 +vn -0.931505 -0.334640 -0.142527 +v -1.676100 -0.112743 1.788050 +vn -0.992907 0.118893 0.001096 +v -1.685932 -0.007094 1.739420 +vn -0.998078 -0.061366 -0.008680 +v -1.686796 -0.052793 1.679490 +vn -0.994338 0.103052 -0.025939 +v -1.683773 -0.007871 1.610938 +vn -0.999597 -0.011528 0.025938 +v -1.686444 -0.062260 1.545293 +vn -0.985307 -0.148135 -0.085010 +v -1.683439 -0.611678 1.540317 +vn -0.932101 -0.259995 -0.252170 +v -1.673742 -0.621103 1.468958 +vn -0.999867 -0.012028 -0.011035 +v -1.690877 -0.512930 1.498238 +vn -0.942381 0.248764 0.223683 +v -1.681480 -0.489225 1.542340 +vn -0.747081 -0.495205 -0.443443 +v -1.669100 -0.634168 1.461820 +vn -0.937751 -0.168608 -0.303636 +v -1.677717 -0.508501 1.396275 +vn -0.995643 -0.035611 -0.086177 +v -1.688622 -0.446750 1.435009 +vn -0.974919 0.112046 0.192297 +v -1.687820 -0.429357 1.481136 +vn -0.943175 0.108497 0.314085 +v -1.677109 -0.367948 1.479413 +vn -0.999735 0.020107 0.011222 +v -1.689640 -0.361326 1.420840 +vn -0.992981 -0.035997 -0.112663 +v -1.682218 -0.337756 1.365629 +vn -0.999610 -0.022378 -0.016677 +v -1.685076 -0.206611 1.425443 +vn -0.997495 0.049841 -0.050202 +v -1.681750 -0.247623 1.376320 +vn -0.996215 -0.066440 0.056053 +v -1.685777 -0.101152 1.523402 +vn -0.993943 -0.053201 0.096164 +v -1.685942 -0.160822 1.477002 +vn -0.995587 -0.055440 0.075711 +v -1.686320 -0.120367 1.484810 +vn -0.988389 0.151810 -0.006426 +v -1.682200 -0.019662 1.556120 +vn -0.988316 0.090315 0.122783 +v -1.686420 0.003302 1.486250 +vn -0.971015 0.206584 0.120220 +v -1.673257 0.010648 1.523054 +vn -0.993919 -0.003843 0.110045 +v -1.680907 0.054609 1.480304 +vn -0.987116 -0.027861 -0.157559 +v -1.680370 -0.198013 1.383700 +vn -0.990599 -0.119716 -0.066200 +v -1.685450 -0.126916 1.361610 +vn -0.999332 -0.027128 -0.024493 +v -1.691680 -0.055494 1.418130 +vn -0.999140 0.014276 0.038928 +v -1.686880 -0.006907 1.428340 +vn -0.999668 -0.011344 0.023127 +v -1.690292 0.005289 1.351837 +vn -0.950067 -0.087531 -0.299519 +v -1.673520 -0.378301 1.332670 +vn -0.956118 -0.231618 -0.179423 +v -1.679510 -0.308155 1.308880 +vn -0.994114 0.057357 0.091908 +v -1.684020 -0.235692 1.310200 +vn -0.962229 -0.181436 0.202970 +v -1.682740 -0.299312 1.246980 +vn -0.994664 -0.025816 0.099886 +v -1.690459 -0.195834 1.245646 +vn -0.974013 -0.120866 0.191547 +v -1.685001 -0.383401 1.219833 +vn -0.981940 -0.177669 -0.065019 +v -1.679878 -0.346544 1.103313 +vn -0.997464 -0.067335 0.023056 +v -1.690569 -0.311929 1.185105 +vn -0.998887 -0.032171 0.034493 +v -1.693318 -0.241285 1.186900 +vn -0.997858 -0.001587 0.065401 +v -1.694590 -0.120429 1.238020 +vn -0.993122 -0.090758 0.073975 +v -1.683780 -0.122562 1.304020 +vn -0.998473 -0.048599 0.026251 +v -1.690350 -0.059320 1.300660 +vn -0.998788 0.042231 -0.025274 +v -1.691156 -0.010938 1.282188 +vn -0.999678 0.024852 0.005131 +v -1.692160 -0.062896 1.243220 +vn -0.999818 0.009690 -0.016455 +v -1.693460 -0.138200 1.188814 +vn -0.996548 0.080940 -0.018482 +v -1.686642 -0.065662 1.091424 +vn -0.993640 0.108522 -0.030043 +v -1.680861 -0.010490 1.098546 +vn -0.578261 -0.815556 -0.021986 +v -1.573244 -0.617282 1.028963 +vn -0.830307 -0.557045 -0.017069 +v -1.591089 -0.594760 0.993921 +vn -0.961039 -0.270854 -0.055150 +v -1.652879 -0.461669 1.064740 +vn -0.891858 -0.451313 -0.030104 +v -1.612051 -0.556500 1.003025 +vn -0.923194 -0.383543 -0.024633 +v -1.630349 -0.517179 0.996825 +vn -0.959511 -0.281036 -0.018896 +v -1.650203 -0.463322 1.000095 +vn -0.203202 -0.979137 0.000031 +v -1.539619 -0.630789 0.285106 +vn -0.957285 -0.289146 -0.000287 +v -1.647938 -0.468454 0.234618 +vn -0.891103 -0.453802 -0.000321 +v -1.612664 -0.554572 0.334746 +vn -0.924091 -0.382172 0.000175 +v -1.630897 -0.515822 0.132778 +vn -0.973704 -0.227819 -0.000413 +v -1.659823 -0.421203 0.606645 +vn -0.605856 -0.795575 -0.000156 +v -1.572493 -0.616963 0.152946 +vn -0.832601 -0.553872 0.000194 +v -1.591514 -0.592843 0.121965 +vn -0.983886 -0.178799 -0.000112 +v -1.679550 -0.334757 0.450242 +vn -0.973269 -0.229668 -0.000167 +v -1.660353 -0.417410 0.033699 +vn -0.994599 -0.102070 -0.018825 +v -1.685060 -0.292704 1.025272 +vn -0.999334 -0.031725 -0.018041 +v -1.689146 -0.237068 1.036637 +vn -0.984595 -0.174493 -0.011220 +v -1.679402 -0.333869 1.002808 +vn -0.999631 0.025641 -0.008974 +v -1.688904 -0.120142 1.027509 +vn -0.979837 0.198883 -0.019123 +v -1.670456 0.062079 1.047177 +vn -0.997403 0.072021 0.000253 +v -1.686338 -0.065258 0.597451 +vn -0.992950 0.118530 -0.000161 +v -1.681094 -0.009970 0.566579 +vn -0.980503 0.196505 0.000216 +v -1.671878 0.056254 0.720492 +vn -0.994477 -0.104956 -0.000043 +v -1.685196 -0.293023 0.404231 +vn -0.999302 -0.037350 0.000112 +v -1.689431 -0.237171 0.387950 +vn -0.999736 0.022986 0.000334 +v -1.689369 -0.122587 0.243301 +vn -0.994370 -0.105545 0.009418 +v -1.685032 -0.292644 -0.388469 +vn -0.997440 0.071501 0.000452 +v -1.686763 -0.063884 0.161121 +vn -0.992101 0.125445 0.000337 +v -1.681145 -0.006716 0.105354 +vn -0.088565 0.652593 0.752515 +v -0.781022 0.073996 2.570445 +vn -0.120283 0.771596 0.624637 +v -0.828693 0.105815 2.527519 +vn -0.104391 0.637514 0.763334 +v -0.912956 0.063494 2.560036 +vn -0.088384 0.721049 0.687224 +v -0.903580 0.084031 2.542305 +vn -0.138440 0.609982 0.780228 +v -1.172932 0.012108 2.564048 +vn -0.135081 0.703772 0.697465 +v -1.177593 0.090266 2.503134 +vn -0.226203 0.631069 0.742013 +v -1.208003 0.068507 2.515436 +vn -0.285702 0.590817 0.754526 +v -1.240400 0.034432 2.530089 +vn -0.080178 0.843154 0.531660 +v -0.793000 0.115306 2.523641 +vn -0.088723 0.855828 0.509594 +v -0.835904 0.118589 2.508663 +vn -0.027605 0.936351 0.349978 +v -0.784344 0.178900 2.388759 +vn -0.073438 0.806233 0.587021 +v -1.056187 0.107657 2.498879 +vn -0.061034 0.887932 0.455907 +v -1.101336 0.123812 2.463843 +vn -0.010978 0.981303 0.192157 +v -0.807377 0.199267 2.310802 +vn -0.023385 0.960256 0.278139 +v -0.838041 0.188236 2.356188 +vn -0.045399 0.934378 0.353380 +v -1.027778 0.179822 2.355639 +vn -0.032270 0.975559 0.217356 +v -0.980600 0.195501 2.305690 +vn -0.098888 0.922003 0.374342 +v -1.197712 0.175510 2.342314 +vn -0.206632 0.808895 0.550447 +v -1.215501 0.114688 2.465348 +vn -0.063861 0.962740 0.262778 +v -1.181438 0.191433 2.298411 +vn -0.021562 0.987411 0.156701 +v -1.003272 0.203644 2.256012 +vn -0.017543 0.989992 0.140026 +v -0.951497 0.227579 2.094766 +vn -0.047290 0.983611 0.173993 +v -1.185112 0.200975 2.253085 +vn -0.041573 0.989543 0.138117 +v -1.176399 0.233109 2.022433 +vn -0.356794 0.633944 0.686158 +v -1.282984 0.075732 2.478425 +vn -0.274574 0.706819 0.651933 +v -1.243970 0.092312 2.477319 +vn -0.301801 0.783227 0.543573 +v -1.287085 0.110207 2.438252 +vn -0.210108 0.859691 0.465602 +v -1.245270 0.125963 2.428409 +vn -0.420403 0.653692 0.629244 +v -1.361584 0.079367 2.422958 +vn -0.206923 0.886074 0.414796 +v -1.255849 0.161386 2.351855 +vn -0.219547 0.912325 0.345631 +v -1.273097 0.177224 2.308378 +vn -0.291294 0.880586 0.373785 +v -1.306080 0.165977 2.307122 +vn -0.342098 0.776373 0.529352 +v -1.404249 0.109912 2.360386 +vn -0.299792 0.831350 0.467954 +v -1.359710 0.122249 2.366029 +vn -0.367909 0.811490 0.454011 +v -1.464309 0.116452 2.309468 +vn -0.269489 0.886058 0.377196 +v -1.421850 0.127962 2.311319 +vn -0.577674 0.539320 0.612721 +v -1.502596 0.030550 2.371656 +vn -0.547096 0.598803 0.584911 +v -1.500230 0.069218 2.341326 +vn -0.720374 0.515291 0.464260 +v -1.546321 0.076824 2.277305 +vn -0.130975 0.971165 0.199209 +v -1.258373 0.196734 2.245423 +vn -0.242237 0.931455 0.271499 +v -1.314298 0.182492 2.256760 +vn -0.281105 0.907341 0.312589 +v -1.368731 0.168057 2.249475 +vn -0.244341 0.937624 0.247302 +v -1.410354 0.181158 2.166692 +vn -0.306800 0.908084 0.285057 +v -1.478100 0.168254 2.141341 +vn -0.122719 0.983771 0.130899 +v -1.319947 0.234668 1.919472 +vn -0.096234 0.985089 0.142610 +v -1.255490 0.243110 1.913021 +vn -0.245711 0.953917 0.172247 +v -1.533034 0.199800 1.959417 +vn -0.509490 0.772526 0.378976 +v -1.527007 0.116913 2.247171 +vn -0.311690 0.896870 0.313805 +v -1.482091 0.132416 2.251904 +vn -0.591003 0.726692 0.350192 +v -1.558222 0.118753 2.193033 +vn -0.394772 0.876177 0.276531 +v -1.538268 0.132505 2.181592 +vn -0.803358 0.412270 0.429709 +v -1.592014 0.039617 2.221176 +vn -0.777324 0.465930 0.422701 +v -1.603059 0.079321 2.167181 +vn -0.740118 0.532519 0.410669 +v -1.581590 0.095534 2.184739 +vn -0.297007 0.918881 0.259703 +v -1.525724 0.181755 2.049162 +vn -0.410794 0.858443 0.307120 +v -1.543370 0.168047 2.066269 +vn -0.804448 0.419656 0.420419 +v -1.646985 0.050413 2.107692 +vn -0.672248 0.663952 0.327491 +v -1.614592 0.118541 2.085618 +vn -0.733788 0.562327 0.381241 +v -1.642920 0.096338 2.065679 +vn -0.574360 0.760414 0.303117 +v -1.611599 0.134122 2.054154 +vn -0.862145 0.386932 0.327092 +v -1.671581 0.075725 2.038983 +vn -0.020923 0.989945 0.139895 +v -0.949705 0.246892 1.959298 +vn -0.018618 0.990100 0.139122 +v -1.108828 0.243707 1.954120 +vn -0.039165 0.991676 0.122658 +v -1.185263 0.277216 1.710321 +vn -0.011445 0.997181 0.074160 +v -0.986929 0.286496 1.647168 +vn -0.032688 0.996725 0.073962 +v -1.172412 0.286628 1.624947 +vn -0.301610 -0.907551 -0.292201 +v -1.273960 0.060373 1.938470 +vn 0.227168 -0.645843 -0.728890 +v -1.286870 0.040156 1.948290 +vn -0.120842 0.972170 0.200704 +v -1.473586 0.211763 1.939918 +vn -0.510643 -0.835272 -0.203873 +v -1.269820 0.046629 1.902520 +vn 0.486496 -0.822410 -0.294897 +v -1.313230 0.040056 1.923540 +vn -0.625645 -0.634863 -0.453341 +v -1.263990 0.068220 1.841560 +vn -0.320442 -0.864809 -0.386551 +v -1.274570 0.111660 1.812719 +vn 0.419956 -0.785950 -0.453784 +v -1.312510 0.069075 1.851100 +vn -0.129359 0.978198 0.162465 +v -1.401362 0.234723 1.838413 +vn -0.090252 0.987243 0.131171 +v -1.272182 0.271007 1.715638 +vn -0.423304 0.872644 0.243527 +v -1.571268 0.177409 2.005209 +vn -0.729767 0.645019 0.226697 +v -1.677610 0.119903 1.960232 +vn -0.453052 0.871604 0.187219 +v -1.597130 0.180872 1.928675 +vn -0.268057 0.947692 0.173277 +v -1.551419 0.225813 1.779912 +vn -0.173405 0.972979 0.152457 +v -1.533308 0.234394 1.754899 +vn -0.853730 0.510432 0.102978 +v -1.683080 0.140791 1.856177 +vn -0.418168 0.897815 0.138072 +v -1.600937 0.212418 1.757856 +vn -0.953323 -0.274300 -0.126236 +v -1.235100 0.058563 1.781360 +vn -0.512091 -0.853091 -0.099999 +v -1.264280 0.109528 1.784170 +vn -0.968869 -0.245148 0.034576 +v -1.236121 0.060012 1.700629 +vn -0.503046 -0.864046 0.019219 +v -1.260500 0.108703 1.722350 +vn 0.449758 -0.862377 -0.232429 +v -1.308000 0.106933 1.803050 +vn 0.377768 -0.925707 0.018893 +v -1.303440 0.105897 1.712183 +vn 0.845198 -0.521777 -0.115714 +v -1.347414 0.069538 1.782422 +vn -0.469241 -0.876176 0.110131 +v -1.265576 0.105881 1.624909 +vn -0.949364 -0.245550 0.195993 +v -1.242800 0.061465 1.602350 +vn 0.392831 -0.907643 0.147876 +v -1.307710 0.104848 1.621000 +vn 0.859342 -0.511099 0.017597 +v -1.346960 0.065775 1.660240 +vn 0.848843 -0.480862 0.219632 +v -1.347000 0.059969 1.603010 +vn -0.119265 0.983366 0.136993 +v -1.465169 0.247135 1.724067 +vn -0.089171 0.991647 0.093197 +v -1.274794 0.277758 1.656473 +vn -0.080181 0.995897 0.041951 +v -1.259536 0.283994 1.579281 +vn -0.111806 0.992731 0.044551 +v -1.317878 0.277986 1.587668 +vn -0.188139 0.979687 0.069408 +v -1.540349 0.245701 1.656284 +vn -0.987338 -0.144592 -0.065247 +v -1.678277 0.099096 1.797919 +vn -0.999222 -0.038808 -0.007007 +v -1.673565 0.073868 1.757279 +vn -0.994607 -0.082736 -0.062543 +v -1.683512 0.106453 1.833929 +vn -0.992621 -0.121246 0.001483 +v -1.687843 0.139324 1.685235 +vn -0.568335 0.816937 0.098027 +v -1.664086 0.178631 1.750654 +vn -0.333592 0.937751 0.096644 +v -1.567673 0.237105 1.684145 +vn -0.593786 0.804605 0.005369 +v -1.664608 0.181008 1.702799 +vn -0.993049 -0.117154 -0.011355 +v -1.675558 0.083309 1.653318 +vn -0.998995 0.005095 0.044529 +v -1.672166 0.065282 1.590764 +vn -0.922770 -0.240209 0.301323 +v -1.679709 0.102540 1.564015 +vn -0.421257 0.906519 0.027681 +v -1.574900 0.236348 1.646114 +vn -0.892129 0.448933 -0.050642 +v -1.688175 0.159568 1.670728 +vn -0.700399 0.705297 -0.109534 +v -1.664121 0.159175 1.564740 +vn -0.608522 0.789682 -0.078128 +v -1.632030 0.195696 1.625100 +vn -0.634793 0.772678 -0.002476 +v -1.604153 0.217180 1.587835 +vn -0.005536 0.998907 0.046421 +v -0.989632 0.299068 1.391729 +vn -0.023689 0.998793 0.043016 +v -1.124390 0.296208 1.436097 +vn -0.062557 0.997515 0.032393 +v -1.195318 0.291425 1.480158 +vn -0.039715 0.997017 0.066186 +v -1.107956 0.303924 1.256522 +vn -0.065409 0.997101 0.038862 +v -1.158464 0.299667 1.307677 +vn -0.012358 0.995489 0.094070 +v -1.067856 0.306337 1.238084 +vn -0.048814 0.985068 0.165101 +v -1.087003 0.314078 1.172484 +vn -0.045632 0.957358 0.285277 +v -1.061312 0.328676 1.112653 +vn -0.120787 0.983922 0.131557 +v -1.239491 0.298072 1.170043 +vn -0.109104 0.986375 0.123128 +v -1.191660 0.303049 1.186170 +vn -0.104569 0.961039 0.255870 +v -1.169168 0.319600 1.114272 +vn -0.355988 -0.683505 0.637255 +v -1.273740 0.059063 1.539050 +vn -0.569207 -0.678217 0.464786 +v -1.259810 0.091704 1.572690 +vn -0.567062 -0.598649 0.565738 +v -1.254650 0.030535 1.503700 +vn 0.587117 -0.581745 0.562909 +v -1.325840 0.050011 1.546800 +vn 0.297281 -0.819935 0.489214 +v -1.298980 0.091574 1.572720 +vn 0.321589 -0.704629 0.632518 +v -1.299730 0.026922 1.514680 +vn -0.113173 0.992810 0.038987 +v -1.453413 0.264314 1.454317 +vn -0.107994 0.993507 0.035805 +v -1.363356 0.275773 1.392207 +vn -0.097305 0.994245 0.044821 +v -1.288143 0.287437 1.309884 +vn -0.099454 0.993122 0.061787 +v -1.485723 0.266691 1.343841 +vn -0.759583 0.649700 -0.030400 +v -1.633921 0.182257 1.479756 +vn -0.719635 0.694340 -0.004179 +v -1.600467 0.223872 1.430845 +vn -0.772915 0.634475 0.006534 +v -1.594546 0.228963 1.315452 +vn -0.202987 0.978152 0.044898 +v -1.539231 0.253376 1.479110 +vn -0.494107 0.868848 0.030992 +v -1.574564 0.245956 1.401382 +vn -0.075345 0.994679 0.070266 +v -1.315752 0.290518 1.209907 +vn -0.081954 0.993982 0.072689 +v -1.399126 0.278914 1.273189 +vn -0.155287 0.958287 0.239940 +v -1.250790 0.307260 1.121760 +vn -0.087619 0.985186 0.147417 +v -1.365908 0.296531 1.109261 +vn -0.100875 0.977148 0.187098 +v -1.414944 0.295763 1.076366 +vn -0.881171 0.469171 -0.058457 +v -1.662975 0.127399 1.236284 +vn -0.846872 0.530800 -0.032555 +v -1.637717 0.163130 1.190931 +vn -0.966828 0.245383 -0.070923 +v -1.678775 0.091184 1.252846 +vn -0.919958 0.388338 -0.053571 +v -1.656718 0.120681 1.137627 +vn -0.882201 0.470870 -0.001614 +v -1.635933 0.164411 1.121193 +vn -0.299760 0.952310 0.057007 +v -1.539146 0.270415 1.188647 +vn -0.147144 0.985347 0.086251 +v -1.490929 0.283280 1.153347 +vn -0.590877 0.806338 0.026136 +v -1.574570 0.254581 1.196175 +vn -0.999675 0.016340 0.019578 +v -1.686220 0.038507 2.003489 +vn -0.985095 -0.148879 -0.086159 +v -1.680582 0.054584 1.949852 +vn -0.955537 0.251921 0.153249 +v -1.686270 0.104124 1.962120 +vn -0.981805 -0.189353 0.014302 +v -1.682400 0.060980 1.903530 +vn -0.997585 0.069165 0.006282 +v -1.691180 0.107175 1.894220 +vn -0.999497 -0.030437 -0.008963 +v -1.678580 0.044808 1.843430 +vn -0.991616 0.129089 0.005812 +v -1.679031 0.035752 1.717268 +vn -0.930548 0.357561 0.078929 +v -1.689642 0.154147 1.772330 +vn -0.987603 0.145634 -0.058578 +v -1.688571 0.129234 1.561960 +vn -0.996004 0.087892 -0.015827 +v -1.685640 0.105454 1.488070 +vn -0.819614 0.556277 -0.137072 +v -1.681706 0.136766 1.548004 +vn -0.997569 0.036570 0.059321 +v -1.690330 0.060766 1.416740 +vn -0.970706 0.240253 0.002756 +v -1.686742 0.101635 1.420517 +vn -0.996779 0.075514 -0.026998 +v -1.691006 0.053514 1.347641 +vn -0.853888 0.518344 -0.046840 +v -1.673416 0.131442 1.432418 +vn -0.020641 0.912421 0.408731 +v -0.775565 0.352948 1.073552 +vn -0.021466 0.901201 0.432869 +v -0.836803 0.462554 0.842452 +vn -0.062497 0.918380 0.390734 +v -1.064783 0.346966 1.062702 +vn -0.050755 0.899139 0.434710 +v -1.012110 0.505003 0.741085 +vn -0.119006 0.919573 0.374464 +v -1.158726 0.342373 1.051364 +vn -0.114200 0.896832 0.427376 +v -1.108548 0.473632 0.791367 +vn -0.134818 0.893965 0.427375 +v -1.141739 0.408004 0.917770 +vn -0.168288 0.895274 0.412509 +v -1.342217 0.422780 0.810938 +vn -0.010640 0.903863 0.427690 +v -0.860540 0.545536 0.667327 +vn -0.093403 0.898620 0.428669 +v -1.082507 0.528455 0.681457 +vn -0.098425 0.897342 0.430221 +v -1.071827 0.587473 0.560889 +vn -0.148465 0.894110 0.422522 +v -1.141156 0.533358 0.654255 +vn -0.157854 0.920421 0.357640 +v -1.304259 0.320762 1.048672 +vn -0.149558 0.951054 0.270425 +v -1.308410 0.305060 1.086300 +vn -0.157277 0.901203 0.403852 +v -1.297388 0.349419 0.982702 +vn -0.133438 0.944689 0.299593 +v -1.368080 0.309008 1.053250 +vn -0.166155 0.908263 0.383994 +v -1.424534 0.325073 0.987262 +vn -0.181411 0.934493 0.306287 +v -1.482377 0.308822 1.001657 +vn -0.282275 0.883619 0.373547 +v -1.470573 0.360383 0.892093 +vn -0.198715 0.896240 0.396568 +v -1.428214 0.374997 0.878801 +vn -0.948026 0.318036 -0.009958 +v -1.657355 0.110794 1.030580 +vn -0.902157 0.431312 -0.009125 +v -1.636166 0.162609 1.041747 +vn -0.837711 0.544870 0.036838 +v -1.596651 0.234620 0.948294 +vn -0.857852 0.512991 0.030491 +v -1.578056 0.273060 0.826655 +vn -0.193327 0.962807 0.188754 +v -1.488470 0.295880 1.048790 +vn -0.403178 0.909491 0.101359 +v -1.538630 0.277892 1.062320 +vn -0.447911 0.851073 0.273954 +v -1.520414 0.306291 0.980026 +vn -0.543636 0.816615 0.193906 +v -1.535410 0.292062 0.992232 +vn -0.662947 0.746339 0.058978 +v -1.572012 0.261374 1.026602 +vn -0.348502 0.860751 0.371019 +v -1.481100 0.341001 0.923072 +vn -0.696213 0.700011 0.158973 +v -1.550291 0.301614 0.903242 +vn -0.643464 0.737803 0.203961 +v -1.525450 0.330142 0.877204 +vn -0.552720 0.767229 0.325361 +v -1.502119 0.351598 0.879898 +vn -0.760587 0.641805 0.097949 +v -1.573644 0.267808 0.941749 +vn -0.197849 0.892907 0.404442 +v -1.354845 0.459141 0.726407 +vn -0.252049 0.877294 0.408444 +v -1.423617 0.405713 0.814125 +vn -0.268571 0.898257 0.347856 +v -1.416130 0.435991 0.746324 +vn -0.399889 0.847040 0.350159 +v -1.419830 0.459274 0.682313 +vn -0.945778 0.324810 0.001441 +v -1.657801 0.109208 0.547426 +vn -0.907819 0.419363 -0.000176 +v -1.638170 0.157603 0.623774 +vn -0.977862 0.209249 0.000754 +v -1.670123 0.066181 0.525696 +vn -0.453856 0.829269 0.326079 +v -1.468220 0.392152 0.800771 +vn -0.764315 0.634455 0.115277 +v -1.544927 0.320792 0.831232 +vn -0.654643 0.731111 0.192143 +v -1.501233 0.382929 0.763990 +vn -0.392695 0.833534 0.388602 +v -1.449102 0.410023 0.790138 +vn -0.798641 0.594952 0.090580 +v -1.537999 0.342905 0.748053 +vn -0.635707 0.741959 0.213010 +v -1.474356 0.435676 0.652842 +vn -0.486698 0.833410 0.261827 +v -1.457650 0.430135 0.712969 +vn -0.492695 -0.639120 -0.590573 +v -1.534299 0.357055 0.672903 +vn -0.787832 0.606888 0.104919 +v -1.511860 0.391661 0.662444 +vn -0.546442 0.798260 0.253343 +v -1.440919 0.476579 0.607218 +vn -0.180156 0.895140 0.407761 +v -1.228622 0.541517 0.600589 +vn -0.353698 0.861973 0.363181 +v -1.404211 0.480959 0.653862 +vn -0.233419 0.893445 0.383759 +v -1.352069 0.512484 0.607819 +vn -0.031976 0.924249 0.380448 +v -0.989601 0.667145 0.406503 +vn -0.043589 0.900668 0.432315 +v -1.008177 0.629033 0.486077 +vn -0.148246 0.896870 0.416710 +v -1.118834 0.591650 0.538979 +vn -0.095170 0.913582 0.395361 +v -1.048244 0.657568 0.421068 +vn -0.150977 0.911063 0.383627 +v -1.113499 0.659252 0.394566 +vn -0.222647 0.890314 0.397201 +v -1.300395 0.582682 0.475946 +vn -0.205924 0.913629 0.350539 +v -1.246992 0.677837 0.289049 +vn -0.066047 0.951041 0.301924 +v -1.035539 0.688860 0.340035 +vn -0.054286 0.967529 0.246861 +v -0.979474 0.709489 0.270430 +vn -0.025204 0.969246 0.244798 +v -0.785652 0.723039 0.253989 +vn -0.031024 0.998601 0.042817 +v -0.777657 0.735535 0.164596 +vn -0.046994 0.977981 0.203332 +v -0.933587 0.717606 0.249786 +vn -0.062088 0.986888 0.148987 +v -1.018031 0.720820 0.213295 +vn -0.049263 0.997997 0.039685 +v -0.994924 0.725290 0.154064 +vn -0.103407 0.953840 0.281949 +v -1.142999 0.695779 0.286809 +vn -0.076523 0.983970 0.161081 +v -1.074310 0.714844 0.214212 +vn -0.157418 0.963819 0.215111 +v -1.241166 0.705753 0.210493 +vn -0.050792 0.996910 0.059923 +v -1.097760 0.718941 0.159348 +vn -0.151540 0.982504 0.108268 +v -1.249882 0.711872 0.162461 +vn -0.975051 0.221982 0.000445 +v -1.669096 0.071144 0.205057 +vn -0.670379 0.719249 0.182408 +v -1.452758 0.480281 0.557960 +vn -0.838583 0.542762 0.046777 +v -1.496983 0.426855 0.554572 +vn -0.769961 0.627412 0.116252 +v -1.493427 0.424401 0.616792 +vn -0.825449 0.559602 0.074024 +v -1.473856 0.471452 0.486782 +vn 0.454567 0.788363 0.414552 +v -1.461991 0.494682 0.383768 +vn -0.942853 0.333210 0.000185 +v -1.656812 0.111372 0.193409 +vn -0.908303 0.418313 -0.000350 +v -1.637920 0.158402 0.071966 +vn -0.821376 0.567258 0.059670 +v -1.415486 0.583516 0.281436 +vn -0.885636 0.464379 0.000103 +v -1.532774 0.358912 -0.165793 +vn -0.250066 0.899408 0.358515 +v -1.349387 0.544729 0.535749 +vn -0.470503 0.827884 0.305342 +v -1.412470 0.503919 0.571491 +vn -0.523164 0.810788 0.262531 +v -1.405981 0.545244 0.471276 +vn -0.360375 0.858379 0.365123 +v -1.382620 0.527663 0.556891 +vn -0.296969 0.867489 0.399088 +v -1.329222 0.594395 0.435851 +vn -0.280339 0.882213 0.378298 +v -1.292487 0.638290 0.351235 +vn -0.389738 0.849437 0.355755 +v -1.359260 0.577574 0.442440 +vn -0.706346 0.689085 0.161981 +v -1.434811 0.523066 0.458538 +vn -0.795713 0.597389 0.099839 +v -1.439221 0.531397 0.390496 +vn -0.607038 0.756388 0.243683 +v -1.400470 0.569597 0.401408 +vn -0.456855 0.830178 0.319512 +v -1.369293 0.591155 0.400355 +vn -0.362222 0.850710 0.380903 +v -1.321161 0.648936 0.309702 +vn -0.753308 0.641280 0.145900 +v -1.415590 0.575354 0.336377 +vn -0.452067 0.827305 0.333470 +v -1.346760 0.631135 0.317248 +vn -0.631567 0.746061 0.210989 +v -1.385478 0.612661 0.300016 +vn -0.524261 0.818750 0.234091 +v -1.351160 0.659986 0.237931 +vn -0.315012 0.918908 0.237435 +v -1.299860 0.689241 0.215144 +vn -0.316061 0.946590 0.063811 +v -1.301515 0.702008 0.136667 +vn -0.863411 0.504170 0.018264 +v -1.411595 0.591709 0.207413 +vn -0.720283 0.684948 0.109722 +v -1.371142 0.650515 0.203099 +vn -0.741932 0.670382 0.011152 +v -1.369030 0.658580 0.122762 +vn -0.534193 0.841058 0.085199 +v -1.341411 0.683718 0.154423 +vn -0.832158 0.553346 0.036350 +v -1.392701 0.626399 0.168089 +vn 0.997661 0.064888 0.021498 +v 0.256360 -0.064793 -0.474825 +vn 0.993017 0.117627 0.009012 +v 0.250853 -0.007341 -0.414675 +vn 0.941894 -0.324586 -0.086484 +v 0.246088 -0.497707 -0.815727 +vn 0.903155 -0.427914 0.034654 +v 0.225429 -0.538084 -0.774482 +vn 0.945257 -0.311624 0.096854 +v 0.235305 -0.492228 -0.686314 +vn 0.988770 -0.148991 -0.011671 +v 0.253260 -0.456059 -0.790521 +vn 0.986642 -0.147930 0.068226 +v 0.255139 -0.351017 -0.590837 +vn 0.958062 -0.275382 0.079259 +v 0.224120 -0.467235 -0.524652 +vn 0.973356 -0.205079 0.102576 +v 0.243355 -0.432076 -0.616927 +vn 0.991634 0.120366 0.046632 +v 0.253457 -0.005630 -0.543807 +vn 0.996347 -0.070684 0.047925 +v 0.264755 -0.297556 -0.661788 +vn 0.995932 -0.039658 -0.080917 +v 0.272060 -0.253670 -0.791151 +vn 0.991728 -0.100998 -0.079214 +v 0.265074 -0.362340 -0.785842 +vn 0.993609 -0.042866 -0.104424 +v 0.273661 -0.117254 -0.842655 +vn 0.991673 0.117807 0.052022 +v 0.255938 0.042487 -0.684354 +vn 0.996868 0.061357 0.049902 +v 0.266300 -0.032505 -0.762122 +vn 0.998822 -0.022636 -0.042922 +v 0.272173 -0.180342 -0.794796 +vn 0.825628 -0.562817 0.039689 +v 0.160570 -0.595778 -0.440829 +vn 0.584692 -0.811206 0.008970 +v 0.142156 -0.617301 -0.413022 +vn 0.924816 -0.379506 0.026289 +v 0.200001 -0.517619 -0.411314 +vn 0.957008 -0.289129 0.023241 +v 0.217660 -0.468743 -0.411996 +vn -0.186563 -0.982329 0.014985 +v -1.538856 -0.631284 -0.431687 +vn 0.889575 -0.451339 0.070348 +v 0.184482 -0.558944 -0.489628 +vn 0.520173 -0.852007 0.059194 +v 0.149299 -0.620274 -0.570426 +vn 0.921296 -0.378890 0.087503 +v 0.205609 -0.522685 -0.535753 +vn -0.000287 -1.000000 0.000793 +v -0.104733 -0.634475 -0.736861 +vn 0.769353 -0.634009 0.078281 +v 0.180318 -0.602015 -0.668611 +vn 0.355250 -0.933067 -0.056418 +v 0.163234 -0.625335 -0.792535 +vn 0.890577 -0.453842 -0.030003 +v 0.209845 -0.571205 -0.788292 +vn 0.077335 -0.985405 -0.151642 +v 0.120480 -0.634206 -0.785216 +vn 0.601162 -0.565984 -0.564151 +v 0.189614 -0.610418 -0.819322 +vn 0.024935 -0.987189 -0.157597 +v -0.056281 -0.634259 -0.785279 +vn 0.017514 -0.996452 -0.082317 +v -0.118346 -0.633828 -0.791331 +vn -0.137539 -0.990123 0.027186 +v -1.547961 -0.634337 -0.728730 +vn 0.000084 -0.999135 0.041584 +v -1.220314 -0.634697 -0.734008 +vn 0.974953 -0.216061 -0.052761 +v 0.240917 -0.481549 -0.859597 +vn 0.806058 -0.577834 -0.127976 +v 0.222379 -0.528340 -0.846751 +vn 0.975932 -0.143383 0.164310 +v 0.244414 -0.506024 -0.949961 +vn 0.785508 -0.555603 0.272548 +v 0.228542 -0.532673 -0.918357 +vn 0.993498 -0.042808 0.105497 +v 0.249504 -0.416548 -0.940042 +vn 0.994907 -0.040610 0.092260 +v 0.254699 -0.438297 -0.979563 +vn 0.968933 -0.166390 0.182985 +v 0.247615 -0.561587 -1.007677 +vn 0.727078 -0.507043 0.462887 +v 0.238717 -0.559480 -0.957332 +vn 0.640348 -0.521750 0.563676 +v 0.229841 -0.588588 -0.984389 +vn 0.996057 -0.045619 0.076090 +v 0.253867 -0.535797 -1.037230 +vn 0.962077 -0.218046 0.163902 +v 0.246439 -0.622389 -1.066863 +vn 0.696389 -0.520866 0.493702 +v 0.238773 -0.618279 -1.012620 +vn 0.999233 -0.000661 -0.039163 +v 0.255480 -0.470735 -1.027504 +vn 0.626288 -0.635415 0.451675 +v 0.229630 -0.645143 -1.044070 +vn 0.992996 -0.095440 0.069648 +v 0.253341 -0.607026 -1.108195 +vn 0.763343 -0.566397 0.310647 +v 0.239827 -0.664135 -1.083140 +vn 0.995625 -0.092656 0.012098 +v 0.256191 -0.600410 -1.153330 +vn 0.778940 -0.578351 0.242409 +v 0.241112 -0.678385 -1.121254 +vn 0.999267 0.030035 -0.023733 +v 0.255604 -0.544782 -1.088400 +vn 0.985163 0.100175 -0.139354 +v 0.250708 -0.487675 -1.082350 +vn 0.987987 0.141036 -0.063177 +v 0.252076 -0.549778 -1.145310 +vn 0.940475 0.265539 -0.212122 +v 0.238787 -0.493717 -1.141891 +vn 0.957686 -0.267589 0.105986 +v 0.244546 -0.683334 -1.184050 +vn 0.638020 -0.716797 0.281304 +v 0.229904 -0.702484 -1.160650 +vn 0.984859 -0.172458 0.017632 +v 0.250662 -0.670046 -1.256918 +vn 0.721043 -0.669943 0.176843 +v 0.237739 -0.715570 -1.200750 +vn 0.999222 0.031945 0.023128 +v 0.257102 -0.602258 -1.251572 +vn 0.728876 -0.681264 -0.067970 +v 0.239217 -0.720595 -1.307561 +vn 0.959506 0.276339 -0.054642 +v 0.246344 -0.549121 -1.207815 +vn 0.903434 0.390359 -0.177275 +v 0.226455 -0.497793 -1.202330 +vn 0.902425 0.414710 0.116809 +v 0.229291 -0.511167 -1.331671 +vn 0.973203 0.229891 -0.005162 +v 0.252897 -0.566191 -1.273770 +vn 0.992519 -0.073490 -0.097496 +v 0.249773 -0.418160 -0.847891 +vn 0.978560 -0.047725 -0.200356 +v 0.254145 -0.319788 -0.854623 +vn 0.978124 -0.100180 -0.182313 +v 0.261404 -0.182688 -0.858385 +vn 0.981361 -0.111963 -0.156186 +v 0.249270 -0.218476 -0.887214 +vn 0.998532 -0.053708 0.007089 +v 0.245298 -0.429630 -0.890350 +vn 0.996848 0.003268 0.079269 +v 0.257278 -0.282144 -0.975205 +vn 0.989263 -0.026208 -0.143778 +v 0.254848 -0.313834 -1.019940 +vn 0.999586 -0.011014 -0.026584 +v 0.244625 -0.271540 -0.902780 +vn 0.998118 0.010810 0.060366 +v 0.252829 -0.186944 -0.978261 +vn 0.995694 -0.041105 -0.083096 +v 0.258403 -0.236306 -1.025210 +vn 0.980627 0.006734 -0.195768 +v 0.255595 -0.118618 -0.913803 +vn 0.996043 -0.059654 -0.065881 +v 0.256893 -0.170833 -0.920927 +vn 0.999217 -0.003445 -0.039418 +v 0.272212 -0.058865 -0.852511 +vn 0.969781 -0.127531 -0.207991 +v 0.263929 -0.066339 -0.894991 +vn 0.975811 0.166281 0.141925 +v 0.241504 -0.095914 -0.957388 +vn 0.993438 -0.057129 -0.099079 +v 0.272652 -0.001295 -0.913631 +vn 0.975773 0.217432 -0.024303 +v 0.252625 -0.117653 -0.942653 +vn 0.999976 0.002032 0.006677 +v 0.259936 -0.157533 -1.046897 +vn 0.993343 0.093380 0.067459 +v 0.253564 -0.114049 -1.027350 +vn 0.971172 -0.157425 -0.179004 +v 0.249037 -0.013211 -0.981271 +vn 0.992093 0.098423 -0.077870 +v 0.243057 -0.050544 -1.014339 +vn 0.945845 0.139219 -0.293250 +v 0.242251 -0.428926 -1.080858 +vn 0.932994 0.034384 -0.358245 +v 0.244553 -0.361273 -1.060163 +vn 0.904466 0.249134 -0.346227 +v 0.197132 -0.400182 -1.166440 +vn 0.924350 -0.075008 -0.374101 +v 0.243824 -0.295573 -1.060333 +vn 0.955883 -0.159908 -0.246407 +v 0.251516 -0.190876 -1.078770 +vn 0.898205 -0.175582 -0.402987 +v 0.236584 -0.225510 -1.094755 +vn 0.791561 -0.447750 -0.415873 +v 0.247440 -0.145122 -1.130254 +vn 0.955501 -0.250172 -0.156308 +v 0.253320 -0.113814 -1.156240 +vn 0.992011 0.092843 0.085403 +v 0.253005 -0.055881 -1.088590 +vn 0.925170 0.321045 0.202463 +v 0.241319 0.008452 -1.080206 +vn 0.998122 -0.038599 0.047564 +v 0.247899 0.016379 -1.105560 +vn 0.999900 0.014171 0.000151 +v 0.259238 -0.060870 -1.165192 +vn 0.995897 0.084911 0.031303 +v 0.251454 -0.007572 -1.158240 +vn 0.949874 -0.307475 -0.056551 +v 0.250658 -0.090322 -1.234170 +vn 0.901856 -0.390888 -0.184019 +v 0.228036 -0.147829 -1.200800 +vn 0.993187 0.116514 -0.001851 +v 0.255341 -0.007885 -1.256324 +vn 0.997903 -0.064725 0.000299 +v 0.255586 -0.054967 -1.325218 +vn 0.961350 -0.272050 0.042358 +v 0.250745 -0.089996 -1.330994 +vn 0.999958 -0.001350 0.009069 +v 0.259324 -0.605850 -1.336430 +vn 0.930485 -0.347862 -0.114842 +v 0.244287 -0.691820 -1.352820 +vn 0.837630 -0.507375 -0.202353 +v 0.242633 -0.680107 -1.423340 +vn 0.556585 -0.777838 -0.291858 +v 0.225505 -0.705076 -1.389830 +vn 0.995959 -0.081331 -0.038085 +v 0.258527 -0.589956 -1.408944 +vn 0.935348 0.323622 0.142806 +v 0.246601 -0.541112 -1.353500 +vn 0.984357 0.141375 0.105136 +v 0.257723 -0.548282 -1.400640 +vn 0.894150 0.376677 0.242095 +v 0.234699 -0.495692 -1.391126 +vn 0.947308 -0.275592 -0.163266 +v 0.246834 -0.628153 -1.477693 +vn 0.984525 -0.122274 -0.125539 +v 0.252012 -0.560048 -1.518205 +vn 0.662307 -0.570819 -0.485299 +v 0.241868 -0.625026 -1.523630 +vn 0.610128 -0.650394 -0.452473 +v 0.228667 -0.645682 -1.504660 +vn 0.999903 -0.004531 -0.013159 +v 0.260066 -0.511511 -1.494062 +vn 0.952978 0.201859 0.226022 +v 0.251571 -0.481452 -1.460681 +vn 0.956211 -0.155326 -0.248060 +v 0.246662 -0.533753 -1.573770 +vn 0.863410 -0.307335 -0.400085 +v 0.241439 -0.575455 -1.571607 +vn 0.898350 -0.259127 -0.354711 +v 0.244344 -0.503482 -1.611678 +vn 0.996227 -0.071971 0.048489 +v 0.241554 -0.463459 -1.642799 +vn 0.689957 -0.531416 -0.491484 +v 0.228754 -0.529644 -1.614070 +vn 0.899525 -0.428767 0.083745 +v 0.248073 -0.491805 -1.677912 +vn 0.382991 -0.914092 -0.133242 +v 0.226133 -0.506147 -1.696390 +vn 0.987932 -0.143786 0.057582 +v 0.271360 -0.460508 -1.767632 +vn 0.698198 -0.713585 -0.057583 +v 0.261138 -0.493094 -1.781482 +vn 0.202586 -0.978095 -0.047839 +v 0.230561 -0.503736 -1.753435 +vn 0.928681 0.143757 0.341884 +v 0.246717 -0.406332 -1.489620 +vn 0.992338 0.041676 0.116309 +v 0.257512 -0.401457 -1.530863 +vn 0.861029 0.159270 0.482972 +v 0.198386 -0.358565 -1.406042 +vn 0.917711 0.021447 0.396670 +v 0.240893 -0.332004 -1.494183 +vn 0.976206 0.036678 0.213720 +v 0.253914 -0.336300 -1.530462 +vn 0.965493 -0.028863 -0.258823 +v 0.242968 -0.276574 -1.493150 +vn 0.952622 -0.140231 0.269900 +v 0.247902 -0.229093 -1.489368 +vn 0.996484 -0.040277 0.073463 +v 0.253973 -0.222749 -1.526343 +vn 0.893903 -0.437824 0.096168 +v 0.224895 -0.139851 -1.323857 +vn 0.995998 0.076587 0.046072 +v 0.254290 -0.008215 -1.330930 +vn 0.999565 -0.028320 0.008257 +v 0.257613 -0.036783 -1.378291 +vn 0.985385 -0.149370 0.081882 +v 0.253099 -0.103454 -1.406410 +vn 0.909323 -0.373464 0.183457 +v 0.238382 -0.132949 -1.373390 +vn 0.967487 -0.171873 0.185550 +v 0.250621 -0.158505 -1.455126 +vn 0.892190 -0.378685 0.246160 +v 0.205834 -0.201212 -1.369362 +vn 0.998417 -0.038494 0.041006 +v 0.255412 -0.126560 -1.499202 +vn 0.889895 -0.252220 0.380095 +v 0.229798 -0.204225 -1.435782 +vn 0.999887 -0.001521 0.014950 +v 0.255133 -0.063648 -1.450890 +vn 0.997992 -0.013181 -0.061961 +v 0.251154 0.000795 -1.452830 +vn 0.998459 0.006449 0.055124 +v 0.257524 -0.037095 -1.527733 +vn 0.998468 0.030484 0.046185 +v 0.244115 0.021581 -1.481229 +vn 0.994047 0.007319 0.108704 +v 0.258716 0.012643 -1.517710 +vn 0.996068 -0.043728 -0.077055 +v 0.256969 -0.417809 -1.568220 +vn 0.972053 -0.127452 -0.197152 +v 0.250608 -0.418102 -1.608090 +vn 0.972797 -0.214844 -0.086647 +v 0.244464 -0.392876 -1.641590 +vn 0.986167 -0.165699 0.004338 +v 0.256201 -0.358028 -1.648710 +vn 0.996982 0.044284 0.063758 +v 0.257751 -0.300254 -1.575600 +vn 0.997972 -0.025737 -0.058212 +v 0.253858 -0.190342 -1.561718 +vn 0.997141 0.026973 0.070586 +v 0.262525 -0.294999 -1.658981 +vn 0.991473 0.128491 0.021723 +v 0.251959 -0.239188 -1.631860 +vn 0.984924 -0.100818 0.140576 +v 0.259003 -0.370106 -1.689563 +vn 0.999308 -0.011584 0.035347 +v 0.271972 -0.361748 -1.770675 +vn 0.982162 0.128485 0.137290 +v 0.246996 -0.210468 -1.662722 +vn 0.979427 0.085674 0.182712 +v 0.259859 -0.229516 -1.698740 +vn 0.999745 0.017683 0.014009 +v 0.271557 -0.260976 -1.765899 +vn 0.997975 -0.062537 -0.011604 +v 0.256820 -0.102397 -1.598217 +vn 0.990146 -0.046331 -0.132154 +v 0.246631 -0.182842 -1.608110 +vn 0.979401 -0.201763 0.008039 +v 0.243585 -0.153820 -1.645243 +vn 0.989770 -0.142220 0.011344 +v 0.257371 -0.120133 -1.641470 +vn 0.999893 -0.014605 0.000670 +v 0.264441 -0.056943 -1.576390 +vn 0.998998 0.029349 -0.033790 +v 0.261430 0.000784 -1.633530 +vn 0.994229 0.000974 0.107272 +v 0.262511 -0.117789 -1.714129 +vn 0.968496 -0.158818 0.191815 +v 0.251770 -0.149589 -1.670040 +vn 0.997299 0.073414 0.002166 +v 0.268685 -0.130196 -1.758649 +vn 0.999114 0.041844 -0.004493 +v 0.261238 -0.062511 -1.691380 +vn 0.987284 0.106069 -0.118409 +v 0.260145 -0.004251 -1.687565 +vn 0.985947 0.155070 -0.062146 +v 0.260806 -0.067897 -1.747140 +vn 0.960202 0.204707 -0.190019 +v 0.247161 -0.004955 -1.743108 +vn 0.703964 -0.412136 -0.578427 +v 0.195348 -0.584638 -0.818768 +vn 0.112209 -0.514112 -0.850351 +v 0.157692 -0.589466 -0.829170 +vn 0.122567 -0.744950 -0.655764 +v 0.155265 -0.621273 -0.818154 +vn 0.291296 -0.875540 -0.385456 +v 0.175439 -0.555262 -0.859870 +vn 0.023883 -0.870853 -0.490963 +v 0.123057 -0.559753 -0.861050 +vn 0.329549 -0.929918 0.163246 +v 0.197663 -0.548341 -0.898114 +vn 0.153692 -0.487971 -0.859222 +v -0.055559 -0.591361 -0.828318 +vn 0.163807 -0.730465 -0.663015 +v -0.055903 -0.622350 -0.816739 +vn 0.103147 -0.898668 -0.426328 +v -0.064930 -0.560580 -0.858934 +vn 0.099596 -0.991835 0.079648 +v -0.041056 -0.550776 -0.898878 +vn 0.239663 -0.708432 0.663842 +v 0.210940 -0.623218 -1.008040 +vn 0.029506 -0.733550 0.678994 +v 0.162073 -0.627054 -1.002840 +vn 0.215108 -0.661540 0.718397 +v 0.199079 -0.598535 -0.973602 +vn 0.197552 -0.769412 0.607436 +v 0.198707 -0.652908 -1.032331 +vn 0.009750 -0.740590 0.671886 +v 0.032892 -0.627154 -1.004069 +vn 0.003119 -0.682297 0.731068 +v 0.078897 -0.596930 -0.973114 +vn 0.257755 -0.752836 0.605640 +v 0.210559 -0.563823 -0.952577 +vn 0.036033 -0.809415 0.586130 +v 0.162896 -0.568144 -0.948958 +vn -0.043161 -0.814902 0.577989 +v -0.029129 -0.652808 -1.033556 +vn 0.045789 -0.811475 0.582590 +v -0.016975 -0.569254 -0.948420 +vn 0.696171 -0.452375 -0.557407 +v -0.112549 -0.591788 -0.856643 +vn 0.402441 -0.827458 -0.391605 +v -0.128549 -0.622652 -0.854199 +vn 0.552021 -0.607987 -0.570635 +v -0.098406 -0.571168 -0.849713 +vn 0.475318 -0.878475 -0.048534 +v -0.093613 -0.565207 -0.878748 +vn 0.074914 -0.991392 -0.107375 +v -0.173475 -0.630882 -0.851333 +vn 0.701087 -0.709167 -0.074553 +v -0.130950 -0.595417 -0.899630 +vn 0.290453 -0.956884 -0.002989 +v -0.161964 -0.616866 -0.926690 +vn -0.079095 -0.994545 -0.067997 +v -0.233932 -0.612330 -1.060389 +vn 0.037012 -0.879262 0.474898 +v -0.084957 -0.626638 -0.996910 +vn 0.107045 -0.692189 0.713734 +v -0.045255 -0.599429 -0.972170 +vn -0.004600 -0.974666 0.223619 +v -0.134780 -0.623882 -0.985954 +vn 0.384418 -0.773792 0.503457 +v -0.111993 -0.606867 -0.952012 +vn -0.269486 -0.932335 0.241099 +v -0.103375 -0.642413 -1.042880 +vn 0.482535 -0.720962 0.497367 +v -0.101676 -0.575714 -0.940601 +vn 0.003200 -0.999306 -0.037115 +v -0.193917 -0.619774 -0.970142 +vn -0.178864 -0.983562 0.024747 +v -0.176528 -0.621722 -1.030780 +vn 0.188660 -0.949457 0.250875 +v 0.206369 -0.722359 -1.184435 +vn 0.218504 -0.901037 0.374684 +v 0.200156 -0.710632 -1.143827 +vn 0.280406 -0.959167 0.037020 +v 0.218146 -0.730316 -1.257905 +vn 0.035529 -0.990882 0.129963 +v 0.180807 -0.730204 -1.223767 +vn 0.000666 -0.973439 0.228946 +v 0.089212 -0.721151 -1.182839 +vn 0.041933 -0.999112 -0.004088 +v 0.178627 -0.733580 -1.271684 +vn -0.076046 -0.991966 0.101097 +v -0.039472 -0.729048 -1.222266 +vn -0.260350 -0.904816 0.336937 +v -0.048388 -0.722360 -1.180188 +vn -0.203388 -0.914269 0.350351 +v -0.029172 -0.709301 -1.135035 +vn -0.115533 -0.993153 0.017314 +v -0.037436 -0.732968 -1.277678 +vn 0.280400 -0.857055 0.432242 +v 0.210606 -0.673703 -1.072420 +vn 0.027712 -0.868018 0.495759 +v 0.163265 -0.675493 -1.066872 +vn 0.126806 -0.897191 0.423046 +v 0.180306 -0.694575 -1.105032 +vn -0.267320 -0.867451 0.419606 +v -0.051409 -0.677918 -1.071247 +vn 0.895605 0.444378 -0.020500 +v 0.203117 -0.466973 -1.267770 +vn -0.711610 -0.680982 0.172842 +v -0.062703 -0.723178 -1.196163 +vn -0.976066 -0.216249 -0.023071 +v -0.065610 -0.699996 -1.218627 +vn -0.709174 -0.670795 0.217041 +v -0.061716 -0.699296 -1.161500 +vn -0.563510 -0.795480 0.222866 +v -0.062524 -0.681013 -1.106480 +vn -0.499709 -0.861586 0.089223 +v -0.102190 -0.650112 -1.099900 +vn -0.562496 -0.819892 -0.106660 +v -0.119693 -0.642306 -1.155420 +vn -0.288847 -0.957289 -0.012825 +v -0.159168 -0.625223 -1.091170 +vn -0.271332 -0.939330 -0.209851 +v -0.168114 -0.612846 -1.173306 +vn -0.342853 -0.936046 -0.079176 +v -0.159533 -0.623764 -1.133680 +vn -0.087905 -0.991330 -0.097657 +v -0.239211 -0.602446 -1.164049 +vn -0.785081 -0.597399 -0.163593 +v -0.083165 -0.659089 -1.214530 +vn -0.537281 -0.828782 -0.156365 +v -0.119511 -0.620262 -1.214490 +vn -0.898823 -0.426689 -0.100267 +v -0.065574 -0.660282 -1.274060 +vn -0.498581 -0.858448 -0.120345 +v -0.120375 -0.617098 -1.273560 +vn -0.108546 -0.975495 -0.191383 +v -0.194386 -0.598176 -1.214590 +vn -0.027010 -0.993733 -0.108468 +v -0.236215 -0.598121 -1.214665 +vn -0.193245 -0.976938 -0.090821 +v -0.176843 -0.595119 -1.273310 +vn -0.024995 -0.996594 -0.078589 +v -0.225493 -0.591348 -1.296174 +vn 0.884730 0.113083 -0.452177 +v 0.197795 -0.359528 -1.145190 +vn 0.869327 -0.144028 -0.472787 +v 0.198046 -0.295515 -1.146710 +vn 0.908253 0.023191 -0.417779 +v 0.180612 -0.330231 -1.167420 +vn 0.899230 -0.250128 -0.358918 +v 0.215898 -0.231517 -1.142420 +vn 0.896912 0.373624 -0.236545 +v 0.193819 -0.428791 -1.204990 +vn 0.958183 0.124996 -0.257413 +v 0.174174 -0.360425 -1.203540 +vn 0.937338 0.302657 -0.172616 +v 0.170760 -0.400676 -1.234970 +vn 0.901211 0.417954 0.114603 +v 0.179604 -0.424974 -1.298642 +vn 0.994702 0.102258 -0.010538 +v 0.163545 -0.357394 -1.274060 +vn 0.817030 -0.346925 -0.460549 +v 0.180479 -0.261934 -1.189135 +vn 0.868098 -0.414442 -0.273211 +v 0.192152 -0.226625 -1.208750 +vn 0.962965 -0.074935 -0.259003 +v 0.173829 -0.291548 -1.198940 +vn 0.996901 -0.050262 -0.060522 +v 0.162284 -0.301116 -1.271070 +vn 0.934039 -0.333151 -0.128772 +v 0.171547 -0.246230 -1.245270 +vn 0.896680 -0.442412 0.015367 +v 0.192493 -0.201456 -1.290235 +vn 0.094802 -0.990762 -0.096965 +v -1.191377 -0.610898 -1.076307 +vn -0.096860 -0.991555 -0.086241 +v -1.248749 -0.630887 -0.851453 +vn 0.057528 -0.991621 -0.115662 +v -1.194700 -0.605472 -1.131862 +vn 0.179381 -0.974349 -0.135893 +v -1.244349 -0.601396 -1.176663 +vn 0.301139 -0.910272 -0.284112 +v 0.210200 -0.723301 -1.371867 +vn 0.044421 -0.994771 -0.091963 +v 0.177157 -0.730305 -1.323637 +vn 0.101004 -0.934410 -0.341579 +v 0.177621 -0.712597 -1.406545 +vn -0.126312 -0.943205 -0.307263 +v -0.037643 -0.724697 -1.366048 +vn -0.618427 -0.766445 -0.173523 +v -0.060175 -0.729189 -1.347977 +vn -0.246346 -0.925275 -0.288408 +v -0.038857 -0.713876 -1.405211 +vn 0.380008 -0.778233 -0.499947 +v 0.212501 -0.677256 -1.486833 +vn 0.097572 -0.925482 -0.366008 +v 0.180133 -0.698956 -1.443632 +vn 0.138021 -0.765637 -0.628291 +v 0.180539 -0.656539 -1.518720 +vn -0.173492 -0.822759 -0.541264 +v -0.036984 -0.655451 -1.522286 +vn -0.069654 -0.915107 -0.397148 +v -0.038764 -0.697428 -1.445178 +vn -0.118982 -0.842923 -0.524713 +v -0.037734 -0.678143 -1.485414 +vn -0.864017 -0.476651 -0.162108 +v -0.063919 -0.703837 -1.384742 +vn -0.928027 -0.370835 -0.035316 +v -0.065731 -0.658644 -1.424786 +vn -0.583562 -0.808718 -0.073691 +v -0.102472 -0.615915 -1.333280 +vn -0.598722 -0.800324 -0.031833 +v -0.103759 -0.609587 -1.503362 +vn -0.247369 -0.965483 -0.081555 +v -0.157118 -0.592122 -1.341176 +vn -0.685946 -0.622164 -0.377345 +v -0.061650 -0.681689 -1.474025 +vn -0.609411 -0.736945 -0.292455 +v -0.062644 -0.650618 -1.504610 +vn -0.282496 -0.957366 -0.060393 +v -0.159397 -0.583506 -1.478634 +vn -0.051085 -0.995287 -0.082425 +v -0.235761 -0.575052 -1.479017 +vn 0.401157 -0.685678 -0.607387 +v 0.217865 -0.609705 -1.572034 +vn 0.094884 -0.770458 -0.630389 +v 0.181279 -0.634079 -1.544312 +vn 0.359080 -0.552171 -0.752442 +v 0.215647 -0.587111 -1.592827 +vn 0.036514 -0.636199 -0.770660 +v 0.012094 -0.584662 -1.592650 +vn 0.149217 -0.738584 -0.657440 +v 0.180737 -0.544954 -1.624250 +vn 0.057322 -0.775628 -0.628582 +v 0.008764 -0.543798 -1.624000 +vn -0.211313 -0.845365 -0.490617 +v -0.085895 -0.611618 -1.572984 +vn 0.057661 -0.692072 -0.719522 +v -0.052431 -0.603970 -1.579677 +vn 0.112484 -0.945361 -0.306005 +v 0.179144 -0.521158 -1.675349 +vn 0.045025 -0.987167 -0.153210 +v 0.182022 -0.507375 -1.734948 +vn 0.144825 -0.969936 -0.195577 +v -0.056076 -0.507619 -1.732993 +vn 0.034416 -0.942457 -0.332552 +v 0.003589 -0.521174 -1.674130 +vn -0.421738 -0.886976 -0.188177 +v -0.119648 -0.596648 -1.567560 +vn 0.181995 -0.648394 -0.739231 +v -0.074673 -0.571377 -1.610140 +vn 0.111590 -0.836448 -0.536565 +v -0.116118 -0.578051 -1.621940 +vn 0.112568 -0.798467 -0.591421 +v -0.073547 -0.548594 -1.634390 +vn 0.407409 -0.786702 -0.463808 +v -0.120304 -0.537168 -1.660562 +vn -0.299467 -0.952093 -0.061949 +v -0.159407 -0.577896 -1.570860 +vn -0.051776 -0.994392 -0.092220 +v -0.239383 -0.562688 -1.621129 +vn -0.143119 -0.980177 -0.137004 +v -0.176584 -0.567786 -1.631060 +vn 0.123885 -0.936129 -0.329112 +v -0.064049 -0.524367 -1.682500 +vn 0.280344 -0.949758 -0.139167 +v -0.121329 -0.528194 -1.721790 +vn 0.345532 -0.915062 -0.208014 +v -0.161691 -0.543752 -1.710310 +vn 0.059671 -0.988533 -0.138714 +v -0.196605 -0.558440 -1.689880 +vn 0.375424 -0.922806 -0.086520 +v -0.146992 -0.528488 -1.795191 +vn 0.192557 -0.980357 -0.042687 +v -0.199682 -0.557582 -1.738556 +vn 0.881344 0.391026 0.265201 +v 0.192945 -0.426231 -1.341490 +vn 0.960938 0.209957 0.180324 +v 0.173657 -0.375995 -1.338450 +vn 0.907750 0.280951 0.311538 +v 0.215249 -0.429081 -1.402410 +vn 0.812297 0.353260 0.464090 +v 0.182115 -0.377008 -1.376646 +vn 0.985349 -0.027371 0.168341 +v 0.163514 -0.308570 -1.329450 +vn 0.951840 -0.283502 0.116733 +v 0.169008 -0.252924 -1.312200 +vn 0.910439 -0.226785 0.345932 +v 0.184690 -0.261532 -1.376060 +vn 0.879466 -0.094620 0.466463 +v 0.201878 -0.285216 -1.418910 +vn 0.912843 0.025270 0.407529 +v 0.178361 -0.327523 -1.381830 +vn -0.017718 -0.997515 -0.068189 +v -0.312332 -0.556105 -1.692133 +vn -0.062340 -0.996521 -0.055319 +v -0.290507 -0.555383 -1.750820 +vn 0.980556 -0.155296 -0.119969 +v 0.260014 -0.464865 -1.861689 +vn 0.632189 -0.749032 -0.198213 +v 0.249572 -0.480584 -1.910972 +vn 0.271409 -0.925294 -0.264893 +v 0.227961 -0.478349 -1.939692 +vn 0.880335 -0.400070 -0.254863 +v 0.247848 -0.456457 -1.952682 +vn 0.994421 -0.012527 -0.104741 +v 0.256307 -0.321186 -1.926855 +vn 0.995468 0.039801 -0.086367 +v 0.252966 -0.233135 -1.948398 +vn 0.963409 -0.209246 -0.167511 +v 0.240613 -0.417966 -2.015155 +vn 0.620197 -0.730782 -0.285154 +v 0.228184 -0.457106 -1.998060 +vn 0.992138 -0.067271 -0.105536 +v 0.243502 -0.345028 -2.021995 +vn 0.989337 0.097765 -0.107953 +v 0.249133 -0.123971 -1.929361 +vn 0.960599 0.251106 -0.119146 +v 0.250965 -0.062377 -1.808479 +vn 0.930122 0.320860 -0.178666 +v 0.234076 -0.019750 -1.824187 +vn 0.965431 0.219151 -0.141122 +v 0.251823 -0.088261 -1.886170 +vn 0.983742 0.138143 -0.114753 +v 0.241242 -0.122112 -1.997399 +vn 0.960722 0.248931 -0.122665 +v 0.243684 -0.093521 -1.962040 +vn 0.926796 0.348649 -0.139619 +v 0.236133 -0.066763 -1.928650 +vn 0.994523 -0.062009 -0.084141 +v 0.242245 -0.290909 -2.085361 +vn 0.996172 0.041894 -0.076716 +v 0.245781 -0.236307 -2.049601 +vn 0.997492 0.004399 -0.070638 +v 0.243926 -0.254124 -2.095908 +vn 0.045009 -0.986237 -0.159097 +v 0.003245 -0.483088 -1.907913 +vn 0.016773 -0.992397 -0.121932 +v 0.003516 -0.497061 -1.807850 +vn 0.105665 -0.979888 -0.169274 +v 0.182007 -0.471315 -1.993074 +vn 0.143667 -0.986695 -0.076113 +v -0.055909 -0.496885 -1.807710 +vn 0.185622 -0.977371 -0.101437 +v -0.065067 -0.497820 -1.866900 +vn 0.343428 -0.933450 -0.103581 +v -0.123060 -0.514476 -1.869230 +vn 0.432436 -0.899400 -0.063864 +v -0.164696 -0.530835 -1.849792 +vn 0.360906 -0.930772 -0.058392 +v -0.191781 -0.550668 -1.820370 +vn 0.005612 -0.999981 0.002399 +v -0.230610 -0.558223 -1.812200 +vn 0.354991 -0.933892 -0.042749 +v -0.206602 -0.551365 -1.904942 +vn -0.005331 -0.999877 -0.014728 +v -0.235937 -0.559637 -1.902017 +vn 0.162393 -0.968753 -0.187474 +v -0.056910 -0.476622 -1.952255 +vn 0.181007 -0.961085 -0.208691 +v -0.064628 -0.491307 -1.910110 +vn 0.406411 -0.901996 -0.145718 +v -0.120584 -0.498896 -1.939069 +vn 0.471283 -0.881187 -0.037431 +v -0.174168 -0.534643 -1.910960 +vn 0.593103 -0.800488 -0.086293 +v -0.153722 -0.507231 -2.022014 +vn 0.495494 -0.867446 -0.044971 +v -0.184084 -0.539729 -1.979213 +vn 0.417974 -0.902207 -0.106396 +v -0.109900 -0.473442 -2.121231 +vn 0.652662 -0.745784 -0.133560 +v -0.156231 -0.494641 -2.186482 +vn 0.680216 -0.730528 -0.060287 +v -0.188568 -0.535739 -2.146258 +vn 0.536969 -0.842662 -0.039796 +v -0.209842 -0.549543 -2.192870 +vn 0.010066 -0.997279 -0.073030 +v -0.235786 -0.558855 -2.345074 +vn 0.678300 -0.718800 -0.152431 +v -0.162036 -0.491734 -2.216983 +vn 0.475555 -0.868011 -0.142845 +v -0.129714 -0.469660 -2.218099 +vn 0.755082 -0.650177 -0.084388 +v -0.186272 -0.521324 -2.220849 +vn 0.916072 0.364252 -0.167726 +v 0.198967 0.009523 -1.943774 +vn 0.922094 0.360200 -0.141417 +v 0.228819 -0.072825 -1.991340 +vn 0.893345 0.420568 -0.158297 +v 0.200830 -0.009755 -1.992550 +vn 0.649382 -0.744538 -0.154807 +v 0.217350 -0.447566 -2.070153 +vn 0.268701 -0.953409 -0.137151 +v 0.178501 -0.456877 -2.096724 +vn 0.989663 -0.067137 -0.126726 +v 0.229262 -0.293360 -2.226054 +vn 0.175515 -0.974743 -0.138099 +v -0.054824 -0.441896 -2.209209 +vn 0.621001 -0.768331 -0.154999 +v 0.204048 -0.431348 -2.235470 +vn 0.945902 -0.259446 -0.194825 +v 0.212843 -0.402241 -2.265141 +vn 0.143447 -0.938152 -0.315110 +v 0.170655 -0.426665 -2.314459 +vn 0.993439 0.004786 -0.114265 +v 0.231093 -0.237567 -2.230063 +vn 0.976341 0.183131 -0.114986 +v 0.220329 -0.125463 -2.228423 +vn 0.931197 0.353604 -0.088526 +v 0.227086 -0.080855 -2.055542 +vn 0.887530 0.409683 -0.210832 +v 0.178690 0.017340 -2.023445 +vn 0.857084 0.496146 -0.138731 +v 0.203644 -0.042596 -2.073696 +vn 0.859730 0.468998 -0.202247 +v 0.172995 -0.004159 -2.104509 +vn 0.990266 0.103938 -0.092580 +v 0.227671 -0.179490 -2.228265 +vn 0.813802 0.541473 -0.211030 +v 0.158753 -0.003529 -2.165386 +vn 0.796200 0.593612 -0.117007 +v 0.196756 -0.051756 -2.167789 +vn 0.926207 0.355480 -0.125597 +v 0.211949 -0.084002 -2.224319 +vn 0.746907 0.620391 -0.239261 +v 0.147232 -0.012902 -2.225189 +vn 0.748447 0.656481 -0.094126 +v 0.195184 -0.058023 -2.223339 +vn -0.080986 -0.995144 -0.055950 +v -0.304808 -0.549264 -1.821712 +vn -0.205354 -0.978093 -0.034113 +v -0.271888 -0.549686 -1.903214 +vn -0.068347 -0.993176 -0.094496 +v -0.354438 -0.537186 -1.898627 +vn -0.007207 -0.995768 -0.091617 +v -0.431430 -0.541683 -1.853043 +vn -0.286461 -0.957829 -0.022452 +v -0.285389 -0.541224 -2.070118 +vn 0.090286 -0.992699 -0.079984 +v -1.075565 -0.527184 -2.016339 +vn -0.131359 -0.989355 -0.062621 +v -0.356437 -0.522503 -2.073384 +vn -0.033937 -0.980168 -0.195241 +v -0.417674 -0.513933 -2.164118 +vn -0.382503 -0.922478 -0.052200 +v -0.268324 -0.545660 -2.168756 +vn -0.196424 -0.967943 -0.156540 +v -0.351312 -0.518801 -2.166639 +vn -0.486767 -0.873227 -0.023055 +v -0.261066 -0.549066 -2.232669 +vn -0.536802 -0.801306 -0.264107 +v -0.298559 -0.518209 -2.226859 +vn -0.576912 -0.733684 -0.359000 +v -0.314091 -0.487312 -2.257927 +vn -0.232495 -0.809813 -0.538655 +v -0.354683 -0.477541 -2.243429 +vn -0.228809 -0.875892 -0.424805 +v -0.351457 -0.507919 -2.205279 +vn -0.041866 -0.892530 -0.449040 +v -0.420749 -0.501239 -2.201854 +vn 0.129252 -0.972256 -0.194966 +v -1.074182 -0.513569 -2.165138 +vn 0.021930 -0.902192 -0.430776 +v -1.014997 -0.501389 -2.201994 +vn 0.830372 -0.555010 -0.049457 +v -0.194811 -0.526817 -2.292509 +vn 0.621944 -0.755407 -0.206265 +v -0.210780 -0.548585 -2.362412 +vn 0.685210 -0.713565 -0.145983 +v -0.161340 -0.483600 -2.268309 +vn 0.885149 -0.417272 -0.205899 +v -0.195114 -0.526038 -2.346169 +vn 0.692946 -0.616254 -0.374241 +v -0.166809 -0.465147 -2.340619 +vn 0.469429 -0.626711 -0.621989 +v -0.216583 -0.546135 -2.381281 +vn -0.040093 -0.253059 -0.966620 +v -0.238740 -0.523718 -2.394259 +vn -0.146357 -0.859621 -0.489522 +v -0.250685 -0.552404 -2.375936 +vn 0.594937 -0.370765 -0.713150 +v -0.202443 -0.474711 -2.386349 +vn 0.048357 -0.333913 -0.941362 +v -0.238649 -0.477928 -2.400449 +vn 0.617658 -0.645657 -0.449028 +v 0.192425 -0.421752 -2.315868 +vn 0.959911 -0.082273 -0.267960 +v 0.218080 -0.326574 -2.279195 +vn 0.874840 -0.143161 -0.462774 +v 0.198880 -0.387243 -2.315921 +vn 0.620092 -0.484003 -0.617436 +v 0.162725 -0.398475 -2.355559 +vn 0.787531 -0.134145 -0.601498 +v 0.183808 -0.347972 -2.347224 +vn 0.218016 -0.899392 -0.378896 +v 0.131869 -0.419657 -2.351998 +vn 0.969058 0.030927 -0.244888 +v 0.224384 -0.219101 -2.279051 +vn 0.840775 -0.096659 -0.532686 +v 0.190601 -0.296190 -2.346887 +vn 0.903783 -0.013279 -0.427784 +v 0.207388 -0.239582 -2.326729 +vn 0.661300 -0.381381 -0.645934 +v 0.136187 -0.382216 -2.396427 +vn 0.471255 -0.676399 -0.566042 +v 0.110258 -0.392838 -2.408849 +vn 0.797654 -0.041256 -0.601702 +v 0.178856 -0.251197 -2.369018 +vn 0.730173 -0.062278 -0.680418 +v 0.102925 -0.251618 -2.464234 +vn 0.730327 -0.211760 -0.649446 +v 0.108006 -0.350018 -2.437249 +vn 0.885498 0.234548 -0.401098 +v 0.062865 -0.407962 -2.409679 +vn 0.446868 -0.487313 -0.750224 +v 0.073597 -0.379393 -2.466364 +vn 0.172823 -0.882283 -0.437845 +v 0.054728 -0.399886 -2.447320 +vn 0.964181 0.191432 -0.183602 +v 0.215230 -0.129967 -2.279259 +vn 0.848655 0.052287 -0.526357 +v 0.194541 -0.208094 -2.348920 +vn 0.875120 0.343130 -0.341213 +v 0.202422 -0.100424 -2.310588 +vn 0.792799 0.185843 -0.580459 +v 0.179522 -0.126938 -2.352572 +vn 0.863422 0.449915 -0.228210 +v 0.197647 -0.081263 -2.280839 +vn 0.739966 0.637614 -0.214239 +v 0.197160 -0.061809 -2.258139 +vn 0.618043 0.748690 -0.239764 +v 0.167737 -0.048956 -2.282339 +vn 0.658237 0.685199 -0.311812 +v 0.177092 -0.060439 -2.313499 +vn 0.688450 0.443243 -0.574083 +v 0.079662 0.041539 -2.298486 +vn 0.707963 0.616711 -0.344175 +v 0.122604 -0.007301 -2.277589 +vn 0.756929 0.425436 -0.496046 +v 0.179631 -0.083097 -2.332649 +vn 0.495037 0.691018 -0.526719 +v 0.099941 -0.019382 -2.331029 +vn 0.540483 0.766732 -0.346411 +v 0.146580 -0.055797 -2.339909 +vn 0.780632 0.088565 -0.618683 +v 0.160790 -0.179759 -2.388074 +vn 0.768238 0.183765 -0.613222 +v 0.121528 -0.119710 -2.423839 +vn 0.602883 0.091788 -0.792532 +v 0.089203 -0.181200 -2.477599 +vn 0.737810 0.351905 -0.576020 +v 0.116174 -0.090756 -2.420470 +vn 0.652111 0.595870 -0.468710 +v 0.151083 -0.067481 -2.362278 +vn 0.454838 0.760487 -0.463445 +v 0.111677 -0.060544 -2.393599 +vn 0.180301 0.651819 -0.736630 +v 0.038064 -0.010020 -2.350159 +vn 0.135901 0.900949 -0.412094 +v 0.056420 -0.051374 -2.400079 +vn 0.059900 0.617215 -0.784511 +v -0.046261 -0.002245 -2.350568 +vn 0.058353 0.887507 -0.457084 +v -0.017492 -0.047144 -2.400492 +vn 0.549566 0.353821 -0.756827 +v 0.079760 -0.098558 -2.467146 +vn 0.446294 0.774242 -0.448744 +v 0.093120 -0.062718 -2.426376 +vn 0.199744 0.748532 -0.632299 +v 0.036889 -0.069529 -2.466069 +vn 0.066181 0.799611 -0.596860 +v -0.016890 -0.064494 -2.470197 +vn 0.141990 -0.975248 -0.169499 +v -0.055960 -0.431119 -2.284809 +vn 0.431764 -0.871045 -0.234221 +v -0.119857 -0.452764 -2.287909 +vn 0.062628 -0.980227 -0.187705 +v -0.056328 -0.424372 -2.327809 +vn 0.195757 -0.935164 -0.295208 +v -0.115535 -0.417063 -2.369409 +vn 0.367816 -0.848901 -0.379577 +v -0.119991 -0.433599 -2.338474 +vn 0.097798 -0.967991 -0.231145 +v -0.116303 -0.409329 -2.410563 +vn 0.052896 -0.884662 -0.463223 +v -0.177836 -0.399599 -2.460042 +vn 0.357267 -0.759206 -0.544028 +v -0.179262 -0.429598 -2.401789 +vn 0.096996 -0.659888 -0.745077 +v -0.238525 -0.431674 -2.424299 +vn 0.048873 -0.833461 -0.550413 +v -0.236808 -0.399844 -2.461319 +vn 0.071660 0.571555 -0.817429 +v -0.171353 0.007202 -2.352807 +vn 0.048964 0.833969 -0.549634 +v -0.134806 -0.032554 -2.392625 +vn 0.042220 0.958655 -0.281423 +v -0.066783 -0.056476 -2.441589 +vn 0.028478 0.840703 -0.540747 +v -0.250843 -0.061431 -2.479976 +vn 0.200965 -0.204742 -0.957963 +v 0.042997 -0.342879 -2.483294 +vn 0.077665 -0.574635 -0.814716 +v -0.006725 -0.380948 -2.478265 +vn 0.525158 -0.081188 -0.847123 +v 0.082028 -0.255369 -2.483070 +vn 0.228953 -0.066775 -0.971144 +v 0.046944 -0.251024 -2.496905 +vn 0.245460 0.082866 -0.965858 +v 0.046764 -0.183669 -2.496265 +vn 0.235008 0.202018 -0.950768 +v 0.044691 -0.125093 -2.487494 +vn 0.342902 0.440465 -0.829704 +v 0.061129 -0.092912 -2.473639 +vn 0.110677 0.387542 -0.915184 +v 0.012304 -0.087547 -2.481192 +vn 0.083435 -0.262237 -0.961390 +v -0.152141 -0.348140 -2.501275 +vn 0.055907 -0.668511 -0.741598 +v -0.213563 -0.381505 -2.492438 +vn 0.097974 -0.132710 -0.986301 +v -0.283426 -0.297842 -2.521971 +vn 0.105411 -0.042679 -0.993512 +v -0.272978 -0.238995 -2.526943 +vn 0.079797 0.267943 -0.960124 +v -0.247755 -0.126831 -2.515325 +vn 0.061419 0.474113 -0.878319 +v -0.192028 -0.085999 -2.495553 +vn 0.112022 0.095782 -0.989079 +v -0.297257 -0.181629 -2.528397 +vn -0.587335 -0.640121 -0.495259 +v -0.258903 -0.549286 -2.376370 +vn -0.805883 -0.585670 -0.086852 +v -0.276627 -0.526697 -2.292879 +vn -0.877710 -0.452768 -0.156928 +v -0.276340 -0.526041 -2.346369 +vn -0.659672 -0.670622 -0.339262 +v -0.304974 -0.463997 -2.349149 +vn -0.633748 -0.347001 -0.691341 +v -0.269436 -0.496070 -2.383949 +vn -0.338503 -0.878613 -0.336830 +v -0.354595 -0.455912 -2.283159 +vn -0.286472 -0.879303 -0.380473 +v -0.345753 -0.430066 -2.371966 +vn -0.368168 -0.886009 -0.281851 +v -0.351669 -0.446228 -2.330949 +vn -0.066041 -0.871872 -0.485260 +v -0.415840 -0.445463 -2.282527 +vn -0.114293 -0.975838 -0.186217 +v -0.416090 -0.417560 -2.369099 +vn -0.139089 -0.952597 -0.270578 +v -0.416278 -0.424317 -2.328077 +vn -0.329822 -0.755771 -0.565710 +v -0.292961 -0.437881 -2.406909 +vn -0.169606 -0.940308 -0.295049 +v -0.356833 -0.410256 -2.411089 +vn 0.012635 -0.854478 -0.519333 +v -0.297148 -0.399757 -2.463639 +vn -0.037779 -0.936916 -0.347507 +v -0.356827 -0.399927 -2.465309 +vn -0.028749 -0.980514 -0.194336 +v -0.416227 -0.410285 -2.411420 +vn 0.028697 -0.965065 -0.260434 +v -0.477858 -0.400563 -2.468766 +vn 0.185615 0.522617 -0.832117 +v -0.331763 0.010002 -2.365386 +vn 0.089813 0.807227 -0.583368 +v -0.297114 -0.030867 -2.401339 +vn 0.200327 0.666149 -0.718411 +v -0.365022 -0.007684 -2.391769 +vn 0.065435 0.900943 -0.428975 +v -0.335564 -0.051882 -2.447517 +vn 0.047750 0.865160 -0.499218 +v -0.349835 -0.063298 -2.481874 +vn 0.063321 0.898823 -0.433715 +v -0.410171 -0.053144 -2.461319 +vn 0.086883 0.867771 -0.489310 +v -0.419968 -0.060207 -2.490486 +vn 0.087951 0.647973 -0.756568 +v -0.441868 -0.010153 -2.409556 +vn 0.049183 0.881473 -0.469665 +v -0.537820 -0.049539 -2.461581 +vn -0.028958 -0.977580 -0.208564 +v -0.893964 -0.400914 -2.466204 +vn 0.055884 0.599977 -0.798063 +v -0.586781 -0.001810 -2.412142 +vn 0.045217 0.844043 -0.534366 +v -0.642895 -0.036848 -2.455806 +vn 0.014783 0.576667 -0.816846 +v -0.700283 0.005714 -2.414469 +vn -0.012567 0.830092 -0.557485 +v -0.749225 -0.034487 -2.457329 +vn 0.128983 -0.301443 -0.944720 +v -0.414449 -0.347776 -2.526842 +vn 0.094233 -0.775580 -0.624176 +v -0.415486 -0.382866 -2.505666 +vn 0.104230 -0.057420 -0.992894 +v -0.330106 -0.240215 -2.533778 +vn 0.087285 -0.548640 -0.831490 +v -0.446605 -0.372326 -2.525539 +vn 0.078722 -0.786853 -0.612099 +v -0.477807 -0.382592 -2.513489 +vn 0.095127 -0.129023 -0.987068 +v -0.480654 -0.290522 -2.542336 +vn 0.094982 -0.264396 -0.959725 +v -0.478512 -0.347736 -2.533129 +vn 0.102876 0.281879 -0.953919 +v -0.361713 -0.133189 -2.527691 +vn 0.111275 0.076640 -0.990830 +v -0.328995 -0.191605 -2.533558 +vn 0.044306 0.535877 -0.843132 +v -0.285182 -0.083942 -2.499547 +vn 0.121981 0.503888 -0.855112 +v -0.491916 -0.087756 -2.532342 +vn 0.090645 0.178009 -0.979845 +v -0.550772 -0.125485 -2.546283 +vn 0.142269 0.605175 -0.783277 +v -0.407279 -0.078557 -2.506029 +vn 0.045064 -0.910834 -0.410305 +v -0.537970 -0.392335 -2.509162 +vn 0.122499 -0.538387 -0.833747 +v -0.518110 -0.373968 -2.532270 +vn 0.062593 -0.188301 -0.980115 +v -0.663875 -0.332055 -2.554739 +vn 0.027649 -0.621149 -0.783204 +v -0.670858 -0.375962 -2.542577 +vn 0.038257 -0.045977 -0.998209 +v -0.683707 -0.238175 -2.566643 +vn -0.007493 -0.932800 -0.360317 +v -0.751178 -0.392478 -2.514251 +vn -0.014249 -0.236387 -0.971554 +v -0.721916 -0.338351 -2.555657 +vn 0.034507 0.072699 -0.996757 +v -0.683382 -0.181316 -2.565983 +vn 0.073163 0.908212 -0.412065 +v -0.516640 -0.060417 -2.502429 +vn 0.078089 0.735036 -0.673516 +v -0.565101 -0.067718 -2.528978 +vn 0.030183 0.793886 -0.607317 +v -0.659927 -0.063785 -2.533838 +vn 0.030503 0.200399 -0.979239 +v -0.684193 -0.127248 -2.558633 +vn 0.012469 0.946551 -0.322313 +v -0.664375 -0.056644 -2.504908 +vn 0.051436 0.372403 -0.926644 +v -0.657348 -0.085879 -2.545956 +vn 0.971921 0.235172 0.007925 +v 0.238642 0.074420 -0.404641 +vn 0.968304 0.242616 0.059375 +v 0.241353 0.079084 -0.538866 +vn 0.972981 0.213357 0.088241 +v 0.246956 0.093178 -0.643967 +vn 0.894971 0.433491 0.105413 +v 0.239447 0.103559 -0.616380 +vn 0.885645 0.447700 0.123273 +v 0.242386 0.127583 -0.683949 +vn 0.966487 0.248642 0.063877 +v 0.248043 0.111545 -0.739600 +vn 0.994244 0.101893 0.033116 +v 0.269397 0.055947 -0.918556 +vn 0.892450 0.429000 0.139615 +v 0.241720 0.143649 -0.766626 +vn 0.817194 0.561838 0.128577 +v 0.232120 0.149096 -0.741653 +vn 0.769313 0.627056 0.122301 +v 0.229985 0.173821 -0.822011 +vn 0.919424 0.392494 0.024670 +v 0.226975 0.109655 -0.497349 +vn 0.885190 0.465061 -0.012528 +v -0.013571 0.580512 -0.419913 +vn 0.132171 0.991031 0.019724 +v -0.181785 0.714973 0.100417 +vn 0.840321 0.539952 -0.048080 +v -0.037895 0.625518 -0.458163 +vn 0.042721 0.999081 -0.003560 +v -0.253563 0.716761 -0.220090 +vn 0.542881 0.839653 -0.016249 +v -0.088566 0.681063 -0.421948 +vn 0.147967 0.988281 -0.037502 +v -0.180968 0.711905 -0.471619 +vn 0.727740 0.684619 -0.041125 +v -0.060976 0.656947 -0.446650 +vn 0.340267 0.939217 -0.045706 +v -0.129591 0.699474 -0.474737 +vn 0.051805 0.997866 -0.039753 +v -0.242889 0.715539 -0.477999 +vn 0.048037 0.998822 -0.006843 +v -0.404180 0.722695 -0.002553 +vn 0.046658 0.998882 0.007573 +v -0.447541 0.726059 0.101965 +vn 0.035131 0.999379 -0.002811 +v -0.643131 0.734852 0.091206 +vn 0.044248 0.999015 -0.003400 +v -0.416080 0.722687 -0.297818 +vn 0.048436 0.998819 -0.003707 +v -0.500346 0.727301 -0.213302 +vn 0.036742 0.998968 -0.026720 +v -0.653288 0.732946 -0.497136 +vn -0.000511 0.999835 -0.018178 +v -0.715824 0.734202 -0.496085 +vn 0.895869 0.444046 -0.015539 +v 0.207427 0.154726 -0.464212 +vn 0.884424 0.465068 -0.038796 +v 0.144340 0.273456 -0.445227 +vn 0.864174 0.501827 -0.037053 +v 0.175955 0.205537 -0.542881 +vn 0.851896 0.522900 0.029119 +v 0.206545 0.157327 -0.574801 +vn 0.825893 0.563823 -0.001915 +v 0.180829 0.191884 -0.597382 +vn 0.886976 0.459331 -0.047833 +v 0.072126 0.411603 -0.459052 +vn 0.858041 0.512755 -0.029099 +v 0.138269 0.260059 -0.694043 +vn 0.859805 0.500417 -0.101574 +v -0.006346 0.538140 -0.651257 +vn 0.767454 0.633389 0.099162 +v 0.208875 0.167232 -0.686344 +vn 0.792365 0.609298 0.030224 +v 0.169734 0.214143 -0.693758 +vn 0.745018 0.666446 0.028253 +v 0.143898 0.253055 -0.846790 +vn 0.657518 0.740706 0.137930 +v 0.199666 0.196381 -0.806503 +vn 0.838826 0.541737 -0.053778 +v 0.110043 0.297919 -0.843066 +vn 0.868821 0.488958 -0.077912 +v 0.077120 0.366465 -0.782834 +vn 0.872409 0.482235 -0.079702 +v 0.040629 0.442635 -0.717053 +vn 0.809990 0.586388 0.008051 +v 0.133783 0.262065 -0.793471 +vn 0.841107 0.521139 -0.144750 +v 0.029783 0.447580 -0.777046 +vn 0.859405 0.502084 -0.096616 +v -0.020771 0.573975 -0.600359 +vn 0.559128 0.823376 -0.097095 +v -0.093565 0.677827 -0.528710 +vn 0.728366 0.674529 -0.120390 +v -0.070381 0.650509 -0.565877 +vn 0.802528 0.584197 -0.121089 +v -0.046410 0.616538 -0.584959 +vn 0.355669 0.925617 -0.129353 +v -0.131940 0.691239 -0.569518 +vn 0.159058 0.979919 -0.120249 +v -0.183654 0.704352 -0.576621 +vn 0.808567 0.555667 -0.193527 +v -0.010616 0.512752 -0.771900 +vn 0.834097 0.526897 -0.163283 +v 0.008345 0.489921 -0.756557 +vn 0.778112 0.593441 -0.205837 +v -0.026389 0.508680 -0.843361 +vn 0.610196 0.761000 -0.220318 +v -0.096780 0.651510 -0.692802 +vn 0.787595 0.591592 -0.172375 +v -0.052734 0.598882 -0.696538 +vn 0.390359 0.900168 -0.193177 +v -0.132177 0.666692 -0.713825 +vn 0.071536 0.979288 -0.189414 +v -0.260860 0.687085 -0.726241 +vn 0.728281 0.625841 -0.279158 +v -0.070108 0.590392 -0.779349 +vn 0.761720 0.595120 -0.256154 +v -0.046792 0.555872 -0.787291 +vn 0.683458 0.681851 -0.260699 +v -0.084541 0.627233 -0.723285 +vn 0.510731 0.770829 -0.380758 +v -0.124404 0.658039 -0.750016 +vn 0.435942 0.762006 -0.478855 +v -0.139113 0.643939 -0.776607 +vn 0.575040 0.718148 -0.391909 +v -0.095567 0.602507 -0.809620 +vn 0.199994 0.951620 -0.233285 +v -0.183553 0.679863 -0.722196 +vn 0.245723 0.883581 -0.398628 +v -0.181635 0.659211 -0.780759 +vn 0.108320 0.947448 -0.301013 +v -0.263290 0.674500 -0.781133 +vn 0.042927 0.998573 -0.031775 +v -0.407822 0.721408 -0.496313 +vn 0.047933 0.995687 -0.079430 +v -0.427850 0.719082 -0.552653 +vn 0.043884 0.990912 -0.127151 +v -0.487683 0.717391 -0.599588 +vn 0.007910 0.996927 -0.077930 +v -0.705008 0.732657 -0.545870 +vn 0.042047 0.980628 -0.191310 +v -0.460784 0.696076 -0.727745 +vn 0.034201 0.963606 -0.265128 +v -0.629746 0.690250 -0.784681 +vn 0.019140 0.980974 -0.193194 +v -0.676858 0.702400 -0.735481 +vn -0.022168 0.981330 -0.191050 +v -0.759633 0.702684 -0.733008 +vn -0.020252 0.965634 -0.259116 +v -0.753690 0.691358 -0.786772 +vn -0.009903 0.990666 -0.135954 +v -0.736077 0.726333 -0.603063 +vn 0.991872 0.127004 0.007763 +v 0.266353 0.111506 -1.015117 +vn 0.942757 0.327290 0.063963 +v 0.253777 0.150971 -0.979411 +vn 0.987368 -0.104169 -0.119388 +v 0.268226 0.051969 -0.979374 +vn 0.982139 -0.176373 -0.065543 +v 0.263215 0.083050 -1.044560 +vn 0.978591 -0.168422 -0.118293 +v 0.248303 0.036540 -1.044205 +vn 0.828022 0.558442 0.050210 +v 0.242653 0.185999 -1.029730 +vn 0.996646 0.081086 -0.011000 +v 0.267527 0.124482 -1.091110 +vn 0.980728 -0.185578 -0.061103 +v 0.258245 0.068538 -1.103510 +vn 0.990694 -0.059849 -0.122244 +v 0.251239 0.065272 -1.155150 +vn 0.991925 -0.103780 -0.072894 +v 0.259887 0.127334 -1.162180 +vn 0.960697 -0.271840 -0.056258 +v 0.245011 0.096234 -1.181904 +vn 0.902759 0.423606 0.074734 +v 0.252366 0.170626 -1.098930 +vn 0.963229 0.266224 0.036258 +v 0.258118 0.166918 -1.155060 +vn 0.738654 0.657388 0.149100 +v 0.238553 0.204277 -1.124870 +vn 0.687380 0.717656 0.111711 +v 0.227152 0.205172 -1.098050 +vn 0.541553 0.835772 0.090590 +v 0.213202 0.230353 -1.176787 +vn 0.828045 0.557128 0.062851 +v 0.246304 0.196276 -1.185180 +vn 0.997907 -0.055445 -0.033286 +v 0.241930 0.072863 -1.217134 +vn 0.992021 0.124355 -0.020723 +v 0.247033 0.034888 -1.218863 +vn 0.974095 0.223688 0.033195 +v 0.264164 0.171429 -1.253118 +vn 0.988587 -0.150654 -0.000123 +v 0.263172 0.145833 -1.272837 +vn 0.907456 -0.405949 0.108303 +v 0.251486 0.101512 -1.192360 +vn 0.673483 0.738804 0.024299 +v 0.235174 0.223813 -1.291444 +vn 0.868399 0.495835 -0.005530 +v 0.251818 0.199520 -1.308557 +vn 0.969499 -0.051395 0.239645 +v 0.244104 0.076754 -1.362086 +vn 0.983408 0.144975 0.109046 +v 0.246759 0.034363 -1.331050 +vn 0.991652 -0.010725 0.128496 +v 0.257554 0.073319 -1.394340 +vn 0.980118 0.195721 -0.032587 +v 0.263429 0.172070 -1.352394 +vn 0.998817 -0.044994 0.018438 +v 0.260039 0.135891 -1.398566 +vn 0.969093 -0.228218 0.093678 +v 0.251509 0.101091 -1.357684 +vn 0.870853 0.476759 -0.119647 +v 0.244329 0.199924 -1.461003 +vn 0.983974 -0.170206 -0.053160 +v 0.256105 0.050730 -1.473523 +vn 0.999781 0.020390 0.004815 +v 0.262397 0.121003 -1.452970 +vn 0.990575 0.133125 -0.032225 +v 0.264149 0.125091 -1.515240 +vn 0.998362 -0.048010 0.031105 +v 0.262022 0.075533 -1.524160 +vn 0.954720 -0.259615 0.145293 +v 0.251404 0.038503 -1.487450 +vn 0.973671 0.215685 -0.073786 +v 0.258077 0.167115 -1.450860 +vn 0.721606 0.689131 -0.066210 +v 0.230426 0.223579 -1.448040 +vn 0.930290 0.357148 -0.083703 +v 0.250177 0.170688 -1.510620 +vn 0.705156 0.698040 -0.124481 +v 0.219285 0.219501 -1.508690 +vn 0.844352 0.530277 -0.076648 +v 0.236672 0.199134 -1.543759 +vn 0.998836 0.022206 -0.042829 +v 0.260912 0.060597 -1.573920 +vn 0.977957 0.154489 -0.140479 +v 0.259434 0.117126 -1.566226 +vn 0.987531 0.114843 -0.107670 +v 0.260222 0.055306 -1.628507 +vn 0.960777 0.207526 -0.183958 +v 0.247517 0.111963 -1.626400 +vn 0.924482 0.331701 -0.187902 +v 0.230038 0.166001 -1.643728 +vn 0.961449 0.191223 -0.197611 +v 0.247805 0.053115 -1.685530 +vn 0.938187 0.271191 -0.215084 +v 0.211695 0.161924 -1.736696 +vn 0.667469 0.739998 0.082993 +v 0.208990 0.207962 -0.915963 +vn 0.620382 0.781459 0.066696 +v 0.208856 0.215235 -0.984495 +vn 0.519927 0.853516 0.034443 +v 0.193612 0.230241 -1.068126 +vn 0.769322 0.636178 -0.058484 +v 0.108784 0.292577 -0.910206 +vn 0.670985 0.741203 0.019945 +v 0.140918 0.258659 -0.912645 +vn 0.839725 0.524364 -0.141081 +v 0.071691 0.359781 -0.870164 +vn 0.832275 0.534718 -0.146272 +v 0.074326 0.341642 -0.908496 +vn 0.816054 0.555352 -0.160125 +v 0.049638 0.390290 -0.876775 +vn 0.771491 0.617544 -0.153103 +v 0.069955 0.328481 -0.979034 +vn 0.699007 0.712308 -0.063298 +v 0.111706 0.285401 -0.970367 +vn 0.605824 0.794846 -0.034597 +v 0.133830 0.263686 -0.994760 +vn 0.509408 0.860435 -0.012440 +v 0.150734 0.251027 -1.033660 +vn 0.713369 0.682300 -0.159912 +v 0.055502 0.320945 -1.080175 +vn 0.722423 0.626678 -0.292199 +v -0.003779 0.416728 -1.022132 +vn 0.752579 0.615379 -0.234379 +v -0.012524 0.448069 -0.962740 +vn 0.765550 0.601160 -0.229216 +v 0.019377 0.382668 -1.028210 +vn 0.596596 0.711892 -0.370517 +v -0.037397 0.448085 -1.017160 +vn 0.794447 -0.416494 0.442025 +v 0.193836 0.236689 -1.159066 +vn 0.601318 0.792534 -0.101525 +v 0.089251 0.287395 -1.093711 +vn 0.463782 0.885545 -0.026770 +v 0.144483 0.252412 -1.107351 +vn 0.575134 0.805779 -0.141213 +v 0.065574 0.296635 -1.150880 +vn 0.661768 0.698187 -0.273127 +v 0.023428 0.336549 -1.142330 +vn 0.581499 0.722012 -0.374910 +v -0.036015 0.411233 -1.088151 +vn 0.697168 0.672024 -0.249679 +v 0.017295 0.361755 -1.100984 +vn 0.576828 0.735078 -0.356272 +v -0.016289 0.363846 -1.164198 +vn 0.404972 0.913505 -0.038810 +v 0.082254 0.280209 -1.214494 +vn 0.399841 0.915798 0.037975 +v 0.202723 0.239276 -1.241178 +vn 0.302293 0.953154 -0.010824 +v 0.112625 0.270648 -1.285736 +vn 0.534438 0.783414 -0.317238 +v -0.021231 0.343350 -1.211079 +vn 0.529512 0.821873 -0.210099 +v 0.017630 0.315280 -1.209631 +vn 0.359426 0.928795 -0.090291 +v 0.045399 0.291970 -1.268530 +vn 0.409658 0.891961 -0.191274 +v -0.001692 0.310098 -1.278842 +vn 0.568282 0.732577 -0.374682 +v -0.038209 0.431756 -1.059237 +vn 0.455877 0.786803 -0.416073 +v -0.103698 0.471298 -1.048818 +vn 0.474533 0.801454 -0.363991 +v -0.147879 0.456780 -1.137460 +vn 0.489727 0.780967 -0.387631 +v -0.101079 0.425551 -1.139277 +vn 0.494387 0.791108 -0.360179 +v -0.076308 0.385055 -1.197890 +vn 0.477310 0.803698 -0.355309 +v -0.143607 0.402704 -1.254313 +vn 0.400555 0.821421 -0.405985 +v -0.191521 0.471473 -1.167766 +vn 0.338501 0.839114 -0.425798 +v -0.199117 0.457128 -1.196890 +vn 0.367755 0.867597 -0.334710 +v -0.185609 0.424976 -1.253590 +vn 0.394769 0.817487 -0.419373 +v -0.186183 0.416238 -1.286830 +vn 0.126232 0.892144 -0.433756 +v -0.266698 0.465345 -1.214037 +vn 0.167895 0.886216 -0.431778 +v -0.235656 0.425406 -1.290779 +vn 0.622634 0.701178 -0.347385 +v -0.080352 0.569139 -0.838893 +vn 0.637209 0.712859 -0.292913 +v -0.061950 0.541538 -0.880843 +vn 0.775564 0.562151 -0.287205 +v -0.038361 0.500391 -0.906108 +vn 0.511989 0.705773 -0.489644 +v -0.117382 0.587996 -0.858000 +vn 0.387886 0.804525 -0.449761 +v -0.141976 0.576930 -0.893976 +vn 0.498100 0.750054 -0.435103 +v -0.084779 0.538925 -0.916670 +vn 0.408046 0.789035 -0.459262 +v -0.130987 0.608649 -0.835582 +vn 0.206441 0.877824 -0.432213 +v -0.253709 0.621215 -0.888442 +vn 0.323848 0.822981 -0.466717 +v -0.183017 0.598563 -0.888572 +vn 0.274949 0.857197 -0.435450 +v -0.232999 0.594815 -0.933066 +vn 0.471135 0.777768 -0.416064 +v -0.087238 0.516012 -0.952982 +vn 0.578395 0.710096 -0.401527 +v -0.049555 0.476538 -0.995522 +vn 0.360613 0.833591 -0.418431 +v -0.186370 0.557633 -0.968147 +vn 0.426542 0.799373 -0.423160 +v -0.119955 0.497940 -1.019660 +vn 0.198361 0.880409 -0.430735 +v -0.259707 0.574061 -0.986006 +vn 0.297218 0.853311 -0.428395 +v -0.220499 0.536355 -1.051476 +vn 0.364197 0.833808 -0.414880 +v -0.201385 0.514443 -1.075710 +vn 0.403696 0.840571 -0.361207 +v -0.187564 0.483511 -1.126219 +vn 0.143422 0.887287 -0.438350 +v -0.266191 0.527763 -1.086693 +vn 0.196453 0.880296 -0.431839 +v -0.237726 0.483172 -1.170339 +vn 0.074914 0.900743 -0.427843 +v -0.443083 0.440328 -1.293746 +vn 0.110042 0.910358 -0.398922 +v -0.283292 0.662499 -0.819412 +vn 0.083530 0.890952 -0.446349 +v -0.307634 0.638739 -0.870371 +vn 0.135481 0.886106 -0.443239 +v -0.277520 0.602429 -0.939118 +vn 0.047328 0.930812 -0.362420 +v -0.506096 0.671853 -0.825707 +vn 0.047882 0.919964 -0.389067 +v -0.602008 0.666060 -0.850151 +vn 0.984779 -0.142778 -0.099118 +v -0.309759 0.582430 -0.983534 +vn 0.060765 0.896914 -0.438010 +v -0.494045 0.593274 -0.983717 +vn 0.008647 0.935358 -0.353597 +v -0.706064 0.675073 -0.841296 +vn 0.021427 0.903690 -0.427651 +v -0.699445 0.641195 -0.914496 +vn 0.067025 0.901689 -0.427158 +v -0.633685 0.603285 -0.983922 +vn 0.032217 0.904299 -0.425683 +v -0.680076 0.556541 -1.091707 +vn -0.040237 0.900953 -0.432047 +v -0.752296 0.613459 -0.970799 +vn 0.068230 0.895291 -0.440226 +v -0.311031 0.520455 -1.108655 +vn 0.070049 0.899195 -0.431903 +v -0.507238 0.533185 -1.109698 +vn -0.041655 0.905414 -0.422482 +v -0.758004 0.528276 -1.151701 +vn 0.038660 0.904198 -0.425360 +v -0.682556 0.499837 -1.212469 +vn 0.040093 0.904778 -0.423993 +v -0.681056 0.442538 -1.334408 +vn -0.042725 0.904193 -0.424983 +v -0.757743 0.470996 -1.273659 +vn 0.398943 0.916907 -0.011239 +v 0.205629 0.240174 -1.364832 +vn 0.261190 0.964411 -0.041127 +v 0.116162 0.264207 -1.462796 +vn 0.292775 0.952811 -0.080210 +v 0.030346 0.292767 -1.323756 +vn 0.505986 0.847871 -0.158406 +v 0.209202 0.236498 -1.485005 +vn 0.340570 0.938461 -0.057477 +v 0.176237 0.245419 -1.509000 +vn 0.478463 0.876053 -0.060033 +v 0.192472 0.238779 -1.552480 +vn 0.242484 0.966815 -0.080432 +v 0.089301 0.264290 -1.584994 +vn 0.212348 0.972108 -0.099571 +v -0.097209 0.310126 -1.498561 +vn 0.205262 0.976106 -0.071301 +v -0.003324 0.285509 -1.574117 +vn 0.445946 0.852839 -0.271657 +v -0.096890 0.343222 -1.328800 +vn 0.283072 0.941082 -0.185026 +v -0.115574 0.323130 -1.439643 +vn 0.370714 0.885822 -0.279088 +v -0.136363 0.345110 -1.385150 +vn 0.444924 0.829762 -0.336954 +v -0.135918 0.367838 -1.322269 +vn 0.320696 0.834776 -0.447553 +v -0.195276 0.400242 -1.315750 +vn 0.136662 0.892684 -0.429463 +v -0.254652 0.402383 -1.340709 +vn 0.314983 0.893276 -0.320692 +v -0.182414 0.367590 -1.376570 +vn 0.310468 0.879563 -0.360525 +v -0.183852 0.359114 -1.410562 +vn 0.232245 0.917121 -0.323962 +v -0.189288 0.342964 -1.443960 +vn 0.160004 0.975360 -0.151891 +v -0.181275 0.323855 -1.521512 +vn 0.090358 0.942535 -0.321656 +v -0.259907 0.348029 -1.462800 +vn 0.093674 0.972110 -0.215005 +v -0.240062 0.334858 -1.505158 +vn 0.157262 0.904717 -0.395924 +v -0.224653 0.364747 -1.415731 +vn 0.506273 0.847862 -0.157535 +v 0.189556 0.231927 -1.627811 +vn 0.778018 0.600586 -0.184350 +v 0.210205 0.208312 -1.640991 +vn 0.378717 0.918970 -0.109848 +v 0.161832 0.230694 -1.694533 +vn 0.478445 0.867546 -0.135843 +v 0.166816 0.223293 -1.748770 +vn 0.803253 0.554714 -0.216975 +v 0.192232 0.198283 -1.766097 +vn 0.230308 0.968904 -0.090459 +v 0.031295 0.264007 -1.734109 +vn 0.178052 0.978967 -0.099601 +v -0.101797 0.302233 -1.601416 +vn 0.174445 0.979918 -0.096588 +v -0.065978 0.289537 -1.654346 +vn 0.068535 0.989253 -0.129159 +v -0.239185 0.323956 -1.567330 +vn 0.077990 0.993101 -0.087563 +v -0.244281 0.300733 -1.794348 +vn 0.161484 0.983643 -0.079808 +v -0.076588 0.279267 -1.795272 +vn 0.129168 0.987582 -0.089432 +v -0.174903 0.295201 -1.774179 +vn 0.067699 0.931265 -0.357999 +v -0.397366 0.355240 -1.467065 +vn 0.065288 0.962520 -0.263237 +v -0.465174 0.345327 -1.512051 +vn 0.062233 0.919898 -0.387188 +v -0.642711 0.370158 -1.482190 +vn -0.047335 0.905764 -0.421130 +v -0.754969 0.412057 -1.399309 +vn 0.035648 0.953744 -0.298498 +v -0.670378 0.354468 -1.528521 +vn -0.024250 0.914659 -0.403497 +v -0.742363 0.376846 -1.476845 +vn -0.043160 0.951706 -0.303963 +v -0.764774 0.354459 -1.527525 +vn 0.044099 0.987054 -0.154203 +v -0.399779 0.329278 -1.570849 +vn 0.047026 0.994690 -0.091540 +v -0.311610 0.309813 -1.738848 +vn 0.039807 0.994565 -0.096205 +v -0.445056 0.324955 -1.628552 +vn 0.048449 0.996005 -0.075006 +v -0.463033 0.313814 -1.771520 +vn 0.034228 0.980242 -0.194819 +v -0.656695 0.342227 -1.575067 +vn 0.031642 0.994064 -0.104096 +v -0.648976 0.332394 -1.641205 +vn -0.018746 0.980549 -0.195377 +v -0.749300 0.344214 -1.573312 +vn -0.017549 0.993436 -0.113037 +v -0.751240 0.334530 -1.633112 +vn 0.000575 0.996021 -0.089113 +v -0.720986 0.312432 -1.953710 +vn 0.916784 0.320248 -0.238638 +v 0.192002 0.166838 -1.810871 +vn 0.939379 0.256756 -0.227253 +v 0.187052 0.064122 -1.917259 +vn 0.641299 0.738084 -0.209684 +v 0.167528 0.208988 -1.809050 +vn 0.822909 0.525535 -0.215949 +v 0.175770 0.191903 -1.835890 +vn 0.349697 0.928818 -0.122514 +v 0.087574 0.234311 -1.878850 +vn 0.898173 0.348060 -0.268587 +v 0.175795 0.164747 -1.873503 +vn 0.637689 0.736334 -0.226195 +v 0.149746 0.204309 -1.877267 +vn 0.927434 0.308797 -0.210976 +v 0.173688 0.053184 -1.989140 +vn 0.906436 0.339255 -0.251556 +v 0.145012 0.154418 -1.995924 +vn 0.476731 0.858634 -0.188347 +v 0.107431 0.215503 -1.938355 +vn 0.740636 0.609333 -0.283146 +v 0.127739 0.180732 -2.011070 +vn 0.438730 0.879714 -0.183356 +v 0.035374 0.230913 -2.036736 +vn 0.216804 0.972856 -0.080920 +v -0.009165 0.254539 -1.958694 +vn 0.305172 0.944806 -0.119213 +v 0.016028 0.243838 -2.008379 +vn 0.109570 0.991106 -0.075520 +v -0.201218 0.290969 -1.877865 +vn 0.135237 0.987062 -0.086141 +v -0.149397 0.272730 -2.007339 +vn 0.177752 0.978199 -0.107385 +v -0.068920 0.254916 -2.086427 +vn 0.915448 0.328710 -0.232173 +v 0.152720 0.051609 -2.088018 +vn 0.894690 0.359919 -0.264552 +v 0.131268 0.135106 -2.072437 +vn 0.911677 0.295014 -0.286029 +v 0.132152 0.096039 -2.112683 +vn 0.826240 0.492262 -0.273871 +v 0.130248 0.155514 -2.039839 +vn 0.604258 0.762346 -0.231736 +v 0.102391 0.191204 -2.041399 +vn 0.713969 0.658354 -0.238366 +v 0.107983 0.179170 -2.071459 +vn 0.828136 0.472020 -0.302305 +v 0.114040 0.153424 -2.097399 +vn 0.827740 0.442771 -0.344676 +v 0.112765 0.136273 -2.133819 +vn 0.364901 0.911660 -0.189008 +v -0.005159 0.238152 -2.099380 +vn 0.627238 0.708850 -0.322652 +v 0.084107 0.180043 -2.121556 +vn 0.881562 0.379686 -0.280512 +v 0.130579 0.048430 -2.161759 +vn 0.865790 0.356380 -0.351286 +v 0.110705 0.100935 -2.166451 +vn 0.838133 0.435298 -0.328708 +v 0.114055 0.042787 -2.220309 +vn 0.716060 0.597316 -0.361208 +v 0.081780 0.157527 -2.161329 +vn 0.551058 0.790454 -0.267427 +v 0.040199 0.191625 -2.163536 +vn 0.656226 0.713128 -0.246611 +v 0.038361 0.172242 -2.221673 +vn 0.437233 0.877116 -0.198732 +v -0.017951 0.225175 -2.163189 +vn 0.802541 0.495060 -0.332931 +v 0.068272 0.137255 -2.232829 +vn 0.577346 0.815147 -0.046978 +v -0.014527 0.213098 -2.235869 +vn 0.811032 0.568132 -0.139474 +v 0.030862 0.162305 -2.283151 +vn 0.293027 0.949851 -0.109169 +v -0.059044 0.241627 -2.169409 +vn 0.106807 0.993437 -0.040931 +v -0.287431 0.276283 -2.170228 +vn 0.146375 0.988591 -0.035531 +v -0.135342 0.255327 -2.165925 +vn 0.181842 0.978134 0.100933 +v -0.124269 0.256912 -2.236299 +vn 0.350885 0.933605 0.072530 +v -0.071667 0.242662 -2.235079 +vn 0.095137 0.992321 0.079045 +v -0.283148 0.275975 -2.232195 +vn 0.054620 0.996047 -0.070051 +v -0.339302 0.300679 -1.867543 +vn 0.050936 0.996421 -0.067457 +v -0.476480 0.300565 -1.973077 +vn 0.069471 0.995401 -0.065959 +v -0.291080 0.292333 -1.964292 +vn 0.039895 0.996558 -0.072669 +v -0.619557 0.312690 -1.916168 +vn 0.039246 0.996530 -0.073396 +v -0.545632 0.298071 -2.064193 +vn 0.023526 0.995754 -0.088995 +v -0.614155 0.303029 -2.034198 +vn 0.055872 0.997401 -0.045490 +v -0.376967 0.284237 -2.165752 +vn 0.058976 0.998134 0.015849 +v -0.373598 0.282992 -2.230252 +vn 0.011970 0.997652 -0.067437 +v -0.549124 0.288261 -2.178480 +vn 0.007452 0.999867 0.014473 +v -0.504243 0.285750 -2.232233 +vn -0.001725 0.999982 -0.005709 +v -0.675175 0.284887 -2.236211 +vn 0.832917 0.358093 -0.421922 +v 0.061638 0.103489 -2.278135 +vn 0.331089 0.362564 -0.871164 +v 0.049218 0.041588 -2.316999 +vn 0.624894 0.175826 -0.760653 +v 0.044184 0.106851 -2.302689 +vn 0.082005 0.275958 -0.957665 +v -0.000806 0.045771 -2.322629 +vn 0.169168 -0.119618 -0.978301 +v -0.001405 0.120231 -2.317799 +vn 0.869630 0.229302 -0.437223 +v -0.001371 0.210134 -2.341850 +vn 0.262884 -0.340340 -0.902807 +v -0.014505 0.189424 -2.342909 +vn 0.739273 0.665002 0.106060 +v -0.005759 0.208491 -2.303019 +vn 0.047819 0.224666 -0.973262 +v -0.059967 0.053422 -2.322529 +vn 0.079236 -0.152717 -0.985088 +v -0.059685 0.121586 -2.322989 +vn 0.062600 0.169668 -0.983511 +v -0.121361 0.060406 -2.323971 +vn 0.084985 -0.170405 -0.981702 +v -0.133682 0.117767 -2.329656 +vn 0.086378 -0.406099 -0.909737 +v -0.083372 0.172832 -2.341785 +vn 0.201095 -0.315017 -0.927537 +v -0.324511 0.168933 -2.360128 +vn 0.444028 -0.379407 -0.811720 +v -0.029526 0.241017 -2.377289 +vn 0.276686 -0.559122 -0.781554 +v -0.075591 0.261578 -2.404902 +vn 0.107019 -0.582522 -0.805738 +v -0.080577 0.219465 -2.369856 +vn 0.065962 -0.680139 -0.730109 +v -0.193936 0.279629 -2.440276 +vn 0.074939 -0.640508 -0.764286 +v -0.354694 0.237893 -2.412640 +vn 0.534470 0.819692 0.206026 +v -0.042730 0.243575 -2.301336 +vn 0.274962 0.919671 0.280358 +v -0.079546 0.261698 -2.309739 +vn 0.155841 0.946421 0.282844 +v -0.128233 0.271535 -2.312423 +vn 0.351781 0.886800 0.299725 +v -0.083518 0.294309 -2.392760 +vn 0.796798 0.421427 -0.433027 +v -0.030844 0.260448 -2.383627 +vn 0.114718 0.966511 0.229555 +v -0.207679 0.276712 -2.291216 +vn 0.096092 0.935453 0.340137 +v -0.208748 0.293983 -2.343355 +vn 0.797196 0.414466 -0.438972 +v -0.056952 0.281879 -2.403989 +vn 0.185634 0.944212 0.272035 +v -0.127339 0.330291 -2.458651 +vn 0.150496 -0.655299 -0.740225 +v -0.117737 0.303771 -2.454025 +vn 0.593184 0.431966 -0.679366 +v -0.107539 0.328813 -2.471869 +vn 0.100037 0.963657 0.247704 +v -0.170550 0.338906 -2.465959 +vn 0.033407 0.981504 0.188506 +v -0.248514 0.342158 -2.463829 +vn 0.084153 -0.499938 -0.861963 +v -0.165663 0.327660 -2.480199 +vn 0.033509 -0.616162 -0.786906 +v -0.312043 0.300377 -2.465526 +vn 0.161340 0.618753 -0.768839 +v -0.169683 0.341679 -2.485758 +vn 0.186196 0.138745 -0.972667 +v -0.333510 0.059134 -2.348392 +vn 0.158553 -0.140046 -0.977368 +v -0.315236 0.124073 -2.349505 +vn 0.087544 -0.590007 -0.802638 +v -0.296820 0.210703 -2.380889 +vn 0.191085 -0.420786 -0.886806 +v -0.356532 0.186128 -2.375339 +vn 0.263762 0.229486 -0.936891 +v -0.378068 0.052993 -2.362339 +vn 0.168276 0.304271 -0.937604 +v -0.420028 0.046075 -2.375729 +vn 0.173879 -0.176158 -0.968883 +v -0.377283 0.128542 -2.363489 +vn 0.098851 -0.145791 -0.984364 +v -0.420841 0.127321 -2.367379 +vn 0.067085 0.271387 -0.960129 +v -0.537152 0.047624 -2.384946 +vn 0.086926 -0.088971 -0.992234 +v -0.519063 0.126488 -2.376272 +vn 0.090267 -0.447393 -0.889770 +v -0.419143 0.201877 -2.396949 +vn 0.053031 -0.599480 -0.798631 +v -0.409710 0.243911 -2.421736 +vn 0.050548 -0.380858 -0.923251 +v -0.480030 0.184174 -2.390279 +vn 0.039451 -0.541043 -0.840069 +v -0.501652 0.228488 -2.414530 +vn 0.023629 -0.602327 -0.797900 +v -0.499888 0.280781 -2.456471 +vn 0.069373 0.971783 0.225443 +v -0.298757 0.288477 -2.300649 +vn 0.019167 0.986247 0.164163 +v -0.427730 0.288766 -2.280006 +vn 0.056809 0.949661 0.308084 +v -0.303687 0.298501 -2.334250 +vn 0.008926 0.954151 0.299193 +v -0.455220 0.300916 -2.327107 +vn 0.018963 0.974986 0.221454 +v -0.638978 0.365990 -2.492587 +vn 0.030934 0.945607 0.323836 +v -0.399096 0.331226 -2.416971 +vn 0.075871 0.981409 0.176295 +v -0.465309 0.349625 -2.467808 +vn 0.077580 -0.073847 -0.994247 +v -0.599223 0.125836 -2.384849 +vn 0.056257 -0.323699 -0.944486 +v -0.579925 0.180732 -2.395238 +vn 0.003783 0.182001 -0.983291 +v -0.709739 0.061775 -2.389887 +vn 0.032496 -0.085893 -0.995774 +v -0.693732 0.118969 -2.391252 +vn 0.014213 -0.280013 -0.959891 +v -0.714633 0.180911 -2.402616 +vn 0.007138 -0.485568 -0.874170 +v -0.716905 0.227305 -2.421278 +vn -0.001707 0.927985 0.372615 +v -0.676261 0.353007 -2.459279 +vn -0.003708 0.949954 0.312369 +v -0.669690 0.297891 -2.329787 +vn 0.003993 0.990220 0.139456 +v -0.713110 0.286800 -2.283078 +vn -0.004235 -0.505296 -0.862936 +v -0.716069 0.332246 -2.495791 +vn 0.040059 -0.405557 -0.913192 +v -0.459012 0.326531 -2.488009 +vn 0.034766 0.648473 -0.760443 +v -0.339987 0.343796 -2.488091 +vn 0.217728 0.616734 -0.756461 +v -0.469340 0.350457 -2.493069 +vn 0.039507 -0.093176 -0.994865 +v -0.559141 0.355306 -2.507559 +vn 0.193918 0.735154 -0.649572 +v -0.515867 0.363051 -2.502614 +vn -0.013896 0.715405 -0.698572 +v -0.735962 0.370089 -2.509690 +vn -0.591936 -0.805529 0.027104 +v -1.572593 -0.617186 -0.416377 +vn -0.924400 -0.380673 0.023927 +v -1.630198 -0.517622 -0.402433 +vn -0.956431 -0.290584 0.028313 +v -1.648039 -0.468453 -0.413506 +vn -0.830374 -0.555739 0.040400 +v -1.590616 -0.595144 -0.420765 +vn -0.887530 -0.460169 0.023118 +v -1.612040 -0.556283 -0.405573 +vn -0.973252 -0.228182 0.026705 +v -1.661424 -0.414955 -0.416550 +vn -0.984240 -0.176647 0.008181 +v -1.679364 -0.333509 -0.371700 +vn -0.033047 -0.997303 -0.065526 +v -1.260122 -0.634050 -0.788373 +vn -0.198349 -0.980051 0.012590 +v -1.549416 -0.633159 -0.652534 +vn -0.462198 -0.886414 0.025363 +v -1.589612 -0.621542 -0.668984 +vn -0.767053 -0.640289 0.040722 +v -1.613269 -0.604524 -0.704541 +vn -0.915043 -0.395813 0.077646 +v -1.629474 -0.534899 -0.516801 +vn -0.959839 -0.270024 0.076132 +v -1.657897 -0.455525 -0.518585 +vn -0.054424 -0.982068 -0.180502 +v -1.551624 -0.634073 -0.785925 +vn -0.855749 -0.509644 0.089194 +v -1.631152 -0.578722 -0.737161 +vn -0.933345 -0.344595 0.100601 +v -1.664022 -0.498354 -0.689767 +vn -0.968991 -0.227495 0.096452 +v -1.672719 -0.453769 -0.648068 +vn -0.559083 -0.824322 0.088991 +v -1.598840 -0.617755 -0.737975 +vn -0.302216 -0.950608 -0.070778 +v -1.591230 -0.630100 -0.784690 +vn -0.554615 -0.718243 -0.420154 +v -1.617168 -0.616642 -0.811418 +vn -0.894522 -0.446416 0.023284 +v -1.652236 -0.547646 -0.782826 +vn -0.943366 -0.319679 0.088686 +v -1.670966 -0.502505 -0.763307 +vn -0.999341 -0.036282 0.000468 +v -1.689182 -0.236049 -0.253386 +vn -0.999696 0.023828 0.006269 +v -1.689197 -0.118519 -0.392035 +vn -0.997113 0.074287 0.015753 +v -1.686888 -0.064065 -0.440810 +vn -0.992342 0.122902 0.012321 +v -1.681316 -0.007456 -0.431864 +vn -0.989133 -0.144198 -0.028684 +v -1.686797 -0.438265 -0.800026 +vn -0.973534 -0.214096 0.079968 +v -1.676210 -0.470204 -0.736582 +vn -0.999177 -0.029620 0.027733 +v -1.690267 -0.236993 -0.495773 +vn -0.979961 -0.176912 0.091539 +v -1.676354 -0.409852 -0.609037 +vn -0.983516 -0.174200 0.048477 +v -1.678474 -0.353001 -0.501200 +vn -0.994361 -0.098589 0.039067 +v -1.687708 -0.290819 -0.510209 +vn -0.999273 0.020543 0.032115 +v -1.691975 -0.119136 -0.537720 +vn -0.996544 0.070333 0.044191 +v -1.693328 -0.050001 -0.661231 +vn -0.992392 0.116383 0.040153 +v -1.684047 -0.006182 -0.545058 +vn -0.989298 -0.130507 0.065256 +v -1.689058 -0.351039 -0.641651 +vn -0.995976 -0.072588 0.052567 +v -1.694296 -0.295495 -0.637819 +vn -0.994782 -0.090361 -0.047372 +v -1.695656 -0.361475 -0.785424 +vn -0.996196 -0.042891 -0.075859 +v -1.702734 -0.257932 -0.790820 +vn -0.999211 -0.019819 -0.034409 +v -1.702971 -0.180851 -0.794085 +vn -0.990863 0.122256 0.056957 +v -1.687127 0.049009 -0.717808 +vn -0.995970 -0.035204 -0.082486 +v -1.704309 -0.115405 -0.844506 +vn -0.993068 -0.077333 -0.088520 +v -1.703424 -0.002989 -0.911358 +vn -0.346830 -0.012447 0.937845 +v -1.230844 -0.625978 -0.908206 +vn 0.916646 0.030211 0.398557 +v -1.194540 -0.620299 -0.970366 +vn 0.191150 -0.978564 -0.076638 +v -1.243299 -0.591452 -1.294625 +vn -0.352487 -0.881445 -0.314338 +v -1.307880 -0.619693 -0.843394 +vn -0.320356 -0.946960 0.025252 +v -1.280070 -0.618485 -0.906944 +vn -0.624169 -0.730588 0.276866 +v -1.327020 -0.587080 -0.913752 +vn -0.680249 -0.522842 -0.513710 +v -1.325970 -0.576879 -0.856311 +vn -0.927699 -0.371891 -0.032733 +v -1.324030 -0.568723 -0.873529 +vn -0.383201 -0.902650 -0.195907 +v -1.338440 -0.553711 -0.874077 +vn -0.147483 -0.508231 -0.848499 +v -1.375059 -0.591531 -0.828672 +vn -0.084924 -0.733607 -0.674246 +v -1.374980 -0.622249 -0.817281 +vn -0.045157 -0.706764 -0.706007 +v -1.552353 -0.622181 -0.817453 +vn -0.072889 -0.866275 -0.494222 +v -1.375637 -0.557700 -0.860928 +vn -0.374812 -0.881193 0.288122 +v -1.345500 -0.554796 -0.893575 +vn -0.067579 -0.992181 0.104925 +v -1.414140 -0.547522 -0.903266 +vn 0.051183 -0.997696 0.044535 +v -1.258020 -0.626522 -0.971771 +vn -0.224399 -0.861103 0.456231 +v -1.321540 -0.624659 -0.977719 +vn -0.450588 -0.705614 0.546881 +v -1.327600 -0.608543 -0.966869 +vn 0.227444 -0.973777 -0.005220 +v -1.271700 -0.629969 -1.032520 +vn 0.188955 -0.960403 0.204749 +v -1.316220 -0.640600 -1.028230 +vn -0.121705 -0.751851 0.648003 +v -1.394407 -0.623480 -1.001623 +vn 0.027186 -0.866925 0.497696 +v -1.375718 -0.654396 -1.039990 +vn -0.025060 -0.765208 0.643295 +v -1.473505 -0.624299 -1.008568 +vn -0.220629 -0.809012 0.544813 +v -1.389520 -0.571130 -0.945993 +vn -0.039696 -0.820283 0.570579 +v -1.457882 -0.564756 -0.953696 +vn -0.193565 -0.541622 -0.818033 +v -1.601977 -0.589161 -0.828622 +vn -0.312800 -0.861989 -0.398912 +v -1.609021 -0.557015 -0.861349 +vn -0.110276 -0.992704 0.048758 +v -1.593917 -0.547001 -0.902992 +vn -0.824206 -0.530655 -0.197714 +v -1.653480 -0.531103 -0.838659 +vn -0.772785 -0.566980 0.285196 +v -1.654390 -0.527652 -0.924337 +vn -0.975845 -0.217294 0.022563 +v -1.671110 -0.475687 -0.891255 +vn -0.981409 -0.147260 -0.123091 +v -1.678240 -0.447377 -0.857717 +vn -0.070090 -0.677189 0.732463 +v -1.595419 -0.595080 -0.979119 +vn -0.075398 -0.788873 0.609913 +v -1.593631 -0.649798 -1.037225 +vn -0.201598 -0.712014 0.672602 +v -1.629990 -0.623804 -1.006430 +vn -0.749163 -0.469636 0.467115 +v -1.668336 -0.615539 -1.015283 +vn -0.606012 -0.639380 0.473226 +v -1.655180 -0.639323 -1.051849 +vn -0.608982 -0.545547 0.575776 +v -1.655350 -0.583388 -0.991005 +vn -0.229301 -0.780094 0.582130 +v -1.629970 -0.565644 -0.952592 +vn -0.766591 -0.491888 0.412777 +v -1.668678 -0.557304 -0.960787 +vn 0.664825 -0.722336 0.190366 +v -1.370000 -0.718532 -1.189780 +vn 0.425299 -0.848831 0.314016 +v -1.380521 -0.711441 -1.154140 +vn 0.843287 -0.524564 0.117042 +v -1.365632 -0.693496 -1.174765 +vn 0.695916 -0.717373 0.032815 +v -1.369017 -0.726155 -1.254953 +vn 0.063461 -0.988157 0.139706 +v -1.396035 -0.727271 -1.220491 +vn -0.004816 -0.964556 0.263833 +v -1.520290 -0.715760 -1.180963 +vn 0.937123 -0.348878 -0.009159 +v -1.365149 -0.703030 -1.309822 +vn 0.064910 -0.997795 0.013879 +v -1.397654 -0.730334 -1.267151 +vn 0.317840 -0.943718 -0.091515 +v -1.271540 -0.628002 -1.091180 +vn 0.440459 -0.895939 0.057360 +v -1.328950 -0.650626 -1.081950 +vn 0.297238 -0.933546 -0.200352 +v -1.257570 -0.615111 -1.132860 +vn 0.541949 -0.827647 -0.145914 +v -1.300647 -0.621480 -1.176208 +vn 0.597188 -0.797546 -0.085358 +v -1.315940 -0.641864 -1.147840 +vn 0.280093 -0.894069 0.349554 +v -1.370520 -0.670756 -1.075940 +vn 0.049160 -0.877200 0.477602 +v -1.403242 -0.672826 -1.070260 +vn 0.572205 -0.782390 0.245858 +v -1.368650 -0.685488 -1.122760 +vn 0.176210 -0.897935 0.403315 +v -1.393610 -0.694574 -1.113233 +vn 0.770961 -0.636608 -0.018673 +v -1.337798 -0.658317 -1.220824 +vn -0.007254 -0.983629 0.180060 +v -1.502110 -0.725175 -1.219350 +vn -0.032432 -0.997027 0.069891 +v -1.610377 -0.730130 -1.249497 +vn -0.512150 -0.801844 0.307812 +v -1.657856 -0.723063 -1.200241 +vn -0.811930 -0.581280 0.053694 +v -1.670386 -0.716442 -1.236375 +vn -0.611866 -0.721788 0.323485 +v -1.656330 -0.698285 -1.165100 +vn -0.068281 -0.935881 0.345636 +v -1.635827 -0.720661 -1.191919 +vn -0.090703 -0.939087 0.331493 +v -1.606290 -0.708880 -1.153830 +vn -0.187022 -0.810011 0.555791 +v -1.629610 -0.673697 -1.071891 +vn -0.119816 -0.923954 0.363254 +v -1.611153 -0.693858 -1.110919 +vn -0.525105 -0.691260 0.496412 +v -1.654326 -0.669234 -1.077990 +vn -0.829378 -0.519881 0.204586 +v -1.673605 -0.670619 -1.115270 +vn -0.907240 0.408082 -0.101907 +v -1.665524 -0.523685 -1.224452 +vn -0.949555 0.306887 0.064546 +v -1.679296 -0.553153 -1.321752 +vn -0.891163 0.449260 -0.063209 +v -1.627219 -0.452816 -1.254840 +vn -0.997241 -0.057338 -0.047143 +v -1.676871 -0.407190 -0.890208 +vn -0.973904 -0.040425 -0.223330 +v -1.689716 -0.285721 -0.845126 +vn -0.999647 0.016837 0.020555 +v -1.674360 -0.300527 -0.905566 +vn -0.970595 -0.170241 -0.170184 +v -1.677778 -0.211387 -0.886809 +vn -0.929480 -0.221862 -0.294694 +v -1.682700 -0.205462 -0.878926 +vn -0.965810 -0.077061 -0.247534 +v -1.682445 -0.072455 -0.930266 +vn -0.936832 0.246626 0.248035 +v -1.671752 -0.107069 -0.962787 +vn -0.998012 0.061463 0.013912 +v -1.670730 -0.045576 -1.016298 +vn -0.970089 -0.219012 -0.104693 +v -1.680568 -0.002902 -0.994280 +vn -0.960722 0.107366 -0.255902 +v -1.679410 -0.425493 -1.071058 +vn -0.900783 0.217807 -0.375699 +v -1.629682 -0.397436 -1.165447 +vn -0.897369 0.077983 -0.434335 +v -1.637950 -0.359819 -1.135059 +vn -0.940655 0.006136 -0.339310 +v -1.676843 -0.337835 -1.055438 +vn -0.897716 -0.109372 -0.426782 +v -1.645154 -0.287655 -1.123141 +vn -0.904177 -0.239204 -0.353900 +v -1.647770 -0.230698 -1.143730 +vn -0.958025 -0.153661 -0.242025 +v -1.683540 -0.185861 -1.082369 +vn -0.890370 0.366183 -0.270467 +v -1.640240 -0.448785 -1.186383 +vn -0.934236 0.296322 -0.198487 +v -1.606640 -0.403063 -1.230530 +vn -0.965895 0.054281 -0.253180 +v -1.597240 -0.337834 -1.218850 +vn -0.926678 0.372351 0.051212 +v -1.605580 -0.414211 -1.293300 +vn -0.994144 0.107518 0.010800 +v -1.593760 -0.357527 -1.275159 +vn -0.940023 -0.196245 -0.279007 +v -1.601730 -0.270138 -1.221640 +vn -0.904117 -0.046768 -0.424719 +v -1.616130 -0.317126 -1.174299 +vn -0.895186 -0.412659 -0.168387 +v -1.606559 -0.236883 -1.244106 +vn -0.880278 -0.340130 -0.330792 +v -1.623210 -0.234281 -1.201400 +vn -0.998745 -0.043927 -0.024074 +v -1.592980 -0.300800 -1.272410 +vn -0.955992 -0.226434 -0.186566 +v -1.682793 -0.132959 -1.131303 +vn -0.908590 -0.372323 -0.189315 +v -1.649540 -0.168994 -1.206169 +vn -0.959513 -0.268348 -0.085582 +v -1.683650 -0.095929 -1.199143 +vn -0.896947 -0.439778 -0.045634 +v -1.621760 -0.205387 -1.273430 +vn -0.897601 -0.437440 -0.054404 +v -1.650999 -0.147382 -1.267070 +vn 0.011721 -0.996675 -0.080635 +v -1.076974 -0.557438 -1.677301 +vn 0.136378 -0.982560 -0.126400 +v -1.243395 -0.566776 -1.570613 +vn 0.022019 -0.996540 -0.080148 +v -1.234598 -0.563382 -1.619457 +vn 0.030305 -0.998272 -0.050343 +v -1.132154 -0.556345 -1.721614 +vn 0.011816 -0.999397 -0.032645 +v -1.189462 -0.555884 -1.787690 +vn 0.653206 -0.730316 -0.199900 +v -1.369272 -0.721385 -1.372607 +vn 0.086807 -0.993260 -0.076805 +v -1.392093 -0.727971 -1.329655 +vn 0.750765 -0.615884 -0.238827 +v -1.367950 -0.700219 -1.396839 +vn 0.180622 -0.921672 -0.343361 +v -1.397024 -0.708593 -1.419853 +vn 0.582381 -0.811431 -0.049102 +v -1.299603 -0.611858 -1.338285 +vn 0.973815 0.227300 0.004405 +v -1.241562 -0.574204 -1.487008 +vn 0.763732 -0.635470 -0.113540 +v -1.334993 -0.647681 -1.437739 +vn 0.560898 -0.819562 -0.117094 +v -1.299926 -0.602283 -1.491237 +vn 0.422197 -0.796597 -0.432645 +v -1.370220 -0.675744 -1.487104 +vn 0.541260 -0.760221 -0.359308 +v -1.346600 -0.637639 -1.509970 +vn 0.158370 -0.782493 -0.602182 +v -1.392129 -0.657265 -1.516624 +vn -0.211525 -0.969812 -0.121331 +v -1.643956 -0.728195 -1.332826 +vn -0.146036 -0.946952 -0.286279 +v -1.614602 -0.709867 -1.408597 +vn -0.064316 -0.960249 -0.271634 +v -1.612157 -0.721105 -1.369144 +vn -0.736351 -0.660176 -0.148171 +v -1.669776 -0.717290 -1.337190 +vn -0.606975 -0.743415 -0.280919 +v -1.659560 -0.699619 -1.391340 +vn -0.279076 -0.914294 -0.293570 +v -1.640600 -0.724252 -1.357839 +vn -0.906383 0.388955 0.164874 +v -1.665172 -0.513515 -1.354753 +vn -0.036049 -0.925708 -0.376517 +v -1.613327 -0.696686 -1.443946 +vn -0.141887 -0.821119 -0.552839 +v -1.611962 -0.657416 -1.517558 +vn -0.087749 -0.856605 -0.508456 +v -1.609589 -0.678856 -1.483216 +vn -0.294334 -0.837370 -0.460630 +v -1.641962 -0.685460 -1.467215 +vn -0.803657 -0.531666 -0.267331 +v -1.672508 -0.670201 -1.456854 +vn -0.959105 -0.272102 -0.077967 +v -1.678594 -0.662441 -1.394234 +vn -0.615478 -0.636734 -0.464496 +v -1.659850 -0.645656 -1.503610 +vn 0.443450 -0.858674 -0.256966 +v -1.300800 -0.593856 -1.547850 +vn 0.014771 -0.894131 -0.447563 +v -1.313160 -0.569607 -1.615300 +vn 0.301101 -0.824054 -0.479867 +v -1.341270 -0.607670 -1.569140 +vn 0.119867 -0.794609 -0.595170 +v -1.391232 -0.633887 -1.546505 +vn 0.041315 -0.742191 -0.668913 +v -1.369845 -0.603401 -1.580773 +vn -0.017048 -0.641727 -0.766744 +v -1.430942 -0.573431 -1.606075 +vn -0.317063 -0.887890 -0.333350 +v -1.330639 -0.537755 -1.656747 +vn -0.084305 -0.796265 -0.599045 +v -1.366610 -0.544075 -1.630697 +vn -0.167789 -0.984733 -0.046354 +v -1.245094 -0.552316 -1.805330 +vn -0.224597 -0.966322 -0.125613 +v -1.273040 -0.552687 -1.691490 +vn -0.345199 -0.917931 -0.195554 +v -1.312805 -0.538188 -1.685431 +vn -0.234106 -0.968478 -0.085117 +v -1.263720 -0.551682 -1.781407 +vn -0.036119 -0.944764 -0.325754 +v -1.434260 -0.522342 -1.675230 +vn -0.234260 -0.965432 -0.114292 +v -1.365272 -0.515701 -1.759012 +vn -0.074452 -0.980417 -0.182318 +v -1.433848 -0.508044 -1.733139 +vn -0.006659 -0.731214 -0.682116 +v -1.509260 -0.621462 -1.558503 +vn -0.090205 -0.604067 -0.791812 +v -1.611875 -0.571625 -1.604957 +vn -0.147551 -0.788049 -0.597668 +v -1.609898 -0.543814 -1.626646 +vn -0.358687 -0.704798 -0.612049 +v -1.647216 -0.618966 -1.563222 +vn -0.865603 -0.378313 -0.328041 +v -1.672879 -0.598303 -1.550631 +vn -0.411138 -0.555808 -0.722525 +v -1.650030 -0.594184 -1.584669 +vn -0.665010 -0.528736 -0.527447 +v -1.659750 -0.529380 -1.617200 +vn -0.663041 -0.467570 -0.584597 +v -1.672906 -0.549623 -1.597075 +vn -0.051973 -0.943893 -0.326135 +v -1.607236 -0.521895 -1.674774 +vn -0.177855 -0.977312 -0.115017 +v -1.656431 -0.507142 -1.733406 +vn -0.617858 -0.786195 0.012233 +v -1.668600 -0.505953 -1.695590 +vn -0.959161 -0.211964 0.187301 +v -1.680230 -0.475044 -1.680179 +vn -0.943132 -0.288785 -0.164637 +v -1.673013 -0.453346 -1.642272 +vn -0.834243 0.412963 0.365378 +v -1.608802 -0.405666 -1.347525 +vn -0.969286 0.123893 0.212450 +v -1.603940 -0.366903 -1.347960 +vn -0.857159 0.470656 0.209192 +v -1.624740 -0.434010 -1.332160 +vn -0.954177 0.214721 0.208424 +v -1.681921 -0.491834 -1.451171 +vn -0.904164 0.290721 0.313001 +v -1.645290 -0.428710 -1.403110 +vn -0.876405 0.209762 0.433491 +v -1.624990 -0.368535 -1.399009 +vn -0.922552 0.031284 0.384603 +v -1.605337 -0.326835 -1.381922 +vn -0.974275 -0.074532 0.212680 +v -1.600540 -0.292744 -1.343830 +vn -0.955292 -0.269180 0.122313 +v -1.594190 -0.256166 -1.310989 +vn -0.918387 -0.215760 0.331682 +v -1.616790 -0.258164 -1.383550 +vn -0.888758 -0.071391 0.452783 +v -1.622630 -0.294058 -1.406610 +vn -0.951636 -0.197589 0.235262 +v -1.674444 -0.178064 -1.458145 +vn -0.904455 -0.380994 0.191843 +v -1.617090 -0.225415 -1.341650 +vn -0.893095 0.234290 0.384043 +v -1.665346 -0.435692 -1.453802 +vn -0.910788 0.098980 0.400834 +v -1.660943 -0.362894 -1.474712 +vn -0.898383 -0.053794 0.435906 +v -1.658800 -0.296783 -1.474140 +vn -0.938637 -0.136433 0.316775 +v -1.673503 -0.221361 -1.479367 +vn -0.963448 -0.020481 0.267111 +v -1.679003 -0.301334 -1.520208 +vn -0.898083 -0.424168 0.116311 +v -1.649520 -0.155697 -1.338151 +vn -0.953996 -0.299813 0.001887 +v -1.680238 -0.088347 -1.308861 +vn -0.968352 -0.190624 0.161112 +v -1.680760 -0.133839 -1.427091 +vn -0.885196 -0.170842 -0.432714 +v -1.675420 -0.097442 -1.575587 +vn -0.982071 -0.180300 0.055039 +v -1.673598 -0.086881 -1.611830 +vn -0.985709 0.113789 0.124217 +v -1.677327 -0.189624 -1.655948 +vn -0.986147 0.095672 0.135503 +v -1.689926 -0.234466 -1.688218 +vn -0.982867 -0.005561 0.184230 +v -1.686924 -0.129745 -1.698802 +vn -0.933255 -0.343868 -0.103874 +v -1.673502 -0.506170 -0.810330 +vn -0.973292 -0.157201 0.167302 +v -1.675794 -0.477489 -0.943014 +vn -0.962505 -0.182021 0.201129 +v -1.676773 -0.534209 -0.984042 +vn -0.993286 -0.045041 0.106560 +v -1.684796 -0.445842 -0.982315 +vn -0.957130 -0.221646 0.186483 +v -1.676300 -0.594233 -1.042000 +vn -0.994742 -0.070636 0.074149 +v -1.683970 -0.535343 -1.038520 +vn -0.999773 -0.016586 -0.013380 +v -1.686809 -0.470011 -1.029561 +vn -0.939202 -0.252317 0.232886 +v -1.677032 -0.631733 -1.090751 +vn -0.995960 -0.076161 0.047563 +v -1.685597 -0.595512 -1.121708 +vn -0.967415 -0.247702 0.052454 +v -1.678650 -0.652721 -1.156170 +vn -0.999879 0.011447 0.010549 +v -1.686450 -0.544335 -1.090150 +vn -0.990471 0.079662 -0.112341 +v -1.681970 -0.487068 -1.082030 +vn -0.994723 0.096665 -0.034377 +v -1.684030 -0.551500 -1.148669 +vn -0.955245 0.246944 -0.162869 +v -1.677400 -0.510970 -1.145880 +vn -0.938422 -0.309727 0.153079 +v -1.675010 -0.688763 -1.208185 +vn -0.988627 -0.148434 0.024161 +v -1.682689 -0.653940 -1.236480 +vn -0.999787 0.015718 0.013359 +v -1.688098 -0.604293 -1.252334 +vn -0.978744 0.201191 -0.039778 +v -1.684089 -0.565451 -1.207917 +vn -0.993992 -0.023938 0.106802 +v -1.681241 -0.375408 -0.942356 +vn -0.991495 -0.019030 -0.128743 +v -1.685682 -0.332175 -1.021218 +vn -0.996840 -0.010918 0.078681 +v -1.687667 -0.288624 -0.979858 +vn -0.991748 -0.021900 0.126315 +v -1.681323 -0.256676 -0.940148 +vn -0.995080 -0.045841 -0.087834 +v -1.689590 -0.235391 -1.026399 +vn -0.976022 -0.103140 -0.191683 +v -1.694920 -0.185897 -0.846510 +vn -0.994003 -0.092598 -0.058168 +v -1.684600 -0.181266 -0.912172 +vn -0.995170 0.069070 -0.069752 +v -1.681653 -0.133091 -0.954345 +vn 0.078003 -0.366295 -0.927223 +v -1.703114 -0.064990 -0.857821 +vn -0.997677 0.032522 0.059863 +v -1.685370 -0.183097 -0.979512 +vn -0.999945 0.010413 -0.000967 +v -1.690763 -0.159821 -1.047050 +vn -0.990708 0.087158 0.104408 +v -1.680905 -0.067394 -1.045199 +vn -0.929798 0.225643 -0.290795 +v -1.671900 -0.457722 -1.110540 +vn -0.939341 -0.105370 -0.326398 +v -1.679470 -0.253698 -1.061679 +vn -0.995629 0.068337 0.063660 +v -1.683660 -0.055177 -1.087890 +vn -0.991394 -0.069118 0.111177 +v -1.682433 0.030094 -1.092078 +vn -0.999855 0.015263 0.007533 +v -1.689997 -0.063232 -1.157118 +vn -0.998054 0.062318 -0.001952 +v -1.681658 0.000253 -1.164010 +vn -0.992887 0.118821 0.007537 +v -1.686518 -0.010069 -1.248725 +vn -0.997212 -0.074569 -0.002947 +v -1.686316 -0.052369 -1.318587 +vn -0.999732 -0.017386 0.015254 +v -1.690223 -0.607086 -1.333264 +vn -0.999290 -0.027334 -0.025934 +v -1.690925 -0.567362 -1.428028 +vn -0.974837 0.198878 0.100698 +v -1.688500 -0.548927 -1.400480 +vn -0.961312 -0.230290 -0.151149 +v -1.678230 -0.600835 -1.509470 +vn -0.999890 -0.012535 -0.007952 +v -1.691012 -0.507451 -1.501066 +vn -0.995015 -0.070880 -0.070155 +v -1.686981 -0.452616 -1.565915 +vn -0.933216 -0.187996 -0.306211 +v -1.676332 -0.502658 -1.603501 +vn -0.802373 -0.544673 0.243986 +v -1.693998 -0.495398 -1.722316 +vn -0.986605 -0.163087 -0.003636 +v -1.702098 -0.465043 -1.769426 +vn -0.956593 -0.067934 0.283397 +v -1.692040 -0.466129 -1.716830 +vn -0.992259 0.038732 0.117995 +v -1.688586 -0.375426 -1.554045 +vn -0.949349 0.104970 0.296173 +v -1.679631 -0.374009 -1.516094 +vn -0.994875 -0.021838 0.098723 +v -1.685281 -0.204132 -1.528560 +vn -0.994883 0.068910 0.073892 +v -1.685550 -0.007430 -1.331640 +vn -0.970087 -0.206494 0.127638 +v -1.677740 -0.113568 -1.397609 +vn -0.998064 -0.048081 0.039447 +v -1.686194 -0.065636 -1.447001 +vn -0.992883 0.036062 0.113500 +v -1.688672 0.063692 -1.389747 +vn -0.995997 -0.070687 0.054712 +v -1.686363 -0.102825 -1.471306 +vn -0.997757 -0.064938 0.016254 +v -1.686480 -0.122169 -1.510720 +vn -0.999857 0.011019 -0.012812 +v -1.687150 -0.006171 -1.443339 +vn -0.996353 0.048044 0.070516 +v -1.689440 0.002141 -1.508309 +vn -0.997842 -0.053606 0.037918 +v -1.679186 0.035184 -1.486476 +vn -0.997038 -0.058670 0.049720 +v -1.686476 0.059278 -1.513224 +vn -0.970141 -0.231245 -0.073166 +v -1.686220 -0.426297 -1.643180 +vn -0.997473 -0.053467 0.046795 +v -1.692540 -0.362744 -1.651251 +vn -0.994431 0.023821 0.102659 +v -1.689075 -0.299980 -1.578890 +vn -0.999109 0.032495 0.026922 +v -1.687733 -0.243330 -1.575803 +vn -0.993389 0.112083 0.024806 +v -1.687780 -0.248644 -1.623999 +vn -0.986502 -0.091557 0.135760 +v -1.688610 -0.417741 -1.698740 +vn -0.999915 -0.012994 -0.000803 +v -1.702447 -0.351542 -1.770945 +vn -0.996010 0.031623 0.083448 +v -1.697870 -0.297615 -1.703740 +vn -0.999607 0.027075 0.007297 +v -1.701331 -0.233556 -1.767191 +vn -0.994916 0.063114 -0.078472 +v -1.684800 -0.179920 -1.573150 +vn -0.989900 0.000094 -0.141764 +v -1.681410 -0.128863 -1.561370 +vn -0.983195 -0.158058 -0.091353 +v -1.689500 -0.063157 -1.576220 +vn -0.986735 -0.162061 0.009465 +v -1.685300 -0.053783 -1.630329 +vn -0.999564 -0.008812 -0.028170 +v -1.691910 0.000339 -1.633540 +vn -0.996251 0.076328 0.040719 +v -1.699066 -0.125201 -1.756509 +vn -0.997727 -0.029427 0.060616 +v -1.688620 -0.070906 -1.685070 +vn -0.991899 0.085113 -0.094298 +v -1.690488 -0.004397 -1.687195 +vn -0.991445 0.129861 -0.013138 +v -1.691895 -0.069077 -1.747623 +vn -0.974039 0.185742 -0.129417 +v -1.684381 -0.023058 -1.740179 +vn 0.097428 -0.992073 -0.079368 +v -1.107405 -0.542482 -1.838589 +vn 0.951371 0.040516 0.305371 +v -1.077087 -0.538036 -1.886270 +vn 0.136222 -0.988398 -0.067183 +v -1.140650 -0.550853 -1.819200 +vn 0.186005 -0.981624 -0.042622 +v -1.150935 -0.545967 -1.919984 +vn 0.007874 -0.999957 0.004854 +v -1.201410 -0.556981 -1.873770 +vn -0.003209 -0.999987 -0.004074 +v -1.208925 -0.559650 -1.953591 +vn 0.255543 -0.965824 -0.043373 +v -1.141162 -0.537891 -2.048260 +vn 0.103515 -0.831394 -0.545957 +v -1.014809 -0.473910 -2.241043 +vn 0.425792 -0.902374 -0.066501 +v -1.170170 -0.542440 -2.184196 +vn 0.061283 -0.998005 -0.015149 +v -1.209126 -0.559306 -2.158581 +vn 0.203738 -0.895138 -0.396508 +v -1.079653 -0.488352 -2.236433 +vn 0.307099 -0.947362 -0.090530 +v -1.131080 -0.529094 -2.148479 +vn 0.486833 -0.843987 -0.225119 +v -1.139430 -0.519294 -2.220889 +vn 0.550398 -0.832259 -0.066386 +v -1.177893 -0.544375 -2.253722 +vn -0.369511 -0.927056 -0.063471 +v -1.265322 -0.546285 -1.872810 +vn -0.352190 -0.932465 -0.080443 +v -1.299780 -0.533393 -1.810260 +vn -0.206488 -0.978449 0.000002 +v -1.230155 -0.553825 -1.903001 +vn -0.369200 -0.914544 -0.165230 +v -1.309900 -0.521791 -1.875170 +vn -0.102417 -0.986156 -0.130411 +v -1.434203 -0.493519 -1.834248 +vn -0.223201 -0.953366 -0.203159 +v -1.365346 -0.500095 -1.909995 +vn -0.463285 -0.883940 -0.063384 +v -1.261790 -0.543861 -1.932730 +vn -0.410116 -0.891163 -0.193991 +v -1.314571 -0.500972 -1.945595 +vn -0.349400 -0.936973 -0.000263 +v -1.233619 -0.553015 -2.051179 +vn -0.645954 -0.762963 -0.025128 +v -1.262527 -0.539007 -2.072962 +vn -0.647343 -0.758814 -0.071756 +v -1.286638 -0.510771 -2.000237 +vn -0.158666 -0.942733 -0.293394 +v -1.370090 -0.485912 -1.951949 +vn -0.084293 -0.985028 -0.150383 +v -1.435407 -0.477051 -1.950035 +vn -0.130712 -0.965074 -0.227038 +v -1.659148 -0.484446 -1.896780 +vn -0.063455 -0.980478 -0.186109 +v -1.611502 -0.476649 -1.952389 +vn -0.266634 -0.917899 -0.293885 +v -1.655470 -0.476075 -1.948429 +vn -0.467448 -0.880083 -0.083343 +v -1.324624 -0.482257 -2.065061 +vn -0.728787 -0.683573 -0.039968 +v -1.279945 -0.509473 -2.123542 +vn -0.512058 -0.857636 -0.047510 +v -1.321530 -0.475058 -2.165979 +vn -0.413332 -0.904907 -0.101493 +v -1.232532 -0.553075 -2.343198 +vn -0.674772 -0.728183 -0.120138 +v -1.256119 -0.538795 -2.343990 +vn -0.794564 -0.605516 -0.044922 +v -1.271095 -0.516432 -2.287045 +vn -0.563305 -0.823898 -0.062287 +v -1.312945 -0.478371 -2.268694 +vn -0.159172 -0.964812 -0.209289 +v -1.375076 -0.471294 -1.992179 +vn -0.022131 -0.987831 -0.153951 +v -1.432568 -0.471691 -1.991620 +vn -0.626409 -0.710710 -0.320162 +v -1.657960 -0.452372 -1.991279 +vn -0.936426 0.319050 -0.145990 +v -1.670880 -0.040765 -1.856542 +vn -0.935814 0.302367 -0.181182 +v -1.657572 -0.000719 -1.838791 +vn -0.924805 0.343892 -0.162711 +v -1.654082 -0.029417 -1.924562 +vn -0.965701 0.219429 -0.138828 +v -1.676190 -0.097064 -1.940469 +vn 0.195667 0.977609 -0.077424 +v -1.671508 -0.112327 -1.994308 +vn -0.909537 0.381510 -0.164903 +v -1.634619 -0.009620 -1.995605 +vn -0.210821 -0.972141 -0.102453 +v -1.375830 -0.455374 -2.108689 +vn -0.273806 -0.960485 -0.049982 +v -1.370680 -0.453361 -2.168309 +vn -0.069864 -0.991123 -0.113109 +v -1.429018 -0.444099 -2.195948 +vn -0.326204 -0.943970 -0.050120 +v -1.365640 -0.452587 -2.225009 +vn -0.103231 -0.983791 -0.146622 +v -1.604184 -0.435293 -2.255953 +vn -0.629112 -0.764355 -0.141354 +v -1.647094 -0.449122 -2.062732 +vn -0.959358 -0.261551 -0.105940 +v -1.667180 -0.414791 -2.053449 +vn -0.981367 -0.133016 -0.138656 +v -1.672092 -0.399008 -2.010840 +vn -0.991010 -0.070374 -0.113782 +v -1.673974 -0.344103 -2.019405 +vn -0.952267 -0.276648 -0.129050 +v -1.651493 -0.404898 -2.206446 +vn -0.995263 -0.039929 -0.088641 +v -1.674523 -0.275766 -2.074833 +vn -0.594717 -0.792058 -0.137682 +v -1.635662 -0.434772 -2.208341 +vn -0.989022 -0.075858 -0.126813 +v -1.659566 -0.293366 -2.229069 +vn -0.992889 0.010972 -0.118534 +v -1.661651 -0.238735 -2.230330 +vn -0.995866 0.047069 -0.077689 +v -1.675075 -0.237140 -2.067756 +vn -0.984987 0.152626 -0.080665 +v -1.662290 -0.120645 -2.087473 +vn -0.937428 0.334447 -0.096820 +v -1.654390 -0.074452 -2.049299 +vn -0.937432 0.337248 -0.086517 +v -1.652604 -0.081632 -2.117234 +vn -0.855302 0.497387 -0.145134 +v -1.629132 -0.037179 -2.106096 +vn -0.898552 0.393105 -0.195121 +v -1.605742 0.025092 -2.048335 +vn -0.833397 0.508584 -0.216317 +v -1.603880 -0.004791 -2.124479 +vn -0.990906 0.092191 -0.098007 +v -1.658443 -0.179347 -2.228658 +vn -0.966143 0.133370 -0.220862 +v -1.650506 -0.153496 -2.277124 +vn -0.756540 0.622660 -0.199853 +v -1.597460 -0.014582 -2.182239 +vn -0.918038 0.356901 -0.172705 +v -1.639627 -0.085645 -2.264666 +vn -0.760872 0.633460 -0.140721 +v -1.621833 -0.053110 -2.230560 +vn -0.651893 0.721473 -0.233479 +v -1.590887 -0.032483 -2.257871 +vn 0.766569 -0.625938 -0.143438 +v -1.165630 -0.524199 -2.289719 +vn 0.127405 -0.990369 -0.054187 +v -1.208890 -0.558726 -2.345354 +vn 0.459540 -0.817823 -0.346392 +v -1.122900 -0.486840 -2.264289 +vn 0.867355 -0.467309 -0.171226 +v -1.171510 -0.526070 -2.346219 +vn 0.571280 -0.612666 -0.546149 +v -1.185910 -0.545024 -2.380004 +vn 0.607718 -0.688740 -0.395368 +v -1.133490 -0.465156 -2.341089 +vn 0.050416 -0.258985 -0.964564 +v -1.208320 -0.522087 -2.394599 +vn -0.184522 -0.829961 -0.526418 +v -1.218381 -0.554531 -2.377079 +vn 0.579955 -0.444615 -0.682619 +v -1.169220 -0.473209 -2.386429 +vn 0.090572 -0.318768 -0.943495 +v -1.204980 -0.476149 -2.400599 +vn 0.134413 -0.853014 -0.504282 +v -1.014614 -0.445441 -2.282588 +vn 0.226110 -0.928869 -0.293386 +v -1.076759 -0.417429 -2.370001 +vn 0.065769 -0.945606 -0.318595 +v -1.014864 -0.424303 -2.328166 +vn 0.020586 -0.901629 -0.432020 +v -1.132472 -0.400794 -2.460125 +vn -0.053511 0.594482 -0.802327 +v -0.793167 0.005105 -2.411249 +vn -0.066783 0.622415 -0.779833 +v -0.886236 -0.001816 -2.409399 +vn -0.056426 0.850096 -0.523597 +v -0.850735 -0.038014 -2.455741 +vn -0.124620 0.665658 -0.735778 +v -1.032977 -0.012400 -2.408055 +vn -0.065998 0.876545 -0.476774 +v -0.974664 -0.049588 -2.453424 +vn 0.281477 -0.859757 -0.426132 +v -1.084260 -0.470240 -2.285629 +vn 0.353793 -0.820661 -0.448716 +v -1.078970 -0.437051 -2.330009 +vn 0.929371 0.172784 -0.326213 +v -1.074620 -0.410070 -2.410979 +vn 0.336014 -0.779935 -0.528011 +v -1.141790 -0.432154 -2.401899 +vn 0.069434 -0.660817 -0.747328 +v -1.199740 -0.433047 -2.424209 +vn 0.019551 -0.826108 -0.563172 +v -1.193480 -0.400224 -2.459629 +vn -0.039011 0.858960 -0.510554 +v -1.071220 -0.062074 -2.482560 +vn -0.052499 0.871781 -0.487075 +v -1.055110 -0.049768 -2.446679 +vn -0.148530 0.736888 -0.659496 +v -1.083680 -0.020857 -2.405139 +vn -0.129654 0.535119 -0.834768 +v -1.142151 0.009247 -2.362930 +vn -0.103481 0.808682 -0.579072 +v -1.133781 -0.031559 -2.404198 +vn -0.073258 0.600027 -0.796618 +v -1.298780 0.006414 -2.349978 +vn -0.040223 0.918821 -0.392618 +v -1.114200 -0.051162 -2.446560 +vn -0.033645 0.839926 -0.541657 +v -1.182299 -0.060648 -2.480008 +vn -0.060781 -0.237420 -0.969504 +v -0.779679 -0.342286 -2.551904 +vn -0.042725 -0.629860 -0.775533 +v -0.794150 -0.376258 -2.538897 +vn -0.055077 -0.055663 -0.996929 +v -0.769286 -0.247557 -2.565050 +vn -0.098484 -0.131807 -0.986371 +v -0.963244 -0.290217 -2.541564 +vn -0.071982 -0.929330 -0.362166 +v -0.893458 -0.392129 -2.508309 +vn -0.122401 -0.813796 -0.568114 +v -0.954889 -0.380696 -2.510780 +vn -0.171598 -0.634651 -0.753506 +v -0.925149 -0.377792 -2.528709 +vn -0.116331 -0.313747 -0.942353 +v -0.951250 -0.351276 -2.533069 +vn -0.295116 -0.664579 -0.686470 +v -0.982677 -0.362375 -2.528057 +vn -0.092599 -0.055301 -0.994166 +v -1.043193 -0.235518 -2.539592 +vn -0.061665 0.069012 -0.995708 +v -0.777902 -0.183055 -2.563757 +vn -0.060607 0.188645 -0.980173 +v -0.777621 -0.128682 -2.556775 +vn -0.058215 0.773153 -0.631542 +v -0.824468 -0.065845 -2.530685 +vn -0.063771 0.912929 -0.403106 +v -0.871212 -0.060884 -2.507567 +vn -0.034247 0.400289 -0.915748 +v -0.758916 -0.087645 -2.547176 +vn -0.090605 0.068789 -0.993508 +v -0.985512 -0.185084 -2.543736 +vn -0.127846 0.647399 -0.751352 +v -0.941052 -0.077487 -2.525340 +vn -0.116260 0.869602 -0.479871 +v -0.964792 -0.061002 -2.498038 +vn -0.149015 0.356657 -0.922274 +v -0.953817 -0.096808 -2.533260 +vn -0.112316 -0.342308 -0.932851 +v -1.012489 -0.345258 -2.527310 +vn -0.096744 -0.125841 -0.987322 +v -1.130808 -0.294009 -2.524458 +vn -0.085144 -0.309265 -0.947156 +v -1.196940 -0.347644 -2.509529 +vn -0.052481 -0.681749 -0.729701 +v -1.221905 -0.381824 -2.490188 +vn -0.099319 -0.034252 -0.994466 +v -1.194578 -0.234811 -2.523628 +vn -0.098359 0.168429 -0.980794 +v -1.054682 -0.160559 -2.534433 +vn -0.106323 0.374299 -0.921192 +v -1.052569 -0.113249 -2.523111 +vn -0.104702 0.029493 -0.994066 +v -1.095610 -0.203665 -2.535953 +vn -0.155914 0.629439 -0.761247 +v -0.998056 -0.083318 -2.511659 +vn -0.050749 0.586752 -0.808175 +v -1.103649 -0.080913 -2.499790 +vn -0.082365 0.295201 -0.951878 +v -1.146769 -0.123786 -2.518696 +vn -0.107953 0.093839 -0.989717 +v -1.175798 -0.180136 -2.524068 +vn -0.066809 0.500302 -0.863269 +v -1.201857 -0.084758 -2.497477 +vn -0.868606 -0.484661 -0.103091 +v -1.265570 -0.522435 -2.342879 +vn -0.560020 -0.717851 -0.413603 +v -1.301430 -0.472150 -2.342209 +vn -0.474608 -0.509622 -0.717658 +v -1.240790 -0.533324 -2.380959 +vn -0.393693 -0.224793 -0.891333 +v -1.238170 -0.491560 -2.391099 +vn -0.730552 -0.193775 -0.654786 +v -1.262180 -0.506810 -2.371019 +vn -0.758390 -0.302232 -0.577494 +v -1.263410 -0.524634 -2.372899 +vn -0.567824 -0.390886 -0.724419 +v -1.271040 -0.456821 -2.377179 +vn -0.294893 -0.685174 -0.666014 +v -1.285610 -0.429059 -2.382959 +vn -0.144375 -0.699996 -0.699400 +v -1.308220 -0.440481 -2.373009 +vn -0.387054 -0.921609 -0.028725 +v -1.363420 -0.451091 -2.283669 +vn -0.152956 -0.978678 -0.137088 +v -1.434147 -0.427806 -2.308002 +vn -0.183518 -0.877564 -0.442947 +v -1.367770 -0.431068 -2.370999 +vn -0.347985 -0.915282 -0.202894 +v -1.360750 -0.451266 -2.330879 +vn -0.133134 -0.969357 -0.206450 +v -1.434710 -0.416770 -2.368809 +vn -0.345871 -0.687106 -0.638951 +v -1.255080 -0.434212 -2.407009 +vn -0.135484 -0.912637 -0.385665 +v -1.315300 -0.409089 -2.410379 +vn -0.039609 -0.836036 -0.547243 +v -1.253860 -0.400132 -2.457659 +vn -0.077796 -0.900700 -0.427419 +v -1.313665 -0.400126 -2.455345 +vn -0.027514 -0.929427 -0.367980 +v -1.374430 -0.408793 -2.410229 +vn -0.042117 -0.969820 -0.240156 +v -1.434290 -0.408428 -2.410189 +vn -0.160556 -0.907009 -0.389303 +v -1.477657 -0.399782 -2.446431 +vn -0.054567 0.848767 -0.525944 +v -1.359856 -0.034186 -2.391933 +vn -0.051071 0.956659 -0.286699 +v -1.409119 -0.057581 -2.442283 +vn -0.097708 0.659722 -0.745130 +v -1.442779 -0.003287 -2.346527 +vn -0.112766 0.888090 -0.445624 +v -1.460595 -0.047524 -2.399536 +vn -0.109461 0.782382 -0.613104 +v -1.452406 -0.065186 -2.469121 +vn -0.083536 -0.959364 -0.269521 +v -1.498159 -0.416061 -2.369600 +vn -0.125373 -0.956335 -0.264018 +v -1.551389 -0.424030 -2.325087 +vn -0.216056 -0.903120 -0.371072 +v -1.546050 -0.416584 -2.362079 +vn -0.524612 -0.762666 -0.378315 +v -1.624346 -0.424574 -2.303654 +vn -0.943143 -0.245946 -0.223587 +v -1.640529 -0.400887 -2.280181 +vn -0.586400 -0.538230 -0.605346 +v -1.594500 -0.394653 -2.347539 +vn -0.786425 -0.330705 -0.521699 +v -1.628408 -0.409942 -2.311495 +vn -0.783042 -0.151266 -0.603294 +v -1.610690 -0.336949 -2.352269 +vn -0.963750 -0.042870 -0.263341 +v -1.653366 -0.261355 -2.284111 +vn -0.853782 -0.086819 -0.513340 +v -1.627862 -0.277288 -2.339365 +vn -0.898218 -0.022260 -0.438986 +v -1.638190 -0.239560 -2.326519 +vn -0.416376 -0.722444 -0.552002 +v -1.538550 -0.391490 -2.398539 +vn -0.464510 -0.551414 -0.692945 +v -1.502494 -0.381722 -2.466787 +vn -0.727698 -0.229779 -0.646264 +v -1.535560 -0.341841 -2.442429 +vn -0.585770 -0.469096 -0.660925 +v -1.552915 -0.364701 -2.416782 +vn -0.724850 -0.279194 -0.629796 +v -1.573700 -0.360573 -2.392269 +vn -0.551744 -0.631831 -0.544398 +v -1.573400 -0.399404 -2.373479 +vn -0.785010 -0.076620 -0.614726 +v -1.565068 -0.262613 -2.421946 +vn -0.810735 0.032062 -0.584534 +v -1.615021 -0.212248 -2.362847 +vn -0.735331 -0.047930 -0.676011 +v -1.536810 -0.238583 -2.462996 +vn -0.895651 0.111486 -0.430559 +v -1.637495 -0.169780 -2.321924 +vn -0.785919 0.262326 -0.559925 +v -1.603897 -0.099472 -2.353750 +vn -0.665141 0.639013 -0.386328 +v -1.547378 -0.001302 -2.288476 +vn -0.746428 0.559955 -0.359576 +v -1.619250 -0.066161 -2.309880 +vn -0.652333 0.536495 -0.535383 +v -1.600110 -0.074044 -2.342289 +vn -0.543904 0.752568 -0.371226 +v -1.578570 -0.047611 -2.321809 +vn -0.471261 0.732140 -0.491817 +v -1.541020 -0.030276 -2.339589 +vn -0.274931 0.705014 -0.653734 +v -1.499520 -0.013882 -2.346919 +vn -0.317495 0.838560 -0.442736 +v -1.528570 -0.055202 -2.386889 +vn -0.333427 0.723309 -0.604690 +v -1.495042 -0.067027 -2.459880 +vn -0.691249 0.335246 -0.640144 +v -1.529615 -0.090221 -2.443518 +vn -0.603271 0.624972 -0.495454 +v -1.547340 -0.073944 -2.410009 +vn -0.747243 0.092588 -0.658069 +v -1.542193 -0.189659 -2.452985 +vn -0.556020 0.686113 -0.469138 +v -1.566600 -0.060925 -2.367459 +vn -0.182013 -0.214699 -0.959570 +v -1.473687 -0.349421 -2.482178 +vn -0.104233 -0.565193 -0.818347 +v -1.475026 -0.380681 -2.472684 +vn -0.248999 -0.133202 -0.959300 +v -1.476400 -0.290837 -2.491723 +vn -0.227183 -0.051809 -0.972473 +v -1.478095 -0.237923 -2.497152 +vn -0.236207 0.099805 -0.966564 +v -1.477311 -0.185142 -2.496162 +vn -0.084579 0.216737 -0.972559 +v -1.366521 -0.125170 -2.497610 +vn -0.059739 0.396574 -0.916057 +v -1.381412 -0.086310 -2.485029 +vn -0.530719 0.012571 -0.847455 +v -1.513579 -0.218976 -2.484898 +vn -0.199509 0.294685 -0.934536 +v -1.469815 -0.099577 -2.482505 +vn -0.516889 0.244527 -0.820385 +v -1.506462 -0.106537 -2.471711 +vn -0.589354 -0.766670 -0.254715 +v -1.681025 -0.484449 -1.888476 +vn -0.871264 -0.448222 -0.199991 +v -1.682665 -0.462835 -1.922367 +vn -0.994215 -0.013646 -0.106535 +v -1.687477 -0.328288 -1.917990 +vn -0.995097 0.038015 -0.091312 +v -1.684642 -0.228660 -1.934769 +vn -0.799565 -0.525338 -0.291059 +v -1.677683 -0.460826 -1.955418 +vn -0.991621 0.078928 -0.102264 +v -1.682969 -0.120122 -1.897133 +vn -0.044636 0.998999 -0.002856 +v -0.966842 0.725953 -0.108022 +vn -0.045692 0.998883 0.012024 +v -1.077297 0.721138 0.107452 +vn -0.135189 0.990698 0.015534 +v -1.250155 0.714309 0.106096 +vn -0.044711 0.998991 -0.004110 +v -1.146689 0.718302 -0.198019 +vn -0.034816 0.998939 -0.030156 +v -0.780133 0.733190 -0.488679 +vn -0.042717 0.998597 -0.031279 +v -1.097355 0.718352 -0.469220 +vn -0.048671 0.998078 -0.038358 +v -1.193380 0.715045 -0.473460 +vn -0.053105 0.997699 -0.042143 +v -0.995078 0.722914 -0.502787 +vn -0.885840 0.463724 -0.015729 +v -1.560228 0.306859 -0.367967 +vn -0.885899 0.463877 -0.000344 +v -1.455858 0.506398 0.024452 +vn -0.972650 0.231811 0.014724 +v -1.668865 0.074581 -0.429133 +vn -0.905655 0.423944 -0.007795 +v -1.637849 0.157807 -0.401710 +vn -0.918433 0.394040 0.034830 +v -1.657843 0.108854 -0.480095 +vn -0.150764 0.987854 -0.037603 +v -1.249879 0.711811 -0.468183 +vn -0.327593 0.944669 -0.016864 +v -1.301699 0.699655 -0.429083 +vn -0.846385 0.531048 -0.040263 +v -1.392601 0.625516 -0.467508 +vn -0.538621 0.841877 -0.033628 +v -1.342470 0.680866 -0.444834 +vn -0.732809 0.679416 -0.037228 +v -1.370509 0.656628 -0.453098 +vn -0.049271 0.993838 -0.099288 +v -0.937743 0.721528 -0.563724 +vn -0.052583 0.993269 -0.103210 +v -1.044304 0.714568 -0.572814 +vn -0.060337 0.992902 -0.102491 +v -1.195624 0.708856 -0.564293 +vn -0.045184 0.987651 -0.150010 +v -0.917868 0.711449 -0.645271 +vn -0.060768 0.979490 -0.192113 +v -1.112630 0.689672 -0.730501 +vn -0.121039 0.970811 -0.207065 +v -1.220405 0.683483 -0.717767 +vn -0.076536 0.958585 -0.274330 +v -1.129364 0.676966 -0.779068 +vn -0.160323 0.932845 -0.322640 +v -1.216994 0.669924 -0.767834 +vn -0.974299 0.214781 0.067900 +v -1.676363 0.082570 -0.611131 +vn -0.914915 0.397144 0.072166 +v -1.666456 0.108289 -0.595277 +vn -0.888922 0.458048 -0.003172 +v -1.635983 0.157593 -0.488532 +vn -0.859616 0.510299 -0.025595 +v -1.602763 0.210626 -0.548570 +vn -0.858830 0.510690 0.040077 +v -1.644901 0.149176 -0.585650 +vn -0.816790 0.576895 0.006804 +v -1.612461 0.194601 -0.607681 +vn -0.884822 0.465898 -0.005331 +v -1.447739 0.521651 -0.398172 +vn -0.886915 0.460164 -0.040377 +v -1.524948 0.370234 -0.432614 +vn -0.881531 0.469184 -0.052625 +v -1.481504 0.424721 -0.696946 +vn -0.858268 0.502694 -0.103320 +v -1.416447 0.556784 -0.631834 +vn -0.859736 0.510078 -0.025969 +v -1.583827 0.238114 -0.635897 +vn -0.789559 0.605588 0.099291 +v -1.644765 0.157384 -0.669053 +vn -0.795338 0.604489 0.045060 +v -1.600437 0.212375 -0.687225 +vn -0.888611 0.447803 0.099206 +v -1.671572 0.135513 -0.722127 +vn -0.746938 0.662914 0.051260 +v -1.596770 0.225279 -0.757148 +vn -0.790295 0.603585 0.105443 +v -1.661840 0.174280 -0.847271 +vn -0.707785 0.698119 0.108030 +v -1.628464 0.196865 -0.793977 +vn -0.754619 0.654560 0.045844 +v -1.578241 0.250326 -0.838687 +vn -0.850993 0.524804 -0.019809 +v -1.564967 0.265345 -0.712160 +vn -0.850876 0.524800 -0.024387 +v -1.542085 0.299409 -0.807571 +vn -0.861263 0.498575 -0.098235 +v -1.474461 0.431164 -0.760886 +vn -0.847214 0.518748 -0.114585 +v -1.430193 0.517488 -0.706280 +vn -0.845523 0.519083 -0.125078 +v -1.487674 0.396009 -0.818955 +vn -0.808020 0.589129 0.005566 +v -1.565240 0.262326 -0.773543 +vn -0.341221 0.936698 -0.078523 +v -1.299304 0.696662 -0.517057 +vn -0.159294 0.980433 -0.115658 +v -1.249942 0.703861 -0.572636 +vn -0.840353 0.535627 -0.083127 +v -1.392631 0.617786 -0.530965 +vn -0.709329 0.695680 -0.113502 +v -1.364921 0.653065 -0.536098 +vn -0.543148 0.831440 -0.117035 +v -1.335844 0.675979 -0.542004 +vn -0.326761 0.932308 -0.155011 +v -1.292056 0.684058 -0.641903 +vn -0.799764 0.583389 -0.141542 +v -1.381894 0.615553 -0.612368 +vn -0.758046 0.628644 -0.173702 +v -1.364354 0.617873 -0.693639 +vn -0.276849 0.914874 -0.293869 +v -1.286305 0.667227 -0.739504 +vn -0.408062 0.806460 -0.427911 +v -1.303042 0.640699 -0.783089 +vn -0.559356 0.786220 -0.262636 +v -1.320209 0.653056 -0.736811 +vn -0.820073 0.545763 -0.172115 +v -1.432894 0.501271 -0.754171 +vn -0.698586 0.654396 -0.289386 +v -1.347085 0.607440 -0.775956 +vn -0.806682 0.560074 -0.188629 +v -1.445693 0.455673 -0.828600 +vn -0.978761 0.194482 0.064830 +v -1.681446 0.107781 -0.777005 +vn -0.076555 0.901795 -0.425329 +v -1.004052 0.423895 -1.325030 +vn -0.071196 0.899247 -0.431608 +v -0.919551 0.527706 -1.121152 +vn -0.159232 0.891914 -0.423244 +v -1.192848 0.447612 -1.247126 +vn -0.037065 0.910515 -0.411812 +v -0.756021 0.658897 -0.875233 +vn -0.059868 0.895834 -0.440337 +v -0.926800 0.599246 -0.973471 +vn -0.053257 0.937063 -0.345076 +v -0.954887 0.670510 -0.825242 +vn -0.058781 0.903804 -0.423890 +v -0.782873 0.569331 -1.059640 +vn -0.101749 0.916789 -0.386193 +v -1.144221 0.660406 -0.824728 +vn -0.152122 0.886692 -0.436619 +v -1.159155 0.615996 -0.910635 +vn -0.218681 0.882663 -0.416035 +v -1.206641 0.654379 -0.811568 +vn -0.147337 0.888735 -0.434098 +v -1.168808 0.569313 -1.003094 +vn -0.300987 0.861223 -0.409515 +v -1.199757 0.577129 -0.969604 +vn -0.120034 0.895164 -0.429271 +v -1.163568 0.533169 -1.077839 +vn -0.203707 0.888634 -0.410892 +v -1.189200 0.503770 -1.131416 +vn -0.708628 0.649599 -0.275440 +v -1.419602 0.425320 -1.022104 +vn -0.717415 0.643015 -0.268043 +v -1.394321 0.485007 -0.945774 +vn -0.692783 0.719921 0.042008 +v -1.581370 0.251944 -0.897722 +vn -0.674965 0.733668 0.078443 +v -1.643512 0.209052 -0.950428 +vn -0.834978 0.546390 0.065338 +v -1.673746 0.187419 -1.060995 +vn -0.538582 0.841862 0.034592 +v -1.619483 0.232196 -1.019897 +vn -0.658951 0.749208 0.066867 +v -1.655161 0.209992 -1.084621 +vn -0.819493 0.569826 -0.061073 +v -1.531090 0.312340 -0.862162 +vn -0.732176 0.679108 -0.052254 +v -1.545100 0.289436 -0.930061 +vn -0.789661 0.600224 -0.127152 +v -1.514680 0.326188 -0.915533 +vn -0.635959 0.700948 -0.322842 +v -1.371134 0.529835 -0.902643 +vn -0.823594 0.542341 -0.166009 +v -1.497940 0.358296 -0.896286 +vn -0.630841 0.771017 -0.087018 +v -1.548361 0.277439 -1.007888 +vn -0.779766 0.599912 -0.179081 +v -1.473220 0.349296 -1.028711 +vn -0.683983 0.716199 -0.138662 +v -1.501768 0.310914 -1.042892 +vn -0.592305 0.805590 -0.014126 +v -1.580200 0.255103 -0.982092 +vn -0.494029 0.772556 -0.398863 +v -1.377611 0.436565 -1.065825 +vn -0.528321 0.748712 -0.400384 +v -1.378876 0.475968 -0.996394 +vn -0.469485 0.793715 -0.386781 +v -1.329455 0.435807 -1.116787 +vn -0.677374 0.681358 -0.277335 +v -1.429882 0.387150 -1.091090 +vn -0.560112 0.750268 -0.351245 +v -1.418663 0.364954 -1.159286 +vn -0.461930 0.810592 -0.359946 +v -1.261553 0.446228 -1.192582 +vn -0.346904 0.853356 -0.389154 +v -1.235818 0.440717 -1.233223 +vn -0.429003 0.825636 -0.366446 +v -1.260811 0.397450 -1.303110 +vn -0.474190 0.821846 -0.315773 +v -1.328109 0.362681 -1.286237 +vn -0.516249 0.794050 -0.320891 +v -1.416833 0.338674 -1.215247 +vn -0.446437 0.870023 -0.209174 +v -1.440225 0.314558 -1.243805 +vn -0.960318 -0.253819 -0.115608 +v -1.680036 0.048941 -1.055604 +vn -0.460505 0.885464 0.062353 +v -1.623830 0.233454 -1.115790 +vn -0.580346 0.811059 0.073361 +v -1.648921 0.226736 -1.178413 +vn -0.374957 0.925293 0.056922 +v -1.623402 0.239371 -1.197855 +vn -0.978462 -0.171027 -0.115589 +v -1.679169 0.094688 -1.188713 +vn -0.997698 -0.066713 -0.012134 +v -1.673730 0.073754 -1.242695 +vn -0.996570 -0.022250 0.079704 +v -1.694562 0.143832 -1.208157 +vn -0.985670 -0.168370 -0.010352 +v -1.691853 0.142451 -1.328053 +vn -0.611867 0.785305 -0.094421 +v -1.497410 0.301486 -1.119349 +vn -0.689144 0.695995 -0.201672 +v -1.462535 0.332659 -1.131076 +vn -0.497947 0.866874 -0.024038 +v -1.567505 0.257700 -1.085498 +vn -0.524609 0.844953 -0.104116 +v -1.497010 0.296405 -1.171720 +vn -0.436291 0.899800 0.003167 +v -1.560327 0.261797 -1.155426 +vn -0.411734 0.904680 -0.109676 +v -1.495790 0.290795 -1.226969 +vn -0.556218 0.799095 -0.228185 +v -1.458690 0.318248 -1.186560 +vn -0.361790 0.932061 -0.019246 +v -1.533639 0.273899 -1.242683 +vn -0.325392 0.938333 -0.116841 +v -1.462231 0.295003 -1.297625 +vn -0.341571 0.937513 -0.066314 +v -1.499691 0.285087 -1.270815 +vn -0.670749 0.741522 0.015506 +v -1.665320 0.223084 -1.293090 +vn -0.418906 0.907770 0.021708 +v -1.637562 0.239462 -1.283972 +vn -0.305033 0.830149 -0.466699 +v -1.241538 0.614384 -0.861991 +vn -0.484615 0.765451 -0.423358 +v -1.319947 0.612351 -0.815543 +vn -0.365669 0.794125 -0.485440 +v -1.320413 0.558494 -0.901923 +vn -0.436638 0.777417 -0.452736 +v -1.326155 0.580297 -0.864531 +vn -0.640550 0.702817 -0.309425 +v -1.358055 0.567232 -0.840360 +vn -0.399524 0.819101 -0.411647 +v -1.250062 0.554550 -0.967132 +vn -0.479425 0.768252 -0.424194 +v -1.361146 0.505172 -0.963346 +vn -0.426435 0.815683 -0.390916 +v -1.240085 0.517820 -1.058655 +vn -0.335539 0.850780 -0.404458 +v -1.217021 0.541556 -1.034406 +vn -0.327696 0.859947 -0.391289 +v -1.219808 0.487464 -1.147792 +vn -0.068630 0.931225 -0.357923 +v -1.011711 0.355930 -1.469659 +vn -0.053988 0.967331 -0.247703 +v -1.000733 0.342878 -1.513912 +vn -0.161411 0.891043 -0.424251 +v -1.198970 0.395246 -1.353586 +vn -0.152408 0.909446 -0.386884 +v -1.211759 0.365644 -1.412498 +vn -0.152948 0.946723 -0.283413 +v -1.228829 0.344180 -1.461041 +vn -0.113988 0.971270 -0.208904 +v -1.231705 0.331612 -1.509273 +vn -0.051723 0.982843 -0.177044 +v -0.916952 0.335905 -1.568212 +vn -0.043678 0.993410 -0.105965 +v -0.999049 0.323973 -1.628532 +vn -0.044059 0.996458 -0.071619 +v -0.777838 0.325513 -1.740877 +vn -0.066728 0.993935 -0.087404 +v -1.167311 0.304745 -1.767044 +vn -0.043273 0.987967 -0.148488 +v -1.110374 0.326366 -1.571077 +vn -0.093219 0.985507 -0.141728 +v -1.223858 0.321100 -1.570231 +vn -0.267890 0.871337 -0.411103 +v -1.216730 0.421877 -1.290800 +vn -0.365012 0.856735 -0.364377 +v -1.255321 0.381233 -1.344746 +vn -0.278481 0.892932 -0.353724 +v -1.251687 0.357494 -1.406167 +vn -0.321599 0.918232 -0.231135 +v -1.297001 0.337361 -1.418249 +vn -0.421616 0.869182 -0.258384 +v -1.318980 0.344882 -1.347060 +vn -0.297450 0.948668 -0.107485 +v -1.422945 0.300803 -1.360325 +vn -0.393407 0.898736 -0.193658 +v -1.388266 0.319256 -1.330863 +vn -0.267767 0.957571 -0.106577 +v -1.383902 0.304624 -1.426069 +vn -0.234122 0.961246 -0.145579 +v -1.305090 0.318181 -1.508780 +vn -0.262256 0.959095 -0.106573 +v -1.357427 0.306917 -1.476383 +vn -0.201098 0.975979 -0.083806 +v -1.416261 0.285668 -1.607915 +vn -0.991596 -0.038055 0.123650 +v -1.675139 0.081707 -1.351772 +vn -0.995805 -0.060993 0.068207 +v -1.686502 0.115827 -1.389441 +vn -0.704124 0.706118 -0.074878 +v -1.660709 0.224437 -1.450944 +vn -0.417106 0.907429 -0.050936 +v -1.632244 0.239740 -1.473419 +vn -0.460179 0.882790 -0.094430 +v -1.624013 0.239537 -1.553841 +vn -0.236173 0.968402 -0.080121 +v -1.485683 0.271066 -1.592667 +vn -0.701466 0.705906 -0.098198 +v -1.648823 0.223219 -1.518300 +vn -0.179992 0.977645 -0.108684 +v -1.320044 0.307543 -1.569920 +vn -0.123527 0.987999 -0.092732 +v -1.249539 0.299169 -1.746712 +vn -0.163097 0.982905 -0.085426 +v -1.373469 0.281699 -1.726948 +vn -0.089062 0.992723 -0.081054 +v -1.227496 0.293280 -1.845794 +vn -0.201340 0.975943 -0.083648 +v -1.426608 0.268314 -1.768868 +vn -0.877152 0.458463 -0.142886 +v -1.667336 0.191428 -1.568083 +vn -0.769130 0.616578 -0.168137 +v -1.640085 0.211928 -1.633600 +vn -0.493823 0.857275 -0.145668 +v -1.617777 0.230411 -1.646155 +vn -0.928398 0.315041 -0.197047 +v -1.644451 0.165204 -1.724579 +vn -0.484469 0.858440 -0.168437 +v -1.588651 0.219423 -1.787841 +vn -0.294682 0.949190 -0.110461 +v -1.560749 0.233447 -1.752470 +vn -0.776437 0.598541 -0.197218 +v -1.620170 0.198925 -1.770359 +vn -0.997628 -0.035837 -0.058773 +v -1.703739 0.057794 -0.971725 +vn -0.991957 0.126091 0.011027 +v -1.698068 0.112101 -1.026222 +vn -0.930725 0.358737 0.071119 +v -1.681998 0.152219 -0.942451 +vn -0.975820 -0.171754 -0.135188 +v -1.694970 0.078493 -1.035879 +vn -0.983695 -0.179781 -0.004826 +v -1.685860 0.061105 -1.090540 +vn -0.995859 0.090017 -0.012758 +v -1.699640 0.124246 -1.089620 +vn -0.995308 -0.067618 -0.069210 +v -1.685960 0.055010 -1.144130 +vn -0.990143 -0.100354 -0.097699 +v -1.690490 0.115154 -1.154000 +vn -0.969455 0.243326 0.030814 +v -1.688933 0.165549 -1.151580 +vn -0.974850 0.219698 0.037421 +v -1.695138 0.169924 -1.242703 +vn -0.849672 0.526186 0.034447 +v -1.682208 0.200592 -1.273643 +vn -0.989372 0.130738 0.063648 +v -1.679100 0.034609 -1.313390 +vn -0.981498 0.187649 -0.038067 +v -1.694295 0.172106 -1.356175 +vn -0.885266 0.458113 -0.080234 +v -1.674447 0.202053 -1.446609 +vn -0.993857 -0.087853 -0.067310 +v -1.687040 0.047280 -1.454290 +vn -0.997324 0.044847 0.057746 +v -1.693420 0.120844 -1.453430 +vn -0.993299 0.092288 -0.069565 +v -1.694841 0.125217 -1.518254 +vn -0.967845 0.248448 -0.039371 +v -1.687903 0.164410 -1.465899 +vn -0.999606 0.028030 -0.001501 +v -1.691770 0.060139 -1.573490 +vn -0.984846 0.126610 -0.118522 +v -1.689996 0.112591 -1.568871 +vn -0.987774 0.111363 -0.109094 +v -1.690600 0.054943 -1.628150 +vn -0.967794 0.185535 -0.170152 +v -1.683290 0.100095 -1.614660 +vn -0.967859 0.177229 -0.178433 +v -1.683190 0.041428 -1.674458 +vn -0.051287 0.996444 -0.066849 +v -0.908717 0.302305 -1.990174 +vn -0.026680 0.996164 -0.083336 +v -0.794280 0.309469 -1.974842 +vn -0.057460 0.995621 -0.073734 +v -0.977188 0.299977 -1.965679 +vn -0.067208 0.994692 -0.077913 +v -1.134034 0.300022 -1.851272 +vn -0.071825 0.995115 -0.067735 +v -1.113109 0.292619 -1.982258 +vn -0.113783 0.989896 -0.084607 +v -1.210030 0.279349 -2.037554 +vn -0.015340 0.998052 -0.060476 +v -0.923498 0.289016 -2.168341 +vn -0.018501 0.999715 0.015064 +v -0.986215 0.286298 -2.231427 +vn -0.054404 0.997766 -0.038776 +v -1.029931 0.285672 -2.167365 +vn -0.105210 0.993899 -0.033109 +v -1.135029 0.276544 -2.167914 +vn -0.071311 0.994994 0.070004 +v -1.097762 0.281143 -2.230254 +vn -0.151136 0.983056 0.103719 +v -1.292060 0.258983 -2.232561 +vn -0.218410 0.969658 -0.109817 +v -1.387017 0.253589 -2.061874 +vn -0.940076 0.257525 -0.223469 +v -1.617133 0.119851 -1.894163 +vn -0.640852 0.729538 -0.238920 +v -1.576515 0.197095 -1.906972 +vn -0.449485 0.875221 -0.178752 +v -1.546425 0.219604 -1.886644 +vn -0.816840 0.527577 -0.233313 +v -1.605945 0.184650 -1.857601 +vn -0.369388 0.919580 -0.133882 +v -1.520797 0.233245 -1.873648 +vn -0.427286 0.888654 -0.166495 +v -1.496699 0.227872 -1.973422 +vn -0.522846 0.825258 -0.213497 +v -1.525791 0.203926 -2.012914 +vn -0.935640 0.290671 -0.200222 +v -1.625270 0.038658 -1.945480 +vn -0.910912 0.331517 -0.245635 +v -1.590518 0.050784 -2.075990 +vn -0.866528 0.427583 -0.257492 +v -1.593983 0.160009 -1.936160 +vn -0.845066 0.424482 -0.325082 +v -1.550329 0.140726 -2.112574 +vn -0.319249 0.939900 -0.121111 +v -1.462129 0.241714 -1.980265 +vn -0.406090 0.910401 -0.079122 +v -1.387790 0.231312 -2.196519 +vn -0.503260 0.836781 -0.215702 +v -1.431690 0.212558 -2.172521 +vn -0.560034 0.828465 -0.002804 +v -1.404150 0.221556 -2.237109 +vn -0.327019 0.942525 0.068594 +v -1.354791 0.246335 -2.229000 +vn -0.224118 0.972270 -0.066794 +v -1.349364 0.247507 -2.171891 +vn -0.406506 0.891305 -0.200820 +v -1.440798 0.230825 -2.095463 +vn -0.328905 0.928358 -0.173126 +v -1.398108 0.241954 -2.122272 +vn -0.723136 0.635566 -0.270428 +v -1.541986 0.170482 -2.084185 +vn -0.575718 0.760585 -0.300098 +v -1.506350 0.184264 -2.123385 +vn -0.858202 0.392860 -0.330379 +v -1.542047 0.054377 -2.207071 +vn -0.841562 0.364346 -0.398780 +v -1.507051 0.089791 -2.256152 +vn -0.755137 0.542036 -0.368734 +v -1.512433 0.146051 -2.182684 +vn -0.673895 0.680896 -0.286786 +v -1.475534 0.163615 -2.226502 +vn -0.710318 0.697598 -0.093831 +v -1.441940 0.184471 -2.258279 +vn -0.853165 0.424562 -0.303079 +v -1.571132 0.036112 -2.149380 +vn -0.787361 0.549288 -0.279903 +v -1.565040 0.017185 -2.195649 +vn -0.067980 0.175784 -0.982079 +v -0.772888 0.060696 -2.387759 +vn -0.044021 -0.111846 -0.992750 +v -0.773269 0.125700 -2.392159 +vn -0.080670 0.209119 -0.974557 +v -0.847694 0.058681 -2.380066 +vn -0.091078 -0.153591 -0.983928 +v -0.877952 0.124144 -2.380799 +vn -0.056397 -0.303606 -0.951127 +v -0.819847 0.179135 -2.399573 +vn -0.028366 -0.494606 -0.868654 +v -0.820596 0.228794 -2.420840 +vn -0.127558 0.293421 -0.947435 +v -1.002564 0.046609 -2.374968 +vn -0.067540 -0.145156 -0.987101 +v -0.950556 0.127612 -2.374319 +vn -0.049666 -0.351121 -0.935012 +v -0.939325 0.181863 -2.391439 +vn -0.024046 -0.592082 -0.805518 +v -1.026182 0.293385 -2.462999 +vn -0.024936 -0.540161 -0.841192 +v -0.981486 0.229415 -2.412126 +vn 0.002717 0.950105 0.311919 +v -0.870562 0.299878 -2.328172 +vn -0.018265 0.988724 0.148628 +v -1.022972 0.288585 -2.280453 +vn -0.026467 0.957788 0.286254 +v -1.055836 0.298978 -2.328120 +vn -0.018257 0.957736 0.287068 +v -0.820188 0.363284 -2.486612 +vn -0.022558 0.937670 0.346793 +v -0.901410 0.338995 -2.427054 +vn -0.068805 0.988523 0.134493 +v -0.959688 0.349658 -2.466821 +vn -0.190231 0.089904 -0.977614 +v -1.093220 0.080082 -2.348509 +vn -0.141093 0.176064 -0.974215 +v -1.145504 0.059743 -2.342438 +vn -0.201368 -0.194578 -0.959995 +v -1.092532 0.130244 -2.352442 +vn -0.168039 -0.391605 -0.904659 +v -1.109507 0.173142 -2.361299 +vn -0.082491 -0.385932 -0.918831 +v -1.256839 0.173435 -2.350288 +vn -0.137965 -0.166874 -0.976278 +v -1.010140 0.128734 -2.368969 +vn -0.210936 0.430470 -0.877611 +v -1.053450 0.026982 -2.370409 +vn -0.227050 -0.047249 -0.972736 +v -1.052720 0.104432 -2.359059 +vn -0.077032 -0.446567 -0.891428 +v -1.012520 0.202553 -2.397619 +vn -0.196124 -0.435526 -0.878551 +v -1.073140 0.178686 -2.375079 +vn -0.033454 -0.598693 -0.800279 +v -1.019761 0.245952 -2.424407 +vn -0.092155 -0.675655 -0.731435 +v -1.133110 0.240946 -2.410669 +vn -0.151806 -0.613859 -0.774682 +v -1.134390 0.210745 -2.380499 +vn -0.093619 -0.601468 -0.793392 +v -1.276422 0.217782 -2.373917 +vn -0.068092 0.972327 0.223481 +v -1.131276 0.290045 -2.303573 +vn -0.060545 0.943686 0.325254 +v -1.141536 0.302985 -2.349424 +vn -0.076282 0.969812 0.231615 +v -1.258227 0.339378 -2.461951 +vn -0.069438 -0.658636 -0.749251 +v -1.248739 0.302469 -2.461046 +vn -0.060147 -0.165105 -0.984440 +v -0.883762 0.352495 -2.504040 +vn -0.046302 -0.479156 -0.876508 +v -0.931626 0.327272 -2.487168 +vn -0.299549 0.323099 -0.897707 +v -0.941066 0.348300 -2.494649 +vn -0.200632 0.803025 -0.561158 +v -0.910393 0.363696 -2.499730 +vn -0.038265 0.638328 -0.768813 +v -1.022103 0.346125 -2.488306 +vn -0.251469 0.575627 -0.778085 +v -1.280558 0.340337 -2.484160 +vn -0.038039 -0.447720 -0.893364 +v -1.242454 0.328562 -2.481791 +vn -0.098375 -0.195095 -0.975838 +v -1.300508 0.121427 -2.331052 +vn -0.081813 0.183178 -0.979669 +v -1.366031 0.059702 -2.316616 +vn -0.188186 -0.155682 -0.969716 +v -1.419275 0.113547 -2.318058 +vn -0.108651 0.295732 -0.949072 +v -1.425190 0.049634 -2.315239 +vn -0.837051 0.220997 -0.500506 +v -1.438709 0.184139 -2.323679 +vn -0.771747 0.629233 0.092049 +v -1.422470 0.213326 -2.305489 +vn -0.299984 -0.300793 -0.905281 +v -1.413010 0.180755 -2.338354 +vn -0.163768 -0.694034 -0.701068 +v -1.327500 0.270568 -2.417801 +vn -0.311652 -0.563502 -0.765074 +v -1.357850 0.260577 -2.399269 +vn -0.393560 -0.376415 -0.838703 +v -1.403864 0.223792 -2.362271 +vn -0.866259 0.324278 -0.380051 +v -1.417490 0.231898 -2.354409 +vn -0.147356 0.960397 0.236483 +v -1.286751 0.270187 -2.293195 +vn -0.134941 0.931413 0.338024 +v -1.287904 0.286645 -2.344617 +vn -0.317133 0.911646 0.261395 +v -1.355350 0.258879 -2.305409 +vn -0.541621 0.825578 0.158325 +v -1.390031 0.236392 -2.286281 +vn -0.358470 0.885223 0.296445 +v -1.351559 0.285070 -2.373136 +vn -0.186885 0.937964 0.292056 +v -1.292018 0.332747 -2.457546 +vn -0.353356 -0.369408 -0.859463 +v -1.315050 0.322582 -2.470558 +vn -0.808441 0.408992 -0.423259 +v -1.380161 0.273091 -2.391514 +vn -0.677696 0.586800 -0.443164 +v -1.320672 0.328626 -2.467922 +vn -0.775700 0.469038 -0.422249 +v -1.521240 0.044910 -2.269209 +vn -0.243206 0.442563 -0.863127 +v -1.470600 0.035731 -2.316719 +vn -0.396706 0.062724 -0.915800 +v -1.461530 0.098133 -2.303869 +vn -0.529845 0.575345 -0.623091 +v -1.511220 0.017712 -2.308669 +vn -0.673637 0.319319 -0.666520 +v -1.493690 0.074579 -2.290749 +vn -0.775362 0.297788 -0.556898 +v -1.474755 0.126425 -2.292834 +vn -0.817360 0.530023 -0.225827 +v -1.456740 0.163737 -2.283219 +vn -0.659361 0.063276 -0.749159 +v -1.452480 0.144530 -2.314549 +vn 0.999394 -0.010718 0.033110 +v 0.241511 -0.083621 2.018660 +vn 0.998015 0.040170 0.048494 +v 0.240974 -0.026311 1.961437 +vn 0.973735 -0.113984 -0.197100 +v 0.247262 0.024370 1.958990 +vn 0.995980 -0.065861 0.060714 +v 0.241327 -0.019256 1.955505 +vn 0.975516 -0.198214 0.095288 +v 0.251507 0.102652 1.552271 +vn 0.998623 -0.001581 -0.052442 +v 0.242057 0.027385 1.546715 +vn 0.999868 -0.010918 0.012064 +v 0.244448 0.049890 1.572687 +vn 0.984544 -0.161781 0.067085 +v 0.248919 0.059678 1.515220 +vn -0.995825 0.081022 -0.042058 +v -1.673770 -0.066233 1.994175 +vn -0.982171 -0.187122 -0.018020 +v -1.677823 -0.064414 2.044652 +vn -0.997981 0.007653 0.063056 +v -1.677584 -0.085571 2.015457 +vn -0.997841 0.049162 -0.043544 +v -1.671660 -0.004534 1.939339 +vn -0.980357 -0.126196 -0.151575 +v -1.678100 0.014998 1.959600 +vn -0.989465 -0.144373 -0.010782 +v -1.674500 -0.015710 1.968772 +vn -0.994454 -0.072900 0.075813 +v -1.675897 0.067398 1.557058 +vn -0.999066 -0.011638 -0.041614 +v -1.672849 0.031212 1.546837 +vn -0.990881 -0.101944 0.088099 +v -1.681400 0.065093 1.518760 +vn 0.959594 0.002476 -0.281378 +v 0.253146 -0.028134 -0.963598 +vn 0.974540 -0.108717 -0.196092 +v 0.257516 -0.046449 -0.952442 +vn 0.984607 0.088406 -0.150774 +v 0.249607 -0.065680 -0.998827 +vn 0.996197 0.014577 0.085904 +v 0.249245 -0.089524 -0.978795 +vn 0.999874 0.013980 -0.007585 +v 0.248538 -0.005551 -1.056867 +vn 0.995178 -0.085118 0.048747 +v 0.242237 -0.027037 -1.034350 +vn 0.972387 -0.208717 -0.104407 +v 0.254085 0.007364 -1.007240 +vn -0.982851 -0.175884 -0.055402 +v -1.670312 -0.142767 -1.638642 +vn -0.978065 -0.007213 -0.208173 +v -1.684674 -0.032621 -0.967015 +vn -0.977377 -0.201672 -0.063744 +v -1.683915 -0.052713 -0.942870 +vn -0.993948 -0.083490 0.071397 +v -1.679580 -0.085162 -0.978808 +vn -0.986649 0.120421 -0.109648 +v -1.679450 -0.064416 -1.003399 +vn -0.990328 -0.099394 0.096803 +v -1.680170 -0.026308 -1.038970 +vn -0.994414 0.102430 -0.025457 +v -1.680300 -0.003242 -1.060700 +vn -0.887008 0.329481 0.323510 +v -1.672383 0.012257 -1.071870 +vn -0.999640 0.022893 -0.013969 +v -1.673748 -0.123765 -1.609546 +vn -0.996694 -0.005546 -0.081058 +v -1.673583 -0.143607 -1.624928 +vn -0.965906 -0.207978 0.154177 +v -1.680910 -0.123650 -1.648419 +vn -0.976571 -0.086524 0.197036 +v -1.680080 -0.091460 -1.635520 +vn -0.972854 -0.189682 -0.132575 +v -1.688588 0.021948 -1.017663 +vn -0.990398 0.070140 0.119130 +v -1.689800 -0.048595 -0.959965 +# 3750 vertices, 0 vertices normals + +f 1//1 3//3 2//2 +f 1//1 4//4 3//3 +f 1//1 2//2 5//5 +f 4//4 6//6 3//3 +f 7//7 9//9 8//8 +f 1//1 8//8 4//4 +f 1//1 7//7 8//8 +f 1//1 5//5 7//7 +f 8//8 11//11 10//10 +f 8//8 9//9 11//11 +f 4//4 8//8 10//10 +f 10//10 11//11 12//12 +f 4//4 13//13 6//6 +f 10//10 16//16 15//15 +f 10//10 12//12 16//16 +f 4//4 15//15 13//13 +f 4//4 10//10 15//15 +f 13//13 17//17 14//14 +f 13//13 15//15 17//17 +f 14//14 19//19 18//18 +f 14//14 17//17 19//19 +f 18//18 21//21 20//20 +f 18//18 19//19 21//21 +f 17//17 22//22 19//19 +f 19//19 23//23 21//21 +f 20//20 24//24 18//18 +f 20//20 21//21 25//25 +f 23//23 27//27 26//26 +f 21//21 26//26 25//25 +f 21//21 23//23 26//26 +f 25//25 28//28 20//20 +f 25//25 29//29 28//28 +f 25//25 26//26 29//29 +f 30//30 31//31 33//33 +f 30//30 34//34 32//32 +f 30//30 35//35 34//34 +f 30//30 33//33 35//35 +f 33//33 31//31 36//36 +f 33//33 36//36 37//37 +f 33//33 37//37 35//35 +f 38//38 40//40 39//39 +f 31//31 38//38 36//36 +f 31//31 40//40 38//38 +f 31//31 30//30 40//40 +f 38//38 42//42 41//41 +f 38//38 39//39 42//42 +f 36//36 38//38 41//41 +f 43//43 44//44 46//46 +f 43//43 47//47 45//45 +f 43//43 46//46 47//47 +f 48//48 45//45 47//47 +f 48//48 49//49 45//45 +f 48//48 50//50 49//49 +f 48//48 51//51 50//50 +f 48//48 47//47 51//51 +f 52//52 54//54 53//53 +f 45//45 54//54 52//52 +f 45//45 49//49 54//54 +f 52//52 53//53 55//55 +f 45//45 55//55 43//43 +f 45//45 52//52 55//55 +f 56//56 49//49 50//50 +f 56//56 57//57 49//49 +f 56//56 58//58 57//57 +f 56//56 50//50 59//59 +f 56//56 60//60 58//58 +f 56//56 61//61 60//60 +f 56//56 59//59 61//61 +f 57//57 54//54 49//49 +f 57//57 58//58 62//62 +f 58//58 63//63 62//62 +f 58//58 60//60 63//63 +f 62//62 64//64 57//57 +f 62//62 65//65 64//64 +f 62//62 66//66 65//65 +f 62//62 63//63 66//66 +f 50//50 51//51 59//59 +f 54//54 68//68 53//53 +f 54//54 67//67 68//68 +f 54//54 64//64 67//67 +f 54//54 57//57 64//64 +f 53//53 68//68 69//69 +f 46//46 32//32 34//34 +f 46//46 44//44 32//32 +f 46//46 34//34 47//47 +f 34//34 35//35 47//47 +f 47//47 35//35 51//51 +f 44//44 71//71 32//32 +f 44//44 70//70 71//71 +f 44//44 55//55 70//70 +f 44//44 43//43 55//55 +f 32//32 40//40 30//30 +f 32//32 71//71 40//40 +f 71//71 73//73 40//40 +f 71//71 72//72 73//73 +f 71//71 74//74 72//72 +f 71//71 70//70 74//74 +f 55//55 74//74 70//70 +f 55//55 75//75 74//74 +f 55//55 69//69 75//75 +f 55//55 53//53 69//69 +f 40//40 77//77 39//39 +f 40//40 73//73 77//77 +f 77//77 79//79 78//78 +f 77//77 80//80 79//79 +f 39//39 78//78 42//42 +f 39//39 77//77 78//78 +f 80//80 81//81 79//79 +f 80//80 82//82 81//81 +f 65//65 83//83 64//64 +f 65//65 84//84 83//83 +f 65//65 85//85 84//84 +f 65//65 66//66 85//85 +f 84//84 86//86 83//83 +f 84//84 87//87 86//86 +f 84//84 85//85 87//87 +f 86//86 88//88 83//83 +f 86//86 89//89 88//88 +f 86//86 90//90 89//89 +f 86//86 91//91 90//90 +f 86//86 87//87 91//91 +f 92//92 88//88 93//93 +f 92//92 83//83 88//88 +f 92//92 94//94 83//83 +f 68//68 95//95 69//69 +f 68//68 92//92 95//95 +f 68//68 94//94 92//92 +f 68//68 67//67 94//94 +f 92//92 93//93 95//95 +f 64//64 94//94 67//67 +f 64//64 83//83 94//94 +f 88//88 96//96 93//93 +f 88//88 89//89 96//96 +f 89//89 97//97 96//96 +f 96//96 97//97 98//98 +f 90//90 99//99 89//89 +f 90//90 91//91 100//100 +f 97//97 101//101 98//98 +f 97//97 102//102 101//101 +f 102//102 103//103 101//101 +f 102//102 97//97 104//104 +f 89//89 99//99 97//97 +f 99//99 104//104 97//97 +f 99//99 105//105 104//104 +f 99//99 106//106 105//105 +f 99//99 90//90 106//106 +f 107//107 109//109 108//108 +f 104//104 108//108 102//102 +f 104//104 107//107 108//108 +f 104//104 105//105 107//107 +f 75//75 110//110 74//74 +f 75//75 95//95 110//110 +f 75//75 69//69 95//95 +f 110//110 93//93 111//111 +f 110//110 95//95 93//93 +f 74//74 112//112 72//72 +f 74//74 110//110 112//112 +f 110//110 111//111 112//112 +f 111//111 98//98 113//113 +f 111//111 96//96 98//98 +f 111//111 93//93 96//96 +f 98//98 114//114 113//113 +f 113//113 114//114 115//115 +f 77//77 116//116 80//80 +f 77//77 117//117 116//116 +f 73//73 117//117 77//77 +f 73//73 118//118 117//117 +f 73//73 112//112 118//118 +f 73//73 72//72 112//112 +f 118//118 119//119 117//117 +f 118//118 120//120 119//119 +f 118//118 111//111 120//120 +f 118//118 112//112 111//111 +f 121//121 123//123 122//122 +f 117//117 123//123 121//121 +f 117//117 119//119 123//123 +f 117//117 121//121 116//116 +f 80//80 116//116 82//82 +f 121//121 125//125 124//124 +f 121//121 122//122 125//125 +f 116//116 124//124 82//82 +f 116//116 121//121 124//124 +f 120//120 126//126 119//119 +f 120//120 115//115 126//126 +f 120//120 113//113 115//115 +f 120//120 111//111 113//113 +f 115//115 127//127 126//126 +f 115//115 128//128 127//127 +f 119//119 129//129 123//123 +f 119//119 126//126 129//129 +f 126//126 130//130 129//129 +f 126//126 127//127 130//130 +f 81//81 132//132 131//131 +f 81//81 124//124 132//132 +f 82//82 124//124 81//81 +f 124//124 133//133 132//132 +f 124//124 125//125 133//133 +f 131//131 135//135 134//134 +f 131//131 132//132 135//135 +f 132//132 136//136 135//135 +f 132//132 133//133 136//136 +f 114//114 98//98 101//101 +f 114//114 128//128 115//115 +f 114//114 101//101 128//128 +f 101//101 137//137 128//128 +f 101//101 138//138 137//137 +f 128//128 139//139 127//127 +f 127//127 139//139 140//140 +f 127//127 140//140 130//130 +f 128//128 141//141 139//139 +f 128//128 137//137 141//141 +f 139//139 141//141 142//142 +f 143//143 145//145 144//144 +f 137//137 143//143 141//141 +f 137//137 145//145 143//143 +f 143//143 144//144 146//146 +f 141//141 146//146 142//142 +f 141//141 143//143 146//146 +f 101//101 103//103 138//138 +f 103//103 108//108 138//138 +f 103//103 102//102 108//108 +f 108//108 147//147 145//145 +f 138//138 145//145 137//137 +f 138//138 108//108 145//145 +f 108//108 109//109 147//147 +f 145//145 148//148 144//144 +f 145//145 147//147 148//148 +f 147//147 149//149 148//148 +f 148//148 149//149 150//150 +f 153//153 152//152 151//151 +f 153//153 37//37 152//152 +f 153//153 154//154 37//37 +f 37//37 36//36 152//152 +f 37//37 76//76 35//35 +f 37//37 154//154 76//76 +f 41//41 42//42 155//155 +f 36//36 41//41 152//152 +f 152//152 41//41 151//151 +f 153//153 156//156 157//157 +f 153//153 151//151 156//156 +f 153//153 157//157 154//154 +f 156//156 151//151 158//158 +f 41//41 155//155 151//151 +f 151//151 155//155 159//159 +f 151//151 159//159 158//158 +f 157//157 156//156 158//158 +f 157//157 160//160 154//154 +f 157//157 162//162 161//161 +f 157//157 158//158 162//162 +f 157//157 161//161 160//160 +f 154//154 160//160 76//76 +f 159//159 165//165 164//164 +f 159//159 155//155 165//165 +f 158//158 159//159 163//163 +f 161//161 162//162 166//166 +f 158//158 163//163 167//167 +f 162//162 158//158 167//167 +f 167//167 163//163 168//168 +f 162//162 167//167 166//166 +f 159//159 164//164 163//163 +f 163//163 169//169 168//168 +f 163//163 164//164 169//169 +f 78//78 171//171 170//170 +f 78//78 79//79 171//171 +f 42//42 170//170 155//155 +f 42//42 78//78 170//170 +f 170//170 171//171 172//172 +f 155//155 170//170 172//172 +f 79//79 173//173 171//171 +f 79//79 81//81 173//173 +f 172//172 171//171 174//174 +f 172//172 174//174 165//165 +f 155//155 172//172 165//165 +f 171//171 173//173 174//174 +f 81//81 175//175 173//173 +f 81//81 131//131 175//175 +f 131//131 176//176 175//175 +f 131//131 134//134 176//176 +f 165//165 178//178 164//164 +f 165//165 174//174 178//178 +f 174//174 173//173 178//178 +f 164//164 178//178 180//180 +f 164//164 180//180 169//169 +f 76//76 160//160 177//177 +f 173//173 175//175 178//178 +f 160//160 179//179 177//177 +f 177//177 179//179 181//181 +f 178//178 175//175 182//182 +f 178//178 182//182 180//180 +f 175//175 183//183 182//182 +f 175//175 176//176 183//183 +f 184//184 186//186 185//185 +f 184//184 187//187 186//186 +f 184//184 188//188 189//189 +f 184//184 189//189 187//187 +f 189//189 190//190 187//187 +f 189//189 192//192 191//191 +f 189//189 188//188 192//192 +f 189//189 191//191 190//190 +f 191//191 194//194 193//193 +f 191//191 192//192 194//194 +f 191//191 195//195 190//190 +f 191//191 193//193 195//195 +f 188//188 196//196 192//192 +f 192//192 196//196 194//194 +f 129//129 130//130 197//197 +f 129//129 198//198 123//123 +f 129//129 197//197 198//198 +f 197//197 185//185 186//186 +f 197//197 130//130 185//185 +f 197//197 199//199 198//198 +f 197//197 186//186 199//199 +f 122//122 198//198 200//200 +f 122//122 123//123 198//198 +f 122//122 201//201 125//125 +f 122//122 200//200 201//201 +f 200//200 199//199 202//202 +f 200//200 198//198 199//199 +f 200//200 203//203 201//201 +f 200//200 202//202 203//203 +f 186//186 204//204 199//199 +f 186//186 187//187 204//204 +f 202//202 199//199 204//204 +f 202//202 204//204 203//203 +f 125//125 205//205 133//133 +f 125//125 201//201 205//205 +f 201//201 206//206 205//205 +f 201//201 203//203 206//206 +f 133//133 207//207 136//136 +f 133//133 205//205 207//207 +f 205//205 208//208 207//207 +f 205//205 206//206 208//208 +f 130//130 140//140 209//209 +f 140//140 142//142 209//209 +f 140//140 139//139 142//142 +f 130//130 209//209 185//185 +f 146//146 212//212 211//211 +f 146//146 144//144 212//212 +f 142//142 211//211 210//210 +f 142//142 146//146 211//211 +f 185//185 209//209 184//184 +f 142//142 214//214 213//213 +f 142//142 210//210 214//214 +f 209//209 142//142 213//213 +f 184//184 209//209 188//188 +f 210//210 211//211 214//214 +f 211//211 216//216 215//215 +f 211//211 212//212 216//216 +f 214//214 211//211 215//215 +f 144//144 148//148 212//212 +f 217//217 150//150 218//218 +f 212//212 150//150 217//217 +f 212//212 148//148 150//150 +f 212//212 217//217 216//216 +f 204//204 187//187 190//190 +f 204//204 190//190 195//195 +f 204//204 195//195 203//203 +f 206//206 219//219 208//208 +f 209//209 220//220 188//188 +f 209//209 213//213 220//220 +f 188//188 220//220 196//196 +f 213//213 215//215 220//220 +f 213//213 214//214 215//215 +f 215//215 222//222 221//221 +f 220//220 215//215 221//221 +f 215//215 216//216 222//222 +f 196//196 220//220 223//223 +f 220//220 221//221 223//223 +f 221//221 222//222 224//224 +f 222//222 225//225 224//224 +f 217//217 227//227 226//226 +f 217//217 218//218 227//227 +f 216//216 217//217 226//226 +f 216//216 227//227 222//222 +f 216//216 226//226 227//227 +f 222//222 228//228 225//225 +f 222//222 227//227 228//228 +f 229//229 60//60 61//61 +f 229//229 231//231 230//230 +f 229//229 232//232 231//231 +f 229//229 61//61 232//232 +f 61//61 59//59 232//232 +f 231//231 233//233 230//230 +f 231//231 234//234 233//233 +f 231//231 232//232 234//234 +f 60//60 235//235 63//63 +f 60//60 229//229 235//235 +f 63//63 235//235 66//66 +f 230//230 235//235 229//229 +f 230//230 236//236 235//235 +f 230//230 237//237 236//236 +f 230//230 233//233 237//237 +f 235//235 238//238 66//66 +f 235//235 236//236 238//238 +f 59//59 51//51 232//232 +f 234//234 232//232 177//177 +f 234//234 239//239 233//233 +f 234//234 2//2 239//239 +f 234//234 177//177 2//2 +f 233//233 240//240 237//237 +f 237//237 238//238 236//236 +f 237//237 241//241 238//238 +f 237//237 240//240 241//241 +f 233//233 239//239 240//240 +f 240//240 6//6 241//241 +f 232//232 51//51 177//177 +f 51//51 35//35 177//177 +f 35//35 76//76 177//177 +f 2//2 3//3 239//239 +f 2//2 177//177 5//5 +f 239//239 3//3 240//240 +f 240//240 3//3 6//6 +f 177//177 242//242 5//5 +f 7//7 243//243 9//9 +f 7//7 244//244 243//243 +f 9//9 245//245 11//11 +f 9//9 243//243 245//245 +f 243//243 246//246 245//245 +f 243//243 244//244 246//246 +f 11//11 247//247 12//12 +f 11//11 248//248 247//247 +f 11//11 249//249 248//248 +f 11//11 245//245 249//249 +f 246//246 251//251 250//250 +f 245//245 250//250 249//249 +f 245//245 246//246 250//250 +f 7//7 252//252 244//244 +f 5//5 242//242 7//7 +f 7//7 253//253 252//252 +f 244//244 254//254 246//246 +f 244//244 252//252 254//254 +f 246//246 255//255 251//251 +f 246//246 254//254 255//255 +f 252//252 256//256 254//254 +f 252//252 253//253 256//256 +f 254//254 257//257 255//255 +f 254//254 256//256 257//257 +f 177//177 258//258 242//242 +f 7//7 259//259 253//253 +f 7//7 260//260 259//259 +f 242//242 260//260 7//7 +f 260//260 261//261 259//259 +f 253//253 262//262 256//256 +f 253//253 259//259 262//262 +f 259//259 263//263 262//262 +f 259//259 261//261 263//263 +f 256//256 264//264 257//257 +f 256//256 265//265 264//264 +f 256//256 266//266 265//265 +f 256//256 262//262 266//266 +f 263//263 268//268 267//267 +f 263//263 269//269 268//268 +f 262//262 267//267 266//266 +f 262//262 263//263 267//267 +f 260//260 270//270 261//261 +f 260//260 271//271 270//270 +f 242//242 271//271 260//260 +f 242//242 258//258 271//271 +f 271//271 272//272 270//270 +f 271//271 273//273 272//272 +f 271//271 274//274 273//273 +f 271//271 258//258 274//274 +f 261//261 275//275 263//263 +f 261//261 270//270 275//275 +f 263//263 276//276 269//269 +f 263//263 275//275 276//276 +f 270//270 272//272 275//275 +f 275//275 272//272 276//276 +f 66//66 277//277 85//85 +f 85//85 278//278 87//87 +f 85//85 277//277 278//278 +f 66//66 238//238 277//277 +f 87//87 278//278 91//91 +f 278//278 279//279 91//91 +f 241//241 277//277 238//238 +f 241//241 6//6 277//277 +f 277//277 6//6 278//278 +f 6//6 13//13 278//278 +f 278//278 14//14 279//279 +f 278//278 13//13 14//14 +f 91//91 281//281 100//100 +f 100//100 106//106 90//90 +f 100//100 282//282 106//106 +f 100//100 281//281 282//282 +f 91//91 280//280 281//281 +f 91//91 279//279 280//280 +f 283//283 282//282 284//284 +f 282//282 283//283 106//106 +f 282//282 285//285 284//284 +f 282//282 286//286 285//285 +f 281//281 286//286 282//282 +f 283//283 287//287 107//107 +f 283//283 284//284 287//287 +f 106//106 107//107 105//105 +f 106//106 283//283 107//107 +f 107//107 287//287 109//109 +f 284//284 288//288 287//287 +f 284//284 289//289 288//288 +f 284//284 285//285 289//289 +f 280//280 290//290 281//281 +f 279//279 291//291 280//280 +f 280//280 292//292 290//290 +f 280//280 291//291 292//292 +f 281//281 290//290 286//286 +f 292//292 293//293 286//286 +f 292//292 286//286 290//290 +f 286//286 294//294 295//295 +f 286//286 296//296 294//294 +f 286//286 293//293 296//296 +f 285//285 295//295 289//289 +f 285//285 286//286 295//295 +f 109//109 298//298 147//147 +f 109//109 297//297 298//298 +f 109//109 288//288 297//297 +f 109//109 287//287 288//288 +f 147//147 298//298 149//149 +f 12//12 247//247 16//16 +f 15//15 16//16 17//17 +f 251//251 255//255 299//299 +f 255//255 264//264 299//299 +f 255//255 257//257 264//264 +f 279//279 18//18 291//291 +f 279//279 14//14 18//18 +f 292//292 300//300 293//293 +f 291//291 300//300 292//292 +f 293//293 300//300 296//296 +f 291//291 24//24 300//300 +f 291//291 18//18 24//24 +f 300//300 24//24 301//301 +f 24//24 28//28 301//301 +f 24//24 20//20 28//28 +f 269//269 302//302 268//268 +f 302//302 303//303 268//268 +f 302//302 304//304 303//303 +f 304//304 305//305 303//303 +f 304//304 306//306 305//305 +f 269//269 276//276 302//302 +f 276//276 272//272 307//307 +f 302//302 308//308 304//304 +f 302//302 276//276 308//308 +f 304//304 308//308 306//306 +f 276//276 307//307 308//308 +f 308//308 309//309 306//306 +f 308//308 307//307 309//309 +f 305//305 311//311 310//310 +f 305//305 309//309 311//311 +f 306//306 309//309 305//305 +f 310//310 313//313 312//312 +f 310//310 311//311 313//313 +f 312//312 313//313 314//314 +f 258//258 315//315 274//274 +f 177//177 316//316 258//258 +f 258//258 316//316 315//315 +f 134//134 317//317 176//176 +f 134//134 135//135 317//317 +f 135//135 207//207 317//317 +f 135//135 136//136 207//207 +f 317//317 207//207 208//208 +f 176//176 317//317 183//183 +f 317//317 208//208 219//219 +f 318//318 247//247 248//248 +f 318//318 320//320 319//319 +f 318//318 248//248 320//320 +f 321//321 320//320 322//322 +f 321//321 319//319 320//320 +f 321//321 323//323 319//319 +f 321//321 324//324 323//323 +f 321//321 322//322 324//324 +f 326//326 324//324 327//327 +f 326//326 323//323 324//324 +f 326//326 328//328 323//323 +f 326//326 327//327 328//328 +f 323//323 330//330 319//319 +f 319//319 331//331 325//325 +f 319//319 330//330 331//331 +f 323//323 332//332 330//330 +f 323//323 329//329 332//332 +f 330//330 333//333 331//331 +f 330//330 332//332 333//333 +f 334//334 328//328 335//335 +f 334//334 323//323 328//328 +f 334//334 336//336 323//323 +f 334//334 337//337 336//336 +f 334//334 335//335 337//337 +f 323//323 336//336 329//329 +f 336//336 337//337 338//338 +f 336//336 339//339 329//329 +f 329//329 340//340 332//332 +f 332//332 341//341 333//333 +f 332//332 340//340 341//341 +f 329//329 342//342 340//340 +f 329//329 339//339 342//342 +f 336//336 338//338 343//343 +f 336//336 343//343 339//339 +f 343//343 345//345 344//344 +f 343//343 338//338 345//345 +f 343//343 346//346 339//339 +f 339//339 347//347 342//342 +f 339//339 348//348 347//347 +f 339//339 346//346 348//348 +f 347//347 350//350 342//342 +f 347//347 349//349 350//350 +f 347//347 348//348 349//349 +f 318//318 351//351 247//247 +f 318//318 352//352 351//351 +f 318//318 319//319 352//352 +f 351//351 16//16 247//247 +f 319//319 325//325 352//352 +f 352//352 325//325 353//353 +f 351//351 22//22 16//16 +f 351//351 354//354 22//22 +f 351//351 352//352 354//354 +f 22//22 17//17 16//16 +f 352//352 353//353 354//354 +f 354//354 353//353 355//355 +f 325//325 331//331 356//356 +f 325//325 357//357 353//353 +f 325//325 356//356 357//357 +f 331//331 333//333 356//356 +f 357//357 358//358 359//359 +f 353//353 359//359 355//355 +f 353//353 357//357 359//359 +f 22//22 360//360 19//19 +f 22//22 354//354 360//360 +f 23//23 361//361 27//27 +f 19//19 361//361 23//23 +f 19//19 360//360 361//361 +f 354//354 362//362 360//360 +f 354//354 355//355 362//362 +f 360//360 362//362 361//361 +f 29//29 364//364 363//363 +f 3713//3713 29//29 26//26 +f 27//27 3713//3713 26//26 +f 3713//3713 27//27 361//361 +f 3713//3713 361//361 364//364 +f 355//355 365//365 362//362 +f 355//355 359//359 365//365 +f 359//359 367//367 365//365 +f 359//359 366//366 367//367 +f 359//359 368//368 366//366 +f 359//359 358//358 368//368 +f 361//361 369//369 364//364 +f 361//361 362//362 369//369 +f 780//780 369//369 370//370 +f 364//364 369//369 3714//3714 +f 362//362 371//371 369//369 +f 362//362 365//365 371//371 +f 369//369 372//372 370//370 +f 369//369 371//371 372//372 +f 367//367 374//374 365//365 +f 367//367 373//373 374//374 +f 367//367 375//375 373//373 +f 367//367 366//366 375//375 +f 365//365 374//374 371//371 +f 371//371 376//376 372//372 +f 374//374 377//377 371//371 +f 374//374 378//378 377//377 +f 374//374 379//379 378//378 +f 374//374 373//373 379//379 +f 371//371 377//377 376//376 +f 378//378 379//379 380//380 +f 377//377 381//381 376//376 +f 378//378 382//382 377//377 +f 378//378 383//383 382//382 +f 378//378 384//384 383//383 +f 378//378 380//380 384//384 +f 377//377 382//382 381//381 +f 344//344 385//385 343//343 +f 344//344 345//345 386//386 +f 343//343 385//385 346//346 +f 385//385 387//387 346//346 +f 385//385 388//388 387//387 +f 385//385 344//344 388//388 +f 348//348 389//389 349//349 +f 348//348 390//390 389//389 +f 348//348 346//346 390//390 +f 346//346 387//387 391//391 +f 346//346 391//391 390//390 +f 387//387 393//393 391//391 +f 387//387 392//392 393//393 +f 387//387 394//394 392//392 +f 391//391 393//393 395//395 +f 393//393 396//396 395//395 +f 393//393 397//397 396//396 +f 393//393 392//392 397//397 +f 390//390 398//398 389//389 +f 390//390 399//399 398//398 +f 390//390 391//391 399//399 +f 398//398 399//399 400//400 +f 401//401 400//400 403//403 +f 401//401 402//402 400//400 +f 391//391 395//395 399//399 +f 399//399 404//404 400//400 +f 399//399 395//395 404//404 +f 395//395 396//396 405//405 +f 395//395 406//406 404//404 +f 395//395 405//405 406//406 +f 400//400 404//404 403//403 +f 403//403 404//404 407//407 +f 404//404 406//406 408//408 +f 404//404 409//409 407//407 +f 404//404 408//408 409//409 +f 410//410 384//384 411//411 +f 410//410 383//383 384//384 +f 410//410 411//411 412//412 +f 401//401 410//410 412//412 +f 401//401 413//413 410//410 +f 401//401 403//403 413//413 +f 410//410 413//413 383//383 +f 382//382 414//414 381//381 +f 383//383 415//415 382//382 +f 383//383 413//413 415//415 +f 414//414 417//417 416//416 +f 382//382 417//417 414//414 +f 382//382 415//415 417//417 +f 403//403 407//407 413//413 +f 413//413 407//407 418//418 +f 409//409 420//420 419//419 +f 409//409 421//421 420//420 +f 407//407 409//409 419//419 +f 419//419 420//420 422//422 +f 407//407 422//422 418//418 +f 407//407 419//419 422//422 +f 413//413 423//423 415//415 +f 413//413 418//418 423//423 +f 415//415 424//424 417//417 +f 415//415 423//423 424//424 +f 423//423 418//418 424//424 +f 405//405 425//425 406//406 +f 405//405 426//426 425//425 +f 405//405 396//396 426//426 +f 406//406 425//425 427//427 +f 406//406 427//427 408//408 +f 409//409 428//428 421//421 +f 408//408 428//428 409//409 +f 408//408 427//427 428//428 +f 427//427 429//429 428//428 +f 427//427 430//430 429//429 +f 433//433 435//435 434//434 +f 433//433 436//436 435//435 +f 433//433 431//431 436//436 +f 433//433 432//432 431//431 +f 433//433 434//434 432//432 +f 436//436 437//437 435//435 +f 436//436 438//438 437//437 +f 436//436 439//439 438//438 +f 436//436 431//431 439//439 +f 431//431 440//440 439//439 +f 431//431 441//441 440//440 +f 438//438 430//430 437//437 +f 438//438 442//442 430//430 +f 438//438 439//439 442//442 +f 430//430 442//442 429//429 +f 442//442 439//439 443//443 +f 428//428 444//444 421//421 +f 428//428 445//445 444//444 +f 428//428 429//429 445//445 +f 444//444 420//420 421//421 +f 444//444 446//446 420//420 +f 422//422 446//446 418//418 +f 422//422 420//420 446//446 +f 418//418 447//447 424//424 +f 418//418 446//446 447//447 +f 446//446 444//444 448//448 +f 446//446 448//448 447//447 +f 429//429 442//442 445//445 +f 442//442 449//449 445//445 +f 442//442 443//443 449//449 +f 445//445 449//449 444//444 +f 444//444 450//450 448//448 +f 448//448 450//450 451//451 +f 444//444 449//449 450//450 +f 452//452 454//454 453//453 +f 452//452 322//322 454//454 +f 452//452 324//324 322//322 +f 452//452 327//327 324//324 +f 455//455 249//249 456//456 +f 455//455 248//248 249//249 +f 455//455 320//320 248//248 +f 455//455 322//322 320//320 +f 455//455 454//454 322//322 +f 455//455 456//456 454//454 +f 456//456 250//250 457//457 +f 456//456 249//249 250//250 +f 456//456 457//457 454//454 +f 453//453 458//458 452//452 +f 453//453 460//460 459//459 +f 453//453 454//454 460//460 +f 453//453 459//459 458//458 +f 457//457 462//462 461//461 +f 457//457 250//250 462//462 +f 457//457 461//461 454//454 +f 250//250 299//299 462//462 +f 250//250 251//251 299//299 +f 461//461 265//265 463//463 +f 461//461 462//462 265//265 +f 461//461 460//460 454//454 +f 461//461 463//463 460//460 +f 462//462 264//264 265//265 +f 462//462 299//299 264//264 +f 464//464 327//327 452//452 +f 464//464 328//328 327//327 +f 464//464 335//335 328//328 +f 464//464 465//465 335//335 +f 335//335 465//465 466//466 +f 465//465 467//467 466//466 +f 464//464 452//452 458//458 +f 464//464 468//468 465//465 +f 464//464 458//458 469//469 +f 464//464 469//469 468//468 +f 465//465 468//468 467//467 +f 468//468 470//470 467//467 +f 459//459 473//473 471//471 +f 459//459 460//460 473//473 +f 459//459 472//472 458//458 +f 459//459 471//471 472//472 +f 463//463 266//266 474//474 +f 463//463 265//265 266//266 +f 463//463 474//474 460//460 +f 473//473 267//267 475//475 +f 474//474 267//267 473//473 +f 474//474 266//266 267//267 +f 474//474 473//473 460//460 +f 267//267 476//476 475//475 +f 267//267 268//268 476//476 +f 473//473 475//475 471//471 +f 273//273 477//477 272//272 +f 478//478 472//472 479//479 +f 469//469 472//472 478//478 +f 469//469 458//458 472//472 +f 469//469 478//478 468//468 +f 472//472 471//471 479//479 +f 478//478 479//479 480//480 +f 468//468 480//480 470//470 +f 468//468 478//478 480//480 +f 471//471 481//481 479//479 +f 471//471 475//475 481//481 +f 466//466 337//337 335//335 +f 466//466 482//482 337//337 +f 466//466 483//483 482//482 +f 466//466 467//467 483//483 +f 482//482 338//338 337//337 +f 482//482 483//483 484//484 +f 483//483 467//467 485//485 +f 483//483 486//486 484//484 +f 483//483 485//485 486//486 +f 482//482 487//487 338//338 +f 482//482 488//488 487//487 +f 482//482 484//484 488//488 +f 487//487 489//489 345//345 +f 487//487 345//345 338//338 +f 487//487 490//490 489//489 +f 488//488 490//490 487//487 +f 484//484 486//486 488//488 +f 486//486 491//491 488//488 +f 490//490 492//492 489//489 +f 490//490 493//493 492//492 +f 488//488 493//493 490//490 +f 488//488 491//491 493//493 +f 340//340 494//494 341//341 +f 340//340 350//350 494//494 +f 340//340 342//342 350//350 +f 495//495 467//467 470//470 +f 495//495 485//485 467//467 +f 495//495 480//480 496//496 +f 495//495 470//470 480//480 +f 495//495 496//496 485//485 +f 485//485 496//496 486//486 +f 496//496 497//497 498//498 +f 486//486 498//498 491//491 +f 486//486 496//496 498//498 +f 493//493 497//497 492//492 +f 493//493 498//498 497//497 +f 491//491 498//498 493//493 +f 480//480 499//499 496//496 +f 480//480 479//479 499//499 +f 496//496 499//499 497//497 +f 479//479 481//481 499//499 +f 499//499 481//481 500//500 +f 273//273 274//274 501//501 +f 497//497 499//499 502//502 +f 273//273 503//503 477//477 +f 273//273 504//504 503//503 +f 273//273 501//501 504//504 +f 356//356 506//506 357//357 +f 357//357 507//507 358//358 +f 357//357 506//506 507//507 +f 358//358 507//507 368//368 +f 364//364 3714//3714 363//363 +f 268//268 303//303 476//476 +f 476//476 481//481 475//475 +f 303//303 508//508 476//476 +f 303//303 305//305 508//508 +f 476//476 508//508 481//481 +f 272//272 477//477 307//307 +f 307//307 477//477 509//509 +f 307//307 509//509 309//309 +f 509//509 477//477 510//510 +f 305//305 511//511 508//508 +f 305//305 310//310 511//511 +f 310//310 512//512 511//511 +f 310//310 312//312 512//512 +f 511//511 513//513 508//508 +f 511//511 512//512 513//513 +f 312//312 514//514 512//512 +f 312//312 314//314 514//514 +f 512//512 515//515 513//513 +f 512//512 514//514 515//515 +f 514//514 516//516 515//515 +f 514//514 517//517 516//516 +f 309//309 510//510 311//311 +f 309//309 509//509 510//510 +f 311//311 518//518 313//313 +f 311//311 510//510 518//518 +f 514//514 519//519 517//517 +f 514//514 520//520 519//519 +f 314//314 520//520 514//514 +f 313//313 520//520 314//314 +f 313//313 518//518 520//520 +f 518//518 521//521 520//520 +f 518//518 510//510 521//521 +f 520//520 521//521 519//519 +f 513//513 515//515 522//522 +f 515//515 523//523 522//522 +f 515//515 516//516 523//523 +f 513//513 524//524 508//508 +f 513//513 522//522 524//524 +f 522//522 525//525 524//524 +f 522//522 523//523 525//525 +f 510//510 526//526 521//521 +f 333//333 527//527 356//356 +f 333//333 341//341 527//527 +f 527//527 528//528 506//506 +f 527//527 529//529 528//528 +f 356//356 527//527 506//506 +f 527//527 530//530 529//529 +f 527//527 494//494 530//530 +f 341//341 494//494 527//527 +f 529//529 531//531 528//528 +f 529//529 530//530 531//531 +f 506//506 532//532 507//507 +f 506//506 528//528 532//532 +f 507//507 532//532 533//533 +f 507//507 533//533 368//368 +f 528//528 534//534 532//532 +f 528//528 531//531 534//534 +f 532//532 534//534 535//535 +f 494//494 536//536 530//530 +f 494//494 350//350 536//536 +f 530//530 537//537 531//531 +f 350//350 538//538 536//536 +f 350//350 349//349 538//538 +f 536//536 537//537 530//530 +f 536//536 539//539 537//537 +f 536//536 540//540 539//539 +f 536//536 538//538 540//540 +f 531//531 541//541 534//534 +f 531//531 537//537 541//541 +f 534//534 542//542 535//535 +f 534//534 541//541 542//542 +f 543//543 542//542 541//541 +f 543//543 411//411 542//542 +f 543//543 412//412 411//411 +f 543//543 402//402 412//412 +f 543//543 544//544 402//402 +f 543//543 541//541 544//544 +f 537//537 544//544 541//541 +f 537//537 539//539 544//544 +f 368//368 375//375 366//366 +f 368//368 533//533 375//375 +f 533//533 379//379 375//375 +f 533//533 545//545 379//379 +f 533//533 535//535 545//545 +f 533//533 532//532 535//535 +f 375//375 379//379 373//373 +f 545//545 380//380 379//379 +f 545//545 411//411 380//380 +f 545//545 542//542 411//411 +f 545//545 535//535 542//542 +f 380//380 411//411 384//384 +f 481//481 508//508 500//500 +f 508//508 546//546 500//500 +f 477//477 547//547 510//510 +f 477//477 505//505 547//547 +f 524//524 525//525 548//548 +f 510//510 547//547 549//549 +f 510//510 549//549 550//550 +f 510//510 550//550 526//526 +f 508//508 524//524 546//546 +f 546//546 524//524 551//551 +f 315//315 553//553 274//274 +f 345//345 555//555 386//386 +f 345//345 489//489 555//555 +f 556//556 557//557 388//388 +f 386//386 388//388 344//344 +f 386//386 556//556 388//388 +f 386//386 555//555 556//556 +f 489//489 492//492 555//555 +f 556//556 558//558 557//557 +f 556//556 559//559 558//558 +f 555//555 559//559 556//556 +f 555//555 492//492 559//559 +f 388//388 394//394 387//387 +f 388//388 560//560 394//394 +f 388//388 561//561 560//560 +f 388//388 557//557 561//561 +f 560//560 562//562 394//394 +f 560//560 561//561 562//562 +f 562//562 564//564 563//563 +f 561//561 564//564 562//562 +f 562//562 565//565 397//397 +f 562//562 563//563 565//565 +f 394//394 397//397 392//392 +f 394//394 562//562 397//397 +f 557//557 558//558 561//561 +f 564//564 566//566 563//563 +f 564//564 567//567 566//566 +f 561//561 567//567 564//564 +f 561//561 558//558 567//567 +f 563//563 568//568 565//565 +f 563//563 566//566 568//568 +f 497//497 502//502 569//569 +f 492//492 497//497 569//569 +f 559//559 570//570 558//558 +f 559//559 569//569 570//570 +f 569//569 502//502 570//570 +f 492//492 569//569 559//559 +f 499//499 500//500 502//502 +f 500//500 571//571 502//502 +f 503//503 572//572 477//477 +f 477//477 572//572 505//505 +f 570//570 502//502 567//567 +f 558//558 570//570 567//567 +f 502//502 573//573 567//567 +f 502//502 571//571 573//573 +f 566//566 574//574 568//568 +f 566//566 567//567 574//574 +f 567//567 573//573 574//574 +f 572//572 575//575 505//505 +f 576//576 578//578 577//577 +f 576//576 579//579 578//578 +f 397//397 577//577 396//396 +f 397//397 576//576 577//577 +f 397//397 579//579 576//576 +f 397//397 565//565 579//579 +f 579//579 580//580 578//578 +f 565//565 580//580 579//579 +f 565//565 568//568 580//580 +f 580//580 581//581 578//578 +f 582//582 584//584 583//583 +f 582//582 585//585 584//584 +f 582//582 586//586 585//585 +f 582//582 587//587 586//586 +f 582//582 588//588 587//587 +f 582//582 583//583 588//588 +f 587//587 589//589 586//586 +f 590//590 591//591 585//585 +f 590//590 592//592 591//591 +f 590//590 593//593 592//592 +f 590//590 594//594 593//593 +f 590//590 586//586 594//594 +f 590//590 585//585 586//586 +f 592//592 595//595 591//591 +f 592//592 434//434 595//595 +f 592//592 432//432 434//434 +f 592//592 593//593 432//432 +f 585//585 596//596 584//584 +f 585//585 591//591 596//596 +f 591//591 595//595 596//596 +f 594//594 597//597 593//593 +f 594//594 589//589 597//597 +f 594//594 586//586 589//589 +f 593//593 598//598 432//432 +f 593//593 597//597 598//598 +f 583//583 584//584 599//599 +f 583//583 599//599 588//588 +f 599//599 584//584 600//600 +f 584//584 596//596 601//601 +f 596//596 602//602 601//601 +f 596//596 595//595 602//602 +f 584//584 601//601 600//600 +f 580//580 603//603 581//581 +f 574//574 573//573 603//603 +f 568//568 603//603 580//580 +f 568//568 574//574 603//603 +f 504//504 604//604 503//503 +f 504//504 605//605 604//604 +f 504//504 501//501 605//605 +f 605//605 606//606 604//604 +f 605//605 607//607 606//606 +f 605//605 553//553 607//607 +f 605//605 501//501 553//553 +f 503//503 604//604 572//572 +f 604//604 608//608 572//572 +f 604//604 606//606 608//608 +f 572//572 609//609 575//575 +f 572//572 608//608 609//609 +f 599//599 610//610 588//588 +f 599//599 611//611 610//610 +f 599//599 600//600 611//611 +f 600//600 612//612 611//611 +f 600//600 601//601 612//612 +f 601//601 613//613 612//612 +f 601//601 602//602 613//613 +f 610//610 606//606 607//607 +f 610//610 611//611 606//606 +f 607//607 553//553 610//610 +f 611//611 608//608 606//606 +f 611//611 612//612 608//608 +f 612//612 609//609 608//608 +f 612//612 613//613 609//609 +f 349//349 389//389 538//538 +f 538//538 398//398 540//540 +f 538//538 389//389 398//398 +f 540//540 544//544 539//539 +f 540//540 402//402 544//544 +f 540//540 398//398 402//402 +f 402//402 401//401 412//412 +f 398//398 400//400 402//402 +f 500//500 546//546 571//571 +f 571//571 546//546 614//614 +f 547//547 505//505 615//615 +f 571//571 616//616 573//573 +f 571//571 614//614 617//617 +f 571//571 618//618 616//616 +f 571//571 617//617 618//618 +f 617//617 619//619 618//618 +f 617//617 614//614 619//619 +f 505//505 575//575 620//620 +f 505//505 620//620 621//621 +f 505//505 621//621 622//622 +f 546//546 551//551 623//623 +f 551//551 524//524 624//624 +f 524//524 625//625 624//624 +f 524//524 548//548 625//625 +f 551//551 626//626 623//623 +f 551//551 624//624 626//626 +f 624//624 627//627 626//626 +f 624//624 625//625 627//627 +f 549//549 628//628 552//552 +f 549//549 547//547 628//628 +f 547//547 615//615 629//629 +f 547//547 630//630 628//628 +f 547//547 629//629 630//630 +f 546//546 631//631 614//614 +f 546//546 623//623 631//631 +f 614//614 632//632 619//619 +f 614//614 633//633 632//632 +f 614//614 631//631 633//633 +f 623//623 634//634 631//631 +f 623//623 626//626 634//634 +f 626//626 635//635 634//634 +f 626//626 627//627 635//635 +f 631//631 636//636 633//633 +f 631//631 634//634 636//636 +f 615//615 505//505 637//637 +f 615//615 637//637 638//638 +f 505//505 639//639 637//637 +f 505//505 622//622 639//639 +f 637//637 640//640 638//638 +f 637//637 639//639 640//640 +f 615//615 641//641 629//629 +f 615//615 638//638 641//641 +f 629//629 642//642 630//630 +f 629//629 641//641 642//642 +f 634//634 642//642 641//641 +f 634//634 635//635 642//642 +f 634//634 643//643 636//636 +f 634//634 641//641 643//643 +f 638//638 643//643 641//641 +f 638//638 640//640 643//643 +f 577//577 644//644 426//426 +f 577//577 578//578 644//644 +f 396//396 577//577 426//426 +f 426//426 645//645 425//425 +f 426//426 644//644 645//645 +f 578//578 646//646 644//644 +f 644//644 646//646 645//645 +f 425//425 430//430 427//427 +f 425//425 437//437 430//430 +f 425//425 647//647 437//437 +f 425//425 645//645 647//647 +f 645//645 648//648 647//647 +f 578//578 581//581 646//646 +f 646//646 649//649 645//645 +f 645//645 650//650 648//648 +f 645//645 649//649 650//650 +f 434//434 651//651 595//595 +f 434//434 435//435 651//651 +f 435//435 647//647 651//651 +f 435//435 437//437 647//647 +f 651//651 647//647 648//648 +f 432//432 441//441 431//431 +f 432//432 598//598 441//441 +f 595//595 652//652 602//602 +f 595//595 651//651 652//652 +f 651//651 648//648 652//652 +f 652//652 648//648 650//650 +f 581//581 653//653 646//646 +f 646//646 653//653 649//649 +f 581//581 654//654 653//653 +f 581//581 603//603 654//654 +f 573//573 654//654 603//603 +f 653//653 655//655 649//649 +f 653//653 654//654 655//655 +f 573//573 655//655 654//654 +f 573//573 616//616 655//655 +f 616//616 656//656 655//655 +f 616//616 618//618 656//656 +f 618//618 657//657 656//656 +f 618//618 619//619 657//657 +f 655//655 659//659 658//658 +f 655//655 656//656 659//659 +f 649//649 658//658 650//650 +f 649//649 655//655 658//658 +f 575//575 660//660 620//620 +f 575//575 609//609 661//661 +f 575//575 662//662 660//660 +f 575//575 661//661 662//662 +f 620//620 663//663 621//621 +f 620//620 660//660 663//663 +f 621//621 664//664 622//622 +f 621//621 663//663 664//664 +f 656//656 664//664 663//663 +f 656//656 657//657 664//664 +f 656//656 665//665 659//659 +f 656//656 663//663 665//665 +f 660//660 665//665 663//663 +f 660//660 662//662 665//665 +f 602//602 666//666 613//613 +f 602//602 652//652 666//666 +f 652//652 658//658 666//666 +f 652//652 650//650 658//658 +f 613//613 661//661 609//609 +f 613//613 666//666 661//661 +f 666//666 662//662 661//661 +f 666//666 658//658 662//662 +f 658//658 665//665 662//662 +f 658//658 659//659 665//665 +f 619//619 667//667 657//657 +f 619//619 632//632 667//667 +f 632//632 668//668 667//667 +f 632//632 633//633 668//668 +f 622//622 669//669 639//639 +f 622//622 664//664 669//669 +f 639//639 670//670 640//640 +f 639//639 669//669 670//670 +f 657//657 669//669 664//664 +f 657//657 667//667 669//669 +f 667//667 670//670 669//669 +f 667//667 668//668 670//670 +f 633//633 643//643 640//640 +f 633//633 636//636 643//643 +f 633//633 670//670 668//668 +f 633//633 640//640 670//670 +f 501//501 274//274 553//553 +f 440//440 672//672 439//439 +f 440//440 673//673 672//672 +f 439//439 672//672 443//443 +f 673//673 440//440 674//674 +f 443//443 676//676 449//449 +f 451//451 677//677 675//675 +f 450//450 677//677 451//451 +f 449//449 678//678 450//450 +f 450//450 678//678 677//677 +f 673//673 679//679 672//672 +f 673//673 680//680 679//679 +f 672//672 679//679 443//443 +f 449//449 676//676 678//678 +f 679//679 681//681 443//443 +f 443//443 681//681 676//676 +f 587//587 682//682 589//589 +f 587//587 683//683 682//682 +f 587//587 588//588 683//683 +f 682//682 684//684 589//589 +f 597//597 686//686 685//685 +f 597//597 589//589 686//686 +f 597//597 685//685 598//598 +f 686//686 589//589 684//684 +f 685//685 687//687 598//598 +f 610//610 688//688 588//588 +f 683//683 588//588 689//689 +f 682//682 690//690 684//684 +f 682//682 683//683 691//691 +f 686//686 684//684 690//690 +f 683//683 689//689 691//691 +f 588//588 688//688 689//689 +f 441//441 598//598 440//440 +f 598//598 687//687 674//674 +f 598//598 674//674 440//440 +f 610//610 671//671 688//688 +f 610//610 553//553 671//671 +f 686//686 692//692 685//685 +f 685//685 692//692 687//687 +f 692//692 693//693 687//687 +f 686//686 694//694 692//692 +f 686//686 690//690 694//694 +f 682//682 695//695 690//690 +f 682//682 691//691 695//695 +f 687//687 693//693 674//674 +f 693//693 696//696 674//674 +f 674//674 680//680 673//673 +f 674//674 696//696 680//680 +f 688//688 697//697 689//689 +f 28//28 698//698 699//699 +f 28//28 29//29 698//698 +f 700//700 702//702 701//701 +f 149//149 700//700 150//150 +f 149//149 702//702 700//700 +f 700//700 701//701 218//218 +f 150//150 700//700 218//218 +f 218//218 701//701 703//703 +f 218//218 703//703 227//227 +f 227//227 703//703 704//704 +f 705//705 707//707 706//706 +f 703//703 705//705 704//704 +f 703//703 707//707 705//705 +f 227//227 704//704 228//228 +f 705//705 709//709 708//708 +f 705//705 706//706 709//709 +f 704//704 705//705 708//708 +f 708//708 709//709 710//710 +f 289//289 712//712 711//711 +f 289//289 295//295 712//712 +f 289//289 711//711 713//713 +f 714//714 711//711 715//715 +f 711//711 714//714 713//713 +f 295//295 294//294 712//712 +f 712//712 716//716 711//711 +f 712//712 717//717 716//716 +f 712//712 294//294 717//717 +f 711//711 718//718 715//715 +f 711//711 716//716 718//718 +f 702//702 720//720 719//719 +f 298//298 702//702 149//149 +f 298//298 720//720 702//702 +f 298//298 297//297 720//720 +f 288//288 720//720 297//297 +f 288//288 713//713 720//720 +f 288//288 289//289 713//713 +f 721//721 723//723 722//722 +f 720//720 721//721 719//719 +f 720//720 723//723 721//721 +f 720//720 713//713 723//723 +f 724//724 726//726 725//725 +f 702//702 724//724 701//701 +f 702//702 726//726 724//724 +f 702//702 719//719 726//726 +f 721//721 722//722 726//726 +f 719//719 721//721 726//726 +f 726//726 728//728 725//725 +f 726//726 727//727 728//728 +f 726//726 722//722 727//727 +f 714//714 715//715 723//723 +f 713//713 714//714 723//723 +f 723//723 729//729 722//722 +f 723//723 715//715 729//729 +f 715//715 731//731 729//729 +f 715//715 718//718 731//731 +f 729//729 731//731 730//730 +f 729//729 732//732 727//727 +f 729//729 730//730 732//732 +f 722//722 729//729 727//727 +f 727//727 732//732 728//728 +f 733//733 732//732 734//734 +f 732//732 733//733 728//728 +f 296//296 735//735 294//294 +f 296//296 736//736 735//735 +f 296//296 300//300 736//736 +f 735//735 737//737 717//717 +f 735//735 717//717 294//294 +f 301//301 736//736 300//300 +f 301//301 738//738 736//736 +f 735//735 739//739 737//737 +f 735//735 740//740 739//739 +f 736//736 740//740 735//735 +f 717//717 741//741 716//716 +f 717//717 737//737 741//741 +f 716//716 731//731 718//718 +f 716//716 742//742 731//731 +f 716//716 741//741 742//742 +f 737//737 742//742 741//741 +f 737//737 743//743 742//742 +f 737//737 739//739 743//743 +f 301//301 699//699 738//738 +f 301//301 28//28 699//699 +f 745//745 746//746 740//740 +f 738//738 740//740 736//736 +f 738//738 745//745 740//740 +f 738//738 699//699 745//745 +f 745//745 747//747 746//746 +f 699//699 747//747 745//745 +f 740//740 743//743 739//739 +f 740//740 748//748 743//743 +f 740//740 746//746 748//748 +f 748//748 750//750 749//749 +f 746//746 750//750 748//748 +f 743//743 751//751 742//742 +f 743//743 748//748 751//751 +f 742//742 751//751 744//744 +f 748//748 749//749 751//751 +f 751//751 753//753 744//744 +f 751//751 752//752 753//753 +f 731//731 742//742 744//744 +f 731//731 744//744 730//730 +f 744//744 755//755 730//730 +f 744//744 754//754 755//755 +f 744//744 756//756 754//754 +f 730//730 757//757 732//732 +f 730//730 755//755 757//757 +f 732//732 758//758 734//734 +f 732//732 757//757 758//758 +f 755//755 759//759 757//757 +f 755//755 754//754 759//759 +f 757//757 759//759 758//758 +f 744//744 760//760 756//756 +f 744//744 753//753 760//760 +f 756//756 761//761 754//754 +f 756//756 760//760 761//761 +f 753//753 761//761 760//760 +f 753//753 752//752 761//761 +f 754//754 761//761 759//759 +f 759//759 762//762 758//758 +f 725//725 728//728 763//763 +f 724//724 764//764 707//707 +f 724//724 725//725 764//764 +f 701//701 707//707 703//703 +f 701//701 724//724 707//707 +f 725//725 763//763 764//764 +f 763//763 728//728 765//765 +f 728//728 733//733 766//766 +f 733//733 734//734 766//766 +f 728//728 766//766 765//765 +f 766//766 734//734 767//767 +f 766//766 767//767 768//768 +f 766//766 768//768 765//765 +f 707//707 764//764 706//706 +f 764//764 763//763 706//706 +f 706//706 769//769 709//709 +f 706//706 763//763 769//769 +f 709//709 769//769 710//710 +f 763//763 765//765 769//769 +f 769//769 765//765 770//770 +f 765//765 771//771 770//770 +f 768//768 772//772 771//771 +f 768//768 767//767 772//772 +f 765//765 768//768 771//771 +f 734//734 758//758 773//773 +f 734//734 773//773 767//767 +f 758//758 762//762 774//774 +f 758//758 774//774 773//773 +f 767//767 773//773 772//772 +f 773//773 775//775 772//772 +f 774//774 775//775 773//773 +f 29//29 776//776 698//698 +f 29//29 363//363 776//776 +f 777//777 778//778 747//747 +f 698//698 747//747 699//699 +f 698//698 777//777 747//747 +f 698//698 776//776 777//777 +f 3715//3715 780//780 779//779 +f 3716//3716 776//776 363//363 +f 3715//3715 776//776 3716//3716 +f 779//779 776//776 3715//3715 +f 3714//3714 3716//3716 363//363 +f 777//777 781//781 778//778 +f 776//776 781//781 777//777 +f 776//776 779//779 781//781 +f 779//779 782//782 781//781 +f 779//779 370//370 782//782 +f 779//779 780//780 370//370 +f 370//370 783//783 782//782 +f 370//370 372//372 783//783 +f 783//783 785//785 784//784 +f 782//782 783//783 784//784 +f 786//786 788//788 787//787 +f 781//781 787//787 778//778 +f 781//781 786//786 787//787 +f 781//781 782//782 786//786 +f 786//786 789//789 788//788 +f 786//786 790//790 789//789 +f 782//782 790//790 786//786 +f 782//782 784//784 790//790 +f 783//783 791//791 785//785 +f 783//783 792//792 791//791 +f 372//372 792//792 783//783 +f 372//372 376//376 792//792 +f 784//784 793//793 790//790 +f 790//790 794//794 789//789 +f 790//790 795//795 794//794 +f 793//793 795//795 790//790 +f 792//792 796//796 791//791 +f 792//792 797//797 796//796 +f 376//376 797//797 792//792 +f 376//376 381//381 797//797 +f 793//793 798//798 795//795 +f 798//798 799//799 795//795 +f 798//798 800//800 799//799 +f 798//798 801//801 800//800 +f 798//798 802//802 801//801 +f 798//798 793//793 802//802 +f 416//416 3718//3718 414//414 +f 3717//3717 802//802 3719//3719 +f 3719//3719 802//802 797//797 +f 3718//3718 381//381 414//414 +f 3719//3719 381//381 3718//3718 +f 797//797 381//381 3719//3719 +f 3717//3717 803//803 801//801 +f 3720//3720 803//803 3717//3717 +f 804//804 803//803 3720//3720 +f 3720//3720 3718//3718 416//416 +f 3720//3720 416//416 804//804 +f 800//800 805//805 799//799 +f 801//801 803//803 800//800 +f 417//417 804//804 416//416 +f 417//417 806//806 804//804 +f 417//417 424//424 806//806 +f 804//804 807//807 803//803 +f 804//804 806//806 807//807 +f 424//424 808//808 806//806 +f 806//806 809//809 807//807 +f 806//806 808//808 809//809 +f 800//800 810//810 805//805 +f 803//803 810//810 800//800 +f 803//803 807//807 810//810 +f 809//809 811//811 810//810 +f 809//809 812//812 811//811 +f 810//810 811//811 805//805 +f 807//807 809//809 810//810 +f 424//424 813//813 808//808 +f 424//424 447//447 813//813 +f 809//809 814//814 812//812 +f 808//808 814//814 809//809 +f 808//808 813//813 814//814 +f 447//447 448//448 813//813 +f 448//448 815//815 813//813 +f 448//448 451//451 815//815 +f 815//815 816//816 814//814 +f 815//815 817//817 816//816 +f 814//814 816//816 812//812 +f 813//813 815//815 814//814 +f 451//451 817//817 815//815 +f 818//818 819//819 750//750 +f 747//747 750//750 746//746 +f 747//747 818//818 750//750 +f 747//747 778//778 818//818 +f 750//750 819//819 749//749 +f 818//818 787//787 819//819 +f 778//778 787//787 818//818 +f 819//819 820//820 821//821 +f 819//819 787//787 820//820 +f 749//749 822//822 751//751 +f 749//749 821//821 822//822 +f 749//749 819//819 821//821 +f 751//751 823//823 752//752 +f 751//751 822//822 823//823 +f 821//821 824//824 822//822 +f 821//821 820//820 824//824 +f 822//822 824//824 823//823 +f 820//820 788//788 825//825 +f 787//787 788//788 820//820 +f 788//788 826//826 825//825 +f 820//820 825//825 824//824 +f 824//824 827//827 823//823 +f 752//752 828//828 761//761 +f 752//752 823//823 828//828 +f 516//516 830//830 829//829 +f 516//516 519//519 830//830 +f 517//517 519//519 516//516 +f 761//761 828//828 759//759 +f 759//759 831//831 762//762 +f 828//828 832//832 759//759 +f 759//759 832//832 831//831 +f 516//516 833//833 523//523 +f 516//516 829//829 833//833 +f 523//523 834//834 525//525 +f 523//523 833//833 834//834 +f 823//823 832//832 828//828 +f 823//823 827//827 832//832 +f 829//829 830//830 833//833 +f 519//519 521//521 830//830 +f 834//834 836//836 835//835 +f 833//833 836//836 834//834 +f 833//833 830//830 836//836 +f 521//521 836//836 830//830 +f 521//521 526//526 836//836 +f 827//827 837//837 832//832 +f 785//785 791//791 784//784 +f 791//791 793//793 784//784 +f 788//788 789//789 826//826 +f 789//789 838//838 826//826 +f 789//789 794//794 838//838 +f 826//826 838//838 825//825 +f 825//825 839//839 824//824 +f 791//791 796//796 793//793 +f 796//796 802//802 793//793 +f 796//796 797//797 802//802 +f 794//794 840//840 838//838 +f 794//794 841//841 840//840 +f 794//794 795//795 841//841 +f 795//795 799//799 841//841 +f 825//825 838//838 839//839 +f 839//839 827//827 824//824 +f 840//840 842//842 838//838 +f 839//839 842//842 843//843 +f 838//838 842//842 839//839 +f 842//842 844//844 843//843 +f 525//525 845//845 548//548 +f 525//525 834//834 845//845 +f 834//834 846//846 845//845 +f 834//834 835//835 846//846 +f 548//548 845//845 847//847 +f 845//845 848//848 847//847 +f 845//845 846//846 848//848 +f 526//526 849//849 836//836 +f 526//526 550//550 849//849 +f 836//836 850//850 835//835 +f 836//836 849//849 850//850 +f 550//550 851//851 849//849 +f 849//849 852//852 850//850 +f 849//849 851//851 852//852 +f 835//835 850//850 846//846 +f 846//846 852//852 848//848 +f 846//846 850//850 852//852 +f 847//847 848//848 853//853 +f 548//548 847//847 854//854 +f 847//847 855//855 854//854 +f 847//847 853//853 855//855 +f 550//550 856//856 851//851 +f 550//550 549//549 856//856 +f 851//851 857//857 852//852 +f 851//851 856//856 857//857 +f 549//549 858//858 856//856 +f 549//549 552//552 858//858 +f 856//856 859//859 857//857 +f 856//856 858//858 859//859 +f 848//848 857//857 853//853 +f 848//848 852//852 857//857 +f 853//853 859//859 855//855 +f 853//853 857//857 859//859 +f 827//827 839//839 837//837 +f 832//832 860//860 831//831 +f 832//832 837//837 860//860 +f 839//839 861//861 837//837 +f 839//839 843//843 861//861 +f 843//843 844//844 862//862 +f 843//843 862//862 861//861 +f 837//837 861//861 860//860 +f 861//861 863//863 860//860 +f 861//861 862//862 863//863 +f 762//762 831//831 774//774 +f 831//831 864//864 774//774 +f 831//831 865//865 864//864 +f 774//774 866//866 775//775 +f 774//774 864//864 866//866 +f 866//866 864//864 867//867 +f 831//831 860//860 865//865 +f 865//865 860//860 868//868 +f 860//860 863//863 869//869 +f 860//860 869//869 868//868 +f 864//864 865//865 870//870 +f 864//864 870//870 867//867 +f 865//865 871//871 870//870 +f 865//865 868//868 871//871 +f 801//801 802//802 3717//3717 +f 799//799 872//872 841//841 +f 799//799 873//873 872//872 +f 799//799 805//805 873//873 +f 873//873 805//805 872//872 +f 805//805 874//874 872//872 +f 805//805 811//811 874//874 +f 840//840 875//875 842//842 +f 840//840 876//876 875//875 +f 841//841 876//876 840//840 +f 841//841 872//872 876//876 +f 842//842 875//875 844//844 +f 876//876 877//877 875//875 +f 876//876 878//878 877//877 +f 872//872 878//878 876//876 +f 872//872 874//874 878//878 +f 548//548 879//879 625//625 +f 548//548 854//854 879//879 +f 854//854 880//880 879//879 +f 854//854 855//855 880//880 +f 625//625 881//881 627//627 +f 625//625 879//879 881//881 +f 552//552 882//882 858//858 +f 552//552 628//628 882//882 +f 858//858 883//883 859//859 +f 858//858 882//882 883//883 +f 879//879 883//883 882//882 +f 879//879 880//880 883//883 +f 879//879 884//884 881//881 +f 879//879 882//882 884//884 +f 628//628 884//884 882//882 +f 628//628 630//630 884//884 +f 855//855 883//883 880//880 +f 855//855 859//859 883//883 +f 627//627 884//884 630//630 +f 627//627 881//881 884//884 +f 627//627 642//642 635//635 +f 627//627 630//630 642//642 +f 844//844 875//875 885//885 +f 844//844 885//885 862//862 +f 885//885 875//875 886//886 +f 862//862 885//885 863//863 +f 812//812 887//887 811//811 +f 811//811 888//888 874//874 +f 811//811 887//887 888//888 +f 812//812 816//816 887//887 +f 887//887 889//889 888//888 +f 816//816 889//889 887//887 +f 816//816 817//817 889//889 +f 878//878 890//890 877//877 +f 874//874 888//888 878//878 +f 877//877 890//890 891//891 +f 878//878 892//892 890//890 +f 888//888 892//892 878//878 +f 875//875 893//893 886//886 +f 875//875 877//877 893//893 +f 877//877 891//891 893//893 +f 891//891 894//894 893//893 +f 893//893 896//896 886//886 +f 893//893 895//895 896//896 +f 893//893 897//897 895//895 +f 863//863 885//885 899//899 +f 863//863 898//898 869//869 +f 863//863 899//899 898//898 +f 869//869 898//898 868//868 +f 868//868 900//900 871//871 +f 868//868 898//898 900//900 +f 898//898 901//901 900//900 +f 900//900 901//901 902//902 +f 885//885 903//903 899//899 +f 885//885 886//886 903//903 +f 899//899 901//901 898//898 +f 899//899 903//903 901//901 +f 886//886 896//896 903//903 +f 903//903 896//896 904//904 +f 896//896 895//895 905//905 +f 896//896 905//905 904//904 +f 904//904 905//905 906//906 +f 903//903 907//907 901//901 +f 903//903 904//904 907//907 +f 904//904 906//906 907//907 +f 907//907 906//906 908//908 +f 451//451 675//675 817//817 +f 677//677 910//910 909//909 +f 817//817 675//675 912//912 +f 817//817 913//913 889//889 +f 817//817 912//912 913//913 +f 889//889 914//914 888//888 +f 889//889 913//913 914//914 +f 913//913 915//915 914//914 +f 892//892 916//916 890//890 +f 892//892 917//917 916//916 +f 892//892 918//918 917//917 +f 888//888 918//918 892//892 +f 888//888 914//914 918//918 +f 890//890 919//919 891//891 +f 890//890 916//916 919//919 +f 891//891 919//919 894//894 +f 919//919 920//920 894//894 +f 919//919 916//916 920//920 +f 914//914 921//921 918//918 +f 914//914 915//915 921//921 +f 917//917 922//922 920//920 +f 917//917 923//923 922//922 +f 917//917 920//920 916//916 +f 917//917 918//918 923//923 +f 918//918 924//924 923//923 +f 918//918 921//921 924//924 +f 922//922 926//926 925//925 +f 922//922 923//923 926//926 +f 894//894 927//927 893//893 +f 920//920 928//928 927//927 +f 894//894 920//920 927//927 +f 927//927 929//929 897//897 +f 893//893 927//927 897//897 +f 897//897 929//929 895//895 +f 927//927 930//930 929//929 +f 927//927 928//928 930//930 +f 922//922 925//925 928//928 +f 920//920 922//922 928//928 +f 928//928 931//931 930//930 +f 928//928 925//925 931//931 +f 675//675 932//932 912//912 +f 912//912 932//932 913//913 +f 675//675 677//677 909//909 +f 675//675 909//909 932//932 +f 921//921 933//933 924//924 +f 921//921 915//915 933//933 +f 934//934 935//935 926//926 +f 934//934 936//936 935//935 +f 924//924 926//926 923//923 +f 924//924 934//934 926//926 +f 924//924 936//936 934//934 +f 926//926 935//935 925//925 +f 935//935 937//937 925//925 +f 935//935 936//936 937//937 +f 915//915 938//938 933//933 +f 924//924 939//939 936//936 +f 924//924 933//933 939//939 +f 937//937 941//941 940//940 +f 936//936 941//941 937//937 +f 936//936 939//939 941//941 +f 925//925 937//937 942//942 +f 925//925 942//942 931//931 +f 942//942 943//943 931//931 +f 937//937 940//940 942//942 +f 942//942 944//944 943//943 +f 895//895 945//945 905//905 +f 895//895 929//929 945//945 +f 929//929 930//930 945//945 +f 905//905 945//945 906//906 +f 930//930 946//946 945//945 +f 930//930 931//931 946//946 +f 906//906 945//945 947//947 +f 906//906 947//947 908//908 +f 947//947 948//948 949//949 +f 947//947 945//945 948//948 +f 945//945 946//946 948//948 +f 931//931 943//943 946//946 +f 943//943 944//944 946//946 +f 948//948 950//950 949//949 +f 948//948 951//951 950//950 +f 909//909 910//910 932//932 +f 939//939 953//953 952//952 +f 933//933 953//953 939//939 +f 933//933 938//938 953//953 +f 939//939 952//952 941//941 +f 938//938 954//954 953//953 +f 910//910 955//955 932//932 +f 932//932 955//955 913//913 +f 913//913 956//956 915//915 +f 910//910 911//911 955//955 +f 955//955 956//956 913//913 +f 915//915 954//954 938//938 +f 952//952 957//957 941//941 +f 952//952 959//959 958//958 +f 953//953 959//959 952//952 +f 953//953 954//954 959//959 +f 940//940 957//957 960//960 +f 941//941 957//957 940//940 +f 940//940 960//960 942//942 +f 957//957 962//962 960//960 +f 957//957 961//961 962//962 +f 957//957 952//952 961//961 +f 960//960 962//962 942//942 +f 942//942 963//963 944//944 +f 962//962 964//964 963//963 +f 942//942 962//962 963//963 +f 961//961 965//965 962//962 +f 961//961 966//966 965//965 +f 952//952 966//966 961//961 +f 952//952 958//958 966//966 +f 962//962 965//965 967//967 +f 962//962 967//967 964//964 +f 967//967 968//968 964//964 +f 964//964 968//968 969//969 +f 954//954 970//970 959//959 +f 959//959 971//971 958//958 +f 959//959 970//970 971//971 +f 958//958 972//972 965//965 +f 958//958 965//965 966//966 +f 965//965 973//973 967//967 +f 965//965 972//972 973//973 +f 958//958 974//974 972//972 +f 958//958 971//971 974//974 +f 967//967 973//973 968//968 +f 973//973 975//975 968//968 +f 968//968 975//975 969//969 +f 972//972 976//976 973//973 +f 972//972 974//974 976//976 +f 970//970 977//977 971//971 +f 974//974 978//978 976//976 +f 974//974 979//979 978//978 +f 971//971 979//979 974//974 +f 971//971 977//977 979//979 +f 973//973 980//980 975//975 +f 973//973 976//976 980//980 +f 976//976 981//981 980//980 +f 976//976 978//978 981//981 +f 963//963 982//982 944//944 +f 944//944 983//983 946//946 +f 944//944 982//982 983//983 +f 946//946 983//983 948//948 +f 983//983 951//951 948//948 +f 963//963 984//984 982//982 +f 963//963 964//964 984//984 +f 982//982 984//984 983//983 +f 984//984 985//985 983//983 +f 951//951 986//986 950//950 +f 983//983 985//985 987//987 +f 983//983 987//987 986//986 +f 951//951 983//983 986//986 +f 969//969 988//988 984//984 +f 964//964 969//969 984//984 +f 969//969 989//989 988//988 +f 969//969 975//975 989//989 +f 984//984 988//988 985//985 +f 988//988 990//990 985//985 +f 988//988 989//989 990//990 +f 975//975 991//991 989//989 +f 975//975 980//980 991//991 +f 980//980 992//992 991//991 +f 980//980 981//981 992//992 +f 989//989 991//991 990//990 +f 991//991 993//993 990//990 +f 991//991 992//992 993//993 +f 990//990 993//993 994//994 +f 985//985 995//995 987//987 +f 987//987 995//995 996//996 +f 995//995 997//997 996//996 +f 990//990 998//998 997//997 +f 990//990 994//994 998//998 +f 985//985 997//997 995//995 +f 985//985 990//990 997//997 +f 994//994 993//993 999//999 +f 994//994 999//999 998//998 +f 997//997 998//998 1000//1000 +f 998//998 1001//1001 1000//1000 +f 998//998 999//999 1001//1001 +f 161//161 166//166 1002//1002 +f 161//161 1002//1002 160//160 +f 167//167 168//168 1003//1003 +f 166//166 167//167 1003//1003 +f 166//166 1003//1003 1004//1004 +f 1002//1002 166//166 1004//1004 +f 1002//1002 179//179 160//160 +f 1002//1002 1004//1004 1005//1005 +f 168//168 1007//1007 1006//1006 +f 168//168 169//169 1007//1007 +f 1003//1003 1006//1006 1004//1004 +f 1003//1003 168//168 1006//1006 +f 1005//1005 1004//1004 1006//1006 +f 1006//1006 1009//1009 1008//1008 +f 1006//1006 1007//1007 1009//1009 +f 1002//1002 1005//1005 1010//1010 +f 1002//1002 1010//1010 179//179 +f 1010//1010 1012//1012 1011//1011 +f 1010//1010 1005//1005 1012//1012 +f 1010//1010 1011//1011 179//179 +f 1006//1006 1008//1008 1005//1005 +f 1011//1011 1014//1014 1013//1013 +f 1011//1011 1012//1012 1014//1014 +f 1011//1011 1015//1015 179//179 +f 1011//1011 1013//1013 1015//1015 +f 1013//1013 1014//1014 1016//1016 +f 1005//1005 1008//1008 1017//1017 +f 1012//1012 1017//1017 1014//1014 +f 1012//1012 1005//1005 1017//1017 +f 1017//1017 1018//1018 1014//1014 +f 169//169 180//180 1019//1019 +f 169//169 1019//1019 1007//1007 +f 1007//1007 1019//1019 1009//1009 +f 1009//1009 1019//1019 1020//1020 +f 1008//1008 1009//1009 1020//1020 +f 1020//1020 1019//1019 1021//1021 +f 1019//1019 180//180 1022//1022 +f 1019//1019 1022//1022 1021//1021 +f 1020//1020 1021//1021 1023//1023 +f 1008//1008 1023//1023 1017//1017 +f 1008//1008 1020//1020 1023//1023 +f 1023//1023 1024//1024 1018//1018 +f 1023//1023 1021//1021 1024//1024 +f 1017//1017 1023//1023 1018//1018 +f 1021//1021 1025//1025 1024//1024 +f 1021//1021 1022//1022 1025//1025 +f 180//180 182//182 1022//1022 +f 182//182 183//183 1022//1022 +f 1022//1022 1026//1026 1025//1025 +f 1022//1022 183//183 1027//1027 +f 1022//1022 1028//1028 1026//1026 +f 1022//1022 1027//1027 1028//1028 +f 193//193 1029//1029 195//195 +f 193//193 194//194 1030//1030 +f 193//193 1030//1030 1031//1031 +f 193//193 1031//1031 1029//1029 +f 194//194 196//196 1032//1032 +f 194//194 1032//1032 1030//1030 +f 1030//1030 1032//1032 1033//1033 +f 1031//1031 1030//1030 1034//1034 +f 1031//1031 1035//1035 1029//1029 +f 1031//1031 1034//1034 1035//1035 +f 1034//1034 1037//1037 1036//1036 +f 1034//1034 1030//1030 1037//1037 +f 1034//1034 1036//1036 1035//1035 +f 195//195 1038//1038 203//203 +f 195//195 1029//1029 1035//1035 +f 195//195 1035//1035 1038//1038 +f 203//203 1038//1038 206//206 +f 1038//1038 1039//1039 206//206 +f 206//206 1039//1039 219//219 +f 196//196 223//223 1032//1032 +f 223//223 221//221 1032//1032 +f 221//221 224//224 1041//1041 +f 1032//1032 1041//1041 1040//1040 +f 1032//1032 221//221 1041//1041 +f 224//224 225//225 1041//1041 +f 1032//1032 1040//1040 1033//1033 +f 1033//1033 1040//1040 1042//1042 +f 1042//1042 1041//1041 1043//1043 +f 1040//1040 1041//1041 1042//1042 +f 1041//1041 225//225 1044//1044 +f 1041//1041 1044//1044 1043//1043 +f 225//225 228//228 1045//1045 +f 225//225 1045//1045 1046//1046 +f 225//225 1046//1046 1044//1044 +f 1035//1035 1036//1036 1047//1047 +f 1035//1035 1047//1047 1038//1038 +f 1036//1036 1037//1037 1048//1048 +f 1036//1036 1049//1049 1047//1047 +f 1036//1036 1048//1048 1049//1049 +f 1048//1048 1051//1051 1050//1050 +f 1048//1048 1037//1037 1051//1051 +f 1048//1048 1052//1052 1049//1049 +f 1048//1048 1050//1050 1052//1052 +f 1038//1038 1049//1049 1052//1052 +f 1038//1038 1047//1047 1049//1049 +f 1038//1038 1052//1052 1053//1053 +f 1052//1052 1055//1055 1053//1053 +f 1052//1052 1054//1054 1055//1055 +f 1038//1038 1056//1056 1039//1039 +f 1038//1038 1053//1053 1056//1056 +f 1053//1053 1057//1057 1056//1056 +f 1053//1053 1055//1055 1057//1057 +f 1039//1039 1058//1058 219//219 +f 1039//1039 1056//1056 1058//1058 +f 1056//1056 1059//1059 1058//1058 +f 1056//1056 1057//1057 1059//1059 +f 1030//1030 1033//1033 1060//1060 +f 1042//1042 1061//1061 1060//1060 +f 1042//1042 1043//1043 1061//1061 +f 1033//1033 1042//1042 1060//1060 +f 1043//1043 1044//1044 1062//1062 +f 1060//1060 1061//1061 1063//1063 +f 1030//1030 1060//1060 1063//1063 +f 1037//1037 1063//1063 1051//1051 +f 1037//1037 1030//1030 1063//1063 +f 1063//1063 1061//1061 1064//1064 +f 1043//1043 1062//1062 1065//1065 +f 1061//1061 1043//1043 1065//1065 +f 1065//1065 1062//1062 1066//1066 +f 1061//1061 1065//1065 1064//1064 +f 1046//1046 1045//1045 1067//1067 +f 1044//1044 1046//1046 1067//1067 +f 1067//1067 1045//1045 1068//1068 +f 1044//1044 1067//1067 1062//1062 +f 1062//1062 1068//1068 1069//1069 +f 1062//1062 1067//1067 1068//1068 +f 1062//1062 1069//1069 1066//1066 +f 1069//1069 1068//1068 1070//1070 +f 1013//1013 1072//1072 1071//1071 +f 1013//1013 1016//1016 1072//1072 +f 1013//1013 1071//1071 1015//1015 +f 1014//1014 1073//1073 1016//1016 +f 1014//1014 1018//1018 1073//1073 +f 1072//1072 1075//1075 1074//1074 +f 1016//1016 1075//1075 1072//1072 +f 1016//1016 1073//1073 1075//1075 +f 1071//1071 1074//1074 1076//1076 +f 1072//1072 1074//1074 1071//1071 +f 1071//1071 1076//1076 1015//1015 +f 1018//1018 1024//1024 1077//1077 +f 1018//1018 1077//1077 1073//1073 +f 1075//1075 1079//1079 1078//1078 +f 1075//1075 1080//1080 1079//1079 +f 1073//1073 1080//1080 1075//1075 +f 1073//1073 1077//1077 1080//1080 +f 1076//1076 1082//1082 1081//1081 +f 1076//1076 1074//1074 1082//1082 +f 1076//1076 1083//1083 1015//1015 +f 1076//1076 1081//1081 1083//1083 +f 1075//1075 1078//1078 1084//1084 +f 1074//1074 1075//1075 1084//1084 +f 1082//1082 1084//1084 1085//1085 +f 1084//1084 1078//1078 1085//1085 +f 1074//1074 1084//1084 1082//1082 +f 1085//1085 1087//1087 1086//1086 +f 1085//1085 1088//1088 1087//1087 +f 1078//1078 1088//1088 1085//1085 +f 1078//1078 1079//1079 1088//1088 +f 1015//1015 1083//1083 179//179 +f 1081//1081 1082//1082 1089//1089 +f 1081//1081 1089//1089 1083//1083 +f 1089//1089 1091//1091 1090//1090 +f 1089//1089 1082//1082 1091//1091 +f 1089//1089 1090//1090 1083//1083 +f 1085//1085 1092//1092 1082//1082 +f 1085//1085 1086//1086 1092//1092 +f 1091//1091 1082//1082 1093//1093 +f 1082//1082 1092//1092 1093//1093 +f 1083//1083 1090//1090 1094//1094 +f 1086//1086 1095//1095 1092//1092 +f 1086//1086 1087//1087 1095//1095 +f 1093//1093 1097//1097 1096//1096 +f 1093//1093 1092//1092 1097//1097 +f 1095//1095 1097//1097 1092//1092 +f 1095//1095 1098//1098 1097//1097 +f 1099//1099 1091//1091 1100//1100 +f 1090//1090 1091//1091 1099//1099 +f 1090//1090 1099//1099 1094//1094 +f 1099//1099 1102//1102 1101//1101 +f 1099//1099 1100//1100 1102//1102 +f 1094//1094 1099//1099 1101//1101 +f 1091//1091 1096//1096 1100//1100 +f 1093//1093 1096//1096 1091//1091 +f 1100//1100 1103//1103 1102//1102 +f 1100//1100 1096//1096 1103//1103 +f 1096//1096 1104//1104 1103//1103 +f 1096//1096 1105//1105 1104//1104 +f 1096//1096 1097//1097 1105//1105 +f 1106//1106 1108//1108 1107//1107 +f 1106//1106 1109//1109 1108//1108 +f 1106//1106 1054//1054 1109//1109 +f 1106//1106 1110//1110 1054//1054 +f 1106//1106 1111//1111 1110//1110 +f 1106//1106 1107//1107 1111//1111 +f 1080//1080 1112//1112 1079//1079 +f 1077//1077 1112//1112 1080//1080 +f 1077//1077 1107//1107 1112//1112 +f 1077//1077 1111//1111 1107//1107 +f 1107//1107 1113//1113 1112//1112 +f 1107//1107 1108//1108 1113//1113 +f 1024//1024 1111//1111 1077//1077 +f 1024//1024 1110//1110 1111//1111 +f 1024//1024 1114//1114 1110//1110 +f 1024//1024 1025//1025 1114//1114 +f 1110//1110 1055//1055 1054//1054 +f 1110//1110 1114//1114 1055//1055 +f 1109//1109 1050//1050 1108//1108 +f 1109//1109 1052//1052 1050//1050 +f 1109//1109 1054//1054 1052//1052 +f 1050//1050 1115//1115 1108//1108 +f 1050//1050 1051//1051 1115//1115 +f 1108//1108 1116//1116 1113//1113 +f 1116//1116 1118//1118 1117//1117 +f 1108//1108 1118//1118 1116//1116 +f 1108//1108 1115//1115 1118//1118 +f 1088//1088 1119//1119 1087//1087 +f 1079//1079 1119//1119 1088//1088 +f 1079//1079 1112//1112 1119//1119 +f 1112//1112 1120//1120 1119//1119 +f 1112//1112 1113//1113 1120//1120 +f 1120//1120 1116//1116 1121//1121 +f 1113//1113 1116//1116 1120//1120 +f 1116//1116 1117//1117 1121//1121 +f 1025//1025 1122//1122 1114//1114 +f 1025//1025 1026//1026 1122//1122 +f 1114//1114 1057//1057 1055//1055 +f 1114//1114 1122//1122 1057//1057 +f 1026//1026 1123//1123 1122//1122 +f 1026//1026 1028//1028 1123//1123 +f 1122//1122 1059//1059 1057//1057 +f 1122//1122 1123//1123 1059//1059 +f 1063//1063 1064//1064 1115//1115 +f 1051//1051 1063//1063 1115//1115 +f 1118//1118 1124//1124 1117//1117 +f 1115//1115 1124//1124 1118//1118 +f 1115//1115 1064//1064 1124//1124 +f 1064//1064 1125//1125 1124//1124 +f 1065//1065 1066//1066 1126//1126 +f 1064//1064 1065//1065 1126//1126 +f 1125//1125 1126//1126 1127//1127 +f 1126//1126 1066//1066 1127//1127 +f 1064//1064 1126//1126 1125//1125 +f 1117//1117 1124//1124 1128//1128 +f 1128//1128 1124//1124 1129//1129 +f 1125//1125 1129//1129 1124//1124 +f 1066//1066 1130//1130 1127//1127 +f 1066//1066 1069//1069 1130//1130 +f 1069//1069 1070//1070 1131//1131 +f 1131//1131 1132//1132 1130//1130 +f 1069//1069 1131//1131 1130//1130 +f 1125//1125 1133//1133 1129//1129 +f 1125//1125 1127//1127 1133//1133 +f 1129//1129 1133//1133 1134//1134 +f 1133//1133 1127//1127 1134//1134 +f 1127//1127 1135//1135 1134//1134 +f 1127//1127 1130//1130 1135//1135 +f 1095//1095 1136//1136 1098//1098 +f 1087//1087 1136//1136 1095//1095 +f 1087//1087 1119//1119 1136//1136 +f 1119//1119 1137//1137 1136//1136 +f 1119//1119 1120//1120 1137//1137 +f 1136//1136 1138//1138 1098//1098 +f 1136//1136 1137//1137 1138//1138 +f 1098//1098 1138//1138 1097//1097 +f 1120//1120 1121//1121 1137//1137 +f 1137//1137 1140//1140 1139//1139 +f 1137//1137 1121//1121 1140//1140 +f 1117//1117 1141//1141 1140//1140 +f 1121//1121 1117//1117 1140//1140 +f 1105//1105 1142//1142 1104//1104 +f 1105//1105 1143//1143 1142//1142 +f 1097//1097 1143//1143 1105//1105 +f 1097//1097 1138//1138 1143//1143 +f 1143//1143 1144//1144 1142//1142 +f 1138//1138 1144//1144 1143//1143 +f 1138//1138 1137//1137 1144//1144 +f 1144//1144 1145//1145 1142//1142 +f 1137//1137 1139//1139 1144//1144 +f 1144//1144 1146//1146 1145//1145 +f 1144//1144 1147//1147 1146//1146 +f 1139//1139 1147//1147 1144//1144 +f 1139//1139 1140//1140 1147//1147 +f 1117//1117 1128//1128 1141//1141 +f 1128//1128 1148//1148 1141//1141 +f 1129//1129 1148//1148 1128//1128 +f 1129//1129 1134//1134 1148//1148 +f 1141//1141 1150//1150 1149//1149 +f 1148//1148 1150//1150 1141//1141 +f 1148//1148 1151//1151 1150//1150 +f 1148//1148 1152//1152 1151//1151 +f 1148//1148 1134//1134 1152//1152 +f 1134//1134 1135//1135 1152//1152 +f 1147//1147 1153//1153 1146//1146 +f 1141//1141 1153//1153 1147//1147 +f 1141//1141 1149//1149 1153//1153 +f 1140//1140 1141//1141 1147//1147 +f 177//177 181//181 316//316 +f 183//183 317//317 1154//1154 +f 317//317 219//219 1154//1154 +f 183//183 1155//1155 1027//1027 +f 183//183 1154//1154 1155//1155 +f 1154//1154 1058//1058 1155//1155 +f 1154//1154 219//219 1058//1058 +f 1027//1027 1123//1123 1028//1028 +f 1027//1027 1155//1155 1123//1123 +f 1155//1155 1059//1059 1123//1123 +f 1155//1155 1058//1058 1059//1059 +f 179//179 1083//1083 181//181 +f 1094//1094 1101//1101 1156//1156 +f 1102//1102 1158//1158 1157//1157 +f 1101//1101 1102//1102 1157//1157 +f 1101//1101 1157//1157 1156//1156 +f 1094//1094 1156//1156 181//181 +f 1157//1157 1160//1160 1159//1159 +f 1157//1157 1158//1158 1160//1160 +f 1156//1156 1159//1159 181//181 +f 1156//1156 1157//1157 1159//1159 +f 1102//1102 1161//1161 1158//1158 +f 1102//1102 1103//1103 1161//1161 +f 1103//1103 1104//1104 1161//1161 +f 1161//1161 1104//1104 1162//1162 +f 1158//1158 1163//1163 1160//1160 +f 1161//1161 1163//1163 1158//1158 +f 1161//1161 1162//1162 1163//1163 +f 1083//1083 1094//1094 181//181 +f 1159//1159 1165//1165 1164//1164 +f 1159//1159 1160//1160 1165//1165 +f 181//181 1159//1159 1164//1164 +f 1163//1163 1162//1162 1166//1166 +f 1160//1160 1167//1167 1165//1165 +f 1160//1160 1163//1163 1167//1167 +f 1163//1163 1166//1166 1167//1167 +f 181//181 1168//1168 316//316 +f 316//316 1169//1169 315//315 +f 1169//1169 1171//1171 1170//1170 +f 1169//1169 1172//1172 1171//1171 +f 316//316 1172//1172 1169//1169 +f 1169//1169 1174//1174 1173//1173 +f 1169//1169 1170//1170 1174//1174 +f 315//315 1169//1169 1173//1173 +f 1170//1170 1176//1176 1175//1175 +f 1170//1170 1171//1171 1176//1176 +f 1175//1175 1176//1176 1177//1177 +f 1170//1170 1178//1178 1174//1174 +f 1170//1170 1175//1175 1178//1178 +f 1175//1175 1179//1179 1178//1178 +f 1172//1172 1180//1180 1171//1171 +f 1172//1172 1181//1181 1180//1180 +f 316//316 1168//1168 1172//1172 +f 1171//1171 1182//1182 1176//1176 +f 1171//1171 1180//1180 1182//1182 +f 1180//1180 1183//1183 1182//1182 +f 1180//1180 1181//1181 1183//1183 +f 1176//1176 1184//1184 1177//1177 +f 1176//1176 1185//1185 1184//1184 +f 1176//1176 1186//1186 1185//1185 +f 1176//1176 1182//1182 1186//1186 +f 1183//1183 1188//1188 1187//1187 +f 1182//1182 1187//1187 1186//1186 +f 1182//1182 1183//1183 1187//1187 +f 181//181 1164//1164 1168//1168 +f 1172//1172 1189//1189 1181//1181 +f 1172//1172 1190//1190 1189//1189 +f 1172//1172 1191//1191 1190//1190 +f 1168//1168 1191//1191 1172//1172 +f 1181//1181 1192//1192 1183//1183 +f 1181//1181 1189//1189 1192//1192 +f 1183//1183 1193//1193 1188//1188 +f 1183//1183 1192//1192 1193//1193 +f 1189//1189 1194//1194 1192//1192 +f 1189//1189 1190//1190 1194//1194 +f 1192//1192 1195//1195 1193//1193 +f 1192//1192 1194//1194 1195//1195 +f 1191//1191 1196//1196 1190//1190 +f 1191//1191 1197//1197 1196//1196 +f 1190//1190 1198//1198 1194//1194 +f 1190//1190 1196//1196 1198//1198 +f 1196//1196 1199//1199 1198//1198 +f 1196//1196 1197//1197 1199//1199 +f 1194//1194 1200//1200 1195//1195 +f 1194//1194 1201//1201 1200//1200 +f 1194//1194 1202//1202 1201//1201 +f 1194//1194 1198//1198 1202//1202 +f 1199//1199 1204//1204 1203//1203 +f 1199//1199 1205//1205 1204//1204 +f 1198//1198 1203//1203 1202//1202 +f 1198//1198 1199//1199 1203//1203 +f 1130//1130 1132//1132 1206//1206 +f 1130//1130 1206//1206 1135//1135 +f 1104//1104 1142//1142 1208//1208 +f 1104//1104 1208//1208 1162//1162 +f 1145//1145 1146//1146 1209//1209 +f 1208//1208 1210//1210 1162//1162 +f 1208//1208 1142//1142 1210//1210 +f 1162//1162 1210//1210 1166//1166 +f 1210//1210 1145//1145 1211//1211 +f 1142//1142 1145//1145 1210//1210 +f 1145//1145 1209//1209 1211//1211 +f 1211//1211 1209//1209 1212//1212 +f 1152//1152 1213//1213 1151//1151 +f 1152//1152 1135//1135 1213//1213 +f 1135//1135 1206//1206 1214//1214 +f 1213//1213 1216//1216 1215//1215 +f 1214//1214 1206//1206 1216//1216 +f 1135//1135 1216//1216 1213//1213 +f 1135//1135 1214//1214 1216//1216 +f 1146//1146 1217//1217 1209//1209 +f 1146//1146 1153//1153 1217//1217 +f 1153//1153 1149//1149 1217//1217 +f 1217//1217 1218//1218 1209//1209 +f 1149//1149 1219//1219 1217//1217 +f 1151//1151 1213//1213 1219//1219 +f 1150//1150 1219//1219 1149//1149 +f 1150//1150 1151//1151 1219//1219 +f 1217//1217 1220//1220 1218//1218 +f 1217//1217 1219//1219 1220//1220 +f 1213//1213 1220//1220 1219//1219 +f 1213//1213 1215//1215 1220//1220 +f 1215//1215 1222//1222 1221//1221 +f 1215//1215 1216//1216 1222//1222 +f 1209//1209 1218//1218 1223//1223 +f 1209//1209 1224//1224 1212//1212 +f 1209//1209 1223//1223 1224//1224 +f 1218//1218 1220//1220 1225//1225 +f 1215//1215 1225//1225 1220//1220 +f 1215//1215 1221//1221 1225//1225 +f 1225//1225 1227//1227 1226//1226 +f 1225//1225 1221//1221 1227//1227 +f 1222//1222 1227//1227 1221//1221 +f 1222//1222 1228//1228 1227//1227 +f 1225//1225 1226//1226 1229//1229 +f 1218//1218 1229//1229 1223//1223 +f 1218//1218 1225//1225 1229//1229 +f 1175//1175 1231//1231 1230//1230 +f 1175//1175 1177//1177 1231//1231 +f 1175//1175 1230//1230 1179//1179 +f 1230//1230 1233//1233 1232//1232 +f 1230//1230 1231//1231 1233//1233 +f 1232//1232 1233//1233 1234//1234 +f 1230//1230 1235//1235 1179//1179 +f 1230//1230 1232//1232 1235//1235 +f 1232//1232 1236//1236 1235//1235 +f 1232//1232 1234//1234 1236//1236 +f 1177//1177 1184//1184 1231//1231 +f 1231//1231 1237//1237 1233//1233 +f 1231//1231 1184//1184 1237//1237 +f 1233//1233 1238//1238 1234//1234 +f 1233//1233 1237//1237 1238//1238 +f 1236//1236 1240//1240 1239//1239 +f 1236//1236 1238//1238 1240//1240 +f 1234//1234 1238//1238 1236//1236 +f 1239//1239 1242//1242 1241//1241 +f 1239//1239 1240//1240 1242//1242 +f 1241//1241 1242//1242 1243//1243 +f 1188//1188 1193//1193 1244//1244 +f 1193//1193 1200//1200 1244//1244 +f 1193//1193 1195//1195 1200//1200 +f 1205//1205 1245//1245 1204//1204 +f 1212//1212 1224//1224 1247//1247 +f 1247//1247 1224//1224 1248//1248 +f 1223//1223 1249//1249 1224//1224 +f 1223//1223 1229//1229 1249//1249 +f 1226//1226 1249//1249 1229//1229 +f 1224//1224 1249//1249 1250//1250 +f 1250//1250 1249//1249 1251//1251 +f 1252//1252 1254//1254 1253//1253 +f 1164//1164 1254//1254 1252//1252 +f 1164//1164 1165//1165 1254//1254 +f 1164//1164 1252//1252 1168//1168 +f 1165//1165 1253//1253 1254//1254 +f 1165//1165 1167//1167 1253//1253 +f 1252//1252 1253//1253 1191//1191 +f 1168//1168 1252//1252 1191//1191 +f 1197//1197 1255//1255 1199//1199 +f 1197//1197 1191//1191 1255//1255 +f 1253//1253 1255//1255 1191//1191 +f 1199//1199 1256//1256 1205//1205 +f 1199//1199 1255//1255 1256//1256 +f 1253//1253 1256//1256 1255//1255 +f 1167//1167 1211//1211 1253//1253 +f 1167//1167 1210//1210 1211//1211 +f 1166//1166 1210//1210 1167//1167 +f 1205//1205 1256//1256 1245//1245 +f 1253//1253 1245//1245 1256//1256 +f 1253//1253 1211//1211 1245//1245 +f 1204//1204 1245//1245 1246//1246 +f 1246//1246 1245//1245 1257//1257 +f 1211//1211 1257//1257 1245//1245 +f 1211//1211 1212//1212 1257//1257 +f 1212//1212 1258//1258 1257//1257 +f 1212//1212 1247//1247 1258//1258 +f 1247//1247 1259//1259 1258//1258 +f 1247//1247 1248//1248 1259//1259 +f 1257//1257 1261//1261 1260//1260 +f 1257//1257 1258//1258 1261//1261 +f 1246//1246 1257//1257 1260//1260 +f 1258//1258 1262//1262 1261//1261 +f 1258//1258 1259//1259 1262//1262 +f 1250//1250 1251//1251 1248//1248 +f 1224//1224 1250//1250 1248//1248 +f 1263//1263 1262//1262 1264//1264 +f 1259//1259 1264//1264 1262//1262 +f 1259//1259 1248//1248 1264//1264 +f 1248//1248 1265//1265 1264//1264 +f 1248//1248 1251//1251 1265//1265 +f 553//553 315//315 554//554 +f 554//554 315//315 1266//1266 +f 1173//1173 1174//1174 1267//1267 +f 1174//1174 1178//1178 1267//1267 +f 1268//1268 1270//1270 1269//1269 +f 1268//1268 1271//1271 1270//1270 +f 1268//1268 1272//1272 1271//1271 +f 1268//1268 1273//1273 1272//1272 +f 1268//1268 1269//1269 1273//1273 +f 1274//1274 1186//1186 1275//1275 +f 1274//1274 1185//1185 1186//1186 +f 1274//1274 1276//1276 1185//1185 +f 1274//1274 1271//1271 1276//1276 +f 1274//1274 1270//1270 1271//1271 +f 1274//1274 1275//1275 1270//1270 +f 1185//1185 1277//1277 1184//1184 +f 1185//1185 1276//1276 1277//1277 +f 1275//1275 1187//1187 1278//1278 +f 1275//1275 1186//1186 1187//1187 +f 1275//1275 1278//1278 1270//1270 +f 1271//1271 1272//1272 1276//1276 +f 1173//1173 1267//1267 1279//1279 +f 315//315 1173//1173 1279//1279 +f 1267//1267 1178//1178 1280//1280 +f 1281//1281 1269//1269 1282//1282 +f 1281//1281 1273//1273 1269//1269 +f 1281//1281 1283//1283 1273//1273 +f 1281//1281 1284//1284 1283//1283 +f 1281//1281 1282//1282 1284//1284 +f 1283//1283 1272//1272 1273//1273 +f 1283//1283 1285//1285 1272//1272 +f 1283//1283 1286//1286 1285//1285 +f 1283//1283 1284//1284 1286//1286 +f 1284//1284 1287//1287 1286//1286 +f 1269//1269 1270//1270 1288//1288 +f 1269//1269 1288//1288 1289//1289 +f 1278//1278 1291//1291 1290//1290 +f 1278//1278 1187//1187 1291//1291 +f 1278//1278 1290//1290 1270//1270 +f 1187//1187 1244//1244 1291//1291 +f 1187//1187 1188//1188 1244//1244 +f 1290//1290 1201//1201 1292//1292 +f 1290//1290 1291//1291 1201//1201 +f 1290//1290 1292//1292 1270//1270 +f 1291//1291 1200//1200 1201//1201 +f 1291//1291 1244//1244 1200//1200 +f 1288//1288 1270//1270 1293//1293 +f 1288//1288 1296//1296 1294//1294 +f 1288//1288 1293//1293 1296//1296 +f 1288//1288 1295//1295 1289//1289 +f 1288//1288 1294//1294 1295//1295 +f 1292//1292 1202//1202 1297//1297 +f 1292//1292 1201//1201 1202//1202 +f 1292//1292 1293//1293 1270//1270 +f 1292//1292 1297//1297 1293//1293 +f 1297//1297 1203//1203 1298//1298 +f 1297//1297 1202//1202 1203//1203 +f 1297//1297 1296//1296 1293//1293 +f 1297//1297 1298//1298 1296//1296 +f 1282//1282 1289//1289 1299//1299 +f 1282//1282 1269//1269 1289//1289 +f 1282//1282 1299//1299 1284//1284 +f 1299//1299 1300//1300 1284//1284 +f 1284//1284 1301//1301 1287//1287 +f 1284//1284 1300//1300 1301//1301 +f 1302//1302 1295//1295 1303//1303 +f 1299//1299 1295//1295 1302//1302 +f 1299//1299 1289//1289 1295//1295 +f 1299//1299 1302//1302 1300//1300 +f 1302//1302 1305//1305 1304//1304 +f 1302//1302 1303//1303 1305//1305 +f 1300//1300 1302//1302 1304//1304 +f 1287//1287 1285//1285 1286//1286 +f 1287//1287 1306//1306 1285//1285 +f 1287//1287 1307//1307 1306//1306 +f 1306//1306 1307//1307 1308//1308 +f 1306//1306 1309//1309 1285//1285 +f 1306//1306 1310//1310 1309//1309 +f 1306//1306 1311//1311 1310//1310 +f 1306//1306 1308//1308 1311//1311 +f 1310//1310 1312//1312 1309//1309 +f 1279//1279 1267//1267 1280//1280 +f 315//315 1279//1279 1266//1266 +f 1285//1285 1313//1313 1272//1272 +f 1272//1272 1313//1313 1276//1276 +f 1285//1285 1309//1309 1313//1313 +f 1307//1307 1287//1287 1314//1314 +f 1307//1307 1315//1315 1308//1308 +f 1307//1307 1314//1314 1316//1316 +f 1307//1307 1316//1316 1315//1315 +f 1316//1316 1301//1301 1300//1300 +f 1316//1316 1314//1314 1301//1301 +f 1317//1317 1304//1304 1318//1318 +f 1316//1316 1304//1304 1317//1317 +f 1316//1316 1300//1300 1304//1304 +f 1317//1317 1320//1320 1319//1319 +f 1317//1317 1318//1318 1320//1320 +f 1316//1316 1319//1319 1315//1315 +f 1316//1316 1317//1317 1319//1319 +f 1308//1308 1315//1315 1311//1311 +f 1315//1315 1321//1321 1311//1311 +f 1310//1310 1322//1322 1312//1312 +f 1310//1310 1323//1323 1322//1322 +f 1311//1311 1323//1323 1310//1310 +f 1311//1311 1321//1321 1323//1323 +f 1319//1319 1324//1324 1321//1321 +f 1319//1319 1320//1320 1324//1324 +f 1315//1315 1319//1319 1321//1321 +f 1323//1323 1325//1325 1322//1322 +f 1323//1323 1326//1326 1325//1325 +f 1321//1321 1325//1325 1326//1326 +f 1321//1321 1324//1324 1325//1325 +f 1321//1321 1326//1326 1323//1323 +f 1287//1287 1301//1301 1314//1314 +f 1327//1327 1329//1329 1328//1328 +f 1179//1179 1331//1331 1178//1178 +f 1179//1179 1235//1235 1331//1331 +f 1235//1235 1236//1236 1331//1331 +f 1277//1277 1276//1276 1333//1333 +f 1184//1184 1334//1334 1237//1237 +f 1184//1184 1277//1277 1334//1334 +f 1237//1237 1334//1334 1238//1238 +f 1277//1277 1333//1333 1334//1334 +f 1178//1178 1332//1332 1280//1280 +f 1178//1178 1331//1331 1332//1332 +f 1276//1276 1313//1313 1333//1333 +f 1236//1236 1335//1335 1331//1331 +f 1236//1236 1239//1239 1335//1335 +f 1239//1239 1336//1336 1335//1335 +f 1239//1239 1241//1241 1336//1336 +f 1331//1331 1335//1335 1332//1332 +f 1335//1335 1336//1336 1332//1332 +f 1241//1241 1337//1337 1336//1336 +f 1241//1241 1338//1338 1337//1337 +f 1241//1241 1243//1243 1338//1338 +f 1336//1336 1337//1337 1339//1339 +f 1337//1337 1340//1340 1339//1339 +f 1238//1238 1341//1341 1240//1240 +f 1238//1238 1334//1334 1341//1341 +f 1240//1240 1342//1342 1242//1242 +f 1240//1240 1341//1341 1342//1342 +f 1334//1334 1333//1333 1341//1341 +f 1341//1341 1333//1333 1342//1342 +f 1242//1242 1338//1338 1243//1243 +f 1242//1242 1342//1342 1338//1338 +f 1342//1342 1343//1343 1338//1338 +f 1342//1342 1333//1333 1343//1343 +f 1338//1338 1343//1343 1344//1344 +f 1336//1336 1339//1339 1332//1332 +f 1332//1332 1339//1339 1345//1345 +f 1333//1333 1346//1346 1343//1343 +f 1343//1343 1347//1347 1344//1344 +f 1343//1343 1346//1346 1347//1347 +f 1346//1346 1348//1348 1347//1347 +f 1351//1351 1353//1353 1352//1352 +f 1313//1313 1356//1356 1333//1333 +f 1332//1332 1357//1357 1280//1280 +f 1313//1313 1358//1358 1356//1356 +f 1333//1333 1356//1356 1346//1346 +f 1346//1346 1360//1360 1348//1348 +f 1346//1346 1356//1356 1360//1360 +f 1345//1345 1359//1359 1332//1332 +f 1332//1332 1359//1359 1361//1361 +f 1363//1363 1350//1350 1364//1364 +f 1363//1363 1362//1362 1350//1350 +f 1363//1363 1366//1366 1365//1365 +f 1363//1363 1364//1364 1366//1366 +f 1363//1363 1329//1329 1362//1362 +f 1363//1363 1365//1365 1329//1329 +f 1364//1364 1368//1368 1367//1367 +f 1364//1364 1350//1350 1368//1368 +f 1349//1349 1368//1368 1350//1350 +f 1349//1349 1351//1351 1368//1368 +f 1367//1367 1370//1370 1369//1369 +f 1367//1367 1368//1368 1370//1370 +f 1351//1351 1370//1370 1368//1368 +f 1351//1351 1352//1352 1370//1370 +f 1364//1364 1371//1371 1366//1366 +f 1364//1364 1367//1367 1371//1371 +f 1367//1367 1369//1369 1371//1371 +f 1365//1365 1373//1373 1372//1372 +f 1365//1365 1366//1366 1373//1373 +f 1328//1328 1374//1374 1330//1330 +f 1328//1328 1329//1329 1374//1374 +f 1365//1365 1374//1374 1329//1329 +f 1365//1365 1372//1372 1374//1374 +f 1330//1330 1376//1376 1375//1375 +f 1330//1330 1374//1374 1376//1376 +f 1374//1374 1377//1377 1376//1376 +f 1374//1374 1372//1372 1377//1377 +f 1373//1373 1377//1377 1372//1372 +f 1373//1373 1378//1378 1377//1377 +f 1366//1366 1379//1379 1373//1373 +f 1366//1366 1371//1371 1379//1379 +f 1371//1371 1380//1380 1379//1379 +f 1371//1371 1369//1369 1380//1380 +f 1373//1373 1379//1379 1378//1378 +f 1379//1379 1383//1383 1381//1381 +f 1379//1379 1380//1380 1383//1383 +f 1379//1379 1382//1382 1378//1378 +f 1379//1379 1381//1381 1382//1382 +f 1352//1352 1384//1384 1370//1370 +f 1352//1352 1385//1385 1384//1384 +f 1370//1370 1384//1384 1386//1386 +f 1369//1369 1370//1370 1386//1386 +f 1384//1384 1387//1387 1386//1386 +f 1386//1386 1388//1388 1383//1383 +f 1369//1369 1383//1383 1380//1380 +f 1369//1369 1386//1386 1383//1383 +f 1386//1386 1389//1389 1388//1388 +f 1386//1386 1387//1387 1389//1389 +f 1383//1383 1390//1390 1381//1381 +f 1383//1383 1388//1388 1390//1390 +f 1388//1388 1391//1391 1390//1390 +f 1388//1388 1389//1389 1391//1391 +f 553//553 554//554 671//671 +f 554//554 1266//1266 1392//1392 +f 1309//1309 1394//1394 1313//1313 +f 1309//1309 1312//1312 1394//1394 +f 1394//1394 1396//1396 1395//1395 +f 1394//1394 1397//1397 1396//1396 +f 1394//1394 1395//1395 1313//1313 +f 1394//1394 1312//1312 1397//1397 +f 1395//1395 1398//1398 1313//1313 +f 1395//1395 1399//1399 1398//1398 +f 1395//1395 1396//1396 1399//1399 +f 1398//1398 1400//1400 1401//1401 +f 1398//1398 1401//1401 1313//1313 +f 1313//1313 1401//1401 1402//1402 +f 1312//1312 1322//1322 1403//1403 +f 1397//1397 1404//1404 1396//1396 +f 1397//1397 1403//1403 1404//1404 +f 1312//1312 1403//1403 1397//1397 +f 1322//1322 1405//1405 1403//1403 +f 1325//1325 1407//1407 1406//1406 +f 1325//1325 1408//1408 1407//1407 +f 1322//1322 1406//1406 1405//1405 +f 1322//1322 1325//1325 1406//1406 +f 1403//1403 1409//1409 1404//1404 +f 1403//1403 1405//1405 1409//1409 +f 1406//1406 1409//1409 1405//1405 +f 1406//1406 1407//1407 1409//1409 +f 1396//1396 1404//1404 1399//1399 +f 1398//1398 1410//1410 1400//1400 +f 1399//1399 1410//1410 1398//1398 +f 1410//1410 1411//1411 1400//1400 +f 1399//1399 1404//1404 1410//1410 +f 1400//1400 1411//1411 1412//1412 +f 1404//1404 1409//1409 1413//1413 +f 1413//1413 1414//1414 1410//1410 +f 1404//1404 1413//1413 1410//1410 +f 1411//1411 1415//1415 1412//1412 +f 1411//1411 1410//1410 1415//1415 +f 1414//1414 1415//1415 1410//1410 +f 1279//1279 1417//1417 1416//1416 +f 1279//1279 1280//1280 1417//1417 +f 1266//1266 1279//1279 1416//1416 +f 1416//1416 1419//1419 1418//1418 +f 1416//1416 1417//1417 1419//1419 +f 1266//1266 1418//1418 1392//1392 +f 1266//1266 1416//1416 1418//1418 +f 1280//1280 1420//1420 1417//1417 +f 1280//1280 1421//1421 1420//1420 +f 1280//1280 1393//1393 1421//1421 +f 1417//1417 1422//1422 1419//1419 +f 1417//1417 1420//1420 1422//1422 +f 1420//1420 1423//1423 1422//1422 +f 1420//1420 1421//1421 1423//1423 +f 1401//1401 1425//1425 1402//1402 +f 1401//1401 1424//1424 1425//1425 +f 1401//1401 1426//1426 1424//1424 +f 1401//1401 1400//1400 1426//1426 +f 1426//1426 1427//1427 1424//1424 +f 1392//1392 1418//1418 1428//1428 +f 1418//1418 1430//1430 1429//1429 +f 1418//1418 1419//1419 1430//1430 +f 1418//1418 1431//1431 1428//1428 +f 1418//1418 1429//1429 1431//1431 +f 1428//1428 1432//1432 1392//1392 +f 1428//1428 1431//1431 1432//1432 +f 1419//1419 1433//1433 1430//1430 +f 1419//1419 1422//1422 1433//1433 +f 1422//1422 1434//1434 1433//1433 +f 1422//1422 1423//1423 1434//1434 +f 1429//1429 1436//1436 1435//1435 +f 1429//1429 1430//1430 1436//1436 +f 1429//1429 1437//1437 1431//1431 +f 1429//1429 1435//1435 1437//1437 +f 1435//1435 1439//1439 1438//1438 +f 1435//1435 1436//1436 1439//1439 +f 1435//1435 1440//1440 1437//1437 +f 1435//1435 1438//1438 1440//1440 +f 1431//1431 1441//1441 1432//1432 +f 1431//1431 1437//1437 1441//1441 +f 1437//1437 1440//1440 1441//1441 +f 1430//1430 1442//1442 1436//1436 +f 1430//1430 1433//1433 1442//1442 +f 1433//1433 1443//1443 1442//1442 +f 1433//1433 1434//1434 1443//1443 +f 1436//1436 1444//1444 1439//1439 +f 1436//1436 1442//1442 1444//1444 +f 1442//1442 1445//1445 1444//1444 +f 1442//1442 1443//1443 1445//1445 +f 1400//1400 1412//1412 1426//1426 +f 1426//1426 1446//1446 1427//1427 +f 1426//1426 1447//1447 1446//1446 +f 1412//1412 1447//1447 1426//1426 +f 1447//1447 1448//1448 1446//1446 +f 1415//1415 1449//1449 1447//1447 +f 1412//1412 1415//1415 1447//1447 +f 1438//1438 1439//1439 1450//1450 +f 1438//1438 1450//1450 1440//1440 +f 1450//1450 1452//1452 1451//1451 +f 1450//1450 1439//1439 1452//1452 +f 1450//1450 1453//1453 1440//1440 +f 1450//1450 1451//1451 1453//1453 +f 1440//1440 1454//1454 1441//1441 +f 1440//1440 1453//1453 1454//1454 +f 1444//1444 1445//1445 1455//1455 +f 1439//1439 1444//1444 1452//1452 +f 1451//1451 1458//1458 1456//1456 +f 1451//1451 1452//1452 1458//1458 +f 1451//1451 1457//1457 1453//1453 +f 1451//1451 1456//1456 1457//1457 +f 1457//1457 1456//1456 1459//1459 +f 1453//1453 1457//1457 1454//1454 +f 1452//1452 1460//1460 1458//1458 +f 1452//1452 1444//1444 1460//1460 +f 1444//1444 1461//1461 1460//1460 +f 1444//1444 1455//1455 1461//1461 +f 1458//1458 1460//1460 1462//1462 +f 1462//1462 1464//1464 1463//1463 +f 1460//1460 1464//1464 1462//1462 +f 1460//1460 1461//1461 1464//1464 +f 1458//1458 1462//1462 1465//1465 +f 1456//1456 1465//1465 1459//1459 +f 1456//1456 1458//1458 1465//1465 +f 1462//1462 1466//1466 1465//1465 +f 1462//1462 1463//1463 1466//1466 +f 1280//1280 1357//1357 1393//1393 +f 1313//1313 1468//1468 1358//1358 +f 1357//1357 1332//1332 1467//1467 +f 1357//1357 1467//1467 1469//1469 +f 1313//1313 1470//1470 1468//1468 +f 1313//1313 1402//1402 1471//1471 +f 1313//1313 1472//1472 1470//1470 +f 1313//1313 1471//1471 1472//1472 +f 1470//1470 1473//1473 1468//1468 +f 1470//1470 1472//1472 1473//1473 +f 1468//1468 1473//1473 1474//1474 +f 1332//1332 1475//1475 1467//1467 +f 1332//1332 1476//1476 1475//1475 +f 1332//1332 1361//1361 1476//1476 +f 1361//1361 1477//1477 1476//1476 +f 1475//1475 1476//1476 1478//1478 +f 1476//1476 1479//1479 1478//1478 +f 1476//1476 1477//1477 1479//1479 +f 1356//1356 1358//1358 1480//1480 +f 1358//1358 1481//1481 1480//1480 +f 1356//1356 1480//1480 1482//1482 +f 1356//1356 1483//1483 1360//1360 +f 1356//1356 1482//1482 1483//1483 +f 1480//1480 1484//1484 1482//1482 +f 1480//1480 1481//1481 1484//1484 +f 1482//1482 1485//1485 1483//1483 +f 1482//1482 1484//1484 1485//1485 +f 1467//1467 1475//1475 1486//1486 +f 1467//1467 1487//1487 1469//1469 +f 1467//1467 1488//1488 1487//1487 +f 1467//1467 1486//1486 1488//1488 +f 1475//1475 1489//1489 1486//1486 +f 1475//1475 1478//1478 1489//1489 +f 1478//1478 1490//1490 1489//1489 +f 1478//1478 1479//1479 1490//1490 +f 1486//1486 1491//1491 1488//1488 +f 1486//1486 1489//1489 1491//1491 +f 1489//1489 1493//1493 1492//1492 +f 1489//1489 1490//1490 1493//1493 +f 1489//1489 1494//1494 1491//1491 +f 1489//1489 1492//1492 1494//1494 +f 1468//1468 1495//1495 1358//1358 +f 1358//1358 1496//1496 1481//1481 +f 1358//1358 1495//1495 1496//1496 +f 1468//1468 1497//1497 1495//1495 +f 1468//1468 1474//1474 1497//1497 +f 1495//1495 1498//1498 1496//1496 +f 1495//1495 1497//1497 1498//1498 +f 1481//1481 1492//1492 1484//1484 +f 1481//1481 1496//1496 1492//1492 +f 1484//1484 1493//1493 1485//1485 +f 1484//1484 1492//1492 1493//1493 +f 1496//1496 1494//1494 1492//1492 +f 1496//1496 1498//1498 1494//1494 +f 1376//1376 1499//1499 1375//1375 +f 1376//1376 1377//1377 1499//1499 +f 1377//1377 1500//1500 1499//1499 +f 1377//1377 1382//1382 1500//1500 +f 1378//1378 1382//1382 1377//1377 +f 1382//1382 1501//1501 1500//1500 +f 1382//1382 1381//1381 1501//1501 +f 1381//1381 1503//1503 1501//1501 +f 1381//1381 1390//1390 1503//1503 +f 1393//1393 1504//1504 1421//1421 +f 1393//1393 1357//1357 1504//1504 +f 1421//1421 1505//1505 1423//1423 +f 1421//1421 1506//1506 1505//1505 +f 1421//1421 1504//1504 1506//1506 +f 1357//1357 1507//1507 1504//1504 +f 1357//1357 1469//1469 1507//1507 +f 1469//1469 1508//1508 1507//1507 +f 1504//1504 1509//1509 1506//1506 +f 1504//1504 1507//1507 1509//1509 +f 1507//1507 1511//1511 1510//1510 +f 1507//1507 1508//1508 1511//1511 +f 1507//1507 1512//1512 1509//1509 +f 1507//1507 1510//1510 1512//1512 +f 1425//1425 1514//1514 1513//1513 +f 1425//1425 1424//1424 1514//1514 +f 1402//1402 1513//1513 1471//1471 +f 1402//1402 1425//1425 1513//1513 +f 1471//1471 1515//1515 1472//1472 +f 1471//1471 1513//1513 1515//1515 +f 1424//1424 1516//1516 1514//1514 +f 1424//1424 1427//1427 1516//1516 +f 1513//1513 1517//1517 1515//1515 +f 1513//1513 1518//1518 1517//1517 +f 1513//1513 1519//1519 1518//1518 +f 1513//1513 1514//1514 1519//1519 +f 1516//1516 1521//1521 1520//1520 +f 1516//1516 1522//1522 1521//1521 +f 1514//1514 1520//1520 1519//1519 +f 1514//1514 1516//1516 1520//1520 +f 1472//1472 1510//1510 1473//1473 +f 1472//1472 1515//1515 1510//1510 +f 1473//1473 1511//1511 1474//1474 +f 1473//1473 1510//1510 1511//1511 +f 1515//1515 1512//1512 1510//1510 +f 1515//1515 1517//1517 1512//1512 +f 1522//1522 1523//1523 1521//1521 +f 1423//1423 1518//1518 1434//1434 +f 1423//1423 1505//1505 1518//1518 +f 1505//1505 1517//1517 1518//1518 +f 1505//1505 1506//1506 1517//1517 +f 1506//1506 1512//1512 1517//1517 +f 1506//1506 1509//1509 1512//1512 +f 1434//1434 1519//1519 1443//1443 +f 1434//1434 1518//1518 1519//1519 +f 1443//1443 1520//1520 1445//1445 +f 1443//1443 1519//1519 1520//1520 +f 1469//1469 1524//1524 1508//1508 +f 1469//1469 1487//1487 1524//1524 +f 1487//1487 1525//1525 1524//1524 +f 1487//1487 1488//1488 1525//1525 +f 1508//1508 1526//1526 1511//1511 +f 1508//1508 1524//1524 1526//1526 +f 1524//1524 1527//1527 1526//1526 +f 1524//1524 1525//1525 1527//1527 +f 1488//1488 1494//1494 1498//1498 +f 1488//1488 1491//1491 1494//1494 +f 1488//1488 1527//1527 1525//1525 +f 1488//1488 1498//1498 1527//1527 +f 1474//1474 1526//1526 1497//1497 +f 1474//1474 1511//1511 1526//1526 +f 1497//1497 1527//1527 1498//1498 +f 1497//1497 1526//1526 1527//1527 +f 1427//1427 1528//1528 1516//1516 +f 1516//1516 1529//1529 1522//1522 +f 1516//1516 1528//1528 1529//1529 +f 1427//1427 1530//1530 1528//1528 +f 1427//1427 1446//1446 1530//1530 +f 1528//1528 1531//1531 1529//1529 +f 1528//1528 1530//1530 1531//1531 +f 1522//1522 1532//1532 1523//1523 +f 1522//1522 1529//1529 1532//1532 +f 1529//1529 1531//1531 1532//1532 +f 1523//1523 1532//1532 1533//1533 +f 1532//1532 1534//1534 1533//1533 +f 1446//1446 1535//1535 1530//1530 +f 1446//1446 1448//1448 1535//1535 +f 1530//1530 1536//1536 1531//1531 +f 1530//1530 1535//1535 1536//1536 +f 1448//1448 1537//1537 1535//1535 +f 1448//1448 1447//1447 1537//1537 +f 1449//1449 1537//1537 1447//1447 +f 1537//1537 1539//1539 1538//1538 +f 1537//1537 1540//1540 1539//1539 +f 1536//1536 1539//1539 1540//1540 +f 1536//1536 1541//1541 1539//1539 +f 1535//1535 1541//1541 1536//1536 +f 1535//1535 1542//1542 1541//1541 +f 1535//1535 1538//1538 1542//1542 +f 1535//1535 1537//1537 1538//1538 +f 1531//1531 1543//1543 1532//1532 +f 1531//1531 1536//1536 1543//1543 +f 1536//1536 1544//1544 1543//1543 +f 1536//1536 1540//1540 1544//1544 +f 1532//1532 1545//1545 1534//1534 +f 1532//1532 1543//1543 1545//1545 +f 1543//1543 1546//1546 1545//1545 +f 1543//1543 1544//1544 1546//1546 +f 1445//1445 1547//1547 1455//1455 +f 1445//1445 1520//1520 1547//1547 +f 1520//1520 1548//1548 1547//1547 +f 1520//1520 1521//1521 1548//1548 +f 1455//1455 1547//1547 1549//1549 +f 1547//1547 1548//1548 1549//1549 +f 1521//1521 1533//1533 1548//1548 +f 1521//1521 1523//1523 1533//1533 +f 1548//1548 1534//1534 1549//1549 +f 1548//1548 1533//1533 1534//1534 +f 1455//1455 1542//1542 1461//1461 +f 1455//1455 1549//1549 1542//1542 +f 1549//1549 1541//1541 1542//1542 +f 1461//1461 1538//1538 1464//1464 +f 1461//1461 1542//1542 1538//1538 +f 1549//1549 1545//1545 1541//1541 +f 1549//1549 1534//1534 1545//1545 +f 1541//1541 1546//1546 1539//1539 +f 1541//1541 1545//1545 1546//1546 +f 1553//1553 1555//1555 1554//1554 +f 1203//1203 1204//1204 1553//1553 +f 1203//1203 1554//1554 1298//1298 +f 1203//1203 1553//1553 1554//1554 +f 1556//1556 1558//1558 1557//1557 +f 1556//1556 1554//1554 1558//1558 +f 1296//1296 1554//1554 1556//1556 +f 1296//1296 1298//1298 1554//1554 +f 1296//1296 1557//1557 1294//1294 +f 1296//1296 1556//1556 1557//1557 +f 1554//1554 1559//1559 1558//1558 +f 1554//1554 1555//1555 1559//1559 +f 1560//1560 1562//1562 1561//1561 +f 1560//1560 1557//1557 1562//1562 +f 1295//1295 1557//1557 1560//1560 +f 1295//1295 1294//1294 1557//1557 +f 1295//1295 1561//1561 1303//1303 +f 1295//1295 1560//1560 1561//1561 +f 1561//1561 1562//1562 1563//1563 +f 1303//1303 1563//1563 1305//1305 +f 1303//1303 1561//1561 1563//1563 +f 1557//1557 1564//1564 1562//1562 +f 1557//1557 1558//1558 1564//1564 +f 1558//1558 1565//1565 1564//1564 +f 1558//1558 1559//1559 1565//1565 +f 1562//1562 1564//1564 1566//1566 +f 1564//1564 1567//1567 1566//1566 +f 1564//1564 1565//1565 1567//1567 +f 1568//1568 1563//1563 1569//1569 +f 1304//1304 1563//1563 1568//1568 +f 1304//1304 1305//1305 1563//1563 +f 1304//1304 1568//1568 1318//1318 +f 1563//1563 1570//1570 1569//1569 +f 1563//1563 1562//1562 1570//1570 +f 1568//1568 1569//1569 1320//1320 +f 1318//1318 1568//1568 1320//1320 +f 1562//1562 1571//1571 1570//1570 +f 1562//1562 1566//1566 1571//1571 +f 1566//1566 1327//1327 1571//1571 +f 1566//1566 1567//1567 1327//1327 +f 1362//1362 1327//1327 1567//1567 +f 1362//1362 1329//1329 1327//1327 +f 1327//1327 1328//1328 1571//1571 +f 1320//1320 1572//1572 1324//1324 +f 1320//1320 1569//1569 1572//1572 +f 1569//1569 1570//1570 1572//1572 +f 1325//1325 1324//1324 1408//1408 +f 1324//1324 1572//1572 1408//1408 +f 1570//1570 1573//1573 1572//1572 +f 1570//1570 1571//1571 1573//1573 +f 1328//1328 1573//1573 1571//1571 +f 1328//1328 1330//1330 1573//1573 +f 1572//1572 1573//1573 1574//1574 +f 1573//1573 1330//1330 1574//1574 +f 1553//1553 1575//1575 1555//1555 +f 1204//1204 1575//1575 1553//1553 +f 1555//1555 1576//1576 1559//1559 +f 1575//1575 1577//1577 1555//1555 +f 1204//1204 1246//1246 1575//1575 +f 1575//1575 1260//1260 1577//1577 +f 1246//1246 1260//1260 1575//1575 +f 1555//1555 1577//1577 1576//1576 +f 1577//1577 1578//1578 1576//1576 +f 1559//1559 1579//1579 1565//1565 +f 1559//1559 1576//1576 1579//1579 +f 1362//1362 1567//1567 1350//1350 +f 1565//1565 1579//1579 1567//1567 +f 1349//1349 1567//1567 1579//1579 +f 1349//1349 1350//1350 1567//1567 +f 1349//1349 1580//1580 1351//1351 +f 1349//1349 1579//1579 1580//1580 +f 1576//1576 1580//1580 1579//1579 +f 1351//1351 1581//1581 1353//1353 +f 1351//1351 1580//1580 1581//1581 +f 1576//1576 1581//1581 1580//1580 +f 1576//1576 1578//1578 1581//1581 +f 1260//1260 1582//1582 1577//1577 +f 1260//1260 1261//1261 1582//1582 +f 1261//1261 1583//1583 1582//1582 +f 1261//1261 1262//1262 1583//1583 +f 1263//1263 1583//1583 1262//1262 +f 1263//1263 1354//1354 1583//1583 +f 1577//1577 1584//1584 1578//1578 +f 1577//1577 1582//1582 1584//1584 +f 1582//1582 1583//1583 1584//1584 +f 1585//1585 3721//3721 1265//1265 +f 1264//1264 1265//1265 3722//3722 +f 3722//3722 1263//1263 1264//1264 +f 3723//3723 1584//1584 1583//1583 +f 3721//3721 1584//1584 3723//3723 +f 1586//1586 1584//1584 3721//3721 +f 3721//3721 1355//1355 1586//1586 +f 3722//3722 3723//3723 1354//1354 +f 1354//1354 3723//3723 1583//1583 +f 1578//1578 1587//1587 1581//1581 +f 1578//1578 1584//1584 1587//1587 +f 1352//1352 1588//1588 1385//1385 +f 1352//1352 1353//1353 1588//1588 +f 1581//1581 1588//1588 1353//1353 +f 1581//1581 1587//1587 1588//1588 +f 1589//1589 1586//1586 3724//3724 +f 3724//3724 1590//1590 1589//1589 +f 1584//1584 1591//1591 1587//1587 +f 1584//1584 1586//1586 1591//1591 +f 1586//1586 1592//1592 1591//1591 +f 1586//1586 1589//1589 1592//1592 +f 1384//1384 1593//1593 1387//1387 +f 1384//1384 1385//1385 1593//1593 +f 1588//1588 1593//1593 1385//1385 +f 1588//1588 1587//1587 1593//1593 +f 1587//1587 1591//1591 1593//1593 +f 1591//1591 1592//1592 1594//1594 +f 1593//1593 1595//1595 1389//1389 +f 1593//1593 1591//1591 1595//1595 +f 1387//1387 1593//1593 1389//1389 +f 1591//1591 1594//1594 1595//1595 +f 1595//1595 1594//1594 1596//1596 +f 1389//1389 1597//1597 1391//1391 +f 1389//1389 1595//1595 1597//1597 +f 1595//1595 1596//1596 1597//1597 +f 1408//1408 1572//1572 1598//1598 +f 1408//1408 1598//1598 1407//1407 +f 1407//1407 1599//1599 1409//1409 +f 1407//1407 1598//1598 1599//1599 +f 1572//1572 1600//1600 1598//1598 +f 1572//1572 1574//1574 1600//1600 +f 1574//1574 1601//1601 1600//1600 +f 1574//1574 1330//1330 1601//1601 +f 1375//1375 1601//1601 1330//1330 +f 1598//1598 1600//1600 1599//1599 +f 1413//1413 1599//1599 1414//1414 +f 1413//1413 1602//1602 1599//1599 +f 1409//1409 1602//1602 1413//1413 +f 1409//1409 1599//1599 1602//1602 +f 1414//1414 1599//1599 1603//1603 +f 1599//1599 1600//1600 1603//1603 +f 1600//1600 1604//1604 1603//1603 +f 1415//1415 1603//1603 1449//1449 +f 1414//1414 1603//1603 1415//1415 +f 1601//1601 1605//1605 1600//1600 +f 1375//1375 1605//1605 1601//1601 +f 1499//1499 1502//1502 1606//1606 +f 1375//1375 1606//1606 1605//1605 +f 1375//1375 1499//1499 1606//1606 +f 1500//1500 1502//1502 1499//1499 +f 1500//1500 1501//1501 1502//1502 +f 1600//1600 1605//1605 1604//1604 +f 1605//1605 1607//1607 1604//1604 +f 1605//1605 1606//1606 1607//1607 +f 1604//1604 1449//1449 1603//1603 +f 1604//1604 1608//1608 1449//1449 +f 1604//1604 1607//1607 1608//1608 +f 1606//1606 1609//1609 1607//1607 +f 1606//1606 1502//1502 1609//1609 +f 1607//1607 1609//1609 1608//1608 +f 1609//1609 1610//1610 1608//1608 +f 1390//1390 1611//1611 1503//1503 +f 1390//1390 1391//1391 1611//1611 +f 1501//1501 1612//1612 1502//1502 +f 1501//1501 1503//1503 1612//1612 +f 1503//1503 1613//1613 1612//1612 +f 1503//1503 1611//1611 1613//1613 +f 1391//1391 1597//1597 1611//1611 +f 1597//1597 1596//1596 1614//1614 +f 1597//1597 1615//1615 1611//1611 +f 1597//1597 1614//1614 1615//1615 +f 1616//1616 1615//1615 1614//1614 +f 1616//1616 1617//1617 1615//1615 +f 1502//1502 1612//1612 1609//1609 +f 1550//1550 1618//1618 1552//1552 +f 1550//1550 1610//1610 1618//1618 +f 1609//1609 1618//1618 1610//1610 +f 1552//1552 1618//1618 1619//1619 +f 1609//1609 1619//1619 1618//1618 +f 1609//1609 1612//1612 1619//1619 +f 1613//1613 1620//1620 1612//1612 +f 1613//1613 1611//1611 1620//1620 +f 1611//1611 1621//1621 1620//1620 +f 1611//1611 1615//1615 1621//1621 +f 1612//1612 1622//1622 1619//1619 +f 1612//1612 1620//1620 1622//1622 +f 1620//1620 1621//1621 1622//1622 +f 1537//1537 1623//1623 1540//1540 +f 1537//1537 1449//1449 1623//1623 +f 1449//1449 1608//1608 1623//1623 +f 1540//1540 1624//1624 1544//1544 +f 1540//1540 1623//1623 1624//1624 +f 1608//1608 1624//1624 1623//1623 +f 1608//1608 1625//1625 1624//1624 +f 1608//1608 1610//1610 1625//1625 +f 1550//1550 1625//1625 1610//1610 +f 1550//1550 1551//1551 1625//1625 +f 1624//1624 1627//1627 1626//1626 +f 1624//1624 1625//1625 1627//1627 +f 1544//1544 1626//1626 1546//1546 +f 1544//1544 1624//1624 1626//1626 +f 1464//1464 1628//1628 1463//1463 +f 1464//1464 1538//1538 1628//1628 +f 1538//1538 1539//1539 1628//1628 +f 1466//1466 1463//1463 1629//1629 +f 1463//1463 1628//1628 1629//1629 +f 1628//1628 1626//1626 1630//1630 +f 1539//1539 1626//1626 1628//1628 +f 1539//1539 1546//1546 1626//1626 +f 1626//1626 1631//1631 1630//1630 +f 1626//1626 1627//1627 1631//1631 +f 1628//1628 1630//1630 1629//1629 +f 1625//1625 1551//1551 1627//1627 +f 1551//1551 1632//1632 1627//1627 +f 1551//1551 1633//1633 1632//1632 +f 1550//1550 1633//1633 1551//1551 +f 1550//1550 1552//1552 1633//1633 +f 1619//1619 1634//1634 1633//1633 +f 1619//1619 1622//1622 1634//1634 +f 1552//1552 1619//1619 1633//1633 +f 1622//1622 1635//1635 1634//1634 +f 1633//1633 1636//1636 1632//1632 +f 1633//1633 1634//1634 1636//1636 +f 1634//1634 1635//1635 1636//1636 +f 1627//1627 1637//1637 1631//1631 +f 1627//1627 1632//1632 1637//1637 +f 1632//1632 1638//1638 1637//1637 +f 1632//1632 1636//1636 1638//1638 +f 1636//1636 1639//1639 1638//1638 +f 1636//1636 1635//1635 1639//1639 +f 671//671 554//554 688//688 +f 554//554 697//697 688//688 +f 1392//1392 697//697 554//554 +f 1392//1392 1432//1432 697//697 +f 1441//1441 1454//1454 1432//1432 +f 1457//1457 1459//1459 1640//1640 +f 1454//1454 1457//1457 1640//1640 +f 1640//1640 1459//1459 1641//1641 +f 1465//1465 1466//1466 1642//1642 +f 1465//1465 1644//1644 1643//1643 +f 1459//1459 1643//1643 1641//1641 +f 1459//1459 1465//1465 1643//1643 +f 1465//1465 1645//1645 1644//1644 +f 1465//1465 1642//1642 1645//1645 +f 1432//1432 1454//1454 697//697 +f 697//697 1454//1454 1646//1646 +f 1454//1454 1640//1640 1646//1646 +f 1644//1644 1645//1645 1647//1647 +f 1643//1643 1644//1644 1648//1648 +f 1641//1641 1643//1643 1648//1648 +f 1648//1648 1644//1644 1649//1649 +f 1644//1644 1647//1647 1649//1649 +f 1466//1466 1629//1629 1642//1642 +f 1642//1642 1629//1629 1645//1645 +f 1645//1645 1650//1650 1647//1647 +f 1640//1640 1641//1641 1651//1651 +f 1646//1646 1640//1640 1651//1651 +f 1651//1651 1641//1641 1652//1652 +f 1641//1641 1648//1648 1652//1652 +f 1650//1650 1653//1653 1654//1654 +f 1647//1647 1650//1650 1654//1654 +f 1629//1629 1630//1630 1655//1655 +f 1630//1630 1656//1656 1655//1655 +f 1630//1630 1631//1631 1656//1656 +f 1629//1629 1655//1655 1657//1657 +f 1629//1629 1657//1657 1645//1645 +f 1645//1645 1657//1657 1650//1650 +f 1631//1631 1637//1637 1656//1656 +f 1637//1637 1658//1658 1656//1656 +f 1637//1637 1638//1638 1658//1658 +f 1658//1658 1638//1638 1660//1660 +f 1638//1638 1661//1661 1660//1660 +f 1638//1638 1639//1639 1661//1661 +f 1657//1657 1655//1655 1653//1653 +f 1650//1650 1657//1657 1653//1653 +f 1639//1639 1662//1662 1661//1661 +f 1653//1653 1655//1655 1663//1663 +f 1655//1655 1664//1664 1663//1663 +f 1655//1655 1656//1656 1664//1664 +f 1664//1664 1656//1656 1665//1665 +f 1656//1656 1658//1658 1665//1665 +f 1658//1658 1660//1660 1665//1665 +f 1653//1653 1663//1663 1666//1666 +f 1663//1663 1664//1664 1666//1666 +f 1665//1665 1660//1660 1667//1667 +f 1660//1660 1661//1661 1667//1667 +f 1667//1667 1661//1661 1668//1668 +f 228//228 704//704 1045//1045 +f 708//708 710//710 1669//1669 +f 704//704 1669//1669 1045//1045 +f 704//704 708//708 1669//1669 +f 1669//1669 710//710 1670//1670 +f 1671//1671 1669//1669 1672//1672 +f 1669//1669 1670//1670 1672//1672 +f 1045//1045 1669//1669 1671//1671 +f 1045//1045 1674//1674 1673//1673 +f 1045//1045 1671//1671 1674//1674 +f 1068//1068 1045//1045 1673//1673 +f 1673//1673 1674//1674 1675//1675 +f 1068//1068 1673//1673 1070//1070 +f 1131//1131 1676//1676 1132//1132 +f 1131//1131 1070//1070 1676//1676 +f 1673//1673 1676//1676 1070//1070 +f 1673//1673 1675//1675 1676//1676 +f 710//710 769//769 1677//1677 +f 1670//1670 1677//1677 1678//1678 +f 710//710 1677//1677 1670//1670 +f 769//769 1679//1679 1677//1677 +f 769//769 770//770 1679//1679 +f 1677//1677 1679//1679 1678//1678 +f 1670//1670 1678//1678 1672//1672 +f 1672//1672 1678//1678 1680//1680 +f 1678//1678 1681//1681 1680//1680 +f 770//770 771//771 1679//1679 +f 771//771 1682//1682 1679//1679 +f 771//771 772//772 1682//1682 +f 1679//1679 1682//1682 1683//1683 +f 1678//1678 1679//1679 1684//1684 +f 1683//1683 1682//1682 1685//1685 +f 1679//1679 1683//1683 1684//1684 +f 1672//1672 1680//1680 1674//1674 +f 1671//1671 1672//1672 1674//1674 +f 1681//1681 1686//1686 1687//1687 +f 1680//1680 1687//1687 1674//1674 +f 1680//1680 1681//1681 1687//1687 +f 1678//1678 1684//1684 1681//1681 +f 1681//1681 1684//1684 1686//1686 +f 1683//1683 1685//1685 1684//1684 +f 1684//1684 1685//1685 1688//1688 +f 1684//1684 1688//1688 1686//1686 +f 772//772 775//775 1682//1682 +f 1685//1685 1682//1682 1689//1689 +f 1682//1682 775//775 1690//1690 +f 1682//1682 1690//1690 1689//1689 +f 1685//1685 1689//1689 1688//1688 +f 1688//1688 1689//1689 1691//1691 +f 1690//1690 1692//1692 1689//1689 +f 1689//1689 1692//1692 1691//1691 +f 1676//1676 1694//1694 1693//1693 +f 1676//1676 1675//1675 1694//1694 +f 1675//1675 1674//1674 1694//1694 +f 1676//1676 1693//1693 1132//1132 +f 1694//1694 1695//1695 1693//1693 +f 1694//1694 1696//1696 1695//1695 +f 1694//1694 1687//1687 1696//1696 +f 1687//1687 1686//1686 1696//1696 +f 1674//1674 1687//1687 1694//1694 +f 1206//1206 1132//1132 1207//1207 +f 1132//1132 1693//1693 1207//1207 +f 1207//1207 1693//1693 1697//1697 +f 1693//1693 1695//1695 1697//1697 +f 1686//1686 1698//1698 1696//1696 +f 1696//1696 1698//1698 1695//1695 +f 1698//1698 1686//1686 1699//1699 +f 1686//1686 1688//1688 1699//1699 +f 1698//1698 1699//1699 1700//1700 +f 1697//1697 1702//1702 1701//1701 +f 1697//1697 1695//1695 1702//1702 +f 1695//1695 1698//1698 1702//1702 +f 1698//1698 1700//1700 1702//1702 +f 1701//1701 1704//1704 1703//1703 +f 1702//1702 1704//1704 1701//1701 +f 1702//1702 1700//1700 1704//1704 +f 1206//1206 1207//1207 1705//1705 +f 1705//1705 1697//1697 1706//1706 +f 1697//1697 1701//1701 1706//1706 +f 1207//1207 1697//1697 1705//1705 +f 1216//1216 1705//1705 1222//1222 +f 1206//1206 1705//1705 1216//1216 +f 1701//1701 1703//1703 1706//1706 +f 1222//1222 1707//1707 1228//1228 +f 1222//1222 1705//1705 1707//1707 +f 1705//1705 1706//1706 1707//1707 +f 1688//1688 1708//1708 1699//1699 +f 1688//1688 1691//1691 1708//1708 +f 1700//1700 1699//1699 1709//1709 +f 1699//1699 1708//1708 1709//1709 +f 1700//1700 1709//1709 1710//1710 +f 1700//1700 1710//1710 1704//1704 +f 1710//1710 1709//1709 1711//1711 +f 1709//1709 1708//1708 1711//1711 +f 1710//1710 1711//1711 1712//1712 +f 1691//1691 1692//1692 1708//1708 +f 1692//1692 1714//1714 1708//1708 +f 1708//1708 1714//1714 1713//1713 +f 1708//1708 1715//1715 1711//1711 +f 1708//1708 1713//1713 1715//1715 +f 1703//1703 1716//1716 1706//1706 +f 1703//1703 1717//1717 1716//1716 +f 1704//1704 1717//1717 1703//1703 +f 1704//1704 1710//1710 1717//1717 +f 1710//1710 1712//1712 1717//1717 +f 1716//1716 1719//1719 1718//1718 +f 1717//1717 1719//1719 1716//1716 +f 1227//1227 1720//1720 1226//1226 +f 1227//1227 1228//1228 1720//1720 +f 1228//1228 1707//1707 1720//1720 +f 1706//1706 1716//1716 1707//1707 +f 1720//1720 1722//1722 1721//1721 +f 1720//1720 1707//1707 1722//1722 +f 1716//1716 1722//1722 1707//1707 +f 1716//1716 1718//1718 1722//1722 +f 1249//1249 1226//1226 1720//1720 +f 1717//1717 1712//1712 1719//1719 +f 1712//1712 1711//1711 1723//1723 +f 1711//1711 1715//1715 1723//1723 +f 1712//1712 1724//1724 1719//1719 +f 1712//1712 1723//1723 1724//1724 +f 1249//1249 1725//1725 1251//1251 +f 1249//1249 1720//1720 1725//1725 +f 1720//1720 1721//1721 1725//1725 +f 1722//1722 1726//1726 1721//1721 +f 1725//1725 1721//1721 1727//1727 +f 1726//1726 1727//1727 1721//1721 +f 1722//1722 1718//1718 1726//1726 +f 1726//1726 1718//1718 1728//1728 +f 1719//1719 1728//1728 1718//1718 +f 1719//1719 1724//1724 1728//1728 +f 1251//1251 1729//1729 1265//1265 +f 1725//1725 1729//1729 1251//1251 +f 866//866 1730//1730 775//775 +f 775//775 1730//1730 1690//1690 +f 866//866 867//867 1730//1730 +f 1690//1690 1731//1731 1692//1692 +f 1690//1690 1730//1730 1731//1731 +f 1730//1730 867//867 1731//1731 +f 1731//1731 1732//1732 1692//1692 +f 870//870 871//871 1733//1733 +f 867//867 1732//1732 1731//1731 +f 867//867 870//870 1732//1732 +f 870//870 1733//1733 1732//1732 +f 1732//1732 1733//1733 1734//1734 +f 1340//1340 1736//1736 1735//1735 +f 1340//1340 1344//1344 1736//1736 +f 1337//1337 1344//1344 1340//1340 +f 1337//1337 1338//1338 1344//1344 +f 1713//1713 1737//1737 1715//1715 +f 1340//1340 1738//1738 1339//1339 +f 1340//1340 1735//1735 1738//1738 +f 1735//1735 1739//1739 1738//1738 +f 1735//1735 1736//1736 1739//1739 +f 1339//1339 1740//1740 1345//1345 +f 1339//1339 1738//1738 1740//1740 +f 1740//1740 1742//1742 1741//1741 +f 1738//1738 1742//1742 1740//1740 +f 1738//1738 1739//1739 1742//1742 +f 1344//1344 1739//1739 1736//1736 +f 1344//1344 1347//1347 1739//1739 +f 1347//1347 1742//1742 1739//1739 +f 1347//1347 1348//1348 1742//1742 +f 1713//1713 1743//1743 1737//1737 +f 1692//1692 1744//1744 1714//1714 +f 1692//1692 1732//1732 1744//1744 +f 1713//1713 1714//1714 1743//1743 +f 1724//1724 1723//1723 1745//1745 +f 1724//1724 1745//1745 1728//1728 +f 1727//1727 1728//1728 1746//1746 +f 1726//1726 1728//1728 1727//1727 +f 1723//1723 1715//1715 1745//1745 +f 1745//1745 1746//1746 1728//1728 +f 1745//1745 1747//1747 1746//1746 +f 1737//1737 1748//1748 1715//1715 +f 1737//1737 1743//1743 1749//1749 +f 1737//1737 1749//1749 1748//1748 +f 1715//1715 1747//1747 1745//1745 +f 1715//1715 1748//1748 1747//1747 +f 1747//1747 1750//1750 1746//1746 +f 1748//1748 1751//1751 1747//1747 +f 1345//1345 1740//1740 1752//1752 +f 1740//1740 1753//1753 1752//1752 +f 1740//1740 1741//1741 1753//1753 +f 1345//1345 1754//1754 1359//1359 +f 1345//1345 1752//1752 1754//1754 +f 1752//1752 1755//1755 1754//1754 +f 1752//1752 1753//1753 1755//1755 +f 1741//1741 1756//1756 1753//1753 +f 1753//1753 1757//1757 1755//1755 +f 1753//1753 1756//1756 1757//1757 +f 1348//1348 1758//1758 1742//1742 +f 1348//1348 1360//1360 1758//1758 +f 1742//1742 1756//1756 1741//1741 +f 1742//1742 1758//1758 1756//1756 +f 1758//1758 1757//1757 1756//1756 +f 1754//1754 1755//1755 1759//1759 +f 1359//1359 1760//1760 1361//1361 +f 1359//1359 1754//1754 1760//1760 +f 1754//1754 1759//1759 1760//1760 +f 1755//1755 1757//1757 1759//1759 +f 1759//1759 1757//1757 1761//1761 +f 1360//1360 1762//1762 1758//1758 +f 1758//1758 1762//1762 1757//1757 +f 1360//1360 1763//1763 1762//1762 +f 1762//1762 1761//1761 1757//1757 +f 1762//1762 1763//1763 1761//1761 +f 1743//1743 1714//1714 1764//1764 +f 1714//1714 1744//1744 1764//1764 +f 1732//1732 1765//1765 1744//1744 +f 1732//1732 1734//1734 1765//1765 +f 1734//1734 1766//1766 1765//1765 +f 1765//1765 1766//1766 1767//1767 +f 1744//1744 1765//1765 1764//1764 +f 1765//1765 1767//1767 1768//1768 +f 1743//1743 1764//1764 1749//1749 +f 1770//1770 1769//1769 1772//1772 +f 1750//1750 1747//1747 1773//1773 +f 1751//1751 1773//1773 1747//1747 +f 1748//1748 1774//1774 1751//1751 +f 1770//1770 1772//1772 1776//1776 +f 1776//1776 1778//1778 1777//1777 +f 1774//1774 1779//1779 1751//1751 +f 1751//1751 1775//1775 1773//1773 +f 1751//1751 1779//1779 1775//1775 +f 1780//1780 1782//1782 1781//1781 +f 1780//1780 1775//1775 1782//1782 +f 1779//1779 1782//1782 1775//1775 +f 1779//1779 1783//1783 1782//1782 +f 1748//1748 1749//1749 1774//1774 +f 1764//1764 1765//1765 1768//1768 +f 1774//1774 1749//1749 1768//1768 +f 1764//1764 1768//1768 1749//1749 +f 1768//1768 1779//1779 1774//1774 +f 871//871 1784//1784 1733//1733 +f 871//871 900//900 1784//1784 +f 900//900 902//902 1784//1784 +f 1733//1733 1785//1785 1734//1734 +f 1733//1733 1784//1784 1785//1785 +f 1784//1784 1787//1787 1785//1785 +f 1734//1734 1785//1785 1786//1786 +f 1785//1785 1788//1788 1786//1786 +f 902//902 901//901 1789//1789 +f 902//902 1789//1789 1784//1784 +f 901//901 907//907 1789//1789 +f 1789//1789 907//907 1790//1790 +f 907//907 1791//1791 1790//1790 +f 907//907 908//908 1791//1791 +f 1784//1784 1789//1789 1787//1787 +f 1787//1787 1788//1788 1785//1785 +f 1789//1789 1790//1790 1787//1787 +f 1792//1792 1788//1788 1793//1793 +f 1787//1787 1793//1793 1788//1788 +f 1787//1787 1790//1790 1793//1793 +f 1790//1790 1791//1791 1794//1794 +f 1790//1790 1794//1794 1793//1793 +f 1361//1361 1795//1795 1477//1477 +f 1361//1361 1760//1760 1795//1795 +f 1760//1760 1796//1796 1795//1795 +f 1760//1760 1759//1759 1796//1796 +f 1477//1477 1797//1797 1479//1479 +f 1477//1477 1795//1795 1797//1797 +f 1795//1795 1799//1799 1798//1798 +f 1795//1795 1796//1796 1799//1799 +f 1795//1795 1800//1800 1797//1797 +f 1795//1795 1798//1798 1800//1800 +f 1759//1759 1799//1799 1796//1796 +f 1759//1759 1761//1761 1799//1799 +f 1360//1360 1798//1798 1763//1763 +f 1360//1360 1483//1483 1798//1798 +f 1763//1763 1799//1799 1761//1761 +f 1763//1763 1798//1798 1799//1799 +f 1483//1483 1800//1800 1798//1798 +f 1483//1483 1485//1485 1800//1800 +f 1479//1479 1800//1800 1485//1485 +f 1479//1479 1797//1797 1800//1800 +f 1479//1479 1493//1493 1490//1490 +f 1479//1479 1485//1485 1493//1493 +f 1734//1734 1786//1786 1766//1766 +f 1767//1767 1801//1801 1768//1768 +f 1767//1767 1802//1802 1801//1801 +f 1766//1766 1802//1802 1767//1767 +f 1786//1786 1803//1803 1766//1766 +f 1786//1786 1788//1788 1803//1803 +f 1766//1766 1803//1803 1802//1802 +f 1802//1802 1804//1804 1801//1801 +f 1781//1781 1782//1782 1783//1783 +f 1781//1781 1783//1783 1805//1805 +f 1783//1783 1806//1806 1805//1805 +f 1768//1768 1801//1801 1808//1808 +f 1783//1783 1809//1809 1806//1806 +f 1783//1783 1779//1779 1809//1809 +f 1768//1768 1809//1809 1779//1779 +f 1768//1768 1808//1808 1809//1809 +f 1801//1801 1804//1804 1808//1808 +f 1806//1806 1809//1809 1807//1807 +f 1788//1788 1810//1810 1803//1803 +f 1788//1788 1792//1792 1810//1810 +f 1802//1802 1803//1803 1811//1811 +f 1802//1802 1811//1811 1804//1804 +f 1803//1803 1810//1810 1811//1811 +f 1793//1793 1812//1812 1792//1792 +f 1793//1793 1794//1794 1812//1812 +f 1810//1810 1792//1792 1813//1813 +f 1810//1810 1814//1814 1811//1811 +f 1810//1810 1813//1813 1814//1814 +f 1815//1815 1806//1806 1807//1807 +f 1815//1815 1807//1807 1816//1816 +f 1817//1817 1818//1818 1659//1659 +f 1815//1815 1816//1816 1818//1818 +f 1818//1818 1816//1816 1819//1819 +f 1807//1807 1819//1819 1816//1816 +f 1804//1804 1820//1820 1808//1808 +f 1811//1811 1821//1821 1804//1804 +f 1804//1804 1821//1821 1820//1820 +f 1808//1808 1820//1820 1809//1809 +f 1807//1807 1809//1809 1822//1822 +f 1820//1820 1822//1822 1809//1809 +f 1811//1811 1814//1814 1821//1821 +f 1265//1265 1823//1823 1585//1585 +f 1265//1265 1729//1729 1823//1823 +f 1727//1727 1729//1729 1725//1725 +f 1727//1727 1746//1746 1729//1729 +f 1824//1824 3724//3724 3725//3725 +f 3725//3725 1823//1823 1824//1824 +f 3726//3726 1823//1823 3725//3725 +f 1585//1585 1823//1823 3726//3726 +f 3726//3726 1355//1355 1585//1585 +f 1823//1823 1825//1825 1824//1824 +f 1823//1823 1729//1729 1825//1825 +f 1746//1746 1825//1825 1729//1729 +f 1824//1824 1827//1827 1826//1826 +f 1824//1824 1825//1825 1827//1827 +f 1590//1590 1824//1824 1826//1826 +f 1589//1589 1828//1828 1592//1592 +f 1589//1589 1826//1826 1828//1828 +f 1590//1590 1826//1826 1589//1589 +f 1769//1769 1828//1828 1771//1771 +f 1826//1826 1771//1771 1828//1828 +f 1826//1826 1827//1827 1771//1771 +f 1825//1825 1746//1746 1827//1827 +f 1827//1827 1750//1750 1771//1771 +f 1827//1827 1746//1746 1750//1750 +f 1769//1769 1592//1592 1828//1828 +f 1769//1769 1770//1770 1592//1592 +f 1594//1594 1592//1592 1829//1829 +f 1770//1770 1829//1829 1592//1592 +f 1771//1771 1750//1750 1830//1830 +f 1750//1750 1773//1773 1830//1830 +f 1771//1771 1830//1830 1769//1769 +f 1773//1773 1775//1775 1830//1830 +f 1769//1769 1830//1830 1772//1772 +f 1594//1594 1829//1829 1596//1596 +f 1770//1770 1776//1776 1829//1829 +f 1596//1596 1829//1829 1777//1777 +f 1776//1776 1777//1777 1829//1829 +f 1772//1772 1830//1830 1780//1780 +f 1775//1775 1780//1780 1830//1830 +f 1772//1772 1780//1780 1831//1831 +f 1776//1776 1831//1831 1778//1778 +f 1776//1776 1772//1772 1831//1831 +f 3728//3728 1616//1616 1614//1614 +f 3727//3727 1596//1596 1777//1777 +f 3728//3728 1596//1596 3727//3727 +f 1614//1614 1596//1596 3728//3728 +f 3729//3729 1832//1832 1617//1617 +f 3727//3727 1832//1832 3729//3729 +f 1831//1831 1832//1832 3727//3727 +f 3727//3727 1778//1778 1831//1831 +f 1617//1617 3728//3728 3729//3729 +f 1831//1831 1780//1780 1833//1833 +f 1781//1781 1833//1833 1780//1780 +f 1831//1831 1833//1833 1832//1832 +f 1781//1781 1805//1805 1833//1833 +f 1615//1615 1834//1834 1621//1621 +f 1615//1615 1617//1617 1834//1834 +f 1617//1617 1835//1835 1834//1834 +f 1617//1617 1832//1832 1835//1835 +f 1621//1621 1836//1836 1622//1622 +f 1621//1621 1834//1834 1836//1836 +f 1834//1834 1835//1835 1836//1836 +f 1832//1832 1837//1837 1835//1835 +f 1832//1832 1833//1833 1837//1837 +f 1805//1805 1837//1837 1833//1833 +f 1805//1805 1806//1806 1837//1837 +f 1815//1815 1837//1837 1806//1806 +f 1815//1815 1835//1835 1837//1837 +f 1622//1622 1836//1836 1635//1635 +f 1836//1836 1835//1835 1817//1817 +f 1815//1815 1817//1817 1835//1835 +f 1635//1635 1817//1817 1639//1639 +f 1635//1635 1836//1836 1817//1817 +f 1815//1815 1818//1818 1817//1817 +f 1817//1817 1659//1659 1639//1639 +f 908//908 947//947 1838//1838 +f 947//947 1839//1839 1838//1838 +f 947//947 949//949 1839//1839 +f 908//908 1840//1840 1791//1791 +f 908//908 1838//1838 1840//1840 +f 1838//1838 1839//1839 1840//1840 +f 1840//1840 1839//1839 1841//1841 +f 1791//1791 1842//1842 1794//1794 +f 1791//1791 1840//1840 1842//1842 +f 1841//1841 1843//1843 1840//1840 +f 1840//1840 1844//1844 1842//1842 +f 1840//1840 1843//1843 1844//1844 +f 949//949 1846//1846 1839//1839 +f 949//949 950//950 1846//1846 +f 1841//1841 1847//1847 1843//1843 +f 1841//1841 1848//1848 1847//1847 +f 1847//1847 1849//1849 1843//1843 +f 1847//1847 1848//1848 1849//1849 +f 1794//1794 1850//1850 1812//1812 +f 1794//1794 1842//1842 1850//1850 +f 1812//1812 1850//1850 1851//1851 +f 1792//1792 1812//1812 1851//1851 +f 1850//1850 1842//1842 1852//1852 +f 1813//1813 1853//1853 1814//1814 +f 1851//1851 1853//1853 1813//1813 +f 1851//1851 1850//1850 1853//1853 +f 1792//1792 1851//1851 1813//1813 +f 1850//1850 1854//1854 1853//1853 +f 1850//1850 1852//1852 1854//1854 +f 1853//1853 1854//1854 1855//1855 +f 1814//1814 1853//1853 1855//1855 +f 1842//1842 1844//1844 1852//1852 +f 1844//1844 1845//1845 1852//1852 +f 1854//1854 1852//1852 1856//1856 +f 1852//1852 1845//1845 1857//1857 +f 1852//1852 1857//1857 1856//1856 +f 1659//1659 1818//1818 1858//1858 +f 1818//1818 1859//1859 1858//1858 +f 1818//1818 1819//1819 1859//1859 +f 1807//1807 1860//1860 1819//1819 +f 1860//1860 1859//1859 1819//1819 +f 1860//1860 1861//1861 1859//1859 +f 1814//1814 1862//1862 1821//1821 +f 1821//1821 1863//1863 1820//1820 +f 1821//1821 1862//1862 1863//1863 +f 1862//1862 1855//1855 1864//1864 +f 1814//1814 1855//1855 1862//1862 +f 1862//1862 1865//1865 1863//1863 +f 1862//1862 1864//1864 1865//1865 +f 1807//1807 1866//1866 1860//1860 +f 1807//1807 1822//1822 1866//1866 +f 1820//1820 1866//1866 1822//1822 +f 1820//1820 1863//1863 1866//1866 +f 1863//1863 1865//1865 1866//1866 +f 1854//1854 1867//1867 1855//1855 +f 1854//1854 1856//1856 1867//1867 +f 1865//1865 1864//1864 1868//1868 +f 1855//1855 1867//1867 1864//1864 +f 1868//1868 1864//1864 1869//1869 +f 1867//1867 1869//1869 1864//1864 +f 1867//1867 1870//1870 1869//1869 +f 1867//1867 1856//1856 1870//1870 +f 1860//1860 1866//1866 1871//1871 +f 1865//1865 1871//1871 1866//1866 +f 1865//1865 1868//1868 1871//1871 +f 1860//1860 1871//1871 1861//1861 +f 1844//1844 1843//1843 1845//1845 +f 1843//1843 1872//1872 1845//1845 +f 1857//1857 1845//1845 1873//1873 +f 1845//1845 1874//1874 1873//1873 +f 1845//1845 1872//1872 1874//1874 +f 1872//1872 1875//1875 1874//1874 +f 1639//1639 1659//1659 1662//1662 +f 1659//1659 1876//1876 1662//1662 +f 1659//1659 1858//1858 1876//1876 +f 1858//1858 1859//1859 1877//1877 +f 1859//1859 1861//1861 1877//1877 +f 1858//1858 1877//1877 1876//1876 +f 1662//1662 1876//1876 1878//1878 +f 1857//1857 1879//1879 1856//1856 +f 1857//1857 1873//1873 1879//1879 +f 1869//1869 1870//1870 1880//1880 +f 1856//1856 1879//1879 1870//1870 +f 1879//1879 1882//1882 1881//1881 +f 1873//1873 1874//1874 1882//1882 +f 1873//1873 1882//1882 1879//1879 +f 1880//1880 1881//1881 1883//1883 +f 1880//1880 1870//1870 1881//1881 +f 1879//1879 1881//1881 1870//1870 +f 1871//1871 1880//1880 1861//1861 +f 1871//1871 1868//1868 1880//1880 +f 1869//1869 1880//1880 1868//1868 +f 1861//1861 1880//1880 1883//1883 +f 1881//1881 1885//1885 1884//1884 +f 1881//1881 1882//1882 1885//1885 +f 1874//1874 1885//1885 1882//1882 +f 1874//1874 1875//1875 1885//1885 +f 1883//1883 1887//1887 1886//1886 +f 1883//1883 1881//1881 1887//1887 +f 1881//1881 1884//1884 1887//1887 +f 1875//1875 1884//1884 1885//1885 +f 1875//1875 1888//1888 1884//1884 +f 1861//1861 1883//1883 1886//1886 +f 1843//1843 1849//1849 1872//1872 +f 1849//1849 1889//1889 1872//1872 +f 1872//1872 1891//1891 1890//1890 +f 1875//1875 1890//1890 1888//1888 +f 1872//1872 1890//1890 1875//1875 +f 950//950 1892//1892 1846//1846 +f 1846//1846 1893//1893 1839//1839 +f 986//986 987//987 1892//1892 +f 950//950 986//986 1892//1892 +f 1846//1846 1892//1892 1893//1893 +f 1839//1839 1893//1893 1841//1841 +f 1841//1841 1893//1893 1848//1848 +f 1848//1848 1894//1894 1849//1849 +f 1849//1849 1894//1894 1889//1889 +f 1893//1893 1895//1895 1848//1848 +f 1893//1893 1892//1892 1895//1895 +f 1848//1848 1896//1896 1894//1894 +f 1848//1848 1895//1895 1896//1896 +f 1894//1894 1896//1896 1897//1897 +f 1896//1896 1898//1898 1897//1897 +f 987//987 996//996 1892//1892 +f 1892//1892 996//996 1899//1899 +f 996//996 1900//1900 1899//1899 +f 997//997 1000//1000 1901//1901 +f 996//996 997//997 1901//1901 +f 1000//1000 1001//1001 1902//1902 +f 1901//1901 1000//1000 1903//1903 +f 996//996 1901//1901 1903//1903 +f 1900//1900 1903//1903 1904//1904 +f 996//996 1903//1903 1900//1900 +f 1000//1000 1905//1905 1903//1903 +f 1000//1000 1902//1902 1905//1905 +f 1892//1892 1899//1899 1895//1895 +f 1899//1899 1900//1900 1906//1906 +f 1895//1895 1906//1906 1896//1896 +f 1895//1895 1899//1899 1906//1906 +f 1896//1896 1906//1906 1898//1898 +f 1900//1900 1907//1907 1906//1906 +f 1900//1900 1904//1904 1907//1907 +f 1906//1906 1907//1907 1908//1908 +f 1907//1907 1909//1909 1908//1908 +f 1908//1908 1909//1909 1910//1910 +f 1903//1903 1905//1905 1904//1904 +f 1907//1907 1904//1904 1909//1909 +f 1662//1662 1878//1878 1661//1661 +f 1878//1878 1876//1876 1911//1911 +f 1888//1888 1912//1912 1884//1884 +f 1886//1886 1887//1887 1913//1913 +f 1887//1887 1914//1914 1913//1913 +f 1884//1884 1912//1912 1914//1914 +f 1884//1884 1914//1914 1887//1887 +f 1912//1912 1913//1913 1914//1914 +f 1912//1912 1915//1915 1913//1913 +f 1915//1915 1916//1916 1913//1913 +f 1913//1913 1861//1861 1886//1886 +f 1911//1911 1876//1876 1917//1917 +f 1876//1876 1877//1877 1917//1917 +f 1917//1917 1877//1877 1918//1918 +f 1916//1916 1919//1919 1913//1913 +f 1913//1913 1919//1919 1920//1920 +f 1877//1877 1861//1861 1918//1918 +f 1889//1889 1894//1894 1897//1897 +f 1889//1889 1897//1897 1921//1921 +f 1872//1872 1889//1889 1891//1891 +f 1888//1888 1890//1890 1922//1922 +f 1891//1891 1922//1922 1890//1890 +f 1889//1889 1921//1921 1891//1891 +f 1922//1922 1924//1924 1923//1923 +f 1891//1891 1924//1924 1922//1922 +f 1891//1891 1921//1921 1924//1924 +f 1897//1897 1926//1926 1925//1925 +f 1897//1897 1898//1898 1926//1926 +f 1897//1897 1927//1927 1921//1921 +f 1921//1921 1923//1923 1924//1924 +f 1921//1921 1927//1927 1923//1923 +f 1928//1928 1930//1930 1929//1929 +f 1928//1928 1923//1923 1930//1930 +f 1927//1927 1930//1930 1923//1923 +f 1927//1927 1931//1931 1930//1930 +f 1927//1927 1925//1925 1931//1931 +f 1925//1925 1926//1926 1931//1931 +f 1897//1897 1925//1925 1927//1927 +f 1922//1922 1923//1923 1912//1912 +f 1888//1888 1922//1922 1912//1912 +f 1915//1915 1912//1912 1928//1928 +f 1923//1923 1928//1928 1912//1912 +f 1915//1915 1929//1929 1916//1916 +f 1915//1915 1928//1928 1929//1929 +f 1898//1898 1932//1932 1926//1926 +f 1929//1929 1933//1933 1916//1916 +f 1929//1929 1930//1930 1933//1933 +f 1916//1916 1933//1933 1919//1919 +f 1926//1926 1934//1934 1931//1931 +f 1930//1930 1935//1935 1933//1933 +f 1930//1930 1931//1931 1935//1935 +f 1931//1931 1934//1934 1935//1935 +f 1934//1934 1932//1932 1936//1936 +f 1926//1926 1932//1932 1934//1934 +f 1933//1933 1935//1935 1919//1919 +f 1934//1934 1936//1936 1935//1935 +f 1906//1906 1908//1908 1898//1898 +f 1898//1898 1937//1937 1932//1932 +f 1898//1898 1908//1908 1937//1937 +f 1908//1908 1938//1938 1937//1937 +f 1908//1908 1910//1910 1938//1938 +f 1932//1932 1937//1937 1936//1936 +f 1919//1919 1940//1940 1939//1939 +f 1919//1919 1935//1935 1940//1940 +f 1936//1936 1940//1940 1935//1935 +f 1940//1940 1942//1942 1941//1941 +f 1940//1940 1936//1936 1942//1942 +f 1937//1937 1942//1942 1936//1936 +f 1937//1937 1938//1938 1942//1942 +f 1939//1939 1940//1940 1943//1943 +f 1940//1940 1941//1941 1943//1943 +f 1661//1661 1911//1911 1668//1668 +f 1661//1661 1878//1878 1911//1911 +f 676//676 1944//1944 678//678 +f 678//678 1944//1944 677//677 +f 1944//1944 1945//1945 677//677 +f 1946//1946 1948//1948 1947//1947 +f 1946//1946 1949//1949 1948//1948 +f 1950//1950 696//696 1951//1951 +f 1950//1950 680//680 696//696 +f 1950//1950 1951//1951 1952//1952 +f 680//680 1950//1950 679//679 +f 1944//1944 1953//1953 1945//1945 +f 1952//1952 1951//1951 1948//1948 +f 1952//1952 1949//1949 1950//1950 +f 1950//1950 1954//1954 679//679 +f 679//679 1954//1954 681//681 +f 1954//1954 1955//1955 681//681 +f 1952//1952 1948//1948 1949//1949 +f 1949//1949 1956//1956 1950//1950 +f 1950//1950 1956//1956 1954//1954 +f 1956//1956 1955//1955 1954//1954 +f 681//681 1955//1955 676//676 +f 676//676 1957//1957 1944//1944 +f 1944//1944 1958//1958 1953//1953 +f 1957//1957 1959//1959 1944//1944 +f 1944//1944 1959//1959 1958//1958 +f 1955//1955 1960//1960 676//676 +f 676//676 1960//1960 1957//1957 +f 695//695 1961//1961 690//690 +f 695//695 1962//1962 1961//1961 +f 695//695 691//691 1962//1962 +f 694//694 1963//1963 692//692 +f 692//692 1964//1964 693//693 +f 692//692 1963//1963 1964//1964 +f 694//694 690//690 1961//1961 +f 693//693 1964//1964 696//696 +f 689//689 697//697 1965//1965 +f 694//694 1966//1966 1963//1963 +f 694//694 1961//1961 1966//1966 +f 1962//1962 1967//1967 1961//1961 +f 1962//1962 691//691 1967//1967 +f 1966//1966 1968//1968 1963//1963 +f 1963//1963 1951//1951 1964//1964 +f 1963//1963 1968//1968 1951//1951 +f 1967//1967 1970//1970 1961//1961 +f 1967//1967 1971//1971 1970//1970 +f 1967//1967 691//691 1971//1971 +f 1966//1966 1972//1972 1968//1968 +f 1966//1966 1970//1970 1972//1972 +f 1966//1966 1961//1961 1970//1970 +f 1972//1972 1947//1947 1968//1968 +f 1968//1968 1948//1948 1951//1951 +f 1968//1968 1947//1947 1948//1948 +f 1971//1971 691//691 1973//1973 +f 1974//1974 1970//1970 1971//1971 +f 1974//1974 1972//1972 1970//1970 +f 691//691 689//689 1973//1973 +f 689//689 1969//1969 1973//1973 +f 1969//1969 1975//1975 1973//1973 +f 1969//1969 1976//1976 1975//1975 +f 1964//1964 1951//1951 696//696 +f 689//689 1977//1977 1969//1969 +f 1977//1977 1978//1978 1969//1969 +f 1969//1969 1978//1978 1976//1976 +f 1946//1946 1980//1980 1979//1979 +f 1946//1946 1947//1947 1980//1980 +f 1981//1981 1979//1979 1982//1982 +f 1981//1981 1983//1983 1979//1979 +f 1981//1981 1984//1984 1983//1983 +f 1981//1981 1985//1985 1984//1984 +f 1981//1981 1986//1986 1985//1985 +f 1981//1981 1982//1982 1986//1986 +f 1985//1985 1986//1986 1987//1987 +f 1985//1985 1989//1989 1988//1988 +f 1985//1985 1990//1990 1989//1989 +f 1985//1985 1987//1987 1990//1990 +f 1985//1985 1991//1991 1984//1984 +f 1985//1985 1988//1988 1991//1991 +f 1989//1989 1990//1990 1992//1992 +f 1989//1989 1994//1994 1993//1993 +f 1989//1989 1992//1992 1994//1994 +f 1993//1993 1994//1994 1996//1996 +f 1989//1989 1997//1997 1988//1988 +f 1989//1989 1993//1993 1997//1997 +f 1988//1988 1998//1998 1991//1991 +f 1988//1988 1997//1997 1998//1998 +f 1993//1993 1999//1999 1997//1997 +f 1993//1993 1995//1995 1999//1999 +f 1997//1997 2000//2000 1998//1998 +f 1997//1997 1999//1999 2000//2000 +f 2001//2001 1996//1996 2002//2002 +f 2001//2001 1993//1993 1996//1996 +f 2001//2001 2003//2003 1993//1993 +f 2001//2001 2004//2004 2003//2003 +f 2001//2001 2002//2002 2004//2004 +f 1993//1993 2005//2005 1995//1995 +f 1993//1993 2003//2003 2005//2005 +f 2003//2003 2004//2004 2006//2006 +f 1995//1995 2007//2007 1999//1999 +f 1995//1995 2005//2005 2007//2007 +f 2000//2000 2007//2007 2008//2008 +f 1999//1999 2007//2007 2000//2000 +f 2007//2007 2010//2010 2009//2009 +f 2005//2005 2010//2010 2007//2007 +f 1946//1946 1979//1979 2011//2011 +f 1949//1949 1946//1946 2011//2011 +f 1949//1949 2012//2012 1956//1956 +f 1949//1949 2011//2011 2012//2012 +f 1956//1956 2012//2012 1955//1955 +f 2012//2012 2014//2014 2013//2013 +f 1955//1955 2012//2012 2013//2013 +f 1983//1983 2015//2015 1979//1979 +f 1983//1983 2016//2016 2015//2015 +f 1983//1983 1984//1984 2016//2016 +f 1984//1984 1991//1991 2017//2017 +f 2016//2016 2018//2018 2015//2015 +f 2018//2018 2016//2016 2019//2019 +f 1984//1984 2017//2017 2016//2016 +f 2016//2016 2017//2017 2020//2020 +f 1955//1955 2013//2013 1960//1960 +f 1960//1960 2013//2013 1957//1957 +f 2013//2013 2021//2021 1957//1957 +f 2013//2013 2022//2022 2021//2021 +f 2013//2013 2014//2014 2022//2022 +f 1957//1957 2023//2023 1959//1959 +f 2021//2021 2025//2025 2024//2024 +f 1957//1957 2024//2024 2023//2023 +f 1957//1957 2021//2021 2024//2024 +f 2023//2023 2026//2026 1959//1959 +f 2023//2023 2024//2024 2026//2026 +f 2019//2019 2014//2014 2018//2018 +f 2019//2019 2022//2022 2014//2014 +f 2021//2021 2027//2027 2025//2025 +f 2022//2022 2027//2027 2021//2021 +f 2022//2022 2019//2019 2027//2027 +f 2016//2016 2028//2028 2019//2019 +f 2016//2016 2020//2020 2028//2028 +f 2019//2019 2029//2029 2027//2027 +f 2019//2019 2028//2028 2029//2029 +f 3731//3731 2026//2026 2024//2024 +f 3730//3730 2026//2026 3731//3731 +f 2030//2030 2026//2026 3730//3730 +f 2025//2025 3731//3731 2024//2024 +f 3730//3730 3732//3732 2031//2031 +f 3731//3731 2025//2025 3733//3733 +f 3733//3733 2025//2025 2027//2027 +f 3732//3732 2029//2029 2031//2031 +f 3733//3733 2029//2029 3732//3732 +f 2027//2027 2029//2029 3733//3733 +f 1991//1991 1998//1998 2032//2032 +f 1991//1991 2033//2033 2017//2017 +f 1991//1991 2032//2032 2033//2033 +f 2000//2000 2034//2034 2032//2032 +f 1998//1998 2000//2000 2032//2032 +f 2017//2017 2033//2033 2035//2035 +f 2035//2035 2037//2037 2036//2036 +f 2017//2017 2036//2036 2020//2020 +f 2017//2017 2035//2035 2036//2036 +f 2020//2020 2036//2036 2028//2028 +f 2036//2036 2039//2039 2028//2028 +f 2036//2036 2038//2038 2039//2039 +f 2036//2036 2037//2037 2038//2038 +f 2029//2029 2040//2040 2031//2031 +f 2029//2029 2028//2028 2040//2040 +f 2573//2573 3734//3734 2041//2041 +f 2041//2041 3734//3734 2042//2042 +f 3734//3734 2040//2040 2042//2042 +f 3735//3735 2040//2040 3734//3734 +f 2031//2031 2040//2040 3735//3735 +f 2028//2028 2043//2043 2040//2040 +f 2028//2028 2039//2039 2043//2043 +f 2040//2040 2044//2044 2042//2042 +f 2040//2040 2043//2043 2044//2044 +f 2039//2039 2045//2045 2043//2043 +f 2039//2039 2046//2046 2045//2045 +f 2039//2039 2038//2038 2046//2046 +f 2043//2043 2047//2047 2044//2044 +f 2045//2045 2048//2048 2043//2043 +f 2045//2045 2049//2049 2048//2048 +f 2043//2043 2048//2048 2047//2047 +f 2003//2003 2051//2051 2050//2050 +f 2003//2003 2006//2006 2051//2051 +f 2003//2003 2050//2050 2005//2005 +f 2051//2051 2052//2052 2050//2050 +f 2051//2051 2053//2053 2052//2052 +f 2051//2051 2006//2006 2053//2053 +f 2050//2050 2052//2052 2054//2054 +f 2010//2010 2055//2055 2009//2009 +f 2005//2005 2055//2055 2010//2010 +f 2005//2005 2050//2050 2055//2055 +f 2050//2050 2056//2056 2055//2055 +f 2050//2050 2054//2054 2056//2056 +f 2055//2055 2057//2057 2009//2009 +f 2052//2052 2058//2058 2054//2054 +f 2058//2058 2060//2060 2059//2059 +f 2058//2058 2061//2061 2060//2060 +f 2058//2058 2059//2059 2054//2054 +f 2058//2058 2052//2052 2061//2061 +f 2054//2054 2062//2062 2056//2056 +f 2055//2055 2063//2063 2057//2057 +f 2056//2056 2063//2063 2055//2055 +f 2056//2056 2062//2062 2063//2063 +f 2054//2054 2059//2059 2062//2062 +f 2059//2059 2065//2065 2064//2064 +f 2059//2059 2060//2060 2065//2065 +f 2059//2059 2066//2066 2062//2062 +f 2059//2059 2064//2064 2066//2066 +f 2066//2066 2068//2068 2067//2067 +f 2064//2064 2068//2068 2066//2066 +f 2064//2064 2065//2065 2068//2068 +f 2069//2069 2072//2072 2071//2071 +f 2069//2069 2073//2073 2072//2072 +f 2069//2069 2070//2070 2073//2073 +f 2063//2063 2075//2075 2074//2074 +f 2063//2063 2062//2062 2075//2075 +f 2074//2074 2076//2076 2063//2063 +f 2074//2074 2077//2077 2076//2076 +f 2074//2074 2078//2078 2077//2077 +f 2074//2074 2075//2075 2078//2078 +f 2077//2077 2078//2078 2079//2079 +f 2079//2079 2080//2080 2077//2077 +f 2079//2079 2081//2081 2080//2080 +f 2079//2079 2078//2078 2081//2081 +f 2049//2049 2045//2045 2082//2082 +f 2048//2048 2083//2083 2047//2047 +f 2049//2049 2084//2084 2048//2048 +f 2049//2049 2085//2085 2084//2084 +f 2049//2049 2086//2086 2085//2085 +f 2049//2049 2082//2082 2086//2086 +f 2048//2048 2084//2084 2083//2083 +f 2087//2087 2086//2086 2088//2088 +f 2087//2087 2085//2085 2086//2086 +f 2087//2087 2089//2089 2085//2085 +f 2087//2087 2088//2088 2090//2090 +f 2080//2080 2087//2087 2090//2090 +f 2080//2080 2081//2081 2087//2087 +f 2087//2087 2081//2081 2089//2089 +f 2085//2085 2091//2091 2084//2084 +f 2085//2085 2089//2089 2091//2091 +f 2084//2084 2091//2091 2092//2092 +f 2089//2089 2093//2093 2091//2091 +f 2092//2092 2095//2095 2094//2094 +f 2091//2091 2095//2095 2092//2092 +f 2091//2091 2093//2093 2095//2095 +f 2062//2062 2096//2096 2075//2075 +f 2062//2062 2066//2066 2096//2096 +f 2066//2066 2098//2098 2097//2097 +f 2066//2066 2067//2067 2098//2098 +f 2066//2066 2097//2097 2096//2096 +f 2097//2097 2098//2098 2099//2099 +f 2096//2096 2099//2099 2075//2075 +f 2096//2096 2097//2097 2099//2099 +f 2078//2078 2075//2075 2100//2100 +f 2078//2078 2101//2101 2081//2081 +f 2078//2078 2100//2100 2101//2101 +f 2075//2075 2102//2102 2100//2100 +f 2075//2075 2099//2099 2102//2102 +f 2100//2100 2103//2103 2101//2101 +f 2100//2100 2102//2102 2103//2103 +f 2071//2071 2067//2067 2069//2069 +f 2067//2067 2105//2105 2104//2104 +f 2067//2067 2071//2071 2105//2105 +f 2099//2099 2104//2104 2102//2102 +f 2099//2099 2098//2098 2104//2104 +f 2103//2103 2107//2107 2106//2106 +f 2102//2102 2107//2107 2103//2103 +f 2104//2104 2108//2108 2102//2102 +f 2104//2104 2105//2105 2108//2108 +f 2102//2102 2108//2108 2107//2107 +f 2081//2081 2109//2109 2089//2089 +f 2081//2081 2101//2101 2109//2109 +f 2103//2103 2111//2111 2110//2110 +f 2103//2103 2106//2106 2111//2111 +f 2101//2101 2103//2103 2110//2110 +f 2110//2110 2111//2111 2112//2112 +f 2101//2101 2112//2112 2109//2109 +f 2101//2101 2110//2110 2112//2112 +f 2089//2089 2113//2113 2093//2093 +f 2089//2089 2109//2109 2113//2113 +f 2113//2113 2114//2114 2093//2093 +f 2113//2113 2109//2109 2114//2114 +f 2107//2107 2115//2115 2106//2106 +f 2107//2107 2108//2108 2115//2115 +f 2115//2115 2116//2116 2106//2106 +f 2115//2115 2108//2108 2117//2117 +f 2112//2112 2118//2118 2109//2109 +f 2112//2112 2115//2115 2118//2118 +f 2112//2112 2116//2116 2115//2115 +f 2112//2112 2111//2111 2116//2116 +f 2109//2109 2119//2119 2114//2114 +f 2109//2109 2118//2118 2119//2119 +f 2115//2115 2120//2120 2118//2118 +f 2115//2115 2117//2117 2120//2120 +f 2118//2118 2121//2121 2119//2119 +f 2118//2118 2120//2120 2121//2121 +f 1974//1974 2123//2123 2122//2122 +f 1974//1974 2124//2124 2123//2123 +f 1974//1974 2122//2122 1972//1972 +f 1974//1974 1971//1971 2124//2124 +f 1971//1971 1973//1973 2124//2124 +f 2122//2122 2125//2125 1980//1980 +f 2122//2122 2123//2123 2125//2125 +f 1972//1972 1980//1980 1947//1947 +f 1972//1972 2122//2122 1980//1980 +f 2123//2123 2126//2126 2125//2125 +f 1980//1980 1982//1982 1979//1979 +f 1980//1980 2127//2127 1982//1982 +f 1980//1980 2125//2125 2127//2127 +f 2125//2125 2126//2126 2127//2127 +f 2124//2124 2128//2128 2123//2123 +f 2124//2124 2129//2129 2128//2128 +f 1973//1973 2129//2129 2124//2124 +f 2123//2123 2128//2128 2126//2126 +f 2128//2128 2130//2130 2126//2126 +f 2126//2126 2131//2131 2127//2127 +f 2126//2126 2130//2130 2131//2131 +f 2132//2132 2134//2134 2133//2133 +f 2132//2132 1987//1987 2134//2134 +f 2132//2132 1990//1990 1987//1987 +f 2132//2132 1992//1992 1990//1990 +f 2132//2132 2135//2135 1992//1992 +f 2132//2132 2133//2133 2135//2135 +f 2133//2133 2137//2137 2136//2136 +f 2133//2133 2134//2134 2137//2137 +f 2133//2133 2136//2136 2135//2135 +f 2138//2138 2127//2127 2139//2139 +f 2138//2138 1982//1982 2127//2127 +f 2138//2138 1986//1986 1982//1982 +f 2138//2138 1987//1987 1986//1986 +f 2138//2138 2134//2134 1987//1987 +f 2138//2138 2139//2139 2134//2134 +f 2139//2139 2137//2137 2134//2134 +f 2136//2136 2140//2140 2135//2135 +f 2139//2139 2131//2131 2141//2141 +f 2139//2139 2127//2127 2131//2131 +f 2139//2139 2141//2141 2137//2137 +f 1973//1973 1975//1975 2129//2129 +f 2129//2129 2142//2142 2128//2128 +f 2129//2129 2143//2143 2142//2142 +f 1975//1975 2143//2143 2129//2129 +f 1975//1975 1976//1976 2143//2143 +f 2128//2128 2144//2144 2130//2130 +f 2128//2128 2142//2142 2144//2144 +f 2130//2130 2145//2145 2131//2131 +f 2130//2130 2144//2144 2145//2145 +f 1976//1976 2146//2146 2143//2143 +f 2143//2143 2147//2147 2142//2142 +f 2143//2143 2148//2148 2147//2147 +f 2143//2143 2146//2146 2148//2148 +f 2142//2142 2145//2145 2144//2144 +f 2142//2142 2147//2147 2145//2145 +f 2136//2136 2151//2151 2150//2150 +f 2136//2136 2137//2137 2151//2151 +f 2136//2136 2150//2150 2140//2140 +f 2150//2150 2153//2153 2152//2152 +f 2150//2150 2151//2151 2153//2153 +f 2150//2150 2154//2154 2140//2140 +f 2150//2150 2152//2152 2154//2154 +f 2141//2141 2131//2131 2155//2155 +f 2141//2141 2151//2151 2137//2137 +f 2141//2141 2155//2155 2151//2151 +f 2155//2155 2145//2145 2147//2147 +f 2155//2155 2131//2131 2145//2145 +f 2155//2155 2153//2153 2151//2151 +f 2155//2155 2147//2147 2153//2153 +f 2148//2148 2153//2153 2147//2147 +f 2148//2148 2152//2152 2153//2153 +f 2148//2148 2156//2156 2152//2152 +f 2148//2148 2146//2146 2156//2156 +f 2146//2146 2149//2149 2156//2156 +f 2152//2152 2157//2157 2154//2154 +f 2152//2152 2156//2156 2157//2157 +f 2156//2156 2149//2149 2157//2157 +f 2158//2158 2002//2002 2159//2159 +f 2158//2158 2004//2004 2002//2002 +f 2158//2158 2160//2160 2004//2004 +f 2158//2158 2161//2161 2160//2160 +f 2158//2158 2159//2159 2162//2162 +f 2158//2158 2162//2162 2161//2161 +f 2160//2160 2006//2006 2004//2004 +f 2160//2160 2161//2161 2163//2163 +f 2162//2162 2164//2164 2161//2161 +f 2162//2162 2166//2166 2165//2165 +f 2162//2162 2159//2159 2166//2166 +f 2162//2162 2165//2165 2164//2164 +f 2161//2161 2167//2167 2163//2163 +f 2161//2161 2164//2164 2167//2167 +f 2168//2168 2135//2135 2169//2169 +f 2168//2168 1992//1992 2135//2135 +f 2168//2168 1994//1994 1992//1992 +f 2168//2168 1996//1996 1994//1994 +f 2168//2168 2170//2170 1996//1996 +f 2168//2168 2169//2169 2170//2170 +f 1996//1996 2159//2159 2002//2002 +f 1996//1996 2170//2170 2159//2159 +f 2169//2169 2135//2135 2140//2140 +f 2169//2169 2140//2140 2171//2171 +f 2169//2169 2166//2166 2170//2170 +f 2169//2169 2171//2171 2166//2166 +f 2170//2170 2166//2166 2159//2159 +f 2007//2007 2172//2172 2008//2008 +f 2007//2007 2009//2009 2172//2172 +f 2173//2173 2175//2175 2174//2174 +f 2165//2165 2175//2175 2173//2173 +f 2165//2165 2166//2166 2175//2175 +f 2165//2165 2173//2173 2164//2164 +f 2164//2164 2173//2173 2167//2167 +f 2171//2171 2177//2177 2176//2176 +f 2171//2171 2154//2154 2177//2177 +f 2171//2171 2140//2140 2154//2154 +f 2171//2171 2176//2176 2166//2166 +f 2176//2176 2178//2178 2175//2175 +f 2176//2176 2177//2177 2178//2178 +f 2166//2166 2176//2176 2175//2175 +f 2154//2154 2179//2179 2177//2177 +f 2154//2154 2157//2157 2179//2179 +f 2157//2157 2149//2149 2179//2179 +f 2178//2178 2181//2181 2180//2180 +f 2177//2177 2181//2181 2178//2178 +f 2177//2177 2179//2179 2181//2181 +f 2181//2181 2182//2182 2180//2180 +f 2179//2179 2182//2182 2181//2181 +f 2179//2179 2149//2149 2182//2182 +f 2175//2175 2183//2183 2174//2174 +f 2175//2175 2178//2178 2183//2183 +f 2178//2178 2184//2184 2183//2183 +f 2178//2178 2180//2180 2184//2184 +f 2174//2174 2183//2183 2185//2185 +f 2183//2183 2186//2186 2185//2185 +f 2183//2183 2184//2184 2186//2186 +f 2180//2180 2187//2187 2184//2184 +f 2180//2180 2188//2188 2187//2187 +f 2180//2180 2182//2182 2188//2188 +f 2184//2184 2189//2189 2186//2186 +f 2184//2184 2187//2187 2189//2189 +f 2187//2187 2190//2190 2189//2189 +f 2187//2187 2188//2188 2190//2190 +f 1979//1979 2015//2015 2011//2011 +f 2011//2011 2015//2015 2012//2012 +f 2012//2012 2015//2015 2018//2018 +f 2012//2012 2018//2018 2014//2014 +f 2032//2032 2191//2191 2033//2033 +f 2032//2032 2034//2034 2191//2191 +f 2191//2191 2193//2193 2192//2192 +f 2033//2033 2192//2192 2035//2035 +f 2033//2033 2191//2191 2192//2192 +f 2035//2035 2194//2194 2037//2037 +f 2035//2035 2192//2192 2194//2194 +f 2000//2000 2195//2195 2034//2034 +f 2000//2000 2008//2008 2195//2195 +f 2195//2195 2196//2196 2034//2034 +f 2195//2195 2197//2197 2196//2196 +f 2191//2191 2196//2196 2193//2193 +f 2191//2191 2034//2034 2196//2196 +f 2195//2195 2198//2198 2197//2197 +f 2195//2195 2172//2172 2198//2198 +f 2008//2008 2172//2172 2195//2195 +f 2197//2197 2199//2199 2196//2196 +f 2197//2197 2198//2198 2199//2199 +f 2192//2192 2201//2201 2194//2194 +f 2192//2192 2200//2200 2201//2201 +f 2192//2192 2202//2202 2200//2200 +f 2192//2192 2193//2193 2202//2202 +f 2193//2193 2196//2196 2202//2202 +f 2196//2196 2203//2203 2202//2202 +f 2196//2196 2199//2199 2203//2203 +f 2202//2202 2204//2204 2200//2200 +f 2202//2202 2203//2203 2204//2204 +f 2037//2037 2194//2194 2038//2038 +f 2194//2194 2046//2046 2038//2038 +f 2194//2194 2201//2201 2046//2046 +f 2201//2201 2205//2205 2046//2046 +f 2201//2201 2204//2204 2205//2205 +f 2201//2201 2200//2200 2204//2204 +f 2046//2046 2205//2205 2045//2045 +f 1976//1976 2207//2207 2146//2146 +f 2146//2146 2207//2207 2149//2149 +f 2149//2149 2207//2207 2206//2206 +f 2182//2182 2208//2208 2188//2188 +f 2149//2149 2208//2208 2182//2182 +f 2149//2149 2206//2206 2208//2208 +f 2208//2208 2209//2209 2188//2188 +f 2188//2188 2209//2209 2190//2190 +f 2160//2160 2210//2210 2006//2006 +f 2160//2160 2211//2211 2210//2210 +f 2160//2160 2163//2163 2211//2211 +f 2210//2210 2212//2212 2053//2053 +f 2210//2210 2053//2053 2006//2006 +f 2210//2210 2213//2213 2212//2212 +f 2211//2211 2213//2213 2210//2210 +f 2163//2163 2167//2167 2211//2211 +f 2167//2167 2214//2214 2211//2211 +f 2213//2213 2215//2215 2212//2212 +f 2211//2211 2214//2214 2213//2213 +f 2053//2053 2216//2216 2052//2052 +f 2053//2053 2217//2217 2216//2216 +f 2053//2053 2212//2212 2217//2217 +f 2216//2216 2218//2218 2061//2061 +f 2216//2216 2061//2061 2052//2052 +f 2216//2216 2219//2219 2218//2218 +f 2212//2212 2220//2220 2217//2217 +f 2212//2212 2215//2215 2220//2220 +f 2216//2216 2221//2221 2219//2219 +f 2217//2217 2221//2221 2216//2216 +f 2217//2217 2220//2220 2221//2221 +f 2173//2173 2222//2222 2214//2214 +f 2173//2173 2174//2174 2222//2222 +f 2167//2167 2173//2173 2214//2214 +f 2213//2213 2222//2222 2215//2215 +f 2213//2213 2214//2214 2222//2222 +f 2174//2174 2223//2223 2222//2222 +f 2174//2174 2185//2185 2223//2223 +f 2185//2185 2224//2224 2223//2223 +f 2185//2185 2186//2186 2224//2224 +f 2223//2223 2224//2224 2225//2225 +f 2186//2186 2226//2226 2224//2224 +f 2186//2186 2189//2189 2226//2226 +f 2189//2189 2190//2190 2226//2226 +f 2224//2224 2226//2226 2225//2225 +f 2222//2222 2223//2223 2227//2227 +f 2215//2215 2227//2227 2220//2220 +f 2215//2215 2222//2222 2227//2227 +f 2221//2221 2228//2228 2219//2219 +f 2221//2221 2227//2227 2228//2228 +f 2227//2227 2223//2223 2228//2228 +f 2220//2220 2227//2227 2221//2221 +f 2223//2223 2225//2225 2228//2228 +f 2225//2225 2226//2226 2229//2229 +f 2226//2226 2230//2230 2229//2229 +f 2226//2226 2190//2190 2230//2230 +f 2061//2061 2065//2065 2060//2060 +f 2061//2061 2231//2231 2065//2065 +f 2061//2061 2232//2232 2231//2231 +f 2061//2061 2218//2218 2232//2232 +f 2218//2218 2219//2219 2232//2232 +f 2231//2231 2233//2233 2065//2065 +f 2231//2231 2234//2234 2233//2233 +f 2232//2232 2234//2234 2231//2231 +f 2233//2233 2235//2235 2068//2068 +f 2065//2065 2233//2233 2068//2068 +f 2233//2233 2236//2236 2235//2235 +f 2219//2219 2237//2237 2232//2232 +f 2232//2232 2238//2238 2234//2234 +f 2232//2232 2237//2237 2238//2238 +f 2233//2233 2234//2234 2236//2236 +f 2068//2068 2069//2069 2067//2067 +f 2068//2068 2070//2070 2069//2069 +f 2068//2068 2239//2239 2070//2070 +f 2068//2068 2235//2235 2239//2239 +f 2235//2235 2236//2236 2239//2239 +f 2070//2070 2240//2240 2073//2073 +f 2070//2070 2239//2239 2240//2240 +f 2239//2239 2241//2241 2240//2240 +f 2236//2236 2242//2242 2239//2239 +f 2239//2239 2242//2242 2241//2241 +f 2228//2228 2243//2243 2237//2237 +f 2228//2228 2225//2225 2243//2243 +f 2219//2219 2228//2228 2237//2237 +f 2238//2238 2244//2244 2234//2234 +f 2238//2238 2245//2245 2244//2244 +f 2238//2238 2237//2237 2245//2245 +f 2237//2237 2243//2243 2245//2245 +f 2234//2234 2246//2246 2236//2236 +f 2234//2234 2244//2244 2246//2246 +f 2244//2244 2247//2247 2246//2246 +f 2244//2244 2245//2245 2247//2247 +f 2225//2225 2248//2248 2243//2243 +f 2225//2225 2229//2229 2248//2248 +f 2229//2229 2249//2249 2248//2248 +f 2229//2229 2230//2230 2249//2249 +f 2243//2243 2250//2250 2245//2245 +f 2243//2243 2248//2248 2250//2250 +f 2248//2248 2249//2249 2250//2250 +f 2236//2236 2251//2251 2242//2242 +f 2236//2236 2246//2246 2251//2251 +f 2246//2246 2247//2247 2251//2251 +f 2242//2242 2251//2251 2241//2241 +f 2251//2251 2252//2252 2241//2241 +f 2251//2251 2247//2247 2252//2252 +f 2245//2245 2253//2253 2247//2247 +f 2245//2245 2254//2254 2253//2253 +f 2245//2245 2250//2250 2254//2254 +f 2250//2250 2249//2249 2254//2254 +f 2253//2253 2252//2252 2247//2247 +f 2253//2253 2255//2255 2252//2252 +f 2253//2253 2256//2256 2255//2255 +f 2253//2253 2254//2254 2256//2256 +f 2172//2172 2257//2257 2198//2198 +f 2172//2172 2009//2009 2257//2257 +f 2198//2198 2258//2258 2199//2199 +f 2009//2009 2259//2259 2257//2257 +f 2009//2009 2057//2057 2259//2259 +f 2257//2257 2258//2258 2198//2198 +f 2257//2257 2260//2260 2258//2258 +f 2257//2257 2076//2076 2260//2260 +f 2257//2257 2259//2259 2076//2076 +f 2199//2199 2261//2261 2203//2203 +f 2199//2199 2258//2258 2261//2261 +f 2203//2203 2262//2262 2204//2204 +f 2203//2203 2261//2261 2262//2262 +f 2263//2263 2262//2262 2261//2261 +f 2263//2263 2088//2088 2262//2262 +f 2263//2263 2090//2090 2088//2088 +f 2263//2263 2264//2264 2090//2090 +f 2263//2263 2265//2265 2264//2264 +f 2263//2263 2261//2261 2265//2265 +f 2258//2258 2265//2265 2261//2261 +f 2258//2258 2260//2260 2265//2265 +f 2057//2057 2063//2063 2259//2259 +f 2259//2259 2063//2063 2076//2076 +f 2076//2076 2265//2265 2260//2260 +f 2076//2076 2264//2264 2265//2265 +f 2076//2076 2077//2077 2264//2264 +f 2264//2264 2080//2080 2090//2090 +f 2264//2264 2077//2077 2080//2080 +f 2205//2205 2088//2088 2082//2082 +f 2205//2205 2262//2262 2088//2088 +f 2205//2205 2204//2204 2262//2262 +f 2205//2205 2082//2082 2045//2045 +f 2082//2082 2088//2088 2086//2086 +f 2098//2098 2067//2067 2104//2104 +f 2111//2111 2106//2106 2116//2116 +f 2230//2230 2190//2190 2266//2266 +f 2230//2230 2266//2266 2249//2249 +f 2249//2249 2266//2266 2254//2254 +f 2254//2254 2267//2267 2256//2256 +f 2254//2254 2266//2266 2267//2267 +f 2072//2072 2268//2268 2071//2071 +f 2072//2072 2269//2269 2268//2268 +f 2072//2072 2270//2270 2269//2269 +f 2072//2072 2073//2073 2270//2270 +f 2269//2269 2270//2270 2271//2271 +f 2269//2269 2271//2271 2268//2268 +f 2071//2071 2272//2272 2105//2105 +f 2071//2071 2268//2268 2272//2272 +f 2105//2105 2272//2272 2108//2108 +f 2108//2108 2272//2272 2273//2273 +f 2271//2271 2275//2275 2274//2274 +f 2271//2271 2270//2270 2275//2275 +f 2271//2271 2274//2274 2276//2276 +f 2268//2268 2276//2276 2272//2272 +f 2268//2268 2271//2271 2276//2276 +f 2108//2108 2277//2277 2117//2117 +f 2108//2108 2273//2273 2277//2277 +f 2117//2117 2278//2278 2120//2120 +f 2121//2121 2278//2278 2279//2279 +f 2120//2120 2278//2278 2121//2121 +f 2278//2278 2280//2280 2279//2279 +f 2117//2117 2280//2280 2278//2278 +f 2277//2277 2281//2281 2282//2282 +f 2277//2277 2273//2273 2281//2281 +f 2277//2277 2283//2283 2280//2280 +f 2277//2277 2282//2282 2283//2283 +f 2280//2280 2283//2283 2279//2279 +f 2117//2117 2277//2277 2280//2280 +f 2276//2276 2284//2284 2272//2272 +f 2272//2272 2285//2285 2273//2273 +f 2272//2272 2284//2284 2285//2285 +f 2284//2284 2286//2286 2285//2285 +f 2273//2273 2285//2285 2281//2281 +f 2073//2073 2240//2240 2270//2270 +f 2241//2241 2288//2288 2240//2240 +f 2240//2240 2288//2288 2287//2287 +f 2240//2240 2287//2287 2270//2270 +f 2241//2241 2290//2290 2288//2288 +f 2241//2241 2255//2255 2290//2290 +f 2241//2241 2252//2252 2255//2255 +f 2288//2288 2291//2291 2287//2287 +f 2288//2288 2290//2290 2291//2291 +f 2290//2290 2292//2292 2291//2291 +f 2290//2290 2255//2255 2292//2292 +f 2255//2255 2294//2294 2293//2293 +f 2255//2255 2256//2256 2294//2294 +f 2256//2256 2295//2295 2294//2294 +f 2255//2255 2293//2293 2292//2292 +f 2294//2294 2296//2296 2293//2293 +f 2294//2294 2297//2297 2296//2296 +f 2294//2294 2295//2295 2297//2297 +f 2287//2287 2299//2299 2298//2298 +f 2287//2287 2291//2291 2299//2299 +f 2299//2299 2300//2300 2298//2298 +f 2291//2291 2300//2300 2299//2299 +f 2291//2291 2292//2292 2300//2300 +f 2292//2292 2301//2301 2300//2300 +f 2292//2292 2293//2293 2301//2301 +f 2296//2296 2301//2301 2293//2293 +f 2300//2300 2303//2303 2302//2302 +f 2300//2300 2301//2301 2303//2303 +f 2296//2296 2303//2303 2301//2301 +f 2296//2296 2297//2297 2303//2303 +f 2302//2302 2304//2304 2300//2300 +f 2302//2302 2305//2305 2304//2304 +f 2302//2302 2306//2306 2305//2305 +f 2302//2302 2303//2303 2306//2306 +f 2303//2303 2307//2307 2306//2306 +f 2303//2303 2297//2297 2307//2307 +f 2307//2307 2297//2297 2308//2308 +f 2305//2305 2310//2310 2304//2304 +f 2305//2305 2309//2309 2310//2310 +f 2305//2305 2311//2311 2309//2309 +f 2305//2305 2306//2306 2311//2311 +f 2307//2307 2311//2311 2306//2306 +f 2270//2270 2289//2289 2275//2275 +f 2289//2289 2270//2270 2298//2298 +f 2270//2270 2287//2287 2298//2298 +f 2279//2279 2283//2283 2312//2312 +f 2282//2282 2313//2313 2283//2283 +f 2282//2282 2281//2281 2313//2313 +f 2283//2283 2314//2314 2312//2312 +f 2283//2283 2313//2313 2314//2314 +f 2275//2275 2315//2315 2274//2274 +f 2275//2275 2316//2316 2315//2315 +f 2275//2275 2289//2289 2316//2316 +f 2274//2274 2317//2317 2276//2276 +f 2276//2276 2317//2317 2284//2284 +f 2289//2289 2298//2298 2318//2318 +f 2315//2315 2319//2319 2274//2274 +f 2315//2315 2316//2316 2319//2319 +f 2319//2319 2320//2320 2274//2274 +f 2319//2319 2316//2316 2321//2321 +f 2274//2274 2320//2320 2317//2317 +f 2316//2316 2289//2289 2321//2321 +f 2284//2284 2322//2322 2286//2286 +f 2284//2284 2317//2317 2322//2322 +f 2289//2289 2318//2318 2321//2321 +f 2285//2285 2323//2323 2281//2281 +f 2285//2285 2286//2286 2323//2323 +f 2281//2281 2324//2324 2313//2313 +f 2314//2314 2326//2326 2325//2325 +f 2313//2313 2326//2326 2314//2314 +f 2313//2313 2324//2324 2326//2326 +f 2281//2281 2323//2323 2324//2324 +f 2326//2326 2327//2327 2325//2325 +f 2286//2286 2322//2322 2328//2328 +f 2286//2286 2328//2328 2323//2323 +f 2326//2326 2329//2329 2327//2327 +f 2326//2326 2330//2330 2329//2329 +f 2324//2324 2330//2330 2326//2326 +f 2323//2323 2331//2331 2324//2324 +f 2330//2330 2332//2332 2329//2329 +f 2330//2330 2333//2333 2332//2332 +f 2324//2324 2333//2333 2330//2330 +f 2324//2324 2331//2331 2333//2333 +f 2298//2298 2300//2300 2304//2304 +f 2298//2298 2304//2304 2318//2318 +f 2318//2318 2304//2304 2310//2310 +f 2256//2256 2334//2334 2295//2295 +f 2256//2256 2267//2267 2334//2334 +f 2267//2267 2266//2266 2334//2334 +f 2295//2295 2335//2335 2297//2297 +f 2295//2295 2334//2334 2335//2335 +f 2266//2266 2337//2337 2334//2334 +f 2334//2334 2337//2337 2336//2336 +f 2334//2334 2336//2336 2335//2335 +f 2297//2297 2335//2335 2338//2338 +f 2335//2335 2340//2340 2338//2338 +f 2335//2335 2336//2336 2340//2340 +f 2336//2336 2341//2341 2340//2340 +f 2336//2336 2337//2337 2341//2341 +f 2297//2297 2342//2342 2308//2308 +f 2297//2297 2338//2338 2342//2342 +f 2338//2338 2343//2343 2342//2342 +f 2338//2338 2340//2340 2343//2343 +f 2342//2342 2345//2345 2344//2344 +f 2308//2308 2342//2342 2344//2344 +f 2345//2345 2347//2347 2346//2346 +f 2345//2345 2348//2348 2347//2347 +f 2342//2342 2348//2348 2345//2345 +f 2342//2342 2343//2343 2348//2348 +f 2340//2340 2341//2341 2343//2343 +f 2348//2348 2349//2349 2347//2347 +f 2343//2343 2349//2349 2348//2348 +f 2343//2343 2341//2341 2349//2349 +f 2337//2337 2339//2339 2341//2341 +f 2341//2341 2351//2351 2349//2349 +f 2341//2341 2350//2350 2351//2351 +f 2307//2307 2352//2352 2311//2311 +f 2307//2307 2353//2353 2352//2352 +f 2307//2307 2308//2308 2353//2353 +f 2311//2311 2354//2354 2309//2309 +f 2311//2311 2352//2352 2354//2354 +f 2353//2353 2355//2355 2352//2352 +f 2352//2352 2356//2356 2354//2354 +f 2352//2352 2355//2355 2356//2356 +f 2357//2357 2359//2359 2358//2358 +f 2353//2353 2357//2357 2355//2355 +f 2353//2353 2359//2359 2357//2357 +f 2353//2353 2308//2308 2359//2359 +f 2357//2357 2361//2361 2360//2360 +f 2357//2357 2358//2358 2361//2361 +f 2355//2355 2360//2360 2356//2356 +f 2355//2355 2357//2357 2360//2360 +f 2319//2319 2362//2362 2320//2320 +f 2319//2319 2321//2321 2362//2362 +f 2362//2362 2365//2365 2364//2364 +f 2362//2362 2321//2321 2365//2365 +f 2362//2362 2364//2364 2320//2320 +f 2364//2364 2365//2365 2366//2366 +f 2320//2320 2364//2364 2363//2363 +f 2321//2321 2367//2367 2365//2365 +f 2320//2320 2363//2363 2317//2317 +f 2317//2317 2368//2368 2322//2322 +f 2317//2317 2363//2363 2368//2368 +f 2364//2364 2366//2366 2369//2369 +f 2363//2363 2364//2364 2369//2369 +f 2363//2363 2370//2370 2368//2368 +f 2363//2363 2369//2369 2370//2370 +f 2365//2365 2371//2371 2366//2366 +f 2365//2365 2372//2372 2371//2371 +f 2365//2365 2367//2367 2372//2372 +f 2369//2369 2373//2373 2370//2370 +f 2366//2366 2371//2371 2369//2369 +f 2371//2371 2374//2374 2369//2369 +f 2371//2371 2375//2375 2374//2374 +f 2369//2369 2374//2374 2373//2373 +f 2367//2367 2376//2376 2372//2372 +f 2372//2372 2375//2375 2371//2371 +f 2372//2372 2377//2377 2375//2375 +f 2372//2372 2378//2378 2377//2377 +f 2372//2372 2376//2376 2378//2378 +f 2376//2376 2367//2367 2378//2378 +f 2322//2322 2368//2368 2328//2328 +f 2328//2328 2379//2379 2323//2323 +f 2328//2328 2368//2368 2379//2379 +f 2368//2368 2370//2370 2380//2380 +f 2380//2380 2382//2382 2381//2381 +f 2368//2368 2381//2381 2379//2379 +f 2368//2368 2380//2380 2381//2381 +f 2323//2323 2383//2383 2331//2331 +f 2323//2323 2379//2379 2383//2383 +f 2383//2383 2385//2385 2384//2384 +f 2383//2383 2386//2386 2385//2385 +f 2333//2333 2385//2385 2332//2332 +f 2333//2333 2384//2384 2385//2385 +f 2331//2331 2384//2384 2333//2333 +f 2331//2331 2383//2383 2384//2384 +f 2332//2332 2388//2388 2387//2387 +f 2332//2332 2385//2385 2388//2388 +f 2381//2381 2382//2382 2389//2389 +f 2383//2383 2389//2389 2386//2386 +f 2383//2383 2381//2381 2389//2389 +f 2379//2379 2381//2381 2383//2383 +f 2385//2385 2390//2390 2388//2388 +f 2385//2385 2391//2391 2390//2390 +f 2386//2386 2391//2391 2385//2385 +f 2386//2386 2389//2389 2391//2391 +f 2373//2373 2392//2392 2380//2380 +f 2380//2380 2392//2392 2382//2382 +f 2370//2370 2373//2373 2380//2380 +f 2382//2382 2392//2392 2393//2393 +f 2374//2374 2394//2394 2392//2392 +f 2373//2373 2374//2374 2392//2392 +f 2392//2392 2394//2394 2393//2393 +f 2393//2393 2395//2395 2396//2396 +f 2382//2382 2396//2396 2389//2389 +f 2382//2382 2393//2393 2396//2396 +f 2396//2396 2395//2395 2397//2397 +f 2391//2391 2397//2397 2390//2390 +f 2391//2391 2396//2396 2397//2397 +f 2389//2389 2396//2396 2391//2391 +f 2390//2390 2399//2399 2398//2398 +f 2390//2390 2397//2397 2399//2399 +f 2398//2398 2401//2401 2400//2400 +f 2398//2398 2399//2399 2401//2401 +f 2395//2395 2393//2393 2402//2402 +f 2402//2402 2404//2404 2403//2403 +f 2397//2397 2403//2403 2399//2399 +f 2395//2395 2403//2403 2397//2397 +f 2395//2395 2402//2402 2403//2403 +f 2404//2404 2405//2405 2403//2403 +f 2399//2399 2405//2405 2401//2401 +f 2399//2399 2403//2403 2405//2405 +f 2318//2318 2406//2406 2321//2321 +f 2318//2318 2407//2407 2406//2406 +f 2318//2318 2310//2310 2407//2407 +f 2321//2321 2408//2408 2367//2367 +f 2321//2321 2406//2406 2408//2408 +f 2408//2408 2409//2409 2367//2367 +f 2408//2408 2410//2410 2409//2409 +f 2406//2406 2410//2410 2408//2408 +f 2406//2406 2407//2407 2410//2410 +f 2310//2310 2354//2354 2407//2407 +f 2310//2310 2309//2309 2354//2354 +f 2407//2407 2356//2356 2410//2410 +f 2407//2407 2354//2354 2356//2356 +f 2367//2367 2409//2409 2411//2411 +f 2367//2367 2412//2412 2378//2378 +f 2367//2367 2411//2411 2412//2412 +f 2409//2409 2413//2413 2411//2411 +f 2409//2409 2410//2410 2413//2413 +f 2360//2360 2414//2414 2413//2413 +f 2360//2360 2361//2361 2414//2414 +f 2356//2356 2413//2413 2410//2410 +f 2356//2356 2360//2360 2413//2413 +f 2411//2411 2413//2413 2412//2412 +f 2413//2413 2415//2415 2412//2412 +f 2413//2413 2414//2414 2415//2415 +f 2400//2400 2417//2417 2416//2416 +f 2400//2400 2401//2401 2417//2417 +f 2401//2401 2405//2405 2418//2418 +f 2401//2401 2418//2418 2417//2417 +f 2405//2405 2419//2419 2418//2418 +f 2377//2377 2421//2421 2420//2420 +f 2378//2378 2421//2421 2377//2377 +f 2377//2377 2423//2423 2422//2422 +f 2377//2377 2420//2420 2423//2423 +f 2375//2375 2422//2422 2374//2374 +f 2375//2375 2377//2377 2422//2422 +f 2422//2422 2424//2424 2394//2394 +f 2422//2422 2423//2423 2424//2424 +f 2374//2374 2422//2422 2394//2394 +f 2394//2394 2425//2425 2402//2402 +f 2394//2394 2424//2424 2425//2425 +f 2394//2394 2402//2402 2393//2393 +f 2402//2402 2425//2425 2426//2426 +f 2402//2402 2426//2426 2404//2404 +f 2425//2425 2427//2427 2426//2426 +f 2404//2404 2427//2427 2405//2405 +f 2404//2404 2426//2426 2427//2427 +f 2421//2421 2428//2428 2420//2420 +f 2378//2378 2412//2412 2421//2421 +f 2421//2421 2429//2429 2428//2428 +f 2412//2412 2429//2429 2421//2421 +f 2420//2420 2430//2430 2423//2423 +f 2420//2420 2428//2428 2430//2430 +f 2423//2423 2430//2430 2431//2431 +f 2412//2412 2415//2415 2429//2429 +f 2423//2423 2431//2431 2424//2424 +f 2424//2424 2432//2432 2425//2425 +f 2425//2425 2433//2433 2427//2427 +f 2425//2425 2432//2432 2433//2433 +f 2405//2405 2427//2427 2433//2433 +f 2431//2431 2434//2434 2424//2424 +f 2424//2424 2434//2434 2432//2432 +f 2405//2405 2433//2433 2419//2419 +f 2344//2344 2436//2436 2435//2435 +f 2344//2344 2345//2345 2436//2436 +f 2308//2308 2344//2344 2435//2435 +f 2345//2345 2346//2346 2436//2436 +f 2435//2435 2436//2436 2437//2437 +f 2436//2436 2438//2438 2437//2437 +f 2436//2436 2346//2346 2438//2438 +f 2359//2359 2435//2435 2358//2358 +f 2308//2308 2435//2435 2359//2359 +f 2358//2358 2439//2439 2361//2361 +f 2358//2358 2435//2435 2439//2439 +f 2437//2437 2439//2439 2435//2435 +f 2437//2437 2438//2438 2439//2439 +f 2346//2346 2347//2347 2440//2440 +f 2438//2438 2442//2442 2441//2441 +f 2346//2346 2442//2442 2438//2438 +f 2346//2346 2440//2440 2442//2442 +f 2347//2347 2443//2443 2440//2440 +f 2347//2347 2349//2349 2443//2443 +f 2442//2442 2444//2444 2441//2441 +f 2442//2442 2445//2445 2444//2444 +f 2440//2440 2445//2445 2442//2442 +f 2440//2440 2443//2443 2445//2445 +f 2361//2361 2446//2446 2414//2414 +f 2361//2361 2439//2439 2446//2446 +f 2438//2438 2446//2446 2439//2439 +f 2438//2438 2441//2441 2446//2446 +f 2441//2441 2447//2447 2446//2446 +f 2414//2414 2448//2448 2415//2415 +f 2414//2414 2446//2446 2448//2448 +f 2446//2446 2449//2449 2448//2448 +f 2446//2446 2447//2447 2449//2449 +f 2441//2441 2450//2450 2447//2447 +f 2441//2441 2444//2444 2450//2450 +f 2447//2447 2451//2451 2449//2449 +f 2447//2447 2450//2450 2451//2451 +f 2416//2416 2453//2453 2452//2452 +f 2416//2416 2417//2417 2453//2453 +f 2452//2452 2453//2453 2454//2454 +f 2419//2419 2455//2455 2418//2418 +f 2419//2419 2456//2456 2455//2455 +f 2417//2417 2455//2455 2453//2453 +f 2417//2417 2418//2418 2455//2455 +f 2453//2453 2455//2455 2454//2454 +f 2456//2456 2457//2457 2455//2455 +f 2456//2456 2458//2458 2457//2457 +f 2454//2454 2457//2457 2459//2459 +f 2454//2454 2455//2455 2457//2457 +f 2459//2459 2457//2457 2460//2460 +f 2444//2444 2461//2461 2450//2450 +f 2450//2450 2461//2461 2451//2451 +f 2459//2459 2460//2460 2462//2462 +f 2462//2462 2460//2460 2463//2463 +f 2462//2462 2463//2463 2464//2464 +f 2464//2464 2463//2463 2465//2465 +f 2429//2429 2466//2466 2428//2428 +f 2415//2415 2448//2448 2429//2429 +f 2429//2429 2467//2467 2466//2466 +f 2448//2448 2467//2467 2429//2429 +f 2448//2448 2449//2449 2467//2467 +f 2428//2428 2466//2466 2430//2430 +f 2430//2430 2468//2468 2431//2431 +f 2449//2449 2451//2451 2467//2467 +f 2467//2467 2469//2469 2466//2466 +f 2467//2467 2470//2470 2469//2469 +f 2451//2451 2470//2470 2467//2467 +f 2430//2430 2471//2471 2468//2468 +f 2466//2466 2472//2472 2471//2471 +f 2466//2466 2471//2471 2430//2430 +f 2466//2466 2469//2469 2472//2472 +f 2434//2434 2473//2473 2432//2432 +f 2434//2434 2474//2474 2473//2473 +f 2431//2431 2474//2474 2434//2434 +f 2431//2431 2468//2468 2474//2474 +f 2432//2432 2475//2475 2433//2433 +f 2419//2419 2475//2475 2456//2456 +f 2419//2419 2433//2433 2475//2475 +f 2432//2432 2473//2473 2475//2475 +f 2474//2474 2477//2477 2473//2473 +f 2476//2476 2473//2473 2477//2477 +f 2473//2473 2478//2478 2475//2475 +f 2473//2473 2476//2476 2478//2478 +f 2456//2456 2478//2478 2458//2458 +f 2456//2456 2475//2475 2478//2478 +f 2478//2478 2476//2476 2458//2458 +f 2457//2457 2458//2458 2460//2460 +f 2451//2451 2479//2479 2470//2470 +f 2480//2480 2481//2481 2472//2472 +f 2470//2470 2472//2472 2469//2469 +f 2470//2470 2480//2480 2472//2472 +f 2470//2470 2479//2479 2480//2480 +f 2480//2480 2482//2482 2481//2481 +f 2479//2479 2482//2482 2480//2480 +f 2472//2472 2481//2481 2471//2471 +f 2471//2471 2483//2483 2468//2468 +f 2451//2451 2484//2484 2479//2479 +f 2479//2479 2484//2484 2482//2482 +f 2482//2482 2485//2485 2481//2481 +f 2471//2471 2481//2481 2483//2483 +f 2481//2481 2485//2485 2483//2483 +f 2468//2468 2486//2486 2474//2474 +f 2468//2468 2483//2483 2486//2486 +f 2474//2474 2486//2486 2477//2477 +f 2476//2476 2487//2487 2458//2458 +f 2476//2476 2488//2488 2487//2487 +f 2460//2460 2458//2458 2487//2487 +f 2460//2460 2488//2488 2463//2463 +f 2460//2460 2487//2487 2488//2488 +f 2488//2488 2476//2476 2489//2489 +f 2486//2486 2490//2490 2477//2477 +f 2489//2489 2491//2491 2488//2488 +f 2463//2463 2488//2488 2491//2491 +f 2463//2463 2491//2491 2465//2465 +f 2477//2477 2492//2492 2476//2476 +f 2477//2477 2490//2490 2492//2492 +f 2489//2489 2476//2476 2492//2492 +f 677//677 1945//1945 910//910 +f 910//910 2493//2493 911//911 +f 1945//1945 2493//2493 910//910 +f 1945//1945 2494//2494 2493//2493 +f 1945//1945 1953//1953 2494//2494 +f 1953//1953 2495//2495 2494//2494 +f 1953//1953 1958//1958 2495//2495 +f 2495//2495 2497//2497 2496//2496 +f 2495//2495 2496//2496 2494//2494 +f 2495//2495 2498//2498 2497//2497 +f 1958//1958 2498//2498 2495//2495 +f 1959//1959 2499//2499 1958//1958 +f 1958//1958 2499//2499 2498//2498 +f 2500//2500 2502//2502 2501//2501 +f 2498//2498 2501//2501 2497//2497 +f 2498//2498 2500//2500 2501//2501 +f 911//911 2503//2503 955//955 +f 955//955 2503//2503 956//956 +f 915//915 956//956 954//954 +f 911//911 2493//2493 2503//2503 +f 956//956 2504//2504 954//954 +f 954//954 2504//2504 970//970 +f 978//978 2505//2505 981//981 +f 970//970 2506//2506 977//977 +f 970//970 2504//2504 2506//2506 +f 979//979 2508//2508 978//978 +f 977//977 2508//2508 979//979 +f 978//978 2509//2509 2505//2505 +f 2505//2505 2509//2509 2507//2507 +f 2506//2506 2510//2510 977//977 +f 2508//2508 2511//2511 978//978 +f 977//977 2510//2510 2508//2508 +f 978//978 2511//2511 2509//2509 +f 2509//2509 2512//2512 2507//2507 +f 981//981 2505//2505 992//992 +f 2505//2505 2507//2507 2513//2513 +f 992//992 2514//2514 993//993 +f 992//992 2505//2505 2514//2514 +f 993//993 2514//2514 2515//2515 +f 2505//2505 2513//2513 2514//2514 +f 993//993 2515//2515 999//999 +f 999//999 2515//2515 1001//1001 +f 2513//2513 2507//2507 2516//2516 +f 2513//2513 2517//2517 2514//2514 +f 2513//2513 2516//2516 2517//2517 +f 2514//2514 2517//2517 2515//2515 +f 2517//2517 2518//2518 2515//2515 +f 2515//2515 2518//2518 1001//1001 +f 2518//2518 2519//2519 1001//1001 +f 2503//2503 2520//2520 956//956 +f 956//956 2520//2520 2521//2521 +f 2493//2493 2494//2494 2503//2503 +f 2520//2520 2522//2522 2521//2521 +f 2503//2503 2523//2523 2520//2520 +f 2523//2523 2524//2524 2522//2522 +f 2520//2520 2523//2523 2522//2522 +f 956//956 2521//2521 2504//2504 +f 2504//2504 2521//2521 2525//2525 +f 2521//2521 2522//2522 2526//2526 +f 2494//2494 2496//2496 2503//2503 +f 2503//2503 2496//2496 2523//2523 +f 2523//2523 2528//2528 2524//2524 +f 2496//2496 2528//2528 2523//2523 +f 2496//2496 2497//2497 2528//2528 +f 2497//2497 2501//2501 2528//2528 +f 2528//2528 2529//2529 2524//2524 +f 2528//2528 2530//2530 2529//2529 +f 2528//2528 2531//2531 2530//2530 +f 2501//2501 2531//2531 2528//2528 +f 2501//2501 2502//2502 2531//2531 +f 2526//2526 2532//2532 2521//2521 +f 2522//2522 2524//2524 2526//2526 +f 2524//2524 2529//2529 2526//2526 +f 2532//2532 2533//2533 2521//2521 +f 2521//2521 2533//2533 2534//2534 +f 2521//2521 2534//2534 2525//2525 +f 2526//2526 2535//2535 2532//2532 +f 2529//2529 2535//2535 2526//2526 +f 2529//2529 2530//2530 2535//2535 +f 2533//2533 2536//2536 2534//2534 +f 2504//2504 2525//2525 2506//2506 +f 2525//2525 2537//2537 2506//2506 +f 2525//2525 2527//2527 2537//2537 +f 2508//2508 2538//2538 2511//2511 +f 2510//2510 2538//2538 2508//2508 +f 2506//2506 2539//2539 2510//2510 +f 2506//2506 2540//2540 2539//2539 +f 2506//2506 2537//2537 2540//2540 +f 2538//2538 2541//2541 2511//2511 +f 2510//2510 2539//2539 2538//2538 +f 2511//2511 2542//2542 2509//2509 +f 2511//2511 2541//2541 2542//2542 +f 2509//2509 2542//2542 2512//2512 +f 2525//2525 2534//2534 2527//2527 +f 2527//2527 2544//2544 2543//2543 +f 2534//2534 2544//2544 2527//2527 +f 2536//2536 2543//2543 2544//2544 +f 2536//2536 2545//2545 2543//2543 +f 2534//2534 2536//2536 2544//2544 +f 2540//2540 2546//2546 2539//2539 +f 2540//2540 2547//2547 2546//2546 +f 2537//2537 2547//2547 2540//2540 +f 2537//2537 2527//2527 2547//2547 +f 2538//2538 2548//2548 2541//2541 +f 2538//2538 2546//2546 2548//2548 +f 2539//2539 2546//2546 2538//2538 +f 2541//2541 2548//2548 2542//2542 +f 2527//2527 2543//2543 2547//2547 +f 2547//2547 2551//2551 2550//2550 +f 2543//2543 2551//2551 2547//2547 +f 2547//2547 2550//2550 2552//2552 +f 2547//2547 2552//2552 2546//2546 +f 2552//2552 2548//2548 2546//2546 +f 2552//2552 2553//2553 2548//2548 +f 2552//2552 2554//2554 2553//2553 +f 2552//2552 2555//2555 2554//2554 +f 2550//2550 2555//2555 2552//2552 +f 2548//2548 2556//2556 2542//2542 +f 2542//2542 2556//2556 2549//2549 +f 2554//2554 2557//2557 2553//2553 +f 2548//2548 2557//2557 2556//2556 +f 2548//2548 2553//2553 2557//2557 +f 2556//2556 2558//2558 2549//2549 +f 2556//2556 2557//2557 2558//2558 +f 2507//2507 2512//2512 2516//2516 +f 2512//2512 2559//2559 2516//2516 +f 2512//2512 2542//2542 2560//2560 +f 2512//2512 2560//2560 2559//2559 +f 2516//2516 2559//2559 2517//2517 +f 2517//2517 2559//2559 2518//2518 +f 2559//2559 2560//2560 2562//2562 +f 2559//2559 2562//2562 2518//2518 +f 2518//2518 2562//2562 2519//2519 +f 2560//2560 2542//2542 2561//2561 +f 2542//2542 2549//2549 2561//2561 +f 2561//2561 2549//2549 2563//2563 +f 2549//2549 2558//2558 2563//2563 +f 2563//2563 2558//2558 2564//2564 +f 2561//2561 2563//2563 2565//2565 +f 2563//2563 2564//2564 2565//2565 +f 2565//2565 2564//2564 2567//2567 +f 2560//2560 2561//2561 2562//2562 +f 2565//2565 2568//2568 2561//2561 +f 2562//2562 2561//2561 2568//2568 +f 2565//2565 2566//2566 2568//2568 +f 1959//1959 2026//2026 2499//2499 +f 2499//2499 2569//2569 2498//2498 +f 2500//2500 2570//2570 2502//2502 +f 2498//2498 2570//2570 2500//2500 +f 2498//2498 2569//2569 2570//2570 +f 2026//2026 2571//2571 2499//2499 +f 2026//2026 2030//2030 2571//2571 +f 2499//2499 2571//2571 2569//2569 +f 3736//3736 2571//2571 2030//2030 +f 2573//2573 2571//2571 3736//3736 +f 2572//2572 2571//2571 2573//2573 +f 3735//3735 3736//3736 2030//2030 +f 2571//2571 2572//2572 2569//2569 +f 2570//2570 2574//2574 2502//2502 +f 2572//2572 2575//2575 2569//2569 +f 2572//2572 2576//2576 2575//2575 +f 2572//2572 2573//2573 2576//2576 +f 2042//2042 2573//2573 2041//2041 +f 2042//2042 2576//2576 2573//2573 +f 2042//2042 2577//2577 2576//2576 +f 2042//2042 2044//2044 2577//2577 +f 2577//2577 2579//2579 2578//2578 +f 2576//2576 2578//2578 2575//2575 +f 2576//2576 2577//2577 2578//2578 +f 2570//2570 2580//2580 2574//2574 +f 2569//2569 2580//2580 2570//2570 +f 2569//2569 2575//2575 2580//2580 +f 2575//2575 2581//2581 2580//2580 +f 2575//2575 2578//2578 2581//2581 +f 2582//2582 2584//2584 2583//2583 +f 2582//2582 2585//2585 2584//2584 +f 2580//2580 2583//2583 2574//2574 +f 2580//2580 2582//2582 2583//2583 +f 2580//2580 2585//2585 2582//2582 +f 2580//2580 2581//2581 2585//2585 +f 2577//2577 2586//2586 2579//2579 +f 2577//2577 2587//2587 2586//2586 +f 2044//2044 2587//2587 2577//2577 +f 2044//2044 2047//2047 2587//2587 +f 2578//2578 2588//2588 2581//2581 +f 2578//2578 2589//2589 2588//2588 +f 2578//2578 2590//2590 2589//2589 +f 2578//2578 2579//2579 2590//2590 +f 2581//2581 2588//2588 2585//2585 +f 2585//2585 2591//2591 2584//2584 +f 2585//2585 2592//2592 2591//2591 +f 2588//2588 2592//2592 2585//2585 +f 2587//2587 2593//2593 2586//2586 +f 2587//2587 2594//2594 2593//2593 +f 2047//2047 2594//2594 2587//2587 +f 2047//2047 2083//2083 2594//2594 +f 2594//2594 2595//2595 2593//2593 +f 2083//2083 2595//2595 2594//2594 +f 2083//2083 2084//2084 2595//2595 +f 2589//2589 2596//2596 2588//2588 +f 2589//2589 2597//2597 2596//2596 +f 2589//2589 2598//2598 2597//2597 +f 2588//2588 2596//2596 2592//2592 +f 2592//2592 2599//2599 2591//2591 +f 2596//2596 2599//2599 2592//2592 +f 2092//2092 2094//2094 2600//2600 +f 2084//2084 2600//2600 2595//2595 +f 2084//2084 2092//2092 2600//2600 +f 2595//2595 2598//2598 2593//2593 +f 2595//2595 2597//2597 2598//2598 +f 2595//2595 2601//2601 2597//2597 +f 2595//2595 2600//2600 2601//2601 +f 2600//2600 2602//2602 2601//2601 +f 2600//2600 2603//2603 2602//2602 +f 2600//2600 2604//2604 2603//2603 +f 2597//2597 2605//2605 2596//2596 +f 2597//2597 2601//2601 2605//2605 +f 2599//2599 2606//2606 2591//2591 +f 2596//2596 2605//2605 2599//2599 +f 2601//2601 2607//2607 2605//2605 +f 2601//2601 2602//2602 2607//2607 +f 2607//2607 2608//2608 2599//2599 +f 2607//2607 2609//2609 2608//2608 +f 2599//2599 2608//2608 2606//2606 +f 2605//2605 2607//2607 2599//2599 +f 2095//2095 2604//2604 2094//2094 +f 2095//2095 2603//2603 2604//2604 +f 2095//2095 2610//2610 2603//2603 +f 2095//2095 2093//2093 2610//2610 +f 2603//2603 2611//2611 2602//2602 +f 2603//2603 2610//2610 2611//2611 +f 2093//2093 2612//2612 2610//2610 +f 2093//2093 2114//2114 2612//2612 +f 2610//2610 2613//2613 2611//2611 +f 2610//2610 2612//2612 2613//2613 +f 2607//2607 2611//2611 2609//2609 +f 2602//2602 2611//2611 2607//2607 +f 2613//2613 2614//2614 2611//2611 +f 2611//2611 2614//2614 2609//2609 +f 2114//2114 2615//2615 2612//2612 +f 2114//2114 2119//2119 2615//2615 +f 2615//2615 2616//2616 2612//2612 +f 2613//2613 2616//2616 2614//2614 +f 2613//2613 2612//2612 2616//2616 +f 2615//2615 2121//2121 2616//2616 +f 2615//2615 2119//2119 2121//2121 +f 2502//2502 2617//2617 2531//2531 +f 2502//2502 2618//2618 2617//2617 +f 2502//2502 2574//2574 2618//2618 +f 2535//2535 2530//2530 2532//2532 +f 2530//2530 2620//2620 2532//2532 +f 2530//2530 2621//2621 2620//2620 +f 2531//2531 2621//2621 2530//2530 +f 2531//2531 2617//2617 2621//2621 +f 2532//2532 2622//2622 2533//2533 +f 2532//2532 2623//2623 2622//2622 +f 2532//2532 2620//2620 2623//2623 +f 2533//2533 2624//2624 2536//2536 +f 2533//2533 2622//2622 2624//2624 +f 2536//2536 2624//2624 2545//2545 +f 2623//2623 2624//2624 2622//2622 +f 2623//2623 2625//2625 2624//2624 +f 2621//2621 2626//2626 2620//2620 +f 2621//2621 2627//2627 2626//2626 +f 2617//2617 2627//2627 2621//2621 +f 2617//2617 2618//2618 2627//2627 +f 2618//2618 2628//2628 2627//2627 +f 2618//2618 2619//2619 2628//2628 +f 2620//2620 2625//2625 2623//2623 +f 2620//2620 2626//2626 2625//2625 +f 2626//2626 2629//2629 2625//2625 +f 2626//2626 2627//2627 2629//2629 +f 2625//2625 2630//2630 2624//2624 +f 2624//2624 2631//2631 2545//2545 +f 2624//2624 2630//2630 2631//2631 +f 2625//2625 2632//2632 2630//2630 +f 2630//2630 2633//2633 2631//2631 +f 2618//2618 2583//2583 2619//2619 +f 2574//2574 2583//2583 2618//2618 +f 2583//2583 2634//2634 2619//2619 +f 2583//2583 2584//2584 2634//2634 +f 2579//2579 2586//2586 2590//2590 +f 2586//2586 2589//2589 2590//2590 +f 2628//2628 2635//2635 2627//2627 +f 2628//2628 2636//2636 2635//2635 +f 2619//2619 2636//2636 2628//2628 +f 2627//2627 2635//2635 2629//2629 +f 2635//2635 2636//2636 2637//2637 +f 2635//2635 2638//2638 2629//2629 +f 2635//2635 2637//2637 2638//2638 +f 2632//2632 2639//2639 2630//2630 +f 2632//2632 2640//2640 2639//2639 +f 2625//2625 2640//2640 2632//2632 +f 2625//2625 2629//2629 2640//2640 +f 2638//2638 2641//2641 2640//2640 +f 2640//2640 2641//2641 2639//2639 +f 2629//2629 2638//2638 2640//2640 +f 2619//2619 2642//2642 2636//2636 +f 2619//2619 2643//2643 2642//2642 +f 2634//2634 2643//2643 2619//2619 +f 2584//2584 2643//2643 2634//2634 +f 2584//2584 2591//2591 2643//2643 +f 2643//2643 2644//2644 2642//2642 +f 2636//2636 2642//2642 2637//2637 +f 2638//2638 2645//2645 2641//2641 +f 2638//2638 2646//2646 2645//2645 +f 2637//2637 2646//2646 2638//2638 +f 2637//2637 2642//2642 2646//2646 +f 2642//2642 2644//2644 2647//2647 +f 2647//2647 2648//2648 2646//2646 +f 2646//2646 2648//2648 2645//2645 +f 2642//2642 2647//2647 2646//2646 +f 2633//2633 2649//2649 2650//2650 +f 2630//2630 2649//2649 2633//2633 +f 2630//2630 2639//2639 2649//2649 +f 2649//2649 2651//2651 2650//2650 +f 2649//2649 2652//2652 2651//2651 +f 2639//2639 2652//2652 2649//2649 +f 2645//2645 2653//2653 2641//2641 +f 2641//2641 2653//2653 2639//2639 +f 2653//2653 2654//2654 2652//2652 +f 2652//2652 2654//2654 2651//2651 +f 2639//2639 2653//2653 2652//2652 +f 2653//2653 2645//2645 2654//2654 +f 2651//2651 2656//2656 2655//2655 +f 2651//2651 2654//2654 2656//2656 +f 2654//2654 2658//2658 2657//2657 +f 2654//2654 2657//2657 2656//2656 +f 2656//2656 2660//2660 2659//2659 +f 2656//2656 2657//2657 2660//2660 +f 2545//2545 2661//2661 2551//2551 +f 2545//2545 2662//2662 2661//2661 +f 2551//2551 2661//2661 2550//2550 +f 2543//2543 2545//2545 2551//2551 +f 2545//2545 2663//2663 2662//2662 +f 2661//2661 2665//2665 2664//2664 +f 2661//2661 2666//2666 2665//2665 +f 2662//2662 2666//2666 2661//2661 +f 2661//2661 2667//2667 2555//2555 +f 2661//2661 2664//2664 2667//2667 +f 2555//2555 2667//2667 2554//2554 +f 2550//2550 2661//2661 2555//2555 +f 2554//2554 2667//2667 2557//2557 +f 2665//2665 2669//2669 2664//2664 +f 2665//2665 2670//2670 2669//2669 +f 2667//2667 2669//2669 2557//2557 +f 2667//2667 2664//2664 2669//2669 +f 2557//2557 2669//2669 2668//2668 +f 2663//2663 2671//2671 2662//2662 +f 2663//2663 2672//2672 2671//2671 +f 2545//2545 2672//2672 2663//2663 +f 2545//2545 2631//2631 2672//2672 +f 2671//2671 2673//2673 2666//2666 +f 2662//2662 2671//2671 2666//2666 +f 2633//2633 2650//2650 2672//2672 +f 2631//2631 2633//2633 2672//2672 +f 2650//2650 2674//2674 2672//2672 +f 2671//2671 2674//2674 2673//2673 +f 2671//2671 2672//2672 2674//2674 +f 2665//2665 2673//2673 2670//2670 +f 2665//2665 2666//2666 2673//2673 +f 2673//2673 2676//2676 2675//2675 +f 2673//2673 2675//2675 2670//2670 +f 2669//2669 2670//2670 2668//2668 +f 2674//2674 2677//2677 2673//2673 +f 2674//2674 2678//2678 2677//2677 +f 2650//2650 2678//2678 2674//2674 +f 2677//2677 2679//2679 2676//2676 +f 2673//2673 2677//2677 2676//2676 +f 2651//2651 2655//2655 2678//2678 +f 2650//2650 2651//2651 2678//2678 +f 2677//2677 2680//2680 2679//2679 +f 2677//2677 2678//2678 2680//2680 +f 2656//2656 2680//2680 2655//2655 +f 2656//2656 2659//2659 2680//2680 +f 2678//2678 2655//2655 2680//2680 +f 2659//2659 2660//2660 2681//2681 +f 2668//2668 2682//2682 2557//2557 +f 2668//2668 2683//2683 2682//2682 +f 2558//2558 2557//2557 2682//2682 +f 2683//2683 2685//2685 2682//2682 +f 2558//2558 2682//2682 2685//2685 +f 2683//2683 2686//2686 2685//2685 +f 2558//2558 2685//2685 2564//2564 +f 2683//2683 2684//2684 2686//2686 +f 2675//2675 2684//2684 2670//2670 +f 2675//2675 2687//2687 2684//2684 +f 2668//2668 2684//2684 2683//2683 +f 2668//2668 2670//2670 2684//2684 +f 2564//2564 2685//2685 2686//2686 +f 2564//2564 2686//2686 2689//2689 +f 2564//2564 2689//2689 2567//2567 +f 2689//2689 2686//2686 2690//2690 +f 2686//2686 2684//2684 2688//2688 +f 2688//2688 2691//2691 2686//2686 +f 2686//2686 2691//2691 2690//2690 +f 2692//2692 2690//2690 2691//2691 +f 2692//2692 2693//2693 2690//2690 +f 2675//2675 2679//2679 2687//2687 +f 2675//2675 2676//2676 2679//2679 +f 2694//2694 2687//2687 2679//2679 +f 2679//2679 2680//2680 2694//2694 +f 2687//2687 2694//2694 2684//2684 +f 2695//2695 2688//2688 2694//2694 +f 2684//2684 2694//2694 2688//2688 +f 2680//2680 2659//2659 2694//2694 +f 2694//2694 2681//2681 2695//2695 +f 2694//2694 2659//2659 2681//2681 +f 2688//2688 2692//2692 2691//2691 +f 2688//2688 2695//2695 2692//2692 +f 2681//2681 2698//2698 2697//2697 +f 2695//2695 2681//2681 2697//2697 +f 2695//2695 2697//2697 2692//2692 +f 2692//2692 2697//2697 2696//2696 +f 2698//2698 2699//2699 2697//2697 +f 2586//2586 2598//2598 2589//2589 +f 2586//2586 2593//2593 2598//2598 +f 2094//2094 2604//2604 2600//2600 +f 2643//2643 2700//2700 2644//2644 +f 2591//2591 2700//2700 2643//2643 +f 2700//2700 2701//2701 2644//2644 +f 2644//2644 2702//2702 2647//2647 +f 2647//2647 2702//2702 2648//2648 +f 2644//2644 2701//2701 2702//2702 +f 2591//2591 2703//2703 2700//2700 +f 2591//2591 2606//2606 2703//2703 +f 2700//2700 2703//2703 2701//2701 +f 2608//2608 2704//2704 2703//2703 +f 2608//2608 2705//2705 2704//2704 +f 2606//2606 2608//2608 2703//2703 +f 2703//2703 2704//2704 2701//2701 +f 2701//2701 2706//2706 2702//2702 +f 2702//2702 2706//2706 2707//2707 +f 2706//2706 2708//2708 2707//2707 +f 2648//2648 2709//2709 2645//2645 +f 2648//2648 2710//2710 2709//2709 +f 2648//2648 2707//2707 2710//2710 +f 2702//2702 2707//2707 2648//2648 +f 2709//2709 2710//2710 2711//2711 +f 2709//2709 2712//2712 2645//2645 +f 2645//2645 2712//2712 2654//2654 +f 2654//2654 2713//2713 2658//2658 +f 2654//2654 2712//2712 2713//2713 +f 2713//2713 2660//2660 2658//2658 +f 2713//2713 2714//2714 2660//2660 +f 2657//2657 2658//2658 2660//2660 +f 2711//2711 2715//2715 2712//2712 +f 2711//2711 2716//2716 2715//2715 +f 2712//2712 2715//2715 2713//2713 +f 2709//2709 2711//2711 2712//2712 +f 2713//2713 2715//2715 2714//2714 +f 2711//2711 2717//2717 2716//2716 +f 2711//2711 2710//2710 2717//2717 +f 2710//2710 2718//2718 2717//2717 +f 2710//2710 2707//2707 2718//2718 +f 2717//2717 2720//2720 2719//2719 +f 2717//2717 2718//2718 2720//2720 +f 2717//2717 2721//2721 2716//2716 +f 2717//2717 2719//2719 2721//2721 +f 2715//2715 2721//2721 2714//2714 +f 2715//2715 2716//2716 2721//2721 +f 2608//2608 2609//2609 2705//2705 +f 2609//2609 2722//2722 2705//2705 +f 2609//2609 2723//2723 2722//2722 +f 2609//2609 2614//2614 2723//2723 +f 2723//2723 2724//2724 2722//2722 +f 2723//2723 2725//2725 2724//2724 +f 2723//2723 2726//2726 2725//2725 +f 2614//2614 2726//2726 2723//2723 +f 2614//2614 2616//2616 2726//2726 +f 2704//2704 2706//2706 2701//2701 +f 2704//2704 2705//2705 2706//2706 +f 2705//2705 2722//2722 2706//2706 +f 2706//2706 2727//2727 2708//2708 +f 2722//2722 2724//2724 2706//2706 +f 2706//2706 2724//2724 2727//2727 +f 2707//2707 2708//2708 2728//2728 +f 2708//2708 2729//2729 2728//2728 +f 2707//2707 2728//2728 2718//2718 +f 2718//2718 2730//2730 2720//2720 +f 2718//2718 2731//2731 2730//2730 +f 2708//2708 2732//2732 2729//2729 +f 2708//2708 2727//2727 2732//2732 +f 2728//2728 2733//2733 2718//2718 +f 2729//2729 2733//2733 2728//2728 +f 2729//2729 2732//2732 2733//2733 +f 2718//2718 2733//2733 2731//2731 +f 2660//2660 2714//2714 2681//2681 +f 2719//2719 2720//2720 2734//2734 +f 2719//2719 2734//2734 2721//2721 +f 2734//2734 2714//2714 2721//2721 +f 2734//2734 2720//2720 2735//2735 +f 2714//2714 2734//2734 2681//2681 +f 2681//2681 2734//2734 2736//2736 +f 2681//2681 2736//2736 2698//2698 +f 2735//2735 2736//2736 2734//2734 +f 2735//2735 2738//2738 2736//2736 +f 2698//2698 2739//2739 2737//2737 +f 2698//2698 2736//2736 2739//2739 +f 2738//2738 2739//2739 2736//2736 +f 2738//2738 2740//2740 2739//2739 +f 2720//2720 2730//2730 2741//2741 +f 2730//2730 2731//2731 2742//2742 +f 2730//2730 2742//2742 2741//2741 +f 2720//2720 2741//2741 2735//2735 +f 2741//2741 2742//2742 2743//2743 +f 2742//2742 2744//2744 2743//2743 +f 2735//2735 2741//2741 2738//2738 +f 2738//2738 2741//2741 2745//2745 +f 2741//2741 2743//2743 2746//2746 +f 2741//2741 2746//2746 2745//2745 +f 2738//2738 2747//2747 2740//2740 +f 2738//2738 2745//2745 2747//2747 +f 2745//2745 2748//2748 2747//2747 +f 2745//2745 2746//2746 2748//2748 +f 2743//2743 2744//2744 2746//2746 +f 2746//2746 2749//2749 2748//2748 +f 2121//2121 2750//2750 2616//2616 +f 2279//2279 2751//2751 2121//2121 +f 2121//2121 2751//2751 2750//2750 +f 2750//2750 2752//2752 2726//2726 +f 2750//2750 2753//2753 2752//2752 +f 2726//2726 2752//2752 2725//2725 +f 2616//2616 2750//2750 2726//2726 +f 2725//2725 2754//2754 2724//2724 +f 2725//2725 2752//2752 2754//2754 +f 2751//2751 2755//2755 2750//2750 +f 2750//2750 2755//2755 2753//2753 +f 2752//2752 2756//2756 2754//2754 +f 2753//2753 2756//2756 2752//2752 +f 2753//2753 2755//2755 2756//2756 +f 2279//2279 2312//2312 2751//2751 +f 2314//2314 2757//2757 2312//2312 +f 2314//2314 2325//2325 2757//2757 +f 2751//2751 2312//2312 2757//2757 +f 2751//2751 2757//2757 2758//2758 +f 2756//2756 2759//2759 2754//2754 +f 2751//2751 2758//2758 2755//2755 +f 2756//2756 2760//2760 2759//2759 +f 2755//2755 2760//2760 2756//2756 +f 2755//2755 2758//2758 2760//2760 +f 2759//2759 2761//2761 2754//2754 +f 2724//2724 2754//2754 2727//2727 +f 2727//2727 2754//2754 2762//2762 +f 2754//2754 2763//2763 2762//2762 +f 2754//2754 2761//2761 2763//2763 +f 2727//2727 2762//2762 2732//2732 +f 2732//2732 2764//2764 2733//2733 +f 2733//2733 2764//2764 2731//2731 +f 2762//2762 2766//2766 2732//2732 +f 2732//2732 2766//2766 2765//2765 +f 2732//2732 2765//2765 2764//2764 +f 2325//2325 2767//2767 2757//2757 +f 2757//2757 2768//2768 2758//2758 +f 2757//2757 2767//2767 2768//2768 +f 2325//2325 2327//2327 2767//2767 +f 2767//2767 2769//2769 2768//2768 +f 2758//2758 2768//2768 2770//2770 +f 2770//2770 2771//2771 2760//2760 +f 2770//2770 2772//2772 2771//2771 +f 2760//2760 2771//2771 2759//2759 +f 2758//2758 2770//2770 2760//2760 +f 2769//2769 2773//2773 2768//2768 +f 2769//2769 2774//2774 2773//2773 +f 2770//2770 2773//2773 2772//2772 +f 2770//2770 2768//2768 2773//2773 +f 2759//2759 2771//2771 2761//2761 +f 2771//2771 2775//2775 2761//2761 +f 2771//2771 2776//2776 2775//2775 +f 2772//2772 2776//2776 2771//2771 +f 2772//2772 2773//2773 2776//2776 +f 2327//2327 2777//2777 2767//2767 +f 2327//2327 2329//2329 2777//2777 +f 2777//2777 2778//2778 2769//2769 +f 2769//2769 2778//2778 2774//2774 +f 2767//2767 2777//2777 2769//2769 +f 2332//2332 2779//2779 2329//2329 +f 2332//2332 2387//2387 2779//2779 +f 2777//2777 2779//2779 2778//2778 +f 2777//2777 2329//2329 2779//2779 +f 2774//2774 2780//2780 2773//2773 +f 2774//2774 2778//2778 2780//2780 +f 2780//2780 2781//2781 2776//2776 +f 2780//2780 2782//2782 2781//2781 +f 2776//2776 2781//2781 2775//2775 +f 2773//2773 2780//2780 2776//2776 +f 2775//2775 2781//2781 2783//2783 +f 2780//2780 2784//2784 2782//2782 +f 2778//2778 2784//2784 2780//2780 +f 2782//2782 2785//2785 2781//2781 +f 2782//2782 2786//2786 2785//2785 +f 2781//2781 2785//2785 2783//2783 +f 2761//2761 2775//2775 2763//2763 +f 2783//2783 2785//2785 2787//2787 +f 2762//2762 2763//2763 2766//2766 +f 2763//2763 2775//2775 2766//2766 +f 2765//2765 2788//2788 2764//2764 +f 2783//2783 2787//2787 2775//2775 +f 2775//2775 2787//2787 2766//2766 +f 2766//2766 2787//2787 2789//2789 +f 2787//2787 2790//2790 2789//2789 +f 2787//2787 2791//2791 2790//2790 +f 2766//2766 2789//2789 2765//2765 +f 2765//2765 2789//2789 2788//2788 +f 2789//2789 2790//2790 2792//2792 +f 2789//2789 2792//2792 2788//2788 +f 2742//2742 2731//2731 2793//2793 +f 2731//2731 2764//2764 2793//2793 +f 2742//2742 2793//2793 2744//2744 +f 2793//2793 2794//2794 2744//2744 +f 2764//2764 2795//2795 2793//2793 +f 2744//2744 2796//2796 2746//2746 +f 2746//2746 2796//2796 2749//2749 +f 2744//2744 2794//2794 2796//2796 +f 2796//2796 2794//2794 2798//2798 +f 2796//2796 2798//2798 2749//2749 +f 2764//2764 2788//2788 2795//2795 +f 2795//2795 2788//2788 2799//2799 +f 2795//2795 2799//2799 2793//2793 +f 2793//2793 2797//2797 2794//2794 +f 2793//2793 2799//2799 2797//2797 +f 2788//2788 2800//2800 2799//2799 +f 2788//2788 2792//2792 2800//2800 +f 2799//2799 2801//2801 2797//2797 +f 2799//2799 2802//2802 2801//2801 +f 2799//2799 2800//2800 2802//2802 +f 2797//2797 2798//2798 2794//2794 +f 2801//2801 2802//2802 2803//2803 +f 2797//2797 2801//2801 2798//2798 +f 2779//2779 2804//2804 2778//2778 +f 2779//2779 2387//2387 2804//2804 +f 2390//2390 2805//2805 2387//2387 +f 2390//2390 2398//2398 2805//2805 +f 2388//2388 2390//2390 2387//2387 +f 2387//2387 2806//2806 2804//2804 +f 2387//2387 2805//2805 2806//2806 +f 2398//2398 2807//2807 2805//2805 +f 2398//2398 2400//2400 2807//2807 +f 2805//2805 2808//2808 2806//2806 +f 2805//2805 2807//2807 2808//2808 +f 2804//2804 2786//2786 2784//2784 +f 2784//2784 2786//2786 2782//2782 +f 2778//2778 2804//2804 2784//2784 +f 2806//2806 2810//2810 2809//2809 +f 2806//2806 2808//2808 2810//2810 +f 2804//2804 2809//2809 2786//2786 +f 2804//2804 2806//2806 2809//2809 +f 2786//2786 2809//2809 2811//2811 +f 2400//2400 2812//2812 2807//2807 +f 2807//2807 2813//2813 2808//2808 +f 2807//2807 2812//2812 2813//2813 +f 2400//2400 2814//2814 2812//2812 +f 2400//2400 2416//2416 2814//2814 +f 2812//2812 2815//2815 2813//2813 +f 2812//2812 2814//2814 2815//2815 +f 2786//2786 2811//2811 2785//2785 +f 2808//2808 2816//2816 2810//2810 +f 2808//2808 2813//2813 2816//2816 +f 2813//2813 2815//2815 2816//2816 +f 2815//2815 2817//2817 2816//2816 +f 2818//2818 2820//2820 2819//2819 +f 2810//2810 2818//2818 2809//2809 +f 2810//2810 2820//2820 2818//2818 +f 2810//2810 2816//2816 2820//2820 +f 2820//2820 2821//2821 2819//2819 +f 2820//2820 2822//2822 2821//2821 +f 2816//2816 2817//2817 2820//2820 +f 2823//2823 2824//2824 2791//2791 +f 2785//2785 2791//2791 2787//2787 +f 2785//2785 2823//2823 2791//2791 +f 2785//2785 2811//2811 2823//2823 +f 2791//2791 2825//2825 2790//2790 +f 2791//2791 2824//2824 2825//2825 +f 2823//2823 2826//2826 2824//2824 +f 2823//2823 2827//2827 2826//2826 +f 2811//2811 2827//2827 2823//2823 +f 2811//2811 2809//2809 2827//2827 +f 2824//2824 2826//2826 2825//2825 +f 2790//2790 2828//2828 2792//2792 +f 2790//2790 2825//2825 2828//2828 +f 2825//2825 2829//2829 2828//2828 +f 2818//2818 2830//2830 2827//2827 +f 2818//2818 2819//2819 2830//2830 +f 2827//2827 2830//2830 2826//2826 +f 2809//2809 2818//2818 2827//2827 +f 2826//2826 2831//2831 2825//2825 +f 2819//2819 2833//2833 2830//2830 +f 2819//2819 2832//2832 2833//2833 +f 2826//2826 2833//2833 2831//2831 +f 2830//2830 2833//2833 2826//2826 +f 2825//2825 2831//2831 2834//2834 +f 2825//2825 2834//2834 2829//2829 +f 2834//2834 2835//2835 2829//2829 +f 2832//2832 2821//2821 2836//2836 +f 2819//2819 2821//2821 2832//2832 +f 2821//2821 2837//2837 2836//2836 +f 2833//2833 2836//2836 2838//2838 +f 2831//2831 2838//2838 2834//2834 +f 2831//2831 2833//2833 2838//2838 +f 2832//2832 2836//2836 2833//2833 +f 2416//2416 2839//2839 2814//2814 +f 2416//2416 2452//2452 2839//2839 +f 2814//2814 2840//2840 2815//2815 +f 2814//2814 2839//2839 2840//2840 +f 2815//2815 2840//2840 2817//2817 +f 2820//2820 2841//2841 2822//2822 +f 2817//2817 2841//2841 2820//2820 +f 2841//2841 2842//2842 2822//2822 +f 2817//2817 2842//2842 2841//2841 +f 2454//2454 2844//2844 2843//2843 +f 2454//2454 2459//2459 2844//2844 +f 2452//2452 2843//2843 2839//2839 +f 2452//2452 2454//2454 2843//2843 +f 2843//2843 2846//2846 2845//2845 +f 2843//2843 2844//2844 2846//2846 +f 2839//2839 2845//2845 2840//2840 +f 2839//2839 2843//2843 2845//2845 +f 2459//2459 2847//2847 2844//2844 +f 2844//2844 2848//2848 2846//2846 +f 2844//2844 2847//2847 2848//2848 +f 2845//2845 2849//2849 2842//2842 +f 2845//2845 2846//2846 2849//2849 +f 2840//2840 2842//2842 2817//2817 +f 2840//2840 2845//2845 2842//2842 +f 2842//2842 2850//2850 2822//2822 +f 2842//2842 2849//2849 2850//2850 +f 2846//2846 2851//2851 2849//2849 +f 2846//2846 2848//2848 2851//2851 +f 2852//2852 2853//2853 2850//2850 +f 2849//2849 2852//2852 2850//2850 +f 2849//2849 2851//2851 2852//2852 +f 2792//2792 2828//2828 2854//2854 +f 2792//2792 2855//2855 2800//2800 +f 2792//2792 2854//2854 2855//2855 +f 2828//2828 2856//2856 2854//2854 +f 2828//2828 2829//2829 2856//2856 +f 2854//2854 2856//2856 2855//2855 +f 2800//2800 2855//2855 2802//2802 +f 2855//2855 2856//2856 2857//2857 +f 2857//2857 2856//2856 2858//2858 +f 2829//2829 2835//2835 2856//2856 +f 2856//2856 2835//2835 2859//2859 +f 2821//2821 2850//2850 2837//2837 +f 2822//2822 2850//2850 2821//2821 +f 2856//2856 2859//2859 2858//2858 +f 2859//2859 2835//2835 2860//2860 +f 2850//2850 2853//2853 2837//2837 +f 2859//2859 2860//2860 2858//2858 +f 2459//2459 2462//2462 2847//2847 +f 2847//2847 2861//2861 2848//2848 +f 2848//2848 2862//2862 2851//2851 +f 2848//2848 2861//2861 2862//2862 +f 2851//2851 2862//2862 2852//2852 +f 2462//2462 2863//2863 2847//2847 +f 2462//2462 2464//2464 2863//2863 +f 2847//2847 2864//2864 2861//2861 +f 2847//2847 2863//2863 2864//2864 +f 2861//2861 2865//2865 2862//2862 +f 2861//2861 2864//2864 2865//2865 +f 2852//2852 2866//2866 2853//2853 +f 2862//2862 2866//2866 2852//2852 +f 2862//2862 2865//2865 2866//2866 +f 2802//2802 2855//2855 2803//2803 +f 2857//2857 2858//2858 2867//2867 +f 2855//2855 2857//2857 2868//2868 +f 2803//2803 2855//2855 2869//2869 +f 2855//2855 2868//2868 2869//2869 +f 2857//2857 2867//2867 2868//2868 +f 2836//2836 2871//2871 2838//2838 +f 2834//2834 2838//2838 2835//2835 +f 2837//2837 2871//2871 2836//2836 +f 2871//2871 2872//2872 2838//2838 +f 2835//2835 2838//2838 2872//2872 +f 2835//2835 2872//2872 2860//2860 +f 2871//2871 2873//2873 2872//2872 +f 2860//2860 2872//2872 2873//2873 +f 2837//2837 2853//2853 2871//2871 +f 2871//2871 2874//2874 2873//2873 +f 2873//2873 2874//2874 2875//2875 +f 2860//2860 2875//2875 2858//2858 +f 2860//2860 2873//2873 2875//2875 +f 2871//2871 2870//2870 2874//2874 +f 2853//2853 2870//2870 2871//2871 +f 2853//2853 2866//2866 2870//2870 +f 2874//2874 2876//2876 2875//2875 +f 2858//2858 2875//2875 2876//2876 +f 697//697 1646//1646 1965//1965 +f 1651//1651 1652//1652 2877//2877 +f 1646//1646 1651//1651 2877//2877 +f 1648//1648 1649//1649 2878//2878 +f 1649//1649 2879//2879 2878//2878 +f 1649//1649 1647//1647 2879//2879 +f 2877//2877 1652//1652 2880//2880 +f 1646//1646 2877//2877 1965//1965 +f 1648//1648 2878//2878 2881//2881 +f 1652//1652 2881//2881 2880//2880 +f 1652//1652 1648//1648 2881//2881 +f 1647//1647 1654//1654 2879//2879 +f 2879//2879 1654//1654 2882//2882 +f 1654//1654 2883//2883 2882//2882 +f 689//689 1965//1965 1977//1977 +f 1978//1978 2884//2884 1976//1976 +f 2877//2877 2887//2887 2886//2886 +f 2877//2877 2880//2880 2887//2887 +f 1965//1965 2886//2886 2885//2885 +f 1965//1965 2877//2877 2886//2886 +f 2881//2881 2878//2878 2888//2888 +f 2880//2880 2881//2881 2888//2888 +f 2878//2878 2889//2889 2888//2888 +f 2878//2878 2879//2879 2889//2889 +f 2880//2880 2888//2888 2887//2887 +f 1978//1978 1977//1977 2884//2884 +f 1977//1977 2890//2890 2884//2884 +f 1965//1965 2885//2885 1977//1977 +f 2888//2888 2892//2892 2891//2891 +f 2887//2887 2888//2888 2891//2891 +f 2888//2888 2893//2893 2892//2892 +f 2888//2888 2889//2889 2893//2893 +f 2886//2886 2887//2887 2894//2894 +f 2885//2885 2894//2894 1977//1977 +f 2885//2885 2886//2886 2894//2894 +f 1977//1977 2895//2895 2890//2890 +f 1977//1977 2894//2894 2895//2895 +f 2896//2896 2891//2891 2897//2897 +f 2894//2894 2891//2891 2896//2896 +f 2894//2894 2887//2887 2891//2891 +f 2894//2894 2896//2896 2895//2895 +f 2891//2891 2892//2892 2898//2898 +f 2891//2891 2898//2898 2897//2897 +f 2879//2879 2882//2882 2889//2889 +f 1653//1653 1666//1666 2883//2883 +f 1654//1654 1653//1653 2883//2883 +f 1666//1666 1664//1664 2899//2899 +f 1664//1664 1665//1665 2899//2899 +f 2899//2899 1665//1665 2900//2900 +f 1665//1665 1667//1667 2900//2900 +f 2900//2900 1667//1667 2901//2901 +f 1667//1667 2902//2902 2901//2901 +f 1667//1667 1668//1668 2902//2902 +f 2898//2898 2904//2904 2903//2903 +f 2898//2898 2892//2892 2904//2904 +f 1666//1666 2899//2899 2905//2905 +f 2889//2889 2907//2907 2906//2906 +f 2889//2889 2882//2882 2907//2907 +f 2883//2883 2908//2908 2907//2907 +f 2883//2883 1666//1666 2908//2908 +f 2882//2882 2883//2883 2907//2907 +f 1666//1666 2905//2905 2908//2908 +f 2899//2899 2900//2900 2905//2905 +f 2905//2905 2900//2900 2909//2909 +f 2900//2900 2901//2901 2909//2909 +f 2909//2909 2901//2901 2910//2910 +f 2901//2901 2911//2911 2910//2910 +f 2901//2901 2902//2902 2911//2911 +f 2906//2906 2907//2907 2912//2912 +f 2893//2893 2889//2889 2906//2906 +f 2906//2906 2912//2912 2893//2893 +f 2907//2907 2913//2913 2912//2912 +f 2907//2907 2908//2908 2913//2913 +f 2908//2908 2905//2905 2913//2913 +f 2893//2893 2903//2903 2904//2904 +f 2892//2892 2893//2893 2904//2904 +f 2893//2893 2914//2914 2903//2903 +f 2893//2893 2912//2912 2914//2914 +f 2912//2912 2913//2913 2914//2914 +f 2913//2913 2905//2905 2915//2915 +f 2914//2914 2913//2913 2915//2915 +f 2905//2905 2909//2909 2916//2916 +f 2910//2910 2911//2911 2917//2917 +f 2905//2905 2916//2916 2915//2915 +f 2916//2916 2909//2909 2918//2918 +f 2909//2909 2910//2910 2918//2918 +f 2918//2918 2910//2910 2919//2919 +f 1976//1976 2884//2884 2207//2207 +f 2207//2207 2920//2920 2206//2206 +f 2920//2920 2921//2921 2206//2206 +f 2209//2209 2922//2922 2190//2190 +f 2884//2884 2923//2923 2207//2207 +f 2923//2923 2925//2925 2924//2924 +f 2923//2923 2926//2926 2925//2925 +f 2207//2207 2924//2924 2920//2920 +f 2207//2207 2923//2923 2924//2924 +f 2926//2926 2927//2927 2925//2925 +f 2926//2926 2928//2928 2927//2927 +f 2923//2923 2929//2929 2926//2926 +f 2923//2923 2930//2930 2929//2929 +f 2884//2884 2930//2930 2923//2923 +f 2930//2930 2931//2931 2929//2929 +f 2884//2884 2931//2931 2930//2930 +f 2884//2884 2890//2890 2931//2931 +f 2926//2926 2932//2932 2928//2928 +f 2926//2926 2929//2929 2932//2932 +f 2928//2928 2933//2933 2927//2927 +f 2928//2928 2932//2932 2933//2933 +f 2932//2932 2934//2934 2933//2933 +f 2920//2920 2935//2935 2921//2921 +f 2924//2924 2937//2937 2936//2936 +f 2924//2924 2925//2925 2937//2937 +f 2920//2920 2936//2936 2935//2935 +f 2920//2920 2924//2924 2936//2936 +f 2921//2921 2938//2938 2206//2206 +f 2921//2921 2935//2935 2938//2938 +f 2935//2935 2939//2939 2938//2938 +f 2935//2935 2936//2936 2939//2939 +f 2936//2936 2937//2937 2940//2940 +f 2936//2936 2941//2941 2939//2939 +f 2936//2936 2940//2940 2941//2941 +f 2940//2940 2942//2942 2941//2941 +f 2925//2925 2933//2933 2943//2943 +f 2925//2925 2927//2927 2933//2933 +f 2925//2925 2943//2943 2937//2937 +f 2943//2943 2934//2934 2944//2944 +f 2943//2943 2933//2933 2934//2934 +f 2943//2943 2940//2940 2937//2937 +f 2943//2943 2944//2944 2940//2940 +f 2931//2931 2945//2945 2929//2929 +f 2929//2929 2946//2946 2932//2932 +f 2929//2929 2945//2945 2946//2946 +f 2932//2932 2947//2947 2934//2934 +f 2932//2932 2946//2946 2947//2947 +f 2931//2931 2896//2896 2945//2945 +f 2890//2890 2896//2896 2931//2931 +f 2890//2890 2895//2895 2896//2896 +f 2945//2945 2948//2948 2946//2946 +f 2945//2945 2896//2896 2948//2948 +f 2897//2897 2948//2948 2896//2896 +f 2948//2948 2950//2950 2949//2949 +f 2948//2948 2951//2951 2950//2950 +f 2946//2946 2949//2949 2947//2947 +f 2946//2946 2948//2948 2949//2949 +f 2942//2942 2940//2940 2952//2952 +f 2942//2942 2953//2953 2941//2941 +f 2944//2944 2934//2934 2947//2947 +f 2944//2944 2952//2952 2940//2940 +f 2942//2942 2952//2952 2954//2954 +f 2942//2942 2954//2954 2953//2953 +f 2954//2954 2957//2957 2955//2955 +f 2954//2954 2952//2952 2957//2957 +f 2954//2954 2956//2956 2953//2953 +f 2954//2954 2955//2955 2956//2956 +f 2944//2944 2947//2947 2958//2958 +f 2944//2944 2958//2958 2952//2952 +f 2958//2958 2949//2949 2959//2959 +f 2958//2958 2947//2947 2949//2949 +f 2958//2958 2957//2957 2952//2952 +f 2958//2958 2959//2959 2957//2957 +f 2960//2960 2962//2962 2961//2961 +f 2960//2960 2963//2963 2962//2962 +f 2960//2960 2964//2964 2963//2963 +f 2960//2960 2961//2961 2964//2964 +f 2961//2961 2965//2965 2964//2964 +f 2963//2963 2966//2966 2962//2962 +f 2963//2963 2964//2964 2967//2967 +f 2206//2206 2938//2938 2968//2968 +f 2938//2938 2969//2969 2968//2968 +f 2938//2938 2939//2939 2969//2969 +f 2208//2208 2970//2970 2209//2209 +f 2206//2206 2970//2970 2208//2208 +f 2206//2206 2968//2968 2970//2970 +f 2970//2970 2971//2971 2209//2209 +f 2970//2970 2972//2972 2971//2971 +f 2968//2968 2972//2972 2970//2970 +f 2968//2968 2969//2969 2972//2972 +f 2973//2973 2941//2941 2974//2974 +f 2973//2973 2939//2939 2941//2941 +f 2973//2973 2969//2969 2939//2939 +f 2973//2973 2975//2975 2969//2969 +f 2973//2973 2976//2976 2975//2975 +f 2973//2973 2974//2974 2976//2976 +f 2975//2975 2972//2972 2969//2969 +f 2975//2975 2962//2962 2972//2972 +f 2975//2975 2961//2961 2962//2962 +f 2975//2975 2976//2976 2961//2961 +f 2209//2209 2971//2971 2922//2922 +f 2962//2962 2977//2977 2972//2972 +f 2972//2972 2977//2977 2971//2971 +f 2962//2962 2966//2966 2977//2977 +f 2965//2965 2978//2978 2964//2964 +f 2964//2964 2978//2978 2967//2967 +f 2978//2978 2965//2965 2979//2979 +f 2978//2978 2979//2979 2967//2967 +f 2980//2980 2982//2982 2981//2981 +f 2983//2983 2982//2982 2980//2980 +f 2983//2983 2984//2984 2982//2982 +f 2983//2983 2980//2980 2979//2979 +f 2979//2979 2965//2965 2983//2983 +f 2974//2974 2941//2941 2985//2985 +f 2974//2974 2986//2986 2976//2976 +f 2974//2974 2985//2985 2986//2986 +f 2985//2985 2941//2941 2953//2953 +f 2976//2976 2965//2965 2961//2961 +f 2976//2976 2986//2986 2965//2965 +f 2987//2987 2956//2956 2988//2988 +f 2985//2985 2956//2956 2987//2987 +f 2985//2985 2953//2953 2956//2956 +f 2985//2985 2987//2987 2986//2986 +f 2986//2986 2984//2984 2965//2965 +f 2987//2987 2988//2988 2982//2982 +f 2986//2986 2982//2982 2984//2984 +f 2986//2986 2987//2987 2982//2982 +f 2965//2965 2984//2984 2983//2983 +f 2989//2989 2991//2991 2990//2990 +f 2951//2951 2992//2992 2950//2950 +f 2951//2951 2993//2993 2992//2992 +f 2993//2993 2994//2994 2992//2992 +f 2993//2993 2995//2995 2994//2994 +f 2993//2993 2996//2996 2995//2995 +f 3001//3001 3003//3003 3002//3002 +f 3001//3001 3004//3004 3003//3003 +f 3004//3004 3005//3005 3003//3003 +f 3005//3005 3007//3007 3006//3006 +f 3009//3009 3002//3002 3010//3010 +f 3009//3009 3008//3008 3002//3002 +f 3009//3009 3012//3012 3011//3011 +f 3009//3009 3010//3010 3012//3012 +f 2989//2989 3008//3008 2991//2991 +f 3009//3009 2991//2991 3008//3008 +f 3009//3009 3011//3011 2991//2991 +f 3010//3010 3014//3014 3013//3013 +f 3010//3010 3002//3002 3014//3014 +f 3003//3003 3014//3014 3002//3002 +f 3003//3003 3005//3005 3014//3014 +f 3013//3013 3016//3016 3015//3015 +f 3013//3013 3014//3014 3016//3016 +f 3005//3005 3016//3016 3014//3014 +f 3005//3005 3006//3006 3016//3016 +f 3010//3010 3017//3017 3012//3012 +f 3010//3010 3013//3013 3017//3017 +f 3013//3013 3015//3015 3017//3017 +f 3007//3007 3018//3018 3006//3006 +f 3006//3006 3019//3019 3016//3016 +f 3006//3006 3018//3018 3019//3019 +f 3018//3018 3020//3020 3019//3019 +f 3016//3016 3022//3022 3021//3021 +f 3016//3016 3019//3019 3022//3022 +f 3015//3015 3016//3016 3021//3021 +f 3019//3019 3020//3020 3022//3022 +f 2190//2190 2922//2922 3023//3023 +f 2190//2190 3023//3023 2266//2266 +f 2922//2922 3024//3024 3023//3023 +f 3023//3023 3024//3024 3025//3025 +f 3023//3023 3025//3025 3026//3026 +f 3025//3025 3027//3027 3026//3026 +f 2963//2963 3028//3028 2966//2966 +f 2963//2963 3029//3029 3028//3028 +f 2963//2963 2967//2967 3029//3029 +f 3028//3028 3031//3031 3030//3030 +f 3028//3028 3030//3030 2966//2966 +f 2922//2922 2971//2971 3032//3032 +f 2922//2922 3032//3032 3033//3033 +f 2966//2966 3034//3034 2977//2977 +f 2977//2977 3032//3032 2971//2971 +f 2977//2977 3034//3034 3032//3032 +f 2966//2966 3030//3030 3034//3034 +f 2922//2922 3033//3033 3024//3024 +f 3033//3033 3032//3032 3035//3035 +f 3030//3030 3036//3036 3034//3034 +f 3030//3030 3031//3031 3036//3036 +f 3034//3034 3035//3035 3032//3032 +f 3036//3036 3038//3038 3037//3037 +f 3036//3036 3037//3037 3034//3034 +f 3034//3034 3037//3037 3035//3035 +f 2967//2967 3039//3039 3029//3029 +f 2967//2967 2979//2979 3039//3039 +f 3028//3028 3040//3040 3031//3031 +f 3028//3028 3041//3041 3040//3040 +f 3029//3029 3041//3041 3028//3028 +f 3029//3029 3039//3039 3041//3041 +f 2980//2980 3042//3042 3039//3039 +f 2980//2980 2981//2981 3042//3042 +f 2979//2979 2980//2980 3039//3039 +f 3041//3041 3043//3043 3040//3040 +f 3041//3041 3044//3044 3043//3043 +f 3039//3039 3043//3043 3044//3044 +f 3039//3039 3042//3042 3043//3043 +f 3039//3039 3044//3044 3041//3041 +f 2990//2990 2991//2991 3045//3045 +f 3031//3031 3040//3040 3046//3046 +f 3036//3036 3047//3047 3038//3038 +f 3036//3036 3048//3048 3047//3047 +f 3031//3031 3048//3048 3036//3036 +f 3031//3031 3046//3046 3048//3048 +f 3043//3043 3050//3050 3049//3049 +f 3043//3043 3051//3051 3050//3050 +f 3040//3040 3049//3049 3046//3046 +f 3040//3040 3043//3043 3049//3049 +f 3048//3048 3052//3052 3047//3047 +f 3048//3048 3049//3049 3052//3052 +f 3049//3049 3050//3050 3052//3052 +f 3046//3046 3049//3049 3048//3048 +f 3033//3033 3053//3053 3024//3024 +f 3033//3033 3035//3035 3053//3053 +f 3024//3024 3054//3054 3025//3025 +f 3024//3024 3053//3053 3054//3054 +f 3037//3037 3053//3053 3035//3035 +f 3037//3037 3055//3055 3053//3053 +f 3037//3037 3056//3056 3055//3055 +f 3037//3037 3038//3038 3056//3056 +f 3057//3057 3058//3058 3054//3054 +f 3055//3055 3054//3054 3053//3053 +f 3055//3055 3057//3057 3054//3054 +f 3055//3055 3056//3056 3057//3057 +f 3054//3054 3060//3060 3059//3059 +f 3054//3054 3058//3058 3060//3060 +f 3025//3025 3061//3061 3027//3027 +f 3054//3054 3063//3063 3062//3062 +f 3054//3054 3059//3059 3063//3063 +f 3025//3025 3062//3062 3061//3061 +f 3025//3025 3054//3054 3062//3062 +f 3062//3062 3063//3063 3064//3064 +f 3061//3061 3062//3062 3064//3064 +f 3060//3060 3065//3065 3059//3059 +f 3063//3063 3059//3059 3066//3066 +f 3059//3059 3067//3067 3066//3066 +f 3059//3059 3065//3065 3067//3067 +f 3038//3038 3068//3068 3056//3056 +f 3038//3038 3047//3047 3068//3068 +f 3057//3057 3069//3069 3058//3058 +f 3057//3057 3068//3068 3069//3069 +f 3056//3056 3068//3068 3057//3057 +f 3058//3058 3070//3070 3060//3060 +f 3058//3058 3069//3069 3070//3070 +f 3047//3047 3071//3071 3068//3068 +f 3052//3052 3072//3072 3071//3071 +f 3047//3047 3052//3052 3071//3071 +f 3068//3068 3071//3071 3069//3069 +f 3071//3071 3073//3073 3069//3069 +f 3071//3071 3072//3072 3073//3073 +f 3069//3069 3074//3074 3070//3070 +f 3069//3069 3073//3073 3074//3074 +f 3072//3072 3074//3074 3073//3073 +f 3072//3072 3075//3075 3074//3074 +f 3060//3060 3076//3076 3065//3065 +f 3060//3060 3070//3070 3076//3076 +f 3065//3065 3076//3076 3067//3067 +f 3076//3076 3077//3077 3067//3067 +f 3074//3074 3079//3079 3078//3078 +f 3074//3074 3080//3080 3079//3079 +f 3070//3070 3078//3078 3076//3076 +f 3070//3070 3074//3074 3078//3078 +f 3076//3076 3078//3078 3077//3077 +f 3011//3011 3082//3082 3081//3081 +f 3011//3011 3012//3012 3082//3082 +f 2991//2991 3083//3083 3045//3045 +f 3011//3011 3083//3083 2991//2991 +f 3011//3011 3081//3081 3083//3083 +f 3045//3045 3085//3085 3084//3084 +f 3045//3045 3083//3083 3085//3085 +f 3083//3083 3086//3086 3085//3085 +f 3083//3083 3081//3081 3086//3086 +f 3082//3082 3086//3086 3081//3081 +f 3082//3082 3087//3087 3086//3086 +f 3012//3012 3088//3088 3082//3082 +f 3012//3012 3017//3017 3088//3088 +f 3017//3017 3089//3089 3088//3088 +f 3017//3017 3015//3015 3089//3089 +f 3082//3082 3088//3088 3087//3087 +f 3090//3090 3092//3092 3091//3091 +f 3090//3090 3093//3093 3092//3092 +f 3088//3088 3093//3093 3090//3090 +f 3088//3088 3089//3089 3093//3093 +f 3088//3088 3091//3091 3087//3087 +f 3088//3088 3090//3090 3091//3091 +f 3084//3084 3085//3085 3094//3094 +f 3085//3085 3095//3095 3094//3094 +f 3085//3085 3086//3086 3095//3095 +f 3086//3086 3096//3096 3095//3095 +f 3086//3086 3091//3091 3096//3096 +f 3087//3087 3091//3091 3086//3086 +f 3091//3091 3097//3097 3096//3096 +f 3091//3091 3092//3092 3097//3097 +f 3021//3021 3099//3099 3093//3093 +f 3021//3021 3022//3022 3099//3099 +f 3015//3015 3093//3093 3089//3089 +f 3015//3015 3021//3021 3093//3093 +f 3022//3022 3100//3100 3099//3099 +f 3093//3093 3101//3101 3092//3092 +f 3093//3093 3099//3099 3101//3101 +f 3106//3106 3104//3104 3737//3737 +f 2948//2948 3107//3107 2951//2951 +f 2898//2898 2903//2903 3107//3107 +f 2897//2897 3107//3107 2948//2948 +f 2897//2897 2898//2898 3107//3107 +f 3108//3108 3110//3110 3109//3109 +f 2949//2949 2950//2950 3108//3108 +f 2949//2949 3109//3109 2959//2959 +f 2949//2949 3108//3108 3109//3109 +f 3109//3109 3112//3112 3111//3111 +f 2957//2957 2959//2959 3109//3109 +f 2957//2957 3111//3111 2955//2955 +f 2957//2957 3109//3109 3111//3111 +f 3109//3109 3113//3113 3112//3112 +f 3109//3109 3110//3110 3113//3113 +f 3114//3114 3111//3111 3115//3115 +f 2956//2956 3111//3111 3114//3114 +f 2956//2956 2955//2955 3111//3111 +f 2956//2956 3114//3114 2988//2988 +f 3114//3114 3115//3115 3116//3116 +f 2988//2988 3114//3114 3116//3116 +f 3111//3111 3117//3117 3115//3115 +f 3111//3111 3112//3112 3117//3117 +f 3112//3112 3118//3118 3117//3117 +f 3112//3112 3113//3113 3118//3118 +f 3115//3115 3117//3117 3119//3119 +f 3117//3117 3120//3120 3119//3119 +f 3117//3117 3118//3118 3120//3120 +f 3121//3121 3116//3116 3122//3122 +f 2982//2982 3116//3116 3121//3121 +f 2982//2982 2988//2988 3116//3116 +f 2982//2982 3121//3121 2981//2981 +f 3116//3116 3123//3123 3122//3122 +f 3116//3116 3115//3115 3123//3123 +f 3121//3121 3122//3122 2981//2981 +f 3115//3115 3124//3124 3123//3123 +f 3115//3115 3119//3119 3124//3124 +f 2989//2989 3124//3124 3120//3120 +f 3119//3119 3120//3120 3124//3124 +f 3008//3008 2989//2989 3120//3120 +f 2989//2989 2990//2990 3124//3124 +f 2951//2951 3107//3107 2903//2903 +f 2903//2903 2914//2914 2951//2951 +f 2914//2914 2993//2993 2951//2951 +f 2914//2914 2915//2915 2993//2993 +f 3108//3108 3125//3125 3110//3110 +f 2950//2950 3125//3125 3108//3108 +f 2950//2950 2992//2992 3125//3125 +f 3110//3110 3126//3126 3113//3113 +f 3125//3125 3127//3127 3110//3110 +f 3125//3125 3128//3128 3127//3127 +f 2992//2992 3128//3128 3125//3125 +f 2992//2992 2994//2994 3128//3128 +f 2994//2994 2995//2995 3128//3128 +f 3110//3110 3127//3127 3126//3126 +f 3127//3127 3129//3129 3126//3126 +f 2996//2996 2993//2993 3130//3130 +f 2915//2915 3130//3130 2993//2993 +f 2915//2915 2916//2916 3130//3130 +f 2916//2916 2918//2918 3130//3130 +f 3130//3130 3132//3132 3131//3131 +f 3130//3130 2918//2918 3132//3132 +f 2996//2996 3131//3131 2995//2995 +f 2996//2996 3130//3130 3131//3131 +f 2918//2918 2919//2919 3133//3133 +f 2997//2997 3132//3132 3133//3133 +f 2918//2918 3133//3133 3132//3132 +f 3128//3128 3134//3134 3127//3127 +f 3128//3128 3131//3131 3134//3134 +f 2995//2995 3131//3131 3128//3128 +f 3131//3131 3132//3132 3134//3134 +f 2997//2997 2998//2998 3132//3132 +f 3127//3127 3135//3135 3129//3129 +f 3127//3127 3134//3134 3135//3135 +f 3134//3134 3136//3136 3135//3135 +f 3134//3134 3132//3132 3136//3136 +f 3738//3738 2919//2919 3000//3000 +f 3739//3739 2919//2919 3738//3738 +f 3133//3133 2919//2919 3739//3739 +f 3739//3739 2997//2997 3133//3133 +f 3740//3740 3136//3136 3132//3132 +f 3741//3741 3136//3136 3740//3740 +f 3738//3738 2999//2999 3741//3741 +f 3741//3741 2999//2999 3136//3136 +f 3739//3739 3740//3740 2998//2998 +f 2998//2998 3740//3740 3132//3132 +f 3113//3113 3001//3001 3118//3118 +f 3113//3113 3004//3004 3001//3001 +f 3113//3113 3126//3126 3004//3004 +f 3008//3008 3137//3137 3002//3002 +f 3008//3008 3120//3120 3137//3137 +f 3118//3118 3137//3137 3120//3120 +f 3118//3118 3001//3001 3137//3137 +f 3001//3001 3002//3002 3137//3137 +f 3005//3005 3138//3138 3007//3007 +f 3005//3005 3004//3004 3138//3138 +f 3126//3126 3138//3138 3004//3004 +f 3126//3126 3129//3129 3138//3138 +f 3129//3129 3007//3007 3138//3138 +f 3129//3129 3135//3135 3007//3007 +f 3007//3007 3135//3135 3018//3018 +f 3136//3136 3139//3139 3135//3135 +f 3742//3742 3139//3139 3136//3136 +f 3743//3743 3139//3139 3742//3742 +f 3140//3140 3139//3139 3743//3743 +f 3743//3743 3744//3744 3140//3140 +f 3000//3000 3742//3742 2999//2999 +f 2999//2999 3742//3742 3136//3136 +f 3135//3135 3141//3141 3018//3018 +f 3135//3135 3139//3139 3141//3141 +f 3139//3139 3142//3142 3141//3141 +f 3139//3139 3140//3140 3142//3142 +f 3018//3018 3141//3141 3020//3020 +f 3141//3141 3142//3142 3143//3143 +f 3020//3020 3144//3144 3100//3100 +f 3020//3020 3141//3141 3144//3144 +f 3020//3020 3100//3100 3022//3022 +f 3141//3141 3143//3143 3144//3144 +f 2981//2981 3145//3145 3042//3042 +f 2981//2981 3122//3122 3145//3145 +f 3122//3122 3123//3123 3145//3145 +f 3043//3043 3042//3042 3051//3051 +f 3042//3042 3145//3145 3051//3051 +f 3145//3145 3146//3146 3051//3051 +f 3123//3123 2990//2990 3145//3145 +f 3123//3123 3124//3124 2990//2990 +f 3145//3145 3147//3147 3146//3146 +f 3145//3145 2990//2990 3147//3147 +f 2990//2990 3045//3045 3147//3147 +f 3051//3051 3146//3146 3050//3050 +f 3052//3052 3148//3148 3072//3072 +f 3052//3052 3050//3050 3148//3148 +f 3050//3050 3146//3146 3148//3148 +f 3147//3147 3084//3084 3146//3146 +f 3147//3147 3045//3045 3084//3084 +f 3146//3146 3149//3149 3148//3148 +f 3146//3146 3084//3084 3149//3149 +f 3148//3148 3149//3149 3075//3075 +f 3072//3072 3148//3148 3075//3075 +f 3149//3149 3150//3150 3075//3075 +f 3074//3074 3151//3151 3080//3080 +f 3075//3075 3150//3150 3151//3151 +f 3075//3075 3151//3151 3074//3074 +f 3152//3152 3154//3154 3153//3153 +f 3078//3078 3154//3154 3152//3152 +f 3078//3078 3079//3079 3154//3154 +f 3078//3078 3152//3152 3077//3077 +f 3084//3084 3155//3155 3149//3149 +f 3084//3084 3156//3156 3155//3155 +f 3094//3094 3156//3156 3084//3084 +f 3095//3095 3098//3098 3156//3156 +f 3094//3094 3095//3095 3156//3156 +f 3097//3097 3157//3157 3098//3098 +f 3096//3096 3098//3098 3095//3095 +f 3096//3096 3097//3097 3098//3098 +f 3144//3144 3143//3143 3158//3158 +f 3100//3100 3160//3160 3159//3159 +f 3100//3100 3144//3144 3160//3160 +f 3100//3100 3159//3159 3099//3099 +f 3144//3144 3161//3161 3160//3160 +f 3144//3144 3158//3158 3161//3161 +f 3101//3101 3162//3162 3092//3092 +f 3101//3101 3159//3159 3162//3162 +f 3101//3101 3099//3099 3159//3159 +f 3097//3097 3092//3092 3157//3157 +f 3092//3092 3163//3163 3157//3157 +f 3092//3092 3162//3162 3163//3163 +f 3159//3159 3160//3160 3162//3162 +f 3160//3160 3161//3161 3164//3164 +f 3160//3160 3165//3165 3162//3162 +f 3160//3160 3164//3164 3165//3165 +f 3166//3166 3165//3165 3164//3164 +f 3166//3166 3167//3167 3165//3165 +f 3149//3149 3155//3155 3150//3150 +f 3080//3080 3151//3151 3168//3168 +f 3150//3150 3168//3168 3151//3151 +f 3150//3150 3169//3169 3168//3168 +f 3150//3150 3155//3155 3169//3169 +f 3156//3156 3170//3170 3155//3155 +f 3156//3156 3098//3098 3170//3170 +f 3098//3098 3171//3171 3170//3170 +f 3098//3098 3157//3157 3171//3171 +f 3155//3155 3170//3170 3169//3169 +f 3170//3170 3171//3171 3172//3172 +f 3168//3168 3169//3169 3173//3173 +f 3080//3080 3168//3168 3173//3173 +f 3154//3154 3173//3173 3153//3153 +f 3079//3079 3173//3173 3154//3154 +f 3079//3079 3080//3080 3173//3173 +f 3173//3173 3174//3174 3153//3153 +f 3173//3173 3169//3169 3174//3174 +f 3169//3169 3170//3170 3175//3175 +f 3170//3170 3105//3105 3175//3175 +f 3170//3170 3172//3172 3105//3105 +f 3104//3104 3105//3105 3172//3172 +f 3169//3169 3175//3175 3174//3174 +f 3175//3175 3176//3176 3174//3174 +f 3175//3175 3105//3105 3176//3176 +f 3157//3157 3177//3177 3171//3171 +f 3157//3157 3178//3178 3177//3177 +f 3157//3157 3163//3163 3178//3178 +f 3104//3104 3172//3172 3171//3171 +f 3746//3746 3737//3737 3104//3104 +f 3746//3746 3104//3104 3171//3171 +f 3745//3745 3177//3177 3178//3178 +f 3746//3746 3177//3177 3745//3745 +f 3171//3171 3177//3177 3746//3746 +f 3102//3102 3745//3745 3178//3178 +f 3102//3102 3179//3179 3103//3103 +f 3102//3102 3178//3178 3179//3179 +f 3163//3163 3179//3179 3178//3178 +f 3163//3163 3162//3162 3179//3179 +f 3179//3179 3181//3181 3180//3180 +f 3179//3179 3162//3162 3181//3181 +f 3103//3103 3179//3179 3180//3180 +f 3105//3105 3182//3182 3176//3176 +f 3105//3105 3106//3106 3182//3182 +f 3105//3105 3104//3104 3106//3106 +f 3747//3747 3183//3183 3106//3106 +f 3748//3748 3183//3183 3747//3747 +f 3180//3180 3183//3183 3748//3748 +f 3745//3745 3103//3103 3748//3748 +f 3748//3748 3103//3103 3180//3180 +f 3737//3737 3747//3747 3106//3106 +f 3180//3180 3184//3184 3183//3183 +f 3180//3180 3181//3181 3184//3184 +f 3106//3106 3185//3185 3182//3182 +f 3106//3106 3183//3183 3185//3185 +f 3183//3183 3186//3186 3185//3185 +f 3183//3183 3184//3184 3186//3186 +f 2337//2337 3023//3023 2339//2339 +f 2266//2266 3023//3023 2337//2337 +f 3023//3023 3187//3187 2339//2339 +f 2339//2339 3187//3187 3188//3188 +f 3023//3023 3189//3189 3187//3187 +f 3023//3023 3026//3026 3189//3189 +f 3026//3026 3027//3027 3189//3189 +f 3189//3189 3190//3190 3187//3187 +f 3189//3189 3191//3191 3190//3190 +f 3189//3189 3027//3027 3191//3191 +f 3188//3188 3187//3187 3190//3190 +f 3190//3190 3191//3191 3192//3192 +f 3188//3188 3190//3190 2339//2339 +f 3190//3190 3192//3192 3193//3193 +f 2339//2339 2350//2350 2341//2341 +f 2351//2351 3194//3194 2349//2349 +f 2339//2339 3190//3190 3193//3193 +f 2339//2339 3193//3193 2350//2350 +f 3193//3193 3196//3196 3195//3195 +f 3193//3193 3192//3192 3196//3196 +f 2351//2351 3197//3197 3194//3194 +f 2350//2350 3197//3197 2351//2351 +f 2350//2350 3193//3193 3198//3198 +f 3195//3195 3198//3198 3193//3193 +f 2350//2350 3199//3199 3197//3197 +f 2350//2350 3198//3198 3199//3199 +f 3195//3195 3199//3199 3198//3198 +f 3195//3195 3200//3200 3199//3199 +f 3195//3195 3196//3196 3200//3200 +f 3061//3061 3202//3202 3201//3201 +f 3061//3061 3064//3064 3202//3202 +f 3064//3064 3063//3063 3202//3202 +f 3061//3061 3201//3201 3203//3203 +f 3027//3027 3203//3203 3191//3191 +f 3027//3027 3061//3061 3203//3203 +f 3201//3201 3202//3202 3204//3204 +f 3063//3063 3066//3066 3202//3202 +f 3066//3066 3067//3067 3205//3205 +f 3202//3202 3206//3206 3204//3204 +f 3202//3202 3066//3066 3206//3206 +f 3066//3066 3205//3205 3206//3206 +f 3203//3203 3201//3201 3207//3207 +f 3191//3191 3203//3203 3192//3192 +f 3201//3201 3208//3208 3207//3207 +f 3201//3201 3204//3204 3208//3208 +f 3203//3203 3210//3210 3209//3209 +f 3203//3203 3207//3207 3210//3210 +f 3192//3192 3203//3203 3209//3209 +f 3207//3207 3211//3211 3210//3210 +f 3207//3207 3208//3208 3211//3211 +f 3208//3208 3206//3206 3212//3212 +f 3204//3204 3206//3206 3208//3208 +f 3206//3206 3213//3213 3212//3212 +f 3206//3206 3205//3205 3213//3213 +f 3067//3067 3214//3214 3205//3205 +f 3067//3067 3077//3077 3214//3214 +f 3205//3205 3215//3215 3213//3213 +f 3205//3205 3214//3214 3215//3215 +f 3215//3215 3214//3214 3216//3216 +f 3211//3211 3208//3208 3217//3217 +f 3192//3192 3209//3209 3196//3196 +f 3211//3211 3217//3217 3218//3218 +f 3210//3210 3211//3211 3218//3218 +f 3218//3218 3217//3217 3219//3219 +f 3209//3209 3221//3221 3220//3220 +f 3209//3209 3210//3210 3221//3221 +f 3196//3196 3209//3209 3220//3220 +f 3218//3218 3223//3223 3222//3222 +f 3218//3218 3219//3219 3223//3223 +f 3210//3210 3222//3222 3221//3221 +f 3210//3210 3218//3218 3222//3222 +f 3208//3208 3212//3212 3224//3224 +f 3212//3212 3225//3225 3224//3224 +f 3212//3212 3213//3213 3225//3225 +f 3213//3213 3215//3215 3225//3225 +f 3215//3215 3216//3216 3226//3226 +f 3227//3227 3228//3228 3229//3229 +f 3230//3230 3229//3229 3231//3231 +f 3229//3229 3232//3232 3231//3231 +f 3208//3208 3224//3224 3217//3217 +f 3217//3217 3224//3224 3233//3233 +f 3224//3224 3225//3225 3233//3233 +f 3217//3217 3234//3234 3219//3219 +f 3217//3217 3233//3233 3234//3234 +f 3233//3233 3235//3235 3234//3234 +f 3233//3233 3225//3225 3235//3235 +f 3219//3219 3236//3236 3223//3223 +f 3219//3219 3234//3234 3236//3236 +f 3234//3234 3235//3235 3236//3236 +f 3225//3225 3215//3215 3237//3237 +f 3226//3226 3239//3239 3238//3238 +f 3226//3226 3240//3240 3239//3239 +f 3215//3215 3226//3226 3238//3238 +f 3240//3240 3241//3241 3239//3239 +f 3215//3215 3238//3238 3237//3237 +f 3239//3239 3241//3241 3242//3242 +f 3241//3241 3243//3243 3242//3242 +f 3225//3225 3237//3237 3235//3235 +f 3238//3238 3242//3242 3244//3244 +f 3238//3238 3239//3239 3242//3242 +f 3237//3237 3238//3238 3244//3244 +f 3242//3242 3243//3243 3245//3245 +f 3243//3243 3246//3246 3245//3245 +f 3243//3243 3247//3247 3246//3246 +f 3231//3231 3249//3249 3248//3248 +f 3231//3231 3232//3232 3249//3249 +f 3248//3248 3249//3249 3250//3250 +f 3249//3249 3251//3251 3250//3250 +f 3249//3249 3232//3232 3251//3251 +f 3252//3252 3251//3251 3232//3232 +f 3252//3252 3253//3253 3251//3251 +f 3247//3247 3254//3254 3246//3246 +f 3247//3247 3248//3248 3254//3254 +f 3254//3254 3248//3248 3255//3255 +f 3253//3253 3256//3256 3251//3251 +f 3248//3248 3257//3257 3255//3255 +f 3248//3248 3250//3250 3257//3257 +f 3250//3250 3258//3258 3257//3257 +f 3250//3250 3251//3251 3258//3258 +f 3256//3256 3258//3258 3251//3251 +f 3256//3256 3259//3259 3258//3258 +f 3200//3200 3260//3260 3199//3199 +f 3200//3200 3196//3196 3261//3261 +f 3199//3199 3262//3262 3197//3197 +f 3199//3199 3260//3260 3262//3262 +f 3200//3200 3263//3263 3260//3260 +f 3200//3200 3264//3264 3263//3263 +f 3200//3200 3261//3261 3264//3264 +f 3260//3260 3265//3265 3262//3262 +f 3260//3260 3263//3263 3265//3265 +f 3264//3264 3267//3267 3266//3266 +f 3264//3264 3261//3261 3267//3267 +f 3264//3264 3269//3269 3268//3268 +f 3264//3264 3266//3266 3269//3269 +f 3263//3263 3268//3268 3265//3265 +f 3263//3263 3264//3264 3268//3268 +f 2349//2349 3270//3270 2443//2443 +f 2349//2349 3194//3194 3270//3270 +f 2443//2443 3270//3270 2445//2445 +f 2445//2445 3271//3271 2444//2444 +f 2445//2445 3272//3272 3271//3271 +f 3270//3270 3272//3272 2445//2445 +f 2444//2444 3271//3271 2461//2461 +f 2461//2461 3271//3271 3273//3273 +f 2464//2464 2465//2465 3274//3274 +f 3274//3274 3276//3276 3275//3275 +f 3274//3274 2465//2465 3276//3276 +f 3275//3275 3278//3278 3277//3277 +f 3275//3275 3276//3276 3278//3278 +f 3194//3194 3279//3279 3270//3270 +f 3194//3194 3197//3197 3279//3279 +f 3272//3272 3280//3280 3271//3271 +f 3270//3270 3280//3280 3272//3272 +f 3270//3270 3279//3279 3280//3280 +f 3197//3197 3262//3262 3279//3279 +f 3280//3280 3265//3265 3271//3271 +f 3279//3279 3265//3265 3280//3280 +f 3279//3279 3262//3262 3265//3265 +f 3271//3271 3281//3281 3273//3273 +f 3271//3271 3282//3282 3281//3281 +f 3268//3268 3283//3283 3282//3282 +f 3268//3268 3269//3269 3283//3283 +f 3265//3265 3282//3282 3271//3271 +f 3265//3265 3268//3268 3282//3282 +f 3281//3281 3282//3282 3273//3273 +f 3282//3282 3284//3284 3273//3273 +f 3282//3282 3283//3283 3284//3284 +f 3285//3285 3286//3286 3278//3278 +f 3277//3277 3286//3286 3287//3287 +f 3277//3277 3278//3278 3286//3286 +f 3288//3288 3287//3287 3289//3289 +f 3288//3288 3289//3289 3290//3290 +f 3285//3285 3291//3291 3286//3286 +f 3285//3285 3292//3292 3291//3291 +f 3287//3287 3291//3291 3289//3289 +f 3287//3287 3286//3286 3291//3291 +f 2451//2451 2461//2461 2484//2484 +f 2482//2482 3293//3293 2485//2485 +f 2482//2482 3294//3294 3293//3293 +f 2484//2484 3294//3294 2482//2482 +f 2485//2485 3293//3293 3295//3295 +f 2485//2485 3295//3295 2483//2483 +f 3293//3293 3296//3296 3295//3295 +f 2461//2461 3297//3297 2484//2484 +f 2461//2461 3298//3298 3297//3297 +f 2461//2461 3273//3273 3298//3298 +f 3294//3294 3299//3299 3293//3293 +f 2484//2484 3299//3299 3294//3294 +f 2484//2484 3297//3297 3299//3299 +f 3299//3299 3300//3300 3293//3293 +f 3298//3298 3300//3300 3299//3299 +f 3298//3298 3301//3301 3300//3300 +f 3297//3297 3298//3298 3299//3299 +f 3296//3296 3302//3302 3295//3295 +f 3293//3293 3300//3300 3296//3296 +f 2483//2483 3303//3303 2486//2486 +f 2483//2483 3295//3295 3303//3303 +f 2486//2486 3304//3304 2490//2490 +f 2486//2486 3303//3303 3304//3304 +f 2489//2489 3305//3305 2491//2491 +f 3305//3305 3306//3306 2491//2491 +f 2465//2465 3306//3306 3276//3276 +f 2465//2465 2491//2491 3306//3306 +f 2490//2490 3307//3307 2492//2492 +f 2490//2490 3304//3304 3307//3307 +f 2489//2489 3307//3307 3305//3305 +f 2489//2489 2492//2492 3307//3307 +f 3295//3295 3308//3308 3303//3303 +f 3295//3295 3302//3302 3308//3308 +f 3303//3303 3308//3308 3304//3304 +f 3305//3305 3309//3309 3306//3306 +f 3309//3309 3310//3310 3306//3306 +f 3276//3276 3310//3310 3278//3278 +f 3276//3276 3306//3306 3310//3310 +f 3304//3304 3311//3311 3307//3307 +f 3305//3305 3311//3311 3309//3309 +f 3305//3305 3307//3307 3311//3311 +f 3298//3298 3312//3312 3301//3301 +f 3300//3300 3301//3301 3296//3296 +f 3312//3312 3296//3296 3301//3301 +f 3296//3296 3313//3313 3302//3302 +f 3312//3312 3313//3313 3296//3296 +f 3298//3298 3314//3314 3312//3312 +f 3298//3298 3315//3315 3314//3314 +f 3273//3273 3315//3315 3298//3298 +f 3273//3273 3284//3284 3315//3315 +f 3312//3312 3314//3314 3313//3313 +f 3308//3308 3317//3317 3304//3304 +f 3311//3311 3317//3317 3318//3318 +f 3311//3311 3304//3304 3317//3317 +f 3302//3302 3319//3319 3308//3308 +f 3308//3308 3319//3319 3317//3317 +f 3311//3311 3320//3320 3309//3309 +f 3311//3311 3318//3318 3320//3320 +f 3309//3309 3320//3320 3310//3310 +f 3285//3285 3310//3310 3320//3320 +f 3285//3285 3278//3278 3310//3310 +f 3318//3318 3321//3321 3320//3320 +f 3285//3285 3320//3320 3321//3321 +f 3317//3317 3322//3322 3318//3318 +f 3317//3317 3323//3323 3322//3322 +f 3302//3302 3313//3313 3319//3319 +f 3316//3316 3319//3319 3313//3313 +f 3316//3316 3323//3323 3319//3319 +f 3317//3317 3319//3319 3323//3323 +f 3318//3318 3322//3322 3321//3321 +f 3285//3285 3321//3321 3292//3292 +f 3322//3322 3324//3324 3321//3321 +f 3292//3292 3321//3321 3324//3324 +f 3196//3196 3220//3220 3261//3261 +f 3222//3222 3326//3326 3325//3325 +f 3222//3222 3223//3223 3326//3326 +f 3221//3221 3222//3222 3325//3325 +f 3267//3267 3327//3327 3266//3266 +f 3220//3220 3327//3327 3267//3267 +f 3220//3220 3221//3221 3327//3327 +f 3261//3261 3220//3220 3267//3267 +f 3266//3266 3328//3328 3269//3269 +f 3266//3266 3327//3327 3328//3328 +f 3327//3327 3329//3329 3328//3328 +f 3327//3327 3330//3330 3329//3329 +f 3325//3325 3329//3329 3330//3330 +f 3325//3325 3326//3326 3329//3329 +f 3331//3331 3329//3329 3326//3326 +f 3331//3331 3328//3328 3329//3329 +f 3221//3221 3330//3330 3327//3327 +f 3221//3221 3325//3325 3330//3330 +f 3331//3331 3333//3333 3332//3332 +f 3331//3331 3326//3326 3333//3333 +f 3223//3223 3236//3236 3334//3334 +f 3236//3236 3335//3335 3334//3334 +f 3236//3236 3235//3235 3335//3335 +f 3326//3326 3336//3336 3333//3333 +f 3326//3326 3337//3337 3336//3336 +f 3223//3223 3337//3337 3326//3326 +f 3223//3223 3334//3334 3337//3337 +f 3337//3337 3338//3338 3336//3336 +f 3337//3337 3335//3335 3338//3338 +f 3334//3334 3335//3335 3337//3337 +f 3269//3269 3339//3339 3283//3283 +f 3269//3269 3328//3328 3339//3339 +f 3331//3331 3339//3339 3328//3328 +f 3331//3331 3332//3332 3339//3339 +f 3332//3332 3340//3340 3339//3339 +f 3332//3332 3333//3333 3340//3340 +f 3283//3283 3341//3341 3284//3284 +f 3283//3283 3339//3339 3341//3341 +f 3339//3339 3342//3342 3341//3341 +f 3339//3339 3340//3340 3342//3342 +f 3333//3333 3343//3343 3340//3340 +f 3333//3333 3336//3336 3343//3343 +f 3336//3336 3344//3344 3343//3343 +f 3336//3336 3338//3338 3344//3344 +f 3340//3340 3343//3343 3342//3342 +f 3343//3343 3345//3345 3342//3342 +f 3343//3343 3344//3344 3345//3345 +f 3290//3290 3289//3289 3346//3346 +f 3292//3292 3347//3347 3291//3291 +f 3289//3289 3347//3347 3346//3346 +f 3289//3289 3291//3291 3347//3347 +f 3290//3290 3346//3346 3348//3348 +f 3348//3348 3346//3346 3349//3349 +f 3292//3292 3350//3350 3347//3347 +f 3346//3346 3347//3347 3349//3349 +f 3235//3235 3237//3237 3335//3335 +f 3335//3335 3351//3351 3338//3338 +f 3335//3335 3352//3352 3351//3351 +f 3335//3335 3237//3237 3352//3352 +f 3352//3352 3353//3353 3351//3351 +f 3244//3244 3355//3355 3354//3354 +f 3244//3244 3242//3242 3355//3355 +f 3237//3237 3244//3244 3354//3354 +f 3352//3352 3356//3356 3353//3353 +f 3352//3352 3354//3354 3356//3356 +f 3237//3237 3354//3354 3352//3352 +f 3354//3354 3357//3357 3356//3356 +f 3354//3354 3355//3355 3357//3357 +f 3356//3356 3357//3357 3358//3358 +f 3242//3242 3359//3359 3355//3355 +f 3242//3242 3245//3245 3359//3359 +f 3245//3245 3246//3246 3359//3359 +f 3358//3358 3357//3357 3360//3360 +f 3355//3355 3360//3360 3357//3357 +f 3355//3355 3359//3359 3360//3360 +f 3359//3359 3361//3361 3360//3360 +f 3338//3338 3351//3351 3344//3344 +f 3351//3351 3353//3353 3362//3362 +f 3344//3344 3351//3351 3345//3345 +f 3362//3362 3364//3364 3363//3363 +f 3362//3362 3365//3365 3364//3364 +f 3351//3351 3363//3363 3345//3345 +f 3351//3351 3362//3362 3363//3363 +f 3362//3362 3366//3366 3365//3365 +f 3362//3362 3367//3367 3366//3366 +f 3356//3356 3366//3366 3367//3367 +f 3356//3356 3358//3358 3366//3366 +f 3353//3353 3367//3367 3362//3362 +f 3353//3353 3356//3356 3367//3367 +f 3358//3358 3368//3368 3366//3366 +f 3358//3358 3360//3360 3368//3368 +f 3368//3368 3360//3360 3369//3369 +f 3364//3364 3365//3365 3370//3370 +f 3366//3366 3368//3368 3365//3365 +f 3370//3370 3365//3365 3368//3368 +f 3246//3246 3255//3255 3359//3359 +f 3246//3246 3254//3254 3255//3255 +f 3359//3359 3371//3371 3361//3361 +f 3359//3359 3255//3255 3371//3371 +f 3374//3374 3258//3258 3259//3259 +f 3374//3374 3257//3257 3258//3258 +f 3374//3374 3376//3376 3375//3375 +f 3374//3374 3259//3259 3376//3376 +f 3373//3373 3376//3376 3259//3259 +f 3373//3373 3377//3377 3376//3376 +f 3372//3372 3374//3374 3375//3375 +f 3372//3372 3371//3371 3374//3374 +f 3255//3255 3374//3374 3371//3371 +f 3255//3255 3257//3257 3374//3374 +f 3348//3348 3349//3349 3378//3378 +f 3378//3378 3379//3379 3377//3377 +f 3378//3378 3349//3349 3379//3379 +f 3350//3350 3380//3380 3347//3347 +f 3349//3349 3347//3347 3380//3380 +f 3382//3382 3380//3380 3381//3381 +f 3382//3382 3379//3379 3380//3380 +f 3349//3349 3380//3380 3379//3379 +f 3361//3361 3369//3369 3360//3360 +f 3361//3361 3371//3371 3369//3369 +f 3372//3372 3369//3369 3371//3371 +f 3372//3372 3383//3383 3369//3369 +f 3370//3370 3368//3368 3383//3383 +f 3369//3369 3383//3383 3368//3368 +f 3381//3381 3383//3383 3372//3372 +f 3381//3381 3372//3372 3382//3382 +f 3382//3382 3384//3384 3379//3379 +f 3382//3382 3372//3372 3384//3384 +f 3375//3375 3384//3384 3372//3372 +f 3375//3375 3376//3376 3384//3384 +f 3377//3377 3384//3384 3376//3376 +f 3377//3377 3379//3379 3384//3384 +f 3284//3284 3341//3341 3315//3315 +f 3315//3315 3385//3385 3314//3314 +f 3341//3341 3342//3342 3315//3315 +f 3314//3314 3385//3385 3313//3313 +f 3315//3315 3386//3386 3385//3385 +f 3342//3342 3386//3386 3315//3315 +f 3342//3342 3345//3345 3386//3386 +f 3385//3385 3387//3387 3313//3313 +f 3313//3313 3388//3388 3316//3316 +f 3313//3313 3387//3387 3388//3388 +f 3316//3316 3389//3389 3323//3323 +f 3323//3323 3390//3390 3322//3322 +f 3323//3323 3389//3389 3390//3390 +f 3322//3322 3390//3390 3324//3324 +f 3316//3316 3388//3388 3389//3389 +f 3390//3390 3391//3391 3324//3324 +f 3292//3292 3391//3391 3350//3350 +f 3292//3292 3324//3324 3391//3391 +f 3386//3386 3363//3363 3385//3385 +f 3345//3345 3363//3363 3386//3386 +f 3385//3385 3363//3363 3387//3387 +f 3364//3364 3370//3370 3363//3363 +f 3387//3387 3392//3392 3388//3388 +f 3387//3387 3363//3363 3392//3392 +f 3370//3370 3392//3392 3363//3363 +f 3389//3389 3393//3393 3390//3390 +f 3388//3388 3392//3392 3389//3389 +f 3370//3370 3383//3383 3392//3392 +f 3389//3389 3394//3394 3393//3393 +f 3389//3389 3392//3392 3394//3394 +f 3383//3383 3394//3394 3392//3392 +f 3383//3383 3381//3381 3394//3394 +f 3390//3390 3393//3393 3391//3391 +f 3350//3350 3393//3393 3380//3380 +f 3350//3350 3391//3391 3393//3393 +f 3380//3380 3394//3394 3381//3381 +f 3380//3380 3393//3393 3394//3394 +f 3152//3152 3153//3153 3395//3395 +f 3077//3077 3395//3395 3214//3214 +f 3077//3077 3152//3152 3395//3395 +f 3395//3395 3153//3153 3396//3396 +f 3214//3214 3396//3396 3216//3216 +f 3214//3214 3395//3395 3396//3396 +f 3153//3153 3397//3397 3396//3396 +f 3153//3153 3174//3174 3397//3397 +f 3174//3174 3176//3176 3398//3398 +f 3226//3226 3399//3399 3240//3240 +f 3216//3216 3399//3399 3226//3226 +f 3216//3216 3396//3396 3399//3399 +f 3240//3240 3399//3399 3241//3241 +f 3396//3396 3241//3241 3399//3399 +f 3396//3396 3397//3397 3241//3241 +f 3174//3174 3398//3398 3397//3397 +f 3397//3397 3398//3398 3247//3247 +f 3182//3182 3400//3400 3176//3176 +f 3176//3176 3400//3400 3398//3398 +f 3182//3182 3185//3185 3400//3400 +f 3227//3227 3186//3186 3228//3228 +f 3227//3227 3185//3185 3186//3186 +f 3184//3184 3228//3228 3186//3186 +f 3400//3400 3185//3185 3230//3230 +f 3227//3227 3230//3230 3185//3185 +f 3398//3398 3400//3400 3248//3248 +f 3230//3230 3248//3248 3400//3400 +f 3230//3230 3231//3231 3248//3248 +f 3227//3227 3229//3229 3230//3230 +f 3241//3241 3397//3397 3243//3243 +f 3397//3397 3247//3247 3243//3243 +f 3248//3248 3247//3247 3398//3398 +f 1902//1902 3401//3401 1905//1905 +f 1909//1909 3403//3403 1910//1910 +f 1909//1909 3402//3402 3403//3403 +f 3402//3402 3404//3404 3403//3403 +f 1909//1909 1904//1904 3402//3402 +f 1905//1905 3402//3402 1904//1904 +f 3402//3402 3401//3401 3404//3404 +f 3402//3402 1905//1905 3401//3401 +f 1001//1001 3405//3405 1902//1902 +f 1001//1001 2519//2519 3405//3405 +f 1902//1902 3405//3405 3401//3401 +f 3404//3404 3401//3401 3406//3406 +f 3401//3401 3408//3408 3406//3406 +f 1919//1919 3410//3410 1920//1920 +f 1918//1918 1861//1861 1920//1920 +f 1913//1913 1920//1920 1861//1861 +f 3409//3409 1918//1918 1920//1920 +f 1911//1911 1917//1917 3411//3411 +f 3409//3409 3412//3412 1918//1918 +f 3411//3411 1917//1917 3413//3413 +f 1917//1917 3412//3412 3413//3413 +f 1917//1917 1918//1918 3412//3412 +f 1910//1910 3403//3403 1938//1938 +f 3403//3403 3404//3404 3414//3414 +f 3403//3403 3415//3415 1938//1938 +f 3403//3403 3414//3414 3415//3415 +f 1939//1939 1943//1943 3410//3410 +f 1938//1938 3415//3415 1942//1942 +f 1939//1939 3410//3410 1919//1919 +f 1941//1941 1942//1942 3417//3417 +f 3415//3415 3417//3417 1942//1942 +f 3410//3410 1943//1943 3416//3416 +f 1941//1941 3416//3416 1943//1943 +f 1941//1941 3417//3417 3418//3418 +f 1941//1941 3418//3418 3416//3416 +f 3404//3404 3407//3407 3414//3414 +f 3410//3410 3416//3416 1920//1920 +f 3405//3405 3408//3408 3401//3401 +f 2519//2519 2562//2562 3405//3405 +f 3405//3405 3419//3419 3408//3408 +f 3405//3405 2562//2562 3419//3419 +f 3404//3404 3406//3406 3407//3407 +f 3408//3408 3420//3420 3406//3406 +f 3406//3406 3421//3421 3407//3407 +f 3406//3406 3420//3420 3421//3421 +f 3419//3419 3420//3420 3408//3408 +f 2568//2568 2566//2566 3422//3422 +f 2565//2565 2567//2567 2566//2566 +f 3422//3422 2566//2566 3423//3423 +f 2566//2566 2567//2567 3423//3423 +f 2562//2562 2568//2568 3419//3419 +f 3422//3422 3419//3419 2568//2568 +f 3419//3419 3422//3422 3420//3420 +f 3420//3420 3422//3422 3423//3423 +f 3420//3420 3423//3423 3421//3421 +f 3421//3421 3423//3423 3424//3424 +f 3423//3423 2567//2567 3425//3425 +f 3423//3423 3426//3426 3424//3424 +f 3423//3423 3425//3425 3426//3426 +f 3411//3411 3428//3428 3427//3427 +f 3411//3411 3413//3413 3428//3428 +f 3413//3413 3412//3412 3429//3429 +f 3409//3409 3429//3429 3412//3412 +f 3409//3409 3430//3430 3429//3429 +f 3413//3413 3431//3431 3428//3428 +f 3413//3413 3429//3429 3431//3431 +f 3432//3432 3431//3431 3430//3430 +f 3429//3429 3430//3430 3431//3431 +f 1920//1920 3433//3433 3409//3409 +f 3409//3409 3433//3433 3434//3434 +f 3434//3434 3430//3430 3409//3409 +f 3434//3434 3435//3435 3430//3430 +f 3432//3432 3430//3430 3437//3437 +f 3432//3432 3439//3439 3438//3438 +f 3432//3432 3437//3437 3439//3439 +f 3428//3428 3438//3438 3440//3440 +f 3428//3428 3431//3431 3438//3438 +f 3432//3432 3438//3438 3431//3431 +f 3438//3438 3439//3439 3440//3440 +f 3440//3440 3443//3443 3442//3442 +f 3440//3440 3439//3439 3443//3443 +f 3441//3441 3443//3443 3439//3439 +f 3441//3441 3444//3444 3443//3443 +f 3434//3434 3436//3436 3435//3435 +f 3430//3430 3435//3435 3437//3437 +f 3445//3445 3437//3437 3435//3435 +f 3445//3445 3447//3447 3446//3446 +f 3435//3435 3448//3448 3447//3447 +f 3445//3445 3435//3435 3447//3447 +f 3439//3439 3445//3445 3441//3441 +f 3439//3439 3437//3437 3445//3445 +f 3441//3441 3450//3450 3444//3444 +f 3441//3441 3445//3445 3450//3450 +f 3446//3446 3450//3450 3445//3445 +f 3414//3414 3451//3451 3415//3415 +f 3407//3407 3452//3452 3414//3414 +f 3407//3407 3421//3421 3452//3452 +f 3414//3414 3452//3452 3451//3451 +f 3418//3418 3417//3417 3454//3454 +f 3415//3415 3451//3451 3417//3417 +f 3418//3418 3454//3454 3416//3416 +f 3454//3454 3417//3417 3455//3455 +f 3451//3451 3455//3455 3417//3417 +f 3454//3454 3453//3453 3416//3416 +f 3416//3416 3433//3433 1920//1920 +f 3416//3416 3434//3434 3433//3433 +f 3416//3416 3453//3453 3434//3434 +f 3453//3453 3436//3436 3434//3434 +f 3452//3452 3456//3456 3451//3451 +f 3421//3421 3424//3424 3452//3452 +f 3451//3451 3456//3456 3455//3455 +f 3453//3453 3457//3457 3436//3436 +f 3454//3454 3457//3457 3453//3453 +f 3454//3454 3455//3455 3458//3458 +f 3454//3454 3458//3458 3457//3457 +f 3452//3452 3459//3459 3456//3456 +f 3452//3452 3424//3424 3459//3459 +f 3460//3460 3459//3459 3426//3426 +f 3461//3461 3459//3459 3460//3460 +f 3424//3424 3426//3426 3459//3459 +f 3448//3448 3458//3458 3462//3462 +f 3448//3448 3436//3436 3458//3458 +f 3458//3458 3455//3455 3461//3461 +f 3456//3456 3461//3461 3455//3455 +f 3456//3456 3459//3459 3461//3461 +f 3436//3436 3457//3457 3458//3458 +f 3461//3461 3463//3463 3458//3458 +f 3461//3461 3460//3460 3463//3463 +f 3436//3436 3448//3448 3435//3435 +f 3464//3464 3462//3462 3458//3458 +f 3464//3464 3447//3447 3462//3462 +f 3448//3448 3462//3462 3447//3447 +f 1668//1668 1911//1911 2902//2902 +f 2902//2902 1911//1911 3411//3411 +f 3411//3411 2911//2911 2902//2902 +f 3411//3411 3427//3427 2911//2911 +f 2911//2911 3427//3427 2917//2917 +f 3428//3428 3440//3440 3427//3427 +f 2917//2917 3427//3427 3465//3465 +f 3440//3440 3465//3465 3427//3427 +f 2910//2910 2917//2917 2919//2919 +f 2690//2690 2693//2693 3469//3469 +f 2689//2689 2690//2690 3469//3469 +f 2693//2693 3470//3470 3469//3469 +f 3469//3469 3471//3471 2689//2689 +f 2567//2567 2689//2689 3471//3471 +f 3472//3472 3467//3467 2693//2693 +f 3470//3470 2693//2693 3467//3467 +f 2567//2567 3473//3473 3425//3425 +f 2567//2567 3471//3471 3473//3473 +f 3471//3471 3474//3474 3473//3473 +f 3471//3471 3469//3469 3474//3474 +f 3425//3425 3473//3473 3426//3426 +f 3473//3473 3474//3474 3475//3475 +f 3469//3469 3470//3470 3474//3474 +f 3470//3470 3476//3476 3474//3474 +f 3476//3476 3477//3477 3474//3474 +f 2693//2693 2692//2692 3472//3472 +f 2692//2692 2696//2696 3472//3472 +f 2696//2696 3467//3467 3472//3472 +f 2697//2697 2699//2699 2696//2696 +f 2696//2696 2699//2699 3466//3466 +f 2696//2696 3466//3466 3467//3467 +f 3467//3467 3478//3478 3470//3470 +f 3470//3470 3478//3478 3476//3476 +f 3467//3467 3468//3468 3478//3478 +f 3468//3468 3479//3479 3478//3478 +f 3444//3444 3482//3482 3443//3443 +f 3442//3442 3443//3443 3483//3483 +f 3482//3482 3483//3483 3443//3443 +f 3442//3442 3483//3483 3484//3484 +f 3484//3484 3483//3483 3486//3486 +f 3485//3485 3486//3486 3483//3483 +f 3487//3487 3489//3489 3488//3488 +f 3449//3449 3447//3447 3464//3464 +f 3446//3446 3449//3449 3487//3487 +f 3446//3446 3447//3447 3449//3449 +f 3490//3490 3481//3481 3464//3464 +f 3487//3487 3491//3491 3489//3489 +f 3487//3487 3449//3449 3491//3491 +f 3464//3464 3491//3491 3449//3449 +f 3446//3446 3444//3444 3450//3450 +f 3446//3446 3487//3487 3444//3444 +f 3487//3487 3482//3482 3444//3444 +f 3487//3487 3488//3488 3482//3482 +f 3488//3488 3489//3489 3492//3492 +f 3491//3491 3493//3493 3489//3489 +f 3492//3492 3489//3489 3494//3494 +f 3493//3493 3494//3494 3489//3489 +f 3491//3491 3481//3481 3493//3493 +f 3491//3491 3464//3464 3481//3481 +f 3480//3480 3493//3493 3481//3481 +f 3483//3483 3495//3495 3485//3485 +f 3483//3483 3482//3482 3495//3495 +f 3488//3488 3495//3495 3482//3482 +f 3488//3488 3492//3492 3495//3495 +f 3480//3480 3496//3496 3499//3499 +f 3497//3497 3496//3496 3480//3480 +f 3496//3496 3498//3498 3500//3500 +f 3496//3496 3500//3500 3499//3499 +f 3503//3503 3501//3501 3502//3502 +f 3503//3503 3504//3504 3501//3501 +f 3504//3504 3498//3498 3501//3501 +f 3504//3504 3505//3505 3498//3498 +f 3500//3500 3498//3498 3505//3505 +f 3505//3505 3504//3504 3506//3506 +f 3744//3744 3507//3507 3140//3140 +f 3485//3485 3508//3508 3486//3486 +f 3508//3508 3509//3509 3486//3486 +f 3508//3508 3510//3510 3509//3509 +f 3512//3512 3511//3511 3514//3514 +f 3515//3515 3494//3494 3516//3516 +f 3515//3515 3517//3517 3494//3494 +f 3492//3492 3494//3494 3517//3517 +f 3493//3493 3516//3516 3494//3494 +f 3515//3515 3516//3516 3518//3518 +f 3515//3515 3519//3519 3517//3517 +f 3515//3515 3518//3518 3519//3519 +f 3493//3493 3499//3499 3516//3516 +f 3480//3480 3499//3499 3493//3493 +f 3500//3500 3516//3516 3499//3499 +f 3485//3485 3517//3517 3508//3508 +f 3485//3485 3495//3495 3517//3517 +f 3492//3492 3517//3517 3495//3495 +f 3508//3508 3519//3519 3510//3510 +f 3508//3508 3517//3517 3519//3519 +f 3518//3518 3521//3521 3520//3520 +f 3518//3518 3516//3516 3521//3521 +f 3500//3500 3521//3521 3516//3516 +f 3500//3500 3505//3505 3521//3521 +f 3518//3518 3522//3522 3519//3519 +f 3518//3518 3520//3520 3522//3522 +f 3523//3523 3524//3524 3506//3506 +f 3520//3520 3506//3506 3524//3524 +f 3520//3520 3521//3521 3506//3506 +f 3505//3505 3506//3506 3521//3521 +f 3520//3520 3524//3524 3522//3522 +f 3519//3519 3522//3522 3510//3510 +f 3509//3509 3526//3526 3525//3525 +f 3509//3509 3510//3510 3526//3526 +f 3510//3510 3522//3522 3526//3526 +f 3460//3460 3475//3475 3527//3527 +f 3460//3460 3426//3426 3475//3475 +f 3426//3426 3473//3473 3475//3475 +f 3460//3460 3527//3527 3528//3528 +f 3475//3475 3474//3474 3527//3527 +f 3530//3530 3527//3527 3529//3529 +f 3530//3530 3528//3528 3527//3527 +f 3464//3464 3458//3458 3490//3490 +f 3458//3458 3531//3531 3490//3490 +f 3463//3463 3531//3531 3458//3458 +f 3490//3490 3531//3531 3530//3530 +f 3530//3530 3531//3531 3528//3528 +f 3463//3463 3528//3528 3531//3531 +f 3460//3460 3528//3528 3463//3463 +f 3532//3532 3533//3533 3527//3527 +f 3532//3532 3535//3535 3534//3534 +f 3477//3477 3535//3535 3532//3532 +f 3477//3477 3476//3476 3535//3535 +f 3527//3527 3477//3477 3532//3532 +f 3474//3474 3477//3477 3527//3527 +f 3533//3533 3529//3529 3527//3527 +f 3490//3490 3529//3529 3533//3533 +f 3490//3490 3530//3530 3529//3529 +f 3490//3490 3533//3533 3481//3481 +f 3496//3496 3497//3497 3532//3532 +f 3533//3533 3532//3532 3497//3497 +f 3481//3481 3497//3497 3480//3480 +f 3533//3533 3497//3497 3481//3481 +f 3479//3479 3535//3535 3478//3478 +f 3479//3479 3534//3534 3535//3535 +f 3476//3476 3478//3478 3535//3535 +f 3496//3496 3534//3534 3498//3498 +f 3496//3496 3532//3532 3534//3534 +f 3479//3479 3536//3536 3534//3534 +f 3498//3498 3534//3534 3501//3501 +f 3534//3534 3536//3536 3501//3501 +f 3468//3468 3536//3536 3479//3479 +f 3468//3468 3502//3502 3536//3536 +f 3501//3501 3536//3536 3502//3502 +f 2698//2698 2737//2737 2699//2699 +f 2699//2699 2737//2737 3466//3466 +f 2737//2737 2739//2739 3466//3466 +f 3466//3466 2739//2739 3537//3537 +f 2740//2740 3537//3537 2739//2739 +f 2740//2740 3538//3538 3537//3537 +f 3466//3466 3539//3539 3467//3467 +f 3539//3539 3468//3468 3467//3467 +f 3466//3466 3540//3540 3539//3539 +f 3537//3537 3540//3540 3466//3466 +f 3537//3537 3542//3542 3541//3541 +f 3537//3537 3538//3538 3542//3542 +f 3537//3537 3541//3541 3540//3540 +f 2740//2740 2747//2747 3543//3543 +f 2747//2747 2748//2748 3543//3543 +f 2740//2740 3543//3543 3538//3538 +f 3543//3543 2748//2748 3544//3544 +f 2748//2748 2749//2749 3545//3545 +f 2748//2748 3545//3545 3544//3544 +f 3544//3544 3545//3545 3546//3546 +f 3538//3538 3543//3543 3547//3547 +f 3543//3543 3544//3544 3547//3547 +f 3538//3538 3548//3548 3542//3542 +f 3538//3538 3547//3547 3548//3548 +f 3547//3547 3546//3546 3548//3548 +f 3544//3544 3546//3546 3547//3547 +f 3539//3539 3549//3549 3468//3468 +f 3539//3539 3550//3550 3549//3549 +f 3503//3503 3549//3549 3550//3550 +f 3503//3503 3502//3502 3549//3549 +f 3468//3468 3549//3549 3502//3502 +f 3539//3539 3551//3551 3550//3550 +f 3551//3551 3552//3552 3550//3550 +f 3553//3553 3550//3550 3552//3552 +f 3553//3553 3503//3503 3550//3550 +f 3523//3523 3555//3555 3554//3554 +f 3523//3523 3506//3506 3555//3555 +f 3553//3553 3556//3556 3555//3555 +f 3553//3553 3552//3552 3556//3556 +f 3555//3555 3556//3556 3554//3554 +f 3553//3553 3504//3504 3503//3503 +f 3553//3553 3555//3555 3504//3504 +f 3506//3506 3504//3504 3555//3555 +f 3551//3551 3541//3541 3552//3552 +f 3541//3541 3557//3557 3552//3552 +f 3541//3541 3542//3542 3557//3557 +f 3551//3551 3540//3540 3541//3541 +f 3539//3539 3540//3540 3551//3551 +f 3554//3554 3556//3556 3558//3558 +f 3552//3552 3558//3558 3556//3556 +f 3552//3552 3557//3557 3558//3558 +f 3512//3512 3561//3561 3560//3560 +f 3512//3512 3514//3514 3561//3561 +f 3522//3522 3524//3524 3526//3526 +f 3525//3525 3526//3526 3562//3562 +f 3562//3562 3526//3526 3563//3563 +f 3526//3526 3524//3524 3563//3563 +f 3554//3554 3564//3564 3523//3523 +f 3558//3558 3565//3565 3554//3554 +f 3554//3554 3565//3565 3564//3564 +f 3523//3523 3563//3563 3524//3524 +f 3523//3523 3564//3564 3563//3563 +f 3564//3564 3566//3566 3563//3563 +f 3562//3562 3563//3563 3566//3566 +f 3542//3542 3567//3567 3557//3557 +f 3542//3542 3548//3548 3567//3567 +f 3548//3548 3546//3546 3568//3568 +f 3548//3548 3568//3568 3567//3567 +f 3559//3559 3558//3558 3567//3567 +f 3557//3557 3567//3567 3558//3558 +f 3559//3559 3568//3568 3569//3569 +f 3559//3559 3567//3567 3568//3568 +f 3570//3570 3568//3568 3546//3546 +f 3559//3559 3569//3569 3571//3571 +f 3572//3572 3566//3566 3573//3573 +f 3564//3564 3573//3573 3566//3566 +f 3564//3564 3574//3574 3573//3573 +f 3572//3572 3573//3573 3575//3575 +f 3574//3574 3576//3576 3573//3573 +f 3575//3575 3573//3573 3578//3578 +f 3576//3576 3578//3578 3573//3573 +f 3558//3558 3559//3559 3565//3565 +f 3559//3559 3571//3571 3565//3565 +f 3565//3565 3577//3577 3574//3574 +f 3577//3577 3576//3576 3574//3574 +f 3565//3565 3574//3574 3564//3564 +f 2919//2919 2917//2917 3579//3579 +f 2917//2917 3465//3465 3579//3579 +f 3579//3579 3465//3465 3580//3580 +f 3465//3465 3440//3440 3581//3581 +f 3442//3442 3581//3581 3440//3440 +f 3465//3465 3581//3581 3580//3580 +f 2919//2919 3579//3579 3000//3000 +f 3507//3507 3744//3744 3749//3749 +f 3507//3507 3749//3749 3582//3582 +f 3749//3749 3579//3579 3582//3582 +f 3000//3000 3579//3579 3749//3749 +f 3579//3579 3580//3580 3582//3582 +f 3442//3442 3484//3484 3581//3581 +f 3582//3582 3584//3584 3583//3583 +f 3582//3582 3580//3580 3584//3584 +f 3507//3507 3582//3582 3583//3583 +f 3140//3140 3585//3585 3142//3142 +f 3140//3140 3583//3583 3585//3585 +f 3140//3140 3507//3507 3583//3583 +f 3511//3511 3586//3586 3513//3513 +f 3511//3511 3585//3585 3586//3586 +f 3583//3583 3586//3586 3585//3585 +f 3583//3583 3584//3584 3586//3586 +f 3580//3580 3587//3587 3584//3584 +f 3580//3580 3581//3581 3587//3587 +f 3484//3484 3587//3587 3581//3581 +f 3584//3584 3587//3587 3586//3586 +f 3486//3486 3509//3509 3484//3484 +f 3511//3511 3142//3142 3585//3585 +f 3511//3511 3512//3512 3142//3142 +f 3586//3586 3588//3588 3513//3513 +f 3586//3586 3587//3587 3588//3588 +f 3587//3587 3589//3589 3588//3588 +f 3587//3587 3484//3484 3589//3589 +f 3509//3509 3589//3589 3484//3484 +f 3511//3511 3513//3513 3514//3514 +f 3509//3509 3525//3525 3589//3589 +f 3143//3143 3590//3590 3158//3158 +f 3143//3143 3142//3142 3590//3590 +f 3512//3512 3590//3590 3142//3142 +f 3512//3512 3560//3560 3590//3590 +f 3158//3158 3590//3590 3161//3161 +f 3560//3560 3161//3161 3590//3590 +f 3560//3560 3561//3561 3161//3161 +f 3513//3513 3591//3591 3514//3514 +f 3513//3513 3588//3588 3591//3591 +f 3588//3588 3589//3589 3591//3591 +f 3525//3525 3562//3562 3589//3589 +f 3514//3514 3591//3591 3561//3561 +f 3591//3591 3589//3589 3592//3592 +f 3562//3562 3592//3592 3589//3589 +f 3166//3166 3164//3164 3593//3593 +f 3161//3161 3593//3593 3164//3164 +f 3161//3161 3594//3594 3593//3593 +f 3161//3161 3561//3561 3594//3594 +f 3593//3593 3595//3595 3167//3167 +f 3593//3593 3594//3594 3595//3595 +f 3166//3166 3593//3593 3167//3167 +f 3561//3561 3596//3596 3594//3594 +f 3561//3561 3591//3591 3596//3596 +f 3591//3591 3592//3592 3596//3596 +f 3594//3594 3596//3596 3595//3595 +f 3572//3572 3592//3592 3566//3566 +f 3572//3572 3596//3596 3592//3592 +f 3562//3562 3566//3566 3592//3592 +f 3165//3165 3597//3597 3162//3162 +f 3165//3165 3167//3167 3597//3597 +f 3167//3167 3598//3598 3597//3597 +f 3167//3167 3595//3595 3598//3598 +f 3162//3162 3599//3599 3181//3181 +f 3162//3162 3597//3597 3599//3599 +f 3597//3597 3600//3600 3599//3599 +f 3597//3597 3598//3598 3600//3600 +f 3572//3572 3595//3595 3596//3596 +f 3575//3575 3598//3598 3572//3572 +f 3575//3575 3600//3600 3598//3598 +f 3572//3572 3598//3598 3595//3595 +f 3181//3181 3601//3601 3184//3184 +f 3181//3181 3599//3599 3601//3601 +f 3599//3599 3600//3600 3601//3601 +f 3575//3575 3601//3601 3600//3600 +f 3575//3575 3184//3184 3601//3601 +f 2749//2749 3603//3603 3545//3545 +f 3545//3545 3603//3603 3602//3602 +f 3545//3545 3602//3602 3546//3546 +f 3546//3546 3602//3602 3605//3605 +f 3605//3605 3570//3570 3546//3546 +f 3606//3606 3605//3605 3604//3604 +f 3602//3602 3604//3604 3605//3605 +f 3605//3605 3607//3607 3570//3570 +f 3605//3605 3606//3606 3607//3607 +f 2749//2749 2798//2798 3603//3603 +f 3608//3608 3602//3602 3603//3603 +f 2798//2798 3608//3608 3603//3603 +f 2798//2798 2801//2801 3608//3608 +f 2801//2801 2803//2803 3608//3608 +f 3608//3608 2803//2803 3609//3609 +f 3604//3604 3602//3602 3610//3610 +f 3604//3604 3610//3610 3606//3606 +f 3610//3610 3611//3611 3606//3606 +f 3606//3606 3611//3611 3607//3607 +f 3602//3602 3608//3608 3610//3610 +f 3608//3608 3609//3609 3610//3610 +f 3610//3610 3609//3609 3612//3612 +f 3610//3610 3612//3612 3611//3611 +f 3611//3611 3612//3612 3613//3613 +f 3570//3570 3607//3607 3568//3568 +f 3607//3607 3614//3614 3568//3568 +f 3569//3569 3614//3614 3571//3571 +f 3568//3568 3614//3614 3569//3569 +f 3184//3184 3575//3575 3615//3615 +f 3228//3228 3184//3184 3615//3615 +f 3576//3576 3617//3617 3616//3616 +f 3575//3575 3618//3618 3615//3615 +f 3575//3575 3578//3578 3618//3618 +f 3576//3576 3618//3618 3578//3578 +f 3576//3576 3616//3616 3618//3618 +f 3619//3619 3620//3620 3617//3617 +f 3620//3620 3621//3621 3617//3617 +f 3228//3228 3622//3622 3229//3229 +f 3228//3228 3615//3615 3622//3622 +f 3229//3229 3622//3622 3232//3232 +f 3623//3623 3615//3615 3624//3624 +f 3623//3623 3622//3622 3615//3615 +f 3618//3618 3616//3616 3624//3624 +f 3618//3618 3624//3624 3615//3615 +f 3624//3624 3616//3616 3625//3625 +f 3617//3617 3621//3621 3616//3616 +f 3571//3571 3626//3626 3565//3565 +f 3565//3565 3626//3626 3577//3577 +f 3576//3576 3619//3619 3617//3617 +f 3576//3576 3577//3577 3619//3619 +f 3626//3626 3619//3619 3577//3577 +f 3619//3619 3626//3626 3620//3620 +f 3571//3571 3614//3614 3626//3626 +f 3627//3627 3629//3629 3628//3628 +f 3627//3627 3630//3630 3629//3629 +f 3607//3607 3631//3631 3614//3614 +f 3632//3632 3614//3614 3633//3633 +f 3614//3614 3631//3631 3633//3633 +f 3607//3607 3611//3611 3631//3631 +f 3611//3611 3613//3613 3631//3631 +f 3627//3627 3633//3633 3631//3631 +f 3627//3627 3628//3628 3633//3633 +f 3632//3632 3633//3633 3628//3628 +f 3627//3627 3631//3631 3630//3630 +f 3631//3631 3613//3613 3630//3630 +f 3620//3620 3632//3632 3621//3621 +f 3634//3634 3621//3621 3635//3635 +f 3632//3632 3635//3635 3621//3621 +f 3232//3232 3622//3622 3252//3252 +f 3623//3623 3252//3252 3622//3622 +f 3252//3252 3623//3623 3253//3253 +f 3623//3623 3624//3624 3625//3625 +f 3634//3634 3616//3616 3621//3621 +f 3634//3634 3625//3625 3616//3616 +f 3636//3636 3625//3625 3637//3637 +f 3632//3632 3628//3628 3635//3635 +f 3625//3625 3634//3634 3638//3638 +f 3639//3639 3638//3638 3635//3635 +f 3634//3634 3635//3635 3638//3638 +f 3640//3640 3628//3628 3629//3629 +f 3640//3640 3639//3639 3628//3628 +f 3639//3639 3635//3635 3628//3628 +f 3625//3625 3638//3638 3637//3637 +f 3253//3253 3641//3641 3256//3256 +f 3253//3253 3623//3623 3641//3641 +f 3636//3636 3641//3641 3625//3625 +f 3623//3623 3625//3625 3641//3641 +f 3373//3373 3642//3642 3636//3636 +f 3373//3373 3259//3259 3642//3642 +f 3256//3256 3642//3642 3259//3259 +f 3256//3256 3641//3641 3642//3642 +f 3636//3636 3642//3642 3641//3641 +f 3632//3632 3626//3626 3614//3614 +f 3620//3620 3626//3626 3632//3632 +f 2464//2464 3643//3643 2863//2863 +f 2464//2464 3274//3274 3643//3643 +f 2863//2863 3644//3644 2864//2864 +f 2863//2863 3643//3643 3644//3644 +f 3274//3274 3645//3645 3643//3643 +f 3274//3274 3275//3275 3645//3645 +f 3643//3643 3646//3646 3644//3644 +f 3643//3643 3645//3645 3646//3646 +f 2864//2864 3647//3647 2865//2865 +f 2864//2864 3644//3644 3647//3647 +f 3644//3644 3646//3646 3647//3647 +f 2865//2865 3647//3647 2866//2866 +f 3647//3647 3648//3648 2866//2866 +f 3275//3275 3649//3649 3645//3645 +f 3275//3275 3277//3277 3649//3649 +f 3645//3645 3650//3650 3646//3646 +f 3645//3645 3649//3649 3650//3650 +f 3646//3646 3651//3651 3647//3647 +f 3646//3646 3650//3650 3651//3651 +f 3647//3647 3651//3651 3648//3648 +f 3648//3648 3653//3653 3652//3652 +f 3651//3651 3653//3653 3648//3648 +f 2869//2869 2868//2868 3654//3654 +f 2803//2803 3655//3655 3609//3609 +f 2803//2803 2869//2869 3655//3655 +f 2869//2869 3654//3654 3655//3655 +f 3655//3655 3654//3654 3656//3656 +f 2868//2868 2867//2867 3654//3654 +f 3654//3654 2867//2867 3657//3657 +f 2866//2866 3648//3648 2870//2870 +f 3654//3654 3657//3657 3658//3658 +f 3654//3654 3658//3658 3656//3656 +f 3288//3288 3661//3661 3660//3660 +f 3660//3660 3661//3661 3662//3662 +f 3288//3288 3290//3290 3661//3661 +f 3662//3662 3664//3664 3663//3663 +f 3649//3649 3665//3665 3650//3650 +f 3277//3277 3666//3666 3649//3649 +f 3277//3277 3287//3287 3666//3666 +f 3288//3288 3666//3666 3287//3287 +f 3288//3288 3660//3660 3666//3666 +f 3649//3649 3667//3667 3665//3665 +f 3649//3649 3666//3666 3667//3667 +f 3660//3660 3667//3667 3666//3666 +f 3660//3660 3662//3662 3667//3667 +f 3650//3650 3668//3668 3651//3651 +f 3650//3650 3665//3665 3668//3668 +f 3665//3665 3669//3669 3668//3668 +f 3665//3665 3667//3667 3669//3669 +f 3662//3662 3669//3669 3667//3667 +f 3662//3662 3663//3663 3669//3669 +f 3668//3668 3669//3669 3670//3670 +f 3653//3653 3670//3670 3652//3652 +f 3668//3668 3670//3670 3653//3653 +f 3651//3651 3668//3668 3653//3653 +f 3669//3669 3671//3671 3670//3670 +f 3669//3669 3672//3672 3671//3671 +f 3663//3663 3672//3672 3669//3669 +f 3672//3672 3673//3673 3671//3671 +f 3663//3663 3673//3673 3672//3672 +f 3663//3663 3664//3664 3673//3673 +f 3609//3609 3655//3655 3612//3612 +f 3612//3612 3655//3655 3674//3674 +f 3612//3612 3674//3674 3613//3613 +f 3674//3674 3656//3656 3675//3675 +f 3655//3655 3656//3656 3674//3674 +f 3656//3656 3658//3658 3676//3676 +f 3658//3658 3659//3659 3676//3676 +f 3656//3656 3676//3676 3675//3675 +f 3670//3670 3677//3677 3652//3652 +f 3671//3671 3677//3677 3670//3670 +f 3671//3671 3673//3673 3677//3677 +f 2870//2870 3678//3678 2874//2874 +f 2870//2870 3679//3679 3678//3678 +f 2870//2870 3648//3648 3679//3679 +f 2874//2874 3678//3678 2876//2876 +f 2858//2858 2876//2876 3657//3657 +f 2867//2867 2858//2858 3657//3657 +f 3679//3679 3680//3680 3678//3678 +f 3648//3648 3652//3652 3679//3679 +f 3678//3678 3681//3681 2876//2876 +f 3657//3657 2876//2876 3681//3681 +f 3657//3657 3681//3681 3658//3658 +f 3678//3678 3680//3680 3681//3681 +f 3659//3659 3681//3681 3680//3680 +f 3658//3658 3681//3681 3659//3659 +f 3679//3679 3682//3682 3680//3680 +f 3659//3659 3680//3680 3682//3682 +f 3659//3659 3682//3682 3676//3676 +f 3679//3679 3683//3683 3682//3682 +f 3679//3679 3684//3684 3683//3683 +f 3676//3676 3682//3682 3683//3683 +f 3652//3652 3684//3684 3679//3679 +f 3652//3652 3677//3677 3684//3684 +f 3661//3661 3685//3685 3662//3662 +f 3290//3290 3686//3686 3661//3661 +f 3661//3661 3686//3686 3685//3685 +f 3662//3662 3685//3685 3664//3664 +f 3290//3290 3348//3348 3686//3686 +f 3686//3686 3687//3687 3685//3685 +f 3348//3348 3688//3688 3686//3686 +f 3686//3686 3688//3688 3687//3687 +f 3640//3640 3690//3690 3689//3689 +f 3640//3640 3629//3629 3690//3690 +f 3685//3685 3691//3691 3664//3664 +f 3685//3685 3687//3687 3691//3691 +f 3673//3673 3693//3693 3692//3692 +f 3673//3673 3694//3694 3693//3693 +f 3664//3664 3694//3694 3673//3673 +f 3664//3664 3691//3691 3694//3694 +f 3691//3691 3695//3695 3694//3694 +f 3613//3613 3674//3674 3696//3696 +f 3674//3674 3697//3697 3696//3696 +f 3674//3674 3675//3675 3697//3697 +f 3613//3613 3698//3698 3630//3630 +f 3613//3613 3696//3696 3698//3698 +f 3629//3629 3699//3699 3690//3690 +f 3630//3630 3698//3698 3699//3699 +f 3630//3630 3699//3699 3629//3629 +f 3696//3696 3700//3700 3698//3698 +f 3696//3696 3697//3697 3700//3700 +f 3690//3690 3699//3699 3695//3695 +f 3698//3698 3700//3700 3699//3699 +f 3675//3675 3676//3676 3697//3697 +f 3697//3697 3676//3676 3701//3701 +f 3677//3677 3692//3692 3702//3702 +f 3673//3673 3692//3692 3677//3677 +f 3697//3697 3701//3701 3700//3700 +f 3693//3693 3694//3694 3703//3703 +f 3695//3695 3703//3703 3694//3694 +f 3695//3695 3699//3699 3703//3703 +f 3700//3700 3703//3703 3699//3699 +f 3693//3693 3702//3702 3692//3692 +f 3693//3693 3703//3703 3702//3702 +f 3703//3703 3704//3704 3702//3702 +f 3703//3703 3700//3700 3704//3704 +f 3701//3701 3704//3704 3700//3700 +f 3373//3373 3636//3636 3705//3705 +f 3636//3636 3637//3637 3705//3705 +f 3348//3348 3706//3706 3688//3688 +f 3348//3348 3378//3378 3706//3706 +f 3688//3688 3707//3707 3687//3687 +f 3688//3688 3706//3706 3707//3707 +f 3378//3378 3708//3708 3706//3706 +f 3378//3378 3377//3377 3708//3708 +f 3373//3373 3708//3708 3377//3377 +f 3373//3373 3705//3705 3708//3708 +f 3706//3706 3709//3709 3707//3707 +f 3706//3706 3708//3708 3709//3709 +f 3705//3705 3709//3709 3708//3708 +f 3705//3705 3637//3637 3709//3709 +f 3710//3710 3709//3709 3637//3637 +f 3710//3710 3707//3707 3709//3709 +f 3640//3640 3711//3711 3639//3639 +f 3640//3640 3689//3689 3711//3711 +f 3637//3637 3638//3638 3710//3710 +f 3639//3639 3710//3710 3638//3638 +f 3639//3639 3711//3711 3710//3710 +f 3687//3687 3712//3712 3691//3691 +f 3687//3687 3707//3707 3712//3712 +f 3710//3710 3712//3712 3707//3707 +f 3710//3710 3711//3711 3712//3712 +f 3691//3691 3689//3689 3695//3695 +f 3691//3691 3712//3712 3689//3689 +f 3711//3711 3689//3689 3712//3712 +f 3690//3690 3695//3695 3689//3689 +f 3684//3684 3702//3702 3683//3683 +f 3676//3676 3683//3683 3701//3701 +f 3677//3677 3702//3702 3684//3684 +f 3702//3702 3704//3704 3683//3683 +f 3701//3701 3683//3683 3704//3704 +f 3713//3713 364//364 29//29 +f 369//369 3716//3716 3714//3714 +f 369//369 3715//3715 3716//3716 +f 369//369 780//780 3715//3715 +f 3720//3720 3719//3719 3718//3718 +f 3720//3720 3717//3717 3719//3719 +f 1263//1263 3722//3722 1354//1354 +f 1355//1355 3721//3721 1585//1585 +f 1590//1590 3724//3724 1824//1824 +f 3722//3722 1265//1265 3723//3723 +f 3721//3721 3723//3723 1265//1265 +f 3726//3726 1586//1586 1355//1355 +f 3724//3724 1586//1586 3726//3726 +f 3724//3724 3726//3726 3725//3725 +f 1777//1777 1778//1778 3727//3727 +f 1617//1617 1616//1616 3728//3728 +f 3729//3729 3728//3728 3727//3727 +f 3732//3732 3731//3731 3733//3733 +f 3732//3732 3730//3730 3731//3731 +f 2031//2031 2030//2030 3730//3730 +f 3736//3736 3735//3735 3734//3734 +f 3736//3736 3734//3734 2573//2573 +f 2030//2030 2031//2031 3735//3735 +f 2997//2997 3739//3739 2998//2998 +f 2999//2999 3738//3738 3000//3000 +f 3102//3102 3103//3103 3745//3745 +f 3739//3739 3750//3750 3740//3740 +f 3739//3739 3738//3738 3750//3750 +f 3741//3741 3740//3740 3750//3750 +f 3741//3741 3750//3750 3738//3738 +f 3000//3000 3749//3749 3742//3742 +f 3743//3743 3749//3749 3744//3744 +f 3743//3743 3742//3742 3749//3749 +f 3745//3745 3748//3748 3746//3746 +f 3747//3747 3737//3737 3746//3746 +f 3747//3747 3746//3746 3748//3748 +# 7500 faces, 0 coords texture + +# End of File diff --git a/load/shapes/potion.obj b/load/shapes/potion.obj new file mode 100644 index 0000000..f987e43 --- /dev/null +++ b/load/shapes/potion.obj @@ -0,0 +1,17244 @@ +# WaveFront *.obj file (generated by Autodesk ATF) + +mtllib potion_b.mtl + +g potion_b + +v 24.830000 100.000000 -0.000000 +v 24.698398 100.000000 2.553045 +v 24.304987 100.000000 5.079028 +v 23.653937 100.000000 7.551171 +v 22.752149 100.000000 9.943270 +v 21.609183 100.000000 12.229969 +v 20.237154 100.000000 14.387026 +v 18.650606 100.000000 16.391577 +v 16.866357 100.000000 18.222374 +v 14.903321 100.000000 19.860008 +v 12.782305 100.000000 21.287122 +v 10.525794 100.000000 22.488587 +v 8.157707 100.000000 23.451668 +v 5.703147 100.000000 24.166154 +v 3.188131 100.000000 24.624474 +v 0.639321 100.000000 24.821768 +v -1.916267 100.000000 24.755945 +v -4.451541 100.000000 24.427703 +v -6.939628 100.000000 23.840521 +v -9.354154 100.000000 23.000624 +v -11.669523 100.000000 21.916915 +v -13.861192 100.000000 20.600880 +v -15.905929 100.000000 19.066471 +v -17.782059 100.000000 17.329953 +v -19.469695 100.000000 15.409733 +v -20.950947 100.000000 13.326166 +v -22.210114 100.000000 11.101339 +v -23.233849 100.000000 8.758834 +v -24.011298 100.000000 6.323484 +v -24.534222 100.000000 3.821103 +v -24.797078 100.000000 1.278217 +v -24.797078 100.000000 -1.278217 +v -24.534222 100.000000 -3.821103 +v -24.011298 100.000000 -6.323484 +v -23.233849 100.000000 -8.758834 +v -22.210114 100.000000 -11.101339 +v -20.950947 100.000000 -13.326166 +v -19.469695 100.000000 -15.409733 +v -17.782059 100.000000 -17.329953 +v -15.905929 100.000000 -19.066471 +v -13.861192 100.000000 -20.600880 +v -11.669523 100.000000 -21.916915 +v -9.354154 100.000000 -23.000624 +v -6.939628 100.000000 -23.840521 +v -4.451541 100.000000 -24.427703 +v -1.916267 100.000000 -24.755945 +v 0.639321 100.000000 -24.821768 +v 3.188131 100.000000 -24.624474 +v 5.703147 100.000000 -24.166154 +v 8.157707 100.000000 -23.451668 +v 10.525794 100.000000 -22.488587 +v 12.782305 100.000000 -21.287122 +v 14.903321 100.000000 -19.860008 +v 16.866357 100.000000 -18.222374 +v 18.650606 100.000000 -16.391577 +v 20.237154 100.000000 -14.387026 +v 21.609183 100.000000 -12.229969 +v 22.752149 100.000000 -9.943270 +v 23.653937 100.000000 -7.551171 +v 24.304987 100.000000 -5.079028 +v 24.698398 100.000000 -2.553045 +v 20.000000 100.000000 -0.000000 +v 19.869635 100.000000 -2.279828 +v 19.480238 100.000000 -4.529935 +v 18.836887 100.000000 -6.720988 +v 17.947969 100.000000 -8.824422 +v 16.825071 100.000000 -10.812816 +v 15.482832 100.000000 -12.660249 +v 13.938751 100.000000 -14.342636 +v 12.212958 100.000000 -15.838045 +v 10.327949 100.000000 -17.126981 +v 8.308300 100.000000 -18.192640 +v 6.180340 100.000000 -19.021130 +v 3.971809 100.000000 -19.601651 +v 1.711500 100.000000 -19.926635 +v -0.571121 100.000000 -19.991844 +v -2.846297 100.000000 -19.796429 +v -5.084367 100.000000 -19.342937 +v -7.256154 100.000000 -18.637281 +v -9.333346 100.000000 -17.688659 +v -11.288864 100.000000 -16.509438 +v -13.097215 100.000000 -15.114991 +v -14.734823 100.000000 -13.523498 +v -16.180340 100.000000 -11.755705 +v -17.414922 100.000000 -9.834658 +v -18.422473 100.000000 -7.785402 +v -19.189859 100.000000 -5.634651 +v -19.707077 100.000000 -3.410444 +v -19.967382 100.000000 -1.141776 +v -19.967382 100.000000 1.141776 +v -19.707077 100.000000 3.410444 +v -19.189859 100.000000 5.634651 +v -18.422473 100.000000 7.785402 +v -17.414922 100.000000 9.834658 +v -16.180340 100.000000 11.755705 +v -14.734823 100.000000 13.523498 +v -13.097215 100.000000 15.114991 +v -11.288864 100.000000 16.509438 +v -9.333346 100.000000 17.688659 +v -7.256154 100.000000 18.637281 +v -5.084367 100.000000 19.342937 +v -2.846297 100.000000 19.796429 +v -0.571121 100.000000 19.991844 +v 1.711500 100.000000 19.926635 +v 3.971809 100.000000 19.601651 +v 6.180340 100.000000 19.021130 +v 8.308300 100.000000 18.192640 +v 10.327949 100.000000 17.126981 +v 12.212958 100.000000 15.838045 +v 13.938751 100.000000 14.342636 +v 15.482832 100.000000 12.660249 +v 16.825071 100.000000 10.812816 +v 17.947969 100.000000 8.824422 +v 18.836887 100.000000 6.720988 +v 19.480238 100.000000 4.529935 +v 19.869635 100.000000 2.279828 +v 24.830000 110.000000 -0.000000 +v 24.698398 110.000000 2.553045 +v 24.304987 110.000000 5.079028 +v 23.653937 110.000000 7.551171 +v 22.752149 110.000000 9.943270 +v 21.609183 110.000000 12.229969 +v 20.237154 110.000000 14.387026 +v 18.650606 110.000000 16.391577 +v 16.866357 110.000000 18.222374 +v 14.903321 110.000000 19.860008 +v 12.782305 110.000000 21.287122 +v 10.525794 110.000000 22.488587 +v 8.157707 110.000000 23.451668 +v 5.703147 110.000000 24.166154 +v 3.188131 110.000000 24.624474 +v 0.639321 110.000000 24.821768 +v -1.916267 110.000000 24.755945 +v -4.451541 110.000000 24.427703 +v -6.939628 110.000000 23.840521 +v -9.354154 110.000000 23.000624 +v -11.669523 110.000000 21.916915 +v -13.861192 110.000000 20.600880 +v -15.905929 110.000000 19.066471 +v -17.782059 110.000000 17.329953 +v -19.469695 110.000000 15.409733 +v -20.950947 110.000000 13.326166 +v -22.210114 110.000000 11.101339 +v -23.233849 110.000000 8.758834 +v -24.011298 110.000000 6.323484 +v -24.534222 110.000000 3.821103 +v -24.797078 110.000000 1.278217 +v -24.797078 110.000000 -1.278217 +v -24.534222 110.000000 -3.821103 +v -24.011298 110.000000 -6.323484 +v -23.233849 110.000000 -8.758834 +v -22.210114 110.000000 -11.101339 +v -20.950947 110.000000 -13.326166 +v -19.469695 110.000000 -15.409733 +v -17.782059 110.000000 -17.329953 +v -15.905929 110.000000 -19.066471 +v -13.861192 110.000000 -20.600880 +v -11.669523 110.000000 -21.916915 +v -9.354154 110.000000 -23.000624 +v -6.939628 110.000000 -23.840521 +v -4.451541 110.000000 -24.427703 +v -1.916267 110.000000 -24.755945 +v 0.639321 110.000000 -24.821768 +v 3.188131 110.000000 -24.624474 +v 5.703147 110.000000 -24.166154 +v 8.157707 110.000000 -23.451668 +v 10.525794 110.000000 -22.488587 +v 12.782305 110.000000 -21.287122 +v 14.903321 110.000000 -19.860008 +v 16.866357 110.000000 -18.222374 +v 18.650606 110.000000 -16.391577 +v 20.237154 110.000000 -14.387026 +v 21.609183 110.000000 -12.229969 +v 22.752149 110.000000 -9.943270 +v 23.653937 110.000000 -7.551171 +v 24.304987 110.000000 -5.079028 +v 24.698398 110.000000 -2.553045 +v -20.000000 45.825757 -0.000000 +v -19.869635 45.825757 2.279828 +v -19.480238 45.825757 4.529935 +v -18.836887 45.825757 6.720988 +v -17.947969 45.825757 8.824422 +v -16.825071 45.825757 10.812816 +v -15.482832 45.825757 12.660249 +v -13.938751 45.825757 14.342636 +v -12.212958 45.825757 15.838045 +v -10.327949 45.825757 17.126981 +v -8.308300 45.825757 18.192640 +v -6.180340 45.825757 19.021130 +v -3.971809 45.825757 19.601651 +v -1.711500 45.825757 19.926635 +v 0.571121 45.825757 19.991844 +v 2.846297 45.825757 19.796429 +v 5.084367 45.825757 19.342937 +v 7.256154 45.825757 18.637281 +v 9.333346 45.825757 17.688659 +v 11.288864 45.825757 16.509438 +v 13.097215 45.825757 15.114991 +v 14.734823 45.825757 13.523498 +v 16.180340 45.825757 11.755705 +v 17.414922 45.825757 9.834658 +v 18.422473 45.825757 7.785402 +v 19.189859 45.825757 5.634651 +v 19.707077 45.825757 3.410444 +v 19.967382 45.825757 1.141776 +v 19.967382 45.825757 -1.141776 +v 19.707077 45.825757 -3.410444 +v 19.189859 45.825757 -5.634651 +v 18.422473 45.825757 -7.785402 +v 17.414922 45.825757 -9.834658 +v 16.180340 45.825757 -11.755705 +v 14.734823 45.825757 -13.523498 +v 13.097215 45.825757 -15.114991 +v 11.288864 45.825757 -16.509438 +v 9.333346 45.825757 -17.688659 +v 7.256154 45.825757 -18.637281 +v 5.084367 45.825757 -19.342937 +v 2.846297 45.825757 -19.796429 +v 0.571121 45.825757 -19.991844 +v -1.711500 45.825757 -19.926635 +v -3.971809 45.825757 -19.601651 +v -6.180340 45.825757 -19.021130 +v -8.308300 45.825757 -18.192640 +v -10.327949 45.825757 -17.126981 +v -12.212958 45.825757 -15.838045 +v -13.938751 45.825757 -14.342636 +v -15.482832 45.825757 -12.660249 +v -16.825071 45.825757 -10.812816 +v -17.947969 45.825757 -8.824422 +v -18.836887 45.825757 -6.720988 +v -19.480238 45.825757 -4.529935 +v -19.869635 45.825757 -2.279828 +v -0.000000 -50.000000 0.000000 +v -23.323806 44.226690 -0.000000 +v -26.520686 42.386946 -0.000000 +v -29.573244 40.316538 -0.000000 +v -32.464867 38.026733 -0.000000 +v -35.179821 35.529990 -0.000000 +v -37.703331 32.839897 -0.000000 +v -40.021663 29.971094 -0.000000 +v -42.122203 26.939191 -0.000000 +v -43.993518 23.760689 0.000000 +v -45.625426 20.452884 0.000000 +v -47.009046 17.033777 0.000000 +v -48.136849 13.521974 0.000000 +v -49.002696 9.936586 0.000000 +v -49.601877 6.297124 0.000000 +v -49.931131 2.623394 0.000000 +v -49.988665 -1.064612 0.000000 +v -49.774167 -4.746824 0.000000 +v -49.288803 -8.403205 0.000000 +v -48.535217 -12.013857 0.000000 +v -47.517507 -15.559130 0.000000 +v -46.241213 -19.019733 0.000000 +v -44.713279 -22.376833 0.000000 +v -42.942022 -25.612161 0.000000 +v -40.937079 -28.708110 0.000000 +v -38.709361 -31.647833 0.000000 +v -36.270992 -34.415333 0.000000 +v -33.635240 -36.995548 0.000000 +v -30.816450 -39.374439 0.000000 +v -27.829960 -41.539058 0.000000 +v -24.692023 -43.477627 0.000000 +v -21.419714 -45.179595 0.000000 +v -18.030843 -46.635702 0.000000 +v -14.543849 -47.838023 0.000000 +v -10.977710 -48.780015 0.000000 +v -7.351831 -49.456552 0.000000 +v -3.685945 -49.863953 0.000000 +v -23.075252 44.226690 3.395973 +v -21.784810 44.226690 8.331984 +v -18.460710 44.226690 14.254897 +v -14.919609 44.226690 17.927776 +v -13.571164 44.226690 18.969012 +v -9.122050 44.226690 21.465975 +v -2.550953 44.226690 23.183885 +v 2.550953 44.226690 23.183885 +v 4.236463 44.226690 22.935830 +v 9.122050 44.226690 21.465975 +v 13.571164 44.226690 18.969012 +v 18.460710 44.226690 14.254897 +v 21.118499 44.226690 9.899945 +v 21.784810 44.226690 8.331984 +v 23.075252 44.226690 3.395973 +v 23.075252 44.226690 -3.395973 +v 21.784810 44.226690 -8.331984 +v 21.118499 44.226690 -9.899945 +v 18.460710 44.226690 -14.254897 +v 13.571164 44.226690 -18.969012 +v 9.122050 44.226690 -21.465975 +v 4.236463 44.226690 -22.935830 +v 2.550953 44.226690 -23.183885 +v -2.550953 44.226690 -23.183885 +v -9.122050 44.226690 -21.465975 +v -13.571164 44.226690 -18.969012 +v -14.919609 44.226690 -17.927776 +v -18.460710 44.226690 -14.254897 +v -21.784810 44.226690 -8.331984 +v -23.075252 44.226690 -3.395973 +v -23.261584 44.226690 -1.702529 +v -26.449936 42.386946 -1.935886 +v -29.494350 40.316538 -2.158708 +v -32.378260 38.026733 -2.369783 +v -35.085971 35.529990 -2.567962 +v -37.602749 32.839897 -2.752166 +v -39.914897 29.971094 -2.921394 +v -42.009833 26.939191 -3.074723 +v -43.876156 23.760689 -3.211321 +v -45.503711 20.452884 -3.330442 +v -46.883640 17.033777 -3.431440 +v -48.008433 13.521974 -3.513764 +v -48.871971 9.936586 -3.576967 +v -49.469554 6.297124 -3.620705 +v -49.797928 2.623394 -3.644739 +v -49.855309 -1.064612 -3.648938 +v -49.641383 -4.746824 -3.633281 +v -49.157315 -8.403205 -3.597852 +v -48.405738 -12.013857 -3.542843 +v -47.390744 -15.559130 -3.468555 +v -46.117854 -19.019733 -3.375392 +v -44.593997 -22.376833 -3.263860 +v -42.827465 -25.612161 -3.134566 +v -40.827870 -28.708110 -2.988215 +v -38.606096 -31.647833 -2.825602 +v -36.174231 -34.415333 -2.647612 +v -33.545511 -36.995548 -2.455215 +v -30.734240 -39.374439 -2.249456 +v -27.755717 -41.539058 -2.031457 +v -24.626151 -43.477627 -1.802402 +v -21.362573 -45.179595 -1.563539 +v -17.982742 -46.635702 -1.316167 +v -14.505050 -47.838023 -1.061633 +v -10.948425 -48.780015 -0.801321 +v -7.332219 -49.456552 -0.536649 +v -3.676112 -49.863953 -0.269057 +v -26.238065 42.386946 -3.861443 +v -29.258092 40.316538 -4.305899 +v -32.118901 38.026733 -4.726923 +v -34.804923 35.529990 -5.122223 +v -37.301540 32.839897 -5.489649 +v -39.595167 29.971094 -5.827201 +v -41.673322 26.939191 -6.133042 +v -43.524696 23.760689 -6.405508 +v -45.139213 20.452884 -6.643115 +v -46.508088 17.033777 -6.844572 +v -47.623872 13.521974 -7.008781 +v -48.480493 9.936586 -7.134850 +v -49.073288 6.297124 -7.222091 +v -49.399033 2.623394 -7.270031 +v -49.455954 -1.064612 -7.278408 +v -49.243742 -4.746824 -7.247177 +v -48.763551 -8.403205 -7.176507 +v -48.017995 -12.013857 -7.066784 +v -47.011130 -15.559130 -6.918604 +v -45.748437 -19.019733 -6.732775 +v -44.236786 -22.376833 -6.510306 +v -42.484404 -25.612161 -6.252409 +v -40.500827 -28.708110 -5.960486 +v -38.296850 -31.647833 -5.636128 +v -35.884465 -34.415333 -5.281099 +v -33.276802 -36.995548 -4.897330 +v -30.488050 -39.374439 -4.486911 +v -27.533386 -41.539058 -4.052075 +v -24.428889 -43.477627 -3.595187 +v -21.191452 -45.179595 -3.118735 +v -17.838695 -46.635702 -2.625312 +v -14.388861 -47.838023 -2.117601 +v -10.860725 -48.780015 -1.598367 +v -7.273486 -49.456552 -1.070435 +v -3.646665 -49.863953 -0.536678 +v -22.334890 44.226690 -6.719567 +v -25.396225 42.386946 -7.640586 +v -28.319356 40.316538 -8.520025 +v -31.088376 38.026733 -9.353099 +v -33.688218 35.529990 -10.135275 +v -36.104732 32.839897 -10.862296 +v -38.324769 29.971094 -11.530205 +v -40.336247 26.939191 -12.135369 +v -42.128219 23.760689 -12.674493 +v -43.690936 20.452884 -13.144644 +v -45.015891 17.033777 -13.543264 +v -46.095875 13.521974 -13.868183 +v -46.925012 9.936586 -14.117633 +v -47.498787 6.297124 -14.290256 +v -47.814081 2.623394 -14.385114 +v -47.869175 -1.064612 -14.401689 +v -47.663772 -4.746824 -14.339893 +v -47.198988 -8.403205 -14.200060 +v -46.477352 -12.013857 -13.982952 +v -45.502793 -15.559130 -13.689751 +v -44.280613 -19.019733 -13.322052 +v -42.817463 -22.376833 -12.881856 +v -41.121306 -25.612161 -12.371558 +v -39.201371 -28.708110 -11.793936 +v -37.068108 -31.647833 -11.152132 +v -34.733124 -34.415333 -10.449640 +v -32.209126 -36.995548 -9.690282 +v -29.509851 -39.374439 -8.878191 +v -26.649986 -41.539058 -8.017786 +v -23.645096 -43.477627 -7.113750 +v -20.511531 -45.179595 -6.171000 +v -17.266346 -46.635702 -5.194670 +v -13.927199 -47.838023 -4.190070 +v -10.512262 -48.780015 -3.162668 +v -7.040118 -49.456552 -2.118056 +v -3.529663 -49.863953 -1.061917 +v -3.597762 -49.863953 -0.801436 +v -7.175945 -49.456552 -1.598510 +v -10.715078 -48.780015 -2.386885 +v -14.195900 -47.838023 -3.162272 +v -17.599471 -46.635702 -3.920449 +v -20.907267 -45.179595 -4.657292 +v -24.101288 -43.477627 -5.368791 +v -27.164153 -41.539058 -6.051073 +v -30.079193 -39.374439 -6.700426 +v -32.830547 -36.995548 -7.313316 +v -35.403240 -34.415333 -7.886408 +v -37.783274 -31.647833 -8.416583 +v -39.957695 -28.708110 -8.900956 +v -41.914672 -25.612161 -9.336891 +v -43.643553 -22.376833 -9.722016 +v -45.134932 -19.019733 -10.054235 +v -46.380692 -15.559130 -10.331740 +v -47.374054 -12.013857 -10.553021 +v -48.109612 -8.403205 -10.716873 +v -48.583363 -4.746824 -10.822406 +v -48.792730 -1.064612 -10.869044 +v -48.736572 2.623394 -10.856534 +v -48.415196 6.297124 -10.784945 +v -47.830350 9.936586 -10.654665 +v -46.985217 13.521974 -10.466404 +v -45.884396 17.033777 -10.221185 +v -44.533878 20.452884 -9.920344 +v -42.941012 23.760689 -9.565518 +v -41.114466 26.939191 -9.158638 +v -39.064180 29.971094 -8.701917 +v -36.801312 32.839897 -8.197842 +v -34.338175 35.529990 -7.649155 +v -31.688174 38.026733 -7.058842 +v -28.865730 40.316538 -6.430116 +v -25.886202 42.386946 -5.766397 +v -22.765804 44.226690 -5.071299 +v -24.770748 42.386946 -9.474008 +v -27.621886 40.316538 -10.564476 +v -30.322709 38.026733 -11.597453 +v -32.858520 35.529990 -12.567319 +v -35.215518 32.839897 -13.468794 +v -37.380878 29.971094 -14.296974 +v -39.342816 26.939191 -15.047352 +v -41.090655 23.760689 -15.715844 +v -42.614883 20.452884 -16.298812 +v -43.907207 17.033777 -16.793083 +v -44.960592 13.521974 -17.195969 +v -45.769308 9.936586 -17.505277 +v -46.328952 6.297124 -17.719323 +v -46.636480 2.623394 -17.836942 +v -46.690218 -1.064612 -17.857495 +v -46.489873 -4.746824 -17.780870 +v -46.036536 -8.403205 -17.607483 +v -45.332674 -12.013857 -17.338279 +v -44.382117 -15.559130 -16.974721 +v -43.190038 -19.019733 -16.518790 +v -41.762923 -22.376833 -15.972965 +v -40.108540 -25.612161 -15.340217 +v -38.235891 -28.708110 -14.623989 +v -36.155167 -31.647833 -13.828180 +v -33.877691 -34.415333 -12.957119 +v -31.415856 -36.995548 -12.015547 +v -28.783061 -39.374439 -11.008588 +v -25.993631 -41.539058 -9.941721 +v -23.062747 -43.477627 -8.820753 +v -20.006358 -45.179595 -7.651784 +v -16.841098 -46.635702 -6.441174 +v -13.584190 -47.838023 -5.195512 +v -10.253358 -48.780015 -3.921577 +v -6.866729 -49.456552 -2.626301 +v -3.442732 -49.863953 -1.316733 +v -20.339511 44.226690 -11.415087 +v -23.127348 42.386946 -12.979697 +v -25.789329 40.316538 -14.473673 +v -28.310968 38.026733 -15.888885 +v -30.678542 35.529990 -17.217632 +v -32.879167 32.839897 -18.452683 +v -34.900868 29.971094 -19.587316 +v -36.732642 26.939191 -20.615358 +v -38.364522 23.760689 -21.531213 +v -39.787626 20.452884 -22.329898 +v -40.994211 17.033777 -23.007066 +v -41.977711 13.521974 -23.559033 +v -42.732772 9.936586 -23.982794 +v -43.255288 6.297124 -24.276044 +v -43.542413 2.623394 -24.437186 +v -43.592585 -1.064612 -24.465345 +v -43.405533 -4.746824 -24.360365 +v -42.982272 -8.403205 -24.122820 +v -42.325107 -12.013857 -23.754001 +v -41.437614 -15.559130 -23.255916 +v -40.324622 -19.019733 -22.631275 +v -38.992189 -22.376833 -21.883477 +v -37.447565 -25.612161 -21.016592 +v -35.699155 -28.708110 -20.035337 +v -33.756476 -31.647833 -18.945052 +v -31.630097 -34.415333 -17.751671 +v -29.331591 -36.995548 -16.461687 +v -26.873467 -39.374439 -15.082121 +v -24.269100 -41.539058 -13.620479 +v -21.532664 -43.477627 -12.084717 +v -18.679049 -45.179595 -10.483191 +v -15.723786 -46.635702 -8.824616 +v -12.682955 -47.838023 -7.118019 +v -9.573106 -48.780015 -5.372687 +v -6.411160 -49.456552 -3.598117 +v -3.214326 -49.863953 -1.803967 +v -3.337432 -49.863953 -1.564524 +v -6.656703 -49.456552 -3.120534 +v -9.939748 -48.780015 -4.659563 +v -13.168703 -47.838023 -6.173234 +v -16.325995 -46.635702 -7.653312 +v -19.394443 -45.179595 -9.091741 +v -22.357348 -43.477627 -10.480694 +v -25.198588 -41.539058 -11.812613 +v -27.902700 -39.374439 -13.080249 +v -30.454969 -36.995548 -14.276703 +v -32.841506 -34.415333 -15.395466 +v -35.049323 -31.647833 -16.430448 +v -37.066406 -28.708110 -17.376017 +v -38.881778 -25.612161 -18.227029 +v -40.485560 -22.376833 -18.978851 +v -41.869024 -19.019733 -19.627392 +v -43.024643 -15.559130 -20.169124 +v -43.946126 -12.013857 -20.601098 +v -44.628460 -8.403205 -20.920963 +v -45.067931 -4.746824 -21.126978 +v -45.262148 -1.064612 -21.218024 +v -45.210054 2.623394 -21.193603 +v -44.911932 6.297124 -21.053849 +v -44.369405 9.936586 -20.799523 +v -43.585425 13.521974 -20.432008 +v -42.564258 17.033777 -19.953305 +v -41.311462 20.452884 -19.366018 +v -39.833854 23.760689 -18.673344 +v -38.139474 26.939191 -17.879051 +v -36.237544 29.971094 -16.987463 +v -34.138414 32.839897 -16.003431 +v -31.853507 35.529990 -14.932311 +v -29.395257 38.026733 -13.779930 +v -26.777041 40.316538 -12.552561 +v -24.013108 42.386946 -11.256883 +v -21.118499 44.226690 -9.899945 +v -19.452003 44.226690 -12.869323 +v -22.118194 42.386946 -14.633259 +v -24.664021 40.316538 -16.317562 +v -27.075628 38.026733 -17.913066 +v -29.339894 35.529990 -19.411090 +v -31.444496 32.839897 -20.803482 +v -33.377980 29.971094 -22.082663 +v -35.129825 26.939191 -23.241673 +v -36.690498 23.760689 -24.274204 +v -38.051506 20.452884 -25.174638 +v -39.205442 17.033777 -25.938075 +v -40.146027 13.521974 -26.560360 +v -40.868142 9.936586 -27.038107 +v -41.367857 6.297124 -27.368716 +v -41.642454 2.623394 -27.550387 +v -41.690437 -1.064612 -27.582133 +v -41.511546 -4.746824 -27.463779 +v -41.106755 -8.403205 -27.195972 +v -40.478265 -12.013857 -26.780167 +v -39.629497 -15.559130 -26.218627 +v -38.565070 -19.019733 -25.514409 +v -37.290777 -22.376833 -24.671345 +v -35.813552 -25.612161 -23.694022 +v -34.141434 -28.708110 -22.587759 +v -32.283523 -31.647833 -21.358577 +v -30.249928 -34.415333 -20.013163 +v -28.051717 -36.995548 -18.558841 +v -25.700852 -39.374439 -17.003523 +v -23.210126 -41.539058 -15.355674 +v -20.593093 -43.477627 -13.624262 +v -17.863995 -45.179595 -11.818707 +v -15.037683 -46.635702 -9.948837 +v -12.129539 -47.838023 -8.024827 +v -9.155386 -48.780015 -6.057146 +v -6.131411 -49.456552 -4.056503 +v -3.074070 -49.863953 -2.033785 +v -17.370922 44.226690 -15.564414 +v -19.751869 42.386946 -17.697752 +v -22.025329 40.316538 -19.734782 +v -24.178930 38.026733 -21.664417 +v -26.200952 35.529990 -23.476156 +v -28.080392 32.839897 -25.160142 +v -29.807021 29.971094 -26.707209 +v -31.371445 26.939191 -28.108938 +v -32.765149 23.760689 -29.357702 +v -33.980548 20.452884 -30.446705 +v -35.011030 17.033777 -31.370021 +v -35.850986 13.521974 -32.122625 +v -36.495845 9.936586 -32.700421 +v -36.942098 6.297124 -33.100266 +v -37.187317 2.623394 -33.319983 +v -37.230167 -1.064612 -33.358376 +v -37.070415 -4.746824 -33.215238 +v -36.708930 -8.403205 -32.891346 +v -36.147679 -12.013857 -32.388463 +v -35.389717 -15.559130 -31.709326 +v -34.439169 -19.019733 -30.857631 +v -33.301207 -22.376833 -29.838012 +v -31.982023 -25.612161 -28.656019 +v -30.488798 -28.708110 -27.318083 +v -28.829655 -31.647833 -25.831485 +v -27.013626 -34.415333 -24.204315 +v -25.050591 -36.995548 -22.445429 +v -22.951235 -39.374439 -20.564397 +v -20.726980 -41.539058 -18.571456 +v -18.389932 -43.477627 -16.477451 +v -15.952807 -45.179595 -14.293778 +v -13.428870 -46.635702 -12.032321 +v -10.831854 -47.838023 -9.705384 +v -8.175893 -48.780015 -7.325632 +v -5.475439 -49.456552 -4.906015 +v -2.745189 -49.863953 -2.459700 +v -2.917412 -49.863953 -2.252753 +v -5.818949 -49.456552 -4.493246 +v -8.688819 -48.780015 -6.709288 +v -11.511406 -47.838023 -8.888818 +v -14.271349 -46.635702 -11.019977 +v -16.953629 -45.179595 -13.091166 +v -19.543649 -43.477627 -15.091115 +v -22.027316 -41.539058 -17.008940 +v -24.391112 -39.374439 -18.834204 +v -26.622175 -36.995548 -20.556975 +v -28.708363 -34.415333 -22.167877 +v -30.638323 -31.647833 -23.658144 +v -32.401554 -28.708110 -25.019666 +v -33.988459 -25.612161 -26.245035 +v -35.390404 -22.376833 -27.327581 +v -36.599757 -19.019733 -28.261414 +v -37.609940 -15.559130 -29.041451 +v -38.415453 -12.013857 -29.663449 +v -39.011915 -8.403205 -30.124021 +v -39.396078 -4.746824 -30.420662 +v -39.565853 -1.064612 -30.551758 +v -39.520315 2.623394 -30.516595 +v -39.259712 6.297124 -30.315364 +v -38.785462 9.936586 -29.949160 +v -38.100147 13.521974 -29.419977 +v -37.207495 17.033777 -28.730694 +v -36.112365 20.452884 -27.885061 +v -34.820715 23.760689 -26.887682 +v -33.339576 26.939191 -25.743983 +v -31.677006 29.971094 -24.460189 +v -29.842054 32.839897 -23.043285 +v -27.844705 35.529990 -21.500982 +v -25.695828 38.026733 -19.841674 +v -23.407118 40.316538 -18.074389 +v -20.991030 42.386946 -16.208746 +v -16.188452 44.226690 -16.790889 +v -18.407324 42.386946 -19.092334 +v -20.526025 40.316538 -21.289881 +v -22.533027 38.026733 -23.371571 +v -24.417406 35.529990 -25.326075 +v -26.168909 32.839897 -27.142759 +v -27.778004 29.971094 -28.811734 +v -29.235934 26.939191 -30.323920 +v -30.534766 23.760689 -31.671087 +v -31.667431 20.452884 -32.845903 +v -32.627766 17.033777 -33.841976 +v -33.410545 13.521974 -34.653885 +v -34.011507 9.936586 -35.277211 +v -34.427383 6.297124 -35.708564 +v -34.655909 2.623394 -35.945594 +v -34.695842 -1.064612 -35.987013 +v -34.546965 -4.746824 -35.832595 +v -34.210087 -8.403205 -35.483181 +v -33.687041 -12.013857 -34.940671 +v -32.980675 -15.559130 -34.208018 +v -32.094832 -19.019733 -33.289210 +v -31.034333 -22.376833 -32.189245 +v -29.804949 -25.612161 -30.914111 +v -28.413370 -28.708110 -29.470745 +v -26.867169 -31.647833 -27.867004 +v -25.174760 -34.415333 -26.111613 +v -23.345352 -36.995548 -24.214126 +v -21.388903 -39.374439 -22.184869 +v -19.316057 -41.539058 -20.034885 +v -17.138096 -43.477627 -17.775873 +v -14.866871 -45.179595 -15.420127 +v -12.514743 -46.635702 -12.980466 +v -10.094511 -47.838023 -10.470168 +v -7.619345 -48.780015 -7.902892 +v -5.102716 -49.456552 -5.292609 +v -2.558319 -49.863953 -2.653525 +v -15.431297 42.386946 -21.569002 +v -17.207455 40.316538 -24.051616 +v -18.889972 38.026733 -26.403343 +v -20.469693 35.529990 -28.611388 +v -21.938019 32.839897 -30.663732 +v -23.286962 29.971094 -32.549208 +v -24.509179 26.939191 -34.257555 +v -25.598021 23.760689 -35.779477 +v -26.547561 20.452884 -37.106691 +v -27.352633 17.033777 -38.231975 +v -28.008855 13.521974 -39.149205 +v -28.512656 9.936586 -39.853390 +v -28.861295 6.297124 -40.340698 +v -29.052873 2.623394 -40.608476 +v -29.086350 -1.064612 -40.655268 +v -28.961543 -4.746824 -40.480819 +v -28.679130 -8.403205 -40.086078 +v -28.240648 -12.013857 -39.473194 +v -27.648485 -15.559130 -38.645501 +v -26.905862 -19.019733 -37.607504 +v -26.016820 -22.376833 -36.364851 +v -24.986198 -25.612161 -34.924306 +v -23.819604 -28.708110 -33.293706 +v -22.523387 -31.647833 -31.481926 +v -21.104600 -34.415333 -29.498826 +v -19.570964 -36.995548 -27.355196 +v -17.930826 -39.374439 -25.062703 +v -16.193110 -41.539058 -22.633821 +v -14.367274 -43.477627 -20.081769 +v -12.463252 -45.179595 -17.420434 +v -10.491407 -46.635702 -14.664299 +v -8.462468 -47.838023 -11.828363 +v -6.387478 -48.780015 -8.928059 +v -4.277729 -49.456552 -5.979169 +v -2.144700 -49.863953 -2.997741 +v -2.357800 -49.863953 -2.833191 +v -4.702768 -49.456552 -5.650964 +v -7.022145 -48.780015 -8.437985 +v -9.303308 -47.838023 -11.179088 +v -11.533844 -46.635702 -13.859356 +v -13.701613 -45.179595 -16.464202 +v -15.794821 -43.477627 -18.979453 +v -17.802075 -41.539058 -21.391419 +v -19.712452 -39.374439 -23.686976 +v -21.515556 -36.995548 -25.853631 +v -23.201575 -34.415333 -27.879594 +v -24.761334 -31.647833 -29.753840 +v -26.186345 -28.708110 -31.466169 +v -27.468853 -25.612161 -33.007262 +v -28.601878 -22.376833 -34.368734 +v -29.579256 -19.019733 -35.543176 +v -30.395667 -15.559130 -36.524196 +v -31.046669 -12.013857 -37.306455 +v -31.528718 -8.403205 -37.885698 +v -31.839192 -4.746824 -38.258771 +v -31.976400 -1.064612 -38.423644 +v -31.939597 2.623394 -38.379421 +v -31.728983 6.297124 -38.126341 +v -31.345703 9.936586 -37.665782 +v -30.791844 13.521974 -37.000251 +v -30.070419 17.033777 -36.133369 +v -29.185354 20.452884 -35.069853 +v -28.141467 23.760689 -33.815492 +v -26.944437 26.939191 -32.377111 +v -25.600778 29.971094 -30.762537 +v -24.117803 32.839897 -28.980557 +v -22.503583 35.529990 -27.040869 +v -20.766900 38.026733 -24.954027 +v -18.917206 40.316538 -22.731389 +v -16.964567 42.386946 -20.385049 +v -10.664631 44.226690 -20.742843 +v -12.126380 42.386946 -23.585964 +v -13.522139 40.316538 -26.300732 +v -14.844311 38.026733 -28.872375 +v -16.085703 35.529990 -31.286898 +v -17.239559 32.839897 -33.531161 +v -18.299598 29.971094 -35.592952 +v -19.260054 26.939191 -37.461050 +v -20.115699 23.760689 -39.125290 +v -20.861876 20.452884 -40.576615 +v -21.494526 17.033777 -41.807126 +v -22.010205 13.521974 -42.810129 +v -22.406107 9.936586 -43.580163 +v -22.680078 6.297124 -44.113040 +v -22.830626 2.623394 -44.405859 +v -22.856933 -1.064612 -44.457027 +v -22.758856 -4.746824 -44.266264 +v -22.536927 -8.403205 -43.834610 +v -22.192355 -12.013857 -43.164414 +v -21.727015 -15.559130 -42.259322 +v -21.143440 -19.019733 -41.124259 +v -20.444804 -22.376833 -39.765404 +v -19.634910 -25.612161 -38.190150 +v -18.718165 -28.708110 -36.407070 +v -17.699558 -31.647833 -34.425867 +v -16.584633 -34.415333 -32.257322 +v -15.379455 -36.995548 -29.913237 +v -14.090585 -39.374439 -27.406368 +v -12.725036 -41.539058 -24.750356 +v -11.290238 -43.477627 -21.959657 +v -9.794000 -45.179595 -19.049455 +v -8.244464 -46.635702 -16.035588 +v -6.650063 -47.838023 -12.934458 +v -5.019474 -48.780015 -9.762940 +v -3.361568 -49.456552 -6.538293 +v -1.685370 -49.863953 -3.278066 +v -1.920157 -49.863953 -3.146297 +v -3.829866 -49.456552 -6.275472 +v -5.718732 -48.780015 -9.370497 +v -7.576478 -47.838023 -12.414529 +v -9.392993 -46.635702 -15.391003 +v -11.158393 -45.179595 -18.283720 +v -12.863071 -43.477627 -21.076940 +v -14.497749 -41.539058 -23.755461 +v -16.053532 -39.374439 -26.304709 +v -17.521954 -36.995548 -28.710809 +v -18.895023 -34.415333 -30.960668 +v -20.165268 -31.647833 -33.042043 +v -21.325776 -28.708110 -34.943608 +v -22.370231 -25.612161 -36.655013 +v -23.292951 -22.376833 -38.166946 +v -24.088913 -19.019733 -39.471180 +v -24.753786 -15.559130 -40.560615 +v -25.283952 -12.013857 -41.429325 +v -25.676526 -8.403205 -42.072582 +v -25.929371 -4.746824 -42.486885 +v -26.041112 -1.064612 -42.669979 +v -26.011140 2.623394 -42.620868 +v -25.839619 6.297124 -42.339820 +v -25.527481 9.936586 -41.828363 +v -25.076426 13.521974 -41.089282 +v -24.488909 17.033777 -40.126597 +v -23.768125 20.452884 -38.945549 +v -22.917998 23.760689 -37.552563 +v -21.943155 26.939191 -35.955221 +v -20.848899 29.971094 -34.162215 +v -19.641186 32.839897 -32.183303 +v -18.326588 35.529990 -30.029252 +v -16.912259 38.026733 -27.711786 +v -15.405896 40.316538 -25.243516 +v -13.815695 42.386946 -22.637874 +v -12.150311 44.226690 -19.909039 +v -10.372365 42.386946 -24.408212 +v -11.566235 40.316538 -27.217622 +v -12.697163 38.026733 -29.878917 +v -13.758994 35.529990 -32.377614 +v -14.745951 32.839897 -34.700117 +v -15.652661 29.971094 -36.833785 +v -16.474192 26.939191 -38.767009 +v -17.206073 23.760689 -40.489267 +v -17.844320 20.452884 -41.991187 +v -18.385460 17.033777 -43.264596 +v -18.826549 13.521974 -44.302565 +v -19.165186 9.936586 -45.099445 +v -19.399528 6.297124 -45.650898 +v -19.528301 2.623394 -45.953925 +v -19.550803 -1.064612 -46.006877 +v -19.466912 -4.746824 -45.809464 +v -19.277084 -8.403205 -45.362762 +v -18.982352 -12.013857 -44.669201 +v -18.584321 -15.559130 -43.732556 +v -18.085157 -19.019733 -42.557924 +v -17.487575 -22.376833 -41.151696 +v -16.794827 -25.612161 -39.521526 +v -16.010685 -28.708110 -37.676284 +v -15.139414 -31.647833 -35.626013 +v -14.185756 -34.415333 -33.381869 +v -13.154901 -36.995548 -30.956065 +v -12.052459 -39.374439 -28.361802 +v -10.884429 -41.539058 -25.613197 +v -9.657167 -43.477627 -22.725209 +v -8.377351 -45.179595 -19.713552 +v -7.051948 -46.635702 -16.594617 +v -5.688168 -47.838023 -13.385376 +v -4.293434 -48.780015 -10.103294 +v -2.875336 -49.456552 -6.766230 +v -1.441590 -49.863953 -3.392345 +v -5.899369 44.226690 -22.565402 +v -6.707967 42.386946 -25.658331 +v -7.480061 40.316538 -28.611631 +v -8.211449 38.026733 -31.409230 +v -8.898151 35.529990 -34.035903 +v -9.536431 32.839897 -36.477358 +v -10.122815 29.971094 -38.720307 +v -10.654111 26.939191 -40.752544 +v -11.127429 23.760689 -42.563012 +v -11.540193 20.452884 -44.141856 +v -11.890157 17.033777 -45.480486 +v -12.175416 13.521974 -46.571617 +v -12.394418 9.936586 -47.409310 +v -12.545971 6.297124 -47.989008 +v -12.629250 2.623394 -48.307555 +v -12.643802 -1.064612 -48.363218 +v -12.589548 -4.746824 -48.155695 +v -12.466784 -8.403205 -47.686114 +v -12.276176 -12.013857 -46.957031 +v -12.018764 -15.559130 -45.972413 +v -11.695946 -19.019733 -44.737619 +v -11.309481 -22.376833 -43.259369 +v -10.861471 -25.612161 -41.545706 +v -10.354354 -28.708110 -39.605956 +v -9.790890 -31.647833 -37.450676 +v -9.174145 -34.415333 -35.091593 +v -8.507475 -36.995548 -32.541547 +v -7.794509 -39.374439 -29.814413 +v -7.039126 -41.539058 -26.925033 +v -6.245437 -43.477627 -23.889129 +v -5.417761 -45.179595 -20.723225 +v -4.560602 -46.635702 -17.444546 +v -3.678625 -47.838023 -14.070937 +v -2.776629 -48.780015 -10.620755 +v -1.859524 -49.456552 -7.112777 +v -0.932299 -49.863953 -3.566092 +v -1.190119 -49.863953 -3.488525 +v -2.373762 -49.456552 -6.958066 +v -3.544487 -48.780015 -10.389741 +v -4.695924 -47.838023 -13.764877 +v -5.821806 -46.635702 -17.065107 +v -6.916006 -45.179595 -20.272470 +v -7.972570 -43.477627 -23.369512 +v -8.985749 -41.539058 -26.339381 +v -9.950028 -39.374439 -29.165914 +v -10.860160 -36.995548 -31.833729 +v -11.711193 -34.415333 -34.328309 +v -12.498494 -31.647833 -36.636079 +v -13.217781 -28.708110 -38.744480 +v -13.865137 -25.612161 -40.642037 +v -14.437042 -22.376833 -42.318426 +v -14.930381 -19.019733 -43.764523 +v -15.342472 -15.559130 -44.972458 +v -15.671070 -12.013857 -45.935659 +v -15.914389 -8.403205 -46.648884 +v -16.071103 -4.746824 -47.108251 +v -16.140360 -1.064612 -47.311261 +v -16.121784 2.623394 -47.256808 +v -16.015474 6.297124 -46.945189 +v -15.822010 9.936586 -46.378101 +v -15.542445 13.521974 -45.558628 +v -15.178300 17.033777 -44.491231 +v -14.731556 20.452884 -43.181718 +v -14.204645 23.760689 -41.637215 +v -13.600434 26.939191 -39.866128 +v -12.922211 29.971094 -37.878094 +v -12.173667 32.839897 -35.683932 +v -11.358875 35.529990 -33.295582 +v -10.482269 38.026733 -30.726042 +v -9.548621 40.316538 -27.989294 +v -8.563010 42.386946 -25.100232 +v -7.530800 44.226690 -22.074577 +v -4.236463 44.226690 -22.935830 +v -4.817134 42.386946 -26.079532 +v -5.371591 40.316538 -29.081313 +v -5.896816 38.026733 -31.924836 +v -6.389952 35.529990 -34.594629 +v -6.848314 32.839897 -37.076161 +v -7.269409 29.971094 -39.355930 +v -7.650944 26.939191 -41.421528 +v -7.990844 23.760689 -43.261716 +v -8.287259 20.452884 -44.866478 +v -8.538575 17.033777 -46.227083 +v -8.743426 13.521974 -47.336125 +v -8.900695 9.936586 -48.187570 +v -9.009529 6.297124 -48.776784 +v -9.069333 2.623394 -49.100560 +v -9.079784 -1.064612 -49.157137 +v -9.040823 -4.746824 -48.946207 +v -8.952663 -8.403205 -48.468918 +v -8.815784 -12.013857 -47.727866 +v -8.630930 -15.559130 -46.727085 +v -8.399108 -19.019733 -45.472021 +v -8.121579 -22.376833 -43.969504 +v -7.799854 -25.612161 -42.227710 +v -7.435682 -28.708110 -40.256118 +v -7.031046 -31.647833 -38.065457 +v -6.588149 -34.415333 -35.667649 +v -6.109399 -36.995548 -33.075741 +v -5.597403 -39.374439 -30.303839 +v -5.054946 -41.539058 -27.367027 +v -4.484981 -43.477627 -24.281288 +v -3.890609 -45.179595 -21.063412 +v -3.275065 -46.635702 -17.730912 +v -2.641699 -47.838023 -14.301922 +v -1.993957 -48.780015 -10.795103 +v -1.335363 -49.456552 -7.229539 +v -0.669503 -49.863953 -3.624632 +v -0.851833 44.226690 -23.308245 +v -0.968589 42.386946 -26.502992 +v -1.080075 40.316538 -29.553514 +v -1.185683 38.026733 -32.443208 +v -1.284838 35.529990 -35.156351 +v -1.377002 32.839897 -37.678177 +v -1.461672 29.971094 -39.994963 +v -1.538388 26.939191 -42.094101 +v -1.606732 23.760689 -43.964168 +v -1.666333 20.452884 -45.594987 +v -1.716865 17.033777 -46.977684 +v -1.758055 13.521974 -48.104734 +v -1.789678 9.936586 -48.970004 +v -1.811561 6.297124 -49.568785 +v -1.823586 2.623394 -49.897819 +v -1.825687 -1.064612 -49.955315 +v -1.817853 -4.746824 -49.740960 +v -1.800127 -8.403205 -49.255920 +v -1.772604 -12.013857 -48.502836 +v -1.735435 -15.559130 -47.485805 +v -1.688823 -19.019733 -46.210363 +v -1.633019 -22.376833 -44.683449 +v -1.568330 -25.612161 -42.913373 +v -1.495105 -28.708110 -40.909768 +v -1.413744 -31.647833 -38.683536 +v -1.324690 -34.415333 -36.246794 +v -1.228427 -36.995548 -33.612801 +v -1.125479 -39.374439 -30.795891 +v -1.016406 -41.539058 -27.811393 +v -0.901803 -43.477627 -24.675549 +v -0.782291 -45.179595 -21.405424 +v -0.658523 -46.635702 -18.018813 +v -0.531171 -47.838023 -14.534146 +v -0.400928 -48.780015 -10.970386 +v -0.268504 -49.456552 -7.346927 +v -0.134618 -49.863953 -3.683486 +v -0.403136 -49.863953 -3.663833 +v -0.804079 -49.456552 -7.307728 +v -1.200645 -48.780015 -10.911854 +v -1.590678 -47.838023 -14.456600 +v -1.972055 -46.635702 -17.922675 +v -2.342700 -45.179595 -21.291217 +v -2.700596 -43.477627 -24.543895 +v -3.043796 -41.539058 -27.663007 +v -3.370432 -39.374439 -30.631581 +v -3.678727 -36.995548 -33.433462 +v -3.967002 -34.415333 -36.053401 +v -4.233690 -31.647833 -38.477143 +v -4.477338 -28.708110 -40.691496 +v -4.696621 -25.612161 -42.684411 +v -4.890345 -22.376833 -44.445043 +v -5.057457 -19.019733 -45.963810 +v -5.197047 -15.559130 -47.232448 +v -5.308355 -12.013857 -48.244053 +v -5.390776 -8.403205 -48.993119 +v -5.443861 -4.746824 -49.475570 +v -5.467321 -1.064612 -49.688781 +v -5.461028 2.623394 -49.631592 +v -5.425017 6.297124 -49.304314 +v -5.359484 9.936586 -48.708728 +v -5.264785 13.521974 -47.848075 +v -5.141436 17.033777 -46.727038 +v -4.990108 20.452884 -45.351718 +v -4.811624 23.760689 -43.729600 +v -4.606956 26.939191 -41.869511 +v -4.377218 29.971094 -39.781572 +v -4.123659 32.839897 -37.477147 +v -3.847660 35.529990 -34.968777 +v -3.550722 38.026733 -32.270110 +v -3.234461 40.316538 -29.395833 +v -2.900599 42.386946 -26.361587 +v 0.851833 44.226690 -23.308245 +v 0.968589 42.386946 -26.502992 +v 1.080075 40.316538 -29.553514 +v 1.185683 38.026733 -32.443208 +v 1.284838 35.529990 -35.156351 +v 1.377002 32.839897 -37.678177 +v 1.461672 29.971094 -39.994963 +v 1.538388 26.939191 -42.094101 +v 1.606732 23.760689 -43.964168 +v 1.666333 20.452884 -45.594987 +v 1.716865 17.033777 -46.977684 +v 1.758055 13.521974 -48.104734 +v 1.789678 9.936586 -48.970004 +v 1.811561 6.297124 -49.568785 +v 1.823586 2.623394 -49.897819 +v 1.825687 -1.064612 -49.955315 +v 1.817853 -4.746824 -49.740960 +v 1.800127 -8.403205 -49.255920 +v 1.772604 -12.013857 -48.502836 +v 1.735435 -15.559130 -47.485805 +v 1.688823 -19.019733 -46.210363 +v 1.633019 -22.376833 -44.683449 +v 1.568330 -25.612161 -42.913373 +v 1.495105 -28.708110 -40.909768 +v 1.413744 -31.647833 -38.683536 +v 1.324690 -34.415333 -36.246794 +v 1.228427 -36.995548 -33.612801 +v 1.125479 -39.374439 -30.795891 +v 1.016406 -41.539058 -27.811393 +v 0.901803 -43.477627 -24.675549 +v 0.782291 -45.179595 -21.405424 +v 0.658523 -46.635702 -18.018813 +v 0.531171 -47.838023 -14.534146 +v 0.400928 -48.780015 -10.970386 +v 0.268504 -49.456552 -7.346927 +v 0.134618 -49.863953 -3.683486 +v 4.817134 42.386946 -26.079532 +v 5.371591 40.316538 -29.081313 +v 5.896816 38.026733 -31.924836 +v 6.389952 35.529990 -34.594629 +v 6.848314 32.839897 -37.076161 +v 7.269409 29.971094 -39.355930 +v 7.650944 26.939191 -41.421528 +v 7.990844 23.760689 -43.261716 +v 8.287259 20.452884 -44.866478 +v 8.538575 17.033777 -46.227083 +v 8.743426 13.521974 -47.336125 +v 8.900695 9.936586 -48.187570 +v 9.009529 6.297124 -48.776784 +v 9.069333 2.623394 -49.100560 +v 9.079784 -1.064612 -49.157137 +v 9.040823 -4.746824 -48.946207 +v 8.952663 -8.403205 -48.468918 +v 8.815784 -12.013857 -47.727866 +v 8.630930 -15.559130 -46.727085 +v 8.399108 -19.019733 -45.472021 +v 8.121579 -22.376833 -43.969504 +v 7.799854 -25.612161 -42.227710 +v 7.435682 -28.708110 -40.256118 +v 7.031046 -31.647833 -38.065457 +v 6.588149 -34.415333 -35.667649 +v 6.109399 -36.995548 -33.075741 +v 5.597403 -39.374439 -30.303839 +v 5.054946 -41.539058 -27.367027 +v 4.484981 -43.477627 -24.281288 +v 3.890609 -45.179595 -21.063412 +v 3.275065 -46.635702 -17.730912 +v 2.641699 -47.838023 -14.301922 +v 1.993957 -48.780015 -10.795103 +v 1.335363 -49.456552 -7.229539 +v 0.669503 -49.863953 -3.624632 +v 0.403136 -49.863953 -3.663833 +v 0.804079 -49.456552 -7.307728 +v 1.200645 -48.780015 -10.911854 +v 1.590678 -47.838023 -14.456600 +v 1.972055 -46.635702 -17.922675 +v 2.342700 -45.179595 -21.291217 +v 2.700596 -43.477627 -24.543895 +v 3.043796 -41.539058 -27.663007 +v 3.370432 -39.374439 -30.631581 +v 3.678727 -36.995548 -33.433462 +v 3.967002 -34.415333 -36.053401 +v 4.233690 -31.647833 -38.477143 +v 4.477338 -28.708110 -40.691496 +v 4.696621 -25.612161 -42.684411 +v 4.890345 -22.376833 -44.445043 +v 5.057457 -19.019733 -45.963810 +v 5.197047 -15.559130 -47.232448 +v 5.308355 -12.013857 -48.244053 +v 5.390776 -8.403205 -48.993119 +v 5.443861 -4.746824 -49.475570 +v 5.467321 -1.064612 -49.688781 +v 5.461028 2.623394 -49.631592 +v 5.425017 6.297124 -49.304314 +v 5.359484 9.936586 -48.708728 +v 5.264785 13.521974 -47.848075 +v 5.141436 17.033777 -46.727038 +v 4.990108 20.452884 -45.351718 +v 4.811624 23.760689 -43.729600 +v 4.606956 26.939191 -41.869511 +v 4.377218 29.971094 -39.781572 +v 4.123659 32.839897 -37.477147 +v 3.847660 35.529990 -34.968777 +v 3.550722 38.026733 -32.270110 +v 3.234461 40.316538 -29.395833 +v 2.900599 42.386946 -26.361587 +v 7.530800 44.226690 -22.074577 +v 8.563010 42.386946 -25.100232 +v 9.548621 40.316538 -27.989294 +v 10.482269 38.026733 -30.726042 +v 11.358875 35.529990 -33.295582 +v 12.173667 32.839897 -35.683932 +v 12.922211 29.971094 -37.878094 +v 13.600434 26.939191 -39.866128 +v 14.204645 23.760689 -41.637215 +v 14.731556 20.452884 -43.181718 +v 15.178300 17.033777 -44.491231 +v 15.542445 13.521974 -45.558628 +v 15.822010 9.936586 -46.378101 +v 16.015474 6.297124 -46.945189 +v 16.121784 2.623394 -47.256808 +v 16.140360 -1.064612 -47.311261 +v 16.071103 -4.746824 -47.108251 +v 15.914389 -8.403205 -46.648884 +v 15.671070 -12.013857 -45.935659 +v 15.342472 -15.559130 -44.972458 +v 14.930381 -19.019733 -43.764523 +v 14.437042 -22.376833 -42.318426 +v 13.865137 -25.612161 -40.642037 +v 13.217781 -28.708110 -38.744480 +v 12.498494 -31.647833 -36.636079 +v 11.711193 -34.415333 -34.328309 +v 10.860160 -36.995548 -31.833729 +v 9.950028 -39.374439 -29.165914 +v 8.985749 -41.539058 -26.339381 +v 7.972570 -43.477627 -23.369512 +v 6.916006 -45.179595 -20.272470 +v 5.821806 -46.635702 -17.065107 +v 4.695924 -47.838023 -13.764877 +v 3.544487 -48.780015 -10.389741 +v 2.373762 -49.456552 -6.958066 +v 1.190119 -49.863953 -3.488525 +v 0.932299 -49.863953 -3.566092 +v 1.859524 -49.456552 -7.112777 +v 2.776629 -48.780015 -10.620755 +v 3.678625 -47.838023 -14.070937 +v 4.560602 -46.635702 -17.444546 +v 5.417761 -45.179595 -20.723225 +v 6.245437 -43.477627 -23.889129 +v 7.039126 -41.539058 -26.925033 +v 7.794509 -39.374439 -29.814413 +v 8.507475 -36.995548 -32.541547 +v 9.174145 -34.415333 -35.091593 +v 9.790890 -31.647833 -37.450676 +v 10.354354 -28.708110 -39.605956 +v 10.861471 -25.612161 -41.545706 +v 11.309481 -22.376833 -43.259369 +v 11.695946 -19.019733 -44.737619 +v 12.018764 -15.559130 -45.972413 +v 12.276176 -12.013857 -46.957031 +v 12.466784 -8.403205 -47.686114 +v 12.589548 -4.746824 -48.155695 +v 12.643802 -1.064612 -48.363218 +v 12.629250 2.623394 -48.307555 +v 12.545971 6.297124 -47.989008 +v 12.394418 9.936586 -47.409310 +v 12.175416 13.521974 -46.571617 +v 11.890157 17.033777 -45.480486 +v 11.540193 20.452884 -44.141856 +v 11.127429 23.760689 -42.563012 +v 10.654111 26.939191 -40.752544 +v 10.122815 29.971094 -38.720307 +v 9.536431 32.839897 -36.477358 +v 8.898151 35.529990 -34.035903 +v 8.211449 38.026733 -31.409230 +v 7.480061 40.316538 -28.611631 +v 6.707967 42.386946 -25.658331 +v 5.899369 44.226690 -22.565402 +v 10.372365 42.386946 -24.408212 +v 11.566235 40.316538 -27.217622 +v 12.697163 38.026733 -29.878917 +v 13.758994 35.529990 -32.377614 +v 14.745951 32.839897 -34.700117 +v 15.652661 29.971094 -36.833785 +v 16.474192 26.939191 -38.767009 +v 17.206073 23.760689 -40.489267 +v 17.844320 20.452884 -41.991187 +v 18.385460 17.033777 -43.264596 +v 18.826549 13.521974 -44.302565 +v 19.165186 9.936586 -45.099445 +v 19.399528 6.297124 -45.650898 +v 19.528301 2.623394 -45.953925 +v 19.550803 -1.064612 -46.006877 +v 19.466912 -4.746824 -45.809464 +v 19.277084 -8.403205 -45.362762 +v 18.982352 -12.013857 -44.669201 +v 18.584321 -15.559130 -43.732556 +v 18.085157 -19.019733 -42.557924 +v 17.487575 -22.376833 -41.151696 +v 16.794827 -25.612161 -39.521526 +v 16.010685 -28.708110 -37.676284 +v 15.139414 -31.647833 -35.626013 +v 14.185756 -34.415333 -33.381869 +v 13.154901 -36.995548 -30.956065 +v 12.052459 -39.374439 -28.361802 +v 10.884429 -41.539058 -25.613197 +v 9.657167 -43.477627 -22.725209 +v 8.377351 -45.179595 -19.713552 +v 7.051948 -46.635702 -16.594617 +v 5.688168 -47.838023 -13.385376 +v 4.293434 -48.780015 -10.103294 +v 2.875336 -49.456552 -6.766230 +v 1.441590 -49.863953 -3.392345 +v 12.150311 44.226690 -19.909039 +v 13.815695 42.386946 -22.637874 +v 15.405896 40.316538 -25.243516 +v 16.912259 38.026733 -27.711786 +v 18.326588 35.529990 -30.029252 +v 19.641186 32.839897 -32.183303 +v 20.848899 29.971094 -34.162215 +v 21.943155 26.939191 -35.955221 +v 22.917998 23.760689 -37.552563 +v 23.768125 20.452884 -38.945549 +v 24.488909 17.033777 -40.126597 +v 25.076426 13.521974 -41.089282 +v 25.527481 9.936586 -41.828363 +v 25.839619 6.297124 -42.339820 +v 26.011140 2.623394 -42.620868 +v 26.041112 -1.064612 -42.669979 +v 25.929371 -4.746824 -42.486885 +v 25.676526 -8.403205 -42.072582 +v 25.283952 -12.013857 -41.429325 +v 24.753786 -15.559130 -40.560615 +v 24.088913 -19.019733 -39.471180 +v 23.292951 -22.376833 -38.166946 +v 22.370231 -25.612161 -36.655013 +v 21.325776 -28.708110 -34.943608 +v 20.165268 -31.647833 -33.042043 +v 18.895023 -34.415333 -30.960668 +v 17.521954 -36.995548 -28.710809 +v 16.053532 -39.374439 -26.304709 +v 14.497749 -41.539058 -23.755461 +v 12.863071 -43.477627 -21.076940 +v 11.158393 -45.179595 -18.283720 +v 9.392993 -46.635702 -15.391003 +v 7.576478 -47.838023 -12.414529 +v 5.718732 -48.780015 -9.370497 +v 3.829866 -49.456552 -6.275472 +v 1.920157 -49.863953 -3.146297 +v 1.685370 -49.863953 -3.278066 +v 3.361568 -49.456552 -6.538293 +v 5.019474 -48.780015 -9.762940 +v 6.650063 -47.838023 -12.934458 +v 8.244464 -46.635702 -16.035588 +v 9.794000 -45.179595 -19.049455 +v 11.290238 -43.477627 -21.959657 +v 12.725036 -41.539058 -24.750356 +v 14.090585 -39.374439 -27.406368 +v 15.379455 -36.995548 -29.913237 +v 16.584633 -34.415333 -32.257322 +v 17.699558 -31.647833 -34.425867 +v 18.718165 -28.708110 -36.407070 +v 19.634910 -25.612161 -38.190150 +v 20.444804 -22.376833 -39.765404 +v 21.143440 -19.019733 -41.124259 +v 21.727015 -15.559130 -42.259322 +v 22.192355 -12.013857 -43.164414 +v 22.536927 -8.403205 -43.834610 +v 22.758856 -4.746824 -44.266264 +v 22.856933 -1.064612 -44.457027 +v 22.830626 2.623394 -44.405859 +v 22.680078 6.297124 -44.113040 +v 22.406107 9.936586 -43.580163 +v 22.010205 13.521974 -42.810129 +v 21.494526 17.033777 -41.807126 +v 20.861876 20.452884 -40.576615 +v 20.115699 23.760689 -39.125290 +v 19.260054 26.939191 -37.461050 +v 18.299598 29.971094 -35.592952 +v 17.239559 32.839897 -33.531161 +v 16.085703 35.529990 -31.286898 +v 14.844311 38.026733 -28.872375 +v 13.522139 40.316538 -26.300732 +v 12.126380 42.386946 -23.585964 +v 10.664631 44.226690 -20.742843 +v 15.431297 42.386946 -21.569002 +v 17.207455 40.316538 -24.051616 +v 18.889972 38.026733 -26.403343 +v 20.469693 35.529990 -28.611388 +v 21.938019 32.839897 -30.663732 +v 23.286962 29.971094 -32.549208 +v 24.509179 26.939191 -34.257555 +v 25.598021 23.760689 -35.779477 +v 26.547561 20.452884 -37.106691 +v 27.352633 17.033777 -38.231975 +v 28.008855 13.521974 -39.149205 +v 28.512656 9.936586 -39.853390 +v 28.861295 6.297124 -40.340698 +v 29.052873 2.623394 -40.608476 +v 29.086350 -1.064612 -40.655268 +v 28.961543 -4.746824 -40.480819 +v 28.679130 -8.403205 -40.086078 +v 28.240648 -12.013857 -39.473194 +v 27.648485 -15.559130 -38.645501 +v 26.905862 -19.019733 -37.607504 +v 26.016820 -22.376833 -36.364851 +v 24.986198 -25.612161 -34.924306 +v 23.819604 -28.708110 -33.293706 +v 22.523387 -31.647833 -31.481926 +v 21.104600 -34.415333 -29.498826 +v 19.570964 -36.995548 -27.355196 +v 17.930826 -39.374439 -25.062703 +v 16.193110 -41.539058 -22.633821 +v 14.367274 -43.477627 -20.081769 +v 12.463252 -45.179595 -17.420434 +v 10.491407 -46.635702 -14.664299 +v 8.462468 -47.838023 -11.828363 +v 6.387478 -48.780015 -8.928059 +v 4.277729 -49.456552 -5.979169 +v 2.144700 -49.863953 -2.997741 +v 16.188452 44.226690 -16.790889 +v 18.407324 42.386946 -19.092334 +v 20.526025 40.316538 -21.289881 +v 22.533027 38.026733 -23.371571 +v 24.417406 35.529990 -25.326075 +v 26.168909 32.839897 -27.142759 +v 27.778004 29.971094 -28.811734 +v 29.235934 26.939191 -30.323920 +v 30.534766 23.760689 -31.671087 +v 31.667431 20.452884 -32.845903 +v 32.627766 17.033777 -33.841976 +v 33.410545 13.521974 -34.653885 +v 34.011507 9.936586 -35.277211 +v 34.427383 6.297124 -35.708564 +v 34.655909 2.623394 -35.945594 +v 34.695842 -1.064612 -35.987013 +v 34.546965 -4.746824 -35.832595 +v 34.210087 -8.403205 -35.483181 +v 33.687041 -12.013857 -34.940671 +v 32.980675 -15.559130 -34.208018 +v 32.094832 -19.019733 -33.289210 +v 31.034333 -22.376833 -32.189245 +v 29.804949 -25.612161 -30.914111 +v 28.413370 -28.708110 -29.470745 +v 26.867169 -31.647833 -27.867004 +v 25.174760 -34.415333 -26.111613 +v 23.345352 -36.995548 -24.214126 +v 21.388903 -39.374439 -22.184869 +v 19.316057 -41.539058 -20.034885 +v 17.138096 -43.477627 -17.775873 +v 14.866871 -45.179595 -15.420127 +v 12.514743 -46.635702 -12.980466 +v 10.094511 -47.838023 -10.470168 +v 7.619345 -48.780015 -7.902892 +v 5.102716 -49.456552 -5.292609 +v 2.558319 -49.863953 -2.653525 +v 2.357800 -49.863953 -2.833191 +v 4.702768 -49.456552 -5.650964 +v 7.022145 -48.780015 -8.437985 +v 9.303308 -47.838023 -11.179088 +v 11.533844 -46.635702 -13.859356 +v 13.701613 -45.179595 -16.464202 +v 15.794821 -43.477627 -18.979453 +v 17.802075 -41.539058 -21.391419 +v 19.712452 -39.374439 -23.686976 +v 21.515556 -36.995548 -25.853631 +v 23.201575 -34.415333 -27.879594 +v 24.761334 -31.647833 -29.753840 +v 26.186345 -28.708110 -31.466169 +v 27.468853 -25.612161 -33.007262 +v 28.601878 -22.376833 -34.368734 +v 29.579256 -19.019733 -35.543176 +v 30.395667 -15.559130 -36.524196 +v 31.046669 -12.013857 -37.306455 +v 31.528718 -8.403205 -37.885698 +v 31.839192 -4.746824 -38.258771 +v 31.976400 -1.064612 -38.423644 +v 31.939597 2.623394 -38.379421 +v 31.728983 6.297124 -38.126341 +v 31.345703 9.936586 -37.665782 +v 30.791844 13.521974 -37.000251 +v 30.070419 17.033777 -36.133369 +v 29.185354 20.452884 -35.069853 +v 28.141467 23.760689 -33.815492 +v 26.944437 26.939191 -32.377111 +v 25.600778 29.971094 -30.762537 +v 24.117803 32.839897 -28.980557 +v 22.503583 35.529990 -27.040869 +v 20.766900 38.026733 -24.954027 +v 18.917206 40.316538 -22.731389 +v 16.964567 42.386946 -20.385049 +v 14.919609 44.226690 -17.927776 +v 17.370922 44.226690 -15.564414 +v 19.751869 42.386946 -17.697752 +v 22.025329 40.316538 -19.734782 +v 24.178930 38.026733 -21.664417 +v 26.200952 35.529990 -23.476156 +v 28.080392 32.839897 -25.160142 +v 29.807021 29.971094 -26.707209 +v 31.371445 26.939191 -28.108938 +v 32.765149 23.760689 -29.357702 +v 33.980548 20.452884 -30.446705 +v 35.011030 17.033777 -31.370021 +v 35.850986 13.521974 -32.122625 +v 36.495845 9.936586 -32.700421 +v 36.942098 6.297124 -33.100266 +v 37.187317 2.623394 -33.319983 +v 37.230167 -1.064612 -33.358376 +v 37.070415 -4.746824 -33.215238 +v 36.708930 -8.403205 -32.891346 +v 36.147679 -12.013857 -32.388463 +v 35.389717 -15.559130 -31.709326 +v 34.439169 -19.019733 -30.857631 +v 33.301207 -22.376833 -29.838012 +v 31.982023 -25.612161 -28.656019 +v 30.488798 -28.708110 -27.318083 +v 28.829655 -31.647833 -25.831485 +v 27.013626 -34.415333 -24.204315 +v 25.050591 -36.995548 -22.445429 +v 22.951235 -39.374439 -20.564397 +v 20.726980 -41.539058 -18.571456 +v 18.389932 -43.477627 -16.477451 +v 15.952807 -45.179595 -14.293778 +v 13.428870 -46.635702 -12.032321 +v 10.831854 -47.838023 -9.705384 +v 8.175893 -48.780015 -7.325632 +v 5.475439 -49.456552 -4.906015 +v 2.745189 -49.863953 -2.459700 +v 19.452003 44.226690 -12.869323 +v 22.118194 42.386946 -14.633259 +v 24.664021 40.316538 -16.317562 +v 27.075628 38.026733 -17.913066 +v 29.339894 35.529990 -19.411090 +v 31.444496 32.839897 -20.803482 +v 33.377980 29.971094 -22.082663 +v 35.129825 26.939191 -23.241673 +v 36.690498 23.760689 -24.274204 +v 38.051506 20.452884 -25.174638 +v 39.205442 17.033777 -25.938075 +v 40.146027 13.521974 -26.560360 +v 40.868142 9.936586 -27.038107 +v 41.367857 6.297124 -27.368716 +v 41.642454 2.623394 -27.550387 +v 41.690437 -1.064612 -27.582133 +v 41.511546 -4.746824 -27.463779 +v 41.106755 -8.403205 -27.195972 +v 40.478265 -12.013857 -26.780167 +v 39.629497 -15.559130 -26.218627 +v 38.565070 -19.019733 -25.514409 +v 37.290777 -22.376833 -24.671345 +v 35.813552 -25.612161 -23.694022 +v 34.141434 -28.708110 -22.587759 +v 32.283523 -31.647833 -21.358577 +v 30.249928 -34.415333 -20.013163 +v 28.051717 -36.995548 -18.558841 +v 25.700852 -39.374439 -17.003523 +v 23.210126 -41.539058 -15.355674 +v 20.593093 -43.477627 -13.624262 +v 17.863995 -45.179595 -11.818707 +v 15.037683 -46.635702 -9.948837 +v 12.129539 -47.838023 -8.024827 +v 9.155386 -48.780015 -6.057146 +v 6.131411 -49.456552 -4.056503 +v 3.074070 -49.863953 -2.033785 +v 2.917412 -49.863953 -2.252753 +v 5.818949 -49.456552 -4.493246 +v 8.688819 -48.780015 -6.709288 +v 11.511406 -47.838023 -8.888818 +v 14.271349 -46.635702 -11.019977 +v 16.953629 -45.179595 -13.091166 +v 19.543649 -43.477627 -15.091115 +v 22.027316 -41.539058 -17.008940 +v 24.391112 -39.374439 -18.834204 +v 26.622175 -36.995548 -20.556975 +v 28.708363 -34.415333 -22.167877 +v 30.638323 -31.647833 -23.658144 +v 32.401554 -28.708110 -25.019666 +v 33.988459 -25.612161 -26.245035 +v 35.390404 -22.376833 -27.327581 +v 36.599757 -19.019733 -28.261414 +v 37.609940 -15.559130 -29.041451 +v 38.415453 -12.013857 -29.663449 +v 39.011915 -8.403205 -30.124021 +v 39.396078 -4.746824 -30.420662 +v 39.565853 -1.064612 -30.551758 +v 39.520315 2.623394 -30.516595 +v 39.259712 6.297124 -30.315364 +v 38.785462 9.936586 -29.949160 +v 38.100147 13.521974 -29.419977 +v 37.207495 17.033777 -28.730694 +v 36.112365 20.452884 -27.885061 +v 34.820715 23.760689 -26.887682 +v 33.339576 26.939191 -25.743983 +v 31.677006 29.971094 -24.460189 +v 29.842054 32.839897 -23.043285 +v 27.844705 35.529990 -21.500982 +v 25.695828 38.026733 -19.841674 +v 23.407118 40.316538 -18.074389 +v 20.991030 42.386946 -16.208746 +v 20.339511 44.226690 -11.415087 +v 23.127348 42.386946 -12.979697 +v 25.789329 40.316538 -14.473673 +v 28.310968 38.026733 -15.888885 +v 30.678542 35.529990 -17.217632 +v 32.879167 32.839897 -18.452683 +v 34.900868 29.971094 -19.587316 +v 36.732642 26.939191 -20.615358 +v 38.364522 23.760689 -21.531213 +v 39.787626 20.452884 -22.329898 +v 40.994211 17.033777 -23.007066 +v 41.977711 13.521974 -23.559033 +v 42.732772 9.936586 -23.982794 +v 43.255288 6.297124 -24.276044 +v 43.542413 2.623394 -24.437186 +v 43.592585 -1.064612 -24.465345 +v 43.405533 -4.746824 -24.360365 +v 42.982272 -8.403205 -24.122820 +v 42.325107 -12.013857 -23.754001 +v 41.437614 -15.559130 -23.255916 +v 40.324622 -19.019733 -22.631275 +v 38.992189 -22.376833 -21.883477 +v 37.447565 -25.612161 -21.016592 +v 35.699155 -28.708110 -20.035337 +v 33.756476 -31.647833 -18.945052 +v 31.630097 -34.415333 -17.751671 +v 29.331591 -36.995548 -16.461687 +v 26.873467 -39.374439 -15.082121 +v 24.269100 -41.539058 -13.620479 +v 21.532664 -43.477627 -12.084717 +v 18.679049 -45.179595 -10.483191 +v 15.723786 -46.635702 -8.824616 +v 12.682955 -47.838023 -7.118019 +v 9.573106 -48.780015 -5.372687 +v 6.411160 -49.456552 -3.598117 +v 3.214326 -49.863953 -1.803967 +v 24.770748 42.386946 -9.474008 +v 27.621886 40.316538 -10.564476 +v 30.322709 38.026733 -11.597453 +v 32.858520 35.529990 -12.567319 +v 35.215518 32.839897 -13.468794 +v 37.380878 29.971094 -14.296974 +v 39.342816 26.939191 -15.047352 +v 41.090655 23.760689 -15.715844 +v 42.614883 20.452884 -16.298812 +v 43.907207 17.033777 -16.793083 +v 44.960592 13.521974 -17.195969 +v 45.769308 9.936586 -17.505277 +v 46.328952 6.297124 -17.719323 +v 46.636480 2.623394 -17.836942 +v 46.690218 -1.064612 -17.857495 +v 46.489873 -4.746824 -17.780870 +v 46.036536 -8.403205 -17.607483 +v 45.332674 -12.013857 -17.338279 +v 44.382117 -15.559130 -16.974721 +v 43.190038 -19.019733 -16.518790 +v 41.762923 -22.376833 -15.972965 +v 40.108540 -25.612161 -15.340217 +v 38.235891 -28.708110 -14.623989 +v 36.155167 -31.647833 -13.828180 +v 33.877691 -34.415333 -12.957119 +v 31.415856 -36.995548 -12.015547 +v 28.783061 -39.374439 -11.008588 +v 25.993631 -41.539058 -9.941721 +v 23.062747 -43.477627 -8.820753 +v 20.006358 -45.179595 -7.651784 +v 16.841098 -46.635702 -6.441174 +v 13.584190 -47.838023 -5.195512 +v 10.253358 -48.780015 -3.921577 +v 6.866729 -49.456552 -2.626301 +v 3.442732 -49.863953 -1.316733 +v 3.337432 -49.863953 -1.564524 +v 6.656703 -49.456552 -3.120534 +v 9.939748 -48.780015 -4.659563 +v 13.168703 -47.838023 -6.173234 +v 16.325995 -46.635702 -7.653312 +v 19.394443 -45.179595 -9.091741 +v 22.357348 -43.477627 -10.480694 +v 25.198588 -41.539058 -11.812613 +v 27.902700 -39.374439 -13.080249 +v 30.454969 -36.995548 -14.276703 +v 32.841506 -34.415333 -15.395466 +v 35.049323 -31.647833 -16.430448 +v 37.066406 -28.708110 -17.376017 +v 38.881778 -25.612161 -18.227029 +v 40.485560 -22.376833 -18.978851 +v 41.869024 -19.019733 -19.627392 +v 43.024643 -15.559130 -20.169124 +v 43.946126 -12.013857 -20.601098 +v 44.628460 -8.403205 -20.920963 +v 45.067931 -4.746824 -21.126978 +v 45.262148 -1.064612 -21.218024 +v 45.210054 2.623394 -21.193603 +v 44.911932 6.297124 -21.053849 +v 44.369405 9.936586 -20.799523 +v 43.585425 13.521974 -20.432008 +v 42.564258 17.033777 -19.953305 +v 41.311462 20.452884 -19.366018 +v 39.833854 23.760689 -18.673344 +v 38.139474 26.939191 -17.879051 +v 36.237544 29.971094 -16.987463 +v 34.138414 32.839897 -16.003431 +v 31.853507 35.529990 -14.932311 +v 29.395257 38.026733 -13.779930 +v 26.777041 40.316538 -12.552561 +v 24.013108 42.386946 -11.256883 +v 22.765804 44.226690 -5.071299 +v 25.886202 42.386946 -5.766397 +v 28.865730 40.316538 -6.430116 +v 31.688174 38.026733 -7.058842 +v 34.338175 35.529990 -7.649155 +v 36.801312 32.839897 -8.197842 +v 39.064180 29.971094 -8.701917 +v 41.114466 26.939191 -9.158638 +v 42.941012 23.760689 -9.565518 +v 44.533878 20.452884 -9.920344 +v 45.884396 17.033777 -10.221185 +v 46.985217 13.521974 -10.466404 +v 47.830350 9.936586 -10.654665 +v 48.415196 6.297124 -10.784945 +v 48.736572 2.623394 -10.856534 +v 48.792730 -1.064612 -10.869044 +v 48.583363 -4.746824 -10.822406 +v 48.109612 -8.403205 -10.716873 +v 47.374054 -12.013857 -10.553021 +v 46.380692 -15.559130 -10.331740 +v 45.134932 -19.019733 -10.054235 +v 43.643553 -22.376833 -9.722016 +v 41.914672 -25.612161 -9.336891 +v 39.957695 -28.708110 -8.900956 +v 37.783274 -31.647833 -8.416583 +v 35.403240 -34.415333 -7.886408 +v 32.830547 -36.995548 -7.313316 +v 30.079193 -39.374439 -6.700426 +v 27.164153 -41.539058 -6.051073 +v 24.101288 -43.477627 -5.368791 +v 20.907267 -45.179595 -4.657292 +v 17.599471 -46.635702 -3.920449 +v 14.195900 -47.838023 -3.162272 +v 10.715078 -48.780015 -2.386885 +v 7.175945 -49.456552 -1.598510 +v 3.597762 -49.863953 -0.801436 +v 3.529663 -49.863953 -1.061917 +v 7.040118 -49.456552 -2.118056 +v 10.512262 -48.780015 -3.162668 +v 13.927199 -47.838023 -4.190070 +v 17.266346 -46.635702 -5.194670 +v 20.511531 -45.179595 -6.171000 +v 23.645096 -43.477627 -7.113750 +v 26.649986 -41.539058 -8.017786 +v 29.509851 -39.374439 -8.878191 +v 32.209126 -36.995548 -9.690282 +v 34.733124 -34.415333 -10.449640 +v 37.068108 -31.647833 -11.152132 +v 39.201371 -28.708110 -11.793936 +v 41.121306 -25.612161 -12.371558 +v 42.817463 -22.376833 -12.881856 +v 44.280613 -19.019733 -13.322052 +v 45.502793 -15.559130 -13.689751 +v 46.477352 -12.013857 -13.982952 +v 47.198988 -8.403205 -14.200060 +v 47.663772 -4.746824 -14.339893 +v 47.869175 -1.064612 -14.401689 +v 47.814081 2.623394 -14.385114 +v 47.498787 6.297124 -14.290256 +v 46.925012 9.936586 -14.117633 +v 46.095875 13.521974 -13.868183 +v 45.015891 17.033777 -13.543264 +v 43.690936 20.452884 -13.144644 +v 42.128219 23.760689 -12.674493 +v 40.336247 26.939191 -12.135369 +v 38.324769 29.971094 -11.530205 +v 36.104732 32.839897 -10.862296 +v 33.688218 35.529990 -10.135275 +v 31.088376 38.026733 -9.353099 +v 28.319356 40.316538 -8.520025 +v 25.396225 42.386946 -7.640586 +v 22.334890 44.226690 -6.719567 +v 26.238065 42.386946 -3.861443 +v 29.258092 40.316538 -4.305899 +v 32.118901 38.026733 -4.726923 +v 34.804923 35.529990 -5.122223 +v 37.301540 32.839897 -5.489649 +v 39.595167 29.971094 -5.827201 +v 41.673322 26.939191 -6.133042 +v 43.524696 23.760689 -6.405508 +v 45.139213 20.452884 -6.643115 +v 46.508088 17.033777 -6.844572 +v 47.623872 13.521974 -7.008781 +v 48.480493 9.936586 -7.134850 +v 49.073288 6.297124 -7.222091 +v 49.399033 2.623394 -7.270031 +v 49.455954 -1.064612 -7.278408 +v 49.243742 -4.746824 -7.247177 +v 48.763551 -8.403205 -7.176507 +v 48.017995 -12.013857 -7.066784 +v 47.011130 -15.559130 -6.918604 +v 45.748437 -19.019733 -6.732775 +v 44.236786 -22.376833 -6.510306 +v 42.484404 -25.612161 -6.252409 +v 40.500827 -28.708110 -5.960486 +v 38.296850 -31.647833 -5.636128 +v 35.884465 -34.415333 -5.281099 +v 33.276802 -36.995548 -4.897330 +v 30.488050 -39.374439 -4.486911 +v 27.533386 -41.539058 -4.052075 +v 24.428889 -43.477627 -3.595187 +v 21.191452 -45.179595 -3.118735 +v 17.838695 -46.635702 -2.625312 +v 14.388861 -47.838023 -2.117601 +v 10.860725 -48.780015 -1.598367 +v 7.273486 -49.456552 -1.070435 +v 3.646665 -49.863953 -0.536678 +v 23.323806 44.226690 -0.000000 +v 26.520686 42.386946 -0.000000 +v 29.573244 40.316538 -0.000000 +v 32.464867 38.026733 -0.000000 +v 35.179821 35.529990 -0.000000 +v 37.703331 32.839897 -0.000000 +v 40.021663 29.971094 -0.000000 +v 42.122203 26.939191 -0.000000 +v 43.993518 23.760689 -0.000000 +v 45.625426 20.452884 -0.000000 +v 47.009046 17.033777 -0.000000 +v 48.136849 13.521974 -0.000000 +v 49.002696 9.936586 -0.000000 +v 49.601877 6.297124 -0.000000 +v 49.931131 2.623394 -0.000000 +v 49.988665 -1.064612 0.000000 +v 49.774167 -4.746824 0.000000 +v 49.288803 -8.403205 0.000000 +v 48.535217 -12.013857 0.000000 +v 47.517507 -15.559130 0.000000 +v 46.241213 -19.019733 0.000000 +v 44.713279 -22.376833 0.000000 +v 42.942022 -25.612161 0.000000 +v 40.937079 -28.708110 0.000000 +v 38.709361 -31.647833 0.000000 +v 36.270992 -34.415333 0.000000 +v 33.635240 -36.995548 0.000000 +v 30.816450 -39.374439 0.000000 +v 27.829960 -41.539058 0.000000 +v 24.692023 -43.477627 0.000000 +v 21.419714 -45.179595 0.000000 +v 18.030843 -46.635702 0.000000 +v 14.543849 -47.838023 0.000000 +v 10.977710 -48.780015 0.000000 +v 7.351831 -49.456552 0.000000 +v 3.685945 -49.863953 0.000000 +v 3.676112 -49.863953 -0.269057 +v 7.332219 -49.456552 -0.536649 +v 10.948425 -48.780015 -0.801321 +v 14.505050 -47.838023 -1.061633 +v 17.982742 -46.635702 -1.316167 +v 21.362573 -45.179595 -1.563539 +v 24.626151 -43.477627 -1.802402 +v 27.755717 -41.539058 -2.031457 +v 30.734240 -39.374439 -2.249456 +v 33.545511 -36.995548 -2.455215 +v 36.174231 -34.415333 -2.647612 +v 38.606096 -31.647833 -2.825602 +v 40.827870 -28.708110 -2.988215 +v 42.827465 -25.612161 -3.134566 +v 44.593997 -22.376833 -3.263860 +v 46.117854 -19.019733 -3.375392 +v 47.390744 -15.559130 -3.468555 +v 48.405738 -12.013857 -3.542843 +v 49.157315 -8.403205 -3.597852 +v 49.641383 -4.746824 -3.633281 +v 49.855309 -1.064612 -3.648938 +v 49.797928 2.623394 -3.644739 +v 49.469554 6.297124 -3.620705 +v 48.871971 9.936586 -3.576967 +v 48.008433 13.521974 -3.513764 +v 46.883640 17.033777 -3.431440 +v 45.503711 20.452884 -3.330442 +v 43.876156 23.760689 -3.211321 +v 42.009833 26.939191 -3.074723 +v 39.914897 29.971094 -2.921394 +v 37.602749 32.839897 -2.752166 +v 35.085971 35.529990 -2.567962 +v 32.378260 38.026733 -2.369783 +v 29.494350 40.316538 -2.158708 +v 26.449936 42.386946 -1.935886 +v 23.261584 44.226690 -1.702529 +v 23.261584 44.226690 1.702529 +v 26.449936 42.386946 1.935886 +v 29.494350 40.316538 2.158708 +v 32.378260 38.026733 2.369783 +v 35.085971 35.529990 2.567962 +v 37.602749 32.839897 2.752166 +v 39.914897 29.971094 2.921394 +v 42.009833 26.939191 3.074723 +v 43.876156 23.760689 3.211321 +v 45.503711 20.452884 3.330442 +v 46.883640 17.033777 3.431440 +v 48.008433 13.521974 3.513764 +v 48.871971 9.936586 3.576967 +v 49.469554 6.297124 3.620705 +v 49.797928 2.623394 3.644739 +v 49.855309 -1.064612 3.648938 +v 49.641383 -4.746824 3.633281 +v 49.157315 -8.403205 3.597852 +v 48.405738 -12.013857 3.542843 +v 47.390744 -15.559130 3.468555 +v 46.117854 -19.019733 3.375392 +v 44.593997 -22.376833 3.263860 +v 42.827465 -25.612161 3.134566 +v 40.827870 -28.708110 2.988215 +v 38.606096 -31.647833 2.825602 +v 36.174231 -34.415333 2.647612 +v 33.545511 -36.995548 2.455215 +v 30.734240 -39.374439 2.249456 +v 27.755717 -41.539058 2.031457 +v 24.626151 -43.477627 1.802402 +v 21.362573 -45.179595 1.563539 +v 17.982742 -46.635702 1.316167 +v 14.505050 -47.838023 1.061633 +v 10.948425 -48.780015 0.801321 +v 7.332219 -49.456552 0.536649 +v 3.676112 -49.863953 0.269057 +v 22.765804 44.226690 5.071299 +v 25.886202 42.386946 5.766397 +v 28.865730 40.316538 6.430116 +v 31.688174 38.026733 7.058842 +v 34.338175 35.529990 7.649155 +v 36.801312 32.839897 8.197842 +v 39.064180 29.971094 8.701917 +v 41.114466 26.939191 9.158638 +v 42.941012 23.760689 9.565518 +v 44.533878 20.452884 9.920344 +v 45.884396 17.033777 10.221185 +v 46.985217 13.521974 10.466404 +v 47.830350 9.936586 10.654665 +v 48.415196 6.297124 10.784945 +v 48.736572 2.623394 10.856534 +v 48.792730 -1.064612 10.869044 +v 48.583363 -4.746824 10.822406 +v 48.109612 -8.403205 10.716873 +v 47.374054 -12.013857 10.553021 +v 46.380692 -15.559130 10.331740 +v 45.134932 -19.019733 10.054235 +v 43.643553 -22.376833 9.722016 +v 41.914672 -25.612161 9.336891 +v 39.957695 -28.708110 8.900956 +v 37.783274 -31.647833 8.416583 +v 35.403240 -34.415333 7.886408 +v 32.830547 -36.995548 7.313316 +v 30.079193 -39.374439 6.700426 +v 27.164153 -41.539058 6.051073 +v 24.101288 -43.477627 5.368791 +v 20.907267 -45.179595 4.657292 +v 17.599471 -46.635702 3.920449 +v 14.195900 -47.838023 3.162272 +v 10.715078 -48.780015 2.386885 +v 7.175945 -49.456552 1.598510 +v 3.597762 -49.863953 0.801436 +v 3.646665 -49.863953 0.536678 +v 7.273486 -49.456552 1.070435 +v 10.860725 -48.780015 1.598367 +v 14.388861 -47.838023 2.117601 +v 17.838695 -46.635702 2.625312 +v 21.191452 -45.179595 3.118735 +v 24.428889 -43.477627 3.595187 +v 27.533386 -41.539058 4.052075 +v 30.488050 -39.374439 4.486911 +v 33.276802 -36.995548 4.897330 +v 35.884465 -34.415333 5.281099 +v 38.296850 -31.647833 5.636128 +v 40.500827 -28.708110 5.960486 +v 42.484404 -25.612161 6.252409 +v 44.236786 -22.376833 6.510306 +v 45.748437 -19.019733 6.732775 +v 47.011130 -15.559130 6.918604 +v 48.017995 -12.013857 7.066784 +v 48.763551 -8.403205 7.176507 +v 49.243742 -4.746824 7.247177 +v 49.455954 -1.064612 7.278408 +v 49.399033 2.623394 7.270031 +v 49.073288 6.297124 7.222091 +v 48.480493 9.936586 7.134850 +v 47.623872 13.521974 7.008781 +v 46.508088 17.033777 6.844572 +v 45.139213 20.452884 6.643115 +v 43.524696 23.760689 6.405508 +v 41.673322 26.939191 6.133042 +v 39.595167 29.971094 5.827201 +v 37.301540 32.839897 5.489649 +v 34.804923 35.529990 5.122223 +v 32.118901 38.026733 4.726923 +v 29.258092 40.316538 4.305899 +v 26.238065 42.386946 3.861443 +v 22.334890 44.226690 6.719567 +v 25.396225 42.386946 7.640586 +v 28.319356 40.316538 8.520025 +v 31.088376 38.026733 9.353099 +v 33.688218 35.529990 10.135275 +v 36.104732 32.839897 10.862296 +v 38.324769 29.971094 11.530205 +v 40.336247 26.939191 12.135369 +v 42.128219 23.760689 12.674493 +v 43.690936 20.452884 13.144644 +v 45.015891 17.033777 13.543264 +v 46.095875 13.521974 13.868183 +v 46.925012 9.936586 14.117633 +v 47.498787 6.297124 14.290256 +v 47.814081 2.623394 14.385114 +v 47.869175 -1.064612 14.401689 +v 47.663772 -4.746824 14.339893 +v 47.198988 -8.403205 14.200060 +v 46.477352 -12.013857 13.982952 +v 45.502793 -15.559130 13.689751 +v 44.280613 -19.019733 13.322052 +v 42.817463 -22.376833 12.881856 +v 41.121306 -25.612161 12.371558 +v 39.201371 -28.708110 11.793936 +v 37.068108 -31.647833 11.152132 +v 34.733124 -34.415333 10.449640 +v 32.209126 -36.995548 9.690282 +v 29.509851 -39.374439 8.878191 +v 26.649986 -41.539058 8.017786 +v 23.645096 -43.477627 7.113750 +v 20.511531 -45.179595 6.171000 +v 17.266346 -46.635702 5.194670 +v 13.927199 -47.838023 4.190070 +v 10.512262 -48.780015 3.162668 +v 7.040118 -49.456552 2.118056 +v 3.529663 -49.863953 1.061917 +v 24.013108 42.386946 11.256883 +v 26.777041 40.316538 12.552561 +v 29.395257 38.026733 13.779930 +v 31.853507 35.529990 14.932311 +v 34.138414 32.839897 16.003431 +v 36.237544 29.971094 16.987463 +v 38.139474 26.939191 17.879051 +v 39.833854 23.760689 18.673344 +v 41.311462 20.452884 19.366018 +v 42.564258 17.033777 19.953305 +v 43.585425 13.521974 20.432008 +v 44.369405 9.936586 20.799523 +v 44.911932 6.297124 21.053849 +v 45.210054 2.623394 21.193603 +v 45.262148 -1.064612 21.218024 +v 45.067931 -4.746824 21.126978 +v 44.628460 -8.403205 20.920963 +v 43.946126 -12.013857 20.601098 +v 43.024643 -15.559130 20.169124 +v 41.869024 -19.019733 19.627392 +v 40.485560 -22.376833 18.978851 +v 38.881778 -25.612161 18.227029 +v 37.066406 -28.708110 17.376017 +v 35.049323 -31.647833 16.430448 +v 32.841506 -34.415333 15.395466 +v 30.454969 -36.995548 14.276703 +v 27.902700 -39.374439 13.080249 +v 25.198588 -41.539058 11.812613 +v 22.357348 -43.477627 10.480694 +v 19.394443 -45.179595 9.091741 +v 16.325995 -46.635702 7.653312 +v 13.168703 -47.838023 6.173234 +v 9.939748 -48.780015 4.659563 +v 6.656703 -49.456552 3.120534 +v 3.337432 -49.863953 1.564524 +v 3.442732 -49.863953 1.316733 +v 6.866729 -49.456552 2.626301 +v 10.253358 -48.780015 3.921577 +v 13.584190 -47.838023 5.195512 +v 16.841098 -46.635702 6.441174 +v 20.006358 -45.179595 7.651784 +v 23.062747 -43.477627 8.820753 +v 25.993631 -41.539058 9.941721 +v 28.783061 -39.374439 11.008588 +v 31.415856 -36.995548 12.015547 +v 33.877691 -34.415333 12.957119 +v 36.155167 -31.647833 13.828180 +v 38.235891 -28.708110 14.623989 +v 40.108540 -25.612161 15.340217 +v 41.762923 -22.376833 15.972965 +v 43.190038 -19.019733 16.518790 +v 44.382117 -15.559130 16.974721 +v 45.332674 -12.013857 17.338279 +v 46.036536 -8.403205 17.607483 +v 46.489873 -4.746824 17.780870 +v 46.690218 -1.064612 17.857495 +v 46.636480 2.623394 17.836942 +v 46.328952 6.297124 17.719323 +v 45.769308 9.936586 17.505277 +v 44.960592 13.521974 17.195969 +v 43.907207 17.033777 16.793083 +v 42.614883 20.452884 16.298812 +v 41.090655 23.760689 15.715844 +v 39.342816 26.939191 15.047352 +v 37.380878 29.971094 14.296974 +v 35.215518 32.839897 13.468794 +v 32.858520 35.529990 12.567319 +v 30.322709 38.026733 11.597453 +v 27.621886 40.316538 10.564476 +v 24.770748 42.386946 9.474008 +v 19.452003 44.226690 12.869323 +v 22.118194 42.386946 14.633259 +v 24.664021 40.316538 16.317562 +v 27.075628 38.026733 17.913066 +v 29.339894 35.529990 19.411090 +v 31.444496 32.839897 20.803482 +v 33.377980 29.971094 22.082663 +v 35.129825 26.939191 23.241673 +v 36.690498 23.760689 24.274204 +v 38.051506 20.452884 25.174638 +v 39.205442 17.033777 25.938075 +v 40.146027 13.521974 26.560360 +v 40.868142 9.936586 27.038107 +v 41.367857 6.297124 27.368716 +v 41.642454 2.623394 27.550387 +v 41.690437 -1.064612 27.582133 +v 41.511546 -4.746824 27.463779 +v 41.106755 -8.403205 27.195972 +v 40.478265 -12.013857 26.780167 +v 39.629497 -15.559130 26.218627 +v 38.565070 -19.019733 25.514409 +v 37.290777 -22.376833 24.671345 +v 35.813552 -25.612161 23.694022 +v 34.141434 -28.708110 22.587759 +v 32.283523 -31.647833 21.358577 +v 30.249928 -34.415333 20.013163 +v 28.051717 -36.995548 18.558841 +v 25.700852 -39.374439 17.003523 +v 23.210126 -41.539058 15.355674 +v 20.593093 -43.477627 13.624262 +v 17.863995 -45.179595 11.818707 +v 15.037683 -46.635702 9.948837 +v 12.129539 -47.838023 8.024827 +v 9.155386 -48.780015 6.057146 +v 6.131411 -49.456552 4.056503 +v 3.074070 -49.863953 2.033785 +v 3.214326 -49.863953 1.803967 +v 6.411160 -49.456552 3.598117 +v 9.573106 -48.780015 5.372687 +v 12.682955 -47.838023 7.118019 +v 15.723786 -46.635702 8.824616 +v 18.679049 -45.179595 10.483191 +v 21.532664 -43.477627 12.084717 +v 24.269100 -41.539058 13.620479 +v 26.873467 -39.374439 15.082121 +v 29.331591 -36.995548 16.461687 +v 31.630097 -34.415333 17.751671 +v 33.756476 -31.647833 18.945052 +v 35.699155 -28.708110 20.035337 +v 37.447565 -25.612161 21.016592 +v 38.992189 -22.376833 21.883477 +v 40.324622 -19.019733 22.631275 +v 41.437614 -15.559130 23.255916 +v 42.325107 -12.013857 23.754001 +v 42.982272 -8.403205 24.122820 +v 43.405533 -4.746824 24.360365 +v 43.592585 -1.064612 24.465345 +v 43.542413 2.623394 24.437186 +v 43.255288 6.297124 24.276044 +v 42.732772 9.936586 23.982794 +v 41.977711 13.521974 23.559033 +v 40.994211 17.033777 23.007066 +v 39.787626 20.452884 22.329898 +v 38.364522 23.760689 21.531213 +v 36.732642 26.939191 20.615358 +v 34.900868 29.971094 19.587316 +v 32.879167 32.839897 18.452683 +v 30.678542 35.529990 17.217632 +v 28.310968 38.026733 15.888885 +v 25.789329 40.316538 14.473673 +v 23.127348 42.386946 12.979697 +v 20.339511 44.226690 11.415087 +v 20.991030 42.386946 16.208746 +v 23.407118 40.316538 18.074389 +v 25.695828 38.026733 19.841674 +v 27.844705 35.529990 21.500982 +v 29.842054 32.839897 23.043285 +v 31.677006 29.971094 24.460189 +v 33.339576 26.939191 25.743983 +v 34.820715 23.760689 26.887682 +v 36.112365 20.452884 27.885061 +v 37.207495 17.033777 28.730694 +v 38.100147 13.521974 29.419977 +v 38.785462 9.936586 29.949160 +v 39.259712 6.297124 30.315364 +v 39.520315 2.623394 30.516595 +v 39.565853 -1.064612 30.551758 +v 39.396078 -4.746824 30.420662 +v 39.011915 -8.403205 30.124021 +v 38.415453 -12.013857 29.663449 +v 37.609940 -15.559130 29.041451 +v 36.599757 -19.019733 28.261414 +v 35.390404 -22.376833 27.327581 +v 33.988459 -25.612161 26.245035 +v 32.401554 -28.708110 25.019666 +v 30.638323 -31.647833 23.658144 +v 28.708363 -34.415333 22.167877 +v 26.622175 -36.995548 20.556975 +v 24.391112 -39.374439 18.834204 +v 22.027316 -41.539058 17.008940 +v 19.543649 -43.477627 15.091115 +v 16.953629 -45.179595 13.091166 +v 14.271349 -46.635702 11.019977 +v 11.511406 -47.838023 8.888818 +v 8.688819 -48.780015 6.709288 +v 5.818949 -49.456552 4.493246 +v 2.917412 -49.863953 2.252753 +v 16.188452 44.226690 16.790889 +v 18.407324 42.386946 19.092334 +v 20.526025 40.316538 21.289881 +v 22.533027 38.026733 23.371571 +v 24.417406 35.529990 25.326075 +v 26.168909 32.839897 27.142759 +v 27.778004 29.971094 28.811734 +v 29.235934 26.939191 30.323920 +v 30.534766 23.760689 31.671087 +v 31.667431 20.452884 32.845903 +v 32.627766 17.033777 33.841976 +v 33.410545 13.521974 34.653885 +v 34.011507 9.936586 35.277211 +v 34.427383 6.297124 35.708564 +v 34.655909 2.623394 35.945594 +v 34.695842 -1.064612 35.987013 +v 34.546965 -4.746824 35.832595 +v 34.210087 -8.403205 35.483181 +v 33.687041 -12.013857 34.940671 +v 32.980675 -15.559130 34.208018 +v 32.094832 -19.019733 33.289210 +v 31.034333 -22.376833 32.189245 +v 29.804949 -25.612161 30.914111 +v 28.413370 -28.708110 29.470745 +v 26.867169 -31.647833 27.867004 +v 25.174760 -34.415333 26.111613 +v 23.345352 -36.995548 24.214126 +v 21.388903 -39.374439 22.184869 +v 19.316057 -41.539058 20.034885 +v 17.138096 -43.477627 17.775873 +v 14.866871 -45.179595 15.420127 +v 12.514743 -46.635702 12.980466 +v 10.094511 -47.838023 10.470168 +v 7.619345 -48.780015 7.902892 +v 5.102716 -49.456552 5.292609 +v 2.558319 -49.863953 2.653525 +v 2.745189 -49.863953 2.459700 +v 5.475439 -49.456552 4.906015 +v 8.175893 -48.780015 7.325632 +v 10.831854 -47.838023 9.705384 +v 13.428870 -46.635702 12.032321 +v 15.952807 -45.179595 14.293778 +v 18.389932 -43.477627 16.477451 +v 20.726980 -41.539058 18.571456 +v 22.951235 -39.374439 20.564397 +v 25.050591 -36.995548 22.445429 +v 27.013626 -34.415333 24.204315 +v 28.829655 -31.647833 25.831485 +v 30.488798 -28.708110 27.318083 +v 31.982023 -25.612161 28.656019 +v 33.301207 -22.376833 29.838012 +v 34.439169 -19.019733 30.857631 +v 35.389717 -15.559130 31.709326 +v 36.147679 -12.013857 32.388463 +v 36.708930 -8.403205 32.891346 +v 37.070415 -4.746824 33.215238 +v 37.230167 -1.064612 33.358376 +v 37.187317 2.623394 33.319983 +v 36.942098 6.297124 33.100266 +v 36.495845 9.936586 32.700421 +v 35.850986 13.521974 32.122625 +v 35.011030 17.033777 31.370021 +v 33.980548 20.452884 30.446705 +v 32.765149 23.760689 29.357702 +v 31.371445 26.939191 28.108938 +v 29.807021 29.971094 26.707209 +v 28.080392 32.839897 25.160142 +v 26.200952 35.529990 23.476156 +v 24.178930 38.026733 21.664417 +v 22.025329 40.316538 19.734782 +v 19.751869 42.386946 17.697752 +v 17.370922 44.226690 15.564414 +v 14.919609 44.226690 17.927776 +v 16.964567 42.386946 20.385049 +v 18.917206 40.316538 22.731389 +v 20.766900 38.026733 24.954027 +v 22.503583 35.529990 27.040869 +v 24.117803 32.839897 28.980557 +v 25.600778 29.971094 30.762537 +v 26.944437 26.939191 32.377111 +v 28.141467 23.760689 33.815492 +v 29.185354 20.452884 35.069853 +v 30.070419 17.033777 36.133369 +v 30.791844 13.521974 37.000251 +v 31.345703 9.936586 37.665782 +v 31.728983 6.297124 38.126341 +v 31.939597 2.623394 38.379421 +v 31.976400 -1.064612 38.423644 +v 31.839192 -4.746824 38.258771 +v 31.528718 -8.403205 37.885698 +v 31.046669 -12.013857 37.306455 +v 30.395667 -15.559130 36.524196 +v 29.579256 -19.019733 35.543176 +v 28.601878 -22.376833 34.368734 +v 27.468853 -25.612161 33.007262 +v 26.186345 -28.708110 31.466169 +v 24.761334 -31.647833 29.753840 +v 23.201575 -34.415333 27.879594 +v 21.515556 -36.995548 25.853631 +v 19.712452 -39.374439 23.686976 +v 17.802075 -41.539058 21.391419 +v 15.794821 -43.477627 18.979453 +v 13.701613 -45.179595 16.464202 +v 11.533844 -46.635702 13.859356 +v 9.303308 -47.838023 11.179088 +v 7.022145 -48.780015 8.437985 +v 4.702768 -49.456552 5.650964 +v 2.357800 -49.863953 2.833191 +v 12.150311 44.226690 19.909039 +v 13.815695 42.386946 22.637874 +v 15.405896 40.316538 25.243516 +v 16.912259 38.026733 27.711786 +v 18.326588 35.529990 30.029252 +v 19.641186 32.839897 32.183303 +v 20.848899 29.971094 34.162215 +v 21.943155 26.939191 35.955221 +v 22.917998 23.760689 37.552563 +v 23.768125 20.452884 38.945549 +v 24.488909 17.033777 40.126597 +v 25.076426 13.521974 41.089282 +v 25.527481 9.936586 41.828363 +v 25.839619 6.297124 42.339820 +v 26.011140 2.623394 42.620868 +v 26.041112 -1.064612 42.669979 +v 25.929371 -4.746824 42.486885 +v 25.676526 -8.403205 42.072582 +v 25.283952 -12.013857 41.429325 +v 24.753786 -15.559130 40.560615 +v 24.088913 -19.019733 39.471180 +v 23.292951 -22.376833 38.166946 +v 22.370231 -25.612161 36.655013 +v 21.325776 -28.708110 34.943608 +v 20.165268 -31.647833 33.042043 +v 18.895023 -34.415333 30.960668 +v 17.521954 -36.995548 28.710809 +v 16.053532 -39.374439 26.304709 +v 14.497749 -41.539058 23.755461 +v 12.863071 -43.477627 21.076940 +v 11.158393 -45.179595 18.283720 +v 9.392993 -46.635702 15.391003 +v 7.576478 -47.838023 12.414529 +v 5.718732 -48.780015 9.370497 +v 3.829866 -49.456552 6.275472 +v 1.920157 -49.863953 3.146297 +v 2.144700 -49.863953 2.997741 +v 4.277729 -49.456552 5.979169 +v 6.387478 -48.780015 8.928059 +v 8.462468 -47.838023 11.828363 +v 10.491407 -46.635702 14.664299 +v 12.463252 -45.179595 17.420434 +v 14.367274 -43.477627 20.081769 +v 16.193110 -41.539058 22.633821 +v 17.930826 -39.374439 25.062703 +v 19.570964 -36.995548 27.355196 +v 21.104600 -34.415333 29.498826 +v 22.523387 -31.647833 31.481926 +v 23.819604 -28.708110 33.293706 +v 24.986198 -25.612161 34.924306 +v 26.016820 -22.376833 36.364851 +v 26.905862 -19.019733 37.607504 +v 27.648485 -15.559130 38.645501 +v 28.240648 -12.013857 39.473194 +v 28.679130 -8.403205 40.086078 +v 28.961543 -4.746824 40.480819 +v 29.086350 -1.064612 40.655268 +v 29.052873 2.623394 40.608476 +v 28.861295 6.297124 40.340698 +v 28.512656 9.936586 39.853390 +v 28.008855 13.521974 39.149205 +v 27.352633 17.033777 38.231975 +v 26.547561 20.452884 37.106691 +v 25.598021 23.760689 35.779477 +v 24.509179 26.939191 34.257555 +v 23.286962 29.971094 32.549208 +v 21.938019 32.839897 30.663732 +v 20.469693 35.529990 28.611388 +v 18.889972 38.026733 26.403343 +v 17.207455 40.316538 24.051616 +v 15.431297 42.386946 21.569002 +v 10.664631 44.226690 20.742843 +v 12.126380 42.386946 23.585964 +v 13.522139 40.316538 26.300732 +v 14.844311 38.026733 28.872375 +v 16.085703 35.529990 31.286898 +v 17.239559 32.839897 33.531161 +v 18.299598 29.971094 35.592952 +v 19.260054 26.939191 37.461050 +v 20.115699 23.760689 39.125290 +v 20.861876 20.452884 40.576615 +v 21.494526 17.033777 41.807126 +v 22.010205 13.521974 42.810129 +v 22.406107 9.936586 43.580163 +v 22.680078 6.297124 44.113040 +v 22.830626 2.623394 44.405859 +v 22.856933 -1.064612 44.457027 +v 22.758856 -4.746824 44.266264 +v 22.536927 -8.403205 43.834610 +v 22.192355 -12.013857 43.164414 +v 21.727015 -15.559130 42.259322 +v 21.143440 -19.019733 41.124259 +v 20.444804 -22.376833 39.765404 +v 19.634910 -25.612161 38.190150 +v 18.718165 -28.708110 36.407070 +v 17.699558 -31.647833 34.425867 +v 16.584633 -34.415333 32.257322 +v 15.379455 -36.995548 29.913237 +v 14.090585 -39.374439 27.406368 +v 12.725036 -41.539058 24.750356 +v 11.290238 -43.477627 21.959657 +v 9.794000 -45.179595 19.049455 +v 8.244464 -46.635702 16.035588 +v 6.650063 -47.838023 12.934458 +v 5.019474 -48.780015 9.762940 +v 3.361568 -49.456552 6.538293 +v 1.685370 -49.863953 3.278066 +v 7.530800 44.226690 22.074577 +v 8.563010 42.386946 25.100232 +v 9.548621 40.316538 27.989294 +v 10.482269 38.026733 30.726042 +v 11.358875 35.529990 33.295582 +v 12.173667 32.839897 35.683932 +v 12.922211 29.971094 37.878094 +v 13.600434 26.939191 39.866128 +v 14.204645 23.760689 41.637215 +v 14.731556 20.452884 43.181718 +v 15.178300 17.033777 44.491231 +v 15.542445 13.521974 45.558628 +v 15.822010 9.936586 46.378101 +v 16.015474 6.297124 46.945189 +v 16.121784 2.623394 47.256808 +v 16.140360 -1.064612 47.311261 +v 16.071103 -4.746824 47.108251 +v 15.914389 -8.403205 46.648884 +v 15.671070 -12.013857 45.935659 +v 15.342472 -15.559130 44.972458 +v 14.930381 -19.019733 43.764523 +v 14.437042 -22.376833 42.318426 +v 13.865137 -25.612161 40.642037 +v 13.217781 -28.708110 38.744480 +v 12.498494 -31.647833 36.636079 +v 11.711193 -34.415333 34.328309 +v 10.860160 -36.995548 31.833729 +v 9.950028 -39.374439 29.165914 +v 8.985749 -41.539058 26.339381 +v 7.972570 -43.477627 23.369512 +v 6.916006 -45.179595 20.272470 +v 5.821806 -46.635702 17.065107 +v 4.695924 -47.838023 13.764877 +v 3.544487 -48.780015 10.389741 +v 2.373762 -49.456552 6.958066 +v 1.190119 -49.863953 3.488525 +v 1.441590 -49.863953 3.392345 +v 2.875336 -49.456552 6.766230 +v 4.293434 -48.780015 10.103294 +v 5.688168 -47.838023 13.385376 +v 7.051948 -46.635702 16.594617 +v 8.377351 -45.179595 19.713552 +v 9.657167 -43.477627 22.725209 +v 10.884429 -41.539058 25.613197 +v 12.052459 -39.374439 28.361802 +v 13.154901 -36.995548 30.956065 +v 14.185756 -34.415333 33.381869 +v 15.139414 -31.647833 35.626013 +v 16.010685 -28.708110 37.676284 +v 16.794827 -25.612161 39.521526 +v 17.487575 -22.376833 41.151696 +v 18.085157 -19.019733 42.557924 +v 18.584321 -15.559130 43.732556 +v 18.982352 -12.013857 44.669201 +v 19.277084 -8.403205 45.362762 +v 19.466912 -4.746824 45.809464 +v 19.550803 -1.064612 46.006877 +v 19.528301 2.623394 45.953925 +v 19.399528 6.297124 45.650898 +v 19.165186 9.936586 45.099445 +v 18.826549 13.521974 44.302565 +v 18.385460 17.033777 43.264596 +v 17.844320 20.452884 41.991187 +v 17.206073 23.760689 40.489267 +v 16.474192 26.939191 38.767009 +v 15.652661 29.971094 36.833785 +v 14.745951 32.839897 34.700117 +v 13.758994 35.529990 32.377614 +v 12.697163 38.026733 29.878917 +v 11.566235 40.316538 27.217622 +v 10.372365 42.386946 24.408212 +v 5.899369 44.226690 22.565402 +v 6.707967 42.386946 25.658331 +v 7.480061 40.316538 28.611631 +v 8.211449 38.026733 31.409230 +v 8.898151 35.529990 34.035903 +v 9.536431 32.839897 36.477358 +v 10.122815 29.971094 38.720307 +v 10.654111 26.939191 40.752544 +v 11.127429 23.760689 42.563012 +v 11.540193 20.452884 44.141856 +v 11.890157 17.033777 45.480486 +v 12.175416 13.521974 46.571617 +v 12.394418 9.936586 47.409310 +v 12.545971 6.297124 47.989008 +v 12.629250 2.623394 48.307555 +v 12.643802 -1.064612 48.363218 +v 12.589548 -4.746824 48.155695 +v 12.466784 -8.403205 47.686114 +v 12.276176 -12.013857 46.957031 +v 12.018764 -15.559130 45.972413 +v 11.695946 -19.019733 44.737619 +v 11.309481 -22.376833 43.259369 +v 10.861471 -25.612161 41.545706 +v 10.354354 -28.708110 39.605956 +v 9.790890 -31.647833 37.450676 +v 9.174145 -34.415333 35.091593 +v 8.507475 -36.995548 32.541547 +v 7.794509 -39.374439 29.814413 +v 7.039126 -41.539058 26.925033 +v 6.245437 -43.477627 23.889129 +v 5.417761 -45.179595 20.723225 +v 4.560602 -46.635702 17.444546 +v 3.678625 -47.838023 14.070937 +v 2.776629 -48.780015 10.620755 +v 1.859524 -49.456552 7.112777 +v 0.932299 -49.863953 3.566092 +v 2.900599 42.386946 26.361587 +v 3.234461 40.316538 29.395833 +v 3.550722 38.026733 32.270110 +v 3.847660 35.529990 34.968777 +v 4.123659 32.839897 37.477147 +v 4.377218 29.971094 39.781572 +v 4.606956 26.939191 41.869511 +v 4.811624 23.760689 43.729600 +v 4.990108 20.452884 45.351718 +v 5.141436 17.033777 46.727038 +v 5.264785 13.521974 47.848075 +v 5.359484 9.936586 48.708728 +v 5.425017 6.297124 49.304314 +v 5.461028 2.623394 49.631592 +v 5.467321 -1.064612 49.688781 +v 5.443861 -4.746824 49.475570 +v 5.390776 -8.403205 48.993119 +v 5.308355 -12.013857 48.244053 +v 5.197047 -15.559130 47.232448 +v 5.057457 -19.019733 45.963810 +v 4.890345 -22.376833 44.445043 +v 4.696621 -25.612161 42.684411 +v 4.477338 -28.708110 40.691496 +v 4.233690 -31.647833 38.477143 +v 3.967002 -34.415333 36.053401 +v 3.678727 -36.995548 33.433462 +v 3.370432 -39.374439 30.631581 +v 3.043796 -41.539058 27.663007 +v 2.700596 -43.477627 24.543895 +v 2.342700 -45.179595 21.291217 +v 1.972055 -46.635702 17.922675 +v 1.590678 -47.838023 14.456600 +v 1.200645 -48.780015 10.911854 +v 0.804079 -49.456552 7.307728 +v 0.403136 -49.863953 3.663833 +v 0.669503 -49.863953 3.624632 +v 1.335363 -49.456552 7.229539 +v 1.993957 -48.780015 10.795103 +v 2.641699 -47.838023 14.301922 +v 3.275065 -46.635702 17.730912 +v 3.890609 -45.179595 21.063412 +v 4.484981 -43.477627 24.281288 +v 5.054946 -41.539058 27.367027 +v 5.597403 -39.374439 30.303839 +v 6.109399 -36.995548 33.075741 +v 6.588149 -34.415333 35.667649 +v 7.031046 -31.647833 38.065457 +v 7.435682 -28.708110 40.256118 +v 7.799854 -25.612161 42.227710 +v 8.121579 -22.376833 43.969504 +v 8.399108 -19.019733 45.472021 +v 8.630930 -15.559130 46.727085 +v 8.815784 -12.013857 47.727866 +v 8.952663 -8.403205 48.468918 +v 9.040823 -4.746824 48.946207 +v 9.079784 -1.064612 49.157137 +v 9.069333 2.623394 49.100560 +v 9.009529 6.297124 48.776784 +v 8.900695 9.936586 48.187570 +v 8.743426 13.521974 47.336125 +v 8.538575 17.033777 46.227083 +v 8.287259 20.452884 44.866478 +v 7.990844 23.760689 43.261716 +v 7.650944 26.939191 41.421528 +v 7.269409 29.971094 39.355930 +v 6.848314 32.839897 37.076161 +v 6.389952 35.529990 34.594629 +v 5.896816 38.026733 31.924836 +v 5.371591 40.316538 29.081313 +v 4.817134 42.386946 26.079532 +v -0.851833 44.226690 23.308245 +v -0.968589 42.386946 26.502992 +v -1.080075 40.316538 29.553514 +v -1.185683 38.026733 32.443208 +v -1.284838 35.529990 35.156351 +v -1.377002 32.839897 37.678177 +v -1.461672 29.971094 39.994963 +v -1.538388 26.939191 42.094101 +v -1.606732 23.760689 43.964168 +v -1.666333 20.452884 45.594987 +v -1.716865 17.033777 46.977684 +v -1.758055 13.521974 48.104734 +v -1.789678 9.936586 48.970004 +v -1.811561 6.297124 49.568785 +v -1.823586 2.623394 49.897819 +v -1.825687 -1.064612 49.955315 +v -1.817853 -4.746824 49.740960 +v -1.800127 -8.403205 49.255920 +v -1.772604 -12.013857 48.502836 +v -1.735435 -15.559130 47.485805 +v -1.688823 -19.019733 46.210363 +v -1.633019 -22.376833 44.683449 +v -1.568330 -25.612161 42.913373 +v -1.495105 -28.708110 40.909768 +v -1.413744 -31.647833 38.683536 +v -1.324690 -34.415333 36.246794 +v -1.228427 -36.995548 33.612801 +v -1.125479 -39.374439 30.795891 +v -1.016406 -41.539058 27.811393 +v -0.901803 -43.477627 24.675549 +v -0.782291 -45.179595 21.405424 +v -0.658523 -46.635702 18.018813 +v -0.531171 -47.838023 14.534146 +v -0.400928 -48.780015 10.970386 +v -0.268504 -49.456552 7.346927 +v -0.134618 -49.863953 3.683486 +v 0.134618 -49.863953 3.683486 +v 0.268504 -49.456552 7.346927 +v 0.400928 -48.780015 10.970386 +v 0.531171 -47.838023 14.534146 +v 0.658523 -46.635702 18.018813 +v 0.782291 -45.179595 21.405424 +v 0.901803 -43.477627 24.675549 +v 1.016406 -41.539058 27.811393 +v 1.125479 -39.374439 30.795891 +v 1.228427 -36.995548 33.612801 +v 1.324690 -34.415333 36.246794 +v 1.413744 -31.647833 38.683536 +v 1.495105 -28.708110 40.909768 +v 1.568330 -25.612161 42.913373 +v 1.633019 -22.376833 44.683449 +v 1.688823 -19.019733 46.210363 +v 1.735435 -15.559130 47.485805 +v 1.772604 -12.013857 48.502836 +v 1.800127 -8.403205 49.255920 +v 1.817853 -4.746824 49.740960 +v 1.825687 -1.064612 49.955315 +v 1.823586 2.623394 49.897819 +v 1.811561 6.297124 49.568785 +v 1.789678 9.936586 48.970004 +v 1.758055 13.521974 48.104734 +v 1.716865 17.033777 46.977684 +v 1.666333 20.452884 45.594987 +v 1.606732 23.760689 43.964168 +v 1.538388 26.939191 42.094101 +v 1.461672 29.971094 39.994963 +v 1.377002 32.839897 37.678177 +v 1.284838 35.529990 35.156351 +v 1.185683 38.026733 32.443208 +v 1.080075 40.316538 29.553514 +v 0.968589 42.386946 26.502992 +v 0.851833 44.226690 23.308245 +v -2.900599 42.386946 26.361587 +v -3.234461 40.316538 29.395833 +v -3.550722 38.026733 32.270110 +v -3.847660 35.529990 34.968777 +v -4.123659 32.839897 37.477147 +v -4.377218 29.971094 39.781572 +v -4.606956 26.939191 41.869511 +v -4.811624 23.760689 43.729600 +v -4.990108 20.452884 45.351718 +v -5.141436 17.033777 46.727038 +v -5.264785 13.521974 47.848075 +v -5.359484 9.936586 48.708728 +v -5.425017 6.297124 49.304314 +v -5.461028 2.623394 49.631592 +v -5.467321 -1.064612 49.688781 +v -5.443861 -4.746824 49.475570 +v -5.390776 -8.403205 48.993119 +v -5.308355 -12.013857 48.244053 +v -5.197047 -15.559130 47.232448 +v -5.057457 -19.019733 45.963810 +v -4.890345 -22.376833 44.445043 +v -4.696621 -25.612161 42.684411 +v -4.477338 -28.708110 40.691496 +v -4.233690 -31.647833 38.477143 +v -3.967002 -34.415333 36.053401 +v -3.678727 -36.995548 33.433462 +v -3.370432 -39.374439 30.631581 +v -3.043796 -41.539058 27.663007 +v -2.700596 -43.477627 24.543895 +v -2.342700 -45.179595 21.291217 +v -1.972055 -46.635702 17.922675 +v -1.590678 -47.838023 14.456600 +v -1.200645 -48.780015 10.911854 +v -0.804079 -49.456552 7.307728 +v -0.403136 -49.863953 3.663833 +v -5.899369 44.226690 22.565402 +v -6.707967 42.386946 25.658331 +v -7.480061 40.316538 28.611631 +v -8.211449 38.026733 31.409230 +v -8.898151 35.529990 34.035903 +v -9.536431 32.839897 36.477358 +v -10.122815 29.971094 38.720307 +v -10.654111 26.939191 40.752544 +v -11.127429 23.760689 42.563012 +v -11.540193 20.452884 44.141856 +v -11.890157 17.033777 45.480486 +v -12.175416 13.521974 46.571617 +v -12.394418 9.936586 47.409310 +v -12.545971 6.297124 47.989008 +v -12.629250 2.623394 48.307555 +v -12.643802 -1.064612 48.363218 +v -12.589548 -4.746824 48.155695 +v -12.466784 -8.403205 47.686114 +v -12.276176 -12.013857 46.957031 +v -12.018764 -15.559130 45.972413 +v -11.695946 -19.019733 44.737619 +v -11.309481 -22.376833 43.259369 +v -10.861471 -25.612161 41.545706 +v -10.354354 -28.708110 39.605956 +v -9.790890 -31.647833 37.450676 +v -9.174145 -34.415333 35.091593 +v -8.507475 -36.995548 32.541547 +v -7.794509 -39.374439 29.814413 +v -7.039126 -41.539058 26.925033 +v -6.245437 -43.477627 23.889129 +v -5.417761 -45.179595 20.723225 +v -4.560602 -46.635702 17.444546 +v -3.678625 -47.838023 14.070937 +v -2.776629 -48.780015 10.620755 +v -1.859524 -49.456552 7.112777 +v -0.932299 -49.863953 3.566092 +v -0.669503 -49.863953 3.624632 +v -1.335363 -49.456552 7.229539 +v -1.993957 -48.780015 10.795103 +v -2.641699 -47.838023 14.301922 +v -3.275065 -46.635702 17.730912 +v -3.890609 -45.179595 21.063412 +v -4.484981 -43.477627 24.281288 +v -5.054946 -41.539058 27.367027 +v -5.597403 -39.374439 30.303839 +v -6.109399 -36.995548 33.075741 +v -6.588149 -34.415333 35.667649 +v -7.031046 -31.647833 38.065457 +v -7.435682 -28.708110 40.256118 +v -7.799854 -25.612161 42.227710 +v -8.121579 -22.376833 43.969504 +v -8.399108 -19.019733 45.472021 +v -8.630930 -15.559130 46.727085 +v -8.815784 -12.013857 47.727866 +v -8.952663 -8.403205 48.468918 +v -9.040823 -4.746824 48.946207 +v -9.079784 -1.064612 49.157137 +v -9.069333 2.623394 49.100560 +v -9.009529 6.297124 48.776784 +v -8.900695 9.936586 48.187570 +v -8.743426 13.521974 47.336125 +v -8.538575 17.033777 46.227083 +v -8.287259 20.452884 44.866478 +v -7.990844 23.760689 43.261716 +v -7.650944 26.939191 41.421528 +v -7.269409 29.971094 39.355930 +v -6.848314 32.839897 37.076161 +v -6.389952 35.529990 34.594629 +v -5.896816 38.026733 31.924836 +v -5.371591 40.316538 29.081313 +v -4.817134 42.386946 26.079532 +v -4.236463 44.226690 22.935830 +v -7.530800 44.226690 22.074577 +v -8.563010 42.386946 25.100232 +v -9.548621 40.316538 27.989294 +v -10.482269 38.026733 30.726042 +v -11.358875 35.529990 33.295582 +v -12.173667 32.839897 35.683932 +v -12.922211 29.971094 37.878094 +v -13.600434 26.939191 39.866128 +v -14.204645 23.760689 41.637215 +v -14.731556 20.452884 43.181718 +v -15.178300 17.033777 44.491231 +v -15.542445 13.521974 45.558628 +v -15.822010 9.936586 46.378101 +v -16.015474 6.297124 46.945189 +v -16.121784 2.623394 47.256808 +v -16.140360 -1.064612 47.311261 +v -16.071103 -4.746824 47.108251 +v -15.914389 -8.403205 46.648884 +v -15.671070 -12.013857 45.935659 +v -15.342472 -15.559130 44.972458 +v -14.930381 -19.019733 43.764523 +v -14.437042 -22.376833 42.318426 +v -13.865137 -25.612161 40.642037 +v -13.217781 -28.708110 38.744480 +v -12.498494 -31.647833 36.636079 +v -11.711193 -34.415333 34.328309 +v -10.860160 -36.995548 31.833729 +v -9.950028 -39.374439 29.165914 +v -8.985749 -41.539058 26.339381 +v -7.972570 -43.477627 23.369512 +v -6.916006 -45.179595 20.272470 +v -5.821806 -46.635702 17.065107 +v -4.695924 -47.838023 13.764877 +v -3.544487 -48.780015 10.389741 +v -2.373762 -49.456552 6.958066 +v -1.190119 -49.863953 3.488525 +v -10.664631 44.226690 20.742843 +v -12.126380 42.386946 23.585964 +v -13.522139 40.316538 26.300732 +v -14.844311 38.026733 28.872375 +v -16.085703 35.529990 31.286898 +v -17.239559 32.839897 33.531161 +v -18.299598 29.971094 35.592952 +v -19.260054 26.939191 37.461050 +v -20.115699 23.760689 39.125290 +v -20.861876 20.452884 40.576615 +v -21.494526 17.033777 41.807126 +v -22.010205 13.521974 42.810129 +v -22.406107 9.936586 43.580163 +v -22.680078 6.297124 44.113040 +v -22.830626 2.623394 44.405859 +v -22.856933 -1.064612 44.457027 +v -22.758856 -4.746824 44.266264 +v -22.536927 -8.403205 43.834610 +v -22.192355 -12.013857 43.164414 +v -21.727015 -15.559130 42.259322 +v -21.143440 -19.019733 41.124259 +v -20.444804 -22.376833 39.765404 +v -19.634910 -25.612161 38.190150 +v -18.718165 -28.708110 36.407070 +v -17.699558 -31.647833 34.425867 +v -16.584633 -34.415333 32.257322 +v -15.379455 -36.995548 29.913237 +v -14.090585 -39.374439 27.406368 +v -12.725036 -41.539058 24.750356 +v -11.290238 -43.477627 21.959657 +v -9.794000 -45.179595 19.049455 +v -8.244464 -46.635702 16.035588 +v -6.650063 -47.838023 12.934458 +v -5.019474 -48.780015 9.762940 +v -3.361568 -49.456552 6.538293 +v -1.685370 -49.863953 3.278066 +v -1.441590 -49.863953 3.392345 +v -2.875336 -49.456552 6.766230 +v -4.293434 -48.780015 10.103294 +v -5.688168 -47.838023 13.385376 +v -7.051948 -46.635702 16.594617 +v -8.377351 -45.179595 19.713552 +v -9.657167 -43.477627 22.725209 +v -10.884429 -41.539058 25.613197 +v -12.052459 -39.374439 28.361802 +v -13.154901 -36.995548 30.956065 +v -14.185756 -34.415333 33.381869 +v -15.139414 -31.647833 35.626013 +v -16.010685 -28.708110 37.676284 +v -16.794827 -25.612161 39.521526 +v -17.487575 -22.376833 41.151696 +v -18.085157 -19.019733 42.557924 +v -18.584321 -15.559130 43.732556 +v -18.982352 -12.013857 44.669201 +v -19.277084 -8.403205 45.362762 +v -19.466912 -4.746824 45.809464 +v -19.550803 -1.064612 46.006877 +v -19.528301 2.623394 45.953925 +v -19.399528 6.297124 45.650898 +v -19.165186 9.936586 45.099445 +v -18.826549 13.521974 44.302565 +v -18.385460 17.033777 43.264596 +v -17.844320 20.452884 41.991187 +v -17.206073 23.760689 40.489267 +v -16.474192 26.939191 38.767009 +v -15.652661 29.971094 36.833785 +v -14.745951 32.839897 34.700117 +v -13.758994 35.529990 32.377614 +v -12.697163 38.026733 29.878917 +v -11.566235 40.316538 27.217622 +v -10.372365 42.386946 24.408212 +v -12.150311 44.226690 19.909039 +v -13.815695 42.386946 22.637874 +v -15.405896 40.316538 25.243516 +v -16.912259 38.026733 27.711786 +v -18.326588 35.529990 30.029252 +v -19.641186 32.839897 32.183303 +v -20.848899 29.971094 34.162215 +v -21.943155 26.939191 35.955221 +v -22.917998 23.760689 37.552563 +v -23.768125 20.452884 38.945549 +v -24.488909 17.033777 40.126597 +v -25.076426 13.521974 41.089282 +v -25.527481 9.936586 41.828363 +v -25.839619 6.297124 42.339820 +v -26.011140 2.623394 42.620868 +v -26.041112 -1.064612 42.669979 +v -25.929371 -4.746824 42.486885 +v -25.676526 -8.403205 42.072582 +v -25.283952 -12.013857 41.429325 +v -24.753786 -15.559130 40.560615 +v -24.088913 -19.019733 39.471180 +v -23.292951 -22.376833 38.166946 +v -22.370231 -25.612161 36.655013 +v -21.325776 -28.708110 34.943608 +v -20.165268 -31.647833 33.042043 +v -18.895023 -34.415333 30.960668 +v -17.521954 -36.995548 28.710809 +v -16.053532 -39.374439 26.304709 +v -14.497749 -41.539058 23.755461 +v -12.863071 -43.477627 21.076940 +v -11.158393 -45.179595 18.283720 +v -9.392993 -46.635702 15.391003 +v -7.576478 -47.838023 12.414529 +v -5.718732 -48.780015 9.370497 +v -3.829866 -49.456552 6.275472 +v -1.920157 -49.863953 3.146297 +v -16.964567 42.386946 20.385049 +v -18.917206 40.316538 22.731389 +v -20.766900 38.026733 24.954027 +v -22.503583 35.529990 27.040869 +v -24.117803 32.839897 28.980557 +v -25.600778 29.971094 30.762537 +v -26.944437 26.939191 32.377111 +v -28.141467 23.760689 33.815492 +v -29.185354 20.452884 35.069853 +v -30.070419 17.033777 36.133369 +v -30.791844 13.521974 37.000251 +v -31.345703 9.936586 37.665782 +v -31.728983 6.297124 38.126341 +v -31.939597 2.623394 38.379421 +v -31.976400 -1.064612 38.423644 +v -31.839192 -4.746824 38.258771 +v -31.528718 -8.403205 37.885698 +v -31.046669 -12.013857 37.306455 +v -30.395667 -15.559130 36.524196 +v -29.579256 -19.019733 35.543176 +v -28.601878 -22.376833 34.368734 +v -27.468853 -25.612161 33.007262 +v -26.186345 -28.708110 31.466169 +v -24.761334 -31.647833 29.753840 +v -23.201575 -34.415333 27.879594 +v -21.515556 -36.995548 25.853631 +v -19.712452 -39.374439 23.686976 +v -17.802075 -41.539058 21.391419 +v -15.794821 -43.477627 18.979453 +v -13.701613 -45.179595 16.464202 +v -11.533844 -46.635702 13.859356 +v -9.303308 -47.838023 11.179088 +v -7.022145 -48.780015 8.437985 +v -4.702768 -49.456552 5.650964 +v -2.357800 -49.863953 2.833191 +v -2.144700 -49.863953 2.997741 +v -4.277729 -49.456552 5.979169 +v -6.387478 -48.780015 8.928059 +v -8.462468 -47.838023 11.828363 +v -10.491407 -46.635702 14.664299 +v -12.463252 -45.179595 17.420434 +v -14.367274 -43.477627 20.081769 +v -16.193110 -41.539058 22.633821 +v -17.930826 -39.374439 25.062703 +v -19.570964 -36.995548 27.355196 +v -21.104600 -34.415333 29.498826 +v -22.523387 -31.647833 31.481926 +v -23.819604 -28.708110 33.293706 +v -24.986198 -25.612161 34.924306 +v -26.016820 -22.376833 36.364851 +v -26.905862 -19.019733 37.607504 +v -27.648485 -15.559130 38.645501 +v -28.240648 -12.013857 39.473194 +v -28.679130 -8.403205 40.086078 +v -28.961543 -4.746824 40.480819 +v -29.086350 -1.064612 40.655268 +v -29.052873 2.623394 40.608476 +v -28.861295 6.297124 40.340698 +v -28.512656 9.936586 39.853390 +v -28.008855 13.521974 39.149205 +v -27.352633 17.033777 38.231975 +v -26.547561 20.452884 37.106691 +v -25.598021 23.760689 35.779477 +v -24.509179 26.939191 34.257555 +v -23.286962 29.971094 32.549208 +v -21.938019 32.839897 30.663732 +v -20.469693 35.529990 28.611388 +v -18.889972 38.026733 26.403343 +v -17.207455 40.316538 24.051616 +v -15.431297 42.386946 21.569002 +v -17.370922 44.226690 15.564414 +v -19.751869 42.386946 17.697752 +v -22.025329 40.316538 19.734782 +v -24.178930 38.026733 21.664417 +v -26.200952 35.529990 23.476156 +v -28.080392 32.839897 25.160142 +v -29.807021 29.971094 26.707209 +v -31.371445 26.939191 28.108938 +v -32.765149 23.760689 29.357702 +v -33.980548 20.452884 30.446705 +v -35.011030 17.033777 31.370021 +v -35.850986 13.521974 32.122625 +v -36.495845 9.936586 32.700421 +v -36.942098 6.297124 33.100266 +v -37.187317 2.623394 33.319983 +v -37.230167 -1.064612 33.358376 +v -37.070415 -4.746824 33.215238 +v -36.708930 -8.403205 32.891346 +v -36.147679 -12.013857 32.388463 +v -35.389717 -15.559130 31.709326 +v -34.439169 -19.019733 30.857631 +v -33.301207 -22.376833 29.838012 +v -31.982023 -25.612161 28.656019 +v -30.488798 -28.708110 27.318083 +v -28.829655 -31.647833 25.831485 +v -27.013626 -34.415333 24.204315 +v -25.050591 -36.995548 22.445429 +v -22.951235 -39.374439 20.564397 +v -20.726980 -41.539058 18.571456 +v -18.389932 -43.477627 16.477451 +v -15.952807 -45.179595 14.293778 +v -13.428870 -46.635702 12.032321 +v -10.831854 -47.838023 9.705384 +v -8.175893 -48.780015 7.325632 +v -5.475439 -49.456552 4.906015 +v -2.745189 -49.863953 2.459700 +v -2.558319 -49.863953 2.653525 +v -5.102716 -49.456552 5.292609 +v -7.619345 -48.780015 7.902892 +v -10.094511 -47.838023 10.470168 +v -12.514743 -46.635702 12.980466 +v -14.866871 -45.179595 15.420127 +v -17.138096 -43.477627 17.775873 +v -19.316057 -41.539058 20.034885 +v -21.388903 -39.374439 22.184869 +v -23.345352 -36.995548 24.214126 +v -25.174760 -34.415333 26.111613 +v -26.867169 -31.647833 27.867004 +v -28.413370 -28.708110 29.470745 +v -29.804949 -25.612161 30.914111 +v -31.034333 -22.376833 32.189245 +v -32.094832 -19.019733 33.289210 +v -32.980675 -15.559130 34.208018 +v -33.687041 -12.013857 34.940671 +v -34.210087 -8.403205 35.483181 +v -34.546965 -4.746824 35.832595 +v -34.695842 -1.064612 35.987013 +v -34.655909 2.623394 35.945594 +v -34.427383 6.297124 35.708564 +v -34.011507 9.936586 35.277211 +v -33.410545 13.521974 34.653885 +v -32.627766 17.033777 33.841976 +v -31.667431 20.452884 32.845903 +v -30.534766 23.760689 31.671087 +v -29.235934 26.939191 30.323920 +v -27.778004 29.971094 28.811734 +v -26.168909 32.839897 27.142759 +v -24.417406 35.529990 25.326075 +v -22.533027 38.026733 23.371571 +v -20.526025 40.316538 21.289881 +v -18.407324 42.386946 19.092334 +v -16.188452 44.226690 16.790889 +v -20.991030 42.386946 16.208746 +v -23.407118 40.316538 18.074389 +v -25.695828 38.026733 19.841674 +v -27.844705 35.529990 21.500982 +v -29.842054 32.839897 23.043285 +v -31.677006 29.971094 24.460189 +v -33.339576 26.939191 25.743983 +v -34.820715 23.760689 26.887682 +v -36.112365 20.452884 27.885061 +v -37.207495 17.033777 28.730694 +v -38.100147 13.521974 29.419977 +v -38.785462 9.936586 29.949160 +v -39.259712 6.297124 30.315364 +v -39.520315 2.623394 30.516595 +v -39.565853 -1.064612 30.551758 +v -39.396078 -4.746824 30.420662 +v -39.011915 -8.403205 30.124021 +v -38.415453 -12.013857 29.663449 +v -37.609940 -15.559130 29.041451 +v -36.599757 -19.019733 28.261414 +v -35.390404 -22.376833 27.327581 +v -33.988459 -25.612161 26.245035 +v -32.401554 -28.708110 25.019666 +v -30.638323 -31.647833 23.658144 +v -28.708363 -34.415333 22.167877 +v -26.622175 -36.995548 20.556975 +v -24.391112 -39.374439 18.834204 +v -22.027316 -41.539058 17.008940 +v -19.543649 -43.477627 15.091115 +v -16.953629 -45.179595 13.091166 +v -14.271349 -46.635702 11.019977 +v -11.511406 -47.838023 8.888818 +v -8.688819 -48.780015 6.709288 +v -5.818949 -49.456552 4.493246 +v -2.917412 -49.863953 2.252753 +v -20.339511 44.226690 11.415087 +v -23.127348 42.386946 12.979697 +v -25.789329 40.316538 14.473673 +v -28.310968 38.026733 15.888885 +v -30.678542 35.529990 17.217632 +v -32.879167 32.839897 18.452683 +v -34.900868 29.971094 19.587316 +v -36.732642 26.939191 20.615358 +v -38.364522 23.760689 21.531213 +v -39.787626 20.452884 22.329898 +v -40.994211 17.033777 23.007066 +v -41.977711 13.521974 23.559033 +v -42.732772 9.936586 23.982794 +v -43.255288 6.297124 24.276044 +v -43.542413 2.623394 24.437186 +v -43.592585 -1.064612 24.465345 +v -43.405533 -4.746824 24.360365 +v -42.982272 -8.403205 24.122820 +v -42.325107 -12.013857 23.754001 +v -41.437614 -15.559130 23.255916 +v -40.324622 -19.019733 22.631275 +v -38.992189 -22.376833 21.883477 +v -37.447565 -25.612161 21.016592 +v -35.699155 -28.708110 20.035337 +v -33.756476 -31.647833 18.945052 +v -31.630097 -34.415333 17.751671 +v -29.331591 -36.995548 16.461687 +v -26.873467 -39.374439 15.082121 +v -24.269100 -41.539058 13.620479 +v -21.532664 -43.477627 12.084717 +v -18.679049 -45.179595 10.483191 +v -15.723786 -46.635702 8.824616 +v -12.682955 -47.838023 7.118019 +v -9.573106 -48.780015 5.372687 +v -6.411160 -49.456552 3.598117 +v -3.214326 -49.863953 1.803967 +v -3.074070 -49.863953 2.033785 +v -6.131411 -49.456552 4.056503 +v -9.155386 -48.780015 6.057146 +v -12.129539 -47.838023 8.024827 +v -15.037683 -46.635702 9.948837 +v -17.863995 -45.179595 11.818707 +v -20.593093 -43.477627 13.624262 +v -23.210126 -41.539058 15.355674 +v -25.700852 -39.374439 17.003523 +v -28.051717 -36.995548 18.558841 +v -30.249928 -34.415333 20.013163 +v -32.283523 -31.647833 21.358577 +v -34.141434 -28.708110 22.587759 +v -35.813552 -25.612161 23.694022 +v -37.290777 -22.376833 24.671345 +v -38.565070 -19.019733 25.514409 +v -39.629497 -15.559130 26.218627 +v -40.478265 -12.013857 26.780167 +v -41.106755 -8.403205 27.195972 +v -41.511546 -4.746824 27.463779 +v -41.690437 -1.064612 27.582133 +v -41.642454 2.623394 27.550387 +v -41.367857 6.297124 27.368716 +v -40.868142 9.936586 27.038107 +v -40.146027 13.521974 26.560360 +v -39.205442 17.033777 25.938075 +v -38.051506 20.452884 25.174638 +v -36.690498 23.760689 24.274204 +v -35.129825 26.939191 23.241673 +v -33.377980 29.971094 22.082663 +v -31.444496 32.839897 20.803482 +v -29.339894 35.529990 19.411090 +v -27.075628 38.026733 17.913066 +v -24.664021 40.316538 16.317562 +v -22.118194 42.386946 14.633259 +v -19.452003 44.226690 12.869323 +v -21.118499 44.226690 9.899945 +v -24.013108 42.386946 11.256883 +v -26.777041 40.316538 12.552561 +v -29.395257 38.026733 13.779930 +v -31.853507 35.529990 14.932311 +v -34.138414 32.839897 16.003431 +v -36.237544 29.971094 16.987463 +v -38.139474 26.939191 17.879051 +v -39.833854 23.760689 18.673344 +v -41.311462 20.452884 19.366018 +v -42.564258 17.033777 19.953305 +v -43.585425 13.521974 20.432008 +v -44.369405 9.936586 20.799523 +v -44.911932 6.297124 21.053849 +v -45.210054 2.623394 21.193603 +v -45.262148 -1.064612 21.218024 +v -45.067931 -4.746824 21.126978 +v -44.628460 -8.403205 20.920963 +v -43.946126 -12.013857 20.601098 +v -43.024643 -15.559130 20.169124 +v -41.869024 -19.019733 19.627392 +v -40.485560 -22.376833 18.978851 +v -38.881778 -25.612161 18.227029 +v -37.066406 -28.708110 17.376017 +v -35.049323 -31.647833 16.430448 +v -32.841506 -34.415333 15.395466 +v -30.454969 -36.995548 14.276703 +v -27.902700 -39.374439 13.080249 +v -25.198588 -41.539058 11.812613 +v -22.357348 -43.477627 10.480694 +v -19.394443 -45.179595 9.091741 +v -16.325995 -46.635702 7.653312 +v -13.168703 -47.838023 6.173234 +v -9.939748 -48.780015 4.659563 +v -6.656703 -49.456552 3.120534 +v -3.337432 -49.863953 1.564524 +v -22.334890 44.226690 6.719567 +v -25.396225 42.386946 7.640586 +v -28.319356 40.316538 8.520025 +v -31.088376 38.026733 9.353099 +v -33.688218 35.529990 10.135275 +v -36.104732 32.839897 10.862296 +v -38.324769 29.971094 11.530205 +v -40.336247 26.939191 12.135369 +v -42.128219 23.760689 12.674493 +v -43.690936 20.452884 13.144644 +v -45.015891 17.033777 13.543264 +v -46.095875 13.521974 13.868183 +v -46.925012 9.936586 14.117633 +v -47.498787 6.297124 14.290256 +v -47.814081 2.623394 14.385114 +v -47.869175 -1.064612 14.401689 +v -47.663772 -4.746824 14.339893 +v -47.198988 -8.403205 14.200060 +v -46.477352 -12.013857 13.982952 +v -45.502793 -15.559130 13.689751 +v -44.280613 -19.019733 13.322052 +v -42.817463 -22.376833 12.881856 +v -41.121306 -25.612161 12.371558 +v -39.201371 -28.708110 11.793936 +v -37.068108 -31.647833 11.152132 +v -34.733124 -34.415333 10.449640 +v -32.209126 -36.995548 9.690282 +v -29.509851 -39.374439 8.878191 +v -26.649986 -41.539058 8.017786 +v -23.645096 -43.477627 7.113750 +v -20.511531 -45.179595 6.171000 +v -17.266346 -46.635702 5.194670 +v -13.927199 -47.838023 4.190070 +v -10.512262 -48.780015 3.162668 +v -7.040118 -49.456552 2.118056 +v -3.529663 -49.863953 1.061917 +v -3.442732 -49.863953 1.316733 +v -6.866729 -49.456552 2.626301 +v -10.253358 -48.780015 3.921577 +v -13.584190 -47.838023 5.195512 +v -16.841098 -46.635702 6.441174 +v -20.006358 -45.179595 7.651784 +v -23.062747 -43.477627 8.820753 +v -25.993631 -41.539058 9.941721 +v -28.783061 -39.374439 11.008588 +v -31.415856 -36.995548 12.015547 +v -33.877691 -34.415333 12.957119 +v -36.155167 -31.647833 13.828180 +v -38.235891 -28.708110 14.623989 +v -40.108540 -25.612161 15.340217 +v -41.762923 -22.376833 15.972965 +v -43.190038 -19.019733 16.518790 +v -44.382117 -15.559130 16.974721 +v -45.332674 -12.013857 17.338279 +v -46.036536 -8.403205 17.607483 +v -46.489873 -4.746824 17.780870 +v -46.690218 -1.064612 17.857495 +v -46.636480 2.623394 17.836942 +v -46.328952 6.297124 17.719323 +v -45.769308 9.936586 17.505277 +v -44.960592 13.521974 17.195969 +v -43.907207 17.033777 16.793083 +v -42.614883 20.452884 16.298812 +v -41.090655 23.760689 15.715844 +v -39.342816 26.939191 15.047352 +v -37.380878 29.971094 14.296974 +v -35.215518 32.839897 13.468794 +v -32.858520 35.529990 12.567319 +v -30.322709 38.026733 11.597453 +v -27.621886 40.316538 10.564476 +v -24.770748 42.386946 9.474008 +v -22.765804 44.226690 5.071299 +v -25.886202 42.386946 5.766397 +v -28.865730 40.316538 6.430116 +v -31.688174 38.026733 7.058842 +v -34.338175 35.529990 7.649155 +v -36.801312 32.839897 8.197842 +v -39.064180 29.971094 8.701917 +v -41.114466 26.939191 9.158638 +v -42.941012 23.760689 9.565518 +v -44.533878 20.452884 9.920344 +v -45.884396 17.033777 10.221185 +v -46.985217 13.521974 10.466404 +v -47.830350 9.936586 10.654665 +v -48.415196 6.297124 10.784945 +v -48.736572 2.623394 10.856534 +v -48.792730 -1.064612 10.869044 +v -48.583363 -4.746824 10.822406 +v -48.109612 -8.403205 10.716873 +v -47.374054 -12.013857 10.553021 +v -46.380692 -15.559130 10.331740 +v -45.134932 -19.019733 10.054235 +v -43.643553 -22.376833 9.722016 +v -41.914672 -25.612161 9.336891 +v -39.957695 -28.708110 8.900956 +v -37.783274 -31.647833 8.416583 +v -35.403240 -34.415333 7.886408 +v -32.830547 -36.995548 7.313316 +v -30.079193 -39.374439 6.700426 +v -27.164153 -41.539058 6.051073 +v -24.101288 -43.477627 5.368791 +v -20.907267 -45.179595 4.657292 +v -17.599471 -46.635702 3.920449 +v -14.195900 -47.838023 3.162272 +v -10.715078 -48.780015 2.386885 +v -7.175945 -49.456552 1.598510 +v -3.597762 -49.863953 0.801436 +v -23.261584 44.226690 1.702529 +v -26.449936 42.386946 1.935886 +v -29.494350 40.316538 2.158708 +v -32.378260 38.026733 2.369783 +v -35.085971 35.529990 2.567962 +v -37.602749 32.839897 2.752166 +v -39.914897 29.971094 2.921394 +v -42.009833 26.939191 3.074723 +v -43.876156 23.760689 3.211321 +v -45.503711 20.452884 3.330442 +v -46.883640 17.033777 3.431440 +v -48.008433 13.521974 3.513764 +v -48.871971 9.936586 3.576967 +v -49.469554 6.297124 3.620705 +v -49.797928 2.623394 3.644739 +v -49.855309 -1.064612 3.648938 +v -49.641383 -4.746824 3.633281 +v -49.157315 -8.403205 3.597852 +v -48.405738 -12.013857 3.542843 +v -47.390744 -15.559130 3.468555 +v -46.117854 -19.019733 3.375392 +v -44.593997 -22.376833 3.263860 +v -42.827465 -25.612161 3.134566 +v -40.827870 -28.708110 2.988215 +v -38.606096 -31.647833 2.825602 +v -36.174231 -34.415333 2.647612 +v -33.545511 -36.995548 2.455215 +v -30.734240 -39.374439 2.249456 +v -27.755717 -41.539058 2.031457 +v -24.626151 -43.477627 1.802402 +v -21.362573 -45.179595 1.563539 +v -17.982742 -46.635702 1.316167 +v -14.505050 -47.838023 1.061633 +v -10.948425 -48.780015 0.801321 +v -7.332219 -49.456552 0.536649 +v -3.676112 -49.863953 0.269057 +v -3.646665 -49.863953 0.536678 +v -7.273486 -49.456552 1.070435 +v -10.860725 -48.780015 1.598367 +v -14.388861 -47.838023 2.117601 +v -17.838695 -46.635702 2.625312 +v -21.191452 -45.179595 3.118735 +v -24.428889 -43.477627 3.595187 +v -27.533386 -41.539058 4.052075 +v -30.488050 -39.374439 4.486911 +v -33.276802 -36.995548 4.897330 +v -35.884465 -34.415333 5.281099 +v -38.296850 -31.647833 5.636128 +v -40.500827 -28.708110 5.960486 +v -42.484404 -25.612161 6.252409 +v -44.236786 -22.376833 6.510306 +v -45.748437 -19.019733 6.732775 +v -47.011130 -15.559130 6.918604 +v -48.017995 -12.013857 7.066784 +v -48.763551 -8.403205 7.176507 +v -49.243742 -4.746824 7.247177 +v -49.455954 -1.064612 7.278408 +v -49.399033 2.623394 7.270031 +v -49.073288 6.297124 7.222091 +v -48.480493 9.936586 7.134850 +v -47.623872 13.521974 7.008781 +v -46.508088 17.033777 6.844572 +v -45.139213 20.452884 6.643115 +v -43.524696 23.760689 6.405508 +v -41.673322 26.939191 6.133042 +v -39.595167 29.971094 5.827201 +v -37.301540 32.839897 5.489649 +v -34.804923 35.529990 5.122223 +v -32.118901 38.026733 4.726923 +v -29.258092 40.316538 4.305899 +v -26.238065 42.386946 3.861443 +vt -2.469840 0.255305 0.000000 +vt -2.483000 0.000000 0.000000 +vt -2.000000 0.000000 0.000000 +vt -2.469840 -0.255305 0.000000 +vt -1.986963 -0.227983 0.000000 +vt -2.430499 -0.507903 0.000000 +vt -1.948024 -0.452994 0.000000 +vt -2.365394 -0.755117 0.000000 +vt -1.883689 -0.672099 0.000000 +vt -2.275215 -0.994327 0.000000 +vt -1.794797 -0.882442 0.000000 +vt -2.160918 -1.222997 0.000000 +vt -1.682507 -1.081282 0.000000 +vt -2.023715 -1.438703 0.000000 +vt -1.548283 -1.266025 0.000000 +vt -1.865061 -1.639158 0.000000 +vt -1.393875 -1.434264 0.000000 +vt -1.686636 -1.822237 0.000000 +vt -1.221296 -1.583804 0.000000 +vt -1.490332 -1.986001 0.000000 +vt -1.032795 -1.712698 0.000000 +vt -1.278231 -2.128712 0.000000 +vt -1.052579 -2.248859 0.000000 +vt -0.830830 -1.819264 0.000000 +vt -0.815771 -2.345167 0.000000 +vt -0.618034 -1.902113 0.000000 +vt -0.570315 -2.416615 0.000000 +vt -0.397181 -1.960165 0.000000 +vt -0.318813 -2.462447 0.000000 +vt -0.171150 -1.992663 0.000000 +vt -0.063932 -2.482177 0.000000 +vt 0.057112 -1.999184 0.000000 +vt 0.191627 -2.475595 0.000000 +vt 0.284630 -1.979643 0.000000 +vt 0.445154 -2.442770 0.000000 +vt 0.508437 -1.934294 0.000000 +vt 0.693963 -2.384052 0.000000 +vt 0.725615 -1.863728 0.000000 +vt 0.935415 -2.300062 0.000000 +vt 0.933335 -1.768866 0.000000 +vt 1.166952 -2.191691 0.000000 +vt 1.386119 -2.060088 0.000000 +vt 1.128886 -1.650944 0.000000 +vt 1.590593 -1.906647 0.000000 +vt 1.309721 -1.511499 0.000000 +vt 1.778206 -1.732995 0.000000 +vt 1.473482 -1.352350 0.000000 +vt 1.946969 -1.540973 0.000000 +vt 1.618034 -1.175571 0.000000 +vt 2.095095 -1.332617 0.000000 +vt 1.741492 -0.983466 0.000000 +vt 2.221011 -1.110134 0.000000 +vt 1.842247 -0.778540 0.000000 +vt 2.323385 -0.875883 0.000000 +vt 1.918986 -0.563465 0.000000 +vt 2.401130 -0.632348 0.000000 +vt 1.970708 -0.341044 0.000000 +vt 2.453422 -0.382110 0.000000 +vt 1.996738 -0.114178 0.000000 +vt 2.479708 -0.127822 0.000000 +vt 1.996738 0.114178 0.000000 +vt 2.479708 0.127822 0.000000 +vt 2.453422 0.382110 0.000000 +vt 1.970708 0.341044 0.000000 +vt 2.401130 0.632348 0.000000 +vt 1.918986 0.563465 0.000000 +vt 2.323385 0.875883 0.000000 +vt 1.842247 0.778540 0.000000 +vt 2.221011 1.110134 0.000000 +vt 1.741492 0.983466 0.000000 +vt 2.095095 1.332617 0.000000 +vt 1.618034 1.175571 0.000000 +vt 1.946969 1.540973 0.000000 +vt 1.473482 1.352350 0.000000 +vt 1.778206 1.732995 0.000000 +vt 1.309721 1.511499 0.000000 +vt 1.590593 1.906647 0.000000 +vt 1.128886 1.650944 0.000000 +vt 1.386119 2.060088 0.000000 +vt 0.933335 1.768866 0.000000 +vt 1.166952 2.191691 0.000000 +vt 0.935415 2.300062 0.000000 +vt 0.725615 1.863728 0.000000 +vt 0.693963 2.384052 0.000000 +vt 0.508437 1.934294 0.000000 +vt 0.445154 2.442770 0.000000 +vt 0.284630 1.979643 0.000000 +vt 0.191627 2.475595 0.000000 +vt 0.057112 1.999184 0.000000 +vt -0.063932 2.482177 0.000000 +vt -0.171150 1.992663 0.000000 +vt -0.318813 2.462447 0.000000 +vt -0.397181 1.960165 0.000000 +vt -0.570315 2.416615 0.000000 +vt -0.618034 1.902113 0.000000 +vt -0.815771 2.345167 0.000000 +vt -0.830830 1.819264 0.000000 +vt -1.052579 2.248859 0.000000 +vt -1.032795 1.712698 0.000000 +vt -1.278231 2.128712 0.000000 +vt -1.490332 1.986001 0.000000 +vt -1.221296 1.583804 0.000000 +vt -1.686636 1.822237 0.000000 +vt -1.393875 1.434264 0.000000 +vt -1.865061 1.639158 0.000000 +vt -1.548283 1.266025 0.000000 +vt -2.023715 1.438703 0.000000 +vt -1.682507 1.081282 0.000000 +vt -2.160918 1.222997 0.000000 +vt -1.794797 0.882442 0.000000 +vt -2.275215 0.994327 0.000000 +vt -1.883689 0.672099 0.000000 +vt -2.365394 0.755117 0.000000 +vt -1.948024 0.452994 0.000000 +vt -2.430499 0.507903 0.000000 +vt -1.986963 0.227983 0.000000 +vt 0.500000 0.255757 0.000000 +vt -0.500000 0.000000 0.000000 +vt 0.500000 0.000000 0.000000 +vt -0.500000 -0.255757 0.000000 +vt 0.500000 -0.255757 0.000000 +vt -0.500000 -0.511513 0.000000 +vt 0.500000 -0.511513 0.000000 +vt -0.500000 -0.767270 0.000000 +vt 0.500000 -0.767270 0.000000 +vt -0.500000 -1.023026 0.000000 +vt 0.500000 -1.023026 0.000000 +vt -0.500000 -1.278783 0.000000 +vt 0.500000 -1.278783 0.000000 +vt -0.500000 -1.534539 0.000000 +vt 0.500000 -1.534539 0.000000 +vt -0.500000 -1.790296 0.000000 +vt 0.500000 -1.790296 0.000000 +vt -0.500000 -2.046052 0.000000 +vt 0.500000 -2.046052 0.000000 +vt -0.500000 -2.301809 0.000000 +vt 0.500000 -2.301809 0.000000 +vt -0.500000 -2.557565 0.000000 +vt 0.500000 -2.557565 0.000000 +vt -0.500000 -2.813322 0.000000 +vt 0.500000 -2.813322 0.000000 +vt -0.500000 -3.069079 0.000000 +vt 0.500000 -3.069079 0.000000 +vt -0.500000 -3.324835 0.000000 +vt 0.500000 -3.324835 0.000000 +vt -0.500000 -3.580592 0.000000 +vt 0.500000 -3.580592 0.000000 +vt -0.500000 -3.836348 0.000000 +vt 0.500000 -3.836348 0.000000 +vt -0.500000 -4.092105 0.000000 +vt 0.500000 -4.092105 0.000000 +vt -0.500000 -4.347861 0.000000 +vt 0.500000 -4.347861 0.000000 +vt -0.500000 -4.603618 0.000000 +vt 0.500000 -4.603618 0.000000 +vt -0.500000 -4.859374 0.000000 +vt 0.500000 -4.859374 0.000000 +vt -0.500000 -5.115131 0.000000 +vt 0.500000 -5.115131 0.000000 +vt -0.500000 -5.370887 0.000000 +vt 0.500000 -5.370887 0.000000 +vt -0.500000 -5.626644 0.000000 +vt 0.500000 -5.626644 0.000000 +vt -0.500000 -5.882400 0.000000 +vt 0.500000 -5.882400 0.000000 +vt -0.500000 -6.138157 0.000000 +vt 0.500000 -6.138157 0.000000 +vt -0.500000 -6.393914 0.000000 +vt 0.500000 -6.393914 0.000000 +vt -0.500000 -6.649670 0.000000 +vt 0.500000 -6.649670 0.000000 +vt -0.500000 -6.905427 0.000000 +vt 0.500000 -6.905427 0.000000 +vt -0.500000 -7.161183 0.000000 +vt 0.500000 -7.161183 0.000000 +vt -0.500000 -7.416940 0.000000 +vt 0.500000 -7.416940 0.000000 +vt -0.500000 -7.672696 0.000000 +vt 0.500000 -7.672696 0.000000 +vt 0.500000 7.928453 0.000000 +vt -0.500000 7.928453 0.000000 +vt -0.500000 7.672696 0.000000 +vt 0.500000 7.672696 0.000000 +vt -0.500000 7.416940 0.000000 +vt 0.500000 7.416940 0.000000 +vt -0.500000 7.161183 0.000000 +vt 0.500000 7.161183 0.000000 +vt -0.500000 6.905427 0.000000 +vt 0.500000 6.905427 0.000000 +vt -0.500000 6.649670 0.000000 +vt 0.500000 6.649670 0.000000 +vt -0.500000 6.393914 0.000000 +vt 0.500000 6.393914 0.000000 +vt -0.500000 6.138157 0.000000 +vt 0.500000 6.138157 0.000000 +vt -0.500000 5.882400 0.000000 +vt 0.500000 5.882400 0.000000 +vt -0.500000 5.626644 0.000000 +vt 0.500000 5.626644 0.000000 +vt -0.500000 5.370887 0.000000 +vt 0.500000 5.370887 0.000000 +vt -0.500000 5.115131 0.000000 +vt 0.500000 5.115131 0.000000 +vt -0.500000 4.859374 0.000000 +vt 0.500000 4.859374 0.000000 +vt -0.500000 4.603618 0.000000 +vt 0.500000 4.603618 0.000000 +vt -0.500000 4.347861 0.000000 +vt 0.500000 4.347861 0.000000 +vt -0.500000 4.092105 0.000000 +vt 0.500000 4.092105 0.000000 +vt -0.500000 3.836348 0.000000 +vt 0.500000 3.836348 0.000000 +vt -0.500000 3.580592 0.000000 +vt 0.500000 3.580592 0.000000 +vt -0.500000 3.324835 0.000000 +vt 0.500000 3.324835 0.000000 +vt -0.500000 3.069079 0.000000 +vt 0.500000 3.069079 0.000000 +vt -0.500000 2.813322 0.000000 +vt 0.500000 2.813322 0.000000 +vt -0.500000 2.557565 0.000000 +vt 0.500000 2.557565 0.000000 +vt -0.500000 2.301809 0.000000 +vt 0.500000 2.301809 0.000000 +vt -0.500000 2.046052 0.000000 +vt 0.500000 2.046052 0.000000 +vt -0.500000 1.790296 0.000000 +vt 0.500000 1.790296 0.000000 +vt -0.500000 1.534539 0.000000 +vt 0.500000 1.534539 0.000000 +vt -0.500000 1.278783 0.000000 +vt 0.500000 1.278783 0.000000 +vt -0.500000 1.023026 0.000000 +vt 0.500000 1.023026 0.000000 +vt -0.500000 0.767270 0.000000 +vt 0.500000 0.767270 0.000000 +vt -0.500000 0.511513 0.000000 +vt 0.500000 0.511513 0.000000 +vt -0.500000 0.255757 0.000000 +vt 2.469840 -0.255305 0.000000 +vt 2.483000 0.000000 0.000000 +vt -2.453422 -0.382110 0.000000 +vt 2.469840 0.255305 0.000000 +vt -2.479708 -0.127822 0.000000 +vt 2.430499 0.507903 0.000000 +vt 2.365394 0.755117 0.000000 +vt 2.275215 0.994327 0.000000 +vt 2.160918 1.222997 0.000000 +vt 2.023715 1.438703 0.000000 +vt 1.865061 1.639158 0.000000 +vt 1.686636 1.822237 0.000000 +vt 1.490332 1.986001 0.000000 +vt 1.278231 2.128712 0.000000 +vt 1.052579 2.248859 0.000000 +vt 0.815771 2.345167 0.000000 +vt 0.570315 2.416615 0.000000 +vt 0.318813 2.462447 0.000000 +vt 0.063932 2.482177 0.000000 +vt -0.191627 2.475595 0.000000 +vt -0.445154 2.442770 0.000000 +vt -0.693963 2.384052 0.000000 +vt -0.935415 2.300062 0.000000 +vt -1.166952 2.191691 0.000000 +vt -1.386119 2.060088 0.000000 +vt -1.590593 1.906647 0.000000 +vt -1.778206 1.732995 0.000000 +vt -1.946969 1.540973 0.000000 +vt -2.095095 1.332617 0.000000 +vt -2.221011 1.110134 0.000000 +vt -2.323385 0.875883 0.000000 +vt -2.401130 0.632348 0.000000 +vt -2.453422 0.382110 0.000000 +vt -2.479708 0.127822 0.000000 +vt 2.430499 -0.507903 0.000000 +vt -2.401130 -0.632348 0.000000 +vt 2.365394 -0.755117 0.000000 +vt -2.323385 -0.875883 0.000000 +vt 2.275215 -0.994327 0.000000 +vt -2.221011 -1.110134 0.000000 +vt 2.160918 -1.222997 0.000000 +vt -2.095095 -1.332617 0.000000 +vt 2.023715 -1.438703 0.000000 +vt -1.946969 -1.540973 0.000000 +vt 1.865061 -1.639158 0.000000 +vt -1.778206 -1.732995 0.000000 +vt 1.686636 -1.822237 0.000000 +vt -1.590593 -1.906647 0.000000 +vt 1.490332 -1.986001 0.000000 +vt -1.386119 -2.060088 0.000000 +vt 1.278231 -2.128712 0.000000 +vt -1.166952 -2.191691 0.000000 +vt 1.052579 -2.248859 0.000000 +vt -0.935415 -2.300062 0.000000 +vt 0.815771 -2.345167 0.000000 +vt -0.693963 -2.384052 0.000000 +vt 0.570315 -2.416615 0.000000 +vt -0.445154 -2.442770 0.000000 +vt 0.318813 -2.462447 0.000000 +vt -0.191627 -2.475595 0.000000 +vt 0.063932 -2.482177 0.000000 +vt -5.000000 -0.228479 0.000000 +vt 0.417424 -0.114240 0.000000 +vt -5.000000 0.000000 0.000000 +vt 0.417424 0.114240 0.000000 +vt -5.000000 0.228479 0.000000 +vt 0.417424 0.342719 0.000000 +vt -5.000000 0.456959 0.000000 +vt 0.417424 0.571199 0.000000 +vt -5.000000 0.685438 0.000000 +vt 0.417424 0.799678 0.000000 +vt -5.000000 0.913918 0.000000 +vt 0.417424 1.028158 0.000000 +vt -5.000000 1.142397 0.000000 +vt 0.417424 1.256637 0.000000 +vt -5.000000 1.370877 0.000000 +vt 0.417424 1.485117 0.000000 +vt -5.000000 1.599356 0.000000 +vt 0.417424 1.713596 0.000000 +vt -5.000000 1.827836 0.000000 +vt 0.417424 1.942075 0.000000 +vt -5.000000 2.056315 0.000000 +vt 0.417424 2.170555 0.000000 +vt -5.000000 2.284795 0.000000 +vt 0.417424 2.399034 0.000000 +vt -5.000000 2.513274 0.000000 +vt 0.417424 2.627514 0.000000 +vt -5.000000 2.741754 0.000000 +vt 0.417424 2.855993 0.000000 +vt -5.000000 2.970233 0.000000 +vt 0.417424 3.084473 0.000000 +vt -5.000000 3.198713 0.000000 +vt 0.417424 3.312952 0.000000 +vt -5.000000 3.427192 0.000000 +vt 0.417424 3.541432 0.000000 +vt -5.000000 3.655671 0.000000 +vt 0.417424 3.769911 0.000000 +vt -5.000000 3.884151 0.000000 +vt 0.417424 3.998391 0.000000 +vt -5.000000 4.112630 0.000000 +vt 0.417424 4.226870 0.000000 +vt -5.000000 4.341110 0.000000 +vt 0.417424 4.455350 0.000000 +vt -5.000000 4.569589 0.000000 +vt 0.417424 4.683829 0.000000 +vt -5.000000 4.798069 0.000000 +vt 0.417424 4.912309 0.000000 +vt -5.000000 5.026548 0.000000 +vt 0.417424 5.140788 0.000000 +vt -5.000000 5.255028 0.000000 +vt 0.417424 5.369267 0.000000 +vt -5.000000 5.483507 0.000000 +vt 0.417424 5.597747 0.000000 +vt -5.000000 5.711987 0.000000 +vt 0.417424 5.826226 0.000000 +vt -5.000000 5.940466 0.000000 +vt 0.417424 6.054706 0.000000 +vt -5.000000 6.168946 0.000000 +vt 0.417424 6.283185 0.000000 +vt -5.000000 6.397425 0.000000 +vt -5.000000 -6.168946 0.000000 +vt 0.417424 -6.283185 0.000000 +vt 0.417424 -6.054706 0.000000 +vt -5.000000 -5.940466 0.000000 +vt 0.417424 -5.826226 0.000000 +vt -5.000000 -5.711987 0.000000 +vt 0.417424 -5.597747 0.000000 +vt -5.000000 -5.483507 0.000000 +vt 0.417424 -5.369267 0.000000 +vt -5.000000 -5.255028 0.000000 +vt 0.417424 -5.140788 0.000000 +vt -5.000000 -5.026548 0.000000 +vt 0.417424 -4.912309 0.000000 +vt -5.000000 -4.798069 0.000000 +vt 0.417424 -4.683829 0.000000 +vt -5.000000 -4.569589 0.000000 +vt 0.417424 -4.455350 0.000000 +vt -5.000000 -4.341110 0.000000 +vt 0.417424 -4.226870 0.000000 +vt -5.000000 -4.112630 0.000000 +vt 0.417424 -3.998391 0.000000 +vt -5.000000 -3.884151 0.000000 +vt 0.417424 -3.769911 0.000000 +vt -5.000000 -3.655671 0.000000 +vt 0.417424 -3.541432 0.000000 +vt -5.000000 -3.427192 0.000000 +vt 0.417424 -3.312952 0.000000 +vt -5.000000 -3.198713 0.000000 +vt 0.417424 -3.084473 0.000000 +vt -5.000000 -2.970233 0.000000 +vt 0.417424 -2.855993 0.000000 +vt -5.000000 -2.741754 0.000000 +vt 0.417424 -2.627514 0.000000 +vt -5.000000 -2.513274 0.000000 +vt 0.417424 -2.399034 0.000000 +vt -5.000000 -2.284795 0.000000 +vt 0.417424 -2.170555 0.000000 +vt -5.000000 -2.056315 0.000000 +vt 0.417424 -1.942075 0.000000 +vt -5.000000 -1.827836 0.000000 +vt 0.417424 -1.713596 0.000000 +vt -5.000000 -1.599356 0.000000 +vt 0.417424 -1.485117 0.000000 +vt -5.000000 -1.370877 0.000000 +vt 0.417424 -1.256637 0.000000 +vt -5.000000 -1.142397 0.000000 +vt 0.417424 -1.028158 0.000000 +vt -5.000000 -0.913918 0.000000 +vt 0.417424 -0.799678 0.000000 +vt -5.000000 -0.685438 0.000000 +vt 0.417424 -0.571199 0.000000 +vt -5.000000 -0.456959 0.000000 +vt 0.417424 -0.342719 0.000000 +vt -5.796397 14.817474 0.000000 +vt -5.427468 15.019028 0.000000 +vt -5.796397 15.376624 0.000000 +vt -5.427468 15.376624 0.000000 +vt -5.796397 -15.376624 0.000000 +vt -5.427468 -15.376624 0.000000 +vt -5.427468 -15.019028 0.000000 +vt -5.058539 -15.376624 0.000000 +vt -5.058539 -15.019028 0.000000 +vt -4.689610 -15.376624 0.000000 +vt -4.689610 -15.019028 0.000000 +vt -4.320681 -15.376624 0.000000 +vt -4.320681 -15.019028 0.000000 +vt -3.951752 -15.376624 0.000000 +vt -3.951752 -15.019028 0.000000 +vt -3.582822 -15.376624 0.000000 +vt -3.582822 -15.019028 0.000000 +vt -3.213893 -15.376624 0.000000 +vt -3.213893 -15.019028 0.000000 +vt -2.844964 -15.376624 0.000000 +vt -2.844964 -15.019028 0.000000 +vt -2.476035 -15.376624 0.000000 +vt -2.476035 -15.019028 0.000000 +vt -2.107106 -15.376624 0.000000 +vt -2.107106 -15.019028 0.000000 +vt -1.738177 -15.376624 0.000000 +vt -1.738177 -15.019028 0.000000 +vt -1.369247 -15.376624 0.000000 +vt -1.369247 -15.019028 0.000000 +vt -1.000318 -15.376624 0.000000 +vt -1.000318 -15.019028 0.000000 +vt -0.631389 -15.376624 0.000000 +vt -0.631389 -15.019028 0.000000 +vt -0.262460 -15.376624 0.000000 +vt -0.262460 -15.019028 0.000000 +vt 0.106469 -15.376624 0.000000 +vt 0.106469 -15.019028 0.000000 +vt 0.475398 -15.376624 0.000000 +vt 0.475398 -15.019028 0.000000 +vt 0.844328 -15.376624 0.000000 +vt 0.844328 -15.019028 0.000000 +vt 1.213257 -15.376624 0.000000 +vt 1.213257 -15.019028 0.000000 +vt 1.582186 -15.376624 0.000000 +vt 1.582186 -15.019028 0.000000 +vt 1.951115 -15.376624 0.000000 +vt 1.951115 -15.019028 0.000000 +vt 2.320044 -15.376624 0.000000 +vt 2.320044 -15.019028 0.000000 +vt 2.688973 -15.376624 0.000000 +vt 2.688973 -15.019028 0.000000 +vt 3.057903 -15.376624 0.000000 +vt 3.057903 -15.019028 0.000000 +vt 3.426832 -15.376624 0.000000 +vt 3.426832 -15.019028 0.000000 +vt 3.795761 -15.376624 0.000000 +vt 3.795761 -15.019028 0.000000 +vt 4.164690 -15.376624 0.000000 +vt 4.164690 -15.019028 0.000000 +vt 4.533619 -15.376624 0.000000 +vt 4.533619 -15.019028 0.000000 +vt 4.902548 -15.376624 0.000000 +vt 4.902548 -15.019028 0.000000 +vt 5.271477 -15.376624 0.000000 +vt 5.271477 -15.019028 0.000000 +vt 5.640407 -15.376624 0.000000 +vt 5.640407 -15.019028 0.000000 +vt 6.009336 -15.376624 0.000000 +vt 6.009336 -15.019028 0.000000 +vt 6.378265 -15.376624 0.000000 +vt 6.378265 -15.019028 0.000000 +vt 6.747194 -15.376624 0.000000 +vt 6.747194 -15.019028 0.000000 +vt 7.116123 -15.376624 0.000000 +vt 7.116123 -15.019028 0.000000 +vt 7.485052 -15.376624 0.000000 +vt 7.485052 -15.019028 0.000000 +vt 7.853982 -15.376624 0.000000 +vt -5.427468 14.661433 0.000000 +vt -5.796397 14.258324 0.000000 +vt -5.427468 14.303837 0.000000 +vt -5.427468 13.946241 0.000000 +vt -5.058539 13.946241 0.000000 +vt -5.058539 13.588645 0.000000 +vt -4.689610 13.588645 0.000000 +vt -4.689610 13.231049 0.000000 +vt -4.320681 13.231049 0.000000 +vt -4.320681 12.873453 0.000000 +vt -3.951752 12.873453 0.000000 +vt -3.951752 12.515857 0.000000 +vt -3.582822 12.515857 0.000000 +vt -3.582822 12.158261 0.000000 +vt -3.213893 12.158261 0.000000 +vt -3.213893 11.800665 0.000000 +vt -2.844964 11.800665 0.000000 +vt -2.844964 11.443069 0.000000 +vt -2.476035 11.443069 0.000000 +vt -2.476035 11.085473 0.000000 +vt -2.107106 11.085473 0.000000 +vt -2.107106 10.727877 0.000000 +vt -1.738177 10.727877 0.000000 +vt -1.738177 10.370282 0.000000 +vt -1.369247 10.370282 0.000000 +vt -1.369247 10.012686 0.000000 +vt -1.000318 10.012686 0.000000 +vt -1.000318 9.655090 0.000000 +vt -0.631389 9.655090 0.000000 +vt -0.631389 9.297494 0.000000 +vt -0.262460 9.297494 0.000000 +vt -0.262460 8.939898 0.000000 +vt 0.106469 8.939898 0.000000 +vt 0.106469 8.582302 0.000000 +vt 0.475398 8.582302 0.000000 +vt 0.475398 8.224706 0.000000 +vt 0.844328 8.224706 0.000000 +vt 0.844328 7.867110 0.000000 +vt 1.213257 7.867110 0.000000 +vt 1.213257 7.509514 0.000000 +vt 1.582186 7.509514 0.000000 +vt 1.582186 7.151918 0.000000 +vt 1.951115 7.151918 0.000000 +vt 1.951115 6.794322 0.000000 +vt 2.320044 6.794322 0.000000 +vt 2.320044 6.436726 0.000000 +vt 2.688973 6.436726 0.000000 +vt 2.688973 6.079131 0.000000 +vt 3.057903 6.079131 0.000000 +vt 3.057903 5.721535 0.000000 +vt 3.426832 5.721535 0.000000 +vt 3.426832 5.363939 0.000000 +vt 3.795761 5.363939 0.000000 +vt 3.795761 5.006343 0.000000 +vt 4.164690 5.006343 0.000000 +vt 4.164690 4.648747 0.000000 +vt 4.533619 4.648747 0.000000 +vt 4.533619 4.291151 0.000000 +vt 4.902548 4.291151 0.000000 +vt 4.902548 3.933555 0.000000 +vt 5.271477 3.933555 0.000000 +vt 5.271477 3.575959 0.000000 +vt 5.640407 3.575959 0.000000 +vt 5.640407 3.218363 0.000000 +vt 6.009336 3.218363 0.000000 +vt 6.009336 2.860767 0.000000 +vt 6.378265 2.860767 0.000000 +vt 6.378265 2.503171 0.000000 +vt 6.747194 2.503171 0.000000 +vt 6.747194 2.145575 0.000000 +vt 7.116123 2.145575 0.000000 +vt 7.116123 1.787980 0.000000 +vt 7.485052 1.787980 0.000000 +vt 7.485052 1.430384 0.000000 +vt 7.853982 1.430384 0.000000 +vt -5.796397 13.699174 0.000000 +vt -5.427468 13.588645 0.000000 +vt -5.058539 13.231049 0.000000 +vt -4.689610 12.873453 0.000000 +vt -4.320681 12.515857 0.000000 +vt -3.951752 12.158261 0.000000 +vt -3.582822 11.800665 0.000000 +vt -3.213893 11.443069 0.000000 +vt -2.844964 11.085473 0.000000 +vt -2.476035 10.727877 0.000000 +vt -2.107106 10.370282 0.000000 +vt -1.738177 10.012686 0.000000 +vt -1.369247 9.655090 0.000000 +vt -1.000318 9.297494 0.000000 +vt -0.631389 8.939898 0.000000 +vt -0.262460 8.582302 0.000000 +vt 0.106469 8.224706 0.000000 +vt 0.475398 7.867110 0.000000 +vt 0.844328 7.509514 0.000000 +vt 1.213257 7.151918 0.000000 +vt 1.582186 6.794322 0.000000 +vt 1.951115 6.436726 0.000000 +vt 2.320044 6.079131 0.000000 +vt 2.688973 5.721535 0.000000 +vt 3.057903 5.363939 0.000000 +vt 3.426832 5.006343 0.000000 +vt 3.795761 4.648747 0.000000 +vt 4.164690 4.291151 0.000000 +vt 4.533619 3.933555 0.000000 +vt 4.902548 3.575959 0.000000 +vt 5.271477 3.218363 0.000000 +vt 5.640407 2.860767 0.000000 +vt 6.009336 2.503171 0.000000 +vt 6.378265 2.145575 0.000000 +vt 6.747194 1.787980 0.000000 +vt 7.116123 1.430384 0.000000 +vt 7.485052 1.072788 0.000000 +vt 7.853982 1.072788 0.000000 +vt -5.796397 13.140024 0.000000 +vt -5.427468 13.231049 0.000000 +vt -5.058539 12.873453 0.000000 +vt -4.689610 12.515857 0.000000 +vt -4.320681 12.158261 0.000000 +vt -3.951752 11.800665 0.000000 +vt -3.582822 11.443069 0.000000 +vt -3.213893 11.085473 0.000000 +vt -2.844964 10.727877 0.000000 +vt -2.476035 10.370282 0.000000 +vt -2.107106 10.012686 0.000000 +vt -1.738177 9.655090 0.000000 +vt -1.369247 9.297494 0.000000 +vt -1.000318 8.939898 0.000000 +vt -0.631389 8.582302 0.000000 +vt -0.262460 8.224706 0.000000 +vt 0.106469 7.867110 0.000000 +vt 0.475398 7.509514 0.000000 +vt 0.844328 7.151918 0.000000 +vt 1.213257 6.794322 0.000000 +vt 1.582186 6.436726 0.000000 +vt 1.951115 6.079131 0.000000 +vt 2.320044 5.721535 0.000000 +vt 2.688973 5.363939 0.000000 +vt 3.057903 5.006343 0.000000 +vt 3.426832 4.648747 0.000000 +vt 3.795761 4.291151 0.000000 +vt 4.164690 3.933555 0.000000 +vt 4.533619 3.575959 0.000000 +vt 4.902548 3.218363 0.000000 +vt 5.271477 2.860767 0.000000 +vt 5.640407 2.503171 0.000000 +vt 6.009336 2.145575 0.000000 +vt 6.378265 1.787980 0.000000 +vt 6.747194 1.430384 0.000000 +vt 7.116123 1.072788 0.000000 +vt 7.485052 0.715192 0.000000 +vt 7.853982 0.715192 0.000000 +vt -5.427468 12.873453 0.000000 +vt -5.796397 12.580875 0.000000 +vt -5.427468 12.515857 0.000000 +vt -5.427468 12.158261 0.000000 +vt -5.058539 12.158261 0.000000 +vt -5.058539 11.800665 0.000000 +vt -4.689610 11.800665 0.000000 +vt -4.689610 11.443069 0.000000 +vt -4.320681 11.443069 0.000000 +vt -4.320681 11.085473 0.000000 +vt -3.951752 11.085473 0.000000 +vt -3.951752 10.727877 0.000000 +vt -3.582822 10.727877 0.000000 +vt -3.582822 10.370282 0.000000 +vt -3.213893 10.370282 0.000000 +vt -3.213893 10.012686 0.000000 +vt -2.844964 10.012686 0.000000 +vt -2.844964 9.655090 0.000000 +vt -2.476035 9.655090 0.000000 +vt -2.476035 9.297494 0.000000 +vt -2.107106 9.297494 0.000000 +vt -2.107106 8.939898 0.000000 +vt -1.738177 8.939898 0.000000 +vt -1.738177 8.582302 0.000000 +vt -1.369247 8.582302 0.000000 +vt -1.369247 8.224706 0.000000 +vt -1.000318 8.224706 0.000000 +vt -1.000318 7.867110 0.000000 +vt -0.631389 7.867110 0.000000 +vt -0.631389 7.509514 0.000000 +vt -0.262460 7.509514 0.000000 +vt -0.262460 7.151918 0.000000 +vt 0.106469 7.151918 0.000000 +vt 0.106469 6.794322 0.000000 +vt 0.475398 6.794322 0.000000 +vt 0.475398 6.436726 0.000000 +vt 0.844328 6.436726 0.000000 +vt 0.844328 6.079131 0.000000 +vt 1.213257 6.079131 0.000000 +vt 1.213257 5.721535 0.000000 +vt 1.582186 5.721535 0.000000 +vt 1.582186 5.363939 0.000000 +vt 1.951115 5.363939 0.000000 +vt 1.951115 5.006343 0.000000 +vt 2.320044 5.006343 0.000000 +vt 2.320044 4.648747 0.000000 +vt 2.688973 4.648747 0.000000 +vt 2.688973 4.291151 0.000000 +vt 3.057903 4.291151 0.000000 +vt 3.057903 3.933555 0.000000 +vt 3.426832 3.933555 0.000000 +vt 3.426832 3.575959 0.000000 +vt 3.795761 3.575959 0.000000 +vt 3.795761 3.218363 0.000000 +vt 4.164690 3.218363 0.000000 +vt 4.164690 2.860767 0.000000 +vt 4.533619 2.860767 0.000000 +vt 4.533619 2.503171 0.000000 +vt 4.902548 2.503171 0.000000 +vt 4.902548 2.145575 0.000000 +vt 5.271477 2.145575 0.000000 +vt 5.271477 1.787980 0.000000 +vt 5.640407 1.787980 0.000000 +vt 5.640407 1.430384 0.000000 +vt 6.009336 1.430384 0.000000 +vt 6.009336 1.072788 0.000000 +vt 6.378265 1.072788 0.000000 +vt 6.378265 0.715192 0.000000 +vt 6.747194 0.715192 0.000000 +vt 6.747194 0.357596 0.000000 +vt 7.116123 0.357596 0.000000 +vt 7.116123 -0.000000 0.000000 +vt 7.485052 -0.000000 0.000000 +vt 7.485052 -0.357596 0.000000 +vt 7.853982 -0.357596 0.000000 +vt -5.796397 12.021725 0.000000 +vt -5.427468 11.800665 0.000000 +vt -5.058539 11.443069 0.000000 +vt -4.689610 11.085473 0.000000 +vt -4.320681 10.727877 0.000000 +vt -3.951752 10.370282 0.000000 +vt -3.582822 10.012686 0.000000 +vt -3.213893 9.655090 0.000000 +vt -2.844964 9.297494 0.000000 +vt -2.476035 8.939898 0.000000 +vt -2.107106 8.582302 0.000000 +vt -1.738177 8.224706 0.000000 +vt -1.369247 7.867110 0.000000 +vt -1.000318 7.509514 0.000000 +vt -0.631389 7.151918 0.000000 +vt -0.262460 6.794322 0.000000 +vt 0.106469 6.436726 0.000000 +vt 0.475398 6.079131 0.000000 +vt 0.844328 5.721535 0.000000 +vt 1.213257 5.363939 0.000000 +vt 1.582186 5.006343 0.000000 +vt 1.951115 4.648747 0.000000 +vt 2.320044 4.291151 0.000000 +vt 2.688973 3.933555 0.000000 +vt 3.057903 3.575959 0.000000 +vt 3.426832 3.218363 0.000000 +vt 3.795761 2.860767 0.000000 +vt 4.164690 2.503171 0.000000 +vt 4.533619 2.145575 0.000000 +vt 4.902548 1.787980 0.000000 +vt 5.271477 1.430384 0.000000 +vt 5.640407 1.072788 0.000000 +vt 6.009336 0.715192 0.000000 +vt 6.378265 0.357596 0.000000 +vt 6.747194 -0.000000 0.000000 +vt 7.116123 -0.357596 0.000000 +vt 7.485052 -0.715192 0.000000 +vt 7.853982 -0.715192 0.000000 +vt -5.796397 11.462575 0.000000 +vt -5.427468 11.443069 0.000000 +vt -5.058539 11.085473 0.000000 +vt -4.689610 10.727877 0.000000 +vt -4.320681 10.370282 0.000000 +vt -3.951752 10.012686 0.000000 +vt -3.582822 9.655090 0.000000 +vt -3.213893 9.297494 0.000000 +vt -2.844964 8.939898 0.000000 +vt -2.476035 8.582302 0.000000 +vt -2.107106 8.224706 0.000000 +vt -1.738177 7.867110 0.000000 +vt -1.369247 7.509514 0.000000 +vt -1.000318 7.151918 0.000000 +vt -0.631389 6.794322 0.000000 +vt -0.262460 6.436726 0.000000 +vt 0.106469 6.079131 0.000000 +vt 0.475398 5.721535 0.000000 +vt 0.844328 5.363939 0.000000 +vt 1.213257 5.006343 0.000000 +vt 1.582186 4.648747 0.000000 +vt 1.951115 4.291151 0.000000 +vt 2.320044 3.933555 0.000000 +vt 2.688973 3.575959 0.000000 +vt 3.057903 3.218363 0.000000 +vt 3.426832 2.860767 0.000000 +vt 3.795761 2.503171 0.000000 +vt 4.164690 2.145575 0.000000 +vt 4.533619 1.787980 0.000000 +vt 4.902548 1.430384 0.000000 +vt 5.271477 1.072788 0.000000 +vt 5.640407 0.715192 0.000000 +vt 6.009336 0.357596 0.000000 +vt 6.378265 -0.000000 0.000000 +vt 6.747194 -0.357596 0.000000 +vt 7.116123 -0.715192 0.000000 +vt 7.485052 -1.072788 0.000000 +vt 7.853982 -1.072788 0.000000 +vt -5.427468 11.085473 0.000000 +vt -5.796397 10.903425 0.000000 +vt -5.427468 10.727877 0.000000 +vt -5.796397 10.344275 0.000000 +vt -5.427468 10.370282 0.000000 +vt -5.427468 10.012686 0.000000 +vt -5.058539 10.012686 0.000000 +vt -5.058539 9.655090 0.000000 +vt -4.689610 9.655090 0.000000 +vt -4.689610 9.297494 0.000000 +vt -4.320681 9.297494 0.000000 +vt -4.320681 8.939898 0.000000 +vt -3.951752 8.939898 0.000000 +vt -3.951752 8.582302 0.000000 +vt -3.582822 8.582302 0.000000 +vt -3.582822 8.224706 0.000000 +vt -3.213893 8.224706 0.000000 +vt -3.213893 7.867110 0.000000 +vt -2.844964 7.867110 0.000000 +vt -2.844964 7.509514 0.000000 +vt -2.476035 7.509514 0.000000 +vt -2.476035 7.151918 0.000000 +vt -2.107106 7.151918 0.000000 +vt -2.107106 6.794322 0.000000 +vt -1.738177 6.794322 0.000000 +vt -1.738177 6.436726 0.000000 +vt -1.369247 6.436726 0.000000 +vt -1.369247 6.079131 0.000000 +vt -1.000318 6.079131 0.000000 +vt -1.000318 5.721535 0.000000 +vt -0.631389 5.721535 0.000000 +vt -0.631389 5.363939 0.000000 +vt -0.262460 5.363939 0.000000 +vt -0.262460 5.006343 0.000000 +vt 0.106469 5.006343 0.000000 +vt 0.106469 4.648747 0.000000 +vt 0.475398 4.648747 0.000000 +vt 0.475398 4.291151 0.000000 +vt 0.844328 4.291151 0.000000 +vt 0.844328 3.933555 0.000000 +vt 1.213257 3.933555 0.000000 +vt 1.213257 3.575959 0.000000 +vt 1.582186 3.575959 0.000000 +vt 1.582186 3.218363 0.000000 +vt 1.951115 3.218363 0.000000 +vt 1.951115 2.860767 0.000000 +vt 2.320044 2.860767 0.000000 +vt 2.320044 2.503171 0.000000 +vt 2.688973 2.503171 0.000000 +vt 2.688973 2.145575 0.000000 +vt 3.057903 2.145575 0.000000 +vt 3.057903 1.787980 0.000000 +vt 3.426832 1.787980 0.000000 +vt 3.426832 1.430384 0.000000 +vt 3.795761 1.430384 0.000000 +vt 3.795761 1.072788 0.000000 +vt 4.164690 1.072788 0.000000 +vt 4.164690 0.715192 0.000000 +vt 4.533619 0.715192 0.000000 +vt 4.533619 0.357596 0.000000 +vt 4.902548 0.357596 0.000000 +vt 4.902548 -0.000000 0.000000 +vt 5.271477 -0.000000 0.000000 +vt 5.271477 -0.357596 0.000000 +vt 5.640407 -0.357596 0.000000 +vt 5.640407 -0.715192 0.000000 +vt 6.009336 -0.715192 0.000000 +vt 6.009336 -1.072788 0.000000 +vt 6.378265 -1.072788 0.000000 +vt 6.378265 -1.430384 0.000000 +vt 6.747194 -1.430384 0.000000 +vt 6.747194 -1.787980 0.000000 +vt 7.116123 -1.787980 0.000000 +vt 7.116123 -2.145575 0.000000 +vt 7.485052 -2.145575 0.000000 +vt 7.485052 -2.503171 0.000000 +vt 7.853982 -2.503171 0.000000 +vt -5.796397 9.785125 0.000000 +vt -5.427468 9.655090 0.000000 +vt -5.058539 9.297494 0.000000 +vt -4.689610 8.939898 0.000000 +vt -4.320681 8.582302 0.000000 +vt -3.951752 8.224706 0.000000 +vt -3.582822 7.867110 0.000000 +vt -3.213893 7.509514 0.000000 +vt -2.844964 7.151918 0.000000 +vt -2.476035 6.794322 0.000000 +vt -2.107106 6.436726 0.000000 +vt -1.738177 6.079131 0.000000 +vt -1.369247 5.721535 0.000000 +vt -1.000318 5.363939 0.000000 +vt -0.631389 5.006343 0.000000 +vt -0.262460 4.648747 0.000000 +vt 0.106469 4.291151 0.000000 +vt 0.475398 3.933555 0.000000 +vt 0.844328 3.575959 0.000000 +vt 1.213257 3.218363 0.000000 +vt 1.582186 2.860767 0.000000 +vt 1.951115 2.503171 0.000000 +vt 2.320044 2.145575 0.000000 +vt 2.688973 1.787980 0.000000 +vt 3.057903 1.430384 0.000000 +vt 3.426832 1.072788 0.000000 +vt 3.795761 0.715192 0.000000 +vt 4.164690 0.357596 0.000000 +vt 4.533619 -0.000000 0.000000 +vt 4.902548 -0.357596 0.000000 +vt 5.271477 -0.715192 0.000000 +vt 5.640407 -1.072788 0.000000 +vt 6.009336 -1.430384 0.000000 +vt 6.378265 -1.787980 0.000000 +vt 6.747194 -2.145575 0.000000 +vt 7.116123 -2.503171 0.000000 +vt 7.485052 -2.860767 0.000000 +vt 7.853982 -2.860767 0.000000 +vt -5.796397 9.225975 0.000000 +vt -5.427468 9.297494 0.000000 +vt -5.058539 8.939898 0.000000 +vt -4.689610 8.582302 0.000000 +vt -4.320681 8.224706 0.000000 +vt -3.951752 7.867110 0.000000 +vt -3.582822 7.509514 0.000000 +vt -3.213893 7.151918 0.000000 +vt -2.844964 6.794322 0.000000 +vt -2.476035 6.436726 0.000000 +vt -2.107106 6.079131 0.000000 +vt -1.738177 5.721535 0.000000 +vt -1.369247 5.363939 0.000000 +vt -1.000318 5.006343 0.000000 +vt -0.631389 4.648747 0.000000 +vt -0.262460 4.291151 0.000000 +vt 0.106469 3.933555 0.000000 +vt 0.475398 3.575959 0.000000 +vt 0.844328 3.218363 0.000000 +vt 1.213257 2.860767 0.000000 +vt 1.582186 2.503171 0.000000 +vt 1.951115 2.145575 0.000000 +vt 2.320044 1.787980 0.000000 +vt 2.688973 1.430384 0.000000 +vt 3.057903 1.072788 0.000000 +vt 3.426832 0.715192 0.000000 +vt 3.795761 0.357596 0.000000 +vt 4.164690 -0.000000 0.000000 +vt 4.533619 -0.357596 0.000000 +vt 4.902548 -0.715192 0.000000 +vt 5.271477 -1.072788 0.000000 +vt 5.640407 -1.430384 0.000000 +vt 6.009336 -1.787980 0.000000 +vt 6.378265 -2.145575 0.000000 +vt 6.747194 -2.503171 0.000000 +vt 7.116123 -2.860767 0.000000 +vt 7.485052 -3.218363 0.000000 +vt 7.853982 -3.218363 0.000000 +vt -5.427468 8.939898 0.000000 +vt -5.796397 8.666825 0.000000 +vt -5.427468 8.582302 0.000000 +vt -5.427468 8.224706 0.000000 +vt -5.058539 8.224706 0.000000 +vt -5.058539 7.867110 0.000000 +vt -4.689610 7.867110 0.000000 +vt -4.689610 7.509514 0.000000 +vt -4.320681 7.509514 0.000000 +vt -4.320681 7.151918 0.000000 +vt -3.951752 7.151918 0.000000 +vt -3.951752 6.794322 0.000000 +vt -3.582822 6.794322 0.000000 +vt -3.582822 6.436726 0.000000 +vt -3.213893 6.436726 0.000000 +vt -3.213893 6.079131 0.000000 +vt -2.844964 6.079131 0.000000 +vt -2.844964 5.721535 0.000000 +vt -2.476035 5.721535 0.000000 +vt -2.476035 5.363939 0.000000 +vt -2.107106 5.363939 0.000000 +vt -2.107106 5.006343 0.000000 +vt -1.738177 5.006343 0.000000 +vt -1.738177 4.648747 0.000000 +vt -1.369247 4.648747 0.000000 +vt -1.369247 4.291151 0.000000 +vt -1.000318 4.291151 0.000000 +vt -1.000318 3.933555 0.000000 +vt -0.631389 3.933555 0.000000 +vt -0.631389 3.575959 0.000000 +vt -0.262460 3.575959 0.000000 +vt -0.262460 3.218363 0.000000 +vt 0.106469 3.218363 0.000000 +vt 0.106469 2.860767 0.000000 +vt 0.475398 2.860767 0.000000 +vt 0.475398 2.503171 0.000000 +vt 0.844328 2.503171 0.000000 +vt 0.844328 2.145575 0.000000 +vt 1.213257 2.145575 0.000000 +vt 1.213257 1.787980 0.000000 +vt 1.582186 1.787980 0.000000 +vt 1.582186 1.430384 0.000000 +vt 1.951115 1.430384 0.000000 +vt 1.951115 1.072788 0.000000 +vt 2.320044 1.072788 0.000000 +vt 2.320044 0.715192 0.000000 +vt 2.688973 0.715192 0.000000 +vt 2.688973 0.357596 0.000000 +vt 3.057903 0.357596 0.000000 +vt 3.057903 -0.000000 0.000000 +vt 3.426832 -0.000000 0.000000 +vt 3.426832 -0.357596 0.000000 +vt 3.795761 -0.357596 0.000000 +vt 3.795761 -0.715192 0.000000 +vt 4.164690 -0.715192 0.000000 +vt 4.164690 -1.072788 0.000000 +vt 4.533619 -1.072788 0.000000 +vt 4.533619 -1.430384 0.000000 +vt 4.902548 -1.430384 0.000000 +vt 4.902548 -1.787980 0.000000 +vt 5.271477 -1.787980 0.000000 +vt 5.271477 -2.145575 0.000000 +vt 5.640407 -2.145575 0.000000 +vt 5.640407 -2.503171 0.000000 +vt 6.009336 -2.503171 0.000000 +vt 6.009336 -2.860767 0.000000 +vt 6.378265 -2.860767 0.000000 +vt 6.378265 -3.218363 0.000000 +vt 6.747194 -3.218363 0.000000 +vt 6.747194 -3.575959 0.000000 +vt 7.116123 -3.575959 0.000000 +vt 7.116123 -3.933555 0.000000 +vt 7.485052 -3.933555 0.000000 +vt 7.485052 -4.291151 0.000000 +vt 7.853982 -4.291151 0.000000 +vt -5.796397 8.107675 0.000000 +vt -5.427468 7.867110 0.000000 +vt -5.058539 7.509514 0.000000 +vt -4.689610 7.151918 0.000000 +vt -4.320681 6.794322 0.000000 +vt -3.951752 6.436726 0.000000 +vt -3.582822 6.079131 0.000000 +vt -3.213893 5.721535 0.000000 +vt -2.844964 5.363939 0.000000 +vt -2.476035 5.006343 0.000000 +vt -2.107106 4.648747 0.000000 +vt -1.738177 4.291151 0.000000 +vt -1.369247 3.933555 0.000000 +vt -1.000318 3.575959 0.000000 +vt -0.631389 3.218363 0.000000 +vt -0.262460 2.860767 0.000000 +vt 0.106469 2.503171 0.000000 +vt 0.475398 2.145575 0.000000 +vt 0.844328 1.787980 0.000000 +vt 1.213257 1.430384 0.000000 +vt 1.582186 1.072788 0.000000 +vt 1.951115 0.715192 0.000000 +vt 2.320044 0.357596 0.000000 +vt 2.688973 -0.000000 0.000000 +vt 3.057903 -0.357596 0.000000 +vt 3.426832 -0.715192 0.000000 +vt 3.795761 -1.072788 0.000000 +vt 4.164690 -1.430384 0.000000 +vt 4.533619 -1.787980 0.000000 +vt 4.902548 -2.145575 0.000000 +vt 5.271477 -2.503171 0.000000 +vt 5.640407 -2.860767 0.000000 +vt 6.009336 -3.218363 0.000000 +vt 6.378265 -3.575959 0.000000 +vt 6.747194 -3.933555 0.000000 +vt 7.116123 -4.291151 0.000000 +vt 7.485052 -4.648747 0.000000 +vt 7.853982 -4.648747 0.000000 +vt -5.796397 7.548525 0.000000 +vt -5.427468 7.509514 0.000000 +vt -5.058539 7.151918 0.000000 +vt -4.689610 6.794322 0.000000 +vt -4.320681 6.436726 0.000000 +vt -3.951752 6.079131 0.000000 +vt -3.582822 5.721535 0.000000 +vt -3.213893 5.363939 0.000000 +vt -2.844964 5.006343 0.000000 +vt -2.476035 4.648747 0.000000 +vt -2.107106 4.291151 0.000000 +vt -1.738177 3.933555 0.000000 +vt -1.369247 3.575959 0.000000 +vt -1.000318 3.218363 0.000000 +vt -0.631389 2.860767 0.000000 +vt -0.262460 2.503171 0.000000 +vt 0.106469 2.145575 0.000000 +vt 0.475398 1.787980 0.000000 +vt 0.844328 1.430384 0.000000 +vt 1.213257 1.072788 0.000000 +vt 1.582186 0.715192 0.000000 +vt 1.951115 0.357596 0.000000 +vt 2.320044 -0.000000 0.000000 +vt 2.688973 -0.357596 0.000000 +vt 3.057903 -0.715192 0.000000 +vt 3.426832 -1.072788 0.000000 +vt 3.795761 -1.430384 0.000000 +vt 4.164690 -1.787980 0.000000 +vt 4.533619 -2.145575 0.000000 +vt 4.902548 -2.503171 0.000000 +vt 5.271477 -2.860767 0.000000 +vt 5.640407 -3.218363 0.000000 +vt 6.009336 -3.575959 0.000000 +vt 6.378265 -3.933555 0.000000 +vt 6.747194 -4.291151 0.000000 +vt 7.116123 -4.648747 0.000000 +vt 7.485052 -5.006343 0.000000 +vt 7.853982 -5.006343 0.000000 +vt -5.427468 7.151918 0.000000 +vt -5.796397 6.989375 0.000000 +vt -5.427468 6.794322 0.000000 +vt -5.796397 6.430225 0.000000 +vt -5.427468 6.436726 0.000000 +vt -5.427468 6.079131 0.000000 +vt -5.058539 6.079131 0.000000 +vt -5.058539 5.721535 0.000000 +vt -4.689610 5.721535 0.000000 +vt -4.689610 5.363939 0.000000 +vt -4.320681 5.363939 0.000000 +vt -4.320681 5.006343 0.000000 +vt -3.951752 5.006343 0.000000 +vt -3.951752 4.648747 0.000000 +vt -3.582822 4.648747 0.000000 +vt -3.582822 4.291151 0.000000 +vt -3.213893 4.291151 0.000000 +vt -3.213893 3.933555 0.000000 +vt -2.844964 3.933555 0.000000 +vt -2.844964 3.575959 0.000000 +vt -2.476035 3.575959 0.000000 +vt -2.476035 3.218363 0.000000 +vt -2.107106 3.218363 0.000000 +vt -2.107106 2.860767 0.000000 +vt -1.738177 2.860767 0.000000 +vt -1.738177 2.503171 0.000000 +vt -1.369247 2.503171 0.000000 +vt -1.369247 2.145575 0.000000 +vt -1.000318 2.145575 0.000000 +vt -1.000318 1.787980 0.000000 +vt -0.631389 1.787980 0.000000 +vt -0.631389 1.430384 0.000000 +vt -0.262460 1.430384 0.000000 +vt -0.262460 1.072788 0.000000 +vt 0.106469 1.072788 0.000000 +vt 0.106469 0.715192 0.000000 +vt 0.475398 0.715192 0.000000 +vt 0.475398 0.357596 0.000000 +vt 0.844328 0.357596 0.000000 +vt 0.844328 -0.000000 0.000000 +vt 1.213257 -0.000000 0.000000 +vt 1.213257 -0.357596 0.000000 +vt 1.582186 -0.357596 0.000000 +vt 1.582186 -0.715192 0.000000 +vt 1.951115 -0.715192 0.000000 +vt 1.951115 -1.072788 0.000000 +vt 2.320044 -1.072788 0.000000 +vt 2.320044 -1.430384 0.000000 +vt 2.688973 -1.430384 0.000000 +vt 2.688973 -1.787980 0.000000 +vt 3.057903 -1.787980 0.000000 +vt 3.057903 -2.145575 0.000000 +vt 3.426832 -2.145575 0.000000 +vt 3.426832 -2.503171 0.000000 +vt 3.795761 -2.503171 0.000000 +vt 3.795761 -2.860767 0.000000 +vt 4.164690 -2.860767 0.000000 +vt 4.164690 -3.218363 0.000000 +vt 4.533619 -3.218363 0.000000 +vt 4.533619 -3.575959 0.000000 +vt 4.902548 -3.575959 0.000000 +vt 4.902548 -3.933555 0.000000 +vt 5.271477 -3.933555 0.000000 +vt 5.271477 -4.291151 0.000000 +vt 5.640407 -4.291151 0.000000 +vt 5.640407 -4.648747 0.000000 +vt 6.009336 -4.648747 0.000000 +vt 6.009336 -5.006343 0.000000 +vt 6.378265 -5.006343 0.000000 +vt 6.378265 -5.363939 0.000000 +vt 6.747194 -5.363939 0.000000 +vt 6.747194 -5.721535 0.000000 +vt 7.116123 -5.721535 0.000000 +vt 7.116123 -6.079131 0.000000 +vt 7.485052 -6.079131 0.000000 +vt 7.485052 -6.436726 0.000000 +vt 7.853982 -6.436726 0.000000 +vt -5.796397 5.871075 0.000000 +vt -5.427468 5.721535 0.000000 +vt -5.058539 5.363939 0.000000 +vt -4.689610 5.006343 0.000000 +vt -4.320681 4.648747 0.000000 +vt -3.951752 4.291151 0.000000 +vt -3.582822 3.933555 0.000000 +vt -3.213893 3.575959 0.000000 +vt -2.844964 3.218363 0.000000 +vt -2.476035 2.860767 0.000000 +vt -2.107106 2.503171 0.000000 +vt -1.738177 2.145575 0.000000 +vt -1.369247 1.787980 0.000000 +vt -1.000318 1.430384 0.000000 +vt -0.631389 1.072788 0.000000 +vt -0.262460 0.715192 0.000000 +vt 0.106469 0.357596 0.000000 +vt 0.475398 -0.000000 0.000000 +vt 0.844328 -0.357596 0.000000 +vt 1.213257 -0.715192 0.000000 +vt 1.582186 -1.072788 0.000000 +vt 1.951115 -1.430384 0.000000 +vt 2.320044 -1.787980 0.000000 +vt 2.688973 -2.145575 0.000000 +vt 3.057903 -2.503171 0.000000 +vt 3.426832 -2.860767 0.000000 +vt 3.795761 -3.218363 0.000000 +vt 4.164690 -3.575959 0.000000 +vt 4.533619 -3.933555 0.000000 +vt 4.902548 -4.291151 0.000000 +vt 5.271477 -4.648747 0.000000 +vt 5.640407 -5.006343 0.000000 +vt 6.009336 -5.363939 0.000000 +vt 6.378265 -5.721535 0.000000 +vt 6.747194 -6.079131 0.000000 +vt 7.116123 -6.436726 0.000000 +vt 7.485052 -6.794322 0.000000 +vt 7.853982 -6.794322 0.000000 +vt -5.796397 5.311925 0.000000 +vt -5.427468 5.363939 0.000000 +vt -5.058539 5.006343 0.000000 +vt -4.689610 4.648747 0.000000 +vt -4.320681 4.291151 0.000000 +vt -3.951752 3.933555 0.000000 +vt -3.582822 3.575959 0.000000 +vt -3.213893 3.218363 0.000000 +vt -2.844964 2.860767 0.000000 +vt -2.476035 2.503171 0.000000 +vt -2.107106 2.145575 0.000000 +vt -1.738177 1.787980 0.000000 +vt -1.369247 1.430384 0.000000 +vt -1.000318 1.072788 0.000000 +vt -0.631389 0.715192 0.000000 +vt -0.262460 0.357596 0.000000 +vt 0.106469 -0.000000 0.000000 +vt 0.475398 -0.357596 0.000000 +vt 0.844328 -0.715192 0.000000 +vt 1.213257 -1.072788 0.000000 +vt 1.582186 -1.430384 0.000000 +vt 1.951115 -1.787980 0.000000 +vt 2.320044 -2.145575 0.000000 +vt 2.688973 -2.503171 0.000000 +vt 3.057903 -2.860767 0.000000 +vt 3.426832 -3.218363 0.000000 +vt 3.795761 -3.575959 0.000000 +vt 4.164690 -3.933555 0.000000 +vt 4.533619 -4.291151 0.000000 +vt 4.902548 -4.648747 0.000000 +vt 5.271477 -5.006343 0.000000 +vt 5.640407 -5.363939 0.000000 +vt 6.009336 -5.721535 0.000000 +vt 6.378265 -6.079131 0.000000 +vt 6.747194 -6.436726 0.000000 +vt 7.116123 -6.794322 0.000000 +vt 7.485052 -7.151918 0.000000 +vt 7.853982 -7.151918 0.000000 +vt -5.427468 5.006343 0.000000 +vt -5.796397 4.752775 0.000000 +vt -5.427468 4.648747 0.000000 +vt -5.796397 4.193625 0.000000 +vt -5.427468 4.291151 0.000000 +vt -5.427468 3.933555 0.000000 +vt -5.058539 3.933555 0.000000 +vt -5.058539 3.575959 0.000000 +vt -4.689610 3.575959 0.000000 +vt -4.689610 3.218363 0.000000 +vt -4.320681 3.218363 0.000000 +vt -4.320681 2.860767 0.000000 +vt -3.951752 2.860767 0.000000 +vt -3.951752 2.503171 0.000000 +vt -3.582822 2.503171 0.000000 +vt -3.582822 2.145575 0.000000 +vt -3.213893 2.145575 0.000000 +vt -3.213893 1.787980 0.000000 +vt -2.844964 1.787980 0.000000 +vt -2.844964 1.430384 0.000000 +vt -2.476035 1.430384 0.000000 +vt -2.476035 1.072788 0.000000 +vt -2.107106 1.072788 0.000000 +vt -2.107106 0.715192 0.000000 +vt -1.738177 0.715192 0.000000 +vt -1.738177 0.357596 0.000000 +vt -1.369247 0.357596 0.000000 +vt -1.369247 -0.000000 0.000000 +vt -1.000318 -0.000000 0.000000 +vt -1.000318 -0.357596 0.000000 +vt -0.631389 -0.357596 0.000000 +vt -0.631389 -0.715192 0.000000 +vt -0.262460 -0.715192 0.000000 +vt -0.262460 -1.072788 0.000000 +vt 0.106469 -1.072788 0.000000 +vt 0.106469 -1.430384 0.000000 +vt 0.475398 -1.430384 0.000000 +vt 0.475398 -1.787980 0.000000 +vt 0.844328 -1.787980 0.000000 +vt 0.844328 -2.145575 0.000000 +vt 1.213257 -2.145575 0.000000 +vt 1.213257 -2.503171 0.000000 +vt 1.582186 -2.503171 0.000000 +vt 1.582186 -2.860767 0.000000 +vt 1.951115 -2.860767 0.000000 +vt 1.951115 -3.218363 0.000000 +vt 2.320044 -3.218363 0.000000 +vt 2.320044 -3.575959 0.000000 +vt 2.688973 -3.575959 0.000000 +vt 2.688973 -3.933555 0.000000 +vt 3.057903 -3.933555 0.000000 +vt 3.057903 -4.291151 0.000000 +vt 3.426832 -4.291151 0.000000 +vt 3.426832 -4.648747 0.000000 +vt 3.795761 -4.648747 0.000000 +vt 3.795761 -5.006343 0.000000 +vt 4.164690 -5.006343 0.000000 +vt 4.164690 -5.363939 0.000000 +vt 4.533619 -5.363939 0.000000 +vt 4.533619 -5.721535 0.000000 +vt 4.902548 -5.721535 0.000000 +vt 4.902548 -6.079131 0.000000 +vt 5.271477 -6.079131 0.000000 +vt 5.271477 -6.436726 0.000000 +vt 5.640407 -6.436726 0.000000 +vt 5.640407 -6.794322 0.000000 +vt 6.009336 -6.794322 0.000000 +vt 6.009336 -7.151918 0.000000 +vt 6.378265 -7.151918 0.000000 +vt 6.378265 -7.509514 0.000000 +vt 6.747194 -7.509514 0.000000 +vt 6.747194 -7.867110 0.000000 +vt 7.116123 -7.867110 0.000000 +vt 7.116123 -8.224706 0.000000 +vt 7.485052 -8.224706 0.000000 +vt 7.485052 -8.582302 0.000000 +vt 7.853982 -8.582302 0.000000 +vt -5.796397 3.634475 0.000000 +vt -5.427468 3.575959 0.000000 +vt -5.058539 3.218363 0.000000 +vt -4.689610 2.860767 0.000000 +vt -4.320681 2.503171 0.000000 +vt -3.951752 2.145575 0.000000 +vt -3.582822 1.787980 0.000000 +vt -3.213893 1.430384 0.000000 +vt -2.844964 1.072788 0.000000 +vt -2.476035 0.715192 0.000000 +vt -2.107106 0.357596 0.000000 +vt -1.738177 -0.000000 0.000000 +vt -1.369247 -0.357596 0.000000 +vt -1.000318 -0.715192 0.000000 +vt -0.631389 -1.072788 0.000000 +vt -0.262460 -1.430384 0.000000 +vt 0.106469 -1.787980 0.000000 +vt 0.475398 -2.145575 0.000000 +vt 0.844328 -2.503171 0.000000 +vt 1.213257 -2.860767 0.000000 +vt 1.582186 -3.218363 0.000000 +vt 1.951115 -3.575959 0.000000 +vt 2.320044 -3.933555 0.000000 +vt 2.688973 -4.291151 0.000000 +vt 3.057903 -4.648747 0.000000 +vt 3.426832 -5.006343 0.000000 +vt 3.795761 -5.363939 0.000000 +vt 4.164690 -5.721535 0.000000 +vt 4.533619 -6.079131 0.000000 +vt 4.902548 -6.436726 0.000000 +vt 5.271477 -6.794322 0.000000 +vt 5.640407 -7.151918 0.000000 +vt 6.009336 -7.509514 0.000000 +vt 6.378265 -7.867110 0.000000 +vt 6.747194 -8.224706 0.000000 +vt 7.116123 -8.582302 0.000000 +vt 7.485052 -8.939898 0.000000 +vt 7.853982 -8.939898 0.000000 +vt -5.427468 3.218363 0.000000 +vt -5.796397 3.075325 0.000000 +vt -5.427468 2.860767 0.000000 +vt -5.796397 2.516175 0.000000 +vt -5.427468 2.503171 0.000000 +vt -5.427468 2.145575 0.000000 +vt -5.058539 2.145575 0.000000 +vt -5.058539 1.787980 0.000000 +vt -4.689610 1.787980 0.000000 +vt -4.689610 1.430384 0.000000 +vt -4.320681 1.430384 0.000000 +vt -4.320681 1.072788 0.000000 +vt -3.951752 1.072788 0.000000 +vt -3.951752 0.715192 0.000000 +vt -3.582822 0.715192 0.000000 +vt -3.582822 0.357596 0.000000 +vt -3.213893 0.357596 0.000000 +vt -3.213893 -0.000000 0.000000 +vt -2.844964 -0.000000 0.000000 +vt -2.844964 -0.357596 0.000000 +vt -2.476035 -0.357596 0.000000 +vt -2.476035 -0.715192 0.000000 +vt -2.107106 -0.715192 0.000000 +vt -2.107106 -1.072788 0.000000 +vt -1.738177 -1.072788 0.000000 +vt -1.738177 -1.430384 0.000000 +vt -1.369247 -1.430384 0.000000 +vt -1.369247 -1.787980 0.000000 +vt -1.000318 -1.787980 0.000000 +vt -1.000318 -2.145575 0.000000 +vt -0.631389 -2.145575 0.000000 +vt -0.631389 -2.503171 0.000000 +vt -0.262460 -2.503171 0.000000 +vt -0.262460 -2.860767 0.000000 +vt 0.106469 -2.860767 0.000000 +vt 0.106469 -3.218363 0.000000 +vt 0.475398 -3.218363 0.000000 +vt 0.475398 -3.575959 0.000000 +vt 0.844328 -3.575959 0.000000 +vt 0.844328 -3.933555 0.000000 +vt 1.213257 -3.933555 0.000000 +vt 1.213257 -4.291151 0.000000 +vt 1.582186 -4.291151 0.000000 +vt 1.582186 -4.648747 0.000000 +vt 1.951115 -4.648747 0.000000 +vt 1.951115 -5.006343 0.000000 +vt 2.320044 -5.006343 0.000000 +vt 2.320044 -5.363939 0.000000 +vt 2.688973 -5.363939 0.000000 +vt 2.688973 -5.721535 0.000000 +vt 3.057903 -5.721535 0.000000 +vt 3.057903 -6.079131 0.000000 +vt 3.426832 -6.079131 0.000000 +vt 3.426832 -6.436726 0.000000 +vt 3.795761 -6.436726 0.000000 +vt 3.795761 -6.794322 0.000000 +vt 4.164690 -6.794322 0.000000 +vt 4.164690 -7.151918 0.000000 +vt 4.533619 -7.151918 0.000000 +vt 4.533619 -7.509514 0.000000 +vt 4.902548 -7.509514 0.000000 +vt 4.902548 -7.867110 0.000000 +vt 5.271477 -7.867110 0.000000 +vt 5.271477 -8.224706 0.000000 +vt 5.640407 -8.224706 0.000000 +vt 5.640407 -8.582302 0.000000 +vt 6.009336 -8.582302 0.000000 +vt 6.009336 -8.939898 0.000000 +vt 6.378265 -8.939898 0.000000 +vt 6.378265 -9.297494 0.000000 +vt 6.747194 -9.297494 0.000000 +vt 6.747194 -9.655090 0.000000 +vt 7.116123 -9.655090 0.000000 +vt 7.116123 -10.012686 0.000000 +vt 7.485052 -10.012686 0.000000 +vt 7.485052 -10.370282 0.000000 +vt 7.853982 -10.370282 0.000000 +vt -5.796397 1.957025 0.000000 +vt -5.427468 1.787980 0.000000 +vt -5.058539 1.430384 0.000000 +vt -4.689610 1.072788 0.000000 +vt -4.320681 0.715192 0.000000 +vt -3.951752 0.357596 0.000000 +vt -3.582822 -0.000000 0.000000 +vt -3.213893 -0.357596 0.000000 +vt -2.844964 -0.715192 0.000000 +vt -2.476035 -1.072788 0.000000 +vt -2.107106 -1.430384 0.000000 +vt -1.738177 -1.787980 0.000000 +vt -1.369247 -2.145575 0.000000 +vt -1.000318 -2.503171 0.000000 +vt -0.631389 -2.860767 0.000000 +vt -0.262460 -3.218363 0.000000 +vt 0.106469 -3.575959 0.000000 +vt 0.475398 -3.933555 0.000000 +vt 0.844328 -4.291151 0.000000 +vt 1.213257 -4.648747 0.000000 +vt 1.582186 -5.006343 0.000000 +vt 1.951115 -5.363939 0.000000 +vt 2.320044 -5.721535 0.000000 +vt 2.688973 -6.079131 0.000000 +vt 3.057903 -6.436726 0.000000 +vt 3.426832 -6.794322 0.000000 +vt 3.795761 -7.151918 0.000000 +vt 4.164690 -7.509514 0.000000 +vt 4.533619 -7.867110 0.000000 +vt 4.902548 -8.224706 0.000000 +vt 5.271477 -8.582302 0.000000 +vt 5.640407 -8.939898 0.000000 +vt 6.009336 -9.297494 0.000000 +vt 6.378265 -9.655090 0.000000 +vt 6.747194 -10.012686 0.000000 +vt 7.116123 -10.370282 0.000000 +vt 7.485052 -10.727877 0.000000 +vt 7.853982 -10.727877 0.000000 +vt -5.796397 1.397875 0.000000 +vt -5.427468 1.430384 0.000000 +vt -5.058539 1.072788 0.000000 +vt -4.689610 0.715192 0.000000 +vt -4.320681 0.357596 0.000000 +vt -3.951752 -0.000000 0.000000 +vt -3.582822 -0.357596 0.000000 +vt -3.213893 -0.715192 0.000000 +vt -2.844964 -1.072788 0.000000 +vt -2.476035 -1.430384 0.000000 +vt -2.107106 -1.787980 0.000000 +vt -1.738177 -2.145575 0.000000 +vt -1.369247 -2.503171 0.000000 +vt -1.000318 -2.860767 0.000000 +vt -0.631389 -3.218363 0.000000 +vt -0.262460 -3.575959 0.000000 +vt 0.106469 -3.933555 0.000000 +vt 0.475398 -4.291151 0.000000 +vt 0.844328 -4.648747 0.000000 +vt 1.213257 -5.006343 0.000000 +vt 1.582186 -5.363939 0.000000 +vt 1.951115 -5.721535 0.000000 +vt 2.320044 -6.079131 0.000000 +vt 2.688973 -6.436726 0.000000 +vt 3.057903 -6.794322 0.000000 +vt 3.426832 -7.151918 0.000000 +vt 3.795761 -7.509514 0.000000 +vt 4.164690 -7.867110 0.000000 +vt 4.533619 -8.224706 0.000000 +vt 4.902548 -8.582302 0.000000 +vt 5.271477 -8.939898 0.000000 +vt 5.640407 -9.297494 0.000000 +vt 6.009336 -9.655090 0.000000 +vt 6.378265 -10.012686 0.000000 +vt 6.747194 -10.370282 0.000000 +vt 7.116123 -10.727877 0.000000 +vt 7.485052 -11.085473 0.000000 +vt 7.853982 -11.085473 0.000000 +vt -5.427468 1.072788 0.000000 +vt -5.796397 0.838725 0.000000 +vt -5.427468 0.715192 0.000000 +vt -5.796397 0.279575 0.000000 +vt -5.427468 0.357596 0.000000 +vt -5.427468 -0.000000 0.000000 +vt -5.058539 -0.000000 0.000000 +vt -5.058539 -0.357596 0.000000 +vt -4.689610 -0.357596 0.000000 +vt -4.689610 -0.715192 0.000000 +vt -4.320681 -0.715192 0.000000 +vt -4.320681 -1.072788 0.000000 +vt -3.951752 -1.072788 0.000000 +vt -3.951752 -1.430384 0.000000 +vt -3.582822 -1.430384 0.000000 +vt -3.582822 -1.787980 0.000000 +vt -3.213893 -1.787980 0.000000 +vt -3.213893 -2.145575 0.000000 +vt -2.844964 -2.145575 0.000000 +vt -2.844964 -2.503171 0.000000 +vt -2.476035 -2.503171 0.000000 +vt -2.476035 -2.860767 0.000000 +vt -2.107106 -2.860767 0.000000 +vt -2.107106 -3.218363 0.000000 +vt -1.738177 -3.218363 0.000000 +vt -1.738177 -3.575959 0.000000 +vt -1.369247 -3.575959 0.000000 +vt -1.369247 -3.933555 0.000000 +vt -1.000318 -3.933555 0.000000 +vt -1.000318 -4.291151 0.000000 +vt -0.631389 -4.291151 0.000000 +vt -0.631389 -4.648747 0.000000 +vt -0.262460 -4.648747 0.000000 +vt -0.262460 -5.006343 0.000000 +vt 0.106469 -5.006343 0.000000 +vt 0.106469 -5.363939 0.000000 +vt 0.475398 -5.363939 0.000000 +vt 0.475398 -5.721535 0.000000 +vt 0.844328 -5.721535 0.000000 +vt 0.844328 -6.079131 0.000000 +vt 1.213257 -6.079131 0.000000 +vt 1.213257 -6.436726 0.000000 +vt 1.582186 -6.436726 0.000000 +vt 1.582186 -6.794322 0.000000 +vt 1.951115 -6.794322 0.000000 +vt 1.951115 -7.151918 0.000000 +vt 2.320044 -7.151918 0.000000 +vt 2.320044 -7.509514 0.000000 +vt 2.688973 -7.509514 0.000000 +vt 2.688973 -7.867110 0.000000 +vt 3.057903 -7.867110 0.000000 +vt 3.057903 -8.224706 0.000000 +vt 3.426832 -8.224706 0.000000 +vt 3.426832 -8.582302 0.000000 +vt 3.795761 -8.582302 0.000000 +vt 3.795761 -8.939898 0.000000 +vt 4.164690 -8.939898 0.000000 +vt 4.164690 -9.297494 0.000000 +vt 4.533619 -9.297494 0.000000 +vt 4.533619 -9.655090 0.000000 +vt 4.902548 -9.655090 0.000000 +vt 4.902548 -10.012686 0.000000 +vt 5.271477 -10.012686 0.000000 +vt 5.271477 -10.370282 0.000000 +vt 5.640407 -10.370282 0.000000 +vt 5.640407 -10.727877 0.000000 +vt 6.009336 -10.727877 0.000000 +vt 6.009336 -11.085473 0.000000 +vt 6.378265 -11.085473 0.000000 +vt 6.378265 -11.443069 0.000000 +vt 6.747194 -11.443069 0.000000 +vt 6.747194 -11.800665 0.000000 +vt 7.116123 -11.800665 0.000000 +vt 7.116123 -12.158261 0.000000 +vt 7.485052 -12.158261 0.000000 +vt 7.485052 -12.515857 0.000000 +vt 7.853982 -12.515857 0.000000 +vt -5.796397 -0.279575 0.000000 +vt -5.427468 -0.357596 0.000000 +vt -5.058539 -0.715192 0.000000 +vt -4.689610 -1.072788 0.000000 +vt -4.320681 -1.430384 0.000000 +vt -3.951752 -1.787980 0.000000 +vt -3.582822 -2.145575 0.000000 +vt -3.213893 -2.503171 0.000000 +vt -2.844964 -2.860767 0.000000 +vt -2.476035 -3.218363 0.000000 +vt -2.107106 -3.575959 0.000000 +vt -1.738177 -3.933555 0.000000 +vt -1.369247 -4.291151 0.000000 +vt -1.000318 -4.648747 0.000000 +vt -0.631389 -5.006343 0.000000 +vt -0.262460 -5.363939 0.000000 +vt 0.106469 -5.721535 0.000000 +vt 0.475398 -6.079131 0.000000 +vt 0.844328 -6.436726 0.000000 +vt 1.213257 -6.794322 0.000000 +vt 1.582186 -7.151918 0.000000 +vt 1.951115 -7.509514 0.000000 +vt 2.320044 -7.867110 0.000000 +vt 2.688973 -8.224706 0.000000 +vt 3.057903 -8.582302 0.000000 +vt 3.426832 -8.939898 0.000000 +vt 3.795761 -9.297494 0.000000 +vt 4.164690 -9.655090 0.000000 +vt 4.533619 -10.012686 0.000000 +vt 4.902548 -10.370282 0.000000 +vt 5.271477 -10.727877 0.000000 +vt 5.640407 -11.085473 0.000000 +vt 6.009336 -11.443069 0.000000 +vt 6.378265 -11.800665 0.000000 +vt 6.747194 -12.158261 0.000000 +vt 7.116123 -12.515857 0.000000 +vt 7.485052 -12.873453 0.000000 +vt 7.853982 -12.873453 0.000000 +vt -5.427468 -0.715192 0.000000 +vt -5.796397 -0.838725 0.000000 +vt -5.427468 -1.072788 0.000000 +vt -5.796397 -1.397875 0.000000 +vt -5.427468 -1.430384 0.000000 +vt -5.427468 -1.787980 0.000000 +vt -5.058539 -1.787980 0.000000 +vt -5.058539 -2.145575 0.000000 +vt -4.689610 -2.145575 0.000000 +vt -4.689610 -2.503171 0.000000 +vt -4.320681 -2.503171 0.000000 +vt -4.320681 -2.860767 0.000000 +vt -3.951752 -2.860767 0.000000 +vt -3.951752 -3.218363 0.000000 +vt -3.582822 -3.218363 0.000000 +vt -3.582822 -3.575959 0.000000 +vt -3.213893 -3.575959 0.000000 +vt -3.213893 -3.933555 0.000000 +vt -2.844964 -3.933555 0.000000 +vt -2.844964 -4.291151 0.000000 +vt -2.476035 -4.291151 0.000000 +vt -2.476035 -4.648747 0.000000 +vt -2.107106 -4.648747 0.000000 +vt -2.107106 -5.006343 0.000000 +vt -1.738177 -5.006343 0.000000 +vt -1.738177 -5.363939 0.000000 +vt -1.369247 -5.363939 0.000000 +vt -1.369247 -5.721535 0.000000 +vt -1.000318 -5.721535 0.000000 +vt -1.000318 -6.079131 0.000000 +vt -0.631389 -6.079131 0.000000 +vt -0.631389 -6.436726 0.000000 +vt -0.262460 -6.436726 0.000000 +vt -0.262460 -6.794322 0.000000 +vt 0.106469 -6.794322 0.000000 +vt 0.106469 -7.151918 0.000000 +vt 0.475398 -7.151918 0.000000 +vt 0.475398 -7.509514 0.000000 +vt 0.844328 -7.509514 0.000000 +vt 0.844328 -7.867110 0.000000 +vt 1.213257 -7.867110 0.000000 +vt 1.213257 -8.224706 0.000000 +vt 1.582186 -8.224706 0.000000 +vt 1.582186 -8.582302 0.000000 +vt 1.951115 -8.582302 0.000000 +vt 1.951115 -8.939898 0.000000 +vt 2.320044 -8.939898 0.000000 +vt 2.320044 -9.297494 0.000000 +vt 2.688973 -9.297494 0.000000 +vt 2.688973 -9.655090 0.000000 +vt 3.057903 -9.655090 0.000000 +vt 3.057903 -10.012686 0.000000 +vt 3.426832 -10.012686 0.000000 +vt 3.426832 -10.370282 0.000000 +vt 3.795761 -10.370282 0.000000 +vt 3.795761 -10.727877 0.000000 +vt 4.164690 -10.727877 0.000000 +vt 4.164690 -11.085473 0.000000 +vt 4.533619 -11.085473 0.000000 +vt 4.533619 -11.443069 0.000000 +vt 4.902548 -11.443069 0.000000 +vt 4.902548 -11.800665 0.000000 +vt 5.271477 -11.800665 0.000000 +vt 5.271477 -12.158261 0.000000 +vt 5.640407 -12.158261 0.000000 +vt 5.640407 -12.515857 0.000000 +vt 6.009336 -12.515857 0.000000 +vt 6.009336 -12.873453 0.000000 +vt 6.378265 -12.873453 0.000000 +vt 6.378265 -13.231049 0.000000 +vt 6.747194 -13.231049 0.000000 +vt 6.747194 -13.588645 0.000000 +vt 7.116123 -13.588645 0.000000 +vt 7.116123 -13.946241 0.000000 +vt 7.485052 -13.946241 0.000000 +vt 7.485052 -14.303837 0.000000 +vt 7.853982 -14.303837 0.000000 +vt -5.796397 -1.957025 0.000000 +vt -5.427468 -2.145575 0.000000 +vt -5.058539 -2.503171 0.000000 +vt -4.689610 -2.860767 0.000000 +vt -4.320681 -3.218363 0.000000 +vt -3.951752 -3.575959 0.000000 +vt -3.582822 -3.933555 0.000000 +vt -3.213893 -4.291151 0.000000 +vt -2.844964 -4.648747 0.000000 +vt -2.476035 -5.006343 0.000000 +vt -2.107106 -5.363939 0.000000 +vt -1.738177 -5.721535 0.000000 +vt -1.369247 -6.079131 0.000000 +vt -1.000318 -6.436726 0.000000 +vt -0.631389 -6.794322 0.000000 +vt -0.262460 -7.151918 0.000000 +vt 0.106469 -7.509514 0.000000 +vt 0.475398 -7.867110 0.000000 +vt 0.844328 -8.224706 0.000000 +vt 1.213257 -8.582302 0.000000 +vt 1.582186 -8.939898 0.000000 +vt 1.951115 -9.297494 0.000000 +vt 2.320044 -9.655090 0.000000 +vt 2.688973 -10.012686 0.000000 +vt 3.057903 -10.370282 0.000000 +vt 3.426832 -10.727877 0.000000 +vt 3.795761 -11.085473 0.000000 +vt 4.164690 -11.443069 0.000000 +vt 4.533619 -11.800665 0.000000 +vt 4.902548 -12.158261 0.000000 +vt 5.271477 -12.515857 0.000000 +vt 5.640407 -12.873453 0.000000 +vt 6.009336 -13.231049 0.000000 +vt 6.378265 -13.588645 0.000000 +vt 6.747194 -13.946241 0.000000 +vt 7.116123 -14.303837 0.000000 +vt 7.485052 -14.661433 0.000000 +vt 7.853982 -14.661433 0.000000 +vt -5.796397 -2.516175 0.000000 +vt -5.427468 -2.503171 0.000000 +vt -5.058539 -2.860767 0.000000 +vt -4.689610 -3.218363 0.000000 +vt -4.320681 -3.575959 0.000000 +vt -3.951752 -3.933555 0.000000 +vt -3.582822 -4.291151 0.000000 +vt -3.213893 -4.648747 0.000000 +vt -2.844964 -5.006343 0.000000 +vt -2.476035 -5.363939 0.000000 +vt -2.107106 -5.721535 0.000000 +vt -1.738177 -6.079131 0.000000 +vt -1.369247 -6.436726 0.000000 +vt -1.000318 -6.794322 0.000000 +vt -0.631389 -7.151918 0.000000 +vt -0.262460 -7.509514 0.000000 +vt 0.106469 -7.867110 0.000000 +vt 0.475398 -8.224706 0.000000 +vt 0.844328 -8.582302 0.000000 +vt 1.213257 -8.939898 0.000000 +vt 1.582186 -9.297494 0.000000 +vt 1.951115 -9.655090 0.000000 +vt 2.320044 -10.012686 0.000000 +vt 2.688973 -10.370282 0.000000 +vt 3.057903 -10.727877 0.000000 +vt 3.426832 -11.085473 0.000000 +vt 3.795761 -11.443069 0.000000 +vt 4.164690 -11.800665 0.000000 +vt 4.533619 -12.158261 0.000000 +vt 4.902548 -12.515857 0.000000 +vt 5.271477 -12.873453 0.000000 +vt 5.640407 -13.231049 0.000000 +vt 6.009336 -13.588645 0.000000 +vt 6.378265 -13.946241 0.000000 +vt 6.747194 -14.303837 0.000000 +vt 7.116123 -14.661433 0.000000 +vt 7.853982 -15.019028 0.000000 +vt -5.427468 -2.860767 0.000000 +vt -5.796397 -3.075325 0.000000 +vt -5.427468 -3.218363 0.000000 +vt -5.796397 -3.634475 0.000000 +vt -5.427468 -3.575959 0.000000 +vt -5.427468 -3.933555 0.000000 +vt -5.058539 -3.933555 0.000000 +vt -5.058539 -4.291151 0.000000 +vt -4.689610 -4.291151 0.000000 +vt -4.689610 -4.648747 0.000000 +vt -4.320681 -4.648747 0.000000 +vt -4.320681 -5.006343 0.000000 +vt -3.951752 -5.006343 0.000000 +vt -3.951752 -5.363939 0.000000 +vt -3.582822 -5.363939 0.000000 +vt -3.582822 -5.721535 0.000000 +vt -3.213893 -5.721535 0.000000 +vt -3.213893 -6.079131 0.000000 +vt -2.844964 -6.079131 0.000000 +vt -2.844964 -6.436726 0.000000 +vt -2.476035 -6.436726 0.000000 +vt -2.476035 -6.794322 0.000000 +vt -2.107106 -6.794322 0.000000 +vt -2.107106 -7.151918 0.000000 +vt -1.738177 -7.151918 0.000000 +vt -1.738177 -7.509514 0.000000 +vt -1.369247 -7.509514 0.000000 +vt -1.369247 -7.867110 0.000000 +vt -1.000318 -7.867110 0.000000 +vt -1.000318 -8.224706 0.000000 +vt -0.631389 -8.224706 0.000000 +vt -0.631389 -8.582302 0.000000 +vt -0.262460 -8.582302 0.000000 +vt -0.262460 -8.939898 0.000000 +vt 0.106469 -8.939898 0.000000 +vt 0.106469 -9.297494 0.000000 +vt 0.475398 -9.297494 0.000000 +vt 0.475398 -9.655090 0.000000 +vt 0.844328 -9.655090 0.000000 +vt 0.844328 -10.012686 0.000000 +vt 1.213257 -10.012686 0.000000 +vt 1.213257 -10.370282 0.000000 +vt 1.582186 -10.370282 0.000000 +vt 1.582186 -10.727877 0.000000 +vt 1.951115 -10.727877 0.000000 +vt 1.951115 -11.085473 0.000000 +vt 2.320044 -11.085473 0.000000 +vt 2.320044 -11.443069 0.000000 +vt 2.688973 -11.443069 0.000000 +vt 2.688973 -11.800665 0.000000 +vt 3.057903 -11.800665 0.000000 +vt 3.057903 -12.158261 0.000000 +vt 3.426832 -12.158261 0.000000 +vt 3.426832 -12.515857 0.000000 +vt 3.795761 -12.515857 0.000000 +vt 3.795761 -12.873453 0.000000 +vt 4.164690 -12.873453 0.000000 +vt 4.164690 -13.231049 0.000000 +vt 4.533619 -13.231049 0.000000 +vt 4.533619 -13.588645 0.000000 +vt 4.902548 -13.588645 0.000000 +vt 4.902548 -13.946241 0.000000 +vt 5.271477 -13.946241 0.000000 +vt 5.271477 -14.303837 0.000000 +vt 5.640407 -14.303837 0.000000 +vt 5.640407 -14.661433 0.000000 +vt 6.009336 -14.661433 0.000000 +vt -5.796397 -4.193625 0.000000 +vt -5.427468 -4.291151 0.000000 +vt -5.058539 -4.648747 0.000000 +vt -4.689610 -5.006343 0.000000 +vt -4.320681 -5.363939 0.000000 +vt -3.951752 -5.721535 0.000000 +vt -3.582822 -6.079131 0.000000 +vt -3.213893 -6.436726 0.000000 +vt -2.844964 -6.794322 0.000000 +vt -2.476035 -7.151918 0.000000 +vt -2.107106 -7.509514 0.000000 +vt -1.738177 -7.867110 0.000000 +vt -1.369247 -8.224706 0.000000 +vt -1.000318 -8.582302 0.000000 +vt -0.631389 -8.939898 0.000000 +vt -0.262460 -9.297494 0.000000 +vt 0.106469 -9.655090 0.000000 +vt 0.475398 -10.012686 0.000000 +vt 0.844328 -10.370282 0.000000 +vt 1.213257 -10.727877 0.000000 +vt 1.582186 -11.085473 0.000000 +vt 1.951115 -11.443069 0.000000 +vt 2.320044 -11.800665 0.000000 +vt 2.688973 -12.158261 0.000000 +vt 3.057903 -12.515857 0.000000 +vt 3.426832 -12.873453 0.000000 +vt 3.795761 -13.231049 0.000000 +vt 4.164690 -13.588645 0.000000 +vt 4.533619 -13.946241 0.000000 +vt 4.902548 -14.303837 0.000000 +vt 5.271477 -14.661433 0.000000 +vt -5.427468 -4.648747 0.000000 +vt -5.796397 -4.752775 0.000000 +vt -5.427468 -5.006343 0.000000 +vt -5.796397 -5.311925 0.000000 +vt -5.427468 -5.363939 0.000000 +vt -5.427468 -5.721535 0.000000 +vt -5.058539 -5.721535 0.000000 +vt -5.058539 -6.079131 0.000000 +vt -4.689610 -6.079131 0.000000 +vt -4.689610 -6.436726 0.000000 +vt -4.320681 -6.436726 0.000000 +vt -4.320681 -6.794322 0.000000 +vt -3.951752 -6.794322 0.000000 +vt -3.951752 -7.151918 0.000000 +vt -3.582822 -7.151918 0.000000 +vt -3.582822 -7.509514 0.000000 +vt -3.213893 -7.509514 0.000000 +vt -3.213893 -7.867110 0.000000 +vt -2.844964 -7.867110 0.000000 +vt -2.844964 -8.224706 0.000000 +vt -2.476035 -8.224706 0.000000 +vt -2.476035 -8.582302 0.000000 +vt -2.107106 -8.582302 0.000000 +vt -2.107106 -8.939898 0.000000 +vt -1.738177 -8.939898 0.000000 +vt -1.738177 -9.297494 0.000000 +vt -1.369247 -9.297494 0.000000 +vt -1.369247 -9.655090 0.000000 +vt -1.000318 -9.655090 0.000000 +vt -1.000318 -10.012686 0.000000 +vt -0.631389 -10.012686 0.000000 +vt -0.631389 -10.370282 0.000000 +vt -0.262460 -10.370282 0.000000 +vt -0.262460 -10.727877 0.000000 +vt 0.106469 -10.727877 0.000000 +vt 0.106469 -11.085473 0.000000 +vt 0.475398 -11.085473 0.000000 +vt 0.475398 -11.443069 0.000000 +vt 0.844328 -11.443069 0.000000 +vt 0.844328 -11.800665 0.000000 +vt 1.213257 -11.800665 0.000000 +vt 1.213257 -12.158261 0.000000 +vt 1.582186 -12.158261 0.000000 +vt 1.582186 -12.515857 0.000000 +vt 1.951115 -12.515857 0.000000 +vt 1.951115 -12.873453 0.000000 +vt 2.320044 -12.873453 0.000000 +vt 2.320044 -13.231049 0.000000 +vt 2.688973 -13.231049 0.000000 +vt 2.688973 -13.588645 0.000000 +vt 3.057903 -13.588645 0.000000 +vt 3.057903 -13.946241 0.000000 +vt 3.426832 -13.946241 0.000000 +vt 3.426832 -14.303837 0.000000 +vt 3.795761 -14.303837 0.000000 +vt 3.795761 -14.661433 0.000000 +vt 4.164690 -14.661433 0.000000 +vt -5.796397 -5.871075 0.000000 +vt -5.427468 -6.079131 0.000000 +vt -5.058539 -6.436726 0.000000 +vt -4.689610 -6.794322 0.000000 +vt -4.320681 -7.151918 0.000000 +vt -3.951752 -7.509514 0.000000 +vt -3.582822 -7.867110 0.000000 +vt -3.213893 -8.224706 0.000000 +vt -2.844964 -8.582302 0.000000 +vt -2.476035 -8.939898 0.000000 +vt -2.107106 -9.297494 0.000000 +vt -1.738177 -9.655090 0.000000 +vt -1.369247 -10.012686 0.000000 +vt -1.000318 -10.370282 0.000000 +vt -0.631389 -10.727877 0.000000 +vt -0.262460 -11.085473 0.000000 +vt 0.106469 -11.443069 0.000000 +vt 0.475398 -11.800665 0.000000 +vt 0.844328 -12.158261 0.000000 +vt 1.213257 -12.515857 0.000000 +vt 1.582186 -12.873453 0.000000 +vt 1.951115 -13.231049 0.000000 +vt 2.320044 -13.588645 0.000000 +vt 2.688973 -13.946241 0.000000 +vt 3.057903 -14.303837 0.000000 +vt 3.426832 -14.661433 0.000000 +vt -5.796397 -6.430225 0.000000 +vt -5.427468 -6.436726 0.000000 +vt -5.058539 -6.794322 0.000000 +vt -4.689610 -7.151918 0.000000 +vt -4.320681 -7.509514 0.000000 +vt -3.951752 -7.867110 0.000000 +vt -3.582822 -8.224706 0.000000 +vt -3.213893 -8.582302 0.000000 +vt -2.844964 -8.939898 0.000000 +vt -2.476035 -9.297494 0.000000 +vt -2.107106 -9.655090 0.000000 +vt -1.738177 -10.012686 0.000000 +vt -1.369247 -10.370282 0.000000 +vt -1.000318 -10.727877 0.000000 +vt -0.631389 -11.085473 0.000000 +vt -0.262460 -11.443069 0.000000 +vt 0.106469 -11.800665 0.000000 +vt 0.475398 -12.158261 0.000000 +vt 0.844328 -12.515857 0.000000 +vt 1.213257 -12.873453 0.000000 +vt 1.582186 -13.231049 0.000000 +vt 1.951115 -13.588645 0.000000 +vt 2.320044 -13.946241 0.000000 +vt 2.688973 -14.303837 0.000000 +vt 3.057903 -14.661433 0.000000 +vt -5.427468 -6.794322 0.000000 +vt -5.796397 -6.989375 0.000000 +vt -5.427468 -7.151918 0.000000 +vt -5.796397 -7.548525 0.000000 +vt -5.427468 -7.509514 0.000000 +vt -5.427468 -7.867110 0.000000 +vt -5.058539 -7.867110 0.000000 +vt -5.058539 -8.224706 0.000000 +vt -4.689610 -8.224706 0.000000 +vt -4.689610 -8.582302 0.000000 +vt -4.320681 -8.582302 0.000000 +vt -4.320681 -8.939898 0.000000 +vt -3.951752 -8.939898 0.000000 +vt -3.951752 -9.297494 0.000000 +vt -3.582822 -9.297494 0.000000 +vt -3.582822 -9.655090 0.000000 +vt -3.213893 -9.655090 0.000000 +vt -3.213893 -10.012686 0.000000 +vt -2.844964 -10.012686 0.000000 +vt -2.844964 -10.370282 0.000000 +vt -2.476035 -10.370282 0.000000 +vt -2.476035 -10.727877 0.000000 +vt -2.107106 -10.727877 0.000000 +vt -2.107106 -11.085473 0.000000 +vt -1.738177 -11.085473 0.000000 +vt -1.738177 -11.443069 0.000000 +vt -1.369247 -11.443069 0.000000 +vt -1.369247 -11.800665 0.000000 +vt -1.000318 -11.800665 0.000000 +vt -1.000318 -12.158261 0.000000 +vt -0.631389 -12.158261 0.000000 +vt -0.631389 -12.515857 0.000000 +vt -0.262460 -12.515857 0.000000 +vt -0.262460 -12.873453 0.000000 +vt 0.106469 -12.873453 0.000000 +vt 0.106469 -13.231049 0.000000 +vt 0.475398 -13.231049 0.000000 +vt 0.475398 -13.588645 0.000000 +vt 0.844328 -13.588645 0.000000 +vt 0.844328 -13.946241 0.000000 +vt 1.213257 -13.946241 0.000000 +vt 1.213257 -14.303837 0.000000 +vt 1.582186 -14.303837 0.000000 +vt 1.582186 -14.661433 0.000000 +vt 1.951115 -14.661433 0.000000 +vt -5.796397 -8.107675 0.000000 +vt -5.427468 -8.224706 0.000000 +vt -5.058539 -8.582302 0.000000 +vt -4.689610 -8.939898 0.000000 +vt -4.320681 -9.297494 0.000000 +vt -3.951752 -9.655090 0.000000 +vt -3.582822 -10.012686 0.000000 +vt -3.213893 -10.370282 0.000000 +vt -2.844964 -10.727877 0.000000 +vt -2.476035 -11.085473 0.000000 +vt -2.107106 -11.443069 0.000000 +vt -1.738177 -11.800665 0.000000 +vt -1.369247 -12.158261 0.000000 +vt -1.000318 -12.515857 0.000000 +vt -0.631389 -12.873453 0.000000 +vt -0.262460 -13.231049 0.000000 +vt 0.106469 -13.588645 0.000000 +vt 0.475398 -13.946241 0.000000 +vt 0.844328 -14.303837 0.000000 +vt 1.213257 -14.661433 0.000000 +vt -5.796397 -8.666825 0.000000 +vt -5.427468 -8.582302 0.000000 +vt -5.058539 -8.939898 0.000000 +vt -4.689610 -9.297494 0.000000 +vt -4.320681 -9.655090 0.000000 +vt -3.951752 -10.012686 0.000000 +vt -3.582822 -10.370282 0.000000 +vt -3.213893 -10.727877 0.000000 +vt -2.844964 -11.085473 0.000000 +vt -2.476035 -11.443069 0.000000 +vt -2.107106 -11.800665 0.000000 +vt -1.738177 -12.158261 0.000000 +vt -1.369247 -12.515857 0.000000 +vt -1.000318 -12.873453 0.000000 +vt -0.631389 -13.231049 0.000000 +vt -0.262460 -13.588645 0.000000 +vt 0.106469 -13.946241 0.000000 +vt 0.475398 -14.303837 0.000000 +vt 0.844328 -14.661433 0.000000 +vt -5.427468 -8.939898 0.000000 +vt -5.796397 -9.225975 0.000000 +vt -5.427468 -9.297494 0.000000 +vt -5.427468 -9.655090 0.000000 +vt -5.058539 -9.655090 0.000000 +vt -5.058539 -10.012686 0.000000 +vt -4.689610 -10.012686 0.000000 +vt -4.689610 -10.370282 0.000000 +vt -4.320681 -10.370282 0.000000 +vt -4.320681 -10.727877 0.000000 +vt -3.951752 -10.727877 0.000000 +vt -3.951752 -11.085473 0.000000 +vt -3.582822 -11.085473 0.000000 +vt -3.582822 -11.443069 0.000000 +vt -3.213893 -11.443069 0.000000 +vt -3.213893 -11.800665 0.000000 +vt -2.844964 -11.800665 0.000000 +vt -2.844964 -12.158261 0.000000 +vt -2.476035 -12.158261 0.000000 +vt -2.476035 -12.515857 0.000000 +vt -2.107106 -12.515857 0.000000 +vt -2.107106 -12.873453 0.000000 +vt -1.738177 -12.873453 0.000000 +vt -1.738177 -13.231049 0.000000 +vt -1.369247 -13.231049 0.000000 +vt -1.369247 -13.588645 0.000000 +vt -1.000318 -13.588645 0.000000 +vt -1.000318 -13.946241 0.000000 +vt -0.631389 -13.946241 0.000000 +vt -0.631389 -14.303837 0.000000 +vt -0.262460 -14.303837 0.000000 +vt -0.262460 -14.661433 0.000000 +vt 0.106469 -14.661433 0.000000 +vt -5.796397 -9.785125 0.000000 +vt -5.427468 -10.012686 0.000000 +vt -5.058539 -10.370282 0.000000 +vt -4.689610 -10.727877 0.000000 +vt -4.320681 -11.085473 0.000000 +vt -3.951752 -11.443069 0.000000 +vt -3.582822 -11.800665 0.000000 +vt -3.213893 -12.158261 0.000000 +vt -2.844964 -12.515857 0.000000 +vt -2.476035 -12.873453 0.000000 +vt -2.107106 -13.231049 0.000000 +vt -1.738177 -13.588645 0.000000 +vt -1.369247 -13.946241 0.000000 +vt -1.000318 -14.303837 0.000000 +vt -0.631389 -14.661433 0.000000 +vt -5.796397 -10.344275 0.000000 +vt -5.427468 -10.370282 0.000000 +vt -5.058539 -10.727877 0.000000 +vt -4.689610 -11.085473 0.000000 +vt -4.320681 -11.443069 0.000000 +vt -3.951752 -11.800665 0.000000 +vt -3.582822 -12.158261 0.000000 +vt -3.213893 -12.515857 0.000000 +vt -2.844964 -12.873453 0.000000 +vt -2.476035 -13.231049 0.000000 +vt -2.107106 -13.588645 0.000000 +vt -1.738177 -13.946241 0.000000 +vt -1.369247 -14.303837 0.000000 +vt -1.000318 -14.661433 0.000000 +vt -5.427468 -10.727877 0.000000 +vt -5.796397 -10.903425 0.000000 +vt -5.427468 -11.085473 0.000000 +vt -5.796397 -11.462575 0.000000 +vt -5.427468 -11.443069 0.000000 +vt -5.427468 -11.800665 0.000000 +vt -5.058539 -11.800665 0.000000 +vt -5.058539 -12.158261 0.000000 +vt -4.689610 -12.158261 0.000000 +vt -4.689610 -12.515857 0.000000 +vt -4.320681 -12.515857 0.000000 +vt -4.320681 -12.873453 0.000000 +vt -3.951752 -12.873453 0.000000 +vt -3.951752 -13.231049 0.000000 +vt -3.582822 -13.231049 0.000000 +vt -3.582822 -13.588645 0.000000 +vt -3.213893 -13.588645 0.000000 +vt -3.213893 -13.946241 0.000000 +vt -2.844964 -13.946241 0.000000 +vt -2.844964 -14.303837 0.000000 +vt -2.476035 -14.303837 0.000000 +vt -2.476035 -14.661433 0.000000 +vt -2.107106 -14.661433 0.000000 +vt -5.796397 -12.021725 0.000000 +vt -5.427468 -12.158261 0.000000 +vt -5.058539 -12.515857 0.000000 +vt -4.689610 -12.873453 0.000000 +vt -4.320681 -13.231049 0.000000 +vt -3.951752 -13.588645 0.000000 +vt -3.582822 -13.946241 0.000000 +vt -3.213893 -14.303837 0.000000 +vt -2.844964 -14.661433 0.000000 +vt -5.796397 -12.580875 0.000000 +vt -5.427468 -12.515857 0.000000 +vt -5.058539 -12.873453 0.000000 +vt -4.689610 -13.231049 0.000000 +vt -4.320681 -13.588645 0.000000 +vt -3.951752 -13.946241 0.000000 +vt -3.582822 -14.303837 0.000000 +vt -3.213893 -14.661433 0.000000 +vt -5.427468 -12.873453 0.000000 +vt -5.796397 -13.140024 0.000000 +vt -5.427468 -13.231049 0.000000 +vt -5.427468 -13.588645 0.000000 +vt -5.058539 -13.588645 0.000000 +vt -5.058539 -13.946241 0.000000 +vt -4.689610 -13.946241 0.000000 +vt -4.689610 -14.303837 0.000000 +vt -4.320681 -14.303837 0.000000 +vt -4.320681 -14.661433 0.000000 +vt -3.951752 -14.661433 0.000000 +vt -5.796397 -13.699174 0.000000 +vt -5.427468 -13.946241 0.000000 +vt -5.058539 -14.303837 0.000000 +vt -4.689610 -14.661433 0.000000 +vt -5.796397 -14.258324 0.000000 +vt -5.427468 -14.303837 0.000000 +vt -5.058539 -14.661433 0.000000 +vt -5.427468 -14.661433 0.000000 +vt -5.796397 -14.817474 0.000000 +vt 7.853982 -13.946241 0.000000 +vt 7.485052 -13.588645 0.000000 +vt 7.853982 -13.588645 0.000000 +vt 7.485052 -13.231049 0.000000 +vt 7.853982 -13.231049 0.000000 +vt 7.853982 -12.158261 0.000000 +vt 7.485052 -11.800665 0.000000 +vt 7.853982 -11.800665 0.000000 +vt 7.485052 -11.443069 0.000000 +vt 7.853982 -11.443069 0.000000 +vt 7.853982 -10.012686 0.000000 +vt 7.485052 -9.655090 0.000000 +vt 7.853982 -9.655090 0.000000 +vt 7.485052 -9.297494 0.000000 +vt 7.853982 -9.297494 0.000000 +vt 7.853982 -8.224706 0.000000 +vt 7.485052 -7.867110 0.000000 +vt 7.853982 -7.867110 0.000000 +vt 7.485052 -7.509514 0.000000 +vt 7.853982 -7.509514 0.000000 +vt 7.853982 -6.079131 0.000000 +vt 7.485052 -5.721535 0.000000 +vt 7.853982 -5.721535 0.000000 +vt 7.485052 -5.363939 0.000000 +vt 7.853982 -3.933555 0.000000 +vt 7.485052 -3.575959 0.000000 +vt 7.853982 -3.575959 0.000000 +vt 7.853982 -2.145575 0.000000 +vt 7.485052 -1.787980 0.000000 +vt 7.853982 -1.787980 0.000000 +vt 7.485052 -1.430384 0.000000 +vt 7.853982 -1.430384 0.000000 +vt 7.853982 0.000000 0.000000 +vt 7.485052 0.357596 0.000000 +vt 7.853982 0.357596 0.000000 +vt 7.853982 1.787980 0.000000 +vt 7.485052 2.145575 0.000000 +vt 7.853982 2.145575 0.000000 +vt 7.485052 2.503171 0.000000 +vt 7.853982 2.503171 0.000000 +vt 7.485052 2.860767 0.000000 +vt 7.853982 2.860767 0.000000 +vt 7.485052 3.218363 0.000000 +vt 7.853982 3.218363 0.000000 +vt 7.485052 3.575959 0.000000 +vt 7.853982 3.575959 0.000000 +vt 7.485052 3.933555 0.000000 +vt 7.853982 3.933555 0.000000 +vt 7.485052 4.291151 0.000000 +vt 7.853982 4.291151 0.000000 +vt 7.485052 4.648747 0.000000 +vt 7.853982 4.648747 0.000000 +vt 7.485052 5.006343 0.000000 +vt 7.485052 5.363939 0.000000 +vt 7.853982 5.363939 0.000000 +vt 7.485052 5.721535 0.000000 +vt 7.853982 5.721535 0.000000 +vt 7.485052 6.079131 0.000000 +vt 7.853982 6.079131 0.000000 +vt 7.485052 6.436726 0.000000 +vt 7.853982 6.436726 0.000000 +vt 7.485052 6.794322 0.000000 +vt 7.853982 6.794322 0.000000 +vt 7.485052 7.151918 0.000000 +vt 7.853982 7.151918 0.000000 +vt 7.485052 7.509514 0.000000 +vt 7.853982 7.509514 0.000000 +vt 7.485052 7.867110 0.000000 +vt 7.853982 7.867110 0.000000 +vt 7.485052 8.224706 0.000000 +vt 7.853982 8.224706 0.000000 +vt 7.485052 8.582302 0.000000 +vt 7.853982 8.582302 0.000000 +vt 7.485052 8.939898 0.000000 +vt 7.853982 8.939898 0.000000 +vt 7.485052 9.297494 0.000000 +vt 7.853982 9.297494 0.000000 +vt 7.485052 9.655090 0.000000 +vt 7.853982 9.655090 0.000000 +vt 7.485052 10.012686 0.000000 +vt 7.853982 10.012686 0.000000 +vt 7.485052 10.370282 0.000000 +vt 7.853982 10.370282 0.000000 +vt 7.485052 10.727877 0.000000 +vt 7.853982 10.727877 0.000000 +vt 7.485052 11.085473 0.000000 +vt 7.853982 11.085473 0.000000 +vt 7.485052 11.443069 0.000000 +vt 7.853982 11.443069 0.000000 +vt 7.485052 11.800665 0.000000 +vt 7.853982 11.800665 0.000000 +vt 7.485052 12.158261 0.000000 +vt 7.853982 12.158261 0.000000 +vt 7.485052 12.515857 0.000000 +vt 7.853982 12.515857 0.000000 +vt 7.485052 12.873453 0.000000 +vt 7.853982 12.873453 0.000000 +vt 7.485052 13.231049 0.000000 +vt 7.853982 13.231049 0.000000 +vt 7.485052 13.588645 0.000000 +vt 7.853982 13.588645 0.000000 +vt 7.485052 13.946241 0.000000 +vt 7.853982 13.946241 0.000000 +vt 7.485052 14.303837 0.000000 +vt 7.853982 14.303837 0.000000 +vt 7.485052 14.661433 0.000000 +vt 7.853982 14.661433 0.000000 +vt 7.485052 15.019028 0.000000 +vt 7.853982 15.019028 0.000000 +vt 7.485052 15.376624 0.000000 +vt -5.058539 15.376624 0.000000 +vt -5.058539 15.019028 0.000000 +vt -5.058539 14.661433 0.000000 +vt -5.058539 14.303837 0.000000 +vt -4.689610 15.376624 0.000000 +vt -4.689610 15.019028 0.000000 +vt -4.689610 14.661433 0.000000 +vt -4.689610 14.303837 0.000000 +vt -4.689610 13.946241 0.000000 +vt -4.320681 15.376624 0.000000 +vt -4.320681 15.019028 0.000000 +vt -4.320681 14.661433 0.000000 +vt -4.320681 14.303837 0.000000 +vt -4.320681 13.946241 0.000000 +vt -4.320681 13.588645 0.000000 +vt -3.951752 15.376624 0.000000 +vt -3.951752 15.019028 0.000000 +vt -3.951752 14.661433 0.000000 +vt -3.951752 14.303837 0.000000 +vt -3.951752 13.946241 0.000000 +vt -3.951752 13.588645 0.000000 +vt -3.951752 13.231049 0.000000 +vt -3.582822 15.376624 0.000000 +vt -3.582822 15.019028 0.000000 +vt -3.582822 14.661433 0.000000 +vt -3.582822 14.303837 0.000000 +vt -3.582822 13.946241 0.000000 +vt -3.582822 13.588645 0.000000 +vt -3.582822 13.231049 0.000000 +vt -3.582822 12.873453 0.000000 +vt -3.213893 15.376624 0.000000 +vt -3.213893 15.019028 0.000000 +vt -3.213893 14.661433 0.000000 +vt -3.213893 14.303837 0.000000 +vt -3.213893 13.946241 0.000000 +vt -3.213893 13.588645 0.000000 +vt -3.213893 13.231049 0.000000 +vt -3.213893 12.873453 0.000000 +vt -3.213893 12.515857 0.000000 +vt -2.844964 15.376624 0.000000 +vt -2.844964 15.019028 0.000000 +vt -2.844964 14.661433 0.000000 +vt -2.844964 14.303837 0.000000 +vt -2.844964 13.946241 0.000000 +vt -2.844964 13.588645 0.000000 +vt -2.844964 13.231049 0.000000 +vt -2.844964 12.873453 0.000000 +vt -2.844964 12.515857 0.000000 +vt -2.844964 12.158261 0.000000 +vt -2.476035 15.376624 0.000000 +vt -2.476035 15.019028 0.000000 +vt -2.476035 14.661433 0.000000 +vt -2.476035 14.303837 0.000000 +vt -2.476035 13.946241 0.000000 +vt -2.476035 13.588645 0.000000 +vt -2.476035 13.231049 0.000000 +vt -2.476035 12.873453 0.000000 +vt -2.476035 12.515857 0.000000 +vt -2.476035 12.158261 0.000000 +vt -2.476035 11.800665 0.000000 +vt -2.107106 15.376624 0.000000 +vt -2.107106 15.019028 0.000000 +vt -2.107106 14.661433 0.000000 +vt -2.107106 14.303837 0.000000 +vt -2.107106 13.946241 0.000000 +vt -2.107106 13.588645 0.000000 +vt -2.107106 13.231049 0.000000 +vt -2.107106 12.873453 0.000000 +vt -2.107106 12.515857 0.000000 +vt -2.107106 12.158261 0.000000 +vt -2.107106 11.800665 0.000000 +vt -2.107106 11.443069 0.000000 +vt -1.738177 15.376624 0.000000 +vt -1.738177 15.019028 0.000000 +vt -1.738177 14.661433 0.000000 +vt -1.738177 14.303837 0.000000 +vt -1.738177 13.946241 0.000000 +vt -1.738177 13.588645 0.000000 +vt -1.738177 13.231049 0.000000 +vt -1.738177 12.873453 0.000000 +vt -1.738177 12.515857 0.000000 +vt -1.738177 12.158261 0.000000 +vt -1.738177 11.800665 0.000000 +vt -1.738177 11.443069 0.000000 +vt -1.738177 11.085473 0.000000 +vt -1.369247 15.376624 0.000000 +vt -1.369247 15.019028 0.000000 +vt -1.369247 14.661433 0.000000 +vt -1.369247 14.303837 0.000000 +vt -1.369247 13.946241 0.000000 +vt -1.369247 13.588645 0.000000 +vt -1.369247 13.231049 0.000000 +vt -1.369247 12.873453 0.000000 +vt -1.369247 12.515857 0.000000 +vt -1.369247 12.158261 0.000000 +vt -1.369247 11.800665 0.000000 +vt -1.369247 11.443069 0.000000 +vt -1.369247 11.085473 0.000000 +vt -1.369247 10.727877 0.000000 +vt -1.000318 15.376624 0.000000 +vt -1.000318 15.019028 0.000000 +vt -1.000318 14.661433 0.000000 +vt -1.000318 14.303837 0.000000 +vt -1.000318 13.946241 0.000000 +vt -1.000318 13.588645 0.000000 +vt -1.000318 13.231049 0.000000 +vt -1.000318 12.873453 0.000000 +vt -1.000318 12.515857 0.000000 +vt -1.000318 12.158261 0.000000 +vt -1.000318 11.800665 0.000000 +vt -1.000318 11.443069 0.000000 +vt -1.000318 11.085473 0.000000 +vt -1.000318 10.727877 0.000000 +vt -1.000318 10.370282 0.000000 +vt -0.631389 15.376624 0.000000 +vt -0.631389 15.019028 0.000000 +vt -0.631389 14.661433 0.000000 +vt -0.631389 14.303837 0.000000 +vt -0.631389 13.946241 0.000000 +vt -0.631389 13.588645 0.000000 +vt -0.631389 13.231049 0.000000 +vt -0.631389 12.873453 0.000000 +vt -0.631389 12.515857 0.000000 +vt -0.631389 12.158261 0.000000 +vt -0.631389 11.800665 0.000000 +vt -0.631389 11.443069 0.000000 +vt -0.631389 11.085473 0.000000 +vt -0.631389 10.727877 0.000000 +vt -0.631389 10.370282 0.000000 +vt -0.631389 10.012686 0.000000 +vt -0.262460 15.376624 0.000000 +vt -0.262460 15.019028 0.000000 +vt -0.262460 14.661433 0.000000 +vt -0.262460 14.303837 0.000000 +vt -0.262460 13.946241 0.000000 +vt -0.262460 13.588645 0.000000 +vt -0.262460 13.231049 0.000000 +vt -0.262460 12.873453 0.000000 +vt -0.262460 12.515857 0.000000 +vt -0.262460 12.158261 0.000000 +vt -0.262460 11.800665 0.000000 +vt -0.262460 11.443069 0.000000 +vt -0.262460 11.085473 0.000000 +vt -0.262460 10.727877 0.000000 +vt -0.262460 10.370282 0.000000 +vt -0.262460 10.012686 0.000000 +vt -0.262460 9.655090 0.000000 +vt 0.106469 15.376624 0.000000 +vt 0.106469 15.019028 0.000000 +vt 0.106469 14.661433 0.000000 +vt 0.106469 14.303837 0.000000 +vt 0.106469 13.946241 0.000000 +vt 0.106469 13.588645 0.000000 +vt 0.106469 13.231049 0.000000 +vt 0.106469 12.873453 0.000000 +vt 0.106469 12.515857 0.000000 +vt 0.106469 12.158261 0.000000 +vt 0.106469 11.800665 0.000000 +vt 0.106469 11.443069 0.000000 +vt 0.106469 11.085473 0.000000 +vt 0.106469 10.727877 0.000000 +vt 0.106469 10.370282 0.000000 +vt 0.106469 10.012686 0.000000 +vt 0.106469 9.655090 0.000000 +vt 0.106469 9.297494 0.000000 +vt 0.475398 15.376624 0.000000 +vt 0.475398 15.019028 0.000000 +vt 0.475398 14.661433 0.000000 +vt 0.475398 14.303837 0.000000 +vt 0.475398 13.946241 0.000000 +vt 0.475398 13.588645 0.000000 +vt 0.475398 13.231049 0.000000 +vt 0.475398 12.873453 0.000000 +vt 0.475398 12.515857 0.000000 +vt 0.475398 12.158261 0.000000 +vt 0.475398 11.800665 0.000000 +vt 0.475398 11.443069 0.000000 +vt 0.475398 11.085473 0.000000 +vt 0.475398 10.727877 0.000000 +vt 0.475398 10.370282 0.000000 +vt 0.475398 10.012686 0.000000 +vt 0.475398 9.655090 0.000000 +vt 0.475398 9.297494 0.000000 +vt 0.475398 8.939898 0.000000 +vt 0.844328 15.376624 0.000000 +vt 0.844328 15.019028 0.000000 +vt 0.844328 14.661433 0.000000 +vt 0.844328 14.303837 0.000000 +vt 0.844328 13.946241 0.000000 +vt 0.844328 13.588645 0.000000 +vt 0.844328 13.231049 0.000000 +vt 0.844328 12.873453 0.000000 +vt 0.844328 12.515857 0.000000 +vt 0.844328 12.158261 0.000000 +vt 0.844328 11.800665 0.000000 +vt 0.844328 11.443069 0.000000 +vt 0.844328 11.085473 0.000000 +vt 0.844328 10.727877 0.000000 +vt 0.844328 10.370282 0.000000 +vt 0.844328 10.012686 0.000000 +vt 0.844328 9.655090 0.000000 +vt 0.844328 9.297494 0.000000 +vt 0.844328 8.939898 0.000000 +vt 0.844328 8.582302 0.000000 +vt 1.213257 15.376624 0.000000 +vt 1.213257 15.019028 0.000000 +vt 1.213257 14.661433 0.000000 +vt 1.213257 14.303837 0.000000 +vt 1.213257 13.946241 0.000000 +vt 1.213257 13.588645 0.000000 +vt 1.213257 13.231049 0.000000 +vt 1.213257 12.873453 0.000000 +vt 1.213257 12.515857 0.000000 +vt 1.213257 12.158261 0.000000 +vt 1.213257 11.800665 0.000000 +vt 1.213257 11.443069 0.000000 +vt 1.213257 11.085473 0.000000 +vt 1.213257 10.727877 0.000000 +vt 1.213257 10.370282 0.000000 +vt 1.213257 10.012686 0.000000 +vt 1.213257 9.655090 0.000000 +vt 1.213257 9.297494 0.000000 +vt 1.213257 8.939898 0.000000 +vt 1.213257 8.582302 0.000000 +vt 1.213257 8.224706 0.000000 +vt 1.582186 15.376624 0.000000 +vt 1.582186 15.019028 0.000000 +vt 1.582186 14.661433 0.000000 +vt 1.582186 14.303837 0.000000 +vt 1.582186 13.946241 0.000000 +vt 1.582186 13.588645 0.000000 +vt 1.582186 13.231049 0.000000 +vt 1.582186 12.873453 0.000000 +vt 1.582186 12.515857 0.000000 +vt 1.582186 12.158261 0.000000 +vt 1.582186 11.800665 0.000000 +vt 1.582186 11.443069 0.000000 +vt 1.582186 11.085473 0.000000 +vt 1.582186 10.727877 0.000000 +vt 1.582186 10.370282 0.000000 +vt 1.582186 10.012686 0.000000 +vt 1.582186 9.655090 0.000000 +vt 1.582186 9.297494 0.000000 +vt 1.582186 8.939898 0.000000 +vt 1.582186 8.582302 0.000000 +vt 1.582186 8.224706 0.000000 +vt 1.582186 7.867110 0.000000 +vt 1.951115 15.376624 0.000000 +vt 1.951115 15.019028 0.000000 +vt 1.951115 14.661433 0.000000 +vt 1.951115 14.303837 0.000000 +vt 1.951115 13.946241 0.000000 +vt 1.951115 13.588645 0.000000 +vt 1.951115 13.231049 0.000000 +vt 1.951115 12.873453 0.000000 +vt 1.951115 12.515857 0.000000 +vt 1.951115 12.158261 0.000000 +vt 1.951115 11.800665 0.000000 +vt 1.951115 11.443069 0.000000 +vt 1.951115 11.085473 0.000000 +vt 1.951115 10.727877 0.000000 +vt 1.951115 10.370282 0.000000 +vt 1.951115 10.012686 0.000000 +vt 1.951115 9.655090 0.000000 +vt 1.951115 9.297494 0.000000 +vt 1.951115 8.939898 0.000000 +vt 1.951115 8.582302 0.000000 +vt 1.951115 8.224706 0.000000 +vt 1.951115 7.867110 0.000000 +vt 1.951115 7.509514 0.000000 +vt 2.320044 15.376624 0.000000 +vt 2.320044 15.019028 0.000000 +vt 2.320044 14.661433 0.000000 +vt 2.320044 14.303837 0.000000 +vt 2.320044 13.946241 0.000000 +vt 2.320044 13.588645 0.000000 +vt 2.320044 13.231049 0.000000 +vt 2.320044 12.873453 0.000000 +vt 2.320044 12.515857 0.000000 +vt 2.320044 12.158261 0.000000 +vt 2.320044 11.800665 0.000000 +vt 2.320044 11.443069 0.000000 +vt 2.320044 11.085473 0.000000 +vt 2.320044 10.727877 0.000000 +vt 2.320044 10.370282 0.000000 +vt 2.320044 10.012686 0.000000 +vt 2.320044 9.655090 0.000000 +vt 2.320044 9.297494 0.000000 +vt 2.320044 8.939898 0.000000 +vt 2.320044 8.582302 0.000000 +vt 2.320044 8.224706 0.000000 +vt 2.320044 7.867110 0.000000 +vt 2.320044 7.509514 0.000000 +vt 2.320044 7.151918 0.000000 +vt 2.688973 15.376624 0.000000 +vt 2.688973 15.019028 0.000000 +vt 2.688973 14.661433 0.000000 +vt 2.688973 14.303837 0.000000 +vt 2.688973 13.946241 0.000000 +vt 2.688973 13.588645 0.000000 +vt 2.688973 13.231049 0.000000 +vt 2.688973 12.873453 0.000000 +vt 2.688973 12.515857 0.000000 +vt 2.688973 12.158261 0.000000 +vt 2.688973 11.800665 0.000000 +vt 2.688973 11.443069 0.000000 +vt 2.688973 11.085473 0.000000 +vt 2.688973 10.727877 0.000000 +vt 2.688973 10.370282 0.000000 +vt 2.688973 10.012686 0.000000 +vt 2.688973 9.655090 0.000000 +vt 2.688973 9.297494 0.000000 +vt 2.688973 8.939898 0.000000 +vt 2.688973 8.582302 0.000000 +vt 2.688973 8.224706 0.000000 +vt 2.688973 7.867110 0.000000 +vt 2.688973 7.509514 0.000000 +vt 2.688973 7.151918 0.000000 +vt 2.688973 6.794322 0.000000 +vt 3.057903 15.376624 0.000000 +vt 3.057903 15.019028 0.000000 +vt 3.057903 14.661433 0.000000 +vt 3.057903 14.303837 0.000000 +vt 3.057903 13.946241 0.000000 +vt 3.057903 13.588645 0.000000 +vt 3.057903 13.231049 0.000000 +vt 3.057903 12.873453 0.000000 +vt 3.057903 12.515857 0.000000 +vt 3.057903 12.158261 0.000000 +vt 3.057903 11.800665 0.000000 +vt 3.057903 11.443069 0.000000 +vt 3.057903 11.085473 0.000000 +vt 3.057903 10.727877 0.000000 +vt 3.057903 10.370282 0.000000 +vt 3.057903 10.012686 0.000000 +vt 3.057903 9.655090 0.000000 +vt 3.057903 9.297494 0.000000 +vt 3.057903 8.939898 0.000000 +vt 3.057903 8.582302 0.000000 +vt 3.057903 8.224706 0.000000 +vt 3.057903 7.867110 0.000000 +vt 3.057903 7.509514 0.000000 +vt 3.057903 7.151918 0.000000 +vt 3.057903 6.794322 0.000000 +vt 3.057903 6.436726 0.000000 +vt 3.426832 15.376624 0.000000 +vt 3.426832 15.019028 0.000000 +vt 3.426832 14.661433 0.000000 +vt 3.426832 14.303837 0.000000 +vt 3.426832 13.946241 0.000000 +vt 3.426832 13.588645 0.000000 +vt 3.426832 13.231049 0.000000 +vt 3.426832 12.873453 0.000000 +vt 3.426832 12.515857 0.000000 +vt 3.426832 12.158261 0.000000 +vt 3.426832 11.800665 0.000000 +vt 3.426832 11.443069 0.000000 +vt 3.426832 11.085473 0.000000 +vt 3.426832 10.727877 0.000000 +vt 3.426832 10.370282 0.000000 +vt 3.426832 10.012686 0.000000 +vt 3.426832 9.655090 0.000000 +vt 3.426832 9.297494 0.000000 +vt 3.426832 8.939898 0.000000 +vt 3.426832 8.582302 0.000000 +vt 3.426832 8.224706 0.000000 +vt 3.426832 7.867110 0.000000 +vt 3.426832 7.509514 0.000000 +vt 3.426832 7.151918 0.000000 +vt 3.426832 6.794322 0.000000 +vt 3.426832 6.436726 0.000000 +vt 3.426832 6.079131 0.000000 +vt 3.795761 15.376624 0.000000 +vt 3.795761 15.019028 0.000000 +vt 3.795761 14.661433 0.000000 +vt 3.795761 14.303837 0.000000 +vt 3.795761 13.946241 0.000000 +vt 3.795761 13.588645 0.000000 +vt 3.795761 13.231049 0.000000 +vt 3.795761 12.873453 0.000000 +vt 3.795761 12.515857 0.000000 +vt 3.795761 12.158261 0.000000 +vt 3.795761 11.800665 0.000000 +vt 3.795761 11.443069 0.000000 +vt 3.795761 11.085473 0.000000 +vt 3.795761 10.727877 0.000000 +vt 3.795761 10.370282 0.000000 +vt 3.795761 10.012686 0.000000 +vt 3.795761 9.655090 0.000000 +vt 3.795761 9.297494 0.000000 +vt 3.795761 8.939898 0.000000 +vt 3.795761 8.582302 0.000000 +vt 3.795761 8.224706 0.000000 +vt 3.795761 7.867110 0.000000 +vt 3.795761 7.509514 0.000000 +vt 3.795761 7.151918 0.000000 +vt 3.795761 6.794322 0.000000 +vt 3.795761 6.436726 0.000000 +vt 3.795761 6.079131 0.000000 +vt 3.795761 5.721535 0.000000 +vt 4.164690 15.376624 0.000000 +vt 4.164690 15.019028 0.000000 +vt 4.164690 14.661433 0.000000 +vt 4.164690 14.303837 0.000000 +vt 4.164690 13.946241 0.000000 +vt 4.164690 13.588645 0.000000 +vt 4.164690 13.231049 0.000000 +vt 4.164690 12.873453 0.000000 +vt 4.164690 12.515857 0.000000 +vt 4.164690 12.158261 0.000000 +vt 4.164690 11.800665 0.000000 +vt 4.164690 11.443069 0.000000 +vt 4.164690 11.085473 0.000000 +vt 4.164690 10.727877 0.000000 +vt 4.164690 10.370282 0.000000 +vt 4.164690 10.012686 0.000000 +vt 4.164690 9.655090 0.000000 +vt 4.164690 9.297494 0.000000 +vt 4.164690 8.939898 0.000000 +vt 4.164690 8.582302 0.000000 +vt 4.164690 8.224706 0.000000 +vt 4.164690 7.867110 0.000000 +vt 4.164690 7.509514 0.000000 +vt 4.164690 7.151918 0.000000 +vt 4.164690 6.794322 0.000000 +vt 4.164690 6.436726 0.000000 +vt 4.164690 6.079131 0.000000 +vt 4.164690 5.721535 0.000000 +vt 4.164690 5.363939 0.000000 +vt 4.533619 15.376624 0.000000 +vt 4.533619 15.019028 0.000000 +vt 4.533619 14.661433 0.000000 +vt 4.533619 14.303837 0.000000 +vt 4.533619 13.946241 0.000000 +vt 4.533619 13.588645 0.000000 +vt 4.533619 13.231049 0.000000 +vt 4.533619 12.873453 0.000000 +vt 4.533619 12.515857 0.000000 +vt 4.533619 12.158261 0.000000 +vt 4.533619 11.800665 0.000000 +vt 4.533619 11.443069 0.000000 +vt 4.533619 11.085473 0.000000 +vt 4.533619 10.727877 0.000000 +vt 4.533619 10.370282 0.000000 +vt 4.533619 10.012686 0.000000 +vt 4.533619 9.655090 0.000000 +vt 4.533619 9.297494 0.000000 +vt 4.533619 8.939898 0.000000 +vt 4.533619 8.582302 0.000000 +vt 4.533619 8.224706 0.000000 +vt 4.533619 7.867110 0.000000 +vt 4.533619 7.509514 0.000000 +vt 4.533619 7.151918 0.000000 +vt 4.533619 6.794322 0.000000 +vt 4.533619 6.436726 0.000000 +vt 4.533619 6.079131 0.000000 +vt 4.533619 5.721535 0.000000 +vt 4.533619 5.363939 0.000000 +vt 4.533619 5.006343 0.000000 +vt 4.902548 15.376624 0.000000 +vt 4.902548 15.019028 0.000000 +vt 4.902548 14.661433 0.000000 +vt 4.902548 14.303837 0.000000 +vt 4.902548 13.946241 0.000000 +vt 4.902548 13.588645 0.000000 +vt 4.902548 13.231049 0.000000 +vt 4.902548 12.873453 0.000000 +vt 4.902548 12.515857 0.000000 +vt 4.902548 12.158261 0.000000 +vt 4.902548 11.800665 0.000000 +vt 4.902548 11.443069 0.000000 +vt 4.902548 11.085473 0.000000 +vt 4.902548 10.727877 0.000000 +vt 4.902548 10.370282 0.000000 +vt 4.902548 10.012686 0.000000 +vt 4.902548 9.655090 0.000000 +vt 4.902548 9.297494 0.000000 +vt 4.902548 8.939898 0.000000 +vt 4.902548 8.582302 0.000000 +vt 4.902548 8.224706 0.000000 +vt 4.902548 7.867110 0.000000 +vt 4.902548 7.509514 0.000000 +vt 4.902548 7.151918 0.000000 +vt 4.902548 6.794322 0.000000 +vt 4.902548 6.436726 0.000000 +vt 4.902548 6.079131 0.000000 +vt 4.902548 5.721535 0.000000 +vt 4.902548 5.363939 0.000000 +vt 4.902548 5.006343 0.000000 +vt 4.902548 4.648747 0.000000 +vt 5.271477 15.376624 0.000000 +vt 5.271477 15.019028 0.000000 +vt 5.271477 14.661433 0.000000 +vt 5.271477 14.303837 0.000000 +vt 5.271477 13.946241 0.000000 +vt 5.271477 13.588645 0.000000 +vt 5.271477 13.231049 0.000000 +vt 5.271477 12.873453 0.000000 +vt 5.271477 12.515857 0.000000 +vt 5.271477 12.158261 0.000000 +vt 5.271477 11.800665 0.000000 +vt 5.271477 11.443069 0.000000 +vt 5.271477 11.085473 0.000000 +vt 5.271477 10.727877 0.000000 +vt 5.271477 10.370282 0.000000 +vt 5.271477 10.012686 0.000000 +vt 5.271477 9.655090 0.000000 +vt 5.271477 9.297494 0.000000 +vt 5.271477 8.939898 0.000000 +vt 5.271477 8.582302 0.000000 +vt 5.271477 8.224706 0.000000 +vt 5.271477 7.867110 0.000000 +vt 5.271477 7.509514 0.000000 +vt 5.271477 7.151918 0.000000 +vt 5.271477 6.794322 0.000000 +vt 5.271477 6.436726 0.000000 +vt 5.271477 6.079131 0.000000 +vt 5.271477 5.721535 0.000000 +vt 5.271477 5.363939 0.000000 +vt 5.271477 5.006343 0.000000 +vt 5.271477 4.648747 0.000000 +vt 5.271477 4.291151 0.000000 +vt 5.640407 15.376624 0.000000 +vt 5.640407 15.019028 0.000000 +vt 5.640407 14.661433 0.000000 +vt 5.640407 14.303837 0.000000 +vt 5.640407 13.946241 0.000000 +vt 5.640407 13.588645 0.000000 +vt 5.640407 13.231049 0.000000 +vt 5.640407 12.873453 0.000000 +vt 5.640407 12.515857 0.000000 +vt 5.640407 12.158261 0.000000 +vt 5.640407 11.800665 0.000000 +vt 5.640407 11.443069 0.000000 +vt 5.640407 11.085473 0.000000 +vt 5.640407 10.727877 0.000000 +vt 5.640407 10.370282 0.000000 +vt 5.640407 10.012686 0.000000 +vt 5.640407 9.655090 0.000000 +vt 5.640407 9.297494 0.000000 +vt 5.640407 8.939898 0.000000 +vt 5.640407 8.582302 0.000000 +vt 5.640407 8.224706 0.000000 +vt 5.640407 7.867110 0.000000 +vt 5.640407 7.509514 0.000000 +vt 5.640407 7.151918 0.000000 +vt 5.640407 6.794322 0.000000 +vt 5.640407 6.436726 0.000000 +vt 5.640407 6.079131 0.000000 +vt 5.640407 5.721535 0.000000 +vt 5.640407 5.363939 0.000000 +vt 5.640407 5.006343 0.000000 +vt 5.640407 4.648747 0.000000 +vt 5.640407 4.291151 0.000000 +vt 5.640407 3.933555 0.000000 +vt 6.009336 15.376624 0.000000 +vt 6.009336 15.019028 0.000000 +vt 6.009336 14.661433 0.000000 +vt 6.009336 14.303837 0.000000 +vt 6.009336 13.946241 0.000000 +vt 6.009336 13.588645 0.000000 +vt 6.009336 13.231049 0.000000 +vt 6.009336 12.873453 0.000000 +vt 6.009336 12.515857 0.000000 +vt 6.009336 12.158261 0.000000 +vt 6.009336 11.800665 0.000000 +vt 6.009336 11.443069 0.000000 +vt 6.009336 11.085473 0.000000 +vt 6.009336 10.727877 0.000000 +vt 6.009336 10.370282 0.000000 +vt 6.009336 10.012686 0.000000 +vt 6.009336 9.655090 0.000000 +vt 6.009336 9.297494 0.000000 +vt 6.009336 8.939898 0.000000 +vt 6.009336 8.582302 0.000000 +vt 6.009336 8.224706 0.000000 +vt 6.009336 7.867110 0.000000 +vt 6.009336 7.509514 0.000000 +vt 6.009336 7.151918 0.000000 +vt 6.009336 6.794322 0.000000 +vt 6.009336 6.436726 0.000000 +vt 6.009336 6.079131 0.000000 +vt 6.009336 5.721535 0.000000 +vt 6.009336 5.363939 0.000000 +vt 6.009336 5.006343 0.000000 +vt 6.009336 4.648747 0.000000 +vt 6.009336 4.291151 0.000000 +vt 6.009336 3.933555 0.000000 +vt 6.009336 3.575959 0.000000 +vt 6.378265 15.376624 0.000000 +vt 6.378265 15.019028 0.000000 +vt 6.378265 14.661433 0.000000 +vt 6.378265 14.303837 0.000000 +vt 6.378265 13.946241 0.000000 +vt 6.378265 13.588645 0.000000 +vt 6.378265 13.231049 0.000000 +vt 6.378265 12.873453 0.000000 +vt 6.378265 12.515857 0.000000 +vt 6.378265 12.158261 0.000000 +vt 6.378265 11.800665 0.000000 +vt 6.378265 11.443069 0.000000 +vt 6.378265 11.085473 0.000000 +vt 6.378265 10.727877 0.000000 +vt 6.378265 10.370282 0.000000 +vt 6.378265 10.012686 0.000000 +vt 6.378265 9.655090 0.000000 +vt 6.378265 9.297494 0.000000 +vt 6.378265 8.939898 0.000000 +vt 6.378265 8.582302 0.000000 +vt 6.378265 8.224706 0.000000 +vt 6.378265 7.867110 0.000000 +vt 6.378265 7.509514 0.000000 +vt 6.378265 7.151918 0.000000 +vt 6.378265 6.794322 0.000000 +vt 6.378265 6.436726 0.000000 +vt 6.378265 6.079131 0.000000 +vt 6.378265 5.721535 0.000000 +vt 6.378265 5.363939 0.000000 +vt 6.378265 5.006343 0.000000 +vt 6.378265 4.648747 0.000000 +vt 6.378265 4.291151 0.000000 +vt 6.378265 3.933555 0.000000 +vt 6.378265 3.575959 0.000000 +vt 6.378265 3.218363 0.000000 +vt 6.747194 15.376624 0.000000 +vt 6.747194 15.019028 0.000000 +vt 6.747194 14.661433 0.000000 +vt 6.747194 14.303837 0.000000 +vt 6.747194 13.946241 0.000000 +vt 6.747194 13.588645 0.000000 +vt 6.747194 13.231049 0.000000 +vt 6.747194 12.873453 0.000000 +vt 6.747194 12.515857 0.000000 +vt 6.747194 12.158261 0.000000 +vt 6.747194 11.800665 0.000000 +vt 6.747194 11.443069 0.000000 +vt 6.747194 11.085473 0.000000 +vt 6.747194 10.727877 0.000000 +vt 6.747194 10.370282 0.000000 +vt 6.747194 10.012686 0.000000 +vt 6.747194 9.655090 0.000000 +vt 6.747194 9.297494 0.000000 +vt 6.747194 8.939898 0.000000 +vt 6.747194 8.582302 0.000000 +vt 6.747194 8.224706 0.000000 +vt 6.747194 7.867110 0.000000 +vt 6.747194 7.509514 0.000000 +vt 6.747194 7.151918 0.000000 +vt 6.747194 6.794322 0.000000 +vt 6.747194 6.436726 0.000000 +vt 6.747194 6.079131 0.000000 +vt 6.747194 5.721535 0.000000 +vt 6.747194 5.363939 0.000000 +vt 6.747194 5.006343 0.000000 +vt 6.747194 4.648747 0.000000 +vt 6.747194 4.291151 0.000000 +vt 6.747194 3.933555 0.000000 +vt 6.747194 3.575959 0.000000 +vt 6.747194 3.218363 0.000000 +vt 6.747194 2.860767 0.000000 +vt 7.116123 15.376624 0.000000 +vt 7.116123 15.019028 0.000000 +vt 7.116123 14.661433 0.000000 +vt 7.116123 14.303837 0.000000 +vt 7.116123 13.946241 0.000000 +vt 7.116123 13.588645 0.000000 +vt 7.116123 13.231049 0.000000 +vt 7.116123 12.873453 0.000000 +vt 7.116123 12.515857 0.000000 +vt 7.116123 12.158261 0.000000 +vt 7.116123 11.800665 0.000000 +vt 7.116123 11.443069 0.000000 +vt 7.116123 11.085473 0.000000 +vt 7.116123 10.727877 0.000000 +vt 7.116123 10.370282 0.000000 +vt 7.116123 10.012686 0.000000 +vt 7.116123 9.655090 0.000000 +vt 7.116123 9.297494 0.000000 +vt 7.116123 8.939898 0.000000 +vt 7.116123 8.582302 0.000000 +vt 7.116123 8.224706 0.000000 +vt 7.116123 7.867110 0.000000 +vt 7.116123 7.509514 0.000000 +vt 7.116123 7.151918 0.000000 +vt 7.116123 6.794322 0.000000 +vt 7.116123 6.436726 0.000000 +vt 7.116123 6.079131 0.000000 +vt 7.116123 5.721535 0.000000 +vt 7.116123 5.363939 0.000000 +vt 7.116123 5.006343 0.000000 +vt 7.116123 4.648747 0.000000 +vt 7.116123 4.291151 0.000000 +vt 7.116123 3.933555 0.000000 +vt 7.116123 3.575959 0.000000 +vt 7.116123 3.218363 0.000000 +vt 7.116123 2.860767 0.000000 +vt 7.116123 2.503171 0.000000 +vt 7.853982 -5.125541 0.000000 +vt 7.853982 5.125541 0.000000 +vt -5.058539 12.515857 0.000000 +vt -4.689610 12.158261 0.000000 +vt -4.320681 11.800665 0.000000 +vt -3.951752 11.443069 0.000000 +vt -3.582822 11.085473 0.000000 +vt -3.213893 10.727877 0.000000 +vt -2.844964 10.370282 0.000000 +vt -2.476035 10.012686 0.000000 +vt -2.107106 9.655090 0.000000 +vt -1.738177 9.297494 0.000000 +vt -1.369247 8.939898 0.000000 +vt -1.000318 8.582302 0.000000 +vt -0.631389 8.224706 0.000000 +vt -0.262460 7.867110 0.000000 +vt 0.106469 7.509514 0.000000 +vt 0.475398 7.151918 0.000000 +vt 0.844328 6.794322 0.000000 +vt 1.213257 6.436726 0.000000 +vt 1.582186 6.079131 0.000000 +vt 1.951115 5.721535 0.000000 +vt 2.320044 5.363939 0.000000 +vt 2.688973 5.006343 0.000000 +vt 3.057903 4.648747 0.000000 +vt 3.426832 4.291151 0.000000 +vt 3.795761 3.933555 0.000000 +vt 4.164690 3.575959 0.000000 +vt 4.533619 3.218363 0.000000 +vt 4.902548 2.860767 0.000000 +vt 5.271477 2.503171 0.000000 +vt 5.640407 2.145575 0.000000 +vt 6.009336 1.787980 0.000000 +vt 6.378265 1.430384 0.000000 +vt 6.747194 1.072788 0.000000 +vt 7.116123 0.715192 0.000000 +vt -5.058539 10.727877 0.000000 +vt -4.689610 10.370282 0.000000 +vt -4.320681 10.012686 0.000000 +vt -3.951752 9.655090 0.000000 +vt -3.582822 9.297494 0.000000 +vt -3.213893 8.939898 0.000000 +vt -2.844964 8.582302 0.000000 +vt -2.476035 8.224706 0.000000 +vt -2.107106 7.867110 0.000000 +vt -1.738177 7.509514 0.000000 +vt -1.369247 7.151918 0.000000 +vt -1.000318 6.794322 0.000000 +vt -0.631389 6.436726 0.000000 +vt -0.262460 6.079131 0.000000 +vt 0.106469 5.721535 0.000000 +vt 0.475398 5.363939 0.000000 +vt 0.844328 5.006343 0.000000 +vt 1.213257 4.648747 0.000000 +vt 1.582186 4.291151 0.000000 +vt 1.951115 3.933555 0.000000 +vt 2.320044 3.575959 0.000000 +vt 2.688973 3.218363 0.000000 +vt 3.057903 2.860767 0.000000 +vt 3.426832 2.503171 0.000000 +vt 3.795761 2.145575 0.000000 +vt 4.164690 1.787980 0.000000 +vt 4.533619 1.430384 0.000000 +vt 4.902548 1.072788 0.000000 +vt 5.271477 0.715192 0.000000 +vt 5.640407 0.357596 0.000000 +vt 6.009336 -0.000000 0.000000 +vt 6.378265 -0.357596 0.000000 +vt 6.747194 -0.715192 0.000000 +vt 7.116123 -1.072788 0.000000 +vt -5.058539 10.370282 0.000000 +vt -4.689610 10.012686 0.000000 +vt -4.320681 9.655090 0.000000 +vt -3.951752 9.297494 0.000000 +vt -3.582822 8.939898 0.000000 +vt -3.213893 8.582302 0.000000 +vt -2.844964 8.224706 0.000000 +vt -2.476035 7.867110 0.000000 +vt -2.107106 7.509514 0.000000 +vt -1.738177 7.151918 0.000000 +vt -1.369247 6.794322 0.000000 +vt -1.000318 6.436726 0.000000 +vt -0.631389 6.079131 0.000000 +vt -0.262460 5.721535 0.000000 +vt 0.106469 5.363939 0.000000 +vt 0.475398 5.006343 0.000000 +vt 0.844328 4.648747 0.000000 +vt 1.213257 4.291151 0.000000 +vt 1.582186 3.933555 0.000000 +vt 1.951115 3.575959 0.000000 +vt 2.320044 3.218363 0.000000 +vt 2.688973 2.860767 0.000000 +vt 3.057903 2.503171 0.000000 +vt 3.426832 2.145575 0.000000 +vt 3.795761 1.787980 0.000000 +vt 4.164690 1.430384 0.000000 +vt 4.533619 1.072788 0.000000 +vt 4.902548 0.715192 0.000000 +vt 5.271477 0.357596 0.000000 +vt 5.640407 -0.000000 0.000000 +vt 6.009336 -0.357596 0.000000 +vt 6.378265 -0.715192 0.000000 +vt 6.747194 -1.072788 0.000000 +vt 7.116123 -1.430384 0.000000 +vt -5.058539 8.582302 0.000000 +vt -4.689610 8.224706 0.000000 +vt -4.320681 7.867110 0.000000 +vt -3.951752 7.509514 0.000000 +vt -3.582822 7.151918 0.000000 +vt -3.213893 6.794322 0.000000 +vt -2.844964 6.436726 0.000000 +vt -2.476035 6.079131 0.000000 +vt -2.107106 5.721535 0.000000 +vt -1.738177 5.363939 0.000000 +vt -1.369247 5.006343 0.000000 +vt -1.000318 4.648747 0.000000 +vt -0.631389 4.291151 0.000000 +vt -0.262460 3.933555 0.000000 +vt 0.106469 3.575959 0.000000 +vt 0.475398 3.218363 0.000000 +vt 0.844328 2.860767 0.000000 +vt 1.213257 2.503171 0.000000 +vt 1.582186 2.145575 0.000000 +vt 1.951115 1.787980 0.000000 +vt 2.320044 1.430384 0.000000 +vt 2.688973 1.072788 0.000000 +vt 3.057903 0.715192 0.000000 +vt 3.426832 0.357596 0.000000 +vt 3.795761 -0.000000 0.000000 +vt 4.164690 -0.357596 0.000000 +vt 4.533619 -0.715192 0.000000 +vt 4.902548 -1.072788 0.000000 +vt 5.271477 -1.430384 0.000000 +vt 5.640407 -1.787980 0.000000 +vt 6.009336 -2.145575 0.000000 +vt 6.378265 -2.503171 0.000000 +vt 6.747194 -2.860767 0.000000 +vt 7.116123 -3.218363 0.000000 +vt -5.058539 6.794322 0.000000 +vt -4.689610 6.436726 0.000000 +vt -4.320681 6.079131 0.000000 +vt -3.951752 5.721535 0.000000 +vt -3.582822 5.363939 0.000000 +vt -3.213893 5.006343 0.000000 +vt -2.844964 4.648747 0.000000 +vt -2.476035 4.291151 0.000000 +vt -2.107106 3.933555 0.000000 +vt -1.738177 3.575959 0.000000 +vt -1.369247 3.218363 0.000000 +vt -1.000318 2.860767 0.000000 +vt -0.631389 2.503171 0.000000 +vt -0.262460 2.145575 0.000000 +vt 0.106469 1.787980 0.000000 +vt 0.475398 1.430384 0.000000 +vt 0.844328 1.072788 0.000000 +vt 1.213257 0.715192 0.000000 +vt 1.582186 0.357596 0.000000 +vt 1.951115 -0.000000 0.000000 +vt 2.320044 -0.357596 0.000000 +vt 2.688973 -0.715192 0.000000 +vt 3.057903 -1.072788 0.000000 +vt 3.426832 -1.430384 0.000000 +vt 3.795761 -1.787980 0.000000 +vt 4.164690 -2.145575 0.000000 +vt 4.533619 -2.503171 0.000000 +vt 4.902548 -2.860767 0.000000 +vt 5.271477 -3.218363 0.000000 +vt 5.640407 -3.575959 0.000000 +vt 6.009336 -3.933555 0.000000 +vt 6.378265 -4.291151 0.000000 +vt 6.747194 -4.648747 0.000000 +vt 7.116123 -5.006343 0.000000 +vt -5.058539 6.436726 0.000000 +vt -4.689610 6.079131 0.000000 +vt -4.320681 5.721535 0.000000 +vt -3.951752 5.363939 0.000000 +vt -3.582822 5.006343 0.000000 +vt -3.213893 4.648747 0.000000 +vt -2.844964 4.291151 0.000000 +vt -2.476035 3.933555 0.000000 +vt -2.107106 3.575959 0.000000 +vt -1.738177 3.218363 0.000000 +vt -1.369247 2.860767 0.000000 +vt -1.000318 2.503171 0.000000 +vt -0.631389 2.145575 0.000000 +vt -0.262460 1.787980 0.000000 +vt 0.106469 1.430384 0.000000 +vt 0.475398 1.072788 0.000000 +vt 0.844328 0.715192 0.000000 +vt 1.213257 0.357596 0.000000 +vt 1.582186 -0.000000 0.000000 +vt 1.951115 -0.357596 0.000000 +vt 2.320044 -0.715192 0.000000 +vt 2.688973 -1.072788 0.000000 +vt 3.057903 -1.430384 0.000000 +vt 3.426832 -1.787980 0.000000 +vt 3.795761 -2.145575 0.000000 +vt 4.164690 -2.503171 0.000000 +vt 4.533619 -2.860767 0.000000 +vt 4.902548 -3.218363 0.000000 +vt 5.271477 -3.575959 0.000000 +vt 5.640407 -3.933555 0.000000 +vt 6.009336 -4.291151 0.000000 +vt 6.378265 -4.648747 0.000000 +vt 6.747194 -5.006343 0.000000 +vt 7.116123 -5.363939 0.000000 +vt -5.058539 4.648747 0.000000 +vt -4.689610 4.291151 0.000000 +vt -4.320681 3.933555 0.000000 +vt -3.951752 3.575959 0.000000 +vt -3.582822 3.218363 0.000000 +vt -3.213893 2.860767 0.000000 +vt -2.844964 2.503171 0.000000 +vt -2.476035 2.145575 0.000000 +vt -2.107106 1.787980 0.000000 +vt -1.738177 1.430384 0.000000 +vt -1.369247 1.072788 0.000000 +vt -1.000318 0.715192 0.000000 +vt -0.631389 0.357596 0.000000 +vt -0.262460 -0.000000 0.000000 +vt 0.106469 -0.357596 0.000000 +vt 0.475398 -0.715192 0.000000 +vt 0.844328 -1.072788 0.000000 +vt 1.213257 -1.430384 0.000000 +vt 1.582186 -1.787980 0.000000 +vt 1.951115 -2.145575 0.000000 +vt 2.320044 -2.503171 0.000000 +vt 2.688973 -2.860767 0.000000 +vt 3.057903 -3.218363 0.000000 +vt 3.426832 -3.575959 0.000000 +vt 3.795761 -3.933555 0.000000 +vt 4.164690 -4.291151 0.000000 +vt 4.533619 -4.648747 0.000000 +vt 4.902548 -5.006343 0.000000 +vt 5.271477 -5.363939 0.000000 +vt 5.640407 -5.721535 0.000000 +vt 6.009336 -6.079131 0.000000 +vt 6.378265 -6.436726 0.000000 +vt 6.747194 -6.794322 0.000000 +vt 7.116123 -7.151918 0.000000 +vt -5.058539 4.291151 0.000000 +vt -4.689610 3.933555 0.000000 +vt -4.320681 3.575959 0.000000 +vt -3.951752 3.218363 0.000000 +vt -3.582822 2.860767 0.000000 +vt -3.213893 2.503171 0.000000 +vt -2.844964 2.145575 0.000000 +vt -2.476035 1.787980 0.000000 +vt -2.107106 1.430384 0.000000 +vt -1.738177 1.072788 0.000000 +vt -1.369247 0.715192 0.000000 +vt -1.000318 0.357596 0.000000 +vt -0.631389 -0.000000 0.000000 +vt -0.262460 -0.357596 0.000000 +vt 0.106469 -0.715192 0.000000 +vt 0.475398 -1.072788 0.000000 +vt 0.844328 -1.430384 0.000000 +vt 1.213257 -1.787980 0.000000 +vt 1.582186 -2.145575 0.000000 +vt 1.951115 -2.503171 0.000000 +vt 2.320044 -2.860767 0.000000 +vt 2.688973 -3.218363 0.000000 +vt 3.057903 -3.575959 0.000000 +vt 3.426832 -3.933555 0.000000 +vt 3.795761 -4.291151 0.000000 +vt 4.164690 -4.648747 0.000000 +vt 4.533619 -5.006343 0.000000 +vt 4.902548 -5.363939 0.000000 +vt 5.271477 -5.721535 0.000000 +vt 5.640407 -6.079131 0.000000 +vt 6.009336 -6.436726 0.000000 +vt 6.378265 -6.794322 0.000000 +vt 6.747194 -7.151918 0.000000 +vt 7.116123 -7.509514 0.000000 +vt -5.058539 2.860767 0.000000 +vt -4.689610 2.503171 0.000000 +vt -4.320681 2.145575 0.000000 +vt -3.951752 1.787980 0.000000 +vt -3.582822 1.430384 0.000000 +vt -3.213893 1.072788 0.000000 +vt -2.844964 0.715192 0.000000 +vt -2.476035 0.357596 0.000000 +vt -2.107106 -0.000000 0.000000 +vt -1.738177 -0.357596 0.000000 +vt -1.369247 -0.715192 0.000000 +vt -1.000318 -1.072788 0.000000 +vt -0.631389 -1.430384 0.000000 +vt -0.262460 -1.787980 0.000000 +vt 0.106469 -2.145575 0.000000 +vt 0.475398 -2.503171 0.000000 +vt 0.844328 -2.860767 0.000000 +vt 1.213257 -3.218363 0.000000 +vt 1.582186 -3.575959 0.000000 +vt 1.951115 -3.933555 0.000000 +vt 2.320044 -4.291151 0.000000 +vt 2.688973 -4.648747 0.000000 +vt 3.057903 -5.006343 0.000000 +vt 3.426832 -5.363939 0.000000 +vt 3.795761 -5.721535 0.000000 +vt 4.164690 -6.079131 0.000000 +vt 4.533619 -6.436726 0.000000 +vt 4.902548 -6.794322 0.000000 +vt 5.271477 -7.151918 0.000000 +vt 5.640407 -7.509514 0.000000 +vt 6.009336 -7.867110 0.000000 +vt 6.378265 -8.224706 0.000000 +vt 6.747194 -8.582302 0.000000 +vt 7.116123 -8.939898 0.000000 +vt -5.058539 2.503171 0.000000 +vt -4.689610 2.145575 0.000000 +vt -4.320681 1.787980 0.000000 +vt -3.951752 1.430384 0.000000 +vt -3.582822 1.072788 0.000000 +vt -3.213893 0.715192 0.000000 +vt -2.844964 0.357596 0.000000 +vt -2.476035 -0.000000 0.000000 +vt -2.107106 -0.357596 0.000000 +vt -1.738177 -0.715192 0.000000 +vt -1.369247 -1.072788 0.000000 +vt -1.000318 -1.430384 0.000000 +vt -0.631389 -1.787980 0.000000 +vt -0.262460 -2.145575 0.000000 +vt 0.106469 -2.503171 0.000000 +vt 0.475398 -2.860767 0.000000 +vt 0.844328 -3.218363 0.000000 +vt 1.213257 -3.575959 0.000000 +vt 1.582186 -3.933555 0.000000 +vt 1.951115 -4.291151 0.000000 +vt 2.320044 -4.648747 0.000000 +vt 2.688973 -5.006343 0.000000 +vt 3.057903 -5.363939 0.000000 +vt 3.426832 -5.721535 0.000000 +vt 3.795761 -6.079131 0.000000 +vt 4.164690 -6.436726 0.000000 +vt 4.533619 -6.794322 0.000000 +vt 4.902548 -7.151918 0.000000 +vt 5.271477 -7.509514 0.000000 +vt 5.640407 -7.867110 0.000000 +vt 6.009336 -8.224706 0.000000 +vt 6.378265 -8.582302 0.000000 +vt 6.747194 -8.939898 0.000000 +vt 7.116123 -9.297494 0.000000 +vt -5.058539 0.715192 0.000000 +vt -4.689610 0.357596 0.000000 +vt -4.320681 -0.000000 0.000000 +vt -3.951752 -0.357596 0.000000 +vt -3.582822 -0.715192 0.000000 +vt -3.213893 -1.072788 0.000000 +vt -2.844964 -1.430384 0.000000 +vt -2.476035 -1.787980 0.000000 +vt -2.107106 -2.145575 0.000000 +vt -1.738177 -2.503171 0.000000 +vt -1.369247 -2.860767 0.000000 +vt -1.000318 -3.218363 0.000000 +vt -0.631389 -3.575959 0.000000 +vt -0.262460 -3.933555 0.000000 +vt 0.106469 -4.291151 0.000000 +vt 0.475398 -4.648747 0.000000 +vt 0.844328 -5.006343 0.000000 +vt 1.213257 -5.363939 0.000000 +vt 1.582186 -5.721535 0.000000 +vt 1.951115 -6.079131 0.000000 +vt 2.320044 -6.436726 0.000000 +vt 2.688973 -6.794322 0.000000 +vt 3.057903 -7.151918 0.000000 +vt 3.426832 -7.509514 0.000000 +vt 3.795761 -7.867110 0.000000 +vt 4.164690 -8.224706 0.000000 +vt 4.533619 -8.582302 0.000000 +vt 4.902548 -8.939898 0.000000 +vt 5.271477 -9.297494 0.000000 +vt 5.640407 -9.655090 0.000000 +vt 6.009336 -10.012686 0.000000 +vt 6.378265 -10.370282 0.000000 +vt 6.747194 -10.727877 0.000000 +vt 7.116123 -11.085473 0.000000 +vt -5.058539 0.357596 0.000000 +vt -4.689610 -0.000000 0.000000 +vt -4.320681 -0.357596 0.000000 +vt -3.951752 -0.715192 0.000000 +vt -3.582822 -1.072788 0.000000 +vt -3.213893 -1.430384 0.000000 +vt -2.844964 -1.787980 0.000000 +vt -2.476035 -2.145575 0.000000 +vt -2.107106 -2.503171 0.000000 +vt -1.738177 -2.860767 0.000000 +vt -1.369247 -3.218363 0.000000 +vt -1.000318 -3.575959 0.000000 +vt -0.631389 -3.933555 0.000000 +vt -0.262460 -4.291151 0.000000 +vt 0.106469 -4.648747 0.000000 +vt 0.475398 -5.006343 0.000000 +vt 0.844328 -5.363939 0.000000 +vt 1.213257 -5.721535 0.000000 +vt 1.582186 -6.079131 0.000000 +vt 1.951115 -6.436726 0.000000 +vt 2.320044 -6.794322 0.000000 +vt 2.688973 -7.151918 0.000000 +vt 3.057903 -7.509514 0.000000 +vt 3.426832 -7.867110 0.000000 +vt 3.795761 -8.224706 0.000000 +vt 4.164690 -8.582302 0.000000 +vt 4.533619 -8.939898 0.000000 +vt 4.902548 -9.297494 0.000000 +vt 5.271477 -9.655090 0.000000 +vt 5.640407 -10.012686 0.000000 +vt 6.009336 -10.370282 0.000000 +vt 6.378265 -10.727877 0.000000 +vt 6.747194 -11.085473 0.000000 +vt 7.116123 -11.443069 0.000000 +vt -5.058539 -1.072788 0.000000 +vt -4.689610 -1.430384 0.000000 +vt -4.320681 -1.787980 0.000000 +vt -3.951752 -2.145575 0.000000 +vt -3.582822 -2.503171 0.000000 +vt -3.213893 -2.860767 0.000000 +vt -2.844964 -3.218363 0.000000 +vt -2.476035 -3.575959 0.000000 +vt -2.107106 -3.933555 0.000000 +vt -1.738177 -4.291151 0.000000 +vt -1.369247 -4.648747 0.000000 +vt -1.000318 -5.006343 0.000000 +vt -0.631389 -5.363939 0.000000 +vt -0.262460 -5.721535 0.000000 +vt 0.106469 -6.079131 0.000000 +vt 0.475398 -6.436726 0.000000 +vt 0.844328 -6.794322 0.000000 +vt 1.213257 -7.151918 0.000000 +vt 1.582186 -7.509514 0.000000 +vt 1.951115 -7.867110 0.000000 +vt 2.320044 -8.224706 0.000000 +vt 2.688973 -8.582302 0.000000 +vt 3.057903 -8.939898 0.000000 +vt 3.426832 -9.297494 0.000000 +vt 3.795761 -9.655090 0.000000 +vt 4.164690 -10.012686 0.000000 +vt 4.533619 -10.370282 0.000000 +vt 4.902548 -10.727877 0.000000 +vt 5.271477 -11.085473 0.000000 +vt 5.640407 -11.443069 0.000000 +vt 6.009336 -11.800665 0.000000 +vt 6.378265 -12.158261 0.000000 +vt 6.747194 -12.515857 0.000000 +vt 7.116123 -12.873453 0.000000 +vt -5.058539 -1.430384 0.000000 +vt -4.689610 -1.787980 0.000000 +vt -4.320681 -2.145575 0.000000 +vt -3.951752 -2.503171 0.000000 +vt -3.582822 -2.860767 0.000000 +vt -3.213893 -3.218363 0.000000 +vt -2.844964 -3.575959 0.000000 +vt -2.476035 -3.933555 0.000000 +vt -2.107106 -4.291151 0.000000 +vt -1.738177 -4.648747 0.000000 +vt -1.369247 -5.006343 0.000000 +vt -1.000318 -5.363939 0.000000 +vt -0.631389 -5.721535 0.000000 +vt -0.262460 -6.079131 0.000000 +vt 0.106469 -6.436726 0.000000 +vt 0.475398 -6.794322 0.000000 +vt 0.844328 -7.151918 0.000000 +vt 1.213257 -7.509514 0.000000 +vt 1.582186 -7.867110 0.000000 +vt 1.951115 -8.224706 0.000000 +vt 2.320044 -8.582302 0.000000 +vt 2.688973 -8.939898 0.000000 +vt 3.057903 -9.297494 0.000000 +vt 3.426832 -9.655090 0.000000 +vt 3.795761 -10.012686 0.000000 +vt 4.164690 -10.370282 0.000000 +vt 4.533619 -10.727877 0.000000 +vt 4.902548 -11.085473 0.000000 +vt 5.271477 -11.443069 0.000000 +vt 5.640407 -11.800665 0.000000 +vt 6.009336 -12.158261 0.000000 +vt 6.378265 -12.515857 0.000000 +vt 6.747194 -12.873453 0.000000 +vt 7.116123 -13.231049 0.000000 +vt -5.058539 -3.218363 0.000000 +vt -4.689610 -3.575959 0.000000 +vt -4.320681 -3.933555 0.000000 +vt -3.951752 -4.291151 0.000000 +vt -3.582822 -4.648747 0.000000 +vt -3.213893 -5.006343 0.000000 +vt -2.844964 -5.363939 0.000000 +vt -2.476035 -5.721535 0.000000 +vt -2.107106 -6.079131 0.000000 +vt -1.738177 -6.436726 0.000000 +vt -1.369247 -6.794322 0.000000 +vt -1.000318 -7.151918 0.000000 +vt -0.631389 -7.509514 0.000000 +vt -0.262460 -7.867110 0.000000 +vt 0.106469 -8.224706 0.000000 +vt 0.475398 -8.582302 0.000000 +vt 0.844328 -8.939898 0.000000 +vt 1.213257 -9.297494 0.000000 +vt 1.582186 -9.655090 0.000000 +vt 1.951115 -10.012686 0.000000 +vt 2.320044 -10.370282 0.000000 +vt 2.688973 -10.727877 0.000000 +vt 3.057903 -11.085473 0.000000 +vt 3.426832 -11.443069 0.000000 +vt 3.795761 -11.800665 0.000000 +vt 4.164690 -12.158261 0.000000 +vt 4.533619 -12.515857 0.000000 +vt 4.902548 -12.873453 0.000000 +vt 5.271477 -13.231049 0.000000 +vt 5.640407 -13.588645 0.000000 +vt 6.009336 -13.946241 0.000000 +vt 6.378265 -14.303837 0.000000 +vt 6.747194 -14.661433 0.000000 +vt -5.058539 -3.575959 0.000000 +vt -4.689610 -3.933555 0.000000 +vt -4.320681 -4.291151 0.000000 +vt -3.951752 -4.648747 0.000000 +vt -3.582822 -5.006343 0.000000 +vt -3.213893 -5.363939 0.000000 +vt -2.844964 -5.721535 0.000000 +vt -2.476035 -6.079131 0.000000 +vt -2.107106 -6.436726 0.000000 +vt -1.738177 -6.794322 0.000000 +vt -1.369247 -7.151918 0.000000 +vt -1.000318 -7.509514 0.000000 +vt -0.631389 -7.867110 0.000000 +vt -0.262460 -8.224706 0.000000 +vt 0.106469 -8.582302 0.000000 +vt 0.475398 -8.939898 0.000000 +vt 0.844328 -9.297494 0.000000 +vt 1.213257 -9.655090 0.000000 +vt 1.582186 -10.012686 0.000000 +vt 1.951115 -10.370282 0.000000 +vt 2.320044 -10.727877 0.000000 +vt 2.688973 -11.085473 0.000000 +vt 3.057903 -11.443069 0.000000 +vt 3.426832 -11.800665 0.000000 +vt 3.795761 -12.158261 0.000000 +vt 4.164690 -12.515857 0.000000 +vt 4.533619 -12.873453 0.000000 +vt 4.902548 -13.231049 0.000000 +vt 5.271477 -13.588645 0.000000 +vt 5.640407 -13.946241 0.000000 +vt 6.009336 -14.303837 0.000000 +vt 6.378265 -14.661433 0.000000 +vt -5.058539 -5.006343 0.000000 +vt -4.689610 -5.363939 0.000000 +vt -4.320681 -5.721535 0.000000 +vt -3.951752 -6.079131 0.000000 +vt -3.582822 -6.436726 0.000000 +vt -3.213893 -6.794322 0.000000 +vt -2.844964 -7.151918 0.000000 +vt -2.476035 -7.509514 0.000000 +vt -2.107106 -7.867110 0.000000 +vt -1.738177 -8.224706 0.000000 +vt -1.369247 -8.582302 0.000000 +vt -1.000318 -8.939898 0.000000 +vt -0.631389 -9.297494 0.000000 +vt -0.262460 -9.655090 0.000000 +vt 0.106469 -10.012686 0.000000 +vt 0.475398 -10.370282 0.000000 +vt 0.844328 -10.727877 0.000000 +vt 1.213257 -11.085473 0.000000 +vt 1.582186 -11.443069 0.000000 +vt 1.951115 -11.800665 0.000000 +vt 2.320044 -12.158261 0.000000 +vt 2.688973 -12.515857 0.000000 +vt 3.057903 -12.873453 0.000000 +vt 3.426832 -13.231049 0.000000 +vt 3.795761 -13.588645 0.000000 +vt 4.164690 -13.946241 0.000000 +vt 4.533619 -14.303837 0.000000 +vt 4.902548 -14.661433 0.000000 +vt -5.058539 -5.363939 0.000000 +vt -4.689610 -5.721535 0.000000 +vt -4.320681 -6.079131 0.000000 +vt -3.951752 -6.436726 0.000000 +vt -3.582822 -6.794322 0.000000 +vt -3.213893 -7.151918 0.000000 +vt -2.844964 -7.509514 0.000000 +vt -2.476035 -7.867110 0.000000 +vt -2.107106 -8.224706 0.000000 +vt -1.738177 -8.582302 0.000000 +vt -1.369247 -8.939898 0.000000 +vt -1.000318 -9.297494 0.000000 +vt -0.631389 -9.655090 0.000000 +vt -0.262460 -10.012686 0.000000 +vt 0.106469 -10.370282 0.000000 +vt 0.475398 -10.727877 0.000000 +vt 0.844328 -11.085473 0.000000 +vt 1.213257 -11.443069 0.000000 +vt 1.582186 -11.800665 0.000000 +vt 1.951115 -12.158261 0.000000 +vt 2.320044 -12.515857 0.000000 +vt 2.688973 -12.873453 0.000000 +vt 3.057903 -13.231049 0.000000 +vt 3.426832 -13.588645 0.000000 +vt 3.795761 -13.946241 0.000000 +vt 4.164690 -14.303837 0.000000 +vt 4.533619 -14.661433 0.000000 +vt -5.058539 -7.151918 0.000000 +vt -4.689610 -7.509514 0.000000 +vt -4.320681 -7.867110 0.000000 +vt -3.951752 -8.224706 0.000000 +vt -3.582822 -8.582302 0.000000 +vt -3.213893 -8.939898 0.000000 +vt -2.844964 -9.297494 0.000000 +vt -2.476035 -9.655090 0.000000 +vt -2.107106 -10.012686 0.000000 +vt -1.738177 -10.370282 0.000000 +vt -1.369247 -10.727877 0.000000 +vt -1.000318 -11.085473 0.000000 +vt -0.631389 -11.443069 0.000000 +vt -0.262460 -11.800665 0.000000 +vt 0.106469 -12.158261 0.000000 +vt 0.475398 -12.515857 0.000000 +vt 0.844328 -12.873453 0.000000 +vt 1.213257 -13.231049 0.000000 +vt 1.582186 -13.588645 0.000000 +vt 1.951115 -13.946241 0.000000 +vt 2.320044 -14.303837 0.000000 +vt 2.688973 -14.661433 0.000000 +vt -5.058539 -7.509514 0.000000 +vt -4.689610 -7.867110 0.000000 +vt -4.320681 -8.224706 0.000000 +vt -3.951752 -8.582302 0.000000 +vt -3.582822 -8.939898 0.000000 +vt -3.213893 -9.297494 0.000000 +vt -2.844964 -9.655090 0.000000 +vt -2.476035 -10.012686 0.000000 +vt -2.107106 -10.370282 0.000000 +vt -1.738177 -10.727877 0.000000 +vt -1.369247 -11.085473 0.000000 +vt -1.000318 -11.443069 0.000000 +vt -0.631389 -11.800665 0.000000 +vt -0.262460 -12.158261 0.000000 +vt 0.106469 -12.515857 0.000000 +vt 0.475398 -12.873453 0.000000 +vt 0.844328 -13.231049 0.000000 +vt 1.213257 -13.588645 0.000000 +vt 1.582186 -13.946241 0.000000 +vt 1.951115 -14.303837 0.000000 +vt 2.320044 -14.661433 0.000000 +vt -5.058539 -9.297494 0.000000 +vt -4.689610 -9.655090 0.000000 +vt -4.320681 -10.012686 0.000000 +vt -3.951752 -10.370282 0.000000 +vt -3.582822 -10.727877 0.000000 +vt -3.213893 -11.085473 0.000000 +vt -2.844964 -11.443069 0.000000 +vt -2.476035 -11.800665 0.000000 +vt -2.107106 -12.158261 0.000000 +vt -1.738177 -12.515857 0.000000 +vt -1.369247 -12.873453 0.000000 +vt -1.000318 -13.231049 0.000000 +vt -0.631389 -13.588645 0.000000 +vt -0.262460 -13.946241 0.000000 +vt 0.106469 -14.303837 0.000000 +vt 0.475398 -14.661433 0.000000 +vt -5.058539 -11.085473 0.000000 +vt -4.689610 -11.443069 0.000000 +vt -4.320681 -11.800665 0.000000 +vt -3.951752 -12.158261 0.000000 +vt -3.582822 -12.515857 0.000000 +vt -3.213893 -12.873453 0.000000 +vt -2.844964 -13.231049 0.000000 +vt -2.476035 -13.588645 0.000000 +vt -2.107106 -13.946241 0.000000 +vt -1.738177 -14.303837 0.000000 +vt -1.369247 -14.661433 0.000000 +vt -5.058539 -11.443069 0.000000 +vt -4.689610 -11.800665 0.000000 +vt -4.320681 -12.158261 0.000000 +vt -3.951752 -12.515857 0.000000 +vt -3.582822 -12.873453 0.000000 +vt -3.213893 -13.231049 0.000000 +vt -2.844964 -13.588645 0.000000 +vt -2.476035 -13.946241 0.000000 +vt -2.107106 -14.303837 0.000000 +vt -1.738177 -14.661433 0.000000 +vt -5.058539 -13.231049 0.000000 +vt -4.689610 -13.588645 0.000000 +vt -4.320681 -13.946241 0.000000 +vt -3.951752 -14.303837 0.000000 +vt -3.582822 -14.661433 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.000000 -0.100000 0.000000 +vn 0.099470 -0.000000 -0.010282 +vn 0.100000 -0.000000 0.000000 +vn 0.100000 -0.000000 0.000000 +vn 0.099470 0.000000 0.010282 +vn 0.099470 0.000000 0.010282 +vn 0.097886 0.000000 0.020455 +vn 0.097886 0.000000 0.020455 +vn 0.095264 0.000000 0.030411 +vn 0.095264 0.000000 0.030411 +vn 0.091632 0.000000 0.040045 +vn 0.091632 0.000000 0.040045 +vn 0.087029 0.000000 0.049255 +vn 0.087029 0.000000 0.049255 +vn 0.081503 0.000000 0.057942 +vn 0.081503 0.000000 0.057942 +vn 0.075113 0.000000 0.066015 +vn 0.075113 0.000000 0.066015 +vn 0.067927 0.000000 0.073389 +vn 0.067927 0.000000 0.073389 +vn 0.060021 0.000000 0.079984 +vn 0.060021 0.000000 0.079984 +vn 0.051479 0.000000 0.085731 +vn 0.051479 0.000000 0.085731 +vn 0.042391 0.000000 0.090570 +vn 0.042391 0.000000 0.090570 +vn 0.032854 0.000000 0.094449 +vn 0.032854 0.000000 0.094449 +vn 0.022969 0.000000 0.097326 +vn 0.022969 0.000000 0.097326 +vn 0.012840 0.000000 0.099172 +vn 0.012840 0.000000 0.099172 +vn 0.002575 0.000000 0.099967 +vn 0.002575 0.000000 0.099967 +vn -0.007718 0.000000 0.099702 +vn -0.007718 0.000000 0.099702 +vn -0.017928 0.000000 0.098380 +vn -0.017928 0.000000 0.098380 +vn -0.027949 0.000000 0.096015 +vn -0.027949 0.000000 0.096015 +vn -0.037673 0.000000 0.092632 +vn -0.037673 0.000000 0.092632 +vn -0.046998 0.000000 0.088268 +vn -0.046998 0.000000 0.088268 +vn -0.055824 0.000000 0.082968 +vn -0.055824 0.000000 0.082968 +vn -0.064059 0.000000 0.076788 +vn -0.064059 0.000000 0.076788 +vn -0.071615 0.000000 0.069794 +vn -0.071615 0.000000 0.069794 +vn -0.078412 0.000000 0.062061 +vn -0.078412 0.000000 0.062061 +vn -0.084378 0.000000 0.053670 +vn -0.084378 0.000000 0.053670 +vn -0.089449 0.000000 0.044709 +vn -0.089449 0.000000 0.044709 +vn -0.093572 0.000000 0.035275 +vn -0.093572 0.000000 0.035275 +vn -0.096703 0.000000 0.025467 +vn -0.096703 0.000000 0.025467 +vn -0.098809 0.000000 0.015389 +vn -0.098809 0.000000 0.015389 +vn -0.099867 0.000000 0.005148 +vn -0.099867 0.000000 0.005148 +vn -0.099867 -0.000000 -0.005148 +vn -0.099867 -0.000000 -0.005148 +vn -0.098809 -0.000000 -0.015389 +vn -0.098809 -0.000000 -0.015389 +vn -0.096703 -0.000000 -0.025467 +vn -0.096703 -0.000000 -0.025467 +vn -0.093572 -0.000000 -0.035275 +vn -0.093572 -0.000000 -0.035275 +vn -0.089449 -0.000000 -0.044709 +vn -0.089449 -0.000000 -0.044709 +vn -0.084378 -0.000000 -0.053670 +vn -0.084378 -0.000000 -0.053670 +vn -0.078412 -0.000000 -0.062061 +vn -0.078412 -0.000000 -0.062061 +vn -0.071615 -0.000000 -0.069794 +vn -0.071615 -0.000000 -0.069794 +vn -0.064059 -0.000000 -0.076788 +vn -0.064059 -0.000000 -0.076788 +vn -0.055824 -0.000000 -0.082968 +vn -0.055824 -0.000000 -0.082968 +vn -0.046998 -0.000000 -0.088268 +vn -0.046998 -0.000000 -0.088268 +vn -0.037673 -0.000000 -0.092632 +vn -0.037673 -0.000000 -0.092632 +vn -0.027949 -0.000000 -0.096015 +vn -0.027949 -0.000000 -0.096015 +vn -0.017928 -0.000000 -0.098380 +vn -0.017928 -0.000000 -0.098380 +vn -0.007718 -0.000000 -0.099702 +vn -0.007718 -0.000000 -0.099702 +vn 0.002575 -0.000000 -0.099967 +vn 0.002575 -0.000000 -0.099967 +vn 0.012840 -0.000000 -0.099172 +vn 0.012840 -0.000000 -0.099172 +vn 0.022969 -0.000000 -0.097326 +vn 0.022969 -0.000000 -0.097326 +vn 0.032854 -0.000000 -0.094449 +vn 0.032854 -0.000000 -0.094449 +vn 0.042391 -0.000000 -0.090570 +vn 0.042391 -0.000000 -0.090570 +vn 0.051479 -0.000000 -0.085731 +vn 0.051479 -0.000000 -0.085731 +vn 0.060021 -0.000000 -0.079984 +vn 0.060021 -0.000000 -0.079984 +vn 0.067927 -0.000000 -0.073389 +vn 0.067927 -0.000000 -0.073389 +vn 0.075113 -0.000000 -0.066015 +vn 0.075113 -0.000000 -0.066015 +vn 0.081503 -0.000000 -0.057942 +vn 0.081503 -0.000000 -0.057942 +vn 0.087029 -0.000000 -0.049255 +vn 0.087029 -0.000000 -0.049255 +vn 0.091632 -0.000000 -0.040045 +vn 0.091632 -0.000000 -0.040045 +vn 0.095264 -0.000000 -0.030411 +vn 0.095264 -0.000000 -0.030411 +vn 0.097886 -0.000000 -0.020455 +vn 0.097886 -0.000000 -0.020455 +vn 0.099470 -0.000000 -0.010282 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.000000 0.100000 -0.000000 +vn 0.099348 0.000000 0.011399 +vn 0.099837 0.000000 0.005709 +vn 0.100000 -0.000000 0.000000 +vn 0.099837 -0.000000 -0.005709 +vn 0.099348 -0.000000 -0.011399 +vn 0.098535 -0.000000 -0.017052 +vn 0.097401 -0.000000 -0.022650 +vn 0.095949 -0.000000 -0.028173 +vn 0.094184 -0.000000 -0.033605 +vn 0.092112 -0.000000 -0.038927 +vn 0.089740 -0.000000 -0.044122 +vn 0.087075 -0.000000 -0.049173 +vn 0.084125 -0.000000 -0.054064 +vn 0.080902 -0.000000 -0.058779 +vn 0.077414 -0.000000 -0.063301 +vn 0.073674 -0.000000 -0.067617 +vn 0.069694 -0.000000 -0.071713 +vn 0.065486 -0.000000 -0.075575 +vn 0.061065 -0.000000 -0.079190 +vn 0.056444 -0.000000 -0.082547 +vn 0.051640 -0.000000 -0.085635 +vn 0.046667 -0.000000 -0.088443 +vn 0.041542 -0.000000 -0.090963 +vn 0.036281 -0.000000 -0.093186 +vn 0.030902 -0.000000 -0.095106 +vn 0.025422 -0.000000 -0.096715 +vn 0.019859 -0.000000 -0.098008 +vn 0.014231 -0.000000 -0.098982 +vn 0.008558 -0.000000 -0.099633 +vn 0.002856 -0.000000 -0.099959 +vn -0.002856 -0.000000 -0.099959 +vn -0.008558 -0.000000 -0.099633 +vn -0.014231 -0.000000 -0.098982 +vn -0.019859 -0.000000 -0.098008 +vn -0.025422 -0.000000 -0.096715 +vn -0.030902 -0.000000 -0.095106 +vn -0.036281 -0.000000 -0.093186 +vn -0.041542 -0.000000 -0.090963 +vn -0.046667 -0.000000 -0.088443 +vn -0.051640 -0.000000 -0.085635 +vn -0.056444 -0.000000 -0.082547 +vn -0.061065 -0.000000 -0.079190 +vn -0.065486 -0.000000 -0.075575 +vn -0.069694 -0.000000 -0.071713 +vn -0.073674 -0.000000 -0.067617 +vn -0.077414 -0.000000 -0.063301 +vn -0.080902 -0.000000 -0.058779 +vn -0.084125 -0.000000 -0.054064 +vn -0.087075 -0.000000 -0.049173 +vn -0.089740 -0.000000 -0.044122 +vn -0.092112 -0.000000 -0.038927 +vn -0.094184 -0.000000 -0.033605 +vn -0.095949 -0.000000 -0.028173 +vn -0.097401 -0.000000 -0.022650 +vn -0.098535 -0.000000 -0.017052 +vn -0.099348 -0.000000 -0.011399 +vn -0.099837 -0.000000 -0.005709 +vn -0.100000 -0.000000 -0.000000 +vn -0.099837 0.000000 0.005709 +vn -0.099348 0.000000 0.011399 +vn -0.098535 0.000000 0.017052 +vn -0.097401 0.000000 0.022650 +vn -0.095949 0.000000 0.028173 +vn -0.094184 0.000000 0.033605 +vn -0.092112 0.000000 0.038927 +vn -0.089740 0.000000 0.044122 +vn -0.087075 0.000000 0.049173 +vn -0.084125 0.000000 0.054064 +vn -0.080902 0.000000 0.058779 +vn -0.077414 0.000000 0.063301 +vn -0.073674 0.000000 0.067617 +vn -0.069694 0.000000 0.071713 +vn -0.065486 0.000000 0.075575 +vn -0.061065 0.000000 0.079190 +vn -0.056444 0.000000 0.082547 +vn -0.051640 0.000000 0.085635 +vn -0.046667 0.000000 0.088443 +vn -0.041542 0.000000 0.090963 +vn -0.036281 0.000000 0.093186 +vn -0.030902 0.000000 0.095106 +vn -0.025422 0.000000 0.096715 +vn -0.019859 0.000000 0.098008 +vn -0.014231 0.000000 0.098982 +vn -0.008558 0.000000 0.099633 +vn -0.002856 0.000000 0.099959 +vn 0.002856 0.000000 0.099959 +vn 0.008558 0.000000 0.099633 +vn 0.014231 0.000000 0.098982 +vn 0.019859 0.000000 0.098008 +vn 0.025422 0.000000 0.096715 +vn 0.030902 0.000000 0.095106 +vn 0.036281 0.000000 0.093186 +vn 0.041542 0.000000 0.090963 +vn 0.046667 0.000000 0.088443 +vn 0.051640 0.000000 0.085635 +vn 0.056444 0.000000 0.082547 +vn 0.061065 0.000000 0.079190 +vn 0.065486 0.000000 0.075575 +vn 0.069694 0.000000 0.071713 +vn 0.073674 0.000000 0.067617 +vn 0.077414 0.000000 0.063301 +vn 0.080902 0.000000 0.058779 +vn 0.084125 0.000000 0.054064 +vn 0.087075 0.000000 0.049173 +vn 0.089740 0.000000 0.044122 +vn 0.092112 0.000000 0.038927 +vn 0.094184 0.000000 0.033605 +vn 0.095949 0.000000 0.028173 +vn 0.097401 0.000000 0.022650 +vn 0.098535 0.000000 0.017052 +vn -0.039739 0.091652 -0.004560 +vn -0.046523 0.088453 -0.003405 +vn -0.040000 0.091652 -0.000000 +vn -0.046648 0.088453 -0.000000 +vn -0.046523 0.088453 0.003405 +vn -0.053041 0.084774 -0.000000 +vn -0.052900 0.084774 0.003872 +vn -0.059146 0.080633 -0.000000 +vn -0.058989 0.080633 0.004317 +vn -0.064930 0.076053 -0.000000 +vn -0.064757 0.076053 0.004740 +vn -0.070360 0.071060 -0.000000 +vn -0.070172 0.071060 0.005136 +vn -0.075407 0.065680 -0.000000 +vn -0.075205 0.065680 0.005504 +vn -0.080043 0.059942 -0.000000 +vn -0.079830 0.059942 0.005843 +vn -0.084244 0.053878 -0.000000 +vn -0.084020 0.053878 0.006149 +vn -0.087987 0.047521 0.000000 +vn -0.087752 0.047521 0.006423 +vn -0.091251 0.040906 0.000000 +vn -0.091007 0.040906 0.006661 +vn -0.094018 0.034068 0.000000 +vn -0.093767 0.034068 0.006863 +vn -0.096274 0.027044 0.000000 +vn -0.096017 0.027044 0.007028 +vn -0.098005 0.019873 0.000000 +vn -0.097744 0.019873 0.007154 +vn -0.099204 0.012594 0.000000 +vn -0.098939 0.012594 0.007241 +vn -0.099862 0.005247 0.000000 +vn -0.099596 0.005247 0.007289 +vn -0.099977 -0.002129 0.000000 +vn -0.099711 -0.002129 0.007298 +vn -0.099548 -0.009494 0.000000 +vn -0.099283 -0.009494 0.007267 +vn -0.098578 -0.016806 0.000000 +vn -0.098315 -0.016806 0.007196 +vn -0.097070 -0.024028 0.000000 +vn -0.096811 -0.024028 0.007086 +vn -0.095035 -0.031118 0.000000 +vn -0.094781 -0.031118 0.006937 +vn -0.092482 -0.038039 0.000000 +vn -0.092236 -0.038039 0.006751 +vn -0.089427 -0.044754 0.000000 +vn -0.089188 -0.044754 0.006528 +vn -0.085884 -0.051224 0.000000 +vn -0.085655 -0.051224 0.006269 +vn -0.081874 -0.057416 0.000000 +vn -0.081656 -0.057416 0.005976 +vn -0.077419 -0.063296 0.000000 +vn -0.077212 -0.063296 0.005651 +vn -0.072542 -0.068831 0.000000 +vn -0.072348 -0.068831 0.005295 +vn -0.067270 -0.073991 0.000000 +vn -0.067091 -0.073991 0.004910 +vn -0.061633 -0.078749 0.000000 +vn -0.061468 -0.078749 0.004499 +vn -0.055660 -0.083078 0.000000 +vn -0.055511 -0.083078 0.004063 +vn -0.049384 -0.086955 0.000000 +vn -0.049252 -0.086955 0.003605 +vn -0.042839 -0.090359 0.000000 +vn -0.042725 -0.090359 0.003127 +vn -0.036062 -0.093271 0.000000 +vn -0.035965 -0.093271 0.002632 +vn -0.029088 -0.095676 0.000000 +vn -0.029010 -0.095676 0.002123 +vn -0.021955 -0.097560 0.000000 +vn -0.021897 -0.097560 0.001603 +vn -0.014704 -0.098913 0.000000 +vn -0.014664 -0.098913 0.001073 +vn -0.007372 -0.099728 0.000000 +vn -0.007352 -0.099728 0.000538 +vn -0.000000 -0.100000 0.000000 +vn -0.046151 0.088453 -0.006792 +vn -0.038960 0.091652 -0.009060 +vn -0.045532 0.088453 -0.010143 +vn -0.044670 0.088453 -0.013439 +vn -0.050792 0.084774 -0.015281 +vn -0.049541 0.084774 -0.018948 +vn -0.055244 0.080633 -0.021129 +vn -0.053554 0.080633 -0.025105 +vn -0.058791 0.076053 -0.027560 +vn -0.056622 0.076053 -0.031778 +vn -0.061357 0.071060 -0.034435 +vn -0.058680 0.071060 -0.038822 +vn -0.062889 0.065680 -0.041607 +vn -0.059684 0.065680 -0.046087 +vn -0.063354 0.059942 -0.048920 +vn -0.059614 0.059942 -0.053414 +vn -0.062743 0.053878 -0.056218 +vn -0.058472 0.053878 -0.060648 +vn -0.061070 0.047521 -0.063342 +vn -0.056283 0.047521 -0.067631 +vn -0.058371 0.040906 -0.070140 +vn -0.053095 0.040906 -0.074213 +vn -0.054705 0.034068 -0.076464 +vn -0.048978 0.034068 -0.080253 +vn -0.050153 0.027044 -0.082179 +vn -0.044020 0.027044 -0.085620 +vn -0.044812 0.019873 -0.087160 +vn -0.038330 0.019873 -0.090199 +vn -0.038799 0.012594 -0.091302 +vn -0.032031 0.012594 -0.093890 +vn -0.032244 0.005247 -0.094514 +vn -0.025258 0.005247 -0.096615 +vn -0.025288 -0.002129 -0.096726 +vn -0.018160 -0.002129 -0.098314 +vn -0.018082 -0.009494 -0.097892 +vn -0.010888 -0.009494 -0.098951 +vn -0.010782 -0.016806 -0.097986 +vn -0.003600 -0.016806 -0.098512 +vn -0.003545 -0.024028 -0.097006 +vn 0.003545 -0.024028 -0.097006 +vn 0.003471 -0.031118 -0.094972 +vn 0.010394 -0.031118 -0.094465 +vn 0.010115 -0.038039 -0.091928 +vn 0.016798 -0.038039 -0.090944 +vn 0.016243 -0.044754 -0.087939 +vn 0.022619 -0.044754 -0.086519 +vn 0.021723 -0.051224 -0.083091 +vn 0.027730 -0.051224 -0.081284 +vn 0.026436 -0.057416 -0.077489 +vn 0.032021 -0.057416 -0.075353 +vn 0.030279 -0.063296 -0.071252 +vn 0.035399 -0.063296 -0.068852 +vn 0.033169 -0.068831 -0.064515 +vn 0.037790 -0.068831 -0.061921 +vn 0.035044 -0.073991 -0.057422 +vn 0.039142 -0.073991 -0.054710 +vn 0.035862 -0.078749 -0.050125 +vn 0.039425 -0.078749 -0.047374 +vn 0.035604 -0.083078 -0.042783 +vn 0.038632 -0.083078 -0.040070 +vn 0.034276 -0.086955 -0.035552 +vn 0.036780 -0.086955 -0.032955 +vn 0.031906 -0.090359 -0.028588 +vn 0.033907 -0.090359 -0.026182 +vn 0.028543 -0.093271 -0.022040 +vn 0.030075 -0.093271 -0.019898 +vn 0.024259 -0.095676 -0.016050 +vn 0.025366 -0.095676 -0.014236 +vn 0.019146 -0.097560 -0.010745 +vn 0.019879 -0.097560 -0.009319 +vn 0.013313 -0.098913 -0.006241 +vn 0.013733 -0.098913 -0.005253 +vn 0.006885 -0.099728 -0.002633 +vn 0.007059 -0.099728 -0.002124 +vn -0.037674 0.091652 -0.013442 +vn -0.043570 0.088453 -0.016664 +vn -0.048026 0.084774 -0.022514 +vn -0.051579 0.080633 -0.028947 +vn -0.054151 0.076053 -0.035826 +vn -0.055689 0.071060 -0.043002 +vn -0.056161 0.065680 -0.050320 +vn -0.055556 0.059942 -0.057623 +vn -0.053889 0.053878 -0.064754 +vn -0.051196 0.047521 -0.071559 +vn -0.047536 0.040906 -0.077891 +vn -0.042989 0.034068 -0.083614 +vn -0.037653 0.027044 -0.088605 +vn -0.031644 0.019873 -0.092756 +vn -0.025092 0.012594 -0.095978 +vn -0.018139 0.005247 -0.098201 +vn -0.010935 -0.002129 -0.099378 +vn -0.003636 -0.009494 -0.099482 +vn 0.003600 -0.016806 -0.098512 +vn 0.010617 -0.024028 -0.096488 +vn 0.017262 -0.031118 -0.093454 +vn 0.023392 -0.038039 -0.089475 +vn 0.028874 -0.044754 -0.084637 +vn 0.033590 -0.051224 -0.079043 +vn 0.037436 -0.057416 -0.072814 +vn 0.040331 -0.063296 -0.066084 +vn 0.042209 -0.068831 -0.058998 +vn 0.043031 -0.073991 -0.051707 +vn 0.042778 -0.078749 -0.044370 +vn 0.041454 -0.083078 -0.037143 +vn 0.039087 -0.086955 -0.030182 +vn 0.035728 -0.090359 -0.023637 +vn 0.031448 -0.093271 -0.017649 +vn 0.026337 -0.095676 -0.012346 +vn 0.020507 -0.097560 -0.007843 +vn 0.014080 -0.098913 -0.004236 +vn 0.007196 -0.099728 -0.001603 +vn -0.035896 0.091652 -0.017649 +vn -0.042237 0.088453 -0.019800 +vn -0.046255 0.084774 -0.025959 +vn -0.049328 0.080633 -0.032635 +vn -0.051392 0.076053 -0.039683 +vn -0.052402 0.071060 -0.046952 +vn -0.052338 0.065680 -0.054286 +vn -0.051202 0.059942 -0.061525 +vn -0.049018 0.053878 -0.068515 +vn -0.045836 0.047521 -0.075105 +vn -0.041724 0.040906 -0.081153 +vn -0.036771 0.034068 -0.086529 +vn -0.031085 0.027044 -0.091117 +vn -0.024789 0.019873 -0.094819 +vn -0.018019 0.012594 -0.097554 +vn -0.010922 0.005247 -0.099263 +vn -0.003651 -0.002129 -0.099911 +vn 0.003636 -0.009494 -0.099482 +vn 0.010782 -0.016806 -0.097986 +vn 0.017632 -0.024028 -0.095456 +vn 0.024038 -0.031118 -0.091945 +vn 0.029861 -0.038039 -0.087529 +vn 0.034975 -0.044754 -0.082303 +vn 0.039270 -0.051224 -0.076380 +vn 0.042652 -0.057416 -0.069887 +vn 0.045047 -0.063296 -0.062964 +vn 0.046403 -0.068831 -0.055759 +vn 0.046691 -0.073991 -0.048428 +vn 0.045902 -0.078749 -0.041129 +vn 0.044055 -0.083078 -0.034018 +vn 0.041186 -0.086955 -0.027249 +vn 0.037358 -0.090359 -0.020966 +vn 0.032652 -0.093271 -0.015307 +vn 0.027168 -0.095676 -0.010391 +vn 0.021025 -0.097560 -0.006325 +vn 0.014352 -0.098913 -0.003197 +vn 0.007293 -0.099728 -0.001073 +vn -0.040679 0.088453 -0.022830 +vn -0.033650 0.091652 -0.021626 +vn -0.038904 0.088453 -0.025739 +vn -0.036921 0.088453 -0.028510 +vn -0.041982 0.084774 -0.032417 +vn -0.039504 0.084774 -0.035396 +vn -0.044051 0.080633 -0.039470 +vn -0.041052 0.080633 -0.042580 +vn -0.045066 0.076053 -0.046743 +vn -0.041534 0.076053 -0.049908 +vn -0.045007 0.071060 -0.054082 +vn -0.040939 0.071060 -0.057223 +vn -0.043876 0.065680 -0.061327 +vn -0.039282 0.065680 -0.064367 +vn -0.041698 0.059942 -0.068324 +vn -0.036599 0.059942 -0.071186 +vn -0.038520 0.053878 -0.074922 +vn -0.032948 0.053878 -0.077534 +vn -0.034412 0.047521 -0.080979 +vn -0.028409 0.047521 -0.083274 +vn -0.029463 0.040906 -0.086363 +vn -0.023080 0.040906 -0.088284 +vn -0.023780 0.034068 -0.090961 +vn -0.017077 0.034068 -0.092454 +vn -0.017487 0.027044 -0.094672 +vn -0.010530 0.027044 -0.095696 +vn -0.010719 0.019873 -0.097417 +vn -0.003579 0.019873 -0.097940 +vn -0.003623 0.012594 -0.099138 +vn 0.003623 0.012594 -0.099138 +vn 0.003647 0.005247 -0.099796 +vn 0.010922 0.005247 -0.099263 +vn 0.010935 -0.002129 -0.099378 +vn 0.018160 -0.002129 -0.098314 +vn 0.018082 -0.009494 -0.097892 +vn 0.025179 -0.009494 -0.096311 +vn 0.024934 -0.016806 -0.095372 +vn 0.031829 -0.016806 -0.093298 +vn 0.031342 -0.024028 -0.091871 +vn 0.037965 -0.024028 -0.089338 +vn 0.037169 -0.031118 -0.087465 +vn 0.043454 -0.031118 -0.084519 +vn 0.042287 -0.038039 -0.082249 +vn 0.048178 -0.038039 -0.078942 +vn 0.046586 -0.044754 -0.076334 +vn 0.052034 -0.044754 -0.072730 +vn 0.049972 -0.051224 -0.069849 +vn 0.054938 -0.051224 -0.066015 +vn 0.052373 -0.057416 -0.062932 +vn 0.056827 -0.057416 -0.058941 +vn 0.053734 -0.063296 -0.055734 +vn 0.057659 -0.063296 -0.051663 +vn 0.054027 -0.068831 -0.048409 +vn 0.057417 -0.068831 -0.044336 +vn 0.053244 -0.073991 -0.041114 +vn 0.056103 -0.073991 -0.037118 +vn 0.051402 -0.078749 -0.034007 +vn 0.053747 -0.078749 -0.030164 +vn 0.048538 -0.083078 -0.027241 +vn 0.050397 -0.083078 -0.023625 +vn 0.044715 -0.086955 -0.020961 +vn 0.046125 -0.086955 -0.017642 +vn 0.040013 -0.090359 -0.015304 +vn 0.041023 -0.090359 -0.012342 +vn 0.034533 -0.093271 -0.010389 +vn 0.035199 -0.093271 -0.007841 +vn 0.028392 -0.095676 -0.006325 +vn 0.028778 -0.095676 -0.004235 +vn 0.021721 -0.097560 -0.003197 +vn 0.021897 -0.097560 -0.001603 +vn 0.014664 -0.098913 -0.001073 +vn 0.014704 -0.098913 0.000000 +vn 0.007372 -0.099728 0.000000 +vn 0.007352 -0.099728 0.000538 +vn -0.030966 0.091652 -0.025320 +vn -0.034742 0.088453 -0.031129 +vn -0.036815 0.084774 -0.038185 +vn -0.037834 0.080633 -0.045463 +vn -0.037780 0.076053 -0.052807 +vn -0.036653 0.071060 -0.060059 +vn -0.034479 0.065680 -0.067062 +vn -0.031305 0.059942 -0.073668 +vn -0.027201 0.053878 -0.079732 +vn -0.022255 0.047521 -0.085126 +vn -0.016575 0.040906 -0.089733 +vn -0.010283 0.034068 -0.093454 +vn -0.003516 0.027044 -0.096209 +vn 0.003579 0.019873 -0.097940 +vn 0.010850 0.012594 -0.098609 +vn 0.018139 0.005247 -0.098201 +vn 0.025288 -0.002129 -0.096726 +vn 0.032142 -0.009494 -0.094217 +vn 0.038554 -0.016806 -0.090726 +vn 0.044385 -0.024028 -0.086329 +vn 0.049508 -0.031118 -0.081121 +vn 0.053812 -0.038039 -0.075215 +vn 0.057204 -0.044754 -0.068737 +vn 0.059610 -0.051224 -0.061828 +vn 0.060978 -0.057416 -0.054636 +vn 0.061277 -0.063296 -0.047316 +vn 0.060500 -0.068831 -0.040026 +vn 0.058663 -0.073991 -0.032923 +vn 0.055805 -0.078749 -0.026160 +vn 0.051987 -0.083078 -0.019883 +vn 0.047290 -0.086955 -0.014227 +vn 0.041815 -0.090359 -0.009315 +vn 0.035677 -0.093271 -0.005251 +vn 0.029010 -0.095676 -0.002123 +vn 0.021955 -0.097560 0.000000 +vn 0.014664 -0.098913 0.001073 +vn 0.007293 -0.099728 0.001073 +vn -0.027878 0.091652 -0.028685 +vn -0.032377 0.088453 -0.033582 +vn -0.033929 0.084774 -0.040770 +vn -0.034415 0.080633 -0.048103 +vn -0.033825 0.076053 -0.055424 +vn -0.032171 0.071060 -0.062574 +vn -0.029492 0.065680 -0.069400 +vn -0.025844 0.059942 -0.075756 +vn -0.021308 0.053878 -0.081505 +vn -0.015982 0.047521 -0.086523 +vn -0.009980 0.040906 -0.090703 +vn -0.003434 0.034068 -0.093955 +vn 0.003516 0.027044 -0.096209 +vn 0.010719 0.019873 -0.097417 +vn 0.018019 0.012594 -0.097554 +vn 0.025258 0.005247 -0.096615 +vn 0.032281 -0.002129 -0.094623 +vn 0.038934 -0.009494 -0.091619 +vn 0.045074 -0.016806 -0.087669 +vn 0.050568 -0.024028 -0.082859 +vn 0.055297 -0.031118 -0.077291 +vn 0.059159 -0.038039 -0.071086 +vn 0.062069 -0.044754 -0.064378 +vn 0.063964 -0.051224 -0.057312 +vn 0.064803 -0.057416 -0.050039 +vn 0.064567 -0.063296 -0.042717 +vn 0.063260 -0.068831 -0.035503 +vn 0.060910 -0.073991 -0.028553 +vn 0.057566 -0.078749 -0.022017 +vn 0.053300 -0.083078 -0.016036 +vn 0.048203 -0.086955 -0.010738 +vn 0.042383 -0.090359 -0.006237 +vn 0.035965 -0.093271 -0.002632 +vn 0.029088 -0.095676 0.000000 +vn 0.021897 -0.097560 0.001603 +vn 0.014547 -0.098913 0.002141 +vn 0.007196 -0.099728 0.001603 +vn -0.029839 0.088453 -0.035856 +vn -0.024426 0.091652 -0.031676 +vn -0.027142 0.088453 -0.037938 +vn -0.020656 0.091652 -0.034254 +vn -0.024301 0.088453 -0.039818 +vn -0.021329 0.088453 -0.041486 +vn -0.024253 0.084774 -0.047172 +vn -0.020745 0.084774 -0.048816 +vn -0.023132 0.080633 -0.054435 +vn -0.019097 0.080633 -0.055979 +vn -0.020965 0.076053 -0.061452 +vn -0.016423 0.076053 -0.062818 +vn -0.017796 0.071060 -0.068072 +vn -0.012780 0.071060 -0.069189 +vn -0.013697 0.065680 -0.074152 +vn -0.008247 0.065680 -0.074954 +vn -0.008754 0.059942 -0.079563 +vn -0.002923 0.059942 -0.079990 +vn -0.003077 0.053878 -0.084188 +vn 0.003077 0.053878 -0.084188 +vn 0.003213 0.047521 -0.087928 +vn 0.009623 0.047521 -0.087459 +vn 0.009980 0.040906 -0.090703 +vn 0.016575 0.040906 -0.089733 +vn 0.017077 0.034068 -0.092454 +vn 0.023780 0.034068 -0.090961 +vn 0.024351 0.027044 -0.093143 +vn 0.031085 0.027044 -0.091117 +vn 0.031644 0.019873 -0.092756 +vn 0.038330 0.019873 -0.090199 +vn 0.038799 0.012594 -0.091302 +vn 0.045360 0.012594 -0.088226 +vn 0.045661 0.005247 -0.088812 +vn 0.052022 0.005247 -0.085242 +vn 0.052082 -0.002129 -0.085340 +vn 0.058173 -0.002129 -0.081311 +vn 0.057923 -0.009494 -0.080962 +vn 0.063678 -0.009494 -0.076518 +vn 0.063057 -0.016806 -0.075771 +vn 0.068420 -0.016806 -0.070966 +vn 0.067374 -0.024028 -0.069881 +vn 0.072295 -0.024028 -0.064777 +vn 0.070779 -0.031118 -0.063419 +vn 0.075220 -0.031118 -0.058083 +vn 0.073200 -0.038039 -0.056523 +vn 0.077130 -0.038039 -0.051029 +vn 0.074582 -0.044754 -0.049343 +vn 0.077984 -0.044754 -0.043767 +vn 0.074895 -0.051224 -0.042033 +vn 0.077764 -0.051224 -0.036454 +vn 0.074133 -0.057416 -0.034752 +vn 0.076472 -0.057416 -0.029248 +vn 0.072310 -0.063296 -0.027656 +vn 0.074136 -0.063296 -0.022304 +vn 0.069466 -0.068831 -0.020899 +vn 0.070806 -0.068831 -0.015773 +vn 0.065661 -0.073991 -0.014627 +vn 0.066554 -0.073991 -0.009795 +vn 0.060976 -0.078749 -0.008974 +vn 0.061468 -0.078749 -0.004499 +vn 0.055511 -0.083078 -0.004063 +vn 0.055660 -0.083078 0.000000 +vn 0.049384 -0.086955 0.000000 +vn 0.049252 -0.086955 0.003605 +vn 0.042725 -0.090359 0.003127 +vn 0.042383 -0.090359 0.006237 +vn 0.035677 -0.093271 0.005251 +vn 0.035199 -0.093271 0.007841 +vn 0.028392 -0.095676 0.006325 +vn 0.027854 -0.095676 0.008380 +vn 0.021025 -0.097560 0.006325 +vn 0.020507 -0.097560 0.007843 +vn 0.013733 -0.098913 0.005253 +vn 0.013313 -0.098913 0.006241 +vn 0.006675 -0.099728 0.003129 +vn 0.006429 -0.099728 0.003608 +vn -0.016617 0.091652 -0.036385 +vn -0.018244 0.088453 -0.042932 +vn -0.017126 0.084774 -0.050200 +vn -0.014960 0.080633 -0.057223 +vn -0.011794 0.076053 -0.063850 +vn -0.007695 0.071060 -0.069938 +vn -0.002754 0.065680 -0.075356 +vn 0.002923 0.059942 -0.079990 +vn 0.009214 0.053878 -0.083739 +vn 0.015982 0.047521 -0.086523 +vn 0.023080 0.040906 -0.088284 +vn 0.030357 0.034068 -0.088982 +vn 0.037653 0.027044 -0.088605 +vn 0.044812 0.019873 -0.087160 +vn 0.051679 0.012594 -0.084680 +vn 0.058106 0.005247 -0.081217 +vn 0.063953 -0.002129 -0.076847 +vn 0.069094 -0.009494 -0.071665 +vn 0.073418 -0.016806 -0.065783 +vn 0.076831 -0.024028 -0.059327 +vn 0.079259 -0.031118 -0.052437 +vn 0.080649 -0.038039 -0.045263 +vn 0.080971 -0.044754 -0.037958 +vn 0.080217 -0.051224 -0.030680 +vn 0.078403 -0.057416 -0.023588 +vn 0.075567 -0.063296 -0.016833 +vn 0.071769 -0.068831 -0.010562 +vn 0.067091 -0.073991 -0.004910 +vn 0.061633 -0.078749 0.000000 +vn 0.055511 -0.083078 0.004063 +vn 0.048858 -0.086955 0.007190 +vn 0.041815 -0.090359 0.009315 +vn 0.034533 -0.093271 0.010389 +vn 0.027168 -0.095676 0.010391 +vn 0.019879 -0.097560 0.009319 +vn 0.012822 -0.098913 0.007196 +vn 0.006148 -0.099728 0.004068 +vn -0.012361 0.091652 -0.038042 +vn -0.015062 0.088453 -0.044149 +vn -0.013416 0.084774 -0.051317 +vn -0.010743 0.080633 -0.058163 +vn -0.007101 0.076053 -0.064540 +vn -0.002570 0.071060 -0.070313 +vn 0.002754 0.065680 -0.075356 +vn 0.008754 0.059942 -0.079563 +vn 0.015302 0.053878 -0.082843 +vn 0.022255 0.047521 -0.085126 +vn 0.029463 0.040906 -0.086363 +vn 0.036771 0.034068 -0.086529 +vn 0.044020 0.027044 -0.085620 +vn 0.051055 0.019873 -0.083657 +vn 0.057723 0.012594 -0.080681 +vn 0.063879 0.005247 -0.076759 +vn 0.069392 -0.002129 -0.071974 +vn 0.074141 -0.009494 -0.066430 +vn 0.078024 -0.016806 -0.060248 +vn 0.080957 -0.024028 -0.053560 +vn 0.082875 -0.031118 -0.046512 +vn 0.083738 -0.038039 -0.039255 +vn 0.083526 -0.044754 -0.031946 +vn 0.082243 -0.051224 -0.024743 +vn 0.079915 -0.057416 -0.017802 +vn 0.076594 -0.063296 -0.011272 +vn 0.072348 -0.068831 -0.005295 +vn 0.067270 -0.073991 0.000000 +vn 0.061468 -0.078749 0.004499 +vn 0.055067 -0.083078 0.008104 +vn 0.048203 -0.086955 0.010738 +vn 0.041023 -0.090359 0.012342 +vn 0.033682 -0.093271 0.012882 +vn 0.026337 -0.095676 0.012346 +vn 0.019146 -0.097560 0.010745 +vn 0.012263 -0.098913 0.008113 +vn 0.005835 -0.099728 0.004506 +vn -0.011799 0.088453 -0.045131 +vn -0.007944 0.091652 -0.039203 +vn -0.008473 0.088453 -0.045872 +vn -0.005102 0.088453 -0.046368 +vn -0.005801 0.084774 -0.052723 +vn -0.001937 0.084774 -0.053006 +vn -0.002160 0.080633 -0.059107 +vn 0.002160 0.080633 -0.059107 +vn 0.002371 0.076053 -0.064886 +vn 0.007101 0.076053 -0.064540 +vn 0.007695 0.071060 -0.069938 +vn 0.012780 0.071060 -0.069189 +vn 0.013697 0.065680 -0.074152 +vn 0.019073 0.065680 -0.072955 +vn 0.020246 0.059942 -0.077441 +vn 0.025844 0.059942 -0.075756 +vn 0.027201 0.053878 -0.079732 +vn 0.032948 0.053878 -0.077534 +vn 0.034412 0.047521 -0.080979 +vn 0.040231 0.047521 -0.078251 +vn 0.041724 0.040906 -0.081153 +vn 0.047536 0.040906 -0.077891 +vn 0.048978 0.034068 -0.080253 +vn 0.054705 0.034068 -0.076464 +vn 0.056018 0.027044 -0.078298 +vn 0.061584 0.027044 -0.074001 +vn 0.062691 0.019873 -0.075332 +vn 0.068023 0.019873 -0.070554 +vn 0.068855 0.012594 -0.071417 +vn 0.073884 0.012594 -0.066201 +vn 0.074375 0.005247 -0.066640 +vn 0.079041 0.005247 -0.061033 +vn 0.079132 -0.002129 -0.061104 +vn 0.083381 -0.002129 -0.055164 +vn 0.083023 -0.009494 -0.054928 +vn 0.086811 -0.009494 -0.048721 +vn 0.085965 -0.016806 -0.048246 +vn 0.089257 -0.016806 -0.041842 +vn 0.087892 -0.024028 -0.041202 +vn 0.090665 -0.024028 -0.034677 +vn 0.088764 -0.031118 -0.033949 +vn 0.091006 -0.031118 -0.027380 +vn 0.088561 -0.038039 -0.026644 +vn 0.090270 -0.038039 -0.020108 +vn 0.087287 -0.044754 -0.019444 +vn 0.088474 -0.044754 -0.013021 +vn 0.084969 -0.051224 -0.012505 +vn 0.085655 -0.051224 -0.006269 +vn 0.081656 -0.057416 -0.005976 +vn 0.081874 -0.057416 0.000000 +vn 0.077419 -0.063296 0.000000 +vn 0.077212 -0.063296 0.005651 +vn 0.072348 -0.068831 0.005295 +vn 0.071769 -0.068831 0.010562 +vn 0.066554 -0.073991 0.009795 +vn 0.065661 -0.073991 0.014627 +vn 0.060158 -0.078749 0.013401 +vn 0.059020 -0.078749 0.017756 +vn 0.053300 -0.083078 0.016036 +vn 0.051987 -0.083078 0.019883 +vn 0.046125 -0.086955 0.017642 +vn 0.044715 -0.086955 0.020961 +vn 0.038789 -0.090359 0.018183 +vn 0.037358 -0.090359 0.020966 +vn 0.031448 -0.093271 0.017649 +vn 0.030075 -0.093271 0.019898 +vn 0.024259 -0.095676 0.016050 +vn 0.023023 -0.095676 0.017778 +vn 0.017378 -0.097560 0.013419 +vn 0.016352 -0.097560 0.014651 +vn 0.010951 -0.098913 0.009812 +vn 0.010205 -0.098913 0.010585 +vn 0.005117 -0.099728 0.005307 +vn 0.004716 -0.099728 0.005666 +vn -0.003423 0.091652 -0.039853 +vn -0.001704 0.088453 -0.046616 +vn 0.001937 0.084774 -0.053006 +vn 0.006469 0.080633 -0.058792 +vn 0.011794 0.076053 -0.063850 +vn 0.017796 0.071060 -0.068072 +vn 0.024347 0.065680 -0.071368 +vn 0.031305 0.059942 -0.073668 +vn 0.038520 0.053878 -0.074922 +vn 0.045836 0.047521 -0.075105 +vn 0.053095 0.040906 -0.074213 +vn 0.060141 0.034068 -0.072267 +vn 0.066821 0.027044 -0.069308 +vn 0.072992 0.019873 -0.065401 +vn 0.078519 0.012594 -0.060631 +vn 0.083285 0.005247 -0.055101 +vn 0.087185 -0.002129 -0.048931 +vn 0.090136 -0.009494 -0.042254 +vn 0.092073 -0.016806 -0.035215 +vn 0.092955 -0.024028 -0.027966 +vn 0.092761 -0.031118 -0.020663 +vn 0.091497 -0.038039 -0.013466 +vn 0.089188 -0.044754 -0.006528 +vn 0.085884 -0.051224 0.000000 +vn 0.081656 -0.057416 0.005976 +vn 0.076594 -0.063296 0.011272 +vn 0.070806 -0.068831 0.015773 +vn 0.064418 -0.073991 0.019381 +vn 0.057566 -0.078749 0.022017 +vn 0.050397 -0.083078 0.023625 +vn 0.043065 -0.086955 0.024169 +vn 0.035728 -0.090359 0.023637 +vn 0.028543 -0.093271 0.022040 +vn 0.021664 -0.095676 0.019411 +vn 0.015239 -0.097560 0.015806 +vn 0.009406 -0.098913 0.011302 +vn 0.004289 -0.099728 0.005995 +vn 0.001142 0.091652 -0.039984 +vn 0.001704 0.088453 -0.046616 +vn 0.005801 0.084774 -0.052723 +vn 0.010743 0.080633 -0.058163 +vn 0.016423 0.076053 -0.062818 +vn 0.022718 0.071060 -0.066591 +vn 0.029492 0.065680 -0.069400 +vn 0.036599 0.059942 -0.071186 +vn 0.043886 0.053878 -0.071910 +vn 0.051196 0.047521 -0.071559 +vn 0.058371 0.040906 -0.070140 +vn 0.065256 0.034068 -0.067684 +vn 0.071702 0.027044 -0.064245 +vn 0.077571 0.019873 -0.059898 +vn 0.082736 0.012594 -0.054737 +vn 0.087085 0.005247 -0.048874 +vn 0.090524 -0.002129 -0.042436 +vn 0.092980 -0.009494 -0.035562 +vn 0.094398 -0.016806 -0.028400 +vn 0.094748 -0.024028 -0.021106 +vn 0.094022 -0.031118 -0.013837 +vn 0.092236 -0.038039 -0.006751 +vn 0.089427 -0.044754 0.000000 +vn 0.085655 -0.051224 0.006269 +vn 0.081002 -0.057416 0.011921 +vn 0.075567 -0.063296 0.016833 +vn 0.069466 -0.068831 0.020899 +vn 0.062832 -0.073991 0.024031 +vn 0.055805 -0.078749 0.026160 +vn 0.048538 -0.083078 0.027241 +vn 0.041186 -0.086955 0.027249 +vn 0.033907 -0.090359 0.026182 +vn 0.026858 -0.093271 0.024065 +vn 0.020189 -0.095676 0.020940 +vn 0.014044 -0.097560 0.016876 +vn 0.008555 -0.098913 0.011958 +vn 0.003840 -0.099728 0.006293 +vn 0.005102 0.088453 -0.046368 +vn 0.005693 0.091652 -0.039593 +vn 0.008473 0.088453 -0.045872 +vn 0.010169 0.091652 -0.038686 +vn 0.011799 0.088453 -0.045131 +vn 0.015062 0.088453 -0.044149 +vn 0.017126 0.084774 -0.050200 +vn 0.020745 0.084774 -0.048816 +vn 0.023132 0.080633 -0.054435 +vn 0.027044 0.080633 -0.052601 +vn 0.029689 0.076053 -0.057745 +vn 0.033825 0.076053 -0.055424 +vn 0.036653 0.071060 -0.060059 +vn 0.040939 0.071060 -0.057223 +vn 0.043876 0.065680 -0.061327 +vn 0.048236 0.065680 -0.057961 +vn 0.051202 0.059942 -0.061525 +vn 0.055556 0.059942 -0.057623 +vn 0.058472 0.053878 -0.060648 +vn 0.062743 0.053878 -0.056218 +vn 0.065530 0.047521 -0.058715 +vn 0.069641 0.047521 -0.053775 +vn 0.072225 0.040906 -0.055770 +vn 0.076103 0.040906 -0.050349 +vn 0.078411 0.034068 -0.051876 +vn 0.081988 0.034068 -0.046014 +vn 0.083955 0.027044 -0.047118 +vn 0.087171 0.027044 -0.040864 +vn 0.088739 0.019873 -0.041599 +vn 0.091539 0.019873 -0.035011 +vn 0.092658 0.012594 -0.035439 +vn 0.094998 0.012594 -0.028581 +vn 0.095628 0.005247 -0.028770 +vn 0.097473 0.005247 -0.021713 +vn 0.097585 -0.002129 -0.021738 +vn 0.098912 -0.002129 -0.014557 +vn 0.098487 -0.009494 -0.014494 +vn 0.099283 -0.009494 -0.007267 +vn 0.098315 -0.016806 -0.007196 +vn 0.098578 -0.016806 0.000000 +vn 0.097070 -0.024028 0.000000 +vn 0.096811 -0.024028 0.007086 +vn 0.094781 -0.031118 0.006937 +vn 0.094022 -0.031118 0.013837 +vn 0.091497 -0.038039 0.013466 +vn 0.090270 -0.038039 0.020108 +vn 0.087287 -0.044754 0.019444 +vn 0.085635 -0.044754 0.025764 +vn 0.082243 -0.051224 0.024743 +vn 0.080217 -0.051224 0.030680 +vn 0.076472 -0.057416 0.029248 +vn 0.074133 -0.057416 0.034752 +vn 0.070099 -0.063296 0.032861 +vn 0.067513 -0.063296 0.037890 +vn 0.063260 -0.068831 0.035503 +vn 0.060500 -0.068831 0.040026 +vn 0.056103 -0.073991 0.037118 +vn 0.053244 -0.073991 0.041114 +vn 0.048782 -0.078749 0.037668 +vn 0.045902 -0.078749 0.041129 +vn 0.041454 -0.083078 0.037143 +vn 0.038632 -0.083078 0.040070 +vn 0.034276 -0.086955 0.035552 +vn 0.031590 -0.086955 0.037959 +vn 0.027403 -0.090359 0.032928 +vn 0.024927 -0.090359 0.034841 +vn 0.020983 -0.093271 0.029329 +vn 0.018786 -0.093271 0.030782 +vn 0.015153 -0.095676 0.024829 +vn 0.013300 -0.095676 0.025869 +vn 0.010039 -0.097560 0.019526 +vn 0.008587 -0.097560 0.020207 +vn 0.005751 -0.098913 0.013532 +vn 0.004748 -0.098913 0.013916 +vn 0.002380 -0.099728 0.006977 +vn 0.001865 -0.099728 0.007132 +vn 0.014512 0.091652 -0.037275 +vn 0.018244 0.088453 -0.042932 +vn 0.024253 0.084774 -0.047172 +vn 0.030812 0.080633 -0.050487 +vn 0.037780 0.076053 -0.052807 +vn 0.045007 0.071060 -0.054082 +vn 0.052338 0.065680 -0.054286 +vn 0.059614 0.059942 -0.053414 +vn 0.066679 0.053878 -0.051488 +vn 0.073381 0.047521 -0.048548 +vn 0.079575 0.040906 -0.044660 +vn 0.085129 0.034068 -0.039907 +vn 0.089921 0.027044 -0.034392 +vn 0.093850 0.019873 -0.028235 +vn 0.096830 0.012594 -0.021570 +vn 0.098798 0.005247 -0.014540 +vn 0.099711 -0.002129 -0.007298 +vn 0.099548 -0.009494 0.000000 +vn 0.098315 -0.016806 0.007196 +vn 0.096036 -0.024028 0.014134 +vn 0.092761 -0.031118 0.020663 +vn 0.088561 -0.038039 0.026644 +vn 0.083526 -0.044754 0.031946 +vn 0.077764 -0.051224 0.036454 +vn 0.071398 -0.057416 0.040071 +vn 0.064567 -0.063296 0.042717 +vn 0.057417 -0.068831 0.044336 +vn 0.050101 -0.073991 0.044891 +vn 0.042778 -0.078749 0.044370 +vn 0.035604 -0.083078 0.042783 +vn 0.028735 -0.086955 0.040164 +vn 0.022317 -0.090359 0.036567 +vn 0.016489 -0.093271 0.032071 +vn 0.011376 -0.095676 0.026771 +vn 0.007089 -0.097560 0.020779 +vn 0.003719 -0.098913 0.014226 +vn 0.001339 -0.099728 0.007249 +vn 0.018667 0.091652 -0.035377 +vn 0.021329 0.088453 -0.041486 +vn 0.027631 0.084774 -0.045276 +vn 0.034415 0.080633 -0.048103 +vn 0.041534 0.076053 -0.049908 +vn 0.048835 0.071060 -0.050652 +vn 0.056161 0.065680 -0.050320 +vn 0.063354 0.059942 -0.048920 +vn 0.070260 0.053878 -0.046483 +vn 0.076729 0.047521 -0.043062 +vn 0.082623 0.040906 -0.038732 +vn 0.087814 0.034068 -0.033586 +vn 0.092192 0.027044 -0.027736 +vn 0.095661 0.019873 -0.021309 +vn 0.098147 0.012594 -0.014444 +vn 0.099596 0.005247 -0.007289 +vn 0.099977 -0.002129 0.000000 +vn 0.099283 -0.009494 0.007267 +vn 0.097527 -0.016806 0.014353 +vn 0.094748 -0.024028 0.021106 +vn 0.091006 -0.031118 0.027380 +vn 0.086380 -0.038039 0.033038 +vn 0.080971 -0.044754 0.037958 +vn 0.074895 -0.051224 0.042033 +vn 0.068283 -0.057416 0.045176 +vn 0.061277 -0.063296 0.047316 +vn 0.054027 -0.068831 0.048409 +vn 0.046691 -0.073991 0.048428 +vn 0.039425 -0.078749 0.047374 +vn 0.032386 -0.083078 0.045268 +vn 0.025726 -0.086955 0.042154 +vn 0.019588 -0.090359 0.038099 +vn 0.014104 -0.093271 0.033189 +vn 0.009392 -0.095676 0.027530 +vn 0.005553 -0.097560 0.021242 +vn 0.002671 -0.098913 0.014459 +vn 0.000806 -0.099728 0.007328 +vn 0.024301 0.088453 -0.039818 +vn 0.022578 0.091652 -0.033019 +vn 0.027142 0.088453 -0.037938 +vn 0.026194 0.091652 -0.030230 +vn 0.029839 0.088453 -0.035856 +vn 0.032377 0.088453 -0.033582 +vn 0.036815 0.084774 -0.038185 +vn 0.039504 0.084774 -0.035396 +vn 0.044051 0.080633 -0.039470 +vn 0.046814 0.080633 -0.036149 +vn 0.051392 0.076053 -0.039683 +vn 0.054151 0.076053 -0.035826 +vn 0.058680 0.071060 -0.038822 +vn 0.061357 0.071060 -0.034435 +vn 0.065758 0.065680 -0.036905 +vn 0.068277 0.065680 -0.032007 +vn 0.072475 0.059942 -0.033975 +vn 0.074762 0.059942 -0.028594 +vn 0.078686 0.053878 -0.030095 +vn 0.080672 0.053878 -0.024271 +vn 0.084256 0.047521 -0.025349 +vn 0.085882 0.047521 -0.019131 +vn 0.089068 0.040906 -0.019841 +vn 0.090278 0.040906 -0.013286 +vn 0.093016 0.034068 -0.013689 +vn 0.093767 0.034068 -0.006863 +vn 0.096017 0.027044 -0.007028 +vn 0.096274 0.027044 -0.000000 +vn 0.098005 0.019873 -0.000000 +vn 0.097744 0.019873 0.007154 +vn 0.098939 0.012594 0.007241 +vn 0.098147 0.012594 0.014444 +vn 0.098798 0.005247 0.014540 +vn 0.097473 0.005247 0.021713 +vn 0.097585 -0.002129 0.021738 +vn 0.095738 -0.002129 0.028803 +vn 0.095328 -0.009494 0.028680 +vn 0.092980 -0.009494 0.035562 +vn 0.092073 -0.016806 0.035215 +vn 0.089257 -0.016806 0.041842 +vn 0.087892 -0.024028 0.041202 +vn 0.084650 -0.024028 0.047508 +vn 0.082875 -0.031118 0.046512 +vn 0.079259 -0.031118 0.052437 +vn 0.077130 -0.038039 0.051029 +vn 0.073200 -0.038039 0.056523 +vn 0.070781 -0.044754 0.054655 +vn 0.066602 -0.044754 0.059676 +vn 0.063964 -0.051224 0.057312 +vn 0.059610 -0.051224 0.061828 +vn 0.056827 -0.057416 0.058941 +vn 0.052373 -0.057416 0.062932 +vn 0.049523 -0.063296 0.059508 +vn 0.045047 -0.063296 0.062964 +vn 0.042209 -0.068831 0.058998 +vn 0.037790 -0.068831 0.061921 +vn 0.035044 -0.073991 0.057422 +vn 0.030759 -0.073991 0.059826 +vn 0.028181 -0.078749 0.054813 +vn 0.024105 -0.078749 0.056724 +vn 0.021769 -0.083078 0.051226 +vn 0.017971 -0.083078 0.052679 +vn 0.015945 -0.086955 0.046739 +vn 0.012491 -0.086955 0.047778 +vn 0.010836 -0.090359 0.041446 +vn 0.007781 -0.090359 0.042127 +vn 0.006550 -0.093271 0.035462 +vn 0.003944 -0.093271 0.035845 +vn 0.003181 -0.095676 0.028913 +vn 0.001062 -0.095676 0.029068 +vn 0.000802 -0.097560 0.021941 +vn -0.000802 -0.097560 0.021941 +vn -0.000537 -0.098913 0.014694 +vn -0.001608 -0.098913 0.014615 +vn -0.000806 -0.099728 0.007328 +vn -0.001339 -0.099728 0.007249 +vn 0.029470 0.091652 -0.027047 +vn 0.034742 0.088453 -0.031129 +vn 0.041982 0.084774 -0.032417 +vn 0.049328 0.080633 -0.032635 +vn 0.056622 0.076053 -0.031778 +vn 0.063707 0.071060 -0.029865 +vn 0.070431 0.065680 -0.026938 +vn 0.076650 0.059942 -0.023060 +vn 0.082229 0.053878 -0.018317 +vn 0.087049 0.047521 -0.012811 +vn 0.091007 0.040906 -0.006661 +vn 0.094018 0.034068 -0.000000 +vn 0.096017 0.027044 0.007028 +vn 0.096961 0.019873 0.014270 +vn 0.096830 0.012594 0.021570 +vn 0.095628 0.005247 0.028770 +vn 0.093380 -0.002129 0.035715 +vn 0.090136 -0.009494 0.042254 +vn 0.085965 -0.016806 0.048246 +vn 0.080957 -0.024028 0.053560 +vn 0.075220 -0.031118 0.058083 +vn 0.068878 -0.038039 0.061715 +vn 0.062069 -0.044754 0.064378 +vn 0.054938 -0.051224 0.066015 +vn 0.047639 -0.057416 0.066587 +vn 0.040331 -0.063296 0.066084 +vn 0.033169 -0.068831 0.064515 +vn 0.026310 -0.073991 0.061912 +vn 0.019900 -0.078749 0.058332 +vn 0.014078 -0.083078 0.053850 +vn 0.008970 -0.086955 0.048563 +vn 0.004685 -0.090359 0.042582 +vn 0.001317 -0.093271 0.036038 +vn -0.001062 -0.095676 0.029068 +vn -0.002401 -0.097560 0.021824 +vn -0.002671 -0.098913 0.014459 +vn -0.001865 -0.099728 0.007132 +vn 0.036921 0.088453 -0.028510 +vn 0.032361 0.091652 -0.023511 +vn 0.038904 0.088453 -0.025739 +vn 0.034830 0.091652 -0.019669 +vn 0.040679 0.088453 -0.022830 +vn 0.042237 0.088453 -0.019800 +vn 0.048026 0.084774 -0.022514 +vn 0.049541 0.084774 -0.018948 +vn 0.055244 0.080633 -0.021129 +vn 0.056639 0.080633 -0.017040 +vn 0.062177 0.076053 -0.018706 +vn 0.063376 0.076053 -0.014118 +vn 0.068676 0.071060 -0.015298 +vn 0.069610 0.071060 -0.010244 +vn 0.074603 0.065680 -0.010979 +vn 0.075205 0.065680 -0.005504 +vn 0.079830 0.059942 -0.005843 +vn 0.080043 0.059942 -0.000000 +vn 0.084244 0.053878 -0.000000 +vn 0.084020 0.053878 0.006149 +vn 0.087752 0.047521 0.006423 +vn 0.087049 0.047521 0.012811 +vn 0.090278 0.040906 0.013286 +vn 0.089068 0.040906 0.019841 +vn 0.091769 0.034068 0.020442 +vn 0.090032 0.034068 0.027087 +vn 0.092192 0.027044 0.027736 +vn 0.089921 0.027044 0.034392 +vn 0.091539 0.019873 0.035011 +vn 0.088739 0.019873 0.041599 +vn 0.089824 0.012594 0.042108 +vn 0.086511 0.012594 0.048552 +vn 0.087085 0.005247 0.048874 +vn 0.083285 0.005247 0.055101 +vn 0.083381 -0.002129 0.055164 +vn 0.079132 -0.002129 0.061104 +vn 0.078792 -0.009494 0.060841 +vn 0.074141 -0.009494 0.066430 +vn 0.073418 -0.016806 0.065783 +vn 0.068420 -0.016806 0.070966 +vn 0.067374 -0.024028 0.069881 +vn 0.062093 -0.024028 0.074613 +vn 0.060791 -0.031118 0.073048 +vn 0.055297 -0.031118 0.077291 +vn 0.053812 -0.038039 0.075215 +vn 0.048178 -0.038039 0.078942 +vn 0.046586 -0.044754 0.076334 +vn 0.040890 -0.044754 0.079531 +vn 0.039270 -0.051224 0.076380 +vn 0.033590 -0.051224 0.079043 +vn 0.032021 -0.057416 0.075353 +vn 0.026436 -0.057416 0.077489 +vn 0.024997 -0.063296 0.073272 +vn 0.019582 -0.063296 0.074901 +vn 0.018348 -0.068831 0.070183 +vn 0.013176 -0.068831 0.071335 +vn 0.012219 -0.073991 0.066151 +vn 0.007357 -0.073991 0.066867 +vn 0.006741 -0.078749 0.061263 +vn 0.002251 -0.078749 0.061592 +vn 0.002033 -0.083078 0.055623 +vn -0.002033 -0.083078 0.055623 +vn -0.001804 -0.086955 0.049351 +vn -0.005401 -0.086955 0.049088 +vn -0.004685 -0.090359 0.042582 +vn -0.007781 -0.090359 0.042127 +vn -0.006550 -0.093271 0.035462 +vn -0.009121 -0.093271 0.034889 +vn -0.007357 -0.095676 0.028142 +vn -0.009392 -0.095676 0.027530 +vn -0.007089 -0.097560 0.020779 +vn -0.008587 -0.097560 0.020207 +vn -0.005751 -0.098913 0.013532 +vn -0.006723 -0.098913 0.013077 +vn -0.003371 -0.099728 0.006556 +vn -0.003840 -0.099728 0.006293 +vn 0.036845 0.091652 -0.015571 +vn 0.043570 0.088453 -0.016664 +vn 0.050792 0.084774 -0.015281 +vn 0.057731 0.080633 -0.012860 +vn 0.064238 0.076053 -0.009454 +vn 0.070172 0.071060 -0.005136 +vn 0.075407 0.065680 -0.000000 +vn 0.079830 0.059942 0.005843 +vn 0.083347 0.053878 0.012266 +vn 0.085882 0.047521 0.019131 +vn 0.087382 0.040906 0.026289 +vn 0.087814 0.034068 0.033586 +vn 0.087171 0.027044 0.040864 +vn 0.085466 0.019873 0.047966 +vn 0.082736 0.012594 0.054737 +vn 0.079041 0.005247 0.061033 +vn 0.074460 -0.002129 0.066717 +vn 0.069094 -0.009494 0.071665 +vn 0.063057 -0.016806 0.075771 +vn 0.056481 -0.024028 0.078946 +vn 0.049508 -0.031118 0.081121 +vn 0.042287 -0.038039 0.082249 +vn 0.034975 -0.044754 0.082303 +vn 0.027730 -0.051224 0.081284 +vn 0.020709 -0.057416 0.079212 +vn 0.014062 -0.063296 0.076131 +vn 0.007934 -0.068831 0.072107 +vn 0.002457 -0.073991 0.067226 +vn -0.002251 -0.078749 0.061592 +vn -0.006088 -0.083078 0.055326 +vn -0.008970 -0.086955 0.048563 +vn -0.010836 -0.090359 0.041446 +vn -0.011644 -0.093271 0.034130 +vn -0.011376 -0.095676 0.026771 +vn -0.010039 -0.097560 0.019526 +vn -0.007660 -0.098913 0.012551 +vn -0.004289 -0.099728 0.005995 +vn 0.038380 0.091652 -0.011269 +vn 0.044670 0.088453 -0.013439 +vn 0.051772 0.084774 -0.011533 +vn 0.058516 0.080633 -0.008612 +vn 0.064757 0.076053 -0.004740 +vn 0.070360 0.071060 -0.000000 +vn 0.075205 0.065680 0.005504 +vn 0.079190 0.059942 0.011654 +vn 0.082229 0.053878 0.018317 +vn 0.084256 0.047521 0.025349 +vn 0.085230 0.040906 0.032598 +vn 0.085129 0.034068 0.039907 +vn 0.083955 0.027044 0.047118 +vn 0.081736 0.019873 0.054076 +vn 0.078519 0.012594 0.060631 +vn 0.074375 0.005247 0.066640 +vn 0.069392 -0.002129 0.071974 +vn 0.063678 -0.009494 0.076518 +vn 0.057358 -0.016806 0.080172 +vn 0.050568 -0.024028 0.082859 +vn 0.043454 -0.031118 0.084519 +vn 0.036170 -0.038039 0.085116 +vn 0.028874 -0.044754 0.084637 +vn 0.021723 -0.051224 0.083091 +vn 0.014871 -0.057416 0.080512 +vn 0.008467 -0.063296 0.076954 +vn 0.002649 -0.068831 0.072494 +vn -0.002457 -0.073991 0.067226 +vn -0.006741 -0.078749 0.061263 +vn -0.010110 -0.083078 0.054734 +vn -0.012491 -0.086955 0.047778 +vn -0.013832 -0.090359 0.040545 +vn -0.014104 -0.093271 0.033189 +vn -0.013300 -0.095676 0.025869 +vn -0.011437 -0.097560 0.018741 +vn -0.008555 -0.098913 0.011958 +vn -0.004716 -0.099728 0.005666 +vn 0.045532 0.088453 -0.010143 +vn 0.039414 0.091652 -0.006821 +vn 0.046151 0.088453 -0.006792 +vn 0.039935 0.091652 -0.002284 +vn 0.046523 0.088453 -0.003405 +vn 0.046648 0.088453 -0.000000 +vn 0.053041 0.084774 -0.000000 +vn 0.052900 0.084774 0.003872 +vn 0.058989 0.080633 0.004317 +vn 0.058516 0.080633 0.008612 +vn 0.064238 0.076053 0.009454 +vn 0.063376 0.076053 0.014118 +vn 0.068676 0.071060 0.015298 +vn 0.067376 0.071060 0.020271 +vn 0.072209 0.065680 0.021725 +vn 0.070431 0.065680 0.026938 +vn 0.074762 0.059942 0.028594 +vn 0.072475 0.059942 0.033975 +vn 0.076279 0.053878 0.035758 +vn 0.073465 0.053878 0.041231 +vn 0.076729 0.047521 0.043062 +vn 0.073381 0.047521 0.048548 +vn 0.076103 0.040906 0.050349 +vn 0.072225 0.040906 0.055770 +vn 0.074415 0.034068 0.057461 +vn 0.070022 0.034068 0.062740 +vn 0.071702 0.027044 0.064245 +vn 0.066821 0.027044 0.069308 +vn 0.068023 0.019873 0.070554 +vn 0.062691 0.019873 0.075332 +vn 0.063458 0.012594 0.076253 +vn 0.057723 0.012594 0.080681 +vn 0.058106 0.005247 0.081217 +vn 0.052022 0.005247 0.085242 +vn 0.052082 -0.002129 0.085340 +vn 0.045714 -0.002129 0.088914 +vn 0.045518 -0.009494 0.088533 +vn 0.038934 -0.009494 0.091619 +vn 0.038554 -0.016806 0.090726 +vn 0.031829 -0.016806 0.093298 +vn 0.031342 -0.024028 0.091871 +vn 0.024552 -0.024028 0.093914 +vn 0.024038 -0.031118 0.091945 +vn 0.017262 -0.031118 0.093454 +vn 0.016798 -0.038039 0.090944 +vn 0.010115 -0.038039 0.091928 +vn 0.009781 -0.044754 0.088890 +vn 0.003266 -0.044754 0.089367 +vn 0.003137 -0.051224 0.085827 +vn -0.003137 -0.051224 0.085827 +vn -0.002990 -0.057416 0.081820 +vn -0.008955 -0.057416 0.081383 +vn -0.008467 -0.063296 0.076954 +vn -0.014062 -0.063296 0.076131 +vn -0.013176 -0.068831 0.071335 +vn -0.018348 -0.068831 0.070183 +vn -0.017015 -0.073991 0.065083 +vn -0.021720 -0.073991 0.063667 +vn -0.019900 -0.078749 0.058332 +vn -0.024105 -0.078749 0.056724 +vn -0.021769 -0.083078 0.051226 +vn -0.025450 -0.083078 0.049501 +vn -0.022580 -0.086955 0.043919 +vn -0.025726 -0.086955 0.042154 +vn -0.022317 -0.090359 0.036567 +vn -0.024927 -0.090359 0.034841 +vn -0.020983 -0.093271 0.029329 +vn -0.023068 -0.093271 0.027719 +vn -0.018607 -0.095676 0.022358 +vn -0.020189 -0.095676 0.020940 +vn -0.015239 -0.097560 0.015806 +vn -0.016352 -0.097560 0.014651 +vn -0.010951 -0.098913 0.009812 +vn -0.011638 -0.098913 0.008986 +vn -0.005835 -0.099728 0.004506 +vn -0.006148 -0.099728 0.004068 +vn 0.039935 0.091652 0.002284 +vn 0.046523 0.088453 0.003405 +vn 0.052476 0.084774 0.007723 +vn 0.057731 0.080633 0.012860 +vn 0.062177 0.076053 0.018706 +vn 0.065717 0.071060 0.025135 +vn 0.068277 0.065680 0.032007 +vn 0.069802 0.059942 0.039175 +vn 0.070260 0.053878 0.046483 +vn 0.069641 0.047521 0.053775 +vn 0.067961 0.040906 0.060893 +vn 0.065256 0.034068 0.067684 +vn 0.061584 0.027044 0.074001 +vn 0.057025 0.019873 0.079707 +vn 0.051679 0.012594 0.084680 +vn 0.045661 0.005247 0.088812 +vn 0.039102 -0.002129 0.092014 +vn 0.032142 -0.009494 0.094217 +vn 0.024934 -0.016806 0.095372 +vn 0.017632 -0.024028 0.095456 +vn 0.010394 -0.031118 0.094465 +vn 0.003378 -0.038039 0.092421 +vn -0.003266 -0.044754 0.089367 +vn -0.009393 -0.051224 0.085369 +vn -0.014871 -0.057416 0.080512 +vn -0.019582 -0.063296 0.074901 +vn -0.023422 -0.068831 0.068657 +vn -0.026310 -0.073991 0.061912 +vn -0.028181 -0.078749 0.054813 +vn -0.028995 -0.083078 0.047511 +vn -0.028735 -0.086955 0.040164 +vn -0.027403 -0.090359 0.032928 +vn -0.025029 -0.093271 0.025961 +vn -0.021664 -0.095676 0.019411 +vn -0.017378 -0.097560 0.013419 +vn -0.012263 -0.098913 0.008113 +vn -0.006429 -0.099728 0.003608 +vn 0.046151 0.088453 0.006792 +vn 0.039414 0.091652 0.006821 +vn 0.045532 0.088453 0.010143 +vn 0.038380 0.091652 0.011269 +vn 0.044670 0.088453 0.013439 +vn 0.043570 0.088453 0.016664 +vn 0.049541 0.084774 0.018948 +vn 0.048026 0.084774 0.022514 +vn 0.053554 0.080633 0.025105 +vn 0.051579 0.080633 0.028947 +vn 0.056622 0.076053 0.031778 +vn 0.054151 0.076053 0.035826 +vn 0.058680 0.071060 0.038822 +vn 0.055689 0.071060 0.043002 +vn 0.059684 0.065680 0.046087 +vn 0.056161 0.065680 0.050320 +vn 0.059614 0.059942 0.053414 +vn 0.055556 0.059942 0.057623 +vn 0.058472 0.053878 0.060648 +vn 0.053889 0.053878 0.064754 +vn 0.056283 0.047521 0.067631 +vn 0.051196 0.047521 0.071559 +vn 0.053095 0.040906 0.074213 +vn 0.047536 0.040906 0.077891 +vn 0.048978 0.034068 0.080253 +vn 0.042989 0.034068 0.083614 +vn 0.044020 0.027044 0.085620 +vn 0.037653 0.027044 0.088605 +vn 0.038330 0.019873 0.090199 +vn 0.031644 0.019873 0.092756 +vn 0.032031 0.012594 0.093890 +vn 0.025092 0.012594 0.095978 +vn 0.025258 0.005247 0.096615 +vn 0.018139 0.005247 0.098201 +vn 0.018160 -0.002129 0.098314 +vn 0.010935 -0.002129 0.099378 +vn 0.010888 -0.009494 0.098951 +vn 0.003636 -0.009494 0.099482 +vn 0.003600 -0.016806 0.098512 +vn -0.003600 -0.016806 0.098512 +vn -0.003545 -0.024028 0.097006 +vn -0.010617 -0.024028 0.096488 +vn -0.010394 -0.031118 0.094465 +vn -0.017262 -0.031118 0.093454 +vn -0.016798 -0.038039 0.090944 +vn -0.023392 -0.038039 0.089475 +vn -0.022619 -0.044754 0.086519 +vn -0.028874 -0.044754 0.084637 +vn -0.027730 -0.051224 0.081284 +vn -0.033590 -0.051224 0.079043 +vn -0.032021 -0.057416 0.075353 +vn -0.037436 -0.057416 0.072814 +vn -0.035399 -0.063296 0.068852 +vn -0.040331 -0.063296 0.066084 +vn -0.037790 -0.068831 0.061921 +vn -0.042209 -0.068831 0.058998 +vn -0.039142 -0.073991 0.054710 +vn -0.043031 -0.073991 0.051707 +vn -0.039425 -0.078749 0.047374 +vn -0.042778 -0.078749 0.044370 +vn -0.038632 -0.083078 0.040070 +vn -0.041454 -0.083078 0.037143 +vn -0.036780 -0.086955 0.032955 +vn -0.039087 -0.086955 0.030182 +vn -0.033907 -0.090359 0.026182 +vn -0.035728 -0.090359 0.023637 +vn -0.030075 -0.093271 0.019898 +vn -0.031448 -0.093271 0.017649 +vn -0.025366 -0.095676 0.014236 +vn -0.026337 -0.095676 0.012346 +vn -0.019879 -0.097560 0.009319 +vn -0.020507 -0.097560 0.007843 +vn -0.013733 -0.098913 0.005253 +vn -0.014080 -0.098913 0.004236 +vn -0.007059 -0.099728 0.002124 +vn -0.007196 -0.099728 0.001603 +vn 0.036845 0.091652 0.015571 +vn 0.042237 0.088453 0.019800 +vn 0.046255 0.084774 0.025959 +vn 0.049328 0.080633 0.032635 +vn 0.051392 0.076053 0.039683 +vn 0.052402 0.071060 0.046952 +vn 0.052338 0.065680 0.054286 +vn 0.051202 0.059942 0.061525 +vn 0.049018 0.053878 0.068515 +vn 0.045836 0.047521 0.075105 +vn 0.041724 0.040906 0.081153 +vn 0.036771 0.034068 0.086529 +vn 0.031085 0.027044 0.091117 +vn 0.024789 0.019873 0.094819 +vn 0.018019 0.012594 0.097554 +vn 0.010922 0.005247 0.099263 +vn 0.003651 -0.002129 0.099911 +vn -0.003636 -0.009494 0.099482 +vn -0.010782 -0.016806 0.097986 +vn -0.017632 -0.024028 0.095456 +vn -0.024038 -0.031118 0.091945 +vn -0.029861 -0.038039 0.087529 +vn -0.034975 -0.044754 0.082303 +vn -0.039270 -0.051224 0.076380 +vn -0.042652 -0.057416 0.069887 +vn -0.045047 -0.063296 0.062964 +vn -0.046403 -0.068831 0.055759 +vn -0.046691 -0.073991 0.048428 +vn -0.045902 -0.078749 0.041129 +vn -0.044055 -0.083078 0.034018 +vn -0.041186 -0.086955 0.027249 +vn -0.037358 -0.090359 0.020966 +vn -0.032652 -0.093271 0.015307 +vn -0.027168 -0.095676 0.010391 +vn -0.021025 -0.097560 0.006325 +vn -0.014352 -0.098913 0.003197 +vn -0.007293 -0.099728 0.001073 +vn 0.034830 0.091652 0.019669 +vn 0.040679 0.088453 0.022830 +vn 0.044236 0.084774 0.029267 +vn 0.046814 0.080633 0.036149 +vn 0.048358 0.076053 0.043329 +vn 0.048835 0.071060 0.050652 +vn 0.048236 0.065680 0.057961 +vn 0.046574 0.059942 0.065098 +vn 0.043886 0.053878 0.071910 +vn 0.040231 0.047521 0.078251 +vn 0.035689 0.040906 0.083982 +vn 0.030357 0.034068 0.088982 +vn 0.024351 0.027044 0.093143 +vn 0.017801 0.019873 0.096375 +vn 0.010850 0.012594 0.098609 +vn 0.003647 0.005247 0.099796 +vn -0.003651 -0.002129 0.099911 +vn -0.010888 -0.009494 0.098951 +vn -0.017905 -0.016806 0.096938 +vn -0.024552 -0.024028 0.093914 +vn -0.030685 -0.031118 0.089945 +vn -0.036170 -0.038039 0.085116 +vn -0.040890 -0.044754 0.079531 +vn -0.044740 -0.051224 0.073310 +vn -0.047639 -0.057416 0.066587 +vn -0.049523 -0.063296 0.059508 +vn -0.050350 -0.068831 0.052223 +vn -0.050101 -0.073991 0.044891 +vn -0.048782 -0.078749 0.037668 +vn -0.046420 -0.083078 0.030711 +vn -0.043065 -0.086955 0.024169 +vn -0.038789 -0.090359 0.018183 +vn -0.033682 -0.093271 0.012882 +vn -0.027854 -0.095676 0.008380 +vn -0.021430 -0.097560 0.004774 +vn -0.014547 -0.098913 0.002141 +vn 0.038904 0.088453 0.025739 +vn 0.032361 0.091652 0.023511 +vn 0.036921 0.088453 0.028510 +vn 0.029470 0.091652 0.027047 +vn 0.034742 0.088453 0.031129 +vn 0.032377 0.088453 0.033582 +vn 0.036815 0.084774 0.038185 +vn 0.033929 0.084774 0.040770 +vn 0.037834 0.080633 0.045463 +vn 0.034415 0.080633 0.048103 +vn 0.037780 0.076053 0.052807 +vn 0.033825 0.076053 0.055424 +vn 0.036653 0.071060 0.060059 +vn 0.032171 0.071060 0.062574 +vn 0.034479 0.065680 0.067062 +vn 0.029492 0.065680 0.069400 +vn 0.031305 0.059942 0.073668 +vn 0.025844 0.059942 0.075756 +vn 0.027201 0.053878 0.079732 +vn 0.021308 0.053878 0.081505 +vn 0.022255 0.047521 0.085126 +vn 0.015982 0.047521 0.086523 +vn 0.016575 0.040906 0.089733 +vn 0.009980 0.040906 0.090703 +vn 0.010283 0.034068 0.093454 +vn 0.003434 0.034068 0.093955 +vn 0.003516 0.027044 0.096209 +vn -0.003516 0.027044 0.096209 +vn -0.003579 0.019873 0.097940 +vn -0.010719 0.019873 0.097417 +vn -0.010850 0.012594 0.098609 +vn -0.018019 0.012594 0.097554 +vn -0.018139 0.005247 0.098201 +vn -0.025258 0.005247 0.096615 +vn -0.025288 -0.002129 0.096726 +vn -0.032281 -0.002129 0.094623 +vn -0.032142 -0.009494 0.094217 +vn -0.038934 -0.009494 0.091619 +vn -0.038554 -0.016806 0.090726 +vn -0.045074 -0.016806 0.087669 +vn -0.044385 -0.024028 0.086329 +vn -0.050568 -0.024028 0.082859 +vn -0.049508 -0.031118 0.081121 +vn -0.055297 -0.031118 0.077291 +vn -0.053812 -0.038039 0.075215 +vn -0.059159 -0.038039 0.071086 +vn -0.057204 -0.044754 0.068737 +vn -0.062069 -0.044754 0.064378 +vn -0.059610 -0.051224 0.061828 +vn -0.063964 -0.051224 0.057312 +vn -0.060978 -0.057416 0.054636 +vn -0.064803 -0.057416 0.050039 +vn -0.061277 -0.063296 0.047316 +vn -0.064567 -0.063296 0.042717 +vn -0.060500 -0.068831 0.040026 +vn -0.063260 -0.068831 0.035503 +vn -0.058663 -0.073991 0.032923 +vn -0.060910 -0.073991 0.028553 +vn -0.055805 -0.078749 0.026160 +vn -0.057566 -0.078749 0.022017 +vn -0.051987 -0.083078 0.019883 +vn -0.053300 -0.083078 0.016036 +vn -0.047290 -0.086955 0.014227 +vn -0.048203 -0.086955 0.010738 +vn -0.041815 -0.090359 0.009315 +vn -0.042383 -0.090359 0.006237 +vn -0.035677 -0.093271 0.005251 +vn 0.026194 0.091652 0.030230 +vn 0.029839 0.088453 0.035856 +vn 0.030863 0.084774 0.043138 +vn 0.030812 0.080633 0.050487 +vn 0.029689 0.076053 0.057745 +vn 0.027518 0.071060 0.064755 +vn 0.024347 0.065680 0.071368 +vn 0.020246 0.059942 0.077441 +vn 0.015302 0.053878 0.082843 +vn 0.009623 0.047521 0.087459 +vn 0.003333 0.040906 0.091190 +vn -0.003434 0.034068 0.093955 +vn -0.010530 0.027044 0.095696 +vn -0.017801 0.019873 0.096375 +vn -0.025092 0.012594 0.095978 +vn -0.032244 0.005247 0.094514 +vn -0.039102 -0.002129 0.092014 +vn -0.045518 -0.009494 0.088533 +vn -0.051353 -0.016806 0.084145 +vn -0.056481 -0.024028 0.078946 +vn -0.060791 -0.031118 0.073048 +vn -0.064190 -0.038039 0.066578 +vn -0.066602 -0.044754 0.059676 +vn -0.067977 -0.051224 0.052490 +vn -0.068283 -0.057416 0.045176 +vn -0.067513 -0.063296 0.037890 +vn -0.065683 -0.068831 0.030791 +vn -0.062832 -0.073991 0.024031 +vn -0.059020 -0.078749 0.017756 +vn -0.054328 -0.083078 0.012102 +vn -0.048858 -0.086955 0.007190 +vn 0.027142 0.088453 0.037938 +vn 0.022578 0.091652 0.033019 +vn 0.024301 0.088453 0.039818 +vn 0.018667 0.091652 0.035377 +vn 0.021329 0.088453 0.041486 +vn 0.018244 0.088453 0.042932 +vn 0.020745 0.084774 0.048816 +vn 0.017126 0.084774 0.050200 +vn 0.019097 0.080633 0.055979 +vn 0.014960 0.080633 0.057223 +vn 0.016423 0.076053 0.062818 +vn 0.011794 0.076053 0.063850 +vn 0.012780 0.071060 0.069189 +vn 0.007695 0.071060 0.069938 +vn 0.008247 0.065680 0.074954 +vn 0.002754 0.065680 0.075356 +vn 0.002923 0.059942 0.079990 +vn -0.002923 0.059942 0.079990 +vn -0.003077 0.053878 0.084188 +vn -0.009214 0.053878 0.083739 +vn -0.009623 0.047521 0.087459 +vn -0.015982 0.047521 0.086523 +vn -0.016575 0.040906 0.089733 +vn -0.023080 0.040906 0.088284 +vn -0.023780 0.034068 0.090961 +vn -0.030357 0.034068 0.088982 +vn -0.031085 0.027044 0.091117 +vn -0.037653 0.027044 0.088605 +vn -0.038330 0.019873 0.090199 +vn -0.044812 0.019873 0.087160 +vn -0.045360 0.012594 0.088226 +vn -0.051679 0.012594 0.084680 +vn -0.052022 0.005247 0.085242 +vn -0.058106 0.005247 0.081217 +vn -0.058173 -0.002129 0.081311 +vn -0.063953 -0.002129 0.076847 +vn -0.063678 -0.009494 0.076518 +vn -0.069094 -0.009494 0.071665 +vn -0.068420 -0.016806 0.070966 +vn -0.073418 -0.016806 0.065783 +vn -0.072295 -0.024028 0.064777 +vn -0.076831 -0.024028 0.059327 +vn -0.075220 -0.031118 0.058083 +vn -0.079259 -0.031118 0.052437 +vn -0.077130 -0.038039 0.051029 +vn -0.080649 -0.038039 0.045263 +vn -0.077984 -0.044754 0.043767 +vn -0.080971 -0.044754 0.037958 +vn -0.077764 -0.051224 0.036454 +vn -0.080217 -0.051224 0.030680 +vn -0.076472 -0.057416 0.029248 +vn -0.078403 -0.057416 0.023588 +vn -0.074136 -0.063296 0.022304 +vn -0.075567 -0.063296 0.016833 +vn -0.070806 -0.068831 0.015773 +vn -0.071769 -0.068831 0.010562 +vn -0.066554 -0.073991 0.009795 +vn 0.014512 0.091652 0.037275 +vn 0.015062 0.088453 0.044149 +vn 0.013416 0.084774 0.051317 +vn 0.010743 0.080633 0.058163 +vn 0.007101 0.076053 0.064540 +vn 0.002570 0.071060 0.070313 +vn -0.002754 0.065680 0.075356 +vn -0.008754 0.059942 0.079563 +vn -0.015302 0.053878 0.082843 +vn -0.022255 0.047521 0.085126 +vn -0.029463 0.040906 0.086363 +vn -0.036771 0.034068 0.086529 +vn -0.044020 0.027044 0.085620 +vn -0.051055 0.019873 0.083657 +vn -0.057723 0.012594 0.080681 +vn -0.063879 0.005247 0.076759 +vn -0.069392 -0.002129 0.071974 +vn -0.074141 -0.009494 0.066430 +vn -0.078024 -0.016806 0.060248 +vn -0.080957 -0.024028 0.053560 +vn -0.082875 -0.031118 0.046512 +vn -0.083738 -0.038039 0.039255 +vn -0.083526 -0.044754 0.031946 +vn -0.082243 -0.051224 0.024743 +vn -0.079915 -0.057416 0.017802 +vn -0.076594 -0.063296 0.011272 +vn 0.010169 0.091652 0.038686 +vn 0.011799 0.088453 0.045131 +vn 0.009634 0.084774 0.052159 +vn 0.006469 0.080633 0.058792 +vn 0.002371 0.076053 0.064886 +vn -0.002570 0.071060 0.070313 +vn -0.008247 0.065680 0.074954 +vn -0.014539 0.059942 0.078712 +vn -0.021308 0.053878 0.081505 +vn -0.028409 0.047521 0.083274 +vn -0.035689 0.040906 0.083982 +vn -0.042989 0.034068 0.083614 +vn -0.050153 0.027044 0.082179 +vn -0.057025 0.019873 0.079707 +vn -0.063458 0.012594 0.076253 +vn -0.069312 0.005247 0.071891 +vn -0.074460 -0.002129 0.066717 +vn -0.078792 -0.009494 0.060841 +vn -0.082214 -0.016806 0.054392 +vn -0.084650 -0.024028 0.047508 +vn -0.086049 -0.031118 0.040338 +vn -0.086380 -0.038039 0.033038 +vn -0.085635 -0.044754 0.025764 +vn -0.083829 -0.051224 0.018674 +vn -0.081002 -0.057416 0.011921 +vn 0.008473 0.088453 0.045872 +vn 0.005693 0.091652 0.039593 +vn 0.005102 0.088453 0.046368 +vn 0.001142 0.091652 0.039984 +vn 0.001704 0.088453 0.046616 +vn -0.001704 0.088453 0.046616 +vn -0.001937 0.084774 0.053006 +vn -0.005801 0.084774 0.052723 +vn -0.006469 0.080633 0.058792 +vn -0.010743 0.080633 0.058163 +vn -0.011794 0.076053 0.063850 +vn -0.016423 0.076053 0.062818 +vn -0.017796 0.071060 0.068072 +vn -0.022718 0.071060 0.066591 +vn -0.024347 0.065680 0.071368 +vn -0.029492 0.065680 0.069400 +vn -0.031305 0.059942 0.073668 +vn -0.036599 0.059942 0.071186 +vn -0.038520 0.053878 0.074922 +vn -0.043886 0.053878 0.071910 +vn -0.045836 0.047521 0.075105 +vn -0.051196 0.047521 0.071559 +vn -0.053095 0.040906 0.074213 +vn -0.058371 0.040906 0.070140 +vn -0.060141 0.034068 0.072267 +vn -0.065256 0.034068 0.067684 +vn -0.066821 0.027044 0.069308 +vn -0.071702 0.027044 0.064245 +vn -0.072992 0.019873 0.065401 +vn -0.077571 0.019873 0.059898 +vn -0.078519 0.012594 0.060631 +vn -0.082736 0.012594 0.054737 +vn -0.083285 0.005247 0.055101 +vn -0.087085 0.005247 0.048874 +vn -0.087185 -0.002129 0.048931 +vn -0.090524 -0.002129 0.042436 +vn -0.090136 -0.009494 0.042254 +vn -0.092980 -0.009494 0.035562 +vn -0.092073 -0.016806 0.035215 +vn -0.094398 -0.016806 0.028400 +vn -0.092955 -0.024028 0.027966 +vn -0.094748 -0.024028 0.021106 +vn -0.092761 -0.031118 0.020663 +vn -0.094022 -0.031118 0.013837 +vn -0.091497 -0.038039 0.013466 +vn -0.003423 0.091652 0.039853 +vn -0.005102 0.088453 0.046368 +vn -0.009634 0.084774 0.052159 +vn -0.014960 0.080633 0.057223 +vn -0.020965 0.076053 0.061452 +vn -0.027518 0.071060 0.064755 +vn -0.034479 0.065680 0.067062 +vn -0.041698 0.059942 0.068324 +vn -0.049018 0.053878 0.068515 +vn -0.056283 0.047521 0.067631 +vn -0.063335 0.040906 0.065692 +vn -0.070022 0.034068 0.062740 +vn -0.076200 0.027044 0.058840 +vn -0.081736 0.019873 0.054076 +vn -0.086511 0.012594 0.048552 +vn -0.090420 0.005247 0.042387 +vn -0.093380 -0.002129 0.035715 +vn -0.095328 -0.009494 0.028680 +vn -0.096219 -0.016806 0.021434 +vn -0.096036 -0.024028 0.014134 +vn -0.007944 0.091652 0.039203 +vn -0.008473 0.088453 0.045872 +vn -0.013416 0.084774 0.051317 +vn -0.019097 0.080633 0.055979 +vn -0.025394 0.076053 0.059758 +vn -0.032171 0.071060 0.062574 +vn -0.039282 0.065680 0.064367 +vn -0.046574 0.059942 0.065098 +vn -0.053889 0.053878 0.064754 +vn -0.061070 0.047521 0.063342 +vn -0.067961 0.040906 0.060893 +vn -0.074415 0.034068 0.057461 +vn -0.080292 0.027044 0.053121 +vn -0.085466 0.019873 0.047966 +vn -0.089824 0.012594 0.042108 +vn -0.093273 0.005247 0.035674 +vn -0.095738 -0.002129 0.028803 +vn -0.097167 -0.009494 0.021645 +vn -0.097527 -0.016806 0.014353 +vn -0.011799 0.088453 0.045131 +vn -0.012361 0.091652 0.038042 +vn -0.015062 0.088453 0.044149 +vn -0.018244 0.088453 0.042932 +vn -0.020745 0.084774 0.048816 +vn -0.024253 0.084774 0.047172 +vn -0.027044 0.080633 0.052601 +vn -0.030812 0.080633 0.050487 +vn -0.033825 0.076053 0.055424 +vn -0.037780 0.076053 0.052807 +vn -0.040939 0.071060 0.057223 +vn -0.045007 0.071060 0.054082 +vn -0.048236 0.065680 0.057961 +vn -0.052338 0.065680 0.054286 +vn -0.055556 0.059942 0.057623 +vn -0.059614 0.059942 0.053414 +vn -0.062743 0.053878 0.056218 +vn -0.066679 0.053878 0.051488 +vn -0.069641 0.047521 0.053775 +vn -0.073381 0.047521 0.048548 +vn -0.076103 0.040906 0.050349 +vn -0.079575 0.040906 0.044660 +vn -0.081988 0.034068 0.046014 +vn -0.085129 0.034068 0.039907 +vn -0.087171 0.027044 0.040864 +vn -0.089921 0.027044 0.034392 +vn -0.091539 0.019873 0.035011 +vn -0.093850 0.019873 0.028235 +vn -0.094998 0.012594 0.028581 +vn -0.096830 0.012594 0.021570 +vn -0.097473 0.005247 0.021713 +vn -0.098798 0.005247 0.014540 +vn -0.098912 -0.002129 0.014557 +vn -0.016617 0.091652 0.036385 +vn -0.021329 0.088453 0.041486 +vn -0.027631 0.084774 0.045276 +vn -0.034415 0.080633 0.048103 +vn -0.041534 0.076053 0.049908 +vn -0.048835 0.071060 0.050652 +vn -0.056161 0.065680 0.050320 +vn -0.063354 0.059942 0.048920 +vn -0.070260 0.053878 0.046483 +vn -0.076729 0.047521 0.043062 +vn -0.082623 0.040906 0.038732 +vn -0.087814 0.034068 0.033586 +vn -0.092192 0.027044 0.027736 +vn -0.095661 0.019873 0.021309 +vn -0.098147 0.012594 0.014444 +vn -0.020656 0.091652 0.034254 +vn -0.024301 0.088453 0.039818 +vn -0.030863 0.084774 0.043138 +vn -0.037834 0.080633 0.045463 +vn -0.045066 0.076053 0.046743 +vn -0.052402 0.071060 0.046952 +vn -0.059684 0.065680 0.046087 +vn -0.066756 0.059942 0.044165 +vn -0.073465 0.053878 0.041231 +vn -0.079668 0.047521 0.037347 +vn -0.085230 0.040906 0.032598 +vn -0.090032 0.034068 0.027087 +vn -0.093970 0.027044 0.020933 +vn -0.096961 0.019873 0.014270 +vn -0.027142 0.088453 0.037938 +vn -0.024426 0.091652 0.031676 +vn -0.029839 0.088453 0.035856 +vn -0.027878 0.091652 0.028685 +vn -0.032377 0.088453 0.033582 +vn -0.034742 0.088453 0.031129 +vn -0.039504 0.084774 0.035396 +vn -0.041982 0.084774 0.032417 +vn -0.046814 0.080633 0.036149 +vn -0.049328 0.080633 0.032635 +vn -0.054151 0.076053 0.035826 +vn -0.056622 0.076053 0.031778 +vn -0.061357 0.071060 0.034435 +vn -0.063707 0.071060 0.029865 +vn -0.068277 0.065680 0.032007 +vn -0.070431 0.065680 0.026938 +vn -0.074762 0.059942 0.028594 +vn -0.076650 0.059942 0.023060 +vn -0.080672 0.053878 0.024271 +vn -0.082229 0.053878 0.018317 +vn -0.085882 0.047521 0.019131 +vn -0.087049 0.047521 0.012811 +vn -0.090278 0.040906 0.013286 +vn -0.030966 0.091652 0.025320 +vn -0.036921 0.088453 0.028510 +vn -0.044236 0.084774 0.029267 +vn -0.051579 0.080633 0.028947 +vn -0.058791 0.076053 0.027560 +vn -0.065717 0.071060 0.025135 +vn -0.072209 0.065680 0.021725 +vn -0.078128 0.059942 0.017404 +vn -0.083347 0.053878 0.012266 +vn -0.033650 0.091652 0.021626 +vn -0.038904 0.088453 0.025739 +vn -0.046255 0.084774 0.025959 +vn -0.053554 0.080633 0.025105 +vn -0.060645 0.076053 0.023195 +vn -0.067376 0.071060 0.020271 +vn -0.073603 0.065680 0.016396 +vn -0.079190 0.059942 0.011654 +vn -0.040679 0.088453 0.022830 +vn -0.035896 0.091652 0.017649 +vn -0.042237 0.088453 0.019800 +vn -0.043570 0.088453 0.016664 +vn -0.049541 0.084774 0.018948 +vn -0.050792 0.084774 0.015281 +vn -0.056639 0.080633 0.017040 +vn -0.057731 0.080633 0.012860 +vn -0.063376 0.076053 0.014118 +vn -0.064238 0.076053 0.009454 +vn -0.069610 0.071060 0.010244 +vn -0.037674 0.091652 0.013442 +vn -0.044670 0.088453 0.013439 +vn -0.051772 0.084774 0.011533 +vn -0.058516 0.080633 0.008612 +vn -0.038960 0.091652 0.009060 +vn -0.045532 0.088453 0.010143 +vn -0.052476 0.084774 0.007723 +vn -0.046151 0.088453 0.006792 +vn -0.039739 0.091652 0.004560 +vn -0.006885 -0.099728 0.002633 +vn -0.006675 -0.099728 0.003129 +vn -0.005490 -0.099728 0.004919 +vn -0.005117 -0.099728 0.005307 +vn -0.002883 -0.099728 0.006785 +vn -0.002380 -0.099728 0.006977 +vn -0.000269 -0.099728 0.007367 +vn 0.000269 -0.099728 0.007367 +vn 0.002883 -0.099728 0.006785 +vn 0.003371 -0.099728 0.006556 +vn 0.005490 -0.099728 0.004919 +vn 0.006885 -0.099728 0.002633 +vn 0.007059 -0.099728 0.002124 +vn 0.007352 -0.099728 -0.000538 +vn 0.006675 -0.099728 -0.003129 +vn 0.006429 -0.099728 -0.003608 +vn 0.006148 -0.099728 -0.004068 +vn 0.005835 -0.099728 -0.004506 +vn 0.005490 -0.099728 -0.004919 +vn 0.005117 -0.099728 -0.005307 +vn 0.004716 -0.099728 -0.005666 +vn 0.004289 -0.099728 -0.005995 +vn 0.003840 -0.099728 -0.006293 +vn 0.003371 -0.099728 -0.006556 +vn 0.002883 -0.099728 -0.006785 +vn 0.002380 -0.099728 -0.006977 +vn 0.001865 -0.099728 -0.007132 +vn 0.001339 -0.099728 -0.007249 +vn 0.000806 -0.099728 -0.007328 +vn 0.000269 -0.099728 -0.007367 +vn -0.000269 -0.099728 -0.007367 +vn -0.000806 -0.099728 -0.007328 +vn -0.001339 -0.099728 -0.007249 +vn -0.001865 -0.099728 -0.007132 +vn -0.002380 -0.099728 -0.006977 +vn -0.002883 -0.099728 -0.006785 +vn -0.003371 -0.099728 -0.006556 +vn -0.003840 -0.099728 -0.006293 +vn -0.004289 -0.099728 -0.005995 +vn -0.004716 -0.099728 -0.005666 +vn -0.005117 -0.099728 -0.005307 +vn -0.005490 -0.099728 -0.004919 +vn -0.005835 -0.099728 -0.004506 +vn -0.006148 -0.099728 -0.004068 +vn -0.006429 -0.099728 -0.003608 +vn -0.006675 -0.099728 -0.003129 +vn -0.006885 -0.099728 -0.002633 +vn -0.007059 -0.099728 -0.002124 +vn -0.007196 -0.099728 -0.001603 +vn -0.007293 -0.099728 -0.001073 +vn -0.007352 -0.099728 -0.000538 +vn -0.052900 0.084774 -0.003872 +vn -0.052476 0.084774 -0.007723 +vn -0.051772 0.084774 -0.011533 +vn -0.058989 0.080633 -0.004317 +vn -0.058516 0.080633 -0.008612 +vn -0.057731 0.080633 -0.012860 +vn -0.056639 0.080633 -0.017040 +vn -0.064757 0.076053 -0.004740 +vn -0.064238 0.076053 -0.009454 +vn -0.063376 0.076053 -0.014118 +vn -0.062177 0.076053 -0.018706 +vn -0.060645 0.076053 -0.023195 +vn -0.070172 0.071060 -0.005136 +vn -0.069610 0.071060 -0.010244 +vn -0.068676 0.071060 -0.015298 +vn -0.067376 0.071060 -0.020271 +vn -0.065717 0.071060 -0.025135 +vn -0.063707 0.071060 -0.029865 +vn -0.075205 0.065680 -0.005504 +vn -0.074603 0.065680 -0.010979 +vn -0.073603 0.065680 -0.016396 +vn -0.072209 0.065680 -0.021725 +vn -0.070431 0.065680 -0.026938 +vn -0.068277 0.065680 -0.032007 +vn -0.065758 0.065680 -0.036905 +vn -0.079830 0.059942 -0.005843 +vn -0.079190 0.059942 -0.011654 +vn -0.078128 0.059942 -0.017404 +vn -0.076650 0.059942 -0.023060 +vn -0.074762 0.059942 -0.028594 +vn -0.072475 0.059942 -0.033975 +vn -0.069802 0.059942 -0.039175 +vn -0.066756 0.059942 -0.044165 +vn -0.084020 0.053878 -0.006149 +vn -0.083347 0.053878 -0.012266 +vn -0.082229 0.053878 -0.018317 +vn -0.080672 0.053878 -0.024271 +vn -0.078686 0.053878 -0.030095 +vn -0.076279 0.053878 -0.035758 +vn -0.073465 0.053878 -0.041231 +vn -0.070260 0.053878 -0.046483 +vn -0.066679 0.053878 -0.051488 +vn -0.087752 0.047521 -0.006423 +vn -0.087049 0.047521 -0.012811 +vn -0.085882 0.047521 -0.019131 +vn -0.084256 0.047521 -0.025349 +vn -0.082181 0.047521 -0.031432 +vn -0.079668 0.047521 -0.037347 +vn -0.076729 0.047521 -0.043062 +vn -0.073381 0.047521 -0.048548 +vn -0.069641 0.047521 -0.053775 +vn -0.065530 0.047521 -0.058715 +vn -0.091007 0.040906 -0.006661 +vn -0.090278 0.040906 -0.013286 +vn -0.089068 0.040906 -0.019841 +vn -0.087382 0.040906 -0.026289 +vn -0.085230 0.040906 -0.032598 +vn -0.082623 0.040906 -0.038732 +vn -0.079575 0.040906 -0.044660 +vn -0.076103 0.040906 -0.050349 +vn -0.072225 0.040906 -0.055770 +vn -0.067961 0.040906 -0.060893 +vn -0.063335 0.040906 -0.065692 +vn -0.093767 0.034068 -0.006863 +vn -0.093016 0.034068 -0.013689 +vn -0.091769 0.034068 -0.020442 +vn -0.090032 0.034068 -0.027087 +vn -0.087814 0.034068 -0.033586 +vn -0.085129 0.034068 -0.039907 +vn -0.081988 0.034068 -0.046014 +vn -0.078411 0.034068 -0.051876 +vn -0.074415 0.034068 -0.057461 +vn -0.070022 0.034068 -0.062740 +vn -0.065256 0.034068 -0.067684 +vn -0.060141 0.034068 -0.072267 +vn -0.096017 0.027044 -0.007028 +vn -0.095248 0.027044 -0.014018 +vn -0.093970 0.027044 -0.020933 +vn -0.092192 0.027044 -0.027736 +vn -0.089921 0.027044 -0.034392 +vn -0.087171 0.027044 -0.040864 +vn -0.083955 0.027044 -0.047118 +vn -0.080292 0.027044 -0.053121 +vn -0.076200 0.027044 -0.058840 +vn -0.071702 0.027044 -0.064245 +vn -0.066821 0.027044 -0.069308 +vn -0.061584 0.027044 -0.074001 +vn -0.056018 0.027044 -0.078298 +vn -0.097744 0.019873 -0.007154 +vn -0.096961 0.019873 -0.014270 +vn -0.095661 0.019873 -0.021309 +vn -0.093850 0.019873 -0.028235 +vn -0.091539 0.019873 -0.035011 +vn -0.088739 0.019873 -0.041599 +vn -0.085466 0.019873 -0.047966 +vn -0.081736 0.019873 -0.054076 +vn -0.077571 0.019873 -0.059898 +vn -0.072992 0.019873 -0.065401 +vn -0.068023 0.019873 -0.070554 +vn -0.062691 0.019873 -0.075332 +vn -0.057025 0.019873 -0.079707 +vn -0.051055 0.019873 -0.083657 +vn -0.098939 0.012594 -0.007241 +vn -0.098147 0.012594 -0.014444 +vn -0.096830 0.012594 -0.021570 +vn -0.094998 0.012594 -0.028581 +vn -0.092658 0.012594 -0.035439 +vn -0.089824 0.012594 -0.042108 +vn -0.086511 0.012594 -0.048552 +vn -0.082736 0.012594 -0.054737 +vn -0.078519 0.012594 -0.060631 +vn -0.073884 0.012594 -0.066201 +vn -0.068855 0.012594 -0.071417 +vn -0.063458 0.012594 -0.076253 +vn -0.057723 0.012594 -0.080681 +vn -0.051679 0.012594 -0.084680 +vn -0.045360 0.012594 -0.088226 +vn -0.099596 0.005247 -0.007289 +vn -0.098798 0.005247 -0.014540 +vn -0.097473 0.005247 -0.021713 +vn -0.095628 0.005247 -0.028770 +vn -0.093273 0.005247 -0.035674 +vn -0.090420 0.005247 -0.042387 +vn -0.087085 0.005247 -0.048874 +vn -0.083285 0.005247 -0.055101 +vn -0.079041 0.005247 -0.061033 +vn -0.074375 0.005247 -0.066640 +vn -0.069312 0.005247 -0.071891 +vn -0.063879 0.005247 -0.076759 +vn -0.058106 0.005247 -0.081217 +vn -0.052022 0.005247 -0.085242 +vn -0.045661 0.005247 -0.088812 +vn -0.039057 0.005247 -0.091908 +vn -0.099711 -0.002129 -0.007298 +vn -0.098912 -0.002129 -0.014557 +vn -0.097585 -0.002129 -0.021738 +vn -0.095738 -0.002129 -0.028803 +vn -0.093380 -0.002129 -0.035715 +vn -0.090524 -0.002129 -0.042436 +vn -0.087185 -0.002129 -0.048931 +vn -0.083381 -0.002129 -0.055164 +vn -0.079132 -0.002129 -0.061104 +vn -0.074460 -0.002129 -0.066717 +vn -0.069392 -0.002129 -0.071974 +vn -0.063953 -0.002129 -0.076847 +vn -0.058173 -0.002129 -0.081311 +vn -0.052082 -0.002129 -0.085340 +vn -0.045714 -0.002129 -0.088914 +vn -0.039102 -0.002129 -0.092014 +vn -0.032281 -0.002129 -0.094623 +vn -0.099283 -0.009494 -0.007267 +vn -0.098487 -0.009494 -0.014494 +vn -0.097167 -0.009494 -0.021645 +vn -0.095328 -0.009494 -0.028680 +vn -0.092980 -0.009494 -0.035562 +vn -0.090136 -0.009494 -0.042254 +vn -0.086811 -0.009494 -0.048721 +vn -0.083023 -0.009494 -0.054928 +vn -0.078792 -0.009494 -0.060841 +vn -0.074141 -0.009494 -0.066430 +vn -0.069094 -0.009494 -0.071665 +vn -0.063678 -0.009494 -0.076518 +vn -0.057923 -0.009494 -0.080962 +vn -0.051859 -0.009494 -0.084974 +vn -0.045518 -0.009494 -0.088533 +vn -0.038934 -0.009494 -0.091619 +vn -0.032142 -0.009494 -0.094217 +vn -0.025179 -0.009494 -0.096311 +vn -0.098315 -0.016806 -0.007196 +vn -0.097527 -0.016806 -0.014353 +vn -0.096219 -0.016806 -0.021434 +vn -0.094398 -0.016806 -0.028400 +vn -0.092073 -0.016806 -0.035215 +vn -0.089257 -0.016806 -0.041842 +vn -0.085965 -0.016806 -0.048246 +vn -0.082214 -0.016806 -0.054392 +vn -0.078024 -0.016806 -0.060248 +vn -0.073418 -0.016806 -0.065783 +vn -0.068420 -0.016806 -0.070966 +vn -0.063057 -0.016806 -0.075771 +vn -0.057358 -0.016806 -0.080172 +vn -0.051353 -0.016806 -0.084145 +vn -0.045074 -0.016806 -0.087669 +vn -0.038554 -0.016806 -0.090726 +vn -0.031829 -0.016806 -0.093298 +vn -0.024934 -0.016806 -0.095372 +vn -0.017905 -0.016806 -0.096938 +vn -0.096811 -0.024028 -0.007086 +vn -0.096036 -0.024028 -0.014134 +vn -0.094748 -0.024028 -0.021106 +vn -0.092955 -0.024028 -0.027966 +vn -0.090665 -0.024028 -0.034677 +vn -0.087892 -0.024028 -0.041202 +vn -0.084650 -0.024028 -0.047508 +vn -0.080957 -0.024028 -0.053560 +vn -0.076831 -0.024028 -0.059327 +vn -0.072295 -0.024028 -0.064777 +vn -0.067374 -0.024028 -0.069881 +vn -0.062093 -0.024028 -0.074613 +vn -0.056481 -0.024028 -0.078946 +vn -0.050568 -0.024028 -0.082859 +vn -0.044385 -0.024028 -0.086329 +vn -0.037965 -0.024028 -0.089338 +vn -0.031342 -0.024028 -0.091871 +vn -0.024552 -0.024028 -0.093914 +vn -0.017632 -0.024028 -0.095456 +vn -0.010617 -0.024028 -0.096488 +vn -0.094781 -0.031118 -0.006937 +vn -0.094022 -0.031118 -0.013837 +vn -0.092761 -0.031118 -0.020663 +vn -0.091006 -0.031118 -0.027380 +vn -0.088764 -0.031118 -0.033949 +vn -0.086049 -0.031118 -0.040338 +vn -0.082875 -0.031118 -0.046512 +vn -0.079259 -0.031118 -0.052437 +vn -0.075220 -0.031118 -0.058083 +vn -0.070779 -0.031118 -0.063419 +vn -0.065961 -0.031118 -0.068416 +vn -0.060791 -0.031118 -0.073048 +vn -0.055297 -0.031118 -0.077291 +vn -0.049508 -0.031118 -0.081121 +vn -0.043454 -0.031118 -0.084519 +vn -0.037169 -0.031118 -0.087465 +vn -0.030685 -0.031118 -0.089945 +vn -0.024038 -0.031118 -0.091945 +vn -0.017262 -0.031118 -0.093454 +vn -0.010394 -0.031118 -0.094465 +vn -0.003471 -0.031118 -0.094972 +vn -0.092236 -0.038039 -0.006751 +vn -0.091497 -0.038039 -0.013466 +vn -0.090270 -0.038039 -0.020108 +vn -0.088561 -0.038039 -0.026644 +vn -0.086380 -0.038039 -0.033038 +vn -0.083738 -0.038039 -0.039255 +vn -0.080649 -0.038039 -0.045263 +vn -0.077130 -0.038039 -0.051029 +vn -0.073200 -0.038039 -0.056523 +vn -0.068878 -0.038039 -0.061715 +vn -0.064190 -0.038039 -0.066578 +vn -0.059159 -0.038039 -0.071086 +vn -0.053812 -0.038039 -0.075215 +vn -0.048178 -0.038039 -0.078942 +vn -0.042287 -0.038039 -0.082249 +vn -0.036170 -0.038039 -0.085116 +vn -0.029861 -0.038039 -0.087529 +vn -0.023392 -0.038039 -0.089475 +vn -0.016798 -0.038039 -0.090944 +vn -0.010115 -0.038039 -0.091928 +vn -0.003378 -0.038039 -0.092421 +vn 0.003378 -0.038039 -0.092421 +vn -0.089188 -0.044754 -0.006528 +vn -0.088474 -0.044754 -0.013021 +vn -0.087287 -0.044754 -0.019444 +vn -0.085635 -0.044754 -0.025764 +vn -0.083526 -0.044754 -0.031946 +vn -0.080971 -0.044754 -0.037958 +vn -0.077984 -0.044754 -0.043767 +vn -0.074582 -0.044754 -0.049343 +vn -0.070781 -0.044754 -0.054655 +vn -0.066602 -0.044754 -0.059676 +vn -0.062069 -0.044754 -0.064378 +vn -0.057204 -0.044754 -0.068737 +vn -0.052034 -0.044754 -0.072730 +vn -0.046586 -0.044754 -0.076334 +vn -0.040890 -0.044754 -0.079531 +vn -0.034975 -0.044754 -0.082303 +vn -0.028874 -0.044754 -0.084637 +vn -0.022619 -0.044754 -0.086519 +vn -0.016243 -0.044754 -0.087939 +vn -0.009781 -0.044754 -0.088890 +vn -0.003266 -0.044754 -0.089367 +vn 0.003266 -0.044754 -0.089367 +vn 0.009781 -0.044754 -0.088890 +vn -0.085655 -0.051224 -0.006269 +vn -0.084969 -0.051224 -0.012505 +vn -0.083829 -0.051224 -0.018674 +vn -0.082243 -0.051224 -0.024743 +vn -0.080217 -0.051224 -0.030680 +vn -0.077764 -0.051224 -0.036454 +vn -0.074895 -0.051224 -0.042033 +vn -0.071627 -0.051224 -0.047388 +vn -0.067977 -0.051224 -0.052490 +vn -0.063964 -0.051224 -0.057312 +vn -0.059610 -0.051224 -0.061828 +vn -0.054938 -0.051224 -0.066015 +vn -0.049972 -0.051224 -0.069849 +vn -0.044740 -0.051224 -0.073310 +vn -0.039270 -0.051224 -0.076380 +vn -0.033590 -0.051224 -0.079043 +vn -0.027730 -0.051224 -0.081284 +vn -0.021723 -0.051224 -0.083091 +vn -0.015600 -0.051224 -0.084455 +vn -0.009393 -0.051224 -0.085369 +vn -0.003137 -0.051224 -0.085827 +vn 0.003137 -0.051224 -0.085827 +vn 0.009393 -0.051224 -0.085369 +vn 0.015600 -0.051224 -0.084455 +vn -0.081656 -0.057416 -0.005976 +vn -0.081002 -0.057416 -0.011921 +vn -0.079915 -0.057416 -0.017802 +vn -0.078403 -0.057416 -0.023588 +vn -0.076472 -0.057416 -0.029248 +vn -0.074133 -0.057416 -0.034752 +vn -0.071398 -0.057416 -0.040071 +vn -0.068283 -0.057416 -0.045176 +vn -0.064803 -0.057416 -0.050039 +vn -0.060978 -0.057416 -0.054636 +vn -0.056827 -0.057416 -0.058941 +vn -0.052373 -0.057416 -0.062932 +vn -0.047639 -0.057416 -0.066587 +vn -0.042652 -0.057416 -0.069887 +vn -0.037436 -0.057416 -0.072814 +vn -0.032021 -0.057416 -0.075353 +vn -0.026436 -0.057416 -0.077489 +vn -0.020709 -0.057416 -0.079212 +vn -0.014871 -0.057416 -0.080512 +vn -0.008955 -0.057416 -0.081383 +vn -0.002990 -0.057416 -0.081820 +vn 0.002990 -0.057416 -0.081820 +vn 0.008955 -0.057416 -0.081383 +vn 0.014871 -0.057416 -0.080512 +vn 0.020709 -0.057416 -0.079212 +vn -0.077212 -0.063296 -0.005651 +vn -0.076594 -0.063296 -0.011272 +vn -0.075567 -0.063296 -0.016833 +vn -0.074136 -0.063296 -0.022304 +vn -0.072310 -0.063296 -0.027656 +vn -0.070099 -0.063296 -0.032861 +vn -0.067513 -0.063296 -0.037890 +vn -0.064567 -0.063296 -0.042717 +vn -0.061277 -0.063296 -0.047316 +vn -0.057659 -0.063296 -0.051663 +vn -0.053734 -0.063296 -0.055734 +vn -0.049523 -0.063296 -0.059508 +vn -0.045047 -0.063296 -0.062964 +vn -0.040331 -0.063296 -0.066084 +vn -0.035399 -0.063296 -0.068852 +vn -0.030279 -0.063296 -0.071252 +vn -0.024997 -0.063296 -0.073272 +vn -0.019582 -0.063296 -0.074901 +vn -0.014062 -0.063296 -0.076131 +vn -0.008467 -0.063296 -0.076954 +vn -0.002827 -0.063296 -0.077367 +vn 0.002827 -0.063296 -0.077367 +vn 0.008467 -0.063296 -0.076954 +vn 0.014062 -0.063296 -0.076131 +vn 0.019582 -0.063296 -0.074901 +vn 0.024997 -0.063296 -0.073272 +vn -0.072348 -0.068831 -0.005295 +vn -0.071769 -0.068831 -0.010562 +vn -0.070806 -0.068831 -0.015773 +vn -0.069466 -0.068831 -0.020899 +vn -0.067755 -0.068831 -0.025914 +vn -0.065683 -0.068831 -0.030791 +vn -0.063260 -0.068831 -0.035503 +vn -0.060500 -0.068831 -0.040026 +vn -0.057417 -0.068831 -0.044336 +vn -0.054027 -0.068831 -0.048409 +vn -0.050350 -0.068831 -0.052223 +vn -0.046403 -0.068831 -0.055759 +vn -0.042209 -0.068831 -0.058998 +vn -0.037790 -0.068831 -0.061921 +vn -0.033169 -0.068831 -0.064515 +vn -0.028372 -0.068831 -0.066764 +vn -0.023422 -0.068831 -0.068657 +vn -0.018348 -0.068831 -0.070183 +vn -0.013176 -0.068831 -0.071335 +vn -0.007934 -0.068831 -0.072107 +vn -0.002649 -0.068831 -0.072494 +vn 0.002649 -0.068831 -0.072494 +vn 0.007934 -0.068831 -0.072107 +vn 0.013176 -0.068831 -0.071335 +vn 0.018348 -0.068831 -0.070183 +vn 0.023422 -0.068831 -0.068657 +vn 0.028372 -0.068831 -0.066764 +vn -0.067091 -0.073991 -0.004910 +vn -0.066554 -0.073991 -0.009795 +vn -0.065661 -0.073991 -0.014627 +vn -0.064418 -0.073991 -0.019381 +vn -0.062832 -0.073991 -0.024031 +vn -0.060910 -0.073991 -0.028553 +vn -0.058663 -0.073991 -0.032923 +vn -0.056103 -0.073991 -0.037118 +vn -0.053244 -0.073991 -0.041114 +vn -0.050101 -0.073991 -0.044891 +vn -0.046691 -0.073991 -0.048428 +vn -0.043031 -0.073991 -0.051707 +vn -0.039142 -0.073991 -0.054710 +vn -0.035044 -0.073991 -0.057422 +vn -0.030759 -0.073991 -0.059826 +vn -0.026310 -0.073991 -0.061912 +vn -0.021720 -0.073991 -0.063667 +vn -0.017015 -0.073991 -0.065083 +vn -0.012219 -0.073991 -0.066151 +vn -0.007357 -0.073991 -0.066867 +vn -0.002457 -0.073991 -0.067226 +vn 0.002457 -0.073991 -0.067226 +vn 0.007357 -0.073991 -0.066867 +vn 0.012219 -0.073991 -0.066151 +vn 0.017015 -0.073991 -0.065083 +vn 0.021720 -0.073991 -0.063667 +vn 0.026310 -0.073991 -0.061912 +vn 0.030759 -0.073991 -0.059826 +vn -0.061468 -0.078749 -0.004499 +vn -0.060976 -0.078749 -0.008974 +vn -0.060158 -0.078749 -0.013401 +vn -0.059020 -0.078749 -0.017756 +vn -0.057566 -0.078749 -0.022017 +vn -0.055805 -0.078749 -0.026160 +vn -0.053747 -0.078749 -0.030164 +vn -0.051402 -0.078749 -0.034007 +vn -0.048782 -0.078749 -0.037668 +vn -0.045902 -0.078749 -0.041129 +vn -0.042778 -0.078749 -0.044370 +vn -0.039425 -0.078749 -0.047374 +vn -0.035862 -0.078749 -0.050125 +vn -0.032107 -0.078749 -0.052609 +vn -0.028181 -0.078749 -0.054813 +vn -0.024105 -0.078749 -0.056724 +vn -0.019900 -0.078749 -0.058332 +vn -0.015589 -0.078749 -0.059629 +vn -0.011195 -0.078749 -0.060608 +vn -0.006741 -0.078749 -0.061263 +vn -0.002251 -0.078749 -0.061592 +vn 0.002251 -0.078749 -0.061592 +vn 0.006741 -0.078749 -0.061263 +vn 0.011195 -0.078749 -0.060608 +vn 0.015589 -0.078749 -0.059629 +vn 0.019900 -0.078749 -0.058332 +vn 0.024105 -0.078749 -0.056724 +vn 0.028181 -0.078749 -0.054813 +vn 0.032107 -0.078749 -0.052609 +vn -0.055511 -0.083078 -0.004063 +vn -0.055067 -0.083078 -0.008104 +vn -0.054328 -0.083078 -0.012102 +vn -0.053300 -0.083078 -0.016036 +vn -0.051987 -0.083078 -0.019883 +vn -0.050397 -0.083078 -0.023625 +vn -0.048538 -0.083078 -0.027241 +vn -0.046420 -0.083078 -0.030711 +vn -0.044055 -0.083078 -0.034018 +vn -0.041454 -0.083078 -0.037143 +vn -0.038632 -0.083078 -0.040070 +vn -0.035604 -0.083078 -0.042783 +vn -0.032386 -0.083078 -0.045268 +vn -0.028995 -0.083078 -0.047511 +vn -0.025450 -0.083078 -0.049501 +vn -0.021769 -0.083078 -0.051226 +vn -0.017971 -0.083078 -0.052679 +vn -0.014078 -0.083078 -0.053850 +vn -0.010110 -0.083078 -0.054734 +vn -0.006088 -0.083078 -0.055326 +vn -0.002033 -0.083078 -0.055623 +vn 0.002033 -0.083078 -0.055623 +vn 0.006088 -0.083078 -0.055326 +vn 0.010110 -0.083078 -0.054734 +vn 0.014078 -0.083078 -0.053850 +vn 0.017971 -0.083078 -0.052679 +vn 0.021769 -0.083078 -0.051226 +vn 0.025450 -0.083078 -0.049501 +vn 0.028995 -0.083078 -0.047511 +vn 0.032386 -0.083078 -0.045268 +vn -0.049252 -0.086955 -0.003605 +vn -0.048858 -0.086955 -0.007190 +vn -0.048203 -0.086955 -0.010738 +vn -0.047290 -0.086955 -0.014227 +vn -0.046125 -0.086955 -0.017642 +vn -0.044715 -0.086955 -0.020961 +vn -0.043065 -0.086955 -0.024169 +vn -0.041186 -0.086955 -0.027249 +vn -0.039087 -0.086955 -0.030182 +vn -0.036780 -0.086955 -0.032955 +vn -0.034276 -0.086955 -0.035552 +vn -0.031590 -0.086955 -0.037959 +vn -0.028735 -0.086955 -0.040164 +vn -0.025726 -0.086955 -0.042154 +vn -0.022580 -0.086955 -0.043919 +vn -0.019314 -0.086955 -0.045450 +vn -0.015945 -0.086955 -0.046739 +vn -0.012491 -0.086955 -0.047778 +vn -0.008970 -0.086955 -0.048563 +vn -0.005401 -0.086955 -0.049088 +vn -0.001804 -0.086955 -0.049351 +vn 0.001804 -0.086955 -0.049351 +vn 0.005401 -0.086955 -0.049088 +vn 0.008970 -0.086955 -0.048563 +vn 0.012491 -0.086955 -0.047778 +vn 0.015945 -0.086955 -0.046739 +vn 0.019314 -0.086955 -0.045450 +vn 0.022580 -0.086955 -0.043919 +vn 0.025726 -0.086955 -0.042154 +vn 0.028735 -0.086955 -0.040164 +vn 0.031590 -0.086955 -0.037959 +vn -0.042725 -0.090359 -0.003127 +vn -0.042383 -0.090359 -0.006237 +vn -0.041815 -0.090359 -0.009315 +vn -0.041023 -0.090359 -0.012342 +vn -0.040013 -0.090359 -0.015304 +vn -0.038789 -0.090359 -0.018183 +vn -0.037358 -0.090359 -0.020966 +vn -0.035728 -0.090359 -0.023637 +vn -0.033907 -0.090359 -0.026182 +vn -0.031906 -0.090359 -0.028588 +vn -0.029734 -0.090359 -0.030840 +vn -0.027403 -0.090359 -0.032928 +vn -0.024927 -0.090359 -0.034841 +vn -0.022317 -0.090359 -0.036567 +vn -0.019588 -0.090359 -0.038099 +vn -0.016755 -0.090359 -0.039427 +vn -0.013832 -0.090359 -0.040545 +vn -0.010836 -0.090359 -0.041446 +vn -0.007781 -0.090359 -0.042127 +vn -0.004685 -0.090359 -0.042582 +vn -0.001565 -0.090359 -0.042811 +vn 0.001565 -0.090359 -0.042811 +vn 0.004685 -0.090359 -0.042582 +vn 0.007781 -0.090359 -0.042127 +vn 0.010836 -0.090359 -0.041446 +vn 0.013832 -0.090359 -0.040545 +vn 0.016755 -0.090359 -0.039427 +vn 0.019588 -0.090359 -0.038099 +vn 0.022317 -0.090359 -0.036567 +vn 0.024927 -0.090359 -0.034841 +vn 0.027403 -0.090359 -0.032928 +vn 0.029734 -0.090359 -0.030840 +vn -0.035965 -0.093271 -0.002632 +vn -0.035677 -0.093271 -0.005251 +vn -0.035199 -0.093271 -0.007841 +vn -0.034533 -0.093271 -0.010389 +vn -0.033682 -0.093271 -0.012882 +vn -0.032652 -0.093271 -0.015307 +vn -0.031448 -0.093271 -0.017649 +vn -0.030075 -0.093271 -0.019898 +vn -0.028543 -0.093271 -0.022040 +vn -0.026858 -0.093271 -0.024065 +vn -0.025029 -0.093271 -0.025961 +vn -0.023068 -0.093271 -0.027719 +vn -0.020983 -0.093271 -0.029329 +vn -0.018786 -0.093271 -0.030782 +vn -0.016489 -0.093271 -0.032071 +vn -0.014104 -0.093271 -0.033189 +vn -0.011644 -0.093271 -0.034130 +vn -0.009121 -0.093271 -0.034889 +vn -0.006550 -0.093271 -0.035462 +vn -0.003944 -0.093271 -0.035845 +vn -0.001317 -0.093271 -0.036038 +vn 0.001317 -0.093271 -0.036038 +vn 0.003944 -0.093271 -0.035845 +vn 0.006550 -0.093271 -0.035462 +vn 0.009121 -0.093271 -0.034889 +vn 0.011644 -0.093271 -0.034130 +vn 0.014104 -0.093271 -0.033189 +vn 0.016489 -0.093271 -0.032071 +vn 0.018786 -0.093271 -0.030782 +vn 0.020983 -0.093271 -0.029329 +vn 0.023068 -0.093271 -0.027719 +vn 0.025029 -0.093271 -0.025961 +vn 0.026858 -0.093271 -0.024065 +vn -0.029010 -0.095676 -0.002123 +vn -0.028778 -0.095676 -0.004235 +vn -0.028392 -0.095676 -0.006325 +vn -0.027854 -0.095676 -0.008380 +vn -0.027168 -0.095676 -0.010391 +vn -0.026337 -0.095676 -0.012346 +vn -0.025366 -0.095676 -0.014236 +vn -0.024259 -0.095676 -0.016050 +vn -0.023023 -0.095676 -0.017778 +vn -0.021664 -0.095676 -0.019411 +vn -0.020189 -0.095676 -0.020940 +vn -0.018607 -0.095676 -0.022358 +vn -0.016925 -0.095676 -0.023657 +vn -0.015153 -0.095676 -0.024829 +vn -0.013300 -0.095676 -0.025869 +vn -0.011376 -0.095676 -0.026771 +vn -0.009392 -0.095676 -0.027530 +vn -0.007357 -0.095676 -0.028142 +vn -0.005283 -0.095676 -0.028604 +vn -0.003181 -0.095676 -0.028913 +vn -0.001062 -0.095676 -0.029068 +vn 0.001062 -0.095676 -0.029068 +vn 0.003181 -0.095676 -0.028913 +vn 0.005283 -0.095676 -0.028604 +vn 0.007357 -0.095676 -0.028142 +vn 0.009392 -0.095676 -0.027530 +vn 0.011376 -0.095676 -0.026771 +vn 0.013300 -0.095676 -0.025869 +vn 0.015153 -0.095676 -0.024829 +vn 0.016925 -0.095676 -0.023657 +vn 0.018607 -0.095676 -0.022358 +vn 0.020189 -0.095676 -0.020940 +vn 0.021664 -0.095676 -0.019411 +vn 0.023023 -0.095676 -0.017778 +vn -0.021897 -0.097560 -0.001603 +vn -0.021721 -0.097560 -0.003197 +vn -0.021430 -0.097560 -0.004774 +vn -0.021025 -0.097560 -0.006325 +vn -0.020507 -0.097560 -0.007843 +vn -0.019879 -0.097560 -0.009319 +vn -0.019146 -0.097560 -0.010745 +vn -0.018311 -0.097560 -0.012114 +vn -0.017378 -0.097560 -0.013419 +vn -0.016352 -0.097560 -0.014651 +vn -0.015239 -0.097560 -0.015806 +vn -0.014044 -0.097560 -0.016876 +vn -0.012775 -0.097560 -0.017856 +vn -0.011437 -0.097560 -0.018741 +vn -0.010039 -0.097560 -0.019526 +vn -0.008587 -0.097560 -0.020207 +vn -0.007089 -0.097560 -0.020779 +vn -0.005553 -0.097560 -0.021242 +vn -0.003988 -0.097560 -0.021590 +vn -0.002401 -0.097560 -0.021824 +vn -0.000802 -0.097560 -0.021941 +vn 0.000802 -0.097560 -0.021941 +vn 0.002401 -0.097560 -0.021824 +vn 0.003988 -0.097560 -0.021590 +vn 0.005553 -0.097560 -0.021242 +vn 0.007089 -0.097560 -0.020779 +vn 0.008587 -0.097560 -0.020207 +vn 0.010039 -0.097560 -0.019526 +vn 0.011437 -0.097560 -0.018741 +vn 0.012775 -0.097560 -0.017856 +vn 0.014044 -0.097560 -0.016876 +vn 0.015239 -0.097560 -0.015806 +vn 0.016352 -0.097560 -0.014651 +vn 0.017378 -0.097560 -0.013419 +vn 0.018311 -0.097560 -0.012114 +vn -0.014664 -0.098913 -0.001073 +vn -0.014547 -0.098913 -0.002141 +vn -0.014352 -0.098913 -0.003197 +vn -0.014080 -0.098913 -0.004236 +vn -0.013733 -0.098913 -0.005253 +vn -0.013313 -0.098913 -0.006241 +vn -0.012822 -0.098913 -0.007196 +vn -0.012263 -0.098913 -0.008113 +vn -0.011638 -0.098913 -0.008986 +vn -0.010951 -0.098913 -0.009812 +vn -0.010205 -0.098913 -0.010585 +vn -0.009406 -0.098913 -0.011302 +vn -0.008555 -0.098913 -0.011958 +vn -0.007660 -0.098913 -0.012551 +vn -0.006723 -0.098913 -0.013077 +vn -0.005751 -0.098913 -0.013532 +vn -0.004748 -0.098913 -0.013916 +vn -0.003719 -0.098913 -0.014226 +vn -0.002671 -0.098913 -0.014459 +vn -0.001608 -0.098913 -0.014615 +vn -0.000537 -0.098913 -0.014694 +vn 0.000537 -0.098913 -0.014694 +vn 0.001608 -0.098913 -0.014615 +vn 0.002671 -0.098913 -0.014459 +vn 0.003719 -0.098913 -0.014226 +vn 0.004748 -0.098913 -0.013916 +vn 0.005751 -0.098913 -0.013532 +vn 0.006723 -0.098913 -0.013077 +vn 0.007660 -0.098913 -0.012551 +vn 0.008555 -0.098913 -0.011958 +vn 0.009406 -0.098913 -0.011302 +vn 0.010205 -0.098913 -0.010585 +vn 0.010951 -0.098913 -0.009812 +vn 0.011638 -0.098913 -0.008986 +vn 0.012263 -0.098913 -0.008113 +vn 0.012822 -0.098913 -0.007196 +vn -0.044236 0.084774 -0.029267 +vn -0.046814 0.080633 -0.036149 +vn -0.048358 0.076053 -0.043329 +vn -0.048835 0.071060 -0.050652 +vn -0.048236 0.065680 -0.057961 +vn -0.046574 0.059942 -0.065098 +vn -0.043886 0.053878 -0.071910 +vn -0.040231 0.047521 -0.078251 +vn -0.035689 0.040906 -0.083982 +vn -0.030357 0.034068 -0.088982 +vn -0.024351 0.027044 -0.093143 +vn -0.017801 0.019873 -0.096375 +vn -0.010850 0.012594 -0.098609 +vn -0.003647 0.005247 -0.099796 +vn 0.003651 -0.002129 -0.099911 +vn 0.010888 -0.009494 -0.098951 +vn 0.017905 -0.016806 -0.096938 +vn 0.024552 -0.024028 -0.093914 +vn 0.030685 -0.031118 -0.089945 +vn 0.036170 -0.038039 -0.085116 +vn 0.040890 -0.044754 -0.079531 +vn 0.044740 -0.051224 -0.073310 +vn 0.047639 -0.057416 -0.066587 +vn 0.049523 -0.063296 -0.059508 +vn 0.050350 -0.068831 -0.052223 +vn 0.050101 -0.073991 -0.044891 +vn 0.048782 -0.078749 -0.037668 +vn 0.046420 -0.083078 -0.030711 +vn 0.043065 -0.086955 -0.024169 +vn 0.038789 -0.090359 -0.018183 +vn 0.033682 -0.093271 -0.012882 +vn 0.027854 -0.095676 -0.008380 +vn 0.021430 -0.097560 -0.004774 +vn 0.014547 -0.098913 -0.002141 +vn -0.030863 0.084774 -0.043138 +vn -0.030812 0.080633 -0.050487 +vn -0.029689 0.076053 -0.057745 +vn -0.027518 0.071060 -0.064755 +vn -0.024347 0.065680 -0.071368 +vn -0.020246 0.059942 -0.077441 +vn -0.015302 0.053878 -0.082843 +vn -0.009623 0.047521 -0.087459 +vn -0.003333 0.040906 -0.091190 +vn 0.003434 0.034068 -0.093955 +vn 0.010530 0.027044 -0.095696 +vn 0.017801 0.019873 -0.096375 +vn 0.025092 0.012594 -0.095978 +vn 0.032244 0.005247 -0.094514 +vn 0.039102 -0.002129 -0.092014 +vn 0.045518 -0.009494 -0.088533 +vn 0.051353 -0.016806 -0.084145 +vn 0.056481 -0.024028 -0.078946 +vn 0.060791 -0.031118 -0.073048 +vn 0.064190 -0.038039 -0.066578 +vn 0.066602 -0.044754 -0.059676 +vn 0.067977 -0.051224 -0.052490 +vn 0.068283 -0.057416 -0.045176 +vn 0.067513 -0.063296 -0.037890 +vn 0.065683 -0.068831 -0.030791 +vn 0.062832 -0.073991 -0.024031 +vn 0.059020 -0.078749 -0.017756 +vn 0.054328 -0.083078 -0.012102 +vn 0.048858 -0.086955 -0.007190 +vn 0.042725 -0.090359 -0.003127 +vn 0.036062 -0.093271 0.000000 +vn 0.029010 -0.095676 0.002123 +vn 0.021721 -0.097560 0.003197 +vn 0.014352 -0.098913 0.003197 +vn -0.027631 0.084774 -0.045276 +vn -0.027044 0.080633 -0.052601 +vn -0.025394 0.076053 -0.059758 +vn -0.022718 0.071060 -0.066591 +vn -0.019073 0.065680 -0.072955 +vn -0.014539 0.059942 -0.078712 +vn -0.009214 0.053878 -0.083739 +vn -0.003213 0.047521 -0.087928 +vn 0.003333 0.040906 -0.091190 +vn 0.010283 0.034068 -0.093454 +vn 0.017487 0.027044 -0.094672 +vn 0.024789 0.019873 -0.094819 +vn 0.032031 0.012594 -0.093890 +vn 0.039057 0.005247 -0.091908 +vn 0.045714 -0.002129 -0.088914 +vn 0.051859 -0.009494 -0.084974 +vn 0.057358 -0.016806 -0.080172 +vn 0.062093 -0.024028 -0.074613 +vn 0.065961 -0.031118 -0.068416 +vn 0.068878 -0.038039 -0.061715 +vn 0.070781 -0.044754 -0.054655 +vn 0.071627 -0.051224 -0.047388 +vn 0.071398 -0.057416 -0.040071 +vn 0.070099 -0.063296 -0.032861 +vn 0.067755 -0.068831 -0.025914 +vn 0.064418 -0.073991 -0.019381 +vn 0.060158 -0.078749 -0.013401 +vn 0.055067 -0.083078 -0.008104 +vn 0.049252 -0.086955 -0.003605 +vn 0.042839 -0.090359 0.000000 +vn 0.035965 -0.093271 0.002632 +vn 0.028778 -0.095676 0.004235 +vn 0.021430 -0.097560 0.004774 +vn 0.014080 -0.098913 0.004236 +vn -0.009634 0.084774 -0.052159 +vn -0.006469 0.080633 -0.058792 +vn -0.002371 0.076053 -0.064886 +vn 0.002570 0.071060 -0.070313 +vn 0.008247 0.065680 -0.074954 +vn 0.014539 0.059942 -0.078712 +vn 0.021308 0.053878 -0.081505 +vn 0.028409 0.047521 -0.083274 +vn 0.035689 0.040906 -0.083982 +vn 0.042989 0.034068 -0.083614 +vn 0.050153 0.027044 -0.082179 +vn 0.057025 0.019873 -0.079707 +vn 0.063458 0.012594 -0.076253 +vn 0.069312 0.005247 -0.071891 +vn 0.074460 -0.002129 -0.066717 +vn 0.078792 -0.009494 -0.060841 +vn 0.082214 -0.016806 -0.054392 +vn 0.084650 -0.024028 -0.047508 +vn 0.086049 -0.031118 -0.040338 +vn 0.086380 -0.038039 -0.033038 +vn 0.085635 -0.044754 -0.025764 +vn 0.083829 -0.051224 -0.018674 +vn 0.081002 -0.057416 -0.011921 +vn 0.077212 -0.063296 -0.005651 +vn 0.072542 -0.068831 0.000000 +vn 0.067091 -0.073991 0.004910 +vn 0.060976 -0.078749 0.008974 +vn 0.054328 -0.083078 0.012102 +vn 0.047290 -0.086955 0.014227 +vn 0.040013 -0.090359 0.015304 +vn 0.032652 -0.093271 0.015307 +vn 0.025366 -0.095676 0.014236 +vn 0.018311 -0.097560 0.012114 +vn 0.011638 -0.098913 0.008986 +vn 0.009634 0.084774 -0.052159 +vn 0.014960 0.080633 -0.057223 +vn 0.020965 0.076053 -0.061452 +vn 0.027518 0.071060 -0.064755 +vn 0.034479 0.065680 -0.067062 +vn 0.041698 0.059942 -0.068324 +vn 0.049018 0.053878 -0.068515 +vn 0.056283 0.047521 -0.067631 +vn 0.063335 0.040906 -0.065692 +vn 0.070022 0.034068 -0.062740 +vn 0.076200 0.027044 -0.058840 +vn 0.081736 0.019873 -0.054076 +vn 0.086511 0.012594 -0.048552 +vn 0.090420 0.005247 -0.042387 +vn 0.093380 -0.002129 -0.035715 +vn 0.095328 -0.009494 -0.028680 +vn 0.096219 -0.016806 -0.021434 +vn 0.096036 -0.024028 -0.014134 +vn 0.094781 -0.031118 -0.006937 +vn 0.092482 -0.038039 0.000000 +vn 0.089188 -0.044754 0.006528 +vn 0.084969 -0.051224 0.012505 +vn 0.079915 -0.057416 0.017802 +vn 0.074136 -0.063296 0.022304 +vn 0.067755 -0.068831 0.025914 +vn 0.060910 -0.073991 0.028553 +vn 0.053747 -0.078749 0.030164 +vn 0.046420 -0.083078 0.030711 +vn 0.039087 -0.086955 0.030182 +vn 0.031906 -0.090359 0.028588 +vn 0.025029 -0.093271 0.025961 +vn 0.018607 -0.095676 0.022358 +vn 0.012775 -0.097560 0.017856 +vn 0.007660 -0.098913 0.012551 +vn 0.013416 0.084774 -0.051317 +vn 0.019097 0.080633 -0.055979 +vn 0.025394 0.076053 -0.059758 +vn 0.032171 0.071060 -0.062574 +vn 0.039282 0.065680 -0.064367 +vn 0.046574 0.059942 -0.065098 +vn 0.053889 0.053878 -0.064754 +vn 0.061070 0.047521 -0.063342 +vn 0.067961 0.040906 -0.060893 +vn 0.074415 0.034068 -0.057461 +vn 0.080292 0.027044 -0.053121 +vn 0.085466 0.019873 -0.047966 +vn 0.089824 0.012594 -0.042108 +vn 0.093273 0.005247 -0.035674 +vn 0.095738 -0.002129 -0.028803 +vn 0.097167 -0.009494 -0.021645 +vn 0.097527 -0.016806 -0.014353 +vn 0.096811 -0.024028 -0.007086 +vn 0.095035 -0.031118 0.000000 +vn 0.092236 -0.038039 0.006751 +vn 0.088474 -0.044754 0.013021 +vn 0.083829 -0.051224 0.018674 +vn 0.078403 -0.057416 0.023588 +vn 0.072310 -0.063296 0.027656 +vn 0.065683 -0.068831 0.030791 +vn 0.058663 -0.073991 0.032923 +vn 0.051402 -0.078749 0.034007 +vn 0.044055 -0.083078 0.034018 +vn 0.036780 -0.086955 0.032955 +vn 0.029734 -0.090359 0.030840 +vn 0.023068 -0.093271 0.027719 +vn 0.016925 -0.095676 0.023657 +vn 0.011437 -0.097560 0.018741 +vn 0.006723 -0.098913 0.013077 +vn 0.030863 0.084774 -0.043138 +vn 0.037834 0.080633 -0.045463 +vn 0.045066 0.076053 -0.046743 +vn 0.052402 0.071060 -0.046952 +vn 0.059684 0.065680 -0.046087 +vn 0.066756 0.059942 -0.044165 +vn 0.073465 0.053878 -0.041231 +vn 0.079668 0.047521 -0.037347 +vn 0.085230 0.040906 -0.032598 +vn 0.090032 0.034068 -0.027087 +vn 0.093970 0.027044 -0.020933 +vn 0.096961 0.019873 -0.014270 +vn 0.098939 0.012594 -0.007241 +vn 0.099862 0.005247 -0.000000 +vn 0.099711 -0.002129 0.007298 +vn 0.098487 -0.009494 0.014494 +vn 0.096219 -0.016806 0.021434 +vn 0.092955 -0.024028 0.027966 +vn 0.088764 -0.031118 0.033949 +vn 0.083738 -0.038039 0.039255 +vn 0.077984 -0.044754 0.043767 +vn 0.071627 -0.051224 0.047388 +vn 0.064803 -0.057416 0.050039 +vn 0.057659 -0.063296 0.051663 +vn 0.050350 -0.068831 0.052223 +vn 0.043031 -0.073991 0.051707 +vn 0.035862 -0.078749 0.050125 +vn 0.028995 -0.083078 0.047511 +vn 0.022580 -0.086955 0.043919 +vn 0.016755 -0.090359 0.039427 +vn 0.011644 -0.093271 0.034130 +vn 0.007357 -0.095676 0.028142 +vn 0.003988 -0.097560 0.021590 +vn 0.001608 -0.098913 0.014615 +vn 0.033929 0.084774 -0.040770 +vn 0.041052 0.080633 -0.042580 +vn 0.048358 0.076053 -0.043329 +vn 0.055689 0.071060 -0.043002 +vn 0.062889 0.065680 -0.041607 +vn 0.069802 0.059942 -0.039175 +vn 0.076279 0.053878 -0.035758 +vn 0.082181 0.047521 -0.031432 +vn 0.087382 0.040906 -0.026289 +vn 0.091769 0.034068 -0.020442 +vn 0.095248 0.027044 -0.014018 +vn 0.097744 0.019873 -0.007154 +vn 0.099204 0.012594 -0.000000 +vn 0.099596 0.005247 0.007289 +vn 0.098912 -0.002129 0.014557 +vn 0.097167 -0.009494 0.021645 +vn 0.094398 -0.016806 0.028400 +vn 0.090665 -0.024028 0.034677 +vn 0.086049 -0.031118 0.040338 +vn 0.080649 -0.038039 0.045263 +vn 0.074582 -0.044754 0.049343 +vn 0.067977 -0.051224 0.052490 +vn 0.060978 -0.057416 0.054636 +vn 0.053734 -0.063296 0.055734 +vn 0.046403 -0.068831 0.055759 +vn 0.039142 -0.073991 0.054710 +vn 0.032107 -0.078749 0.052609 +vn 0.025450 -0.083078 0.049501 +vn 0.019314 -0.086955 0.045450 +vn 0.013832 -0.090359 0.040545 +vn 0.009121 -0.093271 0.034889 +vn 0.005283 -0.095676 0.028604 +vn 0.002401 -0.097560 0.021824 +vn 0.000537 -0.098913 0.014694 +vn 0.044236 0.084774 -0.029267 +vn 0.051579 0.080633 -0.028947 +vn 0.058791 0.076053 -0.027560 +vn 0.065717 0.071060 -0.025135 +vn 0.072209 0.065680 -0.021725 +vn 0.078128 0.059942 -0.017404 +vn 0.083347 0.053878 -0.012266 +vn 0.087752 0.047521 -0.006423 +vn 0.091251 0.040906 -0.000000 +vn 0.093767 0.034068 0.006863 +vn 0.095248 0.027044 0.014018 +vn 0.095661 0.019873 0.021309 +vn 0.094998 0.012594 0.028581 +vn 0.093273 0.005247 0.035674 +vn 0.090524 -0.002129 0.042436 +vn 0.086811 -0.009494 0.048721 +vn 0.082214 -0.016806 0.054392 +vn 0.076831 -0.024028 0.059327 +vn 0.070779 -0.031118 0.063419 +vn 0.064190 -0.038039 0.066578 +vn 0.057204 -0.044754 0.068737 +vn 0.049972 -0.051224 0.069849 +vn 0.042652 -0.057416 0.069887 +vn 0.035399 -0.063296 0.068852 +vn 0.028372 -0.068831 0.066764 +vn 0.021720 -0.073991 0.063667 +vn 0.015589 -0.078749 0.059629 +vn 0.010110 -0.083078 0.054734 +vn 0.005401 -0.086955 0.049088 +vn 0.001565 -0.090359 0.042811 +vn -0.001317 -0.093271 0.036038 +vn -0.003181 -0.095676 0.028913 +vn -0.003988 -0.097560 0.021590 +vn -0.003719 -0.098913 0.014226 +vn 0.046255 0.084774 -0.025959 +vn 0.053554 0.080633 -0.025105 +vn 0.060645 0.076053 -0.023195 +vn 0.067376 0.071060 -0.020271 +vn 0.073603 0.065680 -0.016396 +vn 0.079190 0.059942 -0.011654 +vn 0.084020 0.053878 -0.006149 +vn 0.087987 0.047521 -0.000000 +vn 0.091007 0.040906 0.006661 +vn 0.093016 0.034068 0.013689 +vn 0.093970 0.027044 0.020933 +vn 0.093850 0.019873 0.028235 +vn 0.092658 0.012594 0.035439 +vn 0.090420 0.005247 0.042387 +vn 0.087185 -0.002129 0.048931 +vn 0.083023 -0.009494 0.054928 +vn 0.078024 -0.016806 0.060248 +vn 0.072295 -0.024028 0.064777 +vn 0.065961 -0.031118 0.068416 +vn 0.059159 -0.038039 0.071086 +vn 0.052034 -0.044754 0.072730 +vn 0.044740 -0.051224 0.073310 +vn 0.037436 -0.057416 0.072814 +vn 0.030279 -0.063296 0.071252 +vn 0.023422 -0.068831 0.068657 +vn 0.017015 -0.073991 0.065083 +vn 0.011195 -0.078749 0.060608 +vn 0.006088 -0.083078 0.055326 +vn 0.001804 -0.086955 0.049351 +vn -0.001565 -0.090359 0.042811 +vn -0.003944 -0.093271 0.035845 +vn -0.005283 -0.095676 0.028604 +vn -0.005553 -0.097560 0.021242 +vn -0.004748 -0.098913 0.013916 +vn 0.052476 0.084774 -0.007723 +vn 0.058989 0.080633 -0.004317 +vn 0.064930 0.076053 -0.000000 +vn 0.070172 0.071060 0.005136 +vn 0.074603 0.065680 0.010979 +vn 0.078128 0.059942 0.017404 +vn 0.080672 0.053878 0.024271 +vn 0.082181 0.047521 0.031432 +vn 0.082623 0.040906 0.038732 +vn 0.081988 0.034068 0.046014 +vn 0.080292 0.027044 0.053121 +vn 0.077571 0.019873 0.059898 +vn 0.073884 0.012594 0.066201 +vn 0.069312 0.005247 0.071891 +vn 0.063953 -0.002129 0.076847 +vn 0.057923 -0.009494 0.080962 +vn 0.051353 -0.016806 0.084145 +vn 0.044385 -0.024028 0.086329 +vn 0.037169 -0.031118 0.087465 +vn 0.029861 -0.038039 0.087529 +vn 0.022619 -0.044754 0.086519 +vn 0.015600 -0.051224 0.084455 +vn 0.008955 -0.057416 0.081383 +vn 0.002827 -0.063296 0.077367 +vn -0.002649 -0.068831 0.072494 +vn -0.007357 -0.073991 0.066867 +vn -0.011195 -0.078749 0.060608 +vn -0.014078 -0.083078 0.053850 +vn -0.015945 -0.086955 0.046739 +vn -0.016755 -0.090359 0.039427 +vn -0.016489 -0.093271 0.032071 +vn -0.015153 -0.095676 0.024829 +vn -0.012775 -0.097560 0.017856 +vn -0.009406 -0.098913 0.011302 +vn 0.052900 0.084774 -0.003872 +vn 0.059146 0.080633 -0.000000 +vn 0.064757 0.076053 0.004740 +vn 0.069610 0.071060 0.010244 +vn 0.073603 0.065680 0.016396 +vn 0.076650 0.059942 0.023060 +vn 0.078686 0.053878 0.030095 +vn 0.079668 0.047521 0.037347 +vn 0.079575 0.040906 0.044660 +vn 0.078411 0.034068 0.051876 +vn 0.076200 0.027044 0.058840 +vn 0.072992 0.019873 0.065401 +vn 0.068855 0.012594 0.071417 +vn 0.063879 0.005247 0.076759 +vn 0.058173 -0.002129 0.081311 +vn 0.051859 -0.009494 0.084974 +vn 0.045074 -0.016806 0.087669 +vn 0.037965 -0.024028 0.089338 +vn 0.030685 -0.031118 0.089945 +vn 0.023392 -0.038039 0.089475 +vn 0.016243 -0.044754 0.087939 +vn 0.009393 -0.051224 0.085369 +vn 0.002990 -0.057416 0.081820 +vn -0.002827 -0.063296 0.077367 +vn -0.007934 -0.068831 0.072107 +vn -0.012219 -0.073991 0.066151 +vn -0.015589 -0.078749 0.059629 +vn -0.017971 -0.083078 0.052679 +vn -0.019314 -0.086955 0.045450 +vn -0.019588 -0.090359 0.038099 +vn -0.018786 -0.093271 0.030782 +vn -0.016925 -0.095676 0.023657 +vn -0.014044 -0.097560 0.016876 +vn -0.010205 -0.098913 0.010585 +vn 0.051772 0.084774 0.011533 +vn 0.056639 0.080633 0.017040 +vn 0.060645 0.076053 0.023195 +vn 0.063707 0.071060 0.029865 +vn 0.065758 0.065680 0.036905 +vn 0.066756 0.059942 0.044165 +vn 0.066679 0.053878 0.051488 +vn 0.065530 0.047521 0.058715 +vn 0.063335 0.040906 0.065692 +vn 0.060141 0.034068 0.072267 +vn 0.056018 0.027044 0.078298 +vn 0.051055 0.019873 0.083657 +vn 0.045360 0.012594 0.088226 +vn 0.039057 0.005247 0.091908 +vn 0.032281 -0.002129 0.094623 +vn 0.025179 -0.009494 0.096311 +vn 0.017905 -0.016806 0.096938 +vn 0.010617 -0.024028 0.096488 +vn 0.003471 -0.031118 0.094972 +vn -0.003378 -0.038039 0.092421 +vn -0.009781 -0.044754 0.088890 +vn -0.015600 -0.051224 0.084455 +vn -0.020709 -0.057416 0.079212 +vn -0.024997 -0.063296 0.073272 +vn -0.028372 -0.068831 0.066764 +vn -0.030759 -0.073991 0.059826 +vn -0.032107 -0.078749 0.052609 +vn -0.032386 -0.083078 0.045268 +vn -0.031590 -0.086955 0.037959 +vn -0.029734 -0.090359 0.030840 +vn -0.026858 -0.093271 0.024065 +vn -0.023023 -0.095676 0.017778 +vn -0.018311 -0.097560 0.012114 +vn -0.012822 -0.098913 0.007196 +vn 0.050792 0.084774 0.015281 +vn 0.055244 0.080633 0.021129 +vn 0.058791 0.076053 0.027560 +vn 0.061357 0.071060 0.034435 +vn 0.062889 0.065680 0.041607 +vn 0.063354 0.059942 0.048920 +vn 0.062743 0.053878 0.056218 +vn 0.061070 0.047521 0.063342 +vn 0.058371 0.040906 0.070140 +vn 0.054705 0.034068 0.076464 +vn 0.050153 0.027044 0.082179 +vn 0.044812 0.019873 0.087160 +vn 0.038799 0.012594 0.091302 +vn 0.032244 0.005247 0.094514 +vn 0.025288 -0.002129 0.096726 +vn 0.018082 -0.009494 0.097892 +vn 0.010782 -0.016806 0.097986 +vn 0.003545 -0.024028 0.097006 +vn -0.003471 -0.031118 0.094972 +vn -0.010115 -0.038039 0.091928 +vn -0.016243 -0.044754 0.087939 +vn -0.021723 -0.051224 0.083091 +vn -0.026436 -0.057416 0.077489 +vn -0.030279 -0.063296 0.071252 +vn -0.033169 -0.068831 0.064515 +vn -0.035044 -0.073991 0.057422 +vn -0.035862 -0.078749 0.050125 +vn -0.035604 -0.083078 0.042783 +vn -0.034276 -0.086955 0.035552 +vn -0.031906 -0.090359 0.028588 +vn -0.028543 -0.093271 0.022040 +vn -0.024259 -0.095676 0.016050 +vn -0.019146 -0.097560 0.010745 +vn -0.013313 -0.098913 0.006241 +vn 0.041982 0.084774 0.032417 +vn 0.044051 0.080633 0.039470 +vn 0.045066 0.076053 0.046743 +vn 0.045007 0.071060 0.054082 +vn 0.043876 0.065680 0.061327 +vn 0.041698 0.059942 0.068324 +vn 0.038520 0.053878 0.074922 +vn 0.034412 0.047521 0.080979 +vn 0.029463 0.040906 0.086363 +vn 0.023780 0.034068 0.090961 +vn 0.017487 0.027044 0.094672 +vn 0.010719 0.019873 0.097417 +vn 0.003623 0.012594 0.099138 +vn -0.003647 0.005247 0.099796 +vn -0.010935 -0.002129 0.099378 +vn -0.018082 -0.009494 0.097892 +vn -0.024934 -0.016806 0.095372 +vn -0.031342 -0.024028 0.091871 +vn -0.037169 -0.031118 0.087465 +vn -0.042287 -0.038039 0.082249 +vn -0.046586 -0.044754 0.076334 +vn -0.049972 -0.051224 0.069849 +vn -0.052373 -0.057416 0.062932 +vn -0.053734 -0.063296 0.055734 +vn -0.054027 -0.068831 0.048409 +vn -0.053244 -0.073991 0.041114 +vn -0.051402 -0.078749 0.034007 +vn -0.048538 -0.083078 0.027241 +vn -0.044715 -0.086955 0.020961 +vn -0.040013 -0.090359 0.015304 +vn -0.034533 -0.093271 0.010389 +vn -0.028392 -0.095676 0.006325 +vn -0.021721 -0.097560 0.003197 +vn 0.039504 0.084774 0.035396 +vn 0.041052 0.080633 0.042580 +vn 0.041534 0.076053 0.049908 +vn 0.040939 0.071060 0.057223 +vn 0.039282 0.065680 0.064367 +vn 0.036599 0.059942 0.071186 +vn 0.032948 0.053878 0.077534 +vn 0.028409 0.047521 0.083274 +vn 0.023080 0.040906 0.088284 +vn 0.017077 0.034068 0.092454 +vn 0.010530 0.027044 0.095696 +vn 0.003579 0.019873 0.097940 +vn -0.003623 0.012594 0.099138 +vn -0.010922 0.005247 0.099263 +vn -0.018160 -0.002129 0.098314 +vn -0.025179 -0.009494 0.096311 +vn -0.031829 -0.016806 0.093298 +vn -0.037965 -0.024028 0.089338 +vn -0.043454 -0.031118 0.084519 +vn -0.048178 -0.038039 0.078942 +vn -0.052034 -0.044754 0.072730 +vn -0.054938 -0.051224 0.066015 +vn -0.056827 -0.057416 0.058941 +vn -0.057659 -0.063296 0.051663 +vn -0.057417 -0.068831 0.044336 +vn -0.056103 -0.073991 0.037118 +vn -0.053747 -0.078749 0.030164 +vn -0.050397 -0.083078 0.023625 +vn -0.046125 -0.086955 0.017642 +vn -0.041023 -0.090359 0.012342 +vn -0.035199 -0.093271 0.007841 +vn -0.028778 -0.095676 0.004235 +vn 0.027631 0.084774 0.045276 +vn 0.027044 0.080633 0.052601 +vn 0.025394 0.076053 0.059758 +vn 0.022718 0.071060 0.066591 +vn 0.019073 0.065680 0.072955 +vn 0.014539 0.059942 0.078712 +vn 0.009214 0.053878 0.083739 +vn 0.003213 0.047521 0.087928 +vn -0.003333 0.040906 0.091190 +vn -0.010283 0.034068 0.093454 +vn -0.017487 0.027044 0.094672 +vn -0.024789 0.019873 0.094819 +vn -0.032031 0.012594 0.093890 +vn -0.039057 0.005247 0.091908 +vn -0.045714 -0.002129 0.088914 +vn -0.051859 -0.009494 0.084974 +vn -0.057358 -0.016806 0.080172 +vn -0.062093 -0.024028 0.074613 +vn -0.065961 -0.031118 0.068416 +vn -0.068878 -0.038039 0.061715 +vn -0.070781 -0.044754 0.054655 +vn -0.071627 -0.051224 0.047388 +vn -0.071398 -0.057416 0.040071 +vn -0.070099 -0.063296 0.032861 +vn -0.067755 -0.068831 0.025914 +vn -0.064418 -0.073991 0.019381 +vn -0.060158 -0.078749 0.013401 +vn -0.055067 -0.083078 0.008104 +vn 0.024253 0.084774 0.047172 +vn 0.023132 0.080633 0.054435 +vn 0.020965 0.076053 0.061452 +vn 0.017796 0.071060 0.068072 +vn 0.013697 0.065680 0.074152 +vn 0.008754 0.059942 0.079563 +vn 0.003077 0.053878 0.084188 +vn -0.003213 0.047521 0.087928 +vn -0.009980 0.040906 0.090703 +vn -0.017077 0.034068 0.092454 +vn -0.024351 0.027044 0.093143 +vn -0.031644 0.019873 0.092756 +vn -0.038799 0.012594 0.091302 +vn -0.045661 0.005247 0.088812 +vn -0.052082 -0.002129 0.085340 +vn -0.057923 -0.009494 0.080962 +vn -0.063057 -0.016806 0.075771 +vn -0.067374 -0.024028 0.069881 +vn -0.070779 -0.031118 0.063419 +vn -0.073200 -0.038039 0.056523 +vn -0.074582 -0.044754 0.049343 +vn -0.074895 -0.051224 0.042033 +vn -0.074133 -0.057416 0.034752 +vn -0.072310 -0.063296 0.027656 +vn -0.069466 -0.068831 0.020899 +vn -0.065661 -0.073991 0.014627 +vn -0.060976 -0.078749 0.008974 +vn 0.005801 0.084774 0.052723 +vn 0.002160 0.080633 0.059107 +vn -0.002371 0.076053 0.064886 +vn -0.007695 0.071060 0.069938 +vn -0.013697 0.065680 0.074152 +vn -0.020246 0.059942 0.077441 +vn -0.027201 0.053878 0.079732 +vn -0.034412 0.047521 0.080979 +vn -0.041724 0.040906 0.081153 +vn -0.048978 0.034068 0.080253 +vn -0.056018 0.027044 0.078298 +vn -0.062691 0.019873 0.075332 +vn -0.068855 0.012594 0.071417 +vn -0.074375 0.005247 0.066640 +vn -0.079132 -0.002129 0.061104 +vn -0.083023 -0.009494 0.054928 +vn -0.085965 -0.016806 0.048246 +vn -0.087892 -0.024028 0.041202 +vn -0.088764 -0.031118 0.033949 +vn -0.088561 -0.038039 0.026644 +vn -0.087287 -0.044754 0.019444 +vn -0.084969 -0.051224 0.012505 +vn 0.001937 0.084774 0.053006 +vn -0.002160 0.080633 0.059107 +vn -0.007101 0.076053 0.064540 +vn -0.012780 0.071060 0.069189 +vn -0.019073 0.065680 0.072955 +vn -0.025844 0.059942 0.075756 +vn -0.032948 0.053878 0.077534 +vn -0.040231 0.047521 0.078251 +vn -0.047536 0.040906 0.077891 +vn -0.054705 0.034068 0.076464 +vn -0.061584 0.027044 0.074001 +vn -0.068023 0.019873 0.070554 +vn -0.073884 0.012594 0.066201 +vn -0.079041 0.005247 0.061033 +vn -0.083381 -0.002129 0.055164 +vn -0.086811 -0.009494 0.048721 +vn -0.089257 -0.016806 0.041842 +vn -0.090665 -0.024028 0.034677 +vn -0.091006 -0.031118 0.027380 +vn -0.090270 -0.038039 0.020108 +vn -0.088474 -0.044754 0.013021 +vn -0.017126 0.084774 0.050200 +vn -0.023132 0.080633 0.054435 +vn -0.029689 0.076053 0.057745 +vn -0.036653 0.071060 0.060059 +vn -0.043876 0.065680 0.061327 +vn -0.051202 0.059942 0.061525 +vn -0.058472 0.053878 0.060648 +vn -0.065530 0.047521 0.058715 +vn -0.072225 0.040906 0.055770 +vn -0.078411 0.034068 0.051876 +vn -0.083955 0.027044 0.047118 +vn -0.088739 0.019873 0.041599 +vn -0.092658 0.012594 0.035439 +vn -0.095628 0.005247 0.028770 +vn -0.097585 -0.002129 0.021738 +vn -0.098487 -0.009494 0.014494 +vn -0.033929 0.084774 0.040770 +vn -0.041052 0.080633 0.042580 +vn -0.048358 0.076053 0.043329 +vn -0.055689 0.071060 0.043002 +vn -0.062889 0.065680 0.041607 +vn -0.069802 0.059942 0.039175 +vn -0.076279 0.053878 0.035758 +vn -0.082181 0.047521 0.031432 +vn -0.087382 0.040906 0.026289 +vn -0.091769 0.034068 0.020442 +vn -0.095248 0.027044 0.014018 +vn -0.036815 0.084774 0.038185 +vn -0.044051 0.080633 0.039470 +vn -0.051392 0.076053 0.039683 +vn -0.058680 0.071060 0.038822 +vn -0.065758 0.065680 0.036905 +vn -0.072475 0.059942 0.033975 +vn -0.078686 0.053878 0.030095 +vn -0.084256 0.047521 0.025349 +vn -0.089068 0.040906 0.019841 +vn -0.093016 0.034068 0.013689 +vn -0.048026 0.084774 0.022514 +vn -0.055244 0.080633 0.021129 +vn -0.062177 0.076053 0.018706 +vn -0.068676 0.071060 0.015298 +vn -0.074603 0.065680 0.010979 +usemtl Steel_-_Satin +f 61/1/1 1/2/2 62/3/3 +f 62/3/3 1/2/2 2/4/4 +f 62/3/3 2/4/4 116/5/5 +f 116/5/5 2/4/4 3/6/6 +f 116/5/5 3/6/6 115/7/7 +f 115/7/7 3/6/6 4/8/8 +f 115/7/7 4/8/8 114/9/9 +f 114/9/9 4/8/8 5/10/10 +f 114/9/9 5/10/10 113/11/11 +f 113/11/11 5/10/10 6/12/12 +f 113/11/11 6/12/12 112/13/13 +f 112/13/13 6/12/12 7/14/14 +f 112/13/13 7/14/14 111/15/15 +f 111/15/15 7/14/14 8/16/16 +f 111/15/15 8/16/16 110/17/17 +f 110/17/17 8/16/16 9/18/18 +f 110/17/17 9/18/18 109/19/19 +f 109/19/19 9/18/18 10/20/20 +f 109/19/19 10/20/20 108/21/21 +f 108/21/21 10/20/20 11/22/22 +f 108/21/21 11/22/22 12/23/23 +f 108/21/21 12/23/23 107/24/24 +f 107/24/24 12/23/23 13/25/25 +f 107/24/24 13/25/25 106/26/26 +f 106/26/26 13/25/25 14/27/27 +f 106/26/26 14/27/27 105/28/28 +f 105/28/28 14/27/27 15/29/29 +f 105/28/28 15/29/29 104/30/30 +f 104/30/30 15/29/29 16/31/31 +f 104/30/30 16/31/31 103/32/32 +f 103/32/32 16/31/31 17/33/33 +f 103/32/32 17/33/33 102/34/34 +f 102/34/34 17/33/33 18/35/35 +f 102/34/34 18/35/35 101/36/36 +f 101/36/36 18/35/35 19/37/37 +f 101/36/36 19/37/37 100/38/38 +f 100/38/38 19/37/37 20/39/39 +f 100/38/38 20/39/39 99/40/40 +f 99/40/40 20/39/39 21/41/41 +f 99/40/40 21/41/41 22/42/42 +f 99/40/40 22/42/42 98/43/43 +f 98/43/43 22/42/42 23/44/44 +f 98/43/43 23/44/44 97/45/45 +f 97/45/45 23/44/44 24/46/46 +f 97/45/45 24/46/46 96/47/47 +f 96/47/47 24/46/46 25/48/48 +f 96/47/47 25/48/48 95/49/49 +f 95/49/49 25/48/48 26/50/50 +f 95/49/49 26/50/50 94/51/51 +f 94/51/51 26/50/50 27/52/52 +f 94/51/51 27/52/52 93/53/53 +f 93/53/53 27/52/52 28/54/54 +f 93/53/53 28/54/54 92/55/55 +f 92/55/55 28/54/54 29/56/56 +f 92/55/55 29/56/56 91/57/57 +f 91/57/57 29/56/56 30/58/58 +f 91/57/57 30/58/58 90/59/59 +f 90/59/59 30/58/58 31/60/60 +f 90/59/59 31/60/60 89/61/61 +f 89/61/61 31/60/60 32/62/62 +f 89/61/61 32/62/62 33/63/63 +f 89/61/61 33/63/63 88/64/64 +f 88/64/64 33/63/63 34/65/65 +f 88/64/64 34/65/65 87/66/66 +f 87/66/66 34/65/65 35/67/67 +f 87/66/66 35/67/67 86/68/68 +f 86/68/68 35/67/67 36/69/69 +f 86/68/68 36/69/69 85/70/70 +f 85/70/70 36/69/69 37/71/71 +f 85/70/70 37/71/71 84/72/72 +f 84/72/72 37/71/71 38/73/73 +f 84/72/72 38/73/73 83/74/74 +f 83/74/74 38/73/73 39/75/75 +f 83/74/74 39/75/75 82/76/76 +f 82/76/76 39/75/75 40/77/77 +f 82/76/76 40/77/77 81/78/78 +f 81/78/78 40/77/77 41/79/79 +f 81/78/78 41/79/79 80/80/80 +f 80/80/80 41/79/79 42/81/81 +f 80/80/80 42/81/81 43/82/82 +f 80/80/80 43/82/82 79/83/83 +f 79/83/83 43/82/82 44/84/84 +f 79/83/83 44/84/84 78/85/85 +f 78/85/85 44/84/84 45/86/86 +f 78/85/85 45/86/86 77/87/87 +f 77/87/87 45/86/86 46/88/88 +f 77/87/87 46/88/88 76/89/89 +f 76/89/89 46/88/88 47/90/90 +f 76/89/89 47/90/90 75/91/91 +f 75/91/91 47/90/90 48/92/92 +f 75/91/91 48/92/92 74/93/93 +f 74/93/93 48/92/92 49/94/94 +f 74/93/93 49/94/94 73/95/95 +f 73/95/95 49/94/94 50/96/96 +f 73/95/95 50/96/96 72/97/97 +f 72/97/97 50/96/96 51/98/98 +f 72/97/97 51/98/98 71/99/99 +f 71/99/99 51/98/98 52/100/100 +f 71/99/99 52/100/100 53/101/101 +f 71/99/99 53/101/101 70/102/102 +f 70/102/102 53/101/101 54/103/103 +f 70/102/102 54/103/103 69/104/104 +f 69/104/104 54/103/103 55/105/105 +f 69/104/104 55/105/105 68/106/106 +f 68/106/106 55/105/105 56/107/107 +f 68/106/106 56/107/107 67/108/108 +f 67/108/108 56/107/107 57/109/109 +f 67/108/108 57/109/109 66/110/110 +f 66/110/110 57/109/109 58/111/111 +f 66/110/110 58/111/111 65/112/112 +f 65/112/112 58/111/111 59/113/113 +f 65/112/112 59/113/113 64/114/114 +f 64/114/114 59/113/113 60/115/115 +f 64/114/114 60/115/115 63/116/116 +f 63/116/116 60/115/115 61/1/1 +f 63/116/116 61/1/1 62/3/3 +f 61/117/117 117/118/118 1/119/119 +f 1/119/119 117/118/118 118/120/120 +f 1/119/119 118/120/120 2/121/121 +f 2/121/121 118/120/120 119/122/122 +f 2/121/121 119/122/122 3/123/123 +f 3/123/123 119/122/122 120/124/124 +f 3/123/123 120/124/124 4/125/125 +f 4/125/125 120/124/124 121/126/126 +f 4/125/125 121/126/126 5/127/127 +f 5/127/127 121/126/126 122/128/128 +f 5/127/127 122/128/128 6/129/129 +f 6/129/129 122/128/128 123/130/130 +f 6/129/129 123/130/130 7/131/131 +f 7/131/131 123/130/130 124/132/132 +f 7/131/131 124/132/132 8/133/133 +f 8/133/133 124/132/132 125/134/134 +f 8/133/133 125/134/134 9/135/135 +f 9/135/135 125/134/134 126/136/136 +f 9/135/135 126/136/136 10/137/137 +f 10/137/137 126/136/136 127/138/138 +f 10/137/137 127/138/138 11/139/139 +f 11/139/139 127/138/138 128/140/140 +f 11/139/139 128/140/140 12/141/141 +f 12/141/141 128/140/140 129/142/142 +f 12/141/141 129/142/142 13/143/143 +f 13/143/143 129/142/142 130/144/144 +f 13/143/143 130/144/144 14/145/145 +f 14/145/145 130/144/144 131/146/146 +f 14/145/145 131/146/146 15/147/147 +f 15/147/147 131/146/146 132/148/148 +f 15/147/147 132/148/148 16/149/149 +f 16/149/149 132/148/148 133/150/150 +f 16/149/149 133/150/150 17/151/151 +f 17/151/151 133/150/150 134/152/152 +f 17/151/151 134/152/152 18/153/153 +f 18/153/153 134/152/152 135/154/154 +f 18/153/153 135/154/154 19/155/155 +f 19/155/155 135/154/154 136/156/156 +f 19/155/155 136/156/156 20/157/157 +f 20/157/157 136/156/156 137/158/158 +f 20/157/157 137/158/158 21/159/159 +f 21/159/159 137/158/158 138/160/160 +f 21/159/159 138/160/160 22/161/161 +f 22/161/161 138/160/160 139/162/162 +f 22/161/161 139/162/162 23/163/163 +f 23/163/163 139/162/162 140/164/164 +f 23/163/163 140/164/164 24/165/165 +f 24/165/165 140/164/164 141/166/166 +f 24/165/165 141/166/166 25/167/167 +f 25/167/167 141/166/166 142/168/168 +f 25/167/167 142/168/168 26/169/169 +f 26/169/169 142/168/168 143/170/170 +f 26/169/169 143/170/170 27/171/171 +f 27/171/171 143/170/170 144/172/172 +f 27/171/171 144/172/172 28/173/173 +f 28/173/173 144/172/172 145/174/174 +f 28/173/173 145/174/174 29/175/175 +f 29/175/175 145/174/174 146/176/176 +f 29/175/175 146/176/176 30/177/177 +f 30/177/177 146/176/176 147/178/178 +f 30/177/177 147/178/178 31/179/179 +f 31/180/179 147/181/178 148/182/180 +f 31/180/179 148/182/180 32/183/181 +f 32/183/181 148/182/180 149/184/182 +f 32/183/181 149/184/182 33/185/183 +f 33/185/183 149/184/182 150/186/184 +f 33/185/183 150/186/184 34/187/185 +f 34/187/185 150/186/184 151/188/186 +f 34/187/185 151/188/186 35/189/187 +f 35/189/187 151/188/186 152/190/188 +f 35/189/187 152/190/188 36/191/189 +f 36/191/189 152/190/188 153/192/190 +f 36/191/189 153/192/190 37/193/191 +f 37/193/191 153/192/190 154/194/192 +f 37/193/191 154/194/192 38/195/193 +f 38/195/193 154/194/192 155/196/194 +f 38/195/193 155/196/194 39/197/195 +f 39/197/195 155/196/194 156/198/196 +f 39/197/195 156/198/196 40/199/197 +f 40/199/197 156/198/196 157/200/198 +f 40/199/197 157/200/198 41/201/199 +f 41/201/199 157/200/198 158/202/200 +f 41/201/199 158/202/200 42/203/201 +f 42/203/201 158/202/200 159/204/202 +f 42/203/201 159/204/202 43/205/203 +f 43/205/203 159/204/202 160/206/204 +f 43/205/203 160/206/204 44/207/205 +f 44/207/205 160/206/204 161/208/206 +f 44/207/205 161/208/206 45/209/207 +f 45/209/207 161/208/206 162/210/208 +f 45/209/207 162/210/208 46/211/209 +f 46/211/209 162/210/208 163/212/210 +f 46/211/209 163/212/210 47/213/211 +f 47/213/211 163/212/210 164/214/212 +f 47/213/211 164/214/212 48/215/213 +f 48/215/213 164/214/212 165/216/214 +f 48/215/213 165/216/214 49/217/215 +f 49/217/215 165/216/214 166/218/216 +f 49/217/215 166/218/216 50/219/217 +f 50/219/217 166/218/216 167/220/218 +f 50/219/217 167/220/218 51/221/219 +f 51/221/219 167/220/218 168/222/220 +f 51/221/219 168/222/220 52/223/221 +f 52/223/221 168/222/220 169/224/222 +f 52/223/221 169/224/222 53/225/223 +f 53/225/223 169/224/222 170/226/224 +f 53/225/223 170/226/224 54/227/225 +f 54/227/225 170/226/224 171/228/226 +f 54/227/225 171/228/226 55/229/227 +f 55/229/227 171/228/226 172/230/228 +f 55/229/227 172/230/228 56/231/229 +f 56/231/229 172/230/228 173/232/230 +f 56/231/229 173/232/230 57/233/231 +f 57/233/231 173/232/230 174/234/232 +f 57/233/231 174/234/232 58/235/233 +f 58/235/233 174/234/232 175/236/234 +f 58/235/233 175/236/234 59/237/235 +f 59/237/235 175/236/234 176/238/236 +f 59/237/235 176/238/236 60/239/237 +f 60/239/237 176/238/236 177/240/238 +f 60/239/237 177/240/238 61/117/117 +f 61/117/117 177/240/238 117/118/118 +f 118/241/239 117/242/240 146/243/241 +f 146/243/241 117/242/240 177/244/242 +f 146/243/241 177/244/242 147/245/243 +f 147/245/243 177/244/242 176/246/244 +f 147/245/243 176/246/244 175/247/245 +f 175/247/245 174/248/246 147/245/243 +f 147/245/243 174/248/246 173/249/247 +f 147/245/243 173/249/247 172/250/248 +f 172/250/248 171/251/249 147/245/243 +f 147/245/243 171/251/249 170/252/250 +f 147/245/243 170/252/250 169/253/251 +f 169/253/251 168/254/252 147/245/243 +f 147/245/243 168/254/252 167/255/253 +f 147/245/243 167/255/253 166/256/254 +f 166/256/254 165/257/255 147/245/243 +f 147/245/243 165/257/255 164/258/256 +f 147/245/243 164/258/256 163/259/257 +f 163/259/257 162/260/258 147/245/243 +f 147/245/243 162/260/258 161/261/259 +f 147/245/243 161/261/259 160/262/260 +f 160/262/260 159/263/261 147/245/243 +f 147/245/243 159/263/261 158/264/262 +f 147/245/243 158/264/262 157/265/263 +f 157/265/263 156/266/264 147/245/243 +f 147/245/243 156/266/264 155/267/265 +f 147/245/243 155/267/265 154/268/266 +f 154/268/266 153/269/267 147/245/243 +f 147/245/243 153/269/267 152/270/268 +f 147/245/243 152/270/268 151/271/269 +f 151/271/269 150/272/270 147/245/243 +f 147/245/243 150/272/270 149/273/271 +f 147/245/243 149/273/271 148/274/272 +f 118/241/239 146/243/241 119/275/273 +f 119/275/273 146/243/241 145/276/274 +f 119/275/273 145/276/274 120/277/275 +f 120/277/275 145/276/274 144/278/276 +f 120/277/275 144/278/276 121/279/277 +f 121/279/277 144/278/276 143/280/278 +f 121/279/277 143/280/278 122/281/279 +f 122/281/279 143/280/278 142/282/280 +f 122/281/279 142/282/280 123/283/281 +f 123/283/281 142/282/280 141/284/282 +f 123/283/281 141/284/282 124/285/283 +f 124/285/283 141/284/282 140/286/284 +f 124/285/283 140/286/284 125/287/285 +f 125/287/285 140/286/284 139/288/286 +f 125/287/285 139/288/286 126/289/287 +f 126/289/287 139/288/286 138/290/288 +f 126/289/287 138/290/288 127/291/289 +f 127/291/289 138/290/288 137/292/290 +f 127/291/289 137/292/290 128/293/291 +f 128/293/291 137/292/290 136/294/292 +f 128/293/291 136/294/292 129/295/293 +f 129/295/293 136/294/292 135/296/294 +f 129/295/293 135/296/294 130/297/295 +f 130/297/295 135/296/294 134/298/296 +f 130/297/295 134/298/296 131/299/297 +f 131/299/297 134/298/296 133/300/298 +f 131/299/297 133/300/298 132/301/299 +f 116/302/300 205/303/301 62/304/302 +f 62/304/302 205/303/301 206/305/303 +f 62/304/302 206/305/303 63/306/304 +f 63/306/304 206/305/303 207/307/305 +f 63/306/304 207/307/305 64/308/306 +f 64/308/306 207/307/305 208/309/307 +f 64/308/306 208/309/307 65/310/308 +f 65/310/308 208/309/307 209/311/309 +f 65/310/308 209/311/309 66/312/310 +f 66/312/310 209/311/309 210/313/311 +f 66/312/310 210/313/311 67/314/312 +f 67/314/312 210/313/311 211/315/313 +f 67/314/312 211/315/313 68/316/314 +f 68/316/314 211/315/313 212/317/315 +f 68/316/314 212/317/315 69/318/316 +f 69/318/316 212/317/315 213/319/317 +f 69/318/316 213/319/317 70/320/318 +f 70/320/318 213/319/317 214/321/319 +f 70/320/318 214/321/319 71/322/320 +f 71/322/320 214/321/319 215/323/321 +f 71/322/320 215/323/321 72/324/322 +f 72/324/322 215/323/321 216/325/323 +f 72/324/322 216/325/323 73/326/324 +f 73/326/324 216/325/323 217/327/325 +f 73/326/324 217/327/325 74/328/326 +f 74/328/326 217/327/325 218/329/327 +f 74/328/326 218/329/327 75/330/328 +f 75/330/328 218/329/327 219/331/329 +f 75/330/328 219/331/329 76/332/330 +f 76/332/330 219/331/329 220/333/331 +f 76/332/330 220/333/331 77/334/332 +f 77/334/332 220/333/331 221/335/333 +f 77/334/332 221/335/333 78/336/334 +f 78/336/334 221/335/333 222/337/335 +f 78/336/334 222/337/335 79/338/336 +f 79/338/336 222/337/335 223/339/337 +f 79/338/336 223/339/337 80/340/338 +f 80/340/338 223/339/337 224/341/339 +f 80/340/338 224/341/339 81/342/340 +f 81/342/340 224/341/339 225/343/341 +f 81/342/340 225/343/341 82/344/342 +f 82/344/342 225/343/341 226/345/343 +f 82/344/342 226/345/343 83/346/344 +f 83/346/344 226/345/343 227/347/345 +f 83/346/344 227/347/345 84/348/346 +f 84/348/346 227/347/345 228/349/347 +f 84/348/346 228/349/347 85/350/348 +f 85/350/348 228/349/347 229/351/349 +f 85/350/348 229/351/349 86/352/350 +f 86/352/350 229/351/349 230/353/351 +f 86/352/350 230/353/351 87/354/352 +f 87/354/352 230/353/351 231/355/353 +f 87/354/352 231/355/353 88/356/354 +f 88/356/354 231/355/353 232/357/355 +f 88/356/354 232/357/355 89/358/356 +f 89/358/356 232/357/355 178/359/357 +f 89/358/356 178/359/357 90/360/358 +f 90/361/358 178/362/357 179/363/359 +f 90/361/358 179/363/359 91/364/360 +f 91/364/360 179/363/359 180/365/361 +f 91/364/360 180/365/361 92/366/362 +f 92/366/362 180/365/361 181/367/363 +f 92/366/362 181/367/363 93/368/364 +f 93/368/364 181/367/363 182/369/365 +f 93/368/364 182/369/365 94/370/366 +f 94/370/366 182/369/365 183/371/367 +f 94/370/366 183/371/367 95/372/368 +f 95/372/368 183/371/367 184/373/369 +f 95/372/368 184/373/369 96/374/370 +f 96/374/370 184/373/369 185/375/371 +f 96/374/370 185/375/371 97/376/372 +f 97/376/372 185/375/371 186/377/373 +f 97/376/372 186/377/373 98/378/374 +f 98/378/374 186/377/373 187/379/375 +f 98/378/374 187/379/375 99/380/376 +f 99/380/376 187/379/375 188/381/377 +f 99/380/376 188/381/377 100/382/378 +f 100/382/378 188/381/377 189/383/379 +f 100/382/378 189/383/379 101/384/380 +f 101/384/380 189/383/379 190/385/381 +f 101/384/380 190/385/381 102/386/382 +f 102/386/382 190/385/381 191/387/383 +f 102/386/382 191/387/383 103/388/384 +f 103/388/384 191/387/383 192/389/385 +f 103/388/384 192/389/385 104/390/386 +f 104/390/386 192/389/385 193/391/387 +f 104/390/386 193/391/387 105/392/388 +f 105/392/388 193/391/387 194/393/389 +f 105/392/388 194/393/389 106/394/390 +f 106/394/390 194/393/389 195/395/391 +f 106/394/390 195/395/391 107/396/392 +f 107/396/392 195/395/391 196/397/393 +f 107/396/392 196/397/393 108/398/394 +f 108/398/394 196/397/393 197/399/395 +f 108/398/394 197/399/395 109/400/396 +f 109/400/396 197/399/395 198/401/397 +f 109/400/396 198/401/397 110/402/398 +f 110/402/398 198/401/397 199/403/399 +f 110/402/398 199/403/399 111/404/400 +f 111/404/400 199/403/399 200/405/401 +f 111/404/400 200/405/401 112/406/402 +f 112/406/402 200/405/401 201/407/403 +f 112/406/402 201/407/403 113/408/404 +f 113/408/404 201/407/403 202/409/405 +f 113/408/404 202/409/405 114/410/406 +f 114/410/406 202/409/405 203/411/407 +f 114/410/406 203/411/407 115/412/408 +f 115/412/408 203/411/407 204/413/409 +f 115/412/408 204/413/409 116/302/300 +f 116/302/300 204/413/409 205/303/301 +f 232/414/410 300/415/411 178/416/412 +f 178/416/412 300/415/411 234/417/413 +f 178/418/412 234/419/413 3259/420/414 +f 3259/420/414 234/419/413 235/421/415 +f 3259/420/414 235/421/415 3260/422/416 +f 3260/422/416 235/421/415 236/423/417 +f 3260/422/416 236/423/417 3261/424/418 +f 3261/424/418 236/423/417 237/425/419 +f 3261/424/418 237/425/419 3262/426/420 +f 3262/426/420 237/425/419 238/427/421 +f 3262/426/420 238/427/421 3263/428/422 +f 3263/428/422 238/427/421 239/429/423 +f 3263/428/422 239/429/423 3264/430/424 +f 3264/430/424 239/429/423 240/431/425 +f 3264/430/424 240/431/425 3265/432/426 +f 3265/432/426 240/431/425 241/433/427 +f 3265/432/426 241/433/427 3266/434/428 +f 3266/434/428 241/433/427 242/435/429 +f 3266/434/428 242/435/429 3267/436/430 +f 3267/436/430 242/435/429 243/437/431 +f 3267/436/430 243/437/431 3268/438/432 +f 3268/438/432 243/437/431 244/439/433 +f 3268/438/432 244/439/433 3269/440/434 +f 3269/440/434 244/439/433 245/441/435 +f 3269/440/434 245/441/435 3270/442/436 +f 3270/442/436 245/441/435 246/443/437 +f 3270/442/436 246/443/437 3271/444/438 +f 3271/444/438 246/443/437 247/445/439 +f 3271/444/438 247/445/439 3272/446/440 +f 3272/446/440 247/445/439 248/447/441 +f 3272/446/440 248/447/441 3273/448/442 +f 3273/448/442 248/447/441 249/449/443 +f 3273/448/442 249/449/443 3274/450/444 +f 3274/450/444 249/449/443 250/451/445 +f 3274/450/444 250/451/445 3275/452/446 +f 3275/452/446 250/451/445 251/453/447 +f 3275/452/446 251/453/447 3276/454/448 +f 3276/454/448 251/453/447 252/455/449 +f 3276/454/448 252/455/449 3277/456/450 +f 3277/456/450 252/455/449 253/457/451 +f 3277/456/450 253/457/451 3278/458/452 +f 3278/458/452 253/457/451 254/459/453 +f 3278/458/452 254/459/453 3279/460/454 +f 3279/460/454 254/459/453 255/461/455 +f 3279/460/454 255/461/455 3280/462/456 +f 3280/462/456 255/461/455 256/463/457 +f 3280/462/456 256/463/457 3281/464/458 +f 3281/464/458 256/463/457 257/465/459 +f 3281/464/458 257/465/459 3282/466/460 +f 3282/466/460 257/465/459 258/467/461 +f 3282/466/460 258/467/461 3283/468/462 +f 3283/468/462 258/467/461 259/469/463 +f 3283/468/462 259/469/463 3284/470/464 +f 3284/470/464 259/469/463 260/471/465 +f 3284/470/464 260/471/465 3285/472/466 +f 3285/472/466 260/471/465 261/473/467 +f 3285/472/466 261/473/467 3286/474/468 +f 3286/474/468 261/473/467 262/475/469 +f 3286/474/468 262/475/469 3287/476/470 +f 3287/476/470 262/475/469 263/477/471 +f 3287/476/470 263/477/471 3288/478/472 +f 3288/478/472 263/477/471 264/479/473 +f 3288/478/472 264/479/473 3289/480/474 +f 3289/480/474 264/479/473 265/481/475 +f 3289/480/474 265/481/475 3290/482/476 +f 3290/482/476 265/481/475 266/483/477 +f 3290/482/476 266/483/477 3291/484/478 +f 3291/484/478 266/483/477 267/485/479 +f 3291/484/478 267/485/479 3292/486/480 +f 3292/486/480 267/485/479 268/487/481 +f 3292/486/480 268/487/481 3293/488/482 +f 3293/488/482 268/487/481 269/489/483 +f 3293/488/482 269/489/483 3294/490/484 +f 3294/490/484 269/489/483 233/491/485 +f 300/415/411 232/414/410 299/492/486 +f 299/492/486 232/414/410 231/493/487 +f 299/492/486 231/493/487 442/494/488 +f 442/494/488 231/493/487 371/495/489 +f 442/494/488 371/495/489 372/496/490 +f 372/496/490 371/495/489 443/497/491 +f 372/496/490 443/497/491 444/498/492 +f 444/498/492 443/497/491 547/499/493 +f 444/498/492 547/499/493 546/500/494 +f 546/500/494 547/499/493 481/501/495 +f 546/500/494 481/501/495 482/502/496 +f 482/502/496 481/501/495 554/503/497 +f 482/502/496 554/503/497 555/504/498 +f 555/504/498 554/503/497 652/505/499 +f 555/504/498 652/505/499 651/506/500 +f 651/506/500 652/505/499 592/507/501 +f 651/506/500 592/507/501 593/508/502 +f 593/508/502 592/507/501 664/509/503 +f 593/508/502 664/509/503 665/510/504 +f 665/510/504 664/509/503 755/511/505 +f 665/510/504 755/511/505 754/512/506 +f 754/512/506 755/511/505 701/513/507 +f 754/512/506 701/513/507 702/514/508 +f 702/514/508 701/513/507 824/515/509 +f 702/514/508 824/515/509 823/516/510 +f 823/516/510 824/515/509 774/517/511 +f 823/516/510 774/517/511 775/518/512 +f 775/518/512 774/517/511 846/519/513 +f 775/518/512 846/519/513 847/520/514 +f 847/520/514 846/519/513 928/521/515 +f 847/520/514 928/521/515 927/522/516 +f 927/522/516 928/521/515 884/523/517 +f 927/522/516 884/523/517 885/524/518 +f 885/524/518 884/523/517 957/525/519 +f 885/524/518 957/525/519 958/526/520 +f 958/526/520 957/525/519 1033/527/521 +f 958/526/520 1033/527/521 1032/528/522 +f 1032/528/522 1033/527/521 995/529/523 +f 1032/528/522 995/529/523 996/530/524 +f 996/530/524 995/529/523 1067/531/525 +f 996/530/524 1067/531/525 1068/532/526 +f 1068/532/526 1067/531/525 1136/533/527 +f 1068/532/526 1136/533/527 1135/534/528 +f 1135/534/528 1136/533/527 1104/535/529 +f 1135/534/528 1104/535/529 1105/536/530 +f 1105/536/530 1104/535/529 1205/537/531 +f 1105/536/530 1205/537/531 1204/538/532 +f 1204/538/532 1205/537/531 1177/539/533 +f 1204/538/532 1177/539/533 1178/540/534 +f 1178/540/534 1177/539/533 1249/541/535 +f 1178/540/534 1249/541/535 1250/542/536 +f 1250/542/536 1249/541/535 1309/543/537 +f 1250/542/536 1309/543/537 1308/544/538 +f 1308/544/538 1309/543/537 1287/545/539 +f 1308/544/538 1287/545/539 1288/546/540 +f 1288/546/540 1287/545/539 1359/547/541 +f 1288/546/540 1359/547/541 1360/548/542 +f 1360/548/542 1359/547/541 1413/549/543 +f 1360/548/542 1413/549/543 1412/550/544 +f 1412/550/544 1413/549/543 1397/551/545 +f 1412/550/544 1397/551/545 1398/552/546 +f 1398/552/546 1397/551/545 1470/553/547 +f 1398/552/546 1470/553/547 1471/554/548 +f 1471/554/548 1470/553/547 1518/555/549 +f 1471/554/548 1518/555/549 1517/556/550 +f 1517/556/550 1518/555/549 1508/557/551 +f 1517/556/550 1508/557/551 1509/558/552 +f 1509/558/552 1508/557/551 1580/559/553 +f 1509/558/552 1580/559/553 1581/560/554 +f 1581/560/554 1580/559/553 1621/561/555 +f 1581/560/554 1621/561/555 1620/562/556 +f 1620/562/556 1621/561/555 1617/563/557 +f 1620/562/556 1617/563/557 1618/564/558 +f 1618/564/558 1617/563/557 1690/565/559 +f 1618/564/558 1690/565/559 233/566/485 +f 231/493/487 230/567/560 371/495/489 +f 371/495/489 230/567/560 298/568/561 +f 371/495/489 298/568/561 443/497/491 +f 443/497/491 298/568/561 548/569/562 +f 443/497/491 548/569/562 547/499/493 +f 547/499/493 548/569/562 480/570/563 +f 547/499/493 480/570/563 481/501/495 +f 481/501/495 480/570/563 553/571/564 +f 481/501/495 553/571/564 554/503/497 +f 554/503/497 553/571/564 653/572/565 +f 554/503/497 653/572/565 652/505/499 +f 652/505/499 653/572/565 591/573/566 +f 652/505/499 591/573/566 592/507/501 +f 592/507/501 591/573/566 663/574/567 +f 592/507/501 663/574/567 664/509/503 +f 664/509/503 663/574/567 756/575/568 +f 664/509/503 756/575/568 755/511/505 +f 755/511/505 756/575/568 700/576/569 +f 755/511/505 700/576/569 701/513/507 +f 701/513/507 700/576/569 825/577/570 +f 701/513/507 825/577/570 824/515/509 +f 824/515/509 825/577/570 773/578/571 +f 824/515/509 773/578/571 774/517/511 +f 774/517/511 773/578/571 845/579/572 +f 774/517/511 845/579/572 846/519/513 +f 846/519/513 845/579/572 929/580/573 +f 846/519/513 929/580/573 928/521/515 +f 928/521/515 929/580/573 883/581/574 +f 928/521/515 883/581/574 884/523/517 +f 884/523/517 883/581/574 956/582/575 +f 884/523/517 956/582/575 957/525/519 +f 957/525/519 956/582/575 1034/583/576 +f 957/525/519 1034/583/576 1033/527/521 +f 1033/527/521 1034/583/576 994/584/577 +f 1033/527/521 994/584/577 995/529/523 +f 995/529/523 994/584/577 1066/585/578 +f 995/529/523 1066/585/578 1067/531/525 +f 1067/531/525 1066/585/578 1137/586/579 +f 1067/531/525 1137/586/579 1136/533/527 +f 1136/533/527 1137/586/579 1103/587/580 +f 1136/533/527 1103/587/580 1104/535/529 +f 1104/535/529 1103/587/580 1206/588/581 +f 1104/535/529 1206/588/581 1205/537/531 +f 1205/537/531 1206/588/581 1176/589/582 +f 1205/537/531 1176/589/582 1177/539/533 +f 1177/539/533 1176/589/582 1248/590/583 +f 1177/539/533 1248/590/583 1249/541/535 +f 1249/541/535 1248/590/583 1310/591/584 +f 1249/541/535 1310/591/584 1309/543/537 +f 1309/543/537 1310/591/584 1286/592/585 +f 1309/543/537 1286/592/585 1287/545/539 +f 1287/545/539 1286/592/585 1358/593/586 +f 1287/545/539 1358/593/586 1359/547/541 +f 1359/547/541 1358/593/586 1414/594/587 +f 1359/547/541 1414/594/587 1413/549/543 +f 1413/549/543 1414/594/587 1396/595/588 +f 1413/549/543 1396/595/588 1397/551/545 +f 1397/551/545 1396/595/588 1469/596/589 +f 1397/551/545 1469/596/589 1470/553/547 +f 1470/553/547 1469/596/589 1519/597/590 +f 1470/553/547 1519/597/590 1518/555/549 +f 1518/555/549 1519/597/590 1507/598/591 +f 1518/555/549 1507/598/591 1508/557/551 +f 1508/557/551 1507/598/591 1579/599/592 +f 1508/557/551 1579/599/592 1580/559/553 +f 1580/559/553 1579/599/592 1622/600/593 +f 1580/559/553 1622/600/593 1621/561/555 +f 1621/561/555 1622/600/593 1616/601/594 +f 1621/561/555 1616/601/594 1617/563/557 +f 1617/563/557 1616/601/594 1691/602/595 +f 1617/563/557 1691/602/595 1690/565/559 +f 1690/565/559 1691/602/595 1689/603/596 +f 1690/565/559 1689/603/596 233/604/485 +f 230/567/560 229/605/597 298/568/561 +f 298/568/561 229/605/597 549/606/598 +f 298/568/561 549/606/598 548/569/562 +f 548/569/562 549/606/598 479/607/599 +f 548/569/562 479/607/599 480/570/563 +f 480/570/563 479/607/599 552/608/600 +f 480/570/563 552/608/600 553/571/564 +f 553/571/564 552/608/600 654/609/601 +f 553/571/564 654/609/601 653/572/565 +f 653/572/565 654/609/601 590/610/602 +f 653/572/565 590/610/602 591/573/566 +f 591/573/566 590/610/602 662/611/603 +f 591/573/566 662/611/603 663/574/567 +f 663/574/567 662/611/603 757/612/604 +f 663/574/567 757/612/604 756/575/568 +f 756/575/568 757/612/604 699/613/605 +f 756/575/568 699/613/605 700/576/569 +f 700/576/569 699/613/605 826/614/606 +f 700/576/569 826/614/606 825/577/570 +f 825/577/570 826/614/606 772/615/607 +f 825/577/570 772/615/607 773/578/571 +f 773/578/571 772/615/607 844/616/608 +f 773/578/571 844/616/608 845/579/572 +f 845/579/572 844/616/608 930/617/609 +f 845/579/572 930/617/609 929/580/573 +f 929/580/573 930/617/609 882/618/610 +f 929/580/573 882/618/610 883/581/574 +f 883/581/574 882/618/610 955/619/611 +f 883/581/574 955/619/611 956/582/575 +f 956/582/575 955/619/611 1035/620/612 +f 956/582/575 1035/620/612 1034/583/576 +f 1034/583/576 1035/620/612 993/621/613 +f 1034/583/576 993/621/613 994/584/577 +f 994/584/577 993/621/613 1065/622/614 +f 994/584/577 1065/622/614 1066/585/578 +f 1066/585/578 1065/622/614 1138/623/615 +f 1066/585/578 1138/623/615 1137/586/579 +f 1137/586/579 1138/623/615 1102/624/616 +f 1137/586/579 1102/624/616 1103/587/580 +f 1103/587/580 1102/624/616 1207/625/617 +f 1103/587/580 1207/625/617 1206/588/581 +f 1206/588/581 1207/625/617 1175/626/618 +f 1206/588/581 1175/626/618 1176/589/582 +f 1176/589/582 1175/626/618 1247/627/619 +f 1176/589/582 1247/627/619 1248/590/583 +f 1248/590/583 1247/627/619 1311/628/620 +f 1248/590/583 1311/628/620 1310/591/584 +f 1310/591/584 1311/628/620 1285/629/621 +f 1310/591/584 1285/629/621 1286/592/585 +f 1286/592/585 1285/629/621 1357/630/622 +f 1286/592/585 1357/630/622 1358/593/586 +f 1358/593/586 1357/630/622 1415/631/623 +f 1358/593/586 1415/631/623 1414/594/587 +f 1414/594/587 1415/631/623 1395/632/624 +f 1414/594/587 1395/632/624 1396/595/588 +f 1396/595/588 1395/632/624 1468/633/625 +f 1396/595/588 1468/633/625 1469/596/589 +f 1469/596/589 1468/633/625 1520/634/626 +f 1469/596/589 1520/634/626 1519/597/590 +f 1519/597/590 1520/634/626 1506/635/627 +f 1519/597/590 1506/635/627 1507/598/591 +f 1507/598/591 1506/635/627 1578/636/628 +f 1507/598/591 1578/636/628 1579/599/592 +f 1579/599/592 1578/636/628 1623/637/629 +f 1579/599/592 1623/637/629 1622/600/593 +f 1622/600/593 1623/637/629 1615/638/630 +f 1622/600/593 1615/638/630 1616/601/594 +f 1616/601/594 1615/638/630 1692/639/631 +f 1616/601/594 1692/639/631 1691/602/595 +f 1691/602/595 1692/639/631 1688/640/632 +f 1691/602/595 1688/640/632 1689/603/596 +f 1689/603/596 1688/640/632 1760/641/633 +f 1689/603/596 1760/641/633 233/642/485 +f 549/606/598 229/605/597 478/643/634 +f 478/643/634 229/605/597 228/644/635 +f 478/643/634 228/644/635 550/645/636 +f 550/645/636 228/644/635 297/646/637 +f 550/645/636 297/646/637 656/647/638 +f 656/647/638 297/646/637 587/648/639 +f 656/647/638 587/648/639 588/649/640 +f 588/649/640 587/648/639 659/650/641 +f 588/649/640 659/650/641 660/651/642 +f 660/651/642 659/650/641 760/652/643 +f 660/651/642 760/652/643 759/653/644 +f 759/653/644 760/652/643 696/654/645 +f 759/653/644 696/654/645 697/655/646 +f 697/655/646 696/654/645 829/656/647 +f 697/655/646 829/656/647 828/657/648 +f 828/657/648 829/656/647 769/658/649 +f 828/657/648 769/658/649 770/659/650 +f 770/659/650 769/658/649 841/660/651 +f 770/659/650 841/660/651 842/661/652 +f 842/661/652 841/660/651 933/662/653 +f 842/661/652 933/662/653 932/663/654 +f 932/663/654 933/662/653 879/664/655 +f 932/663/654 879/664/655 880/665/656 +f 880/665/656 879/664/655 952/666/657 +f 880/665/656 952/666/657 953/667/658 +f 953/667/658 952/666/657 1038/668/659 +f 953/667/658 1038/668/659 1037/669/660 +f 1037/669/660 1038/668/659 990/670/661 +f 1037/669/660 990/670/661 991/671/662 +f 991/671/662 990/670/661 1062/672/663 +f 991/671/662 1062/672/663 1063/673/664 +f 1063/673/664 1062/672/663 1141/674/665 +f 1063/673/664 1141/674/665 1140/675/666 +f 1140/675/666 1141/674/665 1099/676/667 +f 1140/675/666 1099/676/667 1100/677/668 +f 1100/677/668 1099/676/667 1210/678/669 +f 1100/677/668 1210/678/669 1209/679/670 +f 1209/679/670 1210/678/669 1172/680/671 +f 1209/679/670 1172/680/671 1173/681/672 +f 1173/681/672 1172/680/671 1244/682/673 +f 1173/681/672 1244/682/673 1245/683/674 +f 1245/683/674 1244/682/673 1314/684/675 +f 1245/683/674 1314/684/675 1313/685/676 +f 1313/685/676 1314/684/675 1282/686/677 +f 1313/685/676 1282/686/677 1283/687/678 +f 1283/687/678 1282/686/677 1354/688/679 +f 1283/687/678 1354/688/679 1355/689/680 +f 1355/689/680 1354/688/679 1418/690/681 +f 1355/689/680 1418/690/681 1417/691/682 +f 1417/691/682 1418/690/681 1392/692/683 +f 1417/691/682 1392/692/683 1393/693/684 +f 1393/693/684 1392/692/683 1465/694/685 +f 1393/693/684 1465/694/685 1466/695/686 +f 1466/695/686 1465/694/685 1523/696/687 +f 1466/695/686 1523/696/687 1522/697/688 +f 1522/697/688 1523/696/687 1503/698/689 +f 1522/697/688 1503/698/689 1504/699/690 +f 1504/699/690 1503/698/689 1575/700/691 +f 1504/699/690 1575/700/691 1576/701/692 +f 1576/701/692 1575/700/691 1626/702/693 +f 1576/701/692 1626/702/693 1625/703/694 +f 1625/703/694 1626/702/693 1612/704/695 +f 1625/703/694 1612/704/695 1613/705/696 +f 1613/705/696 1612/704/695 1695/706/697 +f 1613/705/696 1695/706/697 1694/707/698 +f 1694/707/698 1695/706/697 1685/708/699 +f 1694/707/698 1685/708/699 1686/709/700 +f 1686/709/700 1685/708/699 1757/710/701 +f 1686/709/700 1757/710/701 1758/711/702 +f 1758/711/702 1757/710/701 1799/712/703 +f 1758/711/702 1799/712/703 1798/713/704 +f 1798/713/704 1799/712/703 1795/714/705 +f 1798/713/704 1795/714/705 1796/715/706 +f 1796/715/706 1795/714/705 1868/716/707 +f 1796/715/706 1868/716/707 233/717/485 +f 228/644/635 227/718/708 297/646/637 +f 297/646/637 227/718/708 586/719/709 +f 297/646/637 586/719/709 587/648/639 +f 587/648/639 586/719/709 658/720/710 +f 587/648/639 658/720/710 659/650/641 +f 659/650/641 658/720/710 761/721/711 +f 659/650/641 761/721/711 760/652/643 +f 760/652/643 761/721/711 695/722/712 +f 760/652/643 695/722/712 696/654/645 +f 696/654/645 695/722/712 830/723/713 +f 696/654/645 830/723/713 829/656/647 +f 829/656/647 830/723/713 768/724/714 +f 829/656/647 768/724/714 769/658/649 +f 769/658/649 768/724/714 840/725/715 +f 769/658/649 840/725/715 841/660/651 +f 841/660/651 840/725/715 934/726/716 +f 841/660/651 934/726/716 933/662/653 +f 933/662/653 934/726/716 878/727/717 +f 933/662/653 878/727/717 879/664/655 +f 879/664/655 878/727/717 951/728/718 +f 879/664/655 951/728/718 952/666/657 +f 952/666/657 951/728/718 1039/729/719 +f 952/666/657 1039/729/719 1038/668/659 +f 1038/668/659 1039/729/719 989/730/720 +f 1038/668/659 989/730/720 990/670/661 +f 990/670/661 989/730/720 1061/731/721 +f 990/670/661 1061/731/721 1062/672/663 +f 1062/672/663 1061/731/721 1142/732/722 +f 1062/672/663 1142/732/722 1141/674/665 +f 1141/674/665 1142/732/722 1098/733/723 +f 1141/674/665 1098/733/723 1099/676/667 +f 1099/676/667 1098/733/723 1211/734/724 +f 1099/676/667 1211/734/724 1210/678/669 +f 1210/678/669 1211/734/724 1171/735/725 +f 1210/678/669 1171/735/725 1172/680/671 +f 1172/680/671 1171/735/725 1243/736/726 +f 1172/680/671 1243/736/726 1244/682/673 +f 1244/682/673 1243/736/726 1315/737/727 +f 1244/682/673 1315/737/727 1314/684/675 +f 1314/684/675 1315/737/727 1281/738/728 +f 1314/684/675 1281/738/728 1282/686/677 +f 1282/686/677 1281/738/728 1353/739/729 +f 1282/686/677 1353/739/729 1354/688/679 +f 1354/688/679 1353/739/729 1419/740/730 +f 1354/688/679 1419/740/730 1418/690/681 +f 1418/690/681 1419/740/730 1391/741/731 +f 1418/690/681 1391/741/731 1392/692/683 +f 1392/692/683 1391/741/731 1464/742/732 +f 1392/692/683 1464/742/732 1465/694/685 +f 1465/694/685 1464/742/732 1524/743/733 +f 1465/694/685 1524/743/733 1523/696/687 +f 1523/696/687 1524/743/733 1502/744/734 +f 1523/696/687 1502/744/734 1503/698/689 +f 1503/698/689 1502/744/734 1574/745/735 +f 1503/698/689 1574/745/735 1575/700/691 +f 1575/700/691 1574/745/735 1627/746/736 +f 1575/700/691 1627/746/736 1626/702/693 +f 1626/702/693 1627/746/736 1611/747/737 +f 1626/702/693 1611/747/737 1612/704/695 +f 1612/704/695 1611/747/737 1696/748/738 +f 1612/704/695 1696/748/738 1695/706/697 +f 1695/706/697 1696/748/738 1684/749/739 +f 1695/706/697 1684/749/739 1685/708/699 +f 1685/708/699 1684/749/739 1756/750/740 +f 1685/708/699 1756/750/740 1757/710/701 +f 1757/710/701 1756/750/740 1800/751/741 +f 1757/710/701 1800/751/741 1799/712/703 +f 1799/712/703 1800/751/741 1794/752/742 +f 1799/712/703 1794/752/742 1795/714/705 +f 1795/714/705 1794/752/742 1867/753/743 +f 1795/714/705 1867/753/743 1868/716/707 +f 1868/716/707 1867/753/743 1905/754/744 +f 1868/716/707 1905/754/744 233/755/485 +f 227/718/708 226/756/745 586/719/709 +f 586/719/709 226/756/745 657/757/746 +f 586/719/709 657/757/746 658/720/710 +f 658/720/710 657/757/746 762/758/747 +f 658/720/710 762/758/747 761/721/711 +f 761/721/711 762/758/747 694/759/748 +f 761/721/711 694/759/748 695/722/712 +f 695/722/712 694/759/748 831/760/749 +f 695/722/712 831/760/749 830/723/713 +f 830/723/713 831/760/749 767/761/750 +f 830/723/713 767/761/750 768/724/714 +f 768/724/714 767/761/750 839/762/751 +f 768/724/714 839/762/751 840/725/715 +f 840/725/715 839/762/751 935/763/752 +f 840/725/715 935/763/752 934/726/716 +f 934/726/716 935/763/752 877/764/753 +f 934/726/716 877/764/753 878/727/717 +f 878/727/717 877/764/753 950/765/754 +f 878/727/717 950/765/754 951/728/718 +f 951/728/718 950/765/754 1040/766/755 +f 951/728/718 1040/766/755 1039/729/719 +f 1039/729/719 1040/766/755 988/767/756 +f 1039/729/719 988/767/756 989/730/720 +f 989/730/720 988/767/756 1060/768/757 +f 989/730/720 1060/768/757 1061/731/721 +f 1061/731/721 1060/768/757 1143/769/758 +f 1061/731/721 1143/769/758 1142/732/722 +f 1142/732/722 1143/769/758 1097/770/759 +f 1142/732/722 1097/770/759 1098/733/723 +f 1098/733/723 1097/770/759 1212/771/760 +f 1098/733/723 1212/771/760 1211/734/724 +f 1211/734/724 1212/771/760 1170/772/761 +f 1211/734/724 1170/772/761 1171/735/725 +f 1171/735/725 1170/772/761 1242/773/762 +f 1171/735/725 1242/773/762 1243/736/726 +f 1243/736/726 1242/773/762 1316/774/763 +f 1243/736/726 1316/774/763 1315/737/727 +f 1315/737/727 1316/774/763 1280/775/764 +f 1315/737/727 1280/775/764 1281/738/728 +f 1281/738/728 1280/775/764 1352/776/765 +f 1281/738/728 1352/776/765 1353/739/729 +f 1353/739/729 1352/776/765 1420/777/766 +f 1353/739/729 1420/777/766 1419/740/730 +f 1419/740/730 1420/777/766 1390/778/767 +f 1419/740/730 1390/778/767 1391/741/731 +f 1391/741/731 1390/778/767 1463/779/768 +f 1391/741/731 1463/779/768 1464/742/732 +f 1464/742/732 1463/779/768 1525/780/769 +f 1464/742/732 1525/780/769 1524/743/733 +f 1524/743/733 1525/780/769 1501/781/770 +f 1524/743/733 1501/781/770 1502/744/734 +f 1502/744/734 1501/781/770 1573/782/771 +f 1502/744/734 1573/782/771 1574/745/735 +f 1574/745/735 1573/782/771 1628/783/772 +f 1574/745/735 1628/783/772 1627/746/736 +f 1627/746/736 1628/783/772 1610/784/773 +f 1627/746/736 1610/784/773 1611/747/737 +f 1611/747/737 1610/784/773 1697/785/774 +f 1611/747/737 1697/785/774 1696/748/738 +f 1696/748/738 1697/785/774 1683/786/775 +f 1696/748/738 1683/786/775 1684/749/739 +f 1684/749/739 1683/786/775 1755/787/776 +f 1684/749/739 1755/787/776 1756/750/740 +f 1756/750/740 1755/787/776 1801/788/777 +f 1756/750/740 1801/788/777 1800/751/741 +f 1800/751/741 1801/788/777 1793/789/778 +f 1800/751/741 1793/789/778 1794/752/742 +f 1794/752/742 1793/789/778 1866/790/779 +f 1794/752/742 1866/790/779 1867/753/743 +f 1867/753/743 1866/790/779 1906/791/780 +f 1867/753/743 1906/791/780 1905/754/744 +f 1905/754/744 1906/791/780 1904/792/781 +f 1905/754/744 1904/792/781 233/793/485 +f 657/757/746 226/756/745 296/794/782 +f 296/794/782 226/756/745 225/795/783 +f 296/794/782 225/795/783 295/796/784 +f 295/796/784 225/795/783 224/797/785 +f 295/796/784 224/797/785 834/798/786 +f 834/798/786 224/797/785 763/799/787 +f 834/798/786 763/799/787 764/800/788 +f 764/800/788 763/799/787 835/801/789 +f 764/800/788 835/801/789 836/802/790 +f 836/802/790 835/801/789 939/803/791 +f 836/802/790 939/803/791 938/804/792 +f 938/804/792 939/803/791 873/805/793 +f 938/804/792 873/805/793 874/806/794 +f 874/806/794 873/805/793 946/807/795 +f 874/806/794 946/807/795 947/808/796 +f 947/808/796 946/807/795 1044/809/797 +f 947/808/796 1044/809/797 1043/810/798 +f 1043/810/798 1044/809/797 984/811/799 +f 1043/810/798 984/811/799 985/812/800 +f 985/812/800 984/811/799 1056/813/801 +f 985/812/800 1056/813/801 1057/814/802 +f 1057/814/802 1056/813/801 1147/815/803 +f 1057/814/802 1147/815/803 1146/816/804 +f 1146/816/804 1147/815/803 1093/817/805 +f 1146/816/804 1093/817/805 1094/818/806 +f 1094/818/806 1093/817/805 1216/819/807 +f 1094/818/806 1216/819/807 1215/820/808 +f 1215/820/808 1216/819/807 1166/821/809 +f 1215/820/808 1166/821/809 1167/822/810 +f 1167/822/810 1166/821/809 1238/823/811 +f 1167/822/810 1238/823/811 1239/824/812 +f 1239/824/812 1238/823/811 1320/825/813 +f 1239/824/812 1320/825/813 1319/826/814 +f 1319/826/814 1320/825/813 1276/827/815 +f 1319/826/814 1276/827/815 1277/828/816 +f 1277/828/816 1276/827/815 1348/829/817 +f 1277/828/816 1348/829/817 1349/830/818 +f 1349/830/818 1348/829/817 1424/831/819 +f 1349/830/818 1424/831/819 1423/832/820 +f 1423/832/820 1424/831/819 1386/833/821 +f 1423/832/820 1386/833/821 1387/834/822 +f 1387/834/822 1386/833/821 1459/835/823 +f 1387/834/822 1459/835/823 1460/836/824 +f 1460/836/824 1459/835/823 1529/837/825 +f 1460/836/824 1529/837/825 1528/838/826 +f 1528/838/826 1529/837/825 1497/839/827 +f 1528/838/826 1497/839/827 1498/840/828 +f 1498/840/828 1497/839/827 1569/841/829 +f 1498/840/828 1569/841/829 1570/842/830 +f 1570/842/830 1569/841/829 1632/843/831 +f 1570/842/830 1632/843/831 1631/844/832 +f 1631/844/832 1632/843/831 1606/845/833 +f 1631/844/832 1606/845/833 1607/846/834 +f 1607/846/834 1606/845/833 1701/847/835 +f 1607/846/834 1701/847/835 1700/848/836 +f 1700/848/836 1701/847/835 1679/849/837 +f 1700/848/836 1679/849/837 1680/850/838 +f 1680/850/838 1679/849/837 1751/851/839 +f 1680/850/838 1751/851/839 1752/852/840 +f 1752/852/840 1751/851/839 1805/853/841 +f 1752/852/840 1805/853/841 1804/854/842 +f 1804/854/842 1805/853/841 1789/855/843 +f 1804/854/842 1789/855/843 1790/856/844 +f 1790/856/844 1789/855/843 1862/857/845 +f 1790/856/844 1862/857/845 1863/858/846 +f 1863/858/846 1862/857/845 1910/859/847 +f 1863/858/846 1910/859/847 1909/860/848 +f 1909/860/848 1910/859/847 1900/861/849 +f 1909/860/848 1900/861/849 1901/862/850 +f 1901/862/850 1900/861/849 1972/863/851 +f 1901/862/850 1972/863/851 1973/864/852 +f 1973/864/852 1972/863/851 2013/865/853 +f 1973/864/852 2013/865/853 2012/866/854 +f 2012/866/854 2013/865/853 2009/867/855 +f 2012/866/854 2009/867/855 2010/868/856 +f 2010/868/856 2009/867/855 2082/869/857 +f 2010/868/856 2082/869/857 233/870/485 +f 224/797/785 223/871/858 763/799/787 +f 763/799/787 223/871/858 294/872/859 +f 763/799/787 294/872/859 835/801/789 +f 835/801/789 294/872/859 940/873/860 +f 835/801/789 940/873/860 939/803/791 +f 939/803/791 940/873/860 872/874/861 +f 939/803/791 872/874/861 873/805/793 +f 873/805/793 872/874/861 945/875/862 +f 873/805/793 945/875/862 946/807/795 +f 946/807/795 945/875/862 1045/876/863 +f 946/807/795 1045/876/863 1044/809/797 +f 1044/809/797 1045/876/863 983/877/864 +f 1044/809/797 983/877/864 984/811/799 +f 984/811/799 983/877/864 1055/878/865 +f 984/811/799 1055/878/865 1056/813/801 +f 1056/813/801 1055/878/865 1148/879/866 +f 1056/813/801 1148/879/866 1147/815/803 +f 1147/815/803 1148/879/866 1092/880/867 +f 1147/815/803 1092/880/867 1093/817/805 +f 1093/817/805 1092/880/867 1217/881/868 +f 1093/817/805 1217/881/868 1216/819/807 +f 1216/819/807 1217/881/868 1165/882/869 +f 1216/819/807 1165/882/869 1166/821/809 +f 1166/821/809 1165/882/869 1237/883/870 +f 1166/821/809 1237/883/870 1238/823/811 +f 1238/823/811 1237/883/870 1321/884/871 +f 1238/823/811 1321/884/871 1320/825/813 +f 1320/825/813 1321/884/871 1275/885/872 +f 1320/825/813 1275/885/872 1276/827/815 +f 1276/827/815 1275/885/872 1347/886/873 +f 1276/827/815 1347/886/873 1348/829/817 +f 1348/829/817 1347/886/873 1425/887/874 +f 1348/829/817 1425/887/874 1424/831/819 +f 1424/831/819 1425/887/874 1385/888/875 +f 1424/831/819 1385/888/875 1386/833/821 +f 1386/833/821 1385/888/875 1458/889/876 +f 1386/833/821 1458/889/876 1459/835/823 +f 1459/835/823 1458/889/876 1530/890/877 +f 1459/835/823 1530/890/877 1529/837/825 +f 1529/837/825 1530/890/877 1496/891/878 +f 1529/837/825 1496/891/878 1497/839/827 +f 1497/839/827 1496/891/878 1568/892/879 +f 1497/839/827 1568/892/879 1569/841/829 +f 1569/841/829 1568/892/879 1633/893/880 +f 1569/841/829 1633/893/880 1632/843/831 +f 1632/843/831 1633/893/880 1605/894/881 +f 1632/843/831 1605/894/881 1606/845/833 +f 1606/845/833 1605/894/881 1702/895/882 +f 1606/845/833 1702/895/882 1701/847/835 +f 1701/847/835 1702/895/882 1678/896/883 +f 1701/847/835 1678/896/883 1679/849/837 +f 1679/849/837 1678/896/883 1750/897/884 +f 1679/849/837 1750/897/884 1751/851/839 +f 1751/851/839 1750/897/884 1806/898/885 +f 1751/851/839 1806/898/885 1805/853/841 +f 1805/853/841 1806/898/885 1788/899/886 +f 1805/853/841 1788/899/886 1789/855/843 +f 1789/855/843 1788/899/886 1861/900/887 +f 1789/855/843 1861/900/887 1862/857/845 +f 1862/857/845 1861/900/887 1911/901/888 +f 1862/857/845 1911/901/888 1910/859/847 +f 1910/859/847 1911/901/888 1899/902/889 +f 1910/859/847 1899/902/889 1900/861/849 +f 1900/861/849 1899/902/889 1971/903/890 +f 1900/861/849 1971/903/890 1972/863/851 +f 1972/863/851 1971/903/890 2014/904/891 +f 1972/863/851 2014/904/891 2013/865/853 +f 2013/865/853 2014/904/891 2008/905/892 +f 2013/865/853 2008/905/892 2009/867/855 +f 2009/867/855 2008/905/892 2083/906/893 +f 2009/867/855 2083/906/893 2082/869/857 +f 2082/869/857 2083/906/893 2081/907/894 +f 2082/869/857 2081/907/894 233/908/485 +f 223/871/858 222/909/895 294/872/859 +f 294/872/859 222/909/895 941/910/896 +f 294/872/859 941/910/896 940/873/860 +f 940/873/860 941/910/896 871/911/897 +f 940/873/860 871/911/897 872/874/861 +f 872/874/861 871/911/897 944/912/898 +f 872/874/861 944/912/898 945/875/862 +f 945/875/862 944/912/898 1046/913/899 +f 945/875/862 1046/913/899 1045/876/863 +f 1045/876/863 1046/913/899 982/914/900 +f 1045/876/863 982/914/900 983/877/864 +f 983/877/864 982/914/900 1054/915/901 +f 983/877/864 1054/915/901 1055/878/865 +f 1055/878/865 1054/915/901 1149/916/902 +f 1055/878/865 1149/916/902 1148/879/866 +f 1148/879/866 1149/916/902 1091/917/903 +f 1148/879/866 1091/917/903 1092/880/867 +f 1092/880/867 1091/917/903 1218/918/904 +f 1092/880/867 1218/918/904 1217/881/868 +f 1217/881/868 1218/918/904 1164/919/905 +f 1217/881/868 1164/919/905 1165/882/869 +f 1165/882/869 1164/919/905 1236/920/906 +f 1165/882/869 1236/920/906 1237/883/870 +f 1237/883/870 1236/920/906 1322/921/907 +f 1237/883/870 1322/921/907 1321/884/871 +f 1321/884/871 1322/921/907 1274/922/908 +f 1321/884/871 1274/922/908 1275/885/872 +f 1275/885/872 1274/922/908 1346/923/909 +f 1275/885/872 1346/923/909 1347/886/873 +f 1347/886/873 1346/923/909 1426/924/910 +f 1347/886/873 1426/924/910 1425/887/874 +f 1425/887/874 1426/924/910 1384/925/911 +f 1425/887/874 1384/925/911 1385/888/875 +f 1385/888/875 1384/925/911 1457/926/912 +f 1385/888/875 1457/926/912 1458/889/876 +f 1458/889/876 1457/926/912 1531/927/913 +f 1458/889/876 1531/927/913 1530/890/877 +f 1530/890/877 1531/927/913 1495/928/914 +f 1530/890/877 1495/928/914 1496/891/878 +f 1496/891/878 1495/928/914 1567/929/915 +f 1496/891/878 1567/929/915 1568/892/879 +f 1568/892/879 1567/929/915 1634/930/916 +f 1568/892/879 1634/930/916 1633/893/880 +f 1633/893/880 1634/930/916 1604/931/917 +f 1633/893/880 1604/931/917 1605/894/881 +f 1605/894/881 1604/931/917 1703/932/918 +f 1605/894/881 1703/932/918 1702/895/882 +f 1702/895/882 1703/932/918 1677/933/919 +f 1702/895/882 1677/933/919 1678/896/883 +f 1678/896/883 1677/933/919 1749/934/920 +f 1678/896/883 1749/934/920 1750/897/884 +f 1750/897/884 1749/934/920 1807/935/921 +f 1750/897/884 1807/935/921 1806/898/885 +f 1806/898/885 1807/935/921 1787/936/922 +f 1806/898/885 1787/936/922 1788/899/886 +f 1788/899/886 1787/936/922 1860/937/923 +f 1788/899/886 1860/937/923 1861/900/887 +f 1861/900/887 1860/937/923 1912/938/924 +f 1861/900/887 1912/938/924 1911/901/888 +f 1911/901/888 1912/938/924 1898/939/925 +f 1911/901/888 1898/939/925 1899/902/889 +f 1899/902/889 1898/939/925 1970/940/926 +f 1899/902/889 1970/940/926 1971/903/890 +f 1971/903/890 1970/940/926 2015/941/927 +f 1971/903/890 2015/941/927 2014/904/891 +f 2014/904/891 2015/941/927 2007/942/928 +f 2014/904/891 2007/942/928 2008/905/892 +f 2008/905/892 2007/942/928 2084/943/929 +f 2008/905/892 2084/943/929 2083/906/893 +f 2083/906/893 2084/943/929 2080/944/930 +f 2083/906/893 2080/944/930 2081/907/894 +f 2081/907/894 2080/944/930 2152/945/931 +f 2081/907/894 2152/945/931 233/946/485 +f 941/910/896 222/909/895 870/947/932 +f 870/947/932 222/909/895 221/948/933 +f 870/947/932 221/948/933 942/949/934 +f 942/949/934 221/948/933 293/950/935 +f 942/949/934 293/950/935 1048/951/936 +f 1048/951/936 293/950/935 979/952/937 +f 1048/951/936 979/952/937 980/953/938 +f 980/953/938 979/952/937 1051/954/939 +f 980/953/938 1051/954/939 1052/955/940 +f 1052/955/940 1051/954/939 1152/956/941 +f 1052/955/940 1152/956/941 1151/957/942 +f 1151/957/942 1152/956/941 1088/958/943 +f 1151/957/942 1088/958/943 1089/959/944 +f 1089/959/944 1088/958/943 1221/960/945 +f 1089/959/944 1221/960/945 1220/961/946 +f 1220/961/946 1221/960/945 1161/962/947 +f 1220/961/946 1161/962/947 1162/963/948 +f 1162/963/948 1161/962/947 1233/964/949 +f 1162/963/948 1233/964/949 1234/965/950 +f 1234/965/950 1233/964/949 1325/966/951 +f 1234/965/950 1325/966/951 1324/967/952 +f 1324/967/952 1325/966/951 1271/968/953 +f 1324/967/952 1271/968/953 1272/969/954 +f 1272/969/954 1271/968/953 1343/970/955 +f 1272/969/954 1343/970/955 1344/971/956 +f 1344/971/956 1343/970/955 1429/972/957 +f 1344/971/956 1429/972/957 1428/973/958 +f 1428/973/958 1429/972/957 1381/974/959 +f 1428/973/958 1381/974/959 1382/975/960 +f 1382/975/960 1381/974/959 1454/976/961 +f 1382/975/960 1454/976/961 1455/977/962 +f 1455/977/962 1454/976/961 1534/978/963 +f 1455/977/962 1534/978/963 1533/979/964 +f 1533/979/964 1534/978/963 1492/980/965 +f 1533/979/964 1492/980/965 1493/981/966 +f 1493/981/966 1492/980/965 1564/982/967 +f 1493/981/966 1564/982/967 1565/983/968 +f 1565/983/968 1564/982/967 1637/984/969 +f 1565/983/968 1637/984/969 1636/985/970 +f 1636/985/970 1637/984/969 1601/986/971 +f 1636/985/970 1601/986/971 1602/987/972 +f 1602/987/972 1601/986/971 1706/988/973 +f 1602/987/972 1706/988/973 1705/989/974 +f 1705/989/974 1706/988/973 1674/990/975 +f 1705/989/974 1674/990/975 1675/991/976 +f 1675/991/976 1674/990/975 1746/992/977 +f 1675/991/976 1746/992/977 1747/993/978 +f 1747/993/978 1746/992/977 1810/994/979 +f 1747/993/978 1810/994/979 1809/995/980 +f 1809/995/980 1810/994/979 1784/996/981 +f 1809/995/980 1784/996/981 1785/997/982 +f 1785/997/982 1784/996/981 1857/998/983 +f 1785/997/982 1857/998/983 1858/999/984 +f 1858/999/984 1857/998/983 1915/1000/985 +f 1858/999/984 1915/1000/985 1914/1001/986 +f 1914/1001/986 1915/1000/985 1895/1002/987 +f 1914/1001/986 1895/1002/987 1896/1003/988 +f 1896/1003/988 1895/1002/987 1967/1004/989 +f 1896/1003/988 1967/1004/989 1968/1005/990 +f 1968/1005/990 1967/1004/989 2018/1006/991 +f 1968/1005/990 2018/1006/991 2017/1007/992 +f 2017/1007/992 2018/1006/991 2004/1008/993 +f 2017/1007/992 2004/1008/993 2005/1009/994 +f 2005/1009/994 2004/1008/993 2087/1010/995 +f 2005/1009/994 2087/1010/995 2086/1011/996 +f 2086/1011/996 2087/1010/995 2077/1012/997 +f 2086/1011/996 2077/1012/997 2078/1013/998 +f 2078/1013/998 2077/1012/997 2149/1014/999 +f 2078/1013/998 2149/1014/999 2150/1015/1000 +f 2150/1015/1000 2149/1014/999 2191/1016/1001 +f 2150/1015/1000 2191/1016/1001 2190/1017/1002 +f 2190/1017/1002 2191/1016/1001 2187/1018/1003 +f 2190/1017/1002 2187/1018/1003 2188/1019/1004 +f 2188/1019/1004 2187/1018/1003 2260/1020/1005 +f 2188/1019/1004 2260/1020/1005 233/1021/485 +f 221/948/933 220/1022/1006 293/950/935 +f 293/950/935 220/1022/1006 978/1023/1007 +f 293/950/935 978/1023/1007 979/952/937 +f 979/952/937 978/1023/1007 1050/1024/1008 +f 979/952/937 1050/1024/1008 1051/954/939 +f 1051/954/939 1050/1024/1008 1153/1025/1009 +f 1051/954/939 1153/1025/1009 1152/956/941 +f 1152/956/941 1153/1025/1009 1087/1026/1010 +f 1152/956/941 1087/1026/1010 1088/958/943 +f 1088/958/943 1087/1026/1010 1222/1027/1011 +f 1088/958/943 1222/1027/1011 1221/960/945 +f 1221/960/945 1222/1027/1011 1160/1028/1012 +f 1221/960/945 1160/1028/1012 1161/962/947 +f 1161/962/947 1160/1028/1012 1232/1029/1013 +f 1161/962/947 1232/1029/1013 1233/964/949 +f 1233/964/949 1232/1029/1013 1326/1030/1014 +f 1233/964/949 1326/1030/1014 1325/966/951 +f 1325/966/951 1326/1030/1014 1270/1031/1015 +f 1325/966/951 1270/1031/1015 1271/968/953 +f 1271/968/953 1270/1031/1015 1342/1032/1016 +f 1271/968/953 1342/1032/1016 1343/970/955 +f 1343/970/955 1342/1032/1016 1430/1033/1017 +f 1343/970/955 1430/1033/1017 1429/972/957 +f 1429/972/957 1430/1033/1017 1380/1034/1018 +f 1429/972/957 1380/1034/1018 1381/974/959 +f 1381/974/959 1380/1034/1018 1453/1035/1019 +f 1381/974/959 1453/1035/1019 1454/976/961 +f 1454/976/961 1453/1035/1019 1535/1036/1020 +f 1454/976/961 1535/1036/1020 1534/978/963 +f 1534/978/963 1535/1036/1020 1491/1037/1021 +f 1534/978/963 1491/1037/1021 1492/980/965 +f 1492/980/965 1491/1037/1021 1563/1038/1022 +f 1492/980/965 1563/1038/1022 1564/982/967 +f 1564/982/967 1563/1038/1022 1638/1039/1023 +f 1564/982/967 1638/1039/1023 1637/984/969 +f 1637/984/969 1638/1039/1023 1600/1040/1024 +f 1637/984/969 1600/1040/1024 1601/986/971 +f 1601/986/971 1600/1040/1024 1707/1041/1025 +f 1601/986/971 1707/1041/1025 1706/988/973 +f 1706/988/973 1707/1041/1025 1673/1042/1026 +f 1706/988/973 1673/1042/1026 1674/990/975 +f 1674/990/975 1673/1042/1026 1745/1043/1027 +f 1674/990/975 1745/1043/1027 1746/992/977 +f 1746/992/977 1745/1043/1027 1811/1044/1028 +f 1746/992/977 1811/1044/1028 1810/994/979 +f 1810/994/979 1811/1044/1028 1783/1045/1029 +f 1810/994/979 1783/1045/1029 1784/996/981 +f 1784/996/981 1783/1045/1029 1856/1046/1030 +f 1784/996/981 1856/1046/1030 1857/998/983 +f 1857/998/983 1856/1046/1030 1916/1047/1031 +f 1857/998/983 1916/1047/1031 1915/1000/985 +f 1915/1000/985 1916/1047/1031 1894/1048/1032 +f 1915/1000/985 1894/1048/1032 1895/1002/987 +f 1895/1002/987 1894/1048/1032 1966/1049/1033 +f 1895/1002/987 1966/1049/1033 1967/1004/989 +f 1967/1004/989 1966/1049/1033 2019/1050/1034 +f 1967/1004/989 2019/1050/1034 2018/1006/991 +f 2018/1006/991 2019/1050/1034 2003/1051/1035 +f 2018/1006/991 2003/1051/1035 2004/1008/993 +f 2004/1008/993 2003/1051/1035 2088/1052/1036 +f 2004/1008/993 2088/1052/1036 2087/1010/995 +f 2087/1010/995 2088/1052/1036 2076/1053/1037 +f 2087/1010/995 2076/1053/1037 2077/1012/997 +f 2077/1012/997 2076/1053/1037 2148/1054/1038 +f 2077/1012/997 2148/1054/1038 2149/1014/999 +f 2149/1014/999 2148/1054/1038 2192/1055/1039 +f 2149/1014/999 2192/1055/1039 2191/1016/1001 +f 2191/1016/1001 2192/1055/1039 2186/1056/1040 +f 2191/1016/1001 2186/1056/1040 2187/1018/1003 +f 2187/1018/1003 2186/1056/1040 2259/1057/1041 +f 2187/1018/1003 2259/1057/1041 2260/1020/1005 +f 2260/1020/1005 2259/1057/1041 2297/1058/1042 +f 2260/1020/1005 2297/1058/1042 233/1059/485 +f 220/1022/1006 219/1060/1043 978/1023/1007 +f 978/1023/1007 219/1060/1043 1049/1061/1044 +f 978/1023/1007 1049/1061/1044 1050/1024/1008 +f 1050/1024/1008 1049/1061/1044 1154/1062/1045 +f 1050/1024/1008 1154/1062/1045 1153/1025/1009 +f 1153/1025/1009 1154/1062/1045 1086/1063/1046 +f 1153/1025/1009 1086/1063/1046 1087/1026/1010 +f 1087/1026/1010 1086/1063/1046 1223/1064/1047 +f 1087/1026/1010 1223/1064/1047 1222/1027/1011 +f 1222/1027/1011 1223/1064/1047 1159/1065/1048 +f 1222/1027/1011 1159/1065/1048 1160/1028/1012 +f 1160/1028/1012 1159/1065/1048 1231/1066/1049 +f 1160/1028/1012 1231/1066/1049 1232/1029/1013 +f 1232/1029/1013 1231/1066/1049 1327/1067/1050 +f 1232/1029/1013 1327/1067/1050 1326/1030/1014 +f 1326/1030/1014 1327/1067/1050 1269/1068/1051 +f 1326/1030/1014 1269/1068/1051 1270/1031/1015 +f 1270/1031/1015 1269/1068/1051 1341/1069/1052 +f 1270/1031/1015 1341/1069/1052 1342/1032/1016 +f 1342/1032/1016 1341/1069/1052 1431/1070/1053 +f 1342/1032/1016 1431/1070/1053 1430/1033/1017 +f 1430/1033/1017 1431/1070/1053 1379/1071/1054 +f 1430/1033/1017 1379/1071/1054 1380/1034/1018 +f 1380/1034/1018 1379/1071/1054 1452/1072/1055 +f 1380/1034/1018 1452/1072/1055 1453/1035/1019 +f 1453/1035/1019 1452/1072/1055 1536/1073/1056 +f 1453/1035/1019 1536/1073/1056 1535/1036/1020 +f 1535/1036/1020 1536/1073/1056 1490/1074/1057 +f 1535/1036/1020 1490/1074/1057 1491/1037/1021 +f 1491/1037/1021 1490/1074/1057 1562/1075/1058 +f 1491/1037/1021 1562/1075/1058 1563/1038/1022 +f 1563/1038/1022 1562/1075/1058 1639/1076/1059 +f 1563/1038/1022 1639/1076/1059 1638/1039/1023 +f 1638/1039/1023 1639/1076/1059 1599/1077/1060 +f 1638/1039/1023 1599/1077/1060 1600/1040/1024 +f 1600/1040/1024 1599/1077/1060 1708/1078/1061 +f 1600/1040/1024 1708/1078/1061 1707/1041/1025 +f 1707/1041/1025 1708/1078/1061 1672/1079/1062 +f 1707/1041/1025 1672/1079/1062 1673/1042/1026 +f 1673/1042/1026 1672/1079/1062 1744/1080/1063 +f 1673/1042/1026 1744/1080/1063 1745/1043/1027 +f 1745/1043/1027 1744/1080/1063 1812/1081/1064 +f 1745/1043/1027 1812/1081/1064 1811/1044/1028 +f 1811/1044/1028 1812/1081/1064 1782/1082/1065 +f 1811/1044/1028 1782/1082/1065 1783/1045/1029 +f 1783/1045/1029 1782/1082/1065 1855/1083/1066 +f 1783/1045/1029 1855/1083/1066 1856/1046/1030 +f 1856/1046/1030 1855/1083/1066 1917/1084/1067 +f 1856/1046/1030 1917/1084/1067 1916/1047/1031 +f 1916/1047/1031 1917/1084/1067 1893/1085/1068 +f 1916/1047/1031 1893/1085/1068 1894/1048/1032 +f 1894/1048/1032 1893/1085/1068 1965/1086/1069 +f 1894/1048/1032 1965/1086/1069 1966/1049/1033 +f 1966/1049/1033 1965/1086/1069 2020/1087/1070 +f 1966/1049/1033 2020/1087/1070 2019/1050/1034 +f 2019/1050/1034 2020/1087/1070 2002/1088/1071 +f 2019/1050/1034 2002/1088/1071 2003/1051/1035 +f 2003/1051/1035 2002/1088/1071 2089/1089/1072 +f 2003/1051/1035 2089/1089/1072 2088/1052/1036 +f 2088/1052/1036 2089/1089/1072 2075/1090/1073 +f 2088/1052/1036 2075/1090/1073 2076/1053/1037 +f 2076/1053/1037 2075/1090/1073 2147/1091/1074 +f 2076/1053/1037 2147/1091/1074 2148/1054/1038 +f 2148/1054/1038 2147/1091/1074 2193/1092/1075 +f 2148/1054/1038 2193/1092/1075 2192/1055/1039 +f 2192/1055/1039 2193/1092/1075 2185/1093/1076 +f 2192/1055/1039 2185/1093/1076 2186/1056/1040 +f 2186/1056/1040 2185/1093/1076 2258/1094/1077 +f 2186/1056/1040 2258/1094/1077 2259/1057/1041 +f 2259/1057/1041 2258/1094/1077 2298/1095/1078 +f 2259/1057/1041 2298/1095/1078 2297/1058/1042 +f 2297/1058/1042 2298/1095/1078 2296/1096/1079 +f 2297/1058/1042 2296/1096/1079 233/1097/485 +f 1049/1061/1044 219/1060/1043 292/1098/1080 +f 292/1098/1080 219/1060/1043 218/1099/1081 +f 292/1098/1080 218/1099/1081 291/1100/1082 +f 291/1100/1082 218/1099/1081 217/1101/1083 +f 291/1100/1082 217/1101/1083 1226/1102/1084 +f 1226/1102/1084 217/1101/1083 1155/1103/1085 +f 1226/1102/1084 1155/1103/1085 1156/1104/1086 +f 1156/1104/1086 1155/1103/1085 1227/1105/1087 +f 1156/1104/1086 1227/1105/1087 1228/1106/1088 +f 1228/1106/1088 1227/1105/1087 1331/1107/1089 +f 1228/1106/1088 1331/1107/1089 1330/1108/1090 +f 1330/1108/1090 1331/1107/1089 1265/1109/1091 +f 1330/1108/1090 1265/1109/1091 1266/1110/1092 +f 1266/1110/1092 1265/1109/1091 1337/1111/1093 +f 1266/1110/1092 1337/1111/1093 1338/1112/1094 +f 1338/1112/1094 1337/1111/1093 1435/1113/1095 +f 1338/1112/1094 1435/1113/1095 1434/1114/1096 +f 1434/1114/1096 1435/1113/1095 1375/1115/1097 +f 1434/1114/1096 1375/1115/1097 1376/1116/1098 +f 1376/1116/1098 1375/1115/1097 1448/1117/1099 +f 1376/1116/1098 1448/1117/1099 1449/1118/1100 +f 1449/1118/1100 1448/1117/1099 1540/1119/1101 +f 1449/1118/1100 1540/1119/1101 1539/1120/1102 +f 1539/1120/1102 1540/1119/1101 1486/1121/1103 +f 1539/1120/1102 1486/1121/1103 1487/1122/1104 +f 1487/1122/1104 1486/1121/1103 1558/1123/1105 +f 1487/1122/1104 1558/1123/1105 1559/1124/1106 +f 1559/1124/1106 1558/1123/1105 1643/1125/1107 +f 1559/1124/1106 1643/1125/1107 1642/1126/1108 +f 1642/1126/1108 1643/1125/1107 1595/1127/1109 +f 1642/1126/1108 1595/1127/1109 1596/1128/1110 +f 1596/1128/1110 1595/1127/1109 1712/1129/1111 +f 1596/1128/1110 1712/1129/1111 1711/1130/1112 +f 1711/1130/1112 1712/1129/1111 1668/1131/1113 +f 1711/1130/1112 1668/1131/1113 1669/1132/1114 +f 1669/1132/1114 1668/1131/1113 1740/1133/1115 +f 1669/1132/1114 1740/1133/1115 1741/1134/1116 +f 1741/1134/1116 1740/1133/1115 1816/1135/1117 +f 1741/1134/1116 1816/1135/1117 1815/1136/1118 +f 1815/1136/1118 1816/1135/1117 1778/1137/1119 +f 1815/1136/1118 1778/1137/1119 1779/1138/1120 +f 1779/1138/1120 1778/1137/1119 1851/1139/1121 +f 1779/1138/1120 1851/1139/1121 1852/1140/1122 +f 1852/1140/1122 1851/1139/1121 1921/1141/1123 +f 1852/1140/1122 1921/1141/1123 1920/1142/1124 +f 1920/1142/1124 1921/1141/1123 1889/1143/1125 +f 1920/1142/1124 1889/1143/1125 1890/1144/1126 +f 1890/1144/1126 1889/1143/1125 1961/1145/1127 +f 1890/1144/1126 1961/1145/1127 1962/1146/1128 +f 1962/1146/1128 1961/1145/1127 2024/1147/1129 +f 1962/1146/1128 2024/1147/1129 2023/1148/1130 +f 2023/1148/1130 2024/1147/1129 1998/1149/1131 +f 2023/1148/1130 1998/1149/1131 1999/1150/1132 +f 1999/1150/1132 1998/1149/1131 2093/1151/1133 +f 1999/1150/1132 2093/1151/1133 2092/1152/1134 +f 2092/1152/1134 2093/1151/1133 2071/1153/1135 +f 2092/1152/1134 2071/1153/1135 2072/1154/1136 +f 2072/1154/1136 2071/1153/1135 2143/1155/1137 +f 2072/1154/1136 2143/1155/1137 2144/1156/1138 +f 2144/1156/1138 2143/1155/1137 2197/1157/1139 +f 2144/1156/1138 2197/1157/1139 2196/1158/1140 +f 2196/1158/1140 2197/1157/1139 2181/1159/1141 +f 2196/1158/1140 2181/1159/1141 2182/1160/1142 +f 2182/1160/1142 2181/1159/1141 2254/1161/1143 +f 2182/1160/1142 2254/1161/1143 2255/1162/1144 +f 2255/1162/1144 2254/1161/1143 2302/1163/1145 +f 2255/1162/1144 2302/1163/1145 2301/1164/1146 +f 2301/1164/1146 2302/1163/1145 2292/1165/1147 +f 2301/1164/1146 2292/1165/1147 2293/1166/1148 +f 2293/1166/1148 2292/1165/1147 2364/1167/1149 +f 2293/1166/1148 2364/1167/1149 2365/1168/1150 +f 2365/1168/1150 2364/1167/1149 2406/1169/1151 +f 2365/1168/1150 2406/1169/1151 2405/1170/1152 +f 2405/1170/1152 2406/1169/1151 2402/1171/1153 +f 2405/1170/1152 2402/1171/1153 2403/1172/1154 +f 2403/1172/1154 2402/1171/1153 2474/1173/1155 +f 2403/1172/1154 2474/1173/1155 233/1174/485 +f 217/1101/1083 216/1175/1156 1155/1103/1085 +f 1155/1103/1085 216/1175/1156 290/1176/1157 +f 1155/1103/1085 290/1176/1157 1227/1105/1087 +f 1227/1105/1087 290/1176/1157 1332/1177/1158 +f 1227/1105/1087 1332/1177/1158 1331/1107/1089 +f 1331/1107/1089 1332/1177/1158 1264/1178/1159 +f 1331/1107/1089 1264/1178/1159 1265/1109/1091 +f 1265/1109/1091 1264/1178/1159 1336/1179/1160 +f 1265/1109/1091 1336/1179/1160 1337/1111/1093 +f 1337/1111/1093 1336/1179/1160 1436/1180/1161 +f 1337/1111/1093 1436/1180/1161 1435/1113/1095 +f 1435/1113/1095 1436/1180/1161 1374/1181/1162 +f 1435/1113/1095 1374/1181/1162 1375/1115/1097 +f 1375/1115/1097 1374/1181/1162 1447/1182/1163 +f 1375/1115/1097 1447/1182/1163 1448/1117/1099 +f 1448/1117/1099 1447/1182/1163 1541/1183/1164 +f 1448/1117/1099 1541/1183/1164 1540/1119/1101 +f 1540/1119/1101 1541/1183/1164 1485/1184/1165 +f 1540/1119/1101 1485/1184/1165 1486/1121/1103 +f 1486/1121/1103 1485/1184/1165 1557/1185/1166 +f 1486/1121/1103 1557/1185/1166 1558/1123/1105 +f 1558/1123/1105 1557/1185/1166 1644/1186/1167 +f 1558/1123/1105 1644/1186/1167 1643/1125/1107 +f 1643/1125/1107 1644/1186/1167 1594/1187/1168 +f 1643/1125/1107 1594/1187/1168 1595/1127/1109 +f 1595/1127/1109 1594/1187/1168 1713/1188/1169 +f 1595/1127/1109 1713/1188/1169 1712/1129/1111 +f 1712/1129/1111 1713/1188/1169 1667/1189/1170 +f 1712/1129/1111 1667/1189/1170 1668/1131/1113 +f 1668/1131/1113 1667/1189/1170 1739/1190/1171 +f 1668/1131/1113 1739/1190/1171 1740/1133/1115 +f 1740/1133/1115 1739/1190/1171 1817/1191/1172 +f 1740/1133/1115 1817/1191/1172 1816/1135/1117 +f 1816/1135/1117 1817/1191/1172 1777/1192/1173 +f 1816/1135/1117 1777/1192/1173 1778/1137/1119 +f 1778/1137/1119 1777/1192/1173 1850/1193/1174 +f 1778/1137/1119 1850/1193/1174 1851/1139/1121 +f 1851/1139/1121 1850/1193/1174 1922/1194/1175 +f 1851/1139/1121 1922/1194/1175 1921/1141/1123 +f 1921/1141/1123 1922/1194/1175 1888/1195/1176 +f 1921/1141/1123 1888/1195/1176 1889/1143/1125 +f 1889/1143/1125 1888/1195/1176 1960/1196/1177 +f 1889/1143/1125 1960/1196/1177 1961/1145/1127 +f 1961/1145/1127 1960/1196/1177 2025/1197/1178 +f 1961/1145/1127 2025/1197/1178 2024/1147/1129 +f 2024/1147/1129 2025/1197/1178 1997/1198/1179 +f 2024/1147/1129 1997/1198/1179 1998/1149/1131 +f 1998/1149/1131 1997/1198/1179 2094/1199/1180 +f 1998/1149/1131 2094/1199/1180 2093/1151/1133 +f 2093/1151/1133 2094/1199/1180 2070/1200/1181 +f 2093/1151/1133 2070/1200/1181 2071/1153/1135 +f 2071/1153/1135 2070/1200/1181 2142/1201/1182 +f 2071/1153/1135 2142/1201/1182 2143/1155/1137 +f 2143/1155/1137 2142/1201/1182 2198/1202/1183 +f 2143/1155/1137 2198/1202/1183 2197/1157/1139 +f 2197/1157/1139 2198/1202/1183 2180/1203/1184 +f 2197/1157/1139 2180/1203/1184 2181/1159/1141 +f 2181/1159/1141 2180/1203/1184 2253/1204/1185 +f 2181/1159/1141 2253/1204/1185 2254/1161/1143 +f 2254/1161/1143 2253/1204/1185 2303/1205/1186 +f 2254/1161/1143 2303/1205/1186 2302/1163/1145 +f 2302/1163/1145 2303/1205/1186 2291/1206/1187 +f 2302/1163/1145 2291/1206/1187 2292/1165/1147 +f 2292/1165/1147 2291/1206/1187 2363/1207/1188 +f 2292/1165/1147 2363/1207/1188 2364/1167/1149 +f 2364/1167/1149 2363/1207/1188 2407/1208/1189 +f 2364/1167/1149 2407/1208/1189 2406/1169/1151 +f 2406/1169/1151 2407/1208/1189 2401/1209/1190 +f 2406/1169/1151 2401/1209/1190 2402/1171/1153 +f 2402/1171/1153 2401/1209/1190 2473/1210/1191 +f 2402/1171/1153 2473/1210/1191 2474/1173/1155 +f 2474/1173/1155 2473/1210/1191 2510/1211/1192 +f 2474/1173/1155 2510/1211/1192 233/1212/485 +f 216/1175/1156 215/1213/1193 290/1176/1157 +f 290/1176/1157 215/1213/1193 1333/1214/1194 +f 290/1176/1157 1333/1214/1194 1332/1177/1158 +f 1332/1177/1158 1333/1214/1194 1263/1215/1195 +f 1332/1177/1158 1263/1215/1195 1264/1178/1159 +f 1264/1178/1159 1263/1215/1195 1335/1216/1196 +f 1264/1178/1159 1335/1216/1196 1336/1179/1160 +f 1336/1179/1160 1335/1216/1196 1437/1217/1197 +f 1336/1179/1160 1437/1217/1197 1436/1180/1161 +f 1436/1180/1161 1437/1217/1197 1373/1218/1198 +f 1436/1180/1161 1373/1218/1198 1374/1181/1162 +f 1374/1181/1162 1373/1218/1198 1446/1219/1199 +f 1374/1181/1162 1446/1219/1199 1447/1182/1163 +f 1447/1182/1163 1446/1219/1199 1542/1220/1200 +f 1447/1182/1163 1542/1220/1200 1541/1183/1164 +f 1541/1183/1164 1542/1220/1200 1484/1221/1201 +f 1541/1183/1164 1484/1221/1201 1485/1184/1165 +f 1485/1184/1165 1484/1221/1201 1556/1222/1202 +f 1485/1184/1165 1556/1222/1202 1557/1185/1166 +f 1557/1185/1166 1556/1222/1202 1645/1223/1203 +f 1557/1185/1166 1645/1223/1203 1644/1186/1167 +f 1644/1186/1167 1645/1223/1203 1593/1224/1204 +f 1644/1186/1167 1593/1224/1204 1594/1187/1168 +f 1594/1187/1168 1593/1224/1204 1714/1225/1205 +f 1594/1187/1168 1714/1225/1205 1713/1188/1169 +f 1713/1188/1169 1714/1225/1205 1666/1226/1206 +f 1713/1188/1169 1666/1226/1206 1667/1189/1170 +f 1667/1189/1170 1666/1226/1206 1738/1227/1207 +f 1667/1189/1170 1738/1227/1207 1739/1190/1171 +f 1739/1190/1171 1738/1227/1207 1818/1228/1208 +f 1739/1190/1171 1818/1228/1208 1817/1191/1172 +f 1817/1191/1172 1818/1228/1208 1776/1229/1209 +f 1817/1191/1172 1776/1229/1209 1777/1192/1173 +f 1777/1192/1173 1776/1229/1209 1849/1230/1210 +f 1777/1192/1173 1849/1230/1210 1850/1193/1174 +f 1850/1193/1174 1849/1230/1210 1923/1231/1211 +f 1850/1193/1174 1923/1231/1211 1922/1194/1175 +f 1922/1194/1175 1923/1231/1211 1887/1232/1212 +f 1922/1194/1175 1887/1232/1212 1888/1195/1176 +f 1888/1195/1176 1887/1232/1212 1959/1233/1213 +f 1888/1195/1176 1959/1233/1213 1960/1196/1177 +f 1960/1196/1177 1959/1233/1213 2026/1234/1214 +f 1960/1196/1177 2026/1234/1214 2025/1197/1178 +f 2025/1197/1178 2026/1234/1214 1996/1235/1215 +f 2025/1197/1178 1996/1235/1215 1997/1198/1179 +f 1997/1198/1179 1996/1235/1215 2095/1236/1216 +f 1997/1198/1179 2095/1236/1216 2094/1199/1180 +f 2094/1199/1180 2095/1236/1216 2069/1237/1217 +f 2094/1199/1180 2069/1237/1217 2070/1200/1181 +f 2070/1200/1181 2069/1237/1217 2141/1238/1218 +f 2070/1200/1181 2141/1238/1218 2142/1201/1182 +f 2142/1201/1182 2141/1238/1218 2199/1239/1219 +f 2142/1201/1182 2199/1239/1219 2198/1202/1183 +f 2198/1202/1183 2199/1239/1219 2179/1240/1220 +f 2198/1202/1183 2179/1240/1220 2180/1203/1184 +f 2180/1203/1184 2179/1240/1220 2252/1241/1221 +f 2180/1203/1184 2252/1241/1221 2253/1204/1185 +f 2253/1204/1185 2252/1241/1221 2304/1242/1222 +f 2253/1204/1185 2304/1242/1222 2303/1205/1186 +f 2303/1205/1186 2304/1242/1222 2290/1243/1223 +f 2303/1205/1186 2290/1243/1223 2291/1206/1187 +f 2291/1206/1187 2290/1243/1223 2362/1244/1224 +f 2291/1206/1187 2362/1244/1224 2363/1207/1188 +f 2363/1207/1188 2362/1244/1224 2408/1245/1225 +f 2363/1207/1188 2408/1245/1225 2407/1208/1189 +f 2407/1208/1189 2408/1245/1225 2400/1246/1226 +f 2407/1208/1189 2400/1246/1226 2401/1209/1190 +f 2401/1209/1190 2400/1246/1226 2472/1247/1227 +f 2401/1209/1190 2472/1247/1227 2473/1210/1191 +f 2473/1210/1191 2472/1247/1227 2511/1248/1228 +f 2473/1210/1191 2511/1248/1228 2510/1211/1192 +f 2510/1211/1192 2511/1248/1228 2509/1249/1229 +f 2510/1211/1192 2509/1249/1229 233/1250/485 +f 1333/1214/1194 215/1213/1193 1262/1251/1230 +f 1262/1251/1230 215/1213/1193 214/1252/1231 +f 1262/1251/1230 214/1252/1231 289/1253/1232 +f 289/1253/1232 214/1252/1231 213/1254/1233 +f 289/1253/1232 213/1254/1233 1440/1255/1234 +f 1440/1255/1234 213/1254/1233 1369/1256/1235 +f 1440/1255/1234 1369/1256/1235 1370/1257/1236 +f 1370/1257/1236 1369/1256/1235 1442/1258/1237 +f 1370/1257/1236 1442/1258/1237 1443/1259/1238 +f 1443/1259/1238 1442/1258/1237 1546/1260/1239 +f 1443/1259/1238 1546/1260/1239 1545/1261/1240 +f 1545/1261/1240 1546/1260/1239 1480/1262/1241 +f 1545/1261/1240 1480/1262/1241 1481/1263/1242 +f 1481/1263/1242 1480/1262/1241 1552/1264/1243 +f 1481/1263/1242 1552/1264/1243 1553/1265/1244 +f 1553/1265/1244 1552/1264/1243 1649/1266/1245 +f 1553/1265/1244 1649/1266/1245 1648/1267/1246 +f 1648/1267/1246 1649/1266/1245 1589/1268/1247 +f 1648/1267/1246 1589/1268/1247 1590/1269/1248 +f 1590/1269/1248 1589/1268/1247 1718/1270/1249 +f 1590/1269/1248 1718/1270/1249 1717/1271/1250 +f 1717/1271/1250 1718/1270/1249 1662/1272/1251 +f 1717/1271/1250 1662/1272/1251 1663/1273/1252 +f 1663/1273/1252 1662/1272/1251 1734/1274/1253 +f 1663/1273/1252 1734/1274/1253 1735/1275/1254 +f 1735/1275/1254 1734/1274/1253 1822/1276/1255 +f 1735/1275/1254 1822/1276/1255 1821/1277/1256 +f 1821/1277/1256 1822/1276/1255 1772/1278/1257 +f 1821/1277/1256 1772/1278/1257 1773/1279/1258 +f 1773/1279/1258 1772/1278/1257 1845/1280/1259 +f 1773/1279/1258 1845/1280/1259 1846/1281/1260 +f 1846/1281/1260 1845/1280/1259 1927/1282/1261 +f 1846/1281/1260 1927/1282/1261 1926/1283/1262 +f 1926/1283/1262 1927/1282/1261 1883/1284/1263 +f 1926/1283/1262 1883/1284/1263 1884/1285/1264 +f 1884/1285/1264 1883/1284/1263 1955/1286/1265 +f 1884/1285/1264 1955/1286/1265 1956/1287/1266 +f 1956/1287/1266 1955/1286/1265 2030/1288/1267 +f 1956/1287/1266 2030/1288/1267 2029/1289/1268 +f 2029/1289/1268 2030/1288/1267 1992/1290/1269 +f 2029/1289/1268 1992/1290/1269 1993/1291/1270 +f 1993/1291/1270 1992/1290/1269 2099/1292/1271 +f 1993/1291/1270 2099/1292/1271 2098/1293/1272 +f 2098/1293/1272 2099/1292/1271 2065/1294/1273 +f 2098/1293/1272 2065/1294/1273 2066/1295/1274 +f 2066/1295/1274 2065/1294/1273 2137/1296/1275 +f 2066/1295/1274 2137/1296/1275 2138/1297/1276 +f 2138/1297/1276 2137/1296/1275 2203/1298/1277 +f 2138/1297/1276 2203/1298/1277 2202/1299/1278 +f 2202/1299/1278 2203/1298/1277 2175/1300/1279 +f 2202/1299/1278 2175/1300/1279 2176/1301/1280 +f 2176/1301/1280 2175/1300/1279 2248/1302/1281 +f 2176/1301/1280 2248/1302/1281 2249/1303/1282 +f 2249/1303/1282 2248/1302/1281 2308/1304/1283 +f 2249/1303/1282 2308/1304/1283 2307/1305/1284 +f 2307/1305/1284 2308/1304/1283 2286/1306/1285 +f 2307/1305/1284 2286/1306/1285 2287/1307/1286 +f 2287/1307/1286 2286/1306/1285 2358/1308/1287 +f 2287/1307/1286 2358/1308/1287 2359/1309/1288 +f 2359/1309/1288 2358/1308/1287 2412/1310/1289 +f 2359/1309/1288 2412/1310/1289 2411/1311/1290 +f 2411/1311/1290 2412/1310/1289 2396/1312/1291 +f 2411/1311/1290 2396/1312/1291 2397/1313/1292 +f 2397/1313/1292 2396/1312/1291 2468/1314/1293 +f 2397/1313/1292 2468/1314/1293 2469/1315/1294 +f 2469/1315/1294 2468/1314/1293 2515/1316/1295 +f 2469/1315/1294 2515/1316/1295 2514/1317/1296 +f 2514/1317/1296 2515/1316/1295 2505/1318/1297 +f 2514/1317/1296 2505/1318/1297 2506/1319/1298 +f 2506/1319/1298 2505/1318/1297 2584/1320/1299 +f 2506/1319/1298 2584/1320/1299 2583/1321/1300 +f 2583/1321/1300 2584/1320/1299 2578/1322/1301 +f 2583/1321/1300 2578/1322/1301 2579/1323/1302 +f 2579/1323/1302 2578/1322/1301 2650/1324/1303 +f 2579/1323/1302 2650/1324/1303 2651/1325/1304 +f 2651/1325/1304 2650/1324/1303 2688/1326/1305 +f 2651/1325/1304 2688/1326/1305 233/1327/485 +f 213/1254/1233 212/1328/1306 1369/1256/1235 +f 1369/1256/1235 212/1328/1306 1441/1329/1307 +f 1369/1256/1235 1441/1329/1307 1442/1258/1237 +f 1442/1258/1237 1441/1329/1307 1547/1330/1308 +f 1442/1258/1237 1547/1330/1308 1546/1260/1239 +f 1546/1260/1239 1547/1330/1308 1479/1331/1309 +f 1546/1260/1239 1479/1331/1309 1480/1262/1241 +f 1480/1262/1241 1479/1331/1309 1551/1332/1310 +f 1480/1262/1241 1551/1332/1310 1552/1264/1243 +f 1552/1264/1243 1551/1332/1310 1650/1333/1311 +f 1552/1264/1243 1650/1333/1311 1649/1266/1245 +f 1649/1266/1245 1650/1333/1311 1588/1334/1312 +f 1649/1266/1245 1588/1334/1312 1589/1268/1247 +f 1589/1268/1247 1588/1334/1312 1719/1335/1313 +f 1589/1268/1247 1719/1335/1313 1718/1270/1249 +f 1718/1270/1249 1719/1335/1313 1661/1336/1314 +f 1718/1270/1249 1661/1336/1314 1662/1272/1251 +f 1662/1272/1251 1661/1336/1314 1733/1337/1315 +f 1662/1272/1251 1733/1337/1315 1734/1274/1253 +f 1734/1274/1253 1733/1337/1315 1823/1338/1316 +f 1734/1274/1253 1823/1338/1316 1822/1276/1255 +f 1822/1276/1255 1823/1338/1316 1771/1339/1317 +f 1822/1276/1255 1771/1339/1317 1772/1278/1257 +f 1772/1278/1257 1771/1339/1317 1844/1340/1318 +f 1772/1278/1257 1844/1340/1318 1845/1280/1259 +f 1845/1280/1259 1844/1340/1318 1928/1341/1319 +f 1845/1280/1259 1928/1341/1319 1927/1282/1261 +f 1927/1282/1261 1928/1341/1319 1882/1342/1320 +f 1927/1282/1261 1882/1342/1320 1883/1284/1263 +f 1883/1284/1263 1882/1342/1320 1954/1343/1321 +f 1883/1284/1263 1954/1343/1321 1955/1286/1265 +f 1955/1286/1265 1954/1343/1321 2031/1344/1322 +f 1955/1286/1265 2031/1344/1322 2030/1288/1267 +f 2030/1288/1267 2031/1344/1322 1991/1345/1323 +f 2030/1288/1267 1991/1345/1323 1992/1290/1269 +f 1992/1290/1269 1991/1345/1323 2100/1346/1324 +f 1992/1290/1269 2100/1346/1324 2099/1292/1271 +f 2099/1292/1271 2100/1346/1324 2064/1347/1325 +f 2099/1292/1271 2064/1347/1325 2065/1294/1273 +f 2065/1294/1273 2064/1347/1325 2136/1348/1326 +f 2065/1294/1273 2136/1348/1326 2137/1296/1275 +f 2137/1296/1275 2136/1348/1326 2204/1349/1327 +f 2137/1296/1275 2204/1349/1327 2203/1298/1277 +f 2203/1298/1277 2204/1349/1327 2174/1350/1328 +f 2203/1298/1277 2174/1350/1328 2175/1300/1279 +f 2175/1300/1279 2174/1350/1328 2247/1351/1329 +f 2175/1300/1279 2247/1351/1329 2248/1302/1281 +f 2248/1302/1281 2247/1351/1329 2309/1352/1330 +f 2248/1302/1281 2309/1352/1330 2308/1304/1283 +f 2308/1304/1283 2309/1352/1330 2285/1353/1331 +f 2308/1304/1283 2285/1353/1331 2286/1306/1285 +f 2286/1306/1285 2285/1353/1331 2357/1354/1332 +f 2286/1306/1285 2357/1354/1332 2358/1308/1287 +f 2358/1308/1287 2357/1354/1332 2413/1355/1333 +f 2358/1308/1287 2413/1355/1333 2412/1310/1289 +f 2412/1310/1289 2413/1355/1333 2395/1356/1334 +f 2412/1310/1289 2395/1356/1334 2396/1312/1291 +f 2396/1312/1291 2395/1356/1334 2467/1357/1335 +f 2396/1312/1291 2467/1357/1335 2468/1314/1293 +f 2468/1314/1293 2467/1357/1335 2516/1358/1336 +f 2468/1314/1293 2516/1358/1336 2515/1316/1295 +f 2515/1316/1295 2516/1358/1336 2504/1359/1337 +f 2515/1316/1295 2504/1359/1337 2505/1318/1297 +f 2505/1318/1297 2504/1359/1337 2585/1360/1338 +f 2505/1318/1297 2585/1360/1338 2584/1320/1299 +f 2584/1320/1299 2585/1360/1338 2577/1361/1339 +f 2584/1320/1299 2577/1361/1339 2578/1322/1301 +f 2578/1322/1301 2577/1361/1339 2649/1362/1340 +f 2578/1322/1301 2649/1362/1340 2650/1324/1303 +f 2650/1324/1303 2649/1362/1340 2689/1363/1341 +f 2650/1324/1303 2689/1363/1341 2688/1326/1305 +f 2688/1326/1305 2689/1363/1341 2687/1364/1342 +f 2688/1326/1305 2687/1364/1342 233/1365/485 +f 1441/1329/1307 212/1328/1306 288/1366/1343 +f 288/1366/1343 212/1328/1306 211/1367/1344 +f 288/1366/1343 211/1367/1344 1477/1368/1345 +f 1477/1368/1345 211/1367/1344 210/1369/1346 +f 1477/1368/1345 210/1369/1346 1548/1370/1347 +f 1548/1370/1347 210/1369/1346 287/1371/1348 +f 1548/1370/1347 287/1371/1348 1653/1372/1349 +f 1653/1372/1349 287/1371/1348 1584/1373/1350 +f 1653/1372/1349 1584/1373/1350 1585/1374/1351 +f 1585/1374/1351 1584/1373/1350 1723/1375/1352 +f 1585/1374/1351 1723/1375/1352 1722/1376/1353 +f 1722/1376/1353 1723/1375/1352 1657/1377/1354 +f 1722/1376/1353 1657/1377/1354 1658/1378/1355 +f 1658/1378/1355 1657/1377/1354 1729/1379/1356 +f 1658/1378/1355 1729/1379/1356 1730/1380/1357 +f 1730/1380/1357 1729/1379/1356 1827/1381/1358 +f 1730/1380/1357 1827/1381/1358 1826/1382/1359 +f 1826/1382/1359 1827/1381/1358 1767/1383/1360 +f 1826/1382/1359 1767/1383/1360 1768/1384/1361 +f 1768/1384/1361 1767/1383/1360 1840/1385/1362 +f 1768/1384/1361 1840/1385/1362 1841/1386/1363 +f 1841/1386/1363 1840/1385/1362 1932/1387/1364 +f 1841/1386/1363 1932/1387/1364 1931/1388/1365 +f 1931/1388/1365 1932/1387/1364 1878/1389/1366 +f 1931/1388/1365 1878/1389/1366 1879/1390/1367 +f 1879/1390/1367 1878/1389/1366 1950/1391/1368 +f 1879/1390/1367 1950/1391/1368 1951/1392/1369 +f 1951/1392/1369 1950/1391/1368 2035/1393/1370 +f 1951/1392/1369 2035/1393/1370 2034/1394/1371 +f 2034/1394/1371 2035/1393/1370 1987/1395/1372 +f 2034/1394/1371 1987/1395/1372 1988/1396/1373 +f 1988/1396/1373 1987/1395/1372 2104/1397/1374 +f 1988/1396/1373 2104/1397/1374 2103/1398/1375 +f 2103/1398/1375 2104/1397/1374 2060/1399/1376 +f 2103/1398/1375 2060/1399/1376 2061/1400/1377 +f 2061/1400/1377 2060/1399/1376 2132/1401/1378 +f 2061/1400/1377 2132/1401/1378 2133/1402/1379 +f 2133/1402/1379 2132/1401/1378 2208/1403/1380 +f 2133/1402/1379 2208/1403/1380 2207/1404/1381 +f 2207/1404/1381 2208/1403/1380 2170/1405/1382 +f 2207/1404/1381 2170/1405/1382 2171/1406/1383 +f 2171/1406/1383 2170/1405/1382 2243/1407/1384 +f 2171/1406/1383 2243/1407/1384 2244/1408/1385 +f 2244/1408/1385 2243/1407/1384 2313/1409/1386 +f 2244/1408/1385 2313/1409/1386 2312/1410/1387 +f 2312/1410/1387 2313/1409/1386 2281/1411/1388 +f 2312/1410/1387 2281/1411/1388 2282/1412/1389 +f 2282/1412/1389 2281/1411/1388 2353/1413/1390 +f 2282/1412/1389 2353/1413/1390 2354/1414/1391 +f 2354/1414/1391 2353/1413/1390 2417/1415/1392 +f 2354/1414/1391 2417/1415/1392 2416/1416/1393 +f 2416/1416/1393 2417/1415/1392 2391/1417/1394 +f 2416/1416/1393 2391/1417/1394 2392/1418/1395 +f 2392/1418/1395 2391/1417/1394 2463/1419/1396 +f 2392/1418/1395 2463/1419/1396 2464/1420/1397 +f 2464/1420/1397 2463/1419/1396 2520/1421/1398 +f 2464/1420/1397 2520/1421/1398 2519/1422/1399 +f 2519/1422/1399 2520/1421/1398 2500/1423/1400 +f 2519/1422/1399 2500/1423/1400 2501/1424/1401 +f 2501/1424/1401 2500/1423/1400 2589/1425/1402 +f 2501/1424/1401 2589/1425/1402 2588/1426/1403 +f 2588/1426/1403 2589/1425/1402 2573/1427/1404 +f 2588/1426/1403 2573/1427/1404 2574/1428/1405 +f 2574/1428/1405 2573/1427/1404 2645/1429/1406 +f 2574/1428/1405 2645/1429/1406 2646/1430/1407 +f 2646/1430/1407 2645/1429/1406 2693/1431/1408 +f 2646/1430/1407 2693/1431/1408 2692/1432/1409 +f 2692/1432/1409 2693/1431/1408 2683/1433/1410 +f 2692/1432/1409 2683/1433/1410 2684/1434/1411 +f 2684/1434/1411 2683/1433/1410 2756/1435/1412 +f 2684/1434/1411 2756/1435/1412 2757/1436/1413 +f 2757/1436/1413 2756/1435/1412 2798/1437/1414 +f 2757/1436/1413 2798/1437/1414 2797/1438/1415 +f 2797/1438/1415 2798/1437/1414 2794/1439/1416 +f 2797/1438/1415 2794/1439/1416 2795/1440/1417 +f 2795/1440/1417 2794/1439/1416 2866/1441/1418 +f 2795/1440/1417 2866/1441/1418 233/1442/485 +f 210/1369/1346 209/1443/1419 287/1371/1348 +f 287/1371/1348 209/1443/1419 286/1444/1420 +f 287/1371/1348 286/1444/1420 1584/1373/1350 +f 1584/1373/1350 286/1444/1420 1724/1445/1421 +f 1584/1373/1350 1724/1445/1421 1723/1375/1352 +f 1723/1375/1352 1724/1445/1421 1656/1446/1422 +f 1723/1375/1352 1656/1446/1422 1657/1377/1354 +f 1657/1377/1354 1656/1446/1422 1728/1447/1423 +f 1657/1377/1354 1728/1447/1423 1729/1379/1356 +f 1729/1379/1356 1728/1447/1423 1828/1448/1424 +f 1729/1379/1356 1828/1448/1424 1827/1381/1358 +f 1827/1381/1358 1828/1448/1424 1766/1449/1425 +f 1827/1381/1358 1766/1449/1425 1767/1383/1360 +f 1767/1383/1360 1766/1449/1425 1839/1450/1426 +f 1767/1383/1360 1839/1450/1426 1840/1385/1362 +f 1840/1385/1362 1839/1450/1426 1933/1451/1427 +f 1840/1385/1362 1933/1451/1427 1932/1387/1364 +f 1932/1387/1364 1933/1451/1427 1877/1452/1428 +f 1932/1387/1364 1877/1452/1428 1878/1389/1366 +f 1878/1389/1366 1877/1452/1428 1949/1453/1429 +f 1878/1389/1366 1949/1453/1429 1950/1391/1368 +f 1950/1391/1368 1949/1453/1429 2036/1454/1430 +f 1950/1391/1368 2036/1454/1430 2035/1393/1370 +f 2035/1393/1370 2036/1454/1430 1986/1455/1431 +f 2035/1393/1370 1986/1455/1431 1987/1395/1372 +f 1987/1395/1372 1986/1455/1431 2105/1456/1432 +f 1987/1395/1372 2105/1456/1432 2104/1397/1374 +f 2104/1397/1374 2105/1456/1432 2059/1457/1433 +f 2104/1397/1374 2059/1457/1433 2060/1399/1376 +f 2060/1399/1376 2059/1457/1433 2131/1458/1434 +f 2060/1399/1376 2131/1458/1434 2132/1401/1378 +f 2132/1401/1378 2131/1458/1434 2209/1459/1435 +f 2132/1401/1378 2209/1459/1435 2208/1403/1380 +f 2208/1403/1380 2209/1459/1435 2169/1460/1436 +f 2208/1403/1380 2169/1460/1436 2170/1405/1382 +f 2170/1405/1382 2169/1460/1436 2242/1461/1437 +f 2170/1405/1382 2242/1461/1437 2243/1407/1384 +f 2243/1407/1384 2242/1461/1437 2314/1462/1438 +f 2243/1407/1384 2314/1462/1438 2313/1409/1386 +f 2313/1409/1386 2314/1462/1438 2280/1463/1439 +f 2313/1409/1386 2280/1463/1439 2281/1411/1388 +f 2281/1411/1388 2280/1463/1439 2352/1464/1440 +f 2281/1411/1388 2352/1464/1440 2353/1413/1390 +f 2353/1413/1390 2352/1464/1440 2418/1465/1441 +f 2353/1413/1390 2418/1465/1441 2417/1415/1392 +f 2417/1415/1392 2418/1465/1441 2390/1466/1442 +f 2417/1415/1392 2390/1466/1442 2391/1417/1394 +f 2391/1417/1394 2390/1466/1442 2462/1467/1443 +f 2391/1417/1394 2462/1467/1443 2463/1419/1396 +f 2463/1419/1396 2462/1467/1443 2521/1468/1444 +f 2463/1419/1396 2521/1468/1444 2520/1421/1398 +f 2520/1421/1398 2521/1468/1444 2499/1469/1445 +f 2520/1421/1398 2499/1469/1445 2500/1423/1400 +f 2500/1423/1400 2499/1469/1445 2590/1470/1446 +f 2500/1423/1400 2590/1470/1446 2589/1425/1402 +f 2589/1425/1402 2590/1470/1446 2572/1471/1447 +f 2589/1425/1402 2572/1471/1447 2573/1427/1404 +f 2573/1427/1404 2572/1471/1447 2644/1472/1448 +f 2573/1427/1404 2644/1472/1448 2645/1429/1406 +f 2645/1429/1406 2644/1472/1448 2694/1473/1449 +f 2645/1429/1406 2694/1473/1449 2693/1431/1408 +f 2693/1431/1408 2694/1473/1449 2682/1474/1450 +f 2693/1431/1408 2682/1474/1450 2683/1433/1410 +f 2683/1433/1410 2682/1474/1450 2755/1475/1451 +f 2683/1433/1410 2755/1475/1451 2756/1435/1412 +f 2756/1435/1412 2755/1475/1451 2799/1476/1452 +f 2756/1435/1412 2799/1476/1452 2798/1437/1414 +f 2798/1437/1414 2799/1476/1452 2793/1477/1453 +f 2798/1437/1414 2793/1477/1453 2794/1439/1416 +f 2794/1439/1416 2793/1477/1453 2865/1478/1454 +f 2794/1439/1416 2865/1478/1454 2866/1441/1418 +f 2866/1441/1418 2865/1478/1454 2902/1479/1455 +f 2866/1441/1418 2902/1479/1455 233/1480/485 +f 209/1443/1419 208/1481/1456 286/1444/1420 +f 286/1444/1420 208/1481/1456 1725/1482/1457 +f 286/1444/1420 1725/1482/1457 1724/1445/1421 +f 1724/1445/1421 1725/1482/1457 1655/1483/1458 +f 1724/1445/1421 1655/1483/1458 1656/1446/1422 +f 1656/1446/1422 1655/1483/1458 1727/1484/1459 +f 1656/1446/1422 1727/1484/1459 1728/1447/1423 +f 1728/1447/1423 1727/1484/1459 1829/1485/1460 +f 1728/1447/1423 1829/1485/1460 1828/1448/1424 +f 1828/1448/1424 1829/1485/1460 1765/1486/1461 +f 1828/1448/1424 1765/1486/1461 1766/1449/1425 +f 1766/1449/1425 1765/1486/1461 1838/1487/1462 +f 1766/1449/1425 1838/1487/1462 1839/1450/1426 +f 1839/1450/1426 1838/1487/1462 1934/1488/1463 +f 1839/1450/1426 1934/1488/1463 1933/1451/1427 +f 1933/1451/1427 1934/1488/1463 1876/1489/1464 +f 1933/1451/1427 1876/1489/1464 1877/1452/1428 +f 1877/1452/1428 1876/1489/1464 1948/1490/1465 +f 1877/1452/1428 1948/1490/1465 1949/1453/1429 +f 1949/1453/1429 1948/1490/1465 2037/1491/1466 +f 1949/1453/1429 2037/1491/1466 2036/1454/1430 +f 2036/1454/1430 2037/1491/1466 1985/1492/1467 +f 2036/1454/1430 1985/1492/1467 1986/1455/1431 +f 1986/1455/1431 1985/1492/1467 2106/1493/1468 +f 1986/1455/1431 2106/1493/1468 2105/1456/1432 +f 2105/1456/1432 2106/1493/1468 2058/1494/1469 +f 2105/1456/1432 2058/1494/1469 2059/1457/1433 +f 2059/1457/1433 2058/1494/1469 2130/1495/1470 +f 2059/1457/1433 2130/1495/1470 2131/1458/1434 +f 2131/1458/1434 2130/1495/1470 2210/1496/1471 +f 2131/1458/1434 2210/1496/1471 2209/1459/1435 +f 2209/1459/1435 2210/1496/1471 2168/1497/1472 +f 2209/1459/1435 2168/1497/1472 2169/1460/1436 +f 2169/1460/1436 2168/1497/1472 2241/1498/1473 +f 2169/1460/1436 2241/1498/1473 2242/1461/1437 +f 2242/1461/1437 2241/1498/1473 2315/1499/1474 +f 2242/1461/1437 2315/1499/1474 2314/1462/1438 +f 2314/1462/1438 2315/1499/1474 2279/1500/1475 +f 2314/1462/1438 2279/1500/1475 2280/1463/1439 +f 2280/1463/1439 2279/1500/1475 2351/1501/1476 +f 2280/1463/1439 2351/1501/1476 2352/1464/1440 +f 2352/1464/1440 2351/1501/1476 2419/1502/1477 +f 2352/1464/1440 2419/1502/1477 2418/1465/1441 +f 2418/1465/1441 2419/1502/1477 2389/1503/1478 +f 2418/1465/1441 2389/1503/1478 2390/1466/1442 +f 2390/1466/1442 2389/1503/1478 2461/1504/1479 +f 2390/1466/1442 2461/1504/1479 2462/1467/1443 +f 2462/1467/1443 2461/1504/1479 2522/1505/1480 +f 2462/1467/1443 2522/1505/1480 2521/1468/1444 +f 2521/1468/1444 2522/1505/1480 2498/1506/1481 +f 2521/1468/1444 2498/1506/1481 2499/1469/1445 +f 2499/1469/1445 2498/1506/1481 2591/1507/1482 +f 2499/1469/1445 2591/1507/1482 2590/1470/1446 +f 2590/1470/1446 2591/1507/1482 2571/1508/1483 +f 2590/1470/1446 2571/1508/1483 2572/1471/1447 +f 2572/1471/1447 2571/1508/1483 2643/1509/1484 +f 2572/1471/1447 2643/1509/1484 2644/1472/1448 +f 2644/1472/1448 2643/1509/1484 2695/1510/1485 +f 2644/1472/1448 2695/1510/1485 2694/1473/1449 +f 2694/1473/1449 2695/1510/1485 2681/1511/1486 +f 2694/1473/1449 2681/1511/1486 2682/1474/1450 +f 2682/1474/1450 2681/1511/1486 2754/1512/1487 +f 2682/1474/1450 2754/1512/1487 2755/1475/1451 +f 2755/1475/1451 2754/1512/1487 2800/1513/1488 +f 2755/1475/1451 2800/1513/1488 2799/1476/1452 +f 2799/1476/1452 2800/1513/1488 2792/1514/1489 +f 2799/1476/1452 2792/1514/1489 2793/1477/1453 +f 2793/1477/1453 2792/1514/1489 2864/1515/1490 +f 2793/1477/1453 2864/1515/1490 2865/1478/1454 +f 2865/1478/1454 2864/1515/1490 2903/1516/1491 +f 2865/1478/1454 2903/1516/1491 2902/1479/1455 +f 2902/1479/1455 2903/1516/1491 2901/1517/1492 +f 2902/1479/1455 2901/1517/1492 233/1518/485 +f 1725/1482/1457 208/1481/1456 1654/1519/1493 +f 1654/1519/1493 208/1481/1456 207/1520/1494 +f 1654/1519/1493 207/1520/1494 285/1521/1495 +f 285/1521/1495 207/1520/1494 206/1522/1496 +f 285/1521/1495 206/1522/1496 1832/1523/1497 +f 1832/1523/1497 206/1522/1496 1761/1524/1498 +f 1832/1523/1497 1761/1524/1498 1762/1525/1499 +f 1762/1525/1499 1761/1524/1498 1834/1526/1500 +f 1762/1525/1499 1834/1526/1500 1835/1527/1501 +f 1835/1527/1501 1834/1526/1500 1938/1528/1502 +f 1835/1527/1501 1938/1528/1502 1937/1529/1503 +f 1937/1529/1503 1938/1528/1502 1872/1530/1504 +f 1937/1529/1503 1872/1530/1504 1873/1531/1505 +f 1873/1531/1505 1872/1530/1504 1944/1532/1506 +f 1873/1531/1505 1944/1532/1506 1945/1533/1507 +f 1945/1533/1507 1944/1532/1506 2041/1534/1508 +f 1945/1533/1507 2041/1534/1508 2040/1535/1509 +f 2040/1535/1509 2041/1534/1508 1981/1536/1510 +f 2040/1535/1509 1981/1536/1510 1982/1537/1511 +f 1982/1537/1511 1981/1536/1510 2110/1538/1512 +f 1982/1537/1511 2110/1538/1512 2109/1539/1513 +f 2109/1539/1513 2110/1538/1512 2054/1540/1514 +f 2109/1539/1513 2054/1540/1514 2055/1541/1515 +f 2055/1541/1515 2054/1540/1514 2126/1542/1516 +f 2055/1541/1515 2126/1542/1516 2127/1543/1517 +f 2127/1543/1517 2126/1542/1516 2214/1544/1518 +f 2127/1543/1517 2214/1544/1518 2213/1545/1519 +f 2213/1545/1519 2214/1544/1518 2164/1546/1520 +f 2213/1545/1519 2164/1546/1520 2165/1547/1521 +f 2165/1547/1521 2164/1546/1520 2237/1548/1522 +f 2165/1547/1521 2237/1548/1522 2238/1549/1523 +f 2238/1549/1523 2237/1548/1522 2319/1550/1524 +f 2238/1549/1523 2319/1550/1524 2318/1551/1525 +f 2318/1551/1525 2319/1550/1524 2275/1552/1526 +f 2318/1551/1525 2275/1552/1526 2276/1553/1527 +f 2276/1553/1527 2275/1552/1526 2347/1554/1528 +f 2276/1553/1527 2347/1554/1528 2348/1555/1529 +f 2348/1555/1529 2347/1554/1528 2423/1556/1530 +f 2348/1555/1529 2423/1556/1530 2422/1557/1531 +f 2422/1557/1531 2423/1556/1530 2385/1558/1532 +f 2422/1557/1531 2385/1558/1532 2386/1559/1533 +f 2386/1559/1533 2385/1558/1532 2457/1560/1534 +f 2386/1559/1533 2457/1560/1534 2458/1561/1535 +f 2458/1561/1535 2457/1560/1534 2526/1562/1536 +f 2458/1561/1535 2526/1562/1536 2525/1563/1537 +f 2525/1563/1537 2526/1562/1536 2494/1564/1538 +f 2525/1563/1537 2494/1564/1538 2495/1565/1539 +f 2495/1565/1539 2494/1564/1538 2595/1566/1540 +f 2495/1565/1539 2595/1566/1540 2594/1567/1541 +f 2594/1567/1541 2595/1566/1540 2567/1568/1542 +f 2594/1567/1541 2567/1568/1542 2568/1569/1543 +f 2568/1569/1543 2567/1568/1542 2639/1570/1544 +f 2568/1569/1543 2639/1570/1544 2640/1571/1545 +f 2640/1571/1545 2639/1570/1544 2699/1572/1546 +f 2640/1571/1545 2699/1572/1546 2698/1573/1547 +f 2698/1573/1547 2699/1572/1546 2677/1574/1548 +f 2698/1573/1547 2677/1574/1548 2678/1575/1549 +f 2678/1575/1549 2677/1574/1548 2750/1576/1550 +f 2678/1575/1549 2750/1576/1550 2751/1577/1551 +f 2751/1577/1551 2750/1576/1550 2804/1578/1552 +f 2751/1577/1551 2804/1578/1552 2803/1579/1553 +f 2803/1579/1553 2804/1578/1552 2788/1580/1554 +f 2803/1579/1553 2788/1580/1554 2789/1581/1555 +f 2789/1581/1555 2788/1580/1554 2860/1582/1556 +f 2789/1581/1555 2860/1582/1556 2861/1583/1557 +f 2861/1583/1557 2860/1582/1556 2907/1584/1558 +f 2861/1583/1557 2907/1584/1558 2906/1585/1559 +f 2906/1585/1559 2907/1584/1558 2897/1586/1560 +f 2906/1585/1559 2897/1586/1560 2898/1587/1561 +f 2898/1587/1561 2897/1586/1560 2976/1588/1562 +f 2898/1587/1561 2976/1588/1562 2975/1589/1563 +f 2975/1589/1563 2976/1588/1562 2970/1590/1564 +f 2975/1589/1563 2970/1590/1564 2971/1591/1565 +f 2971/1591/1565 2970/1590/1564 3042/1592/1566 +f 2971/1591/1565 3042/1592/1566 3043/1593/1567 +f 3043/1593/1567 3042/1592/1566 3080/1594/1568 +f 3043/1593/1567 3080/1594/1568 233/1595/485 +f 206/1522/1496 205/1596/1569 1761/1524/1498 +f 1761/1524/1498 205/1596/1569 1833/1597/1570 +f 1761/1524/1498 1833/1597/1570 1834/1526/1500 +f 1834/1526/1500 1833/1597/1570 1939/1598/1571 +f 1834/1526/1500 1939/1598/1571 1938/1528/1502 +f 1938/1528/1502 1939/1598/1571 1871/1599/1572 +f 1938/1528/1502 1871/1599/1572 1872/1530/1504 +f 1872/1530/1504 1871/1599/1572 1943/1600/1573 +f 1872/1530/1504 1943/1600/1573 1944/1532/1506 +f 1944/1532/1506 1943/1600/1573 2042/1601/1574 +f 1944/1532/1506 2042/1601/1574 2041/1534/1508 +f 2041/1534/1508 2042/1601/1574 1980/1602/1575 +f 2041/1534/1508 1980/1602/1575 1981/1536/1510 +f 1981/1536/1510 1980/1602/1575 2111/1603/1576 +f 1981/1536/1510 2111/1603/1576 2110/1538/1512 +f 2110/1538/1512 2111/1603/1576 2053/1604/1577 +f 2110/1538/1512 2053/1604/1577 2054/1540/1514 +f 2054/1540/1514 2053/1604/1577 2125/1605/1578 +f 2054/1540/1514 2125/1605/1578 2126/1542/1516 +f 2126/1542/1516 2125/1605/1578 2215/1606/1579 +f 2126/1542/1516 2215/1606/1579 2214/1544/1518 +f 2214/1544/1518 2215/1606/1579 2163/1607/1580 +f 2214/1544/1518 2163/1607/1580 2164/1546/1520 +f 2164/1546/1520 2163/1607/1580 2236/1608/1581 +f 2164/1546/1520 2236/1608/1581 2237/1548/1522 +f 2237/1548/1522 2236/1608/1581 2320/1609/1582 +f 2237/1548/1522 2320/1609/1582 2319/1550/1524 +f 2319/1550/1524 2320/1609/1582 2274/1610/1583 +f 2319/1550/1524 2274/1610/1583 2275/1552/1526 +f 2275/1552/1526 2274/1610/1583 2346/1611/1584 +f 2275/1552/1526 2346/1611/1584 2347/1554/1528 +f 2347/1554/1528 2346/1611/1584 2424/1612/1585 +f 2347/1554/1528 2424/1612/1585 2423/1556/1530 +f 2423/1556/1530 2424/1612/1585 2384/1613/1586 +f 2423/1556/1530 2384/1613/1586 2385/1558/1532 +f 2385/1558/1532 2384/1613/1586 2456/1614/1587 +f 2385/1558/1532 2456/1614/1587 2457/1560/1534 +f 2457/1560/1534 2456/1614/1587 2527/1615/1588 +f 2457/1560/1534 2527/1615/1588 2526/1562/1536 +f 2526/1562/1536 2527/1615/1588 2493/1616/1589 +f 2526/1562/1536 2493/1616/1589 2494/1564/1538 +f 2494/1564/1538 2493/1616/1589 2596/1617/1590 +f 2494/1564/1538 2596/1617/1590 2595/1566/1540 +f 2595/1566/1540 2596/1617/1590 2566/1618/1591 +f 2595/1566/1540 2566/1618/1591 2567/1568/1542 +f 2567/1568/1542 2566/1618/1591 2638/1619/1592 +f 2567/1568/1542 2638/1619/1592 2639/1570/1544 +f 2639/1570/1544 2638/1619/1592 2700/1620/1593 +f 2639/1570/1544 2700/1620/1593 2699/1572/1546 +f 2699/1572/1546 2700/1620/1593 2676/1621/1594 +f 2699/1572/1546 2676/1621/1594 2677/1574/1548 +f 2677/1574/1548 2676/1621/1594 2749/1622/1595 +f 2677/1574/1548 2749/1622/1595 2750/1576/1550 +f 2750/1576/1550 2749/1622/1595 2805/1623/1596 +f 2750/1576/1550 2805/1623/1596 2804/1578/1552 +f 2804/1578/1552 2805/1623/1596 2787/1624/1597 +f 2804/1578/1552 2787/1624/1597 2788/1580/1554 +f 2788/1580/1554 2787/1624/1597 2859/1625/1598 +f 2788/1580/1554 2859/1625/1598 2860/1582/1556 +f 2860/1582/1556 2859/1625/1598 2908/1626/1599 +f 2860/1582/1556 2908/1626/1599 2907/1584/1558 +f 2907/1584/1558 2908/1626/1599 2896/1627/1600 +f 2907/1584/1558 2896/1627/1600 2897/1586/1560 +f 2897/1586/1560 2896/1627/1600 2977/1628/1601 +f 2897/1586/1560 2977/1628/1601 2976/1588/1562 +f 2976/1588/1562 2977/1628/1601 2969/1629/1602 +f 2976/1588/1562 2969/1629/1602 2970/1590/1564 +f 2970/1590/1564 2969/1629/1602 3041/1630/1603 +f 2970/1590/1564 3041/1630/1603 3042/1592/1566 +f 3042/1592/1566 3041/1630/1603 3081/1631/1604 +f 3042/1592/1566 3081/1631/1604 3080/1594/1568 +f 3080/1594/1568 3081/1631/1604 3079/1632/1605 +f 3080/1594/1568 3079/1632/1605 233/1633/485 +f 1833/1597/1570 205/1596/1569 284/1634/1606 +f 284/1634/1606 205/1596/1569 204/1635/1607 +f 284/1634/1606 204/1635/1607 1869/1636/1608 +f 1869/1636/1608 204/1635/1607 203/1637/1609 +f 1869/1636/1608 203/1637/1609 1940/1638/1610 +f 1940/1638/1610 203/1637/1609 283/1639/1611 +f 1940/1638/1610 283/1639/1611 2045/1640/1612 +f 2045/1640/1612 283/1639/1611 1976/1641/1613 +f 2045/1640/1612 1976/1641/1613 1977/1642/1614 +f 1977/1642/1614 1976/1641/1613 2115/1643/1615 +f 1977/1642/1614 2115/1643/1615 2114/1644/1616 +f 2114/1644/1616 2115/1643/1615 2049/1645/1617 +f 2114/1644/1616 2049/1645/1617 2050/1646/1618 +f 2050/1646/1618 2049/1645/1617 2121/1647/1619 +f 2050/1646/1618 2121/1647/1619 2122/1648/1620 +f 2122/1648/1620 2121/1647/1619 2219/1649/1621 +f 2122/1648/1620 2219/1649/1621 2218/1650/1622 +f 2218/1650/1622 2219/1649/1621 2159/1651/1623 +f 2218/1650/1622 2159/1651/1623 2160/1652/1624 +f 2160/1652/1624 2159/1651/1623 2232/1653/1625 +f 2160/1652/1624 2232/1653/1625 2233/1654/1626 +f 2233/1654/1626 2232/1653/1625 2324/1655/1627 +f 2233/1654/1626 2324/1655/1627 2323/1656/1628 +f 2323/1656/1628 2324/1655/1627 2270/1657/1629 +f 2323/1656/1628 2270/1657/1629 2271/1658/1630 +f 2271/1658/1630 2270/1657/1629 2342/1659/1631 +f 2271/1658/1630 2342/1659/1631 2343/1660/1632 +f 2343/1660/1632 2342/1659/1631 2428/1661/1633 +f 2343/1660/1632 2428/1661/1633 2427/1662/1634 +f 2427/1662/1634 2428/1661/1633 2380/1663/1635 +f 2427/1662/1634 2380/1663/1635 2381/1664/1636 +f 2381/1664/1636 2380/1663/1635 2452/1665/1637 +f 2381/1664/1636 2452/1665/1637 2453/1666/1638 +f 2453/1666/1638 2452/1665/1637 2531/1667/1639 +f 2453/1666/1638 2531/1667/1639 2530/1668/1640 +f 2530/1668/1640 2531/1667/1639 2489/1669/1641 +f 2530/1668/1640 2489/1669/1641 2490/1670/1642 +f 2490/1670/1642 2489/1669/1641 2600/1671/1643 +f 2490/1670/1642 2600/1671/1643 2599/1672/1644 +f 2599/1672/1644 2600/1671/1643 2562/1673/1645 +f 2599/1672/1644 2562/1673/1645 2563/1674/1646 +f 2563/1674/1646 2562/1673/1645 2634/1675/1647 +f 2563/1674/1646 2634/1675/1647 2635/1676/1648 +f 2635/1676/1648 2634/1675/1647 2704/1677/1649 +f 2635/1676/1648 2704/1677/1649 2703/1678/1650 +f 2703/1678/1650 2704/1677/1649 2672/1679/1651 +f 2703/1678/1650 2672/1679/1651 2673/1680/1652 +f 2673/1680/1652 2672/1679/1651 2745/1681/1653 +f 2673/1680/1652 2745/1681/1653 2746/1682/1654 +f 2746/1682/1654 2745/1681/1653 2809/1683/1655 +f 2746/1682/1654 2809/1683/1655 2808/1684/1656 +f 2808/1684/1656 2809/1683/1655 2783/1685/1657 +f 2808/1684/1656 2783/1685/1657 2784/1686/1658 +f 2784/1686/1658 2783/1685/1657 2855/1687/1659 +f 2784/1686/1658 2855/1687/1659 2856/1688/1660 +f 2856/1688/1660 2855/1687/1659 2912/1689/1661 +f 2856/1688/1660 2912/1689/1661 2911/1690/1662 +f 2911/1690/1662 2912/1689/1661 2892/1691/1663 +f 2911/1690/1662 2892/1691/1663 2893/1692/1664 +f 2893/1692/1664 2892/1691/1663 2981/1693/1665 +f 2893/1692/1664 2981/1693/1665 2980/1694/1666 +f 2980/1694/1666 2981/1693/1665 2965/1695/1667 +f 2980/1694/1666 2965/1695/1667 2966/1696/1668 +f 2966/1696/1668 2965/1695/1667 3037/1697/1669 +f 2966/1696/1668 3037/1697/1669 3038/1698/1670 +f 3038/1698/1670 3037/1697/1669 3085/1699/1671 +f 3038/1698/1670 3085/1699/1671 3084/1700/1672 +f 3084/1700/1672 3085/1699/1671 3075/1701/1673 +f 3084/1700/1672 3075/1701/1673 3076/1702/1674 +f 3076/1702/1674 3075/1701/1673 3148/1703/1675 +f 3076/1702/1674 3148/1703/1675 3149/1704/1676 +f 3149/1704/1676 3148/1703/1675 3190/1705/1677 +f 3149/1704/1676 3190/1705/1677 3189/1706/1678 +f 3189/1706/1678 3190/1705/1677 3186/1707/1679 +f 3189/1706/1678 3186/1707/1679 3187/1708/1680 +f 3187/1708/1680 3186/1707/1679 3258/1709/1681 +f 3187/1708/1680 3258/1709/1681 233/1710/485 +f 203/1637/1609 202/1711/1682 283/1639/1611 +f 283/1639/1611 202/1711/1682 282/1712/1683 +f 283/1639/1611 282/1712/1683 1976/1641/1613 +f 1976/1641/1613 282/1712/1683 2116/1713/1684 +f 1976/1641/1613 2116/1713/1684 2115/1643/1615 +f 2115/1643/1615 2116/1713/1684 2048/1714/1685 +f 2115/1643/1615 2048/1714/1685 2049/1645/1617 +f 2049/1645/1617 2048/1714/1685 2120/1715/1686 +f 2049/1645/1617 2120/1715/1686 2121/1647/1619 +f 2121/1647/1619 2120/1715/1686 2220/1716/1687 +f 2121/1647/1619 2220/1716/1687 2219/1649/1621 +f 2219/1649/1621 2220/1716/1687 2158/1717/1688 +f 2219/1649/1621 2158/1717/1688 2159/1651/1623 +f 2159/1651/1623 2158/1717/1688 2231/1718/1689 +f 2159/1651/1623 2231/1718/1689 2232/1653/1625 +f 2232/1653/1625 2231/1718/1689 2325/1719/1690 +f 2232/1653/1625 2325/1719/1690 2324/1655/1627 +f 2324/1655/1627 2325/1719/1690 2269/1720/1691 +f 2324/1655/1627 2269/1720/1691 2270/1657/1629 +f 2270/1657/1629 2269/1720/1691 2341/1721/1692 +f 2270/1657/1629 2341/1721/1692 2342/1659/1631 +f 2342/1659/1631 2341/1721/1692 2429/1722/1693 +f 2342/1659/1631 2429/1722/1693 2428/1661/1633 +f 2428/1661/1633 2429/1722/1693 2379/1723/1694 +f 2428/1661/1633 2379/1723/1694 2380/1663/1635 +f 2380/1663/1635 2379/1723/1694 2451/1724/1695 +f 2380/1663/1635 2451/1724/1695 2452/1665/1637 +f 2452/1665/1637 2451/1724/1695 2532/1725/1696 +f 2452/1665/1637 2532/1725/1696 2531/1667/1639 +f 2531/1667/1639 2532/1725/1696 2488/1726/1697 +f 2531/1667/1639 2488/1726/1697 2489/1669/1641 +f 2489/1669/1641 2488/1726/1697 2601/1727/1698 +f 2489/1669/1641 2601/1727/1698 2600/1671/1643 +f 2600/1671/1643 2601/1727/1698 2561/1728/1699 +f 2600/1671/1643 2561/1728/1699 2562/1673/1645 +f 2562/1673/1645 2561/1728/1699 2633/1729/1700 +f 2562/1673/1645 2633/1729/1700 2634/1675/1647 +f 2634/1675/1647 2633/1729/1700 2705/1730/1701 +f 2634/1675/1647 2705/1730/1701 2704/1677/1649 +f 2704/1677/1649 2705/1730/1701 2671/1731/1702 +f 2704/1677/1649 2671/1731/1702 2672/1679/1651 +f 2672/1679/1651 2671/1731/1702 2744/1732/1703 +f 2672/1679/1651 2744/1732/1703 2745/1681/1653 +f 2745/1681/1653 2744/1732/1703 2810/1733/1704 +f 2745/1681/1653 2810/1733/1704 2809/1683/1655 +f 2809/1683/1655 2810/1733/1704 2782/1734/1705 +f 2809/1683/1655 2782/1734/1705 2783/1685/1657 +f 2783/1685/1657 2782/1734/1705 2854/1735/1706 +f 2783/1685/1657 2854/1735/1706 2855/1687/1659 +f 2855/1687/1659 2854/1735/1706 2913/1736/1707 +f 2855/1687/1659 2913/1736/1707 2912/1689/1661 +f 2912/1689/1661 2913/1736/1707 2891/1737/1708 +f 2912/1689/1661 2891/1737/1708 2892/1691/1663 +f 2892/1691/1663 2891/1737/1708 2982/1738/1709 +f 2892/1691/1663 2982/1738/1709 2981/1693/1665 +f 2981/1693/1665 2982/1738/1709 2964/1739/1710 +f 2981/1693/1665 2964/1739/1710 2965/1695/1667 +f 2965/1695/1667 2964/1739/1710 3036/1740/1711 +f 2965/1695/1667 3036/1740/1711 3037/1697/1669 +f 3037/1697/1669 3036/1740/1711 3086/1741/1712 +f 3037/1697/1669 3086/1741/1712 3085/1699/1671 +f 3085/1699/1671 3086/1741/1712 3074/1742/1713 +f 3085/1699/1671 3074/1742/1713 3075/1701/1673 +f 3075/1701/1673 3074/1742/1713 3147/1743/1714 +f 3075/1701/1673 3147/1743/1714 3148/1703/1675 +f 3148/1703/1675 3147/1743/1714 3191/1744/1715 +f 3148/1703/1675 3191/1744/1715 3190/1705/1677 +f 3190/1705/1677 3191/1744/1715 3185/1745/1716 +f 3190/1705/1677 3185/1745/1716 3186/1707/1679 +f 3186/1707/1679 3185/1745/1716 3257/1746/1717 +f 3186/1707/1679 3257/1746/1717 3258/1709/1681 +f 3258/1709/1681 3257/1746/1717 3295/1747/1718 +f 3258/1709/1681 3295/1747/1718 233/1748/485 +f 202/1711/1682 201/1749/1719 282/1712/1683 +f 282/1712/1683 201/1749/1719 2117/1750/1720 +f 282/1712/1683 2117/1750/1720 2116/1713/1684 +f 2116/1713/1684 2117/1750/1720 2047/1751/1721 +f 2116/1713/1684 2047/1751/1721 2048/1714/1685 +f 2048/1714/1685 2047/1751/1721 2119/1752/1722 +f 2048/1714/1685 2119/1752/1722 2120/1715/1686 +f 2120/1715/1686 2119/1752/1722 2221/1753/1723 +f 2120/1715/1686 2221/1753/1723 2220/1716/1687 +f 2220/1716/1687 2221/1753/1723 2157/1754/1724 +f 2220/1716/1687 2157/1754/1724 2158/1717/1688 +f 2158/1717/1688 2157/1754/1724 2230/1755/1725 +f 2158/1717/1688 2230/1755/1725 2231/1718/1689 +f 2231/1718/1689 2230/1755/1725 2326/1756/1726 +f 2231/1718/1689 2326/1756/1726 2325/1719/1690 +f 2325/1719/1690 2326/1756/1726 2268/1757/1727 +f 2325/1719/1690 2268/1757/1727 2269/1720/1691 +f 2269/1720/1691 2268/1757/1727 2340/1758/1728 +f 2269/1720/1691 2340/1758/1728 2341/1721/1692 +f 2341/1721/1692 2340/1758/1728 2430/1759/1729 +f 2341/1721/1692 2430/1759/1729 2429/1722/1693 +f 2429/1722/1693 2430/1759/1729 2378/1760/1730 +f 2429/1722/1693 2378/1760/1730 2379/1723/1694 +f 2379/1723/1694 2378/1760/1730 2450/1761/1731 +f 2379/1723/1694 2450/1761/1731 2451/1724/1695 +f 2451/1724/1695 2450/1761/1731 2533/1762/1732 +f 2451/1724/1695 2533/1762/1732 2532/1725/1696 +f 2532/1725/1696 2533/1762/1732 2487/1763/1733 +f 2532/1725/1696 2487/1763/1733 2488/1726/1697 +f 2488/1726/1697 2487/1763/1733 2602/1764/1734 +f 2488/1726/1697 2602/1764/1734 2601/1727/1698 +f 2601/1727/1698 2602/1764/1734 2560/1765/1735 +f 2601/1727/1698 2560/1765/1735 2561/1728/1699 +f 2561/1728/1699 2560/1765/1735 2632/1766/1736 +f 2561/1728/1699 2632/1766/1736 2633/1729/1700 +f 2633/1729/1700 2632/1766/1736 2706/1767/1737 +f 2633/1729/1700 2706/1767/1737 2705/1730/1701 +f 2705/1730/1701 2706/1767/1737 2670/1768/1738 +f 2705/1730/1701 2670/1768/1738 2671/1731/1702 +f 2671/1731/1702 2670/1768/1738 2743/1769/1739 +f 2671/1731/1702 2743/1769/1739 2744/1732/1703 +f 2744/1732/1703 2743/1769/1739 2811/1770/1740 +f 2744/1732/1703 2811/1770/1740 2810/1733/1704 +f 2810/1733/1704 2811/1770/1740 2781/1771/1741 +f 2810/1733/1704 2781/1771/1741 2782/1734/1705 +f 2782/1734/1705 2781/1771/1741 2853/1772/1742 +f 2782/1734/1705 2853/1772/1742 2854/1735/1706 +f 2854/1735/1706 2853/1772/1742 2914/1773/1743 +f 2854/1735/1706 2914/1773/1743 2913/1736/1707 +f 2913/1736/1707 2914/1773/1743 2890/1774/1744 +f 2913/1736/1707 2890/1774/1744 2891/1737/1708 +f 2891/1737/1708 2890/1774/1744 2983/1775/1745 +f 2891/1737/1708 2983/1775/1745 2982/1738/1709 +f 2982/1738/1709 2983/1775/1745 2963/1776/1746 +f 2982/1738/1709 2963/1776/1746 2964/1739/1710 +f 2964/1739/1710 2963/1776/1746 3035/1777/1747 +f 2964/1739/1710 3035/1777/1747 3036/1740/1711 +f 3036/1740/1711 3035/1777/1747 3087/1778/1748 +f 3036/1740/1711 3087/1778/1748 3086/1741/1712 +f 3086/1741/1712 3087/1778/1748 3073/1779/1749 +f 3086/1741/1712 3073/1779/1749 3074/1742/1713 +f 3074/1742/1713 3073/1779/1749 3146/1780/1750 +f 3074/1742/1713 3146/1780/1750 3147/1743/1714 +f 3147/1743/1714 3146/1780/1750 3192/1781/1751 +f 3147/1743/1714 3192/1781/1751 3191/1744/1715 +f 3191/1744/1715 3192/1781/1751 3184/1782/1752 +f 3191/1744/1715 3184/1782/1752 3185/1745/1716 +f 3185/1745/1716 3184/1782/1752 3256/1783/1753 +f 3185/1745/1716 3256/1783/1753 3257/1746/1717 +f 3257/1746/1717 3256/1783/1753 3296/1784/1754 +f 3257/1746/1717 3296/1784/1754 3295/1747/1718 +f 3295/1747/1718 3296/1784/1754 3294/490/484 +f 3295/1747/1718 3294/490/484 233/1785/485 +f 2117/1750/1720 201/1749/1719 2046/1786/1755 +f 2046/1786/1755 201/1749/1719 200/1787/1756 +f 2046/1786/1755 200/1787/1756 281/1788/1757 +f 281/1788/1757 200/1787/1756 199/1789/1758 +f 281/1788/1757 199/1789/1758 2224/1790/1759 +f 2224/1790/1759 199/1789/1758 2153/1791/1760 +f 2224/1790/1759 2153/1791/1760 2154/1792/1761 +f 2154/1792/1761 2153/1791/1760 2226/1793/1762 +f 2154/1792/1761 2226/1793/1762 2227/1794/1763 +f 2227/1794/1763 2226/1793/1762 2330/1795/1764 +f 2227/1794/1763 2330/1795/1764 2329/1796/1765 +f 2329/1796/1765 2330/1795/1764 2264/1797/1766 +f 2329/1796/1765 2264/1797/1766 2265/1798/1767 +f 2265/1798/1767 2264/1797/1766 2336/1799/1768 +f 2265/1798/1767 2336/1799/1768 2337/1800/1769 +f 2337/1800/1769 2336/1799/1768 2434/1801/1770 +f 2337/1800/1769 2434/1801/1770 2433/1802/1771 +f 2433/1802/1771 2434/1801/1770 2374/1803/1772 +f 2433/1802/1771 2374/1803/1772 2375/1804/1773 +f 2375/1804/1773 2374/1803/1772 2446/1805/1774 +f 2375/1804/1773 2446/1805/1774 2447/1806/1775 +f 2447/1806/1775 2446/1805/1774 2537/1807/1776 +f 2447/1806/1775 2537/1807/1776 2536/1808/1777 +f 2536/1808/1777 2537/1807/1776 2483/1809/1778 +f 2536/1808/1777 2483/1809/1778 2484/1810/1779 +f 2484/1810/1779 2483/1809/1778 2606/1811/1780 +f 2484/1810/1779 2606/1811/1780 2605/1812/1781 +f 2605/1812/1781 2606/1811/1780 2556/1813/1782 +f 2605/1812/1781 2556/1813/1782 2557/1814/1783 +f 2557/1814/1783 2556/1813/1782 2628/1815/1784 +f 2557/1814/1783 2628/1815/1784 2629/1816/1785 +f 2629/1816/1785 2628/1815/1784 2710/1817/1786 +f 2629/1816/1785 2710/1817/1786 2709/1818/1787 +f 2709/1818/1787 2710/1817/1786 2666/1819/1788 +f 2709/1818/1787 2666/1819/1788 2667/1820/1789 +f 2667/1820/1789 2666/1819/1788 2739/1821/1790 +f 2667/1820/1789 2739/1821/1790 2740/1822/1791 +f 2740/1822/1791 2739/1821/1790 2815/1823/1792 +f 2740/1822/1791 2815/1823/1792 2814/1824/1793 +f 2814/1824/1793 2815/1823/1792 2777/1825/1794 +f 2814/1824/1793 2777/1825/1794 2778/1826/1795 +f 2778/1826/1795 2777/1825/1794 2849/1827/1796 +f 2778/1826/1795 2849/1827/1796 2850/1828/1797 +f 2850/1828/1797 2849/1827/1796 2918/1829/1798 +f 2850/1828/1797 2918/1829/1798 2917/1830/1799 +f 2917/1830/1799 2918/1829/1798 2886/1831/1800 +f 2917/1830/1799 2886/1831/1800 2887/1832/1801 +f 2887/1832/1801 2886/1831/1800 2987/1833/1802 +f 2887/1832/1801 2987/1833/1802 2986/1834/1803 +f 2986/1834/1803 2987/1833/1802 2959/1835/1804 +f 2986/1834/1803 2959/1835/1804 2960/1836/1805 +f 2960/1836/1805 2959/1835/1804 3031/1837/1806 +f 2960/1836/1805 3031/1837/1806 3032/1838/1807 +f 3032/1838/1807 3031/1837/1806 3091/1839/1808 +f 3032/1838/1807 3091/1839/1808 3090/1840/1809 +f 3090/1840/1809 3091/1839/1808 3069/1841/1810 +f 3090/1840/1809 3069/1841/1810 3070/1842/1811 +f 3070/1842/1811 3069/1841/1810 3142/1843/1812 +f 3070/1842/1811 3142/1843/1812 3143/1844/1813 +f 3143/1844/1813 3142/1843/1812 3196/1845/1814 +f 3143/1844/1813 3196/1845/1814 3195/1846/1815 +f 3195/1846/1815 3196/1845/1814 3180/1847/1816 +f 3195/1846/1815 3180/1847/1816 3181/1848/1817 +f 3181/1848/1817 3180/1847/1816 3252/1849/1818 +f 3181/1848/1817 3252/1849/1818 3253/1850/1819 +f 3253/1850/1819 3252/1849/1818 3300/1851/1820 +f 3253/1850/1819 3300/1851/1820 3299/1852/1821 +f 3299/1852/1821 3300/1851/1820 3290/482/476 +f 3299/1852/1821 3290/482/476 3291/484/478 +f 199/1789/1758 198/1853/1822 2153/1791/1760 +f 2153/1791/1760 198/1853/1822 2225/1854/1823 +f 2153/1791/1760 2225/1854/1823 2226/1793/1762 +f 2226/1793/1762 2225/1854/1823 2331/1855/1824 +f 2226/1793/1762 2331/1855/1824 2330/1795/1764 +f 2330/1795/1764 2331/1855/1824 2263/1856/1825 +f 2330/1795/1764 2263/1856/1825 2264/1797/1766 +f 2264/1797/1766 2263/1856/1825 2335/1857/1826 +f 2264/1797/1766 2335/1857/1826 2336/1799/1768 +f 2336/1799/1768 2335/1857/1826 2435/1858/1827 +f 2336/1799/1768 2435/1858/1827 2434/1801/1770 +f 2434/1801/1770 2435/1858/1827 2373/1859/1828 +f 2434/1801/1770 2373/1859/1828 2374/1803/1772 +f 2374/1803/1772 2373/1859/1828 2445/1860/1829 +f 2374/1803/1772 2445/1860/1829 2446/1805/1774 +f 2446/1805/1774 2445/1860/1829 2538/1861/1830 +f 2446/1805/1774 2538/1861/1830 2537/1807/1776 +f 2537/1807/1776 2538/1861/1830 2482/1862/1831 +f 2537/1807/1776 2482/1862/1831 2483/1809/1778 +f 2483/1809/1778 2482/1862/1831 2607/1863/1832 +f 2483/1809/1778 2607/1863/1832 2606/1811/1780 +f 2606/1811/1780 2607/1863/1832 2555/1864/1833 +f 2606/1811/1780 2555/1864/1833 2556/1813/1782 +f 2556/1813/1782 2555/1864/1833 2627/1865/1834 +f 2556/1813/1782 2627/1865/1834 2628/1815/1784 +f 2628/1815/1784 2627/1865/1834 2711/1866/1835 +f 2628/1815/1784 2711/1866/1835 2710/1817/1786 +f 2710/1817/1786 2711/1866/1835 2665/1867/1836 +f 2710/1817/1786 2665/1867/1836 2666/1819/1788 +f 2666/1819/1788 2665/1867/1836 2738/1868/1837 +f 2666/1819/1788 2738/1868/1837 2739/1821/1790 +f 2739/1821/1790 2738/1868/1837 2816/1869/1838 +f 2739/1821/1790 2816/1869/1838 2815/1823/1792 +f 2815/1823/1792 2816/1869/1838 2776/1870/1839 +f 2815/1823/1792 2776/1870/1839 2777/1825/1794 +f 2777/1825/1794 2776/1870/1839 2848/1871/1840 +f 2777/1825/1794 2848/1871/1840 2849/1827/1796 +f 2849/1827/1796 2848/1871/1840 2919/1872/1841 +f 2849/1827/1796 2919/1872/1841 2918/1829/1798 +f 2918/1829/1798 2919/1872/1841 2885/1873/1842 +f 2918/1829/1798 2885/1873/1842 2886/1831/1800 +f 2886/1831/1800 2885/1873/1842 2988/1874/1843 +f 2886/1831/1800 2988/1874/1843 2987/1833/1802 +f 2987/1833/1802 2988/1874/1843 2958/1875/1844 +f 2987/1833/1802 2958/1875/1844 2959/1835/1804 +f 2959/1835/1804 2958/1875/1844 3030/1876/1845 +f 2959/1835/1804 3030/1876/1845 3031/1837/1806 +f 3031/1837/1806 3030/1876/1845 3092/1877/1846 +f 3031/1837/1806 3092/1877/1846 3091/1839/1808 +f 3091/1839/1808 3092/1877/1846 3068/1878/1847 +f 3091/1839/1808 3068/1878/1847 3069/1841/1810 +f 3069/1841/1810 3068/1878/1847 3141/1879/1848 +f 3069/1841/1810 3141/1879/1848 3142/1843/1812 +f 3142/1843/1812 3141/1879/1848 3197/1880/1849 +f 3142/1843/1812 3197/1880/1849 3196/1845/1814 +f 3196/1845/1814 3197/1880/1849 3179/1881/1850 +f 3196/1845/1814 3179/1881/1850 3180/1847/1816 +f 3180/1847/1816 3179/1881/1850 3251/1882/1851 +f 3180/1847/1816 3251/1882/1851 3252/1849/1818 +f 3252/1849/1818 3251/1882/1851 3301/1883/1852 +f 3252/1849/1818 3301/1883/1852 3300/1851/1820 +f 3300/1851/1820 3301/1883/1852 3289/480/474 +f 3300/1851/1820 3289/480/474 3290/482/476 +f 2225/1854/1823 198/1853/1822 280/1884/1853 +f 280/1884/1853 198/1853/1822 197/1885/1854 +f 280/1884/1853 197/1885/1854 2261/1886/1855 +f 2261/1886/1855 197/1885/1854 196/1887/1856 +f 2261/1886/1855 196/1887/1856 2332/1888/1857 +f 2332/1888/1857 196/1887/1856 279/1889/1858 +f 2332/1888/1857 279/1889/1858 2438/1890/1859 +f 2438/1890/1859 279/1889/1858 2369/1891/1860 +f 2438/1890/1859 2369/1891/1860 2370/1892/1861 +f 2370/1892/1861 2369/1891/1860 2441/1893/1862 +f 2370/1892/1861 2441/1893/1862 2442/1894/1863 +f 2442/1894/1863 2441/1893/1862 2542/1895/1864 +f 2442/1894/1863 2542/1895/1864 2541/1896/1865 +f 2541/1896/1865 2542/1895/1864 2478/1897/1866 +f 2541/1896/1865 2478/1897/1866 2479/1898/1867 +f 2479/1898/1867 2478/1897/1866 2611/1899/1868 +f 2479/1898/1867 2611/1899/1868 2610/1900/1869 +f 2610/1900/1869 2611/1899/1868 2551/1901/1870 +f 2610/1900/1869 2551/1901/1870 2552/1902/1871 +f 2552/1902/1871 2551/1901/1870 2623/1903/1872 +f 2552/1902/1871 2623/1903/1872 2624/1904/1873 +f 2624/1904/1873 2623/1903/1872 2715/1905/1874 +f 2624/1904/1873 2715/1905/1874 2714/1906/1875 +f 2714/1906/1875 2715/1905/1874 2661/1907/1876 +f 2714/1906/1875 2661/1907/1876 2662/1908/1877 +f 2662/1908/1877 2661/1907/1876 2734/1909/1878 +f 2662/1908/1877 2734/1909/1878 2735/1910/1879 +f 2735/1910/1879 2734/1909/1878 2820/1911/1880 +f 2735/1910/1879 2820/1911/1880 2819/1912/1881 +f 2819/1912/1881 2820/1911/1880 2772/1913/1882 +f 2819/1912/1881 2772/1913/1882 2773/1914/1883 +f 2773/1914/1883 2772/1913/1882 2844/1915/1884 +f 2773/1914/1883 2844/1915/1884 2845/1916/1885 +f 2845/1916/1885 2844/1915/1884 2923/1917/1886 +f 2845/1916/1885 2923/1917/1886 2922/1918/1887 +f 2922/1918/1887 2923/1917/1886 2881/1919/1888 +f 2922/1918/1887 2881/1919/1888 2882/1920/1889 +f 2882/1920/1889 2881/1919/1888 2992/1921/1890 +f 2882/1920/1889 2992/1921/1890 2991/1922/1891 +f 2991/1922/1891 2992/1921/1890 2954/1923/1892 +f 2991/1922/1891 2954/1923/1892 2955/1924/1893 +f 2955/1924/1893 2954/1923/1892 3026/1925/1894 +f 2955/1924/1893 3026/1925/1894 3027/1926/1895 +f 3027/1926/1895 3026/1925/1894 3096/1927/1896 +f 3027/1926/1895 3096/1927/1896 3095/1928/1897 +f 3095/1928/1897 3096/1927/1896 3064/1929/1898 +f 3095/1928/1897 3064/1929/1898 3065/1930/1899 +f 3065/1930/1899 3064/1929/1898 3137/1931/1900 +f 3065/1930/1899 3137/1931/1900 3138/1932/1901 +f 3138/1932/1901 3137/1931/1900 3201/1933/1902 +f 3138/1932/1901 3201/1933/1902 3200/1934/1903 +f 3200/1934/1903 3201/1933/1902 3175/1935/1904 +f 3200/1934/1903 3175/1935/1904 3176/1936/1905 +f 3176/1936/1905 3175/1935/1904 3247/1937/1906 +f 3176/1936/1905 3247/1937/1906 3248/1938/1907 +f 3248/1938/1907 3247/1937/1906 3305/1939/1908 +f 3248/1938/1907 3305/1939/1908 3304/1940/1909 +f 3304/1940/1909 3305/1939/1908 3285/472/466 +f 3304/1940/1909 3285/472/466 3286/474/468 +f 196/1887/1856 195/1941/1910 279/1889/1858 +f 279/1889/1858 195/1941/1910 2368/1942/1911 +f 279/1889/1858 2368/1942/1911 2369/1891/1860 +f 2369/1891/1860 2368/1942/1911 2440/1943/1912 +f 2369/1891/1860 2440/1943/1912 2441/1893/1862 +f 2441/1893/1862 2440/1943/1912 2543/1944/1913 +f 2441/1893/1862 2543/1944/1913 2542/1895/1864 +f 2542/1895/1864 2543/1944/1913 2477/1945/1914 +f 2542/1895/1864 2477/1945/1914 2478/1897/1866 +f 2478/1897/1866 2477/1945/1914 2612/1946/1915 +f 2478/1897/1866 2612/1946/1915 2611/1899/1868 +f 2611/1899/1868 2612/1946/1915 2550/1947/1916 +f 2611/1899/1868 2550/1947/1916 2551/1901/1870 +f 2551/1901/1870 2550/1947/1916 2622/1948/1917 +f 2551/1901/1870 2622/1948/1917 2623/1903/1872 +f 2623/1903/1872 2622/1948/1917 2716/1949/1918 +f 2623/1903/1872 2716/1949/1918 2715/1905/1874 +f 2715/1905/1874 2716/1949/1918 2660/1950/1919 +f 2715/1905/1874 2660/1950/1919 2661/1907/1876 +f 2661/1907/1876 2660/1950/1919 2733/1951/1920 +f 2661/1907/1876 2733/1951/1920 2734/1909/1878 +f 2734/1909/1878 2733/1951/1920 2821/1952/1921 +f 2734/1909/1878 2821/1952/1921 2820/1911/1880 +f 2820/1911/1880 2821/1952/1921 2771/1953/1922 +f 2820/1911/1880 2771/1953/1922 2772/1913/1882 +f 2772/1913/1882 2771/1953/1922 2843/1954/1923 +f 2772/1913/1882 2843/1954/1923 2844/1915/1884 +f 2844/1915/1884 2843/1954/1923 2924/1955/1924 +f 2844/1915/1884 2924/1955/1924 2923/1917/1886 +f 2923/1917/1886 2924/1955/1924 2880/1956/1925 +f 2923/1917/1886 2880/1956/1925 2881/1919/1888 +f 2881/1919/1888 2880/1956/1925 2993/1957/1926 +f 2881/1919/1888 2993/1957/1926 2992/1921/1890 +f 2992/1921/1890 2993/1957/1926 2953/1958/1927 +f 2992/1921/1890 2953/1958/1927 2954/1923/1892 +f 2954/1923/1892 2953/1958/1927 3025/1959/1928 +f 2954/1923/1892 3025/1959/1928 3026/1925/1894 +f 3026/1925/1894 3025/1959/1928 3097/1960/1929 +f 3026/1925/1894 3097/1960/1929 3096/1927/1896 +f 3096/1927/1896 3097/1960/1929 3063/1961/1930 +f 3096/1927/1896 3063/1961/1930 3064/1929/1898 +f 3064/1929/1898 3063/1961/1930 3136/1962/1931 +f 3064/1929/1898 3136/1962/1931 3137/1931/1900 +f 3137/1931/1900 3136/1962/1931 3202/1963/1932 +f 3137/1931/1900 3202/1963/1932 3201/1933/1902 +f 3201/1933/1902 3202/1963/1932 3174/1964/1933 +f 3201/1933/1902 3174/1964/1933 3175/1935/1904 +f 3175/1935/1904 3174/1964/1933 3246/1965/1934 +f 3175/1935/1904 3246/1965/1934 3247/1937/1906 +f 3247/1937/1906 3246/1965/1934 3306/1966/1935 +f 3247/1937/1906 3306/1966/1935 3305/1939/1908 +f 3305/1939/1908 3306/1966/1935 3284/470/464 +f 3305/1939/1908 3284/470/464 3285/472/466 +f 195/1941/1910 194/1967/1936 2368/1942/1911 +f 2368/1942/1911 194/1967/1936 2439/1968/1937 +f 2368/1942/1911 2439/1968/1937 2440/1943/1912 +f 2440/1943/1912 2439/1968/1937 2544/1969/1938 +f 2440/1943/1912 2544/1969/1938 2543/1944/1913 +f 2543/1944/1913 2544/1969/1938 2476/1970/1939 +f 2543/1944/1913 2476/1970/1939 2477/1945/1914 +f 2477/1945/1914 2476/1970/1939 2613/1971/1940 +f 2477/1945/1914 2613/1971/1940 2612/1946/1915 +f 2612/1946/1915 2613/1971/1940 2549/1972/1941 +f 2612/1946/1915 2549/1972/1941 2550/1947/1916 +f 2550/1947/1916 2549/1972/1941 2621/1973/1942 +f 2550/1947/1916 2621/1973/1942 2622/1948/1917 +f 2622/1948/1917 2621/1973/1942 2717/1974/1943 +f 2622/1948/1917 2717/1974/1943 2716/1949/1918 +f 2716/1949/1918 2717/1974/1943 2659/1975/1944 +f 2716/1949/1918 2659/1975/1944 2660/1950/1919 +f 2660/1950/1919 2659/1975/1944 2732/1976/1945 +f 2660/1950/1919 2732/1976/1945 2733/1951/1920 +f 2733/1951/1920 2732/1976/1945 2822/1977/1946 +f 2733/1951/1920 2822/1977/1946 2821/1952/1921 +f 2821/1952/1921 2822/1977/1946 2770/1978/1947 +f 2821/1952/1921 2770/1978/1947 2771/1953/1922 +f 2771/1953/1922 2770/1978/1947 2842/1979/1948 +f 2771/1953/1922 2842/1979/1948 2843/1954/1923 +f 2843/1954/1923 2842/1979/1948 2925/1980/1949 +f 2843/1954/1923 2925/1980/1949 2924/1955/1924 +f 2924/1955/1924 2925/1980/1949 2879/1981/1950 +f 2924/1955/1924 2879/1981/1950 2880/1956/1925 +f 2880/1956/1925 2879/1981/1950 2994/1982/1951 +f 2880/1956/1925 2994/1982/1951 2993/1957/1926 +f 2993/1957/1926 2994/1982/1951 2952/1983/1952 +f 2993/1957/1926 2952/1983/1952 2953/1958/1927 +f 2953/1958/1927 2952/1983/1952 3024/1984/1953 +f 2953/1958/1927 3024/1984/1953 3025/1959/1928 +f 3025/1959/1928 3024/1984/1953 3098/1985/1954 +f 3025/1959/1928 3098/1985/1954 3097/1960/1929 +f 3097/1960/1929 3098/1985/1954 3062/1986/1955 +f 3097/1960/1929 3062/1986/1955 3063/1961/1930 +f 3063/1961/1930 3062/1986/1955 3135/1987/1956 +f 3063/1961/1930 3135/1987/1956 3136/1962/1931 +f 3136/1962/1931 3135/1987/1956 3203/1988/1957 +f 3136/1962/1931 3203/1988/1957 3202/1963/1932 +f 3202/1963/1932 3203/1988/1957 3173/1989/1958 +f 3202/1963/1932 3173/1989/1958 3174/1964/1933 +f 3174/1964/1933 3173/1989/1958 3245/1990/1959 +f 3174/1964/1933 3245/1990/1959 3246/1965/1934 +f 3246/1965/1934 3245/1990/1959 3307/1991/1960 +f 3246/1965/1934 3307/1991/1960 3306/1966/1935 +f 3306/1966/1935 3307/1991/1960 3283/468/462 +f 3306/1966/1935 3283/468/462 3284/470/464 +f 2439/1968/1937 194/1967/1936 278/1992/1961 +f 278/1992/1961 194/1967/1936 193/1993/1962 +f 278/1992/1961 193/1993/1962 277/1994/1963 +f 277/1994/1963 193/1993/1962 192/1995/1964 +f 277/1994/1963 192/1995/1964 2616/1996/1965 +f 2616/1996/1965 192/1995/1964 2545/1997/1966 +f 2616/1996/1965 2545/1997/1966 2546/1998/1967 +f 2546/1998/1967 2545/1997/1966 2617/1999/1968 +f 2546/1998/1967 2617/1999/1968 2618/2000/1969 +f 2618/2000/1969 2617/1999/1968 2721/2001/1970 +f 2618/2000/1969 2721/2001/1970 2720/2002/1971 +f 2720/2002/1971 2721/2001/1970 2655/2003/1972 +f 2720/2002/1971 2655/2003/1972 2656/2004/1973 +f 2656/2004/1973 2655/2003/1972 2728/2005/1974 +f 2656/2004/1973 2728/2005/1974 2729/2006/1975 +f 2729/2006/1975 2728/2005/1974 2826/2007/1976 +f 2729/2006/1975 2826/2007/1976 2825/2008/1977 +f 2825/2008/1977 2826/2007/1976 2766/2009/1978 +f 2825/2008/1977 2766/2009/1978 2767/2010/1979 +f 2767/2010/1979 2766/2009/1978 2838/2011/1980 +f 2767/2010/1979 2838/2011/1980 2839/2012/1981 +f 2839/2012/1981 2838/2011/1980 2929/2013/1982 +f 2839/2012/1981 2929/2013/1982 2928/2014/1983 +f 2928/2014/1983 2929/2013/1982 2875/2015/1984 +f 2928/2014/1983 2875/2015/1984 2876/2016/1985 +f 2876/2016/1985 2875/2015/1984 2998/2017/1986 +f 2876/2016/1985 2998/2017/1986 2997/2018/1987 +f 2997/2018/1987 2998/2017/1986 2948/2019/1988 +f 2997/2018/1987 2948/2019/1988 2949/2020/1989 +f 2949/2020/1989 2948/2019/1988 3020/2021/1990 +f 2949/2020/1989 3020/2021/1990 3021/2022/1991 +f 3021/2022/1991 3020/2021/1990 3102/2023/1992 +f 3021/2022/1991 3102/2023/1992 3101/2024/1993 +f 3101/2024/1993 3102/2023/1992 3058/2025/1994 +f 3101/2024/1993 3058/2025/1994 3059/2026/1995 +f 3059/2026/1995 3058/2025/1994 3131/2027/1996 +f 3059/2026/1995 3131/2027/1996 3132/2028/1997 +f 3132/2028/1997 3131/2027/1996 3207/2029/1998 +f 3132/2028/1997 3207/2029/1998 3206/2030/1999 +f 3206/2030/1999 3207/2029/1998 3169/2031/2000 +f 3206/2030/1999 3169/2031/2000 3170/2032/2001 +f 3170/2032/2001 3169/2031/2000 3241/2033/2002 +f 3170/2032/2001 3241/2033/2002 3242/2034/2003 +f 3242/2034/2003 3241/2033/2002 3311/2035/2004 +f 3242/2034/2003 3311/2035/2004 3310/2036/2005 +f 3310/2036/2005 3311/2035/2004 3279/460/454 +f 3310/2036/2005 3279/460/454 3280/462/456 +f 192/1995/1964 191/2037/2006 2545/1997/1966 +f 2545/1997/1966 191/2037/2006 276/2038/2007 +f 2545/1997/1966 276/2038/2007 2617/1999/1968 +f 2617/1999/1968 276/2038/2007 2722/2039/2008 +f 2617/1999/1968 2722/2039/2008 2721/2001/1970 +f 2721/2001/1970 2722/2039/2008 2654/2040/2009 +f 2721/2001/1970 2654/2040/2009 2655/2003/1972 +f 2655/2003/1972 2654/2040/2009 2727/2041/2010 +f 2655/2003/1972 2727/2041/2010 2728/2005/1974 +f 2728/2005/1974 2727/2041/2010 2827/2042/2011 +f 2728/2005/1974 2827/2042/2011 2826/2007/1976 +f 2826/2007/1976 2827/2042/2011 2765/2043/2012 +f 2826/2007/1976 2765/2043/2012 2766/2009/1978 +f 2766/2009/1978 2765/2043/2012 2837/2044/2013 +f 2766/2009/1978 2837/2044/2013 2838/2011/1980 +f 2838/2011/1980 2837/2044/2013 2930/2045/2014 +f 2838/2011/1980 2930/2045/2014 2929/2013/1982 +f 2929/2013/1982 2930/2045/2014 2874/2046/2015 +f 2929/2013/1982 2874/2046/2015 2875/2015/1984 +f 2875/2015/1984 2874/2046/2015 2999/2047/2016 +f 2875/2015/1984 2999/2047/2016 2998/2017/1986 +f 2998/2017/1986 2999/2047/2016 2947/2048/2017 +f 2998/2017/1986 2947/2048/2017 2948/2019/1988 +f 2948/2019/1988 2947/2048/2017 3019/2049/2018 +f 2948/2019/1988 3019/2049/2018 3020/2021/1990 +f 3020/2021/1990 3019/2049/2018 3103/2050/2019 +f 3020/2021/1990 3103/2050/2019 3102/2023/1992 +f 3102/2023/1992 3103/2050/2019 3057/2051/2020 +f 3102/2023/1992 3057/2051/2020 3058/2025/1994 +f 3058/2025/1994 3057/2051/2020 3130/2052/2021 +f 3058/2025/1994 3130/2052/2021 3131/2027/1996 +f 3131/2027/1996 3130/2052/2021 3208/2053/2022 +f 3131/2027/1996 3208/2053/2022 3207/2029/1998 +f 3207/2029/1998 3208/2053/2022 3168/2054/2023 +f 3207/2029/1998 3168/2054/2023 3169/2031/2000 +f 3169/2031/2000 3168/2054/2023 3240/2055/2024 +f 3169/2031/2000 3240/2055/2024 3241/2033/2002 +f 3241/2033/2002 3240/2055/2024 3312/2056/2025 +f 3241/2033/2002 3312/2056/2025 3311/2035/2004 +f 3311/2035/2004 3312/2056/2025 3278/458/452 +f 3311/2035/2004 3278/458/452 3279/460/454 +f 191/2037/2006 190/2057/2026 276/2038/2007 +f 276/2038/2007 190/2057/2026 2723/2058/2027 +f 276/2038/2007 2723/2058/2027 2722/2039/2008 +f 2722/2039/2008 2723/2058/2027 2653/2059/2028 +f 2722/2039/2008 2653/2059/2028 2654/2040/2009 +f 2654/2040/2009 2653/2059/2028 2726/2060/2029 +f 2654/2040/2009 2726/2060/2029 2727/2041/2010 +f 2727/2041/2010 2726/2060/2029 2828/2061/2030 +f 2727/2041/2010 2828/2061/2030 2827/2042/2011 +f 2827/2042/2011 2828/2061/2030 2764/2062/2031 +f 2827/2042/2011 2764/2062/2031 2765/2043/2012 +f 2765/2043/2012 2764/2062/2031 2836/2063/2032 +f 2765/2043/2012 2836/2063/2032 2837/2044/2013 +f 2837/2044/2013 2836/2063/2032 2931/2064/2033 +f 2837/2044/2013 2931/2064/2033 2930/2045/2014 +f 2930/2045/2014 2931/2064/2033 2873/2065/2034 +f 2930/2045/2014 2873/2065/2034 2874/2046/2015 +f 2874/2046/2015 2873/2065/2034 3000/2066/2035 +f 2874/2046/2015 3000/2066/2035 2999/2047/2016 +f 2999/2047/2016 3000/2066/2035 2946/2067/2036 +f 2999/2047/2016 2946/2067/2036 2947/2048/2017 +f 2947/2048/2017 2946/2067/2036 3018/2068/2037 +f 2947/2048/2017 3018/2068/2037 3019/2049/2018 +f 3019/2049/2018 3018/2068/2037 3104/2069/2038 +f 3019/2049/2018 3104/2069/2038 3103/2050/2019 +f 3103/2050/2019 3104/2069/2038 3056/2070/2039 +f 3103/2050/2019 3056/2070/2039 3057/2051/2020 +f 3057/2051/2020 3056/2070/2039 3129/2071/2040 +f 3057/2051/2020 3129/2071/2040 3130/2052/2021 +f 3130/2052/2021 3129/2071/2040 3209/2072/2041 +f 3130/2052/2021 3209/2072/2041 3208/2053/2022 +f 3208/2053/2022 3209/2072/2041 3167/2073/2042 +f 3208/2053/2022 3167/2073/2042 3168/2054/2023 +f 3168/2054/2023 3167/2073/2042 3239/2074/2043 +f 3168/2054/2023 3239/2074/2043 3240/2055/2024 +f 3240/2055/2024 3239/2074/2043 3313/2075/2044 +f 3240/2055/2024 3313/2075/2044 3312/2056/2025 +f 3312/2056/2025 3313/2075/2044 3277/456/450 +f 3312/2056/2025 3277/456/450 3278/458/452 +f 2723/2058/2027 190/2057/2026 2652/2076/2045 +f 2652/2076/2045 190/2057/2026 189/2077/2046 +f 2652/2076/2045 189/2077/2046 2724/2078/2047 +f 2724/2078/2047 189/2077/2046 275/2079/2048 +f 2724/2078/2047 275/2079/2048 2830/2080/2049 +f 2830/2080/2049 275/2079/2048 2761/2081/2050 +f 2830/2080/2049 2761/2081/2050 2762/2082/2051 +f 2762/2082/2051 2761/2081/2050 2833/2083/2052 +f 2762/2082/2051 2833/2083/2052 2834/2084/2053 +f 2834/2084/2053 2833/2083/2052 2934/2085/2054 +f 2834/2084/2053 2934/2085/2054 2933/2086/2055 +f 2933/2086/2055 2934/2085/2054 2870/2087/2056 +f 2933/2086/2055 2870/2087/2056 2871/2088/2057 +f 2871/2088/2057 2870/2087/2056 3003/2089/2058 +f 2871/2088/2057 3003/2089/2058 3002/2090/2059 +f 3002/2090/2059 3003/2089/2058 2943/2091/2060 +f 3002/2090/2059 2943/2091/2060 2944/2092/2061 +f 2944/2092/2061 2943/2091/2060 3015/2093/2062 +f 2944/2092/2061 3015/2093/2062 3016/2094/2063 +f 3016/2094/2063 3015/2093/2062 3107/2095/2064 +f 3016/2094/2063 3107/2095/2064 3106/2096/2065 +f 3106/2096/2065 3107/2095/2064 3053/2097/2066 +f 3106/2096/2065 3053/2097/2066 3054/2098/2067 +f 3054/2098/2067 3053/2097/2066 3126/2099/2068 +f 3054/2098/2067 3126/2099/2068 3127/2100/2069 +f 3127/2100/2069 3126/2099/2068 3212/2101/2070 +f 3127/2100/2069 3212/2101/2070 3211/2102/2071 +f 3211/2102/2071 3212/2101/2070 3164/2103/2072 +f 3211/2102/2071 3164/2103/2072 3165/2104/2073 +f 3165/2104/2073 3164/2103/2072 3236/2105/2074 +f 3165/2104/2073 3236/2105/2074 3237/2106/2075 +f 3237/2106/2075 3236/2105/2074 3316/2107/2076 +f 3237/2106/2075 3316/2107/2076 3315/2108/2077 +f 3315/2108/2077 3316/2107/2076 3274/450/444 +f 3315/2108/2077 3274/450/444 3275/452/446 +f 189/2077/2046 188/2109/2078 275/2079/2048 +f 275/2079/2048 188/2109/2078 2760/2110/2079 +f 275/2079/2048 2760/2110/2079 2761/2081/2050 +f 2761/2081/2050 2760/2110/2079 2832/2111/2080 +f 2761/2081/2050 2832/2111/2080 2833/2083/2052 +f 2833/2083/2052 2832/2111/2080 2935/2112/2081 +f 2833/2083/2052 2935/2112/2081 2934/2085/2054 +f 2934/2085/2054 2935/2112/2081 2869/2113/2082 +f 2934/2085/2054 2869/2113/2082 2870/2087/2056 +f 2870/2087/2056 2869/2113/2082 3004/2114/2083 +f 2870/2087/2056 3004/2114/2083 3003/2089/2058 +f 3003/2089/2058 3004/2114/2083 2942/2115/2084 +f 3003/2089/2058 2942/2115/2084 2943/2091/2060 +f 2943/2091/2060 2942/2115/2084 3014/2116/2085 +f 2943/2091/2060 3014/2116/2085 3015/2093/2062 +f 3015/2093/2062 3014/2116/2085 3108/2117/2086 +f 3015/2093/2062 3108/2117/2086 3107/2095/2064 +f 3107/2095/2064 3108/2117/2086 3052/2118/2087 +f 3107/2095/2064 3052/2118/2087 3053/2097/2066 +f 3053/2097/2066 3052/2118/2087 3125/2119/2088 +f 3053/2097/2066 3125/2119/2088 3126/2099/2068 +f 3126/2099/2068 3125/2119/2088 3213/2120/2089 +f 3126/2099/2068 3213/2120/2089 3212/2101/2070 +f 3212/2101/2070 3213/2120/2089 3163/2121/2090 +f 3212/2101/2070 3163/2121/2090 3164/2103/2072 +f 3164/2103/2072 3163/2121/2090 3235/2122/2091 +f 3164/2103/2072 3235/2122/2091 3236/2105/2074 +f 3236/2105/2074 3235/2122/2091 3317/2123/2092 +f 3236/2105/2074 3317/2123/2092 3316/2107/2076 +f 3316/2107/2076 3317/2123/2092 3273/448/442 +f 3316/2107/2076 3273/448/442 3274/450/444 +f 188/2109/2078 187/2124/2093 2760/2110/2079 +f 2760/2110/2079 187/2124/2093 2831/2125/2094 +f 2760/2110/2079 2831/2125/2094 2832/2111/2080 +f 2832/2111/2080 2831/2125/2094 2936/2126/2095 +f 2832/2111/2080 2936/2126/2095 2935/2112/2081 +f 2935/2112/2081 2936/2126/2095 2868/2127/2096 +f 2935/2112/2081 2868/2127/2096 2869/2113/2082 +f 2869/2113/2082 2868/2127/2096 3005/2128/2097 +f 2869/2113/2082 3005/2128/2097 3004/2114/2083 +f 3004/2114/2083 3005/2128/2097 2941/2129/2098 +f 3004/2114/2083 2941/2129/2098 2942/2115/2084 +f 2942/2115/2084 2941/2129/2098 3013/2130/2099 +f 2942/2115/2084 3013/2130/2099 3014/2116/2085 +f 3014/2116/2085 3013/2130/2099 3109/2131/2100 +f 3014/2116/2085 3109/2131/2100 3108/2117/2086 +f 3108/2117/2086 3109/2131/2100 3051/2132/2101 +f 3108/2117/2086 3051/2132/2101 3052/2118/2087 +f 3052/2118/2087 3051/2132/2101 3124/2133/2102 +f 3052/2118/2087 3124/2133/2102 3125/2119/2088 +f 3125/2119/2088 3124/2133/2102 3214/2134/2103 +f 3125/2119/2088 3214/2134/2103 3213/2120/2089 +f 3213/2120/2089 3214/2134/2103 3162/2135/2104 +f 3213/2120/2089 3162/2135/2104 3163/2121/2090 +f 3163/2121/2090 3162/2135/2104 3234/2136/2105 +f 3163/2121/2090 3234/2136/2105 3235/2122/2091 +f 3235/2122/2091 3234/2136/2105 3318/2137/2106 +f 3235/2122/2091 3318/2137/2106 3317/2123/2092 +f 3317/2123/2092 3318/2137/2106 3272/446/440 +f 3317/2123/2092 3272/446/440 3273/448/442 +f 2831/2125/2094 187/2124/2093 274/2138/2107 +f 274/2138/2107 187/2124/2093 186/2139/2108 +f 274/2138/2107 186/2139/2108 273/2140/2109 +f 273/2140/2109 186/2139/2108 185/2141/2110 +f 273/2140/2109 185/2141/2110 3008/2142/2111 +f 3008/2142/2111 185/2141/2110 2937/2143/2112 +f 3008/2142/2111 2937/2143/2112 2938/2144/2113 +f 2938/2144/2113 2937/2143/2112 3009/2145/2114 +f 2938/2144/2113 3009/2145/2114 3010/2146/2115 +f 3010/2146/2115 3009/2145/2114 3113/2147/2116 +f 3010/2146/2115 3113/2147/2116 3112/2148/2117 +f 3112/2148/2117 3113/2147/2116 3047/2149/2118 +f 3112/2148/2117 3047/2149/2118 3048/2150/2119 +f 3048/2150/2119 3047/2149/2118 3120/2151/2120 +f 3048/2150/2119 3120/2151/2120 3121/2152/2121 +f 3121/2152/2121 3120/2151/2120 3218/2153/2122 +f 3121/2152/2121 3218/2153/2122 3217/2154/2123 +f 3217/2154/2123 3218/2153/2122 3158/2155/2124 +f 3217/2154/2123 3158/2155/2124 3159/2156/2125 +f 3159/2156/2125 3158/2155/2124 3230/2157/2126 +f 3159/2156/2125 3230/2157/2126 3231/2158/2127 +f 3231/2158/2127 3230/2157/2126 3322/2159/2128 +f 3231/2158/2127 3322/2159/2128 3321/2160/2129 +f 3321/2160/2129 3322/2159/2128 3268/438/432 +f 3321/2160/2129 3268/438/432 3269/440/434 +f 185/2141/2110 184/2161/2130 2937/2143/2112 +f 2937/2143/2112 184/2161/2130 272/2162/2131 +f 2937/2143/2112 272/2162/2131 3009/2145/2114 +f 3009/2145/2114 272/2162/2131 3114/2163/2132 +f 3009/2145/2114 3114/2163/2132 3113/2147/2116 +f 3113/2147/2116 3114/2163/2132 3046/2164/2133 +f 3113/2147/2116 3046/2164/2133 3047/2149/2118 +f 3047/2149/2118 3046/2164/2133 3119/2165/2134 +f 3047/2149/2118 3119/2165/2134 3120/2151/2120 +f 3120/2151/2120 3119/2165/2134 3219/2166/2135 +f 3120/2151/2120 3219/2166/2135 3218/2153/2122 +f 3218/2153/2122 3219/2166/2135 3157/2167/2136 +f 3218/2153/2122 3157/2167/2136 3158/2155/2124 +f 3158/2155/2124 3157/2167/2136 3229/2168/2137 +f 3158/2155/2124 3229/2168/2137 3230/2157/2126 +f 3230/2157/2126 3229/2168/2137 3323/2169/2138 +f 3230/2157/2126 3323/2169/2138 3322/2159/2128 +f 3322/2159/2128 3323/2169/2138 3267/436/430 +f 3322/2159/2128 3267/436/430 3268/438/432 +f 184/2161/2130 183/2170/2139 272/2162/2131 +f 272/2162/2131 183/2170/2139 3115/2171/2140 +f 272/2162/2131 3115/2171/2140 3114/2163/2132 +f 3114/2163/2132 3115/2171/2140 3045/2172/2141 +f 3114/2163/2132 3045/2172/2141 3046/2164/2133 +f 3046/2164/2133 3045/2172/2141 3118/2173/2142 +f 3046/2164/2133 3118/2173/2142 3119/2165/2134 +f 3119/2165/2134 3118/2173/2142 3220/2174/2143 +f 3119/2165/2134 3220/2174/2143 3219/2166/2135 +f 3219/2166/2135 3220/2174/2143 3156/2175/2144 +f 3219/2166/2135 3156/2175/2144 3157/2167/2136 +f 3157/2167/2136 3156/2175/2144 3228/2176/2145 +f 3157/2167/2136 3228/2176/2145 3229/2168/2137 +f 3229/2168/2137 3228/2176/2145 3324/2177/2146 +f 3229/2168/2137 3324/2177/2146 3323/2169/2138 +f 3323/2169/2138 3324/2177/2146 3266/434/428 +f 3323/2169/2138 3266/434/428 3267/436/430 +f 3115/2171/2140 183/2170/2139 3044/2178/2147 +f 3044/2178/2147 183/2170/2139 182/2179/2148 +f 3044/2178/2147 182/2179/2148 3116/2180/2149 +f 3116/2180/2149 182/2179/2148 271/2181/2150 +f 3116/2180/2149 271/2181/2150 3222/2182/2151 +f 3222/2182/2151 271/2181/2150 3153/2183/2152 +f 3222/2182/2151 3153/2183/2152 3154/2184/2153 +f 3154/2184/2153 3153/2183/2152 3225/2185/2154 +f 3154/2184/2153 3225/2185/2154 3226/2186/2155 +f 3226/2186/2155 3225/2185/2154 3327/2187/2156 +f 3226/2186/2155 3327/2187/2156 3326/2188/2157 +f 3326/2188/2157 3327/2187/2156 3263/428/422 +f 3326/2188/2157 3263/428/422 3264/430/424 +f 182/2179/2148 181/2189/2158 271/2181/2150 +f 271/2181/2150 181/2189/2158 3152/2190/2159 +f 271/2181/2150 3152/2190/2159 3153/2183/2152 +f 3153/2183/2152 3152/2190/2159 3224/2191/2160 +f 3153/2183/2152 3224/2191/2160 3225/2185/2154 +f 3225/2185/2154 3224/2191/2160 3328/2192/2161 +f 3225/2185/2154 3328/2192/2161 3327/2187/2156 +f 3327/2187/2156 3328/2192/2161 3262/426/420 +f 3327/2187/2156 3262/426/420 3263/428/422 +f 181/2189/2158 180/2193/2162 3152/2190/2159 +f 3152/2190/2159 180/2193/2162 3223/2194/2163 +f 3152/2190/2159 3223/2194/2163 3224/2191/2160 +f 3224/2191/2160 3223/2194/2163 3329/2195/2164 +f 3224/2191/2160 3329/2195/2164 3328/2192/2161 +f 3328/2192/2161 3329/2195/2164 3261/424/418 +f 3328/2192/2161 3261/424/418 3262/426/420 +f 3223/2194/2163 180/2193/2162 270/2196/2165 +f 270/2196/2165 180/2193/2162 179/2197/2166 +f 270/2196/2165 179/2197/2166 3259/420/414 +f 3259/420/414 179/2197/2166 178/418/412 +f 3187/1708/1680 233/2198/485 3188/2199/2167 +f 3188/2199/2167 233/2200/485 3151/2201/2168 +f 3151/2201/2168 233/2202/485 3079/1632/1605 +f 3043/1593/1567 233/2203/485 2972/2204/2169 +f 2972/2204/2169 233/2205/485 2973/2206/2170 +f 2973/2206/2170 233/2207/485 2901/1517/1492 +f 2795/1440/1417 233/2208/485 2796/2209/2171 +f 2796/2209/2171 233/2210/485 2759/2211/2172 +f 2759/2211/2172 233/2212/485 2687/1364/1342 +f 2651/1325/1304 233/2213/485 2580/2214/2173 +f 2580/2214/2173 233/2215/485 2581/2216/2174 +f 2581/2216/2174 233/2217/485 2509/1249/1229 +f 2403/1172/1154 233/2218/485 2404/2219/2175 +f 2404/2219/2175 233/2220/485 2367/2221/2176 +f 2188/1019/1004 233/2222/485 2189/2223/2177 +f 2189/2223/2177 233/2224/485 2152/945/931 +f 2010/868/856 233/2225/485 2011/2226/2178 +f 2011/2226/2178 233/2227/485 1975/2228/2179 +f 1975/2228/2179 233/2229/485 1904/792/781 +f 1796/715/706 233/2230/485 1797/2231/2180 +f 1797/2231/2180 233/2232/485 1760/641/633 +f 1618/564/558 233/2233/485 1619/2234/2181 +f 1619/2234/2181 233/2235/485 1583/2236/2182 +f 1583/2236/2182 233/2237/485 1512/2238/2183 +f 1512/2238/2183 233/2239/485 1513/2240/2184 +f 1513/2240/2184 233/2241/485 1476/2242/2185 +f 1476/2242/2185 233/2243/485 1404/2244/2186 +f 1404/2244/2186 233/2245/485 1405/2246/2187 +f 1405/2246/2187 233/2247/485 1368/2248/2188 +f 1368/2248/2188 233/2249/485 1297/2250/2189 +f 1298/2251/2190 233/2252/485 1261/2253/2191 +f 1261/2253/2191 233/2254/485 1190/2255/2192 +f 1190/2255/2192 233/2256/485 1191/2257/2193 +f 1191/2257/2193 233/2258/485 1119/2259/2194 +f 1119/2259/2194 233/2260/485 1120/2261/2195 +f 1120/2261/2195 233/2262/485 1084/2263/2196 +f 1084/2263/2196 233/2264/485 1013/2265/2197 +f 1013/2265/2197 233/2266/485 1014/2267/2198 +f 1014/2267/2198 233/2268/485 977/2269/2199 +f 977/2269/2199 233/2270/485 905/2271/2200 +f 905/2271/2200 233/2272/485 906/2273/2201 +f 906/2273/2201 233/2274/485 869/2275/2202 +f 869/2275/2202 233/2276/485 798/2277/2203 +f 798/2277/2203 233/2278/485 799/2279/2204 +f 799/2279/2204 233/2280/485 727/2281/2205 +f 727/2281/2205 233/2282/485 728/2283/2206 +f 728/2283/2206 233/2284/485 692/2285/2207 +f 692/2285/2207 233/2286/485 621/2287/2208 +f 621/2287/2208 233/2288/485 622/2289/2209 +f 622/2289/2209 233/2290/485 585/2291/2210 +f 585/2291/2210 233/2292/485 513/2293/2211 +f 513/2293/2211 233/2294/485 514/2295/2212 +f 514/2295/2212 233/2296/485 477/2297/2213 +f 477/2297/2213 233/2298/485 406/2299/2214 +f 406/2299/2214 233/2300/485 407/2301/2215 +f 407/2301/2215 233/2302/485 370/2303/2216 +f 370/2303/2216 233/2304/485 335/2305/2217 +f 335/2305/2217 233/2306/485 269/2307/483 +f 235/2308/415 234/417/413 301/2309/2218 +f 301/2309/2218 234/417/413 300/415/411 +f 301/2309/2218 300/415/411 336/2310/2219 +f 336/2310/2219 300/415/411 299/492/486 +f 336/2310/2219 299/492/486 441/2311/2220 +f 441/2311/2220 299/492/486 442/494/488 +f 441/2311/2220 442/494/488 372/496/490 +f 236/2312/417 235/2308/415 302/2313/2221 +f 302/2313/2221 235/2308/415 301/2309/2218 +f 302/2313/2221 301/2309/2218 337/2314/2222 +f 337/2314/2222 301/2309/2218 336/2310/2219 +f 337/2314/2222 336/2310/2219 440/2315/2223 +f 440/2315/2223 336/2310/2219 441/2311/2220 +f 440/2315/2223 441/2311/2220 373/2316/2224 +f 373/2316/2224 441/2311/2220 372/496/490 +f 373/2316/2224 372/496/490 444/498/492 +f 237/2317/419 236/2312/417 303/2318/2225 +f 303/2318/2225 236/2312/417 302/2313/2221 +f 303/2318/2225 302/2313/2221 338/2319/2226 +f 338/2319/2226 302/2313/2221 337/2314/2222 +f 338/2319/2226 337/2314/2222 439/2320/2227 +f 439/2320/2227 337/2314/2222 440/2315/2223 +f 439/2320/2227 440/2315/2223 374/2321/2228 +f 374/2321/2228 440/2315/2223 373/2316/2224 +f 374/2321/2228 373/2316/2224 445/2322/2229 +f 445/2322/2229 373/2316/2224 444/498/492 +f 445/2322/2229 444/498/492 546/500/494 +f 238/2323/421 237/2317/419 304/2324/2230 +f 304/2324/2230 237/2317/419 303/2318/2225 +f 304/2324/2230 303/2318/2225 339/2325/2231 +f 339/2325/2231 303/2318/2225 338/2319/2226 +f 339/2325/2231 338/2319/2226 438/2326/2232 +f 438/2326/2232 338/2319/2226 439/2320/2227 +f 438/2326/2232 439/2320/2227 375/2327/2233 +f 375/2327/2233 439/2320/2227 374/2321/2228 +f 375/2327/2233 374/2321/2228 446/2328/2234 +f 446/2328/2234 374/2321/2228 445/2322/2229 +f 446/2328/2234 445/2322/2229 545/2329/2235 +f 545/2329/2235 445/2322/2229 546/500/494 +f 545/2329/2235 546/500/494 482/502/496 +f 239/2330/423 238/2323/421 305/2331/2236 +f 305/2331/2236 238/2323/421 304/2324/2230 +f 305/2331/2236 304/2324/2230 340/2332/2237 +f 340/2332/2237 304/2324/2230 339/2325/2231 +f 340/2332/2237 339/2325/2231 437/2333/2238 +f 437/2333/2238 339/2325/2231 438/2326/2232 +f 437/2333/2238 438/2326/2232 376/2334/2239 +f 376/2334/2239 438/2326/2232 375/2327/2233 +f 376/2334/2239 375/2327/2233 447/2335/2240 +f 447/2335/2240 375/2327/2233 446/2328/2234 +f 447/2335/2240 446/2328/2234 544/2336/2241 +f 544/2336/2241 446/2328/2234 545/2329/2235 +f 544/2336/2241 545/2329/2235 483/2337/2242 +f 483/2337/2242 545/2329/2235 482/502/496 +f 483/2337/2242 482/502/496 555/504/498 +f 240/2338/425 239/2330/423 306/2339/2243 +f 306/2339/2243 239/2330/423 305/2331/2236 +f 306/2339/2243 305/2331/2236 341/2340/2244 +f 341/2340/2244 305/2331/2236 340/2332/2237 +f 341/2340/2244 340/2332/2237 436/2341/2245 +f 436/2341/2245 340/2332/2237 437/2333/2238 +f 436/2341/2245 437/2333/2238 377/2342/2246 +f 377/2342/2246 437/2333/2238 376/2334/2239 +f 377/2342/2246 376/2334/2239 448/2343/2247 +f 448/2343/2247 376/2334/2239 447/2335/2240 +f 448/2343/2247 447/2335/2240 543/2344/2248 +f 543/2344/2248 447/2335/2240 544/2336/2241 +f 543/2344/2248 544/2336/2241 484/2345/2249 +f 484/2345/2249 544/2336/2241 483/2337/2242 +f 484/2345/2249 483/2337/2242 556/2346/2250 +f 556/2346/2250 483/2337/2242 555/504/498 +f 556/2346/2250 555/504/498 651/506/500 +f 241/2347/427 240/2338/425 307/2348/2251 +f 307/2348/2251 240/2338/425 306/2339/2243 +f 307/2348/2251 306/2339/2243 342/2349/2252 +f 342/2349/2252 306/2339/2243 341/2340/2244 +f 342/2349/2252 341/2340/2244 435/2350/2253 +f 435/2350/2253 341/2340/2244 436/2341/2245 +f 435/2350/2253 436/2341/2245 378/2351/2254 +f 378/2351/2254 436/2341/2245 377/2342/2246 +f 378/2351/2254 377/2342/2246 449/2352/2255 +f 449/2352/2255 377/2342/2246 448/2343/2247 +f 449/2352/2255 448/2343/2247 542/2353/2256 +f 542/2353/2256 448/2343/2247 543/2344/2248 +f 542/2353/2256 543/2344/2248 485/2354/2257 +f 485/2354/2257 543/2344/2248 484/2345/2249 +f 485/2354/2257 484/2345/2249 557/2355/2258 +f 557/2355/2258 484/2345/2249 556/2346/2250 +f 557/2355/2258 556/2346/2250 650/2356/2259 +f 650/2356/2259 556/2346/2250 651/506/500 +f 650/2356/2259 651/506/500 593/508/502 +f 242/2357/429 241/2347/427 308/2358/2260 +f 308/2358/2260 241/2347/427 307/2348/2251 +f 308/2358/2260 307/2348/2251 343/2359/2261 +f 343/2359/2261 307/2348/2251 342/2349/2252 +f 343/2359/2261 342/2349/2252 434/2360/2262 +f 434/2360/2262 342/2349/2252 435/2350/2253 +f 434/2360/2262 435/2350/2253 379/2361/2263 +f 379/2361/2263 435/2350/2253 378/2351/2254 +f 379/2361/2263 378/2351/2254 450/2362/2264 +f 450/2362/2264 378/2351/2254 449/2352/2255 +f 450/2362/2264 449/2352/2255 541/2363/2265 +f 541/2363/2265 449/2352/2255 542/2353/2256 +f 541/2363/2265 542/2353/2256 486/2364/2266 +f 486/2364/2266 542/2353/2256 485/2354/2257 +f 486/2364/2266 485/2354/2257 558/2365/2267 +f 558/2365/2267 485/2354/2257 557/2355/2258 +f 558/2365/2267 557/2355/2258 649/2366/2268 +f 649/2366/2268 557/2355/2258 650/2356/2259 +f 649/2366/2268 650/2356/2259 594/2367/2269 +f 594/2367/2269 650/2356/2259 593/508/502 +f 594/2367/2269 593/508/502 665/510/504 +f 243/2368/431 242/2357/429 309/2369/2270 +f 309/2369/2270 242/2357/429 308/2358/2260 +f 309/2369/2270 308/2358/2260 344/2370/2271 +f 344/2370/2271 308/2358/2260 343/2359/2261 +f 344/2370/2271 343/2359/2261 433/2371/2272 +f 433/2371/2272 343/2359/2261 434/2360/2262 +f 433/2371/2272 434/2360/2262 380/2372/2273 +f 380/2372/2273 434/2360/2262 379/2361/2263 +f 380/2372/2273 379/2361/2263 451/2373/2274 +f 451/2373/2274 379/2361/2263 450/2362/2264 +f 451/2373/2274 450/2362/2264 540/2374/2275 +f 540/2374/2275 450/2362/2264 541/2363/2265 +f 540/2374/2275 541/2363/2265 487/2375/2276 +f 487/2375/2276 541/2363/2265 486/2364/2266 +f 487/2375/2276 486/2364/2266 559/2376/2277 +f 559/2376/2277 486/2364/2266 558/2365/2267 +f 559/2376/2277 558/2365/2267 648/2377/2278 +f 648/2377/2278 558/2365/2267 649/2366/2268 +f 648/2377/2278 649/2366/2268 595/2378/2279 +f 595/2378/2279 649/2366/2268 594/2367/2269 +f 595/2378/2279 594/2367/2269 666/2379/2280 +f 666/2379/2280 594/2367/2269 665/510/504 +f 666/2379/2280 665/510/504 754/512/506 +f 244/2380/433 243/2368/431 310/2381/2281 +f 310/2381/2281 243/2368/431 309/2369/2270 +f 310/2381/2281 309/2369/2270 345/2382/2282 +f 345/2382/2282 309/2369/2270 344/2370/2271 +f 345/2382/2282 344/2370/2271 432/2383/2283 +f 432/2383/2283 344/2370/2271 433/2371/2272 +f 432/2383/2283 433/2371/2272 381/2384/2284 +f 381/2384/2284 433/2371/2272 380/2372/2273 +f 381/2384/2284 380/2372/2273 452/2385/2285 +f 452/2385/2285 380/2372/2273 451/2373/2274 +f 452/2385/2285 451/2373/2274 539/2386/2286 +f 539/2386/2286 451/2373/2274 540/2374/2275 +f 539/2386/2286 540/2374/2275 488/2387/2287 +f 488/2387/2287 540/2374/2275 487/2375/2276 +f 488/2387/2287 487/2375/2276 560/2388/2288 +f 560/2388/2288 487/2375/2276 559/2376/2277 +f 560/2388/2288 559/2376/2277 647/2389/2289 +f 647/2389/2289 559/2376/2277 648/2377/2278 +f 647/2389/2289 648/2377/2278 596/2390/2290 +f 596/2390/2290 648/2377/2278 595/2378/2279 +f 596/2390/2290 595/2378/2279 667/2391/2291 +f 667/2391/2291 595/2378/2279 666/2379/2280 +f 667/2391/2291 666/2379/2280 753/2392/2292 +f 753/2392/2292 666/2379/2280 754/512/506 +f 753/2392/2292 754/512/506 702/514/508 +f 245/2393/435 244/2380/433 311/2394/2293 +f 311/2394/2293 244/2380/433 310/2381/2281 +f 311/2394/2293 310/2381/2281 346/2395/2294 +f 346/2395/2294 310/2381/2281 345/2382/2282 +f 346/2395/2294 345/2382/2282 431/2396/2295 +f 431/2396/2295 345/2382/2282 432/2383/2283 +f 431/2396/2295 432/2383/2283 382/2397/2296 +f 382/2397/2296 432/2383/2283 381/2384/2284 +f 382/2397/2296 381/2384/2284 453/2398/2297 +f 453/2398/2297 381/2384/2284 452/2385/2285 +f 453/2398/2297 452/2385/2285 538/2399/2298 +f 538/2399/2298 452/2385/2285 539/2386/2286 +f 538/2399/2298 539/2386/2286 489/2400/2299 +f 489/2400/2299 539/2386/2286 488/2387/2287 +f 489/2400/2299 488/2387/2287 561/2401/2300 +f 561/2401/2300 488/2387/2287 560/2388/2288 +f 561/2401/2300 560/2388/2288 646/2402/2301 +f 646/2402/2301 560/2388/2288 647/2389/2289 +f 646/2402/2301 647/2389/2289 597/2403/2302 +f 597/2403/2302 647/2389/2289 596/2390/2290 +f 597/2403/2302 596/2390/2290 668/2404/2303 +f 668/2404/2303 596/2390/2290 667/2391/2291 +f 668/2404/2303 667/2391/2291 752/2405/2304 +f 752/2405/2304 667/2391/2291 753/2392/2292 +f 752/2405/2304 753/2392/2292 703/2406/2305 +f 703/2406/2305 753/2392/2292 702/514/508 +f 703/2406/2305 702/514/508 823/516/510 +f 246/2407/437 245/2393/435 312/2408/2306 +f 312/2408/2306 245/2393/435 311/2394/2293 +f 312/2408/2306 311/2394/2293 347/2409/2307 +f 347/2409/2307 311/2394/2293 346/2395/2294 +f 347/2409/2307 346/2395/2294 430/2410/2308 +f 430/2410/2308 346/2395/2294 431/2396/2295 +f 430/2410/2308 431/2396/2295 383/2411/2309 +f 383/2411/2309 431/2396/2295 382/2397/2296 +f 383/2411/2309 382/2397/2296 454/2412/2310 +f 454/2412/2310 382/2397/2296 453/2398/2297 +f 454/2412/2310 453/2398/2297 537/2413/2311 +f 537/2413/2311 453/2398/2297 538/2399/2298 +f 537/2413/2311 538/2399/2298 490/2414/2312 +f 490/2414/2312 538/2399/2298 489/2400/2299 +f 490/2414/2312 489/2400/2299 562/2415/2313 +f 562/2415/2313 489/2400/2299 561/2401/2300 +f 562/2415/2313 561/2401/2300 645/2416/2314 +f 645/2416/2314 561/2401/2300 646/2402/2301 +f 645/2416/2314 646/2402/2301 598/2417/2315 +f 598/2417/2315 646/2402/2301 597/2403/2302 +f 598/2417/2315 597/2403/2302 669/2418/2316 +f 669/2418/2316 597/2403/2302 668/2404/2303 +f 669/2418/2316 668/2404/2303 751/2419/2317 +f 751/2419/2317 668/2404/2303 752/2405/2304 +f 751/2419/2317 752/2405/2304 704/2420/2318 +f 704/2420/2318 752/2405/2304 703/2406/2305 +f 704/2420/2318 703/2406/2305 822/2421/2319 +f 822/2421/2319 703/2406/2305 823/516/510 +f 822/2421/2319 823/516/510 775/518/512 +f 247/2422/439 246/2407/437 313/2423/2320 +f 313/2423/2320 246/2407/437 312/2408/2306 +f 313/2423/2320 312/2408/2306 348/2424/2321 +f 348/2424/2321 312/2408/2306 347/2409/2307 +f 348/2424/2321 347/2409/2307 429/2425/2322 +f 429/2425/2322 347/2409/2307 430/2410/2308 +f 429/2425/2322 430/2410/2308 384/2426/2323 +f 384/2426/2323 430/2410/2308 383/2411/2309 +f 384/2426/2323 383/2411/2309 455/2427/2324 +f 455/2427/2324 383/2411/2309 454/2412/2310 +f 455/2427/2324 454/2412/2310 536/2428/2325 +f 536/2428/2325 454/2412/2310 537/2413/2311 +f 536/2428/2325 537/2413/2311 491/2429/2326 +f 491/2429/2326 537/2413/2311 490/2414/2312 +f 491/2429/2326 490/2414/2312 563/2430/2327 +f 563/2430/2327 490/2414/2312 562/2415/2313 +f 563/2430/2327 562/2415/2313 644/2431/2328 +f 644/2431/2328 562/2415/2313 645/2416/2314 +f 644/2431/2328 645/2416/2314 599/2432/2329 +f 599/2432/2329 645/2416/2314 598/2417/2315 +f 599/2432/2329 598/2417/2315 670/2433/2330 +f 670/2433/2330 598/2417/2315 669/2418/2316 +f 670/2433/2330 669/2418/2316 750/2434/2331 +f 750/2434/2331 669/2418/2316 751/2419/2317 +f 750/2434/2331 751/2419/2317 705/2435/2332 +f 705/2435/2332 751/2419/2317 704/2420/2318 +f 705/2435/2332 704/2420/2318 821/2436/2333 +f 821/2436/2333 704/2420/2318 822/2421/2319 +f 821/2436/2333 822/2421/2319 776/2437/2334 +f 776/2437/2334 822/2421/2319 775/518/512 +f 776/2437/2334 775/518/512 847/520/514 +f 248/2438/441 247/2422/439 314/2439/2335 +f 314/2439/2335 247/2422/439 313/2423/2320 +f 314/2439/2335 313/2423/2320 349/2440/2336 +f 349/2440/2336 313/2423/2320 348/2424/2321 +f 349/2440/2336 348/2424/2321 428/2441/2337 +f 428/2441/2337 348/2424/2321 429/2425/2322 +f 428/2441/2337 429/2425/2322 385/2442/2338 +f 385/2442/2338 429/2425/2322 384/2426/2323 +f 385/2442/2338 384/2426/2323 456/2443/2339 +f 456/2443/2339 384/2426/2323 455/2427/2324 +f 456/2443/2339 455/2427/2324 535/2444/2340 +f 535/2444/2340 455/2427/2324 536/2428/2325 +f 535/2444/2340 536/2428/2325 492/2445/2341 +f 492/2445/2341 536/2428/2325 491/2429/2326 +f 492/2445/2341 491/2429/2326 564/2446/2342 +f 564/2446/2342 491/2429/2326 563/2430/2327 +f 564/2446/2342 563/2430/2327 643/2447/2343 +f 643/2447/2343 563/2430/2327 644/2431/2328 +f 643/2447/2343 644/2431/2328 600/2448/2344 +f 600/2448/2344 644/2431/2328 599/2432/2329 +f 600/2448/2344 599/2432/2329 671/2449/2345 +f 671/2449/2345 599/2432/2329 670/2433/2330 +f 671/2449/2345 670/2433/2330 749/2450/2346 +f 749/2450/2346 670/2433/2330 750/2434/2331 +f 749/2450/2346 750/2434/2331 706/2451/2347 +f 706/2451/2347 750/2434/2331 705/2435/2332 +f 706/2451/2347 705/2435/2332 820/2452/2348 +f 820/2452/2348 705/2435/2332 821/2436/2333 +f 820/2452/2348 821/2436/2333 777/2453/2349 +f 777/2453/2349 821/2436/2333 776/2437/2334 +f 777/2453/2349 776/2437/2334 848/2454/2350 +f 848/2454/2350 776/2437/2334 847/520/514 +f 848/2454/2350 847/520/514 927/522/516 +f 249/2455/443 248/2438/441 315/2456/2351 +f 315/2456/2351 248/2438/441 314/2439/2335 +f 315/2456/2351 314/2439/2335 350/2457/2352 +f 350/2457/2352 314/2439/2335 349/2440/2336 +f 350/2457/2352 349/2440/2336 427/2458/2353 +f 427/2458/2353 349/2440/2336 428/2441/2337 +f 427/2458/2353 428/2441/2337 386/2459/2354 +f 386/2459/2354 428/2441/2337 385/2442/2338 +f 386/2459/2354 385/2442/2338 457/2460/2355 +f 457/2460/2355 385/2442/2338 456/2443/2339 +f 457/2460/2355 456/2443/2339 534/2461/2356 +f 534/2461/2356 456/2443/2339 535/2444/2340 +f 534/2461/2356 535/2444/2340 493/2462/2357 +f 493/2462/2357 535/2444/2340 492/2445/2341 +f 493/2462/2357 492/2445/2341 565/2463/2358 +f 565/2463/2358 492/2445/2341 564/2446/2342 +f 565/2463/2358 564/2446/2342 642/2464/2359 +f 642/2464/2359 564/2446/2342 643/2447/2343 +f 642/2464/2359 643/2447/2343 601/2465/2360 +f 601/2465/2360 643/2447/2343 600/2448/2344 +f 601/2465/2360 600/2448/2344 672/2466/2361 +f 672/2466/2361 600/2448/2344 671/2449/2345 +f 672/2466/2361 671/2449/2345 748/2467/2362 +f 748/2467/2362 671/2449/2345 749/2450/2346 +f 748/2467/2362 749/2450/2346 707/2468/2363 +f 707/2468/2363 749/2450/2346 706/2451/2347 +f 707/2468/2363 706/2451/2347 819/2469/2364 +f 819/2469/2364 706/2451/2347 820/2452/2348 +f 819/2469/2364 820/2452/2348 778/2470/2365 +f 778/2470/2365 820/2452/2348 777/2453/2349 +f 778/2470/2365 777/2453/2349 849/2471/2366 +f 849/2471/2366 777/2453/2349 848/2454/2350 +f 849/2471/2366 848/2454/2350 926/2472/2367 +f 926/2472/2367 848/2454/2350 927/522/516 +f 926/2472/2367 927/522/516 885/524/518 +f 250/2473/445 249/2455/443 316/2474/2368 +f 316/2474/2368 249/2455/443 315/2456/2351 +f 316/2474/2368 315/2456/2351 351/2475/2369 +f 351/2475/2369 315/2456/2351 350/2457/2352 +f 351/2475/2369 350/2457/2352 426/2476/2370 +f 426/2476/2370 350/2457/2352 427/2458/2353 +f 426/2476/2370 427/2458/2353 387/2477/2371 +f 387/2477/2371 427/2458/2353 386/2459/2354 +f 387/2477/2371 386/2459/2354 458/2478/2372 +f 458/2478/2372 386/2459/2354 457/2460/2355 +f 458/2478/2372 457/2460/2355 533/2479/2373 +f 533/2479/2373 457/2460/2355 534/2461/2356 +f 533/2479/2373 534/2461/2356 494/2480/2374 +f 494/2480/2374 534/2461/2356 493/2462/2357 +f 494/2480/2374 493/2462/2357 566/2481/2375 +f 566/2481/2375 493/2462/2357 565/2463/2358 +f 566/2481/2375 565/2463/2358 641/2482/2376 +f 641/2482/2376 565/2463/2358 642/2464/2359 +f 641/2482/2376 642/2464/2359 602/2483/2377 +f 602/2483/2377 642/2464/2359 601/2465/2360 +f 602/2483/2377 601/2465/2360 673/2484/2378 +f 673/2484/2378 601/2465/2360 672/2466/2361 +f 673/2484/2378 672/2466/2361 747/2485/2379 +f 747/2485/2379 672/2466/2361 748/2467/2362 +f 747/2485/2379 748/2467/2362 708/2486/2380 +f 708/2486/2380 748/2467/2362 707/2468/2363 +f 708/2486/2380 707/2468/2363 818/2487/2381 +f 818/2487/2381 707/2468/2363 819/2469/2364 +f 818/2487/2381 819/2469/2364 779/2488/2382 +f 779/2488/2382 819/2469/2364 778/2470/2365 +f 779/2488/2382 778/2470/2365 850/2489/2383 +f 850/2489/2383 778/2470/2365 849/2471/2366 +f 850/2489/2383 849/2471/2366 925/2490/2384 +f 925/2490/2384 849/2471/2366 926/2472/2367 +f 925/2490/2384 926/2472/2367 886/2491/2385 +f 886/2491/2385 926/2472/2367 885/524/518 +f 886/2491/2385 885/524/518 958/526/520 +f 251/2492/447 250/2473/445 317/2493/2386 +f 317/2493/2386 250/2473/445 316/2474/2368 +f 317/2493/2386 316/2474/2368 352/2494/2387 +f 352/2494/2387 316/2474/2368 351/2475/2369 +f 352/2494/2387 351/2475/2369 425/2495/2388 +f 425/2495/2388 351/2475/2369 426/2476/2370 +f 425/2495/2388 426/2476/2370 388/2496/2389 +f 388/2496/2389 426/2476/2370 387/2477/2371 +f 388/2496/2389 387/2477/2371 459/2497/2390 +f 459/2497/2390 387/2477/2371 458/2478/2372 +f 459/2497/2390 458/2478/2372 532/2498/2391 +f 532/2498/2391 458/2478/2372 533/2479/2373 +f 532/2498/2391 533/2479/2373 495/2499/2392 +f 495/2499/2392 533/2479/2373 494/2480/2374 +f 495/2499/2392 494/2480/2374 567/2500/2393 +f 567/2500/2393 494/2480/2374 566/2481/2375 +f 567/2500/2393 566/2481/2375 640/2501/2394 +f 640/2501/2394 566/2481/2375 641/2482/2376 +f 640/2501/2394 641/2482/2376 603/2502/2395 +f 603/2502/2395 641/2482/2376 602/2483/2377 +f 603/2502/2395 602/2483/2377 674/2503/2396 +f 674/2503/2396 602/2483/2377 673/2484/2378 +f 674/2503/2396 673/2484/2378 746/2504/2397 +f 746/2504/2397 673/2484/2378 747/2485/2379 +f 746/2504/2397 747/2485/2379 709/2505/2398 +f 709/2505/2398 747/2485/2379 708/2486/2380 +f 709/2505/2398 708/2486/2380 817/2506/2399 +f 817/2506/2399 708/2486/2380 818/2487/2381 +f 817/2506/2399 818/2487/2381 780/2507/2400 +f 780/2507/2400 818/2487/2381 779/2488/2382 +f 780/2507/2400 779/2488/2382 851/2508/2401 +f 851/2508/2401 779/2488/2382 850/2489/2383 +f 851/2508/2401 850/2489/2383 924/2509/2402 +f 924/2509/2402 850/2489/2383 925/2490/2384 +f 924/2509/2402 925/2490/2384 887/2510/2403 +f 887/2510/2403 925/2490/2384 886/2491/2385 +f 887/2510/2403 886/2491/2385 959/2511/2404 +f 959/2511/2404 886/2491/2385 958/526/520 +f 959/2511/2404 958/526/520 1032/528/522 +f 252/2512/449 251/2492/447 318/2513/2405 +f 318/2513/2405 251/2492/447 317/2493/2386 +f 318/2513/2405 317/2493/2386 353/2514/2406 +f 353/2514/2406 317/2493/2386 352/2494/2387 +f 353/2514/2406 352/2494/2387 424/2515/2407 +f 424/2515/2407 352/2494/2387 425/2495/2388 +f 424/2515/2407 425/2495/2388 389/2516/2408 +f 389/2516/2408 425/2495/2388 388/2496/2389 +f 389/2516/2408 388/2496/2389 460/2517/2409 +f 460/2517/2409 388/2496/2389 459/2497/2390 +f 460/2517/2409 459/2497/2390 531/2518/2410 +f 531/2518/2410 459/2497/2390 532/2498/2391 +f 531/2518/2410 532/2498/2391 496/2519/2411 +f 496/2519/2411 532/2498/2391 495/2499/2392 +f 496/2519/2411 495/2499/2392 568/2520/2412 +f 568/2520/2412 495/2499/2392 567/2500/2393 +f 568/2520/2412 567/2500/2393 639/2521/2413 +f 639/2521/2413 567/2500/2393 640/2501/2394 +f 639/2521/2413 640/2501/2394 604/2522/2414 +f 604/2522/2414 640/2501/2394 603/2502/2395 +f 604/2522/2414 603/2502/2395 675/2523/2415 +f 675/2523/2415 603/2502/2395 674/2503/2396 +f 675/2523/2415 674/2503/2396 745/2524/2416 +f 745/2524/2416 674/2503/2396 746/2504/2397 +f 745/2524/2416 746/2504/2397 710/2525/2417 +f 710/2525/2417 746/2504/2397 709/2505/2398 +f 710/2525/2417 709/2505/2398 816/2526/2418 +f 816/2526/2418 709/2505/2398 817/2506/2399 +f 816/2526/2418 817/2506/2399 781/2527/2419 +f 781/2527/2419 817/2506/2399 780/2507/2400 +f 781/2527/2419 780/2507/2400 852/2528/2420 +f 852/2528/2420 780/2507/2400 851/2508/2401 +f 852/2528/2420 851/2508/2401 923/2529/2421 +f 923/2529/2421 851/2508/2401 924/2509/2402 +f 923/2529/2421 924/2509/2402 888/2530/2422 +f 888/2530/2422 924/2509/2402 887/2510/2403 +f 888/2530/2422 887/2510/2403 960/2531/2423 +f 960/2531/2423 887/2510/2403 959/2511/2404 +f 960/2531/2423 959/2511/2404 1031/2532/2424 +f 1031/2532/2424 959/2511/2404 1032/528/522 +f 1031/2532/2424 1032/528/522 996/530/524 +f 253/2533/451 252/2512/449 319/2534/2425 +f 319/2534/2425 252/2512/449 318/2513/2405 +f 319/2534/2425 318/2513/2405 354/2535/2426 +f 354/2535/2426 318/2513/2405 353/2514/2406 +f 354/2535/2426 353/2514/2406 423/2536/2427 +f 423/2536/2427 353/2514/2406 424/2515/2407 +f 423/2536/2427 424/2515/2407 390/2537/2428 +f 390/2537/2428 424/2515/2407 389/2516/2408 +f 390/2537/2428 389/2516/2408 461/2538/2429 +f 461/2538/2429 389/2516/2408 460/2517/2409 +f 461/2538/2429 460/2517/2409 530/2539/2430 +f 530/2539/2430 460/2517/2409 531/2518/2410 +f 530/2539/2430 531/2518/2410 497/2540/2431 +f 497/2540/2431 531/2518/2410 496/2519/2411 +f 497/2540/2431 496/2519/2411 569/2541/2432 +f 569/2541/2432 496/2519/2411 568/2520/2412 +f 569/2541/2432 568/2520/2412 638/2542/2433 +f 638/2542/2433 568/2520/2412 639/2521/2413 +f 638/2542/2433 639/2521/2413 605/2543/2434 +f 605/2543/2434 639/2521/2413 604/2522/2414 +f 605/2543/2434 604/2522/2414 676/2544/2435 +f 676/2544/2435 604/2522/2414 675/2523/2415 +f 676/2544/2435 675/2523/2415 744/2545/2436 +f 744/2545/2436 675/2523/2415 745/2524/2416 +f 744/2545/2436 745/2524/2416 711/2546/2437 +f 711/2546/2437 745/2524/2416 710/2525/2417 +f 711/2546/2437 710/2525/2417 815/2547/2438 +f 815/2547/2438 710/2525/2417 816/2526/2418 +f 815/2547/2438 816/2526/2418 782/2548/2439 +f 782/2548/2439 816/2526/2418 781/2527/2419 +f 782/2548/2439 781/2527/2419 853/2549/2440 +f 853/2549/2440 781/2527/2419 852/2528/2420 +f 853/2549/2440 852/2528/2420 922/2550/2441 +f 922/2550/2441 852/2528/2420 923/2529/2421 +f 922/2550/2441 923/2529/2421 889/2551/2442 +f 889/2551/2442 923/2529/2421 888/2530/2422 +f 889/2551/2442 888/2530/2422 961/2552/2443 +f 961/2552/2443 888/2530/2422 960/2531/2423 +f 961/2552/2443 960/2531/2423 1030/2553/2444 +f 1030/2553/2444 960/2531/2423 1031/2532/2424 +f 1030/2553/2444 1031/2532/2424 997/2554/2445 +f 997/2554/2445 1031/2532/2424 996/530/524 +f 997/2554/2445 996/530/524 1068/532/526 +f 254/2555/453 253/2533/451 320/2556/2446 +f 320/2556/2446 253/2533/451 319/2534/2425 +f 320/2556/2446 319/2534/2425 355/2557/2447 +f 355/2557/2447 319/2534/2425 354/2535/2426 +f 355/2557/2447 354/2535/2426 422/2558/2448 +f 422/2558/2448 354/2535/2426 423/2536/2427 +f 422/2558/2448 423/2536/2427 391/2559/2449 +f 391/2559/2449 423/2536/2427 390/2537/2428 +f 391/2559/2449 390/2537/2428 462/2560/2450 +f 462/2560/2450 390/2537/2428 461/2538/2429 +f 462/2560/2450 461/2538/2429 529/2561/2451 +f 529/2561/2451 461/2538/2429 530/2539/2430 +f 529/2561/2451 530/2539/2430 498/2562/2452 +f 498/2562/2452 530/2539/2430 497/2540/2431 +f 498/2562/2452 497/2540/2431 570/2563/2453 +f 570/2563/2453 497/2540/2431 569/2541/2432 +f 570/2563/2453 569/2541/2432 637/2564/2454 +f 637/2564/2454 569/2541/2432 638/2542/2433 +f 637/2564/2454 638/2542/2433 606/2565/2455 +f 606/2565/2455 638/2542/2433 605/2543/2434 +f 606/2565/2455 605/2543/2434 677/2566/2456 +f 677/2566/2456 605/2543/2434 676/2544/2435 +f 677/2566/2456 676/2544/2435 743/2567/2457 +f 743/2567/2457 676/2544/2435 744/2545/2436 +f 743/2567/2457 744/2545/2436 712/2568/2458 +f 712/2568/2458 744/2545/2436 711/2546/2437 +f 712/2568/2458 711/2546/2437 814/2569/2459 +f 814/2569/2459 711/2546/2437 815/2547/2438 +f 814/2569/2459 815/2547/2438 783/2570/2460 +f 783/2570/2460 815/2547/2438 782/2548/2439 +f 783/2570/2460 782/2548/2439 854/2571/2461 +f 854/2571/2461 782/2548/2439 853/2549/2440 +f 854/2571/2461 853/2549/2440 921/2572/2462 +f 921/2572/2462 853/2549/2440 922/2550/2441 +f 921/2572/2462 922/2550/2441 890/2573/2463 +f 890/2573/2463 922/2550/2441 889/2551/2442 +f 890/2573/2463 889/2551/2442 962/2574/2464 +f 962/2574/2464 889/2551/2442 961/2552/2443 +f 962/2574/2464 961/2552/2443 1029/2575/2465 +f 1029/2575/2465 961/2552/2443 1030/2553/2444 +f 1029/2575/2465 1030/2553/2444 998/2576/2466 +f 998/2576/2466 1030/2553/2444 997/2554/2445 +f 998/2576/2466 997/2554/2445 1069/2577/2467 +f 1069/2577/2467 997/2554/2445 1068/532/526 +f 1069/2577/2467 1068/532/526 1135/534/528 +f 255/2578/455 254/2555/453 321/2579/2468 +f 321/2579/2468 254/2555/453 320/2556/2446 +f 321/2579/2468 320/2556/2446 356/2580/2469 +f 356/2580/2469 320/2556/2446 355/2557/2447 +f 356/2580/2469 355/2557/2447 421/2581/2470 +f 421/2581/2470 355/2557/2447 422/2558/2448 +f 421/2581/2470 422/2558/2448 392/2582/2471 +f 392/2582/2471 422/2558/2448 391/2559/2449 +f 392/2582/2471 391/2559/2449 463/2583/2472 +f 463/2583/2472 391/2559/2449 462/2560/2450 +f 463/2583/2472 462/2560/2450 528/2584/2473 +f 528/2584/2473 462/2560/2450 529/2561/2451 +f 528/2584/2473 529/2561/2451 499/2585/2474 +f 499/2585/2474 529/2561/2451 498/2562/2452 +f 499/2585/2474 498/2562/2452 571/2586/2475 +f 571/2586/2475 498/2562/2452 570/2563/2453 +f 571/2586/2475 570/2563/2453 636/2587/2476 +f 636/2587/2476 570/2563/2453 637/2564/2454 +f 636/2587/2476 637/2564/2454 607/2588/2477 +f 607/2588/2477 637/2564/2454 606/2565/2455 +f 607/2588/2477 606/2565/2455 678/2589/2478 +f 678/2589/2478 606/2565/2455 677/2566/2456 +f 678/2589/2478 677/2566/2456 742/2590/2479 +f 742/2590/2479 677/2566/2456 743/2567/2457 +f 742/2590/2479 743/2567/2457 713/2591/2480 +f 713/2591/2480 743/2567/2457 712/2568/2458 +f 713/2591/2480 712/2568/2458 813/2592/2481 +f 813/2592/2481 712/2568/2458 814/2569/2459 +f 813/2592/2481 814/2569/2459 784/2593/2482 +f 784/2593/2482 814/2569/2459 783/2570/2460 +f 784/2593/2482 783/2570/2460 855/2594/2483 +f 855/2594/2483 783/2570/2460 854/2571/2461 +f 855/2594/2483 854/2571/2461 920/2595/2484 +f 920/2595/2484 854/2571/2461 921/2572/2462 +f 920/2595/2484 921/2572/2462 891/2596/2485 +f 891/2596/2485 921/2572/2462 890/2573/2463 +f 891/2596/2485 890/2573/2463 963/2597/2486 +f 963/2597/2486 890/2573/2463 962/2574/2464 +f 963/2597/2486 962/2574/2464 1028/2598/2487 +f 1028/2598/2487 962/2574/2464 1029/2575/2465 +f 1028/2598/2487 1029/2575/2465 999/2599/2488 +f 999/2599/2488 1029/2575/2465 998/2576/2466 +f 999/2599/2488 998/2576/2466 1070/2600/2489 +f 1070/2600/2489 998/2576/2466 1069/2577/2467 +f 1070/2600/2489 1069/2577/2467 1134/2601/2490 +f 1134/2601/2490 1069/2577/2467 1135/534/528 +f 1134/2601/2490 1135/534/528 1105/536/530 +f 256/2602/457 255/2578/455 322/2603/2491 +f 322/2603/2491 255/2578/455 321/2579/2468 +f 322/2603/2491 321/2579/2468 357/2604/2492 +f 357/2604/2492 321/2579/2468 356/2580/2469 +f 357/2604/2492 356/2580/2469 420/2605/2493 +f 420/2605/2493 356/2580/2469 421/2581/2470 +f 420/2605/2493 421/2581/2470 393/2606/2494 +f 393/2606/2494 421/2581/2470 392/2582/2471 +f 393/2606/2494 392/2582/2471 464/2607/2495 +f 464/2607/2495 392/2582/2471 463/2583/2472 +f 464/2607/2495 463/2583/2472 527/2608/2496 +f 527/2608/2496 463/2583/2472 528/2584/2473 +f 527/2608/2496 528/2584/2473 500/2609/2497 +f 500/2609/2497 528/2584/2473 499/2585/2474 +f 500/2609/2497 499/2585/2474 572/2610/2498 +f 572/2610/2498 499/2585/2474 571/2586/2475 +f 572/2610/2498 571/2586/2475 635/2611/2499 +f 635/2611/2499 571/2586/2475 636/2587/2476 +f 635/2611/2499 636/2587/2476 608/2612/2500 +f 608/2612/2500 636/2587/2476 607/2588/2477 +f 608/2612/2500 607/2588/2477 679/2613/2501 +f 679/2613/2501 607/2588/2477 678/2589/2478 +f 679/2613/2501 678/2589/2478 741/2614/2502 +f 741/2614/2502 678/2589/2478 742/2590/2479 +f 741/2614/2502 742/2590/2479 714/2615/2503 +f 714/2615/2503 742/2590/2479 713/2591/2480 +f 714/2615/2503 713/2591/2480 812/2616/2504 +f 812/2616/2504 713/2591/2480 813/2592/2481 +f 812/2616/2504 813/2592/2481 785/2617/2505 +f 785/2617/2505 813/2592/2481 784/2593/2482 +f 785/2617/2505 784/2593/2482 856/2618/2506 +f 856/2618/2506 784/2593/2482 855/2594/2483 +f 856/2618/2506 855/2594/2483 919/2619/2507 +f 919/2619/2507 855/2594/2483 920/2595/2484 +f 919/2619/2507 920/2595/2484 892/2620/2508 +f 892/2620/2508 920/2595/2484 891/2596/2485 +f 892/2620/2508 891/2596/2485 964/2621/2509 +f 964/2621/2509 891/2596/2485 963/2597/2486 +f 964/2621/2509 963/2597/2486 1027/2622/2510 +f 1027/2622/2510 963/2597/2486 1028/2598/2487 +f 1027/2622/2510 1028/2598/2487 1000/2623/2511 +f 1000/2623/2511 1028/2598/2487 999/2599/2488 +f 1000/2623/2511 999/2599/2488 1071/2624/2512 +f 1071/2624/2512 999/2599/2488 1070/2600/2489 +f 1071/2624/2512 1070/2600/2489 1133/2625/2513 +f 1133/2625/2513 1070/2600/2489 1134/2601/2490 +f 1133/2625/2513 1134/2601/2490 1106/2626/2514 +f 1106/2626/2514 1134/2601/2490 1105/536/530 +f 1106/2626/2514 1105/536/530 1204/538/532 +f 257/2627/459 256/2602/457 323/2628/2515 +f 323/2628/2515 256/2602/457 322/2603/2491 +f 323/2628/2515 322/2603/2491 358/2629/2516 +f 358/2629/2516 322/2603/2491 357/2604/2492 +f 358/2629/2516 357/2604/2492 419/2630/2517 +f 419/2630/2517 357/2604/2492 420/2605/2493 +f 419/2630/2517 420/2605/2493 394/2631/2518 +f 394/2631/2518 420/2605/2493 393/2606/2494 +f 394/2631/2518 393/2606/2494 465/2632/2519 +f 465/2632/2519 393/2606/2494 464/2607/2495 +f 465/2632/2519 464/2607/2495 526/2633/2520 +f 526/2633/2520 464/2607/2495 527/2608/2496 +f 526/2633/2520 527/2608/2496 501/2634/2521 +f 501/2634/2521 527/2608/2496 500/2609/2497 +f 501/2634/2521 500/2609/2497 573/2635/2522 +f 573/2635/2522 500/2609/2497 572/2610/2498 +f 573/2635/2522 572/2610/2498 634/2636/2523 +f 634/2636/2523 572/2610/2498 635/2611/2499 +f 634/2636/2523 635/2611/2499 609/2637/2524 +f 609/2637/2524 635/2611/2499 608/2612/2500 +f 609/2637/2524 608/2612/2500 680/2638/2525 +f 680/2638/2525 608/2612/2500 679/2613/2501 +f 680/2638/2525 679/2613/2501 740/2639/2526 +f 740/2639/2526 679/2613/2501 741/2614/2502 +f 740/2639/2526 741/2614/2502 715/2640/2527 +f 715/2640/2527 741/2614/2502 714/2615/2503 +f 715/2640/2527 714/2615/2503 811/2641/2528 +f 811/2641/2528 714/2615/2503 812/2616/2504 +f 811/2641/2528 812/2616/2504 786/2642/2529 +f 786/2642/2529 812/2616/2504 785/2617/2505 +f 786/2642/2529 785/2617/2505 857/2643/2530 +f 857/2643/2530 785/2617/2505 856/2618/2506 +f 857/2643/2530 856/2618/2506 918/2644/2531 +f 918/2644/2531 856/2618/2506 919/2619/2507 +f 918/2644/2531 919/2619/2507 893/2645/2532 +f 893/2645/2532 919/2619/2507 892/2620/2508 +f 893/2645/2532 892/2620/2508 965/2646/2533 +f 965/2646/2533 892/2620/2508 964/2621/2509 +f 965/2646/2533 964/2621/2509 1026/2647/2534 +f 1026/2647/2534 964/2621/2509 1027/2622/2510 +f 1026/2647/2534 1027/2622/2510 1001/2648/2535 +f 1001/2648/2535 1027/2622/2510 1000/2623/2511 +f 1001/2648/2535 1000/2623/2511 1072/2649/2536 +f 1072/2649/2536 1000/2623/2511 1071/2624/2512 +f 1072/2649/2536 1071/2624/2512 1132/2650/2537 +f 1132/2650/2537 1071/2624/2512 1133/2625/2513 +f 1132/2650/2537 1133/2625/2513 1107/2651/2538 +f 1107/2651/2538 1133/2625/2513 1106/2626/2514 +f 1107/2651/2538 1106/2626/2514 1203/2652/2539 +f 1203/2652/2539 1106/2626/2514 1204/538/532 +f 1203/2652/2539 1204/538/532 1178/540/534 +f 258/2653/461 257/2627/459 324/2654/2540 +f 324/2654/2540 257/2627/459 323/2628/2515 +f 324/2654/2540 323/2628/2515 359/2655/2541 +f 359/2655/2541 323/2628/2515 358/2629/2516 +f 359/2655/2541 358/2629/2516 418/2656/2542 +f 418/2656/2542 358/2629/2516 419/2630/2517 +f 418/2656/2542 419/2630/2517 395/2657/2543 +f 395/2657/2543 419/2630/2517 394/2631/2518 +f 395/2657/2543 394/2631/2518 466/2658/2544 +f 466/2658/2544 394/2631/2518 465/2632/2519 +f 466/2658/2544 465/2632/2519 525/2659/2545 +f 525/2659/2545 465/2632/2519 526/2633/2520 +f 525/2659/2545 526/2633/2520 502/2660/2546 +f 502/2660/2546 526/2633/2520 501/2634/2521 +f 502/2660/2546 501/2634/2521 574/2661/2547 +f 574/2661/2547 501/2634/2521 573/2635/2522 +f 574/2661/2547 573/2635/2522 633/2662/2548 +f 633/2662/2548 573/2635/2522 634/2636/2523 +f 633/2662/2548 634/2636/2523 610/2663/2549 +f 610/2663/2549 634/2636/2523 609/2637/2524 +f 610/2663/2549 609/2637/2524 681/2664/2550 +f 681/2664/2550 609/2637/2524 680/2638/2525 +f 681/2664/2550 680/2638/2525 739/2665/2551 +f 739/2665/2551 680/2638/2525 740/2639/2526 +f 739/2665/2551 740/2639/2526 716/2666/2552 +f 716/2666/2552 740/2639/2526 715/2640/2527 +f 716/2666/2552 715/2640/2527 810/2667/2553 +f 810/2667/2553 715/2640/2527 811/2641/2528 +f 810/2667/2553 811/2641/2528 787/2668/2554 +f 787/2668/2554 811/2641/2528 786/2642/2529 +f 787/2668/2554 786/2642/2529 858/2669/2555 +f 858/2669/2555 786/2642/2529 857/2643/2530 +f 858/2669/2555 857/2643/2530 917/2670/2556 +f 917/2670/2556 857/2643/2530 918/2644/2531 +f 917/2670/2556 918/2644/2531 894/2671/2557 +f 894/2671/2557 918/2644/2531 893/2645/2532 +f 894/2671/2557 893/2645/2532 966/2672/2558 +f 966/2672/2558 893/2645/2532 965/2646/2533 +f 966/2672/2558 965/2646/2533 1025/2673/2559 +f 1025/2673/2559 965/2646/2533 1026/2647/2534 +f 1025/2673/2559 1026/2647/2534 1002/2674/2560 +f 1002/2674/2560 1026/2647/2534 1001/2648/2535 +f 1002/2674/2560 1001/2648/2535 1073/2675/2561 +f 1073/2675/2561 1001/2648/2535 1072/2649/2536 +f 1073/2675/2561 1072/2649/2536 1131/2676/2562 +f 1131/2676/2562 1072/2649/2536 1132/2650/2537 +f 1131/2676/2562 1132/2650/2537 1108/2677/2563 +f 1108/2677/2563 1132/2650/2537 1107/2651/2538 +f 1108/2677/2563 1107/2651/2538 1202/2678/2564 +f 1202/2678/2564 1107/2651/2538 1203/2652/2539 +f 1202/2678/2564 1203/2652/2539 1179/2679/2565 +f 1179/2679/2565 1203/2652/2539 1178/540/534 +f 1179/2679/2565 1178/540/534 1250/542/536 +f 259/2680/463 258/2653/461 325/2681/2566 +f 325/2681/2566 258/2653/461 324/2654/2540 +f 325/2681/2566 324/2654/2540 360/2682/2567 +f 360/2682/2567 324/2654/2540 359/2655/2541 +f 360/2682/2567 359/2655/2541 417/2683/2568 +f 417/2683/2568 359/2655/2541 418/2656/2542 +f 417/2683/2568 418/2656/2542 396/2684/2569 +f 396/2684/2569 418/2656/2542 395/2657/2543 +f 396/2684/2569 395/2657/2543 467/2685/2570 +f 467/2685/2570 395/2657/2543 466/2658/2544 +f 467/2685/2570 466/2658/2544 524/2686/2571 +f 524/2686/2571 466/2658/2544 525/2659/2545 +f 524/2686/2571 525/2659/2545 503/2687/2572 +f 503/2687/2572 525/2659/2545 502/2660/2546 +f 503/2687/2572 502/2660/2546 575/2688/2573 +f 575/2688/2573 502/2660/2546 574/2661/2547 +f 575/2688/2573 574/2661/2547 632/2689/2574 +f 632/2689/2574 574/2661/2547 633/2662/2548 +f 632/2689/2574 633/2662/2548 611/2690/2575 +f 611/2690/2575 633/2662/2548 610/2663/2549 +f 611/2690/2575 610/2663/2549 682/2691/2576 +f 682/2691/2576 610/2663/2549 681/2664/2550 +f 682/2691/2576 681/2664/2550 738/2692/2577 +f 738/2692/2577 681/2664/2550 739/2665/2551 +f 738/2692/2577 739/2665/2551 717/2693/2578 +f 717/2693/2578 739/2665/2551 716/2666/2552 +f 717/2693/2578 716/2666/2552 809/2694/2579 +f 809/2694/2579 716/2666/2552 810/2667/2553 +f 809/2694/2579 810/2667/2553 788/2695/2580 +f 788/2695/2580 810/2667/2553 787/2668/2554 +f 788/2695/2580 787/2668/2554 859/2696/2581 +f 859/2696/2581 787/2668/2554 858/2669/2555 +f 859/2696/2581 858/2669/2555 916/2697/2582 +f 916/2697/2582 858/2669/2555 917/2670/2556 +f 916/2697/2582 917/2670/2556 895/2698/2583 +f 895/2698/2583 917/2670/2556 894/2671/2557 +f 895/2698/2583 894/2671/2557 967/2699/2584 +f 967/2699/2584 894/2671/2557 966/2672/2558 +f 967/2699/2584 966/2672/2558 1024/2700/2585 +f 1024/2700/2585 966/2672/2558 1025/2673/2559 +f 1024/2700/2585 1025/2673/2559 1003/2701/2586 +f 1003/2701/2586 1025/2673/2559 1002/2674/2560 +f 1003/2701/2586 1002/2674/2560 1074/2702/2587 +f 1074/2702/2587 1002/2674/2560 1073/2675/2561 +f 1074/2702/2587 1073/2675/2561 1130/2703/2588 +f 1130/2703/2588 1073/2675/2561 1131/2676/2562 +f 1130/2703/2588 1131/2676/2562 1109/2704/2589 +f 1109/2704/2589 1131/2676/2562 1108/2677/2563 +f 1109/2704/2589 1108/2677/2563 1201/2705/2590 +f 1201/2705/2590 1108/2677/2563 1202/2678/2564 +f 1201/2705/2590 1202/2678/2564 1180/2706/2591 +f 1180/2706/2591 1202/2678/2564 1179/2679/2565 +f 1180/2706/2591 1179/2679/2565 1251/2707/2592 +f 1251/2707/2592 1179/2679/2565 1250/542/536 +f 1251/2707/2592 1250/542/536 1308/544/538 +f 260/2708/465 259/2680/463 326/2709/2593 +f 326/2709/2593 259/2680/463 325/2681/2566 +f 326/2709/2593 325/2681/2566 361/2710/2594 +f 361/2710/2594 325/2681/2566 360/2682/2567 +f 361/2710/2594 360/2682/2567 416/2711/2595 +f 416/2711/2595 360/2682/2567 417/2683/2568 +f 416/2711/2595 417/2683/2568 397/2712/2596 +f 397/2712/2596 417/2683/2568 396/2684/2569 +f 397/2712/2596 396/2684/2569 468/2713/2597 +f 468/2713/2597 396/2684/2569 467/2685/2570 +f 468/2713/2597 467/2685/2570 523/2714/2598 +f 523/2714/2598 467/2685/2570 524/2686/2571 +f 523/2714/2598 524/2686/2571 504/2715/2599 +f 504/2715/2599 524/2686/2571 503/2687/2572 +f 504/2715/2599 503/2687/2572 576/2716/2600 +f 576/2716/2600 503/2687/2572 575/2688/2573 +f 576/2716/2600 575/2688/2573 631/2717/2601 +f 631/2717/2601 575/2688/2573 632/2689/2574 +f 631/2717/2601 632/2689/2574 612/2718/2602 +f 612/2718/2602 632/2689/2574 611/2690/2575 +f 612/2718/2602 611/2690/2575 683/2719/2603 +f 683/2719/2603 611/2690/2575 682/2691/2576 +f 683/2719/2603 682/2691/2576 737/2720/2604 +f 737/2720/2604 682/2691/2576 738/2692/2577 +f 737/2720/2604 738/2692/2577 718/2721/2605 +f 718/2721/2605 738/2692/2577 717/2693/2578 +f 718/2721/2605 717/2693/2578 808/2722/2606 +f 808/2722/2606 717/2693/2578 809/2694/2579 +f 808/2722/2606 809/2694/2579 789/2723/2607 +f 789/2723/2607 809/2694/2579 788/2695/2580 +f 789/2723/2607 788/2695/2580 860/2724/2608 +f 860/2724/2608 788/2695/2580 859/2696/2581 +f 860/2724/2608 859/2696/2581 915/2725/2609 +f 915/2725/2609 859/2696/2581 916/2697/2582 +f 915/2725/2609 916/2697/2582 896/2726/2610 +f 896/2726/2610 916/2697/2582 895/2698/2583 +f 896/2726/2610 895/2698/2583 968/2727/2611 +f 968/2727/2611 895/2698/2583 967/2699/2584 +f 968/2727/2611 967/2699/2584 1023/2728/2612 +f 1023/2728/2612 967/2699/2584 1024/2700/2585 +f 1023/2728/2612 1024/2700/2585 1004/2729/2613 +f 1004/2729/2613 1024/2700/2585 1003/2701/2586 +f 1004/2729/2613 1003/2701/2586 1075/2730/2614 +f 1075/2730/2614 1003/2701/2586 1074/2702/2587 +f 1075/2730/2614 1074/2702/2587 1129/2731/2615 +f 1129/2731/2615 1074/2702/2587 1130/2703/2588 +f 1129/2731/2615 1130/2703/2588 1110/2732/2616 +f 1110/2732/2616 1130/2703/2588 1109/2704/2589 +f 1110/2732/2616 1109/2704/2589 1200/2733/2617 +f 1200/2733/2617 1109/2704/2589 1201/2705/2590 +f 1200/2733/2617 1201/2705/2590 1181/2734/2618 +f 1181/2734/2618 1201/2705/2590 1180/2706/2591 +f 1181/2734/2618 1180/2706/2591 1252/2735/2619 +f 1252/2735/2619 1180/2706/2591 1251/2707/2592 +f 1252/2735/2619 1251/2707/2592 1307/2736/2620 +f 1307/2736/2620 1251/2707/2592 1308/544/538 +f 1307/2736/2620 1308/544/538 1288/546/540 +f 261/2737/467 260/2708/465 327/2738/2621 +f 327/2738/2621 260/2708/465 326/2709/2593 +f 327/2738/2621 326/2709/2593 362/2739/2622 +f 362/2739/2622 326/2709/2593 361/2710/2594 +f 362/2739/2622 361/2710/2594 415/2740/2623 +f 415/2740/2623 361/2710/2594 416/2711/2595 +f 415/2740/2623 416/2711/2595 398/2741/2624 +f 398/2741/2624 416/2711/2595 397/2712/2596 +f 398/2741/2624 397/2712/2596 469/2742/2625 +f 469/2742/2625 397/2712/2596 468/2713/2597 +f 469/2742/2625 468/2713/2597 522/2743/2626 +f 522/2743/2626 468/2713/2597 523/2714/2598 +f 522/2743/2626 523/2714/2598 505/2744/2627 +f 505/2744/2627 523/2714/2598 504/2715/2599 +f 505/2744/2627 504/2715/2599 577/2745/2628 +f 577/2745/2628 504/2715/2599 576/2716/2600 +f 577/2745/2628 576/2716/2600 630/2746/2629 +f 630/2746/2629 576/2716/2600 631/2717/2601 +f 630/2746/2629 631/2717/2601 613/2747/2630 +f 613/2747/2630 631/2717/2601 612/2718/2602 +f 613/2747/2630 612/2718/2602 684/2748/2631 +f 684/2748/2631 612/2718/2602 683/2719/2603 +f 684/2748/2631 683/2719/2603 736/2749/2632 +f 736/2749/2632 683/2719/2603 737/2720/2604 +f 736/2749/2632 737/2720/2604 719/2750/2633 +f 719/2750/2633 737/2720/2604 718/2721/2605 +f 719/2750/2633 718/2721/2605 807/2751/2634 +f 807/2751/2634 718/2721/2605 808/2722/2606 +f 807/2751/2634 808/2722/2606 790/2752/2635 +f 790/2752/2635 808/2722/2606 789/2723/2607 +f 790/2752/2635 789/2723/2607 861/2753/2636 +f 861/2753/2636 789/2723/2607 860/2724/2608 +f 861/2753/2636 860/2724/2608 914/2754/2637 +f 914/2754/2637 860/2724/2608 915/2725/2609 +f 914/2754/2637 915/2725/2609 897/2755/2638 +f 897/2755/2638 915/2725/2609 896/2726/2610 +f 897/2755/2638 896/2726/2610 969/2756/2639 +f 969/2756/2639 896/2726/2610 968/2727/2611 +f 969/2756/2639 968/2727/2611 1022/2757/2640 +f 1022/2757/2640 968/2727/2611 1023/2728/2612 +f 1022/2757/2640 1023/2728/2612 1005/2758/2641 +f 1005/2758/2641 1023/2728/2612 1004/2729/2613 +f 1005/2758/2641 1004/2729/2613 1076/2759/2642 +f 1076/2759/2642 1004/2729/2613 1075/2730/2614 +f 1076/2759/2642 1075/2730/2614 1128/2760/2643 +f 1128/2760/2643 1075/2730/2614 1129/2731/2615 +f 1128/2760/2643 1129/2731/2615 1111/2761/2644 +f 1111/2761/2644 1129/2731/2615 1110/2732/2616 +f 1111/2761/2644 1110/2732/2616 1199/2762/2645 +f 1199/2762/2645 1110/2732/2616 1200/2733/2617 +f 1199/2762/2645 1200/2733/2617 1182/2763/2646 +f 1182/2763/2646 1200/2733/2617 1181/2734/2618 +f 1182/2763/2646 1181/2734/2618 1253/2764/2647 +f 1253/2764/2647 1181/2734/2618 1252/2735/2619 +f 1253/2764/2647 1252/2735/2619 1306/2765/2648 +f 1306/2765/2648 1252/2735/2619 1307/2736/2620 +f 1306/2765/2648 1307/2736/2620 1289/2766/2649 +f 1289/2766/2649 1307/2736/2620 1288/546/540 +f 1289/2766/2649 1288/546/540 1360/548/542 +f 262/2767/469 261/2737/467 328/2768/2650 +f 328/2768/2650 261/2737/467 327/2738/2621 +f 328/2768/2650 327/2738/2621 363/2769/2651 +f 363/2769/2651 327/2738/2621 362/2739/2622 +f 363/2769/2651 362/2739/2622 414/2770/2652 +f 414/2770/2652 362/2739/2622 415/2740/2623 +f 414/2770/2652 415/2740/2623 399/2771/2653 +f 399/2771/2653 415/2740/2623 398/2741/2624 +f 399/2771/2653 398/2741/2624 470/2772/2654 +f 470/2772/2654 398/2741/2624 469/2742/2625 +f 470/2772/2654 469/2742/2625 521/2773/2655 +f 521/2773/2655 469/2742/2625 522/2743/2626 +f 521/2773/2655 522/2743/2626 506/2774/2656 +f 506/2774/2656 522/2743/2626 505/2744/2627 +f 506/2774/2656 505/2744/2627 578/2775/2657 +f 578/2775/2657 505/2744/2627 577/2745/2628 +f 578/2775/2657 577/2745/2628 629/2776/2658 +f 629/2776/2658 577/2745/2628 630/2746/2629 +f 629/2776/2658 630/2746/2629 614/2777/2659 +f 614/2777/2659 630/2746/2629 613/2747/2630 +f 614/2777/2659 613/2747/2630 685/2778/2660 +f 685/2778/2660 613/2747/2630 684/2748/2631 +f 685/2778/2660 684/2748/2631 735/2779/2661 +f 735/2779/2661 684/2748/2631 736/2749/2632 +f 735/2779/2661 736/2749/2632 720/2780/2662 +f 720/2780/2662 736/2749/2632 719/2750/2633 +f 720/2780/2662 719/2750/2633 806/2781/2663 +f 806/2781/2663 719/2750/2633 807/2751/2634 +f 806/2781/2663 807/2751/2634 791/2782/2664 +f 791/2782/2664 807/2751/2634 790/2752/2635 +f 791/2782/2664 790/2752/2635 862/2783/2665 +f 862/2783/2665 790/2752/2635 861/2753/2636 +f 862/2783/2665 861/2753/2636 913/2784/2666 +f 913/2784/2666 861/2753/2636 914/2754/2637 +f 913/2784/2666 914/2754/2637 898/2785/2667 +f 898/2785/2667 914/2754/2637 897/2755/2638 +f 898/2785/2667 897/2755/2638 970/2786/2668 +f 970/2786/2668 897/2755/2638 969/2756/2639 +f 970/2786/2668 969/2756/2639 1021/2787/2669 +f 1021/2787/2669 969/2756/2639 1022/2757/2640 +f 1021/2787/2669 1022/2757/2640 1006/2788/2670 +f 1006/2788/2670 1022/2757/2640 1005/2758/2641 +f 1006/2788/2670 1005/2758/2641 1077/2789/2671 +f 1077/2789/2671 1005/2758/2641 1076/2759/2642 +f 1077/2789/2671 1076/2759/2642 1127/2790/2672 +f 1127/2790/2672 1076/2759/2642 1128/2760/2643 +f 1127/2790/2672 1128/2760/2643 1112/2791/2673 +f 1112/2791/2673 1128/2760/2643 1111/2761/2644 +f 1112/2791/2673 1111/2761/2644 1198/2792/2674 +f 1198/2792/2674 1111/2761/2644 1199/2762/2645 +f 1198/2792/2674 1199/2762/2645 1183/2793/2675 +f 1183/2793/2675 1199/2762/2645 1182/2763/2646 +f 1183/2793/2675 1182/2763/2646 1254/2794/2676 +f 1254/2794/2676 1182/2763/2646 1253/2764/2647 +f 1254/2794/2676 1253/2764/2647 1305/2795/2677 +f 1305/2795/2677 1253/2764/2647 1306/2765/2648 +f 1305/2795/2677 1306/2765/2648 1290/2796/2678 +f 1290/2796/2678 1306/2765/2648 1289/2766/2649 +f 1290/2796/2678 1289/2766/2649 1361/2797/2679 +f 1361/2797/2679 1289/2766/2649 1360/548/542 +f 1361/2797/2679 1360/548/542 1412/550/544 +f 263/2798/471 262/2767/469 329/2799/2680 +f 329/2799/2680 262/2767/469 328/2768/2650 +f 329/2799/2680 328/2768/2650 364/2800/2681 +f 364/2800/2681 328/2768/2650 363/2769/2651 +f 364/2800/2681 363/2769/2651 413/2801/2682 +f 413/2801/2682 363/2769/2651 414/2770/2652 +f 413/2801/2682 414/2770/2652 400/2802/2683 +f 400/2802/2683 414/2770/2652 399/2771/2653 +f 400/2802/2683 399/2771/2653 471/2803/2684 +f 471/2803/2684 399/2771/2653 470/2772/2654 +f 471/2803/2684 470/2772/2654 520/2804/2685 +f 520/2804/2685 470/2772/2654 521/2773/2655 +f 520/2804/2685 521/2773/2655 507/2805/2686 +f 507/2805/2686 521/2773/2655 506/2774/2656 +f 507/2805/2686 506/2774/2656 579/2806/2687 +f 579/2806/2687 506/2774/2656 578/2775/2657 +f 579/2806/2687 578/2775/2657 628/2807/2688 +f 628/2807/2688 578/2775/2657 629/2776/2658 +f 628/2807/2688 629/2776/2658 615/2808/2689 +f 615/2808/2689 629/2776/2658 614/2777/2659 +f 615/2808/2689 614/2777/2659 686/2809/2690 +f 686/2809/2690 614/2777/2659 685/2778/2660 +f 686/2809/2690 685/2778/2660 734/2810/2691 +f 734/2810/2691 685/2778/2660 735/2779/2661 +f 734/2810/2691 735/2779/2661 721/2811/2692 +f 721/2811/2692 735/2779/2661 720/2780/2662 +f 721/2811/2692 720/2780/2662 805/2812/2693 +f 805/2812/2693 720/2780/2662 806/2781/2663 +f 805/2812/2693 806/2781/2663 792/2813/2694 +f 792/2813/2694 806/2781/2663 791/2782/2664 +f 792/2813/2694 791/2782/2664 863/2814/2695 +f 863/2814/2695 791/2782/2664 862/2783/2665 +f 863/2814/2695 862/2783/2665 912/2815/2696 +f 912/2815/2696 862/2783/2665 913/2784/2666 +f 912/2815/2696 913/2784/2666 899/2816/2697 +f 899/2816/2697 913/2784/2666 898/2785/2667 +f 899/2816/2697 898/2785/2667 971/2817/2698 +f 971/2817/2698 898/2785/2667 970/2786/2668 +f 971/2817/2698 970/2786/2668 1020/2818/2699 +f 1020/2818/2699 970/2786/2668 1021/2787/2669 +f 1020/2818/2699 1021/2787/2669 1007/2819/2700 +f 1007/2819/2700 1021/2787/2669 1006/2788/2670 +f 1007/2819/2700 1006/2788/2670 1078/2820/2701 +f 1078/2820/2701 1006/2788/2670 1077/2789/2671 +f 1078/2820/2701 1077/2789/2671 1126/2821/2702 +f 1126/2821/2702 1077/2789/2671 1127/2790/2672 +f 1126/2821/2702 1127/2790/2672 1113/2822/2703 +f 1113/2822/2703 1127/2790/2672 1112/2791/2673 +f 1113/2822/2703 1112/2791/2673 1197/2823/2704 +f 1197/2823/2704 1112/2791/2673 1198/2792/2674 +f 1197/2823/2704 1198/2792/2674 1184/2824/2705 +f 1184/2824/2705 1198/2792/2674 1183/2793/2675 +f 1184/2824/2705 1183/2793/2675 1255/2825/2706 +f 1255/2825/2706 1183/2793/2675 1254/2794/2676 +f 1255/2825/2706 1254/2794/2676 1304/2826/2707 +f 1304/2826/2707 1254/2794/2676 1305/2795/2677 +f 1304/2826/2707 1305/2795/2677 1291/2827/2708 +f 1291/2827/2708 1305/2795/2677 1290/2796/2678 +f 1291/2827/2708 1290/2796/2678 1362/2828/2709 +f 1362/2828/2709 1290/2796/2678 1361/2797/2679 +f 1362/2828/2709 1361/2797/2679 1411/2829/2710 +f 1411/2829/2710 1361/2797/2679 1412/550/544 +f 1411/2829/2710 1412/550/544 1398/552/546 +f 264/2830/473 263/2798/471 330/2831/2711 +f 330/2831/2711 263/2798/471 329/2799/2680 +f 330/2831/2711 329/2799/2680 365/2832/2712 +f 365/2832/2712 329/2799/2680 364/2800/2681 +f 365/2832/2712 364/2800/2681 412/2833/2713 +f 412/2833/2713 364/2800/2681 413/2801/2682 +f 412/2833/2713 413/2801/2682 401/2834/2714 +f 401/2834/2714 413/2801/2682 400/2802/2683 +f 401/2834/2714 400/2802/2683 472/2835/2715 +f 472/2835/2715 400/2802/2683 471/2803/2684 +f 472/2835/2715 471/2803/2684 519/2836/2716 +f 519/2836/2716 471/2803/2684 520/2804/2685 +f 519/2836/2716 520/2804/2685 508/2837/2717 +f 508/2837/2717 520/2804/2685 507/2805/2686 +f 508/2837/2717 507/2805/2686 580/2838/2718 +f 580/2838/2718 507/2805/2686 579/2806/2687 +f 580/2838/2718 579/2806/2687 627/2839/2719 +f 627/2839/2719 579/2806/2687 628/2807/2688 +f 627/2839/2719 628/2807/2688 616/2840/2720 +f 616/2840/2720 628/2807/2688 615/2808/2689 +f 616/2840/2720 615/2808/2689 687/2841/2721 +f 687/2841/2721 615/2808/2689 686/2809/2690 +f 687/2841/2721 686/2809/2690 733/2842/2722 +f 733/2842/2722 686/2809/2690 734/2810/2691 +f 733/2842/2722 734/2810/2691 722/2843/2723 +f 722/2843/2723 734/2810/2691 721/2811/2692 +f 722/2843/2723 721/2811/2692 804/2844/2724 +f 804/2844/2724 721/2811/2692 805/2812/2693 +f 804/2844/2724 805/2812/2693 793/2845/2725 +f 793/2845/2725 805/2812/2693 792/2813/2694 +f 793/2845/2725 792/2813/2694 864/2846/2726 +f 864/2846/2726 792/2813/2694 863/2814/2695 +f 864/2846/2726 863/2814/2695 911/2847/2727 +f 911/2847/2727 863/2814/2695 912/2815/2696 +f 911/2847/2727 912/2815/2696 900/2848/2728 +f 900/2848/2728 912/2815/2696 899/2816/2697 +f 900/2848/2728 899/2816/2697 972/2849/2729 +f 972/2849/2729 899/2816/2697 971/2817/2698 +f 972/2849/2729 971/2817/2698 1019/2850/2730 +f 1019/2850/2730 971/2817/2698 1020/2818/2699 +f 1019/2850/2730 1020/2818/2699 1008/2851/2731 +f 1008/2851/2731 1020/2818/2699 1007/2819/2700 +f 1008/2851/2731 1007/2819/2700 1079/2852/2732 +f 1079/2852/2732 1007/2819/2700 1078/2820/2701 +f 1079/2852/2732 1078/2820/2701 1125/2853/2733 +f 1125/2853/2733 1078/2820/2701 1126/2821/2702 +f 1125/2853/2733 1126/2821/2702 1114/2854/2734 +f 1114/2854/2734 1126/2821/2702 1113/2822/2703 +f 1114/2854/2734 1113/2822/2703 1196/2855/2735 +f 1196/2855/2735 1113/2822/2703 1197/2823/2704 +f 1196/2855/2735 1197/2823/2704 1185/2856/2736 +f 1185/2856/2736 1197/2823/2704 1184/2824/2705 +f 1185/2856/2736 1184/2824/2705 1256/2857/2737 +f 1256/2857/2737 1184/2824/2705 1255/2825/2706 +f 1256/2857/2737 1255/2825/2706 1303/2858/2738 +f 1303/2858/2738 1255/2825/2706 1304/2826/2707 +f 1303/2858/2738 1304/2826/2707 1292/2859/2739 +f 1292/2859/2739 1304/2826/2707 1291/2827/2708 +f 1292/2859/2739 1291/2827/2708 1363/2860/2740 +f 1363/2860/2740 1291/2827/2708 1362/2828/2709 +f 1363/2860/2740 1362/2828/2709 1410/2861/2741 +f 1410/2861/2741 1362/2828/2709 1411/2829/2710 +f 1410/2861/2741 1411/2829/2710 1399/2862/2742 +f 1399/2862/2742 1411/2829/2710 1398/552/546 +f 1399/2862/2742 1398/552/546 1471/554/548 +f 265/2863/475 264/2830/473 331/2864/2743 +f 331/2864/2743 264/2830/473 330/2831/2711 +f 331/2864/2743 330/2831/2711 366/2865/2744 +f 366/2865/2744 330/2831/2711 365/2832/2712 +f 366/2865/2744 365/2832/2712 411/2866/2745 +f 411/2866/2745 365/2832/2712 412/2833/2713 +f 411/2866/2745 412/2833/2713 402/2867/2746 +f 402/2867/2746 412/2833/2713 401/2834/2714 +f 402/2867/2746 401/2834/2714 473/2868/2747 +f 473/2868/2747 401/2834/2714 472/2835/2715 +f 473/2868/2747 472/2835/2715 518/2869/2748 +f 518/2869/2748 472/2835/2715 519/2836/2716 +f 518/2869/2748 519/2836/2716 509/2870/2749 +f 509/2870/2749 519/2836/2716 508/2837/2717 +f 509/2870/2749 508/2837/2717 581/2871/2750 +f 581/2871/2750 508/2837/2717 580/2838/2718 +f 581/2871/2750 580/2838/2718 626/2872/2751 +f 626/2872/2751 580/2838/2718 627/2839/2719 +f 626/2872/2751 627/2839/2719 617/2873/2752 +f 617/2873/2752 627/2839/2719 616/2840/2720 +f 617/2873/2752 616/2840/2720 688/2874/2753 +f 688/2874/2753 616/2840/2720 687/2841/2721 +f 688/2874/2753 687/2841/2721 732/2875/2754 +f 732/2875/2754 687/2841/2721 733/2842/2722 +f 732/2875/2754 733/2842/2722 723/2876/2755 +f 723/2876/2755 733/2842/2722 722/2843/2723 +f 723/2876/2755 722/2843/2723 803/2877/2756 +f 803/2877/2756 722/2843/2723 804/2844/2724 +f 803/2877/2756 804/2844/2724 794/2878/2757 +f 794/2878/2757 804/2844/2724 793/2845/2725 +f 794/2878/2757 793/2845/2725 865/2879/2758 +f 865/2879/2758 793/2845/2725 864/2846/2726 +f 865/2879/2758 864/2846/2726 910/2880/2759 +f 910/2880/2759 864/2846/2726 911/2847/2727 +f 910/2880/2759 911/2847/2727 901/2881/2760 +f 901/2881/2760 911/2847/2727 900/2848/2728 +f 901/2881/2760 900/2848/2728 973/2882/2761 +f 973/2882/2761 900/2848/2728 972/2849/2729 +f 973/2882/2761 972/2849/2729 1018/2883/2762 +f 1018/2883/2762 972/2849/2729 1019/2850/2730 +f 1018/2883/2762 1019/2850/2730 1009/2884/2763 +f 1009/2884/2763 1019/2850/2730 1008/2851/2731 +f 1009/2884/2763 1008/2851/2731 1080/2885/2764 +f 1080/2885/2764 1008/2851/2731 1079/2852/2732 +f 1080/2885/2764 1079/2852/2732 1124/2886/2765 +f 1124/2886/2765 1079/2852/2732 1125/2853/2733 +f 1124/2886/2765 1125/2853/2733 1115/2887/2766 +f 1115/2887/2766 1125/2853/2733 1114/2854/2734 +f 1115/2887/2766 1114/2854/2734 1195/2888/2767 +f 1195/2888/2767 1114/2854/2734 1196/2855/2735 +f 1195/2888/2767 1196/2855/2735 1186/2889/2768 +f 1186/2889/2768 1196/2855/2735 1185/2856/2736 +f 1186/2889/2768 1185/2856/2736 1257/2890/2769 +f 1257/2890/2769 1185/2856/2736 1256/2857/2737 +f 1257/2890/2769 1256/2857/2737 1302/2891/2770 +f 1302/2891/2770 1256/2857/2737 1303/2858/2738 +f 1302/2891/2770 1303/2858/2738 1293/2892/2771 +f 1293/2892/2771 1303/2858/2738 1292/2859/2739 +f 1293/2892/2771 1292/2859/2739 1364/2893/2772 +f 1364/2893/2772 1292/2859/2739 1363/2860/2740 +f 1364/2893/2772 1363/2860/2740 1409/2894/2773 +f 1409/2894/2773 1363/2860/2740 1410/2861/2741 +f 1409/2894/2773 1410/2861/2741 1400/2895/2774 +f 1400/2895/2774 1410/2861/2741 1399/2862/2742 +f 1400/2895/2774 1399/2862/2742 1472/2896/2775 +f 1472/2896/2775 1399/2862/2742 1471/554/548 +f 1472/2896/2775 1471/554/548 1517/556/550 +f 266/2897/477 265/2863/475 332/2898/2776 +f 332/2898/2776 265/2863/475 331/2864/2743 +f 332/2898/2776 331/2864/2743 367/2899/2777 +f 367/2899/2777 331/2864/2743 366/2865/2744 +f 367/2899/2777 366/2865/2744 410/2900/2778 +f 410/2900/2778 366/2865/2744 411/2866/2745 +f 410/2900/2778 411/2866/2745 403/2901/2779 +f 403/2901/2779 411/2866/2745 402/2867/2746 +f 403/2901/2779 402/2867/2746 474/2902/2780 +f 474/2902/2780 402/2867/2746 473/2868/2747 +f 474/2902/2780 473/2868/2747 517/2903/2781 +f 517/2903/2781 473/2868/2747 518/2869/2748 +f 517/2903/2781 518/2869/2748 510/2904/2782 +f 510/2904/2782 518/2869/2748 509/2870/2749 +f 510/2904/2782 509/2870/2749 582/2905/2783 +f 582/2905/2783 509/2870/2749 581/2871/2750 +f 582/2905/2783 581/2871/2750 625/2906/2784 +f 625/2906/2784 581/2871/2750 626/2872/2751 +f 625/2906/2784 626/2872/2751 618/2907/2785 +f 618/2907/2785 626/2872/2751 617/2873/2752 +f 618/2907/2785 617/2873/2752 689/2908/2786 +f 689/2908/2786 617/2873/2752 688/2874/2753 +f 689/2908/2786 688/2874/2753 731/2909/2787 +f 731/2909/2787 688/2874/2753 732/2875/2754 +f 731/2909/2787 732/2875/2754 724/2910/2788 +f 724/2910/2788 732/2875/2754 723/2876/2755 +f 724/2910/2788 723/2876/2755 802/2911/2789 +f 802/2911/2789 723/2876/2755 803/2877/2756 +f 802/2911/2789 803/2877/2756 795/2912/2790 +f 795/2912/2790 803/2877/2756 794/2878/2757 +f 795/2912/2790 794/2878/2757 866/2913/2791 +f 866/2913/2791 794/2878/2757 865/2879/2758 +f 866/2913/2791 865/2879/2758 909/2914/2792 +f 909/2914/2792 865/2879/2758 910/2880/2759 +f 909/2914/2792 910/2880/2759 902/2915/2793 +f 902/2915/2793 910/2880/2759 901/2881/2760 +f 902/2915/2793 901/2881/2760 974/2916/2794 +f 974/2916/2794 901/2881/2760 973/2882/2761 +f 974/2916/2794 973/2882/2761 1017/2917/2795 +f 1017/2917/2795 973/2882/2761 1018/2883/2762 +f 1017/2917/2795 1018/2883/2762 1010/2918/2796 +f 1010/2918/2796 1018/2883/2762 1009/2884/2763 +f 1010/2918/2796 1009/2884/2763 1081/2919/2797 +f 1081/2919/2797 1009/2884/2763 1080/2885/2764 +f 1081/2919/2797 1080/2885/2764 1123/2920/2798 +f 1123/2920/2798 1080/2885/2764 1124/2886/2765 +f 1123/2920/2798 1124/2886/2765 1116/2921/2799 +f 1116/2921/2799 1124/2886/2765 1115/2887/2766 +f 1116/2921/2799 1115/2887/2766 1194/2922/2800 +f 1194/2922/2800 1115/2887/2766 1195/2888/2767 +f 1194/2922/2800 1195/2888/2767 1187/2923/2801 +f 1187/2923/2801 1195/2888/2767 1186/2889/2768 +f 1187/2923/2801 1186/2889/2768 1258/2924/2802 +f 1258/2924/2802 1186/2889/2768 1257/2890/2769 +f 1258/2924/2802 1257/2890/2769 1301/2925/2803 +f 1301/2925/2803 1257/2890/2769 1302/2891/2770 +f 1301/2925/2803 1302/2891/2770 1294/2926/2804 +f 1294/2926/2804 1302/2891/2770 1293/2892/2771 +f 1294/2926/2804 1293/2892/2771 1365/2927/2805 +f 1365/2927/2805 1293/2892/2771 1364/2893/2772 +f 1365/2927/2805 1364/2893/2772 1408/2928/2806 +f 1408/2928/2806 1364/2893/2772 1409/2894/2773 +f 1408/2928/2806 1409/2894/2773 1401/2929/2807 +f 1401/2929/2807 1409/2894/2773 1400/2895/2774 +f 1401/2929/2807 1400/2895/2774 1473/2930/2808 +f 1473/2930/2808 1400/2895/2774 1472/2896/2775 +f 1473/2930/2808 1472/2896/2775 1516/2931/2809 +f 1516/2931/2809 1472/2896/2775 1517/556/550 +f 1516/2931/2809 1517/556/550 1509/558/552 +f 267/2932/479 266/2897/477 333/2933/2810 +f 333/2933/2810 266/2897/477 332/2898/2776 +f 333/2933/2810 332/2898/2776 368/2934/2811 +f 368/2934/2811 332/2898/2776 367/2899/2777 +f 368/2934/2811 367/2899/2777 409/2935/2812 +f 409/2935/2812 367/2899/2777 410/2900/2778 +f 409/2935/2812 410/2900/2778 404/2936/2813 +f 404/2936/2813 410/2900/2778 403/2901/2779 +f 404/2936/2813 403/2901/2779 475/2937/2814 +f 475/2937/2814 403/2901/2779 474/2902/2780 +f 475/2937/2814 474/2902/2780 516/2938/2815 +f 516/2938/2815 474/2902/2780 517/2903/2781 +f 516/2938/2815 517/2903/2781 511/2939/2816 +f 511/2939/2816 517/2903/2781 510/2904/2782 +f 511/2939/2816 510/2904/2782 583/2940/2817 +f 583/2940/2817 510/2904/2782 582/2905/2783 +f 583/2940/2817 582/2905/2783 624/2941/2818 +f 624/2941/2818 582/2905/2783 625/2906/2784 +f 624/2941/2818 625/2906/2784 619/2942/2819 +f 619/2942/2819 625/2906/2784 618/2907/2785 +f 619/2942/2819 618/2907/2785 690/2943/2820 +f 690/2943/2820 618/2907/2785 689/2908/2786 +f 690/2943/2820 689/2908/2786 730/2944/2821 +f 730/2944/2821 689/2908/2786 731/2909/2787 +f 730/2944/2821 731/2909/2787 725/2945/2822 +f 725/2945/2822 731/2909/2787 724/2910/2788 +f 725/2945/2822 724/2910/2788 801/2946/2823 +f 801/2946/2823 724/2910/2788 802/2911/2789 +f 801/2946/2823 802/2911/2789 796/2947/2824 +f 796/2947/2824 802/2911/2789 795/2912/2790 +f 796/2947/2824 795/2912/2790 867/2948/2825 +f 867/2948/2825 795/2912/2790 866/2913/2791 +f 867/2948/2825 866/2913/2791 908/2949/2826 +f 908/2949/2826 866/2913/2791 909/2914/2792 +f 908/2949/2826 909/2914/2792 903/2950/2827 +f 903/2950/2827 909/2914/2792 902/2915/2793 +f 903/2950/2827 902/2915/2793 975/2951/2828 +f 975/2951/2828 902/2915/2793 974/2916/2794 +f 975/2951/2828 974/2916/2794 1016/2952/2829 +f 1016/2952/2829 974/2916/2794 1017/2917/2795 +f 1016/2952/2829 1017/2917/2795 1011/2953/2830 +f 1011/2953/2830 1017/2917/2795 1010/2918/2796 +f 1011/2953/2830 1010/2918/2796 1082/2954/2831 +f 1082/2954/2831 1010/2918/2796 1081/2919/2797 +f 1082/2954/2831 1081/2919/2797 1122/2955/2832 +f 1122/2955/2832 1081/2919/2797 1123/2920/2798 +f 1122/2955/2832 1123/2920/2798 1117/2956/2833 +f 1117/2956/2833 1123/2920/2798 1116/2921/2799 +f 1117/2956/2833 1116/2921/2799 1193/2957/2834 +f 1193/2957/2834 1116/2921/2799 1194/2922/2800 +f 1193/2957/2834 1194/2922/2800 1188/2958/2835 +f 1188/2958/2835 1194/2922/2800 1187/2923/2801 +f 1188/2958/2835 1187/2923/2801 1259/2959/2836 +f 1259/2959/2836 1187/2923/2801 1258/2924/2802 +f 1259/2959/2836 1258/2924/2802 1300/2960/2837 +f 1300/2960/2837 1258/2924/2802 1301/2925/2803 +f 1300/2960/2837 1301/2925/2803 1295/2961/2838 +f 1295/2961/2838 1301/2925/2803 1294/2926/2804 +f 1295/2961/2838 1294/2926/2804 1366/2962/2839 +f 1366/2962/2839 1294/2926/2804 1365/2927/2805 +f 1366/2962/2839 1365/2927/2805 1407/2963/2840 +f 1407/2963/2840 1365/2927/2805 1408/2928/2806 +f 1407/2963/2840 1408/2928/2806 1402/2964/2841 +f 1402/2964/2841 1408/2928/2806 1401/2929/2807 +f 1402/2964/2841 1401/2929/2807 1474/2965/2842 +f 1474/2965/2842 1401/2929/2807 1473/2930/2808 +f 1474/2965/2842 1473/2930/2808 1515/2966/2843 +f 1515/2966/2843 1473/2930/2808 1516/2931/2809 +f 1515/2966/2843 1516/2931/2809 1510/2967/2844 +f 1510/2967/2844 1516/2931/2809 1509/558/552 +f 1510/2967/2844 1509/558/552 1581/560/554 +f 335/2305/2217 269/2307/483 268/2968/481 +f 268/2968/481 267/2932/479 334/2969/2845 +f 334/2969/2845 267/2932/479 333/2933/2810 +f 334/2969/2845 333/2933/2810 369/2970/2846 +f 369/2970/2846 333/2933/2810 368/2934/2811 +f 369/2970/2846 368/2934/2811 408/2971/2847 +f 408/2971/2847 368/2934/2811 409/2935/2812 +f 408/2971/2847 409/2935/2812 405/2972/2848 +f 405/2972/2848 409/2935/2812 404/2936/2813 +f 405/2972/2848 404/2936/2813 476/2973/2849 +f 476/2973/2849 404/2936/2813 475/2937/2814 +f 476/2973/2849 475/2937/2814 515/2974/2850 +f 515/2974/2850 475/2937/2814 516/2938/2815 +f 515/2974/2850 516/2938/2815 512/2975/2851 +f 512/2975/2851 516/2938/2815 511/2939/2816 +f 512/2975/2851 511/2939/2816 584/2976/2852 +f 584/2976/2852 511/2939/2816 583/2940/2817 +f 584/2976/2852 583/2940/2817 623/2977/2853 +f 623/2977/2853 583/2940/2817 624/2941/2818 +f 623/2977/2853 624/2941/2818 620/2978/2854 +f 620/2978/2854 624/2941/2818 619/2942/2819 +f 620/2978/2854 619/2942/2819 691/2979/2855 +f 691/2979/2855 619/2942/2819 690/2943/2820 +f 691/2979/2855 690/2943/2820 729/2980/2856 +f 729/2980/2856 690/2943/2820 730/2944/2821 +f 729/2980/2856 730/2944/2821 726/2981/2857 +f 726/2981/2857 730/2944/2821 725/2945/2822 +f 726/2981/2857 725/2945/2822 800/2982/2858 +f 800/2982/2858 725/2945/2822 801/2946/2823 +f 800/2982/2858 801/2946/2823 797/2983/2859 +f 797/2983/2859 801/2946/2823 796/2947/2824 +f 797/2983/2859 796/2947/2824 868/2984/2860 +f 868/2984/2860 796/2947/2824 867/2948/2825 +f 868/2984/2860 867/2948/2825 907/2985/2861 +f 907/2985/2861 867/2948/2825 908/2949/2826 +f 907/2985/2861 908/2949/2826 904/2986/2862 +f 904/2986/2862 908/2949/2826 903/2950/2827 +f 904/2986/2862 903/2950/2827 976/2987/2863 +f 976/2987/2863 903/2950/2827 975/2951/2828 +f 976/2987/2863 975/2951/2828 1015/2988/2864 +f 1015/2988/2864 975/2951/2828 1016/2952/2829 +f 1015/2988/2864 1016/2952/2829 1012/2989/2865 +f 1012/2989/2865 1016/2952/2829 1011/2953/2830 +f 1012/2989/2865 1011/2953/2830 1083/2990/2866 +f 1083/2990/2866 1011/2953/2830 1082/2954/2831 +f 1083/2990/2866 1082/2954/2831 1121/2991/2867 +f 1121/2991/2867 1082/2954/2831 1122/2955/2832 +f 1121/2991/2867 1122/2955/2832 1118/2992/2868 +f 1118/2992/2868 1122/2955/2832 1117/2956/2833 +f 1118/2992/2868 1117/2956/2833 1192/2993/2869 +f 1192/2993/2869 1117/2956/2833 1193/2957/2834 +f 1192/2993/2869 1193/2957/2834 1189/2994/2870 +f 1189/2994/2870 1193/2957/2834 1188/2958/2835 +f 1189/2994/2870 1188/2958/2835 1260/2995/2871 +f 1260/2995/2871 1188/2958/2835 1259/2959/2836 +f 1260/2995/2871 1259/2959/2836 1299/2996/2872 +f 1299/2996/2872 1259/2959/2836 1300/2960/2837 +f 1299/2996/2872 1300/2960/2837 1296/2997/2873 +f 1296/2997/2873 1300/2960/2837 1295/2961/2838 +f 1296/2997/2873 1295/2961/2838 1367/2998/2874 +f 1367/2998/2874 1295/2961/2838 1366/2962/2839 +f 1367/2998/2874 1366/2962/2839 1406/2999/2875 +f 1406/2999/2875 1366/2962/2839 1407/2963/2840 +f 1406/2999/2875 1407/2963/2840 1403/3000/2876 +f 1403/3000/2876 1407/2963/2840 1402/2964/2841 +f 1403/3000/2876 1402/2964/2841 1475/3001/2877 +f 1475/3001/2877 1402/2964/2841 1474/2965/2842 +f 1475/3001/2877 1474/2965/2842 1514/3002/2878 +f 1514/3002/2878 1474/2965/2842 1515/2966/2843 +f 1514/3002/2878 1515/2966/2843 1511/3003/2879 +f 1511/3003/2879 1515/2966/2843 1510/2967/2844 +f 1511/3003/2879 1510/2967/2844 1582/3004/2880 +f 1582/3004/2880 1510/2967/2844 1581/560/554 +f 1582/3004/2880 1581/560/554 1620/562/556 +f 2367/2221/2176 233/3005/485 2296/1096/1079 +f 1297/2250/2189 233/3006/485 1298/2251/2190 +f 370/2303/2216 335/2305/2217 334/2969/2845 +f 334/2969/2845 335/2305/2217 268/2968/481 +f 370/2303/2216 334/2969/2845 369/2970/2846 +f 407/2301/2215 370/2303/2216 369/2970/2846 +f 407/2301/2215 369/2970/2846 408/2971/2847 +f 407/2301/2215 408/2971/2847 406/2299/2214 +f 406/2299/2214 408/2971/2847 405/2972/2848 +f 406/2299/2214 405/2972/2848 477/2297/2213 +f 477/2297/2213 405/2972/2848 476/2973/2849 +f 477/2297/2213 476/2973/2849 514/2295/2212 +f 514/2295/2212 476/2973/2849 515/2974/2850 +f 514/2295/2212 515/2974/2850 513/2293/2211 +f 513/2293/2211 515/2974/2850 512/2975/2851 +f 513/2293/2211 512/2975/2851 585/2291/2210 +f 585/2291/2210 512/2975/2851 584/2976/2852 +f 585/2291/2210 584/2976/2852 622/2289/2209 +f 622/2289/2209 584/2976/2852 623/2977/2853 +f 622/2289/2209 623/2977/2853 621/2287/2208 +f 621/2287/2208 623/2977/2853 620/2978/2854 +f 621/2287/2208 620/2978/2854 692/2285/2207 +f 692/2285/2207 620/2978/2854 691/2979/2855 +f 692/2285/2207 691/2979/2855 728/2283/2206 +f 728/2283/2206 691/2979/2855 729/2980/2856 +f 728/2283/2206 729/2980/2856 727/2281/2205 +f 727/2281/2205 729/2980/2856 726/2981/2857 +f 727/2281/2205 726/2981/2857 799/2279/2204 +f 799/2279/2204 726/2981/2857 800/2982/2858 +f 799/2279/2204 800/2982/2858 798/2277/2203 +f 798/2277/2203 800/2982/2858 797/2983/2859 +f 798/2277/2203 797/2983/2859 869/2275/2202 +f 869/2275/2202 797/2983/2859 868/2984/2860 +f 869/2275/2202 868/2984/2860 906/2273/2201 +f 906/2273/2201 868/2984/2860 907/2985/2861 +f 906/2273/2201 907/2985/2861 905/2271/2200 +f 905/2271/2200 907/2985/2861 904/2986/2862 +f 905/2271/2200 904/2986/2862 977/2269/2199 +f 977/2269/2199 904/2986/2862 976/2987/2863 +f 977/2269/2199 976/2987/2863 1014/2267/2198 +f 1014/2267/2198 976/2987/2863 1015/2988/2864 +f 1014/2267/2198 1015/2988/2864 1013/2265/2197 +f 1013/2265/2197 1015/2988/2864 1012/2989/2865 +f 1013/2265/2197 1012/2989/2865 1084/2263/2196 +f 1084/2263/2196 1012/2989/2865 1083/2990/2866 +f 1084/2263/2196 1083/2990/2866 1120/2261/2195 +f 1120/2261/2195 1083/2990/2866 1121/2991/2867 +f 1120/2261/2195 1121/2991/2867 1119/2259/2194 +f 1119/2259/2194 1121/2991/2867 1118/2992/2868 +f 1119/2259/2194 1118/2992/2868 1191/2257/2193 +f 1191/2257/2193 1118/2992/2868 1192/2993/2869 +f 1191/2257/2193 1192/2993/2869 1190/2255/2192 +f 1190/2255/2192 1192/2993/2869 1189/2994/2870 +f 1190/2255/2192 1189/2994/2870 1261/2253/2191 +f 1261/2253/2191 1189/2994/2870 1260/2995/2871 +f 1261/2253/2191 1260/2995/2871 1298/2251/2190 +f 1298/2251/2190 1260/2995/2871 1299/2996/2872 +f 1298/2251/2190 1299/2996/2872 1297/2250/2189 +f 1297/2250/2189 1299/2996/2872 1296/2997/2873 +f 1297/2250/2189 1296/2997/2873 1368/2248/2188 +f 1368/2248/2188 1296/2997/2873 1367/2998/2874 +f 1368/2248/2188 1367/2998/2874 1405/2246/2187 +f 1405/2246/2187 1367/2998/2874 1406/2999/2875 +f 1405/2246/2187 1406/2999/2875 1404/2244/2186 +f 1404/2244/2186 1406/2999/2875 1403/3000/2876 +f 1404/2244/2186 1403/3000/2876 1476/2242/2185 +f 1476/2242/2185 1403/3000/2876 1475/3001/2877 +f 1476/2242/2185 1475/3001/2877 1513/2240/2184 +f 1513/2240/2184 1475/3001/2877 1514/3002/2878 +f 1513/2240/2184 1514/3002/2878 1512/2238/2183 +f 1512/2238/2183 1514/3002/2878 1511/3003/2879 +f 1512/2238/2183 1511/3003/2879 1583/2236/2182 +f 1583/2236/2182 1511/3003/2879 1582/3004/2880 +f 1583/2236/2182 1582/3004/2880 1619/2234/2181 +f 1619/2234/2181 1582/3004/2880 1620/562/556 +f 1619/2234/2181 1620/562/556 1618/564/558 +f 549/606/598 478/643/634 479/607/599 +f 479/607/599 478/643/634 551/3007/2881 +f 479/607/599 551/3007/2881 552/608/600 +f 552/608/600 551/3007/2881 655/3008/2882 +f 552/608/600 655/3008/2882 654/609/601 +f 654/609/601 655/3008/2882 589/3009/2883 +f 654/609/601 589/3009/2883 590/610/602 +f 590/610/602 589/3009/2883 661/3010/2884 +f 590/610/602 661/3010/2884 662/611/603 +f 662/611/603 661/3010/2884 758/3011/2885 +f 662/611/603 758/3011/2885 757/612/604 +f 757/612/604 758/3011/2885 698/3012/2886 +f 757/612/604 698/3012/2886 699/613/605 +f 699/613/605 698/3012/2886 827/3013/2887 +f 699/613/605 827/3013/2887 826/614/606 +f 826/614/606 827/3013/2887 771/3014/2888 +f 826/614/606 771/3014/2888 772/615/607 +f 772/615/607 771/3014/2888 843/3015/2889 +f 772/615/607 843/3015/2889 844/616/608 +f 844/616/608 843/3015/2889 931/3016/2890 +f 844/616/608 931/3016/2890 930/617/609 +f 930/617/609 931/3016/2890 881/3017/2891 +f 930/617/609 881/3017/2891 882/618/610 +f 882/618/610 881/3017/2891 954/3018/2892 +f 882/618/610 954/3018/2892 955/619/611 +f 955/619/611 954/3018/2892 1036/3019/2893 +f 955/619/611 1036/3019/2893 1035/620/612 +f 1035/620/612 1036/3019/2893 992/3020/2894 +f 1035/620/612 992/3020/2894 993/621/613 +f 993/621/613 992/3020/2894 1064/3021/2895 +f 993/621/613 1064/3021/2895 1065/622/614 +f 1065/622/614 1064/3021/2895 1139/3022/2896 +f 1065/622/614 1139/3022/2896 1138/623/615 +f 1138/623/615 1139/3022/2896 1101/3023/2897 +f 1138/623/615 1101/3023/2897 1102/624/616 +f 1102/624/616 1101/3023/2897 1208/3024/2898 +f 1102/624/616 1208/3024/2898 1207/625/617 +f 1207/625/617 1208/3024/2898 1174/3025/2899 +f 1207/625/617 1174/3025/2899 1175/626/618 +f 1175/626/618 1174/3025/2899 1246/3026/2900 +f 1175/626/618 1246/3026/2900 1247/627/619 +f 1247/627/619 1246/3026/2900 1312/3027/2901 +f 1247/627/619 1312/3027/2901 1311/628/620 +f 1311/628/620 1312/3027/2901 1284/3028/2902 +f 1311/628/620 1284/3028/2902 1285/629/621 +f 1285/629/621 1284/3028/2902 1356/3029/2903 +f 1285/629/621 1356/3029/2903 1357/630/622 +f 1357/630/622 1356/3029/2903 1416/3030/2904 +f 1357/630/622 1416/3030/2904 1415/631/623 +f 1415/631/623 1416/3030/2904 1394/3031/2905 +f 1415/631/623 1394/3031/2905 1395/632/624 +f 1395/632/624 1394/3031/2905 1467/3032/2906 +f 1395/632/624 1467/3032/2906 1468/633/625 +f 1468/633/625 1467/3032/2906 1521/3033/2907 +f 1468/633/625 1521/3033/2907 1520/634/626 +f 1520/634/626 1521/3033/2907 1505/3034/2908 +f 1520/634/626 1505/3034/2908 1506/635/627 +f 1506/635/627 1505/3034/2908 1577/3035/2909 +f 1506/635/627 1577/3035/2909 1578/636/628 +f 1578/636/628 1577/3035/2909 1624/3036/2910 +f 1578/636/628 1624/3036/2910 1623/637/629 +f 1623/637/629 1624/3036/2910 1614/3037/2911 +f 1623/637/629 1614/3037/2911 1615/638/630 +f 1615/638/630 1614/3037/2911 1693/3038/2912 +f 1615/638/630 1693/3038/2912 1692/639/631 +f 1692/639/631 1693/3038/2912 1687/3039/2913 +f 1692/639/631 1687/3039/2913 1688/640/632 +f 1688/640/632 1687/3039/2913 1759/3040/2914 +f 1688/640/632 1759/3040/2914 1760/641/633 +f 1760/641/633 1759/3040/2914 1797/2231/2180 +f 478/643/634 550/645/636 551/3007/2881 +f 551/3007/2881 550/645/636 656/647/638 +f 551/3007/2881 656/647/638 655/3008/2882 +f 655/3008/2882 656/647/638 588/649/640 +f 655/3008/2882 588/649/640 589/3009/2883 +f 589/3009/2883 588/649/640 660/651/642 +f 589/3009/2883 660/651/642 661/3010/2884 +f 661/3010/2884 660/651/642 759/653/644 +f 661/3010/2884 759/653/644 758/3011/2885 +f 758/3011/2885 759/653/644 697/655/646 +f 758/3011/2885 697/655/646 698/3012/2886 +f 698/3012/2886 697/655/646 828/657/648 +f 698/3012/2886 828/657/648 827/3013/2887 +f 827/3013/2887 828/657/648 770/659/650 +f 827/3013/2887 770/659/650 771/3014/2888 +f 771/3014/2888 770/659/650 842/661/652 +f 771/3014/2888 842/661/652 843/3015/2889 +f 843/3015/2889 842/661/652 932/663/654 +f 843/3015/2889 932/663/654 931/3016/2890 +f 931/3016/2890 932/663/654 880/665/656 +f 931/3016/2890 880/665/656 881/3017/2891 +f 881/3017/2891 880/665/656 953/667/658 +f 881/3017/2891 953/667/658 954/3018/2892 +f 954/3018/2892 953/667/658 1037/669/660 +f 954/3018/2892 1037/669/660 1036/3019/2893 +f 1036/3019/2893 1037/669/660 991/671/662 +f 1036/3019/2893 991/671/662 992/3020/2894 +f 992/3020/2894 991/671/662 1063/673/664 +f 992/3020/2894 1063/673/664 1064/3021/2895 +f 1064/3021/2895 1063/673/664 1140/675/666 +f 1064/3021/2895 1140/675/666 1139/3022/2896 +f 1139/3022/2896 1140/675/666 1100/677/668 +f 1139/3022/2896 1100/677/668 1101/3023/2897 +f 1101/3023/2897 1100/677/668 1209/679/670 +f 1101/3023/2897 1209/679/670 1208/3024/2898 +f 1208/3024/2898 1209/679/670 1173/681/672 +f 1208/3024/2898 1173/681/672 1174/3025/2899 +f 1174/3025/2899 1173/681/672 1245/683/674 +f 1174/3025/2899 1245/683/674 1246/3026/2900 +f 1246/3026/2900 1245/683/674 1313/685/676 +f 1246/3026/2900 1313/685/676 1312/3027/2901 +f 1312/3027/2901 1313/685/676 1283/687/678 +f 1312/3027/2901 1283/687/678 1284/3028/2902 +f 1284/3028/2902 1283/687/678 1355/689/680 +f 1284/3028/2902 1355/689/680 1356/3029/2903 +f 1356/3029/2903 1355/689/680 1417/691/682 +f 1356/3029/2903 1417/691/682 1416/3030/2904 +f 1416/3030/2904 1417/691/682 1393/693/684 +f 1416/3030/2904 1393/693/684 1394/3031/2905 +f 1394/3031/2905 1393/693/684 1466/695/686 +f 1394/3031/2905 1466/695/686 1467/3032/2906 +f 1467/3032/2906 1466/695/686 1522/697/688 +f 1467/3032/2906 1522/697/688 1521/3033/2907 +f 1521/3033/2907 1522/697/688 1504/699/690 +f 1521/3033/2907 1504/699/690 1505/3034/2908 +f 1505/3034/2908 1504/699/690 1576/701/692 +f 1505/3034/2908 1576/701/692 1577/3035/2909 +f 1577/3035/2909 1576/701/692 1625/703/694 +f 1577/3035/2909 1625/703/694 1624/3036/2910 +f 1624/3036/2910 1625/703/694 1613/705/696 +f 1624/3036/2910 1613/705/696 1614/3037/2911 +f 1614/3037/2911 1613/705/696 1694/707/698 +f 1614/3037/2911 1694/707/698 1693/3038/2912 +f 1693/3038/2912 1694/707/698 1686/709/700 +f 1693/3038/2912 1686/709/700 1687/3039/2913 +f 1687/3039/2913 1686/709/700 1758/711/702 +f 1687/3039/2913 1758/711/702 1759/3040/2914 +f 1759/3040/2914 1758/711/702 1798/713/704 +f 1759/3040/2914 1798/713/704 1797/2231/2180 +f 1797/2231/2180 1798/713/704 1796/715/706 +f 295/796/784 693/3041/2915 296/794/782 +f 296/794/782 693/3041/2915 762/758/747 +f 296/794/782 762/758/747 657/757/746 +f 762/758/747 693/3041/2915 694/759/748 +f 694/759/748 693/3041/2915 832/3042/2916 +f 694/759/748 832/3042/2916 831/760/749 +f 831/760/749 832/3042/2916 766/3043/2917 +f 831/760/749 766/3043/2917 767/761/750 +f 767/761/750 766/3043/2917 838/3044/2918 +f 767/761/750 838/3044/2918 839/762/751 +f 839/762/751 838/3044/2918 936/3045/2919 +f 839/762/751 936/3045/2919 935/763/752 +f 935/763/752 936/3045/2919 876/3046/2920 +f 935/763/752 876/3046/2920 877/764/753 +f 877/764/753 876/3046/2920 949/3047/2921 +f 877/764/753 949/3047/2921 950/765/754 +f 950/765/754 949/3047/2921 1041/3048/2922 +f 950/765/754 1041/3048/2922 1040/766/755 +f 1040/766/755 1041/3048/2922 987/3049/2923 +f 1040/766/755 987/3049/2923 988/767/756 +f 988/767/756 987/3049/2923 1059/3050/2924 +f 988/767/756 1059/3050/2924 1060/768/757 +f 1060/768/757 1059/3050/2924 1144/3051/2925 +f 1060/768/757 1144/3051/2925 1143/769/758 +f 1143/769/758 1144/3051/2925 1096/3052/2926 +f 1143/769/758 1096/3052/2926 1097/770/759 +f 1097/770/759 1096/3052/2926 1213/3053/2927 +f 1097/770/759 1213/3053/2927 1212/771/760 +f 1212/771/760 1213/3053/2927 1169/3054/2928 +f 1212/771/760 1169/3054/2928 1170/772/761 +f 1170/772/761 1169/3054/2928 1241/3055/2929 +f 1170/772/761 1241/3055/2929 1242/773/762 +f 1242/773/762 1241/3055/2929 1317/3056/2930 +f 1242/773/762 1317/3056/2930 1316/774/763 +f 1316/774/763 1317/3056/2930 1279/3057/2931 +f 1316/774/763 1279/3057/2931 1280/775/764 +f 1280/775/764 1279/3057/2931 1351/3058/2932 +f 1280/775/764 1351/3058/2932 1352/776/765 +f 1352/776/765 1351/3058/2932 1421/3059/2933 +f 1352/776/765 1421/3059/2933 1420/777/766 +f 1420/777/766 1421/3059/2933 1389/3060/2934 +f 1420/777/766 1389/3060/2934 1390/778/767 +f 1390/778/767 1389/3060/2934 1462/3061/2935 +f 1390/778/767 1462/3061/2935 1463/779/768 +f 1463/779/768 1462/3061/2935 1526/3062/2936 +f 1463/779/768 1526/3062/2936 1525/780/769 +f 1525/780/769 1526/3062/2936 1500/3063/2937 +f 1525/780/769 1500/3063/2937 1501/781/770 +f 1501/781/770 1500/3063/2937 1572/3064/2938 +f 1501/781/770 1572/3064/2938 1573/782/771 +f 1573/782/771 1572/3064/2938 1629/3065/2939 +f 1573/782/771 1629/3065/2939 1628/783/772 +f 1628/783/772 1629/3065/2939 1609/3066/2940 +f 1628/783/772 1609/3066/2940 1610/784/773 +f 1610/784/773 1609/3066/2940 1698/3067/2941 +f 1610/784/773 1698/3067/2941 1697/785/774 +f 1697/785/774 1698/3067/2941 1682/3068/2942 +f 1697/785/774 1682/3068/2942 1683/786/775 +f 1683/786/775 1682/3068/2942 1754/3069/2943 +f 1683/786/775 1754/3069/2943 1755/787/776 +f 1755/787/776 1754/3069/2943 1802/3070/2944 +f 1755/787/776 1802/3070/2944 1801/788/777 +f 1801/788/777 1802/3070/2944 1792/3071/2945 +f 1801/788/777 1792/3071/2945 1793/789/778 +f 1793/789/778 1792/3071/2945 1865/3072/2946 +f 1793/789/778 1865/3072/2946 1866/790/779 +f 1866/790/779 1865/3072/2946 1907/3073/2947 +f 1866/790/779 1907/3073/2947 1906/791/780 +f 1906/791/780 1907/3073/2947 1903/3074/2948 +f 1906/791/780 1903/3074/2948 1904/792/781 +f 1904/792/781 1903/3074/2948 1975/2228/2179 +f 693/3041/2915 295/796/784 833/3075/2949 +f 833/3075/2949 295/796/784 834/798/786 +f 833/3075/2949 834/798/786 764/800/788 +f 764/800/788 765/3076/2950 833/3075/2949 +f 833/3075/2949 765/3076/2950 832/3042/2916 +f 833/3075/2949 832/3042/2916 693/3041/2915 +f 832/3042/2916 765/3076/2950 766/3043/2917 +f 766/3043/2917 765/3076/2950 837/3077/2951 +f 766/3043/2917 837/3077/2951 838/3044/2918 +f 838/3044/2918 837/3077/2951 937/3078/2952 +f 838/3044/2918 937/3078/2952 936/3045/2919 +f 936/3045/2919 937/3078/2952 875/3079/2953 +f 936/3045/2919 875/3079/2953 876/3046/2920 +f 876/3046/2920 875/3079/2953 948/3080/2954 +f 876/3046/2920 948/3080/2954 949/3047/2921 +f 949/3047/2921 948/3080/2954 1042/3081/2955 +f 949/3047/2921 1042/3081/2955 1041/3048/2922 +f 1041/3048/2922 1042/3081/2955 986/3082/2956 +f 1041/3048/2922 986/3082/2956 987/3049/2923 +f 987/3049/2923 986/3082/2956 1058/3083/2957 +f 987/3049/2923 1058/3083/2957 1059/3050/2924 +f 1059/3050/2924 1058/3083/2957 1145/3084/2958 +f 1059/3050/2924 1145/3084/2958 1144/3051/2925 +f 1144/3051/2925 1145/3084/2958 1095/3085/2959 +f 1144/3051/2925 1095/3085/2959 1096/3052/2926 +f 1096/3052/2926 1095/3085/2959 1214/3086/2960 +f 1096/3052/2926 1214/3086/2960 1213/3053/2927 +f 1213/3053/2927 1214/3086/2960 1168/3087/2961 +f 1213/3053/2927 1168/3087/2961 1169/3054/2928 +f 1169/3054/2928 1168/3087/2961 1240/3088/2962 +f 1169/3054/2928 1240/3088/2962 1241/3055/2929 +f 1241/3055/2929 1240/3088/2962 1318/3089/2963 +f 1241/3055/2929 1318/3089/2963 1317/3056/2930 +f 1317/3056/2930 1318/3089/2963 1278/3090/2964 +f 1317/3056/2930 1278/3090/2964 1279/3057/2931 +f 1279/3057/2931 1278/3090/2964 1350/3091/2965 +f 1279/3057/2931 1350/3091/2965 1351/3058/2932 +f 1351/3058/2932 1350/3091/2965 1422/3092/2966 +f 1351/3058/2932 1422/3092/2966 1421/3059/2933 +f 1421/3059/2933 1422/3092/2966 1388/3093/2967 +f 1421/3059/2933 1388/3093/2967 1389/3060/2934 +f 1389/3060/2934 1388/3093/2967 1461/3094/2968 +f 1389/3060/2934 1461/3094/2968 1462/3061/2935 +f 1462/3061/2935 1461/3094/2968 1527/3095/2969 +f 1462/3061/2935 1527/3095/2969 1526/3062/2936 +f 1526/3062/2936 1527/3095/2969 1499/3096/2970 +f 1526/3062/2936 1499/3096/2970 1500/3063/2937 +f 1500/3063/2937 1499/3096/2970 1571/3097/2971 +f 1500/3063/2937 1571/3097/2971 1572/3064/2938 +f 1572/3064/2938 1571/3097/2971 1630/3098/2972 +f 1572/3064/2938 1630/3098/2972 1629/3065/2939 +f 1629/3065/2939 1630/3098/2972 1608/3099/2973 +f 1629/3065/2939 1608/3099/2973 1609/3066/2940 +f 1609/3066/2940 1608/3099/2973 1699/3100/2974 +f 1609/3066/2940 1699/3100/2974 1698/3067/2941 +f 1698/3067/2941 1699/3100/2974 1681/3101/2975 +f 1698/3067/2941 1681/3101/2975 1682/3068/2942 +f 1682/3068/2942 1681/3101/2975 1753/3102/2976 +f 1682/3068/2942 1753/3102/2976 1754/3069/2943 +f 1754/3069/2943 1753/3102/2976 1803/3103/2977 +f 1754/3069/2943 1803/3103/2977 1802/3070/2944 +f 1802/3070/2944 1803/3103/2977 1791/3104/2978 +f 1802/3070/2944 1791/3104/2978 1792/3071/2945 +f 1792/3071/2945 1791/3104/2978 1864/3105/2979 +f 1792/3071/2945 1864/3105/2979 1865/3072/2946 +f 1865/3072/2946 1864/3105/2979 1908/3106/2980 +f 1865/3072/2946 1908/3106/2980 1907/3073/2947 +f 1907/3073/2947 1908/3106/2980 1902/3107/2981 +f 1907/3073/2947 1902/3107/2981 1903/3074/2948 +f 1903/3074/2948 1902/3107/2981 1974/3108/2982 +f 1903/3074/2948 1974/3108/2982 1975/2228/2179 +f 1975/2228/2179 1974/3108/2982 2011/2226/2178 +f 837/3077/2951 765/3076/2950 836/802/790 +f 836/802/790 765/3076/2950 764/800/788 +f 937/3078/2952 837/3077/2951 938/804/792 +f 938/804/792 837/3077/2951 836/802/790 +f 941/910/896 870/947/932 871/911/897 +f 871/911/897 870/947/932 943/3109/2983 +f 871/911/897 943/3109/2983 944/912/898 +f 944/912/898 943/3109/2983 1047/3110/2984 +f 944/912/898 1047/3110/2984 1046/913/899 +f 1046/913/899 1047/3110/2984 981/3111/2985 +f 1046/913/899 981/3111/2985 982/914/900 +f 982/914/900 981/3111/2985 1053/3112/2986 +f 982/914/900 1053/3112/2986 1054/915/901 +f 1054/915/901 1053/3112/2986 1150/3113/2987 +f 1054/915/901 1150/3113/2987 1149/916/902 +f 1149/916/902 1150/3113/2987 1090/3114/2988 +f 1149/916/902 1090/3114/2988 1091/917/903 +f 1091/917/903 1090/3114/2988 1219/3115/2989 +f 1091/917/903 1219/3115/2989 1218/918/904 +f 1218/918/904 1219/3115/2989 1163/3116/2990 +f 1218/918/904 1163/3116/2990 1164/919/905 +f 1164/919/905 1163/3116/2990 1235/3117/2991 +f 1164/919/905 1235/3117/2991 1236/920/906 +f 1236/920/906 1235/3117/2991 1323/3118/2992 +f 1236/920/906 1323/3118/2992 1322/921/907 +f 1322/921/907 1323/3118/2992 1273/3119/2993 +f 1322/921/907 1273/3119/2993 1274/922/908 +f 1274/922/908 1273/3119/2993 1345/3120/2994 +f 1274/922/908 1345/3120/2994 1346/923/909 +f 1346/923/909 1345/3120/2994 1427/3121/2995 +f 1346/923/909 1427/3121/2995 1426/924/910 +f 1426/924/910 1427/3121/2995 1383/3122/2996 +f 1426/924/910 1383/3122/2996 1384/925/911 +f 1384/925/911 1383/3122/2996 1456/3123/2997 +f 1384/925/911 1456/3123/2997 1457/926/912 +f 1457/926/912 1456/3123/2997 1532/3124/2998 +f 1457/926/912 1532/3124/2998 1531/927/913 +f 1531/927/913 1532/3124/2998 1494/3125/2999 +f 1531/927/913 1494/3125/2999 1495/928/914 +f 1495/928/914 1494/3125/2999 1566/3126/3000 +f 1495/928/914 1566/3126/3000 1567/929/915 +f 1567/929/915 1566/3126/3000 1635/3127/3001 +f 1567/929/915 1635/3127/3001 1634/930/916 +f 1634/930/916 1635/3127/3001 1603/3128/3002 +f 1634/930/916 1603/3128/3002 1604/931/917 +f 1604/931/917 1603/3128/3002 1704/3129/3003 +f 1604/931/917 1704/3129/3003 1703/932/918 +f 1703/932/918 1704/3129/3003 1676/3130/3004 +f 1703/932/918 1676/3130/3004 1677/933/919 +f 1677/933/919 1676/3130/3004 1748/3131/3005 +f 1677/933/919 1748/3131/3005 1749/934/920 +f 1749/934/920 1748/3131/3005 1808/3132/3006 +f 1749/934/920 1808/3132/3006 1807/935/921 +f 1807/935/921 1808/3132/3006 1786/3133/3007 +f 1807/935/921 1786/3133/3007 1787/936/922 +f 1787/936/922 1786/3133/3007 1859/3134/3008 +f 1787/936/922 1859/3134/3008 1860/937/923 +f 1860/937/923 1859/3134/3008 1913/3135/3009 +f 1860/937/923 1913/3135/3009 1912/938/924 +f 1912/938/924 1913/3135/3009 1897/3136/3010 +f 1912/938/924 1897/3136/3010 1898/939/925 +f 1898/939/925 1897/3136/3010 1969/3137/3011 +f 1898/939/925 1969/3137/3011 1970/940/926 +f 1970/940/926 1969/3137/3011 2016/3138/3012 +f 1970/940/926 2016/3138/3012 2015/941/927 +f 2015/941/927 2016/3138/3012 2006/3139/3013 +f 2015/941/927 2006/3139/3013 2007/942/928 +f 2007/942/928 2006/3139/3013 2085/3140/3014 +f 2007/942/928 2085/3140/3014 2084/943/929 +f 2084/943/929 2085/3140/3014 2079/3141/3015 +f 2084/943/929 2079/3141/3015 2080/944/930 +f 2080/944/930 2079/3141/3015 2151/3142/3016 +f 2080/944/930 2151/3142/3016 2152/945/931 +f 2152/945/931 2151/3142/3016 2189/2223/2177 +f 937/3078/2952 938/804/792 874/806/794 +f 937/3078/2952 874/806/794 875/3079/2953 +f 875/3079/2953 874/806/794 947/808/796 +f 875/3079/2953 947/808/796 948/3080/2954 +f 948/3080/2954 947/808/796 1043/810/798 +f 948/3080/2954 1043/810/798 1042/3081/2955 +f 1042/3081/2955 1043/810/798 985/812/800 +f 1042/3081/2955 985/812/800 986/3082/2956 +f 986/3082/2956 985/812/800 1057/814/802 +f 986/3082/2956 1057/814/802 1058/3083/2957 +f 1058/3083/2957 1057/814/802 1146/816/804 +f 1058/3083/2957 1146/816/804 1145/3084/2958 +f 1145/3084/2958 1146/816/804 1094/818/806 +f 1145/3084/2958 1094/818/806 1095/3085/2959 +f 1095/3085/2959 1094/818/806 1215/820/808 +f 1095/3085/2959 1215/820/808 1214/3086/2960 +f 1214/3086/2960 1215/820/808 1167/822/810 +f 1214/3086/2960 1167/822/810 1168/3087/2961 +f 1168/3087/2961 1167/822/810 1239/824/812 +f 1168/3087/2961 1239/824/812 1240/3088/2962 +f 1240/3088/2962 1239/824/812 1319/826/814 +f 1240/3088/2962 1319/826/814 1318/3089/2963 +f 1318/3089/2963 1319/826/814 1277/828/816 +f 1318/3089/2963 1277/828/816 1278/3090/2964 +f 1278/3090/2964 1277/828/816 1349/830/818 +f 1278/3090/2964 1349/830/818 1350/3091/2965 +f 1350/3091/2965 1349/830/818 1423/832/820 +f 1350/3091/2965 1423/832/820 1422/3092/2966 +f 1422/3092/2966 1423/832/820 1387/834/822 +f 1422/3092/2966 1387/834/822 1388/3093/2967 +f 1388/3093/2967 1387/834/822 1460/836/824 +f 1388/3093/2967 1460/836/824 1461/3094/2968 +f 1461/3094/2968 1460/836/824 1528/838/826 +f 1461/3094/2968 1528/838/826 1527/3095/2969 +f 1527/3095/2969 1528/838/826 1498/840/828 +f 1527/3095/2969 1498/840/828 1499/3096/2970 +f 1499/3096/2970 1498/840/828 1570/842/830 +f 1499/3096/2970 1570/842/830 1571/3097/2971 +f 1571/3097/2971 1570/842/830 1631/844/832 +f 1571/3097/2971 1631/844/832 1630/3098/2972 +f 1630/3098/2972 1631/844/832 1607/846/834 +f 1630/3098/2972 1607/846/834 1608/3099/2973 +f 1608/3099/2973 1607/846/834 1700/848/836 +f 1608/3099/2973 1700/848/836 1699/3100/2974 +f 1699/3100/2974 1700/848/836 1680/850/838 +f 1699/3100/2974 1680/850/838 1681/3101/2975 +f 1681/3101/2975 1680/850/838 1752/852/840 +f 1681/3101/2975 1752/852/840 1753/3102/2976 +f 1753/3102/2976 1752/852/840 1804/854/842 +f 1753/3102/2976 1804/854/842 1803/3103/2977 +f 1803/3103/2977 1804/854/842 1790/856/844 +f 1803/3103/2977 1790/856/844 1791/3104/2978 +f 1791/3104/2978 1790/856/844 1863/858/846 +f 1791/3104/2978 1863/858/846 1864/3105/2979 +f 1864/3105/2979 1863/858/846 1909/860/848 +f 1864/3105/2979 1909/860/848 1908/3106/2980 +f 1908/3106/2980 1909/860/848 1901/862/850 +f 1908/3106/2980 1901/862/850 1902/3107/2981 +f 1902/3107/2981 1901/862/850 1973/864/852 +f 1902/3107/2981 1973/864/852 1974/3108/2982 +f 1974/3108/2982 1973/864/852 2012/866/854 +f 1974/3108/2982 2012/866/854 2011/2226/2178 +f 2011/2226/2178 2012/866/854 2010/868/856 +f 870/947/932 942/949/934 943/3109/2983 +f 943/3109/2983 942/949/934 1048/951/936 +f 943/3109/2983 1048/951/936 1047/3110/2984 +f 1047/3110/2984 1048/951/936 980/953/938 +f 1047/3110/2984 980/953/938 981/3111/2985 +f 981/3111/2985 980/953/938 1052/955/940 +f 981/3111/2985 1052/955/940 1053/3112/2986 +f 1053/3112/2986 1052/955/940 1151/957/942 +f 1053/3112/2986 1151/957/942 1150/3113/2987 +f 1150/3113/2987 1151/957/942 1089/959/944 +f 1150/3113/2987 1089/959/944 1090/3114/2988 +f 1090/3114/2988 1089/959/944 1220/961/946 +f 1090/3114/2988 1220/961/946 1219/3115/2989 +f 1219/3115/2989 1220/961/946 1162/963/948 +f 1219/3115/2989 1162/963/948 1163/3116/2990 +f 1163/3116/2990 1162/963/948 1234/965/950 +f 1163/3116/2990 1234/965/950 1235/3117/2991 +f 1235/3117/2991 1234/965/950 1324/967/952 +f 1235/3117/2991 1324/967/952 1323/3118/2992 +f 1323/3118/2992 1324/967/952 1272/969/954 +f 1323/3118/2992 1272/969/954 1273/3119/2993 +f 1273/3119/2993 1272/969/954 1344/971/956 +f 1273/3119/2993 1344/971/956 1345/3120/2994 +f 1345/3120/2994 1344/971/956 1428/973/958 +f 1345/3120/2994 1428/973/958 1427/3121/2995 +f 1427/3121/2995 1428/973/958 1382/975/960 +f 1427/3121/2995 1382/975/960 1383/3122/2996 +f 1383/3122/2996 1382/975/960 1455/977/962 +f 1383/3122/2996 1455/977/962 1456/3123/2997 +f 1456/3123/2997 1455/977/962 1533/979/964 +f 1456/3123/2997 1533/979/964 1532/3124/2998 +f 1532/3124/2998 1533/979/964 1493/981/966 +f 1532/3124/2998 1493/981/966 1494/3125/2999 +f 1494/3125/2999 1493/981/966 1565/983/968 +f 1494/3125/2999 1565/983/968 1566/3126/3000 +f 1566/3126/3000 1565/983/968 1636/985/970 +f 1566/3126/3000 1636/985/970 1635/3127/3001 +f 1635/3127/3001 1636/985/970 1602/987/972 +f 1635/3127/3001 1602/987/972 1603/3128/3002 +f 1603/3128/3002 1602/987/972 1705/989/974 +f 1603/3128/3002 1705/989/974 1704/3129/3003 +f 1704/3129/3003 1705/989/974 1675/991/976 +f 1704/3129/3003 1675/991/976 1676/3130/3004 +f 1676/3130/3004 1675/991/976 1747/993/978 +f 1676/3130/3004 1747/993/978 1748/3131/3005 +f 1748/3131/3005 1747/993/978 1809/995/980 +f 1748/3131/3005 1809/995/980 1808/3132/3006 +f 1808/3132/3006 1809/995/980 1785/997/982 +f 1808/3132/3006 1785/997/982 1786/3133/3007 +f 1786/3133/3007 1785/997/982 1858/999/984 +f 1786/3133/3007 1858/999/984 1859/3134/3008 +f 1859/3134/3008 1858/999/984 1914/1001/986 +f 1859/3134/3008 1914/1001/986 1913/3135/3009 +f 1913/3135/3009 1914/1001/986 1896/1003/988 +f 1913/3135/3009 1896/1003/988 1897/3136/3010 +f 1897/3136/3010 1896/1003/988 1968/1005/990 +f 1897/3136/3010 1968/1005/990 1969/3137/3011 +f 1969/3137/3011 1968/1005/990 2017/1007/992 +f 1969/3137/3011 2017/1007/992 2016/3138/3012 +f 2016/3138/3012 2017/1007/992 2005/1009/994 +f 2016/3138/3012 2005/1009/994 2006/3139/3013 +f 2006/3139/3013 2005/1009/994 2086/1011/996 +f 2006/3139/3013 2086/1011/996 2085/3140/3014 +f 2085/3140/3014 2086/1011/996 2078/1013/998 +f 2085/3140/3014 2078/1013/998 2079/3141/3015 +f 2079/3141/3015 2078/1013/998 2150/1015/1000 +f 2079/3141/3015 2150/1015/1000 2151/3142/3016 +f 2151/3142/3016 2150/1015/1000 2190/1017/1002 +f 2151/3142/3016 2190/1017/1002 2189/2223/2177 +f 2189/2223/2177 2190/1017/1002 2188/1019/1004 +f 291/1100/1082 1085/3143/3017 292/1098/1080 +f 292/1098/1080 1085/3143/3017 1154/1062/1045 +f 292/1098/1080 1154/1062/1045 1049/1061/1044 +f 1154/1062/1045 1085/3143/3017 1086/1063/1046 +f 1086/1063/1046 1085/3143/3017 1224/3144/3018 +f 1086/1063/1046 1224/3144/3018 1223/1064/1047 +f 1223/1064/1047 1224/3144/3018 1158/3145/3019 +f 1223/1064/1047 1158/3145/3019 1159/1065/1048 +f 1159/1065/1048 1158/3145/3019 1230/3146/3020 +f 1159/1065/1048 1230/3146/3020 1231/1066/1049 +f 1231/1066/1049 1230/3146/3020 1328/3147/3021 +f 1231/1066/1049 1328/3147/3021 1327/1067/1050 +f 1327/1067/1050 1328/3147/3021 1268/3148/3022 +f 1327/1067/1050 1268/3148/3022 1269/1068/1051 +f 1269/1068/1051 1268/3148/3022 1340/3149/3023 +f 1269/1068/1051 1340/3149/3023 1341/1069/1052 +f 1341/1069/1052 1340/3149/3023 1432/3150/3024 +f 1341/1069/1052 1432/3150/3024 1431/1070/1053 +f 1431/1070/1053 1432/3150/3024 1378/3151/3025 +f 1431/1070/1053 1378/3151/3025 1379/1071/1054 +f 1379/1071/1054 1378/3151/3025 1451/3152/3026 +f 1379/1071/1054 1451/3152/3026 1452/1072/1055 +f 1452/1072/1055 1451/3152/3026 1537/3153/3027 +f 1452/1072/1055 1537/3153/3027 1536/1073/1056 +f 1536/1073/1056 1537/3153/3027 1489/3154/3028 +f 1536/1073/1056 1489/3154/3028 1490/1074/1057 +f 1490/1074/1057 1489/3154/3028 1561/3155/3029 +f 1490/1074/1057 1561/3155/3029 1562/1075/1058 +f 1562/1075/1058 1561/3155/3029 1640/3156/3030 +f 1562/1075/1058 1640/3156/3030 1639/1076/1059 +f 1639/1076/1059 1640/3156/3030 1598/3157/3031 +f 1639/1076/1059 1598/3157/3031 1599/1077/1060 +f 1599/1077/1060 1598/3157/3031 1709/3158/3032 +f 1599/1077/1060 1709/3158/3032 1708/1078/1061 +f 1708/1078/1061 1709/3158/3032 1671/3159/3033 +f 1708/1078/1061 1671/3159/3033 1672/1079/1062 +f 1672/1079/1062 1671/3159/3033 1743/3160/3034 +f 1672/1079/1062 1743/3160/3034 1744/1080/1063 +f 1744/1080/1063 1743/3160/3034 1813/3161/3035 +f 1744/1080/1063 1813/3161/3035 1812/1081/1064 +f 1812/1081/1064 1813/3161/3035 1781/3162/3036 +f 1812/1081/1064 1781/3162/3036 1782/1082/1065 +f 1782/1082/1065 1781/3162/3036 1854/3163/3037 +f 1782/1082/1065 1854/3163/3037 1855/1083/1066 +f 1855/1083/1066 1854/3163/3037 1918/3164/3038 +f 1855/1083/1066 1918/3164/3038 1917/1084/1067 +f 1917/1084/1067 1918/3164/3038 1892/3165/3039 +f 1917/1084/1067 1892/3165/3039 1893/1085/1068 +f 1893/1085/1068 1892/3165/3039 1964/3166/3040 +f 1893/1085/1068 1964/3166/3040 1965/1086/1069 +f 1965/1086/1069 1964/3166/3040 2021/3167/3041 +f 1965/1086/1069 2021/3167/3041 2020/1087/1070 +f 2020/1087/1070 2021/3167/3041 2001/3168/3042 +f 2020/1087/1070 2001/3168/3042 2002/1088/1071 +f 2002/1088/1071 2001/3168/3042 2090/3169/3043 +f 2002/1088/1071 2090/3169/3043 2089/1089/1072 +f 2089/1089/1072 2090/3169/3043 2074/3170/3044 +f 2089/1089/1072 2074/3170/3044 2075/1090/1073 +f 2075/1090/1073 2074/3170/3044 2146/3171/3045 +f 2075/1090/1073 2146/3171/3045 2147/1091/1074 +f 2147/1091/1074 2146/3171/3045 2194/3172/3046 +f 2147/1091/1074 2194/3172/3046 2193/1092/1075 +f 2193/1092/1075 2194/3172/3046 2184/3173/3047 +f 2193/1092/1075 2184/3173/3047 2185/1093/1076 +f 2185/1093/1076 2184/3173/3047 2257/3174/3048 +f 2185/1093/1076 2257/3174/3048 2258/1094/1077 +f 2258/1094/1077 2257/3174/3048 2299/3175/3049 +f 2258/1094/1077 2299/3175/3049 2298/1095/1078 +f 2298/1095/1078 2299/3175/3049 2295/3176/3050 +f 2298/1095/1078 2295/3176/3050 2296/1096/1079 +f 2296/1096/1079 2295/3176/3050 2367/2221/2176 +f 1085/3143/3017 291/1100/1082 1225/3177/3051 +f 1225/3177/3051 291/1100/1082 1226/1102/1084 +f 1225/3177/3051 1226/1102/1084 1156/1104/1086 +f 1156/1104/1086 1157/3178/3052 1225/3177/3051 +f 1225/3177/3051 1157/3178/3052 1224/3144/3018 +f 1225/3177/3051 1224/3144/3018 1085/3143/3017 +f 1224/3144/3018 1157/3178/3052 1158/3145/3019 +f 1158/3145/3019 1157/3178/3052 1229/3179/3053 +f 1158/3145/3019 1229/3179/3053 1230/3146/3020 +f 1230/3146/3020 1229/3179/3053 1329/3180/3054 +f 1230/3146/3020 1329/3180/3054 1328/3147/3021 +f 1328/3147/3021 1329/3180/3054 1267/3181/3055 +f 1328/3147/3021 1267/3181/3055 1268/3148/3022 +f 1268/3148/3022 1267/3181/3055 1339/3182/3056 +f 1268/3148/3022 1339/3182/3056 1340/3149/3023 +f 1340/3149/3023 1339/3182/3056 1433/3183/3057 +f 1340/3149/3023 1433/3183/3057 1432/3150/3024 +f 1432/3150/3024 1433/3183/3057 1377/3184/3058 +f 1432/3150/3024 1377/3184/3058 1378/3151/3025 +f 1378/3151/3025 1377/3184/3058 1450/3185/3059 +f 1378/3151/3025 1450/3185/3059 1451/3152/3026 +f 1451/3152/3026 1450/3185/3059 1538/3186/3060 +f 1451/3152/3026 1538/3186/3060 1537/3153/3027 +f 1537/3153/3027 1538/3186/3060 1488/3187/3061 +f 1537/3153/3027 1488/3187/3061 1489/3154/3028 +f 1489/3154/3028 1488/3187/3061 1560/3188/3062 +f 1489/3154/3028 1560/3188/3062 1561/3155/3029 +f 1561/3155/3029 1560/3188/3062 1641/3189/3063 +f 1561/3155/3029 1641/3189/3063 1640/3156/3030 +f 1640/3156/3030 1641/3189/3063 1597/3190/3064 +f 1640/3156/3030 1597/3190/3064 1598/3157/3031 +f 1598/3157/3031 1597/3190/3064 1710/3191/3065 +f 1598/3157/3031 1710/3191/3065 1709/3158/3032 +f 1709/3158/3032 1710/3191/3065 1670/3192/3066 +f 1709/3158/3032 1670/3192/3066 1671/3159/3033 +f 1671/3159/3033 1670/3192/3066 1742/3193/3067 +f 1671/3159/3033 1742/3193/3067 1743/3160/3034 +f 1743/3160/3034 1742/3193/3067 1814/3194/3068 +f 1743/3160/3034 1814/3194/3068 1813/3161/3035 +f 1813/3161/3035 1814/3194/3068 1780/3195/3069 +f 1813/3161/3035 1780/3195/3069 1781/3162/3036 +f 1781/3162/3036 1780/3195/3069 1853/3196/3070 +f 1781/3162/3036 1853/3196/3070 1854/3163/3037 +f 1854/3163/3037 1853/3196/3070 1919/3197/3071 +f 1854/3163/3037 1919/3197/3071 1918/3164/3038 +f 1918/3164/3038 1919/3197/3071 1891/3198/3072 +f 1918/3164/3038 1891/3198/3072 1892/3165/3039 +f 1892/3165/3039 1891/3198/3072 1963/3199/3073 +f 1892/3165/3039 1963/3199/3073 1964/3166/3040 +f 1964/3166/3040 1963/3199/3073 2022/3200/3074 +f 1964/3166/3040 2022/3200/3074 2021/3167/3041 +f 2021/3167/3041 2022/3200/3074 2000/3201/3075 +f 2021/3167/3041 2000/3201/3075 2001/3168/3042 +f 2001/3168/3042 2000/3201/3075 2091/3202/3076 +f 2001/3168/3042 2091/3202/3076 2090/3169/3043 +f 2090/3169/3043 2091/3202/3076 2073/3203/3077 +f 2090/3169/3043 2073/3203/3077 2074/3170/3044 +f 2074/3170/3044 2073/3203/3077 2145/3204/3078 +f 2074/3170/3044 2145/3204/3078 2146/3171/3045 +f 2146/3171/3045 2145/3204/3078 2195/3205/3079 +f 2146/3171/3045 2195/3205/3079 2194/3172/3046 +f 2194/3172/3046 2195/3205/3079 2183/3206/3080 +f 2194/3172/3046 2183/3206/3080 2184/3173/3047 +f 2184/3173/3047 2183/3206/3080 2256/3207/3081 +f 2184/3173/3047 2256/3207/3081 2257/3174/3048 +f 2257/3174/3048 2256/3207/3081 2300/3208/3082 +f 2257/3174/3048 2300/3208/3082 2299/3175/3049 +f 2299/3175/3049 2300/3208/3082 2294/3209/3083 +f 2299/3175/3049 2294/3209/3083 2295/3176/3050 +f 2295/3176/3050 2294/3209/3083 2366/3210/3084 +f 2295/3176/3050 2366/3210/3084 2367/2221/2176 +f 2367/2221/2176 2366/3210/3084 2404/2219/2175 +f 1229/3179/3053 1157/3178/3052 1228/1106/1088 +f 1228/1106/1088 1157/3178/3052 1156/1104/1086 +f 1329/3180/3054 1229/3179/3053 1330/1108/1090 +f 1330/1108/1090 1229/3179/3053 1228/1106/1088 +f 1333/1214/1194 1262/1251/1230 1263/1215/1195 +f 1263/1215/1195 1262/1251/1230 1334/3211/3085 +f 1263/1215/1195 1334/3211/3085 1335/1216/1196 +f 1335/1216/1196 1334/3211/3085 1438/3212/3086 +f 1335/1216/1196 1438/3212/3086 1437/1217/1197 +f 1437/1217/1197 1438/3212/3086 1372/3213/3087 +f 1437/1217/1197 1372/3213/3087 1373/1218/1198 +f 1373/1218/1198 1372/3213/3087 1445/3214/3088 +f 1373/1218/1198 1445/3214/3088 1446/1219/1199 +f 1446/1219/1199 1445/3214/3088 1543/3215/3089 +f 1446/1219/1199 1543/3215/3089 1542/1220/1200 +f 1542/1220/1200 1543/3215/3089 1483/3216/3090 +f 1542/1220/1200 1483/3216/3090 1484/1221/1201 +f 1484/1221/1201 1483/3216/3090 1555/3217/3091 +f 1484/1221/1201 1555/3217/3091 1556/1222/1202 +f 1556/1222/1202 1555/3217/3091 1646/3218/3092 +f 1556/1222/1202 1646/3218/3092 1645/1223/1203 +f 1645/1223/1203 1646/3218/3092 1592/3219/3093 +f 1645/1223/1203 1592/3219/3093 1593/1224/1204 +f 1593/1224/1204 1592/3219/3093 1715/3220/3094 +f 1593/1224/1204 1715/3220/3094 1714/1225/1205 +f 1714/1225/1205 1715/3220/3094 1665/3221/3095 +f 1714/1225/1205 1665/3221/3095 1666/1226/1206 +f 1666/1226/1206 1665/3221/3095 1737/3222/3096 +f 1666/1226/1206 1737/3222/3096 1738/1227/1207 +f 1738/1227/1207 1737/3222/3096 1819/3223/3097 +f 1738/1227/1207 1819/3223/3097 1818/1228/1208 +f 1818/1228/1208 1819/3223/3097 1775/3224/3098 +f 1818/1228/1208 1775/3224/3098 1776/1229/1209 +f 1776/1229/1209 1775/3224/3098 1848/3225/3099 +f 1776/1229/1209 1848/3225/3099 1849/1230/1210 +f 1849/1230/1210 1848/3225/3099 1924/3226/3100 +f 1849/1230/1210 1924/3226/3100 1923/1231/1211 +f 1923/1231/1211 1924/3226/3100 1886/3227/3101 +f 1923/1231/1211 1886/3227/3101 1887/1232/1212 +f 1887/1232/1212 1886/3227/3101 1958/3228/3102 +f 1887/1232/1212 1958/3228/3102 1959/1233/1213 +f 1959/1233/1213 1958/3228/3102 2027/3229/3103 +f 1959/1233/1213 2027/3229/3103 2026/1234/1214 +f 2026/1234/1214 2027/3229/3103 1995/3230/3104 +f 2026/1234/1214 1995/3230/3104 1996/1235/1215 +f 1996/1235/1215 1995/3230/3104 2096/3231/3105 +f 1996/1235/1215 2096/3231/3105 2095/1236/1216 +f 2095/1236/1216 2096/3231/3105 2068/3232/3106 +f 2095/1236/1216 2068/3232/3106 2069/1237/1217 +f 2069/1237/1217 2068/3232/3106 2140/3233/3107 +f 2069/1237/1217 2140/3233/3107 2141/1238/1218 +f 2141/1238/1218 2140/3233/3107 2200/3234/3108 +f 2141/1238/1218 2200/3234/3108 2199/1239/1219 +f 2199/1239/1219 2200/3234/3108 2178/3235/3109 +f 2199/1239/1219 2178/3235/3109 2179/1240/1220 +f 2179/1240/1220 2178/3235/3109 2251/3236/3110 +f 2179/1240/1220 2251/3236/3110 2252/1241/1221 +f 2252/1241/1221 2251/3236/3110 2305/3237/3111 +f 2252/1241/1221 2305/3237/3111 2304/1242/1222 +f 2304/1242/1222 2305/3237/3111 2289/3238/3112 +f 2304/1242/1222 2289/3238/3112 2290/1243/1223 +f 2290/1243/1223 2289/3238/3112 2361/3239/3113 +f 2290/1243/1223 2361/3239/3113 2362/1244/1224 +f 2362/1244/1224 2361/3239/3113 2409/3240/3114 +f 2362/1244/1224 2409/3240/3114 2408/1245/1225 +f 2408/1245/1225 2409/3240/3114 2399/3241/3115 +f 2408/1245/1225 2399/3241/3115 2400/1246/1226 +f 2400/1246/1226 2399/3241/3115 2471/3242/3116 +f 2400/1246/1226 2471/3242/3116 2472/1247/1227 +f 2472/1247/1227 2471/3242/3116 2512/3243/3117 +f 2472/1247/1227 2512/3243/3117 2511/1248/1228 +f 2511/1248/1228 2512/3243/3117 2508/3244/3118 +f 2511/1248/1228 2508/3244/3118 2509/1249/1229 +f 2509/1249/1229 2508/3244/3118 2581/2216/2174 +f 1329/3180/3054 1330/1108/1090 1266/1110/1092 +f 1329/3180/3054 1266/1110/1092 1267/3181/3055 +f 1267/3181/3055 1266/1110/1092 1338/1112/1094 +f 1267/3181/3055 1338/1112/1094 1339/3182/3056 +f 1339/3182/3056 1338/1112/1094 1434/1114/1096 +f 1339/3182/3056 1434/1114/1096 1433/3183/3057 +f 1433/3183/3057 1434/1114/1096 1376/1116/1098 +f 1433/3183/3057 1376/1116/1098 1377/3184/3058 +f 1377/3184/3058 1376/1116/1098 1449/1118/1100 +f 1377/3184/3058 1449/1118/1100 1450/3185/3059 +f 1450/3185/3059 1449/1118/1100 1539/1120/1102 +f 1450/3185/3059 1539/1120/1102 1538/3186/3060 +f 1538/3186/3060 1539/1120/1102 1487/1122/1104 +f 1538/3186/3060 1487/1122/1104 1488/3187/3061 +f 1488/3187/3061 1487/1122/1104 1559/1124/1106 +f 1488/3187/3061 1559/1124/1106 1560/3188/3062 +f 1560/3188/3062 1559/1124/1106 1642/1126/1108 +f 1560/3188/3062 1642/1126/1108 1641/3189/3063 +f 1641/3189/3063 1642/1126/1108 1596/1128/1110 +f 1641/3189/3063 1596/1128/1110 1597/3190/3064 +f 1597/3190/3064 1596/1128/1110 1711/1130/1112 +f 1597/3190/3064 1711/1130/1112 1710/3191/3065 +f 1710/3191/3065 1711/1130/1112 1669/1132/1114 +f 1710/3191/3065 1669/1132/1114 1670/3192/3066 +f 1670/3192/3066 1669/1132/1114 1741/1134/1116 +f 1670/3192/3066 1741/1134/1116 1742/3193/3067 +f 1742/3193/3067 1741/1134/1116 1815/1136/1118 +f 1742/3193/3067 1815/1136/1118 1814/3194/3068 +f 1814/3194/3068 1815/1136/1118 1779/1138/1120 +f 1814/3194/3068 1779/1138/1120 1780/3195/3069 +f 1780/3195/3069 1779/1138/1120 1852/1140/1122 +f 1780/3195/3069 1852/1140/1122 1853/3196/3070 +f 1853/3196/3070 1852/1140/1122 1920/1142/1124 +f 1853/3196/3070 1920/1142/1124 1919/3197/3071 +f 1919/3197/3071 1920/1142/1124 1890/1144/1126 +f 1919/3197/3071 1890/1144/1126 1891/3198/3072 +f 1891/3198/3072 1890/1144/1126 1962/1146/1128 +f 1891/3198/3072 1962/1146/1128 1963/3199/3073 +f 1963/3199/3073 1962/1146/1128 2023/1148/1130 +f 1963/3199/3073 2023/1148/1130 2022/3200/3074 +f 2022/3200/3074 2023/1148/1130 1999/1150/1132 +f 2022/3200/3074 1999/1150/1132 2000/3201/3075 +f 2000/3201/3075 1999/1150/1132 2092/1152/1134 +f 2000/3201/3075 2092/1152/1134 2091/3202/3076 +f 2091/3202/3076 2092/1152/1134 2072/1154/1136 +f 2091/3202/3076 2072/1154/1136 2073/3203/3077 +f 2073/3203/3077 2072/1154/1136 2144/1156/1138 +f 2073/3203/3077 2144/1156/1138 2145/3204/3078 +f 2145/3204/3078 2144/1156/1138 2196/1158/1140 +f 2145/3204/3078 2196/1158/1140 2195/3205/3079 +f 2195/3205/3079 2196/1158/1140 2182/1160/1142 +f 2195/3205/3079 2182/1160/1142 2183/3206/3080 +f 2183/3206/3080 2182/1160/1142 2255/1162/1144 +f 2183/3206/3080 2255/1162/1144 2256/3207/3081 +f 2256/3207/3081 2255/1162/1144 2301/1164/1146 +f 2256/3207/3081 2301/1164/1146 2300/3208/3082 +f 2300/3208/3082 2301/1164/1146 2293/1166/1148 +f 2300/3208/3082 2293/1166/1148 2294/3209/3083 +f 2294/3209/3083 2293/1166/1148 2365/1168/1150 +f 2294/3209/3083 2365/1168/1150 2366/3210/3084 +f 2366/3210/3084 2365/1168/1150 2405/1170/1152 +f 2366/3210/3084 2405/1170/1152 2404/2219/2175 +f 2404/2219/2175 2405/1170/1152 2403/1172/1154 +f 1262/1251/1230 289/1253/1232 1334/3211/3085 +f 1334/3211/3085 289/1253/1232 1439/3245/3119 +f 1334/3211/3085 1439/3245/3119 1438/3212/3086 +f 1438/3212/3086 1439/3245/3119 1371/3246/3120 +f 1438/3212/3086 1371/3246/3120 1372/3213/3087 +f 1372/3213/3087 1371/3246/3120 1444/3247/3121 +f 1372/3213/3087 1444/3247/3121 1445/3214/3088 +f 1445/3214/3088 1444/3247/3121 1544/3248/3122 +f 1445/3214/3088 1544/3248/3122 1543/3215/3089 +f 1543/3215/3089 1544/3248/3122 1482/3249/3123 +f 1543/3215/3089 1482/3249/3123 1483/3216/3090 +f 1483/3216/3090 1482/3249/3123 1554/3250/3124 +f 1483/3216/3090 1554/3250/3124 1555/3217/3091 +f 1555/3217/3091 1554/3250/3124 1647/3251/3125 +f 1555/3217/3091 1647/3251/3125 1646/3218/3092 +f 1646/3218/3092 1647/3251/3125 1591/3252/3126 +f 1646/3218/3092 1591/3252/3126 1592/3219/3093 +f 1592/3219/3093 1591/3252/3126 1716/3253/3127 +f 1592/3219/3093 1716/3253/3127 1715/3220/3094 +f 1715/3220/3094 1716/3253/3127 1664/3254/3128 +f 1715/3220/3094 1664/3254/3128 1665/3221/3095 +f 1665/3221/3095 1664/3254/3128 1736/3255/3129 +f 1665/3221/3095 1736/3255/3129 1737/3222/3096 +f 1737/3222/3096 1736/3255/3129 1820/3256/3130 +f 1737/3222/3096 1820/3256/3130 1819/3223/3097 +f 1819/3223/3097 1820/3256/3130 1774/3257/3131 +f 1819/3223/3097 1774/3257/3131 1775/3224/3098 +f 1775/3224/3098 1774/3257/3131 1847/3258/3132 +f 1775/3224/3098 1847/3258/3132 1848/3225/3099 +f 1848/3225/3099 1847/3258/3132 1925/3259/3133 +f 1848/3225/3099 1925/3259/3133 1924/3226/3100 +f 1924/3226/3100 1925/3259/3133 1885/3260/3134 +f 1924/3226/3100 1885/3260/3134 1886/3227/3101 +f 1886/3227/3101 1885/3260/3134 1957/3261/3135 +f 1886/3227/3101 1957/3261/3135 1958/3228/3102 +f 1958/3228/3102 1957/3261/3135 2028/3262/3136 +f 1958/3228/3102 2028/3262/3136 2027/3229/3103 +f 2027/3229/3103 2028/3262/3136 1994/3263/3137 +f 2027/3229/3103 1994/3263/3137 1995/3230/3104 +f 1995/3230/3104 1994/3263/3137 2097/3264/3138 +f 1995/3230/3104 2097/3264/3138 2096/3231/3105 +f 2096/3231/3105 2097/3264/3138 2067/3265/3139 +f 2096/3231/3105 2067/3265/3139 2068/3232/3106 +f 2068/3232/3106 2067/3265/3139 2139/3266/3140 +f 2068/3232/3106 2139/3266/3140 2140/3233/3107 +f 2140/3233/3107 2139/3266/3140 2201/3267/3141 +f 2140/3233/3107 2201/3267/3141 2200/3234/3108 +f 2200/3234/3108 2201/3267/3141 2177/3268/3142 +f 2200/3234/3108 2177/3268/3142 2178/3235/3109 +f 2178/3235/3109 2177/3268/3142 2250/3269/3143 +f 2178/3235/3109 2250/3269/3143 2251/3236/3110 +f 2251/3236/3110 2250/3269/3143 2306/3270/3144 +f 2251/3236/3110 2306/3270/3144 2305/3237/3111 +f 2305/3237/3111 2306/3270/3144 2288/3271/3145 +f 2305/3237/3111 2288/3271/3145 2289/3238/3112 +f 2289/3238/3112 2288/3271/3145 2360/3272/3146 +f 2289/3238/3112 2360/3272/3146 2361/3239/3113 +f 2361/3239/3113 2360/3272/3146 2410/3273/3147 +f 2361/3239/3113 2410/3273/3147 2409/3240/3114 +f 2409/3240/3114 2410/3273/3147 2398/3274/3148 +f 2409/3240/3114 2398/3274/3148 2399/3241/3115 +f 2399/3241/3115 2398/3274/3148 2470/3275/3149 +f 2399/3241/3115 2470/3275/3149 2471/3242/3116 +f 2471/3242/3116 2470/3275/3149 2513/3276/3150 +f 2471/3242/3116 2513/3276/3150 2512/3243/3117 +f 2512/3243/3117 2513/3276/3150 2507/3277/3151 +f 2512/3243/3117 2507/3277/3151 2508/3244/3118 +f 2508/3244/3118 2507/3277/3151 2582/3278/3152 +f 2508/3244/3118 2582/3278/3152 2581/2216/2174 +f 2581/2216/2174 2582/3278/3152 2580/2214/2173 +f 1440/1255/1234 1370/1257/1236 1439/3245/3119 +f 1439/3245/3119 1370/1257/1236 1371/3246/3120 +f 1444/3247/3121 1371/3246/3120 1443/1259/1238 +f 1443/1259/1238 1371/3246/3120 1370/1257/1236 +f 289/1253/1232 1440/1255/1234 1439/3245/3119 +f 1544/3248/3122 1444/3247/3121 1545/1261/1240 +f 1545/1261/1240 1444/3247/3121 1443/1259/1238 +f 1477/1368/1345 1478/3279/3153 288/1366/1343 +f 288/1366/1343 1478/3279/3153 1547/1330/1308 +f 288/1366/1343 1547/1330/1308 1441/1329/1307 +f 1547/1330/1308 1478/3279/3153 1479/1331/1309 +f 1479/1331/1309 1478/3279/3153 1550/3280/3154 +f 1479/1331/1309 1550/3280/3154 1551/1332/1310 +f 1551/1332/1310 1550/3280/3154 1651/3281/3155 +f 1551/1332/1310 1651/3281/3155 1650/1333/1311 +f 1650/1333/1311 1651/3281/3155 1587/3282/3156 +f 1650/1333/1311 1587/3282/3156 1588/1334/1312 +f 1588/1334/1312 1587/3282/3156 1720/3283/3157 +f 1588/1334/1312 1720/3283/3157 1719/1335/1313 +f 1719/1335/1313 1720/3283/3157 1660/3284/3158 +f 1719/1335/1313 1660/3284/3158 1661/1336/1314 +f 1661/1336/1314 1660/3284/3158 1732/3285/3159 +f 1661/1336/1314 1732/3285/3159 1733/1337/1315 +f 1733/1337/1315 1732/3285/3159 1824/3286/3160 +f 1733/1337/1315 1824/3286/3160 1823/1338/1316 +f 1823/1338/1316 1824/3286/3160 1770/3287/3161 +f 1823/1338/1316 1770/3287/3161 1771/1339/1317 +f 1771/1339/1317 1770/3287/3161 1843/3288/3162 +f 1771/1339/1317 1843/3288/3162 1844/1340/1318 +f 1844/1340/1318 1843/3288/3162 1929/3289/3163 +f 1844/1340/1318 1929/3289/3163 1928/1341/1319 +f 1928/1341/1319 1929/3289/3163 1881/3290/3164 +f 1928/1341/1319 1881/3290/3164 1882/1342/1320 +f 1882/1342/1320 1881/3290/3164 1953/3291/3165 +f 1882/1342/1320 1953/3291/3165 1954/1343/1321 +f 1954/1343/1321 1953/3291/3165 2032/3292/3166 +f 1954/1343/1321 2032/3292/3166 2031/1344/1322 +f 2031/1344/1322 2032/3292/3166 1990/3293/3167 +f 2031/1344/1322 1990/3293/3167 1991/1345/1323 +f 1991/1345/1323 1990/3293/3167 2101/3294/3168 +f 1991/1345/1323 2101/3294/3168 2100/1346/1324 +f 2100/1346/1324 2101/3294/3168 2063/3295/3169 +f 2100/1346/1324 2063/3295/3169 2064/1347/1325 +f 2064/1347/1325 2063/3295/3169 2135/3296/3170 +f 2064/1347/1325 2135/3296/3170 2136/1348/1326 +f 2136/1348/1326 2135/3296/3170 2205/3297/3171 +f 2136/1348/1326 2205/3297/3171 2204/1349/1327 +f 2204/1349/1327 2205/3297/3171 2173/3298/3172 +f 2204/1349/1327 2173/3298/3172 2174/1350/1328 +f 2174/1350/1328 2173/3298/3172 2246/3299/3173 +f 2174/1350/1328 2246/3299/3173 2247/1351/1329 +f 2247/1351/1329 2246/3299/3173 2310/3300/3174 +f 2247/1351/1329 2310/3300/3174 2309/1352/1330 +f 2309/1352/1330 2310/3300/3174 2284/3301/3175 +f 2309/1352/1330 2284/3301/3175 2285/1353/1331 +f 2285/1353/1331 2284/3301/3175 2356/3302/3176 +f 2285/1353/1331 2356/3302/3176 2357/1354/1332 +f 2357/1354/1332 2356/3302/3176 2414/3303/3177 +f 2357/1354/1332 2414/3303/3177 2413/1355/1333 +f 2413/1355/1333 2414/3303/3177 2394/3304/3178 +f 2413/1355/1333 2394/3304/3178 2395/1356/1334 +f 2395/1356/1334 2394/3304/3178 2466/3305/3179 +f 2395/1356/1334 2466/3305/3179 2467/1357/1335 +f 2467/1357/1335 2466/3305/3179 2517/3306/3180 +f 2467/1357/1335 2517/3306/3180 2516/1358/1336 +f 2516/1358/1336 2517/3306/3180 2503/3307/3181 +f 2516/1358/1336 2503/3307/3181 2504/1359/1337 +f 2504/1359/1337 2503/3307/3181 2586/3308/3182 +f 2504/1359/1337 2586/3308/3182 2585/1360/1338 +f 2585/1360/1338 2586/3308/3182 2576/3309/3183 +f 2585/1360/1338 2576/3309/3183 2577/1361/1339 +f 2577/1361/1339 2576/3309/3183 2648/3310/3184 +f 2577/1361/1339 2648/3310/3184 2649/1362/1340 +f 2649/1362/1340 2648/3310/3184 2690/3311/3185 +f 2649/1362/1340 2690/3311/3185 2689/1363/1341 +f 2689/1363/1341 2690/3311/3185 2686/3312/3186 +f 2689/1363/1341 2686/3312/3186 2687/1364/1342 +f 2687/1364/1342 2686/3312/3186 2759/2211/2172 +f 1478/3279/3153 1477/1368/1345 1549/3313/3187 +f 1549/3313/3187 1477/1368/1345 1548/1370/1347 +f 1549/3313/3187 1548/1370/1347 1653/1372/1349 +f 1544/3248/3122 1545/1261/1240 1481/1263/1242 +f 1544/3248/3122 1481/1263/1242 1482/3249/3123 +f 1482/3249/3123 1481/1263/1242 1553/1265/1244 +f 1482/3249/3123 1553/1265/1244 1554/3250/3124 +f 1554/3250/3124 1553/1265/1244 1648/1267/1246 +f 1554/3250/3124 1648/1267/1246 1647/3251/3125 +f 1647/3251/3125 1648/1267/1246 1590/1269/1248 +f 1647/3251/3125 1590/1269/1248 1591/3252/3126 +f 1591/3252/3126 1590/1269/1248 1717/1271/1250 +f 1591/3252/3126 1717/1271/1250 1716/3253/3127 +f 1716/3253/3127 1717/1271/1250 1663/1273/1252 +f 1716/3253/3127 1663/1273/1252 1664/3254/3128 +f 1664/3254/3128 1663/1273/1252 1735/1275/1254 +f 1664/3254/3128 1735/1275/1254 1736/3255/3129 +f 1736/3255/3129 1735/1275/1254 1821/1277/1256 +f 1736/3255/3129 1821/1277/1256 1820/3256/3130 +f 1820/3256/3130 1821/1277/1256 1773/1279/1258 +f 1820/3256/3130 1773/1279/1258 1774/3257/3131 +f 1774/3257/3131 1773/1279/1258 1846/1281/1260 +f 1774/3257/3131 1846/1281/1260 1847/3258/3132 +f 1847/3258/3132 1846/1281/1260 1926/1283/1262 +f 1847/3258/3132 1926/1283/1262 1925/3259/3133 +f 1925/3259/3133 1926/1283/1262 1884/1285/1264 +f 1925/3259/3133 1884/1285/1264 1885/3260/3134 +f 1885/3260/3134 1884/1285/1264 1956/1287/1266 +f 1885/3260/3134 1956/1287/1266 1957/3261/3135 +f 1957/3261/3135 1956/1287/1266 2029/1289/1268 +f 1957/3261/3135 2029/1289/1268 2028/3262/3136 +f 2028/3262/3136 2029/1289/1268 1993/1291/1270 +f 2028/3262/3136 1993/1291/1270 1994/3263/3137 +f 1994/3263/3137 1993/1291/1270 2098/1293/1272 +f 1994/3263/3137 2098/1293/1272 2097/3264/3138 +f 2097/3264/3138 2098/1293/1272 2066/1295/1274 +f 2097/3264/3138 2066/1295/1274 2067/3265/3139 +f 2067/3265/3139 2066/1295/1274 2138/1297/1276 +f 2067/3265/3139 2138/1297/1276 2139/3266/3140 +f 2139/3266/3140 2138/1297/1276 2202/1299/1278 +f 2139/3266/3140 2202/1299/1278 2201/3267/3141 +f 2201/3267/3141 2202/1299/1278 2176/1301/1280 +f 2201/3267/3141 2176/1301/1280 2177/3268/3142 +f 2177/3268/3142 2176/1301/1280 2249/1303/1282 +f 2177/3268/3142 2249/1303/1282 2250/3269/3143 +f 2250/3269/3143 2249/1303/1282 2307/1305/1284 +f 2250/3269/3143 2307/1305/1284 2306/3270/3144 +f 2306/3270/3144 2307/1305/1284 2287/1307/1286 +f 2306/3270/3144 2287/1307/1286 2288/3271/3145 +f 2288/3271/3145 2287/1307/1286 2359/1309/1288 +f 2288/3271/3145 2359/1309/1288 2360/3272/3146 +f 2360/3272/3146 2359/1309/1288 2411/1311/1290 +f 2360/3272/3146 2411/1311/1290 2410/3273/3147 +f 2410/3273/3147 2411/1311/1290 2397/1313/1292 +f 2410/3273/3147 2397/1313/1292 2398/3274/3148 +f 2398/3274/3148 2397/1313/1292 2469/1315/1294 +f 2398/3274/3148 2469/1315/1294 2470/3275/3149 +f 2470/3275/3149 2469/1315/1294 2514/1317/1296 +f 2470/3275/3149 2514/1317/1296 2513/3276/3150 +f 2513/3276/3150 2514/1317/1296 2506/1319/1298 +f 2513/3276/3150 2506/1319/1298 2507/3277/3151 +f 2507/3277/3151 2506/1319/1298 2583/1321/1300 +f 2507/3277/3151 2583/1321/1300 2582/3278/3152 +f 2582/3278/3152 2583/1321/1300 2579/1323/1302 +f 2582/3278/3152 2579/1323/1302 2580/2214/2173 +f 2580/2214/2173 2579/1323/1302 2651/1325/1304 +f 1478/3279/3153 1549/3313/3187 1550/3280/3154 +f 1550/3280/3154 1549/3313/3187 1652/3314/3188 +f 1550/3280/3154 1652/3314/3188 1651/3281/3155 +f 1651/3281/3155 1652/3314/3188 1586/3315/3189 +f 1651/3281/3155 1586/3315/3189 1587/3282/3156 +f 1587/3282/3156 1586/3315/3189 1721/3316/3190 +f 1587/3282/3156 1721/3316/3190 1720/3283/3157 +f 1720/3283/3157 1721/3316/3190 1659/3317/3191 +f 1720/3283/3157 1659/3317/3191 1660/3284/3158 +f 1660/3284/3158 1659/3317/3191 1731/3318/3192 +f 1660/3284/3158 1731/3318/3192 1732/3285/3159 +f 1732/3285/3159 1731/3318/3192 1825/3319/3193 +f 1732/3285/3159 1825/3319/3193 1824/3286/3160 +f 1824/3286/3160 1825/3319/3193 1769/3320/3194 +f 1824/3286/3160 1769/3320/3194 1770/3287/3161 +f 1770/3287/3161 1769/3320/3194 1842/3321/3195 +f 1770/3287/3161 1842/3321/3195 1843/3288/3162 +f 1843/3288/3162 1842/3321/3195 1930/3322/3196 +f 1843/3288/3162 1930/3322/3196 1929/3289/3163 +f 1929/3289/3163 1930/3322/3196 1880/3323/3197 +f 1929/3289/3163 1880/3323/3197 1881/3290/3164 +f 1881/3290/3164 1880/3323/3197 1952/3324/3198 +f 1881/3290/3164 1952/3324/3198 1953/3291/3165 +f 1953/3291/3165 1952/3324/3198 2033/3325/3199 +f 1953/3291/3165 2033/3325/3199 2032/3292/3166 +f 2032/3292/3166 2033/3325/3199 1989/3326/3200 +f 2032/3292/3166 1989/3326/3200 1990/3293/3167 +f 1990/3293/3167 1989/3326/3200 2102/3327/3201 +f 1990/3293/3167 2102/3327/3201 2101/3294/3168 +f 2101/3294/3168 2102/3327/3201 2062/3328/3202 +f 2101/3294/3168 2062/3328/3202 2063/3295/3169 +f 2063/3295/3169 2062/3328/3202 2134/3329/3203 +f 2063/3295/3169 2134/3329/3203 2135/3296/3170 +f 2135/3296/3170 2134/3329/3203 2206/3330/3204 +f 2135/3296/3170 2206/3330/3204 2205/3297/3171 +f 2205/3297/3171 2206/3330/3204 2172/3331/3205 +f 2205/3297/3171 2172/3331/3205 2173/3298/3172 +f 2173/3298/3172 2172/3331/3205 2245/3332/3206 +f 2173/3298/3172 2245/3332/3206 2246/3299/3173 +f 2246/3299/3173 2245/3332/3206 2311/3333/3207 +f 2246/3299/3173 2311/3333/3207 2310/3300/3174 +f 2310/3300/3174 2311/3333/3207 2283/3334/3208 +f 2310/3300/3174 2283/3334/3208 2284/3301/3175 +f 2284/3301/3175 2283/3334/3208 2355/3335/3209 +f 2284/3301/3175 2355/3335/3209 2356/3302/3176 +f 2356/3302/3176 2355/3335/3209 2415/3336/3210 +f 2356/3302/3176 2415/3336/3210 2414/3303/3177 +f 2414/3303/3177 2415/3336/3210 2393/3337/3211 +f 2414/3303/3177 2393/3337/3211 2394/3304/3178 +f 2394/3304/3178 2393/3337/3211 2465/3338/3212 +f 2394/3304/3178 2465/3338/3212 2466/3305/3179 +f 2466/3305/3179 2465/3338/3212 2518/3339/3213 +f 2466/3305/3179 2518/3339/3213 2517/3306/3180 +f 2517/3306/3180 2518/3339/3213 2502/3340/3214 +f 2517/3306/3180 2502/3340/3214 2503/3307/3181 +f 2503/3307/3181 2502/3340/3214 2587/3341/3215 +f 2503/3307/3181 2587/3341/3215 2586/3308/3182 +f 2586/3308/3182 2587/3341/3215 2575/3342/3216 +f 2586/3308/3182 2575/3342/3216 2576/3309/3183 +f 2576/3309/3183 2575/3342/3216 2647/3343/3217 +f 2576/3309/3183 2647/3343/3217 2648/3310/3184 +f 2648/3310/3184 2647/3343/3217 2691/3344/3218 +f 2648/3310/3184 2691/3344/3218 2690/3311/3185 +f 2690/3311/3185 2691/3344/3218 2685/3345/3219 +f 2690/3311/3185 2685/3345/3219 2686/3312/3186 +f 2686/3312/3186 2685/3345/3219 2758/3346/3220 +f 2686/3312/3186 2758/3346/3220 2759/2211/2172 +f 2759/2211/2172 2758/3346/3220 2796/2209/2171 +f 1652/3314/3188 1549/3313/3187 1653/1372/1349 +f 1652/3314/3188 1653/1372/1349 1585/1374/1351 +f 1652/3314/3188 1585/1374/1351 1586/3315/3189 +f 1586/3315/3189 1585/1374/1351 1722/1376/1353 +f 1586/3315/3189 1722/1376/1353 1721/3316/3190 +f 1721/3316/3190 1722/1376/1353 1658/1378/1355 +f 1721/3316/3190 1658/1378/1355 1659/3317/3191 +f 1659/3317/3191 1658/1378/1355 1730/1380/1357 +f 1659/3317/3191 1730/1380/1357 1731/3318/3192 +f 1731/3318/3192 1730/1380/1357 1826/1382/1359 +f 1731/3318/3192 1826/1382/1359 1825/3319/3193 +f 1825/3319/3193 1826/1382/1359 1768/1384/1361 +f 1825/3319/3193 1768/1384/1361 1769/3320/3194 +f 1769/3320/3194 1768/1384/1361 1841/1386/1363 +f 1769/3320/3194 1841/1386/1363 1842/3321/3195 +f 1842/3321/3195 1841/1386/1363 1931/1388/1365 +f 1842/3321/3195 1931/1388/1365 1930/3322/3196 +f 1930/3322/3196 1931/1388/1365 1879/1390/1367 +f 1930/3322/3196 1879/1390/1367 1880/3323/3197 +f 1880/3323/3197 1879/1390/1367 1951/1392/1369 +f 1880/3323/3197 1951/1392/1369 1952/3324/3198 +f 1952/3324/3198 1951/1392/1369 2034/1394/1371 +f 1952/3324/3198 2034/1394/1371 2033/3325/3199 +f 2033/3325/3199 2034/1394/1371 1988/1396/1373 +f 2033/3325/3199 1988/1396/1373 1989/3326/3200 +f 1989/3326/3200 1988/1396/1373 2103/1398/1375 +f 1989/3326/3200 2103/1398/1375 2102/3327/3201 +f 2102/3327/3201 2103/1398/1375 2061/1400/1377 +f 2102/3327/3201 2061/1400/1377 2062/3328/3202 +f 2062/3328/3202 2061/1400/1377 2133/1402/1379 +f 2062/3328/3202 2133/1402/1379 2134/3329/3203 +f 2134/3329/3203 2133/1402/1379 2207/1404/1381 +f 2134/3329/3203 2207/1404/1381 2206/3330/3204 +f 2206/3330/3204 2207/1404/1381 2171/1406/1383 +f 2206/3330/3204 2171/1406/1383 2172/3331/3205 +f 2172/3331/3205 2171/1406/1383 2244/1408/1385 +f 2172/3331/3205 2244/1408/1385 2245/3332/3206 +f 2245/3332/3206 2244/1408/1385 2312/1410/1387 +f 2245/3332/3206 2312/1410/1387 2311/3333/3207 +f 2311/3333/3207 2312/1410/1387 2282/1412/1389 +f 2311/3333/3207 2282/1412/1389 2283/3334/3208 +f 2283/3334/3208 2282/1412/1389 2354/1414/1391 +f 2283/3334/3208 2354/1414/1391 2355/3335/3209 +f 2355/3335/3209 2354/1414/1391 2416/1416/1393 +f 2355/3335/3209 2416/1416/1393 2415/3336/3210 +f 2415/3336/3210 2416/1416/1393 2392/1418/1395 +f 2415/3336/3210 2392/1418/1395 2393/3337/3211 +f 2393/3337/3211 2392/1418/1395 2464/1420/1397 +f 2393/3337/3211 2464/1420/1397 2465/3338/3212 +f 2465/3338/3212 2464/1420/1397 2519/1422/1399 +f 2465/3338/3212 2519/1422/1399 2518/3339/3213 +f 2518/3339/3213 2519/1422/1399 2501/1424/1401 +f 2518/3339/3213 2501/1424/1401 2502/3340/3214 +f 2502/3340/3214 2501/1424/1401 2588/1426/1403 +f 2502/3340/3214 2588/1426/1403 2587/3341/3215 +f 2587/3341/3215 2588/1426/1403 2574/1428/1405 +f 2587/3341/3215 2574/1428/1405 2575/3342/3216 +f 2575/3342/3216 2574/1428/1405 2646/1430/1407 +f 2575/3342/3216 2646/1430/1407 2647/3343/3217 +f 2647/3343/3217 2646/1430/1407 2692/1432/1409 +f 2647/3343/3217 2692/1432/1409 2691/3344/3218 +f 2691/3344/3218 2692/1432/1409 2684/1434/1411 +f 2691/3344/3218 2684/1434/1411 2685/3345/3219 +f 2685/3345/3219 2684/1434/1411 2757/1436/1413 +f 2685/3345/3219 2757/1436/1413 2758/3346/3220 +f 2758/3346/3220 2757/1436/1413 2797/1438/1415 +f 2758/3346/3220 2797/1438/1415 2796/2209/2171 +f 2796/2209/2171 2797/1438/1415 2795/1440/1417 +f 1725/1482/1457 1654/1519/1493 1655/1483/1458 +f 1655/1483/1458 1654/1519/1493 1726/3347/3221 +f 1655/1483/1458 1726/3347/3221 1727/1484/1459 +f 1727/1484/1459 1726/3347/3221 1830/3348/3222 +f 1727/1484/1459 1830/3348/3222 1829/1485/1460 +f 1829/1485/1460 1830/3348/3222 1764/3349/3223 +f 1829/1485/1460 1764/3349/3223 1765/1486/1461 +f 1765/1486/1461 1764/3349/3223 1837/3350/3224 +f 1765/1486/1461 1837/3350/3224 1838/1487/1462 +f 1838/1487/1462 1837/3350/3224 1935/3351/3225 +f 1838/1487/1462 1935/3351/3225 1934/1488/1463 +f 1934/1488/1463 1935/3351/3225 1875/3352/3226 +f 1934/1488/1463 1875/3352/3226 1876/1489/1464 +f 1876/1489/1464 1875/3352/3226 1947/3353/3227 +f 1876/1489/1464 1947/3353/3227 1948/1490/1465 +f 1948/1490/1465 1947/3353/3227 2038/3354/3228 +f 1948/1490/1465 2038/3354/3228 2037/1491/1466 +f 2037/1491/1466 2038/3354/3228 1984/3355/3229 +f 2037/1491/1466 1984/3355/3229 1985/1492/1467 +f 1985/1492/1467 1984/3355/3229 2107/3356/3230 +f 1985/1492/1467 2107/3356/3230 2106/1493/1468 +f 2106/1493/1468 2107/3356/3230 2057/3357/3231 +f 2106/1493/1468 2057/3357/3231 2058/1494/1469 +f 2058/1494/1469 2057/3357/3231 2129/3358/3232 +f 2058/1494/1469 2129/3358/3232 2130/1495/1470 +f 2130/1495/1470 2129/3358/3232 2211/3359/3233 +f 2130/1495/1470 2211/3359/3233 2210/1496/1471 +f 2210/1496/1471 2211/3359/3233 2167/3360/3234 +f 2210/1496/1471 2167/3360/3234 2168/1497/1472 +f 2168/1497/1472 2167/3360/3234 2240/3361/3235 +f 2168/1497/1472 2240/3361/3235 2241/1498/1473 +f 2241/1498/1473 2240/3361/3235 2316/3362/3236 +f 2241/1498/1473 2316/3362/3236 2315/1499/1474 +f 2315/1499/1474 2316/3362/3236 2278/3363/3237 +f 2315/1499/1474 2278/3363/3237 2279/1500/1475 +f 2279/1500/1475 2278/3363/3237 2350/3364/3238 +f 2279/1500/1475 2350/3364/3238 2351/1501/1476 +f 2351/1501/1476 2350/3364/3238 2420/3365/3239 +f 2351/1501/1476 2420/3365/3239 2419/1502/1477 +f 2419/1502/1477 2420/3365/3239 2388/3366/3240 +f 2419/1502/1477 2388/3366/3240 2389/1503/1478 +f 2389/1503/1478 2388/3366/3240 2460/3367/3241 +f 2389/1503/1478 2460/3367/3241 2461/1504/1479 +f 2461/1504/1479 2460/3367/3241 2523/3368/3242 +f 2461/1504/1479 2523/3368/3242 2522/1505/1480 +f 2522/1505/1480 2523/3368/3242 2497/3369/3243 +f 2522/1505/1480 2497/3369/3243 2498/1506/1481 +f 2498/1506/1481 2497/3369/3243 2592/3370/3244 +f 2498/1506/1481 2592/3370/3244 2591/1507/1482 +f 2591/1507/1482 2592/3370/3244 2570/3371/3245 +f 2591/1507/1482 2570/3371/3245 2571/1508/1483 +f 2571/1508/1483 2570/3371/3245 2642/3372/3246 +f 2571/1508/1483 2642/3372/3246 2643/1509/1484 +f 2643/1509/1484 2642/3372/3246 2696/3373/3247 +f 2643/1509/1484 2696/3373/3247 2695/1510/1485 +f 2695/1510/1485 2696/3373/3247 2680/3374/3248 +f 2695/1510/1485 2680/3374/3248 2681/1511/1486 +f 2681/1511/1486 2680/3374/3248 2753/3375/3249 +f 2681/1511/1486 2753/3375/3249 2754/1512/1487 +f 2754/1512/1487 2753/3375/3249 2801/3376/3250 +f 2754/1512/1487 2801/3376/3250 2800/1513/1488 +f 2800/1513/1488 2801/3376/3250 2791/3377/3251 +f 2800/1513/1488 2791/3377/3251 2792/1514/1489 +f 2792/1514/1489 2791/3377/3251 2863/3378/3252 +f 2792/1514/1489 2863/3378/3252 2864/1515/1490 +f 2864/1515/1490 2863/3378/3252 2904/3379/3253 +f 2864/1515/1490 2904/3379/3253 2903/1516/1491 +f 2903/1516/1491 2904/3379/3253 2900/3380/3254 +f 2903/1516/1491 2900/3380/3254 2901/1517/1492 +f 2901/1517/1492 2900/3380/3254 2973/2206/2170 +f 1654/1519/1493 285/1521/1495 1726/3347/3221 +f 1726/3347/3221 285/1521/1495 1831/3381/3255 +f 1726/3347/3221 1831/3381/3255 1830/3348/3222 +f 1830/3348/3222 1831/3381/3255 1763/3382/3256 +f 1830/3348/3222 1763/3382/3256 1764/3349/3223 +f 1764/3349/3223 1763/3382/3256 1836/3383/3257 +f 1764/3349/3223 1836/3383/3257 1837/3350/3224 +f 1837/3350/3224 1836/3383/3257 1936/3384/3258 +f 1837/3350/3224 1936/3384/3258 1935/3351/3225 +f 1935/3351/3225 1936/3384/3258 1874/3385/3259 +f 1935/3351/3225 1874/3385/3259 1875/3352/3226 +f 1875/3352/3226 1874/3385/3259 1946/3386/3260 +f 1875/3352/3226 1946/3386/3260 1947/3353/3227 +f 1947/3353/3227 1946/3386/3260 2039/3387/3261 +f 1947/3353/3227 2039/3387/3261 2038/3354/3228 +f 2038/3354/3228 2039/3387/3261 1983/3388/3262 +f 2038/3354/3228 1983/3388/3262 1984/3355/3229 +f 1984/3355/3229 1983/3388/3262 2108/3389/3263 +f 1984/3355/3229 2108/3389/3263 2107/3356/3230 +f 2107/3356/3230 2108/3389/3263 2056/3390/3264 +f 2107/3356/3230 2056/3390/3264 2057/3357/3231 +f 2057/3357/3231 2056/3390/3264 2128/3391/3265 +f 2057/3357/3231 2128/3391/3265 2129/3358/3232 +f 2129/3358/3232 2128/3391/3265 2212/3392/3266 +f 2129/3358/3232 2212/3392/3266 2211/3359/3233 +f 2211/3359/3233 2212/3392/3266 2166/3393/3267 +f 2211/3359/3233 2166/3393/3267 2167/3360/3234 +f 2167/3360/3234 2166/3393/3267 2239/3394/3268 +f 2167/3360/3234 2239/3394/3268 2240/3361/3235 +f 2240/3361/3235 2239/3394/3268 2317/3395/3269 +f 2240/3361/3235 2317/3395/3269 2316/3362/3236 +f 2316/3362/3236 2317/3395/3269 2277/3396/3270 +f 2316/3362/3236 2277/3396/3270 2278/3363/3237 +f 2278/3363/3237 2277/3396/3270 2349/3397/3271 +f 2278/3363/3237 2349/3397/3271 2350/3364/3238 +f 2350/3364/3238 2349/3397/3271 2421/3398/3272 +f 2350/3364/3238 2421/3398/3272 2420/3365/3239 +f 2420/3365/3239 2421/3398/3272 2387/3399/3273 +f 2420/3365/3239 2387/3399/3273 2388/3366/3240 +f 2388/3366/3240 2387/3399/3273 2459/3400/3274 +f 2388/3366/3240 2459/3400/3274 2460/3367/3241 +f 2460/3367/3241 2459/3400/3274 2524/3401/3275 +f 2460/3367/3241 2524/3401/3275 2523/3368/3242 +f 2523/3368/3242 2524/3401/3275 2496/3402/3276 +f 2523/3368/3242 2496/3402/3276 2497/3369/3243 +f 2497/3369/3243 2496/3402/3276 2593/3403/3277 +f 2497/3369/3243 2593/3403/3277 2592/3370/3244 +f 2592/3370/3244 2593/3403/3277 2569/3404/3278 +f 2592/3370/3244 2569/3404/3278 2570/3371/3245 +f 2570/3371/3245 2569/3404/3278 2641/3405/3279 +f 2570/3371/3245 2641/3405/3279 2642/3372/3246 +f 2642/3372/3246 2641/3405/3279 2697/3406/3280 +f 2642/3372/3246 2697/3406/3280 2696/3373/3247 +f 2696/3373/3247 2697/3406/3280 2679/3407/3281 +f 2696/3373/3247 2679/3407/3281 2680/3374/3248 +f 2680/3374/3248 2679/3407/3281 2752/3408/3282 +f 2680/3374/3248 2752/3408/3282 2753/3375/3249 +f 2753/3375/3249 2752/3408/3282 2802/3409/3283 +f 2753/3375/3249 2802/3409/3283 2801/3376/3250 +f 2801/3376/3250 2802/3409/3283 2790/3410/3284 +f 2801/3376/3250 2790/3410/3284 2791/3377/3251 +f 2791/3377/3251 2790/3410/3284 2862/3411/3285 +f 2791/3377/3251 2862/3411/3285 2863/3378/3252 +f 2863/3378/3252 2862/3411/3285 2905/3412/3286 +f 2863/3378/3252 2905/3412/3286 2904/3379/3253 +f 2904/3379/3253 2905/3412/3286 2899/3413/3287 +f 2904/3379/3253 2899/3413/3287 2900/3380/3254 +f 2900/3380/3254 2899/3413/3287 2974/3414/3288 +f 2900/3380/3254 2974/3414/3288 2973/2206/2170 +f 2973/2206/2170 2974/3414/3288 2972/2204/2169 +f 1832/1523/1497 1762/1525/1499 1831/3381/3255 +f 1831/3381/3255 1762/1525/1499 1763/3382/3256 +f 1836/3383/3257 1763/3382/3256 1835/1527/1501 +f 1835/1527/1501 1763/3382/3256 1762/1525/1499 +f 285/1521/1495 1832/1523/1497 1831/3381/3255 +f 1936/3384/3258 1836/3383/3257 1937/1529/1503 +f 1937/1529/1503 1836/3383/3257 1835/1527/1501 +f 1869/1636/1608 1870/3415/3289 284/1634/1606 +f 284/1634/1606 1870/3415/3289 1939/1598/1571 +f 284/1634/1606 1939/1598/1571 1833/1597/1570 +f 1939/1598/1571 1870/3415/3289 1871/1599/1572 +f 1871/1599/1572 1870/3415/3289 1942/3416/3290 +f 1871/1599/1572 1942/3416/3290 1943/1600/1573 +f 1943/1600/1573 1942/3416/3290 2043/3417/3291 +f 1943/1600/1573 2043/3417/3291 2042/1601/1574 +f 2042/1601/1574 2043/3417/3291 1979/3418/3292 +f 2042/1601/1574 1979/3418/3292 1980/1602/1575 +f 1980/1602/1575 1979/3418/3292 2112/3419/3293 +f 1980/1602/1575 2112/3419/3293 2111/1603/1576 +f 2111/1603/1576 2112/3419/3293 2052/3420/3294 +f 2111/1603/1576 2052/3420/3294 2053/1604/1577 +f 2053/1604/1577 2052/3420/3294 2124/3421/3295 +f 2053/1604/1577 2124/3421/3295 2125/1605/1578 +f 2125/1605/1578 2124/3421/3295 2216/3422/3296 +f 2125/1605/1578 2216/3422/3296 2215/1606/1579 +f 2215/1606/1579 2216/3422/3296 2162/3423/3297 +f 2215/1606/1579 2162/3423/3297 2163/1607/1580 +f 2163/1607/1580 2162/3423/3297 2235/3424/3298 +f 2163/1607/1580 2235/3424/3298 2236/1608/1581 +f 2236/1608/1581 2235/3424/3298 2321/3425/3299 +f 2236/1608/1581 2321/3425/3299 2320/1609/1582 +f 2320/1609/1582 2321/3425/3299 2273/3426/3300 +f 2320/1609/1582 2273/3426/3300 2274/1610/1583 +f 2274/1610/1583 2273/3426/3300 2345/3427/3301 +f 2274/1610/1583 2345/3427/3301 2346/1611/1584 +f 2346/1611/1584 2345/3427/3301 2425/3428/3302 +f 2346/1611/1584 2425/3428/3302 2424/1612/1585 +f 2424/1612/1585 2425/3428/3302 2383/3429/3303 +f 2424/1612/1585 2383/3429/3303 2384/1613/1586 +f 2384/1613/1586 2383/3429/3303 2455/3430/3304 +f 2384/1613/1586 2455/3430/3304 2456/1614/1587 +f 2456/1614/1587 2455/3430/3304 2528/3431/3305 +f 2456/1614/1587 2528/3431/3305 2527/1615/1588 +f 2527/1615/1588 2528/3431/3305 2492/3432/3306 +f 2527/1615/1588 2492/3432/3306 2493/1616/1589 +f 2493/1616/1589 2492/3432/3306 2597/3433/3307 +f 2493/1616/1589 2597/3433/3307 2596/1617/1590 +f 2596/1617/1590 2597/3433/3307 2565/3434/3308 +f 2596/1617/1590 2565/3434/3308 2566/1618/1591 +f 2566/1618/1591 2565/3434/3308 2637/3435/3309 +f 2566/1618/1591 2637/3435/3309 2638/1619/1592 +f 2638/1619/1592 2637/3435/3309 2701/3436/3310 +f 2638/1619/1592 2701/3436/3310 2700/1620/1593 +f 2700/1620/1593 2701/3436/3310 2675/3437/3311 +f 2700/1620/1593 2675/3437/3311 2676/1621/1594 +f 2676/1621/1594 2675/3437/3311 2748/3438/3312 +f 2676/1621/1594 2748/3438/3312 2749/1622/1595 +f 2749/1622/1595 2748/3438/3312 2806/3439/3313 +f 2749/1622/1595 2806/3439/3313 2805/1623/1596 +f 2805/1623/1596 2806/3439/3313 2786/3440/3314 +f 2805/1623/1596 2786/3440/3314 2787/1624/1597 +f 2787/1624/1597 2786/3440/3314 2858/3441/3315 +f 2787/1624/1597 2858/3441/3315 2859/1625/1598 +f 2859/1625/1598 2858/3441/3315 2909/3442/3316 +f 2859/1625/1598 2909/3442/3316 2908/1626/1599 +f 2908/1626/1599 2909/3442/3316 2895/3443/3317 +f 2908/1626/1599 2895/3443/3317 2896/1627/1600 +f 2896/1627/1600 2895/3443/3317 2978/3444/3318 +f 2896/1627/1600 2978/3444/3318 2977/1628/1601 +f 2977/1628/1601 2978/3444/3318 2968/3445/3319 +f 2977/1628/1601 2968/3445/3319 2969/1629/1602 +f 2969/1629/1602 2968/3445/3319 3040/3446/3320 +f 2969/1629/1602 3040/3446/3320 3041/1630/1603 +f 3041/1630/1603 3040/3446/3320 3082/3447/3321 +f 3041/1630/1603 3082/3447/3321 3081/1631/1604 +f 3081/1631/1604 3082/3447/3321 3078/3448/3322 +f 3081/1631/1604 3078/3448/3322 3079/1632/1605 +f 3079/1632/1605 3078/3448/3322 3151/2201/2168 +f 1870/3415/3289 1869/1636/1608 1941/3449/3323 +f 1941/3449/3323 1869/1636/1608 1940/1638/1610 +f 1941/3449/3323 1940/1638/1610 2045/1640/1612 +f 1936/3384/3258 1937/1529/1503 1873/1531/1505 +f 1936/3384/3258 1873/1531/1505 1874/3385/3259 +f 1874/3385/3259 1873/1531/1505 1945/1533/1507 +f 1874/3385/3259 1945/1533/1507 1946/3386/3260 +f 1946/3386/3260 1945/1533/1507 2040/1535/1509 +f 1946/3386/3260 2040/1535/1509 2039/3387/3261 +f 2039/3387/3261 2040/1535/1509 1982/1537/1511 +f 2039/3387/3261 1982/1537/1511 1983/3388/3262 +f 1983/3388/3262 1982/1537/1511 2109/1539/1513 +f 1983/3388/3262 2109/1539/1513 2108/3389/3263 +f 2108/3389/3263 2109/1539/1513 2055/1541/1515 +f 2108/3389/3263 2055/1541/1515 2056/3390/3264 +f 2056/3390/3264 2055/1541/1515 2127/1543/1517 +f 2056/3390/3264 2127/1543/1517 2128/3391/3265 +f 2128/3391/3265 2127/1543/1517 2213/1545/1519 +f 2128/3391/3265 2213/1545/1519 2212/3392/3266 +f 2212/3392/3266 2213/1545/1519 2165/1547/1521 +f 2212/3392/3266 2165/1547/1521 2166/3393/3267 +f 2166/3393/3267 2165/1547/1521 2238/1549/1523 +f 2166/3393/3267 2238/1549/1523 2239/3394/3268 +f 2239/3394/3268 2238/1549/1523 2318/1551/1525 +f 2239/3394/3268 2318/1551/1525 2317/3395/3269 +f 2317/3395/3269 2318/1551/1525 2276/1553/1527 +f 2317/3395/3269 2276/1553/1527 2277/3396/3270 +f 2277/3396/3270 2276/1553/1527 2348/1555/1529 +f 2277/3396/3270 2348/1555/1529 2349/3397/3271 +f 2349/3397/3271 2348/1555/1529 2422/1557/1531 +f 2349/3397/3271 2422/1557/1531 2421/3398/3272 +f 2421/3398/3272 2422/1557/1531 2386/1559/1533 +f 2421/3398/3272 2386/1559/1533 2387/3399/3273 +f 2387/3399/3273 2386/1559/1533 2458/1561/1535 +f 2387/3399/3273 2458/1561/1535 2459/3400/3274 +f 2459/3400/3274 2458/1561/1535 2525/1563/1537 +f 2459/3400/3274 2525/1563/1537 2524/3401/3275 +f 2524/3401/3275 2525/1563/1537 2495/1565/1539 +f 2524/3401/3275 2495/1565/1539 2496/3402/3276 +f 2496/3402/3276 2495/1565/1539 2594/1567/1541 +f 2496/3402/3276 2594/1567/1541 2593/3403/3277 +f 2593/3403/3277 2594/1567/1541 2568/1569/1543 +f 2593/3403/3277 2568/1569/1543 2569/3404/3278 +f 2569/3404/3278 2568/1569/1543 2640/1571/1545 +f 2569/3404/3278 2640/1571/1545 2641/3405/3279 +f 2641/3405/3279 2640/1571/1545 2698/1573/1547 +f 2641/3405/3279 2698/1573/1547 2697/3406/3280 +f 2697/3406/3280 2698/1573/1547 2678/1575/1549 +f 2697/3406/3280 2678/1575/1549 2679/3407/3281 +f 2679/3407/3281 2678/1575/1549 2751/1577/1551 +f 2679/3407/3281 2751/1577/1551 2752/3408/3282 +f 2752/3408/3282 2751/1577/1551 2803/1579/1553 +f 2752/3408/3282 2803/1579/1553 2802/3409/3283 +f 2802/3409/3283 2803/1579/1553 2789/1581/1555 +f 2802/3409/3283 2789/1581/1555 2790/3410/3284 +f 2790/3410/3284 2789/1581/1555 2861/1583/1557 +f 2790/3410/3284 2861/1583/1557 2862/3411/3285 +f 2862/3411/3285 2861/1583/1557 2906/1585/1559 +f 2862/3411/3285 2906/1585/1559 2905/3412/3286 +f 2905/3412/3286 2906/1585/1559 2898/1587/1561 +f 2905/3412/3286 2898/1587/1561 2899/3413/3287 +f 2899/3413/3287 2898/1587/1561 2975/1589/1563 +f 2899/3413/3287 2975/1589/1563 2974/3414/3288 +f 2974/3414/3288 2975/1589/1563 2971/1591/1565 +f 2974/3414/3288 2971/1591/1565 2972/2204/2169 +f 2972/2204/2169 2971/1591/1565 3043/1593/1567 +f 1870/3415/3289 1941/3449/3323 1942/3416/3290 +f 1942/3416/3290 1941/3449/3323 2044/3450/3324 +f 1942/3416/3290 2044/3450/3324 2043/3417/3291 +f 2043/3417/3291 2044/3450/3324 1978/3451/3325 +f 2043/3417/3291 1978/3451/3325 1979/3418/3292 +f 1979/3418/3292 1978/3451/3325 2113/3452/3326 +f 1979/3418/3292 2113/3452/3326 2112/3419/3293 +f 2112/3419/3293 2113/3452/3326 2051/3453/3327 +f 2112/3419/3293 2051/3453/3327 2052/3420/3294 +f 2052/3420/3294 2051/3453/3327 2123/3454/3328 +f 2052/3420/3294 2123/3454/3328 2124/3421/3295 +f 2124/3421/3295 2123/3454/3328 2217/3455/3329 +f 2124/3421/3295 2217/3455/3329 2216/3422/3296 +f 2216/3422/3296 2217/3455/3329 2161/3456/3330 +f 2216/3422/3296 2161/3456/3330 2162/3423/3297 +f 2162/3423/3297 2161/3456/3330 2234/3457/3331 +f 2162/3423/3297 2234/3457/3331 2235/3424/3298 +f 2235/3424/3298 2234/3457/3331 2322/3458/3332 +f 2235/3424/3298 2322/3458/3332 2321/3425/3299 +f 2321/3425/3299 2322/3458/3332 2272/3459/3333 +f 2321/3425/3299 2272/3459/3333 2273/3426/3300 +f 2273/3426/3300 2272/3459/3333 2344/3460/3334 +f 2273/3426/3300 2344/3460/3334 2345/3427/3301 +f 2345/3427/3301 2344/3460/3334 2426/3461/3335 +f 2345/3427/3301 2426/3461/3335 2425/3428/3302 +f 2425/3428/3302 2426/3461/3335 2382/3462/3336 +f 2425/3428/3302 2382/3462/3336 2383/3429/3303 +f 2383/3429/3303 2382/3462/3336 2454/3463/3337 +f 2383/3429/3303 2454/3463/3337 2455/3430/3304 +f 2455/3430/3304 2454/3463/3337 2529/3464/3338 +f 2455/3430/3304 2529/3464/3338 2528/3431/3305 +f 2528/3431/3305 2529/3464/3338 2491/3465/3339 +f 2528/3431/3305 2491/3465/3339 2492/3432/3306 +f 2492/3432/3306 2491/3465/3339 2598/3466/3340 +f 2492/3432/3306 2598/3466/3340 2597/3433/3307 +f 2597/3433/3307 2598/3466/3340 2564/3467/3341 +f 2597/3433/3307 2564/3467/3341 2565/3434/3308 +f 2565/3434/3308 2564/3467/3341 2636/3468/3342 +f 2565/3434/3308 2636/3468/3342 2637/3435/3309 +f 2637/3435/3309 2636/3468/3342 2702/3469/3343 +f 2637/3435/3309 2702/3469/3343 2701/3436/3310 +f 2701/3436/3310 2702/3469/3343 2674/3470/3344 +f 2701/3436/3310 2674/3470/3344 2675/3437/3311 +f 2675/3437/3311 2674/3470/3344 2747/3471/3345 +f 2675/3437/3311 2747/3471/3345 2748/3438/3312 +f 2748/3438/3312 2747/3471/3345 2807/3472/3346 +f 2748/3438/3312 2807/3472/3346 2806/3439/3313 +f 2806/3439/3313 2807/3472/3346 2785/3473/3347 +f 2806/3439/3313 2785/3473/3347 2786/3440/3314 +f 2786/3440/3314 2785/3473/3347 2857/3474/3348 +f 2786/3440/3314 2857/3474/3348 2858/3441/3315 +f 2858/3441/3315 2857/3474/3348 2910/3475/3349 +f 2858/3441/3315 2910/3475/3349 2909/3442/3316 +f 2909/3442/3316 2910/3475/3349 2894/3476/3350 +f 2909/3442/3316 2894/3476/3350 2895/3443/3317 +f 2895/3443/3317 2894/3476/3350 2979/3477/3351 +f 2895/3443/3317 2979/3477/3351 2978/3444/3318 +f 2978/3444/3318 2979/3477/3351 2967/3478/3352 +f 2978/3444/3318 2967/3478/3352 2968/3445/3319 +f 2968/3445/3319 2967/3478/3352 3039/3479/3353 +f 2968/3445/3319 3039/3479/3353 3040/3446/3320 +f 3040/3446/3320 3039/3479/3353 3083/3480/3354 +f 3040/3446/3320 3083/3480/3354 3082/3447/3321 +f 3082/3447/3321 3083/3480/3354 3077/3481/3355 +f 3082/3447/3321 3077/3481/3355 3078/3448/3322 +f 3078/3448/3322 3077/3481/3355 3150/3482/3356 +f 3078/3448/3322 3150/3482/3356 3151/2201/2168 +f 3151/2201/2168 3150/3482/3356 3188/2199/2167 +f 2044/3450/3324 1941/3449/3323 2045/1640/1612 +f 2044/3450/3324 2045/1640/1612 1977/1642/1614 +f 2044/3450/3324 1977/1642/1614 1978/3451/3325 +f 1978/3451/3325 1977/1642/1614 2114/1644/1616 +f 1978/3451/3325 2114/1644/1616 2113/3452/3326 +f 2113/3452/3326 2114/1644/1616 2050/1646/1618 +f 2113/3452/3326 2050/1646/1618 2051/3453/3327 +f 2051/3453/3327 2050/1646/1618 2122/1648/1620 +f 2051/3453/3327 2122/1648/1620 2123/3454/3328 +f 2123/3454/3328 2122/1648/1620 2218/1650/1622 +f 2123/3454/3328 2218/1650/1622 2217/3455/3329 +f 2217/3455/3329 2218/1650/1622 2160/1652/1624 +f 2217/3455/3329 2160/1652/1624 2161/3456/3330 +f 2161/3456/3330 2160/1652/1624 2233/1654/1626 +f 2161/3456/3330 2233/1654/1626 2234/3457/3331 +f 2234/3457/3331 2233/1654/1626 2323/1656/1628 +f 2234/3457/3331 2323/1656/1628 2322/3458/3332 +f 2322/3458/3332 2323/1656/1628 2271/1658/1630 +f 2322/3458/3332 2271/1658/1630 2272/3459/3333 +f 2272/3459/3333 2271/1658/1630 2343/1660/1632 +f 2272/3459/3333 2343/1660/1632 2344/3460/3334 +f 2344/3460/3334 2343/1660/1632 2427/1662/1634 +f 2344/3460/3334 2427/1662/1634 2426/3461/3335 +f 2426/3461/3335 2427/1662/1634 2381/1664/1636 +f 2426/3461/3335 2381/1664/1636 2382/3462/3336 +f 2382/3462/3336 2381/1664/1636 2453/1666/1638 +f 2382/3462/3336 2453/1666/1638 2454/3463/3337 +f 2454/3463/3337 2453/1666/1638 2530/1668/1640 +f 2454/3463/3337 2530/1668/1640 2529/3464/3338 +f 2529/3464/3338 2530/1668/1640 2490/1670/1642 +f 2529/3464/3338 2490/1670/1642 2491/3465/3339 +f 2491/3465/3339 2490/1670/1642 2599/1672/1644 +f 2491/3465/3339 2599/1672/1644 2598/3466/3340 +f 2598/3466/3340 2599/1672/1644 2563/1674/1646 +f 2598/3466/3340 2563/1674/1646 2564/3467/3341 +f 2564/3467/3341 2563/1674/1646 2635/1676/1648 +f 2564/3467/3341 2635/1676/1648 2636/3468/3342 +f 2636/3468/3342 2635/1676/1648 2703/1678/1650 +f 2636/3468/3342 2703/1678/1650 2702/3469/3343 +f 2702/3469/3343 2703/1678/1650 2673/1680/1652 +f 2702/3469/3343 2673/1680/1652 2674/3470/3344 +f 2674/3470/3344 2673/1680/1652 2746/1682/1654 +f 2674/3470/3344 2746/1682/1654 2747/3471/3345 +f 2747/3471/3345 2746/1682/1654 2808/1684/1656 +f 2747/3471/3345 2808/1684/1656 2807/3472/3346 +f 2807/3472/3346 2808/1684/1656 2784/1686/1658 +f 2807/3472/3346 2784/1686/1658 2785/3473/3347 +f 2785/3473/3347 2784/1686/1658 2856/1688/1660 +f 2785/3473/3347 2856/1688/1660 2857/3474/3348 +f 2857/3474/3348 2856/1688/1660 2911/1690/1662 +f 2857/3474/3348 2911/1690/1662 2910/3475/3349 +f 2910/3475/3349 2911/1690/1662 2893/1692/1664 +f 2910/3475/3349 2893/1692/1664 2894/3476/3350 +f 2894/3476/3350 2893/1692/1664 2980/1694/1666 +f 2894/3476/3350 2980/1694/1666 2979/3477/3351 +f 2979/3477/3351 2980/1694/1666 2966/1696/1668 +f 2979/3477/3351 2966/1696/1668 2967/3478/3352 +f 2967/3478/3352 2966/1696/1668 3038/1698/1670 +f 2967/3478/3352 3038/1698/1670 3039/3479/3353 +f 3039/3479/3353 3038/1698/1670 3084/1700/1672 +f 3039/3479/3353 3084/1700/1672 3083/3480/3354 +f 3083/3480/3354 3084/1700/1672 3076/1702/1674 +f 3083/3480/3354 3076/1702/1674 3077/3481/3355 +f 3077/3481/3355 3076/1702/1674 3149/1704/1676 +f 3077/3481/3355 3149/1704/1676 3150/3482/3356 +f 3150/3482/3356 3149/1704/1676 3189/1706/1678 +f 3150/3482/3356 3189/1706/1678 3188/2199/2167 +f 3188/2199/2167 3189/1706/1678 3187/1708/1680 +f 2117/1750/1720 2046/1786/1755 2047/1751/1721 +f 2047/1751/1721 2046/1786/1755 2118/3483/3357 +f 2047/1751/1721 2118/3483/3357 2119/1752/1722 +f 2119/1752/1722 2118/3483/3357 2222/3484/3358 +f 2119/1752/1722 2222/3484/3358 2221/1753/1723 +f 2221/1753/1723 2222/3484/3358 2156/3485/3359 +f 2221/1753/1723 2156/3485/3359 2157/1754/1724 +f 2157/1754/1724 2156/3485/3359 2229/3486/3360 +f 2157/1754/1724 2229/3486/3360 2230/1755/1725 +f 2230/1755/1725 2229/3486/3360 2327/3487/3361 +f 2230/1755/1725 2327/3487/3361 2326/1756/1726 +f 2326/1756/1726 2327/3487/3361 2267/3488/3362 +f 2326/1756/1726 2267/3488/3362 2268/1757/1727 +f 2268/1757/1727 2267/3488/3362 2339/3489/3363 +f 2268/1757/1727 2339/3489/3363 2340/1758/1728 +f 2340/1758/1728 2339/3489/3363 2431/3490/3364 +f 2340/1758/1728 2431/3490/3364 2430/1759/1729 +f 2430/1759/1729 2431/3490/3364 2377/3491/3365 +f 2430/1759/1729 2377/3491/3365 2378/1760/1730 +f 2378/1760/1730 2377/3491/3365 2449/3492/3366 +f 2378/1760/1730 2449/3492/3366 2450/1761/1731 +f 2450/1761/1731 2449/3492/3366 2534/3493/3367 +f 2450/1761/1731 2534/3493/3367 2533/1762/1732 +f 2533/1762/1732 2534/3493/3367 2486/3494/3368 +f 2533/1762/1732 2486/3494/3368 2487/1763/1733 +f 2487/1763/1733 2486/3494/3368 2603/3495/3369 +f 2487/1763/1733 2603/3495/3369 2602/1764/1734 +f 2602/1764/1734 2603/3495/3369 2559/3496/3370 +f 2602/1764/1734 2559/3496/3370 2560/1765/1735 +f 2560/1765/1735 2559/3496/3370 2631/3497/3371 +f 2560/1765/1735 2631/3497/3371 2632/1766/1736 +f 2632/1766/1736 2631/3497/3371 2707/3498/3372 +f 2632/1766/1736 2707/3498/3372 2706/1767/1737 +f 2706/1767/1737 2707/3498/3372 2669/3499/3373 +f 2706/1767/1737 2669/3499/3373 2670/1768/1738 +f 2670/1768/1738 2669/3499/3373 2742/3500/3374 +f 2670/1768/1738 2742/3500/3374 2743/1769/1739 +f 2743/1769/1739 2742/3500/3374 2812/3501/3375 +f 2743/1769/1739 2812/3501/3375 2811/1770/1740 +f 2811/1770/1740 2812/3501/3375 2780/3502/3376 +f 2811/1770/1740 2780/3502/3376 2781/1771/1741 +f 2781/1771/1741 2780/3502/3376 2852/3503/3377 +f 2781/1771/1741 2852/3503/3377 2853/1772/1742 +f 2853/1772/1742 2852/3503/3377 2915/3504/3378 +f 2853/1772/1742 2915/3504/3378 2914/1773/1743 +f 2914/1773/1743 2915/3504/3378 2889/3505/3379 +f 2914/1773/1743 2889/3505/3379 2890/1774/1744 +f 2890/1774/1744 2889/3505/3379 2984/3506/3380 +f 2890/1774/1744 2984/3506/3380 2983/1775/1745 +f 2983/1775/1745 2984/3506/3380 2962/3507/3381 +f 2983/1775/1745 2962/3507/3381 2963/1776/1746 +f 2963/1776/1746 2962/3507/3381 3034/3508/3382 +f 2963/1776/1746 3034/3508/3382 3035/1777/1747 +f 3035/1777/1747 3034/3508/3382 3088/3509/3383 +f 3035/1777/1747 3088/3509/3383 3087/1778/1748 +f 3087/1778/1748 3088/3509/3383 3072/3510/3384 +f 3087/1778/1748 3072/3510/3384 3073/1779/1749 +f 3073/1779/1749 3072/3510/3384 3145/3511/3385 +f 3073/1779/1749 3145/3511/3385 3146/1780/1750 +f 3146/1780/1750 3145/3511/3385 3193/3512/3386 +f 3146/1780/1750 3193/3512/3386 3192/1781/1751 +f 3192/1781/1751 3193/3512/3386 3183/3513/3387 +f 3192/1781/1751 3183/3513/3387 3184/1782/1752 +f 3184/1782/1752 3183/3513/3387 3255/3514/3388 +f 3184/1782/1752 3255/3514/3388 3256/1783/1753 +f 3256/1783/1753 3255/3514/3388 3297/3515/3389 +f 3256/1783/1753 3297/3515/3389 3296/1784/1754 +f 3296/1784/1754 3297/3515/3389 3293/488/482 +f 3296/1784/1754 3293/488/482 3294/490/484 +f 2046/1786/1755 281/1788/1757 2118/3483/3357 +f 2118/3483/3357 281/1788/1757 2223/3516/3390 +f 2118/3483/3357 2223/3516/3390 2222/3484/3358 +f 2222/3484/3358 2223/3516/3390 2155/3517/3391 +f 2222/3484/3358 2155/3517/3391 2156/3485/3359 +f 2156/3485/3359 2155/3517/3391 2228/3518/3392 +f 2156/3485/3359 2228/3518/3392 2229/3486/3360 +f 2229/3486/3360 2228/3518/3392 2328/3519/3393 +f 2229/3486/3360 2328/3519/3393 2327/3487/3361 +f 2327/3487/3361 2328/3519/3393 2266/3520/3394 +f 2327/3487/3361 2266/3520/3394 2267/3488/3362 +f 2267/3488/3362 2266/3520/3394 2338/3521/3395 +f 2267/3488/3362 2338/3521/3395 2339/3489/3363 +f 2339/3489/3363 2338/3521/3395 2432/3522/3396 +f 2339/3489/3363 2432/3522/3396 2431/3490/3364 +f 2431/3490/3364 2432/3522/3396 2376/3523/3397 +f 2431/3490/3364 2376/3523/3397 2377/3491/3365 +f 2377/3491/3365 2376/3523/3397 2448/3524/3398 +f 2377/3491/3365 2448/3524/3398 2449/3492/3366 +f 2449/3492/3366 2448/3524/3398 2535/3525/3399 +f 2449/3492/3366 2535/3525/3399 2534/3493/3367 +f 2534/3493/3367 2535/3525/3399 2485/3526/3400 +f 2534/3493/3367 2485/3526/3400 2486/3494/3368 +f 2486/3494/3368 2485/3526/3400 2604/3527/3401 +f 2486/3494/3368 2604/3527/3401 2603/3495/3369 +f 2603/3495/3369 2604/3527/3401 2558/3528/3402 +f 2603/3495/3369 2558/3528/3402 2559/3496/3370 +f 2559/3496/3370 2558/3528/3402 2630/3529/3403 +f 2559/3496/3370 2630/3529/3403 2631/3497/3371 +f 2631/3497/3371 2630/3529/3403 2708/3530/3404 +f 2631/3497/3371 2708/3530/3404 2707/3498/3372 +f 2707/3498/3372 2708/3530/3404 2668/3531/3405 +f 2707/3498/3372 2668/3531/3405 2669/3499/3373 +f 2669/3499/3373 2668/3531/3405 2741/3532/3406 +f 2669/3499/3373 2741/3532/3406 2742/3500/3374 +f 2742/3500/3374 2741/3532/3406 2813/3533/3407 +f 2742/3500/3374 2813/3533/3407 2812/3501/3375 +f 2812/3501/3375 2813/3533/3407 2779/3534/3408 +f 2812/3501/3375 2779/3534/3408 2780/3502/3376 +f 2780/3502/3376 2779/3534/3408 2851/3535/3409 +f 2780/3502/3376 2851/3535/3409 2852/3503/3377 +f 2852/3503/3377 2851/3535/3409 2916/3536/3410 +f 2852/3503/3377 2916/3536/3410 2915/3504/3378 +f 2915/3504/3378 2916/3536/3410 2888/3537/3411 +f 2915/3504/3378 2888/3537/3411 2889/3505/3379 +f 2889/3505/3379 2888/3537/3411 2985/3538/3412 +f 2889/3505/3379 2985/3538/3412 2984/3506/3380 +f 2984/3506/3380 2985/3538/3412 2961/3539/3413 +f 2984/3506/3380 2961/3539/3413 2962/3507/3381 +f 2962/3507/3381 2961/3539/3413 3033/3540/3414 +f 2962/3507/3381 3033/3540/3414 3034/3508/3382 +f 3034/3508/3382 3033/3540/3414 3089/3541/3415 +f 3034/3508/3382 3089/3541/3415 3088/3509/3383 +f 3088/3509/3383 3089/3541/3415 3071/3542/3416 +f 3088/3509/3383 3071/3542/3416 3072/3510/3384 +f 3072/3510/3384 3071/3542/3416 3144/3543/3417 +f 3072/3510/3384 3144/3543/3417 3145/3511/3385 +f 3145/3511/3385 3144/3543/3417 3194/3544/3418 +f 3145/3511/3385 3194/3544/3418 3193/3512/3386 +f 3193/3512/3386 3194/3544/3418 3182/3545/3419 +f 3193/3512/3386 3182/3545/3419 3183/3513/3387 +f 3183/3513/3387 3182/3545/3419 3254/3546/3420 +f 3183/3513/3387 3254/3546/3420 3255/3514/3388 +f 3255/3514/3388 3254/3546/3420 3298/3547/3421 +f 3255/3514/3388 3298/3547/3421 3297/3515/3389 +f 3297/3515/3389 3298/3547/3421 3292/486/480 +f 3297/3515/3389 3292/486/480 3293/488/482 +f 2224/1790/1759 2154/1792/1761 2223/3516/3390 +f 2223/3516/3390 2154/1792/1761 2155/3517/3391 +f 2228/3518/3392 2155/3517/3391 2227/1794/1763 +f 2227/1794/1763 2155/3517/3391 2154/1792/1761 +f 281/1788/1757 2224/1790/1759 2223/3516/3390 +f 2328/3519/3393 2228/3518/3392 2329/1796/1765 +f 2329/1796/1765 2228/3518/3392 2227/1794/1763 +f 2261/1886/1855 2262/3548/3422 280/1884/1853 +f 280/1884/1853 2262/3548/3422 2331/1855/1824 +f 280/1884/1853 2331/1855/1824 2225/1854/1823 +f 2331/1855/1824 2262/3548/3422 2263/1856/1825 +f 2263/1856/1825 2262/3548/3422 2334/3549/3423 +f 2263/1856/1825 2334/3549/3423 2335/1857/1826 +f 2335/1857/1826 2334/3549/3423 2436/3550/3424 +f 2335/1857/1826 2436/3550/3424 2435/1858/1827 +f 2435/1858/1827 2436/3550/3424 2372/3551/3425 +f 2435/1858/1827 2372/3551/3425 2373/1859/1828 +f 2373/1859/1828 2372/3551/3425 2444/3552/3426 +f 2373/1859/1828 2444/3552/3426 2445/1860/1829 +f 2445/1860/1829 2444/3552/3426 2539/3553/3427 +f 2445/1860/1829 2539/3553/3427 2538/1861/1830 +f 2538/1861/1830 2539/3553/3427 2481/3554/3428 +f 2538/1861/1830 2481/3554/3428 2482/1862/1831 +f 2482/1862/1831 2481/3554/3428 2608/3555/3429 +f 2482/1862/1831 2608/3555/3429 2607/1863/1832 +f 2607/1863/1832 2608/3555/3429 2554/3556/3430 +f 2607/1863/1832 2554/3556/3430 2555/1864/1833 +f 2555/1864/1833 2554/3556/3430 2626/3557/3431 +f 2555/1864/1833 2626/3557/3431 2627/1865/1834 +f 2627/1865/1834 2626/3557/3431 2712/3558/3432 +f 2627/1865/1834 2712/3558/3432 2711/1866/1835 +f 2711/1866/1835 2712/3558/3432 2664/3559/3433 +f 2711/1866/1835 2664/3559/3433 2665/1867/1836 +f 2665/1867/1836 2664/3559/3433 2737/3560/3434 +f 2665/1867/1836 2737/3560/3434 2738/1868/1837 +f 2738/1868/1837 2737/3560/3434 2817/3561/3435 +f 2738/1868/1837 2817/3561/3435 2816/1869/1838 +f 2816/1869/1838 2817/3561/3435 2775/3562/3436 +f 2816/1869/1838 2775/3562/3436 2776/1870/1839 +f 2776/1870/1839 2775/3562/3436 2847/3563/3437 +f 2776/1870/1839 2847/3563/3437 2848/1871/1840 +f 2848/1871/1840 2847/3563/3437 2920/3564/3438 +f 2848/1871/1840 2920/3564/3438 2919/1872/1841 +f 2919/1872/1841 2920/3564/3438 2884/3565/3439 +f 2919/1872/1841 2884/3565/3439 2885/1873/1842 +f 2885/1873/1842 2884/3565/3439 2989/3566/3440 +f 2885/1873/1842 2989/3566/3440 2988/1874/1843 +f 2988/1874/1843 2989/3566/3440 2957/3567/3441 +f 2988/1874/1843 2957/3567/3441 2958/1875/1844 +f 2958/1875/1844 2957/3567/3441 3029/3568/3442 +f 2958/1875/1844 3029/3568/3442 3030/1876/1845 +f 3030/1876/1845 3029/3568/3442 3093/3569/3443 +f 3030/1876/1845 3093/3569/3443 3092/1877/1846 +f 3092/1877/1846 3093/3569/3443 3067/3570/3444 +f 3092/1877/1846 3067/3570/3444 3068/1878/1847 +f 3068/1878/1847 3067/3570/3444 3140/3571/3445 +f 3068/1878/1847 3140/3571/3445 3141/1879/1848 +f 3141/1879/1848 3140/3571/3445 3198/3572/3446 +f 3141/1879/1848 3198/3572/3446 3197/1880/1849 +f 3197/1880/1849 3198/3572/3446 3178/3573/3447 +f 3197/1880/1849 3178/3573/3447 3179/1881/1850 +f 3179/1881/1850 3178/3573/3447 3250/3574/3448 +f 3179/1881/1850 3250/3574/3448 3251/1882/1851 +f 3251/1882/1851 3250/3574/3448 3302/3575/3449 +f 3251/1882/1851 3302/3575/3449 3301/1883/1852 +f 3301/1883/1852 3302/3575/3449 3288/478/472 +f 3301/1883/1852 3288/478/472 3289/480/474 +f 2262/3548/3422 2261/1886/1855 2333/3576/3450 +f 2333/3576/3450 2261/1886/1855 2332/1888/1857 +f 2333/3576/3450 2332/1888/1857 2438/1890/1859 +f 2328/3519/3393 2329/1796/1765 2265/1798/1767 +f 2328/3519/3393 2265/1798/1767 2266/3520/3394 +f 2266/3520/3394 2265/1798/1767 2337/1800/1769 +f 2266/3520/3394 2337/1800/1769 2338/3521/3395 +f 2338/3521/3395 2337/1800/1769 2433/1802/1771 +f 2338/3521/3395 2433/1802/1771 2432/3522/3396 +f 2432/3522/3396 2433/1802/1771 2375/1804/1773 +f 2432/3522/3396 2375/1804/1773 2376/3523/3397 +f 2376/3523/3397 2375/1804/1773 2447/1806/1775 +f 2376/3523/3397 2447/1806/1775 2448/3524/3398 +f 2448/3524/3398 2447/1806/1775 2536/1808/1777 +f 2448/3524/3398 2536/1808/1777 2535/3525/3399 +f 2535/3525/3399 2536/1808/1777 2484/1810/1779 +f 2535/3525/3399 2484/1810/1779 2485/3526/3400 +f 2485/3526/3400 2484/1810/1779 2605/1812/1781 +f 2485/3526/3400 2605/1812/1781 2604/3527/3401 +f 2604/3527/3401 2605/1812/1781 2557/1814/1783 +f 2604/3527/3401 2557/1814/1783 2558/3528/3402 +f 2558/3528/3402 2557/1814/1783 2629/1816/1785 +f 2558/3528/3402 2629/1816/1785 2630/3529/3403 +f 2630/3529/3403 2629/1816/1785 2709/1818/1787 +f 2630/3529/3403 2709/1818/1787 2708/3530/3404 +f 2708/3530/3404 2709/1818/1787 2667/1820/1789 +f 2708/3530/3404 2667/1820/1789 2668/3531/3405 +f 2668/3531/3405 2667/1820/1789 2740/1822/1791 +f 2668/3531/3405 2740/1822/1791 2741/3532/3406 +f 2741/3532/3406 2740/1822/1791 2814/1824/1793 +f 2741/3532/3406 2814/1824/1793 2813/3533/3407 +f 2813/3533/3407 2814/1824/1793 2778/1826/1795 +f 2813/3533/3407 2778/1826/1795 2779/3534/3408 +f 2779/3534/3408 2778/1826/1795 2850/1828/1797 +f 2779/3534/3408 2850/1828/1797 2851/3535/3409 +f 2851/3535/3409 2850/1828/1797 2917/1830/1799 +f 2851/3535/3409 2917/1830/1799 2916/3536/3410 +f 2916/3536/3410 2917/1830/1799 2887/1832/1801 +f 2916/3536/3410 2887/1832/1801 2888/3537/3411 +f 2888/3537/3411 2887/1832/1801 2986/1834/1803 +f 2888/3537/3411 2986/1834/1803 2985/3538/3412 +f 2985/3538/3412 2986/1834/1803 2960/1836/1805 +f 2985/3538/3412 2960/1836/1805 2961/3539/3413 +f 2961/3539/3413 2960/1836/1805 3032/1838/1807 +f 2961/3539/3413 3032/1838/1807 3033/3540/3414 +f 3033/3540/3414 3032/1838/1807 3090/1840/1809 +f 3033/3540/3414 3090/1840/1809 3089/3541/3415 +f 3089/3541/3415 3090/1840/1809 3070/1842/1811 +f 3089/3541/3415 3070/1842/1811 3071/3542/3416 +f 3071/3542/3416 3070/1842/1811 3143/1844/1813 +f 3071/3542/3416 3143/1844/1813 3144/3543/3417 +f 3144/3543/3417 3143/1844/1813 3195/1846/1815 +f 3144/3543/3417 3195/1846/1815 3194/3544/3418 +f 3194/3544/3418 3195/1846/1815 3181/1848/1817 +f 3194/3544/3418 3181/1848/1817 3182/3545/3419 +f 3182/3545/3419 3181/1848/1817 3253/1850/1819 +f 3182/3545/3419 3253/1850/1819 3254/3546/3420 +f 3254/3546/3420 3253/1850/1819 3299/1852/1821 +f 3254/3546/3420 3299/1852/1821 3298/3547/3421 +f 3298/3547/3421 3299/1852/1821 3291/484/478 +f 3298/3547/3421 3291/484/478 3292/486/480 +f 2262/3548/3422 2333/3576/3450 2334/3549/3423 +f 2334/3549/3423 2333/3576/3450 2437/3577/3451 +f 2334/3549/3423 2437/3577/3451 2436/3550/3424 +f 2436/3550/3424 2437/3577/3451 2371/3578/3452 +f 2436/3550/3424 2371/3578/3452 2372/3551/3425 +f 2372/3551/3425 2371/3578/3452 2443/3579/3453 +f 2372/3551/3425 2443/3579/3453 2444/3552/3426 +f 2444/3552/3426 2443/3579/3453 2540/3580/3454 +f 2444/3552/3426 2540/3580/3454 2539/3553/3427 +f 2539/3553/3427 2540/3580/3454 2480/3581/3455 +f 2539/3553/3427 2480/3581/3455 2481/3554/3428 +f 2481/3554/3428 2480/3581/3455 2609/3582/3456 +f 2481/3554/3428 2609/3582/3456 2608/3555/3429 +f 2608/3555/3429 2609/3582/3456 2553/3583/3457 +f 2608/3555/3429 2553/3583/3457 2554/3556/3430 +f 2554/3556/3430 2553/3583/3457 2625/3584/3458 +f 2554/3556/3430 2625/3584/3458 2626/3557/3431 +f 2626/3557/3431 2625/3584/3458 2713/3585/3459 +f 2626/3557/3431 2713/3585/3459 2712/3558/3432 +f 2712/3558/3432 2713/3585/3459 2663/3586/3460 +f 2712/3558/3432 2663/3586/3460 2664/3559/3433 +f 2664/3559/3433 2663/3586/3460 2736/3587/3461 +f 2664/3559/3433 2736/3587/3461 2737/3560/3434 +f 2737/3560/3434 2736/3587/3461 2818/3588/3462 +f 2737/3560/3434 2818/3588/3462 2817/3561/3435 +f 2817/3561/3435 2818/3588/3462 2774/3589/3463 +f 2817/3561/3435 2774/3589/3463 2775/3562/3436 +f 2775/3562/3436 2774/3589/3463 2846/3590/3464 +f 2775/3562/3436 2846/3590/3464 2847/3563/3437 +f 2847/3563/3437 2846/3590/3464 2921/3591/3465 +f 2847/3563/3437 2921/3591/3465 2920/3564/3438 +f 2920/3564/3438 2921/3591/3465 2883/3592/3466 +f 2920/3564/3438 2883/3592/3466 2884/3565/3439 +f 2884/3565/3439 2883/3592/3466 2990/3593/3467 +f 2884/3565/3439 2990/3593/3467 2989/3566/3440 +f 2989/3566/3440 2990/3593/3467 2956/3594/3468 +f 2989/3566/3440 2956/3594/3468 2957/3567/3441 +f 2957/3567/3441 2956/3594/3468 3028/3595/3469 +f 2957/3567/3441 3028/3595/3469 3029/3568/3442 +f 3029/3568/3442 3028/3595/3469 3094/3596/3470 +f 3029/3568/3442 3094/3596/3470 3093/3569/3443 +f 3093/3569/3443 3094/3596/3470 3066/3597/3471 +f 3093/3569/3443 3066/3597/3471 3067/3570/3444 +f 3067/3570/3444 3066/3597/3471 3139/3598/3472 +f 3067/3570/3444 3139/3598/3472 3140/3571/3445 +f 3140/3571/3445 3139/3598/3472 3199/3599/3473 +f 3140/3571/3445 3199/3599/3473 3198/3572/3446 +f 3198/3572/3446 3199/3599/3473 3177/3600/3474 +f 3198/3572/3446 3177/3600/3474 3178/3573/3447 +f 3178/3573/3447 3177/3600/3474 3249/3601/3475 +f 3178/3573/3447 3249/3601/3475 3250/3574/3448 +f 3250/3574/3448 3249/3601/3475 3303/3602/3476 +f 3250/3574/3448 3303/3602/3476 3302/3575/3449 +f 3302/3575/3449 3303/3602/3476 3287/476/470 +f 3302/3575/3449 3287/476/470 3288/478/472 +f 2437/3577/3451 2333/3576/3450 2438/1890/1859 +f 2437/3577/3451 2438/1890/1859 2370/1892/1861 +f 2437/3577/3451 2370/1892/1861 2371/3578/3452 +f 2371/3578/3452 2370/1892/1861 2442/1894/1863 +f 2371/3578/3452 2442/1894/1863 2443/3579/3453 +f 2443/3579/3453 2442/1894/1863 2541/1896/1865 +f 2443/3579/3453 2541/1896/1865 2540/3580/3454 +f 2540/3580/3454 2541/1896/1865 2479/1898/1867 +f 2540/3580/3454 2479/1898/1867 2480/3581/3455 +f 2480/3581/3455 2479/1898/1867 2610/1900/1869 +f 2480/3581/3455 2610/1900/1869 2609/3582/3456 +f 2609/3582/3456 2610/1900/1869 2552/1902/1871 +f 2609/3582/3456 2552/1902/1871 2553/3583/3457 +f 2553/3583/3457 2552/1902/1871 2624/1904/1873 +f 2553/3583/3457 2624/1904/1873 2625/3584/3458 +f 2625/3584/3458 2624/1904/1873 2714/1906/1875 +f 2625/3584/3458 2714/1906/1875 2713/3585/3459 +f 2713/3585/3459 2714/1906/1875 2662/1908/1877 +f 2713/3585/3459 2662/1908/1877 2663/3586/3460 +f 2663/3586/3460 2662/1908/1877 2735/1910/1879 +f 2663/3586/3460 2735/1910/1879 2736/3587/3461 +f 2736/3587/3461 2735/1910/1879 2819/1912/1881 +f 2736/3587/3461 2819/1912/1881 2818/3588/3462 +f 2818/3588/3462 2819/1912/1881 2773/1914/1883 +f 2818/3588/3462 2773/1914/1883 2774/3589/3463 +f 2774/3589/3463 2773/1914/1883 2845/1916/1885 +f 2774/3589/3463 2845/1916/1885 2846/3590/3464 +f 2846/3590/3464 2845/1916/1885 2922/1918/1887 +f 2846/3590/3464 2922/1918/1887 2921/3591/3465 +f 2921/3591/3465 2922/1918/1887 2882/1920/1889 +f 2921/3591/3465 2882/1920/1889 2883/3592/3466 +f 2883/3592/3466 2882/1920/1889 2991/1922/1891 +f 2883/3592/3466 2991/1922/1891 2990/3593/3467 +f 2990/3593/3467 2991/1922/1891 2955/1924/1893 +f 2990/3593/3467 2955/1924/1893 2956/3594/3468 +f 2956/3594/3468 2955/1924/1893 3027/1926/1895 +f 2956/3594/3468 3027/1926/1895 3028/3595/3469 +f 3028/3595/3469 3027/1926/1895 3095/1928/1897 +f 3028/3595/3469 3095/1928/1897 3094/3596/3470 +f 3094/3596/3470 3095/1928/1897 3065/1930/1899 +f 3094/3596/3470 3065/1930/1899 3066/3597/3471 +f 3066/3597/3471 3065/1930/1899 3138/1932/1901 +f 3066/3597/3471 3138/1932/1901 3139/3598/3472 +f 3139/3598/3472 3138/1932/1901 3200/1934/1903 +f 3139/3598/3472 3200/1934/1903 3199/3599/3473 +f 3199/3599/3473 3200/1934/1903 3176/1936/1905 +f 3199/3599/3473 3176/1936/1905 3177/3600/3474 +f 3177/3600/3474 3176/1936/1905 3248/1938/1907 +f 3177/3600/3474 3248/1938/1907 3249/3601/3475 +f 3249/3601/3475 3248/1938/1907 3304/1940/1909 +f 3249/3601/3475 3304/1940/1909 3303/3602/3476 +f 3303/3602/3476 3304/1940/1909 3286/474/468 +f 3303/3602/3476 3286/474/468 3287/476/470 +f 277/1994/1963 2475/3603/3477 278/1992/1961 +f 278/1992/1961 2475/3603/3477 2544/1969/1938 +f 278/1992/1961 2544/1969/1938 2439/1968/1937 +f 2544/1969/1938 2475/3603/3477 2476/1970/1939 +f 2476/1970/1939 2475/3603/3477 2614/3604/3478 +f 2476/1970/1939 2614/3604/3478 2613/1971/1940 +f 2613/1971/1940 2614/3604/3478 2548/3605/3479 +f 2613/1971/1940 2548/3605/3479 2549/1972/1941 +f 2549/1972/1941 2548/3605/3479 2620/3606/3480 +f 2549/1972/1941 2620/3606/3480 2621/1973/1942 +f 2621/1973/1942 2620/3606/3480 2718/3607/3481 +f 2621/1973/1942 2718/3607/3481 2717/1974/1943 +f 2717/1974/1943 2718/3607/3481 2658/3608/3482 +f 2717/1974/1943 2658/3608/3482 2659/1975/1944 +f 2659/1975/1944 2658/3608/3482 2731/3609/3483 +f 2659/1975/1944 2731/3609/3483 2732/1976/1945 +f 2732/1976/1945 2731/3609/3483 2823/3610/3484 +f 2732/1976/1945 2823/3610/3484 2822/1977/1946 +f 2822/1977/1946 2823/3610/3484 2769/3611/3485 +f 2822/1977/1946 2769/3611/3485 2770/1978/1947 +f 2770/1978/1947 2769/3611/3485 2841/3612/3486 +f 2770/1978/1947 2841/3612/3486 2842/1979/1948 +f 2842/1979/1948 2841/3612/3486 2926/3613/3487 +f 2842/1979/1948 2926/3613/3487 2925/1980/1949 +f 2925/1980/1949 2926/3613/3487 2878/3614/3488 +f 2925/1980/1949 2878/3614/3488 2879/1981/1950 +f 2879/1981/1950 2878/3614/3488 2995/3615/3489 +f 2879/1981/1950 2995/3615/3489 2994/1982/1951 +f 2994/1982/1951 2995/3615/3489 2951/3616/3490 +f 2994/1982/1951 2951/3616/3490 2952/1983/1952 +f 2952/1983/1952 2951/3616/3490 3023/3617/3491 +f 2952/1983/1952 3023/3617/3491 3024/1984/1953 +f 3024/1984/1953 3023/3617/3491 3099/3618/3492 +f 3024/1984/1953 3099/3618/3492 3098/1985/1954 +f 3098/1985/1954 3099/3618/3492 3061/3619/3493 +f 3098/1985/1954 3061/3619/3493 3062/1986/1955 +f 3062/1986/1955 3061/3619/3493 3134/3620/3494 +f 3062/1986/1955 3134/3620/3494 3135/1987/1956 +f 3135/1987/1956 3134/3620/3494 3204/3621/3495 +f 3135/1987/1956 3204/3621/3495 3203/1988/1957 +f 3203/1988/1957 3204/3621/3495 3172/3622/3496 +f 3203/1988/1957 3172/3622/3496 3173/1989/1958 +f 3173/1989/1958 3172/3622/3496 3244/3623/3497 +f 3173/1989/1958 3244/3623/3497 3245/1990/1959 +f 3245/1990/1959 3244/3623/3497 3308/3624/3498 +f 3245/1990/1959 3308/3624/3498 3307/1991/1960 +f 3307/1991/1960 3308/3624/3498 3282/466/460 +f 3307/1991/1960 3282/466/460 3283/468/462 +f 2475/3603/3477 277/1994/1963 2615/3625/3499 +f 2615/3625/3499 277/1994/1963 2616/1996/1965 +f 2615/3625/3499 2616/1996/1965 2546/1998/1967 +f 2546/1998/1967 2547/3626/3500 2615/3625/3499 +f 2615/3625/3499 2547/3626/3500 2614/3604/3478 +f 2615/3625/3499 2614/3604/3478 2475/3603/3477 +f 2614/3604/3478 2547/3626/3500 2548/3605/3479 +f 2548/3605/3479 2547/3626/3500 2619/3627/3501 +f 2548/3605/3479 2619/3627/3501 2620/3606/3480 +f 2620/3606/3480 2619/3627/3501 2719/3628/3502 +f 2620/3606/3480 2719/3628/3502 2718/3607/3481 +f 2718/3607/3481 2719/3628/3502 2657/3629/3503 +f 2718/3607/3481 2657/3629/3503 2658/3608/3482 +f 2658/3608/3482 2657/3629/3503 2730/3630/3504 +f 2658/3608/3482 2730/3630/3504 2731/3609/3483 +f 2731/3609/3483 2730/3630/3504 2824/3631/3505 +f 2731/3609/3483 2824/3631/3505 2823/3610/3484 +f 2823/3610/3484 2824/3631/3505 2768/3632/3506 +f 2823/3610/3484 2768/3632/3506 2769/3611/3485 +f 2769/3611/3485 2768/3632/3506 2840/3633/3507 +f 2769/3611/3485 2840/3633/3507 2841/3612/3486 +f 2841/3612/3486 2840/3633/3507 2927/3634/3508 +f 2841/3612/3486 2927/3634/3508 2926/3613/3487 +f 2926/3613/3487 2927/3634/3508 2877/3635/3509 +f 2926/3613/3487 2877/3635/3509 2878/3614/3488 +f 2878/3614/3488 2877/3635/3509 2996/3636/3510 +f 2878/3614/3488 2996/3636/3510 2995/3615/3489 +f 2995/3615/3489 2996/3636/3510 2950/3637/3511 +f 2995/3615/3489 2950/3637/3511 2951/3616/3490 +f 2951/3616/3490 2950/3637/3511 3022/3638/3512 +f 2951/3616/3490 3022/3638/3512 3023/3617/3491 +f 3023/3617/3491 3022/3638/3512 3100/3639/3513 +f 3023/3617/3491 3100/3639/3513 3099/3618/3492 +f 3099/3618/3492 3100/3639/3513 3060/3640/3514 +f 3099/3618/3492 3060/3640/3514 3061/3619/3493 +f 3061/3619/3493 3060/3640/3514 3133/3641/3515 +f 3061/3619/3493 3133/3641/3515 3134/3620/3494 +f 3134/3620/3494 3133/3641/3515 3205/3642/3516 +f 3134/3620/3494 3205/3642/3516 3204/3621/3495 +f 3204/3621/3495 3205/3642/3516 3171/3643/3517 +f 3204/3621/3495 3171/3643/3517 3172/3622/3496 +f 3172/3622/3496 3171/3643/3517 3243/3644/3518 +f 3172/3622/3496 3243/3644/3518 3244/3623/3497 +f 3244/3623/3497 3243/3644/3518 3309/3645/3519 +f 3244/3623/3497 3309/3645/3519 3308/3624/3498 +f 3308/3624/3498 3309/3645/3519 3281/464/458 +f 3308/3624/3498 3281/464/458 3282/466/460 +f 2619/3627/3501 2547/3626/3500 2618/2000/1969 +f 2618/2000/1969 2547/3626/3500 2546/1998/1967 +f 2719/3628/3502 2619/3627/3501 2720/2002/1971 +f 2720/2002/1971 2619/3627/3501 2618/2000/1969 +f 2723/2058/2027 2652/2076/2045 2653/2059/2028 +f 2653/2059/2028 2652/2076/2045 2725/3646/3520 +f 2653/2059/2028 2725/3646/3520 2726/2060/2029 +f 2726/2060/2029 2725/3646/3520 2829/3647/3521 +f 2726/2060/2029 2829/3647/3521 2828/2061/2030 +f 2828/2061/2030 2829/3647/3521 2763/3648/3522 +f 2828/2061/2030 2763/3648/3522 2764/2062/2031 +f 2764/2062/2031 2763/3648/3522 2835/3649/3523 +f 2764/2062/2031 2835/3649/3523 2836/2063/2032 +f 2836/2063/2032 2835/3649/3523 2932/3650/3524 +f 2836/2063/2032 2932/3650/3524 2931/2064/2033 +f 2931/2064/2033 2932/3650/3524 2872/3651/3525 +f 2931/2064/2033 2872/3651/3525 2873/2065/2034 +f 2873/2065/2034 2872/3651/3525 3001/3652/3526 +f 2873/2065/2034 3001/3652/3526 3000/2066/2035 +f 3000/2066/2035 3001/3652/3526 2945/3653/3527 +f 3000/2066/2035 2945/3653/3527 2946/2067/2036 +f 2946/2067/2036 2945/3653/3527 3017/3654/3528 +f 2946/2067/2036 3017/3654/3528 3018/2068/2037 +f 3018/2068/2037 3017/3654/3528 3105/3655/3529 +f 3018/2068/2037 3105/3655/3529 3104/2069/2038 +f 3104/2069/2038 3105/3655/3529 3055/3656/3530 +f 3104/2069/2038 3055/3656/3530 3056/2070/2039 +f 3056/2070/2039 3055/3656/3530 3128/3657/3531 +f 3056/2070/2039 3128/3657/3531 3129/2071/2040 +f 3129/2071/2040 3128/3657/3531 3210/3658/3532 +f 3129/2071/2040 3210/3658/3532 3209/2072/2041 +f 3209/2072/2041 3210/3658/3532 3166/3659/3533 +f 3209/2072/2041 3166/3659/3533 3167/2073/2042 +f 3167/2073/2042 3166/3659/3533 3238/3660/3534 +f 3167/2073/2042 3238/3660/3534 3239/2074/2043 +f 3239/2074/2043 3238/3660/3534 3314/3661/3535 +f 3239/2074/2043 3314/3661/3535 3313/2075/2044 +f 3313/2075/2044 3314/3661/3535 3276/454/448 +f 3313/2075/2044 3276/454/448 3277/456/450 +f 2719/3628/3502 2720/2002/1971 2656/2004/1973 +f 2719/3628/3502 2656/2004/1973 2657/3629/3503 +f 2657/3629/3503 2656/2004/1973 2729/2006/1975 +f 2657/3629/3503 2729/2006/1975 2730/3630/3504 +f 2730/3630/3504 2729/2006/1975 2825/2008/1977 +f 2730/3630/3504 2825/2008/1977 2824/3631/3505 +f 2824/3631/3505 2825/2008/1977 2767/2010/1979 +f 2824/3631/3505 2767/2010/1979 2768/3632/3506 +f 2768/3632/3506 2767/2010/1979 2839/2012/1981 +f 2768/3632/3506 2839/2012/1981 2840/3633/3507 +f 2840/3633/3507 2839/2012/1981 2928/2014/1983 +f 2840/3633/3507 2928/2014/1983 2927/3634/3508 +f 2927/3634/3508 2928/2014/1983 2876/2016/1985 +f 2927/3634/3508 2876/2016/1985 2877/3635/3509 +f 2877/3635/3509 2876/2016/1985 2997/2018/1987 +f 2877/3635/3509 2997/2018/1987 2996/3636/3510 +f 2996/3636/3510 2997/2018/1987 2949/2020/1989 +f 2996/3636/3510 2949/2020/1989 2950/3637/3511 +f 2950/3637/3511 2949/2020/1989 3021/2022/1991 +f 2950/3637/3511 3021/2022/1991 3022/3638/3512 +f 3022/3638/3512 3021/2022/1991 3101/2024/1993 +f 3022/3638/3512 3101/2024/1993 3100/3639/3513 +f 3100/3639/3513 3101/2024/1993 3059/2026/1995 +f 3100/3639/3513 3059/2026/1995 3060/3640/3514 +f 3060/3640/3514 3059/2026/1995 3132/2028/1997 +f 3060/3640/3514 3132/2028/1997 3133/3641/3515 +f 3133/3641/3515 3132/2028/1997 3206/2030/1999 +f 3133/3641/3515 3206/2030/1999 3205/3642/3516 +f 3205/3642/3516 3206/2030/1999 3170/2032/2001 +f 3205/3642/3516 3170/2032/2001 3171/3643/3517 +f 3171/3643/3517 3170/2032/2001 3242/2034/2003 +f 3171/3643/3517 3242/2034/2003 3243/3644/3518 +f 3243/3644/3518 3242/2034/2003 3310/2036/2005 +f 3243/3644/3518 3310/2036/2005 3309/3645/3519 +f 3309/3645/3519 3310/2036/2005 3280/462/456 +f 3309/3645/3519 3280/462/456 3281/464/458 +f 2652/2076/2045 2724/2078/2047 2725/3646/3520 +f 2725/3646/3520 2724/2078/2047 2830/2080/2049 +f 2725/3646/3520 2830/2080/2049 2829/3647/3521 +f 2829/3647/3521 2830/2080/2049 2762/2082/2051 +f 2829/3647/3521 2762/2082/2051 2763/3648/3522 +f 2763/3648/3522 2762/2082/2051 2834/2084/2053 +f 2763/3648/3522 2834/2084/2053 2835/3649/3523 +f 2835/3649/3523 2834/2084/2053 2933/2086/2055 +f 2835/3649/3523 2933/2086/2055 2932/3650/3524 +f 2932/3650/3524 2933/2086/2055 2871/2088/2057 +f 2932/3650/3524 2871/2088/2057 2872/3651/3525 +f 2872/3651/3525 2871/2088/2057 3002/2090/2059 +f 2872/3651/3525 3002/2090/2059 3001/3652/3526 +f 3001/3652/3526 3002/2090/2059 2944/2092/2061 +f 3001/3652/3526 2944/2092/2061 2945/3653/3527 +f 2945/3653/3527 2944/2092/2061 3016/2094/2063 +f 2945/3653/3527 3016/2094/2063 3017/3654/3528 +f 3017/3654/3528 3016/2094/2063 3106/2096/2065 +f 3017/3654/3528 3106/2096/2065 3105/3655/3529 +f 3105/3655/3529 3106/2096/2065 3054/2098/2067 +f 3105/3655/3529 3054/2098/2067 3055/3656/3530 +f 3055/3656/3530 3054/2098/2067 3127/2100/2069 +f 3055/3656/3530 3127/2100/2069 3128/3657/3531 +f 3128/3657/3531 3127/2100/2069 3211/2102/2071 +f 3128/3657/3531 3211/2102/2071 3210/3658/3532 +f 3210/3658/3532 3211/2102/2071 3165/2104/2073 +f 3210/3658/3532 3165/2104/2073 3166/3659/3533 +f 3166/3659/3533 3165/2104/2073 3237/2106/2075 +f 3166/3659/3533 3237/2106/2075 3238/3660/3534 +f 3238/3660/3534 3237/2106/2075 3315/2108/2077 +f 3238/3660/3534 3315/2108/2077 3314/3661/3535 +f 3314/3661/3535 3315/2108/2077 3275/452/446 +f 3314/3661/3535 3275/452/446 3276/454/448 +f 273/2140/2109 2867/3662/3536 274/2138/2107 +f 274/2138/2107 2867/3662/3536 2936/2126/2095 +f 274/2138/2107 2936/2126/2095 2831/2125/2094 +f 2936/2126/2095 2867/3662/3536 2868/2127/2096 +f 2868/2127/2096 2867/3662/3536 3006/3663/3537 +f 2868/2127/2096 3006/3663/3537 3005/2128/2097 +f 3005/2128/2097 3006/3663/3537 2940/3664/3538 +f 3005/2128/2097 2940/3664/3538 2941/2129/2098 +f 2941/2129/2098 2940/3664/3538 3012/3665/3539 +f 2941/2129/2098 3012/3665/3539 3013/2130/2099 +f 3013/2130/2099 3012/3665/3539 3110/3666/3540 +f 3013/2130/2099 3110/3666/3540 3109/2131/2100 +f 3109/2131/2100 3110/3666/3540 3050/3667/3541 +f 3109/2131/2100 3050/3667/3541 3051/2132/2101 +f 3051/2132/2101 3050/3667/3541 3123/3668/3542 +f 3051/2132/2101 3123/3668/3542 3124/2133/2102 +f 3124/2133/2102 3123/3668/3542 3215/3669/3543 +f 3124/2133/2102 3215/3669/3543 3214/2134/2103 +f 3214/2134/2103 3215/3669/3543 3161/3670/3544 +f 3214/2134/2103 3161/3670/3544 3162/2135/2104 +f 3162/2135/2104 3161/3670/3544 3233/3671/3545 +f 3162/2135/2104 3233/3671/3545 3234/2136/2105 +f 3234/2136/2105 3233/3671/3545 3319/3672/3546 +f 3234/2136/2105 3319/3672/3546 3318/2137/2106 +f 3318/2137/2106 3319/3672/3546 3271/444/438 +f 3318/2137/2106 3271/444/438 3272/446/440 +f 2867/3662/3536 273/2140/2109 3007/3673/3547 +f 3007/3673/3547 273/2140/2109 3008/2142/2111 +f 3007/3673/3547 3008/2142/2111 2938/2144/2113 +f 2938/2144/2113 2939/3674/3548 3007/3673/3547 +f 3007/3673/3547 2939/3674/3548 3006/3663/3537 +f 3007/3673/3547 3006/3663/3537 2867/3662/3536 +f 3006/3663/3537 2939/3674/3548 2940/3664/3538 +f 2940/3664/3538 2939/3674/3548 3011/3675/3549 +f 2940/3664/3538 3011/3675/3549 3012/3665/3539 +f 3012/3665/3539 3011/3675/3549 3111/3676/3550 +f 3012/3665/3539 3111/3676/3550 3110/3666/3540 +f 3110/3666/3540 3111/3676/3550 3049/3677/3551 +f 3110/3666/3540 3049/3677/3551 3050/3667/3541 +f 3050/3667/3541 3049/3677/3551 3122/3678/3552 +f 3050/3667/3541 3122/3678/3552 3123/3668/3542 +f 3123/3668/3542 3122/3678/3552 3216/3679/3553 +f 3123/3668/3542 3216/3679/3553 3215/3669/3543 +f 3215/3669/3543 3216/3679/3553 3160/3680/3554 +f 3215/3669/3543 3160/3680/3554 3161/3670/3544 +f 3161/3670/3544 3160/3680/3554 3232/3681/3555 +f 3161/3670/3544 3232/3681/3555 3233/3671/3545 +f 3233/3671/3545 3232/3681/3555 3320/3682/3556 +f 3233/3671/3545 3320/3682/3556 3319/3672/3546 +f 3319/3672/3546 3320/3682/3556 3270/442/436 +f 3319/3672/3546 3270/442/436 3271/444/438 +f 3011/3675/3549 2939/3674/3548 3010/2146/2115 +f 3010/2146/2115 2939/3674/3548 2938/2144/2113 +f 3111/3676/3550 3011/3675/3549 3112/2148/2117 +f 3112/2148/2117 3011/3675/3549 3010/2146/2115 +f 3115/2171/2140 3044/2178/2147 3045/2172/2141 +f 3045/2172/2141 3044/2178/2147 3117/3683/3557 +f 3045/2172/2141 3117/3683/3557 3118/2173/2142 +f 3118/2173/2142 3117/3683/3557 3221/3684/3558 +f 3118/2173/2142 3221/3684/3558 3220/2174/2143 +f 3220/2174/2143 3221/3684/3558 3155/3685/3559 +f 3220/2174/2143 3155/3685/3559 3156/2175/2144 +f 3156/2175/2144 3155/3685/3559 3227/3686/3560 +f 3156/2175/2144 3227/3686/3560 3228/2176/2145 +f 3228/2176/2145 3227/3686/3560 3325/3687/3561 +f 3228/2176/2145 3325/3687/3561 3324/2177/2146 +f 3324/2177/2146 3325/3687/3561 3265/432/426 +f 3324/2177/2146 3265/432/426 3266/434/428 +f 3111/3676/3550 3112/2148/2117 3048/2150/2119 +f 3111/3676/3550 3048/2150/2119 3049/3677/3551 +f 3049/3677/3551 3048/2150/2119 3121/2152/2121 +f 3049/3677/3551 3121/2152/2121 3122/3678/3552 +f 3122/3678/3552 3121/2152/2121 3217/2154/2123 +f 3122/3678/3552 3217/2154/2123 3216/3679/3553 +f 3216/3679/3553 3217/2154/2123 3159/2156/2125 +f 3216/3679/3553 3159/2156/2125 3160/3680/3554 +f 3160/3680/3554 3159/2156/2125 3231/2158/2127 +f 3160/3680/3554 3231/2158/2127 3232/3681/3555 +f 3232/3681/3555 3231/2158/2127 3321/2160/2129 +f 3232/3681/3555 3321/2160/2129 3320/3682/3556 +f 3320/3682/3556 3321/2160/2129 3269/440/434 +f 3320/3682/3556 3269/440/434 3270/442/436 +f 3044/2178/2147 3116/2180/2149 3117/3683/3557 +f 3117/3683/3557 3116/2180/2149 3222/2182/2151 +f 3117/3683/3557 3222/2182/2151 3221/3684/3558 +f 3221/3684/3558 3222/2182/2151 3154/2184/2153 +f 3221/3684/3558 3154/2184/2153 3155/3685/3559 +f 3155/3685/3559 3154/2184/2153 3226/2186/2155 +f 3155/3685/3559 3226/2186/2155 3227/3686/3560 +f 3227/3686/3560 3226/2186/2155 3326/2188/2157 +f 3227/3686/3560 3326/2188/2157 3325/3687/3561 +f 3325/3687/3561 3326/2188/2157 3264/430/424 +f 3325/3687/3561 3264/430/424 3265/432/426 +f 3259/420/414 3260/422/416 270/2196/2165 +f 270/2196/2165 3260/422/416 3329/2195/2164 +f 270/2196/2165 3329/2195/2164 3223/2194/2163 +f 3260/422/416 3261/424/418 3329/2195/2164 +# 3329 vertices +# 3687 texture params +# 3561 normals +# 6654 facets + +# 1 groups diff --git a/load/shapes/teddy.obj b/load/shapes/teddy.obj new file mode 100644 index 0000000..6280acf --- /dev/null +++ b/load/shapes/teddy.obj @@ -0,0 +1,12756 @@ +# Blender v2.83.4 OBJ File: '' +# www.blender.org +mtllib teddy2.mtl +o teddy +v 1.588069 6.039002 -0.645594 +v 1.672554 5.510645 -1.119675 +v 1.422389 6.039002 -0.952205 +v 1.422389 1.108117 -0.952206 +v 1.247738 0.674506 -0.507241 +v 1.117564 0.674506 -0.748144 +v 1.867372 5.510645 -0.759138 +v 1.858442 4.907847 -1.244116 +v 0.859456 0.352304 -0.349394 +v 0.769791 0.352304 -0.515330 +v 2.074912 4.907847 -0.843509 +v 1.972912 4.253774 -1.320747 +v 0.438147 0.153893 -0.178119 +v 0.392436 0.153893 -0.262713 +v 2.202715 4.253774 -0.895465 +v 2.011564 3.573560 -1.346622 +v -0.000001 7.060222 0.000003 +v 0.438148 6.993227 -0.178117 +v 0.392437 6.993227 -0.262710 +v -0.000001 0.086898 0.000001 +v 2.202715 2.893346 -0.895466 +v 1.972912 2.893346 -1.320747 +v 0.769792 6.794816 -0.515328 +v 2.074912 2.239272 -0.843510 +v 1.858441 2.239272 -1.244117 +v 0.859457 6.794816 -0.349391 +v 1.117564 6.472613 -0.748141 +v 1.867372 1.636474 -0.759140 +v 1.672552 1.636474 -1.119675 +v 1.247738 6.472613 -0.507238 +v 1.588069 1.108117 -0.645596 +v 1.329961 6.472613 -0.246842 +v 1.692719 1.108117 -0.314174 +v 1.692719 6.039002 -0.314172 +v 1.329961 0.674506 -0.246845 +v 1.990428 5.510645 -0.369428 +v 0.916093 0.352304 -0.170029 +v 2.211644 4.907847 -0.410486 +v 0.467020 0.153893 -0.086680 +v 2.347869 4.253774 -0.435770 +v 2.245869 3.573560 -0.913008 +v 0.467020 6.993227 -0.086678 +v 2.347869 2.893346 -0.435771 +v 2.211644 2.239272 -0.410487 +v 0.916093 6.794816 -0.170026 +v 1.990428 1.636474 -0.369430 +v 2.402797 4.253774 0.040670 +v 2.393867 3.573560 -0.444308 +v 0.477946 6.993227 0.008093 +v 0.477946 0.153893 0.008090 +v 2.402797 2.893346 0.040669 +v 2.263386 2.239272 0.038310 +v 0.937525 6.794816 0.015871 +v 2.036993 1.636474 0.034477 +v 1.361076 6.472613 0.023040 +v 1.732320 1.108117 0.029321 +v 1.732320 6.039002 0.029323 +v 1.361076 0.674506 0.023037 +v 2.036993 5.510645 0.034479 +v 0.937525 0.352304 0.015868 +v 2.263386 4.907847 0.038311 +v 1.705348 1.108117 0.371689 +v 1.705348 6.039002 0.371691 +v 1.339883 0.674506 0.292034 +v 2.005278 5.510645 0.437062 +v 0.922928 0.352304 0.201157 +v 2.228144 4.907847 0.485637 +v 0.470504 0.153893 0.102549 +v 2.365386 4.253774 0.515549 +v 2.449870 3.573560 0.041467 +v 0.470504 6.993227 0.102552 +v 2.365386 2.893346 0.515548 +v 2.228144 2.239272 0.485636 +v 0.922928 6.794816 0.201160 +v 2.005278 1.636474 0.437060 +v 1.339883 6.472613 0.292037 +v 0.444982 6.993227 0.193071 +v 0.444981 0.153892 0.193067 +v 2.411727 3.573560 0.525650 +v 2.237074 2.893346 0.970614 +v 2.107279 2.239272 0.914298 +v 0.872863 6.794816 0.378718 +v 1.896501 1.636474 0.822846 +v 1.267201 6.472613 0.549812 +v 1.612841 1.108117 0.699773 +v 1.612841 6.039002 0.699775 +v 1.267200 0.674506 0.549808 +v 1.896501 5.510645 0.822848 +v 0.872863 0.352304 0.378715 +v 2.107279 4.907847 0.914299 +v 2.237074 4.253774 0.970615 +v 1.458353 6.039002 1.000967 +v 1.145820 0.674506 0.786454 +v 1.714842 5.510645 1.177013 +v 0.789255 0.352304 0.541719 +v 1.905430 4.907847 1.307826 +v 0.402358 0.153892 0.276166 +v 2.022794 4.253774 1.388380 +v 2.280901 3.573560 0.989630 +v 0.402359 6.993227 0.276169 +v 2.022794 2.893346 1.388379 +v 1.905430 2.239272 1.307824 +v 0.789255 6.794816 0.541722 +v 1.714842 1.636474 1.177011 +v 1.145820 6.472613 0.786457 +v 1.458353 1.108117 1.000965 +v 2.062423 3.573560 1.415581 +v 1.730778 2.893346 1.752790 +v 0.344273 6.993227 0.348655 +v 1.630357 2.239272 1.651093 +v 0.675315 6.794816 0.683909 +v 1.467283 1.636474 1.485944 +v 0.980407 6.472613 0.992880 +v 1.247821 1.108117 1.263691 +v 1.247821 6.039002 1.263693 +v 0.980407 0.674506 0.992877 +v 1.467283 5.510645 1.485946 +v 0.675315 0.352304 0.683906 +v 1.630357 4.907846 1.651094 +v 0.344273 0.153892 0.348652 +v 1.730778 4.253773 1.752791 +v 0.777316 0.674506 1.161142 +v 1.163336 5.510645 1.737775 +v 0.535424 0.352304 0.799809 +v 1.292630 4.907846 1.930912 +v 0.272957 0.153892 0.407740 +v 1.372249 4.253773 2.049844 +v 1.764685 3.573560 1.787131 +v 0.272957 6.993227 0.407743 +v 1.372249 2.893346 2.049844 +v 1.292630 2.239272 1.930910 +v 0.535425 6.794816 0.799813 +v 1.163336 1.636474 1.737773 +v 0.777317 6.472613 1.161145 +v 0.989336 1.108117 1.477854 +v 0.989336 6.039001 1.477856 +v 0.960985 2.893346 2.268122 +v 0.544354 6.472613 1.284791 +v 0.905229 2.239272 2.136523 +v 0.692832 6.039001 1.635226 +v 0.814685 1.636474 1.922820 +v 0.814685 5.510645 1.922822 +v 0.692832 1.108117 1.635224 +v 0.905229 4.907846 2.136525 +v 0.544354 0.674505 1.284787 +v 0.960985 4.253773 2.268123 +v 0.374958 0.352303 0.884977 +v 0.979812 3.573559 2.312557 +v 1.399133 3.573560 2.090003 +v 0.191152 6.993227 0.451161 +v 0.191152 0.153892 0.451158 +v 0.374958 6.794816 0.884980 +v 0.290473 0.674505 1.359059 +v 0.512792 4.253773 2.399237 +v 0.200081 0.352303 0.936136 +v 0.522838 3.573559 2.446241 +v 0.102000 6.993227 0.477241 +v 0.102000 0.153892 0.477238 +v 0.200081 6.794816 0.936139 +v 0.512792 2.893346 2.399236 +v 0.290473 6.472613 1.359063 +v 0.483040 2.239271 2.260032 +v 0.369703 6.039001 1.729755 +v 0.434724 1.636474 2.033974 +v 0.434724 5.510645 2.033976 +v 0.369703 1.108117 1.729753 +v 0.483040 4.907846 2.260034 +v 0.025429 6.472613 1.381105 +v 0.042287 2.239271 2.296687 +v 0.032366 6.039001 1.757811 +v 0.038058 1.636474 2.066966 +v 0.038058 5.510645 2.066968 +v 0.032366 1.108117 1.757809 +v 0.042287 4.907846 2.296689 +v 0.025429 0.674505 1.381102 +v 0.044892 4.253773 2.438152 +v 0.017516 0.352303 0.951320 +v 0.045772 3.573559 2.485919 +v 0.008929 6.993227 0.484982 +v 0.008929 0.153892 0.484979 +v 0.017516 6.794816 0.951323 +v 0.044892 2.893346 2.438151 +v -0.424732 4.253773 2.383370 +v -0.165723 0.352303 0.929944 +v -0.433054 3.573559 2.430063 +v -0.084486 6.993227 0.474085 +v -0.084485 0.153892 0.474082 +v -0.165722 6.794816 0.929948 +v -0.424732 2.893346 2.383369 +v -0.240592 6.472613 1.350073 +v -0.400089 2.239271 2.245085 +v -0.306215 6.039001 1.718315 +v -0.360071 1.636474 2.020521 +v -0.360071 5.510645 2.020523 +v -0.306215 1.108117 1.718313 +v -0.400089 4.907846 2.245086 +v -0.240592 0.674505 1.350070 +v -0.827091 2.239272 2.107203 +v -0.633029 6.039001 1.612785 +v -0.744363 1.636474 1.896432 +v -0.744363 5.510645 1.896434 +v -0.633029 1.108117 1.612783 +v -0.827091 4.907846 2.107205 +v -0.497368 0.674506 1.267156 +v -0.878035 4.253773 2.236996 +v -0.342593 0.352303 0.872832 +v -0.895237 3.573559 2.280820 +v -0.174653 6.993227 0.444970 +v -0.174653 0.153892 0.444966 +v -0.342593 6.794816 0.872835 +v -0.878035 2.893346 2.236995 +v -0.497368 6.472613 1.267159 +v -0.506297 0.352304 0.782177 +v -1.323018 3.573560 2.043928 +v -0.258109 6.993227 0.398754 +v -0.258108 0.153892 0.398750 +v -0.506297 6.794816 0.782181 +v -1.297596 2.893346 2.004654 +v -0.735029 6.472613 1.135548 +v -1.222308 2.239272 1.888343 +v -0.935515 6.039002 1.445277 +v -1.100049 1.636474 1.699463 +v -1.100049 5.510645 1.699465 +v -0.935515 1.108117 1.445275 +v -1.222308 4.907846 1.888345 +v -0.735029 0.674506 1.135545 +v -1.297596 4.253773 2.004655 +v -1.202050 6.039002 1.222229 +v -1.413461 1.636474 1.437186 +v -1.413461 5.510645 1.437188 +v -1.202050 1.108117 1.222227 +v -1.570553 4.907846 1.596917 +v -0.944445 0.674506 0.960297 +v -1.667291 4.253773 1.695277 +v -0.650545 0.352304 0.661464 +v -1.699956 3.573560 1.728490 +v -0.331646 6.993227 0.337215 +v -0.331645 0.153892 0.337212 +v -0.650546 6.794816 0.661467 +v -1.667291 2.893346 1.695276 +v -0.944444 6.472613 0.960301 +v -1.570553 2.239272 1.596915 +v -2.011564 3.573560 1.346627 +v -0.392437 6.993227 0.262717 +v -0.392437 0.153892 0.262714 +v -0.769792 6.794816 0.515334 +v -1.972912 2.893346 1.320750 +v -1.117566 6.472613 0.748148 +v -1.858443 2.239272 1.244120 +v -1.422391 6.039002 0.952209 +v -1.672554 1.636474 1.119677 +v -1.672554 5.510645 1.119679 +v -1.422391 1.108117 0.952207 +v -1.858443 4.907847 1.244121 +v -1.117566 0.674506 0.748145 +v -1.972912 4.253774 1.320751 +v -0.769792 0.352304 0.515331 +v -1.588069 1.108117 0.645596 +v -1.588069 6.039002 0.645598 +v -1.247738 0.674506 0.507242 +v -1.867372 5.510645 0.759142 +v -0.859457 0.352304 0.349394 +v -2.074913 4.907847 0.843513 +v -0.438148 0.153892 0.178120 +v -2.202715 4.253774 0.895469 +v -0.438148 6.993227 0.178123 +v -2.202715 2.893346 0.895468 +v -2.074913 2.239272 0.843512 +v -0.859457 6.794816 0.349397 +v -1.867372 1.636474 0.759140 +v -1.247739 6.472613 0.507245 +v -0.467020 0.153893 0.086681 +v -2.245869 3.573560 0.913012 +v -2.347869 2.893346 0.435774 +v -0.467021 6.993227 0.086684 +v -2.211645 2.239272 0.410490 +v -0.916094 6.794816 0.170034 +v -1.990428 1.636474 0.369430 +v -1.329962 6.472613 0.246849 +v -1.692720 1.108117 0.314175 +v -1.692720 6.039002 0.314177 +v -1.329962 0.674506 0.246846 +v -1.990428 5.510645 0.369432 +v -0.916094 0.352304 0.170031 +v -2.211645 4.907847 0.410491 +v -2.347869 4.253774 0.435775 +v -1.361075 0.674506 -0.023037 +v -2.036993 5.510645 -0.034475 +v -0.937526 0.352304 -0.015868 +v -2.263386 4.907847 -0.038306 +v -0.477946 0.153893 -0.008089 +v -2.402797 4.253774 -0.040666 +v -2.393868 3.573560 0.444312 +v -0.477948 6.993227 -0.008086 +v -2.402797 2.893346 -0.040667 +v -2.263386 2.239272 -0.038307 +v -0.937526 6.794816 -0.015865 +v -2.036993 1.636474 -0.034477 +v -1.361076 6.472613 -0.023033 +v -1.732321 1.108117 -0.029320 +v -1.732321 6.039002 -0.029318 +v -0.470506 6.993227 -0.102545 +v -2.228145 2.239272 -0.485633 +v -0.922928 6.794816 -0.201153 +v -2.005277 1.636474 -0.437059 +v -1.339884 6.472613 -0.292031 +v -1.705349 1.108117 -0.371688 +v -1.705349 6.039002 -0.371686 +v -1.339884 0.674506 -0.292034 +v -2.005277 5.510645 -0.437057 +v -0.922928 0.352304 -0.201156 +v -2.228145 4.907847 -0.485632 +v -0.470505 0.153893 -0.102549 +v -2.365386 4.253774 -0.515544 +v -2.449871 3.573560 -0.041463 +v -2.365386 2.893346 -0.515545 +v -1.896500 5.510645 -0.822843 +v -0.872863 0.352304 -0.378713 +v -2.107279 4.907847 -0.914294 +v -0.444982 0.153893 -0.193067 +v -2.237074 4.253774 -0.970610 +v -2.411727 3.573560 -0.525644 +v -0.444983 6.993227 -0.193063 +v -2.237074 2.893346 -0.970610 +v -2.107279 2.239272 -0.914295 +v -0.872864 6.794816 -0.378711 +v -1.896500 1.636474 -0.822845 +v -1.267202 6.472613 -0.549804 +v -1.612841 1.108117 -0.699772 +v -1.612841 6.039002 -0.699770 +v -1.267201 0.674506 -0.549808 +v -1.905431 2.239272 -1.307822 +v -0.789255 6.794816 -0.541714 +v -1.714841 1.636474 -1.177009 +v -1.145821 6.472613 -0.786450 +v -1.458354 1.108117 -1.000965 +v -1.458354 6.039002 -1.000963 +v -1.145821 0.674506 -0.786453 +v -1.714841 5.510645 -1.177007 +v -0.789255 0.352304 -0.541717 +v -1.905431 4.907847 -1.307821 +v -0.402359 0.153893 -0.276164 +v -2.022793 4.253774 -1.388375 +v -2.280901 3.573560 -0.989626 +v -0.402360 6.993227 -0.276162 +v -2.022793 2.893346 -1.388376 +v -0.675317 0.352304 -0.683904 +v -1.630358 4.907848 -1.651089 +v -0.344273 0.153893 -0.348651 +v -1.730778 4.253774 -1.752786 +v -2.062424 3.573560 -1.415576 +v -0.344274 6.993227 -0.348648 +v -1.730778 2.893347 -1.752787 +v -1.630358 2.239272 -1.651091 +v -0.675317 6.794816 -0.683901 +v -1.467283 1.636474 -1.485942 +v -0.980407 6.472613 -0.992872 +v -1.247822 1.108118 -1.263690 +v -1.247822 6.039002 -1.263688 +v -0.980407 0.674506 -0.992875 +v -1.467283 5.510646 -1.485940 +v -0.535426 6.794816 -0.799805 +v -1.163337 1.636474 -1.737772 +v -0.777318 6.472613 -1.161138 +v -0.989337 1.108118 -1.477854 +v -0.989337 6.039002 -1.477852 +v -0.777318 0.674506 -1.161141 +v -1.163337 5.510646 -1.737770 +v -0.535426 0.352304 -0.799808 +v -1.292632 4.907848 -1.930906 +v -0.272958 0.153893 -0.407738 +v -1.372249 4.253774 -2.049839 +v -1.764686 3.573561 -1.787127 +v -0.272958 6.993227 -0.407736 +v -1.372249 2.893347 -2.049839 +v -1.292632 2.239272 -1.930907 +v -0.960986 4.253774 -2.268116 +v -0.374959 0.352304 -0.884975 +v -0.979813 3.573561 -2.312552 +v -1.399133 3.573561 -2.089998 +v -0.191153 6.993227 -0.451154 +v -0.191152 0.153893 -0.451156 +v -0.374959 6.794816 -0.884972 +v -0.960986 2.893347 -2.268116 +v -0.544356 6.472613 -1.284783 +v -0.905229 2.239272 -2.136521 +v -0.692833 6.039002 -1.635221 +v -0.814685 1.636474 -1.922818 +v -0.814685 5.510646 -1.922816 +v -0.692833 1.108118 -1.635223 +v -0.905229 4.907848 -2.136519 +v -0.544356 0.674506 -1.284786 +v -0.483041 2.239273 -2.260030 +v -0.369703 6.039002 -1.729750 +v -0.434724 1.636474 -2.033973 +v -0.434724 5.510646 -2.033971 +v -0.369703 1.108118 -1.729752 +v -0.483041 4.907848 -2.260028 +v -0.290474 0.674506 -1.359057 +v -0.512792 4.253774 -2.399232 +v -0.200082 0.352304 -0.936134 +v -0.522839 3.573561 -2.446238 +v -0.102002 6.993227 -0.477234 +v -0.102001 0.153893 -0.477237 +v -0.200082 6.794816 -0.936131 +v -0.512792 2.893347 -2.399233 +v -0.290474 6.472613 -1.359054 +v -0.017517 0.352304 -0.951318 +v -0.045773 3.573561 -2.485913 +v -0.008930 6.993227 -0.484975 +v -0.008930 0.153893 -0.484978 +v -0.017517 6.794816 -0.951315 +v -0.044893 2.893347 -2.438147 +v -0.025430 6.472613 -1.381098 +v -0.042289 2.239273 -2.296685 +v -0.032366 6.039002 -1.757806 +v -0.038058 1.636474 -2.066962 +v -0.038058 5.510646 -2.066960 +v -0.032366 1.108118 -1.757808 +v -0.042289 4.907848 -2.296685 +v -0.025430 0.674506 -1.381100 +v -0.044893 4.253774 -2.438146 +v 0.360070 1.636474 -2.020519 +v 0.360070 5.510646 -2.020517 +v 0.306214 1.108118 -1.718312 +v 0.400089 4.907848 -2.245080 +v 0.240591 0.674506 -1.350068 +v 0.424732 4.253774 -2.383363 +v 0.165721 0.352304 -0.929943 +v 0.433053 3.573561 -2.430058 +v 0.084484 6.993227 -0.474078 +v 0.084484 0.153893 -0.474081 +v 0.165721 6.794816 -0.929940 +v 0.424732 2.893347 -2.383363 +v 0.240591 6.472613 -1.350065 +v 0.400089 2.239273 -2.245080 +v 0.306214 6.039002 -1.718310 +v 0.174651 6.993227 -0.444963 +v 0.174652 0.153893 -0.444965 +v 0.895236 3.573561 -2.280817 +v 0.342591 6.794816 -0.872828 +v 0.878034 2.893347 -2.236989 +v 0.497366 6.472613 -1.267153 +v 0.827090 2.239272 -2.107202 +v 0.633027 6.039002 -1.612779 +v 0.744362 1.636474 -1.896430 +v 0.744362 5.510646 -1.896428 +v 0.633027 1.108118 -1.612781 +v 0.827090 4.907848 -2.107200 +v 0.497366 0.674506 -1.267155 +v 0.878034 4.253774 -2.236989 +v 0.342591 0.352304 -0.872831 +v 1.100047 5.510646 -1.699459 +v 0.935514 1.108118 -1.445274 +v 1.222308 4.907848 -1.888340 +v 0.735028 0.674506 -1.135544 +v 1.297595 4.253774 -2.004650 +v 0.506296 0.352304 -0.782176 +v 1.323016 3.573561 -2.043924 +v 0.258107 6.993227 -0.398747 +v 0.258107 0.153893 -0.398750 +v 0.506296 6.794816 -0.782173 +v 1.297595 2.893347 -2.004651 +v 0.735028 6.472613 -1.135541 +v 1.222308 2.239272 -1.888342 +v 0.935514 6.039002 -1.445272 +v 1.100047 1.636474 -1.699461 +v 1.699953 3.573561 -1.728484 +v 0.650543 6.794816 -0.661460 +v 1.667288 2.893347 -1.695273 +v 0.944443 6.472613 -0.960293 +v 1.570552 2.239272 -1.596913 +v 1.202049 6.039002 -1.222223 +v 1.413459 1.636474 -1.437183 +v 1.413459 5.510645 -1.437181 +v 1.202049 1.108118 -1.222225 +v 1.570552 4.907848 -1.596911 +v 0.944443 0.674506 -0.960295 +v 1.667288 4.253774 -1.695272 +v 0.650543 0.352304 -0.661463 +v 0.331644 6.993227 -0.337208 +v 0.331644 0.153893 -0.337211 +vn 0.7550 0.5726 -0.3195 +vn 0.7530 0.4221 -0.5048 +vn 0.6811 0.5719 -0.4572 +vn 0.6810 -0.5718 -0.4574 +vn 0.6369 -0.7229 -0.2678 +vn 0.5756 -0.7225 -0.3830 +vn 0.8344 0.4216 -0.3549 +vn 0.7982 0.2772 -0.5348 +vn 0.4695 -0.8611 -0.1952 +vn 0.4248 -0.8608 -0.2803 +vn 0.8847 0.2770 -0.3750 +vn 0.8232 0.1369 -0.5511 +vn 0.2851 -0.9522 -0.1096 +vn 0.2596 -0.9521 -0.1614 +vn 0.9121 0.1371 -0.3863 +vn 0.8310 0.0000 -0.5563 +vn -0.0000 1.0000 -0.0000 +vn 0.2772 0.9521 -0.1288 +vn 0.2483 0.9521 -0.1785 +vn -0.0000 -1.0000 -0.0000 +vn 0.9121 -0.1371 -0.3863 +vn 0.8232 -0.1369 -0.5511 +vn 0.4211 0.8608 -0.2859 +vn 0.8848 -0.2775 -0.3743 +vn 0.7986 -0.2770 -0.5343 +vn 0.4708 0.8576 -0.2072 +vn 0.5735 0.7225 -0.3861 +vn 0.8348 -0.4226 -0.3529 +vn 0.7537 -0.4220 -0.5038 +vn 0.6369 0.7205 -0.2742 +vn 0.7548 -0.5716 -0.3216 +vn 0.6740 0.7247 -0.1436 +vn 0.8011 -0.5739 -0.1700 +vn 0.8014 0.5724 -0.1735 +vn 0.6747 -0.7242 -0.1423 +vn 0.8859 0.4230 -0.1904 +vn 0.4965 -0.8619 -0.1027 +vn 0.9392 0.2780 -0.2013 +vn 0.2995 -0.9526 -0.0535 +vn 0.9687 0.1376 -0.2067 +vn 0.9208 -0.0000 -0.3899 +vn 0.2955 0.9525 -0.0738 +vn 0.9687 -0.1376 -0.2067 +vn 0.9394 -0.2779 -0.2005 +vn 0.5001 0.8584 -0.1142 +vn 0.8858 -0.4233 -0.1901 +vn 0.9902 0.1384 -0.0178 +vn 0.9780 -0.0000 -0.2087 +vn 0.3026 0.9530 -0.0160 +vn 0.3024 -0.9532 0.0050 +vn 0.9902 -0.1384 -0.0178 +vn 0.9599 -0.2799 -0.0171 +vn 0.5106 0.8597 -0.0167 +vn 0.9047 -0.4257 -0.0159 +vn 0.6898 0.7238 -0.0168 +vn 0.8172 -0.5762 -0.0138 +vn 0.8182 0.5746 -0.0172 +vn 0.6873 -0.7263 -0.0107 +vn 0.9050 0.4250 -0.0176 +vn 0.5047 -0.8633 -0.0059 +vn 0.9600 0.2795 -0.0180 +vn 0.8025 -0.5789 0.1443 +vn 0.8024 0.5794 0.1435 +vn 0.6738 -0.7287 0.1221 +vn 0.8902 0.4275 0.1577 +vn 0.4937 -0.8648 0.0916 +vn 0.9448 0.2813 0.1679 +vn 0.2939 -0.9538 0.0630 +vn 0.9749 0.1394 0.1737 +vn 0.9998 0.0000 -0.0179 +vn 0.2981 0.9536 0.0424 +vn 0.9748 -0.1394 0.1742 +vn 0.9444 -0.2819 0.1690 +vn 0.5017 0.8611 0.0819 +vn 0.8900 -0.4279 0.1578 +vn 0.6776 0.7262 0.1164 +vn 0.2821 0.9542 0.0993 +vn 0.2739 -0.9544 0.1190 +vn 0.9844 -0.0000 0.1760 +vn 0.9215 -0.1404 0.3622 +vn 0.8923 -0.2838 0.3510 +vn 0.4735 0.8627 0.1778 +vn 0.8396 -0.4309 0.3306 +vn 0.6392 0.7286 0.2463 +vn 0.7567 -0.5817 0.2984 +vn 0.7591 0.5800 0.2955 +vn 0.6343 -0.7312 0.2512 +vn 0.8409 0.4299 0.3288 +vn 0.4635 -0.8664 0.1858 +vn 0.8929 0.2832 0.3499 +vn 0.9215 0.1404 0.3622 +vn 0.6810 0.5843 0.4413 +vn 0.5697 -0.7332 0.3712 +vn 0.7577 0.4321 0.4891 +vn 0.4153 -0.8677 0.2731 +vn 0.8050 0.2848 0.5205 +vn 0.2434 -0.9549 0.1703 +vn 0.8311 0.1412 0.5380 +vn 0.9307 -0.0000 0.3658 +vn 0.2553 0.9548 0.1525 +vn 0.8309 -0.1412 0.5383 +vn 0.8044 -0.2851 0.5212 +vn 0.4269 0.8639 0.2672 +vn 0.7562 -0.4330 0.4905 +vn 0.5755 0.7307 0.3674 +vn 0.6829 -0.5833 0.4399 +vn 0.8393 -0.0000 0.5437 +vn 0.7054 -0.1425 0.6944 +vn 0.2207 0.9565 0.1906 +vn 0.6828 -0.2864 0.6722 +vn 0.3633 0.8648 0.3465 +vn 0.6416 -0.4346 0.6321 +vn 0.4888 0.7321 0.4745 +vn 0.5770 -0.5857 0.5692 +vn 0.5805 0.5840 0.5674 +vn 0.4821 -0.7347 0.4772 +vn 0.6433 0.4335 0.6310 +vn 0.3507 -0.8686 0.3500 +vn 0.6837 0.2859 0.6715 +vn 0.2033 -0.9552 0.2150 +vn 0.7056 0.1418 0.6943 +vn 0.3753 -0.7352 0.5644 +vn 0.5007 0.4353 0.7482 +vn 0.2723 -0.8689 0.4133 +vn 0.5337 0.2864 0.7957 +vn 0.1556 -0.9552 0.2516 +vn 0.5511 0.1421 0.8223 +vn 0.7128 -0.0000 0.7014 +vn 0.1734 0.9553 0.2395 +vn 0.5507 -0.1420 0.8226 +vn 0.5325 -0.2869 0.7963 +vn 0.2854 0.8651 0.4124 +vn 0.5002 -0.4352 0.7486 +vn 0.3824 0.7325 0.5632 +vn 0.4528 -0.5856 0.6724 +vn 0.4533 0.5846 0.6728 +vn 0.3730 -0.1418 0.9169 +vn 0.2573 0.7347 0.6277 +vn 0.3604 -0.2858 0.8879 +vn 0.3064 0.5858 0.7503 +vn 0.3381 -0.4335 0.8353 +vn 0.3399 0.4347 0.8340 +vn 0.3035 -0.5839 0.7530 +vn 0.3612 0.2864 0.8874 +vn 0.2527 -0.7317 0.6330 +vn 0.3730 0.1418 0.9169 +vn 0.1824 -0.8643 0.4687 +vn 0.3768 -0.0000 0.9263 +vn 0.5563 -0.0000 0.8310 +vn 0.1215 0.9552 0.2698 +vn 0.1293 -0.9585 0.2540 +vn 0.1812 0.8667 0.4647 +vn 0.1234 -0.7336 0.6683 +vn 0.1811 0.1416 0.9732 +vn 0.0847 -0.8634 0.4974 +vn 0.1829 -0.0000 0.9831 +vn 0.0648 0.9549 0.2898 +vn 0.0759 -0.9584 0.2753 +vn 0.0941 0.8678 0.4880 +vn 0.1810 -0.1412 0.9733 +vn 0.1260 0.7333 0.6681 +vn 0.1745 -0.2848 0.9426 +vn 0.1493 0.5841 0.7978 +vn 0.1635 -0.4320 0.8869 +vn 0.1653 0.4331 0.8861 +vn 0.1461 -0.5823 0.7998 +vn 0.1748 0.2850 0.9425 +vn -0.0095 0.7312 0.6821 +vn -0.0158 -0.2837 0.9588 +vn -0.0125 0.5818 0.8132 +vn -0.0163 -0.4299 0.9027 +vn -0.0143 0.4310 0.9022 +vn -0.0161 -0.5799 0.8145 +vn -0.0158 0.2832 0.9589 +vn -0.0158 -0.7282 0.6852 +vn -0.0163 0.1404 0.9900 +vn -0.0159 -0.8621 0.5065 +vn -0.0169 -0.0003 0.9999 +vn 0.0057 0.9544 0.2985 +vn 0.0200 -0.9580 0.2860 +vn -0.0155 0.8646 0.5022 +vn -0.0163 -0.1404 0.9900 +vn -0.2104 0.1394 0.9676 +vn -0.1091 -0.8650 0.4897 +vn -0.2124 -0.0000 0.9772 +vn -0.0535 0.9538 0.2957 +vn -0.0365 -0.9576 0.2859 +vn -0.1036 0.8649 0.4912 +vn -0.2110 -0.1393 0.9675 +vn -0.1439 0.7288 0.6694 +vn -0.2046 -0.2813 0.9376 +vn -0.1724 0.5790 0.7969 +vn -0.1934 -0.4273 0.8832 +vn -0.1915 0.4284 0.8831 +vn -0.1760 -0.5771 0.7975 +vn -0.2046 0.2816 0.9375 +vn -0.1505 -0.7258 0.6712 +vn -0.3817 -0.2802 0.8808 +vn -0.3242 0.5762 0.7503 +vn -0.3612 -0.4249 0.8301 +vn -0.3595 0.4257 0.8304 +vn -0.3277 -0.5745 0.7500 +vn -0.3818 0.2795 0.8810 +vn -0.2785 -0.7235 0.6317 +vn -0.3938 0.1384 0.9087 +vn -0.2103 -0.8590 0.4667 +vn -0.3976 -0.0000 0.9176 +vn -0.1106 0.9532 0.2815 +vn -0.0915 -0.9571 0.2750 +vn -0.1979 0.8633 0.4643 +vn -0.3938 -0.1384 0.9087 +vn -0.2774 0.7250 0.6304 +vn -0.2884 -0.8622 0.4165 +vn -0.5656 -0.0000 0.8247 +vn -0.1633 0.9526 0.2565 +vn -0.1431 -0.9566 0.2538 +vn -0.2842 0.8620 0.4198 +vn -0.5602 -0.1376 0.8168 +vn -0.3887 0.7243 0.5695 +vn -0.5439 -0.2780 0.7918 +vn -0.4625 0.5739 0.6758 +vn -0.5137 -0.4228 0.7466 +vn -0.5119 0.4239 0.7472 +vn -0.4659 -0.5722 0.6749 +vn -0.5431 0.2785 0.7922 +vn -0.3952 -0.7215 0.5686 +vn -0.5602 0.1376 0.8168 +vn -0.5828 0.5724 0.5769 +vn -0.6447 -0.4227 0.6369 +vn -0.6445 0.4224 0.6373 +vn -0.5858 -0.5708 0.5754 +vn -0.6833 0.2776 0.6753 +vn -0.4965 -0.7202 0.4847 +vn -0.7047 0.1371 0.6961 +vn -0.3715 -0.8570 0.3571 +vn -0.7114 -0.0000 0.7028 +vn -0.2099 0.9522 0.2219 +vn -0.1895 -0.9562 0.2231 +vn -0.3595 0.8611 0.3595 +vn -0.7047 -0.1371 0.6961 +vn -0.4952 0.7216 0.4839 +vn -0.6840 -0.2770 0.6748 +vn -0.8310 -0.0000 0.5563 +vn -0.2482 0.9521 0.1785 +vn -0.2596 -0.9521 0.1614 +vn -0.4211 0.8608 0.2858 +vn -0.8232 -0.1369 0.5511 +vn -0.5735 0.7225 0.3861 +vn -0.7988 -0.2767 0.5342 +vn -0.6811 0.5719 0.4571 +vn -0.7545 -0.4211 0.5035 +vn -0.7530 0.4220 0.5048 +vn -0.6838 -0.5703 0.4552 +vn -0.7983 0.2772 0.5347 +vn -0.5791 -0.7198 0.3828 +vn -0.8232 0.1369 0.5511 +vn -0.4325 -0.8567 0.2811 +vn -0.7554 -0.5725 0.3188 +vn -0.7551 0.5726 0.3195 +vn -0.6369 -0.7229 0.2678 +vn -0.8345 0.4216 0.3549 +vn -0.4695 -0.8611 0.1953 +vn -0.8845 0.2770 0.3755 +vn -0.2851 -0.9522 0.1096 +vn -0.9121 0.1371 0.3863 +vn -0.2772 0.9521 0.1287 +vn -0.9121 -0.1371 0.3863 +vn -0.8848 -0.2772 0.3745 +vn -0.4708 0.8576 0.2072 +vn -0.8344 -0.4221 0.3546 +vn -0.6369 0.7205 0.2742 +vn -0.2994 -0.9526 0.0534 +vn -0.9208 -0.0000 0.3899 +vn -0.9687 -0.1376 0.2067 +vn -0.2885 0.9540 0.0814 +vn -0.9394 -0.2779 0.2005 +vn -0.5000 0.8584 0.1143 +vn -0.8859 -0.4238 0.1886 +vn -0.6759 0.7219 0.1487 +vn -0.8011 -0.5739 0.1700 +vn -0.8014 0.5724 0.1735 +vn -0.6747 -0.7242 0.1423 +vn -0.8859 0.4230 0.1903 +vn -0.4965 -0.8620 0.1026 +vn -0.9392 0.2780 0.2013 +vn -0.9686 0.1376 0.2070 +vn -0.6873 -0.7263 0.0107 +vn -0.9046 0.4261 0.0162 +vn -0.5047 -0.8633 0.0059 +vn -0.9600 0.2795 0.0180 +vn -0.3025 -0.9531 -0.0049 +vn -0.9902 0.1384 0.0178 +vn -0.9780 -0.0000 0.2087 +vn -0.3027 0.9530 0.0160 +vn -0.9902 -0.1384 0.0178 +vn -0.9599 -0.2799 0.0171 +vn -0.5106 0.8597 0.0167 +vn -0.9047 -0.4258 0.0159 +vn -0.6898 0.7238 0.0168 +vn -0.8176 -0.5755 0.0167 +vn -0.8182 0.5746 0.0172 +vn -0.2946 0.9551 -0.0330 +vn -0.9444 -0.2819 -0.1690 +vn -0.5017 0.8611 -0.0819 +vn -0.8894 -0.4285 -0.1594 +vn -0.6776 0.7262 -0.1164 +vn -0.8025 -0.5789 -0.1443 +vn -0.8042 0.5773 -0.1411 +vn -0.6739 -0.7287 -0.1221 +vn -0.8902 0.4275 -0.1576 +vn -0.4937 -0.8648 -0.0915 +vn -0.9448 0.2813 -0.1681 +vn -0.2939 -0.9538 -0.0630 +vn -0.9749 0.1394 -0.1737 +vn -0.9998 0.0000 0.0179 +vn -0.9748 -0.1394 -0.1742 +vn -0.8397 0.4312 -0.3301 +vn -0.4635 -0.8664 -0.1858 +vn -0.8929 0.2832 -0.3500 +vn -0.2739 -0.9544 -0.1189 +vn -0.9215 0.1404 -0.3622 +vn -0.9844 0.0000 -0.1760 +vn -0.2821 0.9542 -0.0993 +vn -0.9215 -0.1404 -0.3622 +vn -0.8923 -0.2838 -0.3510 +vn -0.4735 0.8627 -0.1778 +vn -0.8397 -0.4309 -0.3305 +vn -0.6392 0.7286 -0.2463 +vn -0.7567 -0.5817 -0.2984 +vn -0.7591 0.5800 -0.2955 +vn -0.6373 -0.7302 -0.2464 +vn -0.8043 -0.2852 -0.5213 +vn -0.4167 0.8682 -0.2696 +vn -0.7562 -0.4331 -0.4905 +vn -0.5755 0.7307 -0.3673 +vn -0.6806 -0.5842 -0.4421 +vn -0.6837 0.5824 -0.4397 +vn -0.5697 -0.7332 -0.3712 +vn -0.7577 0.4321 -0.4891 +vn -0.4153 -0.8677 -0.2731 +vn -0.8049 0.2848 -0.5206 +vn -0.2433 -0.9549 -0.1703 +vn -0.8309 0.1412 -0.5383 +vn -0.9307 0.0000 -0.3658 +vn -0.2553 0.9548 -0.1525 +vn -0.8309 -0.1412 -0.5383 +vn -0.3507 -0.8686 -0.3500 +vn -0.6829 0.2867 -0.6719 +vn -0.2033 -0.9552 -0.2150 +vn -0.7060 0.1419 -0.6939 +vn -0.8393 -0.0000 -0.5437 +vn -0.2186 0.9551 -0.1998 +vn -0.7055 -0.1422 -0.6943 +vn -0.6828 -0.2863 -0.6722 +vn -0.3633 0.8648 -0.3465 +vn -0.6416 -0.4346 -0.6321 +vn -0.4888 0.7321 -0.4745 +vn -0.5771 -0.5857 -0.5692 +vn -0.5805 0.5840 -0.5674 +vn -0.4871 -0.7336 -0.4738 +vn -0.6434 0.4335 -0.6309 +vn -0.2750 0.8694 -0.4106 +vn -0.5004 -0.4350 -0.7486 +vn -0.3824 0.7325 -0.5632 +vn -0.4497 -0.5863 -0.6738 +vn -0.4535 0.5847 -0.6727 +vn -0.3753 -0.7352 -0.5644 +vn -0.5022 0.4341 -0.7479 +vn -0.2723 -0.8689 -0.4133 +vn -0.5336 0.2864 -0.7958 +vn -0.1555 -0.9552 -0.2516 +vn -0.5507 0.1420 -0.8226 +vn -0.7128 0.0000 -0.7014 +vn -0.1734 0.9553 -0.2395 +vn -0.5507 -0.1420 -0.8226 +vn -0.5334 -0.2865 -0.7958 +vn -0.3730 0.1418 -0.9169 +vn -0.1843 -0.8689 -0.4594 +vn -0.3768 0.0000 -0.9263 +vn -0.5563 0.0000 -0.8310 +vn -0.1215 0.9552 -0.2698 +vn -0.1293 -0.9585 -0.2540 +vn -0.1898 0.8687 -0.4576 +vn -0.3730 -0.1418 -0.9169 +vn -0.2573 0.7347 -0.6277 +vn -0.3604 -0.2858 -0.8879 +vn -0.3064 0.5857 -0.7504 +vn -0.3383 -0.4335 -0.8353 +vn -0.3399 0.4346 -0.8340 +vn -0.3035 -0.5839 -0.7530 +vn -0.3605 0.2861 -0.8878 +vn -0.2526 -0.7317 -0.6331 +vn -0.1752 -0.2854 -0.9422 +vn -0.1493 0.5840 -0.7979 +vn -0.1633 -0.4320 -0.8870 +vn -0.1653 0.4331 -0.8861 +vn -0.1461 -0.5823 -0.7998 +vn -0.1755 0.2854 -0.9422 +vn -0.1204 -0.7303 -0.6725 +vn -0.1810 0.1412 -0.9733 +vn -0.0847 -0.8634 -0.4974 +vn -0.1829 0.0000 -0.9831 +vn -0.0648 0.9549 -0.2898 +vn -0.0759 -0.9584 -0.2753 +vn -0.0941 0.8678 -0.4880 +vn -0.1805 -0.1413 -0.9734 +vn -0.1205 0.7319 -0.6707 +vn 0.0107 -0.8666 -0.4989 +vn 0.0164 0.0000 -0.9999 +vn -0.0057 0.9544 -0.2985 +vn -0.0200 -0.9580 -0.2860 +vn 0.0050 0.8665 -0.4992 +vn 0.0163 -0.1404 -0.9900 +vn 0.0095 0.7312 -0.6821 +vn 0.0165 -0.2831 -0.9589 +vn 0.0125 0.5818 -0.8132 +vn 0.0162 -0.4299 -0.9027 +vn 0.0144 0.4310 -0.9023 +vn 0.0161 -0.5799 -0.8145 +vn 0.0156 0.2837 -0.9588 +vn 0.0158 -0.7282 -0.6852 +vn 0.0163 0.1404 -0.9900 +vn 0.1921 -0.4287 -0.8828 +vn 0.1917 0.4282 -0.8831 +vn 0.1760 -0.5771 -0.7975 +vn 0.2037 0.2818 -0.9376 +vn 0.1505 -0.7258 -0.6712 +vn 0.2104 0.1394 -0.9676 +vn 0.1156 -0.8605 -0.4961 +vn 0.2127 -0.0002 -0.9771 +vn 0.0535 0.9538 -0.2957 +vn 0.0365 -0.9576 -0.2859 +vn 0.1036 0.8649 -0.4912 +vn 0.2111 -0.1394 -0.9675 +vn 0.1439 0.7288 -0.6695 +vn 0.2046 -0.2813 -0.9376 +vn 0.1755 0.5780 -0.7969 +vn 0.1106 0.9532 -0.2816 +vn 0.1301 -0.9530 -0.2738 +vn 0.3976 0.0000 -0.9176 +vn 0.1979 0.8633 -0.4643 +vn 0.3938 -0.1384 -0.9087 +vn 0.2718 0.7263 -0.6313 +vn 0.3826 -0.2795 -0.8806 +vn 0.3242 0.5762 -0.7503 +vn 0.3612 -0.4249 -0.8301 +vn 0.3593 0.4259 -0.8303 +vn 0.3277 -0.5745 -0.7500 +vn 0.3818 0.2795 -0.8810 +vn 0.2785 -0.7235 -0.6317 +vn 0.3938 0.1384 -0.9087 +vn 0.2103 -0.8590 -0.4667 +vn 0.5119 0.4239 -0.7472 +vn 0.4633 -0.5742 -0.6751 +vn 0.5430 0.2786 -0.7922 +vn 0.3952 -0.7215 -0.5686 +vn 0.5602 0.1376 -0.8168 +vn 0.2966 -0.8578 -0.4197 +vn 0.5656 0.0000 -0.8247 +vn 0.1633 0.9526 -0.2565 +vn 0.1431 -0.9566 -0.2538 +vn 0.2842 0.8620 -0.4198 +vn 0.5606 -0.1376 -0.8165 +vn 0.3887 0.7243 -0.5695 +vn 0.5440 -0.2780 -0.7917 +vn 0.4652 0.5730 -0.6747 +vn 0.5137 -0.4229 -0.7465 +vn 0.7114 0.0000 -0.7028 +vn 0.3595 0.8611 -0.3595 +vn 0.7047 -0.1371 -0.6961 +vn 0.4904 0.7229 -0.4867 +vn 0.6839 -0.2770 -0.6750 +vn 0.5827 0.5725 -0.5768 +vn 0.6460 -0.4215 -0.6364 +vn 0.6445 0.4224 -0.6373 +vn 0.5858 -0.5708 -0.5754 +vn 0.6834 0.2774 -0.6753 +vn 0.4965 -0.7202 -0.4847 +vn 0.7045 0.1376 -0.6962 +vn 0.3715 -0.8570 -0.3571 +vn 0.1729 0.9631 -0.2063 +vn 0.1895 -0.9562 -0.2231 +usemtl Default_OBJ +s 1 +f 1//1 2//2 3//3 +f 4//4 5//5 6//6 +f 7//7 8//8 2//2 +f 6//6 9//9 10//10 +f 11//11 12//12 8//8 +f 10//10 13//13 14//14 +f 15//15 16//16 12//12 +f 17//17 18//18 19//19 +f 14//14 13//13 20//20 +f 16//16 21//21 22//22 +f 18//18 23//23 19//19 +f 22//22 24//24 25//25 +f 26//26 27//27 23//23 +f 25//25 28//28 29//29 +f 30//30 3//3 27//27 +f 29//29 31//31 4//4 +f 32//32 1//1 30//30 +f 28//28 33//33 31//31 +f 34//34 7//7 1//1 +f 31//31 35//35 5//5 +f 36//36 11//11 7//7 +f 5//5 37//37 9//9 +f 38//38 15//15 11//11 +f 9//9 39//39 13//13 +f 40//40 41//41 15//15 +f 17//17 42//42 18//18 +f 13//13 39//39 20//20 +f 41//41 43//43 21//21 +f 42//42 26//26 18//18 +f 21//21 44//44 24//24 +f 45//45 30//30 26//26 +f 24//24 46//46 28//28 +f 47//47 48//48 40//40 +f 17//17 49//49 42//42 +f 39//39 50//50 20//20 +f 48//48 51//51 43//43 +f 49//49 45//45 42//42 +f 43//43 52//52 44//44 +f 53//53 32//32 45//45 +f 44//44 54//54 46//46 +f 55//55 34//34 32//32 +f 46//46 56//56 33//33 +f 57//57 36//36 34//34 +f 33//33 58//58 35//35 +f 59//59 38//38 36//36 +f 35//35 60//60 37//37 +f 61//61 40//40 38//38 +f 37//37 50//50 39//39 +f 54//54 62//62 56//56 +f 63//63 59//59 57//57 +f 56//56 64//64 58//58 +f 65//65 61//61 59//59 +f 58//58 66//66 60//60 +f 67//67 47//47 61//61 +f 60//60 68//68 50//50 +f 69//69 70//70 47//47 +f 17//17 71//71 49//49 +f 50//50 68//68 20//20 +f 70//70 72//72 51//51 +f 71//71 53//53 49//49 +f 51//51 73//73 52//52 +f 74//74 55//55 53//53 +f 52//52 75//75 54//54 +f 76//76 57//57 55//55 +f 17//17 77//77 71//71 +f 68//68 78//78 20//20 +f 79//79 80//80 72//72 +f 77//77 74//74 71//71 +f 72//72 81//81 73//73 +f 82//82 76//76 74//74 +f 73//73 83//83 75//75 +f 84//84 63//63 76//76 +f 75//75 85//85 62//62 +f 86//86 65//65 63//63 +f 62//62 87//87 64//64 +f 88//88 67//67 65//65 +f 64//64 89//89 66//66 +f 90//90 69//69 67//67 +f 66//66 78//78 68//68 +f 91//91 79//79 69//69 +f 92//92 88//88 86//86 +f 85//85 93//93 87//87 +f 94//94 90//90 88//88 +f 87//87 95//95 89//89 +f 96//96 91//91 90//90 +f 89//89 97//97 78//78 +f 98//98 99//99 91//91 +f 17//17 100//100 77//77 +f 78//78 97//97 20//20 +f 99//99 101//101 80//80 +f 100//100 82//82 77//77 +f 80//80 102//102 81//81 +f 103//103 84//84 82//82 +f 81//81 104//104 83//83 +f 105//105 86//86 84//84 +f 83//83 106//106 85//85 +f 107//107 108//108 101//101 +f 109//109 103//103 100//100 +f 101//101 110//110 102//102 +f 111//111 105//105 103//103 +f 102//102 112//112 104//104 +f 113//113 92//92 105//105 +f 104//104 114//114 106//106 +f 115//115 94//94 92//92 +f 106//106 116//116 93//93 +f 117//117 96//96 94//94 +f 93//93 118//118 95//95 +f 119//119 98//98 96//96 +f 95//95 120//120 97//97 +f 121//121 107//107 98//98 +f 17//17 109//109 100//100 +f 97//97 120//120 20//20 +f 114//114 122//122 116//116 +f 123//123 119//119 117//117 +f 116//116 124//124 118//118 +f 125//125 121//121 119//119 +f 118//118 126//126 120//120 +f 127//127 128//128 121//121 +f 17//17 129//129 109//109 +f 120//120 126//126 20//20 +f 128//128 130//130 108//108 +f 129//129 111//111 109//109 +f 108//108 131//131 110//110 +f 132//132 113//113 111//111 +f 110//110 133//133 112//112 +f 134//134 115//115 113//113 +f 112//112 135//135 114//114 +f 136//136 117//117 115//115 +f 137//137 131//131 130//130 +f 132//132 138//138 134//134 +f 139//139 133//133 131//131 +f 134//134 140//140 136//136 +f 141//141 135//135 133//133 +f 136//136 142//142 123//123 +f 143//143 122//122 135//135 +f 123//123 144//144 125//125 +f 145//145 124//124 122//122 +f 125//125 146//146 127//127 +f 147//147 126//126 124//124 +f 127//127 148//148 149//149 +f 17//17 150//150 129//129 +f 126//126 151//151 20//20 +f 148//148 130//130 149//149 +f 129//129 152//152 132//132 +f 153//153 147//147 145//145 +f 144//144 154//154 146//146 +f 155//155 151//151 147//147 +f 146//146 156//156 148//148 +f 17//17 157//157 150//150 +f 151//151 158//158 20//20 +f 156//156 137//137 148//148 +f 150//150 159//159 152//152 +f 160//160 139//139 137//137 +f 152//152 161//161 138//138 +f 162//162 141//141 139//139 +f 138//138 163//163 140//140 +f 164//164 143//143 141//141 +f 140//140 165//165 142//142 +f 166//166 145//145 143//143 +f 142//142 167//167 144//144 +f 159//159 168//168 161//161 +f 169//169 164//164 162//162 +f 161//161 170//170 163//163 +f 171//171 166//166 164//164 +f 163//163 172//172 165//165 +f 173//173 153//153 166//166 +f 165//165 174//174 167//167 +f 175//175 155//155 153//153 +f 167//167 176//176 154//154 +f 177//177 158//158 155//155 +f 154//154 178//178 156//156 +f 17//17 179//179 157//157 +f 158//158 180//180 20//20 +f 178//178 160//160 156//156 +f 157//157 181//181 159//159 +f 182//182 162//162 160//160 +f 174//174 183//183 176//176 +f 184//184 180//180 177//177 +f 176//176 185//185 178//178 +f 17//17 186//186 179//179 +f 180//180 187//187 20//20 +f 185//185 182//182 178//178 +f 179//179 188//188 181//181 +f 189//189 169//169 182//182 +f 181//181 190//190 168//168 +f 191//191 171//171 169//169 +f 168//168 192//192 170//170 +f 193//193 173//173 171//171 +f 170//170 194//194 172//172 +f 195//195 175//175 173//173 +f 172//172 196//196 174//174 +f 197//197 177//177 175//175 +f 198//198 193//193 191//191 +f 190//190 199//199 192//192 +f 200//200 195//195 193//193 +f 192//192 201//201 194//194 +f 202//202 197//197 195//195 +f 194//194 203//203 196//196 +f 204//204 184//184 197//197 +f 196//196 205//205 183//183 +f 206//206 187//187 184//184 +f 183//183 207//207 185//185 +f 17//17 208//208 186//186 +f 187//187 209//209 20//20 +f 207//207 189//189 185//185 +f 186//186 210//210 188//188 +f 211//211 191//191 189//189 +f 188//188 212//212 190//190 +f 213//213 209//209 206//206 +f 205//205 214//214 207//207 +f 17//17 215//215 208//208 +f 209//209 216//216 20//20 +f 214//214 211//211 207//207 +f 208//208 217//217 210//210 +f 218//218 198//198 211//211 +f 210//210 219//219 212//212 +f 220//220 200//200 198//198 +f 212//212 221//221 199//199 +f 222//222 202//202 200//200 +f 199//199 223//223 201//201 +f 224//224 204//204 202//202 +f 201//201 225//225 203//203 +f 226//226 206//206 204//204 +f 203//203 227//227 205//205 +f 219//219 228//228 221//221 +f 229//229 224//224 222//222 +f 221//221 230//230 223//223 +f 231//231 226//226 224//224 +f 223//223 232//232 225//225 +f 233//233 213//213 226//226 +f 225//225 234//234 227//227 +f 235//235 216//216 213//213 +f 227//227 236//236 214//214 +f 17//17 237//237 215//215 +f 216//216 238//238 20//20 +f 236//236 218//218 214//214 +f 215//215 239//239 217//217 +f 240//240 220//220 218//218 +f 217//217 241//241 219//219 +f 242//242 222//222 220//220 +f 234//234 243//243 236//236 +f 17//17 244//244 237//237 +f 238//238 245//245 20//20 +f 243//243 240//240 236//236 +f 237//237 246//246 239//239 +f 247//247 242//242 240//240 +f 239//239 248//248 241//241 +f 249//249 229//229 242//242 +f 241//241 250//250 228//228 +f 251//251 231//231 229//229 +f 228//228 252//252 230//230 +f 253//253 233//233 231//231 +f 230//230 254//254 232//232 +f 255//255 235//235 233//233 +f 232//232 256//256 234//234 +f 257//257 238//238 235//235 +f 251//251 258//258 253//253 +f 259//259 252//252 250//250 +f 253//253 260//260 255//255 +f 261//261 254//254 252//252 +f 255//255 262//262 257//257 +f 263//263 256//256 254//254 +f 257//257 264//264 245//245 +f 265//265 243//243 256//256 +f 17//17 266//266 244//244 +f 245//245 264//264 20//20 +f 243//243 267//267 247//247 +f 266//266 246//246 244//244 +f 247//247 268//268 249//249 +f 269//269 248//248 246//246 +f 249//249 270//270 251//251 +f 271//271 250//250 248//248 +f 264//264 272//272 20//20 +f 273//273 274//274 267//267 +f 275//275 269//269 266//266 +f 267//267 276//276 268//268 +f 277//277 271//271 269//269 +f 268//268 278//278 270//270 +f 279//279 259//259 271//271 +f 270//270 280//280 258//258 +f 281//281 261//261 259//259 +f 258//258 282//282 260//260 +f 283//283 263//263 261//261 +f 260//260 284//284 262//262 +f 285//285 265//265 263//263 +f 262//262 272//272 264//264 +f 286//286 273//273 265//265 +f 17//17 275//275 266//266 +f 280//280 287//287 282//282 +f 288//288 285//285 283//283 +f 282//282 289//289 284//284 +f 290//290 286//286 285//285 +f 284//284 291//291 272//272 +f 292//292 293//293 286//286 +f 17//17 294//294 275//275 +f 272//272 291//291 20//20 +f 293//293 295//295 274//274 +f 294//294 277//277 275//275 +f 274//274 296//296 276//276 +f 297//297 279//279 277//277 +f 276//276 298//298 278//278 +f 299//299 281//281 279//279 +f 278//278 300//300 280//280 +f 301//301 283//283 281//281 +f 302//302 297//297 294//294 +f 295//295 303//303 296//296 +f 304//304 299//299 297//297 +f 296//296 305//305 298//298 +f 306//306 301//301 299//299 +f 298//298 307//307 300//300 +f 308//308 288//288 301//301 +f 300//300 309//309 287//287 +f 310//310 290//290 288//288 +f 287//287 311//311 289//289 +f 312//312 292//292 290//290 +f 289//289 313//313 291//291 +f 314//314 315//315 292//292 +f 17//17 302//302 294//294 +f 291//291 313//313 20//20 +f 315//315 316//316 295//295 +f 317//317 312//312 310//310 +f 309//309 318//318 311//311 +f 319//319 314//314 312//312 +f 311//311 320//320 313//313 +f 321//321 322//322 314//314 +f 17//17 323//323 302//302 +f 313//313 320//320 20//20 +f 322//322 324//324 316//316 +f 323//323 304//304 302//302 +f 316//316 325//325 303//303 +f 326//326 306//306 304//304 +f 303//303 327//327 305//305 +f 328//328 308//308 306//306 +f 305//305 329//329 307//307 +f 330//330 310//310 308//308 +f 307//307 331//331 309//309 +f 324//324 332//332 325//325 +f 333//333 328//328 326//326 +f 325//325 334//334 327//327 +f 335//335 330//330 328//328 +f 327//327 336//336 329//329 +f 337//337 317//317 330//330 +f 329//329 338//338 331//331 +f 339//339 319//319 317//317 +f 331//331 340//340 318//318 +f 341//341 321//321 319//319 +f 318//318 342//342 320//320 +f 343//343 344//344 321//321 +f 17//17 345//345 323//323 +f 320//320 342//342 20//20 +f 344//344 346//346 324//324 +f 345//345 326//326 323//323 +f 338//338 347//347 340//340 +f 348//348 343//343 341//341 +f 340//340 349//349 342//342 +f 350//350 351//351 343//343 +f 17//17 352//352 345//345 +f 342//342 349//349 20//20 +f 351//351 353//353 346//346 +f 352//352 333//333 345//345 +f 346//346 354//354 332//332 +f 355//355 335//335 333//333 +f 332//332 356//356 334//334 +f 357//357 337//337 335//335 +f 334//334 358//358 336//336 +f 359//359 339//339 337//337 +f 336//336 360//360 338//338 +f 361//361 341//341 339//339 +f 362//362 357//357 355//355 +f 354//354 363//363 356//356 +f 364//364 359//359 357//357 +f 356//356 365//365 358//358 +f 366//366 361//361 359//359 +f 358//358 367//367 360//360 +f 368//368 348//348 361//361 +f 360//360 369//369 347//347 +f 370//370 350//350 348//348 +f 347//347 371//371 349//349 +f 372//372 373//373 350//350 +f 17//17 374//374 352//352 +f 349//349 371//371 20//20 +f 373//373 375//375 353//353 +f 374//374 355//355 352//352 +f 353//353 376//376 354//354 +f 370//370 377//377 372//372 +f 378//378 371//371 369//369 +f 372//372 379//379 380//380 +f 17//17 381//381 374//374 +f 371//371 382//382 20//20 +f 379//379 375//375 380//380 +f 374//374 383//383 362//362 +f 384//384 376//376 375//375 +f 362//362 385//385 364//364 +f 386//386 363//363 376//376 +f 364//364 387//387 366//366 +f 388//388 365//365 363//363 +f 366//366 389//389 368//368 +f 390//390 367//367 365//365 +f 368//368 391//391 370//370 +f 392//392 369//369 367//367 +f 393//393 388//388 386//386 +f 385//385 394//394 387//387 +f 395//395 390//390 388//388 +f 387//387 396//396 389//389 +f 397//397 392//392 390//390 +f 389//389 398//398 391//391 +f 399//399 378//378 392//392 +f 391//391 400//400 377//377 +f 401//401 382//382 378//378 +f 377//377 402//402 379//379 +f 17//17 403//403 381//381 +f 382//382 404//404 20//20 +f 402//402 384//384 379//379 +f 381//381 405//405 383//383 +f 406//406 386//386 384//384 +f 383//383 407//407 385//385 +f 408//408 404//404 401//401 +f 400//400 409//409 402//402 +f 17//17 410//410 403//403 +f 404//404 411//411 20//20 +f 409//409 406//406 402//402 +f 403//403 412//412 405//405 +f 413//413 393//393 406//406 +f 405//405 414//414 407//407 +f 415//415 395//395 393//393 +f 407//407 416//416 394//394 +f 417//417 397//397 395//395 +f 394//394 418//418 396//396 +f 419//419 399//399 397//397 +f 396//396 420//420 398//398 +f 421//421 401//401 399//399 +f 398//398 422//422 400//400 +f 423//423 419//419 417//417 +f 416//416 424//424 418//418 +f 425//425 421//421 419//419 +f 418//418 426//426 420//420 +f 427//427 408//408 421//421 +f 420//420 428//428 422//422 +f 429//429 411//411 408//408 +f 422//422 430//430 409//409 +f 17//17 431//431 410//410 +f 411//411 432//432 20//20 +f 430//430 413//413 409//409 +f 410//410 433//433 412//412 +f 434//434 415//415 413//413 +f 412//412 435//435 414//414 +f 436//436 417//417 415//415 +f 414//414 437//437 416//416 +f 17//17 438//438 431//431 +f 432//432 439//439 20//20 +f 440//440 434//434 430//430 +f 431//431 441//441 433//433 +f 442//442 436//436 434//434 +f 433//433 443//443 435//435 +f 444//444 423//423 436//436 +f 435//435 445//445 437//437 +f 446//446 425//425 423//423 +f 437//437 447//447 424//424 +f 448//448 427//427 425//425 +f 424//424 449//449 426//426 +f 450//450 429//429 427//427 +f 426//426 451//451 428//428 +f 452//452 432//432 429//429 +f 428//428 440//440 430//430 +f 445//445 453//453 447//447 +f 454//454 450//450 448//448 +f 447//447 455//455 449//449 +f 456//456 452//452 450//450 +f 449//449 457//457 451//451 +f 458//458 439//439 452//452 +f 451//451 459//459 440//440 +f 17//17 460//460 438//438 +f 439//439 461//461 20//20 +f 459//459 442//442 440//440 +f 438//438 462//462 441//441 +f 463//463 444//444 442//442 +f 441//441 464//464 443//443 +f 465//465 446//446 444//444 +f 443//443 466//466 445//445 +f 467//467 448//448 446//446 +f 468//468 463//463 459//459 +f 460//460 469//469 462//462 +f 470//470 465//465 463//463 +f 462//462 471//471 464//464 +f 472//472 467//467 465//465 +f 464//464 473//473 466//466 +f 474//474 454//454 467//467 +f 466//466 475//475 453//453 +f 476//476 456//456 454//454 +f 453//453 477//477 455//455 +f 478//478 458//458 456//456 +f 455//455 479//479 457//457 +f 480//480 461//461 458//458 +f 457//457 468//468 459//459 +f 17//17 481//481 460//460 +f 461//461 482//482 20//20 +f 4//4 478//478 476//476 +f 475//475 8//8 477//477 +f 6//6 480//480 478//478 +f 477//477 12//12 479//479 +f 10//10 482//482 480//480 +f 479//479 16//16 468//468 +f 17//17 19//19 481//481 +f 482//482 14//14 20//20 +f 16//16 470//470 468//468 +f 481//481 23//23 469//469 +f 22//22 472//472 470//470 +f 469//469 27//27 471//471 +f 25//25 474//474 472//472 +f 471//471 3//3 473//473 +f 29//29 476//476 474//474 +f 473//473 2//2 475//475 +f 1//1 7//7 2//2 +f 4//4 31//31 5//5 +f 7//7 11//11 8//8 +f 6//6 5//5 9//9 +f 11//11 15//15 12//12 +f 10//10 9//9 13//13 +f 15//15 41//41 16//16 +f 16//16 41//41 21//21 +f 18//18 26//26 23//23 +f 22//22 21//21 24//24 +f 26//26 30//30 27//27 +f 25//25 24//24 28//28 +f 30//30 1//1 3//3 +f 29//29 28//28 31//31 +f 32//32 34//34 1//1 +f 28//28 46//46 33//33 +f 34//34 36//36 7//7 +f 31//31 33//33 35//35 +f 36//36 38//38 11//11 +f 5//5 35//35 37//37 +f 38//38 40//40 15//15 +f 9//9 37//37 39//39 +f 40//40 48//48 41//41 +f 41//41 48//48 43//43 +f 42//42 45//45 26//26 +f 21//21 43//43 44//44 +f 45//45 32//32 30//30 +f 24//24 44//44 46//46 +f 47//47 70//70 48//48 +f 48//48 70//70 51//51 +f 49//49 53//53 45//45 +f 43//43 51//51 52//52 +f 53//53 55//55 32//32 +f 44//44 52//52 54//54 +f 55//55 57//57 34//34 +f 46//46 54//54 56//56 +f 57//57 59//59 36//36 +f 33//33 56//56 58//58 +f 59//59 61//61 38//38 +f 35//35 58//58 60//60 +f 61//61 47//47 40//40 +f 37//37 60//60 50//50 +f 54//54 75//75 62//62 +f 63//63 65//65 59//59 +f 56//56 62//62 64//64 +f 65//65 67//67 61//61 +f 58//58 64//64 66//66 +f 67//67 69//69 47//47 +f 60//60 66//66 68//68 +f 69//69 79//79 70//70 +f 70//70 79//79 72//72 +f 71//71 74//74 53//53 +f 51//51 72//72 73//73 +f 74//74 76//76 55//55 +f 52//52 73//73 75//75 +f 76//76 63//63 57//57 +f 79//79 99//99 80//80 +f 77//77 82//82 74//74 +f 72//72 80//80 81//81 +f 82//82 84//84 76//76 +f 73//73 81//81 83//83 +f 84//84 86//86 63//63 +f 75//75 83//83 85//85 +f 86//86 88//88 65//65 +f 62//62 85//85 87//87 +f 88//88 90//90 67//67 +f 64//64 87//87 89//89 +f 90//90 91//91 69//69 +f 66//66 89//89 78//78 +f 91//91 99//99 79//79 +f 92//92 94//94 88//88 +f 85//85 106//106 93//93 +f 94//94 96//96 90//90 +f 87//87 93//93 95//95 +f 96//96 98//98 91//91 +f 89//89 95//95 97//97 +f 98//98 107//107 99//99 +f 99//99 107//107 101//101 +f 100//100 103//103 82//82 +f 80//80 101//101 102//102 +f 103//103 105//105 84//84 +f 81//81 102//102 104//104 +f 105//105 92//92 86//86 +f 83//83 104//104 106//106 +f 107//107 128//128 108//108 +f 109//109 111//111 103//103 +f 101//101 108//108 110//110 +f 111//111 113//113 105//105 +f 102//102 110//110 112//112 +f 113//113 115//115 92//92 +f 104//104 112//112 114//114 +f 115//115 117//117 94//94 +f 106//106 114//114 116//116 +f 117//117 119//119 96//96 +f 93//93 116//116 118//118 +f 119//119 121//121 98//98 +f 95//95 118//118 120//120 +f 121//121 128//128 107//107 +f 114//114 135//135 122//122 +f 123//123 125//125 119//119 +f 116//116 122//122 124//124 +f 125//125 127//127 121//121 +f 118//118 124//124 126//126 +f 127//127 149//149 128//128 +f 128//128 149//149 130//130 +f 129//129 132//132 111//111 +f 108//108 130//130 131//131 +f 132//132 134//134 113//113 +f 110//110 131//131 133//133 +f 134//134 136//136 115//115 +f 112//112 133//133 135//135 +f 136//136 123//123 117//117 +f 137//137 139//139 131//131 +f 132//132 152//152 138//138 +f 139//139 141//141 133//133 +f 134//134 138//138 140//140 +f 141//141 143//143 135//135 +f 136//136 140//140 142//142 +f 143//143 145//145 122//122 +f 123//123 142//142 144//144 +f 145//145 147//147 124//124 +f 125//125 144//144 146//146 +f 147//147 151//151 126//126 +f 127//127 146//146 148//148 +f 148//148 137//137 130//130 +f 129//129 150//150 152//152 +f 153//153 155//155 147//147 +f 144//144 167//167 154//154 +f 155//155 158//158 151//151 +f 146//146 154//154 156//156 +f 156//156 160//160 137//137 +f 150//150 157//157 159//159 +f 160//160 162//162 139//139 +f 152//152 159//159 161//161 +f 162//162 164//164 141//141 +f 138//138 161//161 163//163 +f 164//164 166//166 143//143 +f 140//140 163//163 165//165 +f 166//166 153//153 145//145 +f 142//142 165//165 167//167 +f 159//159 181//181 168//168 +f 169//169 171//171 164//164 +f 161//161 168//168 170//170 +f 171//171 173//173 166//166 +f 163//163 170//170 172//172 +f 173//173 175//175 153//153 +f 165//165 172//172 174//174 +f 175//175 177//177 155//155 +f 167//167 174//174 176//176 +f 177//177 180//180 158//158 +f 154//154 176//176 178//178 +f 178//178 182//182 160//160 +f 157//157 179//179 181//181 +f 182//182 169//169 162//162 +f 174//174 196//196 183//183 +f 184//184 187//187 180//180 +f 176//176 183//183 185//185 +f 185//185 189//189 182//182 +f 179//179 186//186 188//188 +f 189//189 191//191 169//169 +f 181//181 188//188 190//190 +f 191//191 193//193 171//171 +f 168//168 190//190 192//192 +f 193//193 195//195 173//173 +f 170//170 192//192 194//194 +f 195//195 197//197 175//175 +f 172//172 194//194 196//196 +f 197//197 184//184 177//177 +f 198//198 200//200 193//193 +f 190//190 212//212 199//199 +f 200//200 202//202 195//195 +f 192//192 199//199 201//201 +f 202//202 204//204 197//197 +f 194//194 201//201 203//203 +f 204//204 206//206 184//184 +f 196//196 203//203 205//205 +f 206//206 209//209 187//187 +f 183//183 205//205 207//207 +f 207//207 211//211 189//189 +f 186//186 208//208 210//210 +f 211//211 198//198 191//191 +f 188//188 210//210 212//212 +f 213//213 216//216 209//209 +f 205//205 227//227 214//214 +f 214//214 218//218 211//211 +f 208//208 215//215 217//217 +f 218//218 220//220 198//198 +f 210//210 217//217 219//219 +f 220//220 222//222 200//200 +f 212//212 219//219 221//221 +f 222//222 224//224 202//202 +f 199//199 221//221 223//223 +f 224//224 226//226 204//204 +f 201//201 223//223 225//225 +f 226//226 213//213 206//206 +f 203//203 225//225 227//227 +f 219//219 241//241 228//228 +f 229//229 231//231 224//224 +f 221//221 228//228 230//230 +f 231//231 233//233 226//226 +f 223//223 230//230 232//232 +f 233//233 235//235 213//213 +f 225//225 232//232 234//234 +f 235//235 238//238 216//216 +f 227//227 234//234 236//236 +f 236//236 240//240 218//218 +f 215//215 237//237 239//239 +f 240//240 242//242 220//220 +f 217//217 239//239 241//241 +f 242//242 229//229 222//222 +f 234//234 256//256 243//243 +f 243//243 247//247 240//240 +f 237//237 244//244 246//246 +f 247//247 249//249 242//242 +f 239//239 246//246 248//248 +f 249//249 251//251 229//229 +f 241//241 248//248 250//250 +f 251//251 253//253 231//231 +f 228//228 250//250 252//252 +f 253//253 255//255 233//233 +f 230//230 252//252 254//254 +f 255//255 257//257 235//235 +f 232//232 254//254 256//256 +f 257//257 245//245 238//238 +f 251//251 270//270 258//258 +f 259//259 261//261 252//252 +f 253//253 258//258 260//260 +f 261//261 263//263 254//254 +f 255//255 260//260 262//262 +f 263//263 265//265 256//256 +f 257//257 262//262 264//264 +f 265//265 273//273 243//243 +f 243//243 273//273 267//267 +f 266//266 269//269 246//246 +f 247//247 267//267 268//268 +f 269//269 271//271 248//248 +f 249//249 268//268 270//270 +f 271//271 259//259 250//250 +f 273//273 293//293 274//274 +f 275//275 277//277 269//269 +f 267//267 274//274 276//276 +f 277//277 279//279 271//271 +f 268//268 276//276 278//278 +f 279//279 281//281 259//259 +f 270//270 278//278 280//280 +f 281//281 283//283 261//261 +f 258//258 280//280 282//282 +f 283//283 285//285 263//263 +f 260//260 282//282 284//284 +f 285//285 286//286 265//265 +f 262//262 284//284 272//272 +f 286//286 293//293 273//273 +f 280//280 300//300 287//287 +f 288//288 290//290 285//285 +f 282//282 287//287 289//289 +f 290//290 292//292 286//286 +f 284//284 289//289 291//291 +f 292//292 315//315 293//293 +f 293//293 315//315 295//295 +f 294//294 297//297 277//277 +f 274//274 295//295 296//296 +f 297//297 299//299 279//279 +f 276//276 296//296 298//298 +f 299//299 301//301 281//281 +f 278//278 298//298 300//300 +f 301//301 288//288 283//283 +f 302//302 304//304 297//297 +f 295//295 316//316 303//303 +f 304//304 306//306 299//299 +f 296//296 303//303 305//305 +f 306//306 308//308 301//301 +f 298//298 305//305 307//307 +f 308//308 310//310 288//288 +f 300//300 307//307 309//309 +f 310//310 312//312 290//290 +f 287//287 309//309 311//311 +f 312//312 314//314 292//292 +f 289//289 311//311 313//313 +f 314//314 322//322 315//315 +f 315//315 322//322 316//316 +f 317//317 319//319 312//312 +f 309//309 331//331 318//318 +f 319//319 321//321 314//314 +f 311//311 318//318 320//320 +f 321//321 344//344 322//322 +f 322//322 344//344 324//324 +f 323//323 326//326 304//304 +f 316//316 324//324 325//325 +f 326//326 328//328 306//306 +f 303//303 325//325 327//327 +f 328//328 330//330 308//308 +f 305//305 327//327 329//329 +f 330//330 317//317 310//310 +f 307//307 329//329 331//331 +f 324//324 346//346 332//332 +f 333//333 335//335 328//328 +f 325//325 332//332 334//334 +f 335//335 337//337 330//330 +f 327//327 334//334 336//336 +f 337//337 339//339 317//317 +f 329//329 336//336 338//338 +f 339//339 341//341 319//319 +f 331//331 338//338 340//340 +f 341//341 343//343 321//321 +f 318//318 340//340 342//342 +f 343//343 351//351 344//344 +f 344//344 351//351 346//346 +f 345//345 333//333 326//326 +f 338//338 360//360 347//347 +f 348//348 350//350 343//343 +f 340//340 347//347 349//349 +f 350//350 373//373 351//351 +f 351//351 373//373 353//353 +f 352//352 355//355 333//333 +f 346//346 353//353 354//354 +f 355//355 357//357 335//335 +f 332//332 354//354 356//356 +f 357//357 359//359 337//337 +f 334//334 356//356 358//358 +f 359//359 361//361 339//339 +f 336//336 358//358 360//360 +f 361//361 348//348 341//341 +f 362//362 364//364 357//357 +f 354//354 376//376 363//363 +f 364//364 366//366 359//359 +f 356//356 363//363 365//365 +f 366//366 368//368 361//361 +f 358//358 365//365 367//367 +f 368//368 370//370 348//348 +f 360//360 367//367 369//369 +f 370//370 372//372 350//350 +f 347//347 369//369 371//371 +f 372//372 380//380 373//373 +f 373//373 380//380 375//375 +f 374//374 362//362 355//355 +f 353//353 375//375 376//376 +f 370//370 391//391 377//377 +f 378//378 382//382 371//371 +f 372//372 377//377 379//379 +f 379//379 384//384 375//375 +f 374//374 381//381 383//383 +f 384//384 386//386 376//376 +f 362//362 383//383 385//385 +f 386//386 388//388 363//363 +f 364//364 385//385 387//387 +f 388//388 390//390 365//365 +f 366//366 387//387 389//389 +f 390//390 392//392 367//367 +f 368//368 389//389 391//391 +f 392//392 378//378 369//369 +f 393//393 395//395 388//388 +f 385//385 407//407 394//394 +f 395//395 397//397 390//390 +f 387//387 394//394 396//396 +f 397//397 399//399 392//392 +f 389//389 396//396 398//398 +f 399//399 401//401 378//378 +f 391//391 398//398 400//400 +f 401//401 404//404 382//382 +f 377//377 400//400 402//402 +f 402//402 406//406 384//384 +f 381//381 403//403 405//405 +f 406//406 393//393 386//386 +f 383//383 405//405 407//407 +f 408//408 411//411 404//404 +f 400//400 422//422 409//409 +f 409//409 413//413 406//406 +f 403//403 410//410 412//412 +f 413//413 415//415 393//393 +f 405//405 412//412 414//414 +f 415//415 417//417 395//395 +f 407//407 414//414 416//416 +f 417//417 419//419 397//397 +f 394//394 416//416 418//418 +f 419//419 421//421 399//399 +f 396//396 418//418 420//420 +f 421//421 408//408 401//401 +f 398//398 420//420 422//422 +f 423//423 425//425 419//419 +f 416//416 437//437 424//424 +f 425//425 427//427 421//421 +f 418//418 424//424 426//426 +f 427//427 429//429 408//408 +f 420//420 426//426 428//428 +f 429//429 432//432 411//411 +f 422//422 428//428 430//430 +f 430//430 434//434 413//413 +f 410//410 431//431 433//433 +f 434//434 436//436 415//415 +f 412//412 433//433 435//435 +f 436//436 423//423 417//417 +f 414//414 435//435 437//437 +f 440//440 442//442 434//434 +f 431//431 438//438 441//441 +f 442//442 444//444 436//436 +f 433//433 441//441 443//443 +f 444//444 446//446 423//423 +f 435//435 443//443 445//445 +f 446//446 448//448 425//425 +f 437//437 445//445 447//447 +f 448//448 450//450 427//427 +f 424//424 447//447 449//449 +f 450//450 452//452 429//429 +f 426//426 449//449 451//451 +f 452//452 439//439 432//432 +f 428//428 451//451 440//440 +f 445//445 466//466 453//453 +f 454//454 456//456 450//450 +f 447//447 453//453 455//455 +f 456//456 458//458 452//452 +f 449//449 455//455 457//457 +f 458//458 461//461 439//439 +f 451//451 457//457 459//459 +f 459//459 463//463 442//442 +f 438//438 460//460 462//462 +f 463//463 465//465 444//444 +f 441//441 462//462 464//464 +f 465//465 467//467 446//446 +f 443//443 464//464 466//466 +f 467//467 454//454 448//448 +f 468//468 470//470 463//463 +f 460//460 481//481 469//469 +f 470//470 472//472 465//465 +f 462//462 469//469 471//471 +f 472//472 474//474 467//467 +f 464//464 471//471 473//473 +f 474//474 476//476 454//454 +f 466//466 473//473 475//475 +f 476//476 478//478 456//456 +f 453//453 475//475 477//477 +f 478//478 480//480 458//458 +f 455//455 477//477 479//479 +f 480//480 482//482 461//461 +f 457//457 479//479 468//468 +f 4//4 6//6 478//478 +f 475//475 2//2 8//8 +f 6//6 10//10 480//480 +f 477//477 8//8 12//12 +f 10//10 14//14 482//482 +f 479//479 12//12 16//16 +f 16//16 22//22 470//470 +f 481//481 19//19 23//23 +f 22//22 25//25 472//472 +f 469//469 23//23 27//27 +f 25//25 29//29 474//474 +f 471//471 27//27 3//3 +f 29//29 4//4 476//476 +f 473//473 3//3 2//2 +o teddy.003 +v 3.116745 6.820884 -0.194947 +v 3.252901 6.732250 -0.146682 +v 3.444716 7.009830 -0.128824 +v 2.972514 6.916711 -0.217169 +v 3.329879 7.129315 -0.175103 +v 2.906482 6.512169 -0.190108 +v 3.063669 6.454414 -0.142329 +v 2.884295 6.186999 -0.115927 +v 3.062275 6.190518 -0.048076 +v 3.214821 6.417934 -0.070528 +v 3.234275 6.225452 0.040173 +v 3.375749 6.654215 -0.074232 +v 3.354129 6.404133 0.022532 +v 3.393682 6.290462 0.145427 +v 3.480569 6.589777 0.019622 +v 3.476240 6.413540 0.133276 +v 3.534373 6.383048 0.263645 +v 3.563334 6.541415 0.131272 +v 3.576461 6.445793 0.257450 +v 3.650940 6.499654 0.390279 +v 3.620861 6.510982 0.256428 +v 3.665867 6.576113 0.260618 +v 3.651616 6.669169 0.139492 +v 3.709750 6.638679 0.269859 +v 3.737696 6.791899 0.157619 +v 3.750823 6.696278 0.283798 +v 3.818265 6.904885 0.184959 +v 3.787508 6.746697 0.301895 +v 3.890226 7.003785 0.220459 +v 3.818396 6.787999 0.323457 +v 3.950813 7.084798 0.262755 +v 3.842298 6.818593 0.347656 +v 3.997699 7.144812 0.310223 +v 3.858297 6.837306 0.373561 +v 4.029082 7.181520 0.361037 +v 3.865778 6.843420 0.400176 +v 3.864454 6.836698 0.426481 +v 4.041158 7.180327 0.464842 +v 4.043756 7.193512 0.413246 +v 4.156734 7.519069 0.353188 +v 4.174264 7.517334 0.503890 +v 4.178037 7.536477 0.428984 +v 4.236341 7.836979 0.350318 +v 4.258653 7.834771 0.542124 +v 4.263456 7.859137 0.446787 +v 4.264850 8.123032 0.352535 +v 4.291086 8.120438 0.578076 +v 4.296733 8.149087 0.465971 +v 4.241163 8.366239 0.359755 +v 4.270315 8.363355 0.610363 +v 4.276588 8.395187 0.485798 +v 4.166189 8.557249 0.371700 +v 4.197137 8.554189 0.637743 +v 4.203798 8.587984 0.505506 +v 4.042812 8.688726 0.387911 +v 4.074367 8.685606 0.659166 +v 4.081159 8.720062 0.524339 +v 3.913379 8.786350 0.541571 +v 3.875770 8.755616 0.407765 +v 3.706912 8.784298 0.556543 +v 3.906718 8.752555 0.673808 +v 3.700638 8.752465 0.681107 +v 3.856044 8.655533 0.799395 +v 4.022700 8.586683 0.787213 +v 3.928142 8.427092 0.903559 +v 4.146462 8.457167 0.763330 +v 4.053723 8.300644 0.877439 +v 4.222581 8.271962 0.728662 +v 4.135221 8.124520 0.836151 +v 4.248127 8.038186 0.684543 +v 4.169505 7.905491 0.781282 +v 4.222120 7.764824 0.632668 +v 4.155257 7.651976 0.714936 +v 4.145559 7.462375 0.575030 +v 4.093026 7.373712 0.639668 +v 4.021386 7.142470 0.513844 +v 3.985201 7.081398 0.558367 +v 3.854374 6.817399 0.451461 +v 3.835926 6.786264 0.474159 +v 3.933992 6.999457 0.596701 +v 3.809821 6.744491 0.493702 +v 3.869729 6.899796 0.627373 +v 3.777060 6.693684 0.509338 +v 3.794880 6.786244 0.649204 +v 3.738902 6.635796 0.520468 +v 3.712323 6.663167 0.661355 +v 3.696815 6.573052 0.526662 +v 3.625229 6.535293 0.663360 +v 3.652415 6.507862 0.527684 +v 3.607409 6.442732 0.523494 +v 3.536946 6.407537 0.655139 +v 3.563526 6.380166 0.514252 +v 3.450867 6.284807 0.637012 +v 3.522452 6.322566 0.500315 +v 3.370298 6.171821 0.609673 +v 3.485767 6.272148 0.482217 +v 3.298337 6.072921 0.574173 +v 3.454880 6.230847 0.460654 +v 3.430977 6.200253 0.436456 +v 3.237750 5.991909 0.531877 +v 3.095856 5.909632 0.662614 +v 3.007896 5.792018 0.601210 +v 3.190864 5.931894 0.484409 +v 2.939827 5.704891 0.532298 +v 3.159480 5.895186 0.433595 +v 3.414979 6.181539 0.410551 +v 3.407497 6.175425 0.383935 +v 3.147405 5.896380 0.329791 +v 3.144806 5.883194 0.381386 +v 3.408822 6.182148 0.357631 +v 3.167178 5.934237 0.280789 +v 3.418902 6.201446 0.332651 +v 3.203362 5.995308 0.236265 +v 3.437349 6.232581 0.309953 +v 3.254571 6.077250 0.197931 +v 3.463455 6.274354 0.290410 +v 3.318834 6.176911 0.167258 +v 3.496216 6.325161 0.274774 +v 3.125612 6.060601 0.071866 +v 3.032316 5.915916 0.116395 +v 2.923973 5.980702 -0.007738 +v 2.805230 5.796553 0.048936 +v 2.721669 5.940282 -0.068494 +v 2.582041 5.723745 -0.001852 +v 2.707171 6.215034 -0.160773 +v 2.526471 5.940897 -0.108068 +v 2.371326 5.700293 -0.034019 +v 2.537713 6.273543 -0.180889 +v 2.345883 5.982522 -0.124938 +v 2.181181 5.727098 -0.046328 +v 2.382432 6.360280 -0.175503 +v 2.186843 6.063556 -0.118457 +v 1.890762 5.925465 -0.010263 +v 2.018916 5.803129 -0.038306 +v 2.055464 6.180889 -0.088873 +v 1.801649 6.089403 0.036725 +v 1.956794 6.330007 -0.037323 +v 2.247293 6.471910 -0.144823 +v 2.137494 6.604143 -0.090029 +v 2.458881 6.787347 -0.175966 +v 2.598165 6.681896 -0.207257 +v 2.825751 7.016047 -0.212494 +v 2.749300 6.588980 -0.212031 +v 2.908356 7.442505 -0.160037 +v 2.682094 7.115076 -0.181103 +v 3.198775 7.244139 -0.196102 +v 3.056446 7.349891 -0.191015 +v 3.128971 7.757050 -0.113577 +v 3.419390 7.558683 -0.149642 +v 3.281383 7.670598 -0.143645 +v 3.335461 8.046622 -0.043509 +v 3.625880 7.848257 -0.079575 +v 3.491917 7.965842 -0.072205 +v 3.519890 8.300094 0.047475 +v 3.810309 8.101727 0.011410 +v 3.679960 8.224280 0.020561 +v 3.675171 8.507726 0.155876 +v 3.965590 8.309359 0.119811 +v 3.838284 8.435980 0.131087 +v 3.795337 8.661536 0.277532 +v 4.085756 8.463170 0.241467 +v 3.960804 8.592804 0.255126 +v 4.165397 8.277617 0.237077 +v 4.052202 8.132730 0.122481 +v 4.196662 8.043275 0.242129 +v 4.094790 7.912880 0.138994 +v 4.178352 7.769151 0.256424 +v 4.091718 7.658260 0.168717 +v 4.111172 7.465775 0.279417 +v 4.043102 7.378649 0.210505 +v 3.979766 7.508565 0.090563 +v 3.955143 7.261036 0.149100 +v 3.846799 7.325821 0.024968 +v 3.850672 7.117455 0.097562 +v 3.697929 7.117052 -0.025549 +v 3.733705 6.953426 0.057872 +v 3.538874 6.890277 -0.059044 +v 3.608737 6.775251 0.031555 +v 3.631744 7.276488 -0.089438 +v 3.537693 7.425609 -0.131339 +v 3.806798 7.521977 -0.030037 +v 3.732202 7.698380 -0.065336 +v 3.963149 7.736859 0.047096 +v 3.905931 7.937146 0.020368 +v 3.671486 8.755348 0.430499 +v 3.595720 8.666727 0.307822 +v 3.482525 8.521840 0.193226 +v 3.437809 8.687931 0.455240 +v 3.369621 8.608173 0.344834 +v 3.267749 8.477779 0.241699 +v 3.183718 8.555959 0.481037 +v 3.125729 8.488131 0.387143 +v 3.039095 8.377239 0.299435 +v 2.918977 8.364500 0.506898 +v 2.873416 8.311209 0.433127 +v 2.805346 8.224080 0.364215 +v 2.653762 8.120914 0.531829 +v 2.622379 8.084207 0.481015 +v 2.575492 8.024191 0.433547 +v 2.398264 7.834561 0.554873 +v 2.382266 7.815848 0.528969 +v 2.162303 7.516445 0.575144 +v 2.358363 7.785253 0.504769 +v 2.327476 7.743952 0.483207 +v 2.514905 7.943179 0.391250 +v 2.442944 7.844279 0.355751 +v 2.612916 7.962887 0.251272 +v 2.717387 8.106467 0.302809 +v 2.794175 8.044802 0.155687 +v 2.927141 8.227546 0.221282 +v 2.979757 8.086876 0.072668 +v 3.136108 8.301758 0.149801 +v 3.162525 8.087490 0.005408 +v 3.336254 8.326256 0.091112 +v 2.968016 7.814719 -0.060594 +v 2.760201 7.518425 -0.104358 +v 2.804703 7.841387 0.013267 +v 2.617675 7.574730 -0.026119 +v 2.645305 7.836032 0.105170 +v 2.486250 7.609258 0.071675 +v 2.495950 7.798858 0.211581 +v 2.370981 7.620683 0.185264 +v 2.362376 7.731293 0.328412 +v 2.276296 7.608563 0.310284 +v 2.290790 7.693533 0.465109 +v 2.249717 7.635934 0.451172 +v 2.205834 7.573368 0.441930 +v 2.160828 7.508237 0.437740 +v 2.188013 7.480807 0.302064 +v 2.242814 7.435208 0.173331 +v 2.116428 7.443048 0.438762 +v 2.100920 7.352933 0.304069 +v 2.074340 7.380303 0.444957 +v 2.018362 7.229856 0.316220 +v 2.116373 7.249565 0.176241 +v 1.996519 7.070883 0.193882 +v 2.162197 7.136915 0.060191 +v 2.323124 7.373195 0.056487 +v 2.425859 7.297149 -0.043979 +v 2.547068 7.209994 -0.124202 +v 2.236628 7.019313 -0.039623 +v 2.009651 6.909498 0.082643 +v 2.057253 6.751899 -0.013222 +v 2.336805 6.901279 -0.119364 +v 1.871349 6.699683 0.122981 +v 1.894627 6.505182 0.034211 +v 1.752605 6.515533 0.179655 +v 1.755000 6.288645 0.100853 +v 1.657985 6.364125 0.250488 +v 1.643739 6.110609 0.184144 +v 1.591123 6.251278 0.332756 +v 1.565116 5.977914 0.280881 +v 1.678021 5.891579 0.129272 +v 1.590662 5.744138 0.236762 +v 1.759520 5.715456 0.087984 +v 1.666780 5.558933 0.202094 +v 1.885102 5.589006 0.061865 +v 1.790544 5.429416 0.178210 +v 1.957199 5.360567 0.166028 +v 2.049939 5.517090 0.051919 +v 2.160338 5.355028 0.166017 +v 2.247698 5.502469 0.058528 +v 2.392158 5.413014 0.178176 +v 2.470780 5.545710 0.081438 +v 2.643747 5.532298 0.202038 +v 2.710609 5.645144 0.119769 +v 2.905440 5.708292 0.236686 +v 2.957973 5.796956 0.172048 +v 2.876735 5.653333 0.307825 +v 2.872962 5.634191 0.382731 +v 2.607213 5.462348 0.292581 +v 2.602411 5.437984 0.387919 +v 2.349198 5.330763 0.284643 +v 2.343552 5.302114 0.396748 +v 2.112604 5.263634 0.284317 +v 2.106330 5.231801 0.408882 +v 1.906524 5.263544 0.291615 +v 1.899864 5.229750 0.423853 +v 1.738877 5.330493 0.306257 +v 1.609445 5.428116 0.459918 +v 1.732086 5.296037 0.441086 +v 1.616105 5.461910 0.327681 +v 1.536653 5.620911 0.479627 +v 1.542927 5.652744 0.355062 +v 1.516510 5.867013 0.499453 +v 1.522157 5.895662 0.387348 +v 1.549787 6.156964 0.518638 +v 1.554589 6.181328 0.423299 +v 1.635206 6.479621 0.536440 +v 1.638979 6.498765 0.461534 +v 1.769485 6.822587 0.552179 +v 1.772084 6.835773 0.500583 +v 1.667684 6.553723 0.390395 +v 1.791856 6.873630 0.451581 +v 1.720217 6.642387 0.325757 +v 1.828042 6.934702 0.407057 +v 1.794560 6.761347 0.270104 +v 1.879251 7.016643 0.368723 +v 1.887856 6.906033 0.225575 +v 1.943513 7.116305 0.338051 +v 2.003422 7.271609 0.471722 +v 2.036183 7.322416 0.456086 +v 1.977316 7.229836 0.491265 +v 1.958869 7.198701 0.513963 +v 1.948789 7.179402 0.538944 +v 1.947464 7.172680 0.565247 +v 1.954945 7.178793 0.591863 +v 1.784160 6.834579 0.604387 +v 1.815543 6.871288 0.655201 +v 1.702072 6.550323 0.686007 +v 1.656509 6.497031 0.612236 +v 1.634890 6.246950 0.709000 +v 1.576901 6.179122 0.615106 +v 1.616581 5.972824 0.723295 +v 1.548393 5.893067 0.612889 +v 1.647846 5.738483 0.728347 +v 1.572080 5.649861 0.605669 +v 1.727486 5.552929 0.723957 +v 1.647053 5.458850 0.593725 +v 1.852440 5.423295 0.710298 +v 1.770432 5.327372 0.577513 +v 1.937472 5.260483 0.557659 +v 2.017905 5.354563 0.687892 +v 2.141757 5.260751 0.534925 +v 2.217522 5.349373 0.657602 +v 2.375434 5.328168 0.510184 +v 2.443622 5.407925 0.620590 +v 2.629526 5.460142 0.484387 +v 2.687514 5.527969 0.578281 +v 2.894266 5.651599 0.458526 +v 2.545494 5.538320 0.723724 +v 2.774149 5.638861 0.665989 +v 2.677135 5.714341 0.815623 +v 2.886100 5.788554 0.744142 +v 2.833487 5.929224 0.892756 +v 3.019066 5.971298 0.809738 +v 3.008540 6.174712 0.952156 +v 3.167938 6.180068 0.860254 +v 3.200326 6.053213 0.714152 +v 3.317293 6.217242 0.753842 +v 3.326992 6.406842 0.893749 +v 3.442261 6.395417 0.780159 +v 3.490117 6.642904 0.908937 +v 3.570428 6.580890 0.792093 +v 3.696869 6.766535 0.789183 +v 3.816725 6.945216 0.771543 +v 3.651046 6.879185 0.905234 +v 3.803591 7.106603 0.882782 +v 3.387383 6.718950 1.009402 +v 3.576615 6.996787 1.005046 +v 3.755991 7.264202 0.978646 +v 3.266174 6.806106 1.089627 +v 3.476437 7.114822 1.084788 +v 3.675748 7.411957 1.055453 +v 3.131148 6.901023 1.146527 +v 3.354361 7.228754 1.141390 +v 3.565948 7.544190 1.110248 +v 2.987492 7.000051 1.177918 +v 3.215079 7.334202 1.172681 +v 3.275529 7.742557 1.146314 +v 3.430812 7.655819 1.140929 +v 3.063942 7.427120 1.177456 +v 3.106071 7.801066 1.126197 +v 2.906760 7.503932 1.155532 +v 2.840728 7.099389 1.182592 +v 2.483364 6.886786 1.140527 +v 2.696497 7.195216 1.160371 +v 2.614467 6.771961 1.161526 +v 2.275549 6.590491 1.096763 +v 2.393852 6.457416 1.115066 +v 2.756798 6.666209 1.156438 +v 2.904886 6.573594 1.125461 +v 2.684271 6.259049 1.079001 +v 2.531861 6.345502 1.109069 +v 2.187362 6.167844 1.044998 +v 2.477781 5.969477 1.008933 +v 2.321326 6.050256 1.037628 +v 2.002933 5.914372 0.954015 +v 2.293353 5.716005 0.917950 +v 2.133283 5.791818 0.944862 +v 1.847651 5.706740 0.845612 +v 2.138071 5.508374 0.809547 +v 1.974960 5.580119 0.834337 +v 2.330717 5.494260 0.772199 +v 2.476988 5.689844 0.874312 +v 2.650717 5.928609 0.960016 +v 2.845226 6.201381 1.026018 +v 3.053041 6.497675 1.069782 +v 3.195568 6.441370 0.991543 +v 1.761040 5.883370 0.842944 +v 1.907311 6.078954 0.945056 +v 1.718453 6.103220 0.826430 +v 1.850094 6.279240 0.918328 +v 1.721525 6.357841 0.796708 +v 1.833476 6.507535 0.874861 +v 1.770140 6.637450 0.754919 +v 1.858100 6.755064 0.816324 +v 1.862429 6.931301 0.702669 +v 1.923017 7.012315 0.744965 +v 1.970944 7.197507 0.617768 +v 1.994846 7.228102 0.641967 +v 2.025734 7.269402 0.663530 +v 2.062419 7.319821 0.681628 +v 1.994977 7.111215 0.780465 +v 2.075546 7.224201 0.807805 +v 2.079537 7.062674 0.907552 +v 1.962570 6.898644 0.867862 +v 2.115314 6.899048 0.990973 +v 1.966442 6.690278 0.940457 +v 2.181499 6.739611 1.054861 +v 2.006446 6.494123 0.995461 +v 2.081040 6.317719 1.030761 +v 2.368527 7.006269 1.094248 +v 2.560342 7.283849 1.112107 +v 2.274367 7.125822 1.024468 +v 2.437492 7.361884 1.039656 +v 2.204506 7.240849 0.933870 +v 2.332673 7.426322 0.945803 +v 2.161626 7.346930 0.825932 +v 2.249909 7.474686 0.834152 +v 2.103492 7.377420 0.695565 +v 2.147376 7.439987 0.704807 +v 2.192382 7.505117 0.708997 +v 2.236782 7.570306 0.707975 +v 2.278869 7.633051 0.701780 +v 2.337003 7.602561 0.832148 +v 2.419560 7.725638 0.819997 +v 2.459113 7.611967 0.942893 +v 2.578968 7.790648 0.925252 +v 2.598422 7.598165 1.035953 +v 2.750968 7.825583 1.013500 +v 2.749574 7.561686 1.107752 +v 2.928949 7.829102 1.081351 +v 2.889270 8.035398 0.973162 +v 3.091575 8.075817 1.033919 +v 3.008013 8.219547 0.916488 +v 3.231202 8.292354 0.967276 +v 3.286772 8.075204 1.073493 +v 3.441917 8.315807 0.999443 +v 3.467359 8.033578 1.090363 +v 3.632061 8.289001 1.011754 +v 3.626401 7.952543 1.083881 +v 3.794328 8.212970 1.003731 +v 3.922480 8.090634 0.975688 +v 3.757778 7.835212 1.054297 +v 4.011594 7.926698 0.928699 +v 3.856449 7.686094 1.002748 +v 4.058243 7.727455 0.864571 +v 3.918616 7.510918 0.931214 +v 4.060637 7.500567 0.785769 +v 3.941894 7.316418 0.842443 +v 4.018683 7.254751 0.695320 +v 3.925387 7.110066 0.739849 +v 3.763304 8.499011 0.913504 +v 3.652904 8.661073 0.799407 +v 3.565544 8.513630 0.906896 +v 3.421086 8.603086 0.787248 +v 3.342464 8.470390 0.883987 +v 3.169497 8.483804 0.763387 +v 3.102634 8.370955 0.845655 +v 2.907803 8.307807 0.728739 +v 2.855270 8.219145 0.793376 +v 2.646066 8.081863 0.684636 +v 2.609880 8.020792 0.729160 +v 2.780927 8.100184 0.849030 +v 2.558672 7.938850 0.767494 +v 2.687631 7.955498 0.893559 +v 2.494408 7.839189 0.798166 +v 2.349788 7.741746 0.675014 +v 2.317028 7.690940 0.690651 +v 2.375893 7.783519 0.655472 +v 2.394341 7.814654 0.632773 +v 2.404421 7.833953 0.607793 +v 2.405746 7.840675 0.581489 +v 2.665838 8.119720 0.635635 +v 2.668437 8.132906 0.584038 +v 2.936508 8.362766 0.657600 +v 2.940281 8.381909 0.582693 +v 3.206029 8.553751 0.672843 +v 3.210832 8.578116 0.577505 +v 3.464045 8.685337 0.680781 +v 3.469692 8.713986 0.568676 +vn 0.1807 -0.1011 -0.9783 +vn 0.3120 -0.1905 -0.9308 +vn 0.2841 -0.2470 -0.9264 +vn 0.3504 -0.1453 -0.9253 +vn 0.2203 -0.0496 -0.9742 +vn 0.0522 -0.0120 -0.9986 +vn 0.1486 -0.1588 -0.9761 +vn 0.2678 -0.3130 -0.9112 +vn 0.4112 -0.3936 -0.8222 +vn 0.4233 -0.3335 -0.8424 +vn 0.5471 -0.4651 -0.6960 +vn 0.5566 -0.4161 -0.7191 +vn 0.4446 -0.2827 -0.8499 +vn 0.6681 -0.5215 -0.5308 +vn 0.6746 -0.4886 -0.5534 +vn 0.5737 -0.3739 -0.7287 +vn 0.7675 -0.5411 -0.3438 +vn 0.7642 -0.5342 -0.3614 +vn 0.6898 -0.4572 -0.5615 +vn 0.8215 -0.5611 -0.1020 +vn 0.7816 -0.5287 -0.3312 +vn 0.7840 -0.5054 -0.3604 +vn 0.7102 -0.4328 -0.5553 +vn 0.7912 -0.5037 -0.3469 +vn 0.7368 -0.4134 -0.5349 +vn 0.8078 -0.4910 -0.3261 +vn 0.7684 -0.3992 -0.5003 +vn 0.8247 -0.4822 -0.2957 +vn 0.8031 -0.3900 -0.4506 +vn 0.8408 -0.4763 -0.2571 +vn 0.8387 -0.3850 -0.3853 +vn 0.8553 -0.4729 -0.2118 +vn 0.8717 -0.3840 -0.3045 +vn 0.8670 -0.4716 -0.1608 +vn 0.8942 -0.3953 -0.2101 +vn 0.8739 -0.4743 -0.1061 +vn 0.9132 -0.3942 -0.1034 +vn 0.8734 -0.4849 -0.0452 +vn 0.9131 -0.4077 0.0060 +vn 0.9181 -0.2747 -0.2859 +vn 0.9504 -0.2929 -0.1050 +vn 0.9481 -0.3119 0.0626 +vn 0.9258 -0.1421 -0.3503 +vn 0.9809 -0.1642 -0.1041 +vn 0.9731 -0.1905 0.1295 +vn 0.9080 0.0278 -0.4180 +vn 0.9941 -0.0084 -0.1083 +vn 0.9773 -0.0293 0.2098 +vn 0.8429 0.2443 -0.4793 +vn 0.9652 0.2473 -0.0846 +vn 0.9341 0.1891 0.3028 +vn 0.7009 0.4981 -0.5105 +vn 0.8341 0.5480 -0.0623 +vn 0.7937 0.4632 0.3943 +vn 0.4572 0.7427 -0.4893 +vn 0.5594 0.8276 -0.0469 +vn 0.5262 0.7212 0.4506 +vn 0.2051 0.9784 -0.0248 +vn -0.1176 0.9930 0.0114 +vn 0.1447 0.8865 -0.4395 +vn 0.1959 0.8685 0.4553 +vn -0.0986 0.9077 0.4079 +vn 0.1649 0.6422 0.7486 +vn 0.4497 0.4918 0.7456 +vn 0.6647 0.2928 0.6874 +vn 0.3459 0.3306 0.8781 +vn 0.8151 0.0926 0.5719 +vn 0.5255 0.1713 0.8334 +vn 0.8938 -0.0707 0.4429 +vn 0.6779 0.0194 0.7349 +vn 0.9221 -0.2217 0.3171 +vn 0.7842 -0.1224 0.6083 +vn 0.9211 -0.3330 0.2018 +vn 0.8485 -0.2460 0.4686 +vn 0.9010 -0.4230 0.0960 +vn 0.8786 -0.3500 0.3250 +vn 0.8704 -0.4922 0.0077 +vn 0.8814 -0.4359 0.1821 +vn 0.8636 -0.5012 0.0551 +vn 0.8566 -0.5110 0.0716 +vn 0.8537 -0.4512 0.2602 +vn 0.8485 -0.5198 0.0993 +vn 0.8266 -0.4675 0.3134 +vn 0.8405 -0.5282 0.1208 +vn 0.8004 -0.4860 0.3510 +vn 0.8327 -0.5363 0.1379 +vn 0.7769 -0.5068 0.3736 +vn 0.8234 -0.5466 0.1523 +vn 0.7566 -0.5308 0.3819 +vn 0.8109 -0.5633 0.1585 +vn 0.7402 -0.5580 0.3751 +vn 0.7990 -0.5825 0.1494 +vn 0.7306 -0.5860 0.3505 +vn 0.7896 -0.6002 0.1277 +vn 0.7204 -0.6177 0.3154 +vn 0.7822 -0.6155 0.0961 +vn 0.7191 -0.6445 0.2598 +vn 0.7761 -0.6281 0.0563 +vn 0.7126 -0.6746 0.1926 +vn 0.7719 -0.6357 0.0054 +vn 0.6231 -0.6450 0.4424 +vn 0.6246 -0.7029 0.3403 +vn 0.7152 -0.6908 0.1066 +vn 0.6271 -0.7469 0.2211 +vn 0.7120 -0.7021 0.0105 +vn 0.7748 -0.6311 -0.0372 +vn 0.7637 -0.6375 -0.1019 +vn 0.7593 -0.6330 -0.1508 +vn 0.6999 -0.7076 -0.0970 +vn 0.6940 -0.6900 -0.2056 +vn 0.7591 -0.6201 -0.1983 +vn 0.6862 -0.6614 -0.3028 +vn 0.7587 -0.6062 -0.2386 +vn 0.6776 -0.6270 -0.3843 +vn 0.7585 -0.5922 -0.2721 +vn 0.6707 -0.5900 -0.4495 +vn 0.7591 -0.5783 -0.2989 +vn 0.6673 -0.5529 -0.4989 +vn 0.5493 -0.5192 -0.6548 +vn 0.4105 -0.4615 -0.7864 +vn 0.5545 -0.5813 -0.5955 +vn 0.2612 -0.3912 -0.8825 +vn 0.4195 -0.5458 -0.7253 +vn 0.1055 -0.3082 -0.9454 +vn 0.2660 -0.4908 -0.8297 +vn 0.1270 -0.2244 -0.9662 +vn -0.0510 -0.2143 -0.9754 +vn 0.0971 -0.4168 -0.9038 +vn -0.0173 -0.1345 -0.9908 +vn -0.2029 -0.1126 -0.9727 +vn -0.0860 -0.3157 -0.9450 +vn -0.1543 -0.0421 -0.9871 +vn -0.4296 -0.0856 -0.8989 +vn -0.3461 -0.0082 -0.9382 +vn -0.2560 -0.2137 -0.9428 +vn -0.5698 0.0407 -0.8208 +vn -0.4782 0.0932 -0.8733 +vn -0.2840 0.0495 -0.9576 +vn -0.4135 0.1440 -0.8990 +vn -0.2372 0.1047 -0.9658 +vn -0.1104 0.0173 -0.9937 +vn 0.0186 -0.0694 -0.9974 +vn -0.0730 0.0740 -0.9946 +vn -0.1597 0.2132 -0.9639 +vn -0.0354 0.1292 -0.9910 +vn -0.1968 0.1583 -0.9676 +vn 0.0916 0.0415 -0.9949 +vn -0.1244 0.2745 -0.9535 +vn 0.0044 0.1871 -0.9823 +vn 0.1378 0.0972 -0.9857 +vn -0.0886 0.3465 -0.9339 +vn 0.0498 0.2524 -0.9664 +vn 0.1931 0.1510 -0.9695 +vn -0.0496 0.4360 -0.8986 +vn 0.1056 0.3310 -0.9377 +vn 0.2695 0.2207 -0.9374 +vn -0.0032 0.5524 -0.8336 +vn 0.1796 0.4330 -0.8833 +vn 0.3683 0.2921 -0.8827 +vn 0.0575 0.7052 -0.7067 +vn 0.2846 0.5710 -0.7701 +vn 0.5139 0.3878 -0.7652 +vn 0.6829 0.1824 -0.7074 +vn 0.5372 0.1365 -0.8323 +vn 0.7852 -0.0073 -0.6192 +vn 0.6562 -0.0200 -0.7543 +vn 0.8371 -0.1631 -0.5222 +vn 0.7415 -0.1607 -0.6514 +vn 0.8591 -0.2896 -0.4219 +vn 0.7985 -0.2791 -0.5334 +vn 0.6558 -0.1671 -0.7362 +vn 0.7377 -0.2901 -0.6096 +vn 0.5828 -0.1861 -0.7910 +vn 0.6831 -0.2989 -0.6664 +vn 0.5236 -0.2114 -0.8254 +vn 0.6373 -0.3199 -0.7011 +vn 0.4772 -0.2437 -0.8443 +vn 0.6004 -0.3449 -0.7215 +vn 0.4003 -0.1054 -0.9103 +vn 0.2703 -0.0038 -0.9628 +vn 0.4663 -0.0703 -0.8818 +vn 0.3341 0.0405 -0.9417 +vn 0.5522 -0.0405 -0.8327 +vn 0.4186 0.0860 -0.9041 +vn -0.1810 0.7771 -0.6028 +vn -0.1544 0.9204 -0.3592 +vn -0.3735 0.7930 -0.4812 +vn -0.1978 0.6392 -0.7431 +vn -0.3699 0.8920 -0.2597 +vn -0.5202 0.7760 -0.3567 +vn -0.3709 0.6887 -0.6230 +vn -0.5207 0.8366 -0.1702 +vn -0.6337 0.7398 -0.2261 +vn -0.5121 0.7069 -0.4878 +vn -0.6281 0.7726 -0.0931 +vn -0.7133 0.6899 -0.1235 +vn -0.6264 0.6996 -0.3437 +vn -0.7075 0.7062 -0.0263 +vn -0.7745 0.6326 -0.0042 +vn -0.7148 0.6712 -0.1965 +vn -0.7682 0.6388 0.0429 +vn -0.8215 0.5611 0.1020 +vn -0.7805 0.6220 -0.0633 +vn -0.7862 0.6096 -0.1016 +vn -0.7172 0.6417 -0.2718 +vn -0.7219 0.6151 -0.3170 +vn -0.6259 0.6000 -0.4982 +vn -0.6264 0.6482 -0.4331 +vn -0.5085 0.5617 -0.6526 +vn -0.5092 0.6299 -0.5864 +vn -0.3752 0.5052 -0.7772 +vn -0.3719 0.5875 -0.7187 +vn -0.2383 0.4330 -0.8693 +vn -0.2193 0.5216 -0.8245 +vn -0.2578 0.3604 -0.8965 +vn -0.3888 0.4334 -0.8130 +vn -0.2850 0.2973 -0.9113 +vn -0.5161 0.4991 -0.6960 +vn -0.4101 0.3755 -0.8311 +vn -0.6334 0.5507 -0.5437 +vn -0.5324 0.4482 -0.7181 +vn -0.7313 0.5819 -0.3558 +vn -0.6470 0.5088 -0.5679 +vn -0.7945 0.5874 -0.1537 +vn -0.7412 0.5570 -0.3747 +vn -0.7879 0.6071 -0.1033 +vn -0.8134 0.5604 -0.1560 +vn -0.8126 0.5578 -0.1688 +vn -0.7591 0.5291 -0.3791 +vn -0.8231 0.5528 -0.1299 +vn -0.6694 0.4711 -0.5745 +vn -0.7762 0.5068 -0.3750 +vn -0.8318 0.5418 -0.1204 +vn -0.7995 0.4855 -0.3536 +vn -0.6986 0.4420 -0.5627 +vn -0.7335 0.4151 -0.5381 +vn -0.5969 0.3628 -0.7156 +vn -0.5601 0.4001 -0.7254 +vn -0.4425 0.3231 -0.8366 +vn -0.3204 0.2415 -0.9160 +vn -0.4815 0.2776 -0.8313 +vn -0.6419 0.3281 -0.6930 +vn -0.5341 0.2365 -0.8117 +vn -0.3612 0.1910 -0.9127 +vn -0.6999 0.2980 -0.6491 +vn -0.6009 0.1981 -0.7744 +vn -0.7679 0.2708 -0.5806 +vn -0.6835 0.1611 -0.7119 +vn -0.8432 0.2445 -0.4787 +vn -0.7810 0.1203 -0.6129 +vn -0.9174 0.2174 -0.3332 +vn -0.8886 0.0842 -0.4510 +vn -0.6799 -0.0255 -0.7329 +vn -0.8144 -0.0963 -0.5723 +vn -0.5234 -0.1859 -0.8316 +vn -0.6667 -0.3125 -0.6767 +vn -0.3245 -0.3336 -0.8851 +vn -0.4285 -0.5187 -0.7398 +vn -0.1727 -0.6530 -0.7375 +vn -0.1139 -0.4525 -0.8845 +vn 0.1019 -0.7261 -0.6800 +vn 0.0960 -0.5478 -0.8311 +vn 0.3087 -0.7466 -0.5893 +vn 0.2850 -0.6079 -0.7411 +vn 0.4686 -0.7357 -0.4891 +vn 0.4448 -0.6374 -0.6292 +vn 0.5907 -0.7066 -0.3895 +vn 0.5686 -0.6446 -0.5110 +vn 0.6068 -0.7567 -0.2435 +vn 0.5024 -0.8105 -0.3012 +vn 0.6219 -0.7799 -0.0715 +vn 0.3335 -0.8660 -0.3726 +vn 0.5134 -0.8562 -0.0577 +vn 0.1014 -0.8964 -0.4314 +vn 0.3571 -0.9333 -0.0375 +vn -0.2156 -0.8581 -0.4661 +vn 0.1243 -0.9922 -0.0081 +vn -0.5563 -0.7006 -0.4469 +vn -0.1999 -0.9794 0.0270 +vn -0.8277 -0.5571 0.0684 +vn -0.8080 -0.4552 -0.3741 +vn -0.5594 -0.8276 0.0469 +vn -0.9624 -0.2566 0.0887 +vn -0.9395 -0.1986 -0.2790 +vn -0.9948 -0.0155 0.1011 +vn -0.9822 0.0366 -0.1841 +vn -0.9815 0.1598 0.1058 +vn -0.9776 0.1781 -0.1126 +vn -0.9512 0.2897 0.1062 +vn -0.9523 0.3011 -0.0485 +vn -0.9142 0.3915 0.1043 +vn -0.9173 0.3982 0.0065 +vn -0.9228 0.3323 -0.1949 +vn -0.9062 0.4125 -0.0932 +vn -0.8808 0.3489 -0.3200 +vn -0.8857 0.4279 -0.1802 +vn -0.8315 0.3671 -0.4170 +vn -0.8581 0.4490 -0.2491 +vn -0.7822 0.3877 -0.4877 +vn -0.8318 0.4614 -0.3084 +vn -0.8503 0.5204 -0.0786 +vn -0.8415 0.5260 -0.1232 +vn -0.8594 0.5095 -0.0424 +vn -0.8661 0.4998 -0.0074 +vn -0.8685 0.4931 0.0505 +vn -0.8711 0.4805 0.1013 +vn -0.8613 0.4796 0.1678 +vn -0.8950 0.3916 0.2138 +vn -0.8686 0.3874 0.3089 +vn -0.8672 0.2807 0.4113 +vn -0.9160 0.2910 0.2760 +vn -0.8437 0.1525 0.5147 +vn -0.9298 0.1478 0.3369 +vn -0.7883 -0.0013 0.6153 +vn -0.9128 -0.0030 0.4085 +vn -0.6874 -0.1809 0.7034 +vn -0.8521 -0.2175 0.4760 +vn -0.5267 -0.3960 0.7522 +vn -0.7050 -0.4768 0.5250 +vn -0.3152 -0.5699 0.7589 +vn -0.4447 -0.7297 0.5194 +vn -0.1206 -0.8877 0.4444 +vn -0.0552 -0.7138 0.6982 +vn 0.1775 -0.9202 0.3490 +vn 0.1887 -0.7777 0.5997 +vn 0.3774 -0.8873 0.2650 +vn 0.3803 -0.7890 0.4824 +vn 0.5334 -0.8288 0.1691 +vn 0.5251 -0.7712 0.3599 +vn 0.6365 -0.7655 0.0945 +vn 0.3680 -0.6859 0.6277 +vn 0.5165 -0.6985 0.4952 +vn 0.3710 -0.5870 0.7196 +vn 0.5102 -0.6259 0.5899 +vn 0.3767 -0.5042 0.7771 +vn 0.5099 -0.5588 0.6540 +vn 0.3896 -0.4341 0.8122 +vn 0.5176 -0.4989 0.6951 +vn 0.6296 -0.5974 0.4967 +vn 0.6351 -0.5493 0.5431 +vn 0.5329 -0.4462 0.7189 +vn 0.6487 -0.5083 0.5664 +vn 0.5592 -0.4005 0.7258 +vn 0.6685 -0.4714 0.5753 +vn 0.6985 -0.4389 0.5652 +vn 0.5951 -0.3622 0.7174 +vn 0.7357 -0.4109 0.5385 +vn 0.4808 -0.2776 0.8317 +vn 0.6425 -0.3283 0.6924 +vn 0.4406 -0.3236 0.8373 +vn 0.3601 -0.1910 0.9131 +vn 0.5348 -0.2353 0.8116 +vn 0.3191 -0.2417 0.9164 +vn 0.2377 -0.1056 0.9656 +vn 0.4149 -0.1414 0.8988 +vn 0.1968 -0.1583 0.9676 +vn 0.1104 -0.0172 0.9937 +vn 0.2875 -0.0470 0.9566 +vn 0.0730 -0.0740 0.9946 +vn 0.0153 0.1382 0.9903 +vn -0.0181 0.0701 0.9974 +vn 0.1555 0.0442 0.9869 +vn -0.1259 0.2268 0.9658 +vn -0.1496 0.1579 0.9761 +vn -0.0526 0.0120 0.9985 +vn -0.1810 0.1008 0.9783 +vn -0.2189 0.0495 0.9745 +vn -0.0921 -0.0406 0.9949 +vn 0.0346 -0.1287 0.9911 +vn -0.2702 0.0045 0.9628 +vn -0.1383 -0.0930 0.9860 +vn -0.0063 -0.1859 0.9826 +vn 0.1603 -0.2139 0.9636 +vn 0.1259 -0.2741 0.9534 +vn -0.1939 -0.1535 0.9689 +vn -0.0533 -0.2501 0.9668 +vn 0.0908 -0.3449 0.9342 +vn -0.2705 -0.2103 0.9395 +vn -0.1111 -0.3273 0.9384 +vn 0.0526 -0.4328 0.8999 +vn -0.3706 -0.2971 0.8800 +vn -0.1883 -0.4270 0.8844 +vn 0.0074 -0.5487 0.8360 +vn 0.1993 -0.6395 0.7425 +vn 0.2159 -0.5268 0.8221 +vn 0.2365 -0.4349 0.8689 +vn 0.2575 -0.3592 0.8971 +vn 0.2860 -0.2962 0.9113 +vn 0.4116 -0.3748 0.8307 +vn -0.5330 -0.1389 0.8346 +vn -0.6561 0.0156 0.7545 +vn -0.4240 -0.0874 0.9014 +vn -0.7437 0.1565 0.6499 +vn -0.5525 0.0410 0.8325 +vn -0.8052 0.2827 0.5213 +vn -0.6607 0.1660 0.7321 +vn -0.8307 0.3897 0.3975 +vn -0.7445 0.2845 0.6039 +vn -0.8413 0.4818 0.2452 +vn -0.8004 0.3923 0.4532 +vn -0.8531 0.4791 0.2064 +vn -0.8197 0.4873 0.3010 +vn -0.8035 0.4960 0.3291 +vn -0.7662 0.4019 0.5014 +vn -0.7354 0.4152 0.5355 +vn -0.6407 0.3166 0.6995 +vn -0.6865 0.2962 0.6640 +vn -0.5262 0.2113 0.8237 +vn -0.5857 0.1870 0.7887 +vn -0.4014 0.1061 0.9098 +vn -0.4660 0.0724 0.8818 +vn -0.3343 -0.0403 0.9416 +vn -0.3503 0.1438 0.9256 +vn -0.4770 0.2442 0.8443 +vn -0.3119 0.1903 0.9309 +vn -0.6000 0.3434 0.7226 +vn -0.4446 0.2827 0.8500 +vn -0.7093 0.4364 0.5535 +vn -0.5741 0.3738 0.7285 +vn -0.7977 0.4997 0.3376 +vn -0.6903 0.4572 0.5607 +vn -0.8074 0.4944 0.3221 +vn -0.7673 0.5398 0.3461 +vn -0.7652 0.5506 0.3336 +vn -0.7638 0.5606 0.3198 +vn -0.6765 0.4846 0.5546 +vn -0.6707 0.5156 0.5332 +vn -0.5573 0.4159 0.7187 +vn -0.5489 0.4609 0.6974 +vn -0.4233 0.3339 0.8422 +vn -0.4121 0.3911 0.8229 +vn -0.2857 0.2465 0.9261 +vn -0.2687 0.3118 0.9114 +vn -0.4106 0.4603 0.7871 +vn -0.2630 0.3918 0.8817 +vn -0.4179 0.5437 0.7279 +vn -0.2680 0.4890 0.8301 +vn -0.1054 0.3080 0.9455 +vn -0.0960 0.4169 0.9039 +vn 0.0508 0.2133 0.9757 +vn 0.0865 0.3226 0.9426 +vn 0.2039 0.1187 0.9718 +vn 0.2655 0.2072 0.9416 +vn 0.4278 0.0816 0.9002 +vn 0.3444 0.0089 0.9388 +vn 0.5684 -0.0424 0.8216 +vn 0.4792 -0.0955 0.8725 +vn 0.6846 -0.1603 0.7111 +vn 0.6002 -0.1991 0.7747 +vn 0.7698 -0.2689 0.5789 +vn 0.7022 -0.2982 0.6465 +vn 0.8301 -0.3658 0.4209 +vn 0.7803 -0.3891 0.4896 +vn 0.1155 0.4661 0.8771 +vn -0.0968 0.7202 0.6870 +vn -0.0936 0.5484 0.8310 +vn -0.3044 0.7377 0.6027 +vn -0.2792 0.6111 0.7407 +vn -0.4580 0.7352 0.4998 +vn -0.4382 0.6430 0.6281 +vn -0.5885 0.6994 0.4056 +vn -0.5691 0.6498 0.5038 +vn -0.6838 0.6611 0.3089 +vn -0.6739 0.6373 0.3738 +vn -0.5591 0.5827 0.5897 +vn -0.6675 0.5993 0.4419 +vn -0.5491 0.5216 0.6530 +vn -0.6644 0.5606 0.4942 +vn -0.7638 0.5820 0.2790 +vn -0.7544 0.5732 0.3198 +vn -0.7630 0.5987 0.2439 +vn -0.7647 0.6115 0.2032 +vn -0.7666 0.6237 0.1526 +vn -0.7683 0.6333 0.0934 +vn -0.6994 0.6845 0.2060 +vn -0.7052 0.7026 0.0949 +vn -0.6157 0.7453 0.2556 +vn -0.6152 0.7838 0.0853 +vn -0.5047 0.8056 0.3102 +vn -0.5212 0.8498 0.0784 +vn -0.3490 0.8614 0.3691 +vn -0.3700 0.9267 0.0658 +usemtl Default_OBJ +s 1 +f 483//483 484//484 489//485 +f 483//483 485//486 484//484 +f 483//483 487//487 485//486 +f 486//488 483//483 488//489 +f 486//488 487//487 483//483 +f 483//483 489//485 488//489 +f 488//489 489//485 490//490 +f 489//485 491//491 490//490 +f 489//485 492//492 491//491 +f 484//484 492//492 489//485 +f 492//492 493//493 491//491 +f 492//492 495//494 493//493 +f 484//484 494//495 492//492 +f 494//495 495//494 492//492 +f 495//494 496//496 493//493 +f 495//494 498//497 496//496 +f 494//495 497//498 495//494 +f 497//498 498//497 495//494 +f 498//497 499//499 496//496 +f 498//497 501//500 499//499 +f 497//498 500//501 498//497 +f 500//501 501//500 498//497 +f 499//499 501//500 502//502 +f 501//500 503//503 502//502 +f 500//501 503//503 501//500 +f 500//501 504//504 503//503 +f 503//503 504//504 502//502 +f 500//501 505//505 504//504 +f 504//504 506//506 502//502 +f 505//505 506//506 504//504 +f 505//505 507//507 506//506 +f 506//506 508//508 502//502 +f 507//507 508//508 506//506 +f 507//507 509//509 508//508 +f 508//508 510//510 502//502 +f 509//509 510//510 508//508 +f 509//509 511//511 510//510 +f 510//510 512//512 502//502 +f 511//511 512//512 510//510 +f 511//511 513//513 512//512 +f 512//512 514//514 502//502 +f 513//513 514//514 512//512 +f 513//513 515//515 514//514 +f 514//514 516//516 502//502 +f 515//515 516//516 514//514 +f 515//515 517//517 516//516 +f 516//516 518//518 502//502 +f 517//517 518//518 516//516 +f 517//517 521//519 518//518 +f 518//518 519//520 502//502 +f 520//521 519//520 518//518 +f 520//521 518//518 521//519 +f 522//522 524//523 521//519 +f 522//522 521//519 517//517 +f 523//524 520//521 521//519 +f 523//524 521//519 524//523 +f 525//525 527//526 524//523 +f 525//525 524//523 522//522 +f 526//527 523//524 524//523 +f 526//527 524//523 527//526 +f 528//528 530//529 527//526 +f 528//528 527//526 525//525 +f 529//530 526//527 527//526 +f 529//530 527//526 530//529 +f 531//531 533//532 530//529 +f 531//531 530//529 528//528 +f 532//533 529//530 530//529 +f 532//533 530//529 533//532 +f 534//534 536//535 533//532 +f 534//534 533//532 531//531 +f 535//536 532//533 533//532 +f 535//536 533//532 536//535 +f 537//537 539//538 536//535 +f 537//537 536//535 534//534 +f 538//539 535//536 536//535 +f 538//539 536//535 539//538 +f 540//540 539//538 537//537 +f 540//540 538//539 539//538 +f 542//541 540//540 541//542 +f 540//540 537//537 541//542 +f 540//540 543//543 538//539 +f 542//541 543//543 540//540 +f 542//541 544//544 543//543 +f 544//544 545//545 543//543 +f 543//543 545//545 546//546 +f 543//543 546//546 538//539 +f 546//546 535//536 538//539 +f 546//546 548//547 535//536 +f 545//545 547//548 546//546 +f 547//548 548//547 546//546 +f 548//547 532//533 535//536 +f 548//547 550//549 532//533 +f 547//548 549//550 548//547 +f 549//550 550//549 548//547 +f 550//549 529//530 532//533 +f 550//549 552//551 529//530 +f 549//550 551//552 550//549 +f 551//552 552//551 550//549 +f 552//551 526//527 529//530 +f 552//551 554//553 526//527 +f 551//552 553//554 552//551 +f 553//554 554//553 552//551 +f 554//553 523//524 526//527 +f 554//553 556//555 523//524 +f 553//554 555//556 554//553 +f 555//556 556//555 554//553 +f 556//555 520//521 523//524 +f 556//555 558//557 520//521 +f 555//556 557//558 556//555 +f 557//558 558//557 556//555 +f 558//557 519//520 520//521 +f 558//557 560//559 519//520 +f 557//558 559//560 558//557 +f 559//560 560//559 558//557 +f 519//520 560//559 502//502 +f 560//559 561//561 502//502 +f 559//560 561//561 560//559 +f 561//561 563//562 502//502 +f 562//563 563//562 561//561 +f 562//563 561//561 559//560 +f 563//562 565//564 502//502 +f 564//565 565//564 563//562 +f 564//565 563//562 562//563 +f 565//564 567//566 502//502 +f 566//567 567//566 565//564 +f 566//567 565//564 564//565 +f 567//566 569//568 502//502 +f 568//569 569//568 567//566 +f 568//569 567//566 566//567 +f 569//568 571//570 502//502 +f 570//571 571//570 569//568 +f 570//571 569//568 568//569 +f 571//570 572//572 502//502 +f 570//571 572//572 571//570 +f 570//571 573//573 572//572 +f 572//572 574//574 502//502 +f 573//573 574//574 572//572 +f 573//573 575//575 574//574 +f 574//574 576//576 502//502 +f 575//575 576//576 574//574 +f 575//575 577//577 576//576 +f 576//576 578//578 502//502 +f 577//577 578//578 576//576 +f 577//577 579//579 578//578 +f 578//578 580//580 502//502 +f 579//579 580//580 578//578 +f 579//579 582//581 580//580 +f 580//580 581//582 502//502 +f 582//581 581//582 580//580 +f 583//583 584//584 582//581 +f 583//583 582//581 579//579 +f 584//584 585//585 582//581 +f 582//581 585//585 581//582 +f 584//584 586//586 585//585 +f 586//586 587//587 585//585 +f 585//585 587//587 588//588 +f 585//585 588//588 581//582 +f 581//582 588//588 502//502 +f 588//588 589//589 502//502 +f 587//587 589//589 588//588 +f 589//589 592//590 502//502 +f 587//587 591//591 589//589 +f 590//592 592//590 589//589 +f 590//592 589//589 591//591 +f 592//590 594//593 502//502 +f 593//594 594//593 592//590 +f 593//594 592//590 590//592 +f 594//593 596//595 502//502 +f 595//596 596//595 594//593 +f 595//596 594//593 593//594 +f 596//595 598//597 502//502 +f 597//598 598//597 596//595 +f 597//598 596//595 595//596 +f 598//597 600//599 502//502 +f 599//600 600//599 598//597 +f 599//600 598//597 597//598 +f 600//599 499//499 502//502 +f 496//496 499//499 600//599 +f 496//496 600//599 599//600 +f 601//601 599//600 597//598 +f 493//493 496//496 599//600 +f 493//493 599//600 601//601 +f 603//602 601//601 602//603 +f 601//601 597//598 602//603 +f 491//491 493//493 601//601 +f 491//491 601//601 603//602 +f 605//604 603//602 604//605 +f 603//602 602//603 604//605 +f 490//490 491//491 603//602 +f 490//490 603//602 605//604 +f 608//606 605//604 606//607 +f 605//604 604//605 606//607 +f 607//608 490//490 605//604 +f 607//608 605//604 608//606 +f 611//609 608//606 609//610 +f 608//606 606//607 609//610 +f 610//611 607//608 608//606 +f 610//611 608//606 611//609 +f 614//612 611//609 612//613 +f 611//609 609//610 612//613 +f 613//614 610//611 611//609 +f 613//614 611//609 614//612 +f 615//615 617//616 614//612 +f 615//615 614//612 616//617 +f 614//612 612//613 616//617 +f 617//616 613//614 614//612 +f 618//618 619//619 617//616 +f 618//618 617//616 615//615 +f 619//619 620//620 617//616 +f 617//616 620//620 613//614 +f 619//619 621//621 620//620 +f 621//621 622//622 620//620 +f 620//620 622//622 623//623 +f 620//620 623//623 613//614 +f 623//623 610//611 613//614 +f 623//623 625//624 610//611 +f 622//622 624//625 623//623 +f 624//625 625//624 623//623 +f 625//624 607//608 610//611 +f 625//624 488//489 607//608 +f 624//625 486//488 625//624 +f 486//488 488//489 625//624 +f 626//626 629//627 624//625 +f 626//626 624//625 627//628 +f 622//622 627//628 624//625 +f 624//625 628//629 486//488 +f 624//625 629//627 628//629 +f 630//630 632//631 629//627 +f 630//630 629//627 626//626 +f 629//627 631//632 628//629 +f 629//627 632//631 631//632 +f 633//633 635//634 632//631 +f 633//633 632//631 630//630 +f 632//631 634//635 631//632 +f 632//631 635//634 634//635 +f 636//636 638//637 635//634 +f 636//636 635//634 633//633 +f 635//634 637//638 634//635 +f 635//634 638//637 637//638 +f 639//639 641//640 638//637 +f 639//639 638//637 636//636 +f 638//637 640//641 637//638 +f 638//637 641//640 640//641 +f 642//642 644//643 641//640 +f 642//642 641//640 639//639 +f 641//640 643//644 640//641 +f 641//640 644//643 643//644 +f 541//542 537//537 644//643 +f 541//542 644//643 642//642 +f 644//643 534//534 643//644 +f 644//643 537//537 534//534 +f 640//641 643//644 645//645 +f 643//644 534//534 531//531 +f 643//644 531//531 645//645 +f 640//641 645//645 646//646 +f 646//646 645//645 647//647 +f 645//645 531//531 528//528 +f 645//645 528//528 647//647 +f 646//646 647//647 648//648 +f 648//648 647//647 649//649 +f 647//647 528//528 525//525 +f 647//647 525//525 649//649 +f 648//648 649//649 650//650 +f 650//650 649//649 651//651 +f 649//649 525//525 522//522 +f 649//649 522//522 651//651 +f 650//650 651//651 652//652 +f 652//652 651//651 515//515 +f 651//651 522//522 517//517 +f 651//651 517//517 515//515 +f 653//653 650//650 652//652 +f 653//653 652//652 654//654 +f 654//654 652//652 513//513 +f 652//652 515//515 513//513 +f 655//655 653//653 654//654 +f 655//655 654//654 656//656 +f 656//656 654//654 511//511 +f 654//654 513//513 511//511 +f 657//657 655//655 656//656 +f 657//657 656//656 658//658 +f 658//658 656//656 509//509 +f 656//656 511//511 509//509 +f 659//659 657//657 658//658 +f 659//659 658//658 660//660 +f 660//660 658//658 507//507 +f 658//658 509//509 507//507 +f 494//495 659//659 660//660 +f 494//495 660//660 497//498 +f 497//498 660//660 505//505 +f 660//660 507//507 505//505 +f 484//484 485//486 659//659 +f 484//484 659//659 494//495 +f 485//486 657//657 659//659 +f 485//486 661//661 657//657 +f 661//661 655//655 657//657 +f 487//487 662//662 661//661 +f 487//487 661//661 485//486 +f 662//662 663//663 661//661 +f 661//661 663//663 655//655 +f 662//662 664//664 663//663 +f 664//664 665//665 663//663 +f 663//663 665//665 653//653 +f 663//663 653//653 655//655 +f 664//664 666//666 665//665 +f 666//666 648//648 665//665 +f 665//665 648//648 650//650 +f 665//665 650//650 653//653 +f 634//635 637//638 666//666 +f 634//635 666//666 664//664 +f 637//638 646//646 666//666 +f 666//666 646//646 648//648 +f 631//632 634//635 664//664 +f 631//632 664//664 662//662 +f 628//629 631//632 662//662 +f 628//629 662//662 487//487 +f 637//638 640//641 646//646 +f 668//667 642//642 639//639 +f 667//668 541//542 642//642 +f 667//668 642//642 668//667 +f 671//669 668//667 669//670 +f 668//667 639//639 669//670 +f 670//671 667//668 668//667 +f 670//671 668//667 671//669 +f 674//672 671//669 672//673 +f 671//669 669//670 672//673 +f 673//674 670//671 671//669 +f 673//674 671//669 674//672 +f 677//675 674//672 675//676 +f 674//672 672//673 675//676 +f 676//677 673//674 674//672 +f 676//677 674//672 677//675 +f 680//678 677//675 678//679 +f 677//675 675//676 678//679 +f 679//680 676//677 677//675 +f 679//680 677//675 680//678 +f 683//681 680//678 681//682 +f 680//678 678//679 681//682 +f 682//683 679//680 680//678 +f 682//683 680//678 683//681 +f 684//684 682//683 683//681 +f 684//684 683//681 685//685 +f 683//681 681//682 685//685 +f 684//684 685//685 686//686 +f 685//685 687//687 686//686 +f 685//685 681//682 687//687 +f 686//686 687//687 688//688 +f 687//687 689//689 688//688 +f 687//687 690//690 689//689 +f 681//682 690//690 687//687 +f 690//690 691//691 689//689 +f 690//690 692//692 691//691 +f 681//682 678//679 690//690 +f 678//679 692//692 690//690 +f 692//692 693//693 691//691 +f 692//692 694//694 693//693 +f 678//679 675//676 692//692 +f 675//676 694//694 692//692 +f 694//694 695//695 693//693 +f 694//694 696//696 695//695 +f 675//676 672//673 694//694 +f 672//673 696//696 694//694 +f 696//696 633//633 695//695 +f 696//696 636//636 633//633 +f 672//673 669//670 696//696 +f 669//670 636//636 696//696 +f 693//693 695//695 697//697 +f 695//695 630//630 697//697 +f 695//695 633//633 630//630 +f 699//698 697//697 698//699 +f 697//697 626//626 698//699 +f 697//697 630//630 626//626 +f 693//693 697//697 699//698 +f 701//700 699//698 700//701 +f 699//698 698//699 700//701 +f 691//691 693//693 699//698 +f 691//691 699//698 701//700 +f 703//702 701//700 702//703 +f 701//700 700//701 702//703 +f 689//689 691//691 701//700 +f 689//689 701//700 703//702 +f 705//704 703//702 704//705 +f 703//702 702//703 704//705 +f 688//688 689//689 703//702 +f 688//688 703//702 705//704 +f 708//706 705//704 706//707 +f 705//704 704//705 706//707 +f 707//708 688//688 705//704 +f 707//708 705//704 708//706 +f 684//684 708//706 709//709 +f 708//706 706//707 709//709 +f 684//684 707//708 708//706 +f 684//684 709//709 710//710 +f 709//709 711//711 710//710 +f 709//709 706//707 711//711 +f 713//712 710//710 711//711 +f 706//707 712//713 711//711 +f 714//714 711//711 712//713 +f 713//712 711//711 714//714 +f 715//715 713//712 714//714 +f 715//715 714//714 716//716 +f 716//716 714//714 717//717 +f 714//714 712//713 717//717 +f 716//716 717//717 718//718 +f 718//718 717//717 719//719 +f 717//717 720//720 719//719 +f 717//717 712//713 720//720 +f 704//705 702//703 720//720 +f 704//705 720//720 712//713 +f 702//703 721//721 720//720 +f 719//719 720//720 721//721 +f 702//703 700//701 721//721 +f 700//701 722//722 721//721 +f 723//723 721//721 722//722 +f 719//719 721//721 723//723 +f 724//724 719//719 723//723 +f 724//724 723//723 725//725 +f 725//725 723//723 726//726 +f 723//723 722//722 726//726 +f 725//725 726//726 621//621 +f 621//621 726//726 622//622 +f 726//726 722//722 627//628 +f 726//726 627//628 622//622 +f 727//727 724//724 725//725 +f 727//727 725//725 728//728 +f 728//728 725//725 621//621 +f 729//729 727//727 728//728 +f 729//729 728//728 730//730 +f 730//730 728//728 619//619 +f 728//728 621//621 619//619 +f 731//731 729//729 730//730 +f 731//731 730//730 732//732 +f 732//732 730//730 618//618 +f 730//730 619//619 618//618 +f 733//733 731//731 732//732 +f 733//733 732//732 734//734 +f 734//734 732//732 735//735 +f 732//732 618//618 735//735 +f 734//734 735//735 736//736 +f 736//736 735//735 737//737 +f 735//735 618//618 615//615 +f 735//735 615//615 737//737 +f 736//736 737//737 738//738 +f 738//738 737//737 739//739 +f 737//737 615//615 616//617 +f 737//737 616//617 739//739 +f 738//738 739//739 740//740 +f 739//739 741//741 740//740 +f 739//739 742//742 741//741 +f 616//617 742//742 739//739 +f 742//742 743//743 741//741 +f 742//742 744//744 743//743 +f 616//617 612//613 742//742 +f 612//613 744//744 742//742 +f 744//744 745//745 743//743 +f 744//744 746//746 745//745 +f 612//613 609//610 744//744 +f 609//610 746//746 744//744 +f 746//746 747//747 745//745 +f 746//746 748//748 747//747 +f 609//610 606//607 746//746 +f 606//607 748//748 746//746 +f 748//748 749//749 747//747 +f 748//748 750//750 749//749 +f 606//607 604//605 748//748 +f 604//605 750//750 748//748 +f 750//750 593//594 749//749 +f 750//750 595//596 593//594 +f 604//605 602//603 750//750 +f 602//603 595//596 750//750 +f 747//747 749//749 751//751 +f 749//749 590//592 751//751 +f 749//749 593//594 590//592 +f 753//752 751//751 752//753 +f 751//751 591//591 752//753 +f 751//751 590//592 591//591 +f 747//747 751//751 753//752 +f 755//754 753//752 754//755 +f 753//752 752//753 754//755 +f 745//745 747//747 753//752 +f 745//745 753//752 755//754 +f 757//756 755//754 756//757 +f 755//754 754//755 756//757 +f 743//743 745//745 755//754 +f 743//743 755//754 757//756 +f 759//758 757//756 758//759 +f 757//756 756//757 758//759 +f 741//741 743//743 757//756 +f 741//741 757//756 759//758 +f 761//760 759//758 760//761 +f 759//758 758//759 760//761 +f 740//740 741//741 759//758 +f 740//740 759//758 761//760 +f 762//762 764//763 761//760 +f 762//762 761//760 763//764 +f 761//760 760//761 763//764 +f 764//763 740//740 761//760 +f 765//765 766//766 764//763 +f 765//765 764//763 762//762 +f 766//766 738//738 764//763 +f 764//763 738//738 740//740 +f 767//767 768//768 766//766 +f 767//767 766//766 765//765 +f 768//768 736//736 766//766 +f 766//766 736//736 738//738 +f 769//769 770//770 768//768 +f 769//769 768//768 767//767 +f 770//770 734//734 768//768 +f 768//768 734//734 736//736 +f 771//771 772//772 770//770 +f 771//771 770//770 769//769 +f 772//772 733//733 770//770 +f 770//770 733//733 734//734 +f 773//773 774//774 772//772 +f 773//773 772//772 771//771 +f 774//774 775//775 772//772 +f 772//772 775//775 733//733 +f 774//774 776//776 775//775 +f 776//776 777//777 775//775 +f 775//775 777//777 731//731 +f 775//775 731//731 733//733 +f 776//776 778//778 777//777 +f 778//778 779//779 777//777 +f 777//777 779//779 729//729 +f 777//777 729//729 731//731 +f 778//778 780//780 779//779 +f 780//780 781//781 779//779 +f 779//779 781//781 727//727 +f 779//779 727//727 729//729 +f 780//780 782//782 781//781 +f 782//782 718//718 781//781 +f 781//781 718//718 724//724 +f 781//781 724//724 727//727 +f 783//783 784//784 782//782 +f 783//783 782//782 780//780 +f 782//782 716//716 718//718 +f 784//784 716//716 782//782 +f 684//684 715//715 784//784 +f 684//684 784//784 783//783 +f 784//784 715//715 716//716 +f 684//684 783//783 785//785 +f 785//785 783//783 780//780 +f 684//684 785//785 786//786 +f 786//786 785//785 778//778 +f 785//785 780//780 778//778 +f 684//684 786//786 787//787 +f 787//787 786//786 776//776 +f 786//786 778//778 776//776 +f 684//684 787//787 788//788 +f 788//788 787//787 774//774 +f 787//787 776//776 774//774 +f 684//684 788//788 789//789 +f 788//788 790//790 789//789 +f 788//788 773//773 790//790 +f 788//788 774//774 773//773 +f 789//789 790//790 791//791 +f 790//790 792//792 791//791 +f 790//790 793//793 792//792 +f 773//773 793//793 790//790 +f 793//793 794//794 792//792 +f 793//793 795//795 794//794 +f 773//773 771//771 793//793 +f 771//771 795//795 793//793 +f 795//795 796//796 794//794 +f 795//795 797//797 796//796 +f 771//771 769//769 795//795 +f 769//769 797//797 795//795 +f 797//797 798//798 796//796 +f 797//797 799//799 798//798 +f 769//769 767//767 797//797 +f 767//767 799//799 797//797 +f 799//799 800//800 798//798 +f 799//799 801//801 800//800 +f 767//767 765//765 799//799 +f 765//765 801//801 799//799 +f 801//801 802//802 800//800 +f 801//801 803//803 802//802 +f 765//765 762//762 801//801 +f 762//762 803//803 801//801 +f 802//802 803//803 804//804 +f 803//803 760//761 804//804 +f 803//803 763//764 760//761 +f 762//762 763//764 803//803 +f 802//802 804//804 805//805 +f 805//805 804//804 806//806 +f 804//804 760//761 758//759 +f 804//804 758//759 806//806 +f 805//805 806//806 807//807 +f 807//807 806//806 808//808 +f 806//806 758//759 756//757 +f 806//806 756//757 808//808 +f 807//807 808//808 809//809 +f 809//809 808//808 810//810 +f 808//808 756//757 754//755 +f 808//808 754//755 810//810 +f 809//809 810//810 811//811 +f 811//811 810//810 812//812 +f 810//810 754//755 752//753 +f 810//810 752//753 812//812 +f 811//811 812//812 586//586 +f 586//586 812//812 587//587 +f 812//812 752//753 591//591 +f 812//812 591//591 587//587 +f 813//813 809//809 811//811 +f 813//813 811//811 814//814 +f 814//814 811//811 586//586 +f 815//815 813//813 814//814 +f 815//815 814//814 816//816 +f 816//816 814//814 584//584 +f 814//814 586//586 584//584 +f 817//817 815//815 816//816 +f 817//817 816//816 818//818 +f 818//818 816//816 583//583 +f 816//816 584//584 583//583 +f 819//819 817//817 818//818 +f 819//819 818//818 820//820 +f 820//820 818//818 821//821 +f 818//818 583//583 821//821 +f 820//820 821//821 822//822 +f 822//822 821//821 577//577 +f 821//821 583//583 579//579 +f 821//821 579//579 577//577 +f 823//823 820//820 822//822 +f 823//823 822//822 824//824 +f 824//824 822//822 575//575 +f 822//822 577//577 575//575 +f 825//825 823//823 824//824 +f 825//825 824//824 826//826 +f 826//826 824//824 573//573 +f 824//824 575//575 573//573 +f 825//825 826//826 827//827 +f 826//826 568//569 827//827 +f 826//826 570//571 568//569 +f 826//826 573//573 570//571 +f 829//828 827//827 828//829 +f 827//827 566//567 828//829 +f 827//827 568//569 566//567 +f 825//825 827//827 829//828 +f 832//830 829//828 830//831 +f 829//828 828//829 830//831 +f 831//832 825//825 829//828 +f 831//832 829//828 832//830 +f 835//833 832//830 833//834 +f 832//830 830//831 833//834 +f 834//835 831//832 832//830 +f 834//835 832//830 835//833 +f 838//836 835//833 836//837 +f 835//833 833//834 836//837 +f 837//838 834//835 835//833 +f 837//838 835//833 838//836 +f 841//839 838//836 839//840 +f 838//836 836//837 839//840 +f 840//841 837//838 838//836 +f 840//841 838//836 841//839 +f 842//842 844//843 841//839 +f 842//842 841//839 843//844 +f 841//839 839//840 843//844 +f 844//843 840//841 841//839 +f 845//845 846//846 844//843 +f 845//845 844//843 842//842 +f 846//846 847//847 844//843 +f 844//843 847//847 840//841 +f 846//846 849//848 847//847 +f 848//849 850//850 847//847 +f 848//849 847//847 849//848 +f 850//850 840//841 847//847 +f 850//850 853//851 840//841 +f 851//852 852//853 850//850 +f 851//852 850//850 848//849 +f 852//853 853//851 850//850 +f 852//853 856//854 853//851 +f 840//841 853//851 854//855 +f 853//851 855//856 854//855 +f 853//851 856//854 855//856 +f 857//857 859//858 856//854 +f 857//857 856//854 852//853 +f 856//854 858//859 855//856 +f 856//854 859//858 858//859 +f 860//860 862//861 859//858 +f 860//860 859//858 857//857 +f 859//858 861//862 858//859 +f 859//858 862//861 861//862 +f 863//863 865//864 862//861 +f 863//863 862//861 860//860 +f 862//861 864//865 861//862 +f 862//861 865//864 864//865 +f 800//800 802//802 865//864 +f 800//800 865//864 863//863 +f 865//864 805//805 864//865 +f 865//864 802//802 805//805 +f 861//862 864//865 866//866 +f 864//865 805//805 807//807 +f 864//865 807//807 866//866 +f 861//862 866//866 867//867 +f 867//867 866//866 813//813 +f 866//866 807//807 809//809 +f 866//866 809//809 813//813 +f 858//859 861//862 867//867 +f 858//859 867//867 868//868 +f 868//868 867//867 815//815 +f 867//867 813//813 815//815 +f 855//856 858//859 868//868 +f 855//856 868//868 869//869 +f 869//869 868//868 817//817 +f 868//868 815//815 817//817 +f 854//855 855//856 869//869 +f 854//855 869//869 870//870 +f 870//870 869//869 819//819 +f 869//869 817//817 819//819 +f 837//838 854//855 870//870 +f 837//838 870//870 834//835 +f 834//835 870//870 871//871 +f 870//870 819//819 871//871 +f 834//835 871//871 831//832 +f 831//832 871//871 823//823 +f 871//871 819//819 820//820 +f 871//871 820//820 823//823 +f 872//872 863//863 860//860 +f 798//798 800//800 863//863 +f 798//798 863//863 872//872 +f 874//873 872//872 873//874 +f 872//872 860//860 873//874 +f 796//796 798//798 872//872 +f 796//796 872//872 874//873 +f 876//875 874//873 875//876 +f 874//873 873//874 875//876 +f 794//794 796//796 874//873 +f 794//794 874//873 876//875 +f 878//877 876//875 877//878 +f 876//875 875//876 877//878 +f 792//792 794//794 876//875 +f 792//792 876//875 878//877 +f 880//879 878//877 879//880 +f 878//877 877//878 879//880 +f 791//791 792//792 878//877 +f 791//791 878//877 880//879 +f 883//881 880//879 881//882 +f 880//879 879//880 881//882 +f 882//883 791//791 880//879 +f 882//883 880//879 883//881 +f 684//684 882//883 883//881 +f 684//684 883//881 884//884 +f 883//881 881//882 884//884 +f 684//684 884//884 885//885 +f 884//884 886//886 885//885 +f 884//884 881//882 886//886 +f 885//885 886//886 887//887 +f 886//886 888//888 887//887 +f 886//886 889//889 888//888 +f 881//882 889//889 886//886 +f 889//889 890//890 888//888 +f 889//889 891//891 890//890 +f 881//882 879//880 889//889 +f 879//880 891//891 889//889 +f 891//891 892//892 890//890 +f 891//891 893//893 892//892 +f 879//880 877//878 891//891 +f 877//878 893//893 891//891 +f 893//893 851//852 892//892 +f 893//893 894//894 851//852 +f 877//878 875//876 893//893 +f 875//876 894//894 893//893 +f 894//894 852//853 851//852 +f 894//894 857//857 852//853 +f 875//876 873//874 894//894 +f 873//874 857//857 894//894 +f 890//890 892//892 895//895 +f 892//892 848//849 895//895 +f 892//892 851//852 848//849 +f 897//896 895//895 896//897 +f 895//895 849//848 896//897 +f 895//895 848//849 849//848 +f 890//890 895//895 897//896 +f 899//898 897//896 898//899 +f 897//896 896//897 898//899 +f 888//888 890//890 897//896 +f 888//888 897//896 899//898 +f 901//900 899//898 900//901 +f 899//898 898//899 900//901 +f 887//887 888//888 899//898 +f 887//887 899//898 901//900 +f 904//902 901//900 902//903 +f 901//900 900//901 902//903 +f 903//904 887//887 901//900 +f 903//904 901//900 904//902 +f 684//684 903//904 904//902 +f 684//684 904//902 905//905 +f 904//902 902//903 905//905 +f 684//684 905//905 906//906 +f 906//906 905//905 902//903 +f 684//684 906//906 907//907 +f 907//907 906//906 908//908 +f 906//906 902//903 908//908 +f 907//907 908//908 909//909 +f 909//909 908//908 910//910 +f 908//908 902//903 900//901 +f 908//908 900//901 910//910 +f 909//909 910//910 911//911 +f 911//911 910//910 912//912 +f 910//910 900//901 898//899 +f 910//910 898//899 912//912 +f 911//911 912//912 913//913 +f 913//913 912//912 914//914 +f 912//912 898//899 896//897 +f 912//912 896//897 914//914 +f 913//913 914//914 915//915 +f 915//915 914//914 846//846 +f 914//914 896//897 849//848 +f 914//914 849//848 846//846 +f 916//916 913//913 915//915 +f 916//916 915//915 917//917 +f 917//917 915//915 845//845 +f 915//915 846//846 845//845 +f 918//918 916//916 917//917 +f 918//918 917//917 919//919 +f 919//919 917//917 920//920 +f 917//917 845//845 920//920 +f 919//919 920//920 921//921 +f 921//921 920//920 922//922 +f 920//920 845//845 842//842 +f 920//920 842//842 922//922 +f 921//921 922//922 923//923 +f 923//923 922//922 924//924 +f 922//922 842//842 843//844 +f 922//922 843//844 924//924 +f 923//923 924//924 925//925 +f 924//924 926//926 925//925 +f 924//924 927//927 926//926 +f 843//844 927//927 924//924 +f 927//927 928//928 926//926 +f 927//927 929//929 928//928 +f 843//844 839//840 927//927 +f 839//840 929//929 927//927 +f 929//929 930//930 928//928 +f 929//929 931//931 930//930 +f 839//840 836//837 929//929 +f 836//837 931//931 929//929 +f 931//931 932//932 930//930 +f 931//931 933//933 932//932 +f 836//837 833//834 931//931 +f 833//834 933//933 931//931 +f 933//933 934//934 932//932 +f 933//933 935//935 934//934 +f 833//834 830//831 933//933 +f 830//831 935//935 933//933 +f 935//935 562//563 934//934 +f 935//935 564//565 562//563 +f 830//831 828//829 935//935 +f 828//829 564//565 935//935 +f 932//932 934//934 557//558 +f 934//934 559//560 557//558 +f 934//934 562//563 559//560 +f 930//930 932//932 555//556 +f 932//932 557//558 555//556 +f 928//928 930//930 553//554 +f 930//930 555//556 553//554 +f 926//926 928//928 551//552 +f 928//928 553//554 551//552 +f 925//925 926//926 549//550 +f 926//926 551//552 549//550 +f 936//936 923//923 925//925 +f 936//936 925//925 547//548 +f 925//925 549//550 547//548 +f 937//937 938//938 936//936 +f 937//937 936//936 545//545 +f 545//545 936//936 547//548 +f 938//938 923//923 936//936 +f 939//939 940//940 938//938 +f 939//939 938//938 937//937 +f 940//940 921//921 938//938 +f 938//938 921//921 923//923 +f 941//941 942//942 940//940 +f 941//941 940//940 939//939 +f 942//942 919//919 940//940 +f 940//940 919//919 921//921 +f 943//943 944//944 942//942 +f 943//943 942//942 941//941 +f 942//942 918//918 919//919 +f 944//944 918//918 942//942 +f 945//945 946//946 944//944 +f 945//945 944//944 943//943 +f 946//946 947//947 944//944 +f 944//944 947//947 918//918 +f 946//946 948//948 947//947 +f 948//948 949//949 947//947 +f 947//947 949//949 916//916 +f 947//947 916//916 918//918 +f 948//948 950//950 949//949 +f 950//950 911//911 949//949 +f 949//949 911//911 913//913 +f 949//949 913//913 916//916 +f 951//951 952//952 950//950 +f 951//951 950//950 948//948 +f 952//952 909//909 950//950 +f 950//950 909//909 911//911 +f 684//684 907//907 952//952 +f 684//684 952//952 951//951 +f 952//952 907//907 909//909 +f 684//684 951//951 953//953 +f 953//953 951//951 948//948 +f 684//684 953//953 954//954 +f 954//954 953//953 946//946 +f 953//953 948//948 946//946 +f 684//684 954//954 955//955 +f 955//955 954//954 945//945 +f 954//954 946//946 945//945 +f 684//684 955//955 956//956 +f 956//956 955//955 957//957 +f 955//955 945//945 957//957 +f 956//956 957//957 958//958 +f 958//958 957//957 959//959 +f 957//957 945//945 943//943 +f 957//957 943//943 959//959 +f 958//958 959//959 960//960 +f 960//960 959//959 961//961 +f 959//959 943//943 941//941 +f 959//959 941//941 961//961 +f 960//960 961//961 962//962 +f 962//962 961//961 963//963 +f 961//961 939//939 963//963 +f 961//961 941//941 939//939 +f 962//962 963//963 964//964 +f 964//964 963//963 544//544 +f 963//963 939//939 937//937 +f 963//963 937//937 544//544 +f 962//962 964//964 670//671 +f 964//964 667//668 670//671 +f 964//964 542//541 667//668 +f 964//964 544//544 542//541 +f 960//960 962//962 673//674 +f 962//962 670//671 673//674 +f 958//958 960//960 676//677 +f 960//960 673//674 676//677 +f 956//956 958//958 679//680 +f 958//958 676//677 679//680 +f 684//684 956//956 682//683 +f 956//956 679//680 682//683 +f 544//544 937//937 545//545 +f 684//684 885//885 903//904 +f 885//885 887//887 903//904 +f 684//684 789//789 882//883 +f 789//789 791//791 882//883 +f 873//874 860//860 857//857 +f 840//841 854//855 837//838 +f 831//832 823//823 825//825 +f 828//829 566//567 564//565 +f 718//718 719//719 724//724 +f 700//701 698//699 722//722 +f 698//699 627//628 722//722 +f 684//684 713//712 715//715 +f 684//684 710//710 713//712 +f 706//707 704//705 712//713 +f 684//684 686//686 707//708 +f 686//686 688//688 707//708 +f 698//699 626//626 627//628 +f 669//670 639//639 636//636 +f 542//541 541//542 667//668 +f 486//488 628//629 487//487 +f 488//489 490//490 607//608 +f 602//603 597//598 595//596 +f 497//498 505//505 500//501 +o teddy.004 +v -2.012112 4.563490 1.218445 +v -1.948754 4.505648 1.060601 +v -2.116713 4.162715 1.093713 +v -2.103342 4.629258 1.363020 +v -2.198737 4.182444 1.255238 +v -1.843894 4.946997 1.159796 +v -1.797363 4.850795 1.007818 +v -1.668358 5.184893 0.937393 +v -1.677249 5.035604 0.790774 +v -1.786959 4.751478 0.850666 +v -1.726885 4.876099 0.647320 +v -1.915707 4.457955 0.895553 +v -1.813082 4.652863 0.694376 +v -1.815355 4.712506 0.512544 +v -1.914239 4.422243 0.729645 +v -1.874730 4.558737 0.544957 +v -1.939262 4.551111 0.391626 +v -1.944408 4.399884 0.569251 +v -1.969530 4.472722 0.408150 +v -2.093843 4.398120 0.289214 +v -2.005051 4.391739 0.420535 +v -2.044460 4.311275 0.428304 +v -2.021710 4.242050 0.584491 +v -2.086241 4.234423 0.431159 +v -2.103668 4.091300 0.590092 +v -2.128790 4.164136 0.428991 +v -2.187131 3.953428 0.585838 +v -2.170472 4.103116 0.421882 +v -2.268892 3.833732 0.571893 +v -2.209683 4.053708 0.410106 +v -2.345809 3.736813 0.548793 +v -2.244918 4.017808 0.394115 +v -2.414925 3.666394 0.517427 +v -2.274824 3.996799 0.374523 +v -2.473586 3.625182 0.478998 +v -2.298249 3.991485 0.352086 +v -2.314294 4.002074 0.327662 +v -2.551009 3.635530 0.387076 +v -2.519536 3.614761 0.434983 +v -2.682487 3.297550 0.598618 +v -2.794888 3.312572 0.465168 +v -2.749195 3.282420 0.534719 +v -2.893501 3.026492 0.728787 +v -3.036560 3.045613 0.558938 +v -2.978405 3.007235 0.647460 +v -3.098517 2.822427 0.864504 +v -3.266738 2.844910 0.664783 +v -3.198355 2.799783 0.768873 +v -3.289661 2.693193 1.000554 +v -3.476576 2.718176 0.778636 +v -3.400592 2.668034 0.894295 +v -3.459581 2.643762 1.131709 +v -3.658010 2.670282 0.896121 +v -3.577347 2.617052 1.018904 +v -3.601750 2.676029 1.252926 +v -3.804068 2.703070 1.012723 +v -3.721824 2.648795 1.137912 +v -3.828474 2.762047 1.246745 +v -3.710708 2.788756 1.359550 +v -3.893196 2.952452 1.341221 +v -3.909138 2.815278 1.123962 +v -3.969180 3.002594 1.225562 +v -3.949599 2.946404 0.995918 +v -3.845322 2.836764 0.882170 +v -3.844002 3.044741 0.751272 +v -3.698471 2.801409 0.768077 +v -3.697176 3.005390 0.639694 +v -3.514689 2.841694 0.658023 +v -3.513471 3.033840 0.537086 +v -3.301038 2.956073 0.556233 +v -3.299941 3.129001 0.447395 +v -3.065732 3.140149 0.466624 +v -3.064798 3.287211 0.374065 +v -2.817807 3.386850 0.392637 +v -2.817073 3.502396 0.319914 +v -2.566796 3.686693 0.337116 +v -2.566290 3.766282 0.287024 +v -2.322342 4.028157 0.302193 +v -2.322083 4.068731 0.276656 +v -2.549512 3.871240 0.238723 +v -2.313531 4.122238 0.252033 +v -2.517106 3.997532 0.194071 +v -2.297011 4.186622 0.229270 +v -2.470316 4.140306 0.154783 +v -2.273157 4.259407 0.209242 +v -2.410942 4.294075 0.122370 +v -2.242888 4.337798 0.192717 +v -2.341264 4.452929 0.098076 +v -2.207366 4.418781 0.180333 +v -2.167958 4.499244 0.172564 +v -2.263960 4.610763 0.082837 +v -2.126177 4.576095 0.169708 +v -2.182003 4.761513 0.077236 +v -2.083627 4.646382 0.171877 +v -2.098540 4.899384 0.081490 +v -2.041946 4.707402 0.178986 +v -2.016778 5.019080 0.095435 +v -2.002734 4.756812 0.190762 +v -1.967499 4.792710 0.206753 +v -1.939862 5.116000 0.118534 +v -2.019306 5.321176 0.041770 +v -1.907640 5.461881 0.075306 +v -1.870746 5.186419 0.149902 +v -1.807299 5.564114 0.120844 +v -1.812085 5.227631 0.188331 +v -1.937594 4.813720 0.226344 +v -1.914170 4.819033 0.248781 +v -1.734663 5.217281 0.280252 +v -1.766136 5.238051 0.232345 +v -1.898125 4.808444 0.273205 +v -1.718874 5.166120 0.330212 +v -1.890076 4.782362 0.298674 +v -1.719381 5.086529 0.380305 +v -1.890334 4.741788 0.324211 +v -1.736159 4.981572 0.428605 +v -1.898888 4.688281 0.348834 +v -1.768565 4.855280 0.473257 +v -1.915409 4.623898 0.371598 +v -1.658957 5.083375 0.590283 +v -1.611908 5.266723 0.525459 +v -1.590794 5.299416 0.718180 +v -1.530913 5.532775 0.635674 +v -1.566697 5.495101 0.852031 +v -1.496285 5.769501 0.755015 +v -1.700551 5.318226 1.081544 +v -1.587591 5.662912 0.986695 +v -1.509354 5.967810 0.878896 +v -1.772593 5.430481 1.217685 +v -1.652675 5.796397 1.116996 +v -1.569619 6.120074 1.002556 +v -1.881713 5.517343 1.340588 +v -1.759446 5.890429 1.237925 +v -1.820747 6.265069 1.230397 +v -1.674764 6.220446 1.121243 +v -1.903803 5.941392 1.344836 +v -2.001958 6.252227 1.325822 +v -2.080195 5.947330 1.433621 +v -2.023721 5.575476 1.445526 +v -2.193155 5.602644 1.528470 +v -2.175893 5.181381 1.528599 +v -2.036867 5.115527 1.425287 +v -2.218942 4.700423 1.488769 +v -1.924765 5.036386 1.300757 +v -2.552591 4.369737 1.629919 +v -2.354470 4.774252 1.590861 +v -2.301463 4.224741 1.402078 +v -2.420946 4.287981 1.528591 +v -2.762643 3.983376 1.644273 +v -2.511515 3.838381 1.416432 +v -2.635111 3.894052 1.543228 +v -2.976552 3.630023 1.633371 +v -2.725424 3.485028 1.405531 +v -2.853211 3.533776 1.532111 +v -3.186098 3.323253 1.597632 +v -2.934970 3.178258 1.369791 +v -3.066863 3.220996 1.495673 +v -3.383229 3.074856 1.538430 +v -3.132102 2.929861 1.310589 +v -3.267856 2.967733 1.435310 +v -3.560368 2.894379 1.458039 +v -3.309240 2.749384 1.230198 +v -3.448465 2.783721 1.353345 +v -3.148043 2.792687 1.093330 +v -2.981180 2.962693 1.169057 +v -2.971066 2.911968 0.948000 +v -2.820893 3.064970 1.016152 +v -2.785111 3.102641 0.799794 +v -2.657401 3.232759 0.857753 +v -2.597325 3.357380 0.654408 +v -2.496984 3.459612 0.699945 +v -2.515278 3.411843 0.900435 +v -2.385319 3.600317 0.733480 +v -2.364203 3.633010 0.926203 +v -2.266620 3.774089 0.753725 +v -2.209983 3.887764 0.934062 +v -2.145451 3.974247 0.759900 +v -2.058545 4.166314 0.923713 +v -2.026466 4.193102 0.751770 +v -2.294786 3.835176 1.105881 +v -2.396602 3.818501 1.268759 +v -2.476130 3.535616 1.096639 +v -2.598099 3.485650 1.258489 +v -2.653775 3.275549 1.066341 +v -2.795487 3.196678 1.224824 +v -3.782265 2.977611 1.447480 +v -3.640647 3.077105 1.540255 +v -3.473784 3.247110 1.615983 +v -3.813667 3.235337 1.513340 +v -3.686215 3.324877 1.596836 +v -3.536043 3.477880 1.664987 +v -3.803714 3.552027 1.554598 +v -3.695325 3.628176 1.625604 +v -3.567614 3.758294 1.683563 +v -3.752785 3.915513 1.569668 +v -3.667623 3.975343 1.625458 +v -3.567281 4.077576 1.670996 +v -3.662837 4.311826 1.557972 +v -3.604176 4.353039 1.596400 +v -3.535060 4.423457 1.627766 +v -3.537328 4.725737 1.519956 +v -3.507423 4.746746 1.539548 +v -3.381079 5.141339 1.457087 +v -3.472188 4.782645 1.555539 +v -3.432975 4.832055 1.567315 +v -3.458144 4.520376 1.650867 +v -3.376382 4.640073 1.664811 +v -3.336917 4.392052 1.724776 +v -3.455616 4.218280 1.704531 +v -3.274416 4.158545 1.752013 +v -3.425491 3.937377 1.726245 +v -3.191281 3.948526 1.745475 +v -3.368925 3.688459 1.715176 +v -3.090703 3.770067 1.705415 +v -3.288091 3.481096 1.671750 +v -2.889206 4.102919 1.715684 +v -2.691341 4.466861 1.702164 +v -3.009937 4.248087 1.754717 +v -2.831864 4.575626 1.742549 +v -3.120197 4.413300 1.759872 +v -2.968758 4.691849 1.749523 +v -3.215749 4.592211 1.730951 +v -3.096764 4.811066 1.722820 +v -3.292919 4.777944 1.669065 +v -3.210961 4.928695 1.663464 +v -3.391294 4.893075 1.574424 +v -3.348745 4.963362 1.576592 +v -3.306963 5.040213 1.573737 +v -3.267554 5.120677 1.565968 +v -3.133658 5.086529 1.648225 +v -2.984537 5.040206 1.700696 +v -3.232033 5.201660 1.553583 +v -3.063981 5.245382 1.623931 +v -3.201765 5.280049 1.537059 +v -3.004606 5.399151 1.591518 +v -2.883380 5.270827 1.665427 +v -2.797183 5.494063 1.618370 +v -2.697173 5.277013 1.676476 +v -2.825921 4.983490 1.721363 +v -2.663904 4.918559 1.709437 +v -2.504714 4.847908 1.665371 +v -2.512514 5.263705 1.656654 +v -2.587463 5.561139 1.616584 +v -2.383509 5.597803 1.586229 +v -2.336499 5.231415 1.606721 +v -2.501007 5.824951 1.543990 +v -2.281847 5.908011 1.500867 +v -2.441127 6.058310 1.461484 +v -2.211436 6.182411 1.403851 +v -2.410124 6.252246 1.372236 +v -2.174981 6.410457 1.298906 +v -2.409192 6.399307 1.279677 +v -2.173884 6.583384 1.190068 +v -1.961452 6.505616 1.209214 +v -1.960233 6.697762 1.088279 +v -1.777746 6.534067 1.106607 +v -1.776451 6.738047 0.978224 +v -1.630919 6.494714 0.995028 +v -1.629600 6.702691 0.864129 +v -1.525323 6.593052 0.750383 +v -1.526618 6.389071 0.878766 +v -1.467628 6.413345 0.641354 +v -1.468848 6.221199 0.762289 +v -1.458733 6.170473 0.541232 +v -1.459830 5.997547 0.650070 +v -1.498979 5.873773 0.453867 +v -1.499911 5.726711 0.546426 +v -1.586817 5.534644 0.382613 +v -1.587551 5.419097 0.455337 +v -1.609737 5.608921 0.310083 +v -1.655429 5.639073 0.240531 +v -1.528149 5.968309 0.361553 +v -1.586304 6.006687 0.273031 +v -1.493034 6.281636 0.432682 +v -1.561418 6.326763 0.328592 +v -1.505742 6.536863 0.520739 +v -1.581726 6.587005 0.405080 +v -1.565784 6.724177 0.622339 +v -1.646448 6.777410 0.499556 +v -1.670854 6.836386 0.733578 +v -1.897576 6.922404 0.727397 +v -1.753097 6.890660 0.608389 +v -1.816912 6.869173 0.850180 +v -2.074330 6.871423 0.852006 +v -1.998346 6.821280 0.967665 +v -2.276568 6.739673 0.977428 +v -2.208185 6.694546 1.081517 +v -2.496518 6.532222 1.098841 +v -2.438363 6.493844 1.187363 +v -2.725727 6.257037 1.211582 +v -2.680034 6.226884 1.281133 +v -2.955387 5.924696 1.311318 +v -2.923914 5.903926 1.359225 +v -2.657115 6.152608 1.353664 +v -2.908125 5.852764 1.409186 +v -2.657847 6.037061 1.426389 +v -2.908632 5.773173 1.459278 +v -2.682206 5.884686 1.496509 +v -2.925410 5.668217 1.507578 +v -2.729254 5.701338 1.561334 +v -2.957816 5.541924 1.552231 +v -3.161390 5.417219 1.494267 +v -3.177911 5.352836 1.517030 +v -3.152837 5.470726 1.469644 +v -3.152579 5.511300 1.444107 +v -3.160627 5.537383 1.418637 +v -3.176672 5.547972 1.394214 +v -3.200097 5.542659 1.371776 +v -3.001337 5.914275 1.267303 +v -3.059997 5.873063 1.228875 +v -2.877596 6.182077 1.091893 +v -2.792435 6.241907 1.147684 +v -2.689812 6.436815 0.946506 +v -2.581422 6.512965 1.017513 +v -2.503857 6.627489 0.798301 +v -2.376405 6.717031 0.881797 +v -2.326880 6.746769 0.652971 +v -2.185262 6.846263 0.745746 +v -2.165681 6.790073 0.516104 +v -2.015340 6.895695 0.614593 +v -2.026455 6.755736 0.392956 +v -1.873169 6.863428 0.493375 +v -1.764213 6.750700 0.386752 +v -1.914553 6.645078 0.288263 +v -1.692657 6.561846 0.298821 +v -1.834276 6.462352 0.206045 +v -1.661254 6.304121 0.232961 +v -1.788706 6.214579 0.149465 +v -1.671208 5.987431 0.191703 +v -1.779598 5.911281 0.120696 +v -1.722137 5.623943 0.176634 +v -1.938878 6.061577 0.081314 +v -1.907308 5.781164 0.062738 +v -2.105997 5.850996 0.031124 +v -2.049432 5.602079 0.020056 +v -2.283641 5.590930 0.000826 +v -2.200505 5.380912 -0.005711 +v -2.464985 5.291371 -0.008416 +v -2.354725 5.126157 -0.013571 +v -2.138004 5.147405 0.021527 +v -2.259174 4.947246 0.015350 +v -2.506165 4.847608 -0.003222 +v -2.378159 4.728391 0.023481 +v -2.649001 4.555968 0.024938 +v -2.490386 4.499250 0.045606 +v -2.591542 4.268631 0.080874 +v -2.677740 4.045393 0.127931 +v -2.777749 4.262444 0.069825 +v -2.887459 3.978317 0.129718 +v -2.811017 4.620900 0.036864 +v -2.962408 4.275753 0.089648 +v -3.091414 3.941654 0.160072 +v -2.970208 4.691549 0.080930 +v -3.138423 4.308043 0.139580 +v -3.281766 3.936813 0.217832 +v -3.120451 4.765205 0.155441 +v -3.299028 4.358077 0.217702 +v -3.451201 3.963982 0.300774 +v -3.255978 4.839034 0.257532 +v -3.438054 4.423929 0.321014 +v -3.702329 4.108976 0.528615 +v -3.593208 4.022112 0.405712 +v -3.550157 4.503072 0.445543 +v -3.774371 4.221231 0.664757 +v -3.631027 4.592461 0.586506 +v -3.371579 4.910200 0.383281 +v -3.276185 5.357014 0.491064 +v -3.462812 4.975966 0.527855 +v -3.173457 5.314717 0.344223 +v -3.078320 5.720956 0.477543 +v -2.963406 5.701076 0.329869 +v -3.053976 5.251476 0.217708 +v -2.922330 5.169722 0.116382 +v -2.712278 5.556081 0.102028 +v -2.839809 5.645404 0.203073 +v -2.749497 6.054429 0.340771 +v -2.498370 5.909434 0.112930 +v -2.621709 6.005681 0.214189 +v -2.539951 6.361199 0.376510 +v -2.288823 6.216205 0.148669 +v -2.408058 6.318460 0.250627 +v -2.342821 6.609595 0.435712 +v -2.091693 6.464600 0.207871 +v -2.207065 6.571723 0.310990 +v -2.001138 6.292346 0.130319 +v -2.186830 6.058361 0.074552 +v -2.384219 5.769391 0.040886 +v -2.585716 5.436539 0.030617 +v -2.783581 5.072596 0.044138 +v -2.643058 4.963832 0.003752 +v -2.493742 6.576763 0.577245 +v -2.679434 6.342778 0.521478 +v -2.654029 6.474487 0.730149 +v -2.821148 6.263906 0.679960 +v -2.817522 6.306699 0.888548 +v -2.959645 6.127614 0.845865 +v -2.977938 6.079845 1.046356 +v -3.089603 5.939140 1.012820 +v -3.129113 5.802644 1.197508 +v -3.206029 5.705725 1.174408 +v -3.230002 5.521648 1.352185 +v -3.265238 5.485749 1.336194 +v -3.304449 5.436341 1.324418 +v -3.346130 5.375320 1.317309 +v -3.287791 5.586029 1.160463 +v -3.371254 5.448157 1.156210 +v -3.329472 5.565209 0.986401 +v -3.208302 5.765368 0.992577 +v -3.264939 5.651692 0.812239 +v -3.110719 5.906446 0.820099 +v -3.180136 5.704281 0.640420 +v -2.998792 6.003840 0.649662 +v -2.876823 6.053808 0.487811 +v -3.358209 5.376742 0.652588 +v -3.526168 5.033810 0.685700 +v -3.416378 5.373142 0.822588 +v -3.559215 5.081503 0.850748 +v -3.448456 5.346354 0.994531 +v -3.560683 5.117214 1.016657 +v -3.453211 5.297407 1.161811 +v -3.530515 5.139573 1.177050 +v -3.388679 5.305034 1.315141 +v -3.430461 5.228182 1.317996 +v -3.469870 5.147719 1.325765 +v -3.505392 5.066736 1.338150 +v -3.535661 4.988345 1.354674 +v -3.600193 4.980720 1.201343 +v -3.659567 4.826951 1.233757 +v -3.661839 4.886594 1.051924 +v -3.748038 4.663357 1.098982 +v -3.687963 4.787979 0.895635 +v -3.797673 4.503852 0.955528 +v -3.677558 4.688663 0.738483 +v -3.806565 4.354564 0.808908 +v -3.884129 4.240041 1.028121 +v -3.908226 4.044355 0.894269 +v -3.944008 4.006683 1.110627 +v -3.978638 3.769956 0.991286 +v -3.887331 3.876544 0.759606 +v -3.965569 3.571647 0.867404 +v -3.822247 3.743059 0.629306 +v -3.905303 3.419383 0.743744 +v -3.715475 3.649027 0.508376 +v -3.800157 3.319009 0.625057 +v -3.654175 3.274388 0.515903 +v -3.571119 3.598064 0.401465 +v -3.472964 3.287230 0.420479 +v -3.394727 3.592127 0.312680 +v -3.263487 3.357045 0.342450 +v -3.193076 3.631445 0.245434 +v -3.033794 3.481149 0.284817 +v -2.973915 3.714506 0.202311 +v -2.792715 3.654771 0.249792 +v -2.745667 3.838119 0.184968 +v -3.948303 3.150385 0.867535 +v -4.007293 3.126111 1.104949 +v -4.006075 3.318257 0.984012 +v -4.016189 3.368983 1.205069 +v -4.015091 3.541911 1.096230 +v -3.975945 3.665684 1.292434 +v -3.975011 3.812745 1.199875 +v -3.888104 4.004813 1.363687 +v -3.887372 4.120359 1.290964 +v -3.756048 4.373337 1.416089 +v -3.755542 4.452926 1.365997 +v -3.863013 4.272734 1.220843 +v -3.738764 4.557884 1.317695 +v -3.815965 4.456082 1.156018 +v -3.706357 4.684177 1.273044 +v -3.576035 4.851176 1.397466 +v -3.559514 4.915559 1.374703 +v -3.584588 4.797669 1.422089 +v -3.584846 4.757094 1.447626 +v -3.576797 4.731012 1.473096 +v -3.560752 4.720424 1.497519 +v -3.740260 4.322174 1.466050 +v -3.708786 4.301405 1.513957 +v -3.865185 3.930536 1.436219 +v -3.819493 3.900383 1.505770 +v -3.946774 3.571148 1.384748 +v -3.888618 3.532770 1.473270 +v -3.981888 3.257820 1.313619 +v -3.913505 3.212692 1.417709 +vn 0.7938 -0.3014 0.5282 +vn 0.8585 -0.3530 0.3719 +vn 0.8863 -0.2994 0.3532 +vn 0.8345 -0.4066 0.3718 +vn 0.7664 -0.3608 0.5314 +vn 0.7063 -0.2442 0.6645 +vn 0.8232 -0.2437 0.5128 +vn 0.9159 -0.2481 0.3155 +vn 0.9433 -0.3041 0.1328 +vn 0.9210 -0.3493 0.1725 +vn 0.9355 -0.3484 -0.0588 +vn 0.9223 -0.3857 -0.0232 +vn 0.8984 -0.3942 0.1935 +vn 0.8897 -0.3793 -0.2541 +vn 0.8857 -0.4055 -0.2261 +vn 0.9062 -0.4228 -0.0035 +vn 0.8056 -0.4088 -0.4288 +vn 0.8124 -0.4125 -0.4121 +vn 0.8750 -0.4349 -0.2125 +vn 0.6810 -0.3932 -0.6178 +vn 0.7926 -0.4229 -0.4392 +vn 0.7988 -0.4421 -0.4080 +vn 0.8609 -0.4616 -0.2140 +vn 0.7913 -0.4450 -0.4194 +vn 0.8421 -0.4878 -0.2302 +vn 0.7743 -0.4603 -0.4343 +vn 0.8186 -0.5118 -0.2605 +vn 0.7538 -0.4718 -0.4574 +vn 0.7895 -0.5329 -0.3044 +vn 0.7299 -0.4797 -0.4869 +vn 0.7538 -0.5492 -0.3608 +vn 0.7032 -0.4837 -0.5211 +vn 0.7108 -0.5587 -0.4273 +vn 0.6740 -0.4835 -0.5585 +vn 0.6655 -0.5512 -0.5033 +vn 0.6442 -0.4772 -0.5977 +vn 0.6041 -0.5468 -0.5798 +vn 0.6132 -0.4604 -0.6419 +vn 0.5456 -0.5204 -0.6569 +vn 0.6457 -0.6464 -0.4064 +vn 0.5531 -0.6275 -0.5481 +vn 0.4614 -0.5866 -0.6656 +vn 0.6069 -0.7345 -0.3037 +vn 0.4817 -0.7184 -0.5018 +vn 0.3512 -0.6585 -0.6656 +vn 0.5389 -0.8259 -0.1658 +vn 0.3911 -0.8138 -0.4300 +vn 0.1977 -0.7363 -0.6471 +vn 0.4204 -0.9071 0.0193 +vn 0.1998 -0.9308 -0.3062 +vn -0.0235 -0.8097 -0.5864 +vn 0.2258 -0.9417 0.2495 +vn -0.0625 -0.9931 -0.0990 +vn -0.3247 -0.8366 -0.4412 +vn -0.0382 -0.8677 0.4957 +vn -0.3602 -0.9144 0.1849 +vn -0.6388 -0.7425 -0.2015 +vn -0.5904 -0.6806 0.4339 +vn -0.7144 -0.4010 0.5734 +vn -0.2710 -0.6629 0.6979 +vn -0.8474 -0.5284 0.0514 +vn -0.9191 -0.2999 0.2557 +vn -0.9085 -0.3280 -0.2589 +vn -0.7116 -0.4983 -0.4953 +vn -0.4503 -0.5848 -0.6747 +vn -0.7234 -0.2955 -0.6240 +vn -0.1750 -0.6167 -0.7675 +vn -0.5122 -0.3733 -0.7735 +vn 0.0498 -0.6107 -0.7903 +vn -0.2798 -0.4359 -0.8554 +vn 0.2391 -0.5717 -0.7849 +vn -0.0587 -0.4675 -0.8821 +vn 0.3820 -0.5313 -0.7561 +vn 0.1366 -0.4761 -0.8687 +vn 0.4973 -0.4877 -0.7175 +vn 0.3039 -0.4691 -0.8292 +vn 0.5843 -0.4454 -0.6784 +vn 0.4471 -0.4513 -0.7723 +vn 0.5589 -0.4268 -0.7110 +vn 0.5541 -0.4141 -0.7221 +vn 0.4005 -0.4085 -0.8202 +vn 0.5403 -0.3988 -0.7409 +vn 0.3704 -0.3700 -0.8520 +vn 0.5301 -0.3847 -0.7556 +vn 0.3514 -0.3337 -0.8747 +vn 0.5223 -0.3718 -0.7674 +vn 0.3438 -0.3008 -0.8896 +vn 0.5168 -0.3571 -0.7781 +vn 0.3481 -0.2715 -0.8973 +vn 0.5195 -0.3378 -0.7848 +vn 0.3648 -0.2459 -0.8980 +vn 0.5337 -0.3201 -0.7827 +vn 0.3952 -0.2288 -0.8896 +vn 0.5557 -0.3076 -0.7724 +vn 0.4339 -0.2113 -0.8758 +vn 0.5828 -0.2999 -0.7552 +vn 0.4846 -0.2073 -0.8498 +vn 0.6136 -0.2961 -0.7320 +vn 0.5429 -0.1995 -0.8157 +vn 0.6487 -0.2986 -0.7000 +vn 0.3439 -0.0976 -0.9339 +vn 0.4455 -0.0892 -0.8908 +vn 0.6059 -0.2099 -0.7673 +vn 0.5474 -0.0919 -0.8318 +vn 0.6706 -0.2197 -0.7085 +vn 0.6716 -0.3118 -0.6722 +vn 0.7128 -0.3115 -0.6284 +vn 0.7390 -0.3191 -0.5934 +vn 0.7368 -0.2274 -0.6367 +vn 0.7918 -0.2518 -0.5565 +vn 0.7603 -0.3342 -0.5570 +vn 0.8335 -0.2786 -0.4771 +vn 0.7768 -0.3482 -0.5247 +vn 0.8622 -0.3048 -0.4045 +vn 0.7891 -0.3615 -0.4966 +vn 0.8798 -0.3308 -0.3414 +vn 0.7978 -0.3738 -0.4731 +vn 0.8881 -0.3567 -0.2898 +vn 0.9424 -0.3140 -0.1150 +vn 0.9626 -0.2609 0.0732 +vn 0.9431 -0.2744 -0.1878 +vn 0.9465 -0.1957 0.2564 +vn 0.9771 -0.2121 -0.0167 +vn 0.8933 -0.1221 0.4326 +vn 0.9770 -0.1368 0.1637 +vn 0.8558 -0.1888 0.4817 +vn 0.8030 -0.0438 0.5944 +vn 0.9361 -0.0490 0.3483 +vn 0.7671 -0.1185 0.6305 +vn 0.6790 0.0344 0.7333 +vn 0.8430 0.0465 0.5359 +vn 0.6538 -0.0484 0.7551 +vn 0.5292 0.2312 0.8163 +vn 0.5289 0.1098 0.8415 +vn 0.7132 0.1415 0.6865 +vn 0.3330 0.2972 0.8949 +vn 0.3629 0.1817 0.9139 +vn 0.5215 0.0215 0.8530 +vn 0.3667 0.0944 0.9256 +vn 0.5032 -0.0500 0.8628 +vn 0.6293 -0.1191 0.7680 +vn 0.7361 -0.1851 0.6511 +vn 0.6012 -0.1815 0.7782 +vn 0.4494 -0.1732 0.8764 +vn 0.5712 -0.2418 0.7844 +vn 0.4792 -0.1134 0.8704 +vn 0.6778 -0.3052 0.6689 +vn 0.4099 -0.2333 0.8818 +vn 0.5364 -0.3045 0.7871 +vn 0.6463 -0.3714 0.6665 +vn 0.3566 -0.2968 0.8859 +vn 0.4936 -0.3738 0.7853 +vn 0.6142 -0.4425 0.6535 +vn 0.2818 -0.3683 0.8860 +vn 0.4362 -0.4556 0.7760 +vn 0.5671 -0.5356 0.6257 +vn 0.1714 -0.4528 0.8750 +vn 0.3514 -0.5586 0.7513 +vn 0.5109 -0.6420 0.5717 +vn 0.0006 -0.5537 0.8327 +vn 0.2130 -0.6929 0.6888 +vn 0.4113 -0.7851 0.4632 +vn 0.5624 -0.7965 0.2221 +vn 0.6339 -0.6847 0.3598 +vn 0.6563 -0.7545 0.0093 +vn 0.7183 -0.6773 0.1592 +vn 0.7057 -0.6901 -0.1606 +vn 0.7628 -0.6461 -0.0271 +vn 0.7254 -0.6200 -0.2990 +vn 0.7742 -0.6029 -0.1927 +vn 0.8005 -0.5953 0.0687 +vn 0.8152 -0.5667 -0.1195 +vn 0.8306 -0.5408 0.1328 +vn 0.8442 -0.5326 -0.0601 +vn 0.8551 -0.4887 0.1734 +vn 0.8691 -0.4939 -0.0255 +vn 0.8773 -0.4393 0.1935 +vn 0.8896 -0.4568 -0.0065 +vn 0.8109 -0.4647 0.3557 +vn 0.7413 -0.4237 0.5205 +vn 0.7862 -0.5294 0.3188 +vn 0.7147 -0.4946 0.4945 +vn 0.7559 -0.6027 0.2556 +vn 0.6823 -0.5789 0.4465 +vn -0.1932 -0.3642 0.9111 +vn -0.4368 -0.4070 0.8023 +vn -0.3408 -0.1858 0.9216 +vn -0.0137 -0.3109 0.9503 +vn -0.5432 -0.1930 0.8171 +vn -0.4509 -0.0333 0.8919 +vn -0.1814 -0.1652 0.9694 +vn -0.6050 -0.0264 0.7958 +vn -0.5409 0.1000 0.8351 +vn -0.3229 -0.0313 0.9459 +vn -0.6408 0.1042 0.7606 +vn -0.5936 0.2054 0.7781 +vn -0.4415 0.0916 0.8926 +vn -0.6615 0.2109 0.7197 +vn -0.6481 0.3026 0.6989 +vn -0.5387 0.2022 0.8179 +vn -0.6787 0.3034 0.6688 +vn -0.6810 0.3932 0.6178 +vn -0.6059 0.3015 0.7362 +vn -0.5764 0.3052 0.7581 +vn -0.4743 0.2050 0.8562 +vn -0.4314 0.2136 0.8765 +vn -0.2813 0.1120 0.9531 +vn -0.3532 0.1005 0.9301 +vn -0.1217 0.0063 0.9925 +vn -0.2093 -0.0143 0.9778 +vn 0.0416 -0.1008 0.9940 +vn -0.0517 -0.1332 0.9897 +vn 0.2003 -0.1993 0.9592 +vn 0.1143 -0.2509 0.9612 +vn 0.2634 -0.1511 0.9528 +vn 0.1106 -0.0601 0.9920 +vn 0.3091 -0.0984 0.9459 +vn -0.0541 0.0359 0.9979 +vn 0.1559 -0.0161 0.9876 +vn -0.2229 0.1343 0.9656 +vn -0.0105 0.0710 0.9974 +vn -0.3891 0.2307 0.8919 +vn -0.1845 0.1620 0.9694 +vn -0.5329 0.3129 0.7862 +vn -0.3648 0.2474 0.8976 +vn -0.5763 0.3070 0.7574 +vn -0.5200 0.3418 0.7828 +vn -0.5101 0.3395 0.7903 +vn -0.3496 0.2748 0.8957 +vn -0.5359 0.3567 0.7652 +vn -0.1624 0.1980 0.9667 +vn -0.3428 0.3000 0.8902 +vn -0.5372 0.3705 0.7577 +vn -0.3491 0.3328 0.8760 +vn -0.1600 0.2383 0.9579 +vn -0.1686 0.2843 0.9438 +vn 0.0248 0.1685 0.9854 +vn 0.0181 0.1173 0.9929 +vn 0.1854 0.0372 0.9820 +vn 0.3402 -0.0399 0.9395 +vn 0.2008 0.0948 0.9750 +vn 0.0190 0.2278 0.9735 +vn 0.1981 0.1645 0.9663 +vn 0.3604 0.0220 0.9326 +vn -0.0079 0.2984 0.9544 +vn 0.1774 0.2475 0.9525 +vn -0.0558 0.3797 0.9234 +vn 0.1339 0.3467 0.9284 +vn -0.1273 0.4709 0.8730 +vn 0.0641 0.4652 0.8829 +vn -0.2242 0.5676 0.7922 +vn -0.0518 0.5976 0.8001 +vn 0.2820 0.4414 0.8518 +vn 0.1780 0.6181 0.7657 +vn 0.5217 0.3796 0.7641 +vn 0.4556 0.5994 0.6581 +vn 0.7362 0.2777 0.6172 +vn 0.7316 0.4970 0.4666 +vn 0.9060 0.3422 0.2493 +vn 0.8879 0.1563 0.4326 +vn 0.9880 0.1525 0.0229 +vn 0.9735 0.0355 0.2260 +vn 0.9878 0.0072 -0.1555 +vn 0.9968 -0.0743 0.0309 +vn 0.9497 -0.1079 -0.2940 +vn 0.9760 -0.1663 -0.1406 +vn 0.8942 -0.1988 -0.4011 +vn 0.9300 -0.2365 -0.2813 +vn 0.8354 -0.1585 -0.5263 +vn 0.8812 -0.0617 -0.4686 +vn 0.7451 -0.1267 -0.6549 +vn 0.9244 0.0884 -0.3710 +vn 0.7571 -0.0014 -0.6534 +vn 0.9287 0.2871 -0.2349 +vn 0.7540 0.1664 -0.6354 +vn 0.8428 0.5374 -0.0288 +vn 0.7133 0.3962 -0.5781 +vn 0.6136 0.7571 0.2244 +vn 0.5908 0.6778 -0.4376 +vn 0.0665 0.9940 0.0867 +vn 0.3012 0.8472 0.4377 +vn 0.3602 0.9144 -0.1849 +vn -0.1955 0.9347 0.2970 +vn 0.0121 0.8235 0.5672 +vn -0.3704 0.8266 0.4237 +vn -0.2212 0.7406 0.6345 +vn -0.4799 0.7219 0.4985 +vn -0.3554 0.6721 0.6496 +vn -0.5520 0.6304 0.5458 +vn -0.4649 0.5986 0.6524 +vn -0.6032 0.5494 0.5782 +vn -0.5486 0.5314 0.6455 +vn -0.3867 0.5343 0.7517 +vn -0.4935 0.4982 0.7129 +vn -0.3072 0.4723 0.8262 +vn -0.4442 0.4595 0.7691 +vn -0.2434 0.4078 0.8800 +vn -0.4077 0.4154 0.8132 +vn -0.1975 0.3462 0.9172 +vn -0.3711 0.3784 0.8480 +vn -0.5541 0.4025 0.7287 +vn -0.5268 0.3851 0.7577 +vn -0.5718 0.4215 0.7038 +vn -0.5885 0.4375 0.6799 +vn -0.6209 0.4530 0.6397 +vn -0.6444 0.4707 0.6027 +vn -0.6825 0.4760 0.5546 +vn -0.6658 0.5545 0.4992 +vn -0.7153 0.5553 0.4244 +vn -0.7144 0.6293 0.3059 +vn -0.6491 0.6339 0.4205 +vn -0.6954 0.6998 0.1635 +vn -0.6025 0.7320 0.3180 +vn -0.6491 0.7606 -0.0096 +vn -0.5500 0.8139 0.1872 +vn -0.5621 0.7983 -0.2165 +vn -0.4384 0.8988 0.0011 +vn -0.4006 0.7974 -0.4514 +vn -0.2514 0.9359 -0.2468 +vn -0.2150 0.7152 -0.6650 +vn 0.0125 0.8561 -0.5167 +vn 0.2760 0.6441 -0.7134 +vn 0.0117 0.5546 -0.8321 +vn 0.4503 0.3852 -0.8055 +vn 0.1977 0.3573 -0.9128 +vn 0.5385 0.1847 -0.8221 +vn 0.3390 0.1784 -0.9237 +vn 0.6037 0.0114 -0.7971 +vn 0.4466 0.0273 -0.8943 +vn 0.6374 -0.1148 -0.7620 +vn 0.1756 0.1671 -0.9702 +vn 0.3134 0.0247 -0.9493 +vn 0.0507 0.1339 -0.9897 +vn 0.2044 0.0122 -0.9788 +vn -0.0418 0.0996 -0.9942 +vn 0.1190 -0.0088 -0.9929 +vn -0.1093 0.0596 -0.9922 +vn 0.0548 -0.0376 -0.9978 +vn 0.2819 -0.1164 -0.9523 +vn 0.2229 -0.1366 -0.9652 +vn 0.0088 -0.0723 -0.9973 +vn 0.1855 -0.1640 -0.9689 +vn -0.0184 -0.1163 -0.9930 +vn 0.1619 -0.1969 -0.9670 +vn 0.1562 -0.2394 -0.9583 +vn -0.0271 -0.1671 -0.9856 +vn 0.1661 -0.2882 -0.9430 +vn -0.2012 -0.0942 -0.9750 +vn -0.0183 -0.2281 -0.9735 +vn -0.1863 -0.0353 -0.9819 +vn -0.3608 -0.0212 -0.9324 +vn -0.1990 -0.1657 -0.9659 +vn -0.3408 0.0413 -0.9392 +vn -0.5021 0.0501 -0.8633 +vn -0.3679 -0.0970 -0.9248 +vn -0.4792 0.1134 -0.8704 +vn -0.6294 0.1190 -0.7679 +vn -0.5216 -0.0259 -0.8528 +vn -0.6012 0.1815 -0.7782 +vn -0.7697 0.1181 -0.6273 +vn -0.7364 0.1844 -0.6510 +vn -0.6547 0.0463 -0.7545 +vn -0.8567 0.1865 -0.4808 +vn -0.8231 0.2452 -0.5122 +vn -0.7064 0.2446 -0.6642 +vn -0.7937 0.3018 -0.5281 +vn -0.7662 0.3597 -0.5324 +vn -0.6786 0.3050 -0.6682 +vn -0.5719 0.2424 -0.7837 +vn -0.7417 0.4233 -0.5203 +vn -0.6495 0.3697 -0.6644 +vn -0.5381 0.3055 -0.7855 +vn -0.4487 0.1730 -0.8768 +vn -0.4096 0.2318 -0.8823 +vn -0.6124 0.4445 -0.6538 +vn -0.4965 0.3754 -0.7827 +vn -0.3574 0.2942 -0.8864 +vn -0.5758 0.5312 -0.6215 +vn -0.4407 0.4582 -0.7719 +vn -0.2840 0.3644 -0.8869 +vn -0.5062 0.6462 -0.5712 +vn -0.3586 0.5628 -0.7448 +vn -0.1744 0.4477 -0.8770 +vn 0.0148 0.3099 -0.9507 +vn -0.1100 0.2560 -0.9604 +vn -0.1991 0.2017 -0.9590 +vn -0.2646 0.1512 -0.9524 +vn -0.3096 0.0970 -0.9459 +vn -0.1558 0.0145 -0.9877 +vn -0.6327 0.6832 -0.3647 +vn -0.7155 0.6797 -0.1616 +vn -0.6809 0.5836 -0.4425 +vn -0.7595 0.6500 0.0273 +vn -0.7562 0.6025 -0.2551 +vn -0.7701 0.6036 0.2063 +vn -0.7982 0.5990 -0.0638 +vn -0.7632 0.5428 0.3506 +vn -0.8093 0.5741 0.1241 +vn -0.7256 0.4746 0.4982 +vn -0.7922 0.5301 0.3024 +vn -0.7031 0.4775 0.5269 +vn -0.7595 0.4661 0.4539 +vn -0.7786 0.4547 0.4325 +vn -0.8207 0.5088 0.2600 +vn -0.8433 0.4857 0.2300 +vn -0.8668 0.4980 0.0266 +vn -0.8417 0.5364 0.0621 +vn -0.8546 0.4903 -0.1711 +vn -0.8303 0.5421 -0.1292 +vn -0.8112 0.4651 -0.3544 +vn -0.7871 0.5284 -0.3183 +vn -0.7148 0.4948 -0.4942 +vn -0.8337 0.4075 -0.3727 +vn -0.8775 0.4390 -0.1932 +vn -0.8585 0.3529 -0.3720 +vn -0.8891 0.4577 0.0050 +vn -0.8984 0.3942 -0.1935 +vn -0.8618 0.4587 0.2166 +vn -0.9061 0.4230 0.0038 +vn -0.7830 0.4518 0.4276 +vn -0.8747 0.4352 0.2134 +vn -0.7723 0.4583 0.4399 +vn -0.8066 0.4080 0.4277 +vn -0.8044 0.3989 0.4402 +vn -0.8012 0.3905 0.4534 +vn -0.8843 0.4095 0.2242 +vn -0.8881 0.3851 0.2508 +vn -0.9220 0.3864 0.0237 +vn -0.9341 0.3524 0.0567 +vn -0.9212 0.3489 -0.1723 +vn -0.9425 0.3062 -0.1343 +vn -0.8861 0.3009 -0.3525 +vn -0.9155 0.2495 -0.3157 +vn -0.9623 0.2617 -0.0742 +vn -0.9468 0.1968 -0.2545 +vn -0.9771 0.2124 0.0130 +vn -0.9765 0.1398 -0.1639 +vn -0.8932 0.1223 -0.4328 +vn -0.9360 0.0482 -0.3487 +vn -0.8024 0.0448 -0.5950 +vn -0.8460 -0.0511 -0.5307 +vn -0.6821 -0.0387 -0.7303 +vn -0.7052 -0.1461 -0.6938 +vn -0.5278 -0.2273 -0.8184 +vn -0.5303 -0.1087 -0.8408 +vn -0.3328 -0.2950 -0.8957 +vn -0.3603 -0.1814 -0.9150 +vn -0.1336 -0.3480 -0.9279 +vn -0.1774 -0.2462 -0.9528 +vn 0.0562 -0.3826 -0.9222 +vn 0.0105 -0.3008 -0.9536 +vn 0.2396 -0.4068 -0.8815 +vn 0.1965 -0.3436 -0.9183 +vn -0.8916 -0.1666 -0.4211 +vn -0.9878 -0.1524 -0.0333 +vn -0.9732 -0.0377 -0.2269 +vn -0.9902 -0.0034 0.1396 +vn -0.9972 0.0676 -0.0319 +vn -0.9543 0.1016 0.2811 +vn -0.9773 0.1578 0.1411 +vn -0.9001 0.2040 0.3851 +vn -0.9286 0.2327 0.2890 +vn -0.8370 0.2778 0.4715 +vn -0.8610 0.2941 0.4150 +vn -0.9412 0.2761 0.1949 +vn -0.8799 0.3217 0.3498 +vn -0.9428 0.3122 0.1173 +vn -0.8892 0.3493 0.2955 +vn -0.7885 0.3726 0.4893 +vn -0.8074 0.3770 0.4537 +vn -0.7764 0.3569 0.5194 +vn -0.7593 0.3443 0.5522 +vn -0.7358 0.3303 0.5912 +vn -0.7054 0.3159 0.6345 +vn -0.7897 0.2592 0.5560 +vn -0.7333 0.2339 0.6383 +vn -0.8383 0.1744 0.5165 +vn -0.7554 0.1219 0.6438 +vn -0.8847 0.0681 0.4611 +vn -0.7687 0.0155 0.6394 +vn -0.9226 -0.0739 0.3786 +vn -0.7720 -0.1463 0.6186 +usemtl Default_OBJ +s 1 +f 965//965 966//966 971//967 +f 965//965 967//968 966//966 +f 965//965 969//969 967//968 +f 968//970 965//965 970//971 +f 968//970 969//969 965//965 +f 965//965 971//967 970//971 +f 970//971 971//967 972//972 +f 971//967 973//973 972//972 +f 971//967 974//974 973//973 +f 966//966 974//974 971//967 +f 974//974 975//975 973//973 +f 974//974 977//976 975//975 +f 966//966 976//977 974//974 +f 976//977 977//976 974//974 +f 977//976 978//978 975//975 +f 977//976 980//979 978//978 +f 976//977 979//980 977//976 +f 979//980 980//979 977//976 +f 980//979 981//981 978//978 +f 980//979 983//982 981//981 +f 979//980 982//983 980//979 +f 982//983 983//982 980//979 +f 981//981 983//982 984//984 +f 983//982 985//985 984//984 +f 982//983 985//985 983//982 +f 982//983 986//986 985//985 +f 985//985 986//986 984//984 +f 982//983 987//987 986//986 +f 986//986 988//988 984//984 +f 987//987 988//988 986//986 +f 987//987 989//989 988//988 +f 988//988 990//990 984//984 +f 989//989 990//990 988//988 +f 989//989 991//991 990//990 +f 990//990 992//992 984//984 +f 991//991 992//992 990//990 +f 991//991 993//993 992//992 +f 992//992 994//994 984//984 +f 993//993 994//994 992//992 +f 993//993 995//995 994//994 +f 994//994 996//996 984//984 +f 995//995 996//996 994//994 +f 995//995 997//997 996//996 +f 996//996 998//998 984//984 +f 997//997 998//998 996//996 +f 997//997 999//999 998//998 +f 998//998 1000//1000 984//984 +f 999//999 1000//1000 998//998 +f 999//999 1003//1001 1000//1000 +f 1000//1000 1001//1002 984//984 +f 1002//1003 1001//1002 1000//1000 +f 1002//1003 1000//1000 1003//1001 +f 1004//1004 1006//1005 1003//1001 +f 1004//1004 1003//1001 999//999 +f 1005//1006 1002//1003 1003//1001 +f 1005//1006 1003//1001 1006//1005 +f 1007//1007 1009//1008 1006//1005 +f 1007//1007 1006//1005 1004//1004 +f 1008//1009 1005//1006 1006//1005 +f 1008//1009 1006//1005 1009//1008 +f 1010//1010 1012//1011 1009//1008 +f 1010//1010 1009//1008 1007//1007 +f 1011//1012 1008//1009 1009//1008 +f 1011//1012 1009//1008 1012//1011 +f 1013//1013 1015//1014 1012//1011 +f 1013//1013 1012//1011 1010//1010 +f 1014//1015 1011//1012 1012//1011 +f 1014//1015 1012//1011 1015//1014 +f 1016//1016 1018//1017 1015//1014 +f 1016//1016 1015//1014 1013//1013 +f 1017//1018 1014//1015 1015//1014 +f 1017//1018 1015//1014 1018//1017 +f 1019//1019 1021//1020 1018//1017 +f 1019//1019 1018//1017 1016//1016 +f 1020//1021 1017//1018 1018//1017 +f 1020//1021 1018//1017 1021//1020 +f 1022//1022 1021//1020 1019//1019 +f 1022//1022 1020//1021 1021//1020 +f 1024//1023 1022//1022 1023//1024 +f 1022//1022 1019//1019 1023//1024 +f 1022//1022 1025//1025 1020//1021 +f 1024//1023 1025//1025 1022//1022 +f 1024//1023 1026//1026 1025//1025 +f 1026//1026 1027//1027 1025//1025 +f 1025//1025 1027//1027 1028//1028 +f 1025//1025 1028//1028 1020//1021 +f 1028//1028 1017//1018 1020//1021 +f 1028//1028 1030//1029 1017//1018 +f 1027//1027 1029//1030 1028//1028 +f 1029//1030 1030//1029 1028//1028 +f 1030//1029 1014//1015 1017//1018 +f 1030//1029 1032//1031 1014//1015 +f 1029//1030 1031//1032 1030//1029 +f 1031//1032 1032//1031 1030//1029 +f 1032//1031 1011//1012 1014//1015 +f 1032//1031 1034//1033 1011//1012 +f 1031//1032 1033//1034 1032//1031 +f 1033//1034 1034//1033 1032//1031 +f 1034//1033 1008//1009 1011//1012 +f 1034//1033 1036//1035 1008//1009 +f 1033//1034 1035//1036 1034//1033 +f 1035//1036 1036//1035 1034//1033 +f 1036//1035 1005//1006 1008//1009 +f 1036//1035 1038//1037 1005//1006 +f 1035//1036 1037//1038 1036//1035 +f 1037//1038 1038//1037 1036//1035 +f 1038//1037 1002//1003 1005//1006 +f 1038//1037 1040//1039 1002//1003 +f 1037//1038 1039//1040 1038//1037 +f 1039//1040 1040//1039 1038//1037 +f 1040//1039 1001//1002 1002//1003 +f 1040//1039 1042//1041 1001//1002 +f 1039//1040 1041//1042 1040//1039 +f 1041//1042 1042//1041 1040//1039 +f 1001//1002 1042//1041 984//984 +f 1042//1041 1043//1043 984//984 +f 1041//1042 1043//1043 1042//1041 +f 1043//1043 1045//1044 984//984 +f 1044//1045 1045//1044 1043//1043 +f 1044//1045 1043//1043 1041//1042 +f 1045//1044 1047//1046 984//984 +f 1046//1047 1047//1046 1045//1044 +f 1046//1047 1045//1044 1044//1045 +f 1047//1046 1049//1048 984//984 +f 1048//1049 1049//1048 1047//1046 +f 1048//1049 1047//1046 1046//1047 +f 1049//1048 1051//1050 984//984 +f 1050//1051 1051//1050 1049//1048 +f 1050//1051 1049//1048 1048//1049 +f 1051//1050 1053//1052 984//984 +f 1052//1053 1053//1052 1051//1050 +f 1052//1053 1051//1050 1050//1051 +f 1053//1052 1054//1054 984//984 +f 1052//1053 1054//1054 1053//1052 +f 1052//1053 1055//1055 1054//1054 +f 1054//1054 1056//1056 984//984 +f 1055//1055 1056//1056 1054//1054 +f 1055//1055 1057//1057 1056//1056 +f 1056//1056 1058//1058 984//984 +f 1057//1057 1058//1058 1056//1056 +f 1057//1057 1059//1059 1058//1058 +f 1058//1058 1060//1060 984//984 +f 1059//1059 1060//1060 1058//1058 +f 1059//1059 1061//1061 1060//1060 +f 1060//1060 1062//1062 984//984 +f 1061//1061 1062//1062 1060//1060 +f 1061//1061 1064//1063 1062//1062 +f 1062//1062 1063//1064 984//984 +f 1064//1063 1063//1064 1062//1062 +f 1065//1065 1066//1066 1064//1063 +f 1065//1065 1064//1063 1061//1061 +f 1066//1066 1067//1067 1064//1063 +f 1064//1063 1067//1067 1063//1064 +f 1066//1066 1068//1068 1067//1067 +f 1068//1068 1069//1069 1067//1067 +f 1067//1067 1069//1069 1070//1070 +f 1067//1067 1070//1070 1063//1064 +f 1063//1064 1070//1070 984//984 +f 1070//1070 1071//1071 984//984 +f 1069//1069 1071//1071 1070//1070 +f 1071//1071 1074//1072 984//984 +f 1069//1069 1073//1073 1071//1071 +f 1072//1074 1074//1072 1071//1071 +f 1072//1074 1071//1071 1073//1073 +f 1074//1072 1076//1075 984//984 +f 1075//1076 1076//1075 1074//1072 +f 1075//1076 1074//1072 1072//1074 +f 1076//1075 1078//1077 984//984 +f 1077//1078 1078//1077 1076//1075 +f 1077//1078 1076//1075 1075//1076 +f 1078//1077 1080//1079 984//984 +f 1079//1080 1080//1079 1078//1077 +f 1079//1080 1078//1077 1077//1078 +f 1080//1079 1082//1081 984//984 +f 1081//1082 1082//1081 1080//1079 +f 1081//1082 1080//1079 1079//1080 +f 1082//1081 981//981 984//984 +f 978//978 981//981 1082//1081 +f 978//978 1082//1081 1081//1082 +f 1083//1083 1081//1082 1079//1080 +f 975//975 978//978 1081//1082 +f 975//975 1081//1082 1083//1083 +f 1085//1084 1083//1083 1084//1085 +f 1083//1083 1079//1080 1084//1085 +f 973//973 975//975 1083//1083 +f 973//973 1083//1083 1085//1084 +f 1087//1086 1085//1084 1086//1087 +f 1085//1084 1084//1085 1086//1087 +f 972//972 973//973 1085//1084 +f 972//972 1085//1084 1087//1086 +f 1090//1088 1087//1086 1088//1089 +f 1087//1086 1086//1087 1088//1089 +f 1089//1090 972//972 1087//1086 +f 1089//1090 1087//1086 1090//1088 +f 1093//1091 1090//1088 1091//1092 +f 1090//1088 1088//1089 1091//1092 +f 1092//1093 1089//1090 1090//1088 +f 1092//1093 1090//1088 1093//1091 +f 1096//1094 1093//1091 1094//1095 +f 1093//1091 1091//1092 1094//1095 +f 1095//1096 1092//1093 1093//1091 +f 1095//1096 1093//1091 1096//1094 +f 1097//1097 1099//1098 1096//1094 +f 1097//1097 1096//1094 1098//1099 +f 1096//1094 1094//1095 1098//1099 +f 1099//1098 1095//1096 1096//1094 +f 1100//1100 1101//1101 1099//1098 +f 1100//1100 1099//1098 1097//1097 +f 1101//1101 1102//1102 1099//1098 +f 1099//1098 1102//1102 1095//1096 +f 1101//1101 1103//1103 1102//1102 +f 1103//1103 1104//1104 1102//1102 +f 1102//1102 1104//1104 1105//1105 +f 1102//1102 1105//1105 1095//1096 +f 1105//1105 1092//1093 1095//1096 +f 1105//1105 1107//1106 1092//1093 +f 1104//1104 1106//1107 1105//1105 +f 1106//1107 1107//1106 1105//1105 +f 1107//1106 1089//1090 1092//1093 +f 1107//1106 970//971 1089//1090 +f 1106//1107 968//970 1107//1106 +f 968//970 970//971 1107//1106 +f 1108//1108 1111//1109 1106//1107 +f 1108//1108 1106//1107 1109//1110 +f 1104//1104 1109//1110 1106//1107 +f 1106//1107 1110//1111 968//970 +f 1106//1107 1111//1109 1110//1111 +f 1112//1112 1114//1113 1111//1109 +f 1112//1112 1111//1109 1108//1108 +f 1111//1109 1113//1114 1110//1111 +f 1111//1109 1114//1113 1113//1114 +f 1115//1115 1117//1116 1114//1113 +f 1115//1115 1114//1113 1112//1112 +f 1114//1113 1116//1117 1113//1114 +f 1114//1113 1117//1116 1116//1117 +f 1118//1118 1120//1119 1117//1116 +f 1118//1118 1117//1116 1115//1115 +f 1117//1116 1119//1120 1116//1117 +f 1117//1116 1120//1119 1119//1120 +f 1121//1121 1123//1122 1120//1119 +f 1121//1121 1120//1119 1118//1118 +f 1120//1119 1122//1123 1119//1120 +f 1120//1119 1123//1122 1122//1123 +f 1124//1124 1126//1125 1123//1122 +f 1124//1124 1123//1122 1121//1121 +f 1123//1122 1125//1126 1122//1123 +f 1123//1122 1126//1125 1125//1126 +f 1023//1024 1019//1019 1126//1125 +f 1023//1024 1126//1125 1124//1124 +f 1126//1125 1016//1016 1125//1126 +f 1126//1125 1019//1019 1016//1016 +f 1122//1123 1125//1126 1127//1127 +f 1125//1126 1016//1016 1013//1013 +f 1125//1126 1013//1013 1127//1127 +f 1122//1123 1127//1127 1128//1128 +f 1128//1128 1127//1127 1129//1129 +f 1127//1127 1013//1013 1010//1010 +f 1127//1127 1010//1010 1129//1129 +f 1128//1128 1129//1129 1130//1130 +f 1130//1130 1129//1129 1131//1131 +f 1129//1129 1010//1010 1007//1007 +f 1129//1129 1007//1007 1131//1131 +f 1130//1130 1131//1131 1132//1132 +f 1132//1132 1131//1131 1133//1133 +f 1131//1131 1007//1007 1004//1004 +f 1131//1131 1004//1004 1133//1133 +f 1132//1132 1133//1133 1134//1134 +f 1134//1134 1133//1133 997//997 +f 1133//1133 1004//1004 999//999 +f 1133//1133 999//999 997//997 +f 1135//1135 1132//1132 1134//1134 +f 1135//1135 1134//1134 1136//1136 +f 1136//1136 1134//1134 995//995 +f 1134//1134 997//997 995//995 +f 1137//1137 1135//1135 1136//1136 +f 1137//1137 1136//1136 1138//1138 +f 1138//1138 1136//1136 993//993 +f 1136//1136 995//995 993//993 +f 1139//1139 1137//1137 1138//1138 +f 1139//1139 1138//1138 1140//1140 +f 1140//1140 1138//1138 991//991 +f 1138//1138 993//993 991//991 +f 1141//1141 1139//1139 1140//1140 +f 1141//1141 1140//1140 1142//1142 +f 1142//1142 1140//1140 989//989 +f 1140//1140 991//991 989//989 +f 976//977 1141//1141 1142//1142 +f 976//977 1142//1142 979//980 +f 979//980 1142//1142 987//987 +f 1142//1142 989//989 987//987 +f 966//966 967//968 1141//1141 +f 966//966 1141//1141 976//977 +f 967//968 1139//1139 1141//1141 +f 967//968 1143//1143 1139//1139 +f 1143//1143 1137//1137 1139//1139 +f 969//969 1144//1144 1143//1143 +f 969//969 1143//1143 967//968 +f 1144//1144 1145//1145 1143//1143 +f 1143//1143 1145//1145 1137//1137 +f 1144//1144 1146//1146 1145//1145 +f 1146//1146 1147//1147 1145//1145 +f 1145//1145 1147//1147 1135//1135 +f 1145//1145 1135//1135 1137//1137 +f 1146//1146 1148//1148 1147//1147 +f 1148//1148 1130//1130 1147//1147 +f 1147//1147 1130//1130 1132//1132 +f 1147//1147 1132//1132 1135//1135 +f 1116//1117 1119//1120 1148//1148 +f 1116//1117 1148//1148 1146//1146 +f 1119//1120 1128//1128 1148//1148 +f 1148//1148 1128//1128 1130//1130 +f 1113//1114 1116//1117 1146//1146 +f 1113//1114 1146//1146 1144//1144 +f 1110//1111 1113//1114 1144//1144 +f 1110//1111 1144//1144 969//969 +f 1119//1120 1122//1123 1128//1128 +f 1150//1149 1124//1124 1121//1121 +f 1149//1150 1023//1024 1124//1124 +f 1149//1150 1124//1124 1150//1149 +f 1153//1151 1150//1149 1151//1152 +f 1150//1149 1121//1121 1151//1152 +f 1152//1153 1149//1150 1150//1149 +f 1152//1153 1150//1149 1153//1151 +f 1156//1154 1153//1151 1154//1155 +f 1153//1151 1151//1152 1154//1155 +f 1155//1156 1152//1153 1153//1151 +f 1155//1156 1153//1151 1156//1154 +f 1159//1157 1156//1154 1157//1158 +f 1156//1154 1154//1155 1157//1158 +f 1158//1159 1155//1156 1156//1154 +f 1158//1159 1156//1154 1159//1157 +f 1162//1160 1159//1157 1160//1161 +f 1159//1157 1157//1158 1160//1161 +f 1161//1162 1158//1159 1159//1157 +f 1161//1162 1159//1157 1162//1160 +f 1165//1163 1162//1160 1163//1164 +f 1162//1160 1160//1161 1163//1164 +f 1164//1165 1161//1162 1162//1160 +f 1164//1165 1162//1160 1165//1163 +f 1166//1166 1164//1165 1165//1163 +f 1166//1166 1165//1163 1167//1167 +f 1165//1163 1163//1164 1167//1167 +f 1166//1166 1167//1167 1168//1168 +f 1167//1167 1169//1169 1168//1168 +f 1167//1167 1163//1164 1169//1169 +f 1168//1168 1169//1169 1170//1170 +f 1169//1169 1171//1171 1170//1170 +f 1169//1169 1172//1172 1171//1171 +f 1163//1164 1172//1172 1169//1169 +f 1172//1172 1173//1173 1171//1171 +f 1172//1172 1174//1174 1173//1173 +f 1163//1164 1160//1161 1172//1172 +f 1160//1161 1174//1174 1172//1172 +f 1174//1174 1175//1175 1173//1173 +f 1174//1174 1176//1176 1175//1175 +f 1160//1161 1157//1158 1174//1174 +f 1157//1158 1176//1176 1174//1174 +f 1176//1176 1177//1177 1175//1175 +f 1176//1176 1178//1178 1177//1177 +f 1157//1158 1154//1155 1176//1176 +f 1154//1155 1178//1178 1176//1176 +f 1178//1178 1115//1115 1177//1177 +f 1178//1178 1118//1118 1115//1115 +f 1154//1155 1151//1152 1178//1178 +f 1151//1152 1118//1118 1178//1178 +f 1175//1175 1177//1177 1179//1179 +f 1177//1177 1112//1112 1179//1179 +f 1177//1177 1115//1115 1112//1112 +f 1181//1180 1179//1179 1180//1181 +f 1179//1179 1108//1108 1180//1181 +f 1179//1179 1112//1112 1108//1108 +f 1175//1175 1179//1179 1181//1180 +f 1183//1182 1181//1180 1182//1183 +f 1181//1180 1180//1181 1182//1183 +f 1173//1173 1175//1175 1181//1180 +f 1173//1173 1181//1180 1183//1182 +f 1185//1184 1183//1182 1184//1185 +f 1183//1182 1182//1183 1184//1185 +f 1171//1171 1173//1173 1183//1182 +f 1171//1171 1183//1182 1185//1184 +f 1187//1186 1185//1184 1186//1187 +f 1185//1184 1184//1185 1186//1187 +f 1170//1170 1171//1171 1185//1184 +f 1170//1170 1185//1184 1187//1186 +f 1190//1188 1187//1186 1188//1189 +f 1187//1186 1186//1187 1188//1189 +f 1189//1190 1170//1170 1187//1186 +f 1189//1190 1187//1186 1190//1188 +f 1166//1166 1190//1188 1191//1191 +f 1190//1188 1188//1189 1191//1191 +f 1166//1166 1189//1190 1190//1188 +f 1166//1166 1191//1191 1192//1192 +f 1191//1191 1193//1193 1192//1192 +f 1191//1191 1188//1189 1193//1193 +f 1195//1194 1192//1192 1193//1193 +f 1188//1189 1194//1195 1193//1193 +f 1196//1196 1193//1193 1194//1195 +f 1195//1194 1193//1193 1196//1196 +f 1197//1197 1195//1194 1196//1196 +f 1197//1197 1196//1196 1198//1198 +f 1198//1198 1196//1196 1199//1199 +f 1196//1196 1194//1195 1199//1199 +f 1198//1198 1199//1199 1200//1200 +f 1200//1200 1199//1199 1201//1201 +f 1199//1199 1202//1202 1201//1201 +f 1199//1199 1194//1195 1202//1202 +f 1186//1187 1184//1185 1202//1202 +f 1186//1187 1202//1202 1194//1195 +f 1184//1185 1203//1203 1202//1202 +f 1201//1201 1202//1202 1203//1203 +f 1184//1185 1182//1183 1203//1203 +f 1182//1183 1204//1204 1203//1203 +f 1205//1205 1203//1203 1204//1204 +f 1201//1201 1203//1203 1205//1205 +f 1206//1206 1201//1201 1205//1205 +f 1206//1206 1205//1205 1207//1207 +f 1207//1207 1205//1205 1208//1208 +f 1205//1205 1204//1204 1208//1208 +f 1207//1207 1208//1208 1103//1103 +f 1103//1103 1208//1208 1104//1104 +f 1208//1208 1204//1204 1109//1110 +f 1208//1208 1109//1110 1104//1104 +f 1209//1209 1206//1206 1207//1207 +f 1209//1209 1207//1207 1210//1210 +f 1210//1210 1207//1207 1103//1103 +f 1211//1211 1209//1209 1210//1210 +f 1211//1211 1210//1210 1212//1212 +f 1212//1212 1210//1210 1101//1101 +f 1210//1210 1103//1103 1101//1101 +f 1213//1213 1211//1211 1212//1212 +f 1213//1213 1212//1212 1214//1214 +f 1214//1214 1212//1212 1100//1100 +f 1212//1212 1101//1101 1100//1100 +f 1215//1215 1213//1213 1214//1214 +f 1215//1215 1214//1214 1216//1216 +f 1216//1216 1214//1214 1217//1217 +f 1214//1214 1100//1100 1217//1217 +f 1216//1216 1217//1217 1218//1218 +f 1218//1218 1217//1217 1219//1219 +f 1217//1217 1100//1100 1097//1097 +f 1217//1217 1097//1097 1219//1219 +f 1218//1218 1219//1219 1220//1220 +f 1220//1220 1219//1219 1221//1221 +f 1219//1219 1097//1097 1098//1099 +f 1219//1219 1098//1099 1221//1221 +f 1220//1220 1221//1221 1222//1222 +f 1221//1221 1223//1223 1222//1222 +f 1221//1221 1224//1224 1223//1223 +f 1098//1099 1224//1224 1221//1221 +f 1224//1224 1225//1225 1223//1223 +f 1224//1224 1226//1226 1225//1225 +f 1098//1099 1094//1095 1224//1224 +f 1094//1095 1226//1226 1224//1224 +f 1226//1226 1227//1227 1225//1225 +f 1226//1226 1228//1228 1227//1227 +f 1094//1095 1091//1092 1226//1226 +f 1091//1092 1228//1228 1226//1226 +f 1228//1228 1229//1229 1227//1227 +f 1228//1228 1230//1230 1229//1229 +f 1091//1092 1088//1089 1228//1228 +f 1088//1089 1230//1230 1228//1228 +f 1230//1230 1231//1231 1229//1229 +f 1230//1230 1232//1232 1231//1231 +f 1088//1089 1086//1087 1230//1230 +f 1086//1087 1232//1232 1230//1230 +f 1232//1232 1075//1076 1231//1231 +f 1232//1232 1077//1078 1075//1076 +f 1086//1087 1084//1085 1232//1232 +f 1084//1085 1077//1078 1232//1232 +f 1229//1229 1231//1231 1233//1233 +f 1231//1231 1072//1074 1233//1233 +f 1231//1231 1075//1076 1072//1074 +f 1235//1234 1233//1233 1234//1235 +f 1233//1233 1073//1073 1234//1235 +f 1233//1233 1072//1074 1073//1073 +f 1229//1229 1233//1233 1235//1234 +f 1237//1236 1235//1234 1236//1237 +f 1235//1234 1234//1235 1236//1237 +f 1227//1227 1229//1229 1235//1234 +f 1227//1227 1235//1234 1237//1236 +f 1239//1238 1237//1236 1238//1239 +f 1237//1236 1236//1237 1238//1239 +f 1225//1225 1227//1227 1237//1236 +f 1225//1225 1237//1236 1239//1238 +f 1241//1240 1239//1238 1240//1241 +f 1239//1238 1238//1239 1240//1241 +f 1223//1223 1225//1225 1239//1238 +f 1223//1223 1239//1238 1241//1240 +f 1243//1242 1241//1240 1242//1243 +f 1241//1240 1240//1241 1242//1243 +f 1222//1222 1223//1223 1241//1240 +f 1222//1222 1241//1240 1243//1242 +f 1244//1244 1246//1245 1243//1242 +f 1244//1244 1243//1242 1245//1246 +f 1243//1242 1242//1243 1245//1246 +f 1246//1245 1222//1222 1243//1242 +f 1247//1247 1248//1248 1246//1245 +f 1247//1247 1246//1245 1244//1244 +f 1248//1248 1220//1220 1246//1245 +f 1246//1245 1220//1220 1222//1222 +f 1249//1249 1250//1250 1248//1248 +f 1249//1249 1248//1248 1247//1247 +f 1250//1250 1218//1218 1248//1248 +f 1248//1248 1218//1218 1220//1220 +f 1251//1251 1252//1252 1250//1250 +f 1251//1251 1250//1250 1249//1249 +f 1252//1252 1216//1216 1250//1250 +f 1250//1250 1216//1216 1218//1218 +f 1253//1253 1254//1254 1252//1252 +f 1253//1253 1252//1252 1251//1251 +f 1254//1254 1215//1215 1252//1252 +f 1252//1252 1215//1215 1216//1216 +f 1255//1255 1256//1256 1254//1254 +f 1255//1255 1254//1254 1253//1253 +f 1256//1256 1257//1257 1254//1254 +f 1254//1254 1257//1257 1215//1215 +f 1256//1256 1258//1258 1257//1257 +f 1258//1258 1259//1259 1257//1257 +f 1257//1257 1259//1259 1213//1213 +f 1257//1257 1213//1213 1215//1215 +f 1258//1258 1260//1260 1259//1259 +f 1260//1260 1261//1261 1259//1259 +f 1259//1259 1261//1261 1211//1211 +f 1259//1259 1211//1211 1213//1213 +f 1260//1260 1262//1262 1261//1261 +f 1262//1262 1263//1263 1261//1261 +f 1261//1261 1263//1263 1209//1209 +f 1261//1261 1209//1209 1211//1211 +f 1262//1262 1264//1264 1263//1263 +f 1264//1264 1200//1200 1263//1263 +f 1263//1263 1200//1200 1206//1206 +f 1263//1263 1206//1206 1209//1209 +f 1265//1265 1266//1266 1264//1264 +f 1265//1265 1264//1264 1262//1262 +f 1264//1264 1198//1198 1200//1200 +f 1266//1266 1198//1198 1264//1264 +f 1166//1166 1197//1197 1266//1266 +f 1166//1166 1266//1266 1265//1265 +f 1266//1266 1197//1197 1198//1198 +f 1166//1166 1265//1265 1267//1267 +f 1267//1267 1265//1265 1262//1262 +f 1166//1166 1267//1267 1268//1268 +f 1268//1268 1267//1267 1260//1260 +f 1267//1267 1262//1262 1260//1260 +f 1166//1166 1268//1268 1269//1269 +f 1269//1269 1268//1268 1258//1258 +f 1268//1268 1260//1260 1258//1258 +f 1166//1166 1269//1269 1270//1270 +f 1270//1270 1269//1269 1256//1256 +f 1269//1269 1258//1258 1256//1256 +f 1166//1166 1270//1270 1271//1271 +f 1270//1270 1272//1272 1271//1271 +f 1270//1270 1255//1255 1272//1272 +f 1270//1270 1256//1256 1255//1255 +f 1271//1271 1272//1272 1273//1273 +f 1272//1272 1274//1274 1273//1273 +f 1272//1272 1275//1275 1274//1274 +f 1255//1255 1275//1275 1272//1272 +f 1275//1275 1276//1276 1274//1274 +f 1275//1275 1277//1277 1276//1276 +f 1255//1255 1253//1253 1275//1275 +f 1253//1253 1277//1277 1275//1275 +f 1277//1277 1278//1278 1276//1276 +f 1277//1277 1279//1279 1278//1278 +f 1253//1253 1251//1251 1277//1277 +f 1251//1251 1279//1279 1277//1277 +f 1279//1279 1280//1280 1278//1278 +f 1279//1279 1281//1281 1280//1280 +f 1251//1251 1249//1249 1279//1279 +f 1249//1249 1281//1281 1279//1279 +f 1281//1281 1282//1282 1280//1280 +f 1281//1281 1283//1283 1282//1282 +f 1249//1249 1247//1247 1281//1281 +f 1247//1247 1283//1283 1281//1281 +f 1283//1283 1284//1284 1282//1282 +f 1283//1283 1285//1285 1284//1284 +f 1247//1247 1244//1244 1283//1283 +f 1244//1244 1285//1285 1283//1283 +f 1284//1284 1285//1285 1286//1286 +f 1285//1285 1242//1243 1286//1286 +f 1285//1285 1245//1246 1242//1243 +f 1244//1244 1245//1246 1285//1285 +f 1284//1284 1286//1286 1287//1287 +f 1287//1287 1286//1286 1288//1288 +f 1286//1286 1242//1243 1240//1241 +f 1286//1286 1240//1241 1288//1288 +f 1287//1287 1288//1288 1289//1289 +f 1289//1289 1288//1288 1290//1290 +f 1288//1288 1240//1241 1238//1239 +f 1288//1288 1238//1239 1290//1290 +f 1289//1289 1290//1290 1291//1291 +f 1291//1291 1290//1290 1292//1292 +f 1290//1290 1238//1239 1236//1237 +f 1290//1290 1236//1237 1292//1292 +f 1291//1291 1292//1292 1293//1293 +f 1293//1293 1292//1292 1294//1294 +f 1292//1292 1236//1237 1234//1235 +f 1292//1292 1234//1235 1294//1294 +f 1293//1293 1294//1294 1068//1068 +f 1068//1068 1294//1294 1069//1069 +f 1294//1294 1234//1235 1073//1073 +f 1294//1294 1073//1073 1069//1069 +f 1295//1295 1291//1291 1293//1293 +f 1295//1295 1293//1293 1296//1296 +f 1296//1296 1293//1293 1068//1068 +f 1297//1297 1295//1295 1296//1296 +f 1297//1297 1296//1296 1298//1298 +f 1298//1298 1296//1296 1066//1066 +f 1296//1296 1068//1068 1066//1066 +f 1299//1299 1297//1297 1298//1298 +f 1299//1299 1298//1298 1300//1300 +f 1300//1300 1298//1298 1065//1065 +f 1298//1298 1066//1066 1065//1065 +f 1301//1301 1299//1299 1300//1300 +f 1301//1301 1300//1300 1302//1302 +f 1302//1302 1300//1300 1303//1303 +f 1300//1300 1065//1065 1303//1303 +f 1302//1302 1303//1303 1304//1304 +f 1304//1304 1303//1303 1059//1059 +f 1303//1303 1065//1065 1061//1061 +f 1303//1303 1061//1061 1059//1059 +f 1305//1305 1302//1302 1304//1304 +f 1305//1305 1304//1304 1306//1306 +f 1306//1306 1304//1304 1057//1057 +f 1304//1304 1059//1059 1057//1057 +f 1307//1307 1305//1305 1306//1306 +f 1307//1307 1306//1306 1308//1308 +f 1308//1308 1306//1306 1055//1055 +f 1306//1306 1057//1057 1055//1055 +f 1307//1307 1308//1308 1309//1309 +f 1308//1308 1050//1051 1309//1309 +f 1308//1308 1052//1053 1050//1051 +f 1308//1308 1055//1055 1052//1053 +f 1311//1310 1309//1309 1310//1311 +f 1309//1309 1048//1049 1310//1311 +f 1309//1309 1050//1051 1048//1049 +f 1307//1307 1309//1309 1311//1310 +f 1314//1312 1311//1310 1312//1313 +f 1311//1310 1310//1311 1312//1313 +f 1313//1314 1307//1307 1311//1310 +f 1313//1314 1311//1310 1314//1312 +f 1317//1315 1314//1312 1315//1316 +f 1314//1312 1312//1313 1315//1316 +f 1316//1317 1313//1314 1314//1312 +f 1316//1317 1314//1312 1317//1315 +f 1320//1318 1317//1315 1318//1319 +f 1317//1315 1315//1316 1318//1319 +f 1319//1320 1316//1317 1317//1315 +f 1319//1320 1317//1315 1320//1318 +f 1323//1321 1320//1318 1321//1322 +f 1320//1318 1318//1319 1321//1322 +f 1322//1323 1319//1320 1320//1318 +f 1322//1323 1320//1318 1323//1321 +f 1324//1324 1326//1325 1323//1321 +f 1324//1324 1323//1321 1325//1326 +f 1323//1321 1321//1322 1325//1326 +f 1326//1325 1322//1323 1323//1321 +f 1327//1327 1328//1328 1326//1325 +f 1327//1327 1326//1325 1324//1324 +f 1328//1328 1329//1329 1326//1325 +f 1326//1325 1329//1329 1322//1323 +f 1328//1328 1331//1330 1329//1329 +f 1330//1331 1332//1332 1329//1329 +f 1330//1331 1329//1329 1331//1330 +f 1332//1332 1322//1323 1329//1329 +f 1332//1332 1335//1333 1322//1323 +f 1333//1334 1334//1335 1332//1332 +f 1333//1334 1332//1332 1330//1331 +f 1334//1335 1335//1333 1332//1332 +f 1334//1335 1338//1336 1335//1333 +f 1322//1323 1335//1333 1336//1337 +f 1335//1333 1337//1338 1336//1337 +f 1335//1333 1338//1336 1337//1338 +f 1339//1339 1341//1340 1338//1336 +f 1339//1339 1338//1336 1334//1335 +f 1338//1336 1340//1341 1337//1338 +f 1338//1336 1341//1340 1340//1341 +f 1342//1342 1344//1343 1341//1340 +f 1342//1342 1341//1340 1339//1339 +f 1341//1340 1343//1344 1340//1341 +f 1341//1340 1344//1343 1343//1344 +f 1345//1345 1347//1346 1344//1343 +f 1345//1345 1344//1343 1342//1342 +f 1344//1343 1346//1347 1343//1344 +f 1344//1343 1347//1346 1346//1347 +f 1282//1282 1284//1284 1347//1346 +f 1282//1282 1347//1346 1345//1345 +f 1347//1346 1287//1287 1346//1347 +f 1347//1346 1284//1284 1287//1287 +f 1343//1344 1346//1347 1348//1348 +f 1346//1347 1287//1287 1289//1289 +f 1346//1347 1289//1289 1348//1348 +f 1343//1344 1348//1348 1349//1349 +f 1349//1349 1348//1348 1295//1295 +f 1348//1348 1289//1289 1291//1291 +f 1348//1348 1291//1291 1295//1295 +f 1340//1341 1343//1344 1349//1349 +f 1340//1341 1349//1349 1350//1350 +f 1350//1350 1349//1349 1297//1297 +f 1349//1349 1295//1295 1297//1297 +f 1337//1338 1340//1341 1350//1350 +f 1337//1338 1350//1350 1351//1351 +f 1351//1351 1350//1350 1299//1299 +f 1350//1350 1297//1297 1299//1299 +f 1336//1337 1337//1338 1351//1351 +f 1336//1337 1351//1351 1352//1352 +f 1352//1352 1351//1351 1301//1301 +f 1351//1351 1299//1299 1301//1301 +f 1319//1320 1336//1337 1352//1352 +f 1319//1320 1352//1352 1316//1317 +f 1316//1317 1352//1352 1353//1353 +f 1352//1352 1301//1301 1353//1353 +f 1316//1317 1353//1353 1313//1314 +f 1313//1314 1353//1353 1305//1305 +f 1353//1353 1301//1301 1302//1302 +f 1353//1353 1302//1302 1305//1305 +f 1354//1354 1345//1345 1342//1342 +f 1280//1280 1282//1282 1345//1345 +f 1280//1280 1345//1345 1354//1354 +f 1356//1355 1354//1354 1355//1356 +f 1354//1354 1342//1342 1355//1356 +f 1278//1278 1280//1280 1354//1354 +f 1278//1278 1354//1354 1356//1355 +f 1358//1357 1356//1355 1357//1358 +f 1356//1355 1355//1356 1357//1358 +f 1276//1276 1278//1278 1356//1355 +f 1276//1276 1356//1355 1358//1357 +f 1360//1359 1358//1357 1359//1360 +f 1358//1357 1357//1358 1359//1360 +f 1274//1274 1276//1276 1358//1357 +f 1274//1274 1358//1357 1360//1359 +f 1362//1361 1360//1359 1361//1362 +f 1360//1359 1359//1360 1361//1362 +f 1273//1273 1274//1274 1360//1359 +f 1273//1273 1360//1359 1362//1361 +f 1365//1363 1362//1361 1363//1364 +f 1362//1361 1361//1362 1363//1364 +f 1364//1365 1273//1273 1362//1361 +f 1364//1365 1362//1361 1365//1363 +f 1166//1166 1364//1365 1365//1363 +f 1166//1166 1365//1363 1366//1366 +f 1365//1363 1363//1364 1366//1366 +f 1166//1166 1366//1366 1367//1367 +f 1366//1366 1368//1368 1367//1367 +f 1366//1366 1363//1364 1368//1368 +f 1367//1367 1368//1368 1369//1369 +f 1368//1368 1370//1370 1369//1369 +f 1368//1368 1371//1371 1370//1370 +f 1363//1364 1371//1371 1368//1368 +f 1371//1371 1372//1372 1370//1370 +f 1371//1371 1373//1373 1372//1372 +f 1363//1364 1361//1362 1371//1371 +f 1361//1362 1373//1373 1371//1371 +f 1373//1373 1374//1374 1372//1372 +f 1373//1373 1375//1375 1374//1374 +f 1361//1362 1359//1360 1373//1373 +f 1359//1360 1375//1375 1373//1373 +f 1375//1375 1333//1334 1374//1374 +f 1375//1375 1376//1376 1333//1334 +f 1359//1360 1357//1358 1375//1375 +f 1357//1358 1376//1376 1375//1375 +f 1376//1376 1334//1335 1333//1334 +f 1376//1376 1339//1339 1334//1335 +f 1357//1358 1355//1356 1376//1376 +f 1355//1356 1339//1339 1376//1376 +f 1372//1372 1374//1374 1377//1377 +f 1374//1374 1330//1331 1377//1377 +f 1374//1374 1333//1334 1330//1331 +f 1379//1378 1377//1377 1378//1379 +f 1377//1377 1331//1330 1378//1379 +f 1377//1377 1330//1331 1331//1330 +f 1372//1372 1377//1377 1379//1378 +f 1381//1380 1379//1378 1380//1381 +f 1379//1378 1378//1379 1380//1381 +f 1370//1370 1372//1372 1379//1378 +f 1370//1370 1379//1378 1381//1380 +f 1383//1382 1381//1380 1382//1383 +f 1381//1380 1380//1381 1382//1383 +f 1369//1369 1370//1370 1381//1380 +f 1369//1369 1381//1380 1383//1382 +f 1386//1384 1383//1382 1384//1385 +f 1383//1382 1382//1383 1384//1385 +f 1385//1386 1369//1369 1383//1382 +f 1385//1386 1383//1382 1386//1384 +f 1166//1166 1385//1386 1386//1384 +f 1166//1166 1386//1384 1387//1387 +f 1386//1384 1384//1385 1387//1387 +f 1166//1166 1387//1387 1388//1388 +f 1388//1388 1387//1387 1384//1385 +f 1166//1166 1388//1388 1389//1389 +f 1389//1389 1388//1388 1390//1390 +f 1388//1388 1384//1385 1390//1390 +f 1389//1389 1390//1390 1391//1391 +f 1391//1391 1390//1390 1392//1392 +f 1390//1390 1384//1385 1382//1383 +f 1390//1390 1382//1383 1392//1392 +f 1391//1391 1392//1392 1393//1393 +f 1393//1393 1392//1392 1394//1394 +f 1392//1392 1382//1383 1380//1381 +f 1392//1392 1380//1381 1394//1394 +f 1393//1393 1394//1394 1395//1395 +f 1395//1395 1394//1394 1396//1396 +f 1394//1394 1380//1381 1378//1379 +f 1394//1394 1378//1379 1396//1396 +f 1395//1395 1396//1396 1397//1397 +f 1397//1397 1396//1396 1328//1328 +f 1396//1396 1378//1379 1331//1330 +f 1396//1396 1331//1330 1328//1328 +f 1398//1398 1395//1395 1397//1397 +f 1398//1398 1397//1397 1399//1399 +f 1399//1399 1397//1397 1327//1327 +f 1397//1397 1328//1328 1327//1327 +f 1400//1400 1398//1398 1399//1399 +f 1400//1400 1399//1399 1401//1401 +f 1401//1401 1399//1399 1402//1402 +f 1399//1399 1327//1327 1402//1402 +f 1401//1401 1402//1402 1403//1403 +f 1403//1403 1402//1402 1404//1404 +f 1402//1402 1327//1327 1324//1324 +f 1402//1402 1324//1324 1404//1404 +f 1403//1403 1404//1404 1405//1405 +f 1405//1405 1404//1404 1406//1406 +f 1404//1404 1324//1324 1325//1326 +f 1404//1404 1325//1326 1406//1406 +f 1405//1405 1406//1406 1407//1407 +f 1406//1406 1408//1408 1407//1407 +f 1406//1406 1409//1409 1408//1408 +f 1325//1326 1409//1409 1406//1406 +f 1409//1409 1410//1410 1408//1408 +f 1409//1409 1411//1411 1410//1410 +f 1325//1326 1321//1322 1409//1409 +f 1321//1322 1411//1411 1409//1409 +f 1411//1411 1412//1412 1410//1410 +f 1411//1411 1413//1413 1412//1412 +f 1321//1322 1318//1319 1411//1411 +f 1318//1319 1413//1413 1411//1411 +f 1413//1413 1414//1414 1412//1412 +f 1413//1413 1415//1415 1414//1414 +f 1318//1319 1315//1316 1413//1413 +f 1315//1316 1415//1415 1413//1413 +f 1415//1415 1416//1416 1414//1414 +f 1415//1415 1417//1417 1416//1416 +f 1315//1316 1312//1313 1415//1415 +f 1312//1313 1417//1417 1415//1415 +f 1417//1417 1044//1045 1416//1416 +f 1417//1417 1046//1047 1044//1045 +f 1312//1313 1310//1311 1417//1417 +f 1310//1311 1046//1047 1417//1417 +f 1414//1414 1416//1416 1039//1040 +f 1416//1416 1041//1042 1039//1040 +f 1416//1416 1044//1045 1041//1042 +f 1412//1412 1414//1414 1037//1038 +f 1414//1414 1039//1040 1037//1038 +f 1410//1410 1412//1412 1035//1036 +f 1412//1412 1037//1038 1035//1036 +f 1408//1408 1410//1410 1033//1034 +f 1410//1410 1035//1036 1033//1034 +f 1407//1407 1408//1408 1031//1032 +f 1408//1408 1033//1034 1031//1032 +f 1418//1418 1405//1405 1407//1407 +f 1418//1418 1407//1407 1029//1030 +f 1407//1407 1031//1032 1029//1030 +f 1419//1419 1420//1420 1418//1418 +f 1419//1419 1418//1418 1027//1027 +f 1027//1027 1418//1418 1029//1030 +f 1420//1420 1405//1405 1418//1418 +f 1421//1421 1422//1422 1420//1420 +f 1421//1421 1420//1420 1419//1419 +f 1422//1422 1403//1403 1420//1420 +f 1420//1420 1403//1403 1405//1405 +f 1423//1423 1424//1424 1422//1422 +f 1423//1423 1422//1422 1421//1421 +f 1424//1424 1401//1401 1422//1422 +f 1422//1422 1401//1401 1403//1403 +f 1425//1425 1426//1426 1424//1424 +f 1425//1425 1424//1424 1423//1423 +f 1424//1424 1400//1400 1401//1401 +f 1426//1426 1400//1400 1424//1424 +f 1427//1427 1428//1428 1426//1426 +f 1427//1427 1426//1426 1425//1425 +f 1428//1428 1429//1429 1426//1426 +f 1426//1426 1429//1429 1400//1400 +f 1428//1428 1430//1430 1429//1429 +f 1430//1430 1431//1431 1429//1429 +f 1429//1429 1431//1431 1398//1398 +f 1429//1429 1398//1398 1400//1400 +f 1430//1430 1432//1432 1431//1431 +f 1432//1432 1393//1393 1431//1431 +f 1431//1431 1393//1393 1395//1395 +f 1431//1431 1395//1395 1398//1398 +f 1433//1433 1434//1434 1432//1432 +f 1433//1433 1432//1432 1430//1430 +f 1434//1434 1391//1391 1432//1432 +f 1432//1432 1391//1391 1393//1393 +f 1166//1166 1389//1389 1434//1434 +f 1166//1166 1434//1434 1433//1433 +f 1434//1434 1389//1389 1391//1391 +f 1166//1166 1433//1433 1435//1435 +f 1435//1435 1433//1433 1430//1430 +f 1166//1166 1435//1435 1436//1436 +f 1436//1436 1435//1435 1428//1428 +f 1435//1435 1430//1430 1428//1428 +f 1166//1166 1436//1436 1437//1437 +f 1437//1437 1436//1436 1427//1427 +f 1436//1436 1428//1428 1427//1427 +f 1166//1166 1437//1437 1438//1438 +f 1438//1438 1437//1437 1439//1439 +f 1437//1437 1427//1427 1439//1439 +f 1438//1438 1439//1439 1440//1440 +f 1440//1440 1439//1439 1441//1441 +f 1439//1439 1427//1427 1425//1425 +f 1439//1439 1425//1425 1441//1441 +f 1440//1440 1441//1441 1442//1442 +f 1442//1442 1441//1441 1443//1443 +f 1441//1441 1425//1425 1423//1423 +f 1441//1441 1423//1423 1443//1443 +f 1442//1442 1443//1443 1444//1444 +f 1444//1444 1443//1443 1445//1445 +f 1443//1443 1421//1421 1445//1445 +f 1443//1443 1423//1423 1421//1421 +f 1444//1444 1445//1445 1446//1446 +f 1446//1446 1445//1445 1026//1026 +f 1445//1445 1421//1421 1419//1419 +f 1445//1445 1419//1419 1026//1026 +f 1444//1444 1446//1446 1152//1153 +f 1446//1446 1149//1150 1152//1153 +f 1446//1446 1024//1023 1149//1150 +f 1446//1446 1026//1026 1024//1023 +f 1442//1442 1444//1444 1155//1156 +f 1444//1444 1152//1153 1155//1156 +f 1440//1440 1442//1442 1158//1159 +f 1442//1442 1155//1156 1158//1159 +f 1438//1438 1440//1440 1161//1162 +f 1440//1440 1158//1159 1161//1162 +f 1166//1166 1438//1438 1164//1165 +f 1438//1438 1161//1162 1164//1165 +f 1026//1026 1419//1419 1027//1027 +f 1166//1166 1367//1367 1385//1386 +f 1367//1367 1369//1369 1385//1386 +f 1166//1166 1271//1271 1364//1365 +f 1271//1271 1273//1273 1364//1365 +f 1355//1356 1342//1342 1339//1339 +f 1322//1323 1336//1337 1319//1320 +f 1313//1314 1305//1305 1307//1307 +f 1310//1311 1048//1049 1046//1047 +f 1200//1200 1201//1201 1206//1206 +f 1182//1183 1180//1181 1204//1204 +f 1180//1181 1109//1110 1204//1204 +f 1166//1166 1195//1194 1197//1197 +f 1166//1166 1192//1192 1195//1194 +f 1188//1189 1186//1187 1194//1195 +f 1166//1166 1168//1168 1189//1190 +f 1168//1168 1170//1170 1189//1190 +f 1180//1181 1108//1108 1109//1110 +f 1151//1152 1121//1121 1118//1118 +f 1024//1023 1023//1024 1149//1150 +f 968//970 1110//1111 969//969 +f 970//971 972//972 1089//1090 +f 1084//1085 1079//1080 1077//1078 +f 979//980 987//987 982//983 +o teddy.005 +v 1.097401 7.005593 -0.584255 +v 0.979149 7.005593 -0.805025 +v 0.751637 6.780902 -0.652719 +v 1.165863 7.279381 -0.930019 +v 1.304913 7.279381 -0.670421 +v 1.170311 7.005593 -0.344658 +v 0.844547 6.780902 -0.479261 +v 0.901832 6.780902 -0.291010 +v 1.195076 7.005593 -0.095441 +v 0.921289 6.780902 -0.095201 +v 0.595525 6.613941 -0.229804 +v 0.556067 6.613941 -0.359473 +v 0.243048 6.511127 -0.229497 +v 0.263163 6.511127 -0.163392 +v 0.269997 6.511127 -0.094634 +v 0.608928 6.613941 -0.094929 +v 0.595761 6.613941 0.039970 +v 0.902172 6.780902 0.100641 +v 0.556529 6.613941 0.169708 +v 0.263283 6.511127 -0.025862 +v -0.082482 6.476412 -0.094326 +v 0.243283 6.511127 0.040278 +v 0.492739 6.613941 0.289298 +v 0.210764 6.511127 0.101245 +v 0.166976 6.511127 0.154696 +v 0.302147 6.613941 0.480225 +v 0.406845 6.613941 0.394148 +v 0.113600 6.511127 0.198577 +v 0.182668 6.613941 0.544222 +v 0.052690 6.511127 0.231202 +v 0.052998 6.613941 0.583680 +v -0.013415 6.511127 0.251318 +v -0.081878 6.613941 0.597083 +v -0.082173 6.511127 0.258150 +v -0.150944 6.511127 0.251438 +v -0.216777 6.613941 0.583916 +v -0.217084 6.511127 0.231438 +v -0.278051 6.511127 0.198919 +v -0.346514 6.613941 0.544684 +v -0.277448 6.780902 0.890328 +v -0.639418 6.780902 0.740765 +v -0.465798 6.780902 0.833372 +v -0.466106 6.613941 0.480894 +v -0.791634 6.780902 0.616066 +v -0.570954 6.613941 0.395001 +v -0.657031 6.613941 0.290302 +v -0.331503 6.511127 0.155131 +v -0.375384 6.511127 0.101756 +v -0.721029 6.613941 0.170823 +v -0.408009 6.511127 0.040845 +v -0.428125 6.511127 -0.025260 +v -0.773889 6.613941 -0.093722 +v -0.760487 6.613941 0.041154 +v -0.434958 6.511127 -0.094018 +v -0.428246 6.511127 -0.162789 +v -0.721490 6.613941 -0.358359 +v -0.760722 6.613941 -0.228620 +v -0.408244 6.511127 -0.228929 +v -0.657701 6.613941 -0.477950 +v -0.375725 6.511127 -0.289896 +v -0.331938 6.511127 -0.343347 +v -0.571806 6.613941 -0.582798 +v -0.278563 6.511127 -0.387229 +v -0.347629 6.613941 -0.732873 +v -0.467108 6.613941 -0.668876 +v -0.217653 6.511127 -0.419854 +v -0.217959 6.613941 -0.772332 +v -0.151548 6.511127 -0.439970 +v -0.082788 6.511127 -0.446803 +v -0.083085 6.613941 -0.785735 +v -0.014019 6.511127 -0.440091 +v 0.052122 6.511127 -0.420090 +v 0.181552 6.613941 -0.733334 +v 0.051815 6.613941 -0.772568 +v 0.300836 6.780902 -1.022022 +v 0.112485 6.780902 -1.078979 +v -0.083596 7.005593 -1.371884 +v -0.083357 6.780902 -1.098095 +v 0.165665 7.005593 -1.347552 +v -0.083792 7.279381 -1.596572 +v 0.209307 7.279381 -1.567963 +v 0.405390 7.005593 -1.275061 +v 0.626364 7.005593 -1.157194 +v 0.491193 7.279381 -1.482722 +v 0.843670 7.591742 -1.483031 +v 0.554952 7.591742 -1.637030 +v 0.751034 7.279381 -1.344125 +v 0.978841 7.279381 -1.157501 +v 0.820100 7.005593 -0.998482 +v 0.626672 6.780902 -0.804718 +v 0.474455 6.780902 -0.929416 +v 0.405992 6.613941 -0.583652 +v 0.492069 6.613941 -0.478953 +v 0.210422 6.511127 -0.290408 +v 0.166541 6.511127 -0.343781 +v 0.113089 6.511127 -0.387571 +v 0.301142 6.613941 -0.669546 +v 1.304605 7.591742 -1.022898 +v 1.096798 7.591742 -1.275663 +v 0.900716 7.930674 -1.568566 +v 1.390043 7.930674 -1.080095 +v 1.169434 7.930674 -1.348427 +v 1.193960 8.283151 -1.372995 +v 0.900716 8.635627 -1.568566 +v 0.919977 8.283151 -1.597448 +v 1.390043 8.635627 -1.080094 +v 1.169434 8.635627 -1.348427 +v 1.418891 8.283151 -1.099406 +v 1.554062 8.635627 -0.773877 +v 1.554062 7.930674 -0.773877 +v 1.586124 8.283151 -0.787191 +v 1.655190 8.635627 -0.441546 +v 1.655190 7.930674 -0.441546 +v 1.689234 8.283151 -0.448349 +v 1.689541 7.930674 -0.095872 +v 1.689541 8.635627 -0.095872 +v 1.724257 8.283151 -0.095902 +v 1.655794 8.635627 0.249862 +v 1.655794 7.930674 0.249862 +v 1.689849 8.283151 0.256606 +v 1.555245 7.930674 0.582369 +v 1.555245 8.635627 0.582369 +v 1.587331 8.283151 0.595626 +v 1.391761 8.635627 0.888871 +v 1.420643 8.283151 0.908134 +v 1.171620 8.635627 1.157590 +v 1.391761 7.930674 0.888871 +v 1.171620 7.930674 1.157590 +v 1.196191 8.283151 1.182117 +v 0.903287 8.635627 1.378198 +v 0.903287 7.930674 1.378198 +v 0.922599 8.283151 1.407048 +v 0.597071 8.635627 1.542217 +v 0.597071 7.930674 1.542217 +v 0.610385 8.283151 1.574280 +v 0.271543 8.283151 1.677389 +v -0.080935 8.635627 1.677696 +v 0.264740 8.635627 1.643345 +v 0.264740 7.930674 1.643345 +v -0.080935 7.930674 1.677696 +v -0.080904 8.283151 1.712413 +v -0.426669 8.635627 1.643950 +v -0.426669 7.930674 1.643949 +v -0.433412 8.283151 1.678005 +v -0.772433 8.283151 1.575486 +v -1.065678 8.635627 1.379916 +v -0.759176 8.635627 1.543402 +v -0.759176 7.930674 1.543401 +v -1.065678 7.930674 1.379916 +v -1.084941 8.283151 1.408799 +v -1.358923 8.283151 1.184346 +v -1.583853 8.283151 0.910755 +v -1.334397 7.930674 1.159776 +v -1.334397 8.635627 1.159776 +v -1.469568 8.974561 0.834248 +v -1.261760 8.974561 1.087014 +v -1.555004 8.635627 0.891443 +v -1.624071 8.974561 0.545800 +v -1.719024 8.635627 0.585226 +v -1.719331 8.974561 0.232750 +v -1.820151 8.635627 0.252895 +v -1.751086 8.283151 0.598540 +v -1.719024 7.930674 0.585226 +v -1.820151 7.930674 0.252895 +v -1.854197 8.283151 0.259698 +v -1.854502 8.635627 -0.092779 +v -1.854502 7.930674 -0.092780 +v -1.889219 8.283151 -0.092748 +v -1.854812 8.283151 -0.445257 +v -1.820756 8.635627 -0.438513 +v -1.752293 8.283151 -0.784278 +v -1.820756 7.930674 -0.438514 +v -1.719900 7.591742 -0.418543 +v -1.625186 7.591742 -0.731758 +v -1.720208 7.930674 -0.771020 +v -1.585605 8.283151 -1.096784 +v -1.471187 7.591742 -1.020476 +v -1.556722 7.930674 -1.077522 +v -1.361152 8.283151 -1.370768 +v -1.263819 7.591742 -1.273604 +v -1.336583 7.930674 -1.346240 +v -1.068249 7.930674 -1.566848 +v -1.011055 7.591742 -1.481412 +v -0.722605 7.591742 -1.635915 +v -0.918175 7.279381 -1.342671 +v -1.145657 7.279381 -1.155648 +v -0.986639 7.005593 -0.996907 +v -0.793180 7.005593 -1.155956 +v -0.572411 7.005593 -1.274208 +v -0.658577 7.279381 -1.481719 +v -0.376840 7.279381 -1.567452 +v -0.409556 7.591742 -1.731176 +v -0.084028 7.930674 -1.866346 +v -0.429701 7.930674 -1.831995 +v -0.083937 7.591742 -1.763534 +v 0.261707 7.930674 -1.832600 +v 0.241737 7.591742 -1.731744 +v 0.594214 7.930674 -1.732051 +v 0.607471 8.283151 -1.764135 +v 0.268449 8.283151 -1.866655 +v 0.261707 8.635627 -1.832599 +v 0.594214 8.635627 -1.732051 +v 0.241737 8.974561 -1.731744 +v 0.843670 8.974561 -1.483030 +v 0.554952 8.974561 -1.637030 +v 0.209307 9.286921 -1.567963 +v 0.491193 9.286921 -1.482722 +v 0.626364 9.560707 -1.157193 +v 0.405390 9.560707 -1.275061 +v 0.751034 9.286921 -1.344125 +v 0.820100 9.560707 -0.998481 +v 1.096798 8.974561 -1.275663 +v 0.978841 9.286921 -1.157501 +v 1.165864 9.286921 -0.930020 +v 0.979149 9.560707 -0.805025 +v 0.751637 9.785398 -0.652718 +v 1.097401 9.560707 -0.584254 +v 1.170311 9.560707 -0.344657 +v 1.304913 9.286921 -0.670421 +v 0.901832 9.785398 -0.291010 +v 0.844547 9.785398 -0.479260 +v 0.556068 9.952359 -0.359474 +v 0.492069 9.952359 -0.478953 +v 0.243048 10.055173 -0.229497 +v 0.595525 9.952359 -0.229804 +v 0.269997 10.055173 -0.094633 +v 0.263164 10.055173 -0.163392 +v 0.608928 9.952359 -0.094928 +v 0.263284 10.055173 -0.025862 +v 0.595761 9.952359 0.039971 +v 0.921289 9.785398 -0.095201 +v 0.902172 9.785398 0.100641 +v 1.195076 9.560707 -0.095440 +v 1.419767 9.286921 -0.095636 +v 1.391157 9.286921 0.197462 +v 1.170746 9.560707 0.153821 +v 0.845217 9.785398 0.288992 +v 1.305917 9.286921 0.479348 +v 1.098255 9.560707 0.393545 +v 0.980388 9.560707 0.614520 +v 1.167321 9.286921 0.739189 +v 1.460224 8.974561 0.543108 +v 0.821676 9.560707 0.808255 +v 0.980696 9.286921 0.966999 +v 1.306224 8.974561 0.831827 +v 1.098858 8.974561 1.084954 +v 0.846093 8.974561 1.292761 +v 0.753212 9.286921 1.154021 +v 0.557644 8.974561 1.447265 +v 0.493615 9.286921 1.293069 +v 0.244594 8.974561 1.542526 +v -0.081171 9.286921 1.407923 +v 0.211879 9.286921 1.378802 +v -0.081025 8.974561 1.574883 +v -0.406698 8.974561 1.543094 +v -0.374270 9.286921 1.379313 +v -0.719913 8.974561 1.448380 +v -0.656156 9.286921 1.294073 +v -1.008633 8.974561 1.294379 +v -0.915995 9.286921 1.155476 +v -0.985062 9.560707 0.809833 +v -0.791326 9.560707 0.968544 +v -1.143805 9.286921 0.968851 +v -1.144111 9.560707 0.616374 +v -1.330826 9.286921 0.741369 +v -1.469875 9.286921 0.481770 +v -1.335272 9.560707 0.156008 +v -1.262363 9.560707 0.395604 +v -1.555607 9.286921 0.200035 +v -1.584728 9.286921 -0.093015 +v -1.360038 9.560707 -0.093210 +v -1.086252 9.785398 -0.093449 +v -1.335707 9.560707 -0.342470 +v -1.067135 9.785398 -0.289292 +v -1.263217 9.560707 -0.582195 +v -1.556119 9.286921 -0.386113 +v -1.751688 8.974561 -0.092869 +v -1.719900 8.974561 -0.418543 +v -1.625186 8.974561 -0.731758 +v -1.470878 9.286921 -0.667999 +v -1.145351 9.560707 -0.803171 +v -1.471187 8.974561 -1.020476 +v -1.332281 9.286921 -0.927839 +v -0.986639 9.560707 -0.996906 +v -1.263819 8.974561 -1.273603 +v -1.145657 9.286921 -1.155648 +v -0.918175 9.286921 -1.342670 +v -1.011055 8.974561 -1.481412 +v -1.336583 8.635627 -1.346240 +v -0.722605 8.974561 -1.635915 +v -1.068249 8.635627 -1.566848 +v -1.087561 8.283151 -1.595697 +v -0.775346 8.283151 -1.762930 +v -0.762032 8.635627 -1.730867 +v -0.429701 8.635627 -1.831995 +v -0.084028 8.635627 -1.866346 +v -0.436504 8.283151 -1.866040 +v -0.409556 8.974561 -1.731176 +v -0.376840 9.286921 -1.567452 +v -0.083937 8.974561 -1.763533 +v -0.083792 9.286921 -1.596572 +v -0.332813 9.560707 -1.347116 +v 0.165665 9.560707 -1.347552 +v -0.083596 9.560707 -1.371882 +v 0.112486 9.785398 -1.078978 +v -0.083357 9.785398 -1.098094 +v -0.217959 9.952359 -0.772331 +v -0.279166 9.785398 -1.078637 +v 0.051815 9.952359 -0.772566 +v -0.083085 9.952359 -0.785734 +v -0.082789 10.055173 -0.446803 +v -0.082482 10.089890 -0.094324 +v -0.151548 10.055173 -0.439970 +v -0.014019 10.055173 -0.440089 +v 0.052122 10.055173 -0.420089 +v 0.113089 10.055173 -0.387570 +v 0.181553 9.952359 -0.733334 +v 0.301142 9.952359 -0.669545 +v 0.300836 9.785398 -1.022022 +v 0.405992 9.952359 -0.583651 +v 0.474456 9.785398 -0.929415 +v 0.626672 9.785398 -0.804717 +v 0.210422 10.055173 -0.290407 +v 0.166541 10.055173 -0.343781 +v -0.217653 10.055173 -0.419854 +v -0.347629 9.952359 -0.732871 +v -0.278563 10.055173 -0.387228 +v -0.467109 9.952359 -0.668875 +v -0.467417 9.785398 -1.021352 +v -0.640875 9.785398 -0.928442 +v -0.793180 9.560707 -1.155955 +v -0.572411 9.560707 -1.274207 +v -0.658577 9.286921 -1.481719 +v -0.792873 9.785398 -0.803479 +v -0.657702 9.952359 -0.477949 +v -0.917572 9.785398 -0.651261 +v -0.571806 9.952359 -0.582798 +v -0.375726 10.055173 -0.289896 +v -0.331938 10.055173 -0.343347 +v -0.408246 10.055173 -0.228928 +v -0.428246 10.055173 -0.162788 +v -0.760722 9.952359 -0.228620 +v -0.721490 9.952359 -0.358358 +v -1.010179 9.785398 -0.477642 +v -0.773890 9.952359 -0.093722 +v -0.428125 10.055173 -0.025259 +v -0.760487 9.952359 0.041154 +v -1.066793 9.785398 0.102359 +v -0.434958 10.055173 -0.094018 +v -1.009509 9.785398 0.290611 +v -0.916599 9.785398 0.464068 +v -0.721029 9.952359 0.170823 +v -0.657031 9.952359 0.290303 +v -0.408010 10.055173 0.040848 +v -0.375384 10.055173 0.101757 +v -0.331504 10.055173 0.155131 +v -0.278051 10.055173 0.198920 +v -0.466106 9.952359 0.480896 +v -0.570954 9.952359 0.395001 +v -0.791635 9.785398 0.616067 +v -0.639417 9.785398 0.740767 +v -0.346514 9.952359 0.544685 +v -0.465798 9.785398 0.833373 +v -0.570351 9.560707 1.086410 +v -0.330627 9.560707 1.158901 +v -0.277448 9.785398 0.890329 +v -0.081367 9.560707 1.183232 +v 0.114204 9.785398 0.889987 +v 0.167851 9.560707 1.158467 +v -0.081605 9.785398 0.909445 +v 0.052998 9.952359 0.583681 +v -0.216776 9.952359 0.583916 +v -0.081878 9.952359 0.597084 +v -0.082174 10.055173 0.258153 +v -0.013415 10.055173 0.251320 +v -0.150945 10.055173 0.251440 +v -0.217084 10.055173 0.231439 +v 0.052690 10.055173 0.231204 +v 0.182668 9.952359 0.544223 +v 0.113601 10.055173 0.198579 +v 0.302147 9.952359 0.480226 +v 0.302454 9.785398 0.832702 +v 0.475912 9.785398 0.739793 +v 0.407448 9.560707 1.085557 +v 0.628218 9.560707 0.967306 +v 0.627910 9.785398 0.614828 +v 0.492740 9.952359 0.289300 +v 0.752610 9.785398 0.462612 +v 0.406845 9.952359 0.394149 +v 0.166976 10.055173 0.154697 +v 0.210764 10.055173 0.101245 +v 0.243284 10.055173 0.040278 +v 0.556529 9.952359 0.169708 +v -0.084057 8.283151 -1.901062 +v -0.762032 7.930674 -1.730868 +v -1.556722 8.635627 -1.077522 +v -1.720208 8.635627 -0.771020 +v 1.554938 8.974561 0.229893 +v 1.586727 8.974561 -0.095781 +v 1.390647 9.286921 -0.388685 +v 1.554370 8.974561 -0.421401 +v 1.459109 8.974561 -0.734449 +v 1.304606 8.974561 -1.022899 +v -0.332813 7.005593 -1.347116 +v -0.467417 6.780902 -1.021353 +v -0.279166 6.780902 -1.078637 +v -0.640874 6.780902 -0.928444 +v -0.792873 6.780902 -0.803479 +v -1.145351 7.005593 -0.803172 +v -0.917572 6.780902 -0.651261 +v -1.010179 6.780902 -0.477642 +v -1.335707 7.005593 -0.342470 +v -1.067134 6.780902 -0.289292 +v -1.263217 7.005593 -0.582195 +v -1.556119 7.279381 -0.386114 +v -1.470878 7.279381 -0.668000 +v -1.332281 7.279381 -0.927839 +v -1.751688 7.591742 -0.092869 +v -1.584728 7.279381 -0.093015 +v -1.719331 7.591742 0.232750 +v -1.555607 7.279381 0.200034 +v -1.360038 7.005593 -0.093210 +v -1.335272 7.005593 0.156007 +v -1.066793 6.780902 0.102360 +v -1.086251 6.780902 -0.093450 +v -1.262363 7.005593 0.395603 +v -1.009508 6.780902 0.290609 +v -0.916599 6.780902 0.464067 +v -1.144111 7.005593 0.616374 +v -1.143805 7.279381 0.968851 +v -0.985062 7.005593 0.809832 +v -1.469875 7.279381 0.481770 +v -1.330826 7.279381 0.741368 +v -1.624071 7.591742 0.545800 +v -1.469568 7.591742 0.834248 +v -1.261760 7.591742 1.087014 +v -1.555004 7.930674 0.891443 +v -1.008633 7.591742 1.294379 +v -0.915995 7.279381 1.155476 +v -0.791326 7.005593 0.968543 +v -0.656156 7.279381 1.294073 +v -0.374270 7.279381 1.379313 +v -0.330627 7.005593 1.158901 +v -0.719913 7.591742 1.448380 +v -0.570351 7.005593 1.086410 +v -0.406698 7.591742 1.543094 +v -0.081025 7.591742 1.574883 +v -0.081171 7.279381 1.407923 +v 0.244594 7.591742 1.542526 +v 0.211879 7.279381 1.378802 +v -0.081367 7.005593 1.183232 +v 0.167851 7.005593 1.158466 +v 0.114204 6.780902 0.889986 +v -0.081605 6.780902 0.909444 +v 0.302454 6.780902 0.832702 +v 0.407448 7.005593 1.085556 +v 0.493615 7.279381 1.293068 +v 0.628218 7.005593 0.967306 +v 0.821676 7.005593 0.808255 +v 0.627910 6.780902 0.614828 +v 0.753212 7.279381 1.154020 +v 0.475911 6.780902 0.739792 +v 0.980696 7.279381 0.966998 +v 0.557644 7.591742 1.447265 +v 0.846093 7.591742 1.292761 +v 1.098858 7.591742 1.084954 +v 1.306224 7.591742 0.831826 +v 1.167321 7.279381 0.739189 +v 1.460224 7.591742 0.543108 +v 1.305917 7.279381 0.479348 +v 1.554939 7.591742 0.229892 +v 1.586728 7.591742 -0.095781 +v 1.391157 7.279381 0.197462 +v 1.419767 7.279381 -0.095637 +v 1.170746 7.005593 0.153821 +v 0.845217 6.780902 0.288992 +v 1.098255 7.005593 0.393544 +v 0.980388 7.005593 0.614520 +v 0.752610 6.780902 0.462612 +v 1.554370 7.591742 -0.421401 +v 1.390647 7.279381 -0.388685 +v 1.459109 7.591742 -0.734449 +vn 0.6914 -0.5513 -0.4670 +vn 0.6525 -0.7059 -0.2755 +vn 0.5939 -0.7023 -0.3926 +vn 0.4631 -0.8315 -0.3068 +vn 0.5141 -0.8315 -0.2106 +vn 0.7718 -0.5514 -0.3167 +vn 0.6938 -0.7072 -0.1363 +vn 0.5443 -0.8314 -0.1117 +vn 0.3750 -0.9237 -0.0789 +vn 0.7116 -0.7026 0.0039 +vn 0.5555 -0.8315 0.0022 +vn 0.3539 -0.9226 -0.1534 +vn 0.1843 -0.9809 -0.0624 +vn 0.2113 -0.9768 -0.0364 +vn 0.3827 -0.9239 0.0026 +vn 0.1966 -0.9804 0.0140 +vn 0.3747 -0.9239 0.0773 +vn 0.5499 -0.8274 0.1143 +vn 0.2092 -0.9767 0.0473 +vn 0.3525 -0.9239 0.1489 +vn -0.0000 -1.0000 0.0000 +vn 0.1971 -0.9781 0.0673 +vn 0.1801 -0.9781 0.1044 +vn 0.3213 -0.9207 0.2214 +vn 0.1565 -0.9781 0.1375 +vn 0.2719 -0.9207 0.2798 +vn 0.1265 -0.9781 0.1654 +vn 0.2121 -0.9207 0.3275 +vn 0.0918 -0.9781 0.1869 +vn 0.1441 -0.9207 0.3627 +vn 0.0536 -0.9781 0.2013 +vn 0.0706 -0.9207 0.3838 +vn 0.0132 -0.9781 0.2078 +vn -0.0056 -0.9207 0.3902 +vn -0.0275 -0.9781 0.2064 +vn -0.0772 -0.9239 0.3747 +vn -0.0673 -0.9781 0.1971 +vn -0.1545 -0.9207 0.3583 +vn -0.1238 -0.9767 0.1752 +vn -0.1078 -0.8255 0.5540 +vn -0.2194 -0.8273 0.5171 +vn -0.3160 -0.8274 0.4643 +vn -0.2148 -0.9239 0.3167 +vn -0.4006 -0.8273 0.3937 +vn -0.2725 -0.9239 0.2687 +vn -0.1555 -0.9767 0.1476 +vn -0.3196 -0.9239 0.2104 +vn -0.1547 -0.9825 0.1039 +vn -0.1869 -0.9781 0.0918 +vn -0.3626 -0.9207 0.1441 +vn -0.2012 -0.9781 0.0536 +vn -0.3838 -0.9207 0.0706 +vn -0.2078 -0.9781 0.0132 +vn -0.3902 -0.9207 -0.0056 +vn -0.2064 -0.9781 -0.0275 +vn -0.3816 -0.9207 -0.0816 +vn -0.1971 -0.9781 -0.0673 +vn -0.3583 -0.9207 -0.1545 +vn -0.1801 -0.9781 -0.1045 +vn -0.3213 -0.9207 -0.2215 +vn -0.1564 -0.9781 -0.1375 +vn -0.2687 -0.9239 -0.2725 +vn -0.1266 -0.9781 -0.1654 +vn -0.2121 -0.9208 -0.3275 +vn -0.0918 -0.9781 -0.1869 +vn -0.1439 -0.9239 -0.3545 +vn -0.0535 -0.9781 -0.2012 +vn -0.0706 -0.9207 -0.3838 +vn 0.0056 -0.9767 -0.2144 +vn 0.0275 -0.9781 -0.2064 +vn 0.0056 -0.9207 -0.3901 +vn 0.0816 -0.9207 -0.3816 +vn 0.0872 -0.9767 -0.1959 +vn 0.1545 -0.9207 -0.3583 +vn 0.2194 -0.8274 -0.5170 +vn 0.1078 -0.8255 -0.5540 +vn -0.0023 -0.7008 -0.7134 +vn 0.1427 -0.7026 -0.6971 +vn -0.0058 -0.8299 -0.5579 +vn -0.0021 -0.5497 -0.8353 +vn 0.1632 -0.5556 -0.8153 +vn 0.2721 -0.7071 -0.6526 +vn 0.3219 -0.5514 -0.7696 +vn 0.3895 -0.7059 -0.5916 +vn 0.5153 -0.3795 -0.7684 +vn 0.4628 -0.5556 -0.6907 +vn 0.3525 -0.3782 -0.8560 +vn 0.5887 -0.5556 -0.5872 +vn 0.4980 -0.7072 -0.5019 +vn 0.3905 -0.8315 -0.3952 +vn 0.3051 -0.8299 -0.4671 +vn 0.2680 -0.9237 -0.2740 +vn 0.3279 -0.9204 -0.2131 +vn 0.1814 -0.9767 -0.1145 +vn 0.1276 -0.9820 -0.1395 +vn 0.1133 -0.9818 -0.1525 +vn 0.2214 -0.9207 -0.3213 +vn 0.6553 -0.3795 -0.6531 +vn 0.7685 -0.3784 -0.5160 +vn 0.5440 -0.1928 -0.8167 +vn 0.6934 -0.1950 -0.6937 +vn 0.8150 -0.1929 -0.5464 +vn 0.7065 0.0000 -0.7077 +vn 0.5449 0.1929 -0.8160 +vn 0.6923 0.1932 -0.6953 +vn 0.5548 0.0000 -0.8320 +vn 0.8156 0.1930 -0.5454 +vn 0.8310 0.0000 -0.5563 +vn 0.9057 0.1933 -0.3773 +vn 0.9235 0.0000 -0.3835 +vn 0.9060 -0.1950 -0.3756 +vn 0.9619 0.1932 -0.1935 +vn 0.9806 -0.0000 -0.1959 +vn 0.9619 -0.1951 -0.1916 +vn 0.9808 -0.1951 -0.0002 +vn 1.0000 0.0000 -0.0009 +vn 0.9811 0.1933 -0.0021 +vn 0.9627 0.1933 0.1895 +vn 0.9810 -0.0000 0.1942 +vn 0.9620 -0.1951 0.1911 +vn 0.9063 -0.1949 0.3750 +vn 0.9242 -0.0000 0.3819 +vn 0.9072 0.1934 0.3737 +vn 0.8170 0.1932 0.5433 +vn 0.8320 -0.0000 0.5548 +vn 0.8156 -0.1950 0.5447 +vn 0.6952 0.1933 0.6923 +vn 0.7077 -0.0000 0.7065 +vn 0.6950 -0.1946 0.6921 +vn 0.5467 0.1933 0.8147 +vn 0.5563 -0.0000 0.8310 +vn 0.5452 -0.1949 0.8153 +vn 0.3772 0.1934 0.9057 +vn 0.3835 -0.0000 0.9235 +vn 0.3773 -0.1946 0.9054 +vn 0.1959 -0.0000 0.9806 +vn 0.1934 0.1933 0.9619 +vn 0.1916 -0.1950 0.9619 +vn 0.0021 0.1933 0.9811 +vn 0.0009 -0.0000 1.0000 +vn 0.0002 -0.1950 0.9808 +vn -0.1899 0.1950 0.9622 +vn -0.1942 -0.0000 0.9810 +vn -0.1910 -0.1950 0.9620 +vn -0.3819 -0.0000 0.9242 +vn -0.3736 0.1933 0.9072 +vn -0.3751 -0.1950 0.9062 +vn -0.5436 0.1951 0.8163 +vn -0.5548 0.0000 0.8320 +vn -0.5447 -0.1950 0.8156 +vn -0.7065 0.0000 0.7077 +vn -0.6924 0.1934 0.6951 +vn -0.6933 -0.1949 0.6938 +vn -0.8310 0.0000 0.5563 +vn -0.7676 0.3793 0.5166 +vn -0.8147 0.1950 0.5461 +vn -0.6549 0.3785 0.6541 +vn -0.8536 0.3794 0.3569 +vn -0.9056 0.1951 0.3767 +vn -0.9235 -0.0000 0.3835 +vn -0.9069 0.3794 0.1835 +vn -0.9617 0.1950 0.1927 +vn -0.9056 -0.1951 0.3765 +vn -0.9619 -0.1949 0.1917 +vn -0.9806 -0.0000 0.1959 +vn -0.9811 0.1933 0.0020 +vn -1.0000 -0.0000 0.0009 +vn -0.9808 -0.1950 0.0003 +vn -0.9810 0.0000 -0.1942 +vn -0.9627 0.1933 -0.1894 +vn -0.9624 -0.1946 -0.1894 +vn -0.9242 0.0000 -0.3819 +vn -0.9062 -0.1951 -0.3751 +vn -0.9064 -0.3829 -0.1785 +vn -0.8534 -0.3827 -0.3539 +vn -0.8320 0.0000 -0.5548 +vn -0.8157 -0.1950 -0.5447 +vn -0.7702 -0.3818 -0.5109 +vn -0.7077 0.0000 -0.7065 +vn -0.6938 -0.1949 -0.6933 +vn -0.6529 -0.3828 -0.6536 +vn -0.5452 -0.1950 -0.8153 +vn -0.5167 -0.3798 -0.7673 +vn -0.4636 -0.5558 -0.6900 +vn -0.3532 -0.3827 -0.8537 +vn -0.5916 -0.5541 -0.5856 +vn -0.5048 -0.7054 -0.4975 +vn -0.3915 -0.7071 -0.5888 +vn -0.3172 -0.5556 -0.7686 +vn -0.2690 -0.7071 -0.6539 +vn -0.1790 -0.3795 -0.9077 +vn -0.1663 -0.5544 -0.8154 +vn -0.1913 -0.1934 -0.9623 +vn 0.0003 -0.1933 -0.9811 +vn 0.0005 -0.3828 -0.9238 +vn 0.1915 -0.1934 -0.9622 +vn 0.1807 -0.3827 -0.9060 +vn 0.3757 -0.1934 -0.9063 +vn 0.3819 0.0000 -0.9242 +vn 0.1903 0.1928 -0.9626 +vn 0.1942 0.0000 -0.9810 +vn 0.3738 0.1934 -0.9071 +vn 0.1811 0.3785 -0.9077 +vn 0.3512 0.3794 -0.8560 +vn 0.5115 0.3793 -0.7710 +vn 0.1643 0.5501 -0.8188 +vn 0.3157 0.5512 -0.7724 +vn 0.4599 0.5556 -0.6927 +vn 0.3915 0.7022 -0.5946 +vn 0.2749 0.7012 -0.6579 +vn 0.5000 0.7022 -0.5068 +vn 0.5862 0.5556 -0.5897 +vn 0.6518 0.3827 -0.6547 +vn 0.5939 0.7010 -0.3949 +vn 0.6949 0.5498 -0.4635 +vn 0.4702 0.8258 -0.3115 +vn 0.6521 0.7072 -0.2733 +vn 0.5174 0.8269 -0.2201 +vn 0.7701 0.5541 -0.3159 +vn 0.5505 0.8269 -0.1150 +vn 0.6959 0.7055 -0.1344 +vn 0.3591 0.9203 -0.1549 +vn 0.1951 0.9786 -0.0655 +vn 0.3166 0.9241 -0.2141 +vn 0.3746 0.9239 -0.0779 +vn 0.2040 0.9786 -0.0263 +vn 0.2053 0.9786 0.0141 +vn 0.3826 0.9239 -0.0033 +vn 0.5555 0.8315 -0.0032 +vn 0.1986 0.9786 0.0539 +vn 0.3760 0.9239 0.0714 +vn 0.5455 0.8315 0.1053 +vn 0.7083 0.7059 0.0037 +vn 0.8314 0.5557 0.0009 +vn 0.8160 0.5556 0.1597 +vn 0.6940 0.7072 0.1351 +vn 0.5216 0.8269 0.2102 +vn 0.6543 0.7072 0.2679 +vn 0.7691 0.5556 0.3158 +vn 0.5895 0.7071 0.3904 +vn 0.6923 0.5512 0.4658 +vn 0.8533 0.3818 0.3551 +vn 0.7693 0.3828 0.5115 +vn 0.5069 0.7022 0.5000 +vn 0.5897 0.5556 0.5861 +vn 0.6547 0.3827 0.6519 +vn 0.5150 0.3828 0.7670 +vn 0.4641 0.5556 0.6899 +vn 0.3554 0.3827 0.8528 +vn 0.3230 0.5511 0.7694 +vn 0.1822 0.3827 0.9057 +vn 0.1668 0.5511 0.8176 +vn 0.0041 0.5511 0.8344 +vn 0.0020 0.3827 0.9239 +vn -0.1782 0.3827 0.9065 +vn -0.1589 0.5511 0.8192 +vn -0.3517 0.3827 0.8543 +vn -0.3156 0.5511 0.7725 +vn -0.5116 0.3827 0.7693 +vn -0.4602 0.5511 0.6960 +vn -0.4980 0.7071 0.5020 +vn -0.5861 0.5556 0.5897 +vn -0.3980 0.7012 0.5915 +vn -0.5892 0.7022 0.3996 +vn -0.6899 0.5556 0.4640 +vn -0.7672 0.5556 0.3205 +vn -0.6522 0.7071 0.2733 +vn -0.6973 0.7022 0.1436 +vn -0.8150 0.5556 0.1647 +vn -0.7120 0.7022 0.0048 +vn -0.8325 0.5541 -0.0028 +vn -0.5624 0.8269 0.0054 +vn -0.6940 0.7072 -0.1351 +vn -0.5526 0.8269 -0.1044 +vn -0.8160 0.5556 -0.1598 +vn -0.6543 0.7072 -0.2679 +vn -0.9243 0.3817 -0.0015 +vn -0.9065 0.3827 -0.1782 +vn -0.7691 0.5556 -0.3159 +vn -0.8533 0.3816 -0.3552 +vn -0.5946 0.7022 -0.3915 +vn -0.6927 0.5555 -0.4599 +vn -0.7693 0.3827 -0.5116 +vn -0.5068 0.7022 -0.5000 +vn -0.5897 0.5556 -0.5861 +vn -0.6525 0.3815 -0.6547 +vn -0.4640 0.5556 -0.6899 +vn -0.5131 0.3828 -0.7682 +vn -0.6934 0.1946 -0.6938 +vn -0.5461 0.1950 -0.8147 +vn -0.3554 0.3827 -0.8528 +vn -0.5563 0.0000 -0.8310 +vn -0.3835 0.0000 -0.9235 +vn -0.3767 0.1951 -0.9055 +vn -0.1928 0.1950 -0.9617 +vn -0.1836 0.3794 -0.9069 +vn -0.1959 0.0000 -0.9806 +vn 0.0001 0.1944 -0.9809 +vn -0.1667 0.5511 -0.8176 +vn -0.0020 0.3826 -0.9239 +vn -0.0041 0.5511 -0.8344 +vn -0.1369 0.7012 -0.6997 +vn -0.0048 0.7023 -0.7119 +vn 0.1351 0.7071 -0.6941 +vn 0.1045 0.8269 -0.5526 +vn 0.0030 0.8260 -0.5636 +vn -0.0730 0.9197 -0.3857 +vn -0.0057 0.9204 -0.3910 +vn -0.1079 0.8258 -0.5536 +vn 0.0707 0.9203 -0.3847 +vn 0.0141 0.9786 -0.2053 +vn -0.0000 1.0000 0.0000 +vn 0.0360 0.9767 -0.2114 +vn -0.0525 0.9804 -0.1900 +vn 0.0619 0.9809 -0.1844 +vn 0.1434 0.9239 -0.3548 +vn 0.1142 0.9767 -0.1816 +vn 0.2168 0.9234 -0.3167 +vn 0.2173 0.8304 -0.5131 +vn 0.3059 0.8315 -0.4637 +vn 0.2682 0.9239 -0.2729 +vn 0.3905 0.8315 -0.3950 +vn 0.1474 0.9767 -0.1557 +vn 0.1590 0.9823 -0.0995 +vn -0.0884 0.9804 -0.1762 +vn -0.1425 0.9230 -0.3573 +vn -0.1013 0.9824 -0.1568 +vn -0.2095 0.9231 -0.3226 +vn -0.2099 0.8312 -0.5148 +vn -0.3115 0.8258 -0.4702 +vn -0.3905 0.7059 -0.5909 +vn -0.2733 0.7071 -0.6521 +vn -0.3174 0.5556 -0.7685 +vn -0.3914 0.8293 -0.3988 +vn -0.3283 0.9203 -0.2125 +vn -0.2806 0.9203 -0.2725 +vn -0.4609 0.8303 -0.3132 +vn -0.1536 0.9824 -0.1060 +vn -0.1352 0.9786 -0.1550 +vn -0.1871 0.9804 -0.0619 +vn -0.1957 0.9804 -0.0243 +vn -0.3851 0.9195 -0.0793 +vn -0.3548 0.9239 -0.1433 +vn -0.5144 0.8315 -0.2096 +vn -0.3857 0.9226 -0.0056 +vn -0.2041 0.9786 0.0263 +vn -0.2052 0.9786 -0.0139 +vn -0.3783 0.9230 0.0702 +vn -0.5474 0.8303 0.1044 +vn -0.5182 0.8293 0.2090 +vn -0.3591 0.9203 0.1550 +vn -0.4674 0.8293 0.3061 +vn -0.1951 0.9786 0.0656 +vn -0.3238 0.9226 0.2096 +vn -0.1555 0.9804 0.1211 +vn -0.1289 0.9804 0.1492 +vn -0.0972 0.9804 0.1715 +vn -0.2179 0.9231 0.3170 +vn -0.2682 0.9239 0.2729 +vn -0.3952 0.8312 0.3910 +vn -0.3133 0.8303 0.4609 +vn -0.1536 0.9197 0.3613 +vn -0.2178 0.8258 0.5202 +vn -0.2744 0.7059 0.6530 +vn -0.1427 0.7043 0.6954 +vn -0.1129 0.8261 0.5522 +vn -0.0044 0.7042 0.7100 +vn 0.1070 0.8260 0.5534 +vn 0.0032 0.8315 0.5555 +vn 0.1347 0.7059 0.6954 +vn 0.0730 0.9197 0.3857 +vn 0.0057 0.9204 0.3911 +vn -0.0706 0.9203 0.3847 +vn -0.0141 0.9786 0.2053 +vn -0.0360 0.9767 0.2114 +vn 0.0525 0.9804 0.1900 +vn -0.0765 0.9767 0.2003 +vn 0.0885 0.9804 0.1761 +vn 0.1480 0.9195 0.3642 +vn 0.1013 0.9824 0.1568 +vn 0.2095 0.9231 0.3226 +vn 0.2099 0.8312 0.5148 +vn 0.3059 0.8304 0.4658 +vn 0.2689 0.7071 0.6540 +vn 0.3905 0.7059 0.5909 +vn 0.3914 0.8293 0.3988 +vn 0.3244 0.9197 0.2211 +vn 0.2806 0.9203 0.2725 +vn 0.4608 0.8304 0.3132 +vn 0.1353 0.9786 0.1551 +vn 0.1714 0.9804 0.0973 +vn 0.1711 0.9822 0.0770 +vn 0.3529 0.9234 0.1508 +vn -0.0009 0.0000 -1.0000 +vn -0.3756 -0.1950 -0.9060 +vn -0.8155 0.1936 -0.5454 +vn -0.9062 0.1936 -0.3759 +vn 0.9068 0.3802 0.1822 +vn 0.9249 0.3801 0.0018 +vn 0.8194 0.5501 -0.1615 +vn 0.9068 0.3818 -0.1788 +vn 0.8552 0.3801 -0.3524 +vn 0.7670 0.3827 -0.5150 +vn -0.1363 -0.7071 -0.6938 +vn -0.2188 -0.8299 -0.5132 +vn -0.1062 -0.8315 -0.5452 +vn -0.3147 -0.8299 -0.4607 +vn -0.4010 -0.8279 -0.3922 +vn -0.5944 -0.7008 -0.3945 +vn -0.4671 -0.8299 -0.3051 +vn -0.5214 -0.8254 -0.2164 +vn -0.7002 -0.7007 -0.1369 +vn -0.6559 -0.7027 -0.2758 +vn -0.5483 -0.8299 -0.1032 +vn -0.8197 -0.5498 -0.1608 +vn -0.7697 -0.5514 -0.3217 +vn -0.6907 -0.5557 -0.4628 +vn -0.9257 -0.3784 0.0018 +vn -0.8325 -0.5540 0.0041 +vn -0.9075 -0.3784 0.1824 +vn -0.8156 -0.5541 0.1666 +vn -0.7114 -0.7028 0.0052 +vn -0.6941 -0.7055 0.1432 +vn -0.5460 -0.8299 0.1145 +vn -0.5555 -0.8315 -0.0022 +vn -0.6589 -0.7026 0.2687 +vn -0.5132 -0.8299 0.2189 +vn -0.4630 -0.8278 0.3167 +vn -0.5919 -0.7007 0.3982 +vn -0.5919 -0.5514 0.5879 +vn -0.6952 -0.5514 0.4612 +vn -0.4975 -0.7054 0.5048 +vn -0.7718 -0.5514 0.3167 +vn -0.8554 -0.3795 0.3526 +vn -0.7686 -0.3783 0.5158 +vn -0.8158 -0.1935 0.5451 +vn -0.6517 -0.3797 0.6566 +vn -0.5109 -0.3815 0.7703 +vn -0.4589 -0.5541 0.6945 +vn -0.3218 -0.5514 0.7696 +vn -0.3905 -0.7072 0.5894 +vn -0.3555 -0.3795 0.8542 +vn -0.1585 -0.5517 0.8189 +vn -0.1332 -0.7055 0.6961 +vn -0.2721 -0.7071 0.6526 +vn -0.1772 -0.3816 0.9072 +vn 0.0000 -0.3783 0.9257 +vn 0.0042 -0.5541 0.8324 +vn 0.1824 -0.3784 0.9075 +vn 0.1666 -0.5541 0.8156 +vn 0.0027 -0.7072 0.7070 +vn 0.1432 -0.7055 0.6941 +vn 0.1132 -0.8257 0.5526 +vn -0.0022 -0.8315 0.5555 +vn 0.2706 -0.7013 0.6596 +vn 0.2188 -0.8299 0.5132 +vn 0.3167 -0.5514 0.7718 +vn 0.3995 -0.7030 0.5884 +vn 0.4612 -0.5514 0.6952 +vn 0.5067 -0.7029 0.4992 +vn 0.3986 -0.8299 0.3904 +vn 0.3140 -0.8304 0.4603 +vn 0.5127 -0.3795 0.7702 +vn 0.5928 -0.5517 0.5867 +vn 0.3526 -0.3795 0.8554 +vn 0.6559 -0.3816 0.6513 +vn 0.7710 -0.3797 0.5113 +vn 0.8560 -0.3797 0.3510 +vn 0.6924 -0.5557 0.4601 +vn 0.9080 -0.3797 0.1772 +vn 0.7688 -0.5558 0.3162 +vn 0.9243 -0.3816 -0.0032 +vn 0.8158 -0.5558 0.1601 +vn 0.8324 -0.5541 -0.0042 +vn 0.6956 -0.7059 0.1334 +vn 0.6527 -0.7071 0.2721 +vn 0.5124 -0.8315 0.2146 +vn 0.5916 -0.7059 0.3895 +vn 0.4606 -0.8315 0.3105 +vn 0.9075 -0.3783 -0.1824 +vn 0.8187 -0.5499 -0.1654 +vn 0.8545 -0.3783 -0.3559 +usemtl Default_OBJ +s 1 +f 1450//1447 1447//1448 1448//1449 +f 1447//1448 1449//1450 1448//1449 +f 1447//1448 1453//1451 1449//1450 +f 1450//1447 1451//1452 1447//1448 +f 1451//1452 1452//1453 1447//1448 +f 1447//1448 1452//1453 1454//1454 +f 1447//1448 1454//1454 1453//1451 +f 1453//1451 1454//1454 1457//1455 +f 1455//1456 1456//1457 1454//1454 +f 1455//1456 1454//1454 1452//1453 +f 1456//1457 1457//1455 1454//1454 +f 1453//1451 1457//1455 1458//1458 +f 1457//1455 1459//1459 1458//1458 +f 1457//1455 1460//1460 1459//1459 +f 1456//1457 1462//1461 1457//1455 +f 1457//1455 1461//1462 1460//1460 +f 1457//1455 1462//1461 1461//1462 +f 1456//1457 1463//1463 1462//1461 +f 1463//1463 1461//1462 1462//1461 +f 1456//1457 1464//1464 1463//1463 +f 1463//1463 1466//1465 1461//1462 +f 1464//1464 1465//1466 1463//1463 +f 1465//1466 1466//1465 1463//1463 +f 1461//1462 1466//1465 1467//1467 +f 1466//1465 1468//1468 1467//1467 +f 1465//1466 1468//1468 1466//1465 +f 1468//1468 1470//1469 1467//1467 +f 1469//1470 1470//1469 1468//1468 +f 1469//1470 1468//1468 1465//1466 +f 1470//1469 1471//1471 1467//1467 +f 1469//1470 1471//1471 1470//1469 +f 1469//1470 1473//1472 1471//1471 +f 1471//1471 1474//1473 1467//1467 +f 1472//1474 1474//1473 1471//1471 +f 1472//1474 1471//1471 1473//1472 +f 1474//1473 1476//1475 1467//1467 +f 1475//1476 1476//1475 1474//1473 +f 1475//1476 1474//1473 1472//1474 +f 1476//1475 1478//1477 1467//1467 +f 1477//1478 1478//1477 1476//1475 +f 1477//1478 1476//1475 1475//1476 +f 1478//1477 1480//1479 1467//1467 +f 1479//1480 1480//1479 1478//1477 +f 1479//1480 1478//1477 1477//1478 +f 1480//1479 1481//1481 1467//1467 +f 1479//1480 1481//1481 1480//1479 +f 1479//1480 1482//1482 1481//1481 +f 1481//1481 1483//1483 1467//1467 +f 1482//1482 1483//1483 1481//1481 +f 1482//1482 1485//1484 1483//1483 +f 1483//1483 1484//1485 1467//1467 +f 1485//1484 1484//1485 1483//1483 +f 1486//1486 1488//1487 1485//1484 +f 1486//1486 1485//1484 1482//1482 +f 1487//1488 1489//1489 1485//1484 +f 1487//1488 1485//1484 1488//1487 +f 1485//1484 1489//1489 1484//1485 +f 1490//1490 1491//1491 1489//1489 +f 1490//1490 1489//1489 1487//1488 +f 1491//1491 1484//1485 1489//1489 +f 1491//1491 1493//1492 1484//1485 +f 1490//1490 1492//1493 1491//1491 +f 1491//1491 1492//1493 1494//1494 +f 1491//1491 1494//1494 1493//1492 +f 1493//1492 1494//1494 1467//1467 +f 1494//1494 1496//1495 1467//1467 +f 1495//1496 1496//1495 1494//1494 +f 1495//1496 1494//1494 1492//1493 +f 1496//1495 1497//1497 1467//1467 +f 1495//1496 1497//1497 1496//1495 +f 1495//1496 1499//1498 1497//1497 +f 1497//1497 1500//1499 1467//1467 +f 1498//1500 1500//1499 1497//1497 +f 1498//1500 1497//1497 1499//1498 +f 1500//1499 1501//1501 1467//1467 +f 1498//1500 1501//1501 1500//1499 +f 1498//1500 1503//1502 1501//1501 +f 1501//1501 1504//1503 1467//1467 +f 1502//1504 1504//1503 1501//1501 +f 1502//1504 1501//1501 1503//1502 +f 1504//1503 1506//1505 1467//1467 +f 1505//1506 1506//1505 1504//1503 +f 1505//1506 1504//1503 1502//1504 +f 1506//1505 1507//1507 1467//1467 +f 1505//1506 1507//1507 1506//1505 +f 1505//1506 1508//1508 1507//1507 +f 1507//1507 1509//1509 1467//1467 +f 1508//1508 1509//1509 1507//1507 +f 1508//1508 1511//1510 1509//1509 +f 1509//1509 1512//1511 1467//1467 +f 1510//1512 1512//1511 1509//1509 +f 1510//1512 1509//1509 1511//1510 +f 1512//1511 1514//1513 1467//1467 +f 1513//1514 1514//1513 1512//1511 +f 1513//1514 1512//1511 1510//1512 +f 1514//1513 1515//1515 1467//1467 +f 1513//1514 1515//1515 1514//1513 +f 1515//1515 1517//1516 1467//1467 +f 1513//1514 1516//1517 1515//1515 +f 1516//1517 1517//1516 1515//1515 +f 1516//1517 1520//1518 1517//1516 +f 1517//1516 1518//1519 1467//1467 +f 1519//1520 1518//1519 1517//1516 +f 1519//1520 1517//1516 1520//1518 +f 1521//1521 1519//1520 1520//1518 +f 1521//1521 1520//1518 1522//1522 +f 1522//1522 1520//1518 1516//1517 +f 1523//1523 1525//1524 1522//1522 +f 1523//1523 1522//1522 1524//1525 +f 1522//1522 1516//1517 1524//1525 +f 1525//1524 1521//1521 1522//1522 +f 1526//1526 1527//1527 1525//1524 +f 1526//1526 1525//1524 1523//1523 +f 1527//1527 1528//1528 1525//1524 +f 1525//1524 1528//1528 1521//1521 +f 1527//1527 1530//1529 1528//1528 +f 1530//1529 1529//1530 1528//1528 +f 1529//1530 1521//1521 1528//1528 +f 1531//1531 1533//1532 1530//1529 +f 1531//1531 1530//1529 1532//1533 +f 1532//1533 1530//1529 1527//1527 +f 1530//1529 1533//1532 1529//1530 +f 1531//1531 1534//1534 1533//1532 +f 1533//1532 1534//1534 1535//1535 +f 1533//1532 1535//1535 1529//1530 +f 1529//1530 1535//1535 1536//1536 +f 1450//1447 1448//1449 1535//1535 +f 1450//1447 1535//1535 1534//1534 +f 1535//1535 1449//1450 1536//1536 +f 1535//1535 1448//1449 1449//1450 +f 1529//1530 1536//1536 1537//1537 +f 1537//1537 1536//1536 1538//1538 +f 1536//1536 1539//1539 1538//1538 +f 1536//1536 1449//1450 1539//1539 +f 1449//1450 1458//1458 1539//1539 +f 1458//1458 1540//1540 1539//1539 +f 1538//1538 1539//1539 1540//1540 +f 1458//1458 1459//1459 1540//1540 +f 1541//1541 1540//1540 1467//1467 +f 1540//1540 1459//1459 1467//1467 +f 1538//1538 1540//1540 1541//1541 +f 1538//1538 1541//1541 1542//1542 +f 1542//1542 1541//1541 1467//1467 +f 1519//1520 1543//1543 1542//1542 +f 1519//1520 1542//1542 1518//1519 +f 1518//1519 1542//1542 1467//1467 +f 1538//1538 1542//1542 1543//1543 +f 1521//1521 1537//1537 1543//1543 +f 1521//1521 1543//1543 1519//1520 +f 1537//1537 1538//1538 1543//1543 +f 1529//1530 1537//1537 1521//1521 +f 1531//1531 1545//1544 1534//1534 +f 1544//1545 1450//1447 1534//1534 +f 1544//1545 1534//1534 1545//1544 +f 1546//1546 1548//1547 1545//1544 +f 1546//1546 1545//1544 1531//1531 +f 1547//1548 1544//1545 1545//1544 +f 1547//1548 1545//1544 1548//1547 +f 1549//1549 1548//1547 1546//1546 +f 1549//1549 1547//1548 1548//1547 +f 1550//1550 1553//1551 1549//1549 +f 1550//1550 1549//1549 1551//1552 +f 1549//1549 1546//1546 1551//1552 +f 1552//1553 1554//1554 1549//1549 +f 1552//1553 1549//1549 1553//1551 +f 1549//1549 1554//1554 1547//1548 +f 1555//1555 1557//1556 1554//1554 +f 1555//1555 1554//1554 1552//1553 +f 1554//1554 1556//1557 1547//1548 +f 1554//1554 1557//1556 1556//1557 +f 1558//1558 1560//1559 1557//1556 +f 1558//1558 1557//1556 1555//1555 +f 1557//1556 1559//1560 1556//1557 +f 1557//1556 1560//1559 1559//1560 +f 1560//1559 1561//1561 1559//1560 +f 1560//1559 1563//1562 1561//1561 +f 1562//1563 1563//1562 1560//1559 +f 1562//1563 1560//1559 1558//1558 +f 1564//1564 1566//1565 1563//1562 +f 1564//1564 1563//1562 1562//1563 +f 1563//1562 1565//1566 1561//1561 +f 1563//1562 1566//1565 1565//1566 +f 1566//1565 1567//1567 1565//1566 +f 1566//1565 1569//1568 1567//1567 +f 1568//1569 1569//1568 1566//1565 +f 1568//1569 1566//1565 1564//1564 +f 1570//1570 1571//1571 1569//1568 +f 1570//1570 1569//1568 1568//1569 +f 1571//1571 1567//1567 1569//1568 +f 1571//1571 1573//1572 1567//1567 +f 1572//1573 1575//1574 1571//1571 +f 1572//1573 1571//1571 1570//1570 +f 1571//1571 1574//1575 1573//1572 +f 1571//1571 1575//1574 1574//1575 +f 1576//1576 1578//1577 1575//1574 +f 1576//1576 1575//1574 1572//1573 +f 1575//1574 1577//1578 1574//1575 +f 1575//1574 1578//1577 1577//1578 +f 1579//1579 1581//1580 1578//1577 +f 1579//1579 1578//1577 1576//1576 +f 1578//1577 1580//1581 1577//1578 +f 1578//1577 1581//1580 1580//1581 +f 1579//1579 1582//1582 1581//1580 +f 1582//1582 1580//1581 1581//1580 +f 1579//1579 1584//1583 1582//1582 +f 1582//1582 1585//1584 1580//1581 +f 1583//1585 1587//1586 1582//1582 +f 1583//1585 1582//1582 1584//1583 +f 1582//1582 1586//1587 1585//1584 +f 1582//1582 1587//1586 1586//1587 +f 1588//1588 1590//1589 1587//1586 +f 1588//1588 1587//1586 1583//1585 +f 1587//1586 1589//1590 1586//1587 +f 1587//1586 1590//1589 1589//1590 +f 1588//1588 1591//1591 1590//1589 +f 1591//1591 1589//1590 1590//1589 +f 1588//1588 1593//1592 1591//1591 +f 1591//1591 1594//1593 1589//1590 +f 1592//1594 1596//1595 1591//1591 +f 1592//1594 1591//1591 1593//1592 +f 1591//1591 1595//1596 1594//1593 +f 1591//1591 1596//1595 1595//1596 +f 1592//1594 1597//1597 1596//1595 +f 1597//1597 1595//1596 1596//1595 +f 1592//1594 1600//1598 1597//1597 +f 1597//1597 1599//1599 1595//1596 +f 1600//1598 1598//1600 1597//1597 +f 1598//1600 1599//1599 1597//1597 +f 1601//1601 1603//1602 1600//1598 +f 1601//1601 1600//1598 1602//1603 +f 1602//1603 1600//1598 1592//1594 +f 1600//1598 1603//1602 1598//1600 +f 1604//1604 1605//1605 1603//1602 +f 1604//1604 1603//1602 1601//1601 +f 1605//1605 1598//1600 1603//1602 +f 1605//1605 1608//1606 1598//1600 +f 1606//1607 1607//1608 1605//1605 +f 1606//1607 1605//1605 1604//1604 +f 1607//1608 1608//1606 1605//1605 +f 1598//1600 1608//1606 1609//1609 +f 1608//1606 1610//1610 1609//1609 +f 1608//1606 1611//1611 1610//1610 +f 1607//1608 1611//1611 1608//1606 +f 1612//1612 1614//1613 1611//1611 +f 1612//1612 1611//1611 1607//1608 +f 1611//1611 1613//1614 1610//1610 +f 1611//1611 1614//1613 1613//1614 +f 1612//1612 1615//1615 1614//1613 +f 1615//1615 1613//1614 1614//1613 +f 1612//1612 1616//1616 1615//1615 +f 1615//1615 1618//1617 1613//1614 +f 1616//1616 1617//1618 1615//1615 +f 1617//1618 1618//1617 1615//1615 +f 1617//1618 1621//1619 1618//1617 +f 1613//1614 1618//1617 1619//1620 +f 1618//1617 1620//1621 1619//1620 +f 1618//1617 1621//1619 1620//1621 +f 1622//1622 1624//1623 1621//1619 +f 1622//1622 1621//1619 1617//1618 +f 1621//1619 1623//1624 1620//1621 +f 1621//1619 1624//1623 1623//1624 +f 1625//1625 1627//1626 1624//1623 +f 1625//1625 1624//1623 1622//1622 +f 1624//1623 1626//1627 1623//1624 +f 1624//1623 1627//1626 1626//1627 +f 1625//1625 1628//1628 1627//1626 +f 1627//1626 1628//1628 1629//1629 +f 1627//1626 1629//1629 1626//1627 +f 1626//1627 1629//1629 1631//1630 +f 1628//1628 1630//1631 1629//1629 +f 1630//1631 1631//1630 1629//1629 +f 1626//1627 1631//1630 1632//1632 +f 1631//1630 1633//1633 1632//1632 +f 1631//1630 1634//1634 1633//1633 +f 1630//1631 1636//1635 1631//1630 +f 1631//1630 1635//1636 1634//1634 +f 1631//1630 1636//1635 1635//1636 +f 1638//1637 1637//1638 1636//1635 +f 1637//1638 1635//1636 1636//1635 +f 1638//1637 1636//1635 1630//1631 +f 1640//1639 1638//1637 1630//1631 +f 1639//1640 1641//1641 1638//1637 +f 1639//1640 1638//1637 1640//1639 +f 1641//1641 1637//1638 1638//1637 +f 1641//1641 1526//1526 1637//1638 +f 1642//1642 1643//1643 1641//1641 +f 1642//1642 1641//1641 1639//1640 +f 1643//1643 1526//1526 1641//1641 +f 1643//1643 1527//1527 1526//1526 +f 1644//1644 1532//1533 1643//1643 +f 1644//1644 1643//1643 1642//1642 +f 1532//1533 1527//1527 1643//1643 +f 1645//1645 1644//1644 1642//1642 +f 1645//1645 1546//1546 1644//1644 +f 1546//1546 1532//1533 1644//1644 +f 1647//1646 1645//1645 1646//1647 +f 1645//1645 1642//1642 1646//1647 +f 1647//1646 1648//1648 1645//1645 +f 1550//1550 1551//1552 1645//1645 +f 1550//1550 1645//1645 1648//1648 +f 1645//1645 1551//1552 1546//1546 +f 1649//1649 1651//1650 1648//1648 +f 1649//1649 1648//1648 1647//1646 +f 1650//1651 1550//1550 1648//1648 +f 1650//1651 1648//1648 1651//1650 +f 1652//1652 1653//1653 1651//1650 +f 1652//1652 1651//1650 1649//1649 +f 1653//1653 1650//1651 1651//1650 +f 1653//1653 1656//1654 1650//1651 +f 1654//1655 1656//1654 1653//1653 +f 1654//1655 1653//1653 1655//1656 +f 1655//1656 1653//1653 1652//1652 +f 1657//1657 1659//1658 1656//1654 +f 1657//1657 1656//1654 1654//1655 +f 1656//1654 1658//1659 1650//1651 +f 1656//1654 1659//1658 1658//1659 +f 1661//1660 1660//1661 1659//1658 +f 1660//1661 1658//1659 1659//1658 +f 1661//1660 1659//1658 1657//1657 +f 1662//1662 1661//1660 1657//1657 +f 1662//1662 1663//1663 1661//1660 +f 1663//1663 1660//1661 1661//1660 +f 1662//1662 1667//1664 1663//1663 +f 1663//1663 1665//1665 1660//1661 +f 1666//1666 1664//1667 1663//1663 +f 1664//1667 1665//1665 1663//1663 +f 1666//1666 1663//1663 1667//1664 +f 1668//1668 1667//1664 1662//1662 +f 1668//1668 1666//1666 1667//1664 +f 1670//1669 1668//1668 1669//1670 +f 1668//1668 1662//1662 1669//1670 +f 1670//1669 1671//1671 1668//1668 +f 1668//1668 1671//1671 1666//1666 +f 1670//1669 1673//1672 1671//1671 +f 1672//1673 1674//1674 1671//1671 +f 1672//1673 1671//1671 1673//1672 +f 1674//1674 1666//1666 1671//1671 +f 1674//1674 1677//1675 1666//1666 +f 1675//1676 1676//1677 1674//1674 +f 1675//1676 1674//1674 1672//1673 +f 1676//1677 1677//1675 1674//1674 +f 1676//1677 1678//1678 1677//1675 +f 1678//1678 1679//1679 1677//1675 +f 1666//1666 1677//1675 1679//1679 +f 1666//1666 1679//1679 1664//1667 +f 1664//1667 1679//1679 1680//1680 +f 1679//1679 1681//1681 1680//1680 +f 1679//1679 1682//1682 1681//1681 +f 1678//1678 1682//1682 1679//1679 +f 1683//1683 1685//1684 1682//1682 +f 1683//1683 1682//1682 1678//1678 +f 1682//1682 1684//1685 1681//1681 +f 1682//1682 1685//1684 1684//1685 +f 1683//1683 1686//1686 1685//1684 +f 1685//1684 1686//1686 1687//1687 +f 1685//1684 1687//1687 1684//1685 +f 1687//1687 1688//1688 1684//1685 +f 1687//1687 1691//1689 1688//1688 +f 1689//1690 1690//1691 1687//1687 +f 1689//1690 1687//1687 1686//1686 +f 1690//1691 1691//1689 1687//1687 +f 1690//1691 1692//1692 1691//1689 +f 1688//1688 1691//1689 1570//1570 +f 1691//1689 1572//1573 1570//1570 +f 1691//1689 1692//1692 1572//1573 +f 1690//1691 1693//1693 1692//1692 +f 1693//1693 1572//1573 1692//1692 +f 1690//1691 1694//1694 1693//1693 +f 1693//1693 1576//1576 1572//1573 +f 1694//1694 1695//1695 1693//1693 +f 1695//1695 1576//1576 1693//1693 +f 1694//1694 1696//1696 1695//1695 +f 1695//1695 1579//1579 1576//1576 +f 1695//1695 1584//1583 1579//1579 +f 1695//1695 1697//1697 1584//1583 +f 1696//1696 1697//1697 1695//1695 +f 1696//1696 1699//1698 1697//1697 +f 1698//1699 1700//1700 1697//1697 +f 1698//1699 1697//1697 1699//1698 +f 1697//1697 1583//1585 1584//1583 +f 1697//1697 1700//1700 1583//1585 +f 1698//1699 1701//1701 1700//1700 +f 1700//1700 1701//1701 1588//1588 +f 1700//1700 1588//1588 1583//1585 +f 1698//1699 1702//1702 1701//1701 +f 1702//1702 1703//1703 1701//1701 +f 1703//1703 1588//1588 1701//1701 +f 1702//1702 1704//1704 1703//1703 +f 1703//1703 1593//1592 1588//1588 +f 1704//1704 1705//1705 1703//1703 +f 1705//1705 1593//1592 1703//1703 +f 1704//1704 1706//1706 1705//1705 +f 1705//1705 1592//1594 1593//1592 +f 1706//1706 1602//1603 1705//1705 +f 1602//1603 1592//1594 1705//1705 +f 1707//1707 1709//1708 1706//1706 +f 1707//1707 1706//1706 1708//1709 +f 1708//1709 1706//1706 1704//1704 +f 1706//1706 1709//1708 1602//1603 +f 1710//1710 1711//1711 1709//1708 +f 1710//1710 1709//1708 1707//1707 +f 1709//1708 1601//1601 1602//1603 +f 1709//1708 1711//1711 1601//1601 +f 1710//1710 1712//1712 1711//1711 +f 1711//1711 1712//1712 1604//1604 +f 1711//1711 1604//1604 1601//1601 +f 1710//1710 1714//1713 1712//1712 +f 1713//1714 1715//1715 1712//1712 +f 1713//1714 1712//1712 1714//1713 +f 1712//1712 1606//1607 1604//1604 +f 1712//1712 1715//1715 1606//1607 +f 1717//1716 1716//1717 1715//1715 +f 1716//1717 1606//1607 1715//1715 +f 1717//1716 1715//1715 1713//1714 +f 1718//1718 1717//1716 1713//1714 +f 1718//1718 1719//1719 1717//1716 +f 1719//1719 1716//1717 1717//1716 +f 1718//1718 1720//1720 1719//1719 +f 1719//1719 1722//1721 1716//1717 +f 1720//1720 1721//1722 1719//1719 +f 1721//1722 1722//1721 1719//1719 +f 1722//1721 1723//1723 1716//1717 +f 1722//1721 1724//1724 1723//1723 +f 1721//1722 1726//1725 1722//1721 +f 1722//1721 1725//1726 1724//1724 +f 1722//1721 1726//1725 1725//1726 +f 1727//1727 1729//1728 1726//1725 +f 1727//1727 1726//1725 1721//1722 +f 1726//1725 1728//1729 1725//1726 +f 1726//1725 1729//1728 1728//1729 +f 1730//1730 1732//1731 1729//1728 +f 1730//1730 1729//1728 1727//1727 +f 1729//1728 1731//1732 1728//1729 +f 1729//1728 1732//1731 1731//1732 +f 1730//1730 1733//1733 1732//1731 +f 1732//1731 1733//1733 1734//1734 +f 1732//1731 1734//1734 1731//1732 +f 1734//1734 1735//1735 1731//1732 +f 1734//1734 1737//1736 1735//1735 +f 1733//1733 1736//1737 1734//1734 +f 1736//1737 1737//1736 1734//1734 +f 1737//1736 1625//1625 1735//1735 +f 1737//1736 1738//1738 1625//1625 +f 1737//1736 1739//1739 1738//1738 +f 1737//1736 1740//1740 1739//1739 +f 1736//1737 1740//1740 1737//1736 +f 1736//1737 1741//1741 1740//1740 +f 1741//1741 1739//1739 1740//1740 +f 1736//1737 1744//1742 1741//1741 +f 1741//1741 1743//1743 1739//1739 +f 1744//1742 1742//1744 1741//1741 +f 1742//1744 1743//1743 1741//1741 +f 1745//1745 1744//1742 1736//1737 +f 1745//1745 1746//1746 1744//1742 +f 1744//1742 1746//1746 1742//1744 +f 1745//1745 1747//1747 1746//1746 +f 1652//1652 1649//1649 1746//1746 +f 1652//1652 1746//1746 1747//1747 +f 1649//1649 1742//1744 1746//1746 +f 1748//1748 1750//1749 1747//1747 +f 1748//1748 1747//1747 1745//1745 +f 1749//1750 1652//1652 1747//1747 +f 1749//1750 1747//1747 1750//1749 +f 1751//1751 1749//1750 1750//1749 +f 1751//1751 1750//1749 1752//1752 +f 1752//1752 1750//1749 1748//1748 +f 1753//1753 1756//1754 1752//1752 +f 1753//1753 1752//1752 1754//1755 +f 1752//1752 1748//1748 1754//1755 +f 1755//1756 1751//1751 1752//1752 +f 1755//1756 1752//1752 1756//1754 +f 1757//1757 1756//1754 1753//1753 +f 1757//1757 1755//1756 1756//1754 +f 1758//1758 1760//1759 1757//1757 +f 1758//1758 1757//1757 1759//1760 +f 1757//1757 1753//1753 1759//1760 +f 1757//1757 1760//1759 1755//1756 +f 1758//1758 1761//1761 1760//1759 +f 1761//1761 1755//1756 1760//1759 +f 1761//1761 1763//1762 1755//1756 +f 1758//1758 1762//1763 1761//1761 +f 1761//1761 1762//1763 1764//1764 +f 1761//1761 1764//1764 1763//1762 +f 1764//1764 1765//1765 1763//1762 +f 1764//1764 1767//1766 1765//1765 +f 1762//1763 1766//1767 1764//1764 +f 1766//1767 1767//1766 1764//1764 +f 1766//1767 1768//1768 1767//1766 +f 1768//1768 1654//1655 1767//1766 +f 1765//1765 1767//1766 1654//1655 +f 1768//1768 1657//1657 1654//1655 +f 1669//1670 1662//1662 1768//1768 +f 1669//1670 1768//1768 1766//1767 +f 1662//1662 1657//1657 1768//1768 +f 1762//1763 1770//1769 1766//1767 +f 1769//1770 1669//1670 1766//1767 +f 1769//1770 1766//1767 1770//1769 +f 1758//1758 1769//1770 1770//1769 +f 1758//1758 1770//1769 1762//1763 +f 1758//1758 1670//1669 1769//1770 +f 1670//1669 1669//1670 1769//1770 +f 1755//1756 1763//1762 1765//1765 +f 1755//1756 1765//1765 1751//1751 +f 1751//1751 1765//1765 1655//1656 +f 1765//1765 1654//1655 1655//1656 +f 1758//1758 1759//1760 1771//1771 +f 1759//1760 1772//1772 1771//1771 +f 1759//1760 1753//1753 1772//1772 +f 1773//1773 1771//1771 1772//1772 +f 1773//1773 1772//1772 1774//1774 +f 1774//1774 1772//1772 1775//1775 +f 1753//1753 1775//1775 1772//1772 +f 1774//1774 1775//1775 1776//1776 +f 1775//1775 1777//1777 1776//1776 +f 1775//1775 1778//1778 1777//1777 +f 1775//1775 1748//1748 1778//1778 +f 1775//1775 1754//1755 1748//1748 +f 1753//1753 1754//1755 1775//1775 +f 1778//1778 1748//1748 1745//1745 +f 1777//1777 1778//1778 1779//1779 +f 1778//1778 1745//1745 1779//1779 +f 1777//1777 1779//1779 1733//1733 +f 1733//1733 1779//1779 1736//1737 +f 1745//1745 1736//1737 1779//1779 +f 1776//1776 1777//1777 1730//1730 +f 1730//1730 1777//1777 1733//1733 +f 1774//1774 1776//1776 1780//1780 +f 1776//1776 1730//1730 1780//1780 +f 1781//1781 1783//1782 1780//1780 +f 1781//1781 1780//1780 1782//1783 +f 1780//1780 1727//1727 1782//1783 +f 1780//1780 1730//1730 1727//1727 +f 1774//1774 1780//1780 1783//1782 +f 1784//1784 1785//1785 1783//1782 +f 1784//1784 1783//1782 1781//1781 +f 1773//1773 1774//1774 1783//1782 +f 1773//1773 1783//1782 1785//1785 +f 1758//1758 1773//1773 1785//1785 +f 1758//1758 1785//1785 1784//1784 +f 1758//1758 1784//1784 1786//1786 +f 1786//1786 1784//1784 1781//1781 +f 1758//1758 1786//1786 1787//1787 +f 1786//1786 1788//1788 1787//1787 +f 1786//1786 1789//1789 1788//1788 +f 1786//1786 1781//1781 1789//1789 +f 1789//1789 1720//1720 1788//1788 +f 1789//1789 1790//1790 1720//1720 +f 1781//1781 1790//1790 1789//1789 +f 1781//1781 1782//1783 1790//1790 +f 1720//1720 1790//1790 1721//1722 +f 1790//1790 1727//1727 1721//1722 +f 1790//1790 1782//1783 1727//1727 +f 1787//1787 1788//1788 1791//1791 +f 1791//1791 1788//1788 1720//1720 +f 1792//1792 1795//1793 1791//1791 +f 1792//1792 1791//1791 1793//1794 +f 1791//1791 1794//1795 1793//1794 +f 1791//1791 1718//1718 1794//1795 +f 1791//1791 1720//1720 1718//1718 +f 1787//1787 1791//1791 1795//1793 +f 1758//1758 1787//1787 1795//1793 +f 1758//1758 1795//1793 1792//1792 +f 1793//1794 1794//1795 1796//1796 +f 1718//1718 1713//1714 1794//1795 +f 1796//1796 1794//1795 1713//1714 +f 1798//1797 1796//1796 1797//1798 +f 1796//1796 1710//1710 1797//1798 +f 1796//1796 1714//1713 1710//1710 +f 1793//1794 1796//1796 1798//1797 +f 1796//1796 1713//1714 1714//1713 +f 1800//1799 1798//1797 1799//1800 +f 1798//1797 1797//1798 1799//1800 +f 1800//1799 1793//1794 1798//1797 +f 1758//1758 1792//1792 1800//1799 +f 1758//1758 1800//1799 1801//1801 +f 1800//1799 1799//1800 1801//1801 +f 1800//1799 1792//1792 1793//1794 +f 1758//1758 1801//1801 1802//1802 +f 1802//1802 1801//1801 1799//1800 +f 1758//1758 1802//1802 1803//1803 +f 1802//1802 1804//1804 1803//1803 +f 1802//1802 1805//1805 1804//1804 +f 1802//1802 1799//1800 1805//1805 +f 1805//1805 1799//1800 1797//1798 +f 1804//1804 1805//1805 1806//1806 +f 1805//1805 1797//1798 1806//1806 +f 1804//1804 1806//1806 1807//1807 +f 1806//1806 1708//1709 1807//1807 +f 1806//1806 1707//1707 1708//1709 +f 1806//1806 1797//1798 1710//1710 +f 1806//1806 1710//1710 1707//1707 +f 1808//1808 1804//1804 1807//1807 +f 1808//1808 1807//1807 1809//1809 +f 1807//1807 1810//1810 1809//1809 +f 1807//1807 1708//1709 1810//1810 +f 1809//1809 1810//1810 1811//1811 +f 1708//1709 1704//1704 1810//1810 +f 1811//1811 1810//1810 1704//1704 +f 1809//1809 1811//1811 1812//1812 +f 1812//1812 1811//1811 1813//1813 +f 1813//1813 1811//1811 1702//1702 +f 1811//1811 1704//1704 1702//1702 +f 1814//1814 1816//1815 1813//1813 +f 1814//1814 1813//1813 1815//1816 +f 1813//1813 1699//1698 1815//1816 +f 1813//1813 1698//1699 1699//1698 +f 1812//1812 1813//1813 1816//1815 +f 1813//1813 1702//1702 1698//1699 +f 1817//1817 1819//1818 1816//1815 +f 1817//1817 1816//1815 1814//1814 +f 1818//1819 1812//1812 1816//1815 +f 1818//1819 1816//1815 1819//1818 +f 1820//1820 1819//1818 1817//1817 +f 1820//1820 1818//1819 1819//1818 +f 1758//1758 1822//1821 1820//1820 +f 1758//1758 1820//1820 1821//1822 +f 1820//1820 1817//1817 1821//1822 +f 1820//1820 1822//1821 1818//1819 +f 1758//1758 1823//1823 1822//1821 +f 1823//1823 1818//1819 1822//1821 +f 1758//1758 1803//1803 1823//1823 +f 1823//1823 1808//1808 1818//1819 +f 1803//1803 1808//1808 1823//1823 +f 1758//1758 1821//1822 1824//1824 +f 1821//1822 1825//1825 1824//1824 +f 1821//1822 1817//1817 1825//1825 +f 1826//1826 1824//1824 1825//1825 +f 1826//1826 1825//1825 1827//1827 +f 1827//1827 1825//1825 1828//1828 +f 1817//1817 1828//1828 1825//1825 +f 1827//1827 1828//1828 1829//1829 +f 1829//1829 1828//1828 1830//1830 +f 1817//1817 1814//1814 1828//1828 +f 1814//1814 1830//1830 1828//1828 +f 1829//1829 1830//1830 1831//1831 +f 1831//1831 1830//1830 1696//1696 +f 1814//1814 1815//1816 1830//1830 +f 1815//1816 1696//1696 1830//1830 +f 1829//1829 1831//1831 1689//1690 +f 1831//1831 1690//1691 1689//1690 +f 1831//1831 1694//1694 1690//1691 +f 1831//1831 1696//1696 1694//1694 +f 1827//1827 1829//1829 1832//1832 +f 1829//1829 1689//1690 1832//1832 +f 1833//1833 1835//1834 1832//1832 +f 1833//1833 1832//1832 1834//1835 +f 1834//1835 1832//1832 1689//1690 +f 1827//1827 1832//1832 1835//1834 +f 1826//1826 1827//1827 1835//1834 +f 1826//1826 1835//1834 1836//1836 +f 1836//1836 1835//1834 1833//1833 +f 1758//1758 1836//1836 1837//1837 +f 1836//1836 1833//1833 1837//1837 +f 1758//1758 1826//1826 1836//1836 +f 1758//1758 1837//1837 1838//1838 +f 1838//1838 1837//1837 1833//1833 +f 1758//1758 1838//1838 1675//1676 +f 1675//1676 1838//1838 1839//1839 +f 1838//1838 1833//1833 1839//1839 +f 1675//1676 1839//1839 1676//1677 +f 1839//1839 1678//1678 1676//1677 +f 1839//1839 1683//1683 1678//1678 +f 1833//1833 1683//1683 1839//1839 +f 1833//1833 1834//1835 1683//1683 +f 1683//1683 1834//1835 1686//1686 +f 1834//1835 1689//1690 1686//1686 +f 1758//1758 1824//1824 1826//1826 +f 1808//1808 1812//1812 1818//1819 +f 1815//1816 1699//1698 1696//1696 +f 1808//1808 1809//1809 1812//1812 +f 1803//1803 1804//1804 1808//1808 +f 1758//1758 1771//1771 1773//1773 +f 1758//1758 1673//1672 1670//1669 +f 1758//1758 1672//1673 1673//1672 +f 1758//1758 1675//1676 1672//1673 +f 1751//1751 1655//1656 1749//1750 +f 1655//1656 1652//1652 1749//1750 +f 1742//1744 1840//1840 1743//1743 +f 1739//1739 1743//1743 1640//1639 +f 1743//1743 1639//1640 1640//1639 +f 1743//1743 1840//1840 1639//1640 +f 1647//1646 1646//1647 1840//1840 +f 1647//1646 1840//1840 1742//1744 +f 1840//1840 1642//1642 1639//1640 +f 1840//1840 1646//1647 1642//1642 +f 1649//1649 1647//1646 1742//1744 +f 1739//1739 1628//1628 1738//1738 +f 1739//1739 1841//1841 1628//1628 +f 1739//1739 1640//1639 1841//1841 +f 1640//1639 1630//1631 1841//1841 +f 1628//1628 1841//1841 1630//1631 +f 1625//1625 1738//1738 1628//1628 +f 1731//1732 1735//1735 1842//1842 +f 1842//1842 1735//1735 1625//1625 +f 1731//1732 1842//1842 1728//1729 +f 1728//1729 1842//1842 1843//1843 +f 1843//1843 1842//1842 1622//1622 +f 1842//1842 1625//1625 1622//1622 +f 1728//1729 1843//1843 1725//1726 +f 1725//1726 1843//1843 1616//1616 +f 1616//1616 1843//1843 1617//1618 +f 1843//1843 1622//1622 1617//1618 +f 1725//1726 1616//1616 1724//1724 +f 1724//1724 1612//1612 1723//1723 +f 1724//1724 1616//1616 1612//1612 +f 1716//1717 1723//1723 1606//1607 +f 1723//1723 1607//1608 1606//1607 +f 1723//1723 1612//1612 1607//1608 +f 1684//1685 1688//1688 1844//1844 +f 1844//1844 1688//1688 1568//1569 +f 1688//1688 1570//1570 1568//1569 +f 1684//1685 1844//1844 1681//1681 +f 1681//1681 1844//1844 1845//1845 +f 1845//1845 1844//1844 1564//1564 +f 1844//1844 1568//1569 1564//1564 +f 1846//1846 1680//1680 1845//1845 +f 1846//1846 1845//1845 1847//1847 +f 1847//1847 1845//1845 1562//1563 +f 1681//1681 1845//1845 1680//1680 +f 1845//1845 1564//1564 1562//1563 +f 1846//1846 1847//1847 1848//1848 +f 1847//1847 1555//1555 1848//1848 +f 1847//1847 1558//1558 1555//1555 +f 1847//1847 1562//1563 1558//1558 +f 1660//1661 1665//1665 1848//1848 +f 1660//1661 1848//1848 1849//1849 +f 1848//1848 1552//1553 1849//1849 +f 1848//1848 1555//1555 1552//1553 +f 1846//1846 1848//1848 1665//1665 +f 1660//1661 1849//1849 1658//1659 +f 1658//1659 1849//1849 1552//1553 +f 1664//1667 1846//1846 1665//1665 +f 1664//1667 1680//1680 1846//1846 +f 1658//1659 1550//1550 1650//1651 +f 1658//1659 1553//1551 1550//1550 +f 1658//1659 1552//1553 1553//1551 +f 1637//1638 1850//1850 1635//1636 +f 1637//1638 1523//1523 1850//1850 +f 1637//1638 1526//1526 1523//1523 +f 1850//1850 1851//1851 1635//1636 +f 1850//1850 1852//1852 1851//1851 +f 1850//1850 1523//1523 1524//1525 +f 1850//1850 1524//1525 1852//1852 +f 1852//1852 1510//1512 1851//1851 +f 1852//1852 1513//1514 1510//1512 +f 1524//1525 1513//1514 1852//1852 +f 1634//1634 1635//1636 1851//1851 +f 1634//1634 1851//1851 1853//1853 +f 1851//1851 1511//1510 1853//1853 +f 1851//1851 1510//1512 1511//1510 +f 1634//1634 1853//1853 1854//1854 +f 1854//1854 1853//1853 1511//1510 +f 1855//1855 1633//1633 1854//1854 +f 1855//1855 1854//1854 1856//1856 +f 1854//1854 1505//1506 1856//1856 +f 1854//1854 1508//1508 1505//1506 +f 1634//1634 1854//1854 1633//1633 +f 1854//1854 1511//1510 1508//1508 +f 1855//1855 1856//1856 1857//1857 +f 1856//1856 1502//1504 1857//1857 +f 1856//1856 1505//1506 1502//1504 +f 1858//1858 1860//1859 1857//1857 +f 1858//1858 1857//1857 1859//1860 +f 1859//1860 1857//1857 1502//1504 +f 1855//1855 1857//1857 1860//1859 +f 1861//1861 1862//1862 1860//1859 +f 1861//1861 1860//1859 1858//1858 +f 1862//1862 1855//1855 1860//1859 +f 1623//1624 1863//1863 1862//1862 +f 1623//1624 1862//1862 1620//1621 +f 1620//1621 1862//1862 1861//1861 +f 1862//1862 1863//1863 1855//1855 +f 1626//1627 1632//1632 1863//1863 +f 1626//1627 1863//1863 1623//1624 +f 1863//1863 1633//1633 1855//1855 +f 1863//1863 1632//1632 1633//1633 +f 1864//1864 1619//1620 1861//1861 +f 1864//1864 1861//1861 1865//1865 +f 1865//1865 1861//1861 1858//1858 +f 1620//1621 1861//1861 1619//1620 +f 1866//1866 1864//1864 1865//1865 +f 1866//1866 1865//1865 1867//1867 +f 1867//1867 1865//1865 1868//1868 +f 1865//1865 1858//1858 1868//1868 +f 1867//1867 1868//1868 1869//1869 +f 1868//1868 1870//1870 1869//1869 +f 1868//1868 1871//1871 1870//1870 +f 1858//1858 1871//1871 1868//1868 +f 1871//1871 1499//1498 1870//1870 +f 1871//1871 1498//1500 1499//1498 +f 1858//1858 1859//1860 1871//1871 +f 1871//1871 1503//1502 1498//1500 +f 1871//1871 1859//1860 1503//1502 +f 1872//1872 1869//1869 1870//1870 +f 1872//1872 1870//1870 1873//1873 +f 1873//1873 1870//1870 1499//1498 +f 1872//1872 1873//1873 1874//1874 +f 1874//1874 1873//1873 1495//1496 +f 1873//1873 1499//1498 1495//1496 +f 1872//1872 1874//1874 1875//1875 +f 1875//1875 1874//1874 1490//1490 +f 1490//1490 1874//1874 1492//1493 +f 1874//1874 1495//1496 1492//1493 +f 1876//1876 1879//1877 1875//1875 +f 1876//1876 1875//1875 1877//1878 +f 1875//1875 1490//1490 1877//1878 +f 1878//1879 1872//1872 1875//1875 +f 1878//1879 1875//1875 1879//1877 +f 1880//1880 1878//1879 1879//1877 +f 1880//1880 1879//1877 1881//1881 +f 1881//1881 1879//1877 1876//1876 +f 1883//1882 1881//1881 1882//1883 +f 1881//1881 1876//1876 1882//1883 +f 1883//1882 1880//1880 1881//1881 +f 1598//1600 1883//1882 1599//1599 +f 1883//1882 1882//1883 1599//1599 +f 1598//1600 1609//1609 1883//1882 +f 1883//1882 1609//1609 1880//1880 +f 1595//1596 1599//1599 1882//1883 +f 1595//1596 1882//1883 1884//1884 +f 1882//1883 1885//1885 1884//1884 +f 1882//1883 1876//1876 1885//1885 +f 1887//1886 1885//1885 1886//1887 +f 1885//1885 1877//1878 1886//1887 +f 1885//1885 1876//1876 1877//1878 +f 1884//1884 1885//1885 1887//1886 +f 1890//1888 1887//1886 1888//1889 +f 1887//1886 1889//1890 1888//1889 +f 1887//1886 1891//1891 1889//1890 +f 1884//1884 1887//1886 1890//1888 +f 1887//1886 1886//1887 1891//1891 +f 1891//1891 1486//1486 1889//1890 +f 1891//1891 1488//1487 1486//1486 +f 1886//1887 1488//1487 1891//1891 +f 1589//1590 1594//1593 1890//1888 +f 1589//1590 1890//1888 1892//1892 +f 1890//1888 1888//1889 1892//1892 +f 1594//1593 1884//1884 1890//1888 +f 1589//1590 1892//1892 1893//1893 +f 1892//1892 1894//1894 1893//1893 +f 1892//1892 1888//1889 1894//1894 +f 1895//1895 1893//1893 1894//1894 +f 1895//1895 1894//1894 1896//1896 +f 1896//1896 1894//1894 1897//1897 +f 1888//1889 1897//1897 1894//1894 +f 1896//1896 1897//1897 1898//1898 +f 1897//1897 1899//1899 1898//1898 +f 1897//1897 1900//1900 1899//1899 +f 1888//1889 1889//1890 1897//1897 +f 1897//1897 1486//1486 1900//1900 +f 1897//1897 1889//1890 1486//1486 +f 1900//1900 1477//1478 1899//1899 +f 1900//1900 1479//1480 1477//1478 +f 1900//1900 1486//1486 1482//1482 +f 1900//1900 1482//1482 1479//1480 +f 1902//1901 1899//1899 1901//1902 +f 1899//1899 1475//1476 1901//1902 +f 1899//1899 1477//1478 1475//1476 +f 1902//1901 1898//1898 1899//1899 +f 1903//1903 1902//1901 1904//1904 +f 1903//1903 1898//1898 1902//1901 +f 1904//1904 1902//1901 1901//1902 +f 1907//1905 1904//1904 1905//1906 +f 1904//1904 1906//1907 1905//1906 +f 1904//1904 1908//1908 1906//1907 +f 1903//1903 1904//1904 1907//1905 +f 1904//1904 1901//1902 1908//1908 +f 1908//1908 1473//1472 1906//1907 +f 1908//1908 1472//1474 1473//1472 +f 1908//1908 1901//1902 1475//1476 +f 1908//1908 1475//1476 1472//1474 +f 1911//1909 1907//1905 1909//1910 +f 1907//1905 1905//1906 1909//1910 +f 1910//1911 1903//1903 1907//1905 +f 1910//1911 1907//1905 1911//1909 +f 1574//1575 1577//1578 1911//1909 +f 1574//1575 1911//1909 1912//1912 +f 1911//1909 1909//1910 1912//1912 +f 1577//1578 1910//1911 1911//1909 +f 1574//1575 1912//1912 1913//1913 +f 1913//1913 1912//1912 1909//1910 +f 1574//1575 1913//1913 1573//1572 +f 1573//1572 1913//1913 1915//1914 +f 1915//1914 1913//1913 1914//1915 +f 1913//1913 1909//1910 1914//1915 +f 1573//1572 1915//1914 1567//1567 +f 1567//1567 1915//1914 1917//1916 +f 1917//1916 1915//1914 1916//1917 +f 1915//1914 1914//1915 1916//1917 +f 1561//1561 1565//1566 1917//1916 +f 1561//1561 1917//1916 1918//1918 +f 1918//1918 1917//1916 1919//1919 +f 1567//1567 1917//1916 1565//1566 +f 1917//1916 1916//1917 1919//1919 +f 1918//1918 1919//1919 1920//1920 +f 1919//1919 1455//1456 1920//1920 +f 1919//1919 1921//1921 1455//1456 +f 1916//1917 1921//1921 1919//1919 +f 1921//1921 1456//1457 1455//1456 +f 1921//1921 1464//1464 1456//1457 +f 1916//1917 1923//1922 1921//1921 +f 1921//1921 1922//1923 1464//1464 +f 1921//1921 1923//1922 1922//1923 +f 1916//1917 1924//1924 1923//1922 +f 1924//1924 1922//1923 1923//1922 +f 1924//1924 1925//1925 1922//1923 +f 1916//1917 1914//1915 1924//1924 +f 1914//1915 1905//1906 1924//1924 +f 1905//1906 1925//1925 1924//1924 +f 1925//1925 1465//1466 1922//1923 +f 1925//1925 1469//1470 1465//1466 +f 1905//1906 1906//1907 1925//1925 +f 1925//1925 1473//1472 1469//1470 +f 1925//1925 1906//1907 1473//1472 +f 1464//1464 1922//1923 1465//1466 +f 1926//1926 1918//1918 1920//1920 +f 1926//1926 1920//1920 1927//1927 +f 1920//1920 1452//1453 1927//1927 +f 1920//1920 1455//1456 1452//1453 +f 1928//1928 1926//1926 1927//1927 +f 1928//1928 1927//1927 1451//1452 +f 1451//1452 1927//1927 1452//1453 +f 1547//1548 1556//1557 1928//1928 +f 1547//1548 1928//1928 1544//1545 +f 1928//1928 1450//1447 1544//1545 +f 1928//1928 1451//1452 1450//1447 +f 1556//1557 1926//1926 1928//1928 +f 1556//1557 1559//1560 1926//1926 +f 1559//1560 1918//1918 1926//1926 +f 1559//1560 1561//1561 1918//1918 +f 1914//1915 1909//1910 1905//1906 +f 1577//1578 1580//1581 1910//1911 +f 1585//1584 1895//1895 1910//1911 +f 1585//1584 1910//1911 1580//1581 +f 1895//1895 1903//1903 1910//1911 +f 1895//1895 1896//1896 1903//1903 +f 1903//1903 1896//1896 1898//1898 +f 1586//1587 1893//1893 1895//1895 +f 1586//1587 1895//1895 1585//1584 +f 1589//1590 1893//1893 1586//1587 +f 1886//1887 1487//1488 1488//1487 +f 1877//1878 1487//1488 1886//1887 +f 1594//1593 1595//1596 1884//1884 +f 1609//1609 1866//1866 1880//1880 +f 1866//1866 1878//1879 1880//1880 +f 1866//1866 1867//1867 1878//1879 +f 1878//1879 1869//1869 1872//1872 +f 1878//1879 1867//1867 1869//1869 +f 1877//1878 1490//1490 1487//1488 +f 1609//1609 1610//1610 1866//1866 +f 1610//1610 1864//1864 1866//1866 +f 1610//1610 1613//1614 1864//1864 +f 1613//1614 1619//1620 1864//1864 +f 1859//1860 1502//1504 1503//1502 +f 1546//1546 1531//1531 1532//1533 +f 1524//1525 1516//1517 1513//1514 +f 1484//1485 1493//1492 1467//1467 +f 1459//1459 1460//1460 1467//1467 +f 1460//1460 1461//1462 1467//1467 +f 1449//1450 1453//1451 1458//1458 +o Sphere +v 1.579049 1.787105 0.934240 +v 1.357108 1.709889 0.447722 +v 1.152566 1.584497 -0.000655 +v 0.973284 1.415747 -0.393661 +v 0.826150 1.210125 -0.716193 +v 0.716820 0.975533 -0.955856 +v 0.649495 0.720985 -1.103439 +v 0.626762 0.456264 -1.153272 +v 0.649495 0.191544 -1.103440 +v 1.152566 -0.671968 -0.000655 +v 1.630471 1.787105 0.922527 +v 1.457975 1.709889 0.424747 +v 1.299002 1.584497 -0.034010 +v 1.159661 1.415747 -0.436113 +v 1.045307 1.210125 -0.766111 +v 0.960334 0.975533 -1.011322 +v 0.908008 0.720985 -1.162322 +v 0.890340 0.456264 -1.213308 +v 0.908008 0.191544 -1.162322 +v 0.960334 -0.063004 -1.011322 +v 1.045307 -0.297596 -0.766111 +v 1.159661 -0.503219 -0.436113 +v 1.299002 -0.671968 -0.034009 +v 1.457975 -0.797361 0.424748 +v 1.630471 -0.874577 0.922528 +v 1.688786 1.787105 0.930709 +v 1.572364 1.709889 0.440796 +v 1.465070 1.584497 -0.010711 +v 1.371025 1.415747 -0.406459 +v 1.293844 1.210125 -0.731242 +v 1.236494 0.975533 -0.972577 +v 1.201178 0.720985 -1.121191 +v 1.189253 0.456264 -1.171371 +v 1.201178 0.191544 -1.121191 +v 1.236494 -0.063004 -0.972577 +v 1.293844 -0.297596 -0.731242 +v 1.371025 -0.503219 -0.406459 +v 1.465070 -0.671968 -0.010710 +v 1.572364 -0.797361 0.440796 +v 1.688786 -0.874577 0.930710 +v 1.751754 1.787105 0.958470 +v 1.695881 1.709889 0.495251 +v 1.644387 1.584497 0.068346 +v 1.599253 1.415747 -0.305839 +v 1.562212 1.210125 -0.612925 +v 1.534689 0.975533 -0.841111 +v 1.517740 0.720985 -0.981627 +v 1.512017 0.456264 -1.029073 +v 1.517740 0.191544 -0.981627 +v 1.534688 -0.063004 -0.841111 +v 1.562212 -0.297596 -0.612925 +v 1.599253 -0.503219 -0.305839 +v 1.644387 -0.671968 0.068346 +v 1.695881 -0.797361 0.495251 +v 1.751754 -0.874577 0.958470 +v 1.816955 1.787105 1.004744 +v 1.823777 1.709889 0.586020 +v 1.830064 1.584497 0.200122 +v 1.835575 1.415747 -0.138120 +v 1.840097 1.210125 -0.415708 +v 1.843458 0.975533 -0.621975 +v 1.845527 0.720985 -0.748993 +v 1.846226 0.456264 -0.791882 +v 1.845527 0.191544 -0.748993 +v 1.843458 -0.063004 -0.621975 +v 1.840097 -0.297596 -0.415708 +v 1.835575 -0.503219 -0.138120 +v 1.830064 -0.671968 0.200122 +v 1.823777 -0.797361 0.586020 +v 1.816955 -0.874577 1.004744 +v 1.881884 1.787105 1.067752 +v 1.951139 1.709889 0.709615 +v 2.014965 1.584497 0.379554 +v 2.070908 1.415747 0.090254 +v 2.116820 1.210125 -0.147169 +v 2.150936 0.975533 -0.323591 +v 2.171944 0.720985 -0.432230 +v 2.179038 0.456264 -0.468913 +v 2.171944 0.191544 -0.432230 +v 2.150936 -0.063004 -0.323591 +v 2.116820 -0.297596 -0.147169 +v 2.070908 -0.503219 0.090254 +v 2.014965 -0.671968 0.379555 +v 1.951139 -0.797361 0.709615 +v 1.881884 -0.874577 1.067752 +v 1.944044 1.787105 1.145073 +v 2.073071 1.709889 0.861286 +v 2.191983 1.584497 0.599746 +v 2.296210 1.415747 0.370505 +v 2.381747 1.210125 0.182371 +v 2.445306 0.975533 0.042575 +v 2.484447 0.720985 -0.043510 +v 2.497662 0.456264 -0.072578 +v 2.484447 0.191544 -0.043510 +v 2.445306 -0.063004 0.042575 +v 2.381747 -0.297596 0.182371 +v 2.296210 -0.503219 0.370505 +v 2.191983 -0.671968 0.599746 +v 2.073071 -0.797361 0.861286 +v 1.944044 -0.874577 1.145073 +v 2.001048 1.787105 1.233736 +v 2.184888 1.709889 1.035204 +v 2.354316 1.584497 0.852237 +v 2.502821 1.415747 0.691864 +v 2.624696 1.210125 0.560250 +v 2.715257 0.975533 0.462451 +v 2.771024 0.720985 0.402228 +v 2.789855 0.456264 0.381892 +v 2.771024 0.191544 0.402228 +v 2.715257 -0.063004 0.462451 +v 2.624696 -0.297596 0.560250 +v 2.502821 -0.503219 0.691864 +v 2.354316 -0.671968 0.852237 +v 2.184888 -0.797361 1.035205 +v 2.001048 -0.874577 1.233736 +v 2.050705 1.787105 1.330333 +v 2.282294 1.709889 1.224687 +v 2.495727 1.584497 1.127322 +v 2.682803 1.415747 1.041981 +v 2.836332 1.210125 0.971944 +v 2.950414 0.975533 0.919901 +v 3.020666 0.720985 0.887854 +v 3.044387 0.456264 0.877033 +v 3.020666 0.191544 0.887854 +v 2.950414 -0.063004 0.919901 +v 2.836332 -0.297596 0.971944 +v 2.682803 -0.503219 1.041981 +v 2.495727 -0.671968 1.127322 +v 2.282293 -0.797361 1.224687 +v 2.050705 -0.874577 1.330333 +v 2.091106 1.787105 1.431153 +v 2.361544 1.709889 1.422451 +v 2.610780 1.584497 1.414431 +v 2.829237 1.415747 1.407402 +v 3.008521 1.210125 1.401633 +v 3.141740 0.975533 1.397347 +v 3.223776 0.720985 1.394707 +v 3.251477 0.456264 1.393816 +v 3.223776 0.191544 1.394707 +v 3.141740 -0.063004 1.397346 +v 3.008521 -0.297596 1.401633 +v 2.829237 -0.503219 1.407402 +v 2.610780 -0.671968 1.414431 +v 2.361543 -0.797361 1.422451 +v 2.091106 -0.874577 1.431153 +v 2.120699 1.787105 1.532320 +v 2.419593 1.709889 1.620898 +v 2.695054 1.584497 1.702531 +v 2.936498 1.415747 1.774083 +v 3.134646 1.210125 1.832805 +v 3.281883 0.975533 1.876439 +v 3.372551 0.720985 1.903309 +v 3.403166 0.456264 1.912381 +v 3.372551 0.191544 1.903309 +v 3.281883 -0.063004 1.876438 +v 3.134646 -0.297596 1.832805 +v 2.936498 -0.503219 1.774083 +v 2.695054 -0.671968 1.702531 +v 2.419592 -0.797361 1.620897 +v 2.120699 -0.874577 1.532320 +v 2.138347 1.787105 1.629947 +v 2.454210 1.709889 1.812400 +v 2.745311 1.584497 1.980549 +v 3.000463 1.415747 2.127934 +v 3.209860 1.210125 2.248889 +v 3.365457 0.975533 2.338766 +v 3.461272 0.720985 2.394113 +v 3.493626 0.456264 2.412801 +v 3.461272 0.191544 2.394113 +v 3.365457 -0.063004 2.338766 +v 3.209860 -0.297596 2.248889 +v 3.000463 -0.503219 2.127934 +v 2.745310 -0.671968 1.980549 +v 2.454210 -0.797361 1.812400 +v 2.138347 -0.874577 1.629947 +v 2.143372 1.787105 1.720283 +v 2.464065 1.709889 1.989599 +v 2.759618 1.584497 2.237803 +v 3.018673 1.415747 2.455355 +v 3.231273 1.210125 2.633895 +v 3.389250 0.975533 2.766562 +v 3.486531 0.720985 2.848259 +v 3.519379 0.456264 2.875845 +v 3.486531 0.191544 2.848259 +v 3.389250 -0.063004 2.766562 +v 3.231273 -0.297596 2.633895 +v 3.018673 -0.503219 2.455355 +v 2.759618 -0.671968 2.237803 +v 2.464065 -0.797361 1.989599 +v 2.143371 -0.874577 1.720282 +v 2.135579 1.787105 1.799855 +v 2.448780 1.709889 2.145685 +v 2.737427 1.584497 2.464404 +v 2.990429 1.415747 2.743764 +v 3.198062 1.210125 2.973029 +v 3.352348 0.975533 3.143388 +v 3.447356 0.720985 3.248294 +v 3.479437 0.456264 3.283717 +v 3.447356 0.191544 3.248294 +v 3.352348 -0.063004 3.143388 +v 3.198062 -0.297596 2.973029 +v 2.990429 -0.503219 2.743764 +v 2.737427 -0.671968 2.464404 +v 2.448780 -0.797361 2.145685 +v 2.135579 -0.874577 1.799854 +v 1.809861 -0.900649 1.440202 +v 2.115269 1.787105 1.865605 +v 2.408941 1.709889 2.274660 +v 2.679591 1.584497 2.651647 +v 2.916817 1.415747 2.982078 +v 3.111503 1.210125 3.253257 +v 3.256169 0.975533 3.454760 +v 3.345253 0.720985 3.578845 +v 3.375333 0.456264 3.620744 +v 3.345253 0.191544 3.578845 +v 3.256169 -0.063004 3.454760 +v 3.111503 -0.297596 3.253257 +v 2.916817 -0.503219 2.982078 +v 2.679590 -0.671968 2.651647 +v 2.408941 -0.797361 2.274660 +v 2.115269 -0.874577 1.865605 +v 2.083223 1.787105 1.915008 +v 2.346080 1.709889 2.371567 +v 2.588331 1.584497 2.792334 +v 2.800665 1.415747 3.161139 +v 2.974923 1.210125 3.463810 +v 3.104409 0.975533 3.688715 +v 3.184145 0.720985 3.827210 +v 3.211070 0.456264 3.873975 +v 3.184145 0.191544 3.827210 +v 3.104409 -0.063004 3.688715 +v 2.974923 -0.297596 3.463810 +v 2.800665 -0.503219 3.161139 +v 2.588331 -0.671968 2.792334 +v 2.346080 -0.797361 2.371567 +v 2.083223 -0.874577 1.915008 +v 2.040672 1.787105 1.946165 +v 2.262613 1.709889 2.432682 +v 2.467155 1.584497 2.881060 +v 2.646437 1.415747 3.274065 +v 2.793570 1.210125 3.596596 +v 2.902901 0.975533 3.836260 +v 2.970225 0.720985 3.983843 +v 2.992959 0.456264 4.033676 +v 2.970225 0.191544 3.983843 +v 2.902901 -0.063004 3.836260 +v 2.793570 -0.297596 3.596596 +v 2.646437 -0.503219 3.274065 +v 2.467155 -0.671968 2.881059 +v 2.262613 -0.797361 2.432682 +v 2.040672 -0.874577 1.946164 +v 1.989250 1.787105 1.957877 +v 2.161746 1.709889 2.455657 +v 2.320719 1.584497 2.914414 +v 2.460060 1.415747 3.316517 +v 2.574414 1.210125 3.646515 +v 2.659387 0.975533 3.891726 +v 2.711713 0.720985 4.042725 +v 2.729381 0.456264 4.093712 +v 2.711713 0.191544 4.042725 +v 2.659387 -0.063004 3.891726 +v 2.574414 -0.297596 3.646515 +v 2.460060 -0.503219 3.316517 +v 2.320719 -0.671968 2.914413 +v 2.161746 -0.797361 2.455657 +v 1.989250 -0.874577 1.957876 +v 1.930935 1.787105 1.949695 +v 2.047357 1.709889 2.439608 +v 2.154652 1.584497 2.891115 +v 2.248696 1.415747 3.286863 +v 2.325876 1.210125 3.611645 +v 2.383227 0.975533 3.852981 +v 2.418543 0.720985 4.001594 +v 2.430468 0.456264 4.051775 +v 2.418543 0.191544 4.001594 +v 2.383227 -0.063004 3.852981 +v 2.325876 -0.297596 3.611645 +v 2.248696 -0.503219 3.286863 +v 2.154651 -0.671968 2.891114 +v 2.047357 -0.797361 2.439608 +v 1.930935 -0.874577 1.949695 +v 1.867967 1.787105 1.921934 +v 1.923841 1.709889 2.385153 +v 1.975334 1.584497 2.812058 +v 2.020468 1.415747 3.186243 +v 2.057508 1.210125 3.493328 +v 2.085032 0.975533 3.721515 +v 2.101981 0.720985 3.862030 +v 2.107704 0.456264 3.909477 +v 2.101981 0.191544 3.862030 +v 2.085032 -0.063004 3.721515 +v 2.057508 -0.297596 3.493328 +v 2.020468 -0.503219 3.186243 +v 1.975334 -0.671968 2.812057 +v 1.923841 -0.797361 2.385153 +v 1.867967 -0.874577 1.921934 +v 1.809861 1.813178 1.440203 +v 1.802766 1.787105 1.875661 +v 1.795944 1.709889 2.294384 +v 1.789657 1.584497 2.680282 +v 1.784146 1.415747 3.018524 +v 1.779624 1.210125 3.296111 +v 1.776263 0.975533 3.502379 +v 1.774194 0.720985 3.629396 +v 1.773495 0.456264 3.672286 +v 1.774194 0.191544 3.629396 +v 1.776263 -0.063004 3.502379 +v 1.779624 -0.297596 3.296111 +v 1.784146 -0.503219 3.018524 +v 1.789657 -0.671968 2.680281 +v 1.795944 -0.797361 2.294384 +v 1.802766 -0.874577 1.875660 +v 1.737838 1.787105 1.812653 +v 1.668583 1.709889 2.170789 +v 1.604757 1.584497 2.500850 +v 1.548813 1.415747 2.790150 +v 1.502901 1.210125 3.027573 +v 1.468786 0.975533 3.203995 +v 1.447777 0.720985 3.312633 +v 1.440683 0.456264 3.349317 +v 1.447777 0.191544 3.312633 +v 1.468786 -0.063004 3.203995 +v 1.502901 -0.297596 3.027573 +v 1.548813 -0.503219 2.790150 +v 1.604757 -0.671968 2.500849 +v 1.668583 -0.797361 2.170789 +v 1.737838 -0.874577 1.812652 +v 1.675677 1.787105 1.735331 +v 1.546650 1.709889 2.019118 +v 1.427739 1.584497 2.280658 +v 1.323511 1.415747 2.509899 +v 1.237975 1.210125 2.698032 +v 1.174415 0.975533 2.837829 +v 1.135275 0.720985 2.923914 +v 1.122059 0.456264 2.952982 +v 1.135275 0.191544 2.923914 +v 1.174415 -0.063004 2.837829 +v 1.237975 -0.297596 2.698032 +v 1.323511 -0.503219 2.509899 +v 1.427739 -0.671968 2.280658 +v 1.546650 -0.797361 2.019118 +v 1.675677 -0.874577 1.735331 +v 1.618673 1.787105 1.646669 +v 1.434833 1.709889 1.845200 +v 1.265405 1.584497 2.028168 +v 1.116900 1.415747 2.188540 +v 0.995025 1.210125 2.320154 +v 0.904464 0.975533 2.417953 +v 0.848697 0.720985 2.478176 +v 0.829866 0.456264 2.498512 +v 0.848697 0.191544 2.478176 +v 0.904464 -0.063004 2.417953 +v 0.995025 -0.297596 2.320154 +v 1.116900 -0.503219 2.188540 +v 1.265405 -0.671968 2.028167 +v 1.434833 -0.797361 1.845200 +v 1.618673 -0.874577 1.646668 +v 1.569016 1.787105 1.550071 +v 1.337428 1.709889 1.655718 +v 1.123995 1.584497 1.753082 +v 0.936919 1.415747 1.838423 +v 0.783390 1.210125 1.908460 +v 0.669307 0.975533 1.960503 +v 0.599056 0.720985 1.992550 +v 0.575334 0.456264 2.003371 +v 0.599056 0.191544 1.992550 +v 0.669307 -0.063004 1.960503 +v 0.783390 -0.297596 1.908460 +v 0.936919 -0.503219 1.838423 +v 1.123995 -0.671968 1.753082 +v 1.337428 -0.797361 1.655718 +v 1.569017 -0.874577 1.550071 +v 1.528615 1.787105 1.449252 +v 1.258178 1.709889 1.457954 +v 1.008942 1.584497 1.465973 +v 0.790484 1.415747 1.473002 +v 0.611201 1.210125 1.478771 +v 0.477981 0.975533 1.483058 +v 0.395945 0.720985 1.485697 +v 0.368245 0.456264 1.486588 +v 0.395945 0.191544 1.485697 +v 0.477981 -0.063004 1.483058 +v 0.611201 -0.297596 1.478771 +v 0.790484 -0.503219 1.473002 +v 1.008942 -0.671968 1.465973 +v 1.258178 -0.797361 1.457954 +v 1.528615 -0.874577 1.449252 +v 1.499022 1.787105 1.348085 +v 1.200129 1.709889 1.259507 +v 0.924668 1.584497 1.177874 +v 0.683224 1.415747 1.106321 +v 0.485076 1.210125 1.047600 +v 0.337839 0.975533 1.003966 +v 0.247171 0.720985 0.977096 +v 0.216556 0.456264 0.968023 +v 0.247171 0.191544 0.977096 +v 0.337839 -0.063004 1.003966 +v 0.485076 -0.297596 1.047600 +v 0.683224 -0.503219 1.106321 +v 0.924668 -0.671968 1.177874 +v 1.200129 -0.797361 1.259507 +v 1.499022 -0.874577 1.348085 +v 1.481374 1.787105 1.250458 +v 1.165512 1.709889 1.068005 +v 0.874411 1.584497 0.899855 +v 0.619259 1.415747 0.752471 +v 0.409862 1.210125 0.631516 +v 0.254265 0.975533 0.541638 +v 0.158450 0.720985 0.486292 +v 0.126096 0.456264 0.467603 +v 0.158450 0.191544 0.486292 +v 0.254265 -0.063004 0.541638 +v 0.409862 -0.297596 0.631516 +v 0.619259 -0.503219 0.752471 +v 0.874411 -0.671968 0.899855 +v 1.165512 -0.797361 1.068005 +v 1.481375 -0.874577 1.250458 +v 1.476350 1.787105 1.160122 +v 1.155656 1.709889 0.890806 +v 0.860103 1.584497 0.642602 +v 0.601049 1.415747 0.425050 +v 0.388449 1.210125 0.246510 +v 0.230472 0.975533 0.113842 +v 0.133191 0.720985 0.032146 +v 0.100343 0.456264 0.004560 +v 0.133191 0.191544 0.032146 +v 0.230472 -0.063004 0.113842 +v 0.388449 -0.297596 0.246510 +v 0.601049 -0.503219 0.425050 +v 0.860103 -0.671968 0.642602 +v 1.155657 -0.797361 0.890806 +v 1.476350 -0.874577 1.160123 +v 1.484142 1.787105 1.080550 +v 1.170942 1.709889 0.734720 +v 0.882294 1.584497 0.416001 +v 0.629292 1.415747 0.136641 +v 0.421660 1.210125 -0.092624 +v 0.267374 0.975533 -0.262983 +v 0.172366 0.720985 -0.367889 +v 0.140285 0.456264 -0.403312 +v 0.172366 0.191544 -0.367889 +v 0.267374 -0.063004 -0.262983 +v 0.421660 -0.297596 -0.092624 +v 0.629292 -0.503219 0.136641 +v 0.882294 -0.671968 0.416001 +v 1.170942 -0.797361 0.734720 +v 1.484143 -0.874577 1.080551 +v 1.504452 1.787105 1.014799 +v 1.210780 1.709889 0.605745 +v 0.940131 1.584497 0.228758 +v 0.702905 1.415747 -0.101674 +v 0.508219 1.210125 -0.372851 +v 0.363553 0.975533 -0.574355 +v 0.274469 0.720985 -0.698440 +v 0.244389 0.456264 -0.740339 +v 0.274469 0.191544 -0.698440 +v 0.363553 -0.063004 -0.574355 +v 0.508219 -0.297596 -0.372851 +v 0.702905 -0.503219 -0.101674 +v 0.940131 -0.671968 0.228759 +v 1.210781 -0.797361 0.605745 +v 1.504452 -0.874577 1.014800 +v 1.536498 1.787105 0.965397 +v 1.273641 1.709889 0.508838 +v 1.031391 1.584497 0.088071 +v 0.819057 1.415747 -0.280734 +v 0.644799 1.210125 -0.583404 +v 0.515313 0.975533 -0.808310 +v 0.435576 0.720985 -0.946804 +v 0.408653 0.456264 -0.993569 +v 0.435576 0.191544 -0.946804 +v 0.515313 -0.063004 -0.808310 +v 0.644799 -0.297596 -0.583404 +v 0.819057 -0.503219 -0.280734 +v 1.031391 -0.671968 0.088072 +v 1.273641 -0.797361 0.508838 +v 1.536498 -0.874577 0.965397 +v 0.716821 -0.063004 -0.955855 +v 0.826152 -0.297596 -0.716191 +v 0.973284 -0.503219 -0.393660 +v 1.357109 -0.797361 0.447723 +v 1.579050 -0.874577 0.934241 +vt 0.750000 0.437500 +vt 0.718750 0.375000 +vt 0.750000 0.375000 +vt 0.750000 0.812500 +vt 0.718750 0.875000 +vt 0.718750 0.812500 +vt 0.718750 0.312500 +vt 0.750000 0.312500 +vt 0.718750 0.750000 +vt 0.750000 0.750000 +vt 0.718750 0.250000 +vt 0.750000 0.250000 +vt 0.718750 0.687500 +vt 0.750000 0.687500 +vt 0.718750 0.187500 +vt 0.750000 0.187500 +vt 0.718750 0.625000 +vt 0.750000 0.625000 +vt 0.718750 0.125000 +vt 0.750000 0.125000 +vt 0.718750 0.562500 +vt 0.750000 0.562500 +vt 0.718750 0.062500 +vt 0.750000 0.062500 +vt 0.718750 0.500000 +vt 0.750000 0.500000 +vt 0.750000 0.937500 +vt 0.734375 1.000000 +vt 0.718750 0.937500 +vt 0.734375 0.000000 +vt 0.718750 0.437500 +vt 0.750000 0.875000 +vt 0.703125 0.000000 +vt 0.687500 0.062500 +vt 0.687500 0.500000 +vt 0.687500 0.437500 +vt 0.687500 0.875000 +vt 0.687500 0.375000 +vt 0.687500 0.812500 +vt 0.687500 0.312500 +vt 0.687500 0.750000 +vt 0.687500 0.250000 +vt 0.687500 0.687500 +vt 0.687500 0.187500 +vt 0.687500 0.625000 +vt 0.687500 0.125000 +vt 0.687500 0.562500 +vt 0.703125 1.000000 +vt 0.687500 0.937500 +vt 0.656250 0.187500 +vt 0.656250 0.625000 +vt 0.656250 0.125000 +vt 0.656250 0.562500 +vt 0.656250 0.062500 +vt 0.656250 0.500000 +vt 0.671875 1.000000 +vt 0.656250 0.937500 +vt 0.671875 0.000000 +vt 0.656250 0.437500 +vt 0.656250 0.875000 +vt 0.656250 0.375000 +vt 0.656250 0.812500 +vt 0.656250 0.312500 +vt 0.656250 0.750000 +vt 0.656250 0.250000 +vt 0.656250 0.687500 +vt 0.625000 0.875000 +vt 0.625000 0.375000 +vt 0.625000 0.812500 +vt 0.625000 0.312500 +vt 0.625000 0.750000 +vt 0.625000 0.250000 +vt 0.625000 0.687500 +vt 0.625000 0.187500 +vt 0.625000 0.625000 +vt 0.625000 0.125000 +vt 0.625000 0.562500 +vt 0.625000 0.062500 +vt 0.625000 0.500000 +vt 0.640625 1.000000 +vt 0.625000 0.937500 +vt 0.640625 0.000000 +vt 0.625000 0.437500 +vt 0.593750 0.625000 +vt 0.593750 0.187500 +vt 0.593750 0.125000 +vt 0.593750 0.562500 +vt 0.593750 0.062500 +vt 0.593750 0.500000 +vt 0.609375 1.000000 +vt 0.593750 0.937500 +vt 0.609375 0.000000 +vt 0.593750 0.437500 +vt 0.593750 0.875000 +vt 0.593750 0.375000 +vt 0.593750 0.812500 +vt 0.593750 0.312500 +vt 0.593750 0.750000 +vt 0.593750 0.250000 +vt 0.593750 0.687500 +vt 0.562500 0.375000 +vt 0.562500 0.812500 +vt 0.562500 0.312500 +vt 0.562500 0.750000 +vt 0.562500 0.250000 +vt 0.562500 0.687500 +vt 0.562500 0.187500 +vt 0.562500 0.625000 +vt 0.562500 0.125000 +vt 0.562500 0.562500 +vt 0.562500 0.062500 +vt 0.562500 0.500000 +vt 0.578125 1.000000 +vt 0.562500 0.937500 +vt 0.578125 0.000000 +vt 0.562500 0.437500 +vt 0.562500 0.875000 +vt 0.531250 0.125000 +vt 0.531250 0.625000 +vt 0.531250 0.562500 +vt 0.531250 0.062500 +vt 0.531250 0.500000 +vt 0.546875 1.000000 +vt 0.531250 0.937500 +vt 0.546875 0.000000 +vt 0.531250 0.437500 +vt 0.531250 0.875000 +vt 0.531250 0.375000 +vt 0.531250 0.812500 +vt 0.531250 0.312500 +vt 0.531250 0.750000 +vt 0.531250 0.250000 +vt 0.531250 0.687500 +vt 0.531250 0.187500 +vt 0.500000 0.812500 +vt 0.500000 0.375000 +vt 0.500000 0.312500 +vt 0.500000 0.750000 +vt 0.500000 0.250000 +vt 0.500000 0.687500 +vt 0.500000 0.187500 +vt 0.500000 0.625000 +vt 0.500000 0.125000 +vt 0.500000 0.562500 +vt 0.500000 0.062500 +vt 0.500000 0.500000 +vt 0.515625 1.000000 +vt 0.500000 0.937500 +vt 0.515625 0.000000 +vt 0.500000 0.437500 +vt 0.500000 0.875000 +vt 0.468750 0.625000 +vt 0.468750 0.562500 +vt 0.468750 0.125000 +vt 0.468750 0.062500 +vt 0.468750 0.500000 +vt 0.484374 1.000000 +vt 0.468750 0.937500 +vt 0.484375 0.000000 +vt 0.468750 0.437500 +vt 0.468750 0.875000 +vt 0.468750 0.375000 +vt 0.468750 0.812500 +vt 0.468750 0.312500 +vt 0.468750 0.750000 +vt 0.468750 0.250000 +vt 0.468750 0.687500 +vt 0.468750 0.187500 +vt 0.437500 0.375000 +vt 0.437500 0.312500 +vt 0.437500 0.750000 +vt 0.437500 0.250000 +vt 0.437500 0.687500 +vt 0.437500 0.187500 +vt 0.437500 0.625000 +vt 0.437500 0.125000 +vt 0.437500 0.562500 +vt 0.437500 0.062500 +vt 0.437500 0.500000 +vt 0.453124 1.000000 +vt 0.437500 0.937500 +vt 0.453125 0.000000 +vt 0.437500 0.437500 +vt 0.437500 0.875000 +vt 0.437500 0.812500 +vt 0.406250 0.062500 +vt 0.406250 0.500000 +vt 0.421874 1.000000 +vt 0.406250 0.937500 +vt 0.421875 0.000000 +vt 0.406250 0.437500 +vt 0.406250 0.875000 +vt 0.406250 0.375000 +vt 0.406250 0.812500 +vt 0.406250 0.312500 +vt 0.406250 0.750000 +vt 0.406250 0.250000 +vt 0.406250 0.687500 +vt 0.406250 0.187500 +vt 0.406250 0.625000 +vt 0.406250 0.125000 +vt 0.406250 0.562500 +vt 0.375000 0.250000 +vt 0.375000 0.687500 +vt 0.375000 0.187500 +vt 0.375000 0.625000 +vt 0.375000 0.125000 +vt 0.375000 0.562500 +vt 0.375000 0.062500 +vt 0.375000 0.500000 +vt 0.390625 1.000000 +vt 0.375000 0.937500 +vt 0.390625 0.000000 +vt 0.375000 0.437500 +vt 0.375000 0.875000 +vt 0.375000 0.375000 +vt 0.375000 0.812500 +vt 0.375000 0.312500 +vt 0.375000 0.750000 +vt 0.359375 1.000000 +vt 0.343750 0.937500 +vt 0.359375 0.000000 +vt 0.343750 0.062500 +vt 0.343750 0.500000 +vt 0.343750 0.437500 +vt 0.343750 0.875000 +vt 0.343750 0.375000 +vt 0.343750 0.812500 +vt 0.343750 0.312500 +vt 0.343750 0.750000 +vt 0.343750 0.250000 +vt 0.343750 0.687500 +vt 0.343750 0.187500 +vt 0.343750 0.625000 +vt 0.343750 0.125000 +vt 0.343750 0.562500 +vt 0.312500 0.687500 +vt 0.312500 0.250000 +vt 0.312500 0.187500 +vt 0.312500 0.625000 +vt 0.312500 0.125000 +vt 0.312500 0.562500 +vt 0.312500 0.062500 +vt 0.312500 0.500000 +vt 0.328125 1.000000 +vt 0.312500 0.937500 +vt 0.328125 0.000000 +vt 0.312500 0.437500 +vt 0.312500 0.875000 +vt 0.312500 0.375000 +vt 0.312500 0.812500 +vt 0.312500 0.312500 +vt 0.312500 0.750000 +vt 0.281250 0.437500 +vt 0.281250 0.875000 +vt 0.281250 0.375000 +vt 0.281250 0.812500 +vt 0.281250 0.312500 +vt 0.281250 0.750000 +vt 0.281250 0.250000 +vt 0.281250 0.687500 +vt 0.281250 0.187500 +vt 0.281250 0.625000 +vt 0.281250 0.125000 +vt 0.281250 0.562500 +vt 0.281250 0.062500 +vt 0.281250 0.500000 +vt 0.296875 1.000000 +vt 0.281250 0.937500 +vt 0.296875 0.000000 +vt 0.250000 0.250000 +vt 0.250000 0.187500 +vt 0.250000 0.625000 +vt 0.250000 0.125000 +vt 0.250000 0.562500 +vt 0.250000 0.062500 +vt 0.250000 0.500000 +vt 0.265625 1.000000 +vt 0.250000 0.937500 +vt 0.265625 0.000000 +vt 0.250000 0.437500 +vt 0.250000 0.875000 +vt 0.250000 0.375000 +vt 0.250000 0.812500 +vt 0.250000 0.312500 +vt 0.250000 0.750000 +vt 0.250000 0.687500 +vt 0.218750 0.875000 +vt 0.218750 0.375000 +vt 0.218750 0.812500 +vt 0.218750 0.312500 +vt 0.218750 0.750000 +vt 0.218750 0.250000 +vt 0.218750 0.687500 +vt 0.218750 0.187500 +vt 0.218750 0.625000 +vt 0.218750 0.125000 +vt 0.218750 0.562500 +vt 0.218750 0.062500 +vt 0.218750 0.500000 +vt 0.234375 1.000000 +vt 0.218750 0.937500 +vt 0.234375 0.000000 +vt 0.218750 0.437500 +vt 0.187500 0.625000 +vt 0.187500 0.187500 +vt 0.187500 0.125000 +vt 0.187500 0.562500 +vt 0.187500 0.062500 +vt 0.187500 0.500000 +vt 0.203125 1.000000 +vt 0.187500 0.937500 +vt 0.203125 0.000000 +vt 0.187500 0.437500 +vt 0.187500 0.875000 +vt 0.187500 0.375000 +vt 0.187500 0.812500 +vt 0.187500 0.312500 +vt 0.187500 0.750000 +vt 0.187500 0.250000 +vt 0.187500 0.687500 +vt 0.156250 0.375000 +vt 0.156250 0.812500 +vt 0.156250 0.312500 +vt 0.156250 0.750000 +vt 0.156250 0.250000 +vt 0.156250 0.687500 +vt 0.156250 0.187500 +vt 0.156250 0.625000 +vt 0.156250 0.125000 +vt 0.156250 0.562500 +vt 0.156250 0.062500 +vt 0.156250 0.500000 +vt 0.171875 1.000000 +vt 0.156250 0.937500 +vt 0.171875 0.000000 +vt 0.156250 0.437500 +vt 0.156250 0.875000 +vt 0.125000 0.125000 +vt 0.125000 0.625000 +vt 0.125000 0.562500 +vt 0.125000 0.062500 +vt 0.125000 0.500000 +vt 0.140625 1.000000 +vt 0.125000 0.937500 +vt 0.140625 0.000000 +vt 0.125000 0.437500 +vt 0.125000 0.875000 +vt 0.125000 0.375000 +vt 0.125000 0.812500 +vt 0.125000 0.312500 +vt 0.125000 0.750000 +vt 0.125000 0.250000 +vt 0.125000 0.687500 +vt 0.125000 0.187500 +vt 0.093750 0.375000 +vt 0.093750 0.312500 +vt 0.093750 0.812500 +vt 0.093750 0.750000 +vt 0.093750 0.250000 +vt 0.093750 0.687500 +vt 0.093750 0.187500 +vt 0.093750 0.625000 +vt 0.093750 0.125000 +vt 0.093750 0.562500 +vt 0.093750 0.062500 +vt 0.093750 0.500000 +vt 0.109375 1.000000 +vt 0.093750 0.937500 +vt 0.109375 0.000000 +vt 0.093750 0.437500 +vt 0.093750 0.875000 +vt 0.062500 0.125000 +vt 0.062500 0.062500 +vt 0.062500 0.500000 +vt 0.078125 1.000000 +vt 0.062500 0.937500 +vt 0.078125 0.000000 +vt 0.062500 0.437500 +vt 0.062500 0.875000 +vt 0.062500 0.375000 +vt 0.062500 0.812500 +vt 0.062500 0.312500 +vt 0.062500 0.750000 +vt 0.062500 0.250000 +vt 0.062500 0.687500 +vt 0.062500 0.187500 +vt 0.062500 0.625000 +vt 0.062500 0.562500 +vt 0.031250 0.812500 +vt 0.031250 0.750000 +vt 0.031250 0.250000 +vt 0.031250 0.687500 +vt 0.031250 0.187500 +vt 0.031250 0.625000 +vt 0.031250 0.125000 +vt 0.031250 0.562500 +vt 0.031250 0.062500 +vt 0.031250 0.500000 +vt 0.046875 1.000000 +vt 0.031250 0.937500 +vt 0.046875 0.000000 +vt 0.031250 0.437500 +vt 0.031250 0.875000 +vt 0.031250 0.375000 +vt 0.031250 0.312500 +vt 0.000000 0.500000 +vt 0.015625 1.000000 +vt 0.000000 0.937500 +vt 0.015625 0.000000 +vt 0.000000 0.062500 +vt 0.000000 0.437500 +vt 0.000000 0.875000 +vt 0.000000 0.375000 +vt 0.000000 0.812500 +vt 0.000000 0.312500 +vt 0.000000 0.750000 +vt 0.000000 0.250000 +vt 0.000000 0.687500 +vt 0.000000 0.187500 +vt 0.000000 0.625000 +vt 0.000000 0.125000 +vt 0.000000 0.562500 +vt 1.000000 0.312500 +vt 0.968750 0.250000 +vt 1.000000 0.250000 +vt 1.000000 0.687500 +vt 0.968750 0.750000 +vt 0.968750 0.687500 +vt 0.968750 0.187500 +vt 1.000000 0.187500 +vt 0.968750 0.625000 +vt 1.000000 0.625000 +vt 1.000000 0.125000 +vt 0.968750 0.125000 +vt 1.000000 0.562500 +vt 0.968750 0.562500 +vt 0.968750 0.062500 +vt 1.000000 0.062500 +vt 0.968750 0.500000 +vt 1.000000 0.500000 +vt 1.000000 0.937500 +vt 0.984375 1.000000 +vt 0.968750 0.937500 +vt 0.984375 0.000000 +vt 1.000000 0.437500 +vt 0.968750 0.437500 +vt 1.000000 0.875000 +vt 0.968750 0.875000 +vt 0.968750 0.375000 +vt 1.000000 0.375000 +vt 0.968750 0.812500 +vt 1.000000 0.812500 +vt 0.968750 0.312500 +vt 1.000000 0.750000 +vt 0.953125 1.000000 +vt 0.937500 0.937500 +vt 0.953125 0.000000 +vt 0.937500 0.062500 +vt 0.937500 0.437500 +vt 0.937500 0.875000 +vt 0.937500 0.375000 +vt 0.937500 0.812500 +vt 0.937500 0.312500 +vt 0.937500 0.750000 +vt 0.937500 0.250000 +vt 0.937500 0.687500 +vt 0.937500 0.187500 +vt 0.937500 0.625000 +vt 0.937500 0.125000 +vt 0.937500 0.562500 +vt 0.937500 0.500000 +vt 0.906250 0.750000 +vt 0.906250 0.687500 +vt 0.906250 0.187500 +vt 0.906250 0.625000 +vt 0.906250 0.125000 +vt 0.906250 0.562500 +vt 0.906250 0.062500 +vt 0.906250 0.500000 +vt 0.921875 1.000000 +vt 0.906250 0.937500 +vt 0.921875 0.000000 +vt 0.906250 0.437500 +vt 0.906250 0.875000 +vt 0.906250 0.375000 +vt 0.906250 0.812500 +vt 0.906250 0.312500 +vt 0.906250 0.250000 +vt 0.875000 0.500000 +vt 0.875000 0.437500 +vt 0.875000 0.875000 +vt 0.875000 0.375000 +vt 0.875000 0.812500 +vt 0.875000 0.312500 +vt 0.875000 0.750000 +vt 0.875000 0.250000 +vt 0.875000 0.687500 +vt 0.875000 0.187500 +vt 0.875000 0.625000 +vt 0.875000 0.125000 +vt 0.875000 0.562500 +vt 0.875000 0.062500 +vt 0.890625 1.000000 +vt 0.875000 0.937500 +vt 0.890625 0.000000 +vt 0.843750 0.250000 +vt 0.843750 0.187500 +vt 0.843750 0.625000 +vt 0.843750 0.125000 +vt 0.843750 0.562500 +vt 0.843750 0.062500 +vt 0.843750 0.500000 +vt 0.859375 1.000000 +vt 0.843750 0.937500 +vt 0.859375 0.000000 +vt 0.843750 0.437500 +vt 0.843750 0.875000 +vt 0.843750 0.375000 +vt 0.843750 0.812500 +vt 0.843750 0.312500 +vt 0.843750 0.750000 +vt 0.843750 0.687500 +vt 0.812500 0.375000 +vt 0.812500 0.875000 +vt 0.812500 0.812500 +vt 0.812500 0.312500 +vt 0.812500 0.750000 +vt 0.812500 0.250000 +vt 0.812500 0.687500 +vt 0.812500 0.187500 +vt 0.812500 0.625000 +vt 0.812500 0.125000 +vt 0.812500 0.562500 +vt 0.812500 0.062500 +vt 0.812500 0.500000 +vt 0.828125 1.000000 +vt 0.812500 0.937500 +vt 0.828125 0.000000 +vt 0.812500 0.437500 +vt 0.781250 0.125000 +vt 0.781250 0.625000 +vt 0.781250 0.562500 +vt 0.781250 0.062500 +vt 0.781250 0.500000 +vt 0.796875 1.000000 +vt 0.781250 0.937500 +vt 0.796875 0.000000 +vt 0.781250 0.437500 +vt 0.781250 0.875000 +vt 0.781250 0.375000 +vt 0.781250 0.812500 +vt 0.781250 0.312500 +vt 0.781250 0.750000 +vt 0.781250 0.250000 +vt 0.781250 0.687500 +vt 0.781250 0.187500 +vt 0.765625 1.000000 +vt 0.765625 0.000000 +vn -0.1884 -0.5294 -0.8272 +vn -0.0558 0.9679 -0.2452 +vn -0.1494 -0.7398 -0.6560 +vn -0.0823 0.9288 -0.3613 +vn -0.1132 -0.8604 -0.4969 +vn -0.1132 0.8604 -0.4969 +vn -0.0823 -0.9288 -0.3613 +vn -0.1494 0.7398 -0.6560 +vn -0.0559 -0.9679 -0.2452 +vn -0.1884 0.5294 -0.8272 +vn -0.0324 -0.9893 -0.1422 +vn -0.2177 0.1986 -0.9556 +vn -0.0106 0.9989 -0.0466 +vn -0.0106 -0.9989 -0.0466 +vn -0.2177 -0.1986 -0.9556 +vn -0.0324 0.9893 -0.1422 +vn 0.0074 -0.9986 -0.0529 +vn 0.1367 -0.1785 -0.9744 +vn 0.0226 0.9867 -0.1609 +vn 0.1213 -0.4879 -0.8645 +vn 0.0387 0.9604 -0.2759 +vn 0.0990 -0.7017 -0.7056 +vn 0.0565 0.9135 -0.4029 +vn 0.0766 -0.8341 -0.5463 +vn 0.0766 0.8341 -0.5463 +vn 0.0565 -0.9135 -0.4029 +vn 0.0990 0.7017 -0.7056 +vn 0.0387 -0.9604 -0.2759 +vn 0.1213 0.4879 -0.8645 +vn 0.0226 -0.9867 -0.1609 +vn 0.1367 0.1785 -0.9744 +vn 0.0074 0.9986 -0.0529 +vn 0.1863 -0.8870 -0.4225 +vn 0.3085 0.6444 -0.6997 +vn 0.1295 -0.9471 -0.2938 +vn 0.3639 0.4314 -0.8255 +vn 0.0762 -0.9820 -0.1729 +vn 0.3986 0.1534 -0.9042 +vn 0.0252 0.9981 -0.0571 +vn 0.0252 -0.9981 -0.0571 +vn 0.3986 -0.1534 -0.9042 +vn 0.0762 0.9820 -0.1729 +vn 0.3639 -0.4314 -0.8255 +vn 0.1295 0.9471 -0.2938 +vn 0.3085 -0.6444 -0.6997 +vn 0.1863 0.8870 -0.4225 +vn 0.2467 -0.7912 -0.5596 +vn 0.2467 0.7912 -0.5596 +vn 0.1263 0.9759 -0.1779 +vn 0.5352 -0.3806 -0.7541 +vn 0.2121 0.9304 -0.2989 +vn 0.4685 -0.5871 -0.6601 +vn 0.2995 0.8557 -0.4220 +vn 0.3867 -0.7441 -0.5449 +vn 0.3867 0.7441 -0.5449 +vn 0.2995 -0.8557 -0.4220 +vn 0.4685 0.5871 -0.6601 +vn 0.2121 -0.9304 -0.2989 +vn 0.5352 0.3806 -0.7541 +vn 0.1263 -0.9759 -0.1779 +vn 0.5737 0.1325 -0.8083 +vn 0.0419 0.9974 -0.0590 +vn 0.0419 -0.9974 -0.0590 +vn 0.5737 -0.1325 -0.8083 +vn 0.5863 0.5396 -0.6042 +vn 0.2835 -0.9134 -0.2922 +vn 0.6545 0.3418 -0.6744 +vn 0.1708 -0.9695 -0.1760 +vn 0.6916 0.1173 -0.7127 +vn 0.0570 0.9966 -0.0587 +vn 0.0570 -0.9966 -0.0587 +vn 0.6916 -0.1173 -0.7127 +vn 0.1708 0.9695 -0.1760 +vn 0.6545 -0.3418 -0.6744 +vn 0.2835 0.9134 -0.2922 +vn 0.5863 -0.5396 -0.6042 +vn 0.3933 0.8252 -0.4053 +vn 0.4964 -0.7014 -0.5115 +vn 0.4964 0.7014 -0.5115 +vn 0.3933 -0.8252 -0.4053 +vn 0.7397 -0.3149 -0.5947 +vn 0.3422 0.8984 -0.2751 +vn 0.6729 -0.5046 -0.5409 +vn 0.4678 0.7998 -0.3761 +vn 0.5800 -0.6679 -0.4663 +vn 0.5800 0.6679 -0.4663 +vn 0.4678 -0.7998 -0.3761 +vn 0.6729 0.5046 -0.5409 +vn 0.3422 -0.8984 -0.2751 +vn 0.7397 0.3149 -0.5947 +vn 0.2083 -0.9636 -0.1675 +vn 0.7749 0.1071 -0.6230 +vn 0.0699 0.9960 -0.0562 +vn 0.0699 -0.9960 -0.0562 +vn 0.7749 -0.1071 -0.6230 +vn 0.2083 0.9636 -0.1675 +vn 0.3877 -0.8875 -0.2492 +vn 0.8029 0.2980 -0.5162 +vn 0.2378 -0.9592 -0.1529 +vn 0.8369 0.1009 -0.5380 +vn 0.0801 0.9955 -0.0515 +vn 0.0801 -0.9955 -0.0515 +vn 0.8369 -0.1009 -0.5380 +vn 0.2378 0.9592 -0.1529 +vn 0.8029 -0.2980 -0.5162 +vn 0.3877 0.8875 -0.2492 +vn 0.7370 -0.4820 -0.4738 +vn 0.5244 0.7819 -0.3371 +vn 0.6426 -0.6453 -0.4131 +vn 0.6426 0.6453 -0.4131 +vn 0.5244 -0.7819 -0.3371 +vn 0.7370 0.4820 -0.4738 +vn 0.4196 0.8817 -0.2157 +vn 0.7845 -0.4710 -0.4033 +vn 0.5646 0.7727 -0.2902 +vn 0.6878 -0.6340 -0.3536 +vn 0.6878 0.6340 -0.3536 +vn 0.5646 -0.7727 -0.2902 +vn 0.7845 0.4710 -0.4033 +vn 0.4196 -0.8817 -0.2157 +vn 0.8512 0.2900 -0.4375 +vn 0.2584 -0.9569 -0.1328 +vn 0.8851 0.0979 -0.4550 +vn 0.0873 0.9952 -0.0449 +vn 0.0873 -0.9952 -0.0449 +vn 0.8851 -0.0979 -0.4550 +vn 0.2584 0.9569 -0.1328 +vn 0.8512 -0.2900 -0.4375 +vn 0.8884 0.2900 -0.3560 +vn 0.2697 -0.9569 -0.1081 +vn 0.9238 0.0979 -0.3702 +vn 0.0911 0.9952 -0.0365 +vn 0.0911 -0.9952 -0.0365 +vn 0.9238 -0.0979 -0.3702 +vn 0.2697 0.9569 -0.1081 +vn 0.8884 -0.2900 -0.3560 +vn 0.4379 0.8817 -0.1755 +vn 0.8188 -0.4710 -0.3281 +vn 0.5893 0.7727 -0.2361 +vn 0.7179 -0.6340 -0.2877 +vn 0.7179 0.6340 -0.2877 +vn 0.5893 -0.7727 -0.2361 +vn 0.8188 0.4710 -0.3281 +vn 0.4379 -0.8817 -0.1755 +vn 0.8409 -0.4820 -0.2460 +vn 0.5983 0.7819 -0.1750 +vn 0.7332 -0.6453 -0.2145 +vn 0.7332 0.6453 -0.2145 +vn 0.5983 -0.7819 -0.1750 +vn 0.8409 0.4820 -0.2460 +vn 0.4423 -0.8875 -0.1294 +vn 0.9162 0.2980 -0.2680 +vn 0.2713 -0.9592 -0.0794 +vn 0.9549 0.1009 -0.2793 +vn 0.0914 0.9955 -0.0267 +vn 0.0914 -0.9955 -0.0267 +vn 0.9549 -0.1009 -0.2793 +vn 0.2713 0.9592 -0.0794 +vn 0.9162 -0.2980 -0.2680 +vn 0.4423 0.8875 -0.1294 +vn 0.2630 -0.9636 -0.0475 +vn 0.9784 0.1071 -0.1769 +vn 0.0883 0.9960 -0.0160 +vn 0.0883 -0.9960 -0.0160 +vn 0.9784 -0.1071 -0.1769 +vn 0.2630 0.9636 -0.0475 +vn 0.9340 -0.3149 -0.1688 +vn 0.4321 0.8984 -0.0781 +vn 0.8496 -0.5046 -0.1536 +vn 0.5907 0.7998 -0.1068 +vn 0.7324 -0.6679 -0.1324 +vn 0.7324 0.6679 -0.1324 +vn 0.5907 -0.7998 -0.1068 +vn 0.8496 0.5046 -0.1536 +vn 0.4321 -0.8984 -0.0781 +vn 0.9340 0.3149 -0.1688 +vn 0.7116 -0.7014 -0.0396 +vn 0.7116 0.7014 -0.0396 +vn 0.5639 -0.8252 -0.0314 +vn 0.8406 0.5396 -0.0468 +vn 0.4065 -0.9134 -0.0226 +vn 0.9383 0.3418 -0.0522 +vn 0.2449 -0.9695 -0.0136 +vn 0.9916 0.1173 -0.0551 +vn 0.0817 0.9966 -0.0045 +vn 0.0817 -0.9966 -0.0045 +vn 0.9916 -0.1173 -0.0551 +vn 0.2449 0.9695 -0.0136 +vn 0.9383 -0.3418 -0.0522 +vn 0.4065 0.9134 -0.0226 +vn 0.8406 -0.5396 -0.0468 +vn 0.5639 0.8252 -0.0314 +vn 0.0720 0.9974 0.0071 +vn 0.0720 -0.9974 0.0071 +vn 0.9865 -0.1325 0.0966 +vn 0.2171 0.9759 0.0213 +vn 0.9203 -0.3806 0.0901 +vn 0.3647 0.9304 0.0357 +vn 0.8056 -0.5871 0.0789 +vn 0.5150 0.8557 0.0504 +vn 0.6649 -0.7441 0.0651 +vn 0.6649 0.7441 0.0651 +vn 0.5150 -0.8557 0.0504 +vn 0.8056 0.5871 0.0789 +vn 0.3647 -0.9304 0.0357 +vn 0.9203 0.3806 0.0901 +vn 0.2171 -0.9759 0.0213 +vn 0.9865 0.1325 0.0966 +vn 0.5843 0.7912 0.1805 +vn 0.4412 -0.8870 0.1363 +vn 0.7306 0.6444 0.2257 +vn 0.3068 -0.9471 0.0948 +vn 0.8620 0.4314 0.2662 +vn 0.1805 -0.9820 0.0558 +vn 0.9441 0.1534 0.2916 +vn 0.0596 0.9981 0.0184 +vn 0.0596 -0.9981 0.0184 +vn 0.9441 -0.1534 0.2916 +vn 0.1805 0.9820 0.0558 +vn 0.8620 -0.4314 0.2662 +vn 0.3068 0.9471 0.0948 +vn 0.7306 -0.6444 0.2257 +vn 0.4412 0.8870 0.1363 +vn 0.5843 -0.7912 0.1805 +vn 0.8255 -0.1786 0.5355 +vn 0.1363 0.9867 0.0884 +vn 0.7323 -0.4879 0.4750 +vn 0.2338 0.9604 0.1516 +vn 0.5978 -0.7017 0.3877 +vn 0.3414 0.9135 0.2214 +vn 0.4628 -0.8341 0.3002 +vn 0.4628 0.8341 0.3002 +vn 0.3414 -0.9135 0.2214 +vn 0.5978 0.7017 0.3877 +vn 0.2338 -0.9604 0.1516 +vn 0.7323 0.4879 0.4750 +vn 0.1363 -0.9867 0.0884 +vn 0.8255 0.1786 0.5355 +vn 0.0448 0.9986 0.0291 +vn 0.0448 -0.9986 0.0290 +vn 0.2189 -0.9288 0.2990 +vn 0.3975 0.7398 0.5428 +vn 0.1486 -0.9679 0.2029 +vn 0.5012 0.5294 0.6845 +vn 0.0862 -0.9893 0.1177 +vn 0.5790 0.1986 0.7908 +vn 0.0283 0.9989 0.0386 +vn 0.0283 -0.9989 0.0386 +vn 0.5790 -0.1986 0.7908 +vn 0.0862 0.9893 0.1177 +vn 0.5012 -0.5294 0.6845 +vn 0.1486 0.9679 0.2029 +vn 0.3975 -0.7398 0.5428 +vn 0.2189 0.9288 0.2990 +vn 0.3011 -0.8604 0.4112 +vn 0.3011 0.8604 0.4112 +vn 0.0324 0.9893 0.1422 +vn 0.1884 -0.5294 0.8272 +vn 0.0558 0.9679 0.2452 +vn 0.1494 -0.7398 0.6560 +vn 0.0823 0.9288 0.3613 +vn 0.1132 -0.8604 0.4969 +vn 0.1132 0.8604 0.4969 +vn 0.0823 -0.9288 0.3613 +vn 0.1494 0.7398 0.6560 +vn 0.0558 -0.9679 0.2452 +vn 0.1884 0.5294 0.8272 +vn 0.0324 -0.9893 0.1422 +vn 0.2177 0.1986 0.9556 +vn 0.0106 0.9989 0.0466 +vn 0.0106 -0.9989 0.0466 +vn 0.2177 -0.1986 0.9556 +vn -0.0990 0.7017 0.7056 +vn -0.0387 -0.9604 0.2759 +vn -0.1213 0.4879 0.8645 +vn -0.0226 -0.9867 0.1609 +vn -0.1367 0.1786 0.9744 +vn -0.0074 0.9986 0.0529 +vn -0.0074 -0.9986 0.0529 +vn -0.1367 -0.1785 0.9744 +vn -0.0226 0.9867 0.1609 +vn -0.1213 -0.4879 0.8645 +vn -0.0387 0.9604 0.2759 +vn -0.0990 -0.7017 0.7056 +vn -0.0565 0.9135 0.4029 +vn -0.0766 -0.8341 0.5463 +vn -0.0766 0.8341 0.5463 +vn -0.0565 -0.9135 0.4029 +vn -0.3639 -0.4314 0.8255 +vn -0.1295 0.9471 0.2938 +vn -0.3085 -0.6444 0.6997 +vn -0.1863 0.8870 0.4225 +vn -0.2467 -0.7912 0.5596 +vn -0.2467 0.7912 0.5596 +vn -0.1863 -0.8870 0.4225 +vn -0.3085 0.6444 0.6997 +vn -0.1295 -0.9471 0.2938 +vn -0.3639 0.4314 0.8255 +vn -0.0762 -0.9820 0.1729 +vn -0.3986 0.1534 0.9042 +vn -0.0252 0.9981 0.0571 +vn -0.0252 -0.9981 0.0571 +vn -0.3986 -0.1534 0.9042 +vn -0.0762 0.9820 0.1729 +vn -0.2121 -0.9304 0.2989 +vn -0.5352 0.3806 0.7541 +vn -0.1263 -0.9759 0.1779 +vn -0.5737 0.1325 0.8083 +vn -0.0419 0.9974 0.0590 +vn -0.0419 -0.9974 0.0590 +vn -0.5737 -0.1325 0.8083 +vn -0.1263 0.9759 0.1779 +vn -0.5352 -0.3806 0.7541 +vn -0.2121 0.9304 0.2989 +vn -0.4685 -0.5871 0.6601 +vn -0.2995 0.8557 0.4220 +vn -0.3867 -0.7440 0.5449 +vn -0.3867 0.7440 0.5449 +vn -0.2995 -0.8557 0.4220 +vn -0.4685 0.5871 0.6601 +vn -0.5863 -0.5396 0.6042 +vn -0.3933 0.8252 0.4053 +vn -0.4964 -0.7014 0.5115 +vn -0.4964 0.7014 0.5115 +vn -0.3933 -0.8252 0.4053 +vn -0.5863 0.5396 0.6042 +vn -0.2835 -0.9134 0.2922 +vn -0.6545 0.3418 0.6744 +vn -0.1708 -0.9695 0.1760 +vn -0.6916 0.1173 0.7127 +vn -0.0570 0.9966 0.0587 +vn -0.0570 -0.9966 0.0587 +vn -0.6916 -0.1173 0.7127 +vn -0.1708 0.9695 0.1760 +vn -0.6545 -0.3418 0.6744 +vn -0.2835 0.9134 0.2922 +vn -0.2083 -0.9636 0.1675 +vn -0.7749 0.1071 0.6230 +vn -0.0699 0.9960 0.0562 +vn -0.0699 -0.9960 0.0562 +vn -0.7749 -0.1071 0.6230 +vn -0.2083 0.9636 0.1675 +vn -0.7397 -0.3149 0.5947 +vn -0.3422 0.8984 0.2751 +vn -0.6729 -0.5046 0.5409 +vn -0.4678 0.7998 0.3761 +vn -0.5800 -0.6679 0.4663 +vn -0.5800 0.6679 0.4663 +vn -0.4678 -0.7998 0.3761 +vn -0.6729 0.5046 0.5409 +vn -0.3422 -0.8984 0.2751 +vn -0.7397 0.3149 0.5947 +vn -0.5244 0.7819 0.3371 +vn -0.6426 -0.6453 0.4131 +vn -0.6426 0.6453 0.4131 +vn -0.5244 -0.7819 0.3371 +vn -0.7370 0.4820 0.4738 +vn -0.3877 -0.8875 0.2492 +vn -0.8029 0.2980 0.5162 +vn -0.2378 -0.9592 0.1529 +vn -0.8369 0.1009 0.5380 +vn -0.0801 0.9955 0.0515 +vn -0.0801 -0.9955 0.0515 +vn -0.8369 -0.1009 0.5380 +vn -0.2378 0.9592 0.1529 +vn -0.8029 -0.2980 0.5162 +vn -0.3877 0.8875 0.2492 +vn -0.7370 -0.4820 0.4738 +vn -0.8851 0.0979 0.4550 +vn -0.0873 0.9952 0.0449 +vn -0.0873 -0.9952 0.0449 +vn -0.8851 -0.0979 0.4550 +vn -0.2584 0.9569 0.1328 +vn -0.8512 -0.2900 0.4375 +vn -0.4196 0.8817 0.2157 +vn -0.7845 -0.4710 0.4033 +vn -0.5646 0.7727 0.2902 +vn -0.6878 -0.6340 0.3536 +vn -0.6878 0.6340 0.3536 +vn -0.5646 -0.7727 0.2902 +vn -0.7845 0.4710 0.4033 +vn -0.4196 -0.8817 0.2157 +vn -0.8512 0.2900 0.4375 +vn -0.2584 -0.9569 0.1328 +vn -0.7179 -0.6340 0.2877 +vn -0.7179 0.6340 0.2877 +vn -0.5893 -0.7727 0.2361 +vn -0.8188 0.4710 0.3281 +vn -0.4379 -0.8817 0.1755 +vn -0.8884 0.2900 0.3560 +vn -0.2697 -0.9569 0.1081 +vn -0.9238 0.0979 0.3702 +vn -0.0911 0.9952 0.0365 +vn -0.0911 -0.9952 0.0365 +vn -0.9238 -0.0979 0.3702 +vn -0.2697 0.9569 0.1081 +vn -0.8884 -0.2900 0.3560 +vn -0.4379 0.8817 0.1755 +vn -0.8188 -0.4710 0.3281 +vn -0.5893 0.7727 0.2361 +vn -0.0914 0.9955 0.0267 +vn -0.0914 -0.9955 0.0267 +vn -0.9549 -0.1009 0.2793 +vn -0.2713 0.9592 0.0794 +vn -0.9162 -0.2980 0.2680 +vn -0.4423 0.8875 0.1294 +vn -0.8409 -0.4820 0.2460 +vn -0.5983 0.7819 0.1750 +vn -0.7332 -0.6453 0.2145 +vn -0.7332 0.6453 0.2145 +vn -0.5983 -0.7819 0.1750 +vn -0.8409 0.4820 0.2460 +vn -0.4423 -0.8875 0.1294 +vn -0.9162 0.2980 0.2680 +vn -0.2713 -0.9592 0.0794 +vn -0.9549 0.1009 0.2793 +vn -0.7324 0.6679 0.1324 +vn -0.5907 -0.7998 0.1068 +vn -0.8496 0.5046 0.1536 +vn -0.4321 -0.8984 0.0781 +vn -0.9340 0.3149 0.1688 +vn -0.2630 -0.9636 0.0475 +vn -0.9784 0.1071 0.1769 +vn -0.0883 0.9960 0.0160 +vn -0.0883 -0.9960 0.0160 +vn -0.9784 -0.1071 0.1769 +vn -0.2630 0.9636 0.0475 +vn -0.9340 -0.3149 0.1688 +vn -0.4321 0.8984 0.0781 +vn -0.8496 -0.5046 0.1536 +vn -0.5907 0.7998 0.1068 +vn -0.7324 -0.6679 0.1324 +vn -0.9916 -0.1173 0.0551 +vn -0.2449 0.9695 0.0136 +vn -0.9383 -0.3418 0.0522 +vn -0.4065 0.9134 0.0226 +vn -0.8406 -0.5396 0.0468 +vn -0.5639 0.8252 0.0314 +vn -0.7116 -0.7014 0.0396 +vn -0.7116 0.7014 0.0396 +vn -0.5639 -0.8252 0.0314 +vn -0.8406 0.5396 0.0468 +vn -0.4065 -0.9134 0.0226 +vn -0.9383 0.3418 0.0522 +vn -0.2449 -0.9695 0.0136 +vn -0.9916 0.1173 0.0551 +vn -0.0817 0.9966 0.0045 +vn -0.0817 -0.9966 0.0045 +vn -0.5150 -0.8557 -0.0504 +vn -0.8056 0.5871 -0.0789 +vn -0.3647 -0.9304 -0.0357 +vn -0.9203 0.3806 -0.0901 +vn -0.2171 -0.9759 -0.0213 +vn -0.9865 0.1325 -0.0966 +vn -0.0720 0.9974 -0.0071 +vn -0.0720 -0.9974 -0.0071 +vn -0.9865 -0.1325 -0.0966 +vn -0.2171 0.9759 -0.0213 +vn -0.9203 -0.3806 -0.0901 +vn -0.3647 0.9304 -0.0357 +vn -0.8056 -0.5871 -0.0789 +vn -0.5150 0.8557 -0.0504 +vn -0.6649 -0.7440 -0.0651 +vn -0.6649 0.7440 -0.0651 +vn -0.8620 -0.4314 -0.2662 +vn -0.3068 0.9471 -0.0948 +vn -0.7306 -0.6444 -0.2257 +vn -0.4412 0.8870 -0.1363 +vn -0.5843 -0.7912 -0.1805 +vn -0.5843 0.7912 -0.1805 +vn -0.4412 -0.8870 -0.1363 +vn -0.7306 0.6444 -0.2257 +vn -0.3068 -0.9471 -0.0948 +vn -0.8620 0.4314 -0.2662 +vn -0.1805 -0.9820 -0.0558 +vn -0.9441 0.1534 -0.2916 +vn -0.0596 0.9981 -0.0184 +vn -0.0596 -0.9981 -0.0184 +vn -0.9441 -0.1534 -0.2916 +vn -0.1805 0.9820 -0.0558 +vn -0.2338 -0.9604 -0.1516 +vn -0.7323 0.4879 -0.4750 +vn -0.1363 -0.9867 -0.0884 +vn -0.8255 0.1786 -0.5355 +vn -0.0448 0.9986 -0.0290 +vn -0.0448 -0.9986 -0.0291 +vn -0.8255 -0.1786 -0.5355 +vn -0.1363 0.9867 -0.0884 +vn -0.7323 -0.4879 -0.4750 +vn -0.2338 0.9604 -0.1516 +vn -0.5978 -0.7017 -0.3877 +vn -0.3414 0.9135 -0.2214 +vn -0.4628 -0.8341 -0.3002 +vn -0.4628 0.8341 -0.3002 +vn -0.3414 -0.9135 -0.2214 +vn -0.5978 0.7017 -0.3877 +vn -0.1486 0.9679 -0.2029 +vn -0.3975 -0.7398 -0.5428 +vn -0.2189 0.9288 -0.2990 +vn -0.3011 -0.8604 -0.4112 +vn -0.3011 0.8604 -0.4112 +vn -0.2189 -0.9288 -0.2990 +vn -0.3975 0.7398 -0.5428 +vn -0.1486 -0.9679 -0.2029 +vn -0.5012 0.5294 -0.6845 +vn -0.0862 -0.9893 -0.1177 +vn -0.5790 0.1986 -0.7908 +vn -0.0283 0.9989 -0.0386 +vn -0.0283 -0.9989 -0.0386 +vn -0.5790 -0.1986 -0.7908 +vn -0.0862 0.9893 -0.1177 +vn -0.5012 -0.5294 -0.6845 +vn -0.0558 -0.9679 -0.2452 +vn 0.8255 0.1785 0.5355 +vn -0.1367 0.1785 0.9744 +vn -0.1367 -0.1786 0.9744 +vn -0.8255 0.1785 -0.5355 +vn -0.8255 -0.1785 -0.5355 +usemtl None +s off +f 1937/1/1929 1948/2/1929 2406/3/1929 +f 1931/4/1930 1940/5/1930 1941/6/1930 +f 2406/3/1931 1949/7/1931 2407/8/1931 +f 1931/4/1932 1942/9/1932 1932/10/1932 +f 2407/8/1933 1950/11/1933 2408/12/1933 +f 1932/10/1934 1943/13/1934 1933/14/1934 +f 2408/12/1935 1951/15/1935 1938/16/1935 +f 1933/14/1936 1944/17/1936 1934/18/1936 +f 1938/16/1937 1952/19/1937 2409/20/1937 +f 1934/18/1938 1945/21/1938 1935/22/1938 +f 2409/20/1939 1953/23/1939 2410/24/1939 +f 1935/22/1940 1946/25/1940 1936/26/1940 +f 1929/27/1941 2225/28/1941 1939/29/1941 +f 2134/30/1942 2410/24/1942 1953/23/1942 +f 1936/26/1943 1947/31/1943 1937/1/1943 +f 1929/27/1944 1940/5/1944 1930/32/1944 +f 2134/33/1945 1953/23/1945 1968/34/1945 +f 1947/31/1946 1961/35/1946 1962/36/1946 +f 1939/29/1947 1955/37/1947 1940/5/1947 +f 1948/2/1948 1962/36/1948 1963/38/1948 +f 1940/5/1949 1956/39/1949 1941/6/1949 +f 1948/2/1950 1964/40/1950 1949/7/1950 +f 1941/6/1951 1957/41/1951 1942/9/1951 +f 1950/11/1952 1964/40/1952 1965/42/1952 +f 1942/9/1953 1958/43/1953 1943/13/1953 +f 1950/11/1954 1966/44/1954 1951/15/1954 +f 1943/13/1955 1959/45/1955 1944/17/1955 +f 1951/15/1956 1967/46/1956 1952/19/1956 +f 1944/17/1957 1960/47/1957 1945/21/1957 +f 1952/19/1958 1968/34/1958 1953/23/1958 +f 1945/21/1959 1961/35/1959 1946/25/1959 +f 1939/29/1960 2225/48/1960 1954/49/1960 +f 1965/42/1961 1981/50/1961 1966/44/1961 +f 1958/43/1962 1974/51/1962 1959/45/1962 +f 1966/44/1963 1982/52/1963 1967/46/1963 +f 1960/47/1964 1974/51/1964 1975/53/1964 +f 1967/46/1965 1983/54/1965 1968/34/1965 +f 1960/47/1966 1976/55/1966 1961/35/1966 +f 1954/49/1967 2225/56/1967 1969/57/1967 +f 2134/58/1968 1968/34/1968 1983/54/1968 +f 1961/35/1969 1977/59/1969 1962/36/1969 +f 1954/49/1970 1970/60/1970 1955/37/1970 +f 1962/36/1971 1978/61/1971 1963/38/1971 +f 1955/37/1972 1971/62/1972 1956/39/1972 +f 1964/40/1973 1978/61/1973 1979/63/1973 +f 1956/39/1974 1972/64/1974 1957/41/1974 +f 1965/42/1975 1979/63/1975 1980/65/1975 +f 1957/41/1976 1973/66/1976 1958/43/1976 +f 1969/57/1977 1985/67/1977 1970/60/1977 +f 1977/59/1978 1993/68/1978 1978/61/1978 +f 1970/60/1979 1986/69/1979 1971/62/1979 +f 1979/63/1980 1993/68/1980 1994/70/1980 +f 1971/62/1981 1987/71/1981 1972/64/1981 +f 1979/63/1982 1995/72/1982 1980/65/1982 +f 1972/64/1983 1988/73/1983 1973/66/1983 +f 1980/65/1984 1996/74/1984 1981/50/1984 +f 1973/66/1985 1989/75/1985 1974/51/1985 +f 1981/50/1986 1997/76/1986 1982/52/1986 +f 1974/51/1987 1990/77/1987 1975/53/1987 +f 1982/52/1988 1998/78/1988 1983/54/1988 +f 1976/55/1989 1990/77/1989 1991/79/1989 +f 1969/57/1990 2225/80/1990 1984/81/1990 +f 2134/82/1991 1983/54/1991 1998/78/1991 +f 1976/55/1992 1992/83/1992 1977/59/1992 +f 1988/73/1993 2004/84/1993 1989/75/1993 +f 1997/76/1994 2011/85/1994 2012/86/1994 +f 1989/75/1995 2005/87/1995 1990/77/1995 +f 1997/76/1996 2013/88/1996 1998/78/1996 +f 1991/79/1997 2005/87/1997 2006/89/1997 +f 1984/81/1998 2225/90/1998 1999/91/1998 +f 2134/92/1999 1998/78/1999 2013/88/1999 +f 1991/79/2000 2007/93/2000 1992/83/2000 +f 1984/81/2001 2000/94/2001 1985/67/2001 +f 1992/83/2002 2008/95/2002 1993/68/2002 +f 1985/67/2003 2001/96/2003 1986/69/2003 +f 1994/70/2004 2008/95/2004 2009/97/2004 +f 1986/69/2005 2002/98/2005 1987/71/2005 +f 1994/70/2006 2010/99/2006 1995/72/2006 +f 1988/73/2007 2002/98/2007 2003/100/2007 +f 1996/74/2008 2010/99/2008 2011/85/2008 +f 2007/93/2009 2023/101/2009 2008/95/2009 +f 2000/94/2010 2016/102/2010 2001/96/2010 +f 2009/97/2011 2023/101/2011 2024/103/2011 +f 2001/96/2012 2017/104/2012 2002/98/2012 +f 2010/99/2013 2024/103/2013 2025/105/2013 +f 2003/100/2014 2017/104/2014 2018/106/2014 +f 2010/99/2015 2026/107/2015 2011/85/2015 +f 2003/100/2016 2019/108/2016 2004/84/2016 +f 2012/86/2017 2026/107/2017 2027/109/2017 +f 2005/87/2018 2019/108/2018 2020/110/2018 +f 2012/86/2019 2028/111/2019 2013/88/2019 +f 2005/87/2020 2021/112/2020 2006/89/2020 +f 1999/91/2021 2225/113/2021 2014/114/2021 +f 2134/115/2022 2013/88/2022 2028/111/2022 +f 2006/89/2023 2022/116/2023 2007/93/2023 +f 1999/91/2024 2015/117/2024 2000/94/2024 +f 2026/107/2025 2042/118/2025 2027/109/2025 +f 2020/110/2026 2034/119/2026 2035/120/2026 +f 2028/111/2027 2042/118/2027 2043/121/2027 +f 2020/110/2028 2036/122/2028 2021/112/2028 +f 2014/114/2029 2225/123/2029 2029/124/2029 +f 2134/125/2030 2028/111/2030 2043/121/2030 +f 2021/112/2031 2037/126/2031 2022/116/2031 +f 2014/114/2032 2030/127/2032 2015/117/2032 +f 2022/116/2033 2038/128/2033 2023/101/2033 +f 2015/117/2034 2031/129/2034 2016/102/2034 +f 2024/103/2035 2038/128/2035 2039/130/2035 +f 2017/104/2036 2031/129/2036 2032/131/2036 +f 2025/105/2037 2039/130/2037 2040/132/2037 +f 2017/104/2038 2033/133/2038 2018/106/2038 +f 2025/105/2039 2041/134/2039 2026/107/2039 +f 2018/106/2040 2034/119/2040 2019/108/2040 +f 2030/127/2041 2046/135/2041 2031/129/2041 +f 2039/130/2042 2053/136/2042 2054/137/2042 +f 2031/129/2043 2047/138/2043 2032/131/2043 +f 2039/130/2044 2055/139/2044 2040/132/2044 +f 2032/131/2045 2048/140/2045 2033/133/2045 +f 2041/134/2046 2055/139/2046 2056/141/2046 +f 2033/133/2047 2049/142/2047 2034/119/2047 +f 2042/118/2048 2056/141/2048 2057/143/2048 +f 2035/120/2049 2049/142/2049 2050/144/2049 +f 2043/121/2050 2057/143/2050 2058/145/2050 +f 2035/120/2051 2051/146/2051 2036/122/2051 +f 2029/124/2052 2225/147/2052 2044/148/2052 +f 2134/149/2053 2043/121/2053 2058/145/2053 +f 2037/126/2054 2051/146/2054 2052/150/2054 +f 2029/124/2055 2045/151/2055 2030/127/2055 +f 2037/126/2056 2053/136/2056 2038/128/2056 +f 2050/144/2057 2064/152/2057 2065/153/2057 +f 2058/145/2058 2072/154/2058 2073/155/2058 +f 2050/144/2059 2066/156/2059 2051/146/2059 +f 2044/148/2060 2225/157/2060 2059/158/2060 +f 2134/159/2061 2058/145/2061 2073/155/2061 +f 2051/146/2062 2067/160/2062 2052/150/2062 +f 2045/151/2063 2059/158/2063 2060/161/2063 +f 2052/150/2064 2068/162/2064 2053/136/2064 +f 2045/151/2065 2061/163/2065 2046/135/2065 +f 2054/137/2066 2068/162/2066 2069/164/2066 +f 2046/135/2067 2062/165/2067 2047/138/2067 +f 2054/137/2068 2070/166/2068 2055/139/2068 +f 2048/140/2069 2062/165/2069 2063/167/2069 +f 2056/141/2070 2070/166/2070 2071/168/2070 +f 2048/140/2071 2064/152/2071 2049/142/2071 +f 2056/141/2072 2072/154/2072 2057/143/2072 +f 2069/164/2073 2083/169/2073 2084/170/2073 +f 2061/163/2074 2077/171/2074 2062/165/2074 +f 2069/164/2075 2085/172/2075 2070/166/2075 +f 2062/165/2076 2078/173/2076 2063/167/2076 +f 2070/166/2077 2086/174/2077 2071/168/2077 +f 2063/167/2078 2079/175/2078 2064/152/2078 +f 2072/154/2079 2086/174/2079 2087/176/2079 +f 2065/153/2080 2079/175/2080 2080/177/2080 +f 2072/154/2081 2088/178/2081 2073/155/2081 +f 2065/153/2082 2081/179/2082 2066/156/2082 +f 2059/158/2083 2225/180/2083 2074/181/2083 +f 2134/182/2084 2073/155/2084 2088/178/2084 +f 2066/156/2085 2082/183/2085 2067/160/2085 +f 2059/158/2086 2075/184/2086 2060/161/2086 +f 2067/160/2087 2083/169/2087 2068/162/2087 +f 2061/163/2088 2075/184/2088 2076/185/2088 +f 2087/176/2089 2103/186/2089 2088/178/2089 +f 2080/177/2090 2096/187/2090 2081/179/2090 +f 2074/181/2091 2225/188/2091 2089/189/2091 +f 2134/190/2092 2088/178/2092 2103/186/2092 +f 2082/183/2093 2096/187/2093 2097/191/2093 +f 2074/181/2094 2090/192/2094 2075/184/2094 +f 2082/183/2095 2098/193/2095 2083/169/2095 +f 2075/184/2096 2091/194/2096 2076/185/2096 +f 2084/170/2097 2098/193/2097 2099/195/2097 +f 2076/185/2098 2092/196/2098 2077/171/2098 +f 2084/170/2099 2100/197/2099 2085/172/2099 +f 2078/173/2100 2092/196/2100 2093/198/2100 +f 2086/174/2101 2100/197/2101 2101/199/2101 +f 2078/173/2102 2094/200/2102 2079/175/2102 +f 2086/174/2103 2102/201/2103 2087/176/2103 +f 2080/177/2104 2094/200/2104 2095/202/2104 +f 2099/195/2105 2115/203/2105 2100/197/2105 +f 2092/196/2106 2108/204/2106 2093/198/2106 +f 2101/199/2107 2115/203/2107 2116/205/2107 +f 2093/198/2108 2109/206/2108 2094/200/2108 +f 2101/199/2109 2117/207/2109 2102/201/2109 +f 2095/202/2110 2109/206/2110 2110/208/2110 +f 2103/186/2111 2117/207/2111 2118/209/2111 +f 2095/202/2112 2111/210/2112 2096/187/2112 +f 2089/189/2113 2225/211/2113 2104/212/2113 +f 2134/213/2114 2103/186/2114 2118/209/2114 +f 2096/187/2115 2112/214/2115 2097/191/2115 +f 2089/189/2116 2105/215/2116 2090/192/2116 +f 2097/191/2117 2113/216/2117 2098/193/2117 +f 2090/192/2118 2106/217/2118 2091/194/2118 +f 2098/193/2119 2114/218/2119 2099/195/2119 +f 2091/194/2120 2107/219/2120 2092/196/2120 +f 2104/212/2121 2225/220/2121 2119/221/2121 +f 2134/222/2122 2118/209/2122 2133/223/2122 +f 2112/214/2123 2126/224/2123 2127/225/2123 +f 2104/212/2124 2120/226/2124 2105/215/2124 +f 2112/214/2125 2128/227/2125 2113/216/2125 +f 2105/215/2126 2121/228/2126 2106/217/2126 +f 2114/218/2127 2128/227/2127 2129/229/2127 +f 2107/219/2128 2121/228/2128 2122/230/2128 +f 2114/218/2129 2130/231/2129 2115/203/2129 +f 2108/204/2130 2122/230/2130 2123/232/2130 +f 2116/205/2131 2130/231/2131 2131/233/2131 +f 2108/204/2132 2124/234/2132 2109/206/2132 +f 2116/205/2133 2132/235/2133 2117/207/2133 +f 2110/208/2134 2124/234/2134 2125/236/2134 +f 2118/209/2135 2132/235/2135 2133/223/2135 +f 2110/208/2136 2126/224/2136 2111/210/2136 +f 2122/230/2137 2139/237/2137 2123/232/2137 +f 2131/233/2138 2146/238/2138 2147/239/2138 +f 2123/232/2139 2140/240/2139 2124/234/2139 +f 2131/233/2140 2148/241/2140 2132/235/2140 +f 2125/236/2141 2140/240/2141 2141/242/2141 +f 2132/235/2142 2149/243/2142 2133/223/2142 +f 2125/236/2143 2142/244/2143 2126/224/2143 +f 2119/221/2144 2225/245/2144 2135/246/2144 +f 2134/247/2145 2133/223/2145 2149/243/2145 +f 2126/224/2146 2143/248/2146 2127/225/2146 +f 2119/221/2147 2136/249/2147 2120/226/2147 +f 2127/225/2148 2144/250/2148 2128/227/2148 +f 2121/228/2149 2136/249/2149 2137/251/2149 +f 2129/229/2150 2144/250/2150 2145/252/2150 +f 2121/228/2151 2138/253/2151 2122/230/2151 +f 2129/229/2152 2146/238/2152 2130/231/2152 +f 2142/244/2153 2158/254/2153 2143/248/2153 +f 2135/246/2154 2151/255/2154 2136/249/2154 +f 2143/248/2155 2159/256/2155 2144/250/2155 +f 2136/249/2156 2152/257/2156 2137/251/2156 +f 2145/252/2157 2159/256/2157 2160/258/2157 +f 2137/251/2158 2153/259/2158 2138/253/2158 +f 2145/252/2159 2161/260/2159 2146/238/2159 +f 2138/253/2160 2154/261/2160 2139/237/2160 +f 2146/238/2161 2162/262/2161 2147/239/2161 +f 2139/237/2162 2155/263/2162 2140/240/2162 +f 2147/239/2163 2163/264/2163 2148/241/2163 +f 2141/242/2164 2155/263/2164 2156/265/2164 +f 2149/243/2165 2163/264/2165 2164/266/2165 +f 2141/242/2166 2157/267/2166 2142/244/2166 +f 2135/246/2167 2225/268/2167 2150/269/2167 +f 2134/270/2168 2149/243/2168 2164/266/2168 +f 2162/262/2169 2176/271/2169 2177/272/2169 +f 2154/261/2170 2170/273/2170 2155/263/2170 +f 2162/262/2171 2178/274/2171 2163/264/2171 +f 2156/265/2172 2170/273/2172 2171/275/2172 +f 2164/266/2173 2178/274/2173 2179/276/2173 +f 2156/265/2174 2172/277/2174 2157/267/2174 +f 2150/269/2175 2225/278/2175 2165/279/2175 +f 2134/280/2176 2164/266/2176 2179/276/2176 +f 2157/267/2177 2173/281/2177 2158/254/2177 +f 2150/269/2178 2166/282/2178 2151/255/2178 +f 2158/254/2179 2174/283/2179 2159/256/2179 +f 2152/257/2180 2166/282/2180 2167/284/2180 +f 2160/258/2181 2174/283/2181 2175/285/2181 +f 2153/259/2182 2167/284/2182 2168/286/2182 +f 2160/258/2183 2176/271/2183 2161/260/2183 +f 2153/259/2184 2169/287/2184 2154/261/2184 +f 2165/279/2185 2181/288/2185 2166/282/2185 +f 2173/281/2186 2189/289/2186 2174/283/2186 +f 2166/282/2187 2182/290/2187 2167/284/2187 +f 2175/285/2188 2189/289/2188 2190/291/2188 +f 2168/286/2189 2182/290/2189 2183/292/2189 +f 2175/285/2190 2191/293/2190 2176/271/2190 +f 2169/287/2191 2183/292/2191 2184/294/2191 +f 2176/271/2192 2192/295/2192 2177/272/2192 +f 2169/287/2193 2185/296/2193 2170/273/2193 +f 2177/272/2194 2193/297/2194 2178/274/2194 +f 2171/275/2195 2185/296/2195 2186/298/2195 +f 2178/274/2196 2194/299/2196 2179/276/2196 +f 2171/275/2197 2187/300/2197 2172/277/2197 +f 2165/279/2198 2225/301/2198 2180/302/2198 +f 2134/303/2199 2179/276/2199 2194/299/2199 +f 2172/277/2200 2188/304/2200 2173/281/2200 +f 2184/294/2201 2200/305/2201 2185/296/2201 +f 2193/297/2202 2207/306/2202 2208/307/2202 +f 2186/298/2203 2200/305/2203 2201/308/2203 +f 2194/299/2204 2208/307/2204 2209/309/2204 +f 2186/298/2205 2202/310/2205 2187/300/2205 +f 2180/302/2206 2225/311/2206 2195/312/2206 +f 2134/313/2207 2194/299/2207 2209/309/2207 +f 2188/304/2208 2202/310/2208 2203/314/2208 +f 2180/302/2209 2196/315/2209 2181/288/2209 +f 2188/304/2210 2204/316/2210 2189/289/2210 +f 2181/288/2211 2197/317/2211 2182/290/2211 +f 2190/291/2212 2204/316/2212 2205/318/2212 +f 2183/292/2213 2197/317/2213 2198/319/2213 +f 2190/291/2214 2206/320/2214 2191/293/2214 +f 2184/294/2215 2198/319/2215 2199/321/2215 +f 2191/293/2216 2207/306/2216 2192/295/2216 +f 2203/314/2217 2219/322/2217 2204/316/2217 +f 2196/315/2218 2212/323/2218 2197/317/2218 +f 2205/318/2219 2219/322/2219 2220/324/2219 +f 2197/317/2220 2213/325/2220 2198/319/2220 +f 2205/318/2221 2221/326/2221 2206/320/2221 +f 2199/321/2222 2213/325/2222 2214/327/2222 +f 2207/306/2223 2221/326/2223 2222/328/2223 +f 2199/321/2224 2215/329/2224 2200/305/2224 +f 2207/306/2225 2223/330/2225 2208/307/2225 +f 2201/308/2226 2215/329/2226 2216/331/2226 +f 2209/309/2227 2223/330/2227 2224/332/2227 +f 2201/308/2228 2217/333/2228 2202/310/2228 +f 2195/312/2229 2225/334/2229 2210/335/2229 +f 2134/336/2230 2209/309/2230 2224/332/2230 +f 2202/310/2231 2218/337/2231 2203/314/2231 +f 2195/312/2232 2211/338/2232 2196/315/2232 +f 2222/328/2233 2239/339/2233 2223/330/2233 +f 2216/331/2234 2231/340/2234 2232/341/2234 +f 2223/330/2235 2240/342/2235 2224/332/2235 +f 2217/333/2236 2232/341/2236 2233/343/2236 +f 2210/335/2237 2225/344/2237 2226/345/2237 +f 2134/346/2238 2224/332/2238 2240/342/2238 +f 2217/333/2239 2234/347/2239 2218/337/2239 +f 2210/335/2240 2227/348/2240 2211/338/2240 +f 2218/337/2241 2235/349/2241 2219/322/2241 +f 2211/338/2242 2228/350/2242 2212/323/2242 +f 2220/324/2243 2235/349/2243 2236/351/2243 +f 2213/325/2244 2228/350/2244 2229/352/2244 +f 2220/324/2245 2237/353/2245 2221/326/2245 +f 2214/327/2246 2229/352/2246 2230/354/2246 +f 2221/326/2247 2238/355/2247 2222/328/2247 +f 2214/327/2248 2231/340/2248 2215/329/2248 +f 2236/351/2249 2250/356/2249 2251/357/2249 +f 2229/352/2250 2243/358/2250 2244/359/2250 +f 2236/351/2251 2252/360/2251 2237/353/2251 +f 2230/354/2252 2244/359/2252 2245/361/2252 +f 2237/353/2253 2253/362/2253 2238/355/2253 +f 2230/354/2254 2246/363/2254 2231/340/2254 +f 2239/339/2255 2253/362/2255 2254/364/2255 +f 2232/341/2256 2246/363/2256 2247/365/2256 +f 2239/339/2257 2255/366/2257 2240/342/2257 +f 2232/341/2258 2248/367/2258 2233/343/2258 +f 2226/345/2259 2225/368/2259 2241/369/2259 +f 2134/370/2260 2240/342/2260 2255/366/2260 +f 2233/343/2261 2249/371/2261 2234/347/2261 +f 2226/345/2262 2242/372/2262 2227/348/2262 +f 2234/347/2263 2250/356/2263 2235/349/2263 +f 2227/348/2264 2243/358/2264 2228/350/2264 +f 2255/366/2265 2269/373/2265 2270/374/2265 +f 2247/365/2266 2263/375/2266 2248/367/2266 +f 2241/369/2267 2225/376/2267 2256/377/2267 +f 2134/378/2268 2255/366/2268 2270/374/2268 +f 2248/367/2269 2264/379/2269 2249/371/2269 +f 2241/369/2270 2257/380/2270 2242/372/2270 +f 2249/371/2271 2265/381/2271 2250/356/2271 +f 2242/372/2272 2258/382/2272 2243/358/2272 +f 2251/357/2273 2265/381/2273 2266/383/2273 +f 2244/359/2274 2258/382/2274 2259/384/2274 +f 2252/360/2275 2266/383/2275 2267/385/2275 +f 2245/361/2276 2259/384/2276 2260/386/2276 +f 2252/360/2277 2268/387/2277 2253/362/2277 +f 2245/361/2278 2261/388/2278 2246/363/2278 +f 2254/364/2279 2268/387/2279 2269/373/2279 +f 2247/365/2280 2261/388/2280 2262/389/2280 +f 2259/384/2281 2273/390/2281 2274/391/2281 +f 2266/383/2282 2282/392/2282 2267/385/2282 +f 2260/386/2283 2274/391/2283 2275/393/2283 +f 2267/385/2284 2283/394/2284 2268/387/2284 +f 2260/386/2285 2276/395/2285 2261/388/2285 +f 2269/373/2286 2283/394/2286 2284/396/2286 +f 2262/389/2287 2276/395/2287 2277/397/2287 +f 2269/373/2288 2285/398/2288 2270/374/2288 +f 2262/389/2289 2278/399/2289 2263/375/2289 +f 2256/377/2290 2225/400/2290 2271/401/2290 +f 2134/402/2291 2270/374/2291 2285/398/2291 +f 2263/375/2292 2279/403/2292 2264/379/2292 +f 2257/380/2293 2271/401/2293 2272/404/2293 +f 2264/379/2294 2280/405/2294 2265/381/2294 +f 2257/380/2295 2273/390/2295 2258/382/2295 +f 2266/383/2296 2280/405/2296 2281/406/2296 +f 2277/397/2297 2293/407/2297 2278/399/2297 +f 2271/401/2298 2225/408/2298 2286/409/2298 +f 2134/410/2299 2285/398/2299 2300/411/2299 +f 2279/403/2300 2293/407/2300 2294/412/2300 +f 2272/404/2301 2286/409/2301 2287/413/2301 +f 2279/403/2302 2295/414/2302 2280/405/2302 +f 2272/404/2303 2288/415/2303 2273/390/2303 +f 2281/406/2304 2295/414/2304 2296/416/2304 +f 2274/391/2305 2288/415/2305 2289/417/2305 +f 2281/406/2306 2297/418/2306 2282/392/2306 +f 2274/391/2307 2290/419/2307 2275/393/2307 +f 2283/394/2308 2297/418/2308 2298/420/2308 +f 2275/393/2309 2291/421/2309 2276/395/2309 +f 2284/396/2310 2298/420/2310 2299/422/2310 +f 2277/397/2311 2291/421/2311 2292/423/2311 +f 2284/396/2312 2300/411/2312 2285/398/2312 +f 2296/424/2313 2312/425/2313 2297/426/2313 +f 2290/427/2314 2304/428/2314 2305/429/2314 +f 2297/426/2315 2313/430/2315 2298/431/2315 +f 2290/427/2316 2306/432/2316 2291/433/2316 +f 2299/434/2317 2313/430/2317 2314/435/2317 +f 2292/436/2318 2306/432/2318 2307/437/2318 +f 2299/434/2319 2315/438/2319 2300/439/2319 +f 2292/436/2320 2308/440/2320 2293/441/2320 +f 2286/442/2321 2225/443/2321 2301/444/2321 +f 2134/445/2322 2300/439/2322 2315/438/2322 +f 2294/446/2323 2308/440/2323 2309/447/2323 +f 2287/448/2324 2301/444/2324 2302/449/2324 +f 2294/446/2325 2310/450/2325 2295/451/2325 +f 2287/448/2326 2303/452/2326 2288/453/2326 +f 2296/424/2327 2310/450/2327 2311/454/2327 +f 2289/455/2328 2303/452/2328 2304/428/2328 +f 2301/444/2329 2225/456/2329 2316/457/2329 +f 2134/458/2330 2315/438/2330 2330/459/2330 +f 2308/440/2331 2324/460/2331 2309/447/2331 +f 2301/444/2332 2317/461/2332 2302/449/2332 +f 2309/447/2333 2325/462/2333 2310/450/2333 +f 2302/449/2334 2318/463/2334 2303/452/2334 +f 2311/454/2335 2325/462/2335 2326/464/2335 +f 2304/428/2336 2318/463/2336 2319/465/2336 +f 2311/454/2337 2327/466/2337 2312/425/2337 +f 2304/428/2338 2320/467/2338 2305/429/2338 +f 2312/425/2339 2328/468/2339 2313/430/2339 +f 2305/429/2340 2321/469/2340 2306/432/2340 +f 2314/435/2341 2328/468/2341 2329/470/2341 +f 2307/437/2342 2321/469/2342 2322/471/2342 +f 2314/435/2343 2330/459/2343 2315/438/2343 +f 2307/437/2344 2323/472/2344 2308/440/2344 +f 2320/467/2345 2334/473/2345 2335/474/2345 +f 2327/466/2346 2343/475/2346 2328/468/2346 +f 2320/467/2347 2336/476/2347 2321/469/2347 +f 2329/470/2348 2343/475/2348 2344/477/2348 +f 2322/471/2349 2336/476/2349 2337/478/2349 +f 2329/470/2350 2345/479/2350 2330/459/2350 +f 2322/471/2351 2338/480/2351 2323/472/2351 +f 2316/457/2352 2225/481/2352 2331/482/2352 +f 2134/483/2353 2330/459/2353 2345/479/2353 +f 2324/460/2354 2338/480/2354 2339/484/2354 +f 2316/457/2355 2332/485/2355 2317/461/2355 +f 2324/460/2356 2340/486/2356 2325/462/2356 +f 2318/463/2357 2332/485/2357 2333/487/2357 +f 2326/464/2358 2340/486/2358 2341/488/2358 +f 2319/465/2359 2333/487/2359 2334/473/2359 +f 2326/464/2360 2342/489/2360 2327/466/2360 +f 2339/484/2361 2353/490/2361 2354/491/2361 +f 2331/482/2362 2347/492/2362 2332/485/2362 +f 2339/484/2363 2355/493/2363 2340/486/2363 +f 2332/485/2364 2348/494/2364 2333/487/2364 +f 2341/488/2365 2355/493/2365 2356/495/2365 +f 2333/487/2366 2349/496/2366 2334/473/2366 +f 2341/488/2367 2357/497/2367 2342/489/2367 +f 2335/474/2368 2349/496/2368 2350/498/2368 +f 2342/489/2369 2358/499/2369 2343/475/2369 +f 2335/474/2370 2351/500/2370 2336/476/2370 +f 2343/475/2371 2359/501/2371 2344/477/2371 +f 2337/478/2372 2351/500/2372 2352/502/2372 +f 2344/477/2373 2360/503/2373 2345/479/2373 +f 2337/478/2374 2353/490/2374 2338/480/2374 +f 2331/482/2375 2225/504/2375 2346/505/2375 +f 2134/506/2376 2345/479/2376 2360/503/2376 +f 2358/499/2377 2372/507/2377 2373/508/2377 +f 2350/498/2378 2366/509/2378 2351/500/2378 +f 2358/499/2379 2374/510/2379 2359/501/2379 +f 2352/502/2380 2366/509/2380 2367/511/2380 +f 2359/501/2381 2375/512/2381 2360/503/2381 +f 2353/490/2382 2367/511/2382 2368/513/2382 +f 2346/505/2383 2225/514/2383 2361/515/2383 +f 2134/516/2384 2360/503/2384 2375/512/2384 +f 2353/490/2385 2369/517/2385 2354/491/2385 +f 2346/505/2386 2362/518/2386 2347/492/2386 +f 2354/491/2387 2370/519/2387 2355/493/2387 +f 2347/492/2388 2363/520/2388 2348/494/2388 +f 2356/495/2389 2370/519/2389 2371/521/2389 +f 2348/494/2390 2364/522/2390 2349/496/2390 +f 2356/495/2391 2372/507/2391 2357/497/2391 +f 2350/498/2392 2364/522/2392 2365/523/2392 +f 2369/517/2393 2385/524/2393 2370/519/2393 +f 2363/520/2394 2377/525/2394 2378/526/2394 +f 2371/521/2395 2385/524/2395 2386/527/2395 +f 2364/522/2396 2378/526/2396 2379/528/2396 +f 2371/521/2397 2387/529/2397 2372/507/2397 +f 2365/523/2398 2379/528/2398 2380/530/2398 +f 2372/507/2399 2388/531/2399 2373/508/2399 +f 2365/523/2400 2381/532/2400 2366/509/2400 +f 2373/508/2401 2389/533/2401 2374/510/2401 +f 2367/511/2402 2381/532/2402 2382/534/2402 +f 2374/510/2403 2390/535/2403 2375/512/2403 +f 2367/511/2404 2383/536/2404 2368/513/2404 +f 2361/515/2405 2225/537/2405 2376/538/2405 +f 2134/539/2406 2375/512/2406 2390/535/2406 +f 2368/513/2407 2384/540/2407 2369/517/2407 +f 2362/518/2408 2376/538/2408 2377/525/2408 +f 2388/531/2409 2404/541/2409 2389/533/2409 +f 2382/534/2410 2396/542/2410 2397/543/2410 +f 2390/535/2411 2404/541/2411 2405/544/2411 +f 2382/534/2412 2398/545/2412 2383/536/2412 +f 2376/538/2413 2225/546/2413 2391/547/2413 +f 2134/548/2414 2390/535/2414 2405/544/2414 +f 2383/536/2415 2399/549/2415 2384/540/2415 +f 2376/538/2416 2392/550/2416 2377/525/2416 +f 2384/540/2417 2400/551/2417 2385/524/2417 +f 2377/525/2418 2393/552/2418 2378/526/2418 +f 2386/527/2419 2400/551/2419 2401/553/2419 +f 2378/526/2420 2394/554/2420 2379/528/2420 +f 2386/527/2421 2402/555/2421 2387/529/2421 +f 2380/530/2422 2394/554/2422 2395/556/2422 +f 2387/529/2423 2403/557/2423 2388/531/2423 +f 2380/530/2424 2396/542/2424 2381/532/2424 +f 2393/552/2425 1930/32/2425 1931/4/2425 +f 2401/553/2426 2406/3/2426 2407/8/2426 +f 2394/554/2427 1931/4/2427 1932/10/2427 +f 2401/553/2428 2408/12/2428 2402/555/2428 +f 2395/556/2429 1932/10/2429 1933/14/2429 +f 2402/555/2430 1938/16/2430 2403/557/2430 +f 2396/542/2431 1933/14/2431 1934/18/2431 +f 2403/557/2432 2409/20/2432 2404/541/2432 +f 2397/543/2433 1934/18/2433 1935/22/2433 +f 2404/541/2434 2410/24/2434 2405/544/2434 +f 2398/545/2435 1935/22/2435 1936/26/2435 +f 2391/547/2436 2225/558/2436 1929/27/2436 +f 2134/559/2437 2405/544/2437 2410/24/2437 +f 2398/545/2438 1937/1/2438 2399/549/2438 +f 2392/550/2439 1929/27/2439 1930/32/2439 +f 2399/549/2440 2406/3/2440 2400/551/2440 +f 1937/1/1929 1947/31/1929 1948/2/1929 +f 1931/4/1930 1930/32/1930 1940/5/1930 +f 2406/3/1931 1948/2/1931 1949/7/1931 +f 1931/4/1932 1941/6/1932 1942/9/1932 +f 2407/8/1933 1949/7/1933 1950/11/1933 +f 1932/10/1934 1942/9/1934 1943/13/1934 +f 2408/12/1935 1950/11/1935 1951/15/1935 +f 1933/14/1936 1943/13/1936 1944/17/1936 +f 1938/16/2441 1951/15/2441 1952/19/2441 +f 1934/18/1938 1944/17/1938 1945/21/1938 +f 2409/20/1939 1952/19/1939 1953/23/1939 +f 1935/22/1940 1945/21/1940 1946/25/1940 +f 1936/26/1943 1946/25/1943 1947/31/1943 +f 1929/27/1944 1939/29/1944 1940/5/1944 +f 1947/31/1946 1946/25/1946 1961/35/1946 +f 1939/29/1947 1954/49/1947 1955/37/1947 +f 1948/2/1948 1947/31/1948 1962/36/1948 +f 1940/5/1949 1955/37/1949 1956/39/1949 +f 1948/2/1950 1963/38/1950 1964/40/1950 +f 1941/6/1951 1956/39/1951 1957/41/1951 +f 1950/11/1952 1949/7/1952 1964/40/1952 +f 1942/9/1953 1957/41/1953 1958/43/1953 +f 1950/11/1954 1965/42/1954 1966/44/1954 +f 1943/13/1955 1958/43/1955 1959/45/1955 +f 1951/15/1956 1966/44/1956 1967/46/1956 +f 1944/17/1957 1959/45/1957 1960/47/1957 +f 1952/19/1958 1967/46/1958 1968/34/1958 +f 1945/21/1959 1960/47/1959 1961/35/1959 +f 1965/42/1961 1980/65/1961 1981/50/1961 +f 1958/43/1962 1973/66/1962 1974/51/1962 +f 1966/44/1963 1981/50/1963 1982/52/1963 +f 1960/47/1964 1959/45/1964 1974/51/1964 +f 1967/46/1965 1982/52/1965 1983/54/1965 +f 1960/47/1966 1975/53/1966 1976/55/1966 +f 1961/35/1969 1976/55/1969 1977/59/1969 +f 1954/49/1970 1969/57/1970 1970/60/1970 +f 1962/36/1971 1977/59/1971 1978/61/1971 +f 1955/37/1972 1970/60/1972 1971/62/1972 +f 1964/40/1973 1963/38/1973 1978/61/1973 +f 1956/39/1974 1971/62/1974 1972/64/1974 +f 1965/42/1975 1964/40/1975 1979/63/1975 +f 1957/41/1976 1972/64/1976 1973/66/1976 +f 1969/57/1977 1984/81/1977 1985/67/1977 +f 1977/59/1978 1992/83/1978 1993/68/1978 +f 1970/60/1979 1985/67/1979 1986/69/1979 +f 1979/63/1980 1978/61/1980 1993/68/1980 +f 1971/62/1981 1986/69/1981 1987/71/1981 +f 1979/63/1982 1994/70/1982 1995/72/1982 +f 1972/64/1983 1987/71/1983 1988/73/1983 +f 1980/65/1984 1995/72/1984 1996/74/1984 +f 1973/66/1985 1988/73/1985 1989/75/1985 +f 1981/50/1986 1996/74/1986 1997/76/1986 +f 1974/51/1987 1989/75/1987 1990/77/1987 +f 1982/52/1988 1997/76/1988 1998/78/1988 +f 1976/55/1989 1975/53/1989 1990/77/1989 +f 1976/55/1992 1991/79/1992 1992/83/1992 +f 1988/73/1993 2003/100/1993 2004/84/1993 +f 1997/76/1994 1996/74/1994 2011/85/1994 +f 1989/75/1995 2004/84/1995 2005/87/1995 +f 1997/76/1996 2012/86/1996 2013/88/1996 +f 1991/79/1997 1990/77/1997 2005/87/1997 +f 1991/79/2000 2006/89/2000 2007/93/2000 +f 1984/81/2001 1999/91/2001 2000/94/2001 +f 1992/83/2002 2007/93/2002 2008/95/2002 +f 1985/67/2003 2000/94/2003 2001/96/2003 +f 1994/70/2004 1993/68/2004 2008/95/2004 +f 1986/69/2005 2001/96/2005 2002/98/2005 +f 1994/70/2006 2009/97/2006 2010/99/2006 +f 1988/73/2007 1987/71/2007 2002/98/2007 +f 1996/74/2008 1995/72/2008 2010/99/2008 +f 2007/93/2009 2022/116/2009 2023/101/2009 +f 2000/94/2010 2015/117/2010 2016/102/2010 +f 2009/97/2011 2008/95/2011 2023/101/2011 +f 2001/96/2012 2016/102/2012 2017/104/2012 +f 2010/99/2013 2009/97/2013 2024/103/2013 +f 2003/100/2014 2002/98/2014 2017/104/2014 +f 2010/99/2015 2025/105/2015 2026/107/2015 +f 2003/100/2016 2018/106/2016 2019/108/2016 +f 2012/86/2017 2011/85/2017 2026/107/2017 +f 2005/87/2018 2004/84/2018 2019/108/2018 +f 2012/86/2019 2027/109/2019 2028/111/2019 +f 2005/87/2020 2020/110/2020 2021/112/2020 +f 2006/89/2023 2021/112/2023 2022/116/2023 +f 1999/91/2024 2014/114/2024 2015/117/2024 +f 2026/107/2025 2041/134/2025 2042/118/2025 +f 2020/110/2026 2019/108/2026 2034/119/2026 +f 2028/111/2027 2027/109/2027 2042/118/2027 +f 2020/110/2028 2035/120/2028 2036/122/2028 +f 2021/112/2031 2036/122/2031 2037/126/2031 +f 2014/114/2032 2029/124/2032 2030/127/2032 +f 2022/116/2033 2037/126/2033 2038/128/2033 +f 2015/117/2034 2030/127/2034 2031/129/2034 +f 2024/103/2035 2023/101/2035 2038/128/2035 +f 2017/104/2036 2016/102/2036 2031/129/2036 +f 2025/105/2037 2024/103/2037 2039/130/2037 +f 2017/104/2038 2032/131/2038 2033/133/2038 +f 2025/105/2039 2040/132/2039 2041/134/2039 +f 2018/106/2040 2033/133/2040 2034/119/2040 +f 2030/127/2041 2045/151/2041 2046/135/2041 +f 2039/130/2042 2038/128/2042 2053/136/2042 +f 2031/129/2043 2046/135/2043 2047/138/2043 +f 2039/130/2044 2054/137/2044 2055/139/2044 +f 2032/131/2045 2047/138/2045 2048/140/2045 +f 2041/134/2046 2040/132/2046 2055/139/2046 +f 2033/133/2047 2048/140/2047 2049/142/2047 +f 2042/118/2048 2041/134/2048 2056/141/2048 +f 2035/120/2049 2034/119/2049 2049/142/2049 +f 2043/121/2050 2042/118/2050 2057/143/2050 +f 2035/120/2051 2050/144/2051 2051/146/2051 +f 2037/126/2054 2036/122/2054 2051/146/2054 +f 2029/124/2055 2044/148/2055 2045/151/2055 +f 2037/126/2056 2052/150/2056 2053/136/2056 +f 2050/144/2057 2049/142/2057 2064/152/2057 +f 2058/145/2058 2057/143/2058 2072/154/2058 +f 2050/144/2059 2065/153/2059 2066/156/2059 +f 2051/146/2062 2066/156/2062 2067/160/2062 +f 2045/151/2063 2044/148/2063 2059/158/2063 +f 2052/150/2064 2067/160/2064 2068/162/2064 +f 2045/151/2065 2060/161/2065 2061/163/2065 +f 2054/137/2066 2053/136/2066 2068/162/2066 +f 2046/135/2067 2061/163/2067 2062/165/2067 +f 2054/137/2068 2069/164/2068 2070/166/2068 +f 2048/140/2069 2047/138/2069 2062/165/2069 +f 2056/141/2070 2055/139/2070 2070/166/2070 +f 2048/140/2071 2063/167/2071 2064/152/2071 +f 2056/141/2072 2071/168/2072 2072/154/2072 +f 2069/164/2073 2068/162/2073 2083/169/2073 +f 2061/163/2074 2076/185/2074 2077/171/2074 +f 2069/164/2075 2084/170/2075 2085/172/2075 +f 2062/165/2076 2077/171/2076 2078/173/2076 +f 2070/166/2077 2085/172/2077 2086/174/2077 +f 2063/167/2078 2078/173/2078 2079/175/2078 +f 2072/154/2079 2071/168/2079 2086/174/2079 +f 2065/153/2080 2064/152/2080 2079/175/2080 +f 2072/154/2081 2087/176/2081 2088/178/2081 +f 2065/153/2082 2080/177/2082 2081/179/2082 +f 2066/156/2085 2081/179/2085 2082/183/2085 +f 2059/158/2086 2074/181/2086 2075/184/2086 +f 2067/160/2087 2082/183/2087 2083/169/2087 +f 2061/163/2088 2060/161/2088 2075/184/2088 +f 2087/176/2089 2102/201/2089 2103/186/2089 +f 2080/177/2090 2095/202/2090 2096/187/2090 +f 2082/183/2093 2081/179/2093 2096/187/2093 +f 2074/181/2094 2089/189/2094 2090/192/2094 +f 2082/183/2095 2097/191/2095 2098/193/2095 +f 2075/184/2096 2090/192/2096 2091/194/2096 +f 2084/170/2097 2083/169/2097 2098/193/2097 +f 2076/185/2098 2091/194/2098 2092/196/2098 +f 2084/170/2099 2099/195/2099 2100/197/2099 +f 2078/173/2100 2077/171/2100 2092/196/2100 +f 2086/174/2101 2085/172/2101 2100/197/2101 +f 2078/173/2102 2093/198/2102 2094/200/2102 +f 2086/174/2103 2101/199/2103 2102/201/2103 +f 2080/177/2104 2079/175/2104 2094/200/2104 +f 2099/195/2105 2114/218/2105 2115/203/2105 +f 2092/196/2106 2107/219/2106 2108/204/2106 +f 2101/199/2107 2100/197/2107 2115/203/2107 +f 2093/198/2108 2108/204/2108 2109/206/2108 +f 2101/199/2109 2116/205/2109 2117/207/2109 +f 2095/202/2110 2094/200/2110 2109/206/2110 +f 2103/186/2111 2102/201/2111 2117/207/2111 +f 2095/202/2112 2110/208/2112 2111/210/2112 +f 2096/187/2115 2111/210/2115 2112/214/2115 +f 2089/189/2116 2104/212/2116 2105/215/2116 +f 2097/191/2117 2112/214/2117 2113/216/2117 +f 2090/192/2118 2105/215/2118 2106/217/2118 +f 2098/193/2119 2113/216/2119 2114/218/2119 +f 2091/194/2120 2106/217/2120 2107/219/2120 +f 2112/214/2123 2111/210/2123 2126/224/2123 +f 2104/212/2124 2119/221/2124 2120/226/2124 +f 2112/214/2125 2127/225/2125 2128/227/2125 +f 2105/215/2126 2120/226/2126 2121/228/2126 +f 2114/218/2127 2113/216/2127 2128/227/2127 +f 2107/219/2128 2106/217/2128 2121/228/2128 +f 2114/218/2129 2129/229/2129 2130/231/2129 +f 2108/204/2130 2107/219/2130 2122/230/2130 +f 2116/205/2131 2115/203/2131 2130/231/2131 +f 2108/204/2132 2123/232/2132 2124/234/2132 +f 2116/205/2133 2131/233/2133 2132/235/2133 +f 2110/208/2134 2109/206/2134 2124/234/2134 +f 2118/209/2135 2117/207/2135 2132/235/2135 +f 2110/208/2136 2125/236/2136 2126/224/2136 +f 2122/230/2137 2138/253/2137 2139/237/2137 +f 2131/233/2138 2130/231/2138 2146/238/2138 +f 2123/232/2139 2139/237/2139 2140/240/2139 +f 2131/233/2140 2147/239/2140 2148/241/2140 +f 2125/236/2141 2124/234/2141 2140/240/2141 +f 2132/235/2142 2148/241/2142 2149/243/2142 +f 2125/236/2143 2141/242/2143 2142/244/2143 +f 2126/224/2146 2142/244/2146 2143/248/2146 +f 2119/221/2147 2135/246/2147 2136/249/2147 +f 2127/225/2148 2143/248/2148 2144/250/2148 +f 2121/228/2149 2120/226/2149 2136/249/2149 +f 2129/229/2150 2128/227/2150 2144/250/2150 +f 2121/228/2151 2137/251/2151 2138/253/2151 +f 2129/229/2152 2145/252/2152 2146/238/2152 +f 2142/244/2153 2157/267/2153 2158/254/2153 +f 2135/246/2154 2150/269/2154 2151/255/2154 +f 2143/248/2155 2158/254/2155 2159/256/2155 +f 2136/249/2156 2151/255/2156 2152/257/2156 +f 2145/252/2157 2144/250/2157 2159/256/2157 +f 2137/251/2158 2152/257/2158 2153/259/2158 +f 2145/252/2159 2160/258/2159 2161/260/2159 +f 2138/253/2160 2153/259/2160 2154/261/2160 +f 2146/238/2161 2161/260/2161 2162/262/2161 +f 2139/237/2162 2154/261/2162 2155/263/2162 +f 2147/239/2163 2162/262/2163 2163/264/2163 +f 2141/242/2164 2140/240/2164 2155/263/2164 +f 2149/243/2165 2148/241/2165 2163/264/2165 +f 2141/242/2442 2156/265/2442 2157/267/2442 +f 2162/262/2169 2161/260/2169 2176/271/2169 +f 2154/261/2170 2169/287/2170 2170/273/2170 +f 2162/262/2171 2177/272/2171 2178/274/2171 +f 2156/265/2172 2155/263/2172 2170/273/2172 +f 2164/266/2173 2163/264/2173 2178/274/2173 +f 2156/265/2174 2171/275/2174 2172/277/2174 +f 2157/267/2177 2172/277/2177 2173/281/2177 +f 2150/269/2178 2165/279/2178 2166/282/2178 +f 2158/254/2179 2173/281/2179 2174/283/2179 +f 2152/257/2180 2151/255/2180 2166/282/2180 +f 2160/258/2181 2159/256/2181 2174/283/2181 +f 2153/259/2182 2152/257/2182 2167/284/2182 +f 2160/258/2183 2175/285/2183 2176/271/2183 +f 2153/259/2184 2168/286/2184 2169/287/2184 +f 2165/279/2185 2180/302/2185 2181/288/2185 +f 2173/281/2186 2188/304/2186 2189/289/2186 +f 2166/282/2187 2181/288/2187 2182/290/2187 +f 2175/285/2188 2174/283/2188 2189/289/2188 +f 2168/286/2189 2167/284/2189 2182/290/2189 +f 2175/285/2190 2190/291/2190 2191/293/2190 +f 2169/287/2191 2168/286/2191 2183/292/2191 +f 2176/271/2192 2191/293/2192 2192/295/2192 +f 2169/287/2193 2184/294/2193 2185/296/2193 +f 2177/272/2194 2192/295/2194 2193/297/2194 +f 2171/275/2195 2170/273/2195 2185/296/2195 +f 2178/274/2196 2193/297/2196 2194/299/2196 +f 2171/275/2197 2186/298/2197 2187/300/2197 +f 2172/277/2200 2187/300/2200 2188/304/2200 +f 2184/294/2201 2199/321/2201 2200/305/2201 +f 2193/297/2202 2192/295/2202 2207/306/2202 +f 2186/298/2203 2185/296/2203 2200/305/2203 +f 2194/299/2204 2193/297/2204 2208/307/2204 +f 2186/298/2443 2201/308/2443 2202/310/2443 +f 2188/304/2444 2187/300/2444 2202/310/2444 +f 2180/302/2209 2195/312/2209 2196/315/2209 +f 2188/304/2210 2203/314/2210 2204/316/2210 +f 2181/288/2211 2196/315/2211 2197/317/2211 +f 2190/291/2212 2189/289/2212 2204/316/2212 +f 2183/292/2213 2182/290/2213 2197/317/2213 +f 2190/291/2214 2205/318/2214 2206/320/2214 +f 2184/294/2215 2183/292/2215 2198/319/2215 +f 2191/293/2216 2206/320/2216 2207/306/2216 +f 2203/314/2217 2218/337/2217 2219/322/2217 +f 2196/315/2218 2211/338/2218 2212/323/2218 +f 2205/318/2219 2204/316/2219 2219/322/2219 +f 2197/317/2220 2212/323/2220 2213/325/2220 +f 2205/318/2221 2220/324/2221 2221/326/2221 +f 2199/321/2222 2198/319/2222 2213/325/2222 +f 2207/306/2223 2206/320/2223 2221/326/2223 +f 2199/321/2224 2214/327/2224 2215/329/2224 +f 2207/306/2225 2222/328/2225 2223/330/2225 +f 2201/308/2226 2200/305/2226 2215/329/2226 +f 2209/309/2227 2208/307/2227 2223/330/2227 +f 2201/308/2228 2216/331/2228 2217/333/2228 +f 2202/310/2231 2217/333/2231 2218/337/2231 +f 2195/312/2232 2210/335/2232 2211/338/2232 +f 2222/328/2233 2238/355/2233 2239/339/2233 +f 2216/331/2234 2215/329/2234 2231/340/2234 +f 2223/330/2235 2239/339/2235 2240/342/2235 +f 2217/333/2236 2216/331/2236 2232/341/2236 +f 2217/333/2239 2233/343/2239 2234/347/2239 +f 2210/335/2240 2226/345/2240 2227/348/2240 +f 2218/337/2241 2234/347/2241 2235/349/2241 +f 2211/338/2242 2227/348/2242 2228/350/2242 +f 2220/324/2243 2219/322/2243 2235/349/2243 +f 2213/325/2244 2212/323/2244 2228/350/2244 +f 2220/324/2245 2236/351/2245 2237/353/2245 +f 2214/327/2246 2213/325/2246 2229/352/2246 +f 2221/326/2247 2237/353/2247 2238/355/2247 +f 2214/327/2248 2230/354/2248 2231/340/2248 +f 2236/351/2249 2235/349/2249 2250/356/2249 +f 2229/352/2250 2228/350/2250 2243/358/2250 +f 2236/351/2251 2251/357/2251 2252/360/2251 +f 2230/354/2252 2229/352/2252 2244/359/2252 +f 2237/353/2253 2252/360/2253 2253/362/2253 +f 2230/354/2254 2245/361/2254 2246/363/2254 +f 2239/339/2255 2238/355/2255 2253/362/2255 +f 2232/341/2256 2231/340/2256 2246/363/2256 +f 2239/339/2257 2254/364/2257 2255/366/2257 +f 2232/341/2258 2247/365/2258 2248/367/2258 +f 2233/343/2261 2248/367/2261 2249/371/2261 +f 2226/345/2262 2241/369/2262 2242/372/2262 +f 2234/347/2263 2249/371/2263 2250/356/2263 +f 2227/348/2264 2242/372/2264 2243/358/2264 +f 2255/366/2265 2254/364/2265 2269/373/2265 +f 2247/365/2266 2262/389/2266 2263/375/2266 +f 2248/367/2269 2263/375/2269 2264/379/2269 +f 2241/369/2270 2256/377/2270 2257/380/2270 +f 2249/371/2271 2264/379/2271 2265/381/2271 +f 2242/372/2272 2257/380/2272 2258/382/2272 +f 2251/357/2273 2250/356/2273 2265/381/2273 +f 2244/359/2274 2243/358/2274 2258/382/2274 +f 2252/360/2275 2251/357/2275 2266/383/2275 +f 2245/361/2276 2244/359/2276 2259/384/2276 +f 2252/360/2277 2267/385/2277 2268/387/2277 +f 2245/361/2278 2260/386/2278 2261/388/2278 +f 2254/364/2279 2253/362/2279 2268/387/2279 +f 2247/365/2280 2246/363/2280 2261/388/2280 +f 2259/384/2281 2258/382/2281 2273/390/2281 +f 2266/383/2282 2281/406/2282 2282/392/2282 +f 2260/386/2283 2259/384/2283 2274/391/2283 +f 2267/385/2284 2282/392/2284 2283/394/2284 +f 2260/386/2285 2275/393/2285 2276/395/2285 +f 2269/373/2286 2268/387/2286 2283/394/2286 +f 2262/389/2287 2261/388/2287 2276/395/2287 +f 2269/373/2288 2284/396/2288 2285/398/2288 +f 2262/389/2289 2277/397/2289 2278/399/2289 +f 2263/375/2292 2278/399/2292 2279/403/2292 +f 2257/380/2293 2256/377/2293 2271/401/2293 +f 2264/379/2294 2279/403/2294 2280/405/2294 +f 2257/380/2295 2272/404/2295 2273/390/2295 +f 2266/383/2296 2265/381/2296 2280/405/2296 +f 2277/397/2297 2292/423/2297 2293/407/2297 +f 2279/403/2300 2278/399/2300 2293/407/2300 +f 2272/404/2301 2271/401/2301 2286/409/2301 +f 2279/403/2302 2294/412/2302 2295/414/2302 +f 2272/404/2303 2287/413/2303 2288/415/2303 +f 2281/406/2304 2280/405/2304 2295/414/2304 +f 2274/391/2305 2273/390/2305 2288/415/2305 +f 2281/406/2306 2296/416/2306 2297/418/2306 +f 2274/391/2307 2289/417/2307 2290/419/2307 +f 2283/394/2308 2282/392/2308 2297/418/2308 +f 2275/393/2309 2290/419/2309 2291/421/2309 +f 2284/396/2310 2283/394/2310 2298/420/2310 +f 2277/397/2311 2276/395/2311 2291/421/2311 +f 2284/396/2312 2299/422/2312 2300/411/2312 +f 2296/424/2313 2311/454/2313 2312/425/2313 +f 2290/427/2314 2289/455/2314 2304/428/2314 +f 2297/426/2315 2312/425/2315 2313/430/2315 +f 2290/427/2316 2305/429/2316 2306/432/2316 +f 2299/434/2317 2298/431/2317 2313/430/2317 +f 2292/436/2318 2291/433/2318 2306/432/2318 +f 2299/434/2319 2314/435/2319 2315/438/2319 +f 2292/436/2320 2307/437/2320 2308/440/2320 +f 2294/446/2323 2293/441/2323 2308/440/2323 +f 2287/448/2324 2286/442/2324 2301/444/2324 +f 2294/446/2325 2309/447/2325 2310/450/2325 +f 2287/448/2326 2302/449/2326 2303/452/2326 +f 2296/424/2327 2295/451/2327 2310/450/2327 +f 2289/455/2328 2288/453/2328 2303/452/2328 +f 2308/440/2331 2323/472/2331 2324/460/2331 +f 2301/444/2332 2316/457/2332 2317/461/2332 +f 2309/447/2333 2324/460/2333 2325/462/2333 +f 2302/449/2334 2317/461/2334 2318/463/2334 +f 2311/454/2335 2310/450/2335 2325/462/2335 +f 2304/428/2336 2303/452/2336 2318/463/2336 +f 2311/454/2337 2326/464/2337 2327/466/2337 +f 2304/428/2338 2319/465/2338 2320/467/2338 +f 2312/425/2339 2327/466/2339 2328/468/2339 +f 2305/429/2340 2320/467/2340 2321/469/2340 +f 2314/435/2341 2313/430/2341 2328/468/2341 +f 2307/437/2342 2306/432/2342 2321/469/2342 +f 2314/435/2343 2329/470/2343 2330/459/2343 +f 2307/437/2344 2322/471/2344 2323/472/2344 +f 2320/467/2345 2319/465/2345 2334/473/2345 +f 2327/466/2346 2342/489/2346 2343/475/2346 +f 2320/467/2347 2335/474/2347 2336/476/2347 +f 2329/470/2348 2328/468/2348 2343/475/2348 +f 2322/471/2349 2321/469/2349 2336/476/2349 +f 2329/470/2350 2344/477/2350 2345/479/2350 +f 2322/471/2351 2337/478/2351 2338/480/2351 +f 2324/460/2354 2323/472/2354 2338/480/2354 +f 2316/457/2355 2331/482/2355 2332/485/2355 +f 2324/460/2356 2339/484/2356 2340/486/2356 +f 2318/463/2357 2317/461/2357 2332/485/2357 +f 2326/464/2358 2325/462/2358 2340/486/2358 +f 2319/465/2359 2318/463/2359 2333/487/2359 +f 2326/464/2360 2341/488/2360 2342/489/2360 +f 2339/484/2361 2338/480/2361 2353/490/2361 +f 2331/482/2362 2346/505/2362 2347/492/2362 +f 2339/484/2363 2354/491/2363 2355/493/2363 +f 2332/485/2364 2347/492/2364 2348/494/2364 +f 2341/488/2365 2340/486/2365 2355/493/2365 +f 2333/487/2366 2348/494/2366 2349/496/2366 +f 2341/488/2367 2356/495/2367 2357/497/2367 +f 2335/474/2368 2334/473/2368 2349/496/2368 +f 2342/489/2369 2357/497/2369 2358/499/2369 +f 2335/474/2370 2350/498/2370 2351/500/2370 +f 2343/475/2371 2358/499/2371 2359/501/2371 +f 2337/478/2372 2336/476/2372 2351/500/2372 +f 2344/477/2373 2359/501/2373 2360/503/2373 +f 2337/478/2374 2352/502/2374 2353/490/2374 +f 2358/499/2377 2357/497/2377 2372/507/2377 +f 2350/498/2378 2365/523/2378 2366/509/2378 +f 2358/499/2379 2373/508/2379 2374/510/2379 +f 2352/502/2380 2351/500/2380 2366/509/2380 +f 2359/501/2381 2374/510/2381 2375/512/2381 +f 2353/490/2382 2352/502/2382 2367/511/2382 +f 2353/490/2385 2368/513/2385 2369/517/2385 +f 2346/505/2386 2361/515/2386 2362/518/2386 +f 2354/491/2387 2369/517/2387 2370/519/2387 +f 2347/492/2388 2362/518/2388 2363/520/2388 +f 2356/495/2389 2355/493/2389 2370/519/2389 +f 2348/494/2390 2363/520/2390 2364/522/2390 +f 2356/495/2391 2371/521/2391 2372/507/2391 +f 2350/498/2392 2349/496/2392 2364/522/2392 +f 2369/517/2393 2384/540/2393 2385/524/2393 +f 2363/520/2394 2362/518/2394 2377/525/2394 +f 2371/521/2395 2370/519/2395 2385/524/2395 +f 2364/522/2396 2363/520/2396 2378/526/2396 +f 2371/521/2397 2386/527/2397 2387/529/2397 +f 2365/523/2398 2364/522/2398 2379/528/2398 +f 2372/507/2399 2387/529/2399 2388/531/2399 +f 2365/523/2400 2380/530/2400 2381/532/2400 +f 2373/508/2401 2388/531/2401 2389/533/2401 +f 2367/511/2402 2366/509/2402 2381/532/2402 +f 2374/510/2403 2389/533/2403 2390/535/2403 +f 2367/511/2404 2382/534/2404 2383/536/2404 +f 2368/513/2407 2383/536/2407 2384/540/2407 +f 2362/518/2408 2361/515/2408 2376/538/2408 +f 2388/531/2409 2403/557/2409 2404/541/2409 +f 2382/534/2410 2381/532/2410 2396/542/2410 +f 2390/535/2411 2389/533/2411 2404/541/2411 +f 2382/534/2445 2397/543/2445 2398/545/2445 +f 2383/536/2446 2398/545/2446 2399/549/2446 +f 2376/538/2416 2391/547/2416 2392/550/2416 +f 2384/540/2417 2399/549/2417 2400/551/2417 +f 2377/525/2418 2392/550/2418 2393/552/2418 +f 2386/527/2419 2385/524/2419 2400/551/2419 +f 2378/526/2420 2393/552/2420 2394/554/2420 +f 2386/527/2421 2401/553/2421 2402/555/2421 +f 2380/530/2422 2379/528/2422 2394/554/2422 +f 2387/529/2423 2402/555/2423 2403/557/2423 +f 2380/530/2424 2395/556/2424 2396/542/2424 +f 2393/552/2425 2392/550/2425 1930/32/2425 +f 2401/553/2426 2400/551/2426 2406/3/2426 +f 2394/554/2427 2393/552/2427 1931/4/2427 +f 2401/553/2428 2407/8/2428 2408/12/2428 +f 2395/556/2429 2394/554/2429 1932/10/2429 +f 2402/555/2430 2408/12/2430 1938/16/2430 +f 2396/542/2431 2395/556/2431 1933/14/2431 +f 2403/557/2432 1938/16/2432 2409/20/2432 +f 2397/543/2433 2396/542/2433 1934/18/2433 +f 2404/541/2434 2409/20/2434 2410/24/2434 +f 2398/545/2435 2397/543/2435 1935/22/2435 +f 2398/545/2438 1936/26/2438 1937/1/2438 +f 2392/550/2439 2391/547/2439 1929/27/2439 +f 2399/549/2440 1937/1/2440 2406/3/2440 +o Sphere.001 +v -1.063845 1.478970 0.922560 +v -0.833402 1.401753 0.440011 +v -0.621025 1.276361 -0.004709 +v -0.434875 1.107612 -0.394509 +v -0.282106 0.901989 -0.714410 +v -0.168588 0.667397 -0.952118 +v -0.098684 0.412849 -1.098497 +v -0.075081 0.148129 -1.147924 +v -0.098684 -0.116592 -1.098498 +v -0.621025 -0.980104 -0.004709 +v -1.021847 1.478970 0.954458 +v -0.751020 1.401753 0.502581 +v -0.501424 1.276361 0.086129 +v -0.282652 1.107612 -0.278895 +v -0.103111 0.901989 -0.578462 +v 0.030301 0.667397 -0.801060 +v 0.112455 0.412849 -0.938135 +v 0.140195 0.148129 -0.984420 +v 0.112455 -0.116592 -0.938135 +v 0.030301 -0.371139 -0.801060 +v -0.103111 -0.605732 -0.578462 +v -0.282652 -0.811354 -0.278895 +v -0.501425 -0.980104 0.086129 +v -0.751020 -1.105496 0.502581 +v -1.021847 -1.182712 0.954458 +v -0.990672 1.478970 1.004415 +v -0.689869 1.401753 0.600576 +v -0.412647 1.276361 0.228395 +v -0.169660 1.107612 -0.097823 +v 0.029754 0.901989 -0.365544 +v 0.177933 0.667397 -0.564479 +v 0.269180 0.412849 -0.686982 +v 0.299991 0.148129 -0.728347 +v 0.269180 -0.116592 -0.686982 +v 0.177933 -0.371139 -0.564479 +v 0.029754 -0.605732 -0.365544 +v -0.169660 -0.811354 -0.097823 +v -0.412647 -0.980104 0.228396 +v -0.689869 -1.105496 0.600576 +v -0.990672 -1.182712 1.004416 +v -0.971519 1.478970 1.070512 +v -0.652299 1.401753 0.730230 +v -0.358104 1.276361 0.416624 +v -0.100240 1.107612 0.141746 +v 0.111383 0.901989 -0.083841 +v 0.268634 0.667397 -0.251467 +v 0.365468 0.412849 -0.354690 +v 0.398165 0.148129 -0.389545 +v 0.365468 -0.116592 -0.354690 +v 0.268634 -0.371139 -0.251467 +v 0.111383 -0.605732 -0.083841 +v -0.100240 -0.811354 0.141746 +v -0.358104 -0.980104 0.416624 +v -0.652299 -1.105496 0.730230 +v -0.971519 -1.182712 1.070513 +v -0.965124 1.478970 1.150209 +v -0.639754 1.401753 0.886560 +v -0.339892 1.276361 0.643580 +v -0.077061 1.107612 0.430606 +v 0.138639 0.901989 0.255823 +v 0.298919 0.667397 0.125948 +v 0.397619 0.412849 0.045971 +v 0.430946 0.148129 0.018966 +v 0.397619 -0.116592 0.045971 +v 0.298919 -0.371139 0.125947 +v 0.138639 -0.605732 0.255823 +v -0.077061 -0.811354 0.430606 +v -0.339892 -0.980104 0.643580 +v -0.639755 -1.105496 0.886560 +v -0.965124 -1.182712 1.150209 +v -0.971732 1.478970 1.240442 +v -0.652717 1.401753 1.063559 +v -0.358711 1.276361 0.900543 +v -0.101013 1.107612 0.757658 +v 0.110475 0.901989 0.640395 +v 0.267624 0.667397 0.553261 +v 0.364396 0.412849 0.499604 +v 0.397072 0.148129 0.481486 +v 0.364396 -0.116592 0.499604 +v 0.267624 -0.371139 0.553261 +v 0.110475 -0.605732 0.640395 +v -0.101013 -0.811354 0.757658 +v -0.358711 -0.980104 0.900543 +v -0.652717 -1.105496 1.063559 +v -0.971733 -1.182712 1.240443 +v -0.991090 1.478970 1.337745 +v -0.690689 1.401753 1.254425 +v -0.413838 1.276361 1.177637 +v -0.171176 1.107612 1.110332 +v 0.027972 0.901989 1.055095 +v 0.175952 0.667397 1.014051 +v 0.267077 0.412849 0.988777 +v 0.297847 0.148129 0.980242 +v 0.267077 -0.116592 0.988777 +v 0.175952 -0.371139 1.014051 +v 0.027972 -0.605732 1.055095 +v -0.171176 -0.811354 1.110332 +v -0.413838 -0.980104 1.177637 +v -0.690689 -1.105496 1.254425 +v -0.991091 -1.182712 1.337745 +v -1.022454 1.478970 1.438377 +v -0.752211 1.401753 1.451823 +v -0.503154 1.276361 1.464214 +v -0.284853 1.107612 1.475074 +v -0.105699 0.901989 1.483988 +v 0.027425 0.667397 1.490611 +v 0.109402 0.412849 1.494690 +v 0.137083 0.148129 1.496067 +v 0.109402 -0.116592 1.494690 +v 0.027425 -0.371139 1.490611 +v -0.105699 -0.605732 1.483988 +v -0.284853 -0.811354 1.475074 +v -0.503154 -0.980104 1.464214 +v -0.752211 -1.105496 1.451823 +v -1.022454 -1.182712 1.438377 +v -1.064618 1.478970 1.538473 +v -0.834918 1.401753 1.648166 +v -0.623226 1.276361 1.749260 +v -0.437676 1.107612 1.837870 +v -0.285400 0.901989 1.910590 +v -0.172248 0.667397 1.964626 +v -0.102570 0.412849 1.997901 +v -0.079042 0.148129 2.009137 +v -0.102570 -0.116592 1.997901 +v -0.172248 -0.371139 1.964626 +v -0.285400 -0.605732 1.910590 +v -0.437676 -0.811354 1.837870 +v -0.623226 -0.980104 1.749260 +v -0.834918 -1.105496 1.648166 +v -1.064618 -1.182712 1.538472 +v -1.115962 1.478970 1.634184 +v -0.935633 1.401753 1.835910 +v -0.769441 1.276361 2.021822 +v -0.623773 1.107612 2.184776 +v -0.504226 0.901989 2.318508 +v -0.415394 0.667397 2.417880 +v -0.360693 0.412849 2.479073 +v -0.342221 0.148129 2.499736 +v -0.360693 -0.116592 2.479073 +v -0.415394 -0.371139 2.417880 +v -0.504226 -0.605732 2.318508 +v -0.623773 -0.811354 2.184776 +v -0.769441 -0.980104 2.021822 +v -0.935633 -1.105496 1.835910 +v -1.115962 -1.182712 1.634183 +v -1.174512 1.478970 1.721833 +v -1.050484 1.401753 2.007840 +v -0.936179 1.276361 2.271426 +v -0.835990 1.107612 2.502460 +v -0.753767 0.901989 2.692066 +v -0.692670 0.667397 2.832955 +v -0.655047 0.412849 2.919714 +v -0.642343 0.148129 2.949010 +v -0.655047 -0.116592 2.919714 +v -0.692670 -0.371139 2.832955 +v -0.753767 -0.605732 2.692066 +v -0.835990 -0.811354 2.502460 +v -0.936180 -0.980104 2.271425 +v -1.050484 -1.105496 2.007840 +v -1.174513 -1.182712 1.721833 +v -1.238020 1.478970 1.798052 +v -1.175059 1.401753 2.157348 +v -1.117034 1.276361 2.488478 +v -1.066174 1.107612 2.778716 +v -1.024435 0.901989 3.016908 +v -0.993419 0.667397 3.193900 +v -0.974321 0.412849 3.302891 +v -0.967872 0.148129 3.339694 +v -0.974321 -0.116592 3.302891 +v -0.993419 -0.371139 3.193900 +v -1.024435 -0.605732 3.016908 +v -1.066174 -0.811354 2.778716 +v -1.117034 -0.980104 2.488478 +v -1.175059 -1.105496 2.157348 +v -1.238020 -1.182712 1.798051 +v -1.304044 1.478970 1.859911 +v -1.304569 1.401753 2.278690 +v -1.305053 1.276361 2.664638 +v -1.305478 1.107612 3.002925 +v -1.305826 0.901989 3.280550 +v -1.306085 0.667397 3.486844 +v -1.306245 0.412849 3.613878 +v -1.306298 0.148129 3.656774 +v -1.306245 -0.116592 3.613878 +v -1.306085 -0.371139 3.486844 +v -1.305826 -0.605732 3.280550 +v -1.305478 -0.811354 3.002925 +v -1.305053 -0.980104 2.664638 +v -1.304569 -1.105496 2.278689 +v -1.304044 -1.182712 1.859910 +v -1.370047 1.478970 1.905034 +v -1.434038 1.401753 2.367201 +v -1.493014 1.276361 2.793137 +v -1.544706 1.107612 3.166472 +v -1.587128 0.901989 3.472861 +v -1.618651 0.667397 3.700529 +v -1.638063 0.412849 3.840725 +v -1.644618 0.148129 3.888065 +v -1.638063 -0.116592 3.840725 +v -1.618651 -0.371139 3.700529 +v -1.587128 -0.605732 3.472861 +v -1.544706 -0.811354 3.166472 +v -1.493014 -0.980104 2.793136 +v -1.434038 -1.105496 2.367200 +v -1.370047 -1.182712 1.905033 +v -1.303497 -1.208785 1.424395 +v -1.433492 1.478970 1.931686 +v -1.558491 1.401753 2.419481 +v -1.673691 1.276361 2.869035 +v -1.774664 1.107612 3.263073 +v -1.857531 0.901989 3.586451 +v -1.919106 0.667397 3.826743 +v -1.957024 0.412849 3.974714 +v -1.969828 0.148129 4.024678 +v -1.957024 -0.116592 3.974714 +v -1.919106 -0.371139 3.826743 +v -1.857531 -0.605732 3.586451 +v -1.774664 -0.811354 3.263073 +v -1.673691 -0.980104 2.869035 +v -1.558491 -1.105496 2.419480 +v -1.433492 -1.182712 1.931685 +v -1.491942 1.478970 1.938843 +v -1.673144 1.401753 2.433520 +v -1.840141 1.276361 2.889417 +v -1.986516 1.107612 3.289014 +v -2.106642 0.901989 3.616954 +v -2.195904 0.667397 3.860637 +v -2.250871 0.412849 4.010695 +v -2.269431 0.148129 4.061364 +v -2.250871 -0.116592 4.010695 +v -2.195904 -0.371139 3.860637 +v -2.106642 -0.605732 3.616954 +v -1.986516 -0.811354 3.289014 +v -1.840141 -0.980104 2.889416 +v -1.673144 -1.105496 2.433519 +v -1.491942 -1.182712 1.938842 +v -1.543150 1.478970 1.926230 +v -1.773592 1.401753 2.408779 +v -1.985969 1.276361 2.853498 +v -2.172119 1.107612 3.243299 +v -2.324888 0.901989 3.563199 +v -2.438406 0.667397 3.800907 +v -2.508310 0.412849 3.947286 +v -2.531914 0.148129 3.996713 +v -2.508310 -0.116592 3.947286 +v -2.438406 -0.371139 3.800907 +v -2.324888 -0.605732 3.563199 +v -2.172119 -0.811354 3.243299 +v -1.985969 -0.980104 2.853498 +v -1.773592 -1.105496 2.408778 +v -1.543150 -1.182712 1.926229 +v -1.585148 1.478970 1.894332 +v -1.855975 1.401753 2.346209 +v -2.105570 1.276361 2.762661 +v -2.324342 1.107612 3.127684 +v -2.503883 0.901989 3.427250 +v -2.637295 0.667397 3.649849 +v -2.719450 0.412849 3.786924 +v -2.747190 0.148129 3.833209 +v -2.719450 -0.116592 3.786924 +v -2.637295 -0.371139 3.649849 +v -2.503883 -0.605732 3.427250 +v -2.324342 -0.811354 3.127684 +v -2.105570 -0.980104 2.762660 +v -1.855974 -1.105496 2.346208 +v -1.585148 -1.182712 1.894331 +v -1.616323 1.478970 1.844374 +v -1.917126 1.401753 2.248213 +v -2.194348 1.276361 2.620394 +v -2.437335 1.107612 2.946613 +v -2.636748 0.901989 3.214333 +v -2.784927 0.667397 3.413269 +v -2.876174 0.412849 3.535771 +v -2.906985 0.148129 3.577136 +v -2.876174 -0.116592 3.535771 +v -2.784927 -0.371139 3.413269 +v -2.636748 -0.605732 3.214333 +v -2.437335 -0.811354 2.946613 +v -2.194347 -0.980104 2.620394 +v -1.917125 -1.105496 2.248213 +v -1.616322 -1.182712 1.844374 +v -1.635476 1.478970 1.778277 +v -1.954695 1.401753 2.118560 +v -2.248890 1.276361 2.432166 +v -2.506754 1.107612 2.707044 +v -2.718377 0.901989 2.932630 +v -2.875628 0.667397 3.100256 +v -2.972462 0.412849 3.203479 +v -3.005160 0.148129 3.238334 +v -2.972462 -0.116592 3.203479 +v -2.875628 -0.371139 3.100256 +v -2.718377 -0.605732 2.932630 +v -2.506754 -0.811354 2.707044 +v -2.248890 -0.980104 2.432165 +v -1.954695 -1.105496 2.118559 +v -1.635475 -1.182712 1.778277 +v -1.303498 1.505042 1.424395 +v -1.641871 1.478970 1.698581 +v -1.967240 1.401753 1.962229 +v -2.267102 1.276361 2.205209 +v -2.529933 1.107612 2.418183 +v -2.745633 0.901989 2.592966 +v -2.905913 0.667397 2.722842 +v -3.004612 0.412849 2.802818 +v -3.037940 0.148129 2.829823 +v -3.004612 -0.116592 2.802818 +v -2.905913 -0.371139 2.722842 +v -2.745633 -0.605732 2.592966 +v -2.529933 -0.811354 2.418183 +v -2.267102 -0.980104 2.205209 +v -1.967240 -1.105496 1.962229 +v -1.641870 -1.182712 1.698581 +v -1.635262 1.478970 1.608347 +v -1.954277 1.401753 1.785230 +v -2.248283 1.276361 1.948247 +v -2.505981 1.107612 2.091132 +v -2.717469 0.901989 2.208394 +v -2.874619 0.667397 2.295529 +v -2.971390 0.412849 2.349185 +v -3.004066 0.148129 2.367303 +v -2.971390 -0.116592 2.349185 +v -2.874619 -0.371139 2.295529 +v -2.717469 -0.605732 2.208394 +v -2.505981 -0.811354 2.091132 +v -2.248283 -0.980104 1.948246 +v -1.954277 -1.105496 1.785230 +v -1.635262 -1.182712 1.608347 +v -1.615904 1.478970 1.511045 +v -1.916305 1.401753 1.594365 +v -2.193157 1.276361 1.671153 +v -2.435819 1.107612 1.738458 +v -2.634966 0.901989 1.793694 +v -2.782947 0.667397 1.834738 +v -2.874071 0.412849 1.860013 +v -2.904841 0.148129 1.868547 +v -2.874071 -0.116592 1.860013 +v -2.782947 -0.371139 1.834738 +v -2.634966 -0.605732 1.793694 +v -2.435819 -0.811354 1.738458 +v -2.193156 -0.980104 1.671153 +v -1.916305 -1.105496 1.594365 +v -1.615904 -1.182712 1.511045 +v -1.584541 1.478970 1.410412 +v -1.854784 1.401753 1.396967 +v -2.103841 1.276361 1.384576 +v -2.322141 1.107612 1.373715 +v -2.501296 0.901989 1.364802 +v -2.634420 0.667397 1.358179 +v -2.716396 0.412849 1.354100 +v -2.744077 0.148129 1.352723 +v -2.716396 -0.116592 1.354100 +v -2.634420 -0.371139 1.358179 +v -2.501296 -0.605732 1.364802 +v -2.322141 -0.811354 1.373715 +v -2.103841 -0.980104 1.384576 +v -1.854783 -1.105496 1.396967 +v -1.584541 -1.182712 1.410413 +v -1.542377 1.478970 1.310317 +v -1.772076 1.401753 1.200624 +v -1.983768 1.276361 1.099530 +v -2.169318 1.107612 1.010920 +v -2.321594 0.901989 0.938200 +v -2.434747 0.667397 0.884164 +v -2.504425 0.412849 0.850889 +v -2.527953 0.148129 0.839653 +v -2.504425 -0.116592 0.850889 +v -2.434747 -0.371139 0.884164 +v -2.321594 -0.605732 0.938200 +v -2.169318 -0.811354 1.010920 +v -1.983768 -0.980104 1.099530 +v -1.772076 -1.105496 1.200624 +v -1.542377 -1.182712 1.310318 +v -1.491033 1.478970 1.214606 +v -1.671362 1.401753 1.012880 +v -1.837554 1.276361 0.826968 +v -1.983222 1.107612 0.664014 +v -2.102768 0.901989 0.530282 +v -2.191600 0.667397 0.430910 +v -2.246302 0.412849 0.369717 +v -2.264773 0.148129 0.349054 +v -2.246302 -0.116592 0.369717 +v -2.191600 -0.371139 0.430910 +v -2.102768 -0.605732 0.530282 +v -1.983222 -0.811354 0.664014 +v -1.837554 -0.980104 0.826968 +v -1.671362 -1.105496 1.012880 +v -1.491033 -1.182712 1.214607 +v -1.432482 1.478970 1.126957 +v -1.556510 1.401753 0.840950 +v -1.670815 1.276361 0.577365 +v -1.771004 1.107612 0.346330 +v -1.853227 0.901989 0.156725 +v -1.914325 0.667397 0.015835 +v -1.951948 0.412849 -0.070924 +v -1.964652 0.148129 -0.100219 +v -1.951948 -0.116592 -0.070924 +v -1.914325 -0.371139 0.015835 +v -1.853227 -0.605732 0.156725 +v -1.771004 -0.811354 0.346330 +v -1.670815 -0.980104 0.577365 +v -1.556510 -1.105496 0.840950 +v -1.432482 -1.182712 1.126958 +v -1.368975 1.478970 1.050739 +v -1.431936 1.401753 0.691442 +v -1.489961 1.276361 0.360312 +v -1.540821 1.107612 0.070074 +v -1.582560 0.901989 -0.168117 +v -1.613575 0.667397 -0.345110 +v -1.632674 0.412849 -0.454101 +v -1.639123 0.148129 -0.490903 +v -1.632674 -0.116592 -0.454101 +v -1.613575 -0.371139 -0.345110 +v -1.582560 -0.605732 -0.168117 +v -1.540821 -0.811354 0.070074 +v -1.489961 -0.980104 0.360312 +v -1.431936 -1.105496 0.691442 +v -1.368975 -1.182712 1.050739 +v -1.302951 1.478970 0.988879 +v -1.302426 1.401753 0.570101 +v -1.301941 1.276361 0.184152 +v -1.301517 1.107612 -0.154135 +v -1.301168 0.901989 -0.431759 +v -1.300910 0.667397 -0.638053 +v -1.300750 0.412849 -0.765088 +v -1.300696 0.148129 -0.807983 +v -1.300750 -0.116592 -0.765088 +v -1.300910 -0.371139 -0.638053 +v -1.301168 -0.605732 -0.431759 +v -1.301517 -0.811354 -0.154135 +v -1.301941 -0.980104 0.184152 +v -1.302426 -1.105496 0.570101 +v -1.302951 -1.182712 0.988880 +v -1.236948 1.478970 0.943757 +v -1.172956 1.401753 0.481590 +v -1.113981 1.276361 0.055654 +v -1.062289 1.107612 -0.317682 +v -1.019866 0.901989 -0.624070 +v -0.988344 0.667397 -0.851738 +v -0.968932 0.412849 -0.991935 +v -0.962377 0.148129 -1.039274 +v -0.968932 -0.116592 -0.991935 +v -0.988344 -0.371139 -0.851738 +v -1.019866 -0.605732 -0.624070 +v -1.062289 -0.811354 -0.317682 +v -1.113981 -0.980104 0.055654 +v -1.172956 -1.105496 0.481590 +v -1.236948 -1.182712 0.943757 +v -1.173503 1.478970 0.917105 +v -1.048504 1.401753 0.429310 +v -0.933304 1.276361 -0.020245 +v -0.832331 1.107612 -0.414283 +v -0.749464 0.901989 -0.737660 +v -0.687889 0.667397 -0.977953 +v -0.649971 0.412849 -1.125923 +v -0.637167 0.148129 -1.175887 +v -0.649971 -0.116592 -1.125923 +v -0.687889 -0.371139 -0.977953 +v -0.749464 -0.605732 -0.737660 +v -0.832331 -0.811354 -0.414283 +v -0.933304 -0.980104 -0.020244 +v -1.048504 -1.105496 0.429310 +v -1.173503 -1.182712 0.917105 +v -1.115053 1.478970 0.909947 +v -0.933851 1.401753 0.415271 +v -0.766854 1.276361 -0.040626 +v -0.620479 1.107612 -0.440224 +v -0.500353 0.901989 -0.768163 +v -0.411091 0.667397 -1.011846 +v -0.356124 0.412849 -1.161904 +v -0.337564 0.148129 -1.212573 +v -0.356124 -0.116592 -1.161904 +v -0.411091 -0.371139 -1.011846 +v -0.500353 -0.605732 -0.768163 +v -0.620479 -0.811354 -0.440224 +v -0.766854 -0.980104 -0.040626 +v -0.933851 -1.105496 0.415271 +v -1.115053 -1.182712 0.909948 +v -0.168589 -0.371139 -0.952116 +v -0.282107 -0.605732 -0.714408 +v -0.434876 -0.811354 -0.394508 +v -0.833403 -1.105496 0.440012 +v -1.063845 -1.182712 0.922561 +vt 0.750000 0.437500 +vt 0.718750 0.375000 +vt 0.750000 0.375000 +vt 0.750000 0.812500 +vt 0.718750 0.875000 +vt 0.718750 0.812500 +vt 0.718750 0.312500 +vt 0.750000 0.312500 +vt 0.718750 0.750000 +vt 0.750000 0.750000 +vt 0.718750 0.250000 +vt 0.750000 0.250000 +vt 0.718750 0.687500 +vt 0.750000 0.687500 +vt 0.718750 0.187500 +vt 0.750000 0.187500 +vt 0.718750 0.625000 +vt 0.750000 0.625000 +vt 0.718750 0.125000 +vt 0.750000 0.125000 +vt 0.718750 0.562500 +vt 0.750000 0.562500 +vt 0.718750 0.062500 +vt 0.750000 0.062500 +vt 0.718750 0.500000 +vt 0.750000 0.500000 +vt 0.750000 0.937500 +vt 0.734375 1.000000 +vt 0.718750 0.937500 +vt 0.734375 0.000000 +vt 0.718750 0.437500 +vt 0.750000 0.875000 +vt 0.703125 0.000000 +vt 0.687500 0.062500 +vt 0.687500 0.500000 +vt 0.687500 0.437500 +vt 0.687500 0.875000 +vt 0.687500 0.375000 +vt 0.687500 0.812500 +vt 0.687500 0.312500 +vt 0.687500 0.750000 +vt 0.687500 0.250000 +vt 0.687500 0.687500 +vt 0.687500 0.187500 +vt 0.687500 0.625000 +vt 0.687500 0.125000 +vt 0.687500 0.562500 +vt 0.703125 1.000000 +vt 0.687500 0.937500 +vt 0.656250 0.187500 +vt 0.656250 0.625000 +vt 0.656250 0.125000 +vt 0.656250 0.562500 +vt 0.656250 0.062500 +vt 0.656250 0.500000 +vt 0.671875 1.000000 +vt 0.656250 0.937500 +vt 0.671875 0.000000 +vt 0.656250 0.437500 +vt 0.656250 0.875000 +vt 0.656250 0.375000 +vt 0.656250 0.812500 +vt 0.656250 0.312500 +vt 0.656250 0.750000 +vt 0.656250 0.250000 +vt 0.656250 0.687500 +vt 0.625000 0.875000 +vt 0.625000 0.375000 +vt 0.625000 0.812500 +vt 0.625000 0.312500 +vt 0.625000 0.750000 +vt 0.625000 0.250000 +vt 0.625000 0.687500 +vt 0.625000 0.187500 +vt 0.625000 0.625000 +vt 0.625000 0.125000 +vt 0.625000 0.562500 +vt 0.625000 0.062500 +vt 0.625000 0.500000 +vt 0.640625 1.000000 +vt 0.625000 0.937500 +vt 0.640625 0.000000 +vt 0.625000 0.437500 +vt 0.593750 0.625000 +vt 0.593750 0.187500 +vt 0.593750 0.125000 +vt 0.593750 0.562500 +vt 0.593750 0.062500 +vt 0.593750 0.500000 +vt 0.609375 1.000000 +vt 0.593750 0.937500 +vt 0.609375 0.000000 +vt 0.593750 0.437500 +vt 0.593750 0.875000 +vt 0.593750 0.375000 +vt 0.593750 0.812500 +vt 0.593750 0.312500 +vt 0.593750 0.750000 +vt 0.593750 0.250000 +vt 0.593750 0.687500 +vt 0.562500 0.375000 +vt 0.562500 0.812500 +vt 0.562500 0.312500 +vt 0.562500 0.750000 +vt 0.562500 0.250000 +vt 0.562500 0.687500 +vt 0.562500 0.187500 +vt 0.562500 0.625000 +vt 0.562500 0.125000 +vt 0.562500 0.562500 +vt 0.562500 0.062500 +vt 0.562500 0.500000 +vt 0.578125 1.000000 +vt 0.562500 0.937500 +vt 0.578125 0.000000 +vt 0.562500 0.437500 +vt 0.562500 0.875000 +vt 0.531250 0.125000 +vt 0.531250 0.625000 +vt 0.531250 0.562500 +vt 0.531250 0.062500 +vt 0.531250 0.500000 +vt 0.546875 1.000000 +vt 0.531250 0.937500 +vt 0.546875 0.000000 +vt 0.531250 0.437500 +vt 0.531250 0.875000 +vt 0.531250 0.375000 +vt 0.531250 0.812500 +vt 0.531250 0.312500 +vt 0.531250 0.750000 +vt 0.531250 0.250000 +vt 0.531250 0.687500 +vt 0.531250 0.187500 +vt 0.500000 0.812500 +vt 0.500000 0.375000 +vt 0.500000 0.312500 +vt 0.500000 0.750000 +vt 0.500000 0.250000 +vt 0.500000 0.687500 +vt 0.500000 0.187500 +vt 0.500000 0.625000 +vt 0.500000 0.125000 +vt 0.500000 0.562500 +vt 0.500000 0.062500 +vt 0.500000 0.500000 +vt 0.515625 1.000000 +vt 0.500000 0.937500 +vt 0.515625 0.000000 +vt 0.500000 0.437500 +vt 0.500000 0.875000 +vt 0.468750 0.625000 +vt 0.468750 0.562500 +vt 0.468750 0.125000 +vt 0.468750 0.062500 +vt 0.468750 0.500000 +vt 0.484374 1.000000 +vt 0.468750 0.937500 +vt 0.484375 0.000000 +vt 0.468750 0.437500 +vt 0.468750 0.875000 +vt 0.468750 0.375000 +vt 0.468750 0.812500 +vt 0.468750 0.312500 +vt 0.468750 0.750000 +vt 0.468750 0.250000 +vt 0.468750 0.687500 +vt 0.468750 0.187500 +vt 0.437500 0.375000 +vt 0.437500 0.312500 +vt 0.437500 0.750000 +vt 0.437500 0.250000 +vt 0.437500 0.687500 +vt 0.437500 0.187500 +vt 0.437500 0.625000 +vt 0.437500 0.125000 +vt 0.437500 0.562500 +vt 0.437500 0.062500 +vt 0.437500 0.500000 +vt 0.453124 1.000000 +vt 0.437500 0.937500 +vt 0.453125 0.000000 +vt 0.437500 0.437500 +vt 0.437500 0.875000 +vt 0.437500 0.812500 +vt 0.406250 0.062500 +vt 0.406250 0.500000 +vt 0.421874 1.000000 +vt 0.406250 0.937500 +vt 0.421875 0.000000 +vt 0.406250 0.437500 +vt 0.406250 0.875000 +vt 0.406250 0.375000 +vt 0.406250 0.812500 +vt 0.406250 0.312500 +vt 0.406250 0.750000 +vt 0.406250 0.250000 +vt 0.406250 0.687500 +vt 0.406250 0.187500 +vt 0.406250 0.625000 +vt 0.406250 0.125000 +vt 0.406250 0.562500 +vt 0.375000 0.250000 +vt 0.375000 0.687500 +vt 0.375000 0.187500 +vt 0.375000 0.625000 +vt 0.375000 0.125000 +vt 0.375000 0.562500 +vt 0.375000 0.062500 +vt 0.375000 0.500000 +vt 0.390625 1.000000 +vt 0.375000 0.937500 +vt 0.390625 0.000000 +vt 0.375000 0.437500 +vt 0.375000 0.875000 +vt 0.375000 0.375000 +vt 0.375000 0.812500 +vt 0.375000 0.312500 +vt 0.375000 0.750000 +vt 0.359375 1.000000 +vt 0.343750 0.937500 +vt 0.359375 0.000000 +vt 0.343750 0.062500 +vt 0.343750 0.500000 +vt 0.343750 0.437500 +vt 0.343750 0.875000 +vt 0.343750 0.375000 +vt 0.343750 0.812500 +vt 0.343750 0.312500 +vt 0.343750 0.750000 +vt 0.343750 0.250000 +vt 0.343750 0.687500 +vt 0.343750 0.187500 +vt 0.343750 0.625000 +vt 0.343750 0.125000 +vt 0.343750 0.562500 +vt 0.312500 0.687500 +vt 0.312500 0.250000 +vt 0.312500 0.187500 +vt 0.312500 0.625000 +vt 0.312500 0.125000 +vt 0.312500 0.562500 +vt 0.312500 0.062500 +vt 0.312500 0.500000 +vt 0.328125 1.000000 +vt 0.312500 0.937500 +vt 0.328125 0.000000 +vt 0.312500 0.437500 +vt 0.312500 0.875000 +vt 0.312500 0.375000 +vt 0.312500 0.812500 +vt 0.312500 0.312500 +vt 0.312500 0.750000 +vt 0.281250 0.437500 +vt 0.281250 0.875000 +vt 0.281250 0.375000 +vt 0.281250 0.812500 +vt 0.281250 0.312500 +vt 0.281250 0.750000 +vt 0.281250 0.250000 +vt 0.281250 0.687500 +vt 0.281250 0.187500 +vt 0.281250 0.625000 +vt 0.281250 0.125000 +vt 0.281250 0.562500 +vt 0.281250 0.062500 +vt 0.281250 0.500000 +vt 0.296875 1.000000 +vt 0.281250 0.937500 +vt 0.296875 0.000000 +vt 0.250000 0.250000 +vt 0.250000 0.187500 +vt 0.250000 0.625000 +vt 0.250000 0.125000 +vt 0.250000 0.562500 +vt 0.250000 0.062500 +vt 0.250000 0.500000 +vt 0.265625 1.000000 +vt 0.250000 0.937500 +vt 0.265625 0.000000 +vt 0.250000 0.437500 +vt 0.250000 0.875000 +vt 0.250000 0.375000 +vt 0.250000 0.812500 +vt 0.250000 0.312500 +vt 0.250000 0.750000 +vt 0.250000 0.687500 +vt 0.218750 0.875000 +vt 0.218750 0.375000 +vt 0.218750 0.812500 +vt 0.218750 0.312500 +vt 0.218750 0.750000 +vt 0.218750 0.250000 +vt 0.218750 0.687500 +vt 0.218750 0.187500 +vt 0.218750 0.625000 +vt 0.218750 0.125000 +vt 0.218750 0.562500 +vt 0.218750 0.062500 +vt 0.218750 0.500000 +vt 0.234375 1.000000 +vt 0.218750 0.937500 +vt 0.234375 0.000000 +vt 0.218750 0.437500 +vt 0.187500 0.625000 +vt 0.187500 0.187500 +vt 0.187500 0.125000 +vt 0.187500 0.562500 +vt 0.187500 0.062500 +vt 0.187500 0.500000 +vt 0.203125 1.000000 +vt 0.187500 0.937500 +vt 0.203125 0.000000 +vt 0.187500 0.437500 +vt 0.187500 0.875000 +vt 0.187500 0.375000 +vt 0.187500 0.812500 +vt 0.187500 0.312500 +vt 0.187500 0.750000 +vt 0.187500 0.250000 +vt 0.187500 0.687500 +vt 0.156250 0.375000 +vt 0.156250 0.812500 +vt 0.156250 0.312500 +vt 0.156250 0.750000 +vt 0.156250 0.250000 +vt 0.156250 0.687500 +vt 0.156250 0.187500 +vt 0.156250 0.625000 +vt 0.156250 0.125000 +vt 0.156250 0.562500 +vt 0.156250 0.062500 +vt 0.156250 0.500000 +vt 0.171875 1.000000 +vt 0.156250 0.937500 +vt 0.171875 0.000000 +vt 0.156250 0.437500 +vt 0.156250 0.875000 +vt 0.125000 0.125000 +vt 0.125000 0.625000 +vt 0.125000 0.562500 +vt 0.125000 0.062500 +vt 0.125000 0.500000 +vt 0.140625 1.000000 +vt 0.125000 0.937500 +vt 0.140625 0.000000 +vt 0.125000 0.437500 +vt 0.125000 0.875000 +vt 0.125000 0.375000 +vt 0.125000 0.812500 +vt 0.125000 0.312500 +vt 0.125000 0.750000 +vt 0.125000 0.250000 +vt 0.125000 0.687500 +vt 0.125000 0.187500 +vt 0.093750 0.375000 +vt 0.093750 0.312500 +vt 0.093750 0.812500 +vt 0.093750 0.750000 +vt 0.093750 0.250000 +vt 0.093750 0.687500 +vt 0.093750 0.187500 +vt 0.093750 0.625000 +vt 0.093750 0.125000 +vt 0.093750 0.562500 +vt 0.093750 0.062500 +vt 0.093750 0.500000 +vt 0.109375 1.000000 +vt 0.093750 0.937500 +vt 0.109375 0.000000 +vt 0.093750 0.437500 +vt 0.093750 0.875000 +vt 0.062500 0.125000 +vt 0.062500 0.062500 +vt 0.062500 0.500000 +vt 0.078125 1.000000 +vt 0.062500 0.937500 +vt 0.078125 0.000000 +vt 0.062500 0.437500 +vt 0.062500 0.875000 +vt 0.062500 0.375000 +vt 0.062500 0.812500 +vt 0.062500 0.312500 +vt 0.062500 0.750000 +vt 0.062500 0.250000 +vt 0.062500 0.687500 +vt 0.062500 0.187500 +vt 0.062500 0.625000 +vt 0.062500 0.562500 +vt 0.031250 0.812500 +vt 0.031250 0.750000 +vt 0.031250 0.250000 +vt 0.031250 0.687500 +vt 0.031250 0.187500 +vt 0.031250 0.625000 +vt 0.031250 0.125000 +vt 0.031250 0.562500 +vt 0.031250 0.062500 +vt 0.031250 0.500000 +vt 0.046875 1.000000 +vt 0.031250 0.937500 +vt 0.046875 0.000000 +vt 0.031250 0.437500 +vt 0.031250 0.875000 +vt 0.031250 0.375000 +vt 0.031250 0.312500 +vt 0.000000 0.500000 +vt 0.015625 1.000000 +vt 0.000000 0.937500 +vt 0.015625 0.000000 +vt 0.000000 0.062500 +vt 0.000000 0.437500 +vt 0.000000 0.875000 +vt 0.000000 0.375000 +vt 0.000000 0.812500 +vt 0.000000 0.312500 +vt 0.000000 0.750000 +vt 0.000000 0.250000 +vt 0.000000 0.687500 +vt 0.000000 0.187500 +vt 0.000000 0.625000 +vt 0.000000 0.125000 +vt 0.000000 0.562500 +vt 1.000000 0.312500 +vt 0.968750 0.250000 +vt 1.000000 0.250000 +vt 1.000000 0.687500 +vt 0.968750 0.750000 +vt 0.968750 0.687500 +vt 0.968750 0.187500 +vt 1.000000 0.187500 +vt 0.968750 0.625000 +vt 1.000000 0.625000 +vt 1.000000 0.125000 +vt 0.968750 0.125000 +vt 1.000000 0.562500 +vt 0.968750 0.562500 +vt 0.968750 0.062500 +vt 1.000000 0.062500 +vt 0.968750 0.500000 +vt 1.000000 0.500000 +vt 1.000000 0.937500 +vt 0.984375 1.000000 +vt 0.968750 0.937500 +vt 0.984375 0.000000 +vt 1.000000 0.437500 +vt 0.968750 0.437500 +vt 1.000000 0.875000 +vt 0.968750 0.875000 +vt 0.968750 0.375000 +vt 1.000000 0.375000 +vt 0.968750 0.812500 +vt 1.000000 0.812500 +vt 0.968750 0.312500 +vt 1.000000 0.750000 +vt 0.953125 1.000000 +vt 0.937500 0.937500 +vt 0.953125 0.000000 +vt 0.937500 0.062500 +vt 0.937500 0.437500 +vt 0.937500 0.875000 +vt 0.937500 0.375000 +vt 0.937500 0.812500 +vt 0.937500 0.312500 +vt 0.937500 0.750000 +vt 0.937500 0.250000 +vt 0.937500 0.687500 +vt 0.937500 0.187500 +vt 0.937500 0.625000 +vt 0.937500 0.125000 +vt 0.937500 0.562500 +vt 0.937500 0.500000 +vt 0.906250 0.750000 +vt 0.906250 0.687500 +vt 0.906250 0.187500 +vt 0.906250 0.625000 +vt 0.906250 0.125000 +vt 0.906250 0.562500 +vt 0.906250 0.062500 +vt 0.906250 0.500000 +vt 0.921875 1.000000 +vt 0.906250 0.937500 +vt 0.921875 0.000000 +vt 0.906250 0.437500 +vt 0.906250 0.875000 +vt 0.906250 0.375000 +vt 0.906250 0.812500 +vt 0.906250 0.312500 +vt 0.906250 0.250000 +vt 0.875000 0.500000 +vt 0.875000 0.437500 +vt 0.875000 0.875000 +vt 0.875000 0.375000 +vt 0.875000 0.812500 +vt 0.875000 0.312500 +vt 0.875000 0.750000 +vt 0.875000 0.250000 +vt 0.875000 0.687500 +vt 0.875000 0.187500 +vt 0.875000 0.625000 +vt 0.875000 0.125000 +vt 0.875000 0.562500 +vt 0.875000 0.062500 +vt 0.890625 1.000000 +vt 0.875000 0.937500 +vt 0.890625 0.000000 +vt 0.843750 0.250000 +vt 0.843750 0.187500 +vt 0.843750 0.625000 +vt 0.843750 0.125000 +vt 0.843750 0.562500 +vt 0.843750 0.062500 +vt 0.843750 0.500000 +vt 0.859375 1.000000 +vt 0.843750 0.937500 +vt 0.859375 0.000000 +vt 0.843750 0.437500 +vt 0.843750 0.875000 +vt 0.843750 0.375000 +vt 0.843750 0.812500 +vt 0.843750 0.312500 +vt 0.843750 0.750000 +vt 0.843750 0.687500 +vt 0.812500 0.375000 +vt 0.812500 0.875000 +vt 0.812500 0.812500 +vt 0.812500 0.312500 +vt 0.812500 0.750000 +vt 0.812500 0.250000 +vt 0.812500 0.687500 +vt 0.812500 0.187500 +vt 0.812500 0.625000 +vt 0.812500 0.125000 +vt 0.812500 0.562500 +vt 0.812500 0.062500 +vt 0.812500 0.500000 +vt 0.828125 1.000000 +vt 0.812500 0.937500 +vt 0.828125 0.000000 +vt 0.812500 0.437500 +vt 0.781250 0.125000 +vt 0.781250 0.625000 +vt 0.781250 0.562500 +vt 0.781250 0.062500 +vt 0.781250 0.500000 +vt 0.796875 1.000000 +vt 0.781250 0.937500 +vt 0.796875 0.000000 +vt 0.781250 0.437500 +vt 0.781250 0.875000 +vt 0.781250 0.375000 +vt 0.781250 0.812500 +vt 0.781250 0.312500 +vt 0.781250 0.750000 +vt 0.781250 0.250000 +vt 0.781250 0.687500 +vt 0.781250 0.187500 +vt 0.765625 1.000000 +vt 0.765625 0.000000 +vn 0.5131 -0.5294 -0.6756 +vn 0.1521 0.9679 -0.2003 +vn 0.4069 -0.7398 -0.5358 +vn 0.2241 0.9288 -0.2951 +vn 0.3082 -0.8604 -0.4058 +vn 0.3082 0.8604 -0.4058 +vn 0.2241 -0.9288 -0.2951 +vn 0.4069 0.7398 -0.5358 +vn 0.1521 -0.9679 -0.2003 +vn 0.5131 0.5294 -0.6756 +vn 0.0882 -0.9893 -0.1162 +vn 0.5928 0.1986 -0.7805 +vn 0.0289 0.9989 -0.0381 +vn 0.0289 -0.9989 -0.0381 +vn 0.5928 -0.1986 -0.7805 +vn 0.0882 0.9893 -0.1162 +vn 0.0453 -0.9986 -0.0283 +vn 0.8347 -0.1785 -0.5209 +vn 0.1378 0.9867 -0.0860 +vn 0.7406 -0.4879 -0.4621 +vn 0.2364 0.9604 -0.1475 +vn 0.6045 -0.7017 -0.3772 +vn 0.3452 0.9135 -0.2154 +vn 0.4680 -0.8341 -0.2920 +vn 0.4680 0.8341 -0.2920 +vn 0.3452 -0.9135 -0.2154 +vn 0.6045 0.7017 -0.3772 +vn 0.2364 -0.9604 -0.1475 +vn 0.7406 0.4879 -0.4621 +vn 0.1378 -0.9867 -0.0860 +vn 0.8347 0.1785 -0.5209 +vn 0.0453 0.9986 -0.0283 +vn 0.4435 -0.8870 -0.1285 +vn 0.7345 0.6444 -0.2128 +vn 0.3084 -0.9471 -0.0894 +vn 0.8665 0.4314 -0.2511 +vn 0.1815 -0.9820 -0.0526 +vn 0.9491 0.1534 -0.2750 +vn 0.0599 0.9981 -0.0174 +vn 0.0599 -0.9981 -0.0174 +vn 0.9491 -0.1534 -0.2750 +vn 0.1815 0.9820 -0.0526 +vn 0.8665 -0.4314 -0.2511 +vn 0.3084 0.9471 -0.0894 +vn 0.7345 -0.6444 -0.2128 +vn 0.4435 0.8870 -0.1285 +vn 0.5874 -0.7912 -0.1702 +vn 0.5874 0.7912 -0.1702 +vn 0.2175 0.9759 -0.0175 +vn 0.9218 -0.3806 -0.0740 +vn 0.3653 0.9304 -0.0293 +vn 0.8069 -0.5871 -0.0647 +vn 0.5158 0.8557 -0.0414 +vn 0.6660 -0.7441 -0.0534 +vn 0.6660 0.7441 -0.0534 +vn 0.5158 -0.8557 -0.0414 +vn 0.8069 0.5871 -0.0647 +vn 0.3653 -0.9304 -0.0293 +vn 0.9218 0.3806 -0.0740 +vn 0.2175 -0.9759 -0.0174 +vn 0.9880 0.1325 -0.0793 +vn 0.0722 0.9974 -0.0058 +vn 0.0722 -0.9974 -0.0058 +vn 0.9880 -0.1325 -0.0793 +vn 0.8397 0.5396 0.0615 +vn 0.4060 -0.9134 0.0297 +vn 0.9372 0.3418 0.0686 +vn 0.2446 -0.9695 0.0179 +vn 0.9904 0.1173 0.0725 +vn 0.0816 0.9966 0.0060 +vn 0.0816 -0.9966 0.0060 +vn 0.9904 -0.1173 0.0725 +vn 0.2446 0.9695 0.0179 +vn 0.9372 -0.3418 0.0686 +vn 0.4060 0.9134 0.0297 +vn 0.8397 -0.5396 0.0615 +vn 0.5633 0.8252 0.0413 +vn 0.7108 -0.7014 0.0521 +vn 0.7108 0.7014 0.0521 +vn 0.5633 -0.8252 0.0413 +vn 0.9309 -0.3149 0.1852 +vn 0.4307 0.8984 0.0857 +vn 0.8467 -0.5046 0.1685 +vn 0.5887 0.7998 0.1171 +vn 0.7299 -0.6679 0.1452 +vn 0.7299 0.6679 0.1452 +vn 0.5887 -0.7998 0.1171 +vn 0.8467 0.5046 0.1685 +vn 0.4307 -0.8984 0.0857 +vn 0.9309 0.3149 0.1852 +vn 0.2622 -0.9636 0.0522 +vn 0.9751 0.1071 0.1940 +vn 0.0880 0.9960 0.0175 +vn 0.0880 -0.9960 0.0175 +vn 0.9751 -0.1071 0.1940 +vn 0.2622 0.9636 0.0522 +vn 0.4400 -0.8875 0.1371 +vn 0.9113 0.2980 0.2840 +vn 0.2699 -0.9592 0.0841 +vn 0.9498 0.1009 0.2960 +vn 0.0909 0.9955 0.0283 +vn 0.0909 -0.9955 0.0283 +vn 0.9498 -0.1009 0.2960 +vn 0.2699 0.9592 0.0841 +vn 0.9113 -0.2980 0.2840 +vn 0.4400 0.8875 0.1371 +vn 0.8365 -0.4820 0.2607 +vn 0.5952 0.7819 0.1855 +vn 0.7293 -0.6453 0.2273 +vn 0.7293 0.6453 0.2273 +vn 0.5952 -0.7819 0.1855 +vn 0.8365 0.4820 0.2607 +vn 0.4348 0.8817 0.1832 +vn 0.8130 -0.4710 0.3424 +vn 0.5850 0.7727 0.2464 +vn 0.7127 -0.6340 0.3002 +vn 0.7127 0.6340 0.3002 +vn 0.5850 -0.7727 0.2464 +vn 0.8130 0.4710 0.3424 +vn 0.4348 -0.8817 0.1832 +vn 0.8820 0.2900 0.3715 +vn 0.2678 -0.9569 0.1128 +vn 0.9171 0.0979 0.3863 +vn 0.0904 0.9952 0.0381 +vn 0.0904 -0.9952 0.0381 +vn 0.9171 -0.0979 0.3863 +vn 0.2678 0.9569 0.1128 +vn 0.8820 -0.2900 0.3715 +vn 0.8433 0.2900 0.4524 +vn 0.2561 -0.9569 0.1374 +vn 0.8770 0.0979 0.4705 +vn 0.0865 0.9952 0.0464 +vn 0.0865 -0.9952 0.0464 +vn 0.8770 -0.0979 0.4705 +vn 0.2561 0.9569 0.1374 +vn 0.8433 -0.2900 0.4524 +vn 0.4158 0.8817 0.2230 +vn 0.7773 -0.4710 0.4170 +vn 0.5594 0.7727 0.3001 +vn 0.6815 -0.6340 0.3656 +vn 0.6815 0.6340 0.3656 +vn 0.5594 -0.7727 0.3001 +vn 0.7773 0.4710 0.4170 +vn 0.4158 -0.8817 0.2230 +vn 0.7286 -0.4820 0.4867 +vn 0.5184 0.7819 0.3463 +vn 0.6352 -0.6453 0.4243 +vn 0.6352 0.6453 0.4243 +vn 0.5184 -0.7819 0.3463 +vn 0.7286 0.4820 0.4867 +vn 0.3832 -0.8875 0.2560 +vn 0.7937 0.2980 0.5302 +vn 0.2351 -0.9592 0.1570 +vn 0.8273 0.1009 0.5526 +vn 0.0792 0.9955 0.0529 +vn 0.0792 -0.9955 0.0529 +vn 0.8273 -0.1009 0.5526 +vn 0.2351 0.9592 0.1570 +vn 0.7937 -0.2980 0.5302 +vn 0.3832 0.8875 0.2560 +vn 0.2054 -0.9636 0.1711 +vn 0.7638 0.1071 0.6365 +vn 0.0689 0.9960 0.0574 +vn 0.0689 -0.9960 0.0574 +vn 0.7638 -0.1071 0.6365 +vn 0.2054 0.9636 0.1711 +vn 0.7292 -0.3149 0.6076 +vn 0.3374 0.8984 0.2811 +vn 0.6633 -0.5046 0.5526 +vn 0.4611 0.7998 0.3842 +vn 0.5718 -0.6679 0.4764 +vn 0.5718 0.6679 0.4764 +vn 0.4611 -0.7998 0.3842 +vn 0.6633 0.5046 0.5526 +vn 0.3374 -0.8984 0.2811 +vn 0.7292 0.3149 0.6076 +vn 0.4873 -0.7014 0.5201 +vn 0.4873 0.7014 0.5201 +vn 0.3861 -0.8252 0.4121 +vn 0.5756 0.5396 0.6144 +vn 0.2784 -0.9134 0.2971 +vn 0.6425 0.3418 0.6858 +vn 0.1677 -0.9695 0.1790 +vn 0.6790 0.1173 0.7247 +vn 0.0560 0.9966 0.0597 +vn 0.0560 -0.9966 0.0597 +vn 0.6790 -0.1173 0.7247 +vn 0.1677 0.9695 0.1790 +vn 0.6425 -0.3418 0.6858 +vn 0.2784 0.9134 0.2971 +vn 0.5756 -0.5396 0.6144 +vn 0.3861 0.8252 0.4121 +vn 0.0409 0.9974 0.0598 +vn 0.0409 -0.9974 0.0598 +vn 0.5594 -0.1325 0.8182 +vn 0.1231 0.9759 0.1801 +vn 0.5219 -0.3806 0.7634 +vn 0.2068 0.9304 0.3025 +vn 0.4568 -0.5871 0.6683 +vn 0.2921 0.8557 0.4272 +vn 0.3771 -0.7441 0.5516 +vn 0.3771 0.7441 0.5516 +vn 0.2921 -0.8557 0.4272 +vn 0.4568 0.5871 0.6683 +vn 0.2068 -0.9304 0.3025 +vn 0.5219 0.3806 0.7634 +vn 0.1231 -0.9759 0.1801 +vn 0.5594 0.1325 0.8182 +vn 0.2368 0.7912 0.5638 +vn 0.1788 -0.8870 0.4257 +vn 0.2962 0.6444 0.7050 +vn 0.1244 -0.9471 0.2960 +vn 0.3494 0.4314 0.8317 +vn 0.0732 -0.9820 0.1742 +vn 0.3827 0.1534 0.9110 +vn 0.0241 0.9981 0.0575 +vn 0.0241 -0.9981 0.0575 +vn 0.3827 -0.1534 0.9110 +vn 0.0732 0.9820 0.1742 +vn 0.3494 -0.4314 0.8317 +vn 0.1244 0.9471 0.2960 +vn 0.2962 -0.6444 0.7050 +vn 0.1788 0.8870 0.4257 +vn 0.2368 -0.7912 0.5638 +vn 0.1196 -0.1785 0.9766 +vn 0.0197 0.9867 0.1613 +vn 0.1061 -0.4879 0.8664 +vn 0.0339 0.9604 0.2766 +vn 0.0866 -0.7017 0.7072 +vn 0.0495 0.9135 0.4039 +vn 0.0670 -0.8341 0.5475 +vn 0.0670 0.8341 0.5475 +vn 0.0495 -0.9135 0.4039 +vn 0.0866 0.7017 0.7072 +vn 0.0339 -0.9604 0.2766 +vn 0.1061 0.4879 0.8664 +vn 0.0197 -0.9867 0.1613 +vn 0.1196 0.1786 0.9766 +vn 0.0065 0.9986 0.0530 +vn 0.0065 -0.9986 0.0530 +vn -0.0886 -0.9288 0.3598 +vn -0.1609 0.7398 0.6533 +vn -0.0601 -0.9679 0.2442 +vn -0.2029 0.5294 0.8237 +vn -0.0349 -0.9893 0.1416 +vn -0.2344 0.1986 0.9516 +vn -0.0114 0.9989 0.0464 +vn -0.0114 -0.9989 0.0464 +vn -0.2344 -0.1986 0.9516 +vn -0.0349 0.9893 0.1416 +vn -0.2029 -0.5294 0.8237 +vn -0.0601 0.9679 0.2442 +vn -0.1609 -0.7398 0.6533 +vn -0.0886 0.9288 0.3598 +vn -0.1219 -0.8604 0.4948 +vn -0.1219 0.8604 0.4948 +vn -0.0882 0.9893 0.1162 +vn -0.5131 -0.5294 0.6756 +vn -0.1521 0.9679 0.2003 +vn -0.4069 -0.7398 0.5358 +vn -0.2241 0.9288 0.2951 +vn -0.3082 -0.8604 0.4058 +vn -0.3082 0.8604 0.4058 +vn -0.2241 -0.9288 0.2951 +vn -0.4069 0.7398 0.5358 +vn -0.1521 -0.9679 0.2003 +vn -0.5131 0.5294 0.6756 +vn -0.0882 -0.9893 0.1162 +vn -0.5928 0.1986 0.7805 +vn -0.0289 0.9989 0.0381 +vn -0.0289 -0.9989 0.0381 +vn -0.5928 -0.1986 0.7805 +vn -0.6045 0.7017 0.3772 +vn -0.2364 -0.9604 0.1475 +vn -0.7406 0.4879 0.4621 +vn -0.1378 -0.9867 0.0860 +vn -0.8347 0.1786 0.5209 +vn -0.0453 0.9986 0.0283 +vn -0.0453 -0.9986 0.0283 +vn -0.8347 -0.1785 0.5209 +vn -0.1378 0.9867 0.0860 +vn -0.7406 -0.4879 0.4621 +vn -0.2364 0.9604 0.1475 +vn -0.6045 -0.7017 0.3772 +vn -0.3452 0.9135 0.2154 +vn -0.4680 -0.8341 0.2920 +vn -0.4680 0.8341 0.2920 +vn -0.3452 -0.9135 0.2154 +vn -0.8665 -0.4314 0.2511 +vn -0.3084 0.9471 0.0894 +vn -0.7345 -0.6444 0.2128 +vn -0.4435 0.8870 0.1285 +vn -0.5874 -0.7912 0.1702 +vn -0.5874 0.7912 0.1702 +vn -0.4435 -0.8870 0.1285 +vn -0.7345 0.6444 0.2128 +vn -0.3084 -0.9471 0.0894 +vn -0.8665 0.4314 0.2511 +vn -0.1815 -0.9820 0.0526 +vn -0.9491 0.1534 0.2750 +vn -0.0599 0.9981 0.0174 +vn -0.0599 -0.9981 0.0174 +vn -0.9491 -0.1534 0.2750 +vn -0.1815 0.9820 0.0526 +vn -0.3653 -0.9304 0.0293 +vn -0.9218 0.3806 0.0740 +vn -0.2175 -0.9759 0.0175 +vn -0.9880 0.1325 0.0793 +vn -0.0722 0.9974 0.0058 +vn -0.0722 -0.9974 0.0058 +vn -0.9880 -0.1325 0.0793 +vn -0.2175 0.9759 0.0175 +vn -0.9218 -0.3806 0.0740 +vn -0.3653 0.9304 0.0293 +vn -0.8069 -0.5871 0.0647 +vn -0.5158 0.8557 0.0414 +vn -0.6660 -0.7440 0.0534 +vn -0.6660 0.7440 0.0534 +vn -0.5158 -0.8557 0.0414 +vn -0.8069 0.5871 0.0647 +vn -0.8397 -0.5396 -0.0615 +vn -0.5633 0.8252 -0.0413 +vn -0.7108 -0.7014 -0.0521 +vn -0.7108 0.7014 -0.0521 +vn -0.5633 -0.8252 -0.0413 +vn -0.8397 0.5396 -0.0615 +vn -0.4060 -0.9134 -0.0297 +vn -0.9372 0.3418 -0.0686 +vn -0.2446 -0.9695 -0.0179 +vn -0.9904 0.1173 -0.0725 +vn -0.0816 0.9966 -0.0060 +vn -0.0816 -0.9966 -0.0060 +vn -0.9904 -0.1173 -0.0725 +vn -0.2446 0.9695 -0.0179 +vn -0.9372 -0.3418 -0.0686 +vn -0.4060 0.9134 -0.0297 +vn -0.2622 -0.9636 -0.0522 +vn -0.9751 0.1071 -0.1940 +vn -0.0880 0.9960 -0.0175 +vn -0.0880 -0.9960 -0.0175 +vn -0.9751 -0.1071 -0.1940 +vn -0.2622 0.9636 -0.0522 +vn -0.9309 -0.3149 -0.1852 +vn -0.4307 0.8984 -0.0857 +vn -0.8467 -0.5046 -0.1685 +vn -0.5887 0.7998 -0.1171 +vn -0.7299 -0.6679 -0.1452 +vn -0.7299 0.6679 -0.1452 +vn -0.5887 -0.7998 -0.1171 +vn -0.8467 0.5046 -0.1685 +vn -0.4307 -0.8984 -0.0857 +vn -0.9309 0.3149 -0.1852 +vn -0.5952 0.7819 -0.1855 +vn -0.7293 -0.6453 -0.2273 +vn -0.7293 0.6453 -0.2273 +vn -0.5952 -0.7819 -0.1855 +vn -0.8365 0.4820 -0.2607 +vn -0.4400 -0.8875 -0.1371 +vn -0.9113 0.2980 -0.2840 +vn -0.2699 -0.9592 -0.0841 +vn -0.9498 0.1009 -0.2960 +vn -0.0909 0.9955 -0.0283 +vn -0.0909 -0.9955 -0.0283 +vn -0.9498 -0.1009 -0.2960 +vn -0.2699 0.9592 -0.0841 +vn -0.9113 -0.2980 -0.2840 +vn -0.4400 0.8875 -0.1371 +vn -0.8365 -0.4820 -0.2607 +vn -0.9171 0.0979 -0.3863 +vn -0.0904 0.9952 -0.0381 +vn -0.0904 -0.9952 -0.0381 +vn -0.9171 -0.0979 -0.3863 +vn -0.2678 0.9569 -0.1128 +vn -0.8820 -0.2900 -0.3715 +vn -0.4348 0.8817 -0.1832 +vn -0.8130 -0.4710 -0.3424 +vn -0.5850 0.7727 -0.2464 +vn -0.7127 -0.6340 -0.3002 +vn -0.7127 0.6340 -0.3002 +vn -0.5850 -0.7727 -0.2464 +vn -0.8130 0.4710 -0.3424 +vn -0.4348 -0.8817 -0.1832 +vn -0.8820 0.2900 -0.3715 +vn -0.2678 -0.9569 -0.1128 +vn -0.6815 -0.6340 -0.3656 +vn -0.6815 0.6340 -0.3656 +vn -0.5594 -0.7727 -0.3001 +vn -0.7773 0.4710 -0.4170 +vn -0.4158 -0.8817 -0.2230 +vn -0.8433 0.2900 -0.4524 +vn -0.2561 -0.9569 -0.1374 +vn -0.8770 0.0979 -0.4705 +vn -0.0865 0.9952 -0.0464 +vn -0.0865 -0.9952 -0.0464 +vn -0.8770 -0.0979 -0.4705 +vn -0.2561 0.9569 -0.1374 +vn -0.8433 -0.2900 -0.4524 +vn -0.4158 0.8817 -0.2230 +vn -0.7773 -0.4710 -0.4170 +vn -0.5594 0.7727 -0.3001 +vn -0.0792 0.9955 -0.0529 +vn -0.0792 -0.9955 -0.0529 +vn -0.8273 -0.1009 -0.5526 +vn -0.2351 0.9592 -0.1570 +vn -0.7937 -0.2980 -0.5302 +vn -0.3832 0.8875 -0.2560 +vn -0.7286 -0.4820 -0.4867 +vn -0.5184 0.7819 -0.3463 +vn -0.6352 -0.6453 -0.4243 +vn -0.6352 0.6453 -0.4243 +vn -0.5184 -0.7819 -0.3463 +vn -0.7286 0.4820 -0.4867 +vn -0.3832 -0.8875 -0.2560 +vn -0.7937 0.2980 -0.5302 +vn -0.2351 -0.9592 -0.1570 +vn -0.8273 0.1009 -0.5526 +vn -0.5718 0.6679 -0.4764 +vn -0.4611 -0.7998 -0.3842 +vn -0.6633 0.5046 -0.5526 +vn -0.3374 -0.8984 -0.2811 +vn -0.7292 0.3149 -0.6076 +vn -0.2054 -0.9636 -0.1711 +vn -0.7638 0.1071 -0.6365 +vn -0.0689 0.9960 -0.0574 +vn -0.0689 -0.9960 -0.0574 +vn -0.7638 -0.1071 -0.6365 +vn -0.2054 0.9636 -0.1711 +vn -0.7292 -0.3149 -0.6076 +vn -0.3374 0.8984 -0.2811 +vn -0.6633 -0.5046 -0.5526 +vn -0.4611 0.7998 -0.3842 +vn -0.5718 -0.6679 -0.4764 +vn -0.6790 -0.1173 -0.7247 +vn -0.1677 0.9695 -0.1790 +vn -0.6425 -0.3418 -0.6858 +vn -0.2784 0.9134 -0.2971 +vn -0.5756 -0.5396 -0.6144 +vn -0.3861 0.8252 -0.4121 +vn -0.4873 -0.7014 -0.5201 +vn -0.4873 0.7014 -0.5201 +vn -0.3861 -0.8252 -0.4121 +vn -0.5756 0.5396 -0.6144 +vn -0.2784 -0.9134 -0.2971 +vn -0.6425 0.3418 -0.6858 +vn -0.1677 -0.9695 -0.1790 +vn -0.6790 0.1173 -0.7247 +vn -0.0560 0.9966 -0.0597 +vn -0.0560 -0.9966 -0.0597 +vn -0.2921 -0.8557 -0.4272 +vn -0.4568 0.5871 -0.6683 +vn -0.2068 -0.9304 -0.3025 +vn -0.5219 0.3806 -0.7634 +vn -0.1231 -0.9759 -0.1801 +vn -0.5594 0.1325 -0.8182 +vn -0.0409 0.9974 -0.0598 +vn -0.0409 -0.9974 -0.0598 +vn -0.5594 -0.1325 -0.8182 +vn -0.1231 0.9759 -0.1801 +vn -0.5219 -0.3806 -0.7634 +vn -0.2068 0.9304 -0.3025 +vn -0.4568 -0.5871 -0.6683 +vn -0.2921 0.8557 -0.4272 +vn -0.3771 -0.7440 -0.5516 +vn -0.3771 0.7440 -0.5516 +vn -0.3494 -0.4314 -0.8317 +vn -0.1244 0.9471 -0.2960 +vn -0.2962 -0.6444 -0.7050 +vn -0.1788 0.8870 -0.4257 +vn -0.2368 -0.7912 -0.5638 +vn -0.2368 0.7912 -0.5638 +vn -0.1788 -0.8870 -0.4257 +vn -0.2962 0.6444 -0.7050 +vn -0.1244 -0.9471 -0.2960 +vn -0.3494 0.4314 -0.8317 +vn -0.0732 -0.9820 -0.1742 +vn -0.3827 0.1534 -0.9110 +vn -0.0241 0.9981 -0.0575 +vn -0.0241 -0.9981 -0.0575 +vn -0.3827 -0.1534 -0.9110 +vn -0.0732 0.9820 -0.1742 +vn -0.0339 -0.9604 -0.2766 +vn -0.1061 0.4879 -0.8664 +vn -0.0197 -0.9867 -0.1613 +vn -0.1196 0.1785 -0.9766 +vn -0.0065 0.9986 -0.0530 +vn -0.0065 -0.9986 -0.0530 +vn -0.1196 -0.1785 -0.9766 +vn -0.0197 0.9867 -0.1613 +vn -0.1061 -0.4879 -0.8664 +vn -0.0339 0.9604 -0.2766 +vn -0.0866 -0.7017 -0.7072 +vn -0.0495 0.9135 -0.4039 +vn -0.0670 -0.8341 -0.5475 +vn -0.0670 0.8341 -0.5475 +vn -0.0495 -0.9135 -0.4039 +vn -0.0866 0.7017 -0.7072 +vn 0.0601 0.9679 -0.2442 +vn 0.1609 -0.7398 -0.6533 +vn 0.0886 0.9288 -0.3598 +vn 0.1219 -0.8604 -0.4948 +vn 0.1219 0.8604 -0.4948 +vn 0.0886 -0.9288 -0.3598 +vn 0.1609 0.7398 -0.6533 +vn 0.0601 -0.9679 -0.2442 +vn 0.2029 0.5294 -0.8237 +vn 0.0349 -0.9893 -0.1416 +vn 0.2344 0.1986 -0.9516 +vn 0.0114 0.9989 -0.0464 +vn 0.0114 -0.9989 -0.0464 +vn 0.2344 -0.1986 -0.9516 +vn 0.0349 0.9893 -0.1416 +vn 0.2029 -0.5294 -0.8237 +vn 0.2175 0.9759 -0.0174 +vn 0.1196 0.1785 0.9766 +vn -0.8347 0.1785 0.5209 +vn -0.8347 -0.1786 0.5209 +vn -0.2175 -0.9759 0.0174 +vn -0.2175 0.9759 0.0174 +vn -0.7285 0.4820 -0.4867 +usemtl None +s off +f 2419/560/2447 2430/561/2447 2888/562/2447 +f 2413/563/2448 2422/564/2448 2423/565/2448 +f 2888/562/2449 2431/566/2449 2889/567/2449 +f 2413/563/2450 2424/568/2450 2414/569/2450 +f 2889/567/2451 2432/570/2451 2890/571/2451 +f 2414/569/2452 2425/572/2452 2415/573/2452 +f 2890/571/2453 2433/574/2453 2420/575/2453 +f 2415/573/2454 2426/576/2454 2416/577/2454 +f 2420/575/2455 2434/578/2455 2891/579/2455 +f 2416/577/2456 2427/580/2456 2417/581/2456 +f 2891/579/2457 2435/582/2457 2892/583/2457 +f 2417/581/2458 2428/584/2458 2418/585/2458 +f 2411/586/2459 2707/587/2459 2421/588/2459 +f 2616/589/2460 2892/583/2460 2435/582/2460 +f 2418/585/2461 2429/590/2461 2419/560/2461 +f 2411/586/2462 2422/564/2462 2412/591/2462 +f 2616/592/2463 2435/582/2463 2450/593/2463 +f 2429/590/2464 2443/594/2464 2444/595/2464 +f 2421/588/2465 2437/596/2465 2422/564/2465 +f 2430/561/2466 2444/595/2466 2445/597/2466 +f 2422/564/2467 2438/598/2467 2423/565/2467 +f 2430/561/2468 2446/599/2468 2431/566/2468 +f 2423/565/2469 2439/600/2469 2424/568/2469 +f 2432/570/2470 2446/599/2470 2447/601/2470 +f 2424/568/2471 2440/602/2471 2425/572/2471 +f 2432/570/2472 2448/603/2472 2433/574/2472 +f 2425/572/2473 2441/604/2473 2426/576/2473 +f 2433/574/2474 2449/605/2474 2434/578/2474 +f 2426/576/2475 2442/606/2475 2427/580/2475 +f 2434/578/2476 2450/593/2476 2435/582/2476 +f 2427/580/2477 2443/594/2477 2428/584/2477 +f 2421/588/2478 2707/607/2478 2436/608/2478 +f 2447/601/2479 2463/609/2479 2448/603/2479 +f 2440/602/2480 2456/610/2480 2441/604/2480 +f 2448/603/2481 2464/611/2481 2449/605/2481 +f 2442/606/2482 2456/610/2482 2457/612/2482 +f 2449/605/2483 2465/613/2483 2450/593/2483 +f 2442/606/2484 2458/614/2484 2443/594/2484 +f 2436/608/2485 2707/615/2485 2451/616/2485 +f 2616/617/2486 2450/593/2486 2465/613/2486 +f 2443/594/2487 2459/618/2487 2444/595/2487 +f 2436/608/2488 2452/619/2488 2437/596/2488 +f 2444/595/2489 2460/620/2489 2445/597/2489 +f 2437/596/2490 2453/621/2490 2438/598/2490 +f 2446/599/2491 2460/620/2491 2461/622/2491 +f 2438/598/2492 2454/623/2492 2439/600/2492 +f 2447/601/2493 2461/622/2493 2462/624/2493 +f 2439/600/2494 2455/625/2494 2440/602/2494 +f 2451/616/2495 2467/626/2495 2452/619/2495 +f 2459/618/2496 2475/627/2496 2460/620/2496 +f 2452/619/2497 2468/628/2497 2453/621/2497 +f 2461/622/2498 2475/627/2498 2476/629/2498 +f 2453/621/2499 2469/630/2499 2454/623/2499 +f 2461/622/2500 2477/631/2500 2462/624/2500 +f 2454/623/2501 2470/632/2501 2455/625/2501 +f 2462/624/2502 2478/633/2502 2463/609/2502 +f 2455/625/2503 2471/634/2503 2456/610/2503 +f 2463/609/2504 2479/635/2504 2464/611/2504 +f 2456/610/2505 2472/636/2505 2457/612/2505 +f 2464/611/2506 2480/637/2506 2465/613/2506 +f 2458/614/2507 2472/636/2507 2473/638/2507 +f 2451/616/2508 2707/639/2508 2466/640/2508 +f 2616/641/2509 2465/613/2509 2480/637/2509 +f 2458/614/2510 2474/642/2510 2459/618/2510 +f 2470/632/2511 2486/643/2511 2471/634/2511 +f 2479/635/2512 2493/644/2512 2494/645/2512 +f 2471/634/2513 2487/646/2513 2472/636/2513 +f 2479/635/2514 2495/647/2514 2480/637/2514 +f 2473/638/2515 2487/646/2515 2488/648/2515 +f 2466/640/2516 2707/649/2516 2481/650/2516 +f 2616/651/2517 2480/637/2517 2495/647/2517 +f 2473/638/2518 2489/652/2518 2474/642/2518 +f 2466/640/2519 2482/653/2519 2467/626/2519 +f 2474/642/2520 2490/654/2520 2475/627/2520 +f 2467/626/2521 2483/655/2521 2468/628/2521 +f 2476/629/2522 2490/654/2522 2491/656/2522 +f 2468/628/2523 2484/657/2523 2469/630/2523 +f 2476/629/2524 2492/658/2524 2477/631/2524 +f 2470/632/2525 2484/657/2525 2485/659/2525 +f 2478/633/2526 2492/658/2526 2493/644/2526 +f 2489/652/2527 2505/660/2527 2490/654/2527 +f 2482/653/2528 2498/661/2528 2483/655/2528 +f 2491/656/2529 2505/660/2529 2506/662/2529 +f 2483/655/2530 2499/663/2530 2484/657/2530 +f 2492/658/2531 2506/662/2531 2507/664/2531 +f 2485/659/2532 2499/663/2532 2500/665/2532 +f 2492/658/2533 2508/666/2533 2493/644/2533 +f 2485/659/2534 2501/667/2534 2486/643/2534 +f 2494/645/2535 2508/666/2535 2509/668/2535 +f 2487/646/2536 2501/667/2536 2502/669/2536 +f 2494/645/2537 2510/670/2537 2495/647/2537 +f 2487/646/2538 2503/671/2538 2488/648/2538 +f 2481/650/2539 2707/672/2539 2496/673/2539 +f 2616/674/2540 2495/647/2540 2510/670/2540 +f 2488/648/2541 2504/675/2541 2489/652/2541 +f 2481/650/2542 2497/676/2542 2482/653/2542 +f 2508/666/2543 2524/677/2543 2509/668/2543 +f 2502/669/2544 2516/678/2544 2517/679/2544 +f 2510/670/2545 2524/677/2545 2525/680/2545 +f 2502/669/2546 2518/681/2546 2503/671/2546 +f 2496/673/2547 2707/682/2547 2511/683/2547 +f 2616/684/2548 2510/670/2548 2525/680/2548 +f 2503/671/2549 2519/685/2549 2504/675/2549 +f 2496/673/2550 2512/686/2550 2497/676/2550 +f 2504/675/2551 2520/687/2551 2505/660/2551 +f 2497/676/2552 2513/688/2552 2498/661/2552 +f 2506/662/2553 2520/687/2553 2521/689/2553 +f 2499/663/2554 2513/688/2554 2514/690/2554 +f 2507/664/2555 2521/689/2555 2522/691/2555 +f 2499/663/2556 2515/692/2556 2500/665/2556 +f 2507/664/2557 2523/693/2557 2508/666/2557 +f 2500/665/2558 2516/678/2558 2501/667/2558 +f 2512/686/2559 2528/694/2559 2513/688/2559 +f 2521/689/2560 2535/695/2560 2536/696/2560 +f 2513/688/2561 2529/697/2561 2514/690/2561 +f 2521/689/2562 2537/698/2562 2522/691/2562 +f 2514/690/2563 2530/699/2563 2515/692/2563 +f 2523/693/2564 2537/698/2564 2538/700/2564 +f 2515/692/2565 2531/701/2565 2516/678/2565 +f 2524/677/2566 2538/700/2566 2539/702/2566 +f 2517/679/2567 2531/701/2567 2532/703/2567 +f 2525/680/2568 2539/702/2568 2540/704/2568 +f 2517/679/2569 2533/705/2569 2518/681/2569 +f 2511/683/2570 2707/706/2570 2526/707/2570 +f 2616/708/2571 2525/680/2571 2540/704/2571 +f 2519/685/2572 2533/705/2572 2534/709/2572 +f 2511/683/2573 2527/710/2573 2512/686/2573 +f 2519/685/2574 2535/695/2574 2520/687/2574 +f 2532/703/2575 2546/711/2575 2547/712/2575 +f 2540/704/2576 2554/713/2576 2555/714/2576 +f 2532/703/2577 2548/715/2577 2533/705/2577 +f 2526/707/2578 2707/716/2578 2541/717/2578 +f 2616/718/2579 2540/704/2579 2555/714/2579 +f 2533/705/2580 2549/719/2580 2534/709/2580 +f 2527/710/2581 2541/717/2581 2542/720/2581 +f 2534/709/2582 2550/721/2582 2535/695/2582 +f 2527/710/2583 2543/722/2583 2528/694/2583 +f 2536/696/2584 2550/721/2584 2551/723/2584 +f 2528/694/2585 2544/724/2585 2529/697/2585 +f 2536/696/2586 2552/725/2586 2537/698/2586 +f 2530/699/2587 2544/724/2587 2545/726/2587 +f 2538/700/2588 2552/725/2588 2553/727/2588 +f 2530/699/2589 2546/711/2589 2531/701/2589 +f 2538/700/2590 2554/713/2590 2539/702/2590 +f 2551/723/2591 2565/728/2591 2566/729/2591 +f 2543/722/2592 2559/730/2592 2544/724/2592 +f 2551/723/2593 2567/731/2593 2552/725/2593 +f 2544/724/2594 2560/732/2594 2545/726/2594 +f 2552/725/2595 2568/733/2595 2553/727/2595 +f 2545/726/2596 2561/734/2596 2546/711/2596 +f 2554/713/2597 2568/733/2597 2569/735/2597 +f 2547/712/2598 2561/734/2598 2562/736/2598 +f 2554/713/2599 2570/737/2599 2555/714/2599 +f 2547/712/2600 2563/738/2600 2548/715/2600 +f 2541/717/2601 2707/739/2601 2556/740/2601 +f 2616/741/2602 2555/714/2602 2570/737/2602 +f 2548/715/2603 2564/742/2603 2549/719/2603 +f 2541/717/2604 2557/743/2604 2542/720/2604 +f 2549/719/2605 2565/728/2605 2550/721/2605 +f 2543/722/2606 2557/743/2606 2558/744/2606 +f 2569/735/2607 2585/745/2607 2570/737/2607 +f 2562/736/2608 2578/746/2608 2563/738/2608 +f 2556/740/2609 2707/747/2609 2571/748/2609 +f 2616/749/2610 2570/737/2610 2585/745/2610 +f 2564/742/2611 2578/746/2611 2579/750/2611 +f 2556/740/2612 2572/751/2612 2557/743/2612 +f 2564/742/2613 2580/752/2613 2565/728/2613 +f 2557/743/2614 2573/753/2614 2558/744/2614 +f 2566/729/2615 2580/752/2615 2581/754/2615 +f 2558/744/2616 2574/755/2616 2559/730/2616 +f 2566/729/2617 2582/756/2617 2567/731/2617 +f 2560/732/2618 2574/755/2618 2575/757/2618 +f 2568/733/2619 2582/756/2619 2583/758/2619 +f 2560/732/2620 2576/759/2620 2561/734/2620 +f 2568/733/2621 2584/760/2621 2569/735/2621 +f 2562/736/2622 2576/759/2622 2577/761/2622 +f 2581/754/2623 2597/762/2623 2582/756/2623 +f 2574/755/2624 2590/763/2624 2575/757/2624 +f 2583/758/2625 2597/762/2625 2598/764/2625 +f 2575/757/2626 2591/765/2626 2576/759/2626 +f 2583/758/2627 2599/766/2627 2584/760/2627 +f 2577/761/2628 2591/765/2628 2592/767/2628 +f 2585/745/2629 2599/766/2629 2600/768/2629 +f 2577/761/2630 2593/769/2630 2578/746/2630 +f 2571/748/2631 2707/770/2631 2586/771/2631 +f 2616/772/2632 2585/745/2632 2600/768/2632 +f 2578/746/2633 2594/773/2633 2579/750/2633 +f 2571/748/2634 2587/774/2634 2572/751/2634 +f 2579/750/2635 2595/775/2635 2580/752/2635 +f 2572/751/2636 2588/776/2636 2573/753/2636 +f 2580/752/2637 2596/777/2637 2581/754/2637 +f 2573/753/2638 2589/778/2638 2574/755/2638 +f 2586/771/2639 2707/779/2639 2601/780/2639 +f 2616/781/2640 2600/768/2640 2615/782/2640 +f 2594/773/2641 2608/783/2641 2609/784/2641 +f 2586/771/2642 2602/785/2642 2587/774/2642 +f 2594/773/2643 2610/786/2643 2595/775/2643 +f 2587/774/2644 2603/787/2644 2588/776/2644 +f 2596/777/2645 2610/786/2645 2611/788/2645 +f 2589/778/2646 2603/787/2646 2604/789/2646 +f 2596/777/2647 2612/790/2647 2597/762/2647 +f 2590/763/2648 2604/789/2648 2605/791/2648 +f 2598/764/2649 2612/790/2649 2613/792/2649 +f 2590/763/2650 2606/793/2650 2591/765/2650 +f 2598/764/2651 2614/794/2651 2599/766/2651 +f 2592/767/2652 2606/793/2652 2607/795/2652 +f 2600/768/2653 2614/794/2653 2615/782/2653 +f 2592/767/2654 2608/783/2654 2593/769/2654 +f 2604/789/2655 2621/796/2655 2605/791/2655 +f 2613/792/2656 2628/797/2656 2629/798/2656 +f 2605/791/2657 2622/799/2657 2606/793/2657 +f 2613/792/2658 2630/800/2658 2614/794/2658 +f 2607/795/2659 2622/799/2659 2623/801/2659 +f 2614/794/2660 2631/802/2660 2615/782/2660 +f 2607/795/2661 2624/803/2661 2608/783/2661 +f 2601/780/2662 2707/804/2662 2617/805/2662 +f 2616/806/2663 2615/782/2663 2631/802/2663 +f 2608/783/2664 2625/807/2664 2609/784/2664 +f 2601/780/2665 2618/808/2665 2602/785/2665 +f 2609/784/2666 2626/809/2666 2610/786/2666 +f 2603/787/2667 2618/808/2667 2619/810/2667 +f 2611/788/2668 2626/809/2668 2627/811/2668 +f 2603/787/2669 2620/812/2669 2604/789/2669 +f 2611/788/2670 2628/797/2670 2612/790/2670 +f 2624/803/2671 2640/813/2671 2625/807/2671 +f 2617/805/2672 2633/814/2672 2618/808/2672 +f 2625/807/2673 2641/815/2673 2626/809/2673 +f 2618/808/2674 2634/816/2674 2619/810/2674 +f 2627/811/2675 2641/815/2675 2642/817/2675 +f 2619/810/2676 2635/818/2676 2620/812/2676 +f 2627/811/2677 2643/819/2677 2628/797/2677 +f 2620/812/2678 2636/820/2678 2621/796/2678 +f 2628/797/2679 2644/821/2679 2629/798/2679 +f 2621/796/2680 2637/822/2680 2622/799/2680 +f 2629/798/2681 2645/823/2681 2630/800/2681 +f 2623/801/2682 2637/822/2682 2638/824/2682 +f 2631/802/2683 2645/823/2683 2646/825/2683 +f 2623/801/2684 2639/826/2684 2624/803/2684 +f 2617/805/2685 2707/827/2685 2632/828/2685 +f 2616/829/2686 2631/802/2686 2646/825/2686 +f 2644/821/2687 2658/830/2687 2659/831/2687 +f 2636/820/2688 2652/832/2688 2637/822/2688 +f 2644/821/2689 2660/833/2689 2645/823/2689 +f 2638/824/2690 2652/832/2690 2653/834/2690 +f 2646/825/2691 2660/833/2691 2661/835/2691 +f 2638/824/2692 2654/836/2692 2639/826/2692 +f 2632/828/2693 2707/837/2693 2647/838/2693 +f 2616/839/2694 2646/825/2694 2661/835/2694 +f 2639/826/2695 2655/840/2695 2640/813/2695 +f 2632/828/2696 2648/841/2696 2633/814/2696 +f 2640/813/2697 2656/842/2697 2641/815/2697 +f 2634/816/2698 2648/841/2698 2649/843/2698 +f 2642/817/2699 2656/842/2699 2657/844/2699 +f 2635/818/2700 2649/843/2700 2650/845/2700 +f 2642/817/2701 2658/830/2701 2643/819/2701 +f 2635/818/2702 2651/846/2702 2636/820/2702 +f 2647/838/2703 2663/847/2703 2648/841/2703 +f 2655/840/2704 2671/848/2704 2656/842/2704 +f 2648/841/2705 2664/849/2705 2649/843/2705 +f 2657/844/2706 2671/848/2706 2672/850/2706 +f 2650/845/2707 2664/849/2707 2665/851/2707 +f 2657/844/2708 2673/852/2708 2658/830/2708 +f 2651/846/2709 2665/851/2709 2666/853/2709 +f 2658/830/2710 2674/854/2710 2659/831/2710 +f 2651/846/2711 2667/855/2711 2652/832/2711 +f 2659/831/2712 2675/856/2712 2660/833/2712 +f 2653/834/2713 2667/855/2713 2668/857/2713 +f 2660/833/2714 2676/858/2714 2661/835/2714 +f 2653/834/2715 2669/859/2715 2654/836/2715 +f 2647/838/2716 2707/860/2716 2662/861/2716 +f 2616/862/2717 2661/835/2717 2676/858/2717 +f 2654/836/2718 2670/863/2718 2655/840/2718 +f 2666/853/2719 2682/864/2719 2667/855/2719 +f 2675/856/2720 2689/865/2720 2690/866/2720 +f 2668/857/2721 2682/864/2721 2683/867/2721 +f 2676/858/2722 2690/866/2722 2691/868/2722 +f 2668/857/2723 2684/869/2723 2669/859/2723 +f 2662/861/2724 2707/870/2724 2677/871/2724 +f 2616/872/2725 2676/858/2725 2691/868/2725 +f 2670/863/2726 2684/869/2726 2685/873/2726 +f 2662/861/2727 2678/874/2727 2663/847/2727 +f 2670/863/2728 2686/875/2728 2671/848/2728 +f 2663/847/2729 2679/876/2729 2664/849/2729 +f 2672/850/2730 2686/875/2730 2687/877/2730 +f 2665/851/2731 2679/876/2731 2680/878/2731 +f 2672/850/2732 2688/879/2732 2673/852/2732 +f 2666/853/2733 2680/878/2733 2681/880/2733 +f 2673/852/2734 2689/865/2734 2674/854/2734 +f 2685/873/2735 2701/881/2735 2686/875/2735 +f 2678/874/2736 2694/882/2736 2679/876/2736 +f 2687/877/2737 2701/881/2737 2702/883/2737 +f 2679/876/2738 2695/884/2738 2680/878/2738 +f 2687/877/2739 2703/885/2739 2688/879/2739 +f 2681/880/2740 2695/884/2740 2696/886/2740 +f 2689/865/2741 2703/885/2741 2704/887/2741 +f 2681/880/2742 2697/888/2742 2682/864/2742 +f 2689/865/2743 2705/889/2743 2690/866/2743 +f 2683/867/2744 2697/888/2744 2698/890/2744 +f 2691/868/2745 2705/889/2745 2706/891/2745 +f 2683/867/2746 2699/892/2746 2684/869/2746 +f 2677/871/2747 2707/893/2747 2692/894/2747 +f 2616/895/2748 2691/868/2748 2706/891/2748 +f 2684/869/2749 2700/896/2749 2685/873/2749 +f 2677/871/2750 2693/897/2750 2678/874/2750 +f 2704/887/2751 2721/898/2751 2705/889/2751 +f 2698/890/2752 2713/899/2752 2714/900/2752 +f 2705/889/2753 2722/901/2753 2706/891/2753 +f 2699/892/2754 2714/900/2754 2715/902/2754 +f 2692/894/2755 2707/903/2755 2708/904/2755 +f 2616/905/2756 2706/891/2756 2722/901/2756 +f 2699/892/2757 2716/906/2757 2700/896/2757 +f 2692/894/2758 2709/907/2758 2693/897/2758 +f 2700/896/2759 2717/908/2759 2701/881/2759 +f 2693/897/2760 2710/909/2760 2694/882/2760 +f 2702/883/2761 2717/908/2761 2718/910/2761 +f 2695/884/2762 2710/909/2762 2711/911/2762 +f 2702/883/2763 2719/912/2763 2703/885/2763 +f 2696/886/2764 2711/911/2764 2712/913/2764 +f 2703/885/2765 2720/914/2765 2704/887/2765 +f 2696/886/2766 2713/899/2766 2697/888/2766 +f 2718/910/2767 2732/915/2767 2733/916/2767 +f 2711/911/2768 2725/917/2768 2726/918/2768 +f 2718/910/2769 2734/919/2769 2719/912/2769 +f 2712/913/2770 2726/918/2770 2727/920/2770 +f 2719/912/2771 2735/921/2771 2720/914/2771 +f 2712/913/2772 2728/922/2772 2713/899/2772 +f 2721/898/2773 2735/921/2773 2736/923/2773 +f 2714/900/2774 2728/922/2774 2729/924/2774 +f 2721/898/2775 2737/925/2775 2722/901/2775 +f 2714/900/2776 2730/926/2776 2715/902/2776 +f 2708/904/2777 2707/927/2777 2723/928/2777 +f 2616/929/2778 2722/901/2778 2737/925/2778 +f 2715/902/2779 2731/930/2779 2716/906/2779 +f 2708/904/2780 2724/931/2780 2709/907/2780 +f 2716/906/2781 2732/915/2781 2717/908/2781 +f 2709/907/2782 2725/917/2782 2710/909/2782 +f 2737/925/2783 2751/932/2783 2752/933/2783 +f 2729/924/2784 2745/934/2784 2730/926/2784 +f 2723/928/2785 2707/935/2785 2738/936/2785 +f 2616/937/2786 2737/925/2786 2752/933/2786 +f 2730/926/2787 2746/938/2787 2731/930/2787 +f 2723/928/2788 2739/939/2788 2724/931/2788 +f 2731/930/2789 2747/940/2789 2732/915/2789 +f 2724/931/2790 2740/941/2790 2725/917/2790 +f 2733/916/2791 2747/940/2791 2748/942/2791 +f 2726/918/2792 2740/941/2792 2741/943/2792 +f 2734/919/2793 2748/942/2793 2749/944/2793 +f 2727/920/2794 2741/943/2794 2742/945/2794 +f 2734/919/2795 2750/946/2795 2735/921/2795 +f 2727/920/2796 2743/947/2796 2728/922/2796 +f 2736/923/2797 2750/946/2797 2751/932/2797 +f 2729/924/2798 2743/947/2798 2744/948/2798 +f 2741/943/2799 2755/949/2799 2756/950/2799 +f 2748/942/2800 2764/951/2800 2749/944/2800 +f 2742/945/2801 2756/950/2801 2757/952/2801 +f 2749/944/2802 2765/953/2802 2750/946/2802 +f 2742/945/2803 2758/954/2803 2743/947/2803 +f 2751/932/2804 2765/953/2804 2766/955/2804 +f 2744/948/2805 2758/954/2805 2759/956/2805 +f 2751/932/2806 2767/957/2806 2752/933/2806 +f 2744/948/2807 2760/958/2807 2745/934/2807 +f 2738/936/2808 2707/959/2808 2753/960/2808 +f 2616/961/2809 2752/933/2809 2767/957/2809 +f 2745/934/2810 2761/962/2810 2746/938/2810 +f 2739/939/2811 2753/960/2811 2754/963/2811 +f 2746/938/2812 2762/964/2812 2747/940/2812 +f 2739/939/2813 2755/949/2813 2740/941/2813 +f 2748/942/2814 2762/964/2814 2763/965/2814 +f 2759/956/2815 2775/966/2815 2760/958/2815 +f 2753/960/2816 2707/967/2816 2768/968/2816 +f 2616/969/2817 2767/957/2817 2782/970/2817 +f 2761/962/2818 2775/966/2818 2776/971/2818 +f 2754/963/2819 2768/968/2819 2769/972/2819 +f 2761/962/2820 2777/973/2820 2762/964/2820 +f 2754/963/2821 2770/974/2821 2755/949/2821 +f 2763/965/2822 2777/973/2822 2778/975/2822 +f 2756/950/2823 2770/974/2823 2771/976/2823 +f 2763/965/2824 2779/977/2824 2764/951/2824 +f 2756/950/2825 2772/978/2825 2757/952/2825 +f 2765/953/2826 2779/977/2826 2780/979/2826 +f 2757/952/2827 2773/980/2827 2758/954/2827 +f 2766/955/2828 2780/979/2828 2781/981/2828 +f 2759/956/2829 2773/980/2829 2774/982/2829 +f 2766/955/2830 2782/970/2830 2767/957/2830 +f 2778/983/2831 2794/984/2831 2779/985/2831 +f 2772/986/2832 2786/987/2832 2787/988/2832 +f 2779/985/2833 2795/989/2833 2780/990/2833 +f 2772/986/2834 2788/991/2834 2773/992/2834 +f 2781/993/2835 2795/989/2835 2796/994/2835 +f 2774/995/2836 2788/991/2836 2789/996/2836 +f 2781/993/2837 2797/997/2837 2782/998/2837 +f 2774/995/2838 2790/999/2838 2775/1000/2838 +f 2768/1001/2839 2707/1002/2839 2783/1003/2839 +f 2616/1004/2840 2782/998/2840 2797/997/2840 +f 2776/1005/2841 2790/999/2841 2791/1006/2841 +f 2769/1007/2842 2783/1003/2842 2784/1008/2842 +f 2776/1005/2843 2792/1009/2843 2777/1010/2843 +f 2769/1007/2844 2785/1011/2844 2770/1012/2844 +f 2778/983/2845 2792/1009/2845 2793/1013/2845 +f 2771/1014/2846 2785/1011/2846 2786/987/2846 +f 2783/1003/2847 2707/1015/2847 2798/1016/2847 +f 2616/1017/2848 2797/997/2848 2812/1018/2848 +f 2790/999/2849 2806/1019/2849 2791/1006/2849 +f 2783/1003/2850 2799/1020/2850 2784/1008/2850 +f 2791/1006/2851 2807/1021/2851 2792/1009/2851 +f 2784/1008/2852 2800/1022/2852 2785/1011/2852 +f 2793/1013/2853 2807/1021/2853 2808/1023/2853 +f 2786/987/2854 2800/1022/2854 2801/1024/2854 +f 2793/1013/2855 2809/1025/2855 2794/984/2855 +f 2786/987/2856 2802/1026/2856 2787/988/2856 +f 2794/984/2857 2810/1027/2857 2795/989/2857 +f 2787/988/2858 2803/1028/2858 2788/991/2858 +f 2796/994/2859 2810/1027/2859 2811/1029/2859 +f 2789/996/2860 2803/1028/2860 2804/1030/2860 +f 2796/994/2861 2812/1018/2861 2797/997/2861 +f 2789/996/2862 2805/1031/2862 2790/999/2862 +f 2802/1026/2863 2816/1032/2863 2817/1033/2863 +f 2809/1025/2864 2825/1034/2864 2810/1027/2864 +f 2802/1026/2865 2818/1035/2865 2803/1028/2865 +f 2811/1029/2866 2825/1034/2866 2826/1036/2866 +f 2804/1030/2867 2818/1035/2867 2819/1037/2867 +f 2811/1029/2868 2827/1038/2868 2812/1018/2868 +f 2804/1030/2869 2820/1039/2869 2805/1031/2869 +f 2798/1016/2870 2707/1040/2870 2813/1041/2870 +f 2616/1042/2871 2812/1018/2871 2827/1038/2871 +f 2806/1019/2872 2820/1039/2872 2821/1043/2872 +f 2798/1016/2873 2814/1044/2873 2799/1020/2873 +f 2806/1019/2874 2822/1045/2874 2807/1021/2874 +f 2800/1022/2875 2814/1044/2875 2815/1046/2875 +f 2808/1023/2876 2822/1045/2876 2823/1047/2876 +f 2801/1024/2877 2815/1046/2877 2816/1032/2877 +f 2808/1023/2878 2824/1048/2878 2809/1025/2878 +f 2821/1043/2879 2835/1049/2879 2836/1050/2879 +f 2813/1041/2880 2829/1051/2880 2814/1044/2880 +f 2821/1043/2881 2837/1052/2881 2822/1045/2881 +f 2814/1044/2882 2830/1053/2882 2815/1046/2882 +f 2823/1047/2883 2837/1052/2883 2838/1054/2883 +f 2815/1046/2884 2831/1055/2884 2816/1032/2884 +f 2823/1047/2885 2839/1056/2885 2824/1048/2885 +f 2817/1033/2886 2831/1055/2886 2832/1057/2886 +f 2824/1048/2887 2840/1058/2887 2825/1034/2887 +f 2817/1033/2888 2833/1059/2888 2818/1035/2888 +f 2825/1034/2889 2841/1060/2889 2826/1036/2889 +f 2819/1037/2890 2833/1059/2890 2834/1061/2890 +f 2826/1036/2891 2842/1062/2891 2827/1038/2891 +f 2819/1037/2892 2835/1049/2892 2820/1039/2892 +f 2813/1041/2893 2707/1063/2893 2828/1064/2893 +f 2616/1065/2894 2827/1038/2894 2842/1062/2894 +f 2840/1058/2895 2854/1066/2895 2855/1067/2895 +f 2832/1057/2896 2848/1068/2896 2833/1059/2896 +f 2840/1058/2897 2856/1069/2897 2841/1060/2897 +f 2834/1061/2898 2848/1068/2898 2849/1070/2898 +f 2841/1060/2899 2857/1071/2899 2842/1062/2899 +f 2835/1049/2900 2849/1070/2900 2850/1072/2900 +f 2828/1064/2901 2707/1073/2901 2843/1074/2901 +f 2616/1075/2902 2842/1062/2902 2857/1071/2902 +f 2835/1049/2903 2851/1076/2903 2836/1050/2903 +f 2828/1064/2904 2844/1077/2904 2829/1051/2904 +f 2836/1050/2905 2852/1078/2905 2837/1052/2905 +f 2829/1051/2906 2845/1079/2906 2830/1053/2906 +f 2838/1054/2907 2852/1078/2907 2853/1080/2907 +f 2830/1053/2908 2846/1081/2908 2831/1055/2908 +f 2838/1054/2909 2854/1066/2909 2839/1056/2909 +f 2832/1057/2910 2846/1081/2910 2847/1082/2910 +f 2851/1076/2911 2867/1083/2911 2852/1078/2911 +f 2845/1079/2912 2859/1084/2912 2860/1085/2912 +f 2853/1080/2913 2867/1083/2913 2868/1086/2913 +f 2846/1081/2914 2860/1085/2914 2861/1087/2914 +f 2853/1080/2915 2869/1088/2915 2854/1066/2915 +f 2847/1082/2916 2861/1087/2916 2862/1089/2916 +f 2854/1066/2917 2870/1090/2917 2855/1067/2917 +f 2847/1082/2918 2863/1091/2918 2848/1068/2918 +f 2855/1067/2919 2871/1092/2919 2856/1069/2919 +f 2849/1070/2920 2863/1091/2920 2864/1093/2920 +f 2856/1069/2921 2872/1094/2921 2857/1071/2921 +f 2849/1070/2922 2865/1095/2922 2850/1072/2922 +f 2843/1074/2923 2707/1096/2923 2858/1097/2923 +f 2616/1098/2924 2857/1071/2924 2872/1094/2924 +f 2850/1072/2925 2866/1099/2925 2851/1076/2925 +f 2844/1077/2926 2858/1097/2926 2859/1084/2926 +f 2870/1090/2927 2886/1100/2927 2871/1092/2927 +f 2864/1093/2928 2878/1101/2928 2879/1102/2928 +f 2872/1094/2929 2886/1100/2929 2887/1103/2929 +f 2864/1093/2930 2880/1104/2930 2865/1095/2930 +f 2858/1097/2931 2707/1105/2931 2873/1106/2931 +f 2616/1107/2932 2872/1094/2932 2887/1103/2932 +f 2865/1095/2933 2881/1108/2933 2866/1099/2933 +f 2858/1097/2934 2874/1109/2934 2859/1084/2934 +f 2866/1099/2935 2882/1110/2935 2867/1083/2935 +f 2859/1084/2936 2875/1111/2936 2860/1085/2936 +f 2868/1086/2937 2882/1110/2937 2883/1112/2937 +f 2860/1085/2938 2876/1113/2938 2861/1087/2938 +f 2868/1086/2939 2884/1114/2939 2869/1088/2939 +f 2862/1089/2940 2876/1113/2940 2877/1115/2940 +f 2869/1088/2941 2885/1116/2941 2870/1090/2941 +f 2862/1089/2942 2878/1101/2942 2863/1091/2942 +f 2875/1111/2943 2412/591/2943 2413/563/2943 +f 2883/1112/2944 2888/562/2944 2889/567/2944 +f 2876/1113/2945 2413/563/2945 2414/569/2945 +f 2883/1112/2946 2890/571/2946 2884/1114/2946 +f 2877/1115/2947 2414/569/2947 2415/573/2947 +f 2884/1114/2948 2420/575/2948 2885/1116/2948 +f 2878/1101/2949 2415/573/2949 2416/577/2949 +f 2885/1116/2950 2891/579/2950 2886/1100/2950 +f 2879/1102/2951 2416/577/2951 2417/581/2951 +f 2886/1100/2952 2892/583/2952 2887/1103/2952 +f 2880/1104/2953 2417/581/2953 2418/585/2953 +f 2873/1106/2954 2707/1117/2954 2411/586/2954 +f 2616/1118/2955 2887/1103/2955 2892/583/2955 +f 2880/1104/2956 2419/560/2956 2881/1108/2956 +f 2874/1109/2957 2411/586/2957 2412/591/2957 +f 2881/1108/2958 2888/562/2958 2882/1110/2958 +f 2419/560/2447 2429/590/2447 2430/561/2447 +f 2413/563/2448 2412/591/2448 2422/564/2448 +f 2888/562/2449 2430/561/2449 2431/566/2449 +f 2413/563/2450 2423/565/2450 2424/568/2450 +f 2889/567/2451 2431/566/2451 2432/570/2451 +f 2414/569/2452 2424/568/2452 2425/572/2452 +f 2890/571/2453 2432/570/2453 2433/574/2453 +f 2415/573/2454 2425/572/2454 2426/576/2454 +f 2420/575/2455 2433/574/2455 2434/578/2455 +f 2416/577/2456 2426/576/2456 2427/580/2456 +f 2891/579/2457 2434/578/2457 2435/582/2457 +f 2417/581/2458 2427/580/2458 2428/584/2458 +f 2418/585/2461 2428/584/2461 2429/590/2461 +f 2411/586/2462 2421/588/2462 2422/564/2462 +f 2429/590/2464 2428/584/2464 2443/594/2464 +f 2421/588/2465 2436/608/2465 2437/596/2465 +f 2430/561/2466 2429/590/2466 2444/595/2466 +f 2422/564/2467 2437/596/2467 2438/598/2467 +f 2430/561/2468 2445/597/2468 2446/599/2468 +f 2423/565/2469 2438/598/2469 2439/600/2469 +f 2432/570/2470 2431/566/2470 2446/599/2470 +f 2424/568/2471 2439/600/2471 2440/602/2471 +f 2432/570/2472 2447/601/2472 2448/603/2472 +f 2425/572/2473 2440/602/2473 2441/604/2473 +f 2433/574/2474 2448/603/2474 2449/605/2474 +f 2426/576/2475 2441/604/2475 2442/606/2475 +f 2434/578/2476 2449/605/2476 2450/593/2476 +f 2427/580/2477 2442/606/2477 2443/594/2477 +f 2447/601/2479 2462/624/2479 2463/609/2479 +f 2440/602/2480 2455/625/2480 2456/610/2480 +f 2448/603/2481 2463/609/2481 2464/611/2481 +f 2442/606/2482 2441/604/2482 2456/610/2482 +f 2449/605/2483 2464/611/2483 2465/613/2483 +f 2442/606/2484 2457/612/2484 2458/614/2484 +f 2443/594/2487 2458/614/2487 2459/618/2487 +f 2436/608/2488 2451/616/2488 2452/619/2488 +f 2444/595/2489 2459/618/2489 2460/620/2489 +f 2437/596/2490 2452/619/2490 2453/621/2490 +f 2446/599/2491 2445/597/2491 2460/620/2491 +f 2438/598/2492 2453/621/2492 2454/623/2492 +f 2447/601/2493 2446/599/2493 2461/622/2493 +f 2439/600/2494 2454/623/2494 2455/625/2494 +f 2451/616/2959 2466/640/2959 2467/626/2959 +f 2459/618/2496 2474/642/2496 2475/627/2496 +f 2452/619/2497 2467/626/2497 2468/628/2497 +f 2461/622/2498 2460/620/2498 2475/627/2498 +f 2453/621/2499 2468/628/2499 2469/630/2499 +f 2461/622/2500 2476/629/2500 2477/631/2500 +f 2454/623/2501 2469/630/2501 2470/632/2501 +f 2462/624/2502 2477/631/2502 2478/633/2502 +f 2455/625/2503 2470/632/2503 2471/634/2503 +f 2463/609/2504 2478/633/2504 2479/635/2504 +f 2456/610/2505 2471/634/2505 2472/636/2505 +f 2464/611/2506 2479/635/2506 2480/637/2506 +f 2458/614/2507 2457/612/2507 2472/636/2507 +f 2458/614/2510 2473/638/2510 2474/642/2510 +f 2470/632/2511 2485/659/2511 2486/643/2511 +f 2479/635/2512 2478/633/2512 2493/644/2512 +f 2471/634/2513 2486/643/2513 2487/646/2513 +f 2479/635/2514 2494/645/2514 2495/647/2514 +f 2473/638/2515 2472/636/2515 2487/646/2515 +f 2473/638/2518 2488/648/2518 2489/652/2518 +f 2466/640/2519 2481/650/2519 2482/653/2519 +f 2474/642/2520 2489/652/2520 2490/654/2520 +f 2467/626/2521 2482/653/2521 2483/655/2521 +f 2476/629/2522 2475/627/2522 2490/654/2522 +f 2468/628/2523 2483/655/2523 2484/657/2523 +f 2476/629/2524 2491/656/2524 2492/658/2524 +f 2470/632/2525 2469/630/2525 2484/657/2525 +f 2478/633/2526 2477/631/2526 2492/658/2526 +f 2489/652/2527 2504/675/2527 2505/660/2527 +f 2482/653/2528 2497/676/2528 2498/661/2528 +f 2491/656/2529 2490/654/2529 2505/660/2529 +f 2483/655/2530 2498/661/2530 2499/663/2530 +f 2492/658/2531 2491/656/2531 2506/662/2531 +f 2485/659/2532 2484/657/2532 2499/663/2532 +f 2492/658/2533 2507/664/2533 2508/666/2533 +f 2485/659/2534 2500/665/2534 2501/667/2534 +f 2494/645/2535 2493/644/2535 2508/666/2535 +f 2487/646/2536 2486/643/2536 2501/667/2536 +f 2494/645/2537 2509/668/2537 2510/670/2537 +f 2487/646/2538 2502/669/2538 2503/671/2538 +f 2488/648/2541 2503/671/2541 2504/675/2541 +f 2481/650/2542 2496/673/2542 2497/676/2542 +f 2508/666/2543 2523/693/2543 2524/677/2543 +f 2502/669/2544 2501/667/2544 2516/678/2544 +f 2510/670/2545 2509/668/2545 2524/677/2545 +f 2502/669/2546 2517/679/2546 2518/681/2546 +f 2503/671/2549 2518/681/2549 2519/685/2549 +f 2496/673/2550 2511/683/2550 2512/686/2550 +f 2504/675/2551 2519/685/2551 2520/687/2551 +f 2497/676/2552 2512/686/2552 2513/688/2552 +f 2506/662/2553 2505/660/2553 2520/687/2553 +f 2499/663/2554 2498/661/2554 2513/688/2554 +f 2507/664/2555 2506/662/2555 2521/689/2555 +f 2499/663/2556 2514/690/2556 2515/692/2556 +f 2507/664/2557 2522/691/2557 2523/693/2557 +f 2500/665/2558 2515/692/2558 2516/678/2558 +f 2512/686/2559 2527/710/2559 2528/694/2559 +f 2521/689/2560 2520/687/2560 2535/695/2560 +f 2513/688/2561 2528/694/2561 2529/697/2561 +f 2521/689/2562 2536/696/2562 2537/698/2562 +f 2514/690/2563 2529/697/2563 2530/699/2563 +f 2523/693/2564 2522/691/2564 2537/698/2564 +f 2515/692/2565 2530/699/2565 2531/701/2565 +f 2524/677/2566 2523/693/2566 2538/700/2566 +f 2517/679/2567 2516/678/2567 2531/701/2567 +f 2525/680/2568 2524/677/2568 2539/702/2568 +f 2517/679/2569 2532/703/2569 2533/705/2569 +f 2519/685/2572 2518/681/2572 2533/705/2572 +f 2511/683/2573 2526/707/2573 2527/710/2573 +f 2519/685/2574 2534/709/2574 2535/695/2574 +f 2532/703/2575 2531/701/2575 2546/711/2575 +f 2540/704/2576 2539/702/2576 2554/713/2576 +f 2532/703/2577 2547/712/2577 2548/715/2577 +f 2533/705/2580 2548/715/2580 2549/719/2580 +f 2527/710/2581 2526/707/2581 2541/717/2581 +f 2534/709/2582 2549/719/2582 2550/721/2582 +f 2527/710/2583 2542/720/2583 2543/722/2583 +f 2536/696/2584 2535/695/2584 2550/721/2584 +f 2528/694/2585 2543/722/2585 2544/724/2585 +f 2536/696/2586 2551/723/2586 2552/725/2586 +f 2530/699/2587 2529/697/2587 2544/724/2587 +f 2538/700/2588 2537/698/2588 2552/725/2588 +f 2530/699/2589 2545/726/2589 2546/711/2589 +f 2538/700/2590 2553/727/2590 2554/713/2590 +f 2551/723/2591 2550/721/2591 2565/728/2591 +f 2543/722/2592 2558/744/2592 2559/730/2592 +f 2551/723/2593 2566/729/2593 2567/731/2593 +f 2544/724/2594 2559/730/2594 2560/732/2594 +f 2552/725/2595 2567/731/2595 2568/733/2595 +f 2545/726/2596 2560/732/2596 2561/734/2596 +f 2554/713/2597 2553/727/2597 2568/733/2597 +f 2547/712/2598 2546/711/2598 2561/734/2598 +f 2554/713/2599 2569/735/2599 2570/737/2599 +f 2547/712/2600 2562/736/2600 2563/738/2600 +f 2548/715/2603 2563/738/2603 2564/742/2603 +f 2541/717/2604 2556/740/2604 2557/743/2604 +f 2549/719/2605 2564/742/2605 2565/728/2605 +f 2543/722/2606 2542/720/2606 2557/743/2606 +f 2569/735/2607 2584/760/2607 2585/745/2607 +f 2562/736/2608 2577/761/2608 2578/746/2608 +f 2564/742/2611 2563/738/2611 2578/746/2611 +f 2556/740/2612 2571/748/2612 2572/751/2612 +f 2564/742/2613 2579/750/2613 2580/752/2613 +f 2557/743/2614 2572/751/2614 2573/753/2614 +f 2566/729/2615 2565/728/2615 2580/752/2615 +f 2558/744/2616 2573/753/2616 2574/755/2616 +f 2566/729/2617 2581/754/2617 2582/756/2617 +f 2560/732/2618 2559/730/2618 2574/755/2618 +f 2568/733/2619 2567/731/2619 2582/756/2619 +f 2560/732/2620 2575/757/2620 2576/759/2620 +f 2568/733/2621 2583/758/2621 2584/760/2621 +f 2562/736/2622 2561/734/2622 2576/759/2622 +f 2581/754/2623 2596/777/2623 2597/762/2623 +f 2574/755/2624 2589/778/2624 2590/763/2624 +f 2583/758/2625 2582/756/2625 2597/762/2625 +f 2575/757/2626 2590/763/2626 2591/765/2626 +f 2583/758/2627 2598/764/2627 2599/766/2627 +f 2577/761/2628 2576/759/2628 2591/765/2628 +f 2585/745/2629 2584/760/2629 2599/766/2629 +f 2577/761/2630 2592/767/2630 2593/769/2630 +f 2578/746/2633 2593/769/2633 2594/773/2633 +f 2571/748/2634 2586/771/2634 2587/774/2634 +f 2579/750/2635 2594/773/2635 2595/775/2635 +f 2572/751/2636 2587/774/2636 2588/776/2636 +f 2580/752/2637 2595/775/2637 2596/777/2637 +f 2573/753/2638 2588/776/2638 2589/778/2638 +f 2594/773/2641 2593/769/2641 2608/783/2641 +f 2586/771/2642 2601/780/2642 2602/785/2642 +f 2594/773/2643 2609/784/2643 2610/786/2643 +f 2587/774/2644 2602/785/2644 2603/787/2644 +f 2596/777/2645 2595/775/2645 2610/786/2645 +f 2589/778/2646 2588/776/2646 2603/787/2646 +f 2596/777/2647 2611/788/2647 2612/790/2647 +f 2590/763/2648 2589/778/2648 2604/789/2648 +f 2598/764/2649 2597/762/2649 2612/790/2649 +f 2590/763/2650 2605/791/2650 2606/793/2650 +f 2598/764/2651 2613/792/2651 2614/794/2651 +f 2592/767/2652 2591/765/2652 2606/793/2652 +f 2600/768/2653 2599/766/2653 2614/794/2653 +f 2592/767/2654 2607/795/2654 2608/783/2654 +f 2604/789/2655 2620/812/2655 2621/796/2655 +f 2613/792/2656 2612/790/2656 2628/797/2656 +f 2605/791/2657 2621/796/2657 2622/799/2657 +f 2613/792/2658 2629/798/2658 2630/800/2658 +f 2607/795/2659 2606/793/2659 2622/799/2659 +f 2614/794/2660 2630/800/2660 2631/802/2660 +f 2607/795/2661 2623/801/2661 2624/803/2661 +f 2608/783/2664 2624/803/2664 2625/807/2664 +f 2601/780/2665 2617/805/2665 2618/808/2665 +f 2609/784/2666 2625/807/2666 2626/809/2666 +f 2603/787/2667 2602/785/2667 2618/808/2667 +f 2611/788/2668 2610/786/2668 2626/809/2668 +f 2603/787/2669 2619/810/2669 2620/812/2669 +f 2611/788/2670 2627/811/2670 2628/797/2670 +f 2624/803/2671 2639/826/2671 2640/813/2671 +f 2617/805/2672 2632/828/2672 2633/814/2672 +f 2625/807/2673 2640/813/2673 2641/815/2673 +f 2618/808/2674 2633/814/2674 2634/816/2674 +f 2627/811/2675 2626/809/2675 2641/815/2675 +f 2619/810/2676 2634/816/2676 2635/818/2676 +f 2627/811/2677 2642/817/2677 2643/819/2677 +f 2620/812/2678 2635/818/2678 2636/820/2678 +f 2628/797/2679 2643/819/2679 2644/821/2679 +f 2621/796/2680 2636/820/2680 2637/822/2680 +f 2629/798/2681 2644/821/2681 2645/823/2681 +f 2623/801/2682 2622/799/2682 2637/822/2682 +f 2631/802/2683 2630/800/2683 2645/823/2683 +f 2623/801/2960 2638/824/2960 2639/826/2960 +f 2644/821/2687 2643/819/2687 2658/830/2687 +f 2636/820/2688 2651/846/2688 2652/832/2688 +f 2644/821/2689 2659/831/2689 2660/833/2689 +f 2638/824/2690 2637/822/2690 2652/832/2690 +f 2646/825/2691 2645/823/2691 2660/833/2691 +f 2638/824/2692 2653/834/2692 2654/836/2692 +f 2639/826/2695 2654/836/2695 2655/840/2695 +f 2632/828/2696 2647/838/2696 2648/841/2696 +f 2640/813/2697 2655/840/2697 2656/842/2697 +f 2634/816/2698 2633/814/2698 2648/841/2698 +f 2642/817/2699 2641/815/2699 2656/842/2699 +f 2635/818/2700 2634/816/2700 2649/843/2700 +f 2642/817/2701 2657/844/2701 2658/830/2701 +f 2635/818/2702 2650/845/2702 2651/846/2702 +f 2647/838/2703 2662/861/2703 2663/847/2703 +f 2655/840/2704 2670/863/2704 2671/848/2704 +f 2648/841/2705 2663/847/2705 2664/849/2705 +f 2657/844/2706 2656/842/2706 2671/848/2706 +f 2650/845/2707 2649/843/2707 2664/849/2707 +f 2657/844/2708 2672/850/2708 2673/852/2708 +f 2651/846/2709 2650/845/2709 2665/851/2709 +f 2658/830/2710 2673/852/2710 2674/854/2710 +f 2651/846/2711 2666/853/2711 2667/855/2711 +f 2659/831/2712 2674/854/2712 2675/856/2712 +f 2653/834/2713 2652/832/2713 2667/855/2713 +f 2660/833/2714 2675/856/2714 2676/858/2714 +f 2653/834/2715 2668/857/2715 2669/859/2715 +f 2654/836/2718 2669/859/2718 2670/863/2718 +f 2666/853/2719 2681/880/2719 2682/864/2719 +f 2675/856/2720 2674/854/2720 2689/865/2720 +f 2668/857/2721 2667/855/2721 2682/864/2721 +f 2676/858/2722 2675/856/2722 2690/866/2722 +f 2668/857/2961 2683/867/2961 2684/869/2961 +f 2670/863/2962 2669/859/2962 2684/869/2962 +f 2662/861/2727 2677/871/2727 2678/874/2727 +f 2670/863/2728 2685/873/2728 2686/875/2728 +f 2663/847/2729 2678/874/2729 2679/876/2729 +f 2672/850/2730 2671/848/2730 2686/875/2730 +f 2665/851/2731 2664/849/2731 2679/876/2731 +f 2672/850/2732 2687/877/2732 2688/879/2732 +f 2666/853/2733 2665/851/2733 2680/878/2733 +f 2673/852/2734 2688/879/2734 2689/865/2734 +f 2685/873/2735 2700/896/2735 2701/881/2735 +f 2678/874/2736 2693/897/2736 2694/882/2736 +f 2687/877/2737 2686/875/2737 2701/881/2737 +f 2679/876/2738 2694/882/2738 2695/884/2738 +f 2687/877/2739 2702/883/2739 2703/885/2739 +f 2681/880/2740 2680/878/2740 2695/884/2740 +f 2689/865/2741 2688/879/2741 2703/885/2741 +f 2681/880/2742 2696/886/2742 2697/888/2742 +f 2689/865/2743 2704/887/2743 2705/889/2743 +f 2683/867/2744 2682/864/2744 2697/888/2744 +f 2691/868/2745 2690/866/2745 2705/889/2745 +f 2683/867/2746 2698/890/2746 2699/892/2746 +f 2684/869/2749 2699/892/2749 2700/896/2749 +f 2677/871/2750 2692/894/2750 2693/897/2750 +f 2704/887/2751 2720/914/2751 2721/898/2751 +f 2698/890/2752 2697/888/2752 2713/899/2752 +f 2705/889/2963 2721/898/2963 2722/901/2963 +f 2699/892/2754 2698/890/2754 2714/900/2754 +f 2699/892/2757 2715/902/2757 2716/906/2757 +f 2692/894/2964 2708/904/2964 2709/907/2964 +f 2700/896/2759 2716/906/2759 2717/908/2759 +f 2693/897/2760 2709/907/2760 2710/909/2760 +f 2702/883/2761 2701/881/2761 2717/908/2761 +f 2695/884/2762 2694/882/2762 2710/909/2762 +f 2702/883/2763 2718/910/2763 2719/912/2763 +f 2696/886/2764 2695/884/2764 2711/911/2764 +f 2703/885/2765 2719/912/2765 2720/914/2765 +f 2696/886/2766 2712/913/2766 2713/899/2766 +f 2718/910/2767 2717/908/2767 2732/915/2767 +f 2711/911/2768 2710/909/2768 2725/917/2768 +f 2718/910/2769 2733/916/2769 2734/919/2769 +f 2712/913/2770 2711/911/2770 2726/918/2770 +f 2719/912/2771 2734/919/2771 2735/921/2771 +f 2712/913/2772 2727/920/2772 2728/922/2772 +f 2721/898/2773 2720/914/2773 2735/921/2773 +f 2714/900/2774 2713/899/2774 2728/922/2774 +f 2721/898/2775 2736/923/2775 2737/925/2775 +f 2714/900/2776 2729/924/2776 2730/926/2776 +f 2715/902/2779 2730/926/2779 2731/930/2779 +f 2708/904/2780 2723/928/2780 2724/931/2780 +f 2716/906/2781 2731/930/2781 2732/915/2781 +f 2709/907/2782 2724/931/2782 2725/917/2782 +f 2737/925/2783 2736/923/2783 2751/932/2783 +f 2729/924/2784 2744/948/2784 2745/934/2784 +f 2730/926/2787 2745/934/2787 2746/938/2787 +f 2723/928/2788 2738/936/2788 2739/939/2788 +f 2731/930/2789 2746/938/2789 2747/940/2789 +f 2724/931/2790 2739/939/2790 2740/941/2790 +f 2733/916/2791 2732/915/2791 2747/940/2791 +f 2726/918/2792 2725/917/2792 2740/941/2792 +f 2734/919/2793 2733/916/2793 2748/942/2793 +f 2727/920/2794 2726/918/2794 2741/943/2794 +f 2734/919/2795 2749/944/2795 2750/946/2795 +f 2727/920/2796 2742/945/2796 2743/947/2796 +f 2736/923/2797 2735/921/2797 2750/946/2797 +f 2729/924/2798 2728/922/2798 2743/947/2798 +f 2741/943/2799 2740/941/2799 2755/949/2799 +f 2748/942/2800 2763/965/2800 2764/951/2800 +f 2742/945/2801 2741/943/2801 2756/950/2801 +f 2749/944/2802 2764/951/2802 2765/953/2802 +f 2742/945/2803 2757/952/2803 2758/954/2803 +f 2751/932/2804 2750/946/2804 2765/953/2804 +f 2744/948/2805 2743/947/2805 2758/954/2805 +f 2751/932/2806 2766/955/2806 2767/957/2806 +f 2744/948/2807 2759/956/2807 2760/958/2807 +f 2745/934/2810 2760/958/2810 2761/962/2810 +f 2739/939/2811 2738/936/2811 2753/960/2811 +f 2746/938/2812 2761/962/2812 2762/964/2812 +f 2739/939/2813 2754/963/2813 2755/949/2813 +f 2748/942/2814 2747/940/2814 2762/964/2814 +f 2759/956/2815 2774/982/2815 2775/966/2815 +f 2761/962/2818 2760/958/2818 2775/966/2818 +f 2754/963/2819 2753/960/2819 2768/968/2819 +f 2761/962/2820 2776/971/2820 2777/973/2820 +f 2754/963/2821 2769/972/2821 2770/974/2821 +f 2763/965/2822 2762/964/2822 2777/973/2822 +f 2756/950/2823 2755/949/2823 2770/974/2823 +f 2763/965/2824 2778/975/2824 2779/977/2824 +f 2756/950/2825 2771/976/2825 2772/978/2825 +f 2765/953/2826 2764/951/2826 2779/977/2826 +f 2757/952/2827 2772/978/2827 2773/980/2827 +f 2766/955/2828 2765/953/2828 2780/979/2828 +f 2759/956/2829 2758/954/2829 2773/980/2829 +f 2766/955/2830 2781/981/2830 2782/970/2830 +f 2778/983/2831 2793/1013/2831 2794/984/2831 +f 2772/986/2832 2771/1014/2832 2786/987/2832 +f 2779/985/2833 2794/984/2833 2795/989/2833 +f 2772/986/2834 2787/988/2834 2788/991/2834 +f 2781/993/2835 2780/990/2835 2795/989/2835 +f 2774/995/2836 2773/992/2836 2788/991/2836 +f 2781/993/2837 2796/994/2837 2797/997/2837 +f 2774/995/2838 2789/996/2838 2790/999/2838 +f 2776/1005/2841 2775/1000/2841 2790/999/2841 +f 2769/1007/2842 2768/1001/2842 2783/1003/2842 +f 2776/1005/2843 2791/1006/2843 2792/1009/2843 +f 2769/1007/2844 2784/1008/2844 2785/1011/2844 +f 2778/983/2845 2777/1010/2845 2792/1009/2845 +f 2771/1014/2846 2770/1012/2846 2785/1011/2846 +f 2790/999/2849 2805/1031/2849 2806/1019/2849 +f 2783/1003/2850 2798/1016/2850 2799/1020/2850 +f 2791/1006/2851 2806/1019/2851 2807/1021/2851 +f 2784/1008/2852 2799/1020/2852 2800/1022/2852 +f 2793/1013/2853 2792/1009/2853 2807/1021/2853 +f 2786/987/2854 2785/1011/2854 2800/1022/2854 +f 2793/1013/2855 2808/1023/2855 2809/1025/2855 +f 2786/987/2856 2801/1024/2856 2802/1026/2856 +f 2794/984/2857 2809/1025/2857 2810/1027/2857 +f 2787/988/2965 2802/1026/2965 2803/1028/2965 +f 2796/994/2859 2795/989/2859 2810/1027/2859 +f 2789/996/2860 2788/991/2860 2803/1028/2860 +f 2796/994/2861 2811/1029/2861 2812/1018/2861 +f 2789/996/2862 2804/1030/2862 2805/1031/2862 +f 2802/1026/2863 2801/1024/2863 2816/1032/2863 +f 2809/1025/2864 2824/1048/2864 2825/1034/2864 +f 2802/1026/2865 2817/1033/2865 2818/1035/2865 +f 2811/1029/2866 2810/1027/2866 2825/1034/2866 +f 2804/1030/2867 2803/1028/2867 2818/1035/2867 +f 2811/1029/2868 2826/1036/2868 2827/1038/2868 +f 2804/1030/2869 2819/1037/2869 2820/1039/2869 +f 2806/1019/2872 2805/1031/2872 2820/1039/2872 +f 2798/1016/2873 2813/1041/2873 2814/1044/2873 +f 2806/1019/2874 2821/1043/2874 2822/1045/2874 +f 2800/1022/2875 2799/1020/2875 2814/1044/2875 +f 2808/1023/2876 2807/1021/2876 2822/1045/2876 +f 2801/1024/2877 2800/1022/2877 2815/1046/2877 +f 2808/1023/2878 2823/1047/2878 2824/1048/2878 +f 2821/1043/2879 2820/1039/2879 2835/1049/2879 +f 2813/1041/2880 2828/1064/2880 2829/1051/2880 +f 2821/1043/2881 2836/1050/2881 2837/1052/2881 +f 2814/1044/2882 2829/1051/2882 2830/1053/2882 +f 2823/1047/2883 2822/1045/2883 2837/1052/2883 +f 2815/1046/2884 2830/1053/2884 2831/1055/2884 +f 2823/1047/2885 2838/1054/2885 2839/1056/2885 +f 2817/1033/2886 2816/1032/2886 2831/1055/2886 +f 2824/1048/2887 2839/1056/2887 2840/1058/2887 +f 2817/1033/2888 2832/1057/2888 2833/1059/2888 +f 2825/1034/2889 2840/1058/2889 2841/1060/2889 +f 2819/1037/2890 2818/1035/2890 2833/1059/2890 +f 2826/1036/2891 2841/1060/2891 2842/1062/2891 +f 2819/1037/2892 2834/1061/2892 2835/1049/2892 +f 2840/1058/2895 2839/1056/2895 2854/1066/2895 +f 2832/1057/2896 2847/1082/2896 2848/1068/2896 +f 2840/1058/2897 2855/1067/2897 2856/1069/2897 +f 2834/1061/2898 2833/1059/2898 2848/1068/2898 +f 2841/1060/2899 2856/1069/2899 2857/1071/2899 +f 2835/1049/2900 2834/1061/2900 2849/1070/2900 +f 2835/1049/2903 2850/1072/2903 2851/1076/2903 +f 2828/1064/2904 2843/1074/2904 2844/1077/2904 +f 2836/1050/2905 2851/1076/2905 2852/1078/2905 +f 2829/1051/2906 2844/1077/2906 2845/1079/2906 +f 2838/1054/2907 2837/1052/2907 2852/1078/2907 +f 2830/1053/2908 2845/1079/2908 2846/1081/2908 +f 2838/1054/2909 2853/1080/2909 2854/1066/2909 +f 2832/1057/2910 2831/1055/2910 2846/1081/2910 +f 2851/1076/2911 2866/1099/2911 2867/1083/2911 +f 2845/1079/2912 2844/1077/2912 2859/1084/2912 +f 2853/1080/2913 2852/1078/2913 2867/1083/2913 +f 2846/1081/2914 2845/1079/2914 2860/1085/2914 +f 2853/1080/2915 2868/1086/2915 2869/1088/2915 +f 2847/1082/2916 2846/1081/2916 2861/1087/2916 +f 2854/1066/2917 2869/1088/2917 2870/1090/2917 +f 2847/1082/2918 2862/1089/2918 2863/1091/2918 +f 2855/1067/2919 2870/1090/2919 2871/1092/2919 +f 2849/1070/2920 2848/1068/2920 2863/1091/2920 +f 2856/1069/2921 2871/1092/2921 2872/1094/2921 +f 2849/1070/2922 2864/1093/2922 2865/1095/2922 +f 2850/1072/2925 2865/1095/2925 2866/1099/2925 +f 2844/1077/2926 2843/1074/2926 2858/1097/2926 +f 2870/1090/2927 2885/1116/2927 2886/1100/2927 +f 2864/1093/2928 2863/1091/2928 2878/1101/2928 +f 2872/1094/2929 2871/1092/2929 2886/1100/2929 +f 2864/1093/2930 2879/1102/2930 2880/1104/2930 +f 2865/1095/2933 2880/1104/2933 2881/1108/2933 +f 2858/1097/2934 2873/1106/2934 2874/1109/2934 +f 2866/1099/2935 2881/1108/2935 2882/1110/2935 +f 2859/1084/2936 2874/1109/2936 2875/1111/2936 +f 2868/1086/2937 2867/1083/2937 2882/1110/2937 +f 2860/1085/2938 2875/1111/2938 2876/1113/2938 +f 2868/1086/2939 2883/1112/2939 2884/1114/2939 +f 2862/1089/2940 2861/1087/2940 2876/1113/2940 +f 2869/1088/2941 2884/1114/2941 2885/1116/2941 +f 2862/1089/2942 2877/1115/2942 2878/1101/2942 +f 2875/1111/2943 2874/1109/2943 2412/591/2943 +f 2883/1112/2944 2882/1110/2944 2888/562/2944 +f 2876/1113/2945 2875/1111/2945 2413/563/2945 +f 2883/1112/2946 2889/567/2946 2890/571/2946 +f 2877/1115/2947 2876/1113/2947 2414/569/2947 +f 2884/1114/2948 2890/571/2948 2420/575/2948 +f 2878/1101/2949 2877/1115/2949 2415/573/2949 +f 2885/1116/2950 2420/575/2950 2891/579/2950 +f 2879/1102/2951 2878/1101/2951 2416/577/2951 +f 2886/1100/2952 2891/579/2952 2892/583/2952 +f 2880/1104/2953 2879/1102/2953 2417/581/2953 +f 2880/1104/2956 2418/585/2956 2419/560/2956 +f 2874/1109/2957 2873/1106/2957 2411/586/2957 +f 2881/1108/2958 2419/560/2958 2888/562/2958 diff --git a/load/tets/128_tets.npz b/load/tets/128_tets.npz new file mode 100644 index 0000000..2ea2f1d Binary files /dev/null and b/load/tets/128_tets.npz differ diff --git a/load/tets/32_tets.npz b/load/tets/32_tets.npz new file mode 100644 index 0000000..54f7ea5 Binary files /dev/null and b/load/tets/32_tets.npz differ diff --git a/load/tets/64_tets.npz b/load/tets/64_tets.npz new file mode 100644 index 0000000..ec37c89 Binary files /dev/null and b/load/tets/64_tets.npz differ diff --git a/load/tets/generate_tets.py b/load/tets/generate_tets.py new file mode 100644 index 0000000..424d852 --- /dev/null +++ b/load/tets/generate_tets.py @@ -0,0 +1,58 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os + +import numpy as np + +""" +This code segment shows how to use Quartet: https://github.com/crawforddoran/quartet, +to generate a tet grid +1) Download, compile and run Quartet as described in the link above. Example usage `quartet meshes/cube.obj 0.5 cube_5.tet` +2) Run the function below to generate a file `cube_32_tet.tet` +""" + + +def generate_tetrahedron_grid_file(res=32, root=".."): + frac = 1.0 / res + command = f"cd {root}; ./quartet meshes/cube.obj {frac} meshes/cube_{res}_tet.tet -s meshes/cube_boundary_{res}.obj" + os.system(command) + + +""" +This code segment shows how to convert from a quartet .tet file to compressed npz file +""" + + +def convert_from_quartet_to_npz(quartetfile="cube_32_tet.tet", npzfile="32_tets"): + file1 = open(quartetfile, "r") + header = file1.readline() + numvertices = int(header.split(" ")[1]) + numtets = int(header.split(" ")[2]) + print(numvertices, numtets) + + # load vertices + vertices = np.loadtxt(quartetfile, skiprows=1, max_rows=numvertices) + print(vertices.shape) + + # load indices + indices = np.loadtxt( + quartetfile, dtype=int, skiprows=1 + numvertices, max_rows=numtets + ) + print(indices.shape) + + np.savez_compressed(npzfile, vertices=vertices, indices=indices) + + +root = "/home/gyc/quartet" +for res in [300, 350, 400]: + generate_tetrahedron_grid_file(res, root) + convert_from_quartet_to_npz( + os.path.join(root, f"meshes/cube_{res}_tet.tet"), npzfile=f"{res}_tets" + ) diff --git a/load/zero123/download.sh b/load/zero123/download.sh new file mode 100644 index 0000000..169676b --- /dev/null +++ b/load/zero123/download.sh @@ -0,0 +1,4 @@ +# wget https://huggingface.co/cvlab/zero123-weights/resolve/main/105000.ckpt +# mv 105000.ckpt zero123-original.ckpt +wget https://zero123.cs.columbia.edu/assets/zero123-xl.ckpt +# Download stable_zero123.ckpt from https://huggingface.co/stabilityai/stable-zero123 diff --git a/load/zero123/sd-objaverse-finetune-c_concat-256.yaml b/load/zero123/sd-objaverse-finetune-c_concat-256.yaml new file mode 100755 index 0000000..f139178 --- /dev/null +++ b/load/zero123/sd-objaverse-finetune-c_concat-256.yaml @@ -0,0 +1,118 @@ +model: + base_learning_rate: 1.0e-04 + target: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "image_target" + cond_stage_key: "image_cond" + image_size: 32 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: hybrid + monitor: val/loss_simple_ema + scale_factor: 0.18215 + + scheduler_config: # 10000 warmup steps + target: extern.ldm_zero123.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 100 ] + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: extern.ldm_zero123.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 8 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + use_fp16: True + + first_stage_config: + target: extern.ldm_zero123.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: extern.ldm_zero123.modules.encoders.modules.FrozenCLIPImageEmbedder + + +# data: +# target: extern.ldm_zero123.data.simple.ObjaverseDataModuleFromConfig +# params: +# root_dir: 'views_whole_sphere' +# batch_size: 192 +# num_workers: 16 +# total_view: 4 +# train: +# validation: False +# image_transforms: +# size: 256 + +# validation: +# validation: True +# image_transforms: +# size: 256 + + +# lightning: +# find_unused_parameters: false +# metrics_over_trainsteps_checkpoint: True +# modelcheckpoint: +# params: +# every_n_train_steps: 5000 +# callbacks: +# image_logger: +# target: main.ImageLogger +# params: +# batch_frequency: 500 +# max_images: 32 +# increase_log_steps: False +# log_first_step: True +# log_images_kwargs: +# use_ema_scope: False +# inpaint: False +# plot_progressive_rows: False +# plot_diffusion_rows: False +# N: 32 +# unconditional_scale: 3.0 +# unconditional_label: [""] + +# trainer: +# benchmark: True +# val_check_interval: 5000000 # really sorry +# num_sanity_val_steps: 0 +# accumulate_grad_batches: 1 diff --git a/requirements-dev.txt b/requirements-dev.txt new file mode 100644 index 0000000..9bae3fb --- /dev/null +++ b/requirements-dev.txt @@ -0,0 +1,4 @@ +black +mypy +pylint +pre-commit diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..da66704 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,51 @@ +lightning==2.0.0 +omegaconf==2.3.0 +jaxtyping +typeguard +git+https://github.com/KAIR-BAIR/nerfacc.git@v0.5.2 +git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch +diffusers<0.20 +transformers==4.28.1 +accelerate +opencv-python +tensorboard +matplotlib +imageio>=2.28.0 +imageio[ffmpeg] +git+https://github.com/NVlabs/nvdiffrast.git +libigl +xatlas +trimesh[easy] +networkx +pysdf +PyMCubes +wandb +gradio==4.11.0 +git+https://github.com/ashawkey/envlight.git +torchmetrics + +# deepfloyd +xformers +bitsandbytes==0.38.1 +sentencepiece +safetensors +huggingface_hub + +# for zero123 +einops +kornia +taming-transformers-rom1504 +git+https://github.com/openai/CLIP.git + +#controlnet +controlnet_aux + + +# DreamMesh4D +pypose==0.6.7 +git+https://github.com/facebookresearch/pytorch3d.git@stable +easydict +potpourri3d +diff-gaussian-rasterization./ +simple-knn./ +git+https://github.com/KinglittleQ/torch-batch-svd.git \ No newline at end of file diff --git a/scripts/convert_zero123_to_diffusers.py b/scripts/convert_zero123_to_diffusers.py new file mode 100644 index 0000000..e212774 --- /dev/null +++ b/scripts/convert_zero123_to_diffusers.py @@ -0,0 +1,1025 @@ +import argparse +import sys + +import torch +from diffusers.models import AutoencoderKL, UNet2DConditionModel +from diffusers.schedulers import DDIMScheduler +from diffusers.utils import logging +from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection + +sys.path.append("extern/") +from accelerate import init_empty_weights +from accelerate.utils import set_module_tensor_to_device +from zero123 import CLIPCameraProjection, Zero123Pipeline + +logger = logging.get_logger(__name__) + + +def create_unet_diffusers_config(original_config, image_size: int, controlnet=False): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + if controlnet: + unet_params = original_config.model.params.control_stage_config.params + else: + if ( + "unet_config" in original_config.model.params + and original_config.model.params.unet_config is not None + ): + unet_params = original_config.model.params.unet_config.params + else: + unet_params = original_config.model.params.network_config.params + + vae_params = original_config.model.params.first_stage_config.params.ddconfig + + block_out_channels = [ + unet_params.model_channels * mult for mult in unet_params.channel_mult + ] + + down_block_types = [] + resolution = 1 + for i in range(len(block_out_channels)): + block_type = ( + "CrossAttnDownBlock2D" + if resolution in unet_params.attention_resolutions + else "DownBlock2D" + ) + down_block_types.append(block_type) + if i != len(block_out_channels) - 1: + resolution *= 2 + + up_block_types = [] + for i in range(len(block_out_channels)): + block_type = ( + "CrossAttnUpBlock2D" + if resolution in unet_params.attention_resolutions + else "UpBlock2D" + ) + up_block_types.append(block_type) + resolution //= 2 + + if unet_params.transformer_depth is not None: + transformer_layers_per_block = ( + unet_params.transformer_depth + if isinstance(unet_params.transformer_depth, int) + else list(unet_params.transformer_depth) + ) + else: + transformer_layers_per_block = 1 + + vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1) + + head_dim = unet_params.num_heads if "num_heads" in unet_params else None + use_linear_projection = ( + unet_params.use_linear_in_transformer + if "use_linear_in_transformer" in unet_params + else False + ) + if use_linear_projection: + # stable diffusion 2-base-512 and 2-768 + if head_dim is None: + head_dim_mult = unet_params.model_channels // unet_params.num_head_channels + head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)] + + class_embed_type = None + addition_embed_type = None + addition_time_embed_dim = None + projection_class_embeddings_input_dim = None + context_dim = None + + if unet_params.context_dim is not None: + context_dim = ( + unet_params.context_dim + if isinstance(unet_params.context_dim, int) + else unet_params.context_dim[0] + ) + + if "num_classes" in unet_params: + if unet_params.num_classes == "sequential": + if context_dim in [2048, 1280]: + # SDXL + addition_embed_type = "text_time" + addition_time_embed_dim = 256 + else: + class_embed_type = "projection" + assert "adm_in_channels" in unet_params + projection_class_embeddings_input_dim = unet_params.adm_in_channels + else: + raise NotImplementedError( + f"Unknown conditional unet num_classes config: {unet_params.num_classes}" + ) + + config = { + "sample_size": image_size // vae_scale_factor, + "in_channels": unet_params.in_channels, + "down_block_types": tuple(down_block_types), + "block_out_channels": tuple(block_out_channels), + "layers_per_block": unet_params.num_res_blocks, + "cross_attention_dim": context_dim, + "attention_head_dim": head_dim, + "use_linear_projection": use_linear_projection, + "class_embed_type": class_embed_type, + "addition_embed_type": addition_embed_type, + "addition_time_embed_dim": addition_time_embed_dim, + "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, + "transformer_layers_per_block": transformer_layers_per_block, + } + + if controlnet: + config["conditioning_channels"] = unet_params.hint_channels + else: + config["out_channels"] = unet_params.out_channels + config["up_block_types"] = tuple(up_block_types) + + return config + + +def assign_to_checkpoint( + paths, + checkpoint, + old_checkpoint, + attention_paths_to_split=None, + additional_replacements=None, + config=None, +): + """ + This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits + attention layers, and takes into account additional replacements that may arise. + + Assigns the weights to the new checkpoint. + """ + assert isinstance( + paths, list + ), "Paths should be a list of dicts containing 'old' and 'new' keys." + + # Splits the attention layers into three variables. + if attention_paths_to_split is not None: + for path, path_map in attention_paths_to_split.items(): + old_tensor = old_checkpoint[path] + channels = old_tensor.shape[0] // 3 + + target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) + + num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 + + old_tensor = old_tensor.reshape( + (num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] + ) + query, key, value = old_tensor.split(channels // num_heads, dim=1) + + checkpoint[path_map["query"]] = query.reshape(target_shape) + checkpoint[path_map["key"]] = key.reshape(target_shape) + checkpoint[path_map["value"]] = value.reshape(target_shape) + + for path in paths: + new_path = path["new"] + + # These have already been assigned + if ( + attention_paths_to_split is not None + and new_path in attention_paths_to_split + ): + continue + + # Global renaming happens here + new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") + new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") + new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") + + if additional_replacements is not None: + for replacement in additional_replacements: + new_path = new_path.replace(replacement["old"], replacement["new"]) + + # proj_attn.weight has to be converted from conv 1D to linear + is_attn_weight = "proj_attn.weight" in new_path or ( + "attentions" in new_path and "to_" in new_path + ) + shape = old_checkpoint[path["old"]].shape + if is_attn_weight and len(shape) == 3: + checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] + elif is_attn_weight and len(shape) == 4: + checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] + else: + checkpoint[new_path] = old_checkpoint[path["old"]] + + +def shave_segments(path, n_shave_prefix_segments=1): + """ + Removes segments. Positive values shave the first segments, negative shave the last segments. + """ + if n_shave_prefix_segments >= 0: + return ".".join(path.split(".")[n_shave_prefix_segments:]) + else: + return ".".join(path.split(".")[:n_shave_prefix_segments]) + + +def renew_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item.replace("in_layers.0", "norm1") + new_item = new_item.replace("in_layers.2", "conv1") + + new_item = new_item.replace("out_layers.0", "norm2") + new_item = new_item.replace("out_layers.3", "conv2") + + new_item = new_item.replace("emb_layers.1", "time_emb_proj") + new_item = new_item.replace("skip_connection", "conv_shortcut") + + new_item = shave_segments( + new_item, n_shave_prefix_segments=n_shave_prefix_segments + ) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + # new_item = new_item.replace('norm.weight', 'group_norm.weight') + # new_item = new_item.replace('norm.bias', 'group_norm.bias') + + # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') + # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') + + # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def convert_ldm_unet_checkpoint( + checkpoint, + config, + path=None, + extract_ema=False, + controlnet=False, + skip_extract_state_dict=False, +): + """ + Takes a state dict and a config, and returns a converted checkpoint. + """ + + if skip_extract_state_dict: + unet_state_dict = checkpoint + else: + # extract state_dict for UNet + unet_state_dict = {} + keys = list(checkpoint.keys()) + + if controlnet: + unet_key = "control_model." + else: + unet_key = "model.diffusion_model." + + # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA + if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: + logger.warning(f"Checkpoint {path} has both EMA and non-EMA weights.") + logger.warning( + "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" + " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." + ) + for key in keys: + if key.startswith("model.diffusion_model"): + flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) + unet_state_dict[key.replace(unet_key, "")] = checkpoint[ + flat_ema_key + ] + else: + if sum(k.startswith("model_ema") for k in keys) > 100: + logger.warning( + "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" + " weights (usually better for inference), please make sure to add the `--extract_ema` flag." + ) + + for key in keys: + if key.startswith(unet_key): + unet_state_dict[key.replace(unet_key, "")] = checkpoint[key] + + new_checkpoint = {} + + new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict[ + "time_embed.0.weight" + ] + new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict[ + "time_embed.0.bias" + ] + new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict[ + "time_embed.2.weight" + ] + new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict[ + "time_embed.2.bias" + ] + + if config["class_embed_type"] is None: + # No parameters to port + ... + elif ( + config["class_embed_type"] == "timestep" + or config["class_embed_type"] == "projection" + ): + new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict[ + "label_emb.0.0.weight" + ] + new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict[ + "label_emb.0.0.bias" + ] + new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict[ + "label_emb.0.2.weight" + ] + new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict[ + "label_emb.0.2.bias" + ] + else: + raise NotImplementedError( + f"Not implemented `class_embed_type`: {config['class_embed_type']}" + ) + + if config["addition_embed_type"] == "text_time": + new_checkpoint["add_embedding.linear_1.weight"] = unet_state_dict[ + "label_emb.0.0.weight" + ] + new_checkpoint["add_embedding.linear_1.bias"] = unet_state_dict[ + "label_emb.0.0.bias" + ] + new_checkpoint["add_embedding.linear_2.weight"] = unet_state_dict[ + "label_emb.0.2.weight" + ] + new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict[ + "label_emb.0.2.bias" + ] + + new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] + new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] + + if not controlnet: + new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] + new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] + new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] + new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] + + # Retrieves the keys for the input blocks only + num_input_blocks = len( + { + ".".join(layer.split(".")[:2]) + for layer in unet_state_dict + if "input_blocks" in layer + } + ) + input_blocks = { + layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] + for layer_id in range(num_input_blocks) + } + + # Retrieves the keys for the middle blocks only + num_middle_blocks = len( + { + ".".join(layer.split(".")[:2]) + for layer in unet_state_dict + if "middle_block" in layer + } + ) + middle_blocks = { + layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] + for layer_id in range(num_middle_blocks) + } + + # Retrieves the keys for the output blocks only + num_output_blocks = len( + { + ".".join(layer.split(".")[:2]) + for layer in unet_state_dict + if "output_blocks" in layer + } + ) + output_blocks = { + layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] + for layer_id in range(num_output_blocks) + } + + for i in range(1, num_input_blocks): + block_id = (i - 1) // (config["layers_per_block"] + 1) + layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) + + resnets = [ + key + for key in input_blocks[i] + if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key + ] + attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] + + if f"input_blocks.{i}.0.op.weight" in unet_state_dict: + new_checkpoint[ + f"down_blocks.{block_id}.downsamplers.0.conv.weight" + ] = unet_state_dict.pop(f"input_blocks.{i}.0.op.weight") + new_checkpoint[ + f"down_blocks.{block_id}.downsamplers.0.conv.bias" + ] = unet_state_dict.pop(f"input_blocks.{i}.0.op.bias") + + paths = renew_resnet_paths(resnets) + meta_path = { + "old": f"input_blocks.{i}.0", + "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}", + } + assign_to_checkpoint( + paths, + new_checkpoint, + unet_state_dict, + additional_replacements=[meta_path], + config=config, + ) + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = { + "old": f"input_blocks.{i}.1", + "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}", + } + assign_to_checkpoint( + paths, + new_checkpoint, + unet_state_dict, + additional_replacements=[meta_path], + config=config, + ) + + resnet_0 = middle_blocks[0] + attentions = middle_blocks[1] + resnet_1 = middle_blocks[2] + + resnet_0_paths = renew_resnet_paths(resnet_0) + assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) + + resnet_1_paths = renew_resnet_paths(resnet_1) + assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) + + attentions_paths = renew_attention_paths(attentions) + meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} + assign_to_checkpoint( + attentions_paths, + new_checkpoint, + unet_state_dict, + additional_replacements=[meta_path], + config=config, + ) + + for i in range(num_output_blocks): + block_id = i // (config["layers_per_block"] + 1) + layer_in_block_id = i % (config["layers_per_block"] + 1) + output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] + output_block_list = {} + + for layer in output_block_layers: + layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) + if layer_id in output_block_list: + output_block_list[layer_id].append(layer_name) + else: + output_block_list[layer_id] = [layer_name] + + if len(output_block_list) > 1: + resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] + attentions = [ + key for key in output_blocks[i] if f"output_blocks.{i}.1" in key + ] + + resnet_0_paths = renew_resnet_paths(resnets) + paths = renew_resnet_paths(resnets) + + meta_path = { + "old": f"output_blocks.{i}.0", + "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}", + } + assign_to_checkpoint( + paths, + new_checkpoint, + unet_state_dict, + additional_replacements=[meta_path], + config=config, + ) + + output_block_list = {k: sorted(v) for k, v in output_block_list.items()} + if ["conv.bias", "conv.weight"] in output_block_list.values(): + index = list(output_block_list.values()).index( + ["conv.bias", "conv.weight"] + ) + new_checkpoint[ + f"up_blocks.{block_id}.upsamplers.0.conv.weight" + ] = unet_state_dict[f"output_blocks.{i}.{index}.conv.weight"] + new_checkpoint[ + f"up_blocks.{block_id}.upsamplers.0.conv.bias" + ] = unet_state_dict[f"output_blocks.{i}.{index}.conv.bias"] + + # Clear attentions as they have been attributed above. + if len(attentions) == 2: + attentions = [] + + if len(attentions): + paths = renew_attention_paths(attentions) + meta_path = { + "old": f"output_blocks.{i}.1", + "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", + } + assign_to_checkpoint( + paths, + new_checkpoint, + unet_state_dict, + additional_replacements=[meta_path], + config=config, + ) + else: + resnet_0_paths = renew_resnet_paths( + output_block_layers, n_shave_prefix_segments=1 + ) + for path in resnet_0_paths: + old_path = ".".join(["output_blocks", str(i), path["old"]]) + new_path = ".".join( + [ + "up_blocks", + str(block_id), + "resnets", + str(layer_in_block_id), + path["new"], + ] + ) + + new_checkpoint[new_path] = unet_state_dict[old_path] + + if controlnet: + # conditioning embedding + + orig_index = 0 + + new_checkpoint[ + "controlnet_cond_embedding.conv_in.weight" + ] = unet_state_dict.pop(f"input_hint_block.{orig_index}.weight") + new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop( + f"input_hint_block.{orig_index}.bias" + ) + + orig_index += 2 + + diffusers_index = 0 + + while diffusers_index < 6: + new_checkpoint[ + f"controlnet_cond_embedding.blocks.{diffusers_index}.weight" + ] = unet_state_dict.pop(f"input_hint_block.{orig_index}.weight") + new_checkpoint[ + f"controlnet_cond_embedding.blocks.{diffusers_index}.bias" + ] = unet_state_dict.pop(f"input_hint_block.{orig_index}.bias") + diffusers_index += 1 + orig_index += 2 + + new_checkpoint[ + "controlnet_cond_embedding.conv_out.weight" + ] = unet_state_dict.pop(f"input_hint_block.{orig_index}.weight") + new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop( + f"input_hint_block.{orig_index}.bias" + ) + + # down blocks + for i in range(num_input_blocks): + new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop( + f"zero_convs.{i}.0.weight" + ) + new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop( + f"zero_convs.{i}.0.bias" + ) + + # mid block + new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop( + "middle_block_out.0.weight" + ) + new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop( + "middle_block_out.0.bias" + ) + + return new_checkpoint + + +def create_vae_diffusers_config(original_config, image_size: int): + """ + Creates a config for the diffusers based on the config of the LDM model. + """ + vae_params = original_config.model.params.first_stage_config.params.ddconfig + _ = original_config.model.params.first_stage_config.params.embed_dim + + block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] + down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) + up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) + + config = { + "sample_size": image_size, + "in_channels": vae_params.in_channels, + "out_channels": vae_params.out_ch, + "down_block_types": tuple(down_block_types), + "up_block_types": tuple(up_block_types), + "block_out_channels": tuple(block_out_channels), + "latent_channels": vae_params.z_channels, + "layers_per_block": vae_params.num_res_blocks, + } + return config + + +def convert_ldm_vae_checkpoint(checkpoint, config): + # extract state dict for VAE + vae_state_dict = {} + vae_key = "first_stage_model." + keys = list(checkpoint.keys()) + for key in keys: + if key.startswith(vae_key): + vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) + + new_checkpoint = {} + + new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] + new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] + new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[ + "encoder.conv_out.weight" + ] + new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] + new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[ + "encoder.norm_out.weight" + ] + new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[ + "encoder.norm_out.bias" + ] + + new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] + new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] + new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[ + "decoder.conv_out.weight" + ] + new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] + new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[ + "decoder.norm_out.weight" + ] + new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[ + "decoder.norm_out.bias" + ] + + new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] + new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] + new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] + new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] + + # Retrieves the keys for the encoder down blocks only + num_down_blocks = len( + { + ".".join(layer.split(".")[:3]) + for layer in vae_state_dict + if "encoder.down" in layer + } + ) + down_blocks = { + layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] + for layer_id in range(num_down_blocks) + } + + # Retrieves the keys for the decoder up blocks only + num_up_blocks = len( + { + ".".join(layer.split(".")[:3]) + for layer in vae_state_dict + if "decoder.up" in layer + } + ) + up_blocks = { + layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] + for layer_id in range(num_up_blocks) + } + + for i in range(num_down_blocks): + resnets = [ + key + for key in down_blocks[i] + if f"down.{i}" in key and f"down.{i}.downsample" not in key + ] + + if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: + new_checkpoint[ + f"encoder.down_blocks.{i}.downsamplers.0.conv.weight" + ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight") + new_checkpoint[ + f"encoder.down_blocks.{i}.downsamplers.0.conv.bias" + ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias") + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} + assign_to_checkpoint( + paths, + new_checkpoint, + vae_state_dict, + additional_replacements=[meta_path], + config=config, + ) + + mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint( + paths, + new_checkpoint, + vae_state_dict, + additional_replacements=[meta_path], + config=config, + ) + + mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint( + paths, + new_checkpoint, + vae_state_dict, + additional_replacements=[meta_path], + config=config, + ) + conv_attn_to_linear(new_checkpoint) + + for i in range(num_up_blocks): + block_id = num_up_blocks - 1 - i + resnets = [ + key + for key in up_blocks[block_id] + if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key + ] + + if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: + new_checkpoint[ + f"decoder.up_blocks.{i}.upsamplers.0.conv.weight" + ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"] + new_checkpoint[ + f"decoder.up_blocks.{i}.upsamplers.0.conv.bias" + ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} + assign_to_checkpoint( + paths, + new_checkpoint, + vae_state_dict, + additional_replacements=[meta_path], + config=config, + ) + + mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] + num_mid_res_blocks = 2 + for i in range(1, num_mid_res_blocks + 1): + resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] + + paths = renew_vae_resnet_paths(resnets) + meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} + assign_to_checkpoint( + paths, + new_checkpoint, + vae_state_dict, + additional_replacements=[meta_path], + config=config, + ) + + mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] + paths = renew_vae_attention_paths(mid_attentions) + meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} + assign_to_checkpoint( + paths, + new_checkpoint, + vae_state_dict, + additional_replacements=[meta_path], + config=config, + ) + conv_attn_to_linear(new_checkpoint) + return new_checkpoint + + +def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside resnets to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("nin_shortcut", "conv_shortcut") + new_item = shave_segments( + new_item, n_shave_prefix_segments=n_shave_prefix_segments + ) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): + """ + Updates paths inside attentions to the new naming scheme (local renaming) + """ + mapping = [] + for old_item in old_list: + new_item = old_item + + new_item = new_item.replace("norm.weight", "group_norm.weight") + new_item = new_item.replace("norm.bias", "group_norm.bias") + + new_item = new_item.replace("q.weight", "to_q.weight") + new_item = new_item.replace("q.bias", "to_q.bias") + + new_item = new_item.replace("k.weight", "to_k.weight") + new_item = new_item.replace("k.bias", "to_k.bias") + + new_item = new_item.replace("v.weight", "to_v.weight") + new_item = new_item.replace("v.bias", "to_v.bias") + + new_item = new_item.replace("proj_out.weight", "to_out.0.weight") + new_item = new_item.replace("proj_out.bias", "to_out.0.bias") + + new_item = shave_segments( + new_item, n_shave_prefix_segments=n_shave_prefix_segments + ) + + mapping.append({"old": old_item, "new": new_item}) + + return mapping + + +def conv_attn_to_linear(checkpoint): + keys = list(checkpoint.keys()) + attn_keys = ["query.weight", "key.weight", "value.weight"] + for key in keys: + if ".".join(key.split(".")[-2:]) in attn_keys: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0, 0] + elif "proj_attn.weight" in key: + if checkpoint[key].ndim > 2: + checkpoint[key] = checkpoint[key][:, :, 0] + + +def convert_from_original_zero123_ckpt( + checkpoint_path, original_config_file, extract_ema, device +): + ckpt = torch.load(checkpoint_path, map_location=device) + global_step = ckpt["global_step"] + checkpoint = ckpt["state_dict"] + del ckpt + torch.cuda.empty_cache() + + from omegaconf import OmegaConf + + original_config = OmegaConf.load(original_config_file) + model_type = original_config.model.params.cond_stage_config.target.split(".")[-1] + num_in_channels = 8 + original_config["model"]["params"]["unet_config"]["params"][ + "in_channels" + ] = num_in_channels + prediction_type = "epsilon" + image_size = 256 + num_train_timesteps = ( + getattr(original_config.model.params, "timesteps", None) or 1000 + ) + + beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02 + beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085 + scheduler = DDIMScheduler( + beta_end=beta_end, + beta_schedule="scaled_linear", + beta_start=beta_start, + num_train_timesteps=num_train_timesteps, + steps_offset=1, + clip_sample=False, + set_alpha_to_one=False, + prediction_type=prediction_type, + ) + scheduler.register_to_config(clip_sample=False) + + # Convert the UNet2DConditionModel model. + upcast_attention = None + unet_config = create_unet_diffusers_config(original_config, image_size=image_size) + unet_config["upcast_attention"] = upcast_attention + with init_empty_weights(): + unet = UNet2DConditionModel(**unet_config) + converted_unet_checkpoint = convert_ldm_unet_checkpoint( + checkpoint, unet_config, path=None, extract_ema=extract_ema + ) + for param_name, param in converted_unet_checkpoint.items(): + set_module_tensor_to_device(unet, param_name, "cpu", value=param) + + # Convert the VAE model. + vae_config = create_vae_diffusers_config(original_config, image_size=image_size) + converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) + + if ( + "model" in original_config + and "params" in original_config.model + and "scale_factor" in original_config.model.params + ): + vae_scaling_factor = original_config.model.params.scale_factor + else: + vae_scaling_factor = 0.18215 # default SD scaling factor + + vae_config["scaling_factor"] = vae_scaling_factor + + with init_empty_weights(): + vae = AutoencoderKL(**vae_config) + + for param_name, param in converted_vae_checkpoint.items(): + set_module_tensor_to_device(vae, param_name, "cpu", value=param) + + feature_extractor = CLIPImageProcessor.from_pretrained( + "lambdalabs/sd-image-variations-diffusers", subfolder="feature_extractor" + ) + image_encoder = CLIPVisionModelWithProjection.from_pretrained( + "lambdalabs/sd-image-variations-diffusers", subfolder="image_encoder" + ) + + clip_camera_projection = CLIPCameraProjection(additional_embeddings=4) + clip_camera_projection.load_state_dict( + { + "proj.weight": checkpoint["cc_projection.weight"].cpu(), + "proj.bias": checkpoint["cc_projection.bias"].cpu(), + } + ) + + pipe = Zero123Pipeline( + vae, + image_encoder, + unet, + scheduler, + None, + feature_extractor, + clip_camera_projection, + requires_safety_checker=False, + ) + + return pipe + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + + parser.add_argument( + "--checkpoint_path", + default=None, + type=str, + required=True, + help="Path to the checkpoint to convert.", + ) + parser.add_argument( + "--original_config_file", + default=None, + type=str, + help="The YAML config file corresponding to the original architecture.", + ) + parser.add_argument( + "--extract_ema", + action="store_true", + help=( + "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" + " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" + " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." + ), + ) + parser.add_argument( + "--to_safetensors", + action="store_true", + help="Whether to store pipeline in safetensors format or not.", + ) + parser.add_argument( + "--half", action="store_true", help="Save weights in half precision." + ) + parser.add_argument( + "--dump_path", + default=None, + type=str, + required=True, + help="Path to the output model.", + ) + parser.add_argument( + "--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)" + ) + args = parser.parse_args() + + pipe = convert_from_original_zero123_ckpt( + checkpoint_path=args.checkpoint_path, + original_config_file=args.original_config_file, + extract_ema=args.extract_ema, + device=args.device, + ) + + if args.half: + pipe.to(torch_dtype=torch.float16) + + pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) diff --git a/setup.py b/setup.py new file mode 100644 index 0000000..6f31c1d --- /dev/null +++ b/setup.py @@ -0,0 +1,21 @@ +from setuptools import find_packages, setup + +setup( + name="threestudio", + version='"0.2.3"', # the current version of your package + packages=find_packages(), # automatically discover all packages and subpackages + url="https://github.com/threestudio-project/threestudio", # replace with the URL of your project + author="Yuan-Chen Guo and Ruizhi Shao and Ying-Tian Liu and Christian Laforte and Vikram Voleti and Guan Luo and Chia-Hao Chen and Zi-Xin Zou and Chen Wang and Yan-Pei Cao and Song-Hai Zhang", # replace with your name + author_email="shaorz20@mails.tsinghua.edu.cn", # replace with your email + description="threestudio is a unified framework for 3D content creation from text prompts, single images, and few-shot images, by lifting 2D text-to-image generation models.", # replace with a brief description of your project + install_requires=[ + # list of packages your project depends on + # you can specify versions as well, e.g. 'numpy>=1.15.1' + ], + classifiers=[ + # classifiers help users find your project by categorizing it + # for a list of valid classifiers, see https://pypi.org/classifiers/ + "License :: Apache-2.0", + "Programming Language :: Python :: 3", + ], +) diff --git a/threestudio.ipynb b/threestudio.ipynb new file mode 100644 index 0000000..d61d8e3 --- /dev/null +++ b/threestudio.ipynb @@ -0,0 +1,303 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YadOCCCyXT0y" + }, + "outputs": [], + "source": [ + "!nvidia-smi" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "S7vZFQkeq_Vk" + }, + "source": [ + "Clone threestudio repo" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ubuVj4z0MhHh" + }, + "outputs": [], + "source": [ + "!git clone https://github.com/threestudio-project/threestudio.git" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HrGD3RtXXsB9" + }, + "outputs": [], + "source": [ + "%cd threestudio" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "aXqmxXX0Jb6m" + }, + "source": [ + "Install dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HKZQNbNmX20t" + }, + "outputs": [], + "source": [ + "!pip install ninja\n", + "!pip install lightning==2.0.0 omegaconf==2.3.0 jaxtyping typeguard diffusers transformers accelerate opencv-python tensorboard matplotlib imageio imageio[ffmpeg] trimesh bitsandbytes sentencepiece safetensors huggingface_hub libigl xatlas networkx pysdf PyMCubes wandb torchmetrics controlnet_aux\n", + "!pip install einops kornia taming-transformers-rom1504 git+https://github.com/openai/CLIP.git # zero123\n", + "!pip install open3d plotly # mesh visualization" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "b8U3rne0JTgs" + }, + "source": [ + "And build some dependencies manually. This may take a while." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BFHI67e0_65a" + }, + "outputs": [], + "source": [ + "!pip install git+https://github.com/ashawkey/envlight.git\n", + "!pip install git+https://github.com/KAIR-BAIR/nerfacc.git@v0.5.2\n", + "!pip install git+https://github.com/NVlabs/nvdiffrast.git\n", + "!pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "QxY_7clwrJ18" + }, + "source": [ + "Login to HuggingFace" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "T4eeJFCZAZUV" + }, + "outputs": [], + "source": [ + "from huggingface_hub import interpreter_login\n", + "\n", + "interpreter_login()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "Eeqa6u5QrPTj" + }, + "source": [ + "Now create your own 3D model from text prompts\n", + "\n", + "Here we use the DreamFusion model with DeepFloyd-IF guidance. You may try other models by using different running commands given [here](https://github.com/threestudio-project/threestudio#supported-models)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pZUD5VcS88yz" + }, + "outputs": [], + "source": [ + "prompt = \"a zoomed out DSLR photo of a baby bunny sitting on top of a stack of pancakes\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Uy61bM84K7Qi" + }, + "outputs": [], + "source": [ + "!python launch.py --config configs/dreamfusion-if.yaml --train --gpu 0 system.prompt_processor.prompt=\"$prompt\" trainer.max_steps=10000 system.prompt_processor.spawn=false" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "UqrrK9FxrYgd" + }, + "source": [ + "Display the rendered video" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "J14FrBwMk5m9" + }, + "outputs": [], + "source": [ + "from IPython.display import HTML\n", + "from base64 import b64encode\n", + "def display_video(video_path):\n", + " mp4 = open(video_path,'rb').read()\n", + " data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", + " return HTML(\"\"\"\n", + " \n", + " \"\"\" % data_url)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aaQCVmiCp87c" + }, + "outputs": [], + "source": [ + "# you will see the path to the saving directory at the end of the training logs\n", + "# replace save_dir below with that path\n", + "save_dir = 'path/to/save/dir'\n", + "\n", + "import os\n", + "import glob\n", + "video_path = glob.glob(os.path.join(save_dir, \"*-test.mp4\"))[0]\n", + "display_video(video_path)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "UlUL4ZPn2xQV" + }, + "source": [ + "Extract the object mesh.\n", + "\n", + "Here we use an empirical threshold value. You can also first try `system.geometry.isosurface_threshold=auto` and visualize it. Then you can manually adjust the threshold according to the automatically determined value shown in the logs. Increase it if there are too many floaters and decrease it if the geometry is incomplete. \n", + "\n", + "\n", + "The extraction process takes around 2 mins on T4." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "f-R26yEXqgyL" + }, + "outputs": [], + "source": [ + "!python launch.py --config $save_dir/../configs/parsed.yaml --export --gpu 0 resume=$save_dir/../ckpts/last.ckpt system.exporter_type=mesh-exporter system.exporter.context_type=cuda system.geometry.isosurface_threshold=15.0 " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "id": "iocD0gl870vq" + }, + "source": [ + "Visualize the mesh. Or you can directly download the export assets and use them locally." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "71-J9PRIyp99" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import open3d as o3d\n", + "import plotly.graph_objects as go\n", + "import glob\n", + "\n", + "mesh_path = glob.glob(os.path.join(save_dir, \"*-export/model.obj\"))[0]\n", + "mesh = o3d.io.read_triangle_mesh(mesh_path)\n", + "if not mesh.has_vertex_normals():\n", + " mesh.compute_vertex_normals()\n", + "if not mesh.has_triangle_normals():\n", + " mesh.compute_triangle_normals()\n", + "\n", + "triangles = np.asarray(mesh.triangles)\n", + "vertices = np.asarray(mesh.vertices)\n", + "colors = None\n", + "if mesh.has_triangle_normals():\n", + " colors = (0.5, 0.5, 0.5) + np.asarray(mesh.triangle_normals) * 0.5\n", + " colors = tuple(map(tuple, colors))\n", + "else:\n", + " colors = (1.0, 0.0, 0.0)\n", + "fig = go.Figure(\n", + " data=[\n", + " go.Mesh3d(\n", + " x=vertices[:,0],\n", + " y=vertices[:,1],\n", + " z=vertices[:,2],\n", + " i=triangles[:,0],\n", + " j=triangles[:,1],\n", + " k=triangles[:,2],\n", + " facecolor=colors,\n", + " opacity=0.50)\n", + " ],\n", + " layout=dict(\n", + " scene=dict(\n", + " xaxis=dict(visible=False),\n", + " yaxis=dict(visible=False),\n", + " zaxis=dict(visible=False)\n", + " )\n", + " )\n", + ")\n", + "fig.show()\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [] + }, + "gpuClass": "standard", + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/threestudio/__init__.py b/threestudio/__init__.py new file mode 100644 index 0000000..9b7b83b --- /dev/null +++ b/threestudio/__init__.py @@ -0,0 +1,55 @@ +__modules__ = {} +__version__ = "0.2.3" + + +def register(name): + def decorator(cls): + if name in __modules__: + raise ValueError( + f"Module {name} already exists! Names of extensions conflict!" + ) + else: + __modules__[name] = cls + return cls + + return decorator + + +def find(name): + if ":" in name: + main_name, sub_name = name.split(":") + if "," in sub_name: + name_list = sub_name.split(",") + else: + name_list = [sub_name] + name_list.append(main_name) + NewClass = type( + f"{main_name}.{sub_name}", + tuple([__modules__[name] for name in name_list]), + {}, + ) + return NewClass + return __modules__[name] + + +### grammar sugar for logging utilities ### +import logging + +logger = logging.getLogger("pytorch_lightning") + +from pytorch_lightning.utilities.rank_zero import ( + rank_zero_debug, + rank_zero_info, + rank_zero_only, +) + +debug = rank_zero_debug +info = rank_zero_info + + +@rank_zero_only +def warn(*args, **kwargs): + logger.warn(*args, **kwargs) + + +from . import data, models, systems diff --git a/threestudio/data/__init__.py b/threestudio/data/__init__.py new file mode 100644 index 0000000..70aaeeb --- /dev/null +++ b/threestudio/data/__init__.py @@ -0,0 +1 @@ +from . import co3d, image, multiview, uncond, uncond_eff diff --git a/threestudio/data/co3d.py b/threestudio/data/co3d.py new file mode 100644 index 0000000..4916888 --- /dev/null +++ b/threestudio/data/co3d.py @@ -0,0 +1,713 @@ +import gzip +import json +import os +import warnings +from dataclasses import dataclass, field +from typing import List + +import cv2 +import numpy as np +import pytorch_lightning as pl +import torch +import torchvision.transforms.functional as TF +from PIL import Image +from torch.utils.data import DataLoader, Dataset, IterableDataset + +from threestudio import register +from threestudio.data.uncond import ( + RandomCameraDataModuleConfig, + RandomCameraDataset, + RandomCameraIterableDataset, +) +from threestudio.utils.config import parse_structured +from threestudio.utils.misc import get_rank +from threestudio.utils.ops import ( + get_mvp_matrix, + get_projection_matrix, + get_ray_directions, + get_rays, +) +from threestudio.utils.typing import * + + +def _load_16big_png_depth(depth_png) -> np.ndarray: + with Image.open(depth_png) as depth_pil: + # the image is stored with 16-bit depth but PIL reads it as I (32 bit). + # we cast it to uint16, then reinterpret as float16, then cast to float32 + depth = ( + np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16) + .astype(np.float32) + .reshape((depth_pil.size[1], depth_pil.size[0])) + ) + return depth + + +def _load_depth(path, scale_adjustment) -> np.ndarray: + if not path.lower().endswith(".png"): + raise ValueError('unsupported depth file name "%s"' % path) + + d = _load_16big_png_depth(path) * scale_adjustment + d[~np.isfinite(d)] = 0.0 + return d[None] # fake feature channel + + +# Code adapted from https://github.com/eldar/snes/blob/473ff2b1f6/3rdparty/co3d/dataset/co3d_dataset.py +def _get_1d_bounds(arr): + nz = np.flatnonzero(arr) + return nz[0], nz[-1] + + +def get_bbox_from_mask(mask, thr, decrease_quant=0.05): + # bbox in xywh + masks_for_box = np.zeros_like(mask) + while masks_for_box.sum() <= 1.0: + masks_for_box = (mask > thr).astype(np.float32) + thr -= decrease_quant + if thr <= 0.0: + warnings.warn(f"Empty masks_for_bbox (thr={thr}) => using full image.") + + x0, x1 = _get_1d_bounds(masks_for_box.sum(axis=-2)) + y0, y1 = _get_1d_bounds(masks_for_box.sum(axis=-1)) + + return x0, y0, x1 - x0, y1 - y0 + + +def get_clamp_bbox(bbox, box_crop_context=0.0, impath=""): + # box_crop_context: rate of expansion for bbox + # returns possibly expanded bbox xyxy as float + + # increase box size + if box_crop_context > 0.0: + c = box_crop_context + bbox = bbox.astype(np.float32) + bbox[0] -= bbox[2] * c / 2 + bbox[1] -= bbox[3] * c / 2 + bbox[2] += bbox[2] * c + bbox[3] += bbox[3] * c + + if (bbox[2:] <= 1.0).any(): + warnings.warn(f"squashed image {impath}!!") + return None + + # bbox[2:] = np.clip(bbox[2:], 2, ) + bbox[2:] = np.maximum(bbox[2:], 2) + bbox[2:] += bbox[0:2] + 1 # convert to [xmin, ymin, xmax, ymax] + # +1 because upper bound is not inclusive + + return bbox + + +def crop_around_box(tensor, bbox, impath=""): + bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0.0, tensor.shape[-2]) + bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0.0, tensor.shape[-3]) + bbox = bbox.round().astype(np.longlong) + return tensor[bbox[1] : bbox[3], bbox[0] : bbox[2], ...] + + +def resize_image(image, height, width, mode="bilinear"): + if image.shape[:2] == (height, width): + return image, 1.0, np.ones_like(image[..., :1]) + + image = torch.from_numpy(image).permute(2, 0, 1) + minscale = min(height / image.shape[-2], width / image.shape[-1]) + imre = torch.nn.functional.interpolate( + image[None], + scale_factor=minscale, + mode=mode, + align_corners=False if mode == "bilinear" else None, + recompute_scale_factor=True, + )[0] + + # pyre-fixme[19]: Expected 1 positional argument. + imre_ = torch.zeros(image.shape[0], height, width) + imre_[:, 0 : imre.shape[1], 0 : imre.shape[2]] = imre + # pyre-fixme[6]: For 2nd param expected `int` but got `Optional[int]`. + # pyre-fixme[6]: For 3rd param expected `int` but got `Optional[int]`. + mask = torch.zeros(1, height, width) + mask[:, 0 : imre.shape[1], 0 : imre.shape[2]] = 1.0 + return imre_.permute(1, 2, 0).numpy(), minscale, mask.permute(1, 2, 0).numpy() + + +# Code adapted from https://github.com/POSTECH-CVLab/PeRFception/data_util/co3d.py +def similarity_from_cameras(c2w, fix_rot=False, radius=1.0): + """ + Get a similarity transform to normalize dataset + from c2w (OpenCV convention) cameras + :param c2w: (N, 4) + :return T (4,4) , scale (float) + """ + t = c2w[:, :3, 3] + R = c2w[:, :3, :3] + + # (1) Rotate the world so that z+ is the up axis + # we estimate the up axis by averaging the camera up axes + ups = np.sum(R * np.array([0, -1.0, 0]), axis=-1) + world_up = np.mean(ups, axis=0) + world_up /= np.linalg.norm(world_up) + + up_camspace = np.array([0.0, 0.0, 1.0]) + c = (up_camspace * world_up).sum() + cross = np.cross(world_up, up_camspace) + skew = np.array( + [ + [0.0, -cross[2], cross[1]], + [cross[2], 0.0, -cross[0]], + [-cross[1], cross[0], 0.0], + ] + ) + if c > -1: + R_align = np.eye(3) + skew + (skew @ skew) * 1 / (1 + c) + else: + # In the unlikely case the original data has y+ up axis, + # rotate 180-deg about x axis + R_align = np.array([[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) + + if fix_rot: + R_align = np.eye(3) + R = np.eye(3) + else: + R = R_align @ R + fwds = np.sum(R * np.array([0, 0.0, 1.0]), axis=-1) + t = (R_align @ t[..., None])[..., 0] + + # (2) Recenter the scene using camera center rays + # find the closest point to the origin for each camera's center ray + nearest = t + (fwds * -t).sum(-1)[:, None] * fwds + + # median for more robustness + translate = -np.median(nearest, axis=0) + + # translate = -np.mean(t, axis=0) # DEBUG + + transform = np.eye(4) + transform[:3, 3] = translate + transform[:3, :3] = R_align + + # (3) Rescale the scene using camera distances + scale = radius / np.median(np.linalg.norm(t + translate, axis=-1)) + + return transform, scale + + +@dataclass +class Co3dDataModuleConfig: + root_dir: str = "" + batch_size: int = 1 + height: int = 256 + width: int = 256 + load_preprocessed: bool = False + cam_scale_factor: float = 0.95 + max_num_frames: int = 300 + v2_mode: bool = True + use_mask: bool = True + box_crop: bool = True + box_crop_mask_thr: float = 0.4 + box_crop_context: float = 0.3 + train_num_rays: int = -1 + train_views: Optional[list] = None + train_split: str = "train" + val_split: str = "val" + test_split: str = "test" + scale_radius: float = 1.0 + use_random_camera: bool = True + random_camera: dict = field(default_factory=dict) + rays_noise_scale: float = 0.0 + render_path: str = "circle" + + +class Co3dDatasetBase: + def setup(self, cfg, split): + self.split = split + self.rank = get_rank() + self.cfg: Co3dDataModuleConfig = cfg + + if self.cfg.use_random_camera: + random_camera_cfg = parse_structured( + RandomCameraDataModuleConfig, self.cfg.get("random_camera", {}) + ) + if split == "train": + self.random_pose_generator = RandomCameraIterableDataset( + random_camera_cfg + ) + else: + self.random_pose_generator = RandomCameraDataset( + random_camera_cfg, split + ) + + self.use_mask = self.cfg.use_mask + cam_scale_factor = self.cfg.cam_scale_factor + + assert os.path.exists(self.cfg.root_dir), f"{self.cfg.root_dir} doesn't exist!" + + cam_trans = np.diag(np.array([-1, -1, 1, 1], dtype=np.float32)) + scene_number = self.cfg.root_dir.split("/")[-1] + json_path = os.path.join(self.cfg.root_dir, "..", "frame_annotations.jgz") + with gzip.open(json_path, "r") as fp: + all_frames_data = json.load(fp) + + frame_data, images, intrinsics, extrinsics, image_sizes = [], [], [], [], [] + masks = [] + depths = [] + + for temporal_data in all_frames_data: + if temporal_data["sequence_name"] == scene_number: + frame_data.append(temporal_data) + + self.all_directions = [] + self.all_fg_masks = [] + for frame in frame_data: + if "unseen" in frame["meta"]["frame_type"]: + continue + img = cv2.imread( + os.path.join(self.cfg.root_dir, "..", "..", frame["image"]["path"]) + ) + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0 + + # TODO: use estimated depth + depth = _load_depth( + os.path.join(self.cfg.root_dir, "..", "..", frame["depth"]["path"]), + frame["depth"]["scale_adjustment"], + )[0] + + H, W = frame["image"]["size"] + image_size = np.array([H, W]) + fxy = np.array(frame["viewpoint"]["focal_length"]) + cxy = np.array(frame["viewpoint"]["principal_point"]) + R = np.array(frame["viewpoint"]["R"]) + T = np.array(frame["viewpoint"]["T"]) + + if self.cfg.v2_mode: + min_HW = min(W, H) + image_size_half = np.array([W * 0.5, H * 0.5], dtype=np.float32) + scale_arr = np.array([min_HW * 0.5, min_HW * 0.5], dtype=np.float32) + fxy_x = fxy * scale_arr + prp_x = np.array([W * 0.5, H * 0.5], dtype=np.float32) - cxy * scale_arr + cxy = (image_size_half - prp_x) / image_size_half + fxy = fxy_x / image_size_half + + scale_arr = np.array([W * 0.5, H * 0.5], dtype=np.float32) + focal = fxy * scale_arr + prp = -1.0 * (cxy - 1.0) * scale_arr + + pose = np.eye(4) + pose[:3, :3] = R + pose[:3, 3:] = -R @ T[..., None] + # original camera: x left, y up, z in (Pytorch3D) + # transformed camera: x right, y down, z in (OpenCV) + pose = pose @ cam_trans + intrinsic = np.array( + [ + [focal[0], 0.0, prp[0], 0.0], + [0.0, focal[1], prp[1], 0.0], + [0.0, 0.0, 1.0, 0.0], + [0.0, 0.0, 0.0, 1.0], + ] + ) + + if any([np.all(pose == _pose) for _pose in extrinsics]): + continue + + image_sizes.append(image_size) + intrinsics.append(intrinsic) + extrinsics.append(pose) + images.append(img) + depths.append(depth) + self.all_directions.append(get_ray_directions(W, H, focal, prp)) + + # vis_utils.vis_depth_pcd([depth], [pose], intrinsic, [(img * 255).astype(np.uint8)]) + + if self.use_mask: + mask = np.array( + Image.open( + os.path.join( + self.cfg.root_dir, "..", "..", frame["mask"]["path"] + ) + ) + ) + mask = mask.astype(np.float32) / 255.0 # (h, w) + else: + mask = torch.ones_like(img[..., 0]) + self.all_fg_masks.append(mask) + + intrinsics = np.stack(intrinsics) + extrinsics = np.stack(extrinsics) + image_sizes = np.stack(image_sizes) + self.all_directions = torch.stack(self.all_directions, dim=0) + self.all_fg_masks = np.stack(self.all_fg_masks, 0) + + H_median, W_median = np.median( + np.stack([image_size for image_size in image_sizes]), axis=0 + ) + + H_inlier = np.abs(image_sizes[:, 0] - H_median) / H_median < 0.1 + W_inlier = np.abs(image_sizes[:, 1] - W_median) / W_median < 0.1 + inlier = np.logical_and(H_inlier, W_inlier) + dists = np.linalg.norm( + extrinsics[:, :3, 3] - np.median(extrinsics[:, :3, 3], axis=0), axis=-1 + ) + med = np.median(dists) + good_mask = dists < (med * 5.0) + inlier = np.logical_and(inlier, good_mask) + + if inlier.sum() != 0: + intrinsics = intrinsics[inlier] + extrinsics = extrinsics[inlier] + image_sizes = image_sizes[inlier] + images = [images[i] for i in range(len(inlier)) if inlier[i]] + depths = [depths[i] for i in range(len(inlier)) if inlier[i]] + self.all_directions = self.all_directions[inlier] + self.all_fg_masks = self.all_fg_masks[inlier] + + extrinsics = np.stack(extrinsics) + T, sscale = similarity_from_cameras(extrinsics, radius=self.cfg.scale_radius) + extrinsics = T @ extrinsics + + extrinsics[:, :3, 3] *= sscale * cam_scale_factor + + depths = [depth * sscale * cam_scale_factor for depth in depths] + + num_frames = len(extrinsics) + + if self.cfg.max_num_frames < num_frames: + num_frames = self.cfg.max_num_frames + extrinsics = extrinsics[:num_frames] + intrinsics = intrinsics[:num_frames] + image_sizes = image_sizes[:num_frames] + images = images[:num_frames] + depths = depths[:num_frames] + self.all_directions = self.all_directions[:num_frames] + self.all_fg_masks = self.all_fg_masks[:num_frames] + + if self.cfg.box_crop: + print("cropping...") + crop_masks = [] + crop_imgs = [] + crop_depths = [] + crop_directions = [] + crop_xywhs = [] + max_sl = 0 + for i in range(num_frames): + bbox_xywh = np.array( + get_bbox_from_mask(self.all_fg_masks[i], self.cfg.box_crop_mask_thr) + ) + clamp_bbox_xywh = get_clamp_bbox(bbox_xywh, self.cfg.box_crop_context) + max_sl = max(clamp_bbox_xywh[2] - clamp_bbox_xywh[0], max_sl) + max_sl = max(clamp_bbox_xywh[3] - clamp_bbox_xywh[1], max_sl) + mask = crop_around_box(self.all_fg_masks[i][..., None], clamp_bbox_xywh) + img = crop_around_box(images[i], clamp_bbox_xywh) + depth = crop_around_box(depths[i][..., None], clamp_bbox_xywh) + + # resize to the same shape + mask, _, _ = resize_image(mask, self.cfg.height, self.cfg.width) + depth, _, _ = resize_image(depth, self.cfg.height, self.cfg.width) + img, scale, _ = resize_image(img, self.cfg.height, self.cfg.width) + fx, fy, cx, cy = ( + intrinsics[i][0, 0], + intrinsics[i][1, 1], + intrinsics[i][0, 2], + intrinsics[i][1, 2], + ) + + crop_masks.append(mask) + crop_imgs.append(img) + crop_depths.append(depth) + crop_xywhs.append(clamp_bbox_xywh) + crop_directions.append( + get_ray_directions( + self.cfg.height, + self.cfg.width, + (fx * scale, fy * scale), + ( + (cx - clamp_bbox_xywh[0]) * scale, + (cy - clamp_bbox_xywh[1]) * scale, + ), + ) + ) + + # # pad all images to the same shape + # for i in range(num_frames): + # uh = (max_sl - crop_imgs[i].shape[0]) // 2 # h + # dh = max_sl - crop_imgs[i].shape[0] - uh + # lw = (max_sl - crop_imgs[i].shape[1]) // 2 + # rw = max_sl - crop_imgs[i].shape[1] - lw + # crop_masks[i] = np.pad(crop_masks[i], pad_width=((uh, dh), (lw, rw), (0, 0)), mode='constant', constant_values=0.) + # crop_imgs[i] = np.pad(crop_imgs[i], pad_width=((uh, dh), (lw, rw), (0, 0)), mode='constant', constant_values=1.) + # crop_depths[i] = np.pad(crop_depths[i], pad_width=((uh, dh), (lw, rw), (0, 0)), mode='constant', constant_values=0.) + # fx, fy, cx, cy = intrinsics[i][0, 0], intrinsics[i][1, 1], intrinsics[i][0, 2], intrinsics[i][1, 2] + # crop_directions.append(get_ray_directions(max_sl, max_sl, (fx, fy), (cx - crop_xywhs[i][0] + lw, cy - crop_xywhs[i][1] + uh))) + # self.w, self.h = max_sl, max_sl + + images = crop_imgs + depths = crop_depths + self.all_fg_masks = np.stack(crop_masks, 0) + self.all_directions = torch.from_numpy(np.stack(crop_directions, 0)) + + # self.width, self.height = self.w, self.h + + self.all_c2w = torch.from_numpy( + ( + extrinsics + @ np.diag(np.array([1, -1, -1, 1], dtype=np.float32))[None, ...] + )[..., :3, :4] + ) + self.all_images = torch.from_numpy(np.stack(images, axis=0)) + self.all_depths = torch.from_numpy(np.stack(depths, axis=0)) + + # self.all_c2w = [] + # self.all_images = [] + # for i in range(num_frames): + # # convert to: x right, y up, z back (OpenGL) + # c2w = torch.from_numpy(extrinsics[i] @ np.diag(np.array([1, -1, -1, 1], dtype=np.float32)))[:3, :4] + # self.all_c2w.append(c2w) + # img = torch.from_numpy(images[i]) + # self.all_images.append(img) + + # TODO: save data for fast loading next time + if self.cfg.load_preprocessed and os.path.exists( + self.cfg.root_dir, "nerf_preprocessed.npy" + ): + pass + + i_all = np.arange(num_frames) + + if self.cfg.train_views is None: + i_test = i_all[::10] + i_val = i_test + i_train = np.array([i for i in i_all if not i in i_test]) + else: + # use provided views + i_train = self.cfg.train_views + i_test = np.array([i for i in i_all if not i in i_train]) + i_val = i_test + + if self.split == "train": + print("[INFO] num of train views: ", len(i_train)) + print("[INFO] train view ids = ", i_train) + + i_split = {"train": i_train, "val": i_val, "test": i_all} + + # if self.split == 'test': + # self.all_c2w = create_spheric_poses(self.all_c2w[:,:,3], n_steps=self.cfg.n_test_traj_steps) + # self.all_images = torch.zeros((self.cfg.n_test_traj_steps, self.h, self.w, 3), dtype=torch.float32) + # self.all_fg_masks = torch.zeros((self.cfg.n_test_traj_steps, self.h, self.w), dtype=torch.float32) + # self.directions = self.directions[0].to(self.rank) + # else: + self.all_images, self.all_c2w = ( + self.all_images[i_split[self.split]], + self.all_c2w[i_split[self.split]], + ) + self.all_directions = self.all_directions[i_split[self.split]].to(self.rank) + self.all_fg_masks = torch.from_numpy(self.all_fg_masks)[i_split[self.split]] + self.all_depths = self.all_depths[i_split[self.split]] + # if render_random_pose: + # render_poses = random_pose(extrinsics[i_all], 50) + # elif render_scene_interp: + # render_poses = pose_interp(extrinsics[i_all], interp_fac) + # render_poses = spherical_poses(sscale * cam_scale_factor * np.eye(4)) + + # near, far = 0., 1. + # ndc_coeffs = (-1., -1.) + + self.all_c2w, self.all_images, self.all_fg_masks = ( + self.all_c2w.float().to(self.rank), + self.all_images.float().to(self.rank), + self.all_fg_masks.float().to(self.rank), + ) + + # self.all_c2w, self.all_images, self.all_fg_masks = \ + # self.all_c2w.float(), \ + # self.all_images.float(), \ + # self.all_fg_masks.float() + + self.all_depths = self.all_depths.float().to(self.rank) + + def get_all_images(self): + return self.all_images + + +class Co3dDataset(Dataset, Co3dDatasetBase): + def __init__(self, cfg, split): + self.setup(cfg, split) + + def __len__(self): + if self.split == "test": + if self.cfg.render_path == "circle": + return len(self.random_pose_generator) + else: + return len(self.all_images) + else: + return len(self.random_pose_generator) + # return len(self.all_images) + + def prepare_data(self, index): + # prepare batch data here + c2w = self.all_c2w[index] + light_positions = c2w[..., :3, -1] + directions = self.all_directions[index] + rays_o, rays_d = get_rays( + directions, c2w, keepdim=True, noise_scale=self.cfg.rays_noise_scale + ) + rgb = self.all_images[index] + depth = self.all_depths[index] + mask = self.all_fg_masks[index] + + # TODO: get projection matrix and mvp matrix + # proj_mtx = get_projection_matrix() + + batch = { + "rays_o": rays_o, + "rays_d": rays_d, + "mvp_mtx": 0, + "camera_positions": c2w[..., :3, -1], + "light_positions": light_positions, + "elevation": 0, + "azimuth": 0, + "camera_distances": 0, + "rgb": rgb, + "depth": depth, + "mask": mask, + } + + # c2w = self.all_c2w[index] + # return { + # 'index': index, + # 'c2w': c2w, + # 'light_positions': c2w[:3, -1], + # 'H': self.h, + # 'W': self.w + # } + + return batch + + def __getitem__(self, index): + if self.split == "test": + if self.cfg.render_path == "circle": + return self.random_pose_generator[index] + else: + return self.prepare_data(index) + else: + return self.random_pose_generator[index] + + +class Co3dIterableDataset(IterableDataset, Co3dDatasetBase): + def __init__(self, cfg, split): + self.setup(cfg, split) + self.idx = 0 + self.image_perm = torch.randperm(len(self.all_images)) + + def __iter__(self): + while True: + yield {} + + def collate(self, batch) -> Dict[str, Any]: + idx = self.image_perm[self.idx] + # prepare batch data here + c2w = self.all_c2w[idx][None] + light_positions = c2w[..., :3, -1] + directions = self.all_directions[idx][None] + rays_o, rays_d = get_rays( + directions, c2w, keepdim=True, noise_scale=self.cfg.rays_noise_scale + ) + rgb = self.all_images[idx][None] + depth = self.all_depths[idx][None] + mask = self.all_fg_masks[idx][None] + + if ( + self.cfg.train_num_rays != -1 + and self.cfg.train_num_rays < self.cfg.height * self.cfg.width + ): + _, height, width, _ = rays_o.shape + x = torch.randint( + 0, width, size=(self.cfg.train_num_rays,), device=rays_o.device + ) + y = torch.randint( + 0, height, size=(self.cfg.train_num_rays,), device=rays_o.device + ) + + rays_o = rays_o[:, y, x].unsqueeze(-2) + rays_d = rays_d[:, y, x].unsqueeze(-2) + directions = directions[:, y, x].unsqueeze(-2) + rgb = rgb[:, y, x].unsqueeze(-2) + mask = mask[:, y, x].unsqueeze(-2) + depth = depth[:, y, x].unsqueeze(-2) + + # TODO: get projection matrix and mvp matrix + # proj_mtx = get_projection_matrix() + + batch = { + "rays_o": rays_o, + "rays_d": rays_d, + "mvp_mtx": None, + "camera_positions": c2w[..., :3, -1], + "light_positions": light_positions, + "elevation": None, + "azimuth": None, + "camera_distances": None, + "rgb": rgb, + "depth": depth, + "mask": mask, + } + + if self.cfg.use_random_camera: + batch["random_camera"] = self.random_pose_generator.collate(None) + + # prepare batch data in system + # c2w = self.all_c2w[idx][None] + + # batch = { + # 'index': torch.tensor([idx]), + # 'c2w': c2w, + # 'light_positions': c2w[..., :3, -1], + # 'H': self.h, + # 'W': self.w + # } + + self.idx += 1 + if self.idx == len(self.all_images): + self.idx = 0 + self.image_perm = torch.randperm(len(self.all_images)) + # self.idx = (self.idx + 1) % len(self.all_images) + + return batch + + +@register("co3d-datamodule") +class Co3dDataModule(pl.LightningDataModule): + def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None: + super().__init__() + self.cfg = parse_structured(Co3dDataModuleConfig, cfg) + + def setup(self, stage=None): + if stage in [None, "fit"]: + self.train_dataset = Co3dIterableDataset(self.cfg, self.cfg.train_split) + if stage in [None, "fit", "validate"]: + self.val_dataset = Co3dDataset(self.cfg, self.cfg.val_split) + if stage in [None, "test", "predict"]: + self.test_dataset = Co3dDataset(self.cfg, self.cfg.test_split) + + def prepare_data(self): + pass + + def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader: + sampler = None + return DataLoader( + dataset, + num_workers=0, + batch_size=batch_size, + # pin_memory=True, + collate_fn=collate_fn, + ) + + def train_dataloader(self): + return self.general_loader( + self.train_dataset, batch_size=1, collate_fn=self.train_dataset.collate + ) + + def val_dataloader(self): + return self.general_loader(self.val_dataset, batch_size=1) + + def test_dataloader(self): + return self.general_loader(self.test_dataset, batch_size=1) + + def predict_dataloader(self): + return self.general_loader(self.test_dataset, batch_size=1) diff --git a/threestudio/data/image.py b/threestudio/data/image.py new file mode 100644 index 0000000..033c528 --- /dev/null +++ b/threestudio/data/image.py @@ -0,0 +1,350 @@ +import bisect +import math +import os +from dataclasses import dataclass, field + +import cv2 +import numpy as np +import pytorch_lightning as pl +import torch +import torch.nn.functional as F +from torch.utils.data import DataLoader, Dataset, IterableDataset + +import threestudio +from threestudio import register +from threestudio.data.uncond import ( + RandomCameraDataModuleConfig, + RandomCameraDataset, + RandomCameraIterableDataset, +) +from threestudio.utils.base import Updateable +from threestudio.utils.config import parse_structured +from threestudio.utils.misc import get_rank +from threestudio.utils.ops import ( + get_mvp_matrix, + get_projection_matrix, + get_ray_directions, + get_rays, +) +from threestudio.utils.typing import * + + +@dataclass +class SingleImageDataModuleConfig: + # height and width should be Union[int, List[int]] + # but OmegaConf does not support Union of containers + height: Any = 96 + width: Any = 96 + resolution_milestones: List[int] = field(default_factory=lambda: []) + default_elevation_deg: float = 0.0 + default_azimuth_deg: float = -180.0 + default_camera_distance: float = 1.2 + default_fovy_deg: float = 60.0 + image_path: str = "" + use_random_camera: bool = True + random_camera: dict = field(default_factory=dict) + rays_noise_scale: float = 2e-3 + batch_size: int = 1 + requires_depth: bool = False + requires_normal: bool = False + + rays_d_normalize: bool = True + + +class SingleImageDataBase: + def setup(self, cfg, split): + self.split = split + self.rank = get_rank() + self.cfg: SingleImageDataModuleConfig = cfg + + if self.cfg.use_random_camera: + random_camera_cfg = parse_structured( + RandomCameraDataModuleConfig, self.cfg.get("random_camera", {}) + ) + if split == "train": + self.random_pose_generator = RandomCameraIterableDataset( + random_camera_cfg + ) + else: + self.random_pose_generator = RandomCameraDataset( + random_camera_cfg, split + ) + + elevation_deg = torch.FloatTensor([self.cfg.default_elevation_deg]) + azimuth_deg = torch.FloatTensor([self.cfg.default_azimuth_deg]) + camera_distance = torch.FloatTensor([self.cfg.default_camera_distance]) + + elevation = elevation_deg * math.pi / 180 + azimuth = azimuth_deg * math.pi / 180 + camera_position: Float[Tensor, "1 3"] = torch.stack( + [ + camera_distance * torch.cos(elevation) * torch.cos(azimuth), + camera_distance * torch.cos(elevation) * torch.sin(azimuth), + camera_distance * torch.sin(elevation), + ], + dim=-1, + ) + + center: Float[Tensor, "1 3"] = torch.zeros_like(camera_position) + up: Float[Tensor, "1 3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)[None] + + light_position: Float[Tensor, "1 3"] = camera_position + lookat: Float[Tensor, "1 3"] = F.normalize(center - camera_position, dim=-1) + right: Float[Tensor, "1 3"] = F.normalize(torch.cross(lookat, up), dim=-1) + up = F.normalize(torch.cross(right, lookat), dim=-1) + self.c2w: Float[Tensor, "1 3 4"] = torch.cat( + [torch.stack([right, up, -lookat], dim=-1), camera_position[:, :, None]], + dim=-1, + ) + self.c2w4x4: Float[Tensor, "B 4 4"] = torch.cat( + [self.c2w, torch.zeros_like(self.c2w[:, :1])], dim=1 + ) + self.c2w4x4[:, 3, 3] = 1.0 + + self.camera_position = camera_position + self.light_position = light_position + self.elevation_deg, self.azimuth_deg = elevation_deg, azimuth_deg + self.camera_distance = camera_distance + self.fovy = torch.deg2rad(torch.FloatTensor([self.cfg.default_fovy_deg])) + + self.heights: List[int] = ( + [self.cfg.height] if isinstance(self.cfg.height, int) else self.cfg.height + ) + self.widths: List[int] = ( + [self.cfg.width] if isinstance(self.cfg.width, int) else self.cfg.width + ) + assert len(self.heights) == len(self.widths) + self.resolution_milestones: List[int] + if len(self.heights) == 1 and len(self.widths) == 1: + if len(self.cfg.resolution_milestones) > 0: + threestudio.warn( + "Ignoring resolution_milestones since height and width are not changing" + ) + self.resolution_milestones = [-1] + else: + assert len(self.heights) == len(self.cfg.resolution_milestones) + 1 + self.resolution_milestones = [-1] + self.cfg.resolution_milestones + + self.directions_unit_focals = [ + get_ray_directions(H=height, W=width, focal=1.0) + for (height, width) in zip(self.heights, self.widths) + ] + self.focal_lengths = [ + 0.5 * height / torch.tan(0.5 * self.fovy) for height in self.heights + ] + + self.height: int = self.heights[0] + self.width: int = self.widths[0] + self.directions_unit_focal = self.directions_unit_focals[0] + self.focal_length = self.focal_lengths[0] + self.set_rays() + self.load_images() + self.prev_height = self.height + + def set_rays(self): + # get directions by dividing directions_unit_focal by focal length + directions: Float[Tensor, "1 H W 3"] = self.directions_unit_focal[None] + directions[:, :, :, :2] = directions[:, :, :, :2] / self.focal_length + + rays_o, rays_d = get_rays( + directions, + self.c2w, + keepdim=True, + noise_scale=self.cfg.rays_noise_scale, + normalize=self.cfg.rays_d_normalize, + ) + + proj_mtx: Float[Tensor, "4 4"] = get_projection_matrix( + self.fovy, self.width / self.height, 0.1, 100.0 + ) # FIXME: hard-coded near and far + mvp_mtx: Float[Tensor, "4 4"] = get_mvp_matrix(self.c2w, proj_mtx) + + self.rays_o, self.rays_d = rays_o, rays_d + self.mvp_mtx = mvp_mtx + + def load_images(self): + # load image + assert os.path.exists( + self.cfg.image_path + ), f"Could not find image {self.cfg.image_path}!" + rgba = cv2.cvtColor( + cv2.imread(self.cfg.image_path, cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA + ) + rgba = ( + cv2.resize( + rgba, (self.width, self.height), interpolation=cv2.INTER_AREA + ).astype(np.float32) + / 255.0 + ) + rgb = rgba[..., :3] + self.rgb: Float[Tensor, "1 H W 3"] = ( + torch.from_numpy(rgb).unsqueeze(0).contiguous().to(self.rank) + ) + self.mask: Float[Tensor, "1 H W 1"] = ( + torch.from_numpy(rgba[..., 3:] > 0.5).unsqueeze(0).to(self.rank) + ) + print( + f"[INFO] single image dataset: load image {self.cfg.image_path} {self.rgb.shape}" + ) + + # load depth + if self.cfg.requires_depth: + depth_path = self.cfg.image_path.replace("_rgba.png", "_depth.png") + assert os.path.exists(depth_path) + depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED) + depth = cv2.resize( + depth, (self.width, self.height), interpolation=cv2.INTER_AREA + ) + self.depth: Float[Tensor, "1 H W 1"] = ( + torch.from_numpy(depth.astype(np.float32) / 255.0) + .unsqueeze(0) + .to(self.rank) + ) + print( + f"[INFO] single image dataset: load depth {depth_path} {self.depth.shape}" + ) + else: + self.depth = None + + # load normal + if self.cfg.requires_normal: + normal_path = self.cfg.image_path.replace("_rgba.png", "_normal.png") + assert os.path.exists(normal_path) + normal = cv2.imread(normal_path, cv2.IMREAD_UNCHANGED) + normal = cv2.resize( + normal, (self.width, self.height), interpolation=cv2.INTER_AREA + ) + self.normal: Float[Tensor, "1 H W 3"] = ( + torch.from_numpy(normal.astype(np.float32) / 255.0) + .unsqueeze(0) + .to(self.rank) + ) + print( + f"[INFO] single image dataset: load normal {normal_path} {self.normal.shape}" + ) + else: + self.normal = None + + def get_all_images(self): + return self.rgb + + def update_step_(self, epoch: int, global_step: int, on_load_weights: bool = False): + size_ind = bisect.bisect_right(self.resolution_milestones, global_step) - 1 + self.height = self.heights[size_ind] + if self.height == self.prev_height: + return + + self.prev_height = self.height + self.width = self.widths[size_ind] + self.directions_unit_focal = self.directions_unit_focals[size_ind] + self.focal_length = self.focal_lengths[size_ind] + threestudio.debug(f"Training height: {self.height}, width: {self.width}") + self.set_rays() + self.load_images() + + +class SingleImageIterableDataset(IterableDataset, SingleImageDataBase, Updateable): + def __init__(self, cfg: Any, split: str) -> None: + super().__init__() + self.setup(cfg, split) + + def collate(self, batch) -> Dict[str, Any]: + batch = { + "rays_o": self.rays_o, + "rays_d": self.rays_d, + "mvp_mtx": self.mvp_mtx, + "camera_positions": self.camera_position, + "light_positions": self.light_position, + "elevation": self.elevation_deg, + "azimuth": self.azimuth_deg, + "camera_distances": self.camera_distance, + "rgb": self.rgb, + "ref_depth": self.depth, + "ref_normal": self.normal, + "mask": self.mask, + "height": self.height, + "width": self.width, + "c2w": self.c2w4x4, + "fovy": self.fovy, + } + if self.cfg.use_random_camera: + batch["random_camera"] = self.random_pose_generator.collate(None) + + return batch + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + self.update_step_(epoch, global_step, on_load_weights) + self.random_pose_generator.update_step(epoch, global_step, on_load_weights) + + def __iter__(self): + while True: + yield {} + + +class SingleImageDataset(Dataset, SingleImageDataBase): + def __init__(self, cfg: Any, split: str) -> None: + super().__init__() + self.setup(cfg, split) + + def __len__(self): + return len(self.random_pose_generator) + + def __getitem__(self, index): + return self.random_pose_generator[index] + # if index == 0: + # return { + # 'rays_o': self.rays_o[0], + # 'rays_d': self.rays_d[0], + # 'mvp_mtx': self.mvp_mtx[0], + # 'camera_positions': self.camera_position[0], + # 'light_positions': self.light_position[0], + # 'elevation': self.elevation_deg[0], + # 'azimuth': self.azimuth_deg[0], + # 'camera_distances': self.camera_distance[0], + # 'rgb': self.rgb[0], + # 'depth': self.depth[0], + # 'mask': self.mask[0] + # } + # else: + # return self.random_pose_generator[index - 1] + + +@register("single-image-datamodule") +class SingleImageDataModule(pl.LightningDataModule): + cfg: SingleImageDataModuleConfig + + def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None: + super().__init__() + self.cfg = parse_structured(SingleImageDataModuleConfig, cfg) + + def setup(self, stage=None) -> None: + if stage in [None, "fit"]: + self.train_dataset = SingleImageIterableDataset(self.cfg, "train") + if stage in [None, "fit", "validate"]: + self.val_dataset = SingleImageDataset(self.cfg, "val") + if stage in [None, "test", "predict"]: + self.test_dataset = SingleImageDataset(self.cfg, "test") + + def prepare_data(self): + pass + + def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader: + return DataLoader( + dataset, num_workers=0, batch_size=batch_size, collate_fn=collate_fn + ) + + def train_dataloader(self) -> DataLoader: + return self.general_loader( + self.train_dataset, + batch_size=self.cfg.batch_size, + collate_fn=self.train_dataset.collate, + ) + + def val_dataloader(self) -> DataLoader: + return self.general_loader(self.val_dataset, batch_size=1) + + def test_dataloader(self) -> DataLoader: + return self.general_loader(self.test_dataset, batch_size=1) + + def predict_dataloader(self) -> DataLoader: + return self.general_loader(self.test_dataset, batch_size=1) diff --git a/threestudio/data/multiview.py b/threestudio/data/multiview.py new file mode 100644 index 0000000..8b72262 --- /dev/null +++ b/threestudio/data/multiview.py @@ -0,0 +1,435 @@ +import json +import math +import os +import random +from dataclasses import dataclass + +import cv2 +import numpy as np +import pytorch_lightning as pl +import torch +import torch.nn.functional as F +from scipy.spatial.transform import Rotation as Rot +from scipy.spatial.transform import Slerp +from torch.utils.data import DataLoader, Dataset, IterableDataset +from tqdm import tqdm + +import threestudio +from threestudio import register +from threestudio.utils.config import parse_structured +from threestudio.utils.ops import get_mvp_matrix, get_ray_directions, get_rays +from threestudio.utils.typing import * + + +def convert_pose(C2W): + flip_yz = torch.eye(4) + flip_yz[1, 1] = -1 + flip_yz[2, 2] = -1 + C2W = torch.matmul(C2W, flip_yz) + return C2W + + +def convert_proj(K, H, W, near, far): + return [ + [2 * K[0, 0] / W, -2 * K[0, 1] / W, (W - 2 * K[0, 2]) / W, 0], + [0, -2 * K[1, 1] / H, (H - 2 * K[1, 2]) / H, 0], + [0, 0, (-far - near) / (far - near), -2 * far * near / (far - near)], + [0, 0, -1, 0], + ] + + +def inter_pose(pose_0, pose_1, ratio): + pose_0 = pose_0.detach().cpu().numpy() + pose_1 = pose_1.detach().cpu().numpy() + pose_0 = np.linalg.inv(pose_0) + pose_1 = np.linalg.inv(pose_1) + rot_0 = pose_0[:3, :3] + rot_1 = pose_1[:3, :3] + rots = Rot.from_matrix(np.stack([rot_0, rot_1])) + key_times = [0, 1] + slerp = Slerp(key_times, rots) + rot = slerp(ratio) + pose = np.diag([1.0, 1.0, 1.0, 1.0]) + pose = pose.astype(np.float32) + pose[:3, :3] = rot.as_matrix() + pose[:3, 3] = ((1.0 - ratio) * pose_0 + ratio * pose_1)[:3, 3] + pose = np.linalg.inv(pose) + return pose + + +@dataclass +class MultiviewsDataModuleConfig: + dataroot: str = "" + train_downsample_resolution: int = 4 + eval_downsample_resolution: int = 4 + train_data_interval: int = 1 + eval_data_interval: int = 1 + batch_size: int = 1 + eval_batch_size: int = 1 + camera_layout: str = "around" + camera_distance: float = -1 + eval_interpolation: Optional[Tuple[int, int, int]] = None # (0, 1, 30) + + rays_d_normalize: bool = True + + +class MultiviewIterableDataset(IterableDataset): + def __init__(self, cfg: Any) -> None: + super().__init__() + self.cfg: MultiviewsDataModuleConfig = cfg + + assert self.cfg.batch_size == 1 + scale = self.cfg.train_downsample_resolution + + camera_dict = json.load( + open(os.path.join(self.cfg.dataroot, "transforms.json"), "r") + ) + assert camera_dict["camera_model"] == "OPENCV" + + frames = camera_dict["frames"] + frames = frames[:: self.cfg.train_data_interval] + frames_proj = [] + frames_c2w = [] + frames_position = [] + frames_direction = [] + frames_img = [] + + self.frame_w = frames[0]["w"] // scale + self.frame_h = frames[0]["h"] // scale + threestudio.info("Loading frames...") + self.n_frames = len(frames) + + c2w_list = [] + for frame in tqdm(frames): + extrinsic: Float[Tensor, "4 4"] = torch.as_tensor( + frame["transform_matrix"], dtype=torch.float32 + ) + c2w = extrinsic + c2w_list.append(c2w) + c2w_list = torch.stack(c2w_list, dim=0) + + if self.cfg.camera_layout == "around": + c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0) + elif self.cfg.camera_layout == "front": + assert self.cfg.camera_distance > 0 + c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0) + z_vector = torch.zeros(c2w_list.shape[0], 3, 1) + z_vector[:, 2, :] = -1 + rot_z_vector = c2w_list[:, :3, :3] @ z_vector + rot_z_vector = torch.mean(rot_z_vector, dim=0).unsqueeze(0) + c2w_list[:, :3, 3] -= rot_z_vector[:, :, 0] * self.cfg.camera_distance + else: + raise ValueError( + f"Unknown camera layout {self.cfg.camera_layout}. Now support only around and front." + ) + + for idx, frame in tqdm(enumerate(frames)): + intrinsic: Float[Tensor, "4 4"] = torch.eye(4) + intrinsic[0, 0] = frame["fl_x"] / scale + intrinsic[1, 1] = frame["fl_y"] / scale + intrinsic[0, 2] = frame["cx"] / scale + intrinsic[1, 2] = frame["cy"] / scale + + frame_path = os.path.join(self.cfg.dataroot, frame["file_path"]) + img = cv2.imread(frame_path)[:, :, ::-1].copy() + img = cv2.resize(img, (self.frame_w, self.frame_h)) + img: Float[Tensor, "H W 3"] = torch.FloatTensor(img) / 255 + frames_img.append(img) + + direction: Float[Tensor, "H W 3"] = get_ray_directions( + self.frame_h, + self.frame_w, + (intrinsic[0, 0], intrinsic[1, 1]), + (intrinsic[0, 2], intrinsic[1, 2]), + use_pixel_centers=False, + ) + + c2w = c2w_list[idx] + camera_position: Float[Tensor, "3"] = c2w[:3, 3:].reshape(-1) + + near = 0.1 + far = 1000.0 + proj = convert_proj(intrinsic, self.frame_h, self.frame_w, near, far) + proj: Float[Tensor, "4 4"] = torch.FloatTensor(proj) + frames_proj.append(proj) + frames_c2w.append(c2w) + frames_position.append(camera_position) + frames_direction.append(direction) + threestudio.info("Loaded frames.") + + self.frames_proj: Float[Tensor, "B 4 4"] = torch.stack(frames_proj, dim=0) + self.frames_c2w: Float[Tensor, "B 4 4"] = torch.stack(frames_c2w, dim=0) + self.frames_position: Float[Tensor, "B 3"] = torch.stack(frames_position, dim=0) + self.frames_direction: Float[Tensor, "B H W 3"] = torch.stack( + frames_direction, dim=0 + ) + self.frames_img: Float[Tensor, "B H W 3"] = torch.stack(frames_img, dim=0) + + self.rays_o, self.rays_d = get_rays( + self.frames_direction, + self.frames_c2w, + keepdim=True, + normalize=self.cfg.rays_d_normalize, + ) + self.mvp_mtx: Float[Tensor, "B 4 4"] = get_mvp_matrix( + self.frames_c2w, self.frames_proj + ) + self.light_positions: Float[Tensor, "B 3"] = torch.zeros_like( + self.frames_position + ) + + def __iter__(self): + while True: + yield {} + + def collate(self, batch): + index = torch.randint(0, self.n_frames, (1,)).item() + return { + "index": index, + "rays_o": self.rays_o[index : index + 1], + "rays_d": self.rays_d[index : index + 1], + "mvp_mtx": self.mvp_mtx[index : index + 1], + "c2w": self.frames_c2w[index : index + 1], + "camera_positions": self.frames_position[index : index + 1], + "light_positions": self.light_positions[index : index + 1], + "gt_rgb": self.frames_img[index : index + 1], + "height": self.frame_h, + "width": self.frame_w, + } + + +class MultiviewDataset(Dataset): + def __init__(self, cfg: Any, split: str) -> None: + super().__init__() + self.cfg: MultiviewsDataModuleConfig = cfg + + assert self.cfg.eval_batch_size == 1 + scale = self.cfg.eval_downsample_resolution + + camera_dict = json.load( + open(os.path.join(self.cfg.dataroot, "transforms.json"), "r") + ) + assert camera_dict["camera_model"] == "OPENCV" + + frames = camera_dict["frames"] + frames = frames[:: self.cfg.eval_data_interval] + frames_proj = [] + frames_c2w = [] + frames_position = [] + frames_direction = [] + frames_img = [] + + self.frame_w = frames[0]["w"] // scale + self.frame_h = frames[0]["h"] // scale + threestudio.info("Loading frames...") + self.n_frames = len(frames) + + c2w_list = [] + for frame in tqdm(frames): + extrinsic: Float[Tensor, "4 4"] = torch.as_tensor( + frame["transform_matrix"], dtype=torch.float32 + ) + c2w = extrinsic + c2w_list.append(c2w) + c2w_list = torch.stack(c2w_list, dim=0) + + if self.cfg.camera_layout == "around": + c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0) + elif self.cfg.camera_layout == "front": + assert self.cfg.camera_distance > 0 + c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0) + z_vector = torch.zeros(c2w_list.shape[0], 3, 1) + z_vector[:, 2, :] = -1 + rot_z_vector = c2w_list[:, :3, :3] @ z_vector + rot_z_vector = torch.mean(rot_z_vector, dim=0).unsqueeze(0) + c2w_list[:, :3, 3] -= rot_z_vector[:, :, 0] * self.cfg.camera_distance + else: + raise ValueError( + f"Unknown camera layout {self.cfg.camera_layout}. Now support only around and front." + ) + + if not (self.cfg.eval_interpolation is None): + idx0 = self.cfg.eval_interpolation[0] + idx1 = self.cfg.eval_interpolation[1] + eval_nums = self.cfg.eval_interpolation[2] + frame = frames[idx0] + intrinsic: Float[Tensor, "4 4"] = torch.eye(4) + intrinsic[0, 0] = frame["fl_x"] / scale + intrinsic[1, 1] = frame["fl_y"] / scale + intrinsic[0, 2] = frame["cx"] / scale + intrinsic[1, 2] = frame["cy"] / scale + for ratio in np.linspace(0, 1, eval_nums): + img: Float[Tensor, "H W 3"] = torch.zeros( + (self.frame_h, self.frame_w, 3) + ) + frames_img.append(img) + direction: Float[Tensor, "H W 3"] = get_ray_directions( + self.frame_h, + self.frame_w, + (intrinsic[0, 0], intrinsic[1, 1]), + (intrinsic[0, 2], intrinsic[1, 2]), + use_pixel_centers=False, + ) + + c2w = torch.FloatTensor( + inter_pose(c2w_list[idx0], c2w_list[idx1], ratio) + ) + camera_position: Float[Tensor, "3"] = c2w[:3, 3:].reshape(-1) + + near = 0.1 + far = 1000.0 + proj = convert_proj(intrinsic, self.frame_h, self.frame_w, near, far) + proj: Float[Tensor, "4 4"] = torch.FloatTensor(proj) + frames_proj.append(proj) + frames_c2w.append(c2w) + frames_position.append(camera_position) + frames_direction.append(direction) + else: + for idx, frame in tqdm(enumerate(frames)): + intrinsic: Float[Tensor, "4 4"] = torch.eye(4) + intrinsic[0, 0] = frame["fl_x"] / scale + intrinsic[1, 1] = frame["fl_y"] / scale + intrinsic[0, 2] = frame["cx"] / scale + intrinsic[1, 2] = frame["cy"] / scale + + frame_path = os.path.join(self.cfg.dataroot, frame["file_path"]) + img = cv2.imread(frame_path)[:, :, ::-1].copy() + img = cv2.resize(img, (self.frame_w, self.frame_h)) + img: Float[Tensor, "H W 3"] = torch.FloatTensor(img) / 255 + frames_img.append(img) + + direction: Float[Tensor, "H W 3"] = get_ray_directions( + self.frame_h, + self.frame_w, + (intrinsic[0, 0], intrinsic[1, 1]), + (intrinsic[0, 2], intrinsic[1, 2]), + use_pixel_centers=False, + ) + + c2w = c2w_list[idx] + camera_position: Float[Tensor, "3"] = c2w[:3, 3:].reshape(-1) + + near = 0.1 + far = 1000.0 + K = intrinsic + proj = [ + [ + 2 * K[0, 0] / self.frame_w, + -2 * K[0, 1] / self.frame_w, + (self.frame_w - 2 * K[0, 2]) / self.frame_w, + 0, + ], + [ + 0, + -2 * K[1, 1] / self.frame_h, + (self.frame_h - 2 * K[1, 2]) / self.frame_h, + 0, + ], + [ + 0, + 0, + (-far - near) / (far - near), + -2 * far * near / (far - near), + ], + [0, 0, -1, 0], + ] + proj: Float[Tensor, "4 4"] = torch.FloatTensor(proj) + frames_proj.append(proj) + frames_c2w.append(c2w) + frames_position.append(camera_position) + frames_direction.append(direction) + threestudio.info("Loaded frames.") + + self.frames_proj: Float[Tensor, "B 4 4"] = torch.stack(frames_proj, dim=0) + self.frames_c2w: Float[Tensor, "B 4 4"] = torch.stack(frames_c2w, dim=0) + self.frames_position: Float[Tensor, "B 3"] = torch.stack(frames_position, dim=0) + self.frames_direction: Float[Tensor, "B H W 3"] = torch.stack( + frames_direction, dim=0 + ) + self.frames_img: Float[Tensor, "B H W 3"] = torch.stack(frames_img, dim=0) + + self.rays_o, self.rays_d = get_rays( + self.frames_direction, + self.frames_c2w, + keepdim=True, + normalize=self.cfg.rays_d_normalize, + ) + self.mvp_mtx: Float[Tensor, "B 4 4"] = get_mvp_matrix( + self.frames_c2w, self.frames_proj + ) + self.light_positions: Float[Tensor, "B 3"] = torch.zeros_like( + self.frames_position + ) + + def __len__(self): + return self.frames_proj.shape[0] + + def __getitem__(self, index): + return { + "index": index, + "rays_o": self.rays_o[index], + "rays_d": self.rays_d[index], + "mvp_mtx": self.mvp_mtx[index], + "c2w": self.frames_c2w[index], + "camera_positions": self.frames_position[index], + "light_positions": self.light_positions[index], + "gt_rgb": self.frames_img[index], + } + + def __iter__(self): + while True: + yield {} + + def collate(self, batch): + batch = torch.utils.data.default_collate(batch) + batch.update({"height": self.frame_h, "width": self.frame_w}) + return batch + + +@register("multiview-camera-datamodule") +class MultiviewDataModule(pl.LightningDataModule): + cfg: MultiviewsDataModuleConfig + + def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None: + super().__init__() + self.cfg = parse_structured(MultiviewsDataModuleConfig, cfg) + + def setup(self, stage=None) -> None: + if stage in [None, "fit"]: + self.train_dataset = MultiviewIterableDataset(self.cfg) + if stage in [None, "fit", "validate"]: + self.val_dataset = MultiviewDataset(self.cfg, "val") + if stage in [None, "test", "predict"]: + self.test_dataset = MultiviewDataset(self.cfg, "test") + + def prepare_data(self): + pass + + def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader: + return DataLoader( + dataset, + num_workers=1, # type: ignore + batch_size=batch_size, + collate_fn=collate_fn, + ) + + def train_dataloader(self) -> DataLoader: + return self.general_loader( + self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate + ) + + def val_dataloader(self) -> DataLoader: + return self.general_loader( + self.val_dataset, batch_size=1, collate_fn=self.val_dataset.collate + ) + # return self.general_loader(self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate) + + def test_dataloader(self) -> DataLoader: + return self.general_loader( + self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate + ) + + def predict_dataloader(self) -> DataLoader: + return self.general_loader( + self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate + ) diff --git a/threestudio/data/uncond.py b/threestudio/data/uncond.py new file mode 100644 index 0000000..999ba55 --- /dev/null +++ b/threestudio/data/uncond.py @@ -0,0 +1,518 @@ +import bisect +import math +import random +from dataclasses import dataclass, field + +import numpy as np +import pytorch_lightning as pl +import torch +import torch.nn.functional as F +from torch.utils.data import DataLoader, Dataset, IterableDataset + +import threestudio +from threestudio import register +from threestudio.utils.base import Updateable +from threestudio.utils.config import parse_structured +from threestudio.utils.misc import get_device +from threestudio.utils.ops import ( + get_full_projection_matrix, + get_mvp_matrix, + get_projection_matrix, + get_ray_directions, + get_rays, +) +from threestudio.utils.typing import * + + +@dataclass +class RandomCameraDataModuleConfig: + # height, width, and batch_size should be Union[int, List[int]] + # but OmegaConf does not support Union of containers + height: Any = 64 + width: Any = 64 + batch_size: Any = 1 + resolution_milestones: List[int] = field(default_factory=lambda: []) + eval_height: int = 512 + eval_width: int = 512 + eval_batch_size: int = 1 + n_val_views: int = 1 + n_test_views: int = 120 + elevation_range: Tuple[float, float] = (-10, 90) + azimuth_range: Tuple[float, float] = (-180, 180) + camera_distance_range: Tuple[float, float] = (1, 1.5) + fovy_range: Tuple[float, float] = ( + 40, + 70, + ) # in degrees, in vertical direction (along height) + camera_perturb: float = 0.1 + center_perturb: float = 0.2 + up_perturb: float = 0.02 + light_position_perturb: float = 1.0 + light_distance_range: Tuple[float, float] = (0.8, 1.5) + eval_elevation_deg: float = 15.0 + eval_camera_distance: float = 1.5 + eval_fovy_deg: float = 70.0 + light_sample_strategy: str = "dreamfusion" + batch_uniform_azimuth: bool = True + progressive_until: int = 0 # progressive ranges for elevation, azimuth, r, fovy + + rays_d_normalize: bool = True + + +class RandomCameraIterableDataset(IterableDataset, Updateable): + def __init__(self, cfg: Any) -> None: + super().__init__() + self.cfg: RandomCameraDataModuleConfig = cfg + self.heights: List[int] = ( + [self.cfg.height] if isinstance(self.cfg.height, int) else self.cfg.height + ) + self.widths: List[int] = ( + [self.cfg.width] if isinstance(self.cfg.width, int) else self.cfg.width + ) + self.batch_sizes: List[int] = ( + [self.cfg.batch_size] + if isinstance(self.cfg.batch_size, int) + else self.cfg.batch_size + ) + assert len(self.heights) == len(self.widths) == len(self.batch_sizes) + self.resolution_milestones: List[int] + if ( + len(self.heights) == 1 + and len(self.widths) == 1 + and len(self.batch_sizes) == 1 + ): + if len(self.cfg.resolution_milestones) > 0: + threestudio.warn( + "Ignoring resolution_milestones since height and width are not changing" + ) + self.resolution_milestones = [-1] + else: + assert len(self.heights) == len(self.cfg.resolution_milestones) + 1 + self.resolution_milestones = [-1] + self.cfg.resolution_milestones + + self.directions_unit_focals = [ + get_ray_directions(H=height, W=width, focal=1.0) + for (height, width) in zip(self.heights, self.widths) + ] + self.height: int = self.heights[0] + self.width: int = self.widths[0] + self.batch_size: int = self.batch_sizes[0] + self.directions_unit_focal = self.directions_unit_focals[0] + self.elevation_range = self.cfg.elevation_range + self.azimuth_range = self.cfg.azimuth_range + self.camera_distance_range = self.cfg.camera_distance_range + self.fovy_range = self.cfg.fovy_range + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + size_ind = bisect.bisect_right(self.resolution_milestones, global_step) - 1 + self.height = self.heights[size_ind] + self.width = self.widths[size_ind] + self.batch_size = self.batch_sizes[size_ind] + self.directions_unit_focal = self.directions_unit_focals[size_ind] + threestudio.debug( + f"Training height: {self.height}, width: {self.width}, batch_size: {self.batch_size}" + ) + # progressive view + self.progressive_view(global_step) + + def __iter__(self): + while True: + yield {} + + def progressive_view(self, global_step): + r = min(1.0, global_step / (self.cfg.progressive_until + 1)) + self.elevation_range = [ + (1 - r) * self.cfg.eval_elevation_deg + r * self.cfg.elevation_range[0], + (1 - r) * self.cfg.eval_elevation_deg + r * self.cfg.elevation_range[1], + ] + self.azimuth_range = [ + (1 - r) * 0.0 + r * self.cfg.azimuth_range[0], + (1 - r) * 0.0 + r * self.cfg.azimuth_range[1], + ] + # self.camera_distance_range = [ + # (1 - r) * self.cfg.eval_camera_distance + # + r * self.cfg.camera_distance_range[0], + # (1 - r) * self.cfg.eval_camera_distance + # + r * self.cfg.camera_distance_range[1], + # ] + # self.fovy_range = [ + # (1 - r) * self.cfg.eval_fovy_deg + r * self.cfg.fovy_range[0], + # (1 - r) * self.cfg.eval_fovy_deg + r * self.cfg.fovy_range[1], + # ] + + def collate(self, batch) -> Dict[str, Any]: + # sample elevation angles + elevation_deg: Float[Tensor, "B"] + elevation: Float[Tensor, "B"] + if random.random() < 0.5: + # sample elevation angles uniformly with a probability 0.5 (biased towards poles) + elevation_deg = ( + torch.rand(self.batch_size) + * (self.elevation_range[1] - self.elevation_range[0]) + + self.elevation_range[0] + ) + elevation = elevation_deg * math.pi / 180 + else: + # otherwise sample uniformly on sphere + elevation_range_percent = [ + self.elevation_range[0] / 180.0 * math.pi, + self.elevation_range[1] / 180.0 * math.pi, + ] + # inverse transform sampling + elevation = torch.asin( + ( + torch.rand(self.batch_size) + * ( + math.sin(elevation_range_percent[1]) + - math.sin(elevation_range_percent[0]) + ) + + math.sin(elevation_range_percent[0]) + ) + ) + elevation_deg = elevation / math.pi * 180.0 + + # sample azimuth angles from a uniform distribution bounded by azimuth_range + azimuth_deg: Float[Tensor, "B"] + if self.cfg.batch_uniform_azimuth: + # ensures sampled azimuth angles in a batch cover the whole range + azimuth_deg = ( + torch.rand(self.batch_size) + torch.arange(self.batch_size) + ) / self.batch_size * ( + self.azimuth_range[1] - self.azimuth_range[0] + ) + self.azimuth_range[ + 0 + ] + else: + # simple random sampling + azimuth_deg = ( + torch.rand(self.batch_size) + * (self.azimuth_range[1] - self.azimuth_range[0]) + + self.azimuth_range[0] + ) + azimuth = azimuth_deg * math.pi / 180 + + # sample distances from a uniform distribution bounded by distance_range + camera_distances: Float[Tensor, "B"] = ( + torch.rand(self.batch_size) + * (self.camera_distance_range[1] - self.camera_distance_range[0]) + + self.camera_distance_range[0] + ) + + # convert spherical coordinates to cartesian coordinates + # right hand coordinate system, x back, y right, z up + # elevation in (-90, 90), azimuth from +x to +y in (-180, 180) + camera_positions: Float[Tensor, "B 3"] = torch.stack( + [ + camera_distances * torch.cos(elevation) * torch.cos(azimuth), + camera_distances * torch.cos(elevation) * torch.sin(azimuth), + camera_distances * torch.sin(elevation), + ], + dim=-1, + ) + + # default scene center at origin + center: Float[Tensor, "B 3"] = torch.zeros_like(camera_positions) + # default camera up direction as +z + up: Float[Tensor, "B 3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)[ + None, : + ].repeat(self.batch_size, 1) + + # sample camera perturbations from a uniform distribution [-camera_perturb, camera_perturb] + camera_perturb: Float[Tensor, "B 3"] = ( + torch.rand(self.batch_size, 3) * 2 * self.cfg.camera_perturb + - self.cfg.camera_perturb + ) + camera_positions = camera_positions + camera_perturb + # sample center perturbations from a normal distribution with mean 0 and std center_perturb + center_perturb: Float[Tensor, "B 3"] = ( + torch.randn(self.batch_size, 3) * self.cfg.center_perturb + ) + center = center + center_perturb + # sample up perturbations from a normal distribution with mean 0 and std up_perturb + up_perturb: Float[Tensor, "B 3"] = ( + torch.randn(self.batch_size, 3) * self.cfg.up_perturb + ) + up = up + up_perturb + + # sample fovs from a uniform distribution bounded by fov_range + fovy_deg: Float[Tensor, "B"] = ( + torch.rand(self.batch_size) * (self.fovy_range[1] - self.fovy_range[0]) + + self.fovy_range[0] + ) + fovy = fovy_deg * math.pi / 180 + + # sample light distance from a uniform distribution bounded by light_distance_range + light_distances: Float[Tensor, "B"] = ( + torch.rand(self.batch_size) + * (self.cfg.light_distance_range[1] - self.cfg.light_distance_range[0]) + + self.cfg.light_distance_range[0] + ) + + if self.cfg.light_sample_strategy == "dreamfusion": + # sample light direction from a normal distribution with mean camera_position and std light_position_perturb + light_direction: Float[Tensor, "B 3"] = F.normalize( + camera_positions + + torch.randn(self.batch_size, 3) * self.cfg.light_position_perturb, + dim=-1, + ) + # get light position by scaling light direction by light distance + light_positions: Float[Tensor, "B 3"] = ( + light_direction * light_distances[:, None] + ) + elif self.cfg.light_sample_strategy == "magic3d": + # sample light direction within restricted angle range (pi/3) + local_z = F.normalize(camera_positions, dim=-1) + local_x = F.normalize( + torch.stack( + [local_z[:, 1], -local_z[:, 0], torch.zeros_like(local_z[:, 0])], + dim=-1, + ), + dim=-1, + ) + local_y = F.normalize(torch.cross(local_z, local_x, dim=-1), dim=-1) + rot = torch.stack([local_x, local_y, local_z], dim=-1) + light_azimuth = ( + torch.rand(self.batch_size) * math.pi * 2 - math.pi + ) # [-pi, pi] + light_elevation = ( + torch.rand(self.batch_size) * math.pi / 3 + math.pi / 6 + ) # [pi/6, pi/2] + light_positions_local = torch.stack( + [ + light_distances + * torch.cos(light_elevation) + * torch.cos(light_azimuth), + light_distances + * torch.cos(light_elevation) + * torch.sin(light_azimuth), + light_distances * torch.sin(light_elevation), + ], + dim=-1, + ) + light_positions = (rot @ light_positions_local[:, :, None])[:, :, 0] + else: + raise ValueError( + f"Unknown light sample strategy: {self.cfg.light_sample_strategy}" + ) + + lookat: Float[Tensor, "B 3"] = F.normalize(center - camera_positions, dim=-1) + right: Float[Tensor, "B 3"] = F.normalize(torch.cross(lookat, up), dim=-1) + up = F.normalize(torch.cross(right, lookat), dim=-1) + c2w3x4: Float[Tensor, "B 3 4"] = torch.cat( + [torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]], + dim=-1, + ) + c2w: Float[Tensor, "B 4 4"] = torch.cat( + [c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1 + ) + c2w[:, 3, 3] = 1.0 + + # get directions by dividing directions_unit_focal by focal length + focal_length: Float[Tensor, "B"] = 0.5 * self.height / torch.tan(0.5 * fovy) + directions: Float[Tensor, "B H W 3"] = self.directions_unit_focal[ + None, :, :, : + ].repeat(self.batch_size, 1, 1, 1) + directions[:, :, :, :2] = ( + directions[:, :, :, :2] / focal_length[:, None, None, None] + ) + + # Importance note: the returned rays_d MUST be normalized! + rays_o, rays_d = get_rays( + directions, c2w, keepdim=True, normalize=self.cfg.rays_d_normalize + ) + + self.proj_mtx: Float[Tensor, "B 4 4"] = get_projection_matrix( + fovy, self.width / self.height, 0.01, 100.0 + ) # FIXME: hard-coded near and far + mvp_mtx: Float[Tensor, "B 4 4"] = get_mvp_matrix(c2w, self.proj_mtx) + self.fovy = fovy + + return { + "rays_o": rays_o, + "rays_d": rays_d, + "mvp_mtx": mvp_mtx, + "camera_positions": camera_positions, + "c2w": c2w, + "light_positions": light_positions, + "elevation": elevation_deg, + "azimuth": azimuth_deg, + "camera_distances": camera_distances, + "height": self.height, + "width": self.width, + "fovy": self.fovy, + "proj_mtx": self.proj_mtx, + } + + +class RandomCameraDataset(Dataset): + def __init__(self, cfg: Any, split: str) -> None: + super().__init__() + self.cfg: RandomCameraDataModuleConfig = cfg + self.split = split + + if split == "val": + self.n_views = self.cfg.n_val_views + else: + self.n_views = self.cfg.n_test_views + + azimuth_deg: Float[Tensor, "B"] + if self.split == "val": + # make sure the first and last view are not the same + azimuth_deg = torch.linspace(0, 360.0, self.n_views + 1)[: self.n_views] + else: + azimuth_deg = torch.linspace(0, 360.0, self.n_views) + elevation_deg: Float[Tensor, "B"] = torch.full_like( + azimuth_deg, self.cfg.eval_elevation_deg + ) + camera_distances: Float[Tensor, "B"] = torch.full_like( + elevation_deg, self.cfg.eval_camera_distance + ) + + elevation = elevation_deg * math.pi / 180 + azimuth = azimuth_deg * math.pi / 180 + + # convert spherical coordinates to cartesian coordinates + # right hand coordinate system, x back, y right, z up + # elevation in (-90, 90), azimuth from +x to +y in (-180, 180) + camera_positions: Float[Tensor, "B 3"] = torch.stack( + [ + camera_distances * torch.cos(elevation) * torch.cos(azimuth), + camera_distances * torch.cos(elevation) * torch.sin(azimuth), + camera_distances * torch.sin(elevation), + ], + dim=-1, + ) + + # default scene center at origin + center: Float[Tensor, "B 3"] = torch.zeros_like(camera_positions) + # default camera up direction as +z + up: Float[Tensor, "B 3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)[ + None, : + ].repeat(self.cfg.eval_batch_size, 1) + + fovy_deg: Float[Tensor, "B"] = torch.full_like( + elevation_deg, self.cfg.eval_fovy_deg + ) + fovy = fovy_deg * math.pi / 180 + light_positions: Float[Tensor, "B 3"] = camera_positions + + lookat: Float[Tensor, "B 3"] = F.normalize(center - camera_positions, dim=-1) + right: Float[Tensor, "B 3"] = F.normalize(torch.cross(lookat, up), dim=-1) + up = F.normalize(torch.cross(right, lookat), dim=-1) + c2w3x4: Float[Tensor, "B 3 4"] = torch.cat( + [torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]], + dim=-1, + ) + c2w: Float[Tensor, "B 4 4"] = torch.cat( + [c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1 + ) + c2w[:, 3, 3] = 1.0 + + # get directions by dividing directions_unit_focal by focal length + focal_length: Float[Tensor, "B"] = ( + 0.5 * self.cfg.eval_height / torch.tan(0.5 * fovy) + ) + directions_unit_focal = get_ray_directions( + H=self.cfg.eval_height, W=self.cfg.eval_width, focal=1.0 + ) + directions: Float[Tensor, "B H W 3"] = directions_unit_focal[ + None, :, :, : + ].repeat(self.n_views, 1, 1, 1) + directions[:, :, :, :2] = ( + directions[:, :, :, :2] / focal_length[:, None, None, None] + ) + + rays_o, rays_d = get_rays( + directions, c2w, keepdim=True, normalize=self.cfg.rays_d_normalize + ) + self.proj_mtx: Float[Tensor, "B 4 4"] = get_projection_matrix( + fovy, self.cfg.eval_width / self.cfg.eval_height, 0.01, 100.0 + ) # FIXME: hard-coded near and far + mvp_mtx: Float[Tensor, "B 4 4"] = get_mvp_matrix(c2w, self.proj_mtx) + + self.rays_o, self.rays_d = rays_o, rays_d + self.mvp_mtx = mvp_mtx + self.c2w = c2w + self.camera_positions = camera_positions + self.light_positions = light_positions + self.elevation, self.azimuth = elevation, azimuth + self.elevation_deg, self.azimuth_deg = elevation_deg, azimuth_deg + self.camera_distances = camera_distances + self.fovy = fovy + + def __len__(self): + return self.n_views + + def __getitem__(self, index): + return { + "index": index, + "rays_o": self.rays_o[index], + "rays_d": self.rays_d[index], + "mvp_mtx": self.mvp_mtx[index], + "c2w": self.c2w[index], + "camera_positions": self.camera_positions[index], + "light_positions": self.light_positions[index], + "elevation": self.elevation_deg[index], + "azimuth": self.azimuth_deg[index], + "camera_distances": self.camera_distances[index], + "height": self.cfg.eval_height, + "width": self.cfg.eval_width, + "fovy": self.fovy[index], + "proj_mtx": self.proj_mtx[index], + } + + def collate(self, batch): + batch = torch.utils.data.default_collate(batch) + batch.update({"height": self.cfg.eval_height, "width": self.cfg.eval_width}) + return batch + + +@register("random-camera-datamodule") +class RandomCameraDataModule(pl.LightningDataModule): + cfg: RandomCameraDataModuleConfig + + def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None: + super().__init__() + self.cfg = parse_structured(RandomCameraDataModuleConfig, cfg) + + def setup(self, stage=None) -> None: + if stage in [None, "fit"]: + self.train_dataset = RandomCameraIterableDataset(self.cfg) + if stage in [None, "fit", "validate"]: + self.val_dataset = RandomCameraDataset(self.cfg, "val") + if stage in [None, "test", "predict"]: + self.test_dataset = RandomCameraDataset(self.cfg, "test") + + def prepare_data(self): + pass + + def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader: + return DataLoader( + dataset, + # very important to disable multi-processing if you want to change self attributes at runtime! + # (for example setting self.width and self.height in update_step) + num_workers=0, # type: ignore + batch_size=batch_size, + collate_fn=collate_fn, + ) + + def train_dataloader(self) -> DataLoader: + return self.general_loader( + self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate + ) + + def val_dataloader(self) -> DataLoader: + return self.general_loader( + self.val_dataset, batch_size=1, collate_fn=self.val_dataset.collate + ) + # return self.general_loader(self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate) + + def test_dataloader(self) -> DataLoader: + return self.general_loader( + self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate + ) + + def predict_dataloader(self) -> DataLoader: + return self.general_loader( + self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate + ) diff --git a/threestudio/data/uncond_eff.py b/threestudio/data/uncond_eff.py new file mode 100644 index 0000000..a1ac04f --- /dev/null +++ b/threestudio/data/uncond_eff.py @@ -0,0 +1,441 @@ +import bisect +import math +import random +from dataclasses import dataclass, field + +import numpy as np +import pytorch_lightning as pl +import torch +import torch.nn.functional as F +from torch.utils.data import DataLoader, Dataset, IterableDataset + +import threestudio +from threestudio import register +from threestudio.data.uncond import RandomCameraDataset +from threestudio.utils.base import Updateable +from threestudio.utils.config import parse_structured +from threestudio.utils.misc import get_device +from threestudio.utils.ops import ( + get_full_projection_matrix, + get_mvp_matrix, + get_projection_matrix, + get_ray_directions, + get_rays, + mask_ray_directions, +) +from threestudio.utils.typing import * + + +@dataclass +class EffRandomCameraDataModuleConfig: + # height, width, and batch_size should be Union[int, List[int]] + # but OmegaConf does not support Union of containers + height: Any = 128 + width: Any = 128 + sample_height: Any = 64 + sample_width: Any = 64 + batch_size: Any = 1 + resolution_milestones: List[int] = field(default_factory=lambda: []) + eval_height: int = 512 + eval_width: int = 512 + eval_batch_size: int = 1 + n_val_views: int = 1 + n_test_views: int = 120 + elevation_range: Tuple[float, float] = (-10, 90) + azimuth_range: Tuple[float, float] = (-180, 180) + camera_distance_range: Tuple[float, float] = (1, 1.5) + fovy_range: Tuple[float, float] = ( + 40, + 70, + ) # in degrees, in vertical direction (along height) + camera_perturb: float = 0.1 + center_perturb: float = 0.2 + up_perturb: float = 0.02 + light_position_perturb: float = 1.0 + light_distance_range: Tuple[float, float] = (0.8, 1.5) + eval_elevation_deg: float = 15.0 + eval_camera_distance: float = 1.5 + eval_fovy_deg: float = 70.0 + light_sample_strategy: str = "dreamfusion" + batch_uniform_azimuth: bool = True + progressive_until: int = 0 # progressive ranges for elevation, azimuth, r, fovy + + rays_d_normalize: bool = True + + +class EffRandomCameraIterableDataset(IterableDataset, Updateable): + def __init__(self, cfg: Any) -> None: + super().__init__() + self.cfg: EffRandomCameraDataModuleConfig = cfg + self.heights: List[int] = ( + [self.cfg.height] if isinstance(self.cfg.height, int) else self.cfg.height + ) + self.widths: List[int] = ( + [self.cfg.width] if isinstance(self.cfg.width, int) else self.cfg.width + ) + self.sample_heights: List[int] = ( + [self.cfg.sample_height] + if isinstance(self.cfg.sample_height, int) + else self.cfg.sample_height + ) + self.sample_widths: List[int] = ( + [self.cfg.sample_width] + if isinstance(self.cfg.sample_width, int) + else self.cfg.sample_width + ) + self.batch_sizes: List[int] = ( + [self.cfg.batch_size] + if isinstance(self.cfg.batch_size, int) + else self.cfg.batch_size + ) + assert ( + len(self.heights) + == len(self.widths) + == len(self.batch_sizes) + == len(self.sample_heights) + == len(self.sample_widths) + ) + self.resolution_milestones: List[int] + if ( + len(self.heights) == 1 + and len(self.widths) == 1 + and len(self.batch_sizes) == 1 + and len(self.sample_heights) == 1 + and len(self.sample_widths) == 1 + ): + if len(self.cfg.resolution_milestones) > 0: + threestudio.warn( + "Ignoring resolution_milestones since height and width are not changing" + ) + self.resolution_milestones = [-1] + else: + assert len(self.heights) == len(self.cfg.resolution_milestones) + 1 + self.resolution_milestones = [-1] + self.cfg.resolution_milestones + + self.directions_unit_focals = [ + get_ray_directions(H=height, W=width, focal=1.0) + for (height, width) in zip(self.heights, self.widths) + ] + + self.efficiency_masks = [ + (mask_ray_directions(H, W, s_H, s_W)) + for (H, W, s_H, s_W) in zip( + self.heights, self.widths, self.sample_heights, self.sample_widths + ) + ] + self.directions_unit_focals = [ + (self.directions_unit_focals[i].view(-1, 3)[self.efficiency_masks[i]]).view( + self.sample_heights[i], self.sample_widths[i], 3 + ) + for i in range(len(self.heights)) + ] + + self.height: int = self.heights[0] + self.width: int = self.widths[0] + self.sample_height: int = self.sample_heights[0] + self.sample_width: int = self.sample_widths[0] + self.batch_size: int = self.batch_sizes[0] + self.directions_unit_focal = self.directions_unit_focals[0] + self.efficiency_mask = self.efficiency_masks[0] + self.elevation_range = self.cfg.elevation_range + self.azimuth_range = self.cfg.azimuth_range + self.camera_distance_range = self.cfg.camera_distance_range + self.fovy_range = self.cfg.fovy_range + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + size_ind = bisect.bisect_right(self.resolution_milestones, global_step) - 1 + self.height = self.heights[size_ind] + self.width = self.widths[size_ind] + self.sample_height = self.sample_heights[size_ind] + self.sample_width = self.sample_widths[size_ind] + self.batch_size = self.batch_sizes[size_ind] + self.directions_unit_focal = self.directions_unit_focals[size_ind] + self.efficiency_mask = self.efficiency_masks[size_ind] + threestudio.debug( + f"Training height: {self.height}, width: {self.width}, batch_size: {self.batch_size}" + ) + # progressive view + self.progressive_view(global_step) + + def __iter__(self): + while True: + yield {} + + def progressive_view(self, global_step): + r = min(1.0, global_step / (self.cfg.progressive_until + 1)) + self.elevation_range = [ + (1 - r) * self.cfg.eval_elevation_deg + r * self.cfg.elevation_range[0], + (1 - r) * self.cfg.eval_elevation_deg + r * self.cfg.elevation_range[1], + ] + self.azimuth_range = [ + (1 - r) * 0.0 + r * self.cfg.azimuth_range[0], + (1 - r) * 0.0 + r * self.cfg.azimuth_range[1], + ] + # self.camera_distance_range = [ + # (1 - r) * self.cfg.eval_camera_distance + # + r * self.cfg.camera_distance_range[0], + # (1 - r) * self.cfg.eval_camera_distance + # + r * self.cfg.camera_distance_range[1], + # ] + # self.fovy_range = [ + # (1 - r) * self.cfg.eval_fovy_deg + r * self.cfg.fovy_range[0], + # (1 - r) * self.cfg.eval_fovy_deg + r * self.cfg.fovy_range[1], + # ] + + def collate(self, batch) -> Dict[str, Any]: + # sample elevation angles + elevation_deg: Float[Tensor, "B"] + elevation: Float[Tensor, "B"] + if random.random() < 0.5: + # sample elevation angles uniformly with a probability 0.5 (biased towards poles) + elevation_deg = ( + torch.rand(self.batch_size) + * (self.elevation_range[1] - self.elevation_range[0]) + + self.elevation_range[0] + ) + elevation = elevation_deg * math.pi / 180 + else: + # otherwise sample uniformly on sphere + elevation_range_percent = [ + self.elevation_range[0] / 180.0 * math.pi, + self.elevation_range[1] / 180.0 * math.pi, + ] + # inverse transform sampling + elevation = torch.asin( + ( + torch.rand(self.batch_size) + * ( + math.sin(elevation_range_percent[1]) + - math.sin(elevation_range_percent[0]) + ) + + math.sin(elevation_range_percent[0]) + ) + ) + elevation_deg = elevation / math.pi * 180.0 + + # sample azimuth angles from a uniform distribution bounded by azimuth_range + azimuth_deg: Float[Tensor, "B"] + if self.cfg.batch_uniform_azimuth: + # ensures sampled azimuth angles in a batch cover the whole range + azimuth_deg = ( + torch.rand(self.batch_size) + torch.arange(self.batch_size) + ) / self.batch_size * ( + self.azimuth_range[1] - self.azimuth_range[0] + ) + self.azimuth_range[ + 0 + ] + else: + # simple random sampling + azimuth_deg = ( + torch.rand(self.batch_size) + * (self.azimuth_range[1] - self.azimuth_range[0]) + + self.azimuth_range[0] + ) + azimuth = azimuth_deg * math.pi / 180 + + # sample distances from a uniform distribution bounded by distance_range + camera_distances: Float[Tensor, "B"] = ( + torch.rand(self.batch_size) + * (self.camera_distance_range[1] - self.camera_distance_range[0]) + + self.camera_distance_range[0] + ) + + # convert spherical coordinates to cartesian coordinates + # right hand coordinate system, x back, y right, z up + # elevation in (-90, 90), azimuth from +x to +y in (-180, 180) + camera_positions: Float[Tensor, "B 3"] = torch.stack( + [ + camera_distances * torch.cos(elevation) * torch.cos(azimuth), + camera_distances * torch.cos(elevation) * torch.sin(azimuth), + camera_distances * torch.sin(elevation), + ], + dim=-1, + ) + + # default scene center at origin + center: Float[Tensor, "B 3"] = torch.zeros_like(camera_positions) + # default camera up direction as +z + up: Float[Tensor, "B 3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)[ + None, : + ].repeat(self.batch_size, 1) + + # sample camera perturbations from a uniform distribution [-camera_perturb, camera_perturb] + camera_perturb: Float[Tensor, "B 3"] = ( + torch.rand(self.batch_size, 3) * 2 * self.cfg.camera_perturb + - self.cfg.camera_perturb + ) + camera_positions = camera_positions + camera_perturb + # sample center perturbations from a normal distribution with mean 0 and std center_perturb + center_perturb: Float[Tensor, "B 3"] = ( + torch.randn(self.batch_size, 3) * self.cfg.center_perturb + ) + center = center + center_perturb + # sample up perturbations from a normal distribution with mean 0 and std up_perturb + up_perturb: Float[Tensor, "B 3"] = ( + torch.randn(self.batch_size, 3) * self.cfg.up_perturb + ) + up = up + up_perturb + + # sample fovs from a uniform distribution bounded by fov_range + fovy_deg: Float[Tensor, "B"] = ( + torch.rand(self.batch_size) * (self.fovy_range[1] - self.fovy_range[0]) + + self.fovy_range[0] + ) + fovy = fovy_deg * math.pi / 180 + + # sample light distance from a uniform distribution bounded by light_distance_range + light_distances: Float[Tensor, "B"] = ( + torch.rand(self.batch_size) + * (self.cfg.light_distance_range[1] - self.cfg.light_distance_range[0]) + + self.cfg.light_distance_range[0] + ) + + if self.cfg.light_sample_strategy == "dreamfusion": + # sample light direction from a normal distribution with mean camera_position and std light_position_perturb + light_direction: Float[Tensor, "B 3"] = F.normalize( + camera_positions + + torch.randn(self.batch_size, 3) * self.cfg.light_position_perturb, + dim=-1, + ) + # get light position by scaling light direction by light distance + light_positions: Float[Tensor, "B 3"] = ( + light_direction * light_distances[:, None] + ) + elif self.cfg.light_sample_strategy == "magic3d": + # sample light direction within restricted angle range (pi/3) + local_z = F.normalize(camera_positions, dim=-1) + local_x = F.normalize( + torch.stack( + [local_z[:, 1], -local_z[:, 0], torch.zeros_like(local_z[:, 0])], + dim=-1, + ), + dim=-1, + ) + local_y = F.normalize(torch.cross(local_z, local_x, dim=-1), dim=-1) + rot = torch.stack([local_x, local_y, local_z], dim=-1) + light_azimuth = ( + torch.rand(self.batch_size) * math.pi * 2 - math.pi + ) # [-pi, pi] + light_elevation = ( + torch.rand(self.batch_size) * math.pi / 3 + math.pi / 6 + ) # [pi/6, pi/2] + light_positions_local = torch.stack( + [ + light_distances + * torch.cos(light_elevation) + * torch.cos(light_azimuth), + light_distances + * torch.cos(light_elevation) + * torch.sin(light_azimuth), + light_distances * torch.sin(light_elevation), + ], + dim=-1, + ) + light_positions = (rot @ light_positions_local[:, :, None])[:, :, 0] + else: + raise ValueError( + f"Unknown light sample strategy: {self.cfg.light_sample_strategy}" + ) + + lookat: Float[Tensor, "B 3"] = F.normalize(center - camera_positions, dim=-1) + right: Float[Tensor, "B 3"] = F.normalize(torch.cross(lookat, up), dim=-1) + up = F.normalize(torch.cross(right, lookat), dim=-1) + c2w3x4: Float[Tensor, "B 3 4"] = torch.cat( + [torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]], + dim=-1, + ) + c2w: Float[Tensor, "B 4 4"] = torch.cat( + [c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1 + ) + c2w[:, 3, 3] = 1.0 + + # get directions by dividing directions_unit_focal by focal length + focal_length: Float[Tensor, "B"] = 0.5 * self.height / torch.tan(0.5 * fovy) + directions: Float[Tensor, "B H W 3"] = self.directions_unit_focal[ + None, :, :, : + ].repeat(self.batch_size, 1, 1, 1) + directions[:, :, :, :2] = ( + directions[:, :, :, :2] / focal_length[:, None, None, None] + ) + + # Importance note: the returned rays_d MUST be normalized! + ### Efficiency masking added here + rays_o, rays_d = get_rays( + directions, c2w, keepdim=True, normalize=self.cfg.rays_d_normalize + ) + + self.proj_mtx: Float[Tensor, "B 4 4"] = get_projection_matrix( + fovy, self.width / self.height, 0.01, 100.0 + ) # FIXME: hard-coded near and far + mvp_mtx: Float[Tensor, "B 4 4"] = get_mvp_matrix(c2w, self.proj_mtx) + self.fovy = fovy + + return { + "rays_o": rays_o, + "rays_d": rays_d, + "efficiency_mask": self.efficiency_mask, + "mvp_mtx": mvp_mtx, + "camera_positions": camera_positions, + "c2w": c2w, + "light_positions": light_positions, + "elevation": elevation_deg, + "azimuth": azimuth_deg, + "camera_distances": camera_distances, + "height": self.height, + "width": self.width, + "sample_height": self.sample_height, + "sample_width": self.sample_width, + "fovy": self.fovy, + "proj_mtx": self.proj_mtx, + } + + +@register("eff-random-camera-datamodule") +class EffRandomCameraDataModule(pl.LightningDataModule): + cfg: EffRandomCameraDataModuleConfig + + def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None: + super().__init__() + self.cfg = parse_structured(EffRandomCameraDataModuleConfig, cfg) + + def setup(self, stage=None) -> None: + if stage in [None, "fit"]: + self.train_dataset = EffRandomCameraIterableDataset(self.cfg) + if stage in [None, "fit", "validate"]: + self.val_dataset = RandomCameraDataset(self.cfg, "val") + if stage in [None, "test", "predict"]: + self.test_dataset = RandomCameraDataset(self.cfg, "test") + + def prepare_data(self): + pass + + def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader: + return DataLoader( + dataset, + # very important to disable multi-processing if you want to change self attributes at runtime! + # (for example setting self.width and self.height in update_step) + num_workers=5, # type: ignore + batch_size=batch_size, + collate_fn=collate_fn, + ) + + def train_dataloader(self) -> DataLoader: + return self.general_loader( + self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate + ) + + def val_dataloader(self) -> DataLoader: + return self.general_loader( + self.val_dataset, batch_size=1, collate_fn=self.val_dataset.collate + ) + # return self.general_loader(self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate) + + def test_dataloader(self) -> DataLoader: + return self.general_loader( + self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate + ) + + def predict_dataloader(self) -> DataLoader: + return self.general_loader( + self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate + ) diff --git a/threestudio/models/__init__.py b/threestudio/models/__init__.py new file mode 100644 index 0000000..9738918 --- /dev/null +++ b/threestudio/models/__init__.py @@ -0,0 +1,9 @@ +from . import ( + background, + exporters, + geometry, + guidance, + materials, + prompt_processors, + renderers, +) diff --git a/threestudio/models/background/__init__.py b/threestudio/models/background/__init__.py new file mode 100644 index 0000000..c637e6b --- /dev/null +++ b/threestudio/models/background/__init__.py @@ -0,0 +1,6 @@ +from . import ( + base, + neural_environment_map_background, + solid_color_background, + textured_background, +) diff --git a/threestudio/models/background/base.py b/threestudio/models/background/base.py new file mode 100644 index 0000000..8911bd1 --- /dev/null +++ b/threestudio/models/background/base.py @@ -0,0 +1,24 @@ +import random +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.utils.base import BaseModule +from threestudio.utils.typing import * + + +class BaseBackground(BaseModule): + @dataclass + class Config(BaseModule.Config): + pass + + cfg: Config + + def configure(self): + pass + + def forward(self, dirs: Float[Tensor, "B H W 3"]) -> Float[Tensor, "B H W Nc"]: + raise NotImplementedError diff --git a/threestudio/models/background/neural_environment_map_background.py b/threestudio/models/background/neural_environment_map_background.py new file mode 100644 index 0000000..33adfc0 --- /dev/null +++ b/threestudio/models/background/neural_environment_map_background.py @@ -0,0 +1,67 @@ +import random +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.background.base import BaseBackground +from threestudio.models.networks import get_encoding, get_mlp +from threestudio.utils.ops import get_activation +from threestudio.utils.typing import * + + +@threestudio.register("neural-environment-map-background") +class NeuralEnvironmentMapBackground(BaseBackground): + @dataclass + class Config(BaseBackground.Config): + n_output_dims: int = 3 + color_activation: str = "sigmoid" + dir_encoding_config: dict = field( + default_factory=lambda: {"otype": "SphericalHarmonics", "degree": 3} + ) + mlp_network_config: dict = field( + default_factory=lambda: { + "otype": "VanillaMLP", + "activation": "ReLU", + "n_neurons": 16, + "n_hidden_layers": 2, + } + ) + random_aug: bool = False + random_aug_prob: float = 0.5 + eval_color: Optional[Tuple[float, float, float]] = None + + cfg: Config + + def configure(self) -> None: + self.encoding = get_encoding(3, self.cfg.dir_encoding_config) + self.network = get_mlp( + self.encoding.n_output_dims, + self.cfg.n_output_dims, + self.cfg.mlp_network_config, + ) + + def forward(self, dirs: Float[Tensor, "B H W 3"]) -> Float[Tensor, "B H W Nc"]: + if not self.training and self.cfg.eval_color is not None: + return torch.ones(*dirs.shape[:-1], self.cfg.n_output_dims).to( + dirs + ) * torch.as_tensor(self.cfg.eval_color).to(dirs) + # viewdirs must be normalized before passing to this function + dirs = (dirs + 1.0) / 2.0 # (-1, 1) => (0, 1) + dirs_embd = self.encoding(dirs.view(-1, 3)) + color = self.network(dirs_embd).view(*dirs.shape[:-1], self.cfg.n_output_dims) + color = get_activation(self.cfg.color_activation)(color) + if ( + self.training + and self.cfg.random_aug + and random.random() < self.cfg.random_aug_prob + ): + # use random background color with probability random_aug_prob + color = color * 0 + ( # prevent checking for unused parameters in DDP + torch.rand(dirs.shape[0], 1, 1, self.cfg.n_output_dims) + .to(dirs) + .expand(*dirs.shape[:-1], -1) + ) + return color diff --git a/threestudio/models/background/solid_color_background.py b/threestudio/models/background/solid_color_background.py new file mode 100644 index 0000000..0b68d5b --- /dev/null +++ b/threestudio/models/background/solid_color_background.py @@ -0,0 +1,51 @@ +import random +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.background.base import BaseBackground +from threestudio.utils.typing import * + + +@threestudio.register("solid-color-background") +class SolidColorBackground(BaseBackground): + @dataclass + class Config(BaseBackground.Config): + n_output_dims: int = 3 + color: Tuple = (1.0, 1.0, 1.0) + learned: bool = False + random_aug: bool = False + random_aug_prob: float = 0.5 + + cfg: Config + + def configure(self) -> None: + self.env_color: Float[Tensor, "Nc"] + if self.cfg.learned: + self.env_color = nn.Parameter( + torch.as_tensor(self.cfg.color, dtype=torch.float32) + ) + else: + self.register_buffer( + "env_color", torch.as_tensor(self.cfg.color, dtype=torch.float32) + ) + + def forward(self, dirs: Float[Tensor, "B H W 3"]) -> Float[Tensor, "B H W Nc"]: + color = torch.ones(*dirs.shape[:-1], self.cfg.n_output_dims).to( + dirs + ) * self.env_color.to(dirs) + if ( + self.training + and self.cfg.random_aug + and random.random() < self.cfg.random_aug_prob + ): + # use random background color with probability random_aug_prob + color = color * 0 + ( # prevent checking for unused parameters in DDP + torch.rand(dirs.shape[0], 1, 1, self.cfg.n_output_dims) + .to(dirs) + .expand(*dirs.shape[:-1], -1) + ) + return color diff --git a/threestudio/models/background/textured_background.py b/threestudio/models/background/textured_background.py new file mode 100644 index 0000000..ee0a0ca --- /dev/null +++ b/threestudio/models/background/textured_background.py @@ -0,0 +1,54 @@ +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.background.base import BaseBackground +from threestudio.utils.ops import get_activation +from threestudio.utils.typing import * + + +@threestudio.register("textured-background") +class TexturedBackground(BaseBackground): + @dataclass + class Config(BaseBackground.Config): + n_output_dims: int = 3 + height: int = 64 + width: int = 64 + color_activation: str = "sigmoid" + + cfg: Config + + def configure(self) -> None: + self.texture = nn.Parameter( + torch.randn((1, self.cfg.n_output_dims, self.cfg.height, self.cfg.width)) + ) + + def spherical_xyz_to_uv(self, dirs: Float[Tensor, "*B 3"]) -> Float[Tensor, "*B 2"]: + x, y, z = dirs[..., 0], dirs[..., 1], dirs[..., 2] + xy = (x**2 + y**2) ** 0.5 + u = torch.atan2(xy, z) / torch.pi + v = torch.atan2(y, x) / (torch.pi * 2) + 0.5 + uv = torch.stack([u, v], -1) + return uv + + def forward(self, dirs: Float[Tensor, "*B 3"]) -> Float[Tensor, "*B Nc"]: + dirs_shape = dirs.shape[:-1] + uv = self.spherical_xyz_to_uv(dirs.reshape(-1, dirs.shape[-1])) + uv = 2 * uv - 1 # rescale to [-1, 1] for grid_sample + uv = uv.reshape(1, -1, 1, 2) + color = ( + F.grid_sample( + self.texture, + uv, + mode="bilinear", + padding_mode="reflection", + align_corners=False, + ) + .reshape(self.cfg.n_output_dims, -1) + .T.reshape(*dirs_shape, self.cfg.n_output_dims) + ) + color = get_activation(self.cfg.color_activation)(color) + return color diff --git a/threestudio/models/estimators.py b/threestudio/models/estimators.py new file mode 100644 index 0000000..c4c6c5e --- /dev/null +++ b/threestudio/models/estimators.py @@ -0,0 +1,118 @@ +from typing import Callable, List, Optional, Tuple + +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal + +import torch +from nerfacc.data_specs import RayIntervals +from nerfacc.estimators.base import AbstractEstimator +from nerfacc.pdf import importance_sampling, searchsorted +from nerfacc.volrend import render_transmittance_from_density +from torch import Tensor + + +class ImportanceEstimator(AbstractEstimator): + def __init__( + self, + ) -> None: + super().__init__() + + @torch.no_grad() + def sampling( + self, + prop_sigma_fns: List[Callable], + prop_samples: List[int], + num_samples: int, + # rendering options + n_rays: int, + near_plane: float, + far_plane: float, + sampling_type: Literal["uniform", "lindisp"] = "uniform", + # training options + stratified: bool = False, + requires_grad: bool = False, + ) -> Tuple[Tensor, Tensor]: + """Sampling with CDFs from proposal networks. + + Args: + prop_sigma_fns: Proposal network evaluate functions. It should be a list + of functions that take in samples {t_starts (n_rays, n_samples), + t_ends (n_rays, n_samples)} and returns the post-activation densities + (n_rays, n_samples). + prop_samples: Number of samples to draw from each proposal network. Should + be the same length as `prop_sigma_fns`. + num_samples: Number of samples to draw in the end. + n_rays: Number of rays. + near_plane: Near plane. + far_plane: Far plane. + sampling_type: Sampling type. Either "uniform" or "lindisp". Default to + "lindisp". + stratified: Whether to use stratified sampling. Default to `False`. + + Returns: + A tuple of {Tensor, Tensor}: + + - **t_starts**: The starts of the samples. Shape (n_rays, num_samples). + - **t_ends**: The ends of the samples. Shape (n_rays, num_samples). + + """ + assert len(prop_sigma_fns) == len(prop_samples), ( + "The number of proposal networks and the number of samples " + "should be the same." + ) + cdfs = torch.cat( + [ + torch.zeros((n_rays, 1), device=self.device), + torch.ones((n_rays, 1), device=self.device), + ], + dim=-1, + ) + intervals = RayIntervals(vals=cdfs) + + for level_fn, level_samples in zip(prop_sigma_fns, prop_samples): + intervals, _ = importance_sampling( + intervals, cdfs, level_samples, stratified + ) + t_vals = _transform_stot( + sampling_type, intervals.vals, near_plane, far_plane + ) + t_starts = t_vals[..., :-1] + t_ends = t_vals[..., 1:] + + with torch.set_grad_enabled(requires_grad): + sigmas = level_fn(t_starts, t_ends) + assert sigmas.shape == t_starts.shape + trans, _ = render_transmittance_from_density(t_starts, t_ends, sigmas) + cdfs = 1.0 - torch.cat([trans, torch.zeros_like(trans[:, :1])], dim=-1) + + intervals, _ = importance_sampling(intervals, cdfs, num_samples, stratified) + t_vals_fine = _transform_stot( + sampling_type, intervals.vals, near_plane, far_plane + ) + + t_vals = torch.cat([t_vals, t_vals_fine], dim=-1) + t_vals, _ = torch.sort(t_vals, dim=-1) + + t_starts_ = t_vals[..., :-1] + t_ends_ = t_vals[..., 1:] + + return t_starts_, t_ends_ + + +def _transform_stot( + transform_type: Literal["uniform", "lindisp"], + s_vals: torch.Tensor, + t_min: torch.Tensor, + t_max: torch.Tensor, +) -> torch.Tensor: + if transform_type == "uniform": + _contract_fn, _icontract_fn = lambda x: x, lambda x: x + elif transform_type == "lindisp": + _contract_fn, _icontract_fn = lambda x: 1 / x, lambda x: 1 / x + else: + raise ValueError(f"Unknown transform_type: {transform_type}") + s_min, s_max = _contract_fn(t_min), _contract_fn(t_max) + icontract_fn = lambda s: _icontract_fn(s * s_max + (1 - s) * s_min) + return icontract_fn(s_vals) diff --git a/threestudio/models/exporters/__init__.py b/threestudio/models/exporters/__init__.py new file mode 100644 index 0000000..add385e --- /dev/null +++ b/threestudio/models/exporters/__init__.py @@ -0,0 +1 @@ +from . import base, mesh_exporter diff --git a/threestudio/models/exporters/base.py b/threestudio/models/exporters/base.py new file mode 100644 index 0000000..592d103 --- /dev/null +++ b/threestudio/models/exporters/base.py @@ -0,0 +1,59 @@ +from dataclasses import dataclass + +import threestudio +from threestudio.models.background.base import BaseBackground +from threestudio.models.geometry.base import BaseImplicitGeometry +from threestudio.models.materials.base import BaseMaterial +from threestudio.utils.base import BaseObject +from threestudio.utils.typing import * + + +@dataclass +class ExporterOutput: + save_name: str + save_type: str + params: Dict[str, Any] + + +class Exporter(BaseObject): + @dataclass + class Config(BaseObject.Config): + save_video: bool = False + + cfg: Config + + def configure( + self, + geometry: BaseImplicitGeometry, + material: BaseMaterial, + background: BaseBackground, + ) -> None: + @dataclass + class SubModules: + geometry: BaseImplicitGeometry + material: BaseMaterial + background: BaseBackground + + self.sub_modules = SubModules(geometry, material, background) + + @property + def geometry(self) -> BaseImplicitGeometry: + return self.sub_modules.geometry + + @property + def material(self) -> BaseMaterial: + return self.sub_modules.material + + @property + def background(self) -> BaseBackground: + return self.sub_modules.background + + def __call__(self, *args, **kwargs) -> List[ExporterOutput]: + raise NotImplementedError + + +@threestudio.register("dummy-exporter") +class DummyExporter(Exporter): + def __call__(self, *args, **kwargs) -> List[ExporterOutput]: + # DummyExporter does not export anything + return [] diff --git a/threestudio/models/exporters/mesh_exporter.py b/threestudio/models/exporters/mesh_exporter.py new file mode 100644 index 0000000..2c67826 --- /dev/null +++ b/threestudio/models/exporters/mesh_exporter.py @@ -0,0 +1,175 @@ +from dataclasses import dataclass, field + +import cv2 +import numpy as np +import torch + +import threestudio +from threestudio.models.background.base import BaseBackground +from threestudio.models.exporters.base import Exporter, ExporterOutput +from threestudio.models.geometry.base import BaseImplicitGeometry +from threestudio.models.materials.base import BaseMaterial +from threestudio.models.mesh import Mesh +from threestudio.utils.rasterize import NVDiffRasterizerContext +from threestudio.utils.typing import * + + +@threestudio.register("mesh-exporter") +class MeshExporter(Exporter): + @dataclass + class Config(Exporter.Config): + fmt: str = "obj-mtl" # in ['obj-mtl', 'obj'], TODO: fbx + save_name: str = "model" + save_normal: bool = False + save_uv: bool = True + save_texture: bool = True + texture_size: int = 1024 + texture_format: str = "jpg" + xatlas_chart_options: dict = field(default_factory=dict) + xatlas_pack_options: dict = field(default_factory=dict) + context_type: str = "gl" + + cfg: Config + + def configure( + self, + geometry: BaseImplicitGeometry, + material: BaseMaterial, + background: BaseBackground, + ) -> None: + super().configure(geometry, material, background) + self.ctx = NVDiffRasterizerContext(self.cfg.context_type, self.device) + + def __call__(self) -> List[ExporterOutput]: + mesh: Mesh = self.geometry.isosurface() + + if self.cfg.fmt == "obj-mtl": + return self.export_obj_with_mtl(mesh) + elif self.cfg.fmt == "obj": + return self.export_obj(mesh) + else: + raise ValueError(f"Unsupported mesh export format: {self.cfg.fmt}") + + def export_obj_with_mtl(self, mesh: Mesh) -> List[ExporterOutput]: + params = { + "mesh": mesh, + "save_mat": True, + "save_normal": self.cfg.save_normal, + "save_uv": self.cfg.save_uv, + "save_vertex_color": False, + "map_Kd": None, # Base Color + "map_Ks": None, # Specular + "map_Bump": None, # Normal + # ref: https://en.wikipedia.org/wiki/Wavefront_.obj_file#Physically-based_Rendering + "map_Pm": None, # Metallic + "map_Pr": None, # Roughness + "map_format": self.cfg.texture_format, + } + + if self.cfg.save_uv: + mesh.unwrap_uv(self.cfg.xatlas_chart_options, self.cfg.xatlas_pack_options) + + if self.cfg.save_texture: + threestudio.info("Exporting textures ...") + assert self.cfg.save_uv, "save_uv must be True when save_texture is True" + # clip space transform + uv_clip = mesh.v_tex * 2.0 - 1.0 + # pad to four component coordinate + uv_clip4 = torch.cat( + ( + uv_clip, + torch.zeros_like(uv_clip[..., 0:1]), + torch.ones_like(uv_clip[..., 0:1]), + ), + dim=-1, + ) + # rasterize + rast, _ = self.ctx.rasterize_one( + uv_clip4, mesh.t_tex_idx, (self.cfg.texture_size, self.cfg.texture_size) + ) + + hole_mask = ~(rast[:, :, 3] > 0) + + def uv_padding(image): + uv_padding_size = self.cfg.xatlas_pack_options.get("padding", 2) + inpaint_image = ( + cv2.inpaint( + (image.detach().cpu().numpy() * 255).astype(np.uint8), + (hole_mask.detach().cpu().numpy() * 255).astype(np.uint8), + uv_padding_size, + cv2.INPAINT_TELEA, + ) + / 255.0 + ) + return torch.from_numpy(inpaint_image).to(image) + + # Interpolate world space position + gb_pos, _ = self.ctx.interpolate_one( + mesh.v_pos, rast[None, ...], mesh.t_pos_idx + ) + gb_pos = gb_pos[0] + + # Sample out textures from MLP + geo_out = self.geometry.export(points=gb_pos) + mat_out = self.material.export(points=gb_pos, **geo_out) + + threestudio.info( + "Perform UV padding on texture maps to avoid seams, may take a while ..." + ) + + if "albedo" in mat_out: + params["map_Kd"] = uv_padding(mat_out["albedo"]) + else: + threestudio.warn( + "save_texture is True but no albedo texture found, using default white texture" + ) + if "metallic" in mat_out: + params["map_Pm"] = uv_padding(mat_out["metallic"]) + if "roughness" in mat_out: + params["map_Pr"] = uv_padding(mat_out["roughness"]) + if "bump" in mat_out: + params["map_Bump"] = uv_padding(mat_out["bump"]) + # TODO: map_Ks + return [ + ExporterOutput( + save_name=f"{self.cfg.save_name}.obj", save_type="obj", params=params + ) + ] + + def export_obj(self, mesh: Mesh) -> List[ExporterOutput]: + params = { + "mesh": mesh, + "save_mat": False, + "save_normal": self.cfg.save_normal, + "save_uv": self.cfg.save_uv, + "save_vertex_color": False, + "map_Kd": None, # Base Color + "map_Ks": None, # Specular + "map_Bump": None, # Normal + # ref: https://en.wikipedia.org/wiki/Wavefront_.obj_file#Physically-based_Rendering + "map_Pm": None, # Metallic + "map_Pr": None, # Roughness + "map_format": self.cfg.texture_format, + } + + if self.cfg.save_uv: + mesh.unwrap_uv(self.cfg.xatlas_chart_options, self.cfg.xatlas_pack_options) + + if self.cfg.save_texture: + threestudio.info("Exporting textures ...") + geo_out = self.geometry.export(points=mesh.v_pos) + mat_out = self.material.export(points=mesh.v_pos, **geo_out) + + if "albedo" in mat_out: + mesh.set_vertex_color(mat_out["albedo"]) + params["save_vertex_color"] = True + else: + threestudio.warn( + "save_texture is True but no albedo texture found, not saving vertex color" + ) + + return [ + ExporterOutput( + save_name=f"{self.cfg.save_name}.obj", save_type="obj", params=params + ) + ] diff --git a/threestudio/models/geometry/__init__.py b/threestudio/models/geometry/__init__.py new file mode 100644 index 0000000..19185d2 --- /dev/null +++ b/threestudio/models/geometry/__init__.py @@ -0,0 +1,8 @@ +from . import ( + base, + custom_mesh, + implicit_sdf, + implicit_volume, + tetrahedra_sdf_grid, + volume_grid, +) diff --git a/threestudio/models/geometry/base.py b/threestudio/models/geometry/base.py new file mode 100644 index 0000000..8190fb1 --- /dev/null +++ b/threestudio/models/geometry/base.py @@ -0,0 +1,209 @@ +from dataclasses import dataclass, field + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.isosurface import ( + IsosurfaceHelper, + MarchingCubeCPUHelper, + MarchingTetrahedraHelper, +) +from threestudio.models.mesh import Mesh +from threestudio.utils.base import BaseModule +from threestudio.utils.ops import chunk_batch, scale_tensor +from threestudio.utils.typing import * + + +def contract_to_unisphere( + x: Float[Tensor, "... 3"], bbox: Float[Tensor, "2 3"], unbounded: bool = False +) -> Float[Tensor, "... 3"]: + if unbounded: + x = scale_tensor(x, bbox, (0, 1)) + x = x * 2 - 1 # aabb is at [-1, 1] + mag = x.norm(dim=-1, keepdim=True) + mask = mag.squeeze(-1) > 1 + x[mask] = (2 - 1 / mag[mask]) * (x[mask] / mag[mask]) + x = x / 4 + 0.5 # [-inf, inf] is at [0, 1] + else: + x = scale_tensor(x, bbox, (0, 1)) + return x + + +class BaseGeometry(BaseModule): + @dataclass + class Config(BaseModule.Config): + pass + + cfg: Config + + @staticmethod + def create_from( + other: "BaseGeometry", cfg: Optional[Union[dict, DictConfig]] = None, **kwargs + ) -> "BaseGeometry": + raise TypeError( + f"Cannot create {BaseGeometry.__name__} from {other.__class__.__name__}" + ) + + def export(self, *args, **kwargs) -> Dict[str, Any]: + return {} + + +class BaseImplicitGeometry(BaseGeometry): + @dataclass + class Config(BaseGeometry.Config): + radius: float = 1.0 + isosurface: bool = True + isosurface_method: str = "mt" + isosurface_resolution: int = 128 + isosurface_threshold: Union[float, str] = 0.0 + isosurface_chunk: int = 0 + isosurface_coarse_to_fine: bool = True + isosurface_deformable_grid: bool = False + isosurface_remove_outliers: bool = True + isosurface_outlier_n_faces_threshold: Union[int, float] = 0.01 + + cfg: Config + + def configure(self) -> None: + self.bbox: Float[Tensor, "2 3"] + self.register_buffer( + "bbox", + torch.as_tensor( + [ + [-self.cfg.radius, -self.cfg.radius, -self.cfg.radius], + [self.cfg.radius, self.cfg.radius, self.cfg.radius], + ], + dtype=torch.float32, + ), + ) + self.isosurface_helper: Optional[IsosurfaceHelper] = None + self.unbounded: bool = False + + def _initilize_isosurface_helper(self): + if self.cfg.isosurface and self.isosurface_helper is None: + if self.cfg.isosurface_method == "mc-cpu": + self.isosurface_helper = MarchingCubeCPUHelper( + self.cfg.isosurface_resolution + ).to(self.device) + elif self.cfg.isosurface_method == "mt": + self.isosurface_helper = MarchingTetrahedraHelper( + self.cfg.isosurface_resolution, + f"load/tets/{self.cfg.isosurface_resolution}_tets.npz", + ).to(self.device) + else: + raise AttributeError( + "Unknown isosurface method {self.cfg.isosurface_method}" + ) + + def forward( + self, points: Float[Tensor, "*N Di"], output_normal: bool = False + ) -> Dict[str, Float[Tensor, "..."]]: + raise NotImplementedError + + def forward_field( + self, points: Float[Tensor, "*N Di"] + ) -> Tuple[Float[Tensor, "*N 1"], Optional[Float[Tensor, "*N 3"]]]: + # return the value of the implicit field, could be density / signed distance + # also return a deformation field if the grid vertices can be optimized + raise NotImplementedError + + def forward_level( + self, field: Float[Tensor, "*N 1"], threshold: float + ) -> Float[Tensor, "*N 1"]: + # return the value of the implicit field, where the zero level set represents the surface + raise NotImplementedError + + def _isosurface(self, bbox: Float[Tensor, "2 3"], fine_stage: bool = False) -> Mesh: + def batch_func(x): + # scale to bbox as the input vertices are in [0, 1] + field, deformation = self.forward_field( + scale_tensor( + x.to(bbox.device), self.isosurface_helper.points_range, bbox + ), + ) + field = field.to( + x.device + ) # move to the same device as the input (could be CPU) + if deformation is not None: + deformation = deformation.to(x.device) + return field, deformation + + assert self.isosurface_helper is not None + + field, deformation = chunk_batch( + batch_func, + self.cfg.isosurface_chunk, + self.isosurface_helper.grid_vertices, + ) + + threshold: float + + if isinstance(self.cfg.isosurface_threshold, float): + threshold = self.cfg.isosurface_threshold + elif self.cfg.isosurface_threshold == "auto": + eps = 1.0e-5 + threshold = field[field > eps].mean().item() + threestudio.info( + f"Automatically determined isosurface threshold: {threshold}" + ) + else: + raise TypeError( + f"Unknown isosurface_threshold {self.cfg.isosurface_threshold}" + ) + + level = self.forward_level(field, threshold) + mesh: Mesh = self.isosurface_helper(level, deformation=deformation) + mesh.v_pos = scale_tensor( + mesh.v_pos, self.isosurface_helper.points_range, bbox + ) # scale to bbox as the grid vertices are in [0, 1] + mesh.add_extra("bbox", bbox) + + if self.cfg.isosurface_remove_outliers: + # remove outliers components with small number of faces + # only enabled when the mesh is not differentiable + mesh = mesh.remove_outlier(self.cfg.isosurface_outlier_n_faces_threshold) + + return mesh + + def isosurface(self) -> Mesh: + if not self.cfg.isosurface: + raise NotImplementedError( + "Isosurface is not enabled in the current configuration" + ) + self._initilize_isosurface_helper() + if self.cfg.isosurface_coarse_to_fine: + threestudio.debug("First run isosurface to get a tight bounding box ...") + with torch.no_grad(): + mesh_coarse = self._isosurface(self.bbox) + vmin, vmax = mesh_coarse.v_pos.amin(dim=0), mesh_coarse.v_pos.amax(dim=0) + vmin_ = (vmin - (vmax - vmin) * 0.1).max(self.bbox[0]) + vmax_ = (vmax + (vmax - vmin) * 0.1).min(self.bbox[1]) + threestudio.debug("Run isosurface again with the tight bounding box ...") + mesh = self._isosurface(torch.stack([vmin_, vmax_], dim=0), fine_stage=True) + else: + mesh = self._isosurface(self.bbox) + return mesh + + +class BaseExplicitGeometry(BaseGeometry): + @dataclass + class Config(BaseGeometry.Config): + radius: float = 1.0 + + cfg: Config + + def configure(self) -> None: + self.bbox: Float[Tensor, "2 3"] + self.register_buffer( + "bbox", + torch.as_tensor( + [ + [-self.cfg.radius, -self.cfg.radius, -self.cfg.radius], + [self.cfg.radius, self.cfg.radius, self.cfg.radius], + ], + dtype=torch.float32, + ), + ) diff --git a/threestudio/models/geometry/custom_mesh.py b/threestudio/models/geometry/custom_mesh.py new file mode 100644 index 0000000..08ebc63 --- /dev/null +++ b/threestudio/models/geometry/custom_mesh.py @@ -0,0 +1,178 @@ +import os +from dataclasses import dataclass, field + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.geometry.base import ( + BaseExplicitGeometry, + BaseGeometry, + contract_to_unisphere, +) +from threestudio.models.mesh import Mesh +from threestudio.models.networks import get_encoding, get_mlp +from threestudio.utils.ops import scale_tensor +from threestudio.utils.typing import * + + +@threestudio.register("custom-mesh") +class CustomMesh(BaseExplicitGeometry): + @dataclass + class Config(BaseExplicitGeometry.Config): + n_input_dims: int = 3 + n_feature_dims: int = 3 + pos_encoding_config: dict = field( + default_factory=lambda: { + "otype": "HashGrid", + "n_levels": 16, + "n_features_per_level": 2, + "log2_hashmap_size": 19, + "base_resolution": 16, + "per_level_scale": 1.447269237440378, + } + ) + mlp_network_config: dict = field( + default_factory=lambda: { + "otype": "VanillaMLP", + "activation": "ReLU", + "output_activation": "none", + "n_neurons": 64, + "n_hidden_layers": 1, + } + ) + shape_init: str = "" + shape_init_params: Optional[Any] = None + shape_init_mesh_up: str = "+z" + shape_init_mesh_front: str = "+x" + + cfg: Config + + def configure(self) -> None: + super().configure() + + self.encoding = get_encoding( + self.cfg.n_input_dims, self.cfg.pos_encoding_config + ) + self.feature_network = get_mlp( + self.encoding.n_output_dims, + self.cfg.n_feature_dims, + self.cfg.mlp_network_config, + ) + + # Initialize custom mesh + if self.cfg.shape_init.startswith("mesh:"): + assert isinstance(self.cfg.shape_init_params, float) + mesh_path = self.cfg.shape_init[5:] + if not os.path.exists(mesh_path): + raise ValueError(f"Mesh file {mesh_path} does not exist.") + + import trimesh + + scene = trimesh.load(mesh_path) + if isinstance(scene, trimesh.Trimesh): + mesh = scene + elif isinstance(scene, trimesh.scene.Scene): + mesh = trimesh.Trimesh() + for obj in scene.geometry.values(): + mesh = trimesh.util.concatenate([mesh, obj]) + else: + raise ValueError(f"Unknown mesh type at {mesh_path}.") + + # move to center + centroid = mesh.vertices.mean(0) + mesh.vertices = mesh.vertices - centroid + + # align to up-z and front-x + dirs = ["+x", "+y", "+z", "-x", "-y", "-z"] + dir2vec = { + "+x": np.array([1, 0, 0]), + "+y": np.array([0, 1, 0]), + "+z": np.array([0, 0, 1]), + "-x": np.array([-1, 0, 0]), + "-y": np.array([0, -1, 0]), + "-z": np.array([0, 0, -1]), + } + if ( + self.cfg.shape_init_mesh_up not in dirs + or self.cfg.shape_init_mesh_front not in dirs + ): + raise ValueError( + f"shape_init_mesh_up and shape_init_mesh_front must be one of {dirs}." + ) + if self.cfg.shape_init_mesh_up[1] == self.cfg.shape_init_mesh_front[1]: + raise ValueError( + "shape_init_mesh_up and shape_init_mesh_front must be orthogonal." + ) + z_, x_ = ( + dir2vec[self.cfg.shape_init_mesh_up], + dir2vec[self.cfg.shape_init_mesh_front], + ) + y_ = np.cross(z_, x_) + std2mesh = np.stack([x_, y_, z_], axis=0).T + mesh2std = np.linalg.inv(std2mesh) + + # scaling + scale = np.abs(mesh.vertices).max() + mesh.vertices = mesh.vertices / scale * self.cfg.shape_init_params + mesh.vertices = np.dot(mesh2std, mesh.vertices.T).T + + v_pos = torch.tensor(mesh.vertices, dtype=torch.float32).to(self.device) + t_pos_idx = torch.tensor(mesh.faces, dtype=torch.int64).to(self.device) + self.mesh = Mesh(v_pos=v_pos, t_pos_idx=t_pos_idx) + self.register_buffer( + "v_buffer", + v_pos, + ) + self.register_buffer( + "t_buffer", + t_pos_idx, + ) + + else: + raise ValueError( + f"Unknown shape initialization type: {self.cfg.shape_init}" + ) + print(self.mesh.v_pos.device) + + def isosurface(self) -> Mesh: + if hasattr(self, "mesh"): + return self.mesh + elif hasattr(self, "v_buffer"): + self.mesh = Mesh(v_pos=self.v_buffer, t_pos_idx=self.t_buffer) + return self.mesh + else: + raise ValueError(f"custom mesh is not initialized") + + def forward( + self, points: Float[Tensor, "*N Di"], output_normal: bool = False + ) -> Dict[str, Float[Tensor, "..."]]: + assert ( + output_normal == False + ), f"Normal output is not supported for {self.__class__.__name__}" + points_unscaled = points # points in the original scale + points = contract_to_unisphere(points, self.bbox) # points normalized to (0, 1) + enc = self.encoding(points.view(-1, self.cfg.n_input_dims)) + features = self.feature_network(enc).view( + *points.shape[:-1], self.cfg.n_feature_dims + ) + return {"features": features} + + def export(self, points: Float[Tensor, "*N Di"], **kwargs) -> Dict[str, Any]: + out: Dict[str, Any] = {} + if self.cfg.n_feature_dims == 0: + return out + points_unscaled = points + points = contract_to_unisphere(points_unscaled, self.bbox) + enc = self.encoding(points.reshape(-1, self.cfg.n_input_dims)) + features = self.feature_network(enc).view( + *points.shape[:-1], self.cfg.n_feature_dims + ) + out.update( + { + "features": features, + } + ) + return out diff --git a/threestudio/models/geometry/implicit_sdf.py b/threestudio/models/geometry/implicit_sdf.py new file mode 100644 index 0000000..9589291 --- /dev/null +++ b/threestudio/models/geometry/implicit_sdf.py @@ -0,0 +1,413 @@ +import os +from dataclasses import dataclass, field + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.geometry.base import BaseImplicitGeometry, contract_to_unisphere +from threestudio.models.mesh import Mesh +from threestudio.models.networks import get_encoding, get_mlp +from threestudio.utils.misc import broadcast, get_rank +from threestudio.utils.typing import * + + +@threestudio.register("implicit-sdf") +class ImplicitSDF(BaseImplicitGeometry): + @dataclass + class Config(BaseImplicitGeometry.Config): + n_input_dims: int = 3 + n_feature_dims: int = 3 + pos_encoding_config: dict = field( + default_factory=lambda: { + "otype": "HashGrid", + "n_levels": 16, + "n_features_per_level": 2, + "log2_hashmap_size": 19, + "base_resolution": 16, + "per_level_scale": 1.447269237440378, + } + ) + mlp_network_config: dict = field( + default_factory=lambda: { + "otype": "VanillaMLP", + "activation": "ReLU", + "output_activation": "none", + "n_neurons": 64, + "n_hidden_layers": 1, + } + ) + normal_type: Optional[ + str + ] = "finite_difference" # in ['pred', 'finite_difference', 'finite_difference_laplacian'] + finite_difference_normal_eps: Union[ + float, str + ] = 0.01 # in [float, "progressive"] + shape_init: Optional[str] = None + shape_init_params: Optional[Any] = None + shape_init_mesh_up: str = "+z" + shape_init_mesh_front: str = "+x" + force_shape_init: bool = False + sdf_bias: Union[float, str] = 0.0 + sdf_bias_params: Optional[Any] = None + + # no need to removal outlier for SDF + isosurface_remove_outliers: bool = False + + cfg: Config + + def configure(self) -> None: + super().configure() + self.encoding = get_encoding( + self.cfg.n_input_dims, self.cfg.pos_encoding_config + ) + self.sdf_network = get_mlp( + self.encoding.n_output_dims, 1, self.cfg.mlp_network_config + ) + + if self.cfg.n_feature_dims > 0: + self.feature_network = get_mlp( + self.encoding.n_output_dims, + self.cfg.n_feature_dims, + self.cfg.mlp_network_config, + ) + + if self.cfg.normal_type == "pred": + self.normal_network = get_mlp( + self.encoding.n_output_dims, 3, self.cfg.mlp_network_config + ) + if self.cfg.isosurface_deformable_grid: + assert ( + self.cfg.isosurface_method == "mt" + ), "isosurface_deformable_grid only works with mt" + self.deformation_network = get_mlp( + self.encoding.n_output_dims, 3, self.cfg.mlp_network_config + ) + + self.finite_difference_normal_eps: Optional[float] = None + + def initialize_shape(self) -> None: + if self.cfg.shape_init is None and not self.cfg.force_shape_init: + return + + # do not initialize shape if weights are provided + if self.cfg.weights is not None and not self.cfg.force_shape_init: + return + + if self.cfg.sdf_bias != 0.0: + threestudio.warn( + "shape_init and sdf_bias are both specified, which may lead to unexpected results." + ) + + get_gt_sdf: Callable[[Float[Tensor, "N 3"]], Float[Tensor, "N 1"]] + assert isinstance(self.cfg.shape_init, str) + if self.cfg.shape_init == "ellipsoid": + assert ( + isinstance(self.cfg.shape_init_params, Sized) + and len(self.cfg.shape_init_params) == 3 + ) + size = torch.as_tensor(self.cfg.shape_init_params).to(self.device) + + def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]: + return ((points_rand / size) ** 2).sum( + dim=-1, keepdim=True + ).sqrt() - 1.0 # pseudo signed distance of an ellipsoid + + get_gt_sdf = func + elif self.cfg.shape_init == "sphere": + assert isinstance(self.cfg.shape_init_params, float) + radius = self.cfg.shape_init_params + + def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]: + return (points_rand**2).sum(dim=-1, keepdim=True).sqrt() - radius + + get_gt_sdf = func + elif self.cfg.shape_init.startswith("mesh:"): + assert isinstance(self.cfg.shape_init_params, float) + mesh_path = self.cfg.shape_init[5:] + if not os.path.exists(mesh_path): + raise ValueError(f"Mesh file {mesh_path} does not exist.") + + import trimesh + + scene = trimesh.load(mesh_path) + if isinstance(scene, trimesh.Trimesh): + mesh = scene + elif isinstance(scene, trimesh.scene.Scene): + mesh = trimesh.Trimesh() + for obj in scene.geometry.values(): + mesh = trimesh.util.concatenate([mesh, obj]) + else: + raise ValueError(f"Unknown mesh type at {mesh_path}.") + + # move to center + centroid = mesh.vertices.mean(0) + mesh.vertices = mesh.vertices - centroid + + # align to up-z and front-x + dirs = ["+x", "+y", "+z", "-x", "-y", "-z"] + dir2vec = { + "+x": np.array([1, 0, 0]), + "+y": np.array([0, 1, 0]), + "+z": np.array([0, 0, 1]), + "-x": np.array([-1, 0, 0]), + "-y": np.array([0, -1, 0]), + "-z": np.array([0, 0, -1]), + } + if ( + self.cfg.shape_init_mesh_up not in dirs + or self.cfg.shape_init_mesh_front not in dirs + ): + raise ValueError( + f"shape_init_mesh_up and shape_init_mesh_front must be one of {dirs}." + ) + if self.cfg.shape_init_mesh_up[1] == self.cfg.shape_init_mesh_front[1]: + raise ValueError( + "shape_init_mesh_up and shape_init_mesh_front must be orthogonal." + ) + z_, x_ = ( + dir2vec[self.cfg.shape_init_mesh_up], + dir2vec[self.cfg.shape_init_mesh_front], + ) + y_ = np.cross(z_, x_) + std2mesh = np.stack([x_, y_, z_], axis=0).T + mesh2std = np.linalg.inv(std2mesh) + + # scaling + scale = np.abs(mesh.vertices).max() + mesh.vertices = mesh.vertices / scale * self.cfg.shape_init_params + mesh.vertices = np.dot(mesh2std, mesh.vertices.T).T + + from pysdf import SDF + + sdf = SDF(mesh.vertices, mesh.faces) + + def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]: + # add a negative signed here + # as in pysdf the inside of the shape has positive signed distance + return torch.from_numpy(-sdf(points_rand.cpu().numpy())).to( + points_rand + )[..., None] + + get_gt_sdf = func + + else: + raise ValueError( + f"Unknown shape initialization type: {self.cfg.shape_init}" + ) + + # Initialize SDF to a given shape when no weights are provided or force_shape_init is True + optim = torch.optim.Adam(self.parameters(), lr=1e-3) + from tqdm import tqdm + + for _ in tqdm( + range(1000), + desc=f"Initializing SDF to a(n) {self.cfg.shape_init}:", + disable=get_rank() != 0, + ): + points_rand = ( + torch.rand((10000, 3), dtype=torch.float32).to(self.device) * 2.0 - 1.0 + ) + sdf_gt = get_gt_sdf(points_rand) + sdf_pred = self.forward_sdf(points_rand) + loss = F.mse_loss(sdf_pred, sdf_gt) + optim.zero_grad() + loss.backward() + optim.step() + + # explicit broadcast to ensure param consistency across ranks + for param in self.parameters(): + broadcast(param, src=0) + + def get_shifted_sdf( + self, points: Float[Tensor, "*N Di"], sdf: Float[Tensor, "*N 1"] + ) -> Float[Tensor, "*N 1"]: + sdf_bias: Union[float, Float[Tensor, "*N 1"]] + if self.cfg.sdf_bias == "ellipsoid": + assert ( + isinstance(self.cfg.sdf_bias_params, Sized) + and len(self.cfg.sdf_bias_params) == 3 + ) + size = torch.as_tensor(self.cfg.sdf_bias_params).to(points) + sdf_bias = ((points / size) ** 2).sum( + dim=-1, keepdim=True + ).sqrt() - 1.0 # pseudo signed distance of an ellipsoid + elif self.cfg.sdf_bias == "sphere": + assert isinstance(self.cfg.sdf_bias_params, float) + radius = self.cfg.sdf_bias_params + sdf_bias = (points**2).sum(dim=-1, keepdim=True).sqrt() - radius + elif isinstance(self.cfg.sdf_bias, float): + sdf_bias = self.cfg.sdf_bias + else: + raise ValueError(f"Unknown sdf bias {self.cfg.sdf_bias}") + return sdf + sdf_bias + + def forward( + self, points: Float[Tensor, "*N Di"], output_normal: bool = False + ) -> Dict[str, Float[Tensor, "..."]]: + grad_enabled = torch.is_grad_enabled() + + if output_normal and self.cfg.normal_type == "analytic": + torch.set_grad_enabled(True) + points.requires_grad_(True) + + points_unscaled = points # points in the original scale + points = contract_to_unisphere( + points, self.bbox, self.unbounded + ) # points normalized to (0, 1) + + enc = self.encoding(points.view(-1, self.cfg.n_input_dims)) + sdf = self.sdf_network(enc).view(*points.shape[:-1], 1) + sdf = self.get_shifted_sdf(points_unscaled, sdf) + output = {"sdf": sdf} + + if self.cfg.n_feature_dims > 0: + features = self.feature_network(enc).view( + *points.shape[:-1], self.cfg.n_feature_dims + ) + output.update({"features": features}) + + if output_normal: + if ( + self.cfg.normal_type == "finite_difference" + or self.cfg.normal_type == "finite_difference_laplacian" + ): + assert self.finite_difference_normal_eps is not None + eps: float = self.finite_difference_normal_eps + if self.cfg.normal_type == "finite_difference_laplacian": + offsets: Float[Tensor, "6 3"] = torch.as_tensor( + [ + [eps, 0.0, 0.0], + [-eps, 0.0, 0.0], + [0.0, eps, 0.0], + [0.0, -eps, 0.0], + [0.0, 0.0, eps], + [0.0, 0.0, -eps], + ] + ).to(points_unscaled) + points_offset: Float[Tensor, "... 6 3"] = ( + points_unscaled[..., None, :] + offsets + ).clamp(-self.cfg.radius, self.cfg.radius) + sdf_offset: Float[Tensor, "... 6 1"] = self.forward_sdf( + points_offset + ) + sdf_grad = ( + 0.5 + * (sdf_offset[..., 0::2, 0] - sdf_offset[..., 1::2, 0]) + / eps + ) + else: + offsets: Float[Tensor, "3 3"] = torch.as_tensor( + [[eps, 0.0, 0.0], [0.0, eps, 0.0], [0.0, 0.0, eps]] + ).to(points_unscaled) + points_offset: Float[Tensor, "... 3 3"] = ( + points_unscaled[..., None, :] + offsets + ).clamp(-self.cfg.radius, self.cfg.radius) + sdf_offset: Float[Tensor, "... 3 1"] = self.forward_sdf( + points_offset + ) + sdf_grad = (sdf_offset[..., 0::1, 0] - sdf) / eps + normal = F.normalize(sdf_grad, dim=-1) + elif self.cfg.normal_type == "pred": + normal = self.normal_network(enc).view(*points.shape[:-1], 3) + normal = F.normalize(normal, dim=-1) + sdf_grad = normal + elif self.cfg.normal_type == "analytic": + sdf_grad = -torch.autograd.grad( + sdf, + points_unscaled, + grad_outputs=torch.ones_like(sdf), + create_graph=True, + )[0] + normal = F.normalize(sdf_grad, dim=-1) + if not grad_enabled: + sdf_grad = sdf_grad.detach() + normal = normal.detach() + else: + raise AttributeError(f"Unknown normal type {self.cfg.normal_type}") + output.update( + {"normal": normal, "shading_normal": normal, "sdf_grad": sdf_grad} + ) + return output + + def forward_sdf(self, points: Float[Tensor, "*N Di"]) -> Float[Tensor, "*N 1"]: + points_unscaled = points + points = contract_to_unisphere(points_unscaled, self.bbox, self.unbounded) + + sdf = self.sdf_network( + self.encoding(points.reshape(-1, self.cfg.n_input_dims)) + ).reshape(*points.shape[:-1], 1) + sdf = self.get_shifted_sdf(points_unscaled, sdf) + return sdf + + def forward_field( + self, points: Float[Tensor, "*N Di"] + ) -> Tuple[Float[Tensor, "*N 1"], Optional[Float[Tensor, "*N 3"]]]: + points_unscaled = points + points = contract_to_unisphere(points_unscaled, self.bbox, self.unbounded) + enc = self.encoding(points.reshape(-1, self.cfg.n_input_dims)) + sdf = self.sdf_network(enc).reshape(*points.shape[:-1], 1) + sdf = self.get_shifted_sdf(points_unscaled, sdf) + deformation: Optional[Float[Tensor, "*N 3"]] = None + if self.cfg.isosurface_deformable_grid: + deformation = self.deformation_network(enc).reshape(*points.shape[:-1], 3) + return sdf, deformation + + def forward_level( + self, field: Float[Tensor, "*N 1"], threshold: float + ) -> Float[Tensor, "*N 1"]: + return field - threshold + + def export(self, points: Float[Tensor, "*N Di"], **kwargs) -> Dict[str, Any]: + out: Dict[str, Any] = {} + if self.cfg.n_feature_dims == 0: + return out + points_unscaled = points + points = contract_to_unisphere(points_unscaled, self.bbox, self.unbounded) + enc = self.encoding(points.reshape(-1, self.cfg.n_input_dims)) + features = self.feature_network(enc).view( + *points.shape[:-1], self.cfg.n_feature_dims + ) + out.update( + { + "features": features, + } + ) + return out + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + if ( + self.cfg.normal_type == "finite_difference" + or self.cfg.normal_type == "finite_difference_laplacian" + ): + if isinstance(self.cfg.finite_difference_normal_eps, float): + self.finite_difference_normal_eps = ( + self.cfg.finite_difference_normal_eps + ) + elif self.cfg.finite_difference_normal_eps == "progressive": + # progressive finite difference eps from Neuralangelo + # https://arxiv.org/abs/2306.03092 + hg_conf: Any = self.cfg.pos_encoding_config + assert ( + hg_conf.otype == "ProgressiveBandHashGrid" + ), "finite_difference_normal_eps=progressive only works with ProgressiveBandHashGrid" + current_level = min( + hg_conf.start_level + + max(global_step - hg_conf.start_step, 0) // hg_conf.update_steps, + hg_conf.n_levels, + ) + grid_res = hg_conf.base_resolution * hg_conf.per_level_scale ** ( + current_level - 1 + ) + grid_size = 2 * self.cfg.radius / grid_res + if grid_size != self.finite_difference_normal_eps: + threestudio.info( + f"Update finite_difference_normal_eps to {grid_size}" + ) + self.finite_difference_normal_eps = grid_size + else: + raise ValueError( + f"Unknown finite_difference_normal_eps={self.cfg.finite_difference_normal_eps}" + ) diff --git a/threestudio/models/geometry/implicit_volume.py b/threestudio/models/geometry/implicit_volume.py new file mode 100644 index 0000000..cfee001 --- /dev/null +++ b/threestudio/models/geometry/implicit_volume.py @@ -0,0 +1,285 @@ +from dataclasses import dataclass, field + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.geometry.base import ( + BaseGeometry, + BaseImplicitGeometry, + contract_to_unisphere, +) +from threestudio.models.networks import get_encoding, get_mlp +from threestudio.utils.ops import get_activation +from threestudio.utils.typing import * + + +@threestudio.register("implicit-volume") +class ImplicitVolume(BaseImplicitGeometry): + @dataclass + class Config(BaseImplicitGeometry.Config): + n_input_dims: int = 3 + n_feature_dims: int = 3 + density_activation: Optional[str] = "softplus" + density_bias: Union[float, str] = "blob_magic3d" + density_blob_scale: float = 10.0 + density_blob_std: float = 0.5 + pos_encoding_config: dict = field( + default_factory=lambda: { + "otype": "HashGrid", + "n_levels": 16, + "n_features_per_level": 2, + "log2_hashmap_size": 19, + "base_resolution": 16, + "per_level_scale": 1.447269237440378, + } + ) + mlp_network_config: dict = field( + default_factory=lambda: { + "otype": "VanillaMLP", + "activation": "ReLU", + "output_activation": "none", + "n_neurons": 64, + "n_hidden_layers": 1, + } + ) + normal_type: Optional[ + str + ] = "finite_difference" # in ['pred', 'finite_difference', 'finite_difference_laplacian'] + finite_difference_normal_eps: float = 0.01 + + # automatically determine the threshold + isosurface_threshold: Union[float, str] = 25.0 + + # 4D Gaussian Annealing + anneal_density_blob_std_config: Optional[dict] = None + + cfg: Config + + def configure(self) -> None: + super().configure() + self.encoding = get_encoding( + self.cfg.n_input_dims, self.cfg.pos_encoding_config + ) + self.density_network = get_mlp( + self.encoding.n_output_dims, 1, self.cfg.mlp_network_config + ) + if self.cfg.n_feature_dims > 0: + self.feature_network = get_mlp( + self.encoding.n_output_dims, + self.cfg.n_feature_dims, + self.cfg.mlp_network_config, + ) + if self.cfg.normal_type == "pred": + self.normal_network = get_mlp( + self.encoding.n_output_dims, 3, self.cfg.mlp_network_config + ) + + def get_activated_density( + self, points: Float[Tensor, "*N Di"], density: Float[Tensor, "*N 1"] + ) -> Tuple[Float[Tensor, "*N 1"], Float[Tensor, "*N 1"]]: + density_bias: Union[float, Float[Tensor, "*N 1"]] + if self.cfg.density_bias == "blob_dreamfusion": + # pre-activation density bias + density_bias = ( + self.cfg.density_blob_scale + * torch.exp( + -0.5 * (points**2).sum(dim=-1) / self.cfg.density_blob_std**2 + )[..., None] + ) + elif self.cfg.density_bias == "blob_magic3d": + # pre-activation density bias + density_bias = ( + self.cfg.density_blob_scale + * ( + 1 + - torch.sqrt((points**2).sum(dim=-1)) / self.cfg.density_blob_std + )[..., None] + ) + elif isinstance(self.cfg.density_bias, float): + density_bias = self.cfg.density_bias + else: + raise ValueError(f"Unknown density bias {self.cfg.density_bias}") + raw_density: Float[Tensor, "*N 1"] = density + density_bias + density = get_activation(self.cfg.density_activation)(raw_density) + return raw_density, density + + def forward( + self, points: Float[Tensor, "*N Di"], output_normal: bool = False + ) -> Dict[str, Float[Tensor, "..."]]: + grad_enabled = torch.is_grad_enabled() + + if output_normal and self.cfg.normal_type == "analytic": + torch.set_grad_enabled(True) + points.requires_grad_(True) + + points_unscaled = points # points in the original scale + points = contract_to_unisphere( + points, self.bbox, self.unbounded + ) # points normalized to (0, 1) + + enc = self.encoding(points.view(-1, self.cfg.n_input_dims)) + density = self.density_network(enc).view(*points.shape[:-1], 1) + raw_density, density = self.get_activated_density(points_unscaled, density) + + output = { + "density": density, + } + + if self.cfg.n_feature_dims > 0: + features = self.feature_network(enc).view( + *points.shape[:-1], self.cfg.n_feature_dims + ) + output.update({"features": features}) + + if output_normal: + if ( + self.cfg.normal_type == "finite_difference" + or self.cfg.normal_type == "finite_difference_laplacian" + ): + # TODO: use raw density + eps = self.cfg.finite_difference_normal_eps + if self.cfg.normal_type == "finite_difference_laplacian": + offsets: Float[Tensor, "6 3"] = torch.as_tensor( + [ + [eps, 0.0, 0.0], + [-eps, 0.0, 0.0], + [0.0, eps, 0.0], + [0.0, -eps, 0.0], + [0.0, 0.0, eps], + [0.0, 0.0, -eps], + ] + ).to(points_unscaled) + points_offset: Float[Tensor, "... 6 3"] = ( + points_unscaled[..., None, :] + offsets + ).clamp(-self.cfg.radius, self.cfg.radius) + density_offset: Float[Tensor, "... 6 1"] = self.forward_density( + points_offset + ) + normal = ( + -0.5 + * (density_offset[..., 0::2, 0] - density_offset[..., 1::2, 0]) + / eps + ) + else: + offsets: Float[Tensor, "3 3"] = torch.as_tensor( + [[eps, 0.0, 0.0], [0.0, eps, 0.0], [0.0, 0.0, eps]] + ).to(points_unscaled) + points_offset: Float[Tensor, "... 3 3"] = ( + points_unscaled[..., None, :] + offsets + ).clamp(-self.cfg.radius, self.cfg.radius) + density_offset: Float[Tensor, "... 3 1"] = self.forward_density( + points_offset + ) + normal = -(density_offset[..., 0::1, 0] - density) / eps + normal = F.normalize(normal, dim=-1) + elif self.cfg.normal_type == "pred": + normal = self.normal_network(enc).view(*points.shape[:-1], 3) + normal = F.normalize(normal, dim=-1) + elif self.cfg.normal_type == "analytic": + normal = -torch.autograd.grad( + density, + points_unscaled, + grad_outputs=torch.ones_like(density), + create_graph=True, + )[0] + normal = F.normalize(normal, dim=-1) + if not grad_enabled: + normal = normal.detach() + else: + raise AttributeError(f"Unknown normal type {self.cfg.normal_type}") + output.update({"normal": normal, "shading_normal": normal}) + + torch.set_grad_enabled(grad_enabled) + return output + + def forward_density(self, points: Float[Tensor, "*N Di"]) -> Float[Tensor, "*N 1"]: + points_unscaled = points + points = contract_to_unisphere(points_unscaled, self.bbox, self.unbounded) + + density = self.density_network( + self.encoding(points.reshape(-1, self.cfg.n_input_dims)) + ).reshape(*points.shape[:-1], 1) + + _, density = self.get_activated_density(points_unscaled, density) + return density + + def forward_field( + self, points: Float[Tensor, "*N Di"] + ) -> Tuple[Float[Tensor, "*N 1"], Optional[Float[Tensor, "*N 3"]]]: + if self.cfg.isosurface_deformable_grid: + threestudio.warn( + f"{self.__class__.__name__} does not support isosurface_deformable_grid. Ignoring." + ) + density = self.forward_density(points) + return density, None + + def forward_level( + self, field: Float[Tensor, "*N 1"], threshold: float + ) -> Float[Tensor, "*N 1"]: + return -(field - threshold) + + def export(self, points: Float[Tensor, "*N Di"], **kwargs) -> Dict[str, Any]: + out: Dict[str, Any] = {} + if self.cfg.n_feature_dims == 0: + return out + points_unscaled = points + points = contract_to_unisphere(points_unscaled, self.bbox, self.unbounded) + enc = self.encoding(points.reshape(-1, self.cfg.n_input_dims)) + features = self.feature_network(enc).view( + *points.shape[:-1], self.cfg.n_feature_dims + ) + out.update( + { + "features": features, + } + ) + return out + + @staticmethod + @torch.no_grad() + def create_from( + other: BaseGeometry, + cfg: Optional[Union[dict, DictConfig]] = None, + copy_net: bool = True, + **kwargs, + ) -> "ImplicitVolume": + if isinstance(other, ImplicitVolume): + instance = ImplicitVolume(cfg, **kwargs) + instance.encoding.load_state_dict(other.encoding.state_dict()) + instance.density_network.load_state_dict(other.density_network.state_dict()) + if copy_net: + if ( + instance.cfg.n_feature_dims > 0 + and other.cfg.n_feature_dims == instance.cfg.n_feature_dims + ): + instance.feature_network.load_state_dict( + other.feature_network.state_dict() + ) + if ( + instance.cfg.normal_type == "pred" + and other.cfg.normal_type == "pred" + ): + instance.normal_network.load_state_dict( + other.normal_network.state_dict() + ) + return instance + else: + raise TypeError( + f"Cannot create {ImplicitVolume.__name__} from {other.__class__.__name__}" + ) + + def update_step( + self, epoch: int, global_step: int, on_load_weights: bool = False + ) -> None: + if self.cfg.anneal_density_blob_std_config is not None: + min_step = self.cfg.anneal_density_blob_std_config.min_anneal_step + max_step = self.cfg.anneal_density_blob_std_config.max_anneal_step + if global_step >= min_step and global_step <= max_step: + end_val = self.cfg.anneal_density_blob_std_config.end_val + start_val = self.cfg.anneal_density_blob_std_config.start_val + self.density_blob_std = start_val + (global_step - min_step) * ( + end_val - start_val + ) / (max_step - min_step) diff --git a/threestudio/models/geometry/tetrahedra_sdf_grid.py b/threestudio/models/geometry/tetrahedra_sdf_grid.py new file mode 100644 index 0000000..71f5c07 --- /dev/null +++ b/threestudio/models/geometry/tetrahedra_sdf_grid.py @@ -0,0 +1,369 @@ +import os +from dataclasses import dataclass, field + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.geometry.base import ( + BaseExplicitGeometry, + BaseGeometry, + contract_to_unisphere, +) +from threestudio.models.geometry.implicit_sdf import ImplicitSDF +from threestudio.models.geometry.implicit_volume import ImplicitVolume +from threestudio.models.isosurface import MarchingTetrahedraHelper +from threestudio.models.mesh import Mesh +from threestudio.models.networks import get_encoding, get_mlp +from threestudio.utils.misc import broadcast +from threestudio.utils.ops import scale_tensor +from threestudio.utils.typing import * + + +@threestudio.register("tetrahedra-sdf-grid") +class TetrahedraSDFGrid(BaseExplicitGeometry): + @dataclass + class Config(BaseExplicitGeometry.Config): + isosurface_resolution: int = 128 + isosurface_deformable_grid: bool = True + isosurface_remove_outliers: bool = False + isosurface_outlier_n_faces_threshold: Union[int, float] = 0.01 + + n_input_dims: int = 3 + n_feature_dims: int = 3 + pos_encoding_config: dict = field( + default_factory=lambda: { + "otype": "HashGrid", + "n_levels": 16, + "n_features_per_level": 2, + "log2_hashmap_size": 19, + "base_resolution": 16, + "per_level_scale": 1.447269237440378, + } + ) + mlp_network_config: dict = field( + default_factory=lambda: { + "otype": "VanillaMLP", + "activation": "ReLU", + "output_activation": "none", + "n_neurons": 64, + "n_hidden_layers": 1, + } + ) + shape_init: Optional[str] = None + shape_init_params: Optional[Any] = None + shape_init_mesh_up: str = "+z" + shape_init_mesh_front: str = "+x" + force_shape_init: bool = False + geometry_only: bool = False + fix_geometry: bool = False + + cfg: Config + + def configure(self) -> None: + super().configure() + + # this should be saved to state_dict, register as buffer + self.isosurface_bbox: Float[Tensor, "2 3"] + self.register_buffer("isosurface_bbox", self.bbox.clone()) + + self.isosurface_helper = MarchingTetrahedraHelper( + self.cfg.isosurface_resolution, + f"load/tets/{self.cfg.isosurface_resolution}_tets.npz", + ) + + self.sdf: Float[Tensor, "Nv 1"] + self.deformation: Optional[Float[Tensor, "Nv 3"]] + + if not self.cfg.fix_geometry: + self.register_parameter( + "sdf", + nn.Parameter( + torch.zeros( + (self.isosurface_helper.grid_vertices.shape[0], 1), + dtype=torch.float32, + ) + ), + ) + if self.cfg.isosurface_deformable_grid: + self.register_parameter( + "deformation", + nn.Parameter( + torch.zeros_like(self.isosurface_helper.grid_vertices) + ), + ) + else: + self.deformation = None + else: + self.register_buffer( + "sdf", + torch.zeros( + (self.isosurface_helper.grid_vertices.shape[0], 1), + dtype=torch.float32, + ), + ) + if self.cfg.isosurface_deformable_grid: + self.register_buffer( + "deformation", + torch.zeros_like(self.isosurface_helper.grid_vertices), + ) + else: + self.deformation = None + + if not self.cfg.geometry_only: + self.encoding = get_encoding( + self.cfg.n_input_dims, self.cfg.pos_encoding_config + ) + self.feature_network = get_mlp( + self.encoding.n_output_dims, + self.cfg.n_feature_dims, + self.cfg.mlp_network_config, + ) + + self.mesh: Optional[Mesh] = None + + def initialize_shape(self) -> None: + if self.cfg.shape_init is None and not self.cfg.force_shape_init: + return + + # do not initialize shape if weights are provided + if self.cfg.weights is not None and not self.cfg.force_shape_init: + return + + get_gt_sdf: Callable[[Float[Tensor, "N 3"]], Float[Tensor, "N 1"]] + assert isinstance(self.cfg.shape_init, str) + if self.cfg.shape_init == "ellipsoid": + assert ( + isinstance(self.cfg.shape_init_params, Sized) + and len(self.cfg.shape_init_params) == 3 + ) + size = torch.as_tensor(self.cfg.shape_init_params).to(self.device) + + def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]: + return ((points_rand / size) ** 2).sum( + dim=-1, keepdim=True + ).sqrt() - 1.0 # pseudo signed distance of an ellipsoid + + get_gt_sdf = func + elif self.cfg.shape_init == "sphere": + assert isinstance(self.cfg.shape_init_params, float) + radius = self.cfg.shape_init_params + + def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]: + return (points_rand**2).sum(dim=-1, keepdim=True).sqrt() - radius + + get_gt_sdf = func + elif self.cfg.shape_init.startswith("mesh:"): + assert isinstance(self.cfg.shape_init_params, float) + mesh_path = self.cfg.shape_init[5:] + if not os.path.exists(mesh_path): + raise ValueError(f"Mesh file {mesh_path} does not exist.") + + import trimesh + + mesh = trimesh.load(mesh_path) + + # move to center + centroid = mesh.vertices.mean(0) + mesh.vertices = mesh.vertices - centroid + + # align to up-z and front-x + dirs = ["+x", "+y", "+z", "-x", "-y", "-z"] + dir2vec = { + "+x": np.array([1, 0, 0]), + "+y": np.array([0, 1, 0]), + "+z": np.array([0, 0, 1]), + "-x": np.array([-1, 0, 0]), + "-y": np.array([0, -1, 0]), + "-z": np.array([0, 0, -1]), + } + if ( + self.cfg.shape_init_mesh_up not in dirs + or self.cfg.shape_init_mesh_front not in dirs + ): + raise ValueError( + f"shape_init_mesh_up and shape_init_mesh_front must be one of {dirs}." + ) + if self.cfg.shape_init_mesh_up[1] == self.cfg.shape_init_mesh_front[1]: + raise ValueError( + "shape_init_mesh_up and shape_init_mesh_front must be orthogonal." + ) + z_, x_ = ( + dir2vec[self.cfg.shape_init_mesh_up], + dir2vec[self.cfg.shape_init_mesh_front], + ) + y_ = np.cross(z_, x_) + std2mesh = np.stack([x_, y_, z_], axis=0).T + mesh2std = np.linalg.inv(std2mesh) + + # scaling + scale = np.abs(mesh.vertices).max() + mesh.vertices = mesh.vertices / scale * self.cfg.shape_init_params + mesh.vertices = np.dot(mesh2std, mesh.vertices.T).T + + from pysdf import SDF + + sdf = SDF(mesh.vertices, mesh.faces) + + def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]: + # add a negative signed here + # as in pysdf the inside of the shape has positive signed distance + return torch.from_numpy(-sdf(points_rand.cpu().numpy())).to( + points_rand + )[..., None] + + get_gt_sdf = func + + else: + raise ValueError( + f"Unknown shape initialization type: {self.cfg.shape_init}" + ) + + sdf_gt = get_gt_sdf( + scale_tensor( + self.isosurface_helper.grid_vertices, + self.isosurface_helper.points_range, + self.isosurface_bbox, + ) + ) + self.sdf.data = sdf_gt + + # explicit broadcast to ensure param consistency across ranks + for param in self.parameters(): + broadcast(param, src=0) + + def isosurface(self) -> Mesh: + # return cached mesh if fix_geometry is True to save computation + if self.cfg.fix_geometry and self.mesh is not None: + return self.mesh + mesh = self.isosurface_helper(self.sdf, self.deformation) + mesh.v_pos = scale_tensor( + mesh.v_pos, self.isosurface_helper.points_range, self.isosurface_bbox + ) + if self.cfg.isosurface_remove_outliers: + mesh = mesh.remove_outlier(self.cfg.isosurface_outlier_n_faces_threshold) + self.mesh = mesh + return mesh + + def forward( + self, points: Float[Tensor, "*N Di"], output_normal: bool = False + ) -> Dict[str, Float[Tensor, "..."]]: + if self.cfg.geometry_only: + return {} + assert ( + output_normal == False + ), f"Normal output is not supported for {self.__class__.__name__}" + points_unscaled = points # points in the original scale + points = contract_to_unisphere(points, self.bbox) # points normalized to (0, 1) + enc = self.encoding(points.view(-1, self.cfg.n_input_dims)) + features = self.feature_network(enc).view( + *points.shape[:-1], self.cfg.n_feature_dims + ) + return {"features": features} + + @staticmethod + @torch.no_grad() + def create_from( + other: BaseGeometry, + cfg: Optional[Union[dict, DictConfig]] = None, + copy_net: bool = True, + **kwargs, + ) -> "TetrahedraSDFGrid": + if isinstance(other, TetrahedraSDFGrid): + instance = TetrahedraSDFGrid(cfg, **kwargs) + assert instance.cfg.isosurface_resolution == other.cfg.isosurface_resolution + instance.isosurface_bbox = other.isosurface_bbox.clone() + instance.sdf.data = other.sdf.data.clone() + if ( + instance.cfg.isosurface_deformable_grid + and other.cfg.isosurface_deformable_grid + ): + assert ( + instance.deformation is not None and other.deformation is not None + ) + instance.deformation.data = other.deformation.data.clone() + if ( + not instance.cfg.geometry_only + and not other.cfg.geometry_only + and copy_net + ): + instance.encoding.load_state_dict(other.encoding.state_dict()) + instance.feature_network.load_state_dict( + other.feature_network.state_dict() + ) + return instance + elif isinstance(other, ImplicitVolume): + instance = TetrahedraSDFGrid(cfg, **kwargs) + if other.cfg.isosurface_method != "mt": + other.cfg.isosurface_method = "mt" + threestudio.warn( + f"Override isosurface_method of the source geometry to 'mt'" + ) + if other.cfg.isosurface_resolution != instance.cfg.isosurface_resolution: + other.cfg.isosurface_resolution = instance.cfg.isosurface_resolution + threestudio.warn( + f"Override isosurface_resolution of the source geometry to {instance.cfg.isosurface_resolution}" + ) + mesh = other.isosurface() + instance.isosurface_bbox = mesh.extras["bbox"] + instance.sdf.data = ( + mesh.extras["grid_level"].to(instance.sdf.data).clamp(-1, 1) + ) + if not instance.cfg.geometry_only and copy_net: + instance.encoding.load_state_dict(other.encoding.state_dict()) + instance.feature_network.load_state_dict( + other.feature_network.state_dict() + ) + return instance + elif isinstance(other, ImplicitSDF): + instance = TetrahedraSDFGrid(cfg, **kwargs) + if other.cfg.isosurface_method != "mt": + other.cfg.isosurface_method = "mt" + threestudio.warn( + f"Override isosurface_method of the source geometry to 'mt'" + ) + if other.cfg.isosurface_resolution != instance.cfg.isosurface_resolution: + other.cfg.isosurface_resolution = instance.cfg.isosurface_resolution + threestudio.warn( + f"Override isosurface_resolution of the source geometry to {instance.cfg.isosurface_resolution}" + ) + mesh = other.isosurface() + instance.isosurface_bbox = mesh.extras["bbox"] + instance.sdf.data = mesh.extras["grid_level"].to(instance.sdf.data) + if ( + instance.cfg.isosurface_deformable_grid + and other.cfg.isosurface_deformable_grid + ): + assert instance.deformation is not None + instance.deformation.data = mesh.extras["grid_deformation"].to( + instance.deformation.data + ) + if not instance.cfg.geometry_only and copy_net: + instance.encoding.load_state_dict(other.encoding.state_dict()) + instance.feature_network.load_state_dict( + other.feature_network.state_dict() + ) + return instance + else: + raise TypeError( + f"Cannot create {TetrahedraSDFGrid.__name__} from {other.__class__.__name__}" + ) + + def export(self, points: Float[Tensor, "*N Di"], **kwargs) -> Dict[str, Any]: + out: Dict[str, Any] = {} + if self.cfg.geometry_only or self.cfg.n_feature_dims == 0: + return out + points_unscaled = points + points = contract_to_unisphere(points_unscaled, self.bbox) + enc = self.encoding(points.reshape(-1, self.cfg.n_input_dims)) + features = self.feature_network(enc).view( + *points.shape[:-1], self.cfg.n_feature_dims + ) + out.update( + { + "features": features, + } + ) + return out diff --git a/threestudio/models/geometry/volume_grid.py b/threestudio/models/geometry/volume_grid.py new file mode 100644 index 0000000..ae258a1 --- /dev/null +++ b/threestudio/models/geometry/volume_grid.py @@ -0,0 +1,190 @@ +from dataclasses import dataclass, field + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.geometry.base import BaseImplicitGeometry, contract_to_unisphere +from threestudio.utils.ops import get_activation +from threestudio.utils.typing import * + + +@threestudio.register("volume-grid") +class VolumeGrid(BaseImplicitGeometry): + @dataclass + class Config(BaseImplicitGeometry.Config): + grid_size: Tuple[int, int, int] = field(default_factory=lambda: (100, 100, 100)) + n_feature_dims: int = 3 + density_activation: Optional[str] = "softplus" + density_bias: Union[float, str] = "blob" + density_blob_scale: float = 5.0 + density_blob_std: float = 0.5 + normal_type: Optional[ + str + ] = "finite_difference" # in ['pred', 'finite_difference', 'finite_difference_laplacian'] + + # automatically determine the threshold + isosurface_threshold: Union[float, str] = "auto" + + cfg: Config + + def configure(self) -> None: + super().configure() + self.grid_size = self.cfg.grid_size + + self.grid = nn.Parameter( + torch.zeros(1, self.cfg.n_feature_dims + 1, *self.grid_size) + ) + if self.cfg.density_bias == "blob": + self.register_buffer("density_scale", torch.tensor(0.0)) + else: + self.density_scale = nn.Parameter(torch.tensor(0.0)) + + if self.cfg.normal_type == "pred": + self.normal_grid = nn.Parameter(torch.zeros(1, 3, *self.grid_size)) + + def get_density_bias(self, points: Float[Tensor, "*N Di"]): + if self.cfg.density_bias == "blob": + # density_bias: Float[Tensor, "*N 1"] = self.cfg.density_blob_scale * torch.exp(-0.5 * (points ** 2).sum(dim=-1) / self.cfg.density_blob_std ** 2)[...,None] + density_bias: Float[Tensor, "*N 1"] = ( + self.cfg.density_blob_scale + * ( + 1 + - torch.sqrt((points.detach() ** 2).sum(dim=-1)) + / self.cfg.density_blob_std + )[..., None] + ) + return density_bias + elif isinstance(self.cfg.density_bias, float): + return self.cfg.density_bias + else: + raise AttributeError(f"Unknown density bias {self.cfg.density_bias}") + + def get_trilinear_feature( + self, points: Float[Tensor, "*N Di"], grid: Float[Tensor, "1 Df G1 G2 G3"] + ) -> Float[Tensor, "*N Df"]: + points_shape = points.shape[:-1] + df = grid.shape[1] + di = points.shape[-1] + out = F.grid_sample( + grid, points.view(1, 1, 1, -1, di), align_corners=False, mode="bilinear" + ) + out = out.reshape(df, -1).T.reshape(*points_shape, df) + return out + + def forward( + self, points: Float[Tensor, "*N Di"], output_normal: bool = False + ) -> Dict[str, Float[Tensor, "..."]]: + points_unscaled = points # points in the original scale + points = contract_to_unisphere( + points, self.bbox, self.unbounded + ) # points normalized to (0, 1) + points = points * 2 - 1 # convert to [-1, 1] for grid sample + + out = self.get_trilinear_feature(points, self.grid) + density, features = out[..., 0:1], out[..., 1:] + density = density * torch.exp(self.density_scale) # exp scaling in DreamFusion + + # breakpoint() + density = get_activation(self.cfg.density_activation)( + density + self.get_density_bias(points_unscaled) + ) + + output = { + "density": density, + "features": features, + } + + if output_normal: + if ( + self.cfg.normal_type == "finite_difference" + or self.cfg.normal_type == "finite_difference_laplacian" + ): + eps = 1.0e-3 + if self.cfg.normal_type == "finite_difference_laplacian": + offsets: Float[Tensor, "6 3"] = torch.as_tensor( + [ + [eps, 0.0, 0.0], + [-eps, 0.0, 0.0], + [0.0, eps, 0.0], + [0.0, -eps, 0.0], + [0.0, 0.0, eps], + [0.0, 0.0, -eps], + ] + ).to(points_unscaled) + points_offset: Float[Tensor, "... 6 3"] = ( + points_unscaled[..., None, :] + offsets + ).clamp(-self.cfg.radius, self.cfg.radius) + density_offset: Float[Tensor, "... 6 1"] = self.forward_density( + points_offset + ) + normal = ( + -0.5 + * (density_offset[..., 0::2, 0] - density_offset[..., 1::2, 0]) + / eps + ) + else: + offsets: Float[Tensor, "3 3"] = torch.as_tensor( + [[eps, 0.0, 0.0], [0.0, eps, 0.0], [0.0, 0.0, eps]] + ).to(points_unscaled) + points_offset: Float[Tensor, "... 3 3"] = ( + points_unscaled[..., None, :] + offsets + ).clamp(-self.cfg.radius, self.cfg.radius) + density_offset: Float[Tensor, "... 3 1"] = self.forward_density( + points_offset + ) + normal = -(density_offset[..., 0::1, 0] - density) / eps + normal = F.normalize(normal, dim=-1) + elif self.cfg.normal_type == "pred": + normal = self.get_trilinear_feature(points, self.normal_grid) + normal = F.normalize(normal, dim=-1) + else: + raise AttributeError(f"Unknown normal type {self.cfg.normal_type}") + output.update({"normal": normal, "shading_normal": normal}) + return output + + def forward_density(self, points: Float[Tensor, "*N Di"]) -> Float[Tensor, "*N 1"]: + points_unscaled = points + points = contract_to_unisphere(points_unscaled, self.bbox, self.unbounded) + points = points * 2 - 1 # convert to [-1, 1] for grid sample + + out = self.get_trilinear_feature(points, self.grid) + density = out[..., 0:1] + density = density * torch.exp(self.density_scale) + + density = get_activation(self.cfg.density_activation)( + density + self.get_density_bias(points_unscaled) + ) + return density + + def forward_field( + self, points: Float[Tensor, "*N Di"] + ) -> Tuple[Float[Tensor, "*N 1"], Optional[Float[Tensor, "*N 3"]]]: + if self.cfg.isosurface_deformable_grid: + threestudio.warn( + f"{self.__class__.__name__} does not support isosurface_deformable_grid. Ignoring." + ) + density = self.forward_density(points) + return density, None + + def forward_level( + self, field: Float[Tensor, "*N 1"], threshold: float + ) -> Float[Tensor, "*N 1"]: + return -(field - threshold) + + def export(self, points: Float[Tensor, "*N Di"], **kwargs) -> Dict[str, Any]: + out: Dict[str, Any] = {} + if self.cfg.n_feature_dims == 0: + return out + points_unscaled = points + points = contract_to_unisphere(points, self.bbox, self.unbounded) + points = points * 2 - 1 # convert to [-1, 1] for grid sample + features = self.get_trilinear_feature(points, self.grid)[..., 1:] + out.update( + { + "features": features, + } + ) + return out diff --git a/threestudio/models/guidance/__init__.py b/threestudio/models/guidance/__init__.py new file mode 100644 index 0000000..b25a8d7 --- /dev/null +++ b/threestudio/models/guidance/__init__.py @@ -0,0 +1,11 @@ +from . import ( + controlnet_guidance, + deep_floyd_guidance, + instructpix2pix_guidance, + stable_diffusion_guidance, + stable_diffusion_unified_guidance, + stable_diffusion_vsd_guidance, + stable_zero123_guidance, + zero123_guidance, + zero123_unified_guidance, +) diff --git a/threestudio/models/guidance/controlnet_guidance.py b/threestudio/models/guidance/controlnet_guidance.py new file mode 100644 index 0000000..ac014c7 --- /dev/null +++ b/threestudio/models/guidance/controlnet_guidance.py @@ -0,0 +1,427 @@ +import os +from dataclasses import dataclass + +import cv2 +import numpy as np +import torch +import torch.nn.functional as F +from controlnet_aux import CannyDetector, NormalBaeDetector +from diffusers import ControlNetModel, DDIMScheduler, StableDiffusionControlNetPipeline +from diffusers.utils.import_utils import is_xformers_available +from tqdm import tqdm + +import threestudio +from threestudio.models.prompt_processors.base import PromptProcessorOutput +from threestudio.utils.base import BaseObject +from threestudio.utils.misc import C, parse_version +from threestudio.utils.typing import * + + +@threestudio.register("stable-diffusion-controlnet-guidance") +class ControlNetGuidance(BaseObject): + @dataclass + class Config(BaseObject.Config): + cache_dir: Optional[str] = None + pretrained_model_name_or_path: str = "SG161222/Realistic_Vision_V2.0" + ddim_scheduler_name_or_path: str = "runwayml/stable-diffusion-v1-5" + control_type: str = "normal" # normal/canny + + enable_memory_efficient_attention: bool = False + enable_sequential_cpu_offload: bool = False + enable_attention_slicing: bool = False + enable_channels_last_format: bool = False + guidance_scale: float = 7.5 + condition_scale: float = 1.5 + grad_clip: Optional[ + Any + ] = None # field(default_factory=lambda: [0, 2.0, 8.0, 1000]) + half_precision_weights: bool = True + + fixed_size: int = -1 + + min_step_percent: float = 0.02 + max_step_percent: float = 0.98 + + diffusion_steps: int = 20 + + use_sds: bool = False + + # Canny threshold + canny_lower_bound: int = 50 + canny_upper_bound: int = 100 + + cfg: Config + + def configure(self) -> None: + threestudio.info(f"Loading ControlNet ...") + + controlnet_name_or_path: str + if self.cfg.control_type == "normal": + controlnet_name_or_path = "lllyasviel/control_v11p_sd15_normalbae" + elif self.cfg.control_type == "canny": + controlnet_name_or_path = "lllyasviel/control_v11p_sd15_canny" + + self.weights_dtype = ( + torch.float16 if self.cfg.half_precision_weights else torch.float32 + ) + + pipe_kwargs = { + "safety_checker": None, + "feature_extractor": None, + "requires_safety_checker": False, + "torch_dtype": self.weights_dtype, + "cache_dir": self.cfg.cache_dir, + } + + controlnet = ControlNetModel.from_pretrained( + controlnet_name_or_path, + torch_dtype=self.weights_dtype, + cache_dir=self.cfg.cache_dir, + ) + self.pipe = StableDiffusionControlNetPipeline.from_pretrained( + self.cfg.pretrained_model_name_or_path, controlnet=controlnet, **pipe_kwargs + ).to(self.device) + self.scheduler = DDIMScheduler.from_pretrained( + self.cfg.ddim_scheduler_name_or_path, + subfolder="scheduler", + torch_dtype=self.weights_dtype, + cache_dir=self.cfg.cache_dir, + ) + self.scheduler.set_timesteps(self.cfg.diffusion_steps) + + if self.cfg.enable_memory_efficient_attention: + if parse_version(torch.__version__) >= parse_version("2"): + threestudio.info( + "PyTorch2.0 uses memory efficient attention by default." + ) + elif not is_xformers_available(): + threestudio.warn( + "xformers is not available, memory efficient attention is not enabled." + ) + else: + self.pipe.enable_xformers_memory_efficient_attention() + + if self.cfg.enable_sequential_cpu_offload: + self.pipe.enable_sequential_cpu_offload() + + if self.cfg.enable_attention_slicing: + self.pipe.enable_attention_slicing(1) + + if self.cfg.enable_channels_last_format: + self.pipe.unet.to(memory_format=torch.channels_last) + + # Create model + self.vae = self.pipe.vae.eval() + self.unet = self.pipe.unet.eval() + self.controlnet = self.pipe.controlnet.eval() + + if self.cfg.control_type == "normal": + self.preprocessor = NormalBaeDetector.from_pretrained( + "lllyasviel/Annotators" + ) + self.preprocessor.model.to(self.device) + elif self.cfg.control_type == "canny": + self.preprocessor = CannyDetector() + + for p in self.vae.parameters(): + p.requires_grad_(False) + for p in self.unet.parameters(): + p.requires_grad_(False) + + self.num_train_timesteps = self.scheduler.config.num_train_timesteps + self.set_min_max_steps() # set to default value + + self.alphas: Float[Tensor, "..."] = self.scheduler.alphas_cumprod.to( + self.device + ) + + self.grad_clip_val: Optional[float] = None + + threestudio.info(f"Loaded ControlNet!") + + @torch.cuda.amp.autocast(enabled=False) + def set_min_max_steps(self, min_step_percent=0.02, max_step_percent=0.98): + self.min_step = int(self.num_train_timesteps * min_step_percent) + self.max_step = int(self.num_train_timesteps * max_step_percent) + + @torch.cuda.amp.autocast(enabled=False) + def forward_controlnet( + self, + latents: Float[Tensor, "..."], + t: Float[Tensor, "..."], + image_cond: Float[Tensor, "..."], + condition_scale: float, + encoder_hidden_states: Float[Tensor, "..."], + ) -> Float[Tensor, "..."]: + return self.controlnet( + latents.to(self.weights_dtype), + t.to(self.weights_dtype), + encoder_hidden_states=encoder_hidden_states.to(self.weights_dtype), + controlnet_cond=image_cond.to(self.weights_dtype), + conditioning_scale=condition_scale, + return_dict=False, + ) + + @torch.cuda.amp.autocast(enabled=False) + def forward_control_unet( + self, + latents: Float[Tensor, "..."], + t: Float[Tensor, "..."], + encoder_hidden_states: Float[Tensor, "..."], + cross_attention_kwargs, + down_block_additional_residuals, + mid_block_additional_residual, + ) -> Float[Tensor, "..."]: + input_dtype = latents.dtype + return self.unet( + latents.to(self.weights_dtype), + t.to(self.weights_dtype), + encoder_hidden_states=encoder_hidden_states.to(self.weights_dtype), + cross_attention_kwargs=cross_attention_kwargs, + down_block_additional_residuals=down_block_additional_residuals, + mid_block_additional_residual=mid_block_additional_residual, + ).sample.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def encode_images( + self, imgs: Float[Tensor, "B 3 H W"] + ) -> Float[Tensor, "B 4 DH DW"]: + input_dtype = imgs.dtype + imgs = imgs * 2.0 - 1.0 + posterior = self.vae.encode(imgs.to(self.weights_dtype)).latent_dist + latents = posterior.sample() * self.vae.config.scaling_factor + return latents.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def encode_cond_images( + self, imgs: Float[Tensor, "B 3 H W"] + ) -> Float[Tensor, "B 4 DH DW"]: + input_dtype = imgs.dtype + imgs = imgs * 2.0 - 1.0 + posterior = self.vae.encode(imgs.to(self.weights_dtype)).latent_dist + latents = posterior.mode() + uncond_image_latents = torch.zeros_like(latents) + latents = torch.cat([latents, latents, uncond_image_latents], dim=0) + return latents.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def decode_latents( + self, latents: Float[Tensor, "B 4 DH DW"] + ) -> Float[Tensor, "B 3 H W"]: + input_dtype = latents.dtype + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents.to(self.weights_dtype)).sample + image = (image * 0.5 + 0.5).clamp(0, 1) + return image.to(input_dtype) + + def edit_latents( + self, + text_embeddings: Float[Tensor, "BB 77 768"], + latents: Float[Tensor, "B 4 DH DW"], + image_cond: Float[Tensor, "B 3 H W"], + t: Int[Tensor, "B"], + ) -> Float[Tensor, "B 4 DH DW"]: + self.scheduler.config.num_train_timesteps = t.item() + self.scheduler.set_timesteps(self.cfg.diffusion_steps) + with torch.no_grad(): + # add noise + noise = torch.randn_like(latents) + latents = self.scheduler.add_noise(latents, noise, t) # type: ignore + + # sections of code used from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py + threestudio.debug("Start editing...") + for i, t in enumerate(self.scheduler.timesteps): + # predict the noise residual with unet, NO grad! + with torch.no_grad(): + # pred noise + latent_model_input = torch.cat([latents] * 2) + ( + down_block_res_samples, + mid_block_res_sample, + ) = self.forward_controlnet( + latent_model_input, + t, + encoder_hidden_states=text_embeddings, + image_cond=image_cond, + condition_scale=self.cfg.condition_scale, + ) + + noise_pred = self.forward_control_unet( + latent_model_input, + t, + encoder_hidden_states=text_embeddings, + cross_attention_kwargs=None, + down_block_additional_residuals=down_block_res_samples, + mid_block_additional_residual=mid_block_res_sample, + ) + # perform classifier-free guidance + noise_pred_text, noise_pred_uncond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + noise_pred_text - noise_pred_uncond + ) + # get previous sample, continue loop + latents = self.scheduler.step(noise_pred, t, latents).prev_sample + threestudio.debug("Editing finished.") + return latents + + def prepare_image_cond(self, cond_rgb: Float[Tensor, "B H W C"]): + if self.cfg.control_type == "normal": + cond_rgb = ( + (cond_rgb[0].detach().cpu().numpy() * 255).astype(np.uint8).copy() + ) + detected_map = self.preprocessor(cond_rgb) + control = ( + torch.from_numpy(np.array(detected_map)).float().to(self.device) / 255.0 + ) + control = control.unsqueeze(0) + control = control.permute(0, 3, 1, 2) + elif self.cfg.control_type == "canny": + cond_rgb = ( + (cond_rgb[0].detach().cpu().numpy() * 255).astype(np.uint8).copy() + ) + blurred_img = cv2.blur(cond_rgb, ksize=(5, 5)) + detected_map = self.preprocessor( + blurred_img, self.cfg.canny_lower_bound, self.cfg.canny_upper_bound + ) + control = ( + torch.from_numpy(np.array(detected_map)).float().to(self.device) / 255.0 + ) + control = control.unsqueeze(-1).repeat(1, 1, 3) + control = control.unsqueeze(0) + control = control.permute(0, 3, 1, 2) + + return control + + def compute_grad_sds( + self, + text_embeddings: Float[Tensor, "BB 77 768"], + latents: Float[Tensor, "B 4 DH DW"], + image_cond: Float[Tensor, "B 3 H W"], + t: Int[Tensor, "B"], + ): + with torch.no_grad(): + # add noise + noise = torch.randn_like(latents) # TODO: use torch generator + latents_noisy = self.scheduler.add_noise(latents, noise, t) + # pred noise + latent_model_input = torch.cat([latents_noisy] * 2) + down_block_res_samples, mid_block_res_sample = self.forward_controlnet( + latent_model_input, + t, + encoder_hidden_states=text_embeddings, + image_cond=image_cond, + condition_scale=self.cfg.condition_scale, + ) + + noise_pred = self.forward_control_unet( + latent_model_input, + t, + encoder_hidden_states=text_embeddings, + cross_attention_kwargs=None, + down_block_additional_residuals=down_block_res_samples, + mid_block_additional_residual=mid_block_res_sample, + ) + + # perform classifier-free guidance + noise_pred_text, noise_pred_uncond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + noise_pred_text - noise_pred_uncond + ) + + w = (1 - self.alphas[t]).view(-1, 1, 1, 1) + grad = w * (noise_pred - noise) + return grad + + def __call__( + self, + rgb: Float[Tensor, "B H W C"], + cond_rgb: Float[Tensor, "B H W C"], + prompt_utils: PromptProcessorOutput, + **kwargs, + ): + batch_size, H, W, _ = rgb.shape + assert batch_size == 1 + assert rgb.shape[:-1] == cond_rgb.shape[:-1] + + rgb_BCHW = rgb.permute(0, 3, 1, 2) + latents: Float[Tensor, "B 4 DH DW"] + if self.cfg.fixed_size > 0: + RH, RW = self.cfg.fixed_size, self.cfg.fixed_size + else: + RH, RW = H // 8 * 8, W // 8 * 8 + rgb_BCHW_HW8 = F.interpolate( + rgb_BCHW, (RH, RW), mode="bilinear", align_corners=False + ) + latents = self.encode_images(rgb_BCHW_HW8) + + image_cond = self.prepare_image_cond(cond_rgb) + image_cond = F.interpolate( + image_cond, (RH, RW), mode="bilinear", align_corners=False + ) + + temp = torch.zeros(1).to(rgb.device) + text_embeddings = prompt_utils.get_text_embeddings(temp, temp, temp, False) + + # timestep ~ U(0.02, 0.98) to avoid very high/low noise level + t = torch.randint( + self.min_step, + self.max_step + 1, + [batch_size], + dtype=torch.long, + device=self.device, + ) + + if self.cfg.use_sds: + grad = self.compute_grad_sds(text_embeddings, latents, image_cond, t) + grad = torch.nan_to_num(grad) + if self.grad_clip_val is not None: + grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val) + target = (latents - grad).detach() + loss_sds = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size + return { + "loss_sds": loss_sds, + "grad_norm": grad.norm(), + "min_step": self.min_step, + "max_step": self.max_step, + } + else: + edit_latents = self.edit_latents(text_embeddings, latents, image_cond, t) + edit_images = self.decode_latents(edit_latents) + edit_images = F.interpolate(edit_images, (H, W), mode="bilinear") + + return {"edit_images": edit_images.permute(0, 2, 3, 1)} + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + # clip grad for stable training as demonstrated in + # Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation + # http://arxiv.org/abs/2303.15413 + if self.cfg.grad_clip is not None: + self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step) + + self.set_min_max_steps( + min_step_percent=C(self.cfg.min_step_percent, epoch, global_step), + max_step_percent=C(self.cfg.max_step_percent, epoch, global_step), + ) + + +if __name__ == "__main__": + from threestudio.utils.config import ExperimentConfig, load_config + from threestudio.utils.typing import Optional + + cfg = load_config("configs/debugging/controlnet-normal.yaml") + guidance = threestudio.find(cfg.system.guidance_type)(cfg.system.guidance) + prompt_processor = threestudio.find(cfg.system.prompt_processor_type)( + cfg.system.prompt_processor + ) + + rgb_image = cv2.imread("assets/face.jpg")[:, :, ::-1].copy() / 255 + rgb_image = torch.FloatTensor(rgb_image).unsqueeze(0).to(guidance.device) + prompt_utils = prompt_processor() + guidance_out = guidance(rgb_image, rgb_image, prompt_utils) + edit_image = ( + (guidance_out["edit_images"][0].detach().cpu().clip(0, 1).numpy() * 255) + .astype(np.uint8)[:, :, ::-1] + .copy() + ) + os.makedirs(".threestudio_cache", exist_ok=True) + cv2.imwrite(".threestudio_cache/edit_image.jpg", edit_image) diff --git a/threestudio/models/guidance/deep_floyd_guidance.py b/threestudio/models/guidance/deep_floyd_guidance.py new file mode 100644 index 0000000..fa6ecea --- /dev/null +++ b/threestudio/models/guidance/deep_floyd_guidance.py @@ -0,0 +1,469 @@ +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F +from diffusers import IFPipeline +from diffusers.utils.import_utils import is_xformers_available +from tqdm import tqdm + +import threestudio +from threestudio.models.prompt_processors.base import PromptProcessorOutput +from threestudio.utils.base import BaseObject +from threestudio.utils.misc import C, parse_version +from threestudio.utils.ops import perpendicular_component +from threestudio.utils.typing import * + + +@threestudio.register("deep-floyd-guidance") +class DeepFloydGuidance(BaseObject): + @dataclass + class Config(BaseObject.Config): + pretrained_model_name_or_path: str = "DeepFloyd/IF-I-XL-v1.0" + # FIXME: xformers error + enable_memory_efficient_attention: bool = False + enable_sequential_cpu_offload: bool = False + enable_attention_slicing: bool = False + enable_channels_last_format: bool = True + guidance_scale: float = 20.0 + grad_clip: Optional[ + Any + ] = None # field(default_factory=lambda: [0, 2.0, 8.0, 1000]) + half_precision_weights: bool = True + + min_step_percent: float = 0.02 + max_step_percent: float = 0.98 + + weighting_strategy: str = "sds" + + view_dependent_prompting: bool = True + + """Maximum number of batch items to evaluate guidance for (for debugging) and to save on disk. -1 means save all items.""" + max_items_eval: int = 4 + + cfg: Config + + def configure(self) -> None: + threestudio.info(f"Loading Deep Floyd ...") + + self.weights_dtype = ( + torch.float16 if self.cfg.half_precision_weights else torch.float32 + ) + + # Create model + self.pipe = IFPipeline.from_pretrained( + self.cfg.pretrained_model_name_or_path, + text_encoder=None, + safety_checker=None, + watermarker=None, + feature_extractor=None, + requires_safety_checker=False, + variant="fp16" if self.cfg.half_precision_weights else None, + torch_dtype=self.weights_dtype, + ).to(self.device) + + if self.cfg.enable_memory_efficient_attention: + if parse_version(torch.__version__) >= parse_version("2"): + threestudio.info( + "PyTorch2.0 uses memory efficient attention by default." + ) + elif not is_xformers_available(): + threestudio.warn( + "xformers is not available, memory efficient attention is not enabled." + ) + else: + threestudio.warn( + f"Use DeepFloyd with xformers may raise error, see https://github.com/deep-floyd/IF/issues/52 to track this problem." + ) + self.pipe.enable_xformers_memory_efficient_attention() + + if self.cfg.enable_sequential_cpu_offload: + self.pipe.enable_sequential_cpu_offload() + + if self.cfg.enable_attention_slicing: + self.pipe.enable_attention_slicing(1) + + if self.cfg.enable_channels_last_format: + self.pipe.unet.to(memory_format=torch.channels_last) + + self.unet = self.pipe.unet.eval() + + for p in self.unet.parameters(): + p.requires_grad_(False) + + self.scheduler = self.pipe.scheduler + + self.num_train_timesteps = self.scheduler.config.num_train_timesteps + self.set_min_max_steps() # set to default value + + self.alphas: Float[Tensor, "..."] = self.scheduler.alphas_cumprod.to( + self.device + ) + + self.grad_clip_val: Optional[float] = None + + threestudio.info(f"Loaded Deep Floyd!") + + @torch.cuda.amp.autocast(enabled=False) + def set_min_max_steps(self, min_step_percent=0.02, max_step_percent=0.98): + self.min_step = int(self.num_train_timesteps * min_step_percent) + self.max_step = int(self.num_train_timesteps * max_step_percent) + + @torch.cuda.amp.autocast(enabled=False) + def forward_unet( + self, + latents: Float[Tensor, "..."], + t: Float[Tensor, "..."], + encoder_hidden_states: Float[Tensor, "..."], + ) -> Float[Tensor, "..."]: + input_dtype = latents.dtype + return self.unet( + latents.to(self.weights_dtype), + t.to(self.weights_dtype), + encoder_hidden_states=encoder_hidden_states.to(self.weights_dtype), + ).sample.to(input_dtype) + + def __call__( + self, + rgb: Float[Tensor, "B H W C"], + prompt_utils: PromptProcessorOutput, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + rgb_as_latents=False, + guidance_eval=False, + **kwargs, + ): + batch_size = rgb.shape[0] + + rgb_BCHW = rgb.permute(0, 3, 1, 2) + + assert rgb_as_latents == False, f"No latent space in {self.__class__.__name__}" + rgb_BCHW = rgb_BCHW * 2.0 - 1.0 # scale to [-1, 1] to match the diffusion range + latents = F.interpolate( + rgb_BCHW, (64, 64), mode="bilinear", align_corners=False + ) + + # timestep ~ U(0.02, 0.98) to avoid very high/low noise level + t = torch.randint( + self.min_step, + self.max_step + 1, + [batch_size], + dtype=torch.long, + device=self.device, + ) + + if prompt_utils.use_perp_neg: + ( + text_embeddings, + neg_guidance_weights, + ) = prompt_utils.get_text_embeddings_perp_neg( + elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting + ) + with torch.no_grad(): + noise = torch.randn_like(latents) + latents_noisy = self.scheduler.add_noise(latents, noise, t) + latent_model_input = torch.cat([latents_noisy] * 4, dim=0) + noise_pred = self.forward_unet( + latent_model_input, + torch.cat([t] * 4), + encoder_hidden_states=text_embeddings, + ) # (4B, 6, 64, 64) + + noise_pred_text, _ = noise_pred[:batch_size].split(3, dim=1) + noise_pred_uncond, _ = noise_pred[batch_size : batch_size * 2].split( + 3, dim=1 + ) + noise_pred_neg, _ = noise_pred[batch_size * 2 :].split(3, dim=1) + + e_pos = noise_pred_text - noise_pred_uncond + accum_grad = 0 + n_negative_prompts = neg_guidance_weights.shape[-1] + for i in range(n_negative_prompts): + e_i_neg = noise_pred_neg[i::n_negative_prompts] - noise_pred_uncond + accum_grad += neg_guidance_weights[:, i].view( + -1, 1, 1, 1 + ) * perpendicular_component(e_i_neg, e_pos) + + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + e_pos + accum_grad + ) + else: + neg_guidance_weights = None + text_embeddings = prompt_utils.get_text_embeddings( + elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting + ) + # predict the noise residual with unet, NO grad! + with torch.no_grad(): + # add noise + noise = torch.randn_like(latents) # TODO: use torch generator + latents_noisy = self.scheduler.add_noise(latents, noise, t) + # pred noise + latent_model_input = torch.cat([latents_noisy] * 2, dim=0) + noise_pred = self.forward_unet( + latent_model_input, + torch.cat([t] * 2), + encoder_hidden_states=text_embeddings, + ) # (2B, 6, 64, 64) + + # perform guidance (high scale from paper!) + noise_pred_text, noise_pred_uncond = noise_pred.chunk(2) + noise_pred_text, predicted_variance = noise_pred_text.split(3, dim=1) + noise_pred_uncond, _ = noise_pred_uncond.split(3, dim=1) + noise_pred = noise_pred_text + self.cfg.guidance_scale * ( + noise_pred_text - noise_pred_uncond + ) + + """ + # thresholding, experimental + if self.cfg.thresholding: + assert batch_size == 1 + noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) + noise_pred = custom_ddpm_step(self.scheduler, + noise_pred, int(t.item()), latents_noisy, **self.pipe.prepare_extra_step_kwargs(None, 0.0) + ) + """ + + if self.cfg.weighting_strategy == "sds": + # w(t), sigma_t^2 + w = (1 - self.alphas[t]).view(-1, 1, 1, 1) + elif self.cfg.weighting_strategy == "uniform": + w = 1 + elif self.cfg.weighting_strategy == "fantasia3d": + w = (self.alphas[t] ** 0.5 * (1 - self.alphas[t])).view(-1, 1, 1, 1) + else: + raise ValueError( + f"Unknown weighting strategy: {self.cfg.weighting_strategy}" + ) + + grad = w * (noise_pred - noise) + grad = torch.nan_to_num(grad) + # clip grad for stable training? + if self.grad_clip_val is not None: + grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val) + + # loss = SpecifyGradient.apply(latents, grad) + # SpecifyGradient is not straghtforward, use a reparameterization trick instead + target = (latents - grad).detach() + # d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad + loss_sds = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size + + guidance_out = { + "loss_sds": loss_sds, + "grad_norm": grad.norm(), + "min_step": self.min_step, + "max_step": self.max_step, + } + + if guidance_eval: + guidance_eval_utils = { + "use_perp_neg": prompt_utils.use_perp_neg, + "neg_guidance_weights": neg_guidance_weights, + "text_embeddings": text_embeddings, + "t_orig": t, + "latents_noisy": latents_noisy, + "noise_pred": torch.cat([noise_pred, predicted_variance], dim=1), + } + guidance_eval_out = self.guidance_eval(**guidance_eval_utils) + texts = [] + for n, e, a, c in zip( + guidance_eval_out["noise_levels"], elevation, azimuth, camera_distances + ): + texts.append( + f"n{n:.02f}\ne{e.item():.01f}\na{a.item():.01f}\nc{c.item():.02f}" + ) + guidance_eval_out.update({"texts": texts}) + guidance_out.update({"eval": guidance_eval_out}) + + return guidance_out + + @torch.cuda.amp.autocast(enabled=False) + @torch.no_grad() + def get_noise_pred( + self, + latents_noisy, + t, + text_embeddings, + use_perp_neg=False, + neg_guidance_weights=None, + ): + batch_size = latents_noisy.shape[0] + if use_perp_neg: + latent_model_input = torch.cat([latents_noisy] * 4, dim=0) + noise_pred = self.forward_unet( + latent_model_input, + torch.cat([t.reshape(1)] * 4).to(self.device), + encoder_hidden_states=text_embeddings, + ) # (4B, 6, 64, 64) + + noise_pred_text, _ = noise_pred[:batch_size].split(3, dim=1) + noise_pred_uncond, _ = noise_pred[batch_size : batch_size * 2].split( + 3, dim=1 + ) + noise_pred_neg, _ = noise_pred[batch_size * 2 :].split(3, dim=1) + + e_pos = noise_pred_text - noise_pred_uncond + accum_grad = 0 + n_negative_prompts = neg_guidance_weights.shape[-1] + for i in range(n_negative_prompts): + e_i_neg = noise_pred_neg[i::n_negative_prompts] - noise_pred_uncond + accum_grad += neg_guidance_weights[:, i].view( + -1, 1, 1, 1 + ) * perpendicular_component(e_i_neg, e_pos) + + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + e_pos + accum_grad + ) + else: + latent_model_input = torch.cat([latents_noisy] * 2, dim=0) + noise_pred = self.forward_unet( + latent_model_input, + torch.cat([t.reshape(1)] * 2).to(self.device), + encoder_hidden_states=text_embeddings, + ) # (2B, 6, 64, 64) + + # perform guidance (high scale from paper!) + noise_pred_text, noise_pred_uncond = noise_pred.chunk(2) + noise_pred_text, predicted_variance = noise_pred_text.split(3, dim=1) + noise_pred_uncond, _ = noise_pred_uncond.split(3, dim=1) + noise_pred = noise_pred_text + self.cfg.guidance_scale * ( + noise_pred_text - noise_pred_uncond + ) + + return torch.cat([noise_pred, predicted_variance], dim=1) + + @torch.cuda.amp.autocast(enabled=False) + @torch.no_grad() + def guidance_eval( + self, + t_orig, + text_embeddings, + latents_noisy, + noise_pred, + use_perp_neg=False, + neg_guidance_weights=None, + ): + # use only 50 timesteps, and find nearest of those to t + self.scheduler.set_timesteps(50) + self.scheduler.timesteps_gpu = self.scheduler.timesteps.to(self.device) + bs = ( + min(self.cfg.max_items_eval, latents_noisy.shape[0]) + if self.cfg.max_items_eval > 0 + else latents_noisy.shape[0] + ) # batch size + large_enough_idxs = self.scheduler.timesteps_gpu.expand([bs, -1]) > t_orig[ + :bs + ].unsqueeze( + -1 + ) # sized [bs,50] > [bs,1] + idxs = torch.min(large_enough_idxs, dim=1)[1] + t = self.scheduler.timesteps_gpu[idxs] + + fracs = list((t / self.scheduler.config.num_train_timesteps).cpu().numpy()) + imgs_noisy = (latents_noisy[:bs] / 2 + 0.5).permute(0, 2, 3, 1) + + # get prev latent + latents_1step = [] + pred_1orig = [] + for b in range(bs): + step_output = self.scheduler.step( + noise_pred[b : b + 1], t[b], latents_noisy[b : b + 1] + ) + latents_1step.append(step_output["prev_sample"]) + pred_1orig.append(step_output["pred_original_sample"]) + latents_1step = torch.cat(latents_1step) + pred_1orig = torch.cat(pred_1orig) + imgs_1step = (latents_1step / 2 + 0.5).permute(0, 2, 3, 1) + imgs_1orig = (pred_1orig / 2 + 0.5).permute(0, 2, 3, 1) + + latents_final = [] + for b, i in enumerate(idxs): + latents = latents_1step[b : b + 1] + text_emb = ( + text_embeddings[ + [b, b + len(idxs), b + 2 * len(idxs), b + 3 * len(idxs)], ... + ] + if use_perp_neg + else text_embeddings[[b, b + len(idxs)], ...] + ) + neg_guid = neg_guidance_weights[b : b + 1] if use_perp_neg else None + for t in tqdm(self.scheduler.timesteps[i + 1 :], leave=False): + # pred noise + noise_pred = self.get_noise_pred( + latents, t, text_emb, use_perp_neg, neg_guid + ) + # get prev latent + latents = self.scheduler.step(noise_pred, t, latents)["prev_sample"] + latents_final.append(latents) + + latents_final = torch.cat(latents_final) + imgs_final = (latents_final / 2 + 0.5).permute(0, 2, 3, 1) + + return { + "bs": bs, + "noise_levels": fracs, + "imgs_noisy": imgs_noisy, + "imgs_1step": imgs_1step, + "imgs_1orig": imgs_1orig, + "imgs_final": imgs_final, + } + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + # clip grad for stable training as demonstrated in + # Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation + # http://arxiv.org/abs/2303.15413 + if self.cfg.grad_clip is not None: + self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step) + + self.set_min_max_steps( + min_step_percent=C(self.cfg.min_step_percent, epoch, global_step), + max_step_percent=C(self.cfg.max_step_percent, epoch, global_step), + ) + + +""" +# used by thresholding, experimental +def custom_ddpm_step(ddpm, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, generator=None, return_dict: bool = True): + self = ddpm + t = timestep + + prev_t = self.previous_timestep(t) + + if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: + model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) + else: + predicted_variance = None + + # 1. compute alphas, betas + alpha_prod_t = self.alphas_cumprod[t].item() + alpha_prod_t_prev = self.alphas_cumprod[prev_t].item() if prev_t >= 0 else 1.0 + beta_prod_t = 1 - alpha_prod_t + beta_prod_t_prev = 1 - alpha_prod_t_prev + current_alpha_t = alpha_prod_t / alpha_prod_t_prev + current_beta_t = 1 - current_alpha_t + + # 2. compute predicted original sample from predicted noise also called + # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf + if self.config.prediction_type == "epsilon": + pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) + elif self.config.prediction_type == "sample": + pred_original_sample = model_output + elif self.config.prediction_type == "v_prediction": + pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output + else: + raise ValueError( + f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" + " `v_prediction` for the DDPMScheduler." + ) + + # 3. Clip or threshold "predicted x_0" + if self.config.thresholding: + pred_original_sample = self._threshold_sample(pred_original_sample) + elif self.config.clip_sample: + pred_original_sample = pred_original_sample.clamp( + -self.config.clip_sample_range, self.config.clip_sample_range + ) + + noise_thresholded = (sample - (alpha_prod_t ** 0.5) * pred_original_sample) / (beta_prod_t ** 0.5) + return noise_thresholded +""" diff --git a/threestudio/models/guidance/instructpix2pix_guidance.py b/threestudio/models/guidance/instructpix2pix_guidance.py new file mode 100644 index 0000000..8fa19fa --- /dev/null +++ b/threestudio/models/guidance/instructpix2pix_guidance.py @@ -0,0 +1,347 @@ +from dataclasses import dataclass + +import cv2 +import numpy as np +import torch +import torch.nn.functional as F +from diffusers import DDIMScheduler, StableDiffusionInstructPix2PixPipeline +from diffusers.utils.import_utils import is_xformers_available +from tqdm import tqdm + +import threestudio +from threestudio.models.prompt_processors.base import PromptProcessorOutput +from threestudio.utils.base import BaseObject +from threestudio.utils.misc import C, parse_version +from threestudio.utils.typing import * + + +@threestudio.register("stable-diffusion-instructpix2pix-guidance") +class InstructPix2PixGuidance(BaseObject): + @dataclass + class Config(BaseObject.Config): + cache_dir: Optional[str] = None + ddim_scheduler_name_or_path: str = "CompVis/stable-diffusion-v1-4" + ip2p_name_or_path: str = "timbrooks/instruct-pix2pix" + + enable_memory_efficient_attention: bool = False + enable_sequential_cpu_offload: bool = False + enable_attention_slicing: bool = False + enable_channels_last_format: bool = False + guidance_scale: float = 7.5 + condition_scale: float = 1.5 + grad_clip: Optional[ + Any + ] = None # field(default_factory=lambda: [0, 2.0, 8.0, 1000]) + half_precision_weights: bool = True + + fixed_size: int = -1 + + min_step_percent: float = 0.02 + max_step_percent: float = 0.98 + + diffusion_steps: int = 20 + + use_sds: bool = False + + cfg: Config + + def configure(self) -> None: + threestudio.info(f"Loading InstructPix2Pix ...") + + self.weights_dtype = ( + torch.float16 if self.cfg.half_precision_weights else torch.float32 + ) + + pipe_kwargs = { + "safety_checker": None, + "feature_extractor": None, + "requires_safety_checker": False, + "torch_dtype": self.weights_dtype, + "cache_dir": self.cfg.cache_dir, + } + + self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( + self.cfg.ip2p_name_or_path, **pipe_kwargs + ).to(self.device) + self.scheduler = DDIMScheduler.from_pretrained( + self.cfg.ddim_scheduler_name_or_path, + subfolder="scheduler", + torch_dtype=self.weights_dtype, + cache_dir=self.cfg.cache_dir, + ) + self.scheduler.set_timesteps(self.cfg.diffusion_steps) + + if self.cfg.enable_memory_efficient_attention: + if parse_version(torch.__version__) >= parse_version("2"): + threestudio.info( + "PyTorch2.0 uses memory efficient attention by default." + ) + elif not is_xformers_available(): + threestudio.warn( + "xformers is not available, memory efficient attention is not enabled." + ) + else: + self.pipe.enable_xformers_memory_efficient_attention() + + if self.cfg.enable_sequential_cpu_offload: + self.pipe.enable_sequential_cpu_offload() + + if self.cfg.enable_attention_slicing: + self.pipe.enable_attention_slicing(1) + + if self.cfg.enable_channels_last_format: + self.pipe.unet.to(memory_format=torch.channels_last) + + # Create model + self.vae = self.pipe.vae.eval() + self.unet = self.pipe.unet.eval() + + for p in self.vae.parameters(): + p.requires_grad_(False) + for p in self.unet.parameters(): + p.requires_grad_(False) + + self.num_train_timesteps = self.scheduler.config.num_train_timesteps + self.set_min_max_steps() # set to default value + + self.alphas: Float[Tensor, "..."] = self.scheduler.alphas_cumprod.to( + self.device + ) + + self.grad_clip_val: Optional[float] = None + + threestudio.info(f"Loaded InstructPix2Pix!") + + @torch.cuda.amp.autocast(enabled=False) + def set_min_max_steps(self, min_step_percent=0.02, max_step_percent=0.98): + self.min_step = int(self.num_train_timesteps * min_step_percent) + self.max_step = int(self.num_train_timesteps * max_step_percent) + + @torch.cuda.amp.autocast(enabled=False) + def forward_unet( + self, + latents: Float[Tensor, "..."], + t: Float[Tensor, "..."], + encoder_hidden_states: Float[Tensor, "..."], + ) -> Float[Tensor, "..."]: + input_dtype = latents.dtype + return self.unet( + latents.to(self.weights_dtype), + t.to(self.weights_dtype), + encoder_hidden_states=encoder_hidden_states.to(self.weights_dtype), + ).sample.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def encode_images( + self, imgs: Float[Tensor, "B 3 H W"] + ) -> Float[Tensor, "B 4 DH DW"]: + input_dtype = imgs.dtype + imgs = imgs * 2.0 - 1.0 + posterior = self.vae.encode(imgs.to(self.weights_dtype)).latent_dist + latents = posterior.sample() * self.vae.config.scaling_factor + return latents.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def encode_cond_images( + self, imgs: Float[Tensor, "B 3 H W"] + ) -> Float[Tensor, "B 4 DH DW"]: + input_dtype = imgs.dtype + imgs = imgs * 2.0 - 1.0 + posterior = self.vae.encode(imgs.to(self.weights_dtype)).latent_dist + latents = posterior.mode() + uncond_image_latents = torch.zeros_like(latents) + latents = torch.cat([latents, latents, uncond_image_latents], dim=0) + return latents.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def decode_latents( + self, latents: Float[Tensor, "B 4 DH DW"] + ) -> Float[Tensor, "B 3 H W"]: + input_dtype = latents.dtype + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents.to(self.weights_dtype)).sample + image = (image * 0.5 + 0.5).clamp(0, 1) + return image.to(input_dtype) + + def edit_latents( + self, + text_embeddings: Float[Tensor, "BB 77 768"], + latents: Float[Tensor, "B 4 DH DW"], + image_cond_latents: Float[Tensor, "B 4 DH DW"], + t: Int[Tensor, "B"], + ) -> Float[Tensor, "B 4 DH DW"]: + self.scheduler.config.num_train_timesteps = t.item() + self.scheduler.set_timesteps(self.cfg.diffusion_steps) + with torch.no_grad(): + # add noise + noise = torch.randn_like(latents) + latents = self.scheduler.add_noise(latents, noise, t) # type: ignore + threestudio.debug("Start editing...") + # sections of code used from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py + for i, t in enumerate(self.scheduler.timesteps): + # predict the noise residual with unet, NO grad! + with torch.no_grad(): + # pred noise + latent_model_input = torch.cat([latents] * 3) + latent_model_input = torch.cat( + [latent_model_input, image_cond_latents], dim=1 + ) + + noise_pred = self.forward_unet( + latent_model_input, t, encoder_hidden_states=text_embeddings + ) + + # perform classifier-free guidance + noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk( + 3 + ) + noise_pred = ( + noise_pred_uncond + + self.cfg.guidance_scale * (noise_pred_text - noise_pred_image) + + self.cfg.condition_scale * (noise_pred_image - noise_pred_uncond) + ) + + # get previous sample, continue loop + latents = self.scheduler.step(noise_pred, t, latents).prev_sample + threestudio.debug("Editing finished.") + return latents + + def compute_grad_sds( + self, + text_embeddings: Float[Tensor, "BB 77 768"], + latents: Float[Tensor, "B 4 DH DW"], + image_cond_latents: Float[Tensor, "B 4 DH DW"], + t: Int[Tensor, "B"], + ): + with torch.no_grad(): + # add noise + noise = torch.randn_like(latents) # TODO: use torch generator + latents_noisy = self.scheduler.add_noise(latents, noise, t) + # pred noise + latent_model_input = torch.cat([latents_noisy] * 3) + latent_model_input = torch.cat( + [latent_model_input, image_cond_latents], dim=1 + ) + + noise_pred = self.forward_unet( + latent_model_input, t, encoder_hidden_states=text_embeddings + ) + + noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3) + noise_pred = ( + noise_pred_uncond + + self.cfg.guidance_scale * (noise_pred_text - noise_pred_image) + + self.cfg.condition_scale * (noise_pred_image - noise_pred_uncond) + ) + + w = (1 - self.alphas[t]).view(-1, 1, 1, 1) + grad = w * (noise_pred - noise) + return grad + + def __call__( + self, + rgb: Float[Tensor, "B H W C"], + cond_rgb: Float[Tensor, "B H W C"], + prompt_utils: PromptProcessorOutput, + **kwargs, + ): + batch_size, H, W, _ = rgb.shape + + rgb_BCHW = rgb.permute(0, 3, 1, 2) + latents: Float[Tensor, "B 4 DH DW"] + if self.cfg.fixed_size > 0: + RH, RW = self.cfg.fixed_size, self.cfg.fixed_size + else: + RH, RW = H // 8 * 8, W // 8 * 8 + rgb_BCHW_HW8 = F.interpolate( + rgb_BCHW, (RH, RW), mode="bilinear", align_corners=False + ) + latents = self.encode_images(rgb_BCHW_HW8) + + cond_rgb_BCHW = cond_rgb.permute(0, 3, 1, 2) + cond_rgb_BCHW_HW8 = F.interpolate( + cond_rgb_BCHW, + (RH, RW), + mode="bilinear", + align_corners=False, + ) + cond_latents = self.encode_cond_images(cond_rgb_BCHW_HW8) + + temp = torch.zeros(1).to(rgb.device) + text_embeddings = prompt_utils.get_text_embeddings(temp, temp, temp, False) + text_embeddings = torch.cat( + [text_embeddings, text_embeddings[-1:]], dim=0 + ) # [positive, negative, negative] + + # timestep ~ U(0.02, 0.98) to avoid very high/low noise level + t = torch.randint( + self.min_step, + self.max_step + 1, + [batch_size], + dtype=torch.long, + device=self.device, + ) + + if self.cfg.use_sds: + grad = self.compute_grad_sds(text_embeddings, latents, cond_latents, t) + grad = torch.nan_to_num(grad) + if self.grad_clip_val is not None: + grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val) + target = (latents - grad).detach() + loss_sds = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size + return { + "loss_sds": loss_sds, + "grad_norm": grad.norm(), + "min_step": self.min_step, + "max_step": self.max_step, + } + else: + edit_latents = self.edit_latents(text_embeddings, latents, cond_latents, t) + edit_images = self.decode_latents(edit_latents) + edit_images = F.interpolate(edit_images, (H, W), mode="bilinear") + + return {"edit_images": edit_images.permute(0, 2, 3, 1)} + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + # clip grad for stable training as demonstrated in + # Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation + # http://arxiv.org/abs/2303.15413 + if self.cfg.grad_clip is not None: + self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step) + + self.set_min_max_steps( + min_step_percent=C(self.cfg.min_step_percent, epoch, global_step), + max_step_percent=C(self.cfg.max_step_percent, epoch, global_step), + ) + + +if __name__ == "__main__": + from threestudio.utils.config import ExperimentConfig, load_config + from threestudio.utils.typing import Optional + + cfg = load_config("configs/debugging/instructpix2pix.yaml") + guidance = threestudio.find(cfg.system.guidance_type)(cfg.system.guidance) + prompt_processor = threestudio.find(cfg.system.prompt_processor_type)( + cfg.system.prompt_processor + ) + rgb_image = cv2.imread("assets/face.jpg")[:, :, ::-1].copy() / 255 + rgb_image = torch.FloatTensor(rgb_image).unsqueeze(0).to(guidance.device) + prompt_utils = prompt_processor() + guidance_out = guidance(rgb_image, rgb_image, prompt_utils) + edit_image = ( + ( + guidance_out["edit_images"][0] + .permute(1, 2, 0) + .detach() + .cpu() + .clip(0, 1) + .numpy() + * 255 + ) + .astype(np.uint8)[:, :, ::-1] + .copy() + ) + import os + + os.makedirs(".threestudio_cache", exist_ok=True) + cv2.imwrite(".threestudio_cache/edit_image.jpg", edit_image) diff --git a/threestudio/models/guidance/stable_diffusion_guidance.py b/threestudio/models/guidance/stable_diffusion_guidance.py new file mode 100644 index 0000000..c5c91bd --- /dev/null +++ b/threestudio/models/guidance/stable_diffusion_guidance.py @@ -0,0 +1,637 @@ +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F +from diffusers import DDIMScheduler, DDPMScheduler, StableDiffusionPipeline +from diffusers.utils.import_utils import is_xformers_available +from tqdm import tqdm + +import threestudio +from threestudio.models.prompt_processors.base import PromptProcessorOutput +from threestudio.utils.base import BaseObject +from threestudio.utils.misc import C, cleanup, parse_version +from threestudio.utils.ops import perpendicular_component +from threestudio.utils.typing import * + + +@threestudio.register("stable-diffusion-guidance") +class StableDiffusionGuidance(BaseObject): + @dataclass + class Config(BaseObject.Config): + pretrained_model_name_or_path: str = "runwayml/stable-diffusion-v1-5" + enable_memory_efficient_attention: bool = False + enable_sequential_cpu_offload: bool = False + enable_attention_slicing: bool = False + enable_channels_last_format: bool = False + guidance_scale: float = 100.0 + grad_clip: Optional[ + Any + ] = None # field(default_factory=lambda: [0, 2.0, 8.0, 1000]) + half_precision_weights: bool = True + + min_step_percent: float = 0.02 + max_step_percent: float = 0.98 + sqrt_anneal: bool = False # sqrt anneal proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + trainer_max_steps: int = 25000 + use_img_loss: bool = False # image-space SDS proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + + use_sjc: bool = False + var_red: bool = True + weighting_strategy: str = "sds" + + token_merging: bool = False + token_merging_params: Optional[dict] = field(default_factory=dict) + + view_dependent_prompting: bool = True + + """Maximum number of batch items to evaluate guidance for (for debugging) and to save on disk. -1 means save all items.""" + max_items_eval: int = 4 + + cfg: Config + + def configure(self) -> None: + threestudio.info(f"Loading Stable Diffusion ...") + + self.weights_dtype = ( + torch.float16 if self.cfg.half_precision_weights else torch.float32 + ) + + pipe_kwargs = { + "tokenizer": None, + "safety_checker": None, + "feature_extractor": None, + "requires_safety_checker": False, + "torch_dtype": self.weights_dtype, + } + self.pipe = StableDiffusionPipeline.from_pretrained( + self.cfg.pretrained_model_name_or_path, + **pipe_kwargs, + ).to(self.device) + + if self.cfg.enable_memory_efficient_attention: + if parse_version(torch.__version__) >= parse_version("2"): + threestudio.info( + "PyTorch2.0 uses memory efficient attention by default." + ) + elif not is_xformers_available(): + threestudio.warn( + "xformers is not available, memory efficient attention is not enabled." + ) + else: + self.pipe.enable_xformers_memory_efficient_attention() + + if self.cfg.enable_sequential_cpu_offload: + self.pipe.enable_sequential_cpu_offload() + + if self.cfg.enable_attention_slicing: + self.pipe.enable_attention_slicing(1) + + if self.cfg.enable_channels_last_format: + self.pipe.unet.to(memory_format=torch.channels_last) + + del self.pipe.text_encoder + cleanup() + + # Create model + self.vae = self.pipe.vae.eval() + self.unet = self.pipe.unet.eval() + + for p in self.vae.parameters(): + p.requires_grad_(False) + for p in self.unet.parameters(): + p.requires_grad_(False) + + if self.cfg.token_merging: + import tomesd + + tomesd.apply_patch(self.unet, **self.cfg.token_merging_params) + + if self.cfg.use_sjc: + # score jacobian chaining use DDPM + self.scheduler = DDPMScheduler.from_pretrained( + self.cfg.pretrained_model_name_or_path, + subfolder="scheduler", + torch_dtype=self.weights_dtype, + beta_start=0.00085, + beta_end=0.0120, + beta_schedule="scaled_linear", + ) + else: + self.scheduler = DDIMScheduler.from_pretrained( + self.cfg.pretrained_model_name_or_path, + subfolder="scheduler", + torch_dtype=self.weights_dtype, + ) + + self.num_train_timesteps = self.scheduler.config.num_train_timesteps + self.set_min_max_steps() # set to default value + + self.alphas: Float[Tensor, "..."] = self.scheduler.alphas_cumprod.to( + self.device + ) + if self.cfg.use_sjc: + # score jacobian chaining need mu + self.us: Float[Tensor, "..."] = torch.sqrt((1 - self.alphas) / self.alphas) + + self.grad_clip_val: Optional[float] = None + + threestudio.info(f"Loaded Stable Diffusion!") + + @torch.cuda.amp.autocast(enabled=False) + def set_min_max_steps(self, min_step_percent=0.02, max_step_percent=0.98): + self.min_step = int(self.num_train_timesteps * min_step_percent) + self.max_step = int(self.num_train_timesteps * max_step_percent) + + @torch.cuda.amp.autocast(enabled=False) + def forward_unet( + self, + latents: Float[Tensor, "..."], + t: Float[Tensor, "..."], + encoder_hidden_states: Float[Tensor, "..."], + ) -> Float[Tensor, "..."]: + input_dtype = latents.dtype + return self.unet( + latents.to(self.weights_dtype), + t.to(self.weights_dtype), + encoder_hidden_states=encoder_hidden_states.to(self.weights_dtype), + ).sample.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def encode_images( + self, imgs: Float[Tensor, "B 3 512 512"] + ) -> Float[Tensor, "B 4 64 64"]: + input_dtype = imgs.dtype + imgs = imgs * 2.0 - 1.0 + posterior = self.vae.encode(imgs.to(self.weights_dtype)).latent_dist + latents = posterior.sample() * self.vae.config.scaling_factor + return latents.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def decode_latents( + self, + latents: Float[Tensor, "B 4 H W"], + latent_height: int = 64, + latent_width: int = 64, + ) -> Float[Tensor, "B 3 512 512"]: + input_dtype = latents.dtype + latents = F.interpolate( + latents, (latent_height, latent_width), mode="bilinear", align_corners=False + ) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents.to(self.weights_dtype)).sample + image = (image * 0.5 + 0.5).clamp(0, 1) + return image.to(input_dtype) + + def compute_grad_sds( + self, + latents: Float[Tensor, "B 4 64 64"], + image: Float[Tensor, "B 3 512 512"], + t: Int[Tensor, "B"], + prompt_utils: PromptProcessorOutput, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + ): + batch_size = elevation.shape[0] + + if prompt_utils.use_perp_neg: + ( + text_embeddings, + neg_guidance_weights, + ) = prompt_utils.get_text_embeddings_perp_neg( + elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting + ) + with torch.no_grad(): + noise = torch.randn_like(latents) + latents_noisy = self.scheduler.add_noise(latents, noise, t) + latent_model_input = torch.cat([latents_noisy] * 4, dim=0) + noise_pred = self.forward_unet( + latent_model_input, + torch.cat([t] * 4), + encoder_hidden_states=text_embeddings, + ) # (4B, 3, 64, 64) + + noise_pred_text = noise_pred[:batch_size] + noise_pred_uncond = noise_pred[batch_size : batch_size * 2] + noise_pred_neg = noise_pred[batch_size * 2 :] + + e_pos = noise_pred_text - noise_pred_uncond + accum_grad = 0 + n_negative_prompts = neg_guidance_weights.shape[-1] + for i in range(n_negative_prompts): + e_i_neg = noise_pred_neg[i::n_negative_prompts] - noise_pred_uncond + accum_grad += neg_guidance_weights[:, i].view( + -1, 1, 1, 1 + ) * perpendicular_component(e_i_neg, e_pos) + + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + e_pos + accum_grad + ) + else: + neg_guidance_weights = None + text_embeddings = prompt_utils.get_text_embeddings( + elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting + ) + # predict the noise residual with unet, NO grad! + with torch.no_grad(): + # add noise + noise = torch.randn_like(latents) # TODO: use torch generator + latents_noisy = self.scheduler.add_noise(latents, noise, t) + # pred noise + latent_model_input = torch.cat([latents_noisy] * 2, dim=0) + noise_pred = self.forward_unet( + latent_model_input, + torch.cat([t] * 2), + encoder_hidden_states=text_embeddings, + ) + + # perform guidance (high scale from paper!) + noise_pred_text, noise_pred_uncond = noise_pred.chunk(2) + noise_pred = noise_pred_text + self.cfg.guidance_scale * ( + noise_pred_text - noise_pred_uncond + ) + + if self.cfg.weighting_strategy == "sds": + # w(t), sigma_t^2 + w = (1 - self.alphas[t]).view(-1, 1, 1, 1) + elif self.cfg.weighting_strategy == "uniform": + w = 1 + elif self.cfg.weighting_strategy == "fantasia3d": + w = (self.alphas[t] ** 0.5 * (1 - self.alphas[t])).view(-1, 1, 1, 1) + else: + raise ValueError( + f"Unknown weighting strategy: {self.cfg.weighting_strategy}" + ) + + alpha = (self.alphas[t] ** 0.5).view(-1, 1, 1, 1) + sigma = ((1 - self.alphas[t]) ** 0.5).view(-1, 1, 1, 1) + latents_denoised = (latents_noisy - sigma * noise_pred) / alpha + image_denoised = self.decode_latents(latents_denoised) + + grad = w * (noise_pred - noise) + # image-space SDS proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + if self.cfg.use_img_loss: + grad_img = w * (image - image_denoised) * alpha / sigma + else: + grad_img = None + + guidance_eval_utils = { + "use_perp_neg": prompt_utils.use_perp_neg, + "neg_guidance_weights": neg_guidance_weights, + "text_embeddings": text_embeddings, + "t_orig": t, + "latents_noisy": latents_noisy, + "noise_pred": noise_pred, + } + + return grad, grad_img, guidance_eval_utils + + def compute_grad_sjc( + self, + latents: Float[Tensor, "B 4 64 64"], + t: Int[Tensor, "B"], + prompt_utils: PromptProcessorOutput, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + ): + batch_size = elevation.shape[0] + + sigma = self.us[t] + sigma = sigma.view(-1, 1, 1, 1) + + if prompt_utils.use_perp_neg: + ( + text_embeddings, + neg_guidance_weights, + ) = prompt_utils.get_text_embeddings_perp_neg( + elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting + ) + with torch.no_grad(): + noise = torch.randn_like(latents) + y = latents + zs = y + sigma * noise + scaled_zs = zs / torch.sqrt(1 + sigma**2) + # pred noise + latent_model_input = torch.cat([scaled_zs] * 4, dim=0) + noise_pred = self.forward_unet( + latent_model_input, + torch.cat([t] * 4), + encoder_hidden_states=text_embeddings, + ) # (4B, 3, 64, 64) + + noise_pred_text = noise_pred[:batch_size] + noise_pred_uncond = noise_pred[batch_size : batch_size * 2] + noise_pred_neg = noise_pred[batch_size * 2 :] + + e_pos = noise_pred_text - noise_pred_uncond + accum_grad = 0 + n_negative_prompts = neg_guidance_weights.shape[-1] + for i in range(n_negative_prompts): + e_i_neg = noise_pred_neg[i::n_negative_prompts] - noise_pred_uncond + accum_grad += neg_guidance_weights[:, i].view( + -1, 1, 1, 1 + ) * perpendicular_component(e_i_neg, e_pos) + + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + e_pos + accum_grad + ) + else: + neg_guidance_weights = None + text_embeddings = prompt_utils.get_text_embeddings( + elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting + ) + # predict the noise residual with unet, NO grad! + with torch.no_grad(): + # add noise + noise = torch.randn_like(latents) # TODO: use torch generator + y = latents + + zs = y + sigma * noise + scaled_zs = zs / torch.sqrt(1 + sigma**2) + + # pred noise + latent_model_input = torch.cat([scaled_zs] * 2, dim=0) + noise_pred = self.forward_unet( + latent_model_input, + torch.cat([t] * 2), + encoder_hidden_states=text_embeddings, + ) + + # perform guidance (high scale from paper!) + noise_pred_text, noise_pred_uncond = noise_pred.chunk(2) + noise_pred = noise_pred_text + self.cfg.guidance_scale * ( + noise_pred_text - noise_pred_uncond + ) + + Ds = zs - sigma * noise_pred + + if self.cfg.var_red: + grad = -(Ds - y) / sigma + else: + grad = -(Ds - zs) / sigma + + guidance_eval_utils = { + "use_perp_neg": prompt_utils.use_perp_neg, + "neg_guidance_weights": neg_guidance_weights, + "text_embeddings": text_embeddings, + "t_orig": t, + "latents_noisy": scaled_zs, + "noise_pred": noise_pred, + } + + return grad, guidance_eval_utils + + def __call__( + self, + rgb: Float[Tensor, "B H W C"], + prompt_utils: PromptProcessorOutput, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + rgb_as_latents=False, + guidance_eval=False, + **kwargs, + ): + batch_size = rgb.shape[0] + + rgb_BCHW = rgb.permute(0, 3, 1, 2) + latents: Float[Tensor, "B 4 64 64"] + rgb_BCHW_512 = F.interpolate( + rgb_BCHW, (512, 512), mode="bilinear", align_corners=False + ) + if rgb_as_latents: + latents = F.interpolate( + rgb_BCHW, (64, 64), mode="bilinear", align_corners=False + ) + else: + # encode image into latents with vae + latents = self.encode_images(rgb_BCHW_512) + + # timestep ~ U(0.02, 0.98) to avoid very high/low noise level + t = torch.randint( + self.min_step, + self.max_step + 1, + [batch_size], + dtype=torch.long, + device=self.device, + ) + + if self.cfg.use_sjc: + grad, guidance_eval_utils = self.compute_grad_sjc( + latents, t, prompt_utils, elevation, azimuth, camera_distances + ) + grad_img = torch.tensor([0.0], dtype=grad.dtype).to(grad.device) + else: + grad, grad_img, guidance_eval_utils = self.compute_grad_sds( + latents, + rgb_BCHW_512, + t, + prompt_utils, + elevation, + azimuth, + camera_distances, + ) + + grad = torch.nan_to_num(grad) + + # clip grad for stable training? + if self.grad_clip_val is not None: + grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val) + + # loss = SpecifyGradient.apply(latents, grad) + # SpecifyGradient is not straghtforward, use a reparameterization trick instead + target = (latents - grad).detach() + # d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad + loss_sds = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size + + guidance_out = { + "loss_sds": loss_sds, + "grad_norm": grad.norm(), + "min_step": self.min_step, + "max_step": self.max_step, + } + + if self.cfg.use_img_loss: + grad_img = torch.nan_to_num(grad_img) + if self.grad_clip_val is not None: + grad_img = grad_img.clamp(-self.grad_clip_val, self.grad_clip_val) + target_img = (rgb_BCHW_512 - grad_img).detach() + loss_sds_img = ( + 0.5 * F.mse_loss(rgb_BCHW_512, target_img, reduction="sum") / batch_size + ) + guidance_out["loss_sds_img"] = loss_sds_img + + if guidance_eval: + guidance_eval_out = self.guidance_eval(**guidance_eval_utils) + texts = [] + for n, e, a, c in zip( + guidance_eval_out["noise_levels"], elevation, azimuth, camera_distances + ): + texts.append( + f"n{n:.02f}\ne{e.item():.01f}\na{a.item():.01f}\nc{c.item():.02f}" + ) + guidance_eval_out.update({"texts": texts}) + guidance_out.update({"eval": guidance_eval_out}) + + return guidance_out + + @torch.cuda.amp.autocast(enabled=False) + @torch.no_grad() + def get_noise_pred( + self, + latents_noisy, + t, + text_embeddings, + use_perp_neg=False, + neg_guidance_weights=None, + ): + batch_size = latents_noisy.shape[0] + + if use_perp_neg: + # pred noise + latent_model_input = torch.cat([latents_noisy] * 4, dim=0) + noise_pred = self.forward_unet( + latent_model_input, + torch.cat([t.reshape(1)] * 4).to(self.device), + encoder_hidden_states=text_embeddings, + ) # (4B, 3, 64, 64) + + noise_pred_text = noise_pred[:batch_size] + noise_pred_uncond = noise_pred[batch_size : batch_size * 2] + noise_pred_neg = noise_pred[batch_size * 2 :] + + e_pos = noise_pred_text - noise_pred_uncond + accum_grad = 0 + n_negative_prompts = neg_guidance_weights.shape[-1] + for i in range(n_negative_prompts): + e_i_neg = noise_pred_neg[i::n_negative_prompts] - noise_pred_uncond + accum_grad += neg_guidance_weights[:, i].view( + -1, 1, 1, 1 + ) * perpendicular_component(e_i_neg, e_pos) + + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + e_pos + accum_grad + ) + else: + # pred noise + latent_model_input = torch.cat([latents_noisy] * 2, dim=0) + noise_pred = self.forward_unet( + latent_model_input, + torch.cat([t.reshape(1)] * 2).to(self.device), + encoder_hidden_states=text_embeddings, + ) + # perform guidance (high scale from paper!) + noise_pred_text, noise_pred_uncond = noise_pred.chunk(2) + noise_pred = noise_pred_text + self.cfg.guidance_scale * ( + noise_pred_text - noise_pred_uncond + ) + + return noise_pred + + @torch.cuda.amp.autocast(enabled=False) + @torch.no_grad() + def guidance_eval( + self, + t_orig, + text_embeddings, + latents_noisy, + noise_pred, + use_perp_neg=False, + neg_guidance_weights=None, + ): + # use only 50 timesteps, and find nearest of those to t + self.scheduler.set_timesteps(50) + self.scheduler.timesteps_gpu = self.scheduler.timesteps.to(self.device) + bs = ( + min(self.cfg.max_items_eval, latents_noisy.shape[0]) + if self.cfg.max_items_eval > 0 + else latents_noisy.shape[0] + ) # batch size + large_enough_idxs = self.scheduler.timesteps_gpu.expand([bs, -1]) > t_orig[ + :bs + ].unsqueeze( + -1 + ) # sized [bs,50] > [bs,1] + idxs = torch.min(large_enough_idxs, dim=1)[1] + t = self.scheduler.timesteps_gpu[idxs] + + fracs = list((t / self.scheduler.config.num_train_timesteps).cpu().numpy()) + imgs_noisy = self.decode_latents(latents_noisy[:bs]).permute(0, 2, 3, 1) + + # get prev latent + latents_1step = [] + pred_1orig = [] + for b in range(bs): + step_output = self.scheduler.step( + noise_pred[b : b + 1], t[b], latents_noisy[b : b + 1], eta=1 + ) + latents_1step.append(step_output["prev_sample"]) + pred_1orig.append(step_output["pred_original_sample"]) + latents_1step = torch.cat(latents_1step) + pred_1orig = torch.cat(pred_1orig) + imgs_1step = self.decode_latents(latents_1step).permute(0, 2, 3, 1) + imgs_1orig = self.decode_latents(pred_1orig).permute(0, 2, 3, 1) + + latents_final = [] + for b, i in enumerate(idxs): + latents = latents_1step[b : b + 1] + text_emb = ( + text_embeddings[ + [b, b + len(idxs), b + 2 * len(idxs), b + 3 * len(idxs)], ... + ] + if use_perp_neg + else text_embeddings[[b, b + len(idxs)], ...] + ) + neg_guid = neg_guidance_weights[b : b + 1] if use_perp_neg else None + for t in tqdm(self.scheduler.timesteps[i + 1 :], leave=False): + # pred noise + noise_pred = self.get_noise_pred( + latents, t, text_emb, use_perp_neg, neg_guid + ) + # get prev latent + latents = self.scheduler.step(noise_pred, t, latents, eta=1)[ + "prev_sample" + ] + latents_final.append(latents) + + latents_final = torch.cat(latents_final) + imgs_final = self.decode_latents(latents_final).permute(0, 2, 3, 1) + + return { + "bs": bs, + "noise_levels": fracs, + "imgs_noisy": imgs_noisy, + "imgs_1step": imgs_1step, + "imgs_1orig": imgs_1orig, + "imgs_final": imgs_final, + } + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + # clip grad for stable training as demonstrated in + # Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation + # http://arxiv.org/abs/2303.15413 + if self.cfg.grad_clip is not None: + self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step) + + if self.cfg.sqrt_anneal: + percentage = ( + float(global_step) / self.cfg.trainer_max_steps + ) ** 0.5 # progress percentage + if type(self.cfg.max_step_percent) not in [float, int]: + max_step_percent = self.cfg.max_step_percent[1] + else: + max_step_percent = self.cfg.max_step_percent + curr_percent = ( + max_step_percent - C(self.cfg.min_step_percent, epoch, global_step) + ) * (1 - percentage) + C(self.cfg.min_step_percent, epoch, global_step) + self.set_min_max_steps( + min_step_percent=curr_percent, + max_step_percent=curr_percent, + ) + else: + self.set_min_max_steps( + min_step_percent=C(self.cfg.min_step_percent, epoch, global_step), + max_step_percent=C(self.cfg.max_step_percent, epoch, global_step), + ) diff --git a/threestudio/models/guidance/stable_diffusion_unified_guidance.py b/threestudio/models/guidance/stable_diffusion_unified_guidance.py new file mode 100644 index 0000000..5774b1d --- /dev/null +++ b/threestudio/models/guidance/stable_diffusion_unified_guidance.py @@ -0,0 +1,779 @@ +import random +from contextlib import contextmanager +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F +from diffusers import ( + AutoencoderKL, + ControlNetModel, + DDPMScheduler, + DPMSolverSinglestepScheduler, + StableDiffusionPipeline, + UNet2DConditionModel, +) +from diffusers.loaders import AttnProcsLayers +from diffusers.models.attention_processor import LoRAAttnProcessor +from diffusers.models.embeddings import TimestepEmbedding +from diffusers.utils.import_utils import is_xformers_available +from tqdm import tqdm + +import threestudio +from threestudio.models.networks import ToDTypeWrapper +from threestudio.models.prompt_processors.base import PromptProcessorOutput +from threestudio.utils.base import BaseModule +from threestudio.utils.misc import C, cleanup, enable_gradient, parse_version +from threestudio.utils.ops import perpendicular_component +from threestudio.utils.typing import * + + +@threestudio.register("stable-diffusion-unified-guidance") +class StableDiffusionUnifiedGuidance(BaseModule): + @dataclass + class Config(BaseModule.Config): + # guidance type, in ["sds", "vsd"] + guidance_type: str = "sds" + + pretrained_model_name_or_path: str = "runwayml/stable-diffusion-v1-5" + guidance_scale: float = 100.0 + weighting_strategy: str = "dreamfusion" + view_dependent_prompting: bool = True + + min_step_percent: Any = 0.02 + max_step_percent: Any = 0.98 + grad_clip: Optional[Any] = None + + return_rgb_1step_orig: bool = False + return_rgb_multistep_orig: bool = False + n_rgb_multistep_orig_steps: int = 4 + + # TODO + # controlnet + controlnet_model_name_or_path: Optional[str] = None + preprocessor: Optional[str] = None + control_scale: float = 1.0 + + # TODO + # lora + lora_model_name_or_path: Optional[str] = None + + # efficiency-related configurations + half_precision_weights: bool = True + enable_memory_efficient_attention: bool = False + enable_sequential_cpu_offload: bool = False + enable_attention_slicing: bool = False + enable_channels_last_format: bool = False + token_merging: bool = False + token_merging_params: Optional[dict] = field(default_factory=dict) + + # VSD configurations, only used when guidance_type is "vsd" + vsd_phi_model_name_or_path: Optional[str] = None + vsd_guidance_scale_phi: float = 1.0 + vsd_use_lora: bool = True + vsd_lora_cfg_training: bool = False + vsd_lora_n_timestamp_samples: int = 1 + vsd_use_camera_condition: bool = True + # camera condition type, in ["extrinsics", "mvp", "spherical"] + vsd_camera_condition_type: Optional[str] = "extrinsics" + + # HiFA configurations: https://hifa-team.github.io/HiFA-site/ + sqrt_anneal: bool = ( + False # requires setting min_step_percent=0.3 to work properly + ) + trainer_max_steps: int = 25000 + use_img_loss: bool = True # works with most cases + + cfg: Config + + def configure(self) -> None: + self.min_step: Optional[int] = None + self.max_step: Optional[int] = None + self.grad_clip_val: Optional[float] = None + + @dataclass + class NonTrainableModules: + pipe: StableDiffusionPipeline + pipe_phi: Optional[StableDiffusionPipeline] = None + controlnet: Optional[ControlNetModel] = None + + self.weights_dtype = ( + torch.float16 if self.cfg.half_precision_weights else torch.float32 + ) + + threestudio.info(f"Loading Stable Diffusion ...") + + pipe_kwargs = { + "tokenizer": None, + "safety_checker": None, + "feature_extractor": None, + "requires_safety_checker": False, + "torch_dtype": self.weights_dtype, + } + pipe = StableDiffusionPipeline.from_pretrained( + self.cfg.pretrained_model_name_or_path, + **pipe_kwargs, + ).to(self.device) + self.prepare_pipe(pipe) + self.configure_pipe_token_merging(pipe) + + # phi network for VSD + # introduce two trainable modules: + # - self.camera_embedding + # - self.lora_layers + pipe_phi = None + + # if the phi network shares the same unet with the pretrain network + # we need to pass additional cross attention kwargs to the unet + self.vsd_share_model = ( + self.cfg.guidance_type == "vsd" + and self.cfg.vsd_phi_model_name_or_path is None + ) + if self.cfg.guidance_type == "vsd": + if self.cfg.vsd_phi_model_name_or_path is None: + pipe_phi = pipe + else: + pipe_phi = StableDiffusionPipeline.from_pretrained( + self.cfg.vsd_phi_model_name_or_path, + **pipe_kwargs, + ).to(self.device) + self.prepare_pipe(pipe_phi) + self.configure_pipe_token_merging(pipe_phi) + + # set up camera embedding + if self.cfg.vsd_use_camera_condition: + if self.cfg.vsd_camera_condition_type in ["extrinsics", "mvp"]: + self.camera_embedding_dim = 16 + elif self.cfg.vsd_camera_condition_type == "spherical": + self.camera_embedding_dim = 4 + else: + raise ValueError("Invalid camera condition type!") + + # FIXME: hard-coded output dim + self.camera_embedding = ToDTypeWrapper( + TimestepEmbedding(self.camera_embedding_dim, 1280), + self.weights_dtype, + ).to(self.device) + pipe_phi.unet.class_embedding = self.camera_embedding + + if self.cfg.vsd_use_lora: + # set up LoRA layers + lora_attn_procs = {} + for name in pipe_phi.unet.attn_processors.keys(): + cross_attention_dim = ( + None + if name.endswith("attn1.processor") + else pipe_phi.unet.config.cross_attention_dim + ) + if name.startswith("mid_block"): + hidden_size = pipe_phi.unet.config.block_out_channels[-1] + elif name.startswith("up_blocks"): + block_id = int(name[len("up_blocks.")]) + hidden_size = list( + reversed(pipe_phi.unet.config.block_out_channels) + )[block_id] + elif name.startswith("down_blocks"): + block_id = int(name[len("down_blocks.")]) + hidden_size = pipe_phi.unet.config.block_out_channels[block_id] + + lora_attn_procs[name] = LoRAAttnProcessor( + hidden_size=hidden_size, cross_attention_dim=cross_attention_dim + ) + + pipe_phi.unet.set_attn_processor(lora_attn_procs) + + self.lora_layers = AttnProcsLayers(pipe_phi.unet.attn_processors).to( + self.device + ) + self.lora_layers._load_state_dict_pre_hooks.clear() + self.lora_layers._state_dict_hooks.clear() + + threestudio.info(f"Loaded Stable Diffusion!") + + # controlnet + controlnet = None + if self.cfg.controlnet_model_name_or_path is not None: + threestudio.info(f"Loading ControlNet ...") + + controlnet = ControlNetModel.from_pretrained( + self.cfg.controlnet_model_name_or_path, + torch_dtype=self.weights_dtype, + ).to(self.device) + controlnet.eval() + enable_gradient(controlnet, enabled=False) + + threestudio.info(f"Loaded ControlNet!") + + self.scheduler = DDPMScheduler.from_config(pipe.scheduler.config) + self.num_train_timesteps = self.scheduler.config.num_train_timesteps + + # q(z_t|x) = N(alpha_t x, sigma_t^2 I) + # in DDPM, alpha_t = sqrt(alphas_cumprod_t), sigma_t^2 = 1 - alphas_cumprod_t + self.alphas_cumprod: Float[Tensor, "T"] = self.scheduler.alphas_cumprod.to( + self.device + ) + self.alphas: Float[Tensor, "T"] = self.alphas_cumprod**0.5 + self.sigmas: Float[Tensor, "T"] = (1 - self.alphas_cumprod) ** 0.5 + # log SNR + self.lambdas: Float[Tensor, "T"] = self.sigmas / self.alphas + + self._non_trainable_modules = NonTrainableModules( + pipe=pipe, + pipe_phi=pipe_phi, + controlnet=controlnet, + ) + + @property + def pipe(self) -> StableDiffusionPipeline: + return self._non_trainable_modules.pipe + + @property + def pipe_phi(self) -> StableDiffusionPipeline: + if self._non_trainable_modules.pipe_phi is None: + raise RuntimeError("phi model is not available.") + return self._non_trainable_modules.pipe_phi + + @property + def controlnet(self) -> ControlNetModel: + if self._non_trainable_modules.controlnet is None: + raise RuntimeError("ControlNet model is not available.") + return self._non_trainable_modules.controlnet + + def prepare_pipe(self, pipe: StableDiffusionPipeline): + if self.cfg.enable_memory_efficient_attention: + if parse_version(torch.__version__) >= parse_version("2"): + threestudio.info( + "PyTorch2.0 uses memory efficient attention by default." + ) + elif not is_xformers_available(): + threestudio.warn( + "xformers is not available, memory efficient attention is not enabled." + ) + else: + pipe.enable_xformers_memory_efficient_attention() + + if self.cfg.enable_sequential_cpu_offload: + pipe.enable_sequential_cpu_offload() + + if self.cfg.enable_attention_slicing: + pipe.enable_attention_slicing(1) + + if self.cfg.enable_channels_last_format: + pipe.unet.to(memory_format=torch.channels_last) + + # FIXME: pipe.__call__ requires text_encoder.dtype + # pipe.text_encoder.to("meta") + cleanup() + + pipe.vae.eval() + pipe.unet.eval() + + enable_gradient(pipe.vae, enabled=False) + enable_gradient(pipe.unet, enabled=False) + + # disable progress bar + pipe.set_progress_bar_config(disable=True) + + def configure_pipe_token_merging(self, pipe: StableDiffusionPipeline): + if self.cfg.token_merging: + import tomesd + + tomesd.apply_patch(pipe.unet, **self.cfg.token_merging_params) + + @torch.cuda.amp.autocast(enabled=False) + def forward_unet( + self, + unet: UNet2DConditionModel, + latents: Float[Tensor, "..."], + t: Int[Tensor, "..."], + encoder_hidden_states: Float[Tensor, "..."], + class_labels: Optional[Float[Tensor, "..."]] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + down_block_additional_residuals: Optional[Float[Tensor, "..."]] = None, + mid_block_additional_residual: Optional[Float[Tensor, "..."]] = None, + velocity_to_epsilon: bool = False, + ) -> Float[Tensor, "..."]: + input_dtype = latents.dtype + pred = unet( + latents.to(unet.dtype), + t.to(unet.dtype), + encoder_hidden_states=encoder_hidden_states.to(unet.dtype), + class_labels=class_labels, + cross_attention_kwargs=cross_attention_kwargs, + down_block_additional_residuals=down_block_additional_residuals, + mid_block_additional_residual=mid_block_additional_residual, + ).sample + if velocity_to_epsilon: + pred = latents * self.sigmas[t].view(-1, 1, 1, 1) + pred * self.alphas[ + t + ].view(-1, 1, 1, 1) + return pred.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def vae_encode( + self, vae: AutoencoderKL, imgs: Float[Tensor, "B 3 H W"], mode=False + ) -> Float[Tensor, "B 4 Hl Wl"]: + # expect input in [-1, 1] + input_dtype = imgs.dtype + posterior = vae.encode(imgs.to(vae.dtype)).latent_dist + if mode: + latents = posterior.mode() + else: + latents = posterior.sample() + latents = latents * vae.config.scaling_factor + return latents.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def vae_decode( + self, vae: AutoencoderKL, latents: Float[Tensor, "B 4 Hl Wl"] + ) -> Float[Tensor, "B 3 H W"]: + # output in [0, 1] + input_dtype = latents.dtype + latents = 1 / vae.config.scaling_factor * latents + image = vae.decode(latents.to(vae.dtype)).sample + image = (image * 0.5 + 0.5).clamp(0, 1) + return image.to(input_dtype) + + @contextmanager + def disable_unet_class_embedding(self, unet: UNet2DConditionModel): + class_embedding = unet.class_embedding + try: + unet.class_embedding = None + yield unet + finally: + unet.class_embedding = class_embedding + + @contextmanager + def set_scheduler( + self, pipe: StableDiffusionPipeline, scheduler_class: Any, **kwargs + ): + scheduler_orig = pipe.scheduler + pipe.scheduler = scheduler_class.from_config(scheduler_orig.config, **kwargs) + yield pipe + pipe.scheduler = scheduler_orig + + def get_eps_pretrain( + self, + latents_noisy: Float[Tensor, "B 4 Hl Wl"], + t: Int[Tensor, "B"], + prompt_utils: PromptProcessorOutput, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + ) -> Float[Tensor, "B 4 Hl Wl"]: + batch_size = latents_noisy.shape[0] + + if prompt_utils.use_perp_neg: + ( + text_embeddings, + neg_guidance_weights, + ) = prompt_utils.get_text_embeddings_perp_neg( + elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting + ) + with torch.no_grad(): + with self.disable_unet_class_embedding(self.pipe.unet) as unet: + noise_pred = self.forward_unet( + unet, + torch.cat([latents_noisy] * 4, dim=0), + torch.cat([t] * 4, dim=0), + encoder_hidden_states=text_embeddings, + cross_attention_kwargs={"scale": 0.0} + if self.vsd_share_model + else None, + velocity_to_epsilon=self.pipe.scheduler.config.prediction_type + == "v_prediction", + ) # (4B, 3, Hl, Wl) + + noise_pred_text = noise_pred[:batch_size] + noise_pred_uncond = noise_pred[batch_size : batch_size * 2] + noise_pred_neg = noise_pred[batch_size * 2 :] + + e_pos = noise_pred_text - noise_pred_uncond + accum_grad = 0 + n_negative_prompts = neg_guidance_weights.shape[-1] + for i in range(n_negative_prompts): + e_i_neg = noise_pred_neg[i::n_negative_prompts] - noise_pred_uncond + accum_grad += neg_guidance_weights[:, i].view( + -1, 1, 1, 1 + ) * perpendicular_component(e_i_neg, e_pos) + + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + e_pos + accum_grad + ) + else: + text_embeddings = prompt_utils.get_text_embeddings( + elevation, azimuth, camera_distances, self.cfg.view_dependent_prompting + ) + with torch.no_grad(): + with self.disable_unet_class_embedding(self.pipe.unet) as unet: + noise_pred = self.forward_unet( + unet, + torch.cat([latents_noisy] * 2, dim=0), + torch.cat([t] * 2, dim=0), + encoder_hidden_states=text_embeddings, + cross_attention_kwargs={"scale": 0.0} + if self.vsd_share_model + else None, + velocity_to_epsilon=self.pipe.scheduler.config.prediction_type + == "v_prediction", + ) + + noise_pred_text, noise_pred_uncond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + noise_pred_text - noise_pred_uncond + ) + + return noise_pred + + def get_eps_phi( + self, + latents_noisy: Float[Tensor, "B 4 Hl Wl"], + t: Int[Tensor, "B"], + prompt_utils: PromptProcessorOutput, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + camera_condition: Float[Tensor, "B ..."], + ) -> Float[Tensor, "B 4 Hl Wl"]: + batch_size = latents_noisy.shape[0] + + # not using view-dependent prompting in LoRA + text_embeddings, _ = prompt_utils.get_text_embeddings( + elevation, azimuth, camera_distances, view_dependent_prompting=False + ).chunk(2) + with torch.no_grad(): + noise_pred = self.forward_unet( + self.pipe_phi.unet, + torch.cat([latents_noisy] * 2, dim=0), + torch.cat([t] * 2, dim=0), + encoder_hidden_states=torch.cat([text_embeddings] * 2, dim=0), + class_labels=torch.cat( + [ + camera_condition.view(batch_size, -1), + torch.zeros_like(camera_condition.view(batch_size, -1)), + ], + dim=0, + ) + if self.cfg.vsd_use_camera_condition + else None, + cross_attention_kwargs={"scale": 1.0}, + velocity_to_epsilon=self.pipe_phi.scheduler.config.prediction_type + == "v_prediction", + ) + + noise_pred_camera, noise_pred_uncond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.cfg.vsd_guidance_scale_phi * ( + noise_pred_camera - noise_pred_uncond + ) + + return noise_pred + + def train_phi( + self, + latents: Float[Tensor, "B 4 Hl Wl"], + prompt_utils: PromptProcessorOutput, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + camera_condition: Float[Tensor, "B ..."], + ): + B = latents.shape[0] + latents = latents.detach().repeat( + self.cfg.vsd_lora_n_timestamp_samples, 1, 1, 1 + ) + + num_train_timesteps = self.pipe_phi.scheduler.config.num_train_timesteps + t = torch.randint( + int(num_train_timesteps * 0.0), + int(num_train_timesteps * 1.0), + [B * self.cfg.vsd_lora_n_timestamp_samples], + dtype=torch.long, + device=self.device, + ) + + noise = torch.randn_like(latents) + latents_noisy = self.pipe_phi.scheduler.add_noise(latents, noise, t) + if self.pipe_phi.scheduler.config.prediction_type == "epsilon": + target = noise + elif self.pipe_phi.scheduler.prediction_type == "v_prediction": + target = self.pipe_phi.scheduler.get_velocity(latents, noise, t) + else: + raise ValueError( + f"Unknown prediction type {self.pipe_phi.scheduler.prediction_type}" + ) + + # not using view-dependent prompting in LoRA + text_embeddings, _ = prompt_utils.get_text_embeddings( + elevation, azimuth, camera_distances, view_dependent_prompting=False + ).chunk(2) + + if ( + self.cfg.vsd_use_camera_condition + and self.cfg.vsd_lora_cfg_training + and random.random() < 0.1 + ): + camera_condition = torch.zeros_like(camera_condition) + + noise_pred = self.forward_unet( + self.pipe_phi.unet, + latents_noisy, + t, + encoder_hidden_states=text_embeddings.repeat( + self.cfg.vsd_lora_n_timestamp_samples, 1, 1 + ), + class_labels=camera_condition.view(B, -1).repeat( + self.cfg.vsd_lora_n_timestamp_samples, 1 + ) + if self.cfg.vsd_use_camera_condition + else None, + cross_attention_kwargs={"scale": 1.0}, + ) + return F.mse_loss(noise_pred.float(), target.float(), reduction="mean") + + def forward( + self, + rgb: Float[Tensor, "B H W C"], + prompt_utils: PromptProcessorOutput, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + mvp_mtx: Float[Tensor, "B 4 4"], + c2w: Float[Tensor, "B 4 4"], + rgb_as_latents=False, + **kwargs, + ): + batch_size = rgb.shape[0] + + rgb_BCHW = rgb.permute(0, 3, 1, 2) + latents: Float[Tensor, "B 4 Hl Wl"] + rgb_BCHW_512 = F.interpolate( + rgb_BCHW, (512, 512), mode="bilinear", align_corners=False + ) + if rgb_as_latents: + # treat input rgb as latents + # input rgb should be in range [-1, 1] + latents = F.interpolate( + rgb_BCHW, (64, 64), mode="bilinear", align_corners=False + ) + else: + # treat input rgb as rgb + # input rgb should be in range [0, 1] + # encode image into latents with vae + latents = self.vae_encode(self.pipe.vae, rgb_BCHW_512 * 2.0 - 1.0) + + # sample timestep + # use the same timestep for each batch + assert self.min_step is not None and self.max_step is not None + t = torch.randint( + self.min_step, + self.max_step + 1, + [1], + dtype=torch.long, + device=self.device, + ).repeat(batch_size) + + # sample noise + noise = torch.randn_like(latents) + latents_noisy = self.scheduler.add_noise(latents, noise, t) + + eps_pretrain = self.get_eps_pretrain( + latents_noisy, t, prompt_utils, elevation, azimuth, camera_distances + ) + + latents_1step_orig = ( + 1 + / self.alphas[t].view(-1, 1, 1, 1) + * (latents_noisy - self.sigmas[t].view(-1, 1, 1, 1) * eps_pretrain) + ).detach() + + if self.cfg.guidance_type == "sds": + eps_phi = noise + elif self.cfg.guidance_type == "vsd": + if self.cfg.vsd_camera_condition_type == "extrinsics": + camera_condition = c2w + elif self.cfg.vsd_camera_condition_type == "mvp": + camera_condition = mvp_mtx + elif self.cfg.vsd_camera_condition_type == "spherical": + camera_condition = torch.stack( + [ + torch.deg2rad(elevation), + torch.sin(torch.deg2rad(azimuth)), + torch.cos(torch.deg2rad(azimuth)), + camera_distances, + ], + dim=-1, + ) + else: + raise ValueError( + f"Unknown camera_condition_type {self.cfg.vsd_camera_condition_type}" + ) + eps_phi = self.get_eps_phi( + latents_noisy, + t, + prompt_utils, + elevation, + azimuth, + camera_distances, + camera_condition, + ) + + loss_train_phi = self.train_phi( + latents, + prompt_utils, + elevation, + azimuth, + camera_distances, + camera_condition, + ) + + if self.cfg.weighting_strategy == "dreamfusion": + w = (1.0 - self.alphas[t]).view(-1, 1, 1, 1) + elif self.cfg.weighting_strategy == "uniform": + w = 1.0 + elif self.cfg.weighting_strategy == "fantasia3d": + w = (self.alphas[t] ** 0.5 * (1 - self.alphas[t])).view(-1, 1, 1, 1) + else: + raise ValueError( + f"Unknown weighting strategy: {self.cfg.weighting_strategy}" + ) + + grad = w * (eps_pretrain - eps_phi) + + # compute decoded image if needed for visualization/img loss + if self.cfg.return_rgb_1step_orig or self.cfg.use_img_loss: + with torch.no_grad(): + image_denoised_pretrain = self.vae_decode( + self.pipe.vae, latents_1step_orig + ) + rgb_1step_orig = image_denoised_pretrain.permute(0, 2, 3, 1) + + if self.grad_clip_val is not None: + grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val) + + # reparameterization trick: + # d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad + target = (latents - grad).detach() + loss_sd = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size + + guidance_out = { + "loss_sd": loss_sd, + "grad_norm": grad.norm(), + "timesteps": t, + "min_step": self.min_step, + "max_step": self.max_step, + "latents": latents, + "latents_1step_orig": latents_1step_orig, + "rgb": rgb_BCHW.permute(0, 2, 3, 1), + "weights": w, + "lambdas": self.lambdas[t], + } + + # image-space loss proposed in HiFA: https://hifa-team.github.io/HiFA-site + if self.cfg.use_img_loss: + if self.cfg.guidance_type == "vsd": + latents_denoised_est = ( + latents_noisy - self.sigmas[t] * eps_phi + ) / self.alphas[t].view(-1, 1, 1, 1) + image_denoised_est = self.vae_decode( + self.pipe.vae, latents_denoised_est + ) + else: + image_denoised_est = rgb_BCHW_512 + grad_img = ( + w + * (image_denoised_est - image_denoised_pretrain) + * self.alphas[t].view(-1, 1, 1, 1) + / self.sigmas[t].view(-1, 1, 1, 1) + ) + if self.grad_clip_val is not None: + grad_img = grad_img.clamp(-self.grad_clip_val, self.grad_clip_val) + target_img = (rgb_BCHW_512 - grad_img).detach() + loss_sd_img = ( + 0.5 * F.mse_loss(rgb_BCHW_512, target_img, reduction="sum") / batch_size + ) + guidance_out.update({"loss_sd_img": loss_sd_img}) + + if self.cfg.return_rgb_1step_orig: + guidance_out.update({"rgb_1step_orig": rgb_1step_orig}) + + if self.cfg.return_rgb_multistep_orig: + with self.set_scheduler( + self.pipe, + DPMSolverSinglestepScheduler, + solver_order=1, + num_train_timesteps=int(t[0]), + ) as pipe: + text_embeddings = prompt_utils.get_text_embeddings( + elevation, + azimuth, + camera_distances, + self.cfg.view_dependent_prompting, + ) + text_embeddings_cond, text_embeddings_uncond = text_embeddings.chunk(2) + with torch.cuda.amp.autocast(enabled=False): + latents_multistep_orig = pipe( + num_inference_steps=self.cfg.n_rgb_multistep_orig_steps, + guidance_scale=self.cfg.guidance_scale, + eta=1.0, + latents=latents_noisy.to(pipe.unet.dtype), + prompt_embeds=text_embeddings_cond.to(pipe.unet.dtype), + negative_prompt_embeds=text_embeddings_uncond.to( + pipe.unet.dtype + ), + cross_attention_kwargs={"scale": 0.0} + if self.vsd_share_model + else None, + output_type="latent", + ).images.to(latents.dtype) + with torch.no_grad(): + rgb_multistep_orig = self.vae_decode( + self.pipe.vae, latents_multistep_orig + ) + guidance_out.update( + { + "latents_multistep_orig": latents_multistep_orig, + "rgb_multistep_orig": rgb_multistep_orig.permute(0, 2, 3, 1), + } + ) + + if self.cfg.guidance_type == "vsd": + guidance_out.update( + { + "loss_train_phi": loss_train_phi, + } + ) + + return guidance_out + + @torch.cuda.amp.autocast(enabled=False) + def set_min_max_steps(self, min_step_percent=0.02, max_step_percent=0.98): + self.min_step = int(self.num_train_timesteps * min_step_percent) + self.max_step = int(self.num_train_timesteps * max_step_percent) + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + # clip grad for stable training as demonstrated in + # Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation + # http://arxiv.org/abs/2303.15413 + if self.cfg.grad_clip is not None: + self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step) + + if self.cfg.sqrt_anneal: + percentage = ( + float(global_step) / self.cfg.trainer_max_steps + ) ** 0.5 # progress percentage + if type(self.cfg.max_step_percent) not in [float, int]: + max_step_percent = self.cfg.max_step_percent[1] + else: + max_step_percent = self.cfg.max_step_percent + curr_percent = ( + max_step_percent - C(self.cfg.min_step_percent, epoch, global_step) + ) * (1 - percentage) + C(self.cfg.min_step_percent, epoch, global_step) + self.set_min_max_steps( + min_step_percent=curr_percent, + max_step_percent=curr_percent, + ) + else: + self.set_min_max_steps( + min_step_percent=C(self.cfg.min_step_percent, epoch, global_step), + max_step_percent=C(self.cfg.max_step_percent, epoch, global_step), + ) diff --git a/threestudio/models/guidance/stable_diffusion_vsd_guidance.py b/threestudio/models/guidance/stable_diffusion_vsd_guidance.py new file mode 100644 index 0000000..8a380ba --- /dev/null +++ b/threestudio/models/guidance/stable_diffusion_vsd_guidance.py @@ -0,0 +1,723 @@ +import random +from contextlib import contextmanager +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F +from diffusers import ( + DDPMScheduler, + DPMSolverMultistepScheduler, + StableDiffusionPipeline, + UNet2DConditionModel, +) +from diffusers.loaders import AttnProcsLayers +from diffusers.models.attention_processor import LoRAAttnProcessor +from diffusers.models.embeddings import TimestepEmbedding +from diffusers.utils.import_utils import is_xformers_available + +import threestudio +from threestudio.models.prompt_processors.base import PromptProcessorOutput +from threestudio.utils.base import BaseModule +from threestudio.utils.misc import C, cleanup, parse_version +from threestudio.utils.typing import * + + +class ToWeightsDType(nn.Module): + def __init__(self, module: nn.Module, dtype: torch.dtype): + super().__init__() + self.module = module + self.dtype = dtype + + def forward(self, x: Float[Tensor, "..."]) -> Float[Tensor, "..."]: + return self.module(x).to(self.dtype) + + +@threestudio.register("stable-diffusion-vsd-guidance") +class StableDiffusionVSDGuidance(BaseModule): + @dataclass + class Config(BaseModule.Config): + pretrained_model_name_or_path: str = "stabilityai/stable-diffusion-2-1-base" + pretrained_model_name_or_path_lora: str = "stabilityai/stable-diffusion-2-1" + enable_memory_efficient_attention: bool = False + enable_sequential_cpu_offload: bool = False + enable_attention_slicing: bool = False + enable_channels_last_format: bool = False + guidance_scale: float = 7.5 + guidance_scale_lora: float = 1.0 + grad_clip: Optional[ + Any + ] = None # field(default_factory=lambda: [0, 2.0, 8.0, 1000]) + half_precision_weights: bool = True + lora_cfg_training: bool = True + lora_n_timestamp_samples: int = 1 + + min_step_percent: float = 0.02 + max_step_percent: float = 0.98 + sqrt_anneal: bool = False # sqrt anneal proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + trainer_max_steps: int = 25000 + use_img_loss: bool = False # image-space SDS proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + + view_dependent_prompting: bool = True + camera_condition_type: str = "extrinsics" + + cfg: Config + + def configure(self) -> None: + threestudio.info(f"Loading Stable Diffusion ...") + + self.weights_dtype = ( + torch.float16 if self.cfg.half_precision_weights else torch.float32 + ) + + pipe_kwargs = { + "tokenizer": None, + "safety_checker": None, + "feature_extractor": None, + "requires_safety_checker": False, + "torch_dtype": self.weights_dtype, + } + + pipe_lora_kwargs = { + "tokenizer": None, + "safety_checker": None, + "feature_extractor": None, + "requires_safety_checker": False, + "torch_dtype": self.weights_dtype, + } + + @dataclass + class SubModules: + pipe: StableDiffusionPipeline + pipe_lora: StableDiffusionPipeline + + pipe = StableDiffusionPipeline.from_pretrained( + self.cfg.pretrained_model_name_or_path, + **pipe_kwargs, + ).to(self.device) + if ( + self.cfg.pretrained_model_name_or_path + == self.cfg.pretrained_model_name_or_path_lora + ): + self.single_model = True + pipe_lora = pipe + else: + self.single_model = False + pipe_lora = StableDiffusionPipeline.from_pretrained( + self.cfg.pretrained_model_name_or_path_lora, + **pipe_lora_kwargs, + ).to(self.device) + del pipe_lora.vae + cleanup() + pipe_lora.vae = pipe.vae + self.submodules = SubModules(pipe=pipe, pipe_lora=pipe_lora) + + if self.cfg.enable_memory_efficient_attention: + if parse_version(torch.__version__) >= parse_version("2"): + threestudio.info( + "PyTorch2.0 uses memory efficient attention by default." + ) + elif not is_xformers_available(): + threestudio.warn( + "xformers is not available, memory efficient attention is not enabled." + ) + else: + self.pipe.enable_xformers_memory_efficient_attention() + self.pipe_lora.enable_xformers_memory_efficient_attention() + + if self.cfg.enable_sequential_cpu_offload: + self.pipe.enable_sequential_cpu_offload() + self.pipe_lora.enable_sequential_cpu_offload() + + if self.cfg.enable_attention_slicing: + self.pipe.enable_attention_slicing(1) + self.pipe_lora.enable_attention_slicing(1) + + if self.cfg.enable_channels_last_format: + self.pipe.unet.to(memory_format=torch.channels_last) + self.pipe_lora.unet.to(memory_format=torch.channels_last) + + del self.pipe.text_encoder + if not self.single_model: + del self.pipe_lora.text_encoder + cleanup() + + for p in self.vae.parameters(): + p.requires_grad_(False) + for p in self.unet.parameters(): + p.requires_grad_(False) + for p in self.unet_lora.parameters(): + p.requires_grad_(False) + + # FIXME: hard-coded dims + self.camera_embedding = ToWeightsDType( + TimestepEmbedding(16, 1280), self.weights_dtype + ).to(self.device) + self.unet_lora.class_embedding = self.camera_embedding + + # set up LoRA layers + lora_attn_procs = {} + for name in self.unet_lora.attn_processors.keys(): + cross_attention_dim = ( + None + if name.endswith("attn1.processor") + else self.unet_lora.config.cross_attention_dim + ) + if name.startswith("mid_block"): + hidden_size = self.unet_lora.config.block_out_channels[-1] + elif name.startswith("up_blocks"): + block_id = int(name[len("up_blocks.")]) + hidden_size = list(reversed(self.unet_lora.config.block_out_channels))[ + block_id + ] + elif name.startswith("down_blocks"): + block_id = int(name[len("down_blocks.")]) + hidden_size = self.unet_lora.config.block_out_channels[block_id] + + lora_attn_procs[name] = LoRAAttnProcessor( + hidden_size=hidden_size, cross_attention_dim=cross_attention_dim + ) + + self.unet_lora.set_attn_processor(lora_attn_procs) + + self.lora_layers = AttnProcsLayers(self.unet_lora.attn_processors).to( + self.device + ) + self.lora_layers._load_state_dict_pre_hooks.clear() + self.lora_layers._state_dict_hooks.clear() + + self.scheduler = DDPMScheduler.from_pretrained( + self.cfg.pretrained_model_name_or_path, + subfolder="scheduler", + torch_dtype=self.weights_dtype, + ) + + self.scheduler_lora = DDPMScheduler.from_pretrained( + self.cfg.pretrained_model_name_or_path_lora, + subfolder="scheduler", + torch_dtype=self.weights_dtype, + ) + + self.scheduler_sample = DPMSolverMultistepScheduler.from_config( + self.pipe.scheduler.config + ) + self.scheduler_lora_sample = DPMSolverMultistepScheduler.from_config( + self.pipe_lora.scheduler.config + ) + + self.pipe.scheduler = self.scheduler + self.pipe_lora.scheduler = self.scheduler_lora + + self.num_train_timesteps = self.scheduler.config.num_train_timesteps + self.set_min_max_steps() # set to default value + + self.alphas: Float[Tensor, "..."] = self.scheduler.alphas_cumprod.to( + self.device + ) + + self.grad_clip_val: Optional[float] = None + + threestudio.info(f"Loaded Stable Diffusion!") + + @torch.cuda.amp.autocast(enabled=False) + def set_min_max_steps(self, min_step_percent=0.02, max_step_percent=0.98): + self.min_step = int(self.num_train_timesteps * min_step_percent) + self.max_step = int(self.num_train_timesteps * max_step_percent) + + @property + def pipe(self): + return self.submodules.pipe + + @property + def pipe_lora(self): + return self.submodules.pipe_lora + + @property + def unet(self): + return self.submodules.pipe.unet + + @property + def unet_lora(self): + return self.submodules.pipe_lora.unet + + @property + def vae(self): + return self.submodules.pipe.vae + + @property + def vae_lora(self): + return self.submodules.pipe_lora.vae + + @torch.no_grad() + @torch.cuda.amp.autocast(enabled=False) + def _sample( + self, + pipe: StableDiffusionPipeline, + sample_scheduler: DPMSolverMultistepScheduler, + text_embeddings: Float[Tensor, "BB N Nf"], + num_inference_steps: int, + guidance_scale: float, + num_images_per_prompt: int = 1, + height: Optional[int] = None, + width: Optional[int] = None, + class_labels: Optional[Float[Tensor, "BB 16"]] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + ) -> Float[Tensor, "B H W 3"]: + vae_scale_factor = 2 ** (len(pipe.vae.config.block_out_channels) - 1) + height = height or pipe.unet.config.sample_size * vae_scale_factor + width = width or pipe.unet.config.sample_size * vae_scale_factor + batch_size = text_embeddings.shape[0] // 2 + device = self.device + + sample_scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = sample_scheduler.timesteps + num_channels_latents = pipe.unet.config.in_channels + + latents = pipe.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + self.weights_dtype, + device, + generator, + ) + + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) + latent_model_input = sample_scheduler.scale_model_input( + latent_model_input, t + ) + + # predict the noise residual + if class_labels is None: + with self.disable_unet_class_embedding(pipe.unet) as unet: + noise_pred = unet( + latent_model_input, + t, + encoder_hidden_states=text_embeddings.to(self.weights_dtype), + cross_attention_kwargs=cross_attention_kwargs, + ).sample + else: + noise_pred = pipe.unet( + latent_model_input, + t, + encoder_hidden_states=text_embeddings.to(self.weights_dtype), + class_labels=class_labels, + cross_attention_kwargs=cross_attention_kwargs, + ).sample + + noise_pred_text, noise_pred_uncond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * ( + noise_pred_text - noise_pred_uncond + ) + + # compute the previous noisy sample x_t -> x_t-1 + latents = sample_scheduler.step(noise_pred, t, latents).prev_sample + + latents = 1 / pipe.vae.config.scaling_factor * latents + images = pipe.vae.decode(latents).sample + images = (images / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 + images = images.permute(0, 2, 3, 1).float() + return images + + def sample( + self, + prompt_utils: PromptProcessorOutput, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + seed: int = 0, + **kwargs, + ) -> Float[Tensor, "N H W 3"]: + # view-dependent text embeddings + text_embeddings_vd = prompt_utils.get_text_embeddings( + elevation, + azimuth, + camera_distances, + view_dependent_prompting=self.cfg.view_dependent_prompting, + ) + cross_attention_kwargs = {"scale": 0.0} if self.single_model else None + generator = torch.Generator(device=self.device).manual_seed(seed) + + return self._sample( + pipe=self.pipe, + sample_scheduler=self.scheduler_sample, + text_embeddings=text_embeddings_vd, + num_inference_steps=25, + guidance_scale=self.cfg.guidance_scale, + cross_attention_kwargs=cross_attention_kwargs, + generator=generator, + ) + + def sample_lora( + self, + prompt_utils: PromptProcessorOutput, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + mvp_mtx: Float[Tensor, "B 4 4"], + c2w: Float[Tensor, "B 4 4"], + seed: int = 0, + **kwargs, + ) -> Float[Tensor, "N H W 3"]: + # input text embeddings, view-independent + text_embeddings = prompt_utils.get_text_embeddings( + elevation, azimuth, camera_distances, view_dependent_prompting=False + ) + + if self.cfg.camera_condition_type == "extrinsics": + camera_condition = c2w + elif self.cfg.camera_condition_type == "mvp": + camera_condition = mvp_mtx + else: + raise ValueError( + f"Unknown camera_condition_type {self.cfg.camera_condition_type}" + ) + + B = elevation.shape[0] + camera_condition_cfg = torch.cat( + [ + camera_condition.view(B, -1), + torch.zeros_like(camera_condition.view(B, -1)), + ], + dim=0, + ) + + generator = torch.Generator(device=self.device).manual_seed(seed) + return self._sample( + sample_scheduler=self.scheduler_lora_sample, + pipe=self.pipe_lora, + text_embeddings=text_embeddings, + num_inference_steps=25, + guidance_scale=self.cfg.guidance_scale_lora, + class_labels=camera_condition_cfg, + cross_attention_kwargs={"scale": 1.0}, + generator=generator, + ) + + @torch.cuda.amp.autocast(enabled=False) + def forward_unet( + self, + unet: UNet2DConditionModel, + latents: Float[Tensor, "..."], + t: Float[Tensor, "..."], + encoder_hidden_states: Float[Tensor, "..."], + class_labels: Optional[Float[Tensor, "B 16"]] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + ) -> Float[Tensor, "..."]: + input_dtype = latents.dtype + return unet( + latents.to(self.weights_dtype), + t.to(self.weights_dtype), + encoder_hidden_states=encoder_hidden_states.to(self.weights_dtype), + class_labels=class_labels, + cross_attention_kwargs=cross_attention_kwargs, + ).sample.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def encode_images( + self, imgs: Float[Tensor, "B 3 512 512"] + ) -> Float[Tensor, "B 4 64 64"]: + input_dtype = imgs.dtype + imgs = imgs * 2.0 - 1.0 + posterior = self.vae.encode(imgs.to(self.weights_dtype)).latent_dist + latents = posterior.sample() * self.vae.config.scaling_factor + return latents.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def decode_latents( + self, + latents: Float[Tensor, "B 4 H W"], + latent_height: int = 64, + latent_width: int = 64, + ) -> Float[Tensor, "B 3 512 512"]: + input_dtype = latents.dtype + latents = F.interpolate( + latents, (latent_height, latent_width), mode="bilinear", align_corners=False + ) + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents.to(self.weights_dtype)).sample + image = (image * 0.5 + 0.5).clamp(0, 1) + return image.to(input_dtype) + + @contextmanager + def disable_unet_class_embedding(self, unet: UNet2DConditionModel): + class_embedding = unet.class_embedding + try: + unet.class_embedding = None + yield unet + finally: + unet.class_embedding = class_embedding + + def compute_grad_vsd( + self, + latents: Float[Tensor, "B 4 64 64"], + text_embeddings_vd: Float[Tensor, "BB 77 768"], + text_embeddings: Float[Tensor, "BB 77 768"], + camera_condition: Float[Tensor, "B 4 4"], + ): + B = latents.shape[0] + + with torch.no_grad(): + # random timestamp + t = torch.randint( + self.min_step, + self.max_step + 1, + [B], + dtype=torch.long, + device=self.device, + ) + + # add noise + noise = torch.randn_like(latents) + latents_noisy = self.scheduler.add_noise(latents, noise, t) + # pred noise + latent_model_input = torch.cat([latents_noisy] * 2, dim=0) + with self.disable_unet_class_embedding(self.unet) as unet: + cross_attention_kwargs = {"scale": 0.0} if self.single_model else None + noise_pred_pretrain = self.forward_unet( + unet, + latent_model_input, + torch.cat([t] * 2), + encoder_hidden_states=text_embeddings_vd, + cross_attention_kwargs=cross_attention_kwargs, + ) + + # use view-independent text embeddings in LoRA + text_embeddings_cond, _ = text_embeddings.chunk(2) + noise_pred_est = self.forward_unet( + self.unet_lora, + latent_model_input, + torch.cat([t] * 2), + encoder_hidden_states=torch.cat([text_embeddings_cond] * 2), + class_labels=torch.cat( + [ + camera_condition.view(B, -1), + torch.zeros_like(camera_condition.view(B, -1)), + ], + dim=0, + ), + cross_attention_kwargs={"scale": 1.0}, + ) + + ( + noise_pred_pretrain_text, + noise_pred_pretrain_uncond, + ) = noise_pred_pretrain.chunk(2) + + # NOTE: guidance scale definition here is aligned with diffusers, but different from other guidance + noise_pred_pretrain = noise_pred_pretrain_uncond + self.cfg.guidance_scale * ( + noise_pred_pretrain_text - noise_pred_pretrain_uncond + ) + + # TODO: more general cases + assert self.scheduler.config.prediction_type == "epsilon" + if self.scheduler_lora.config.prediction_type == "v_prediction": + alphas_cumprod = self.scheduler_lora.alphas_cumprod.to( + device=latents_noisy.device, dtype=latents_noisy.dtype + ) + alpha_t = alphas_cumprod[t] ** 0.5 + sigma_t = (1 - alphas_cumprod[t]) ** 0.5 + + noise_pred_est = latent_model_input * torch.cat([sigma_t] * 2, dim=0).view( + -1, 1, 1, 1 + ) + noise_pred_est * torch.cat([alpha_t] * 2, dim=0).view(-1, 1, 1, 1) + + ( + noise_pred_est_camera, + noise_pred_est_uncond, + ) = noise_pred_est.chunk(2) + + # NOTE: guidance scale definition here is aligned with diffusers, but different from other guidance + noise_pred_est = noise_pred_est_uncond + self.cfg.guidance_scale_lora * ( + noise_pred_est_camera - noise_pred_est_uncond + ) + + w = (1 - self.alphas[t]).view(-1, 1, 1, 1) + + grad = w * (noise_pred_pretrain - noise_pred_est) + + alpha = (self.alphas[t] ** 0.5).view(-1, 1, 1, 1) + sigma = ((1 - self.alphas[t]) ** 0.5).view(-1, 1, 1, 1) + # image-space SDS proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + if self.cfg.use_img_loss: + latents_denoised_pretrain = ( + latents_noisy - sigma * noise_pred_pretrain + ) / alpha + latents_denoised_est = (latents_noisy - sigma * noise_pred_est) / alpha + image_denoised_pretrain = self.decode_latents(latents_denoised_pretrain) + image_denoised_est = self.decode_latents(latents_denoised_est) + grad_img = ( + w * (image_denoised_est - image_denoised_pretrain) * alpha / sigma + ) + else: + grad_img = None + return grad, grad_img + + def train_lora( + self, + latents: Float[Tensor, "B 4 64 64"], + text_embeddings: Float[Tensor, "BB 77 768"], + camera_condition: Float[Tensor, "B 4 4"], + ): + B = latents.shape[0] + latents = latents.detach().repeat(self.cfg.lora_n_timestamp_samples, 1, 1, 1) + + t = torch.randint( + int(self.num_train_timesteps * 0.0), + int(self.num_train_timesteps * 1.0), + [B * self.cfg.lora_n_timestamp_samples], + dtype=torch.long, + device=self.device, + ) + + noise = torch.randn_like(latents) + noisy_latents = self.scheduler_lora.add_noise(latents, noise, t) + if self.scheduler_lora.config.prediction_type == "epsilon": + target = noise + elif self.scheduler_lora.config.prediction_type == "v_prediction": + target = self.scheduler_lora.get_velocity(latents, noise, t) + else: + raise ValueError( + f"Unknown prediction type {self.scheduler_lora.config.prediction_type}" + ) + # use view-independent text embeddings in LoRA + text_embeddings_cond, _ = text_embeddings.chunk(2) + if self.cfg.lora_cfg_training and random.random() < 0.1: + camera_condition = torch.zeros_like(camera_condition) + noise_pred = self.forward_unet( + self.unet_lora, + noisy_latents, + t, + encoder_hidden_states=text_embeddings_cond.repeat( + self.cfg.lora_n_timestamp_samples, 1, 1 + ), + class_labels=camera_condition.view(B, -1).repeat( + self.cfg.lora_n_timestamp_samples, 1 + ), + cross_attention_kwargs={"scale": 1.0}, + ) + return F.mse_loss(noise_pred.float(), target.float(), reduction="mean") + + def get_latents( + self, rgb_BCHW: Float[Tensor, "B C H W"], rgb_as_latents=False + ) -> Float[Tensor, "B 4 64 64"]: + rgb_BCHW_512 = F.interpolate( + rgb_BCHW, (512, 512), mode="bilinear", align_corners=False + ) + if rgb_as_latents: + latents = F.interpolate( + rgb_BCHW, (64, 64), mode="bilinear", align_corners=False + ) + else: + # encode image into latents with vae + latents = self.encode_images(rgb_BCHW_512) + return latents, rgb_BCHW_512 + + def forward( + self, + rgb: Float[Tensor, "B H W C"], + prompt_utils: PromptProcessorOutput, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + mvp_mtx: Float[Tensor, "B 4 4"], + c2w: Float[Tensor, "B 4 4"], + rgb_as_latents=False, + **kwargs, + ): + batch_size = rgb.shape[0] + + rgb_BCHW = rgb.permute(0, 3, 1, 2) + latents, rgb_BCHW_512 = self.get_latents( + rgb_BCHW, rgb_as_latents=rgb_as_latents + ) + + # view-dependent text embeddings + text_embeddings_vd = prompt_utils.get_text_embeddings( + elevation, + azimuth, + camera_distances, + view_dependent_prompting=self.cfg.view_dependent_prompting, + ) + + # input text embeddings, view-independent + text_embeddings = prompt_utils.get_text_embeddings( + elevation, azimuth, camera_distances, view_dependent_prompting=False + ) + + if self.cfg.camera_condition_type == "extrinsics": + camera_condition = c2w + elif self.cfg.camera_condition_type == "mvp": + camera_condition = mvp_mtx + else: + raise ValueError( + f"Unknown camera_condition_type {self.cfg.camera_condition_type}" + ) + + grad, grad_img = self.compute_grad_vsd( + latents, text_embeddings_vd, text_embeddings, camera_condition + ) + + grad = torch.nan_to_num(grad) + # clip grad for stable training? + if self.grad_clip_val is not None: + grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val) + + # reparameterization trick + # d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad + target = (latents - grad).detach() + loss_vsd = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size + loss_lora = self.train_lora(latents, text_embeddings, camera_condition) + + loss_dict = { + "loss_vsd": loss_vsd, + "loss_lora": loss_lora, + "grad_norm": grad.norm(), + "min_step": self.min_step, + "max_step": self.max_step, + } + + if self.cfg.use_img_loss: + grad_img = torch.nan_to_num(grad_img) + if self.grad_clip_val is not None: + grad_img = grad_img.clamp(-self.grad_clip_val, self.grad_clip_val) + target_img = (rgb_BCHW_512 - grad_img).detach() + loss_vsd_img = ( + 0.5 * F.mse_loss(rgb_BCHW_512, target_img, reduction="sum") / batch_size + ) + loss_dict["loss_vsd_img"] = loss_vsd_img + + return loss_dict + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + # clip grad for stable training as demonstrated in + # Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation + # http://arxiv.org/abs/2303.15413 + if self.cfg.grad_clip is not None: + self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step) + + if self.cfg.sqrt_anneal: + percentage = ( + float(global_step) / self.cfg.trainer_max_steps + ) ** 0.5 # progress percentage + if type(self.cfg.max_step_percent) not in [float, int]: + max_step_percent = self.cfg.max_step_percent[1] + else: + max_step_percent = self.cfg.max_step_percent + curr_percent = ( + max_step_percent - C(self.cfg.min_step_percent, epoch, global_step) + ) * (1 - percentage) + C(self.cfg.min_step_percent, epoch, global_step) + self.set_min_max_steps( + min_step_percent=curr_percent, + max_step_percent=curr_percent, + ) + else: + self.set_min_max_steps( + min_step_percent=C(self.cfg.min_step_percent, epoch, global_step), + max_step_percent=C(self.cfg.max_step_percent, epoch, global_step), + ) diff --git a/threestudio/models/guidance/stable_zero123_guidance.py b/threestudio/models/guidance/stable_zero123_guidance.py new file mode 100644 index 0000000..bc452be --- /dev/null +++ b/threestudio/models/guidance/stable_zero123_guidance.py @@ -0,0 +1,362 @@ +import importlib +import os +from dataclasses import dataclass, field + +import cv2 +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from diffusers import DDIMScheduler, DDPMScheduler, StableDiffusionPipeline +from diffusers.utils.import_utils import is_xformers_available +from omegaconf import OmegaConf +from tqdm import tqdm + +import threestudio +from threestudio.utils.base import BaseObject +from threestudio.utils.misc import C, parse_version +from threestudio.utils.typing import * + +import clip + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +def instantiate_from_config(config): + if not "target" in config: + if config == "__is_first_stage__": + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + + +# load model +def load_model_from_config(config, ckpt, device, vram_O=True, verbose=False): + pl_sd = torch.load(ckpt, map_location="cpu") + + if "global_step" in pl_sd and verbose: + print(f'[INFO] Global Step: {pl_sd["global_step"]}') + + sd = pl_sd["state_dict"] + + model = instantiate_from_config(config.model) + m, u = model.load_state_dict(sd, strict=False) + + if len(m) > 0 and verbose: + print("[INFO] missing keys: \n", m) + if len(u) > 0 and verbose: + print("[INFO] unexpected keys: \n", u) + + # manually load ema and delete it to save GPU memory + if model.use_ema: + if verbose: + print("[INFO] loading EMA...") + model.model_ema.copy_to(model.model) + del model.model_ema + + if vram_O: + # we don't need decoder + del model.first_stage_model.decoder + + torch.cuda.empty_cache() + + model.eval().to(device) + + return model + + +@threestudio.register("stable-zero123-guidance") +class StableZero123Guidance(BaseObject): + @dataclass + class Config(BaseObject.Config): + pretrained_model_name_or_path: str = "load/zero123/stable-zero123.ckpt" + pretrained_config: str = "load/zero123/sd-objaverse-finetune-c_concat-256.yaml" + vram_O: bool = True + + cond_image_path: str = "load/images/hamburger_rgba.png" + cond_elevation_deg: float = 0.0 + cond_azimuth_deg: float = 0.0 + cond_camera_distance: float = 1.2 + + guidance_scale: float = 5.0 + + grad_clip: Optional[ + Any + ] = None # field(default_factory=lambda: [0, 2.0, 8.0, 1000]) + half_precision_weights: bool = True + + min_step_percent: float = 0.02 + max_step_percent: float = 0.98 + + cfg: Config + + def configure(self) -> None: + threestudio.info(f"Loading Stable Zero123 ...") + + self.config = OmegaConf.load(self.cfg.pretrained_config) + # TODO: seems it cannot load into fp16... + # self.weights_dtype = torch.float32 + self.weights_dtype = ( + torch.float16 if self.cfg.half_precision_weights else torch.float32 + ) + self.model = load_model_from_config( + self.config, + self.cfg.pretrained_model_name_or_path, + device=self.device, + vram_O=self.cfg.vram_O, + ) + self.model.to(dtype=self.weights_dtype) + # self.model.cond_stage_model.model.visual.ln_pre.to(dtype=torch.float32) + def recursive_layernorm_fp32(model): + for attr in model.__dir__(): + if attr.startswith("_"): + continue + try: + module = getattr(model, attr) + except: + continue # ignore attributes like property, which can't be retrived using getattr? + if isinstance(module, clip.model.LayerNorm): + module.to(dtype=torch.float32) + elif isinstance(module, torch.nn.Sequential): + for sub_module in module: + recursive_layernorm_fp32(sub_module) + elif isinstance(module, torch.nn.Module): + recursive_layernorm_fp32(module) + recursive_layernorm_fp32(self.model) + + for p in self.model.parameters(): + p.requires_grad_(False) + + # timesteps: use diffuser for convenience... hope it's alright. + self.num_train_timesteps = self.config.model.params.timesteps + + self.scheduler = DDIMScheduler( + self.num_train_timesteps, + self.config.model.params.linear_start, + self.config.model.params.linear_end, + beta_schedule="scaled_linear", + clip_sample=False, + set_alpha_to_one=False, + steps_offset=1, + ) + + self.num_train_timesteps = self.scheduler.config.num_train_timesteps + self.set_min_max_steps() # set to default value + + self.alphas: Float[Tensor, "..."] = self.scheduler.alphas_cumprod.to( + self.device + ) + + self.grad_clip_val: Optional[float] = None + + self.prepare_embeddings(self.cfg.cond_image_path) + + threestudio.info(f"Loaded Stable Zero123!") + + @torch.cuda.amp.autocast(enabled=False) + def set_min_max_steps(self, min_step_percent=0.02, max_step_percent=0.98): + self.min_step = int(self.num_train_timesteps * min_step_percent) + self.max_step = int(self.num_train_timesteps * max_step_percent) + + @torch.cuda.amp.autocast(enabled=False) + def prepare_embeddings(self, image_path: str) -> None: + # load cond image for zero123 + assert os.path.exists(image_path) + rgba = cv2.cvtColor( + cv2.imread(image_path, cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA + ) + rgba = ( + cv2.resize(rgba, (256, 256), interpolation=cv2.INTER_AREA).astype( + np.float32 + ) + / 255.0 + ) + rgb = rgba[..., :3] * rgba[..., 3:] + (1 - rgba[..., 3:]) + self.rgb_256: Float[Tensor, "1 3 H W"] = ( + torch.from_numpy(rgb) + .unsqueeze(0) + .permute(0, 3, 1, 2) + .contiguous() + .to(self.device) + ) + self.c_crossattn, self.c_concat = self.get_img_embeds(self.rgb_256) + + @torch.cuda.amp.autocast(enabled=False) + @torch.no_grad() + def get_img_embeds( + self, + img: Float[Tensor, "B 3 256 256"], + ) -> Tuple[Float[Tensor, "B 1 768"], Float[Tensor, "B 4 32 32"]]: + img = img * 2.0 - 1.0 + c_crossattn = self.model.get_learned_conditioning(img.to(self.weights_dtype)).to(self.weights_dtype) + c_concat = self.model.encode_first_stage(img.to(self.weights_dtype)).mode() + return c_crossattn, c_concat + + @torch.cuda.amp.autocast(enabled=False) + def encode_images( + self, imgs: Float[Tensor, "B 3 256 256"] + ) -> Float[Tensor, "B 4 32 32"]: + input_dtype = imgs.dtype + imgs = imgs * 2.0 - 1.0 + latents = self.model.get_first_stage_encoding( + self.model.encode_first_stage(imgs.to(self.weights_dtype)) + ) + return latents.to(input_dtype) # [B, 4, 32, 32] Latent space image + + @torch.cuda.amp.autocast(enabled=False) + def decode_latents( + self, + latents: Float[Tensor, "B 4 H W"], + ) -> Float[Tensor, "B 3 512 512"]: + input_dtype = latents.dtype + image = self.model.decode_first_stage(latents) + image = (image * 0.5 + 0.5).clamp(0, 1) + return image.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + @torch.no_grad() + def get_cond( + self, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + c_crossattn=None, + c_concat=None, + **kwargs, + ) -> dict: + T = torch.stack( + [ + torch.deg2rad( + (90 - elevation) - (90 - self.cfg.cond_elevation_deg) + ), # Zero123 polar is 90-elevation + torch.sin(torch.deg2rad(azimuth - self.cfg.cond_azimuth_deg)), + torch.cos(torch.deg2rad(azimuth - self.cfg.cond_azimuth_deg)), + torch.deg2rad( + 90 - torch.full_like(elevation, self.cfg.cond_elevation_deg) + ), + ], + dim=-1, + )[:, None, :].to(self.device, dtype=self.weights_dtype) + cond = {} + clip_emb = self.model.cc_projection( + torch.cat( + [ + (self.c_crossattn if c_crossattn is None else c_crossattn).repeat( + len(T), 1, 1 + ), + T, + ], + dim=-1, + ) + ) + cond["c_crossattn"] = [ + torch.cat([torch.zeros_like(clip_emb).to(self.device), clip_emb], dim=0) + ] + cond["c_concat"] = [ + torch.cat( + [ + torch.zeros_like(self.c_concat) + .repeat(len(T), 1, 1, 1) + .to(self.device), + (self.c_concat if c_concat is None else c_concat).repeat( + len(T), 1, 1, 1 + ), + ], + dim=0, + ) + ] + return cond + + def __call__( + self, + rgb: Float[Tensor, "B H W C"], + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + rgb_as_latents=False, + **kwargs, + ): + batch_size = rgb.shape[0] + + rgb_BCHW = rgb.permute(0, 3, 1, 2) + latents: Float[Tensor, "B 4 64 64"] + if rgb_as_latents: + latents = ( + F.interpolate(rgb_BCHW, (32, 32), mode="bilinear", align_corners=False) + * 2 + - 1 + ) + else: + rgb_BCHW_512 = F.interpolate( + rgb_BCHW, (256, 256), mode="bilinear", align_corners=False + ) + # encode image into latents with vae + latents = self.encode_images(rgb_BCHW_512) + + cond = self.get_cond(elevation, azimuth, camera_distances) + + # timestep ~ U(0.02, 0.98) to avoid very high/low noise level + t = torch.randint( + self.min_step, + self.max_step + 1, + [batch_size], + dtype=torch.long, + device=self.device, + ) + + # predict the noise residual with unet, NO grad! + with torch.no_grad(): + # add noise + noise = torch.randn_like(latents) # TODO: use torch generator + latents_noisy = self.scheduler.add_noise(latents, noise, t) + # pred noise + x_in = torch.cat([latents_noisy] * 2) + t_in = torch.cat([t] * 2) + noise_pred = self.model.apply_model(x_in.to(self.weights_dtype), t_in, cond) + + # perform guidance + noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + noise_pred_cond - noise_pred_uncond + ) + + w = (1 - self.alphas[t]).reshape(-1, 1, 1, 1) + grad = w * (noise_pred - noise) + grad = torch.nan_to_num(grad) + # clip grad for stable training? + if self.grad_clip_val is not None: + grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val) + + # loss = SpecifyGradient.apply(latents, grad) + # SpecifyGradient is not straghtforward, use a reparameterization trick instead + target = (latents - grad).detach() + # d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad + loss_sds = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size + + guidance_out = { + "loss_sds": loss_sds, + "grad_norm": grad.norm(), + "min_step": self.min_step, + "max_step": self.max_step, + } + + return guidance_out + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + # clip grad for stable training as demonstrated in + # Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation + # http://arxiv.org/abs/2303.15413 + if self.cfg.grad_clip is not None: + self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step) + + self.set_min_max_steps( + min_step_percent=C(self.cfg.min_step_percent, epoch, global_step), + max_step_percent=C(self.cfg.max_step_percent, epoch, global_step), + ) diff --git a/threestudio/models/guidance/zero123_guidance.py b/threestudio/models/guidance/zero123_guidance.py new file mode 100644 index 0000000..87faf68 --- /dev/null +++ b/threestudio/models/guidance/zero123_guidance.py @@ -0,0 +1,512 @@ +import importlib +import os +from dataclasses import dataclass, field + +import cv2 +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from diffusers import DDIMScheduler, DDPMScheduler, StableDiffusionPipeline +from diffusers.utils.import_utils import is_xformers_available +from omegaconf import OmegaConf +from tqdm import tqdm + +import threestudio +from threestudio.utils.base import BaseObject +from threestudio.utils.misc import C, parse_version +from threestudio.utils.typing import * + +import clip + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +def instantiate_from_config(config): + if not "target" in config: + if config == "__is_first_stage__": + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + + +# load model +def load_model_from_config(config, ckpt, device, vram_O=True, verbose=False): + pl_sd = torch.load(ckpt, map_location="cpu") + + if "global_step" in pl_sd and verbose: + print(f'[INFO] Global Step: {pl_sd["global_step"]}') + + sd = pl_sd["state_dict"] + + model = instantiate_from_config(config.model) + m, u = model.load_state_dict(sd, strict=False) + + if len(m) > 0 and verbose: + print("[INFO] missing keys: \n", m) + if len(u) > 0 and verbose: + print("[INFO] unexpected keys: \n", u) + + # manually load ema and delete it to save GPU memory + if model.use_ema: + if verbose: + print("[INFO] loading EMA...") + model.model_ema.copy_to(model.model) + del model.model_ema + + if vram_O: + # we don't need decoder + del model.first_stage_model.decoder + + torch.cuda.empty_cache() + + model.eval().to(device) + + return model + + +@threestudio.register("zero123-guidance") +class Zero123Guidance(BaseObject): + @dataclass + class Config(BaseObject.Config): + pretrained_model_name_or_path: str = "load/zero123/105000.ckpt" + pretrained_config: str = "load/zero123/sd-objaverse-finetune-c_concat-256.yaml" + vram_O: bool = True + + cond_image_path: str = "load/images/hamburger_rgba.png" + cond_elevation_deg: float = 0.0 + cond_azimuth_deg: float = 0.0 + cond_camera_distance: float = 1.2 + + guidance_scale: float = 5.0 + + grad_clip: Optional[ + Any + ] = None # field(default_factory=lambda: [0, 2.0, 8.0, 1000]) + half_precision_weights: bool = True + + min_step_percent: float = 0.02 + max_step_percent: float = 0.98 + + """Maximum number of batch items to evaluate guidance for (for debugging) and to save on disk. -1 means save all items.""" + max_items_eval: int = 4 + + cfg: Config + + def configure(self) -> None: + threestudio.info(f"Loading Zero123 ...") + + self.config = OmegaConf.load(self.cfg.pretrained_config) + # TODO: seems it cannot load into fp16... + self.weights_dtype = ( + torch.float16 if self.cfg.half_precision_weights else torch.float32 + ) + self.model = load_model_from_config( + self.config, + self.cfg.pretrained_model_name_or_path, + device=self.device, + vram_O=self.cfg.vram_O, + ) + self.model.to(dtype=self.weights_dtype) + # self.model.cond_stage_model.model.visual.ln_pre.to(dtype=torch.float32) + def recursive_layernorm_fp32(model): + for attr in model.__dir__(): + if attr.startswith("_"): + continue + try: + module = getattr(model, attr) + except: + continue # ignore attributes like property, which can't be retrived using getattr? + if isinstance(module, clip.model.LayerNorm): + module.to(dtype=torch.float32) + elif isinstance(module, torch.nn.Sequential): + for sub_module in module: + recursive_layernorm_fp32(sub_module) + elif isinstance(module, torch.nn.Module): + recursive_layernorm_fp32(module) + recursive_layernorm_fp32(self.model) + + for p in self.model.parameters(): + p.requires_grad_(False) + + # timesteps: use diffuser for convenience... hope it's alright. + self.num_train_timesteps = self.config.model.params.timesteps + + self.scheduler = DDIMScheduler( + self.num_train_timesteps, + self.config.model.params.linear_start, + self.config.model.params.linear_end, + beta_schedule="scaled_linear", + clip_sample=False, + set_alpha_to_one=False, + steps_offset=1, + ) + + self.num_train_timesteps = self.scheduler.config.num_train_timesteps + self.set_min_max_steps() # set to default value + + self.alphas: Float[Tensor, "..."] = self.scheduler.alphas_cumprod.to( + self.device + ) + + self.grad_clip_val: Optional[float] = None + + self.prepare_embeddings(self.cfg.cond_image_path) + + threestudio.info(f"Loaded Zero123!") + + @torch.cuda.amp.autocast(enabled=False) + def set_min_max_steps(self, min_step_percent=0.02, max_step_percent=0.98): + self.min_step = int(self.num_train_timesteps * min_step_percent) + self.max_step = int(self.num_train_timesteps * max_step_percent) + + @torch.cuda.amp.autocast(enabled=False) + def prepare_embeddings(self, image_path: str) -> None: + # load cond image for zero123 + assert os.path.exists(image_path) + rgba = cv2.cvtColor( + cv2.imread(image_path, cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA + ) + rgba = ( + cv2.resize(rgba, (256, 256), interpolation=cv2.INTER_AREA).astype( + np.float32 + ) + / 255.0 + ) + rgb = rgba[..., :3] * rgba[..., 3:] + (1 - rgba[..., 3:]) + self.rgb_256: Float[Tensor, "1 3 H W"] = ( + torch.from_numpy(rgb) + .unsqueeze(0) + .permute(0, 3, 1, 2) + .contiguous() + .to(self.device) + ) + self.c_crossattn, self.c_concat = self.get_img_embeds(self.rgb_256) + + @torch.cuda.amp.autocast(enabled=False) + @torch.no_grad() + def get_img_embeds( + self, + img: Float[Tensor, "B 3 256 256"], + ) -> Tuple[Float[Tensor, "B 1 768"], Float[Tensor, "B 4 32 32"]]: + img = img * 2.0 - 1.0 + c_crossattn = self.model.get_learned_conditioning(img.to(self.weights_dtype)) + c_concat = self.model.encode_first_stage(img.to(self.weights_dtype)).mode() + return c_crossattn, c_concat + + @torch.cuda.amp.autocast(enabled=False) + def encode_images( + self, imgs: Float[Tensor, "B 3 256 256"] + ) -> Float[Tensor, "B 4 32 32"]: + input_dtype = imgs.dtype + imgs = imgs * 2.0 - 1.0 + latents = self.model.get_first_stage_encoding( + self.model.encode_first_stage(imgs.to(self.weights_dtype)) + ) + return latents.to(input_dtype) # [B, 4, 32, 32] Latent space image + + @torch.cuda.amp.autocast(enabled=False) + def decode_latents( + self, + latents: Float[Tensor, "B 4 H W"], + ) -> Float[Tensor, "B 3 512 512"]: + input_dtype = latents.dtype + image = self.model.decode_first_stage(latents) + image = (image * 0.5 + 0.5).clamp(0, 1) + return image.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + @torch.no_grad() + def get_cond( + self, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + c_crossattn=None, + c_concat=None, + **kwargs, + ) -> dict: + T = torch.stack( + [ + torch.deg2rad( + (90 - elevation) - (90 - self.cfg.cond_elevation_deg) + ), # Zero123 polar is 90-elevation + torch.sin(torch.deg2rad(azimuth - self.cfg.cond_azimuth_deg)), + torch.cos(torch.deg2rad(azimuth - self.cfg.cond_azimuth_deg)), + camera_distances - self.cfg.cond_camera_distance, + ], + dim=-1, + )[:, None, :].to(self.device) + cond = {} + clip_emb = self.model.cc_projection( + torch.cat( + [ + (self.c_crossattn if c_crossattn is None else c_crossattn).repeat( + len(T), 1, 1 + ), + T, + ], + dim=-1, + ) + ) + cond["c_crossattn"] = [ + torch.cat([torch.zeros_like(clip_emb).to(self.device), clip_emb], dim=0) + ] + cond["c_concat"] = [ + torch.cat( + [ + torch.zeros_like(self.c_concat) + .repeat(len(T), 1, 1, 1) + .to(self.device), + (self.c_concat if c_concat is None else c_concat).repeat( + len(T), 1, 1, 1 + ), + ], + dim=0, + ) + ] + return cond + + def __call__( + self, + rgb: Float[Tensor, "B H W C"], + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + rgb_as_latents=False, + guidance_eval=False, + **kwargs, + ): + batch_size = rgb.shape[0] + + rgb_BCHW = rgb.permute(0, 3, 1, 2) + latents: Float[Tensor, "B 4 64 64"] + if rgb_as_latents: + latents = ( + F.interpolate(rgb_BCHW, (32, 32), mode="bilinear", align_corners=False) + * 2 + - 1 + ) + else: + rgb_BCHW_512 = F.interpolate( + rgb_BCHW, (256, 256), mode="bilinear", align_corners=False + ) + # encode image into latents with vae + latents = self.encode_images(rgb_BCHW_512) + + cond = self.get_cond(elevation, azimuth, camera_distances) + + # timestep ~ U(0.02, 0.98) to avoid very high/low noise level + t = torch.randint( + self.min_step, + self.max_step + 1, + [batch_size], + dtype=torch.long, + device=self.device, + ) + + # predict the noise residual with unet, NO grad! + with torch.no_grad(): + # add noise + noise = torch.randn_like(latents) # TODO: use torch generator + latents_noisy = self.scheduler.add_noise(latents, noise, t) + # pred noise + x_in = torch.cat([latents_noisy] * 2) + t_in = torch.cat([t] * 2) + noise_pred = self.model.apply_model(x_in, t_in, cond) + + # perform guidance + noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + noise_pred_cond - noise_pred_uncond + ) + + w = (1 - self.alphas[t]).reshape(-1, 1, 1, 1) + grad = w * (noise_pred - noise) + grad = torch.nan_to_num(grad) + # clip grad for stable training? + if self.grad_clip_val is not None: + grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val) + + # loss = SpecifyGradient.apply(latents, grad) + # SpecifyGradient is not straghtforward, use a reparameterization trick instead + target = (latents - grad).detach() + # d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad + loss_sds = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size + + guidance_out = { + "loss_sds": loss_sds, + "grad_norm": grad.norm(), + "min_step": self.min_step, + "max_step": self.max_step, + } + + if guidance_eval: + guidance_eval_utils = { + "cond": cond, + "t_orig": t, + "latents_noisy": latents_noisy, + "noise_pred": noise_pred, + } + guidance_eval_out = self.guidance_eval(**guidance_eval_utils) + texts = [] + for n, e, a, c in zip( + guidance_eval_out["noise_levels"], elevation, azimuth, camera_distances + ): + texts.append( + f"n{n:.02f}\ne{e.item():.01f}\na{a.item():.01f}\nc{c.item():.02f}" + ) + guidance_eval_out.update({"texts": texts}) + guidance_out.update({"eval": guidance_eval_out}) + + return guidance_out + + @torch.cuda.amp.autocast(enabled=False) + @torch.no_grad() + def guidance_eval(self, cond, t_orig, latents_noisy, noise_pred): + # use only 50 timesteps, and find nearest of those to t + self.scheduler.set_timesteps(50) + self.scheduler.timesteps_gpu = self.scheduler.timesteps.to(self.device) + bs = ( + min(self.cfg.max_items_eval, latents_noisy.shape[0]) + if self.cfg.max_items_eval > 0 + else latents_noisy.shape[0] + ) # batch size + large_enough_idxs = self.scheduler.timesteps_gpu.expand([bs, -1]) > t_orig[ + :bs + ].unsqueeze( + -1 + ) # sized [bs,50] > [bs,1] + idxs = torch.min(large_enough_idxs, dim=1)[1] + t = self.scheduler.timesteps_gpu[idxs] + + fracs = list((t / self.scheduler.config.num_train_timesteps).cpu().numpy()) + imgs_noisy = self.decode_latents(latents_noisy[:bs]).permute(0, 2, 3, 1) + + # get prev latent + latents_1step = [] + pred_1orig = [] + for b in range(bs): + step_output = self.scheduler.step( + noise_pred[b : b + 1], t[b], latents_noisy[b : b + 1], eta=1 + ) + latents_1step.append(step_output["prev_sample"]) + pred_1orig.append(step_output["pred_original_sample"]) + latents_1step = torch.cat(latents_1step) + pred_1orig = torch.cat(pred_1orig) + imgs_1step = self.decode_latents(latents_1step).permute(0, 2, 3, 1) + imgs_1orig = self.decode_latents(pred_1orig).permute(0, 2, 3, 1) + + latents_final = [] + for b, i in enumerate(idxs): + latents = latents_1step[b : b + 1] + c = { + "c_crossattn": [cond["c_crossattn"][0][[b, b + len(idxs)], ...]], + "c_concat": [cond["c_concat"][0][[b, b + len(idxs)], ...]], + } + for t in tqdm(self.scheduler.timesteps[i + 1 :], leave=False): + # pred noise + x_in = torch.cat([latents] * 2) + t_in = torch.cat([t.reshape(1)] * 2).to(self.device) + noise_pred = self.model.apply_model(x_in, t_in, c) + # perform guidance + noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + noise_pred_cond - noise_pred_uncond + ) + # get prev latent + latents = self.scheduler.step(noise_pred, t, latents, eta=1)[ + "prev_sample" + ] + latents_final.append(latents) + + latents_final = torch.cat(latents_final) + imgs_final = self.decode_latents(latents_final).permute(0, 2, 3, 1) + + return { + "bs": bs, + "noise_levels": fracs, + "imgs_noisy": imgs_noisy, + "imgs_1step": imgs_1step, + "imgs_1orig": imgs_1orig, + "imgs_final": imgs_final, + } + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + # clip grad for stable training as demonstrated in + # Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation + # http://arxiv.org/abs/2303.15413 + if self.cfg.grad_clip is not None: + self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step) + + self.set_min_max_steps( + min_step_percent=C(self.cfg.min_step_percent, epoch, global_step), + max_step_percent=C(self.cfg.max_step_percent, epoch, global_step), + ) + + # verification - requires `vram_O = False` in load_model_from_config + @torch.no_grad() + def generate( + self, + image, # image tensor [1, 3, H, W] in [0, 1] + elevation=0, + azimuth=0, + camera_distances=0, # new view params + c_crossattn=None, + c_concat=None, + scale=3, + ddim_steps=50, + post_process=True, + ddim_eta=1, + ): + if c_crossattn is None: + c_crossattn, c_concat = self.get_img_embeds(image) + + cond = self.get_cond( + elevation, azimuth, camera_distances, c_crossattn, c_concat + ) + + imgs = self.gen_from_cond(cond, scale, ddim_steps, post_process, ddim_eta) + + return imgs + + # verification - requires `vram_O = False` in load_model_from_config + @torch.no_grad() + def gen_from_cond( + self, + cond, + scale=3, + ddim_steps=50, + post_process=True, + ddim_eta=1, + ): + # produce latents loop + B = cond["c_crossattn"][0].shape[0] // 2 + latents = torch.randn((B, 4, 32, 32), device=self.device) + self.scheduler.set_timesteps(ddim_steps) + + for t in self.scheduler.timesteps: + x_in = torch.cat([latents] * 2) + t_in = torch.cat([t.reshape(1).repeat(B)] * 2).to(self.device) + + noise_pred = self.model.apply_model(x_in, t_in, cond) + noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + scale * ( + noise_pred_cond - noise_pred_uncond + ) + + latents = self.scheduler.step(noise_pred, t, latents, eta=ddim_eta)[ + "prev_sample" + ] + + imgs = self.decode_latents(latents) + imgs = imgs.cpu().numpy().transpose(0, 2, 3, 1) if post_process else imgs + + return imgs diff --git a/threestudio/models/guidance/zero123_unified_guidance.py b/threestudio/models/guidance/zero123_unified_guidance.py new file mode 100644 index 0000000..8274b51 --- /dev/null +++ b/threestudio/models/guidance/zero123_unified_guidance.py @@ -0,0 +1,716 @@ +import os +import random +import sys +from contextlib import contextmanager +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F +import torchvision.transforms.functional as TF +from diffusers import ( + AutoencoderKL, + DDPMScheduler, + DPMSolverSinglestepScheduler, + UNet2DConditionModel, +) +from diffusers.loaders import AttnProcsLayers +from diffusers.models.attention_processor import LoRAAttnProcessor +from diffusers.models.embeddings import TimestepEmbedding +from PIL import Image +from tqdm import tqdm + +import threestudio +from extern.zero123 import Zero123Pipeline +from threestudio.models.networks import ToDTypeWrapper +from threestudio.models.prompt_processors.base import PromptProcessorOutput +from threestudio.utils.base import BaseModule +from threestudio.utils.misc import C, cleanup, enable_gradient, parse_version +from threestudio.utils.typing import * + + +@threestudio.register("zero123-unified-guidance") +class Zero123UnifiedGuidance(BaseModule): + @dataclass + class Config(BaseModule.Config): + # guidance type, in ["sds", "vsd"] + guidance_type: str = "sds" + + pretrained_model_name_or_path: str = "bennyguo/zero123-diffusers" + guidance_scale: float = 5.0 + weighting_strategy: str = "dreamfusion" + + min_step_percent: Any = 0.02 + max_step_percent: Any = 0.98 + grad_clip: Optional[Any] = None + + return_rgb_1step_orig: bool = False + return_rgb_multistep_orig: bool = False + n_rgb_multistep_orig_steps: int = 4 + + cond_image_path: str = "" + cond_elevation_deg: float = 0.0 + cond_azimuth_deg: float = 0.0 + cond_camera_distance: float = 1.2 + + # efficiency-related configurations + half_precision_weights: bool = True + + # VSD configurations, only used when guidance_type is "vsd" + vsd_phi_model_name_or_path: Optional[str] = None + vsd_guidance_scale_phi: float = 1.0 + vsd_use_lora: bool = True + vsd_lora_cfg_training: bool = False + vsd_lora_n_timestamp_samples: int = 1 + vsd_use_camera_condition: bool = True + # camera condition type, in ["extrinsics", "mvp", "spherical"] + vsd_camera_condition_type: Optional[str] = "extrinsics" + + cfg: Config + + def configure(self) -> None: + self.min_step: Optional[int] = None + self.max_step: Optional[int] = None + self.grad_clip_val: Optional[float] = None + + @dataclass + class NonTrainableModules: + pipe: Zero123Pipeline + pipe_phi: Optional[Zero123Pipeline] = None + + self.weights_dtype = ( + torch.float16 if self.cfg.half_precision_weights else torch.float32 + ) + + threestudio.info(f"Loading Zero123 ...") + + # need to make sure the pipeline file is in path + sys.path.append("extern/") + + pipe_kwargs = { + "safety_checker": None, + "requires_safety_checker": False, + "variant": "fp16" if self.cfg.half_precision_weights else None, + "torch_dtype": self.weights_dtype, + } + pipe = Zero123Pipeline.from_pretrained( + self.cfg.pretrained_model_name_or_path, + **pipe_kwargs, + ).to(self.device) + self.prepare_pipe(pipe) + + # phi network for VSD + # introduce two trainable modules: + # - self.camera_embedding + # - self.lora_layers + pipe_phi = None + + # if the phi network shares the same unet with the pretrain network + # we need to pass additional cross attention kwargs to the unet + self.vsd_share_model = ( + self.cfg.guidance_type == "vsd" + and self.cfg.vsd_phi_model_name_or_path is None + ) + if self.cfg.guidance_type == "vsd": + if self.cfg.vsd_phi_model_name_or_path is None: + pipe_phi = pipe + else: + pipe_phi = Zero123Pipeline.from_pretrained( + self.cfg.vsd_phi_model_name_or_path, + **pipe_kwargs, + ).to(self.device) + self.prepare_pipe(pipe_phi) + + # set up camera embedding + if self.cfg.vsd_use_camera_condition: + if self.cfg.vsd_camera_condition_type in ["extrinsics", "mvp"]: + self.camera_embedding_dim = 16 + elif self.cfg.vsd_camera_condition_type == "spherical": + self.camera_embedding_dim = 4 + else: + raise ValueError("Invalid camera condition type!") + + # FIXME: hard-coded output dim + self.camera_embedding = ToDTypeWrapper( + TimestepEmbedding(self.camera_embedding_dim, 1280), + self.weights_dtype, + ).to(self.device) + pipe_phi.unet.class_embedding = self.camera_embedding + + if self.cfg.vsd_use_lora: + # set up LoRA layers + lora_attn_procs = {} + for name in pipe_phi.unet.attn_processors.keys(): + cross_attention_dim = ( + None + if name.endswith("attn1.processor") + else pipe_phi.unet.config.cross_attention_dim + ) + if name.startswith("mid_block"): + hidden_size = pipe_phi.unet.config.block_out_channels[-1] + elif name.startswith("up_blocks"): + block_id = int(name[len("up_blocks.")]) + hidden_size = list( + reversed(pipe_phi.unet.config.block_out_channels) + )[block_id] + elif name.startswith("down_blocks"): + block_id = int(name[len("down_blocks.")]) + hidden_size = pipe_phi.unet.config.block_out_channels[block_id] + + lora_attn_procs[name] = LoRAAttnProcessor( + hidden_size=hidden_size, cross_attention_dim=cross_attention_dim + ) + + pipe_phi.unet.set_attn_processor(lora_attn_procs) + + self.lora_layers = AttnProcsLayers(pipe_phi.unet.attn_processors).to( + self.device + ) + self.lora_layers._load_state_dict_pre_hooks.clear() + self.lora_layers._state_dict_hooks.clear() + + threestudio.info(f"Loaded Stable Diffusion!") + + self.scheduler = DDPMScheduler.from_config(pipe.scheduler.config) + self.num_train_timesteps = self.scheduler.config.num_train_timesteps + + # q(z_t|x) = N(alpha_t x, sigma_t^2 I) + # in DDPM, alpha_t = sqrt(alphas_cumprod_t), sigma_t^2 = 1 - alphas_cumprod_t + self.alphas_cumprod: Float[Tensor, "T"] = self.scheduler.alphas_cumprod.to( + self.device + ) + self.alphas: Float[Tensor, "T"] = self.alphas_cumprod**0.5 + self.sigmas: Float[Tensor, "T"] = (1 - self.alphas_cumprod) ** 0.5 + # log SNR + self.lambdas: Float[Tensor, "T"] = self.sigmas / self.alphas + + self._non_trainable_modules = NonTrainableModules( + pipe=pipe, + pipe_phi=pipe_phi, + ) + + # self.clip_image_embeddings and self.image_latents + self.prepare_image_embeddings() + + @property + def pipe(self) -> Zero123Pipeline: + return self._non_trainable_modules.pipe + + @property + def pipe_phi(self) -> Zero123Pipeline: + if self._non_trainable_modules.pipe_phi is None: + raise RuntimeError("phi model is not available.") + return self._non_trainable_modules.pipe_phi + + def prepare_pipe(self, pipe: Zero123Pipeline): + cleanup() + + pipe.image_encoder.eval() + pipe.vae.eval() + pipe.unet.eval() + pipe.clip_camera_projection.eval() + + enable_gradient(pipe.image_encoder, enabled=False) + enable_gradient(pipe.vae, enabled=False) + enable_gradient(pipe.unet, enabled=False) + enable_gradient(pipe.clip_camera_projection, enabled=False) + + # disable progress bar + pipe.set_progress_bar_config(disable=True) + + def prepare_image_embeddings(self) -> None: + if not os.path.exists(self.cfg.cond_image_path): + raise RuntimeError( + f"Condition image not found at {self.cfg.cond_image_path}" + ) + image = Image.open(self.cfg.cond_image_path).convert("RGBA").resize((256, 256)) + image = ( + TF.to_tensor(image) + .unsqueeze(0) + .to(device=self.device, dtype=self.weights_dtype) + ) + # rgba -> rgb, apply white background + image = image[:, :3] * image[:, 3:4] + (1 - image[:, 3:4]) + + with torch.no_grad(): + self.clip_image_embeddings: Float[ + Tensor, "1 1 D" + ] = self.extract_clip_image_embeddings(image) + + # encoded latents should be multiplied with vae.config.scaling_factor + # but zero123 was not trained this way + self.image_latents: Float[Tensor, "1 4 Hl Wl"] = ( + self.vae_encode(self.pipe.vae, image * 2.0 - 1.0, mode=True) + / self.pipe.vae.config.scaling_factor + ) + + def extract_clip_image_embeddings( + self, images: Float[Tensor, "B 3 H W"] + ) -> Float[Tensor, "B 1 D"]: + # expect images in [0, 1] + images_pil = [TF.to_pil_image(image) for image in images] + images_processed = self.pipe.feature_extractor( + images=images_pil, return_tensors="pt" + ).pixel_values.to(device=self.device, dtype=self.weights_dtype) + clip_image_embeddings = self.pipe.image_encoder(images_processed).image_embeds + return clip_image_embeddings.to(images.dtype) + + def get_image_camera_embeddings( + self, + elevation_deg: Float[Tensor, "B"], + azimuth_deg: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + ) -> Float[Tensor, "B 1 D"]: + batch_size = elevation_deg.shape[0] + camera_embeddings: Float[Tensor, "B 1 4"] = torch.stack( + [ + torch.deg2rad(self.cfg.cond_elevation_deg - elevation_deg), + torch.sin(torch.deg2rad(azimuth_deg - self.cfg.cond_azimuth_deg)), + torch.cos(torch.deg2rad(azimuth_deg - self.cfg.cond_azimuth_deg)), + camera_distances - self.cfg.cond_camera_distance, + ], + dim=-1, + )[:, None, :] + + image_camera_embeddings = self.pipe.clip_camera_projection( + torch.cat( + [ + self.clip_image_embeddings.repeat(batch_size, 1, 1), + camera_embeddings, + ], + dim=-1, + ).to(self.weights_dtype) + ) + + return image_camera_embeddings + + @torch.cuda.amp.autocast(enabled=False) + def forward_unet( + self, + unet: UNet2DConditionModel, + latents: Float[Tensor, "..."], + t: Int[Tensor, "..."], + encoder_hidden_states: Float[Tensor, "..."], + class_labels: Optional[Float[Tensor, "..."]] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + down_block_additional_residuals: Optional[Float[Tensor, "..."]] = None, + mid_block_additional_residual: Optional[Float[Tensor, "..."]] = None, + velocity_to_epsilon: bool = False, + ) -> Float[Tensor, "..."]: + input_dtype = latents.dtype + pred = unet( + latents.to(unet.dtype), + t.to(unet.dtype), + encoder_hidden_states=encoder_hidden_states.to(unet.dtype), + class_labels=class_labels, + cross_attention_kwargs=cross_attention_kwargs, + down_block_additional_residuals=down_block_additional_residuals, + mid_block_additional_residual=mid_block_additional_residual, + ).sample + if velocity_to_epsilon: + pred = latents * self.sigmas[t].view(-1, 1, 1, 1) + pred * self.alphas[ + t + ].view(-1, 1, 1, 1) + return pred.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def vae_encode( + self, vae: AutoencoderKL, imgs: Float[Tensor, "B 3 H W"], mode=False + ) -> Float[Tensor, "B 4 Hl Wl"]: + # expect input in [-1, 1] + input_dtype = imgs.dtype + posterior = vae.encode(imgs.to(vae.dtype)).latent_dist + if mode: + latents = posterior.mode() + else: + latents = posterior.sample() + latents = latents * vae.config.scaling_factor + return latents.to(input_dtype) + + @torch.cuda.amp.autocast(enabled=False) + def vae_decode( + self, vae: AutoencoderKL, latents: Float[Tensor, "B 4 Hl Wl"] + ) -> Float[Tensor, "B 3 H W"]: + # output in [0, 1] + input_dtype = latents.dtype + latents = 1 / vae.config.scaling_factor * latents + image = vae.decode(latents.to(vae.dtype)).sample + image = (image * 0.5 + 0.5).clamp(0, 1) + return image.to(input_dtype) + + @contextmanager + def disable_unet_class_embedding(self, unet: UNet2DConditionModel): + class_embedding = unet.class_embedding + try: + unet.class_embedding = None + yield unet + finally: + unet.class_embedding = class_embedding + + @contextmanager + def set_scheduler(self, pipe: Zero123Pipeline, scheduler_class: Any, **kwargs): + scheduler_orig = pipe.scheduler + pipe.scheduler = scheduler_class.from_config(scheduler_orig.config, **kwargs) + yield pipe + pipe.scheduler = scheduler_orig + + def get_eps_pretrain( + self, + latents_noisy: Float[Tensor, "B 4 Hl Wl"], + t: Int[Tensor, "B"], + image_camera_embeddings: Float[Tensor, "B 1 D"], + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + ) -> Float[Tensor, "B 4 Hl Wl"]: + batch_size = latents_noisy.shape[0] + + with torch.no_grad(): + with self.disable_unet_class_embedding(self.pipe.unet) as unet: + noise_pred = self.forward_unet( + unet, + torch.cat( + [ + torch.cat([latents_noisy] * 2, dim=0), + torch.cat( + [ + self.image_latents.repeat(batch_size, 1, 1, 1), + torch.zeros_like(self.image_latents).repeat( + batch_size, 1, 1, 1 + ), + ], + dim=0, + ), + ], + dim=1, + ), + torch.cat([t] * 2, dim=0), + encoder_hidden_states=torch.cat( + [ + image_camera_embeddings, + torch.zeros_like(image_camera_embeddings), + ], + dim=0, + ), + cross_attention_kwargs={"scale": 0.0} + if self.vsd_share_model + else None, + velocity_to_epsilon=self.pipe.scheduler.config.prediction_type + == "v_prediction", + ) + + noise_pred_image, noise_pred_uncond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.cfg.guidance_scale * ( + noise_pred_image - noise_pred_uncond + ) + + return noise_pred + + def get_eps_phi( + self, + latents_noisy: Float[Tensor, "B 4 Hl Wl"], + t: Int[Tensor, "B"], + image_camera_embeddings: Float[Tensor, "B 1 D"], + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + camera_condition: Float[Tensor, "B ..."], + ) -> Float[Tensor, "B 4 Hl Wl"]: + batch_size = latents_noisy.shape[0] + + with torch.no_grad(): + noise_pred = self.forward_unet( + self.pipe_phi.unet, + torch.cat( + [ + torch.cat([latents_noisy] * 2, dim=0), + torch.cat( + [self.image_latents.repeat(batch_size, 1, 1, 1)] * 2, + dim=0, + ), + ], + dim=1, + ), + torch.cat([t] * 2, dim=0), + encoder_hidden_states=torch.cat([image_camera_embeddings] * 2, dim=0), + class_labels=torch.cat( + [ + camera_condition.view(batch_size, -1), + torch.zeros_like(camera_condition.view(batch_size, -1)), + ], + dim=0, + ) + if self.cfg.vsd_use_camera_condition + else None, + cross_attention_kwargs={"scale": 1.0}, + velocity_to_epsilon=self.pipe_phi.scheduler.config.prediction_type + == "v_prediction", + ) + + noise_pred_camera, noise_pred_uncond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.cfg.vsd_guidance_scale_phi * ( + noise_pred_camera - noise_pred_uncond + ) + + return noise_pred + + def train_phi( + self, + latents: Float[Tensor, "B 4 Hl Wl"], + image_camera_embeddings: Float[Tensor, "B 1 D"], + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + camera_condition: Float[Tensor, "B ..."], + ): + B = latents.shape[0] + latents = latents.detach().repeat( + self.cfg.vsd_lora_n_timestamp_samples, 1, 1, 1 + ) + + num_train_timesteps = self.pipe_phi.scheduler.config.num_train_timesteps + t = torch.randint( + int(num_train_timesteps * 0.0), + int(num_train_timesteps * 1.0), + [B * self.cfg.vsd_lora_n_timestamp_samples], + dtype=torch.long, + device=self.device, + ) + + noise = torch.randn_like(latents) + latents_noisy = self.pipe_phi.scheduler.add_noise(latents, noise, t) + if self.pipe_phi.scheduler.config.prediction_type == "epsilon": + target = noise + elif self.pipe_phi.scheduler.prediction_type == "v_prediction": + target = self.pipe_phi.scheduler.get_velocity(latents, noise, t) + else: + raise ValueError( + f"Unknown prediction type {self.pipe_phi.scheduler.prediction_type}" + ) + + if ( + self.cfg.vsd_use_camera_condition + and self.cfg.vsd_lora_cfg_training + and random.random() < 0.1 + ): + camera_condition = torch.zeros_like(camera_condition) + + noise_pred = self.forward_unet( + self.pipe_phi.unet, + torch.cat([latents_noisy, self.image_latents.repeat(B, 1, 1, 1)], dim=1), + t, + encoder_hidden_states=image_camera_embeddings.repeat( + self.cfg.vsd_lora_n_timestamp_samples, 1, 1 + ), + class_labels=camera_condition.view(B, -1).repeat( + self.cfg.vsd_lora_n_timestamp_samples, 1 + ) + if self.cfg.vsd_use_camera_condition + else None, + cross_attention_kwargs={"scale": 1.0}, + ) + return F.mse_loss(noise_pred.float(), target.float(), reduction="mean") + + def forward( + self, + rgb: Float[Tensor, "B H W C"], + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + mvp_mtx: Float[Tensor, "B 4 4"], + c2w: Float[Tensor, "B 4 4"], + rgb_as_latents=False, + **kwargs, + ): + batch_size = rgb.shape[0] + + rgb_BCHW = rgb.permute(0, 3, 1, 2) + latents: Float[Tensor, "B 4 32 32"] + if rgb_as_latents: + # treat input rgb as latents + # input rgb should be in range [-1, 1] + latents = F.interpolate( + rgb_BCHW, (32, 32), mode="bilinear", align_corners=False + ) + else: + # treat input rgb as rgb + # input rgb should be in range [0, 1] + rgb_BCHW = F.interpolate( + rgb_BCHW, (256, 256), mode="bilinear", align_corners=False + ) + # encode image into latents with vae + latents = self.vae_encode(self.pipe.vae, rgb_BCHW * 2.0 - 1.0) + + # sample timestep + # use the same timestep for each batch + assert self.min_step is not None and self.max_step is not None + t = torch.randint( + self.min_step, + self.max_step + 1, + [1], + dtype=torch.long, + device=self.device, + ).repeat(batch_size) + + # sample noise + noise = torch.randn_like(latents) + latents_noisy = self.scheduler.add_noise(latents, noise, t) + + # image-camera feature condition + image_camera_embeddings = self.get_image_camera_embeddings( + elevation, azimuth, camera_distances + ) + + eps_pretrain = self.get_eps_pretrain( + latents_noisy, + t, + image_camera_embeddings, + elevation, + azimuth, + camera_distances, + ) + + latents_1step_orig = ( + 1 + / self.alphas[t].view(-1, 1, 1, 1) + * (latents_noisy - self.sigmas[t].view(-1, 1, 1, 1) * eps_pretrain) + ).detach() + + if self.cfg.guidance_type == "sds": + eps_phi = noise + elif self.cfg.guidance_type == "vsd": + if self.cfg.vsd_camera_condition_type == "extrinsics": + camera_condition = c2w + elif self.cfg.vsd_camera_condition_type == "mvp": + camera_condition = mvp_mtx + elif self.cfg.vsd_camera_condition_type == "spherical": + camera_condition = torch.stack( + [ + torch.deg2rad(elevation), + torch.sin(torch.deg2rad(azimuth)), + torch.cos(torch.deg2rad(azimuth)), + camera_distances, + ], + dim=-1, + ) + else: + raise ValueError( + f"Unknown camera_condition_type {self.cfg.vsd_camera_condition_type}" + ) + eps_phi = self.get_eps_phi( + latents_noisy, + t, + image_camera_embeddings, + elevation, + azimuth, + camera_distances, + camera_condition, + ) + + loss_train_phi = self.train_phi( + latents, + image_camera_embeddings, + elevation, + azimuth, + camera_distances, + camera_condition, + ) + + if self.cfg.weighting_strategy == "dreamfusion": + w = (1.0 - self.alphas[t]).view(-1, 1, 1, 1) + elif self.cfg.weighting_strategy == "uniform": + w = 1.0 + elif self.cfg.weighting_strategy == "fantasia3d": + w = (self.alphas[t] ** 0.5 * (1 - self.alphas[t])).view(-1, 1, 1, 1) + else: + raise ValueError( + f"Unknown weighting strategy: {self.cfg.weighting_strategy}" + ) + + grad = w * (eps_pretrain - eps_phi) + + if self.grad_clip_val is not None: + grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val) + + # reparameterization trick: + # d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad + target = (latents - grad).detach() + loss_sd = 0.5 * F.mse_loss(latents, target, reduction="sum") / batch_size + + guidance_out = { + "loss_sd": loss_sd, + "grad_norm": grad.norm(), + "timesteps": t, + "min_step": self.min_step, + "max_step": self.max_step, + "latents": latents, + "latents_1step_orig": latents_1step_orig, + "rgb": rgb_BCHW.permute(0, 2, 3, 1), + "weights": w, + "lambdas": self.lambdas[t], + } + + if self.cfg.return_rgb_1step_orig: + with torch.no_grad(): + rgb_1step_orig = self.vae_decode( + self.pipe.vae, latents_1step_orig + ).permute(0, 2, 3, 1) + guidance_out.update({"rgb_1step_orig": rgb_1step_orig}) + + if self.cfg.return_rgb_multistep_orig: + with self.set_scheduler( + self.pipe, + DPMSolverSinglestepScheduler, + solver_order=1, + num_train_timesteps=int(t[0]), + ) as pipe: + with torch.cuda.amp.autocast(enabled=False): + latents_multistep_orig = pipe( + num_inference_steps=self.cfg.n_rgb_multistep_orig_steps, + guidance_scale=self.cfg.guidance_scale, + eta=1.0, + latents=latents_noisy.to(pipe.unet.dtype), + image_camera_embeddings=image_camera_embeddings.to( + pipe.unet.dtype + ), + image_latents=self.image_latents.repeat(batch_size, 1, 1, 1).to( + pipe.unet.dtype + ), + cross_attention_kwargs={"scale": 0.0} + if self.vsd_share_model + else None, + output_type="latent", + ).images.to(latents.dtype) + with torch.no_grad(): + rgb_multistep_orig = self.vae_decode( + self.pipe.vae, latents_multistep_orig + ) + guidance_out.update( + { + "latents_multistep_orig": latents_multistep_orig, + "rgb_multistep_orig": rgb_multistep_orig.permute(0, 2, 3, 1), + } + ) + + if self.cfg.guidance_type == "vsd": + guidance_out.update( + { + "loss_train_phi": loss_train_phi, + } + ) + + return guidance_out + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + # clip grad for stable training as demonstrated in + # Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation + # http://arxiv.org/abs/2303.15413 + if self.cfg.grad_clip is not None: + self.grad_clip_val = C(self.cfg.grad_clip, epoch, global_step) + + self.min_step = int( + self.num_train_timesteps * C(self.cfg.min_step_percent, epoch, global_step) + ) + self.max_step = int( + self.num_train_timesteps * C(self.cfg.max_step_percent, epoch, global_step) + ) diff --git a/threestudio/models/isosurface.py b/threestudio/models/isosurface.py new file mode 100644 index 0000000..3a7f149 --- /dev/null +++ b/threestudio/models/isosurface.py @@ -0,0 +1,253 @@ +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.mesh import Mesh +from threestudio.utils.typing import * + + +class IsosurfaceHelper(nn.Module): + points_range: Tuple[float, float] = (0, 1) + + @property + def grid_vertices(self) -> Float[Tensor, "N 3"]: + raise NotImplementedError + + +class MarchingCubeCPUHelper(IsosurfaceHelper): + def __init__(self, resolution: int) -> None: + super().__init__() + self.resolution = resolution + import mcubes + + self.mc_func: Callable = mcubes.marching_cubes + self._grid_vertices: Optional[Float[Tensor, "N3 3"]] = None + self._dummy: Float[Tensor, "..."] + self.register_buffer( + "_dummy", torch.zeros(0, dtype=torch.float32), persistent=False + ) + + @property + def grid_vertices(self) -> Float[Tensor, "N3 3"]: + if self._grid_vertices is None: + # keep the vertices on CPU so that we can support very large resolution + x, y, z = ( + torch.linspace(*self.points_range, self.resolution), + torch.linspace(*self.points_range, self.resolution), + torch.linspace(*self.points_range, self.resolution), + ) + x, y, z = torch.meshgrid(x, y, z, indexing="ij") + verts = torch.cat( + [x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)], dim=-1 + ).reshape(-1, 3) + self._grid_vertices = verts + return self._grid_vertices + + def forward( + self, + level: Float[Tensor, "N3 1"], + deformation: Optional[Float[Tensor, "N3 3"]] = None, + ) -> Mesh: + if deformation is not None: + threestudio.warn( + f"{self.__class__.__name__} does not support deformation. Ignoring." + ) + level = -level.view(self.resolution, self.resolution, self.resolution) + v_pos, t_pos_idx = self.mc_func( + level.detach().cpu().numpy(), 0.0 + ) # transform to numpy + v_pos, t_pos_idx = ( + torch.from_numpy(v_pos).float().to(self._dummy.device), + torch.from_numpy(t_pos_idx.astype(np.int64)).long().to(self._dummy.device), + ) # transform back to torch tensor on CUDA + v_pos = v_pos / (self.resolution - 1.0) + return Mesh(v_pos=v_pos, t_pos_idx=t_pos_idx) + + +class MarchingTetrahedraHelper(IsosurfaceHelper): + def __init__(self, resolution: int, tets_path: str): + super().__init__() + self.resolution = resolution + self.tets_path = tets_path + + self.triangle_table: Float[Tensor, "..."] + self.register_buffer( + "triangle_table", + torch.as_tensor( + [ + [-1, -1, -1, -1, -1, -1], + [1, 0, 2, -1, -1, -1], + [4, 0, 3, -1, -1, -1], + [1, 4, 2, 1, 3, 4], + [3, 1, 5, -1, -1, -1], + [2, 3, 0, 2, 5, 3], + [1, 4, 0, 1, 5, 4], + [4, 2, 5, -1, -1, -1], + [4, 5, 2, -1, -1, -1], + [4, 1, 0, 4, 5, 1], + [3, 2, 0, 3, 5, 2], + [1, 3, 5, -1, -1, -1], + [4, 1, 2, 4, 3, 1], + [3, 0, 4, -1, -1, -1], + [2, 0, 1, -1, -1, -1], + [-1, -1, -1, -1, -1, -1], + ], + dtype=torch.long, + ), + persistent=False, + ) + self.num_triangles_table: Integer[Tensor, "..."] + self.register_buffer( + "num_triangles_table", + torch.as_tensor( + [0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long + ), + persistent=False, + ) + self.base_tet_edges: Integer[Tensor, "..."] + self.register_buffer( + "base_tet_edges", + torch.as_tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long), + persistent=False, + ) + + tets = np.load(self.tets_path) + self._grid_vertices: Float[Tensor, "..."] + self.register_buffer( + "_grid_vertices", + torch.from_numpy(tets["vertices"]).float(), + persistent=False, + ) + self.indices: Integer[Tensor, "..."] + self.register_buffer( + "indices", torch.from_numpy(tets["indices"]).long(), persistent=False + ) + + self._all_edges: Optional[Integer[Tensor, "Ne 2"]] = None + + def normalize_grid_deformation( + self, grid_vertex_offsets: Float[Tensor, "Nv 3"] + ) -> Float[Tensor, "Nv 3"]: + return ( + (self.points_range[1] - self.points_range[0]) + / (self.resolution) # half tet size is approximately 1 / self.resolution + * torch.tanh(grid_vertex_offsets) + ) # FIXME: hard-coded activation + + @property + def grid_vertices(self) -> Float[Tensor, "Nv 3"]: + return self._grid_vertices + + @property + def all_edges(self) -> Integer[Tensor, "Ne 2"]: + if self._all_edges is None: + # compute edges on GPU, or it would be VERY SLOW (basically due to the unique operation) + edges = torch.tensor( + [0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], + dtype=torch.long, + device=self.indices.device, + ) + _all_edges = self.indices[:, edges].reshape(-1, 2) + _all_edges_sorted = torch.sort(_all_edges, dim=1)[0] + _all_edges = torch.unique(_all_edges_sorted, dim=0) + self._all_edges = _all_edges + return self._all_edges + + def sort_edges(self, edges_ex2): + with torch.no_grad(): + order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long() + order = order.unsqueeze(dim=1) + + a = torch.gather(input=edges_ex2, index=order, dim=1) + b = torch.gather(input=edges_ex2, index=1 - order, dim=1) + + return torch.stack([a, b], -1) + + def _forward(self, pos_nx3, sdf_n, tet_fx4): + with torch.no_grad(): + occ_n = sdf_n > 0 + occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) + occ_sum = torch.sum(occ_fx4, -1) + valid_tets = (occ_sum > 0) & (occ_sum < 4) + occ_sum = occ_sum[valid_tets] + + # find all vertices + all_edges = tet_fx4[valid_tets][:, self.base_tet_edges].reshape(-1, 2) + all_edges = self.sort_edges(all_edges) + unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) + + unique_edges = unique_edges.long() + mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 + mapping = ( + torch.ones( + (unique_edges.shape[0]), dtype=torch.long, device=pos_nx3.device + ) + * -1 + ) + mapping[mask_edges] = torch.arange( + mask_edges.sum(), dtype=torch.long, device=pos_nx3.device + ) + idx_map = mapping[idx_map] # map edges to verts + + interp_v = unique_edges[mask_edges] + edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3) + edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1) + edges_to_interp_sdf[:, -1] *= -1 + + denominator = edges_to_interp_sdf.sum(1, keepdim=True) + + edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator + verts = (edges_to_interp * edges_to_interp_sdf).sum(1) + + idx_map = idx_map.reshape(-1, 6) + + v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=pos_nx3.device)) + tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1) + num_triangles = self.num_triangles_table[tetindex] + + # Generate triangle indices + faces = torch.cat( + ( + torch.gather( + input=idx_map[num_triangles == 1], + dim=1, + index=self.triangle_table[tetindex[num_triangles == 1]][:, :3], + ).reshape(-1, 3), + torch.gather( + input=idx_map[num_triangles == 2], + dim=1, + index=self.triangle_table[tetindex[num_triangles == 2]][:, :6], + ).reshape(-1, 3), + ), + dim=0, + ) + + return verts, faces + + def forward( + self, + level: Float[Tensor, "N3 1"], + deformation: Optional[Float[Tensor, "N3 3"]] = None, + ) -> Mesh: + if deformation is not None: + grid_vertices = self.grid_vertices + self.normalize_grid_deformation( + deformation + ) + else: + grid_vertices = self.grid_vertices + + v_pos, t_pos_idx = self._forward(grid_vertices, level, self.indices) + + mesh = Mesh( + v_pos=v_pos, + t_pos_idx=t_pos_idx, + # extras + grid_vertices=grid_vertices, + tet_edges=self.all_edges, + grid_level=level, + grid_deformation=deformation, + ) + + return mesh diff --git a/threestudio/models/materials/__init__.py b/threestudio/models/materials/__init__.py new file mode 100644 index 0000000..85d50ba --- /dev/null +++ b/threestudio/models/materials/__init__.py @@ -0,0 +1,9 @@ +from . import ( + base, + diffuse_with_point_light_material, + hybrid_rgb_latent_material, + neural_radiance_material, + no_material, + pbr_material, + sd_latent_adapter_material, +) diff --git a/threestudio/models/materials/base.py b/threestudio/models/materials/base.py new file mode 100644 index 0000000..9df8f30 --- /dev/null +++ b/threestudio/models/materials/base.py @@ -0,0 +1,29 @@ +import random +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.utils.base import BaseModule +from threestudio.utils.typing import * + + +class BaseMaterial(BaseModule): + @dataclass + class Config(BaseModule.Config): + pass + + cfg: Config + requires_normal: bool = False + requires_tangent: bool = False + + def configure(self): + pass + + def forward(self, *args, **kwargs) -> Float[Tensor, "*B 3"]: + raise NotImplementedError + + def export(self, *args, **kwargs) -> Dict[str, Any]: + return {} diff --git a/threestudio/models/materials/diffuse_with_point_light_material.py b/threestudio/models/materials/diffuse_with_point_light_material.py new file mode 100644 index 0000000..abf0671 --- /dev/null +++ b/threestudio/models/materials/diffuse_with_point_light_material.py @@ -0,0 +1,120 @@ +import random +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.materials.base import BaseMaterial +from threestudio.utils.ops import dot, get_activation +from threestudio.utils.typing import * + + +@threestudio.register("diffuse-with-point-light-material") +class DiffuseWithPointLightMaterial(BaseMaterial): + @dataclass + class Config(BaseMaterial.Config): + ambient_light_color: Tuple[float, float, float] = (0.1, 0.1, 0.1) + diffuse_light_color: Tuple[float, float, float] = (0.9, 0.9, 0.9) + ambient_only_steps: int = 1000 + diffuse_prob: float = 0.75 + textureless_prob: float = 0.5 + albedo_activation: str = "sigmoid" + soft_shading: bool = False + + cfg: Config + + def configure(self) -> None: + self.requires_normal = True + + self.ambient_light_color: Float[Tensor, "3"] + self.register_buffer( + "ambient_light_color", + torch.as_tensor(self.cfg.ambient_light_color, dtype=torch.float32), + ) + self.diffuse_light_color: Float[Tensor, "3"] + self.register_buffer( + "diffuse_light_color", + torch.as_tensor(self.cfg.diffuse_light_color, dtype=torch.float32), + ) + self.ambient_only = False + + def forward( + self, + features: Float[Tensor, "B ... Nf"], + positions: Float[Tensor, "B ... 3"], + shading_normal: Float[Tensor, "B ... 3"], + light_positions: Float[Tensor, "B ... 3"], + ambient_ratio: Optional[float] = None, + shading: Optional[str] = None, + **kwargs, + ) -> Float[Tensor, "B ... 3"]: + albedo = get_activation(self.cfg.albedo_activation)(features[..., :3]) + + if ambient_ratio is not None: + # if ambient ratio is specified, use it + diffuse_light_color = (1 - ambient_ratio) * torch.ones_like( + self.diffuse_light_color + ) + ambient_light_color = ambient_ratio * torch.ones_like( + self.ambient_light_color + ) + elif self.training and self.cfg.soft_shading: + # otherwise if in training and soft shading is enabled, random a ambient ratio + diffuse_light_color = torch.full_like( + self.diffuse_light_color, random.random() + ) + ambient_light_color = 1.0 - diffuse_light_color + else: + # otherwise use the default fixed values + diffuse_light_color = self.diffuse_light_color + ambient_light_color = self.ambient_light_color + + light_directions: Float[Tensor, "B ... 3"] = F.normalize( + light_positions - positions, dim=-1 + ) + diffuse_light: Float[Tensor, "B ... 3"] = ( + dot(shading_normal, light_directions).clamp(min=0.0) * diffuse_light_color + ) + textureless_color = diffuse_light + ambient_light_color + # clamp albedo to [0, 1] to compute shading + color = albedo.clamp(0.0, 1.0) * textureless_color + + if shading is None: + if self.training: + # adopt the same type of augmentation for the whole batch + if self.ambient_only or random.random() > self.cfg.diffuse_prob: + shading = "albedo" + elif random.random() < self.cfg.textureless_prob: + shading = "textureless" + else: + shading = "diffuse" + else: + if self.ambient_only: + shading = "albedo" + else: + # return shaded color by default in evaluation + shading = "diffuse" + + # multiply by 0 to prevent checking for unused parameters in DDP + if shading == "albedo": + return albedo + textureless_color * 0 + elif shading == "textureless": + return albedo * 0 + textureless_color + elif shading == "diffuse": + return color + else: + raise ValueError(f"Unknown shading type {shading}") + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + if global_step < self.cfg.ambient_only_steps: + self.ambient_only = True + else: + self.ambient_only = False + + def export(self, features: Float[Tensor, "*N Nf"], **kwargs) -> Dict[str, Any]: + albedo = get_activation(self.cfg.albedo_activation)(features[..., :3]).clamp( + 0.0, 1.0 + ) + return {"albedo": albedo} diff --git a/threestudio/models/materials/hybrid_rgb_latent_material.py b/threestudio/models/materials/hybrid_rgb_latent_material.py new file mode 100644 index 0000000..f5f2c51 --- /dev/null +++ b/threestudio/models/materials/hybrid_rgb_latent_material.py @@ -0,0 +1,36 @@ +import random +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.materials.base import BaseMaterial +from threestudio.models.networks import get_encoding, get_mlp +from threestudio.utils.ops import dot, get_activation +from threestudio.utils.typing import * + + +@threestudio.register("hybrid-rgb-latent-material") +class HybridRGBLatentMaterial(BaseMaterial): + @dataclass + class Config(BaseMaterial.Config): + n_output_dims: int = 3 + color_activation: str = "sigmoid" + requires_normal: bool = True + + cfg: Config + + def configure(self) -> None: + self.requires_normal = self.cfg.requires_normal + + def forward( + self, features: Float[Tensor, "B ... Nf"], **kwargs + ) -> Float[Tensor, "B ... Nc"]: + assert ( + features.shape[-1] == self.cfg.n_output_dims + ), f"Expected {self.cfg.n_output_dims} output dims, only got {features.shape[-1]} dims input." + color = features + color[..., :3] = get_activation(self.cfg.color_activation)(color[..., :3]) + return color diff --git a/threestudio/models/materials/neural_radiance_material.py b/threestudio/models/materials/neural_radiance_material.py new file mode 100644 index 0000000..c9dcc50 --- /dev/null +++ b/threestudio/models/materials/neural_radiance_material.py @@ -0,0 +1,54 @@ +import random +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.materials.base import BaseMaterial +from threestudio.models.networks import get_encoding, get_mlp +from threestudio.utils.ops import dot, get_activation +from threestudio.utils.typing import * + + +@threestudio.register("neural-radiance-material") +class NeuralRadianceMaterial(BaseMaterial): + @dataclass + class Config(BaseMaterial.Config): + input_feature_dims: int = 8 + color_activation: str = "sigmoid" + dir_encoding_config: dict = field( + default_factory=lambda: {"otype": "SphericalHarmonics", "degree": 3} + ) + mlp_network_config: dict = field( + default_factory=lambda: { + "otype": "FullyFusedMLP", + "activation": "ReLU", + "n_neurons": 16, + "n_hidden_layers": 2, + } + ) + + cfg: Config + + def configure(self) -> None: + self.encoding = get_encoding(3, self.cfg.dir_encoding_config) + self.n_input_dims = self.cfg.input_feature_dims + self.encoding.n_output_dims # type: ignore + self.network = get_mlp(self.n_input_dims, 3, self.cfg.mlp_network_config) + + def forward( + self, + features: Float[Tensor, "*B Nf"], + viewdirs: Float[Tensor, "*B 3"], + **kwargs, + ) -> Float[Tensor, "*B 3"]: + # viewdirs and normals must be normalized before passing to this function + viewdirs = (viewdirs + 1.0) / 2.0 # (-1, 1) => (0, 1) + viewdirs_embd = self.encoding(viewdirs.view(-1, 3)) + network_inp = torch.cat( + [features.view(-1, features.shape[-1]), viewdirs_embd], dim=-1 + ) + color = self.network(network_inp).view(*features.shape[:-1], 3) + color = get_activation(self.cfg.color_activation)(color) + return color diff --git a/threestudio/models/materials/no_material.py b/threestudio/models/materials/no_material.py new file mode 100644 index 0000000..402a951 --- /dev/null +++ b/threestudio/models/materials/no_material.py @@ -0,0 +1,63 @@ +import random +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.materials.base import BaseMaterial +from threestudio.models.networks import get_encoding, get_mlp +from threestudio.utils.ops import dot, get_activation +from threestudio.utils.typing import * + + +@threestudio.register("no-material") +class NoMaterial(BaseMaterial): + @dataclass + class Config(BaseMaterial.Config): + n_output_dims: int = 3 + color_activation: str = "sigmoid" + input_feature_dims: Optional[int] = None + mlp_network_config: Optional[dict] = None + requires_normal: bool = False + + cfg: Config + + def configure(self) -> None: + self.use_network = False + if ( + self.cfg.input_feature_dims is not None + and self.cfg.mlp_network_config is not None + ): + self.network = get_mlp( + self.cfg.input_feature_dims, + self.cfg.n_output_dims, + self.cfg.mlp_network_config, + ) + self.use_network = True + self.requires_normal = self.cfg.requires_normal + + def forward( + self, features: Float[Tensor, "B ... Nf"], **kwargs + ) -> Float[Tensor, "B ... Nc"]: + if not self.use_network: + assert ( + features.shape[-1] == self.cfg.n_output_dims + ), f"Expected {self.cfg.n_output_dims} output dims, only got {features.shape[-1]} dims input." + color = get_activation(self.cfg.color_activation)(features) + else: + color = self.network(features.view(-1, features.shape[-1])).view( + *features.shape[:-1], self.cfg.n_output_dims + ) + color = get_activation(self.cfg.color_activation)(color) + return color + + def export(self, features: Float[Tensor, "*N Nf"], **kwargs) -> Dict[str, Any]: + color = self(features, **kwargs).clamp(0, 1) + assert color.shape[-1] >= 3, "Output color must have at least 3 channels" + if color.shape[-1] > 3: + threestudio.warn( + "Output color has >3 channels, treating the first 3 as RGB" + ) + return {"albedo": color[..., :3]} diff --git a/threestudio/models/materials/pbr_material.py b/threestudio/models/materials/pbr_material.py new file mode 100644 index 0000000..c81f67b --- /dev/null +++ b/threestudio/models/materials/pbr_material.py @@ -0,0 +1,143 @@ +import random +from dataclasses import dataclass, field + +import envlight +import numpy as np +import nvdiffrast.torch as dr +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.materials.base import BaseMaterial +from threestudio.utils.ops import get_activation +from threestudio.utils.typing import * + + +@threestudio.register("pbr-material") +class PBRMaterial(BaseMaterial): + @dataclass + class Config(BaseMaterial.Config): + material_activation: str = "sigmoid" + environment_texture: str = "load/lights/mud_road_puresky_1k.hdr" + environment_scale: float = 2.0 + min_metallic: float = 0.0 + max_metallic: float = 0.9 + min_roughness: float = 0.08 + max_roughness: float = 0.9 + use_bump: bool = True + + cfg: Config + + def configure(self) -> None: + self.requires_normal = True + self.requires_tangent = self.cfg.use_bump + + self.light = envlight.EnvLight( + self.cfg.environment_texture, scale=self.cfg.environment_scale + ) + + FG_LUT = torch.from_numpy( + np.fromfile("load/lights/bsdf_256_256.bin", dtype=np.float32).reshape( + 1, 256, 256, 2 + ) + ) + self.register_buffer("FG_LUT", FG_LUT) + + def forward( + self, + features: Float[Tensor, "*B Nf"], + viewdirs: Float[Tensor, "*B 3"], + shading_normal: Float[Tensor, "B ... 3"], + tangent: Optional[Float[Tensor, "B ... 3"]] = None, + **kwargs, + ) -> Float[Tensor, "*B 3"]: + prefix_shape = features.shape[:-1] + + material: Float[Tensor, "*B Nf"] = get_activation(self.cfg.material_activation)( + features + ) + albedo = material[..., :3] + metallic = ( + material[..., 3:4] * (self.cfg.max_metallic - self.cfg.min_metallic) + + self.cfg.min_metallic + ) + roughness = ( + material[..., 4:5] * (self.cfg.max_roughness - self.cfg.min_roughness) + + self.cfg.min_roughness + ) + + if self.cfg.use_bump: + assert tangent is not None + # perturb_normal is a delta to the initialization [0, 0, 1] + perturb_normal = (material[..., 5:8] * 2 - 1) + torch.tensor( + [0, 0, 1], dtype=material.dtype, device=material.device + ) + perturb_normal = F.normalize(perturb_normal.clamp(-1, 1), dim=-1) + + # apply normal perturbation in tangent space + bitangent = F.normalize(torch.cross(tangent, shading_normal), dim=-1) + shading_normal = ( + tangent * perturb_normal[..., 0:1] + - bitangent * perturb_normal[..., 1:2] + + shading_normal * perturb_normal[..., 2:3] + ) + shading_normal = F.normalize(shading_normal, dim=-1) + + v = -viewdirs + n_dot_v = (shading_normal * v).sum(-1, keepdim=True) + reflective = n_dot_v * shading_normal * 2 - v + + diffuse_albedo = (1 - metallic) * albedo + + fg_uv = torch.cat([n_dot_v, roughness], -1).clamp(0, 1) + fg = dr.texture( + self.FG_LUT, + fg_uv.reshape(1, -1, 1, 2).contiguous(), + filter_mode="linear", + boundary_mode="clamp", + ).reshape(*prefix_shape, 2) + F0 = (1 - metallic) * 0.04 + metallic * albedo + specular_albedo = F0 * fg[:, 0:1] + fg[:, 1:2] + + diffuse_light = self.light(shading_normal) + specular_light = self.light(reflective, roughness) + + color = diffuse_albedo * diffuse_light + specular_albedo * specular_light + color = color.clamp(0.0, 1.0) + + return color + + def export(self, features: Float[Tensor, "*N Nf"], **kwargs) -> Dict[str, Any]: + material: Float[Tensor, "*N Nf"] = get_activation(self.cfg.material_activation)( + features + ) + albedo = material[..., :3] + metallic = ( + material[..., 3:4] * (self.cfg.max_metallic - self.cfg.min_metallic) + + self.cfg.min_metallic + ) + roughness = ( + material[..., 4:5] * (self.cfg.max_roughness - self.cfg.min_roughness) + + self.cfg.min_roughness + ) + + out = { + "albedo": albedo, + "metallic": metallic, + "roughness": roughness, + } + + if self.cfg.use_bump: + perturb_normal = (material[..., 5:8] * 2 - 1) + torch.tensor( + [0, 0, 1], dtype=material.dtype, device=material.device + ) + perturb_normal = F.normalize(perturb_normal.clamp(-1, 1), dim=-1) + perturb_normal = (perturb_normal + 1) / 2 + out.update( + { + "bump": perturb_normal, + } + ) + + return out diff --git a/threestudio/models/materials/sd_latent_adapter_material.py b/threestudio/models/materials/sd_latent_adapter_material.py new file mode 100644 index 0000000..046cabb --- /dev/null +++ b/threestudio/models/materials/sd_latent_adapter_material.py @@ -0,0 +1,42 @@ +import random +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.materials.base import BaseMaterial +from threestudio.utils.typing import * + + +@threestudio.register("sd-latent-adapter-material") +class StableDiffusionLatentAdapterMaterial(BaseMaterial): + @dataclass + class Config(BaseMaterial.Config): + pass + + cfg: Config + + def configure(self) -> None: + adapter = nn.Parameter( + torch.as_tensor( + [ + # R G B + [0.298, 0.207, 0.208], # L1 + [0.187, 0.286, 0.173], # L2 + [-0.158, 0.189, 0.264], # L3 + [-0.184, -0.271, -0.473], # L4 + ] + ) + ) + self.register_parameter("adapter", adapter) + + def forward( + self, features: Float[Tensor, "B ... 4"], **kwargs + ) -> Float[Tensor, "B ... 3"]: + assert features.shape[-1] == 4 + color = features @ self.adapter + color = (color + 1) / 2 + color = color.clamp(0.0, 1.0) + return color diff --git a/threestudio/models/mesh.py b/threestudio/models/mesh.py new file mode 100644 index 0000000..232fa7c --- /dev/null +++ b/threestudio/models/mesh.py @@ -0,0 +1,309 @@ +from __future__ import annotations + +import numpy as np +import torch +import torch.nn.functional as F + +import threestudio +from threestudio.utils.ops import dot +from threestudio.utils.typing import * + + +class Mesh: + def __init__( + self, v_pos: Float[Tensor, "Nv 3"], t_pos_idx: Integer[Tensor, "Nf 3"], **kwargs + ) -> None: + self.v_pos: Float[Tensor, "Nv 3"] = v_pos + self.t_pos_idx: Integer[Tensor, "Nf 3"] = t_pos_idx + self._v_nrm: Optional[Float[Tensor, "Nv 3"]] = None + self._v_tng: Optional[Float[Tensor, "Nv 3"]] = None + self._v_tex: Optional[Float[Tensor, "Nt 3"]] = None + self._t_tex_idx: Optional[Float[Tensor, "Nf 3"]] = None + self._v_rgb: Optional[Float[Tensor, "Nv 3"]] = None + self._edges: Optional[Integer[Tensor, "Ne 2"]] = None + self.extras: Dict[str, Any] = {} + for k, v in kwargs.items(): + self.add_extra(k, v) + + def add_extra(self, k, v) -> None: + self.extras[k] = v + + def remove_outlier(self, outlier_n_faces_threshold: Union[int, float]) -> Mesh: + if self.requires_grad: + threestudio.debug("Mesh is differentiable, not removing outliers") + return self + + # use trimesh to first split the mesh into connected components + # then remove the components with less than n_face_threshold faces + import trimesh + + # construct a trimesh object + mesh = trimesh.Trimesh( + vertices=self.v_pos.detach().cpu().numpy(), + faces=self.t_pos_idx.detach().cpu().numpy(), + ) + + # split the mesh into connected components + components = mesh.split(only_watertight=False) + # log the number of faces in each component + threestudio.debug( + "Mesh has {} components, with faces: {}".format( + len(components), [c.faces.shape[0] for c in components] + ) + ) + + n_faces_threshold: int + if isinstance(outlier_n_faces_threshold, float): + # set the threshold to the number of faces in the largest component multiplied by outlier_n_faces_threshold + n_faces_threshold = int( + max([c.faces.shape[0] for c in components]) * outlier_n_faces_threshold + ) + else: + # set the threshold directly to outlier_n_faces_threshold + n_faces_threshold = outlier_n_faces_threshold + + # log the threshold + threestudio.debug( + "Removing components with less than {} faces".format(n_faces_threshold) + ) + + # remove the components with less than n_face_threshold faces + components = [c for c in components if c.faces.shape[0] >= n_faces_threshold] + + # log the number of faces in each component after removing outliers + threestudio.debug( + "Mesh has {} components after removing outliers, with faces: {}".format( + len(components), [c.faces.shape[0] for c in components] + ) + ) + # merge the components + mesh = trimesh.util.concatenate(components) + + # convert back to our mesh format + v_pos = torch.from_numpy(mesh.vertices).to(self.v_pos) + t_pos_idx = torch.from_numpy(mesh.faces).to(self.t_pos_idx) + + clean_mesh = Mesh(v_pos, t_pos_idx) + # keep the extras unchanged + + if len(self.extras) > 0: + clean_mesh.extras = self.extras + threestudio.debug( + f"The following extra attributes are inherited from the original mesh unchanged: {list(self.extras.keys())}" + ) + return clean_mesh + + @property + def requires_grad(self): + return self.v_pos.requires_grad + + @property + def v_nrm(self): + if self._v_nrm is None: + self._v_nrm = self._compute_vertex_normal() + return self._v_nrm + + @property + def v_tng(self): + if self._v_tng is None: + self._v_tng = self._compute_vertex_tangent() + return self._v_tng + + @property + def v_tex(self): + if self._v_tex is None: + self._v_tex, self._t_tex_idx = self._unwrap_uv() + return self._v_tex + + @property + def t_tex_idx(self): + if self._t_tex_idx is None: + self._v_tex, self._t_tex_idx = self._unwrap_uv() + return self._t_tex_idx + + @property + def v_rgb(self): + return self._v_rgb + + @property + def edges(self): + if self._edges is None: + self._edges = self._compute_edges() + return self._edges + + def _compute_vertex_normal(self): + i0 = self.t_pos_idx[:, 0] + i1 = self.t_pos_idx[:, 1] + i2 = self.t_pos_idx[:, 2] + + v0 = self.v_pos[i0, :] + v1 = self.v_pos[i1, :] + v2 = self.v_pos[i2, :] + + face_normals = torch.cross(v1 - v0, v2 - v0) + + # Splat face normals to vertices + v_nrm = torch.zeros_like(self.v_pos) + v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals) + v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals) + v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals) + + # Normalize, replace zero (degenerated) normals with some default value + v_nrm = torch.where( + dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm) + ) + v_nrm = F.normalize(v_nrm, dim=1) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(v_nrm)) + + return v_nrm + + def _compute_vertex_tangent(self): + vn_idx = [None] * 3 + pos = [None] * 3 + tex = [None] * 3 + for i in range(0, 3): + pos[i] = self.v_pos[self.t_pos_idx[:, i]] + tex[i] = self.v_tex[self.t_tex_idx[:, i]] + # t_nrm_idx is always the same as t_pos_idx + vn_idx[i] = self.t_pos_idx[:, i] + + tangents = torch.zeros_like(self.v_nrm) + tansum = torch.zeros_like(self.v_nrm) + + # Compute tangent space for each triangle + uve1 = tex[1] - tex[0] + uve2 = tex[2] - tex[0] + pe1 = pos[1] - pos[0] + pe2 = pos[2] - pos[0] + + nom = pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2] + denom = uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1] + + # Avoid division by zero for degenerated texture coordinates + tang = nom / torch.where( + denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6) + ) + + # Update all 3 vertices + for i in range(0, 3): + idx = vn_idx[i][:, None].repeat(1, 3) + tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang + tansum.scatter_add_( + 0, idx, torch.ones_like(tang) + ) # tansum[n_i] = tansum[n_i] + 1 + tangents = tangents / tansum + + # Normalize and make sure tangent is perpendicular to normal + tangents = F.normalize(tangents, dim=1) + tangents = F.normalize(tangents - dot(tangents, self.v_nrm) * self.v_nrm) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(tangents)) + + return tangents + + def _unwrap_uv( + self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {} + ): + threestudio.info("Using xatlas to perform UV unwrapping, may take a while ...") + + import xatlas + + atlas = xatlas.Atlas() + atlas.add_mesh( + self.v_pos.detach().cpu().numpy(), + self.t_pos_idx.cpu().numpy(), + ) + co = xatlas.ChartOptions() + po = xatlas.PackOptions() + for k, v in xatlas_chart_options.items(): + setattr(co, k, v) + for k, v in xatlas_pack_options.items(): + setattr(po, k, v) + atlas.generate(co, po) + vmapping, indices, uvs = atlas.get_mesh(0) + vmapping = ( + torch.from_numpy( + vmapping.astype(np.uint64, casting="same_kind").view(np.int64) + ) + .to(self.v_pos.device) + .long() + ) + uvs = torch.from_numpy(uvs).to(self.v_pos.device).float() + indices = ( + torch.from_numpy( + indices.astype(np.uint64, casting="same_kind").view(np.int64) + ) + .to(self.v_pos.device) + .long() + ) + return uvs, indices + + def unwrap_uv( + self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {} + ): + self._v_tex, self._t_tex_idx = self._unwrap_uv( + xatlas_chart_options, xatlas_pack_options + ) + + def set_vertex_color(self, v_rgb): + assert v_rgb.shape[0] == self.v_pos.shape[0] + self._v_rgb = v_rgb + + def _compute_edges(self): + # Compute edges + edges = torch.cat( + [ + self.t_pos_idx[:, [0, 1]], + self.t_pos_idx[:, [1, 2]], + self.t_pos_idx[:, [2, 0]], + ], + dim=0, + ) + edges = edges.sort()[0] + edges = torch.unique(edges, dim=0) + return edges + + def normal_consistency(self) -> Float[Tensor, ""]: + edge_nrm: Float[Tensor, "Ne 2 3"] = self.v_nrm[self.edges] + nc = ( + 1.0 - torch.cosine_similarity(edge_nrm[:, 0], edge_nrm[:, 1], dim=-1) + ).mean() + return nc + + def _laplacian_uniform(self): + # from stable-dreamfusion + # https://github.com/ashawkey/stable-dreamfusion/blob/8fb3613e9e4cd1ded1066b46e80ca801dfb9fd06/nerf/renderer.py#L224 + verts, faces = self.v_pos, self.t_pos_idx + + V = verts.shape[0] + F = faces.shape[0] + + # Neighbor indices + ii = faces[:, [1, 2, 0]].flatten() + jj = faces[:, [2, 0, 1]].flatten() + adj = torch.stack([torch.cat([ii, jj]), torch.cat([jj, ii])], dim=0).unique( + dim=1 + ) + adj_values = torch.ones(adj.shape[1]).to(verts) + + # Diagonal indices + diag_idx = adj[0] + + # Build the sparse matrix + idx = torch.cat((adj, torch.stack((diag_idx, diag_idx), dim=0)), dim=1) + values = torch.cat((-adj_values, adj_values)) + + # The coalesce operation sums the duplicate indices, resulting in the + # correct diagonal + return torch.sparse_coo_tensor(idx, values, (V, V)).coalesce() + + def laplacian(self) -> Float[Tensor, ""]: + with torch.no_grad(): + L = self._laplacian_uniform() + loss = L.mm(self.v_pos) + loss = loss.norm(dim=1) + loss = loss.mean() + return loss diff --git a/threestudio/models/networks.py b/threestudio/models/networks.py new file mode 100644 index 0000000..cfe986e --- /dev/null +++ b/threestudio/models/networks.py @@ -0,0 +1,411 @@ +import math + +import tinycudann as tcnn +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.utils.base import Updateable +from threestudio.utils.config import config_to_primitive +from threestudio.utils.misc import get_rank +from threestudio.utils.ops import get_activation +from threestudio.utils.typing import * + + +class ProgressiveBandFrequency(nn.Module, Updateable): + def __init__(self, in_channels: int, config: dict): + super().__init__() + self.N_freqs = config["n_frequencies"] + self.in_channels, self.n_input_dims = in_channels, in_channels + self.funcs = [torch.sin, torch.cos] + self.freq_bands = 2 ** torch.linspace(0, self.N_freqs - 1, self.N_freqs) + self.n_output_dims = self.in_channels * (len(self.funcs) * self.N_freqs) + self.n_masking_step = config.get("n_masking_step", 0) + self.update_step( + None, None + ) # mask should be updated at the beginning each step + + def forward(self, x): + out = [] + for freq, mask in zip(self.freq_bands, self.mask): + for func in self.funcs: + out += [func(freq * x) * mask] + return torch.cat(out, -1) + + def update_step(self, epoch, global_step, on_load_weights=False): + if self.n_masking_step <= 0 or global_step is None: + self.mask = torch.ones(self.N_freqs, dtype=torch.float32) + else: + self.mask = ( + 1.0 + - torch.cos( + math.pi + * ( + global_step / self.n_masking_step * self.N_freqs + - torch.arange(0, self.N_freqs) + ).clamp(0, 1) + ) + ) / 2.0 + threestudio.debug( + f"Update mask: {global_step}/{self.n_masking_step} {self.mask}" + ) + + +class TCNNEncoding(nn.Module): + def __init__(self, in_channels, config, dtype=torch.float32) -> None: + super().__init__() + self.n_input_dims = in_channels + with torch.cuda.device(get_rank()): + self.encoding = tcnn.Encoding(in_channels, config, dtype=dtype) + self.n_output_dims = self.encoding.n_output_dims + + def forward(self, x): + return self.encoding(x) + + +# 4D implicit decomposition of space and time (4D-fy) +class TCNNEncodingSpatialTime(nn.Module): + def __init__( + self, in_channels, config, dtype=torch.float32, init_time_zero=False + ) -> None: + super().__init__() + self.n_input_dims = in_channels + config["otype"] = "HashGrid" + self.num_frames = 1 # config["num_frames"] + self.static = config["static"] + self.cfg = config_to_primitive(config) + self.cfg_time = self.cfg + self.n_key_frames = config.get("n_key_frames", 1) + with torch.cuda.device(get_rank()): + self.encoding = tcnn.Encoding(self.n_input_dims, self.cfg, dtype=dtype) + self.encoding_time = tcnn.Encoding( + self.n_input_dims + 1, self.cfg_time, dtype=dtype + ) + self.n_output_dims = self.encoding.n_output_dims + self.frame_time = None + if self.static: + self.set_temp_param_grad(requires_grad=False) + self.use_key_frame = config.get("use_key_frame", False) + self.is_video = True + self.update_occ_grid = False + + def set_temp_param_grad(self, requires_grad=False): + self.set_param_grad(self.encoding_time, requires_grad=requires_grad) + + def set_param_grad(self, param_list, requires_grad=False): + if isinstance(param_list, nn.Parameter): + param_list.requires_grad = requires_grad + else: + for param in param_list.parameters(): + param.requires_grad = requires_grad + + def forward(self, x): + # TODO frame_time only supports batch_size == 1 cases + if self.update_occ_grid and not isinstance(self.frame_time, float): + frame_time = self.frame_time + else: + if (self.static or not self.training) and self.frame_time is None: + frame_time = torch.zeros( + (self.num_frames, 1), device=x.device, dtype=x.dtype + ).expand(x.shape[0], 1) + else: + if self.frame_time is None: + frame_time = 0.0 + else: + frame_time = self.frame_time + frame_time = ( + torch.ones((self.num_frames, 1), device=x.device, dtype=x.dtype) + * frame_time + ).expand(x.shape[0], 1) + frame_time = frame_time.view(-1, 1) + enc_space = self.encoding(x) + x_frame_time = torch.cat((x, frame_time), 1) + enc_space_time = self.encoding_time(x_frame_time) + enc = enc_space + enc_space_time + return enc + + +class ProgressiveBandHashGrid(nn.Module, Updateable): + def __init__(self, in_channels, config, dtype=torch.float32): + super().__init__() + self.n_input_dims = in_channels + encoding_config = config.copy() + encoding_config["otype"] = "Grid" + encoding_config["type"] = "Hash" + with torch.cuda.device(get_rank()): + self.encoding = tcnn.Encoding(in_channels, encoding_config, dtype=dtype) + self.n_output_dims = self.encoding.n_output_dims + self.n_level = config["n_levels"] + self.n_features_per_level = config["n_features_per_level"] + self.start_level, self.start_step, self.update_steps = ( + config["start_level"], + config["start_step"], + config["update_steps"], + ) + self.current_level = self.start_level + self.mask = torch.zeros( + self.n_level * self.n_features_per_level, + dtype=torch.float32, + device=get_rank(), + ) + + def forward(self, x): + enc = self.encoding(x) + enc = enc * self.mask + return enc + + def update_step(self, epoch, global_step, on_load_weights=False): + current_level = min( + self.start_level + + max(global_step - self.start_step, 0) // self.update_steps, + self.n_level, + ) + if current_level > self.current_level: + threestudio.debug(f"Update current level to {current_level}") + self.current_level = current_level + self.mask[: self.current_level * self.n_features_per_level] = 1.0 + + +class CompositeEncoding(nn.Module, Updateable): + def __init__(self, encoding, include_xyz=False, xyz_scale=2.0, xyz_offset=-1.0): + super(CompositeEncoding, self).__init__() + self.encoding = encoding + self.include_xyz, self.xyz_scale, self.xyz_offset = ( + include_xyz, + xyz_scale, + xyz_offset, + ) + self.n_output_dims = ( + int(self.include_xyz) * self.encoding.n_input_dims + + self.encoding.n_output_dims + ) + + def forward(self, x, *args): + return ( + self.encoding(x, *args) + if not self.include_xyz + else torch.cat( + [x * self.xyz_scale + self.xyz_offset, self.encoding(x, *args)], dim=-1 + ) + ) + + +def get_encoding(n_input_dims: int, config) -> nn.Module: + # input suppose to be range [0, 1] + encoding: nn.Module + if config.otype == "ProgressiveBandFrequency": + encoding = ProgressiveBandFrequency(n_input_dims, config_to_primitive(config)) + elif config.otype == "ProgressiveBandHashGrid": + encoding = ProgressiveBandHashGrid(n_input_dims, config_to_primitive(config)) + elif config.otype == "HashGridSpatialTime": + encoding = TCNNEncodingSpatialTime(n_input_dims, config) # 4D-fy encoding + else: + encoding = TCNNEncoding(n_input_dims, config_to_primitive(config)) + encoding = CompositeEncoding( + encoding, + include_xyz=config.get("include_xyz", False), + xyz_scale=2.0, + xyz_offset=-1.0, + ) # FIXME: hard coded + return encoding + + +class VanillaMLP(nn.Module): + def __init__(self, dim_in: int, dim_out: int, config: dict): + super().__init__() + self.n_neurons, self.n_hidden_layers = ( + config["n_neurons"], + config["n_hidden_layers"], + ) + layers = [ + self.make_linear(dim_in, self.n_neurons, is_first=True, is_last=False), + self.make_activation(), + ] + for i in range(self.n_hidden_layers - 1): + layers += [ + self.make_linear( + self.n_neurons, self.n_neurons, is_first=False, is_last=False + ), + self.make_activation(), + ] + layers += [ + self.make_linear(self.n_neurons, dim_out, is_first=False, is_last=True) + ] + self.layers = nn.Sequential(*layers) + self.output_activation = get_activation(config.get("output_activation", None)) + + def forward(self, x): + # disable autocast + # strange that the parameters will have empty gradients if autocast is enabled in AMP + with torch.cuda.amp.autocast(enabled=False): + x = self.layers(x) + x = self.output_activation(x) + return x + + def make_linear(self, dim_in, dim_out, is_first, is_last): + layer = nn.Linear(dim_in, dim_out, bias=False) + return layer + + def make_activation(self): + return nn.ReLU(inplace=True) + + +class SphereInitVanillaMLP(nn.Module): + def __init__(self, dim_in, dim_out, config): + super().__init__() + self.n_neurons, self.n_hidden_layers = ( + config["n_neurons"], + config["n_hidden_layers"], + ) + self.sphere_init, self.weight_norm = True, True + self.sphere_init_radius = config["sphere_init_radius"] + self.sphere_init_inside_out = config["inside_out"] + + self.layers = [ + self.make_linear(dim_in, self.n_neurons, is_first=True, is_last=False), + self.make_activation(), + ] + for i in range(self.n_hidden_layers - 1): + self.layers += [ + self.make_linear( + self.n_neurons, self.n_neurons, is_first=False, is_last=False + ), + self.make_activation(), + ] + self.layers += [ + self.make_linear(self.n_neurons, dim_out, is_first=False, is_last=True) + ] + self.layers = nn.Sequential(*self.layers) + self.output_activation = get_activation(config.get("output_activation", None)) + + def forward(self, x): + # disable autocast + # strange that the parameters will have empty gradients if autocast is enabled in AMP + with torch.cuda.amp.autocast(enabled=False): + x = self.layers(x) + x = self.output_activation(x) + return x + + def make_linear(self, dim_in, dim_out, is_first, is_last): + layer = nn.Linear(dim_in, dim_out, bias=True) + + if is_last: + if not self.sphere_init_inside_out: + torch.nn.init.constant_(layer.bias, -self.sphere_init_radius) + torch.nn.init.normal_( + layer.weight, + mean=math.sqrt(math.pi) / math.sqrt(dim_in), + std=0.0001, + ) + else: + torch.nn.init.constant_(layer.bias, self.sphere_init_radius) + torch.nn.init.normal_( + layer.weight, + mean=-math.sqrt(math.pi) / math.sqrt(dim_in), + std=0.0001, + ) + elif is_first: + torch.nn.init.constant_(layer.bias, 0.0) + torch.nn.init.constant_(layer.weight[:, 3:], 0.0) + torch.nn.init.normal_( + layer.weight[:, :3], 0.0, math.sqrt(2) / math.sqrt(dim_out) + ) + else: + torch.nn.init.constant_(layer.bias, 0.0) + torch.nn.init.normal_(layer.weight, 0.0, math.sqrt(2) / math.sqrt(dim_out)) + + if self.weight_norm: + layer = nn.utils.weight_norm(layer) + return layer + + def make_activation(self): + return nn.Softplus(beta=100) + + +class TCNNNetwork(nn.Module): + def __init__(self, dim_in: int, dim_out: int, config: dict) -> None: + super().__init__() + with torch.cuda.device(get_rank()): + self.network = tcnn.Network(dim_in, dim_out, config) + + def forward(self, x): + return self.network(x).float() # transform to float32 + + +def get_mlp(n_input_dims, n_output_dims, config) -> nn.Module: + network: nn.Module + if config.otype == "VanillaMLP": + network = VanillaMLP(n_input_dims, n_output_dims, config_to_primitive(config)) + elif config.otype == "SphereInitVanillaMLP": + network = SphereInitVanillaMLP( + n_input_dims, n_output_dims, config_to_primitive(config) + ) + else: + assert ( + config.get("sphere_init", False) is False + ), "sphere_init=True only supported by VanillaMLP" + network = TCNNNetwork(n_input_dims, n_output_dims, config_to_primitive(config)) + return network + + +class NetworkWithInputEncoding(nn.Module, Updateable): + def __init__(self, encoding, network): + super().__init__() + self.encoding, self.network = encoding, network + + def forward(self, x): + return self.network(self.encoding(x)) + + +class TCNNNetworkWithInputEncoding(nn.Module): + def __init__( + self, + n_input_dims: int, + n_output_dims: int, + encoding_config: dict, + network_config: dict, + ) -> None: + super().__init__() + with torch.cuda.device(get_rank()): + self.network_with_input_encoding = tcnn.NetworkWithInputEncoding( + n_input_dims=n_input_dims, + n_output_dims=n_output_dims, + encoding_config=encoding_config, + network_config=network_config, + ) + + def forward(self, x): + return self.network_with_input_encoding(x).float() # transform to float32 + + +def create_network_with_input_encoding( + n_input_dims: int, n_output_dims: int, encoding_config, network_config +) -> nn.Module: + # input suppose to be range [0, 1] + network_with_input_encoding: nn.Module + if encoding_config.otype in [ + "VanillaFrequency", + "ProgressiveBandHashGrid", + ] or network_config.otype in ["VanillaMLP", "SphereInitVanillaMLP"]: + encoding = get_encoding(n_input_dims, encoding_config) + network = get_mlp(encoding.n_output_dims, n_output_dims, network_config) + network_with_input_encoding = NetworkWithInputEncoding(encoding, network) + else: + network_with_input_encoding = TCNNNetworkWithInputEncoding( + n_input_dims=n_input_dims, + n_output_dims=n_output_dims, + encoding_config=config_to_primitive(encoding_config), + network_config=config_to_primitive(network_config), + ) + return network_with_input_encoding + + +class ToDTypeWrapper(nn.Module): + def __init__(self, module: nn.Module, dtype: torch.dtype): + super().__init__() + self.module = module + self.dtype = dtype + + def forward(self, x: Float[Tensor, "..."]) -> Float[Tensor, "..."]: + return self.module(x).to(self.dtype) diff --git a/threestudio/models/prompt_processors/__init__.py b/threestudio/models/prompt_processors/__init__.py new file mode 100644 index 0000000..eb45c70 --- /dev/null +++ b/threestudio/models/prompt_processors/__init__.py @@ -0,0 +1,6 @@ +from . import ( + base, + deepfloyd_prompt_processor, + dummy_prompt_processor, + stable_diffusion_prompt_processor, +) diff --git a/threestudio/models/prompt_processors/base.py b/threestudio/models/prompt_processors/base.py new file mode 100644 index 0000000..9a402da --- /dev/null +++ b/threestudio/models/prompt_processors/base.py @@ -0,0 +1,523 @@ +import json +import os +from dataclasses import dataclass, field + +import torch +import torch.multiprocessing as mp +import torch.nn as nn +import torch.nn.functional as F +from pytorch_lightning.utilities.rank_zero import rank_zero_only +from transformers import AutoTokenizer, BertForMaskedLM + +import threestudio +from threestudio.utils.base import BaseObject +from threestudio.utils.misc import barrier, cleanup, get_rank +from threestudio.utils.ops import shifted_cosine_decay, shifted_expotional_decay +from threestudio.utils.typing import * + + +def hash_prompt(model: str, prompt: str) -> str: + import hashlib + + identifier = f"{model}-{prompt}" + return hashlib.md5(identifier.encode()).hexdigest() + + +@dataclass +class DirectionConfig: + name: str + prompt: Callable[[str], str] + negative_prompt: Callable[[str], str] + condition: Callable[ + [Float[Tensor, "B"], Float[Tensor, "B"], Float[Tensor, "B"]], + Float[Tensor, "B"], + ] + + +@dataclass +class PromptProcessorOutput: + text_embeddings: Float[Tensor, "N Nf"] + uncond_text_embeddings: Float[Tensor, "N Nf"] + text_embeddings_vd: Float[Tensor, "Nv N Nf"] + uncond_text_embeddings_vd: Float[Tensor, "Nv N Nf"] + directions: List[DirectionConfig] + direction2idx: Dict[str, int] + use_perp_neg: bool + perp_neg_f_sb: Tuple[float, float, float] + perp_neg_f_fsb: Tuple[float, float, float] + perp_neg_f_fs: Tuple[float, float, float] + perp_neg_f_sf: Tuple[float, float, float] + prompt: str + prompts_vd: List[str] + + def get_text_embeddings( + self, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + view_dependent_prompting: bool = True, + ) -> Float[Tensor, "BB N Nf"]: + batch_size = elevation.shape[0] + + if view_dependent_prompting: + # Get direction + direction_idx = torch.zeros_like(elevation, dtype=torch.long) + for d in self.directions: + direction_idx[ + d.condition(elevation, azimuth, camera_distances) + ] = self.direction2idx[d.name] + + # Get text embeddings + text_embeddings = self.text_embeddings_vd[direction_idx] # type: ignore + uncond_text_embeddings = self.uncond_text_embeddings_vd[direction_idx] # type: ignore + else: + text_embeddings = self.text_embeddings.expand(batch_size, -1, -1) # type: ignore + uncond_text_embeddings = self.uncond_text_embeddings.expand( # type: ignore + batch_size, -1, -1 + ) + + # IMPORTANT: we return (cond, uncond), which is in different order than other implementations! + return torch.cat([text_embeddings, uncond_text_embeddings], dim=0) + + def get_text_embeddings_perp_neg( + self, + elevation: Float[Tensor, "B"], + azimuth: Float[Tensor, "B"], + camera_distances: Float[Tensor, "B"], + view_dependent_prompting: bool = True, + ) -> Tuple[Float[Tensor, "BBBB N Nf"], Float[Tensor, "B 2"]]: + assert ( + view_dependent_prompting + ), "Perp-Neg only works with view-dependent prompting" + + batch_size = elevation.shape[0] + + direction_idx = torch.zeros_like(elevation, dtype=torch.long) + for d in self.directions: + direction_idx[ + d.condition(elevation, azimuth, camera_distances) + ] = self.direction2idx[d.name] + # 0 - side view + # 1 - front view + # 2 - back view + # 3 - overhead view + + pos_text_embeddings = [] + neg_text_embeddings = [] + neg_guidance_weights = [] + uncond_text_embeddings = [] + + side_emb = self.text_embeddings_vd[0] + front_emb = self.text_embeddings_vd[1] + back_emb = self.text_embeddings_vd[2] + overhead_emb = self.text_embeddings_vd[3] + + for idx, ele, azi, dis in zip( + direction_idx, elevation, azimuth, camera_distances + ): + azi = shift_azimuth_deg(azi) # to (-180, 180) + uncond_text_embeddings.append( + self.uncond_text_embeddings_vd[idx] + ) # should be "" + if idx.item() == 3: # overhead view + pos_text_embeddings.append(overhead_emb) # side view + # dummy + neg_text_embeddings += [ + self.uncond_text_embeddings_vd[idx], + self.uncond_text_embeddings_vd[idx], + ] + neg_guidance_weights += [0.0, 0.0] + else: # interpolating views + if torch.abs(azi) < 90: + # front-side interpolation + # 0 - complete side, 1 - complete front + r_inter = 1 - torch.abs(azi) / 90 + pos_text_embeddings.append( + r_inter * front_emb + (1 - r_inter) * side_emb + ) + neg_text_embeddings += [front_emb, side_emb] + neg_guidance_weights += [ + -shifted_expotional_decay(*self.perp_neg_f_fs, r_inter), + -shifted_expotional_decay(*self.perp_neg_f_sf, 1 - r_inter), + ] + else: + # side-back interpolation + # 0 - complete back, 1 - complete side + r_inter = 2.0 - torch.abs(azi) / 90 + pos_text_embeddings.append( + r_inter * side_emb + (1 - r_inter) * back_emb + ) + neg_text_embeddings += [side_emb, front_emb] + neg_guidance_weights += [ + -shifted_expotional_decay(*self.perp_neg_f_sb, r_inter), + -shifted_expotional_decay(*self.perp_neg_f_fsb, r_inter), + ] + + text_embeddings = torch.cat( + [ + torch.stack(pos_text_embeddings, dim=0), + torch.stack(uncond_text_embeddings, dim=0), + torch.stack(neg_text_embeddings, dim=0), + ], + dim=0, + ) + + return text_embeddings, torch.as_tensor( + neg_guidance_weights, device=elevation.device + ).reshape(batch_size, 2) + + +def shift_azimuth_deg(azimuth: Float[Tensor, "..."]) -> Float[Tensor, "..."]: + # shift azimuth angle (in degrees), to [-180, 180] + return (azimuth + 180) % 360 - 180 + + +class PromptProcessor(BaseObject): + @dataclass + class Config(BaseObject.Config): + prompt: str = "a hamburger" + + # manually assigned view-dependent prompts + prompt_front: Optional[str] = None + prompt_side: Optional[str] = None + prompt_back: Optional[str] = None + prompt_overhead: Optional[str] = None + + negative_prompt: str = "" + pretrained_model_name_or_path: str = "runwayml/stable-diffusion-v1-5" + overhead_threshold: float = 60.0 + front_threshold: float = 45.0 + back_threshold: float = 45.0 + view_dependent_prompt_front: bool = False + use_cache: bool = True + spawn: bool = True + + # perp neg + use_perp_neg: bool = False + # a*e(-b*r) + c + # a * e(-b) + c = 0 + perp_neg_f_sb: Tuple[float, float, float] = (1, 0.5, -0.606) + perp_neg_f_fsb: Tuple[float, float, float] = (1, 0.5, +0.967) + perp_neg_f_fs: Tuple[float, float, float] = ( + 4, + 0.5, + -2.426, + ) # f_fs(1) = 0, a, b > 0 + perp_neg_f_sf: Tuple[float, float, float] = (4, 0.5, -2.426) + + # prompt debiasing + use_prompt_debiasing: bool = False + pretrained_model_name_or_path_prompt_debiasing: str = "bert-base-uncased" + # index of words that can potentially be removed + prompt_debiasing_mask_ids: Optional[List[int]] = None + + cfg: Config + + @rank_zero_only + def configure_text_encoder(self) -> None: + raise NotImplementedError + + @rank_zero_only + def destroy_text_encoder(self) -> None: + raise NotImplementedError + + def configure(self) -> None: + self._cache_dir = ".threestudio_cache/text_embeddings" # FIXME: hard-coded path + + # view-dependent text embeddings + self.directions: List[DirectionConfig] + if self.cfg.view_dependent_prompt_front: + self.directions = [ + DirectionConfig( + "side", + lambda s: f"side view of {s}", + lambda s: s, + lambda ele, azi, dis: torch.ones_like(ele, dtype=torch.bool), + ), + DirectionConfig( + "front", + lambda s: f"front view of {s}", + lambda s: s, + lambda ele, azi, dis: ( + shift_azimuth_deg(azi) > -self.cfg.front_threshold + ) + & (shift_azimuth_deg(azi) < self.cfg.front_threshold), + ), + DirectionConfig( + "back", + lambda s: f"backside view of {s}", + lambda s: s, + lambda ele, azi, dis: ( + shift_azimuth_deg(azi) > 180 - self.cfg.back_threshold + ) + | (shift_azimuth_deg(azi) < -180 + self.cfg.back_threshold), + ), + DirectionConfig( + "overhead", + lambda s: f"overhead view of {s}", + lambda s: s, + lambda ele, azi, dis: ele > self.cfg.overhead_threshold, + ), + ] + else: + self.directions = [ + DirectionConfig( + "side", + lambda s: f"{s}, side view", + lambda s: s, + lambda ele, azi, dis: torch.ones_like(ele, dtype=torch.bool), + ), + DirectionConfig( + "front", + lambda s: f"{s}, front view", + lambda s: s, + lambda ele, azi, dis: ( + shift_azimuth_deg(azi) > -self.cfg.front_threshold + ) + & (shift_azimuth_deg(azi) < self.cfg.front_threshold), + ), + DirectionConfig( + "back", + lambda s: f"{s}, back view", + lambda s: s, + lambda ele, azi, dis: ( + shift_azimuth_deg(azi) > 180 - self.cfg.back_threshold + ) + | (shift_azimuth_deg(azi) < -180 + self.cfg.back_threshold), + ), + DirectionConfig( + "overhead", + lambda s: f"{s}, overhead view", + lambda s: s, + lambda ele, azi, dis: ele > self.cfg.overhead_threshold, + ), + ] + + self.direction2idx = {d.name: i for i, d in enumerate(self.directions)} + + if os.path.exists("load/prompt_library.json"): + with open(os.path.join("load/prompt_library.json"), "r") as f: + self.prompt_library = json.load(f) + else: + self.prompt_library = {} + # use provided prompt or find prompt in library + self.prompt = self.preprocess_prompt(self.cfg.prompt) + # use provided negative prompt + self.negative_prompt = self.cfg.negative_prompt + + threestudio.info( + f"Using prompt [{self.prompt}] and negative prompt [{self.negative_prompt}]" + ) + + # view-dependent prompting + if self.cfg.use_prompt_debiasing: + assert ( + self.cfg.prompt_side is None + and self.cfg.prompt_back is None + and self.cfg.prompt_overhead is None + ), "Do not manually assign prompt_side, prompt_back or prompt_overhead when using prompt debiasing" + prompts = self.get_debiased_prompt(self.prompt) + self.prompts_vd = [ + d.prompt(prompt) for d, prompt in zip(self.directions, prompts) + ] + else: + self.prompts_vd = [ + self.cfg.get(f"prompt_{d.name}", None) or d.prompt(self.prompt) # type: ignore + for d in self.directions + ] + + prompts_vd_display = " ".join( + [ + f"[{d.name}]:[{prompt}]" + for prompt, d in zip(self.prompts_vd, self.directions) + ] + ) + threestudio.info(f"Using view-dependent prompts {prompts_vd_display}") + + self.negative_prompts_vd = [ + d.negative_prompt(self.negative_prompt) for d in self.directions + ] + + self.prepare_text_embeddings() + self.load_text_embeddings() + + @staticmethod + def spawn_func(pretrained_model_name_or_path, prompts, cache_dir): + raise NotImplementedError + + @rank_zero_only + def prepare_text_embeddings(self): + os.makedirs(self._cache_dir, exist_ok=True) + + all_prompts = ( + [self.prompt] + + [self.negative_prompt] + + self.prompts_vd + + self.negative_prompts_vd + ) + prompts_to_process = [] + for prompt in all_prompts: + if self.cfg.use_cache: + # some text embeddings are already in cache + # do not process them + cache_path = os.path.join( + self._cache_dir, + f"{hash_prompt(self.cfg.pretrained_model_name_or_path, prompt)}.pt", + ) + if os.path.exists(cache_path): + threestudio.debug( + f"Text embeddings for model {self.cfg.pretrained_model_name_or_path} and prompt [{prompt}] are already in cache, skip processing." + ) + continue + prompts_to_process.append(prompt) + + if len(prompts_to_process) > 0: + if self.cfg.spawn: + ctx = mp.get_context("spawn") + subprocess = ctx.Process( + target=self.spawn_func, + args=( + self.cfg.pretrained_model_name_or_path, + prompts_to_process, + self._cache_dir, + ), + ) + subprocess.start() + subprocess.join() + assert subprocess.exitcode == 0, "prompt embedding process failed!" + else: + self.spawn_func( + self.cfg.pretrained_model_name_or_path, + prompts_to_process, + self._cache_dir, + ) + cleanup() + + def load_text_embeddings(self): + # synchronize, to ensure the text embeddings have been computed and saved to cache + barrier() + self.text_embeddings = self.load_from_cache(self.prompt)[None, ...] + self.uncond_text_embeddings = self.load_from_cache(self.negative_prompt)[ + None, ... + ] + self.text_embeddings_vd = torch.stack( + [self.load_from_cache(prompt) for prompt in self.prompts_vd], dim=0 + ) + self.uncond_text_embeddings_vd = torch.stack( + [self.load_from_cache(prompt) for prompt in self.negative_prompts_vd], dim=0 + ) + threestudio.debug(f"Loaded text embeddings.") + + def load_from_cache(self, prompt): + cache_path = os.path.join( + self._cache_dir, + f"{hash_prompt(self.cfg.pretrained_model_name_or_path, prompt)}.pt", + ) + if not os.path.exists(cache_path): + raise FileNotFoundError( + f"Text embedding file {cache_path} for model {self.cfg.pretrained_model_name_or_path} and prompt [{prompt}] not found." + ) + return torch.load(cache_path, map_location=self.device) + + def preprocess_prompt(self, prompt: str) -> str: + if prompt.startswith("lib:"): + # find matches in the library + candidate = None + keywords = prompt[4:].lower().split("_") + for prompt in self.prompt_library["dreamfusion"]: + if all([k in prompt.lower() for k in keywords]): + if candidate is not None: + raise ValueError( + f"Multiple prompts matched with keywords {keywords} in library" + ) + candidate = prompt + if candidate is None: + raise ValueError( + f"Cannot find prompt with keywords {keywords} in library" + ) + threestudio.info("Find matched prompt in library: " + candidate) + return candidate + else: + return prompt + + def get_text_embeddings( + self, prompt: Union[str, List[str]], negative_prompt: Union[str, List[str]] + ) -> Tuple[Float[Tensor, "B ..."], Float[Tensor, "B ..."]]: + raise NotImplementedError + + def get_debiased_prompt(self, prompt: str) -> List[str]: + os.environ["TOKENIZERS_PARALLELISM"] = "false" + + tokenizer = AutoTokenizer.from_pretrained( + self.cfg.pretrained_model_name_or_path_prompt_debiasing + ) + model = BertForMaskedLM.from_pretrained( + self.cfg.pretrained_model_name_or_path_prompt_debiasing + ) + + views = [d.name for d in self.directions] + view_ids = tokenizer(" ".join(views), return_tensors="pt").input_ids[0] + view_ids = view_ids[1:5] + + def modulate(prompt): + prompt_vd = f"This image is depicting a [MASK] view of {prompt}" + tokens = tokenizer( + prompt_vd, + padding="max_length", + truncation=True, + add_special_tokens=True, + return_tensors="pt", + ) + mask_idx = torch.where(tokens.input_ids == tokenizer.mask_token_id)[1] + + logits = model(**tokens).logits + logits = F.softmax(logits[0, mask_idx], dim=-1) + logits = logits[0, view_ids] + probes = logits / logits.sum() + return probes + + prompts = [prompt.split(" ") for _ in range(4)] + full_probe = modulate(prompt) + n_words = len(prompt.split(" ")) + prompt_debiasing_mask_ids = ( + self.cfg.prompt_debiasing_mask_ids + if self.cfg.prompt_debiasing_mask_ids is not None + else list(range(n_words)) + ) + words_to_debias = [prompt.split(" ")[idx] for idx in prompt_debiasing_mask_ids] + threestudio.info(f"Words that can potentially be removed: {words_to_debias}") + for idx in prompt_debiasing_mask_ids: + words = prompt.split(" ") + prompt_ = " ".join(words[:idx] + words[(idx + 1) :]) + part_probe = modulate(prompt_) + + pmi = full_probe / torch.lerp(part_probe, full_probe, 0.5) + for i in range(pmi.shape[0]): + if pmi[i].item() < 0.95: + prompts[i][idx] = "" + + debiased_prompts = [" ".join([word for word in p if word]) for p in prompts] + for d, debiased_prompt in zip(views, debiased_prompts): + threestudio.info(f"Debiased prompt of the {d} view is [{debiased_prompt}]") + + del tokenizer, model + cleanup() + + return debiased_prompts + + def __call__(self) -> PromptProcessorOutput: + return PromptProcessorOutput( + text_embeddings=self.text_embeddings, + uncond_text_embeddings=self.uncond_text_embeddings, + prompt=self.prompt, + text_embeddings_vd=self.text_embeddings_vd, + uncond_text_embeddings_vd=self.uncond_text_embeddings_vd, + prompts_vd=self.prompts_vd, + directions=self.directions, + direction2idx=self.direction2idx, + use_perp_neg=self.cfg.use_perp_neg, + perp_neg_f_sb=self.cfg.perp_neg_f_sb, + perp_neg_f_fsb=self.cfg.perp_neg_f_fsb, + perp_neg_f_fs=self.cfg.perp_neg_f_fs, + perp_neg_f_sf=self.cfg.perp_neg_f_sf, + ) diff --git a/threestudio/models/prompt_processors/deepfloyd_prompt_processor.py b/threestudio/models/prompt_processors/deepfloyd_prompt_processor.py new file mode 100644 index 0000000..6dd6eef --- /dev/null +++ b/threestudio/models/prompt_processors/deepfloyd_prompt_processor.py @@ -0,0 +1,95 @@ +import json +import os +from dataclasses import dataclass + +import torch +import torch.nn as nn +from diffusers import IFPipeline +from transformers import T5EncoderModel, T5Tokenizer + +import threestudio +from threestudio.models.prompt_processors.base import PromptProcessor, hash_prompt +from threestudio.utils.misc import cleanup +from threestudio.utils.typing import * + + +@threestudio.register("deep-floyd-prompt-processor") +class DeepFloydPromptProcessor(PromptProcessor): + @dataclass + class Config(PromptProcessor.Config): + pretrained_model_name_or_path: str = "DeepFloyd/IF-I-XL-v1.0" + + cfg: Config + + ### these functions are unused, kept for debugging ### + def configure_text_encoder(self) -> None: + os.environ["TOKENIZERS_PARALLELISM"] = "false" + self.text_encoder = T5EncoderModel.from_pretrained( + self.cfg.pretrained_model_name_or_path, + subfolder="text_encoder", + load_in_8bit=True, + variant="8bit", + device_map="auto", + ) # FIXME: behavior of auto device map in multi-GPU training + self.pipe = IFPipeline.from_pretrained( + self.cfg.pretrained_model_name_or_path, + text_encoder=self.text_encoder, # pass the previously instantiated 8bit text encoder + unet=None, + ) + + def destroy_text_encoder(self) -> None: + del self.text_encoder + del self.pipe + cleanup() + + def get_text_embeddings( + self, prompt: Union[str, List[str]], negative_prompt: Union[str, List[str]] + ) -> Tuple[Float[Tensor, "B 77 4096"], Float[Tensor, "B 77 4096"]]: + text_embeddings, uncond_text_embeddings = self.pipe.encode_prompt( + prompt=prompt, negative_prompt=negative_prompt, device=self.device + ) + return text_embeddings, uncond_text_embeddings + + ### + + @staticmethod + def spawn_func(pretrained_model_name_or_path, prompts, cache_dir): + max_length = 77 + tokenizer = T5Tokenizer.from_pretrained( + pretrained_model_name_or_path, subfolder="tokenizer" + ) + text_encoder = T5EncoderModel.from_pretrained( + pretrained_model_name_or_path, + subfolder="text_encoder", + torch_dtype=torch.float16, # suppress warning + load_in_8bit=True, + variant="8bit", + device_map="auto", + ) + with torch.no_grad(): + text_inputs = tokenizer( + prompts, + padding="max_length", + max_length=max_length, + truncation=True, + add_special_tokens=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + attention_mask = text_inputs.attention_mask + text_embeddings = text_encoder( + text_input_ids.to(text_encoder.device), + attention_mask=attention_mask.to(text_encoder.device), + ) + text_embeddings = text_embeddings[0] + + for prompt, embedding in zip(prompts, text_embeddings): + torch.save( + embedding, + os.path.join( + cache_dir, + f"{hash_prompt(pretrained_model_name_or_path, prompt)}.pt", + ), + ) + + del text_encoder diff --git a/threestudio/models/prompt_processors/dummy_prompt_processor.py b/threestudio/models/prompt_processors/dummy_prompt_processor.py new file mode 100644 index 0000000..cfbc6c4 --- /dev/null +++ b/threestudio/models/prompt_processors/dummy_prompt_processor.py @@ -0,0 +1,18 @@ +import json +import os +from dataclasses import dataclass + +import threestudio +from threestudio.models.prompt_processors.base import PromptProcessor, hash_prompt +from threestudio.utils.misc import cleanup +from threestudio.utils.typing import * + + +@threestudio.register("dummy-prompt-processor") +class DummyPromptProcessor(PromptProcessor): + @dataclass + class Config(PromptProcessor.Config): + pretrained_model_name_or_path: str = "" + prompt: str = "" + + cfg: Config diff --git a/threestudio/models/prompt_processors/stable_diffusion_prompt_processor.py b/threestudio/models/prompt_processors/stable_diffusion_prompt_processor.py new file mode 100644 index 0000000..91b9eeb --- /dev/null +++ b/threestudio/models/prompt_processors/stable_diffusion_prompt_processor.py @@ -0,0 +1,102 @@ +import json +import os +from dataclasses import dataclass + +import torch +import torch.nn as nn +from transformers import AutoTokenizer, CLIPTextModel + +import threestudio +from threestudio.models.prompt_processors.base import PromptProcessor, hash_prompt +from threestudio.utils.misc import cleanup +from threestudio.utils.typing import * + + +@threestudio.register("stable-diffusion-prompt-processor") +class StableDiffusionPromptProcessor(PromptProcessor): + @dataclass + class Config(PromptProcessor.Config): + pass + + cfg: Config + + ### these functions are unused, kept for debugging ### + def configure_text_encoder(self) -> None: + self.tokenizer = AutoTokenizer.from_pretrained( + self.cfg.pretrained_model_name_or_path, subfolder="tokenizer" + ) + os.environ["TOKENIZERS_PARALLELISM"] = "false" + self.text_encoder = CLIPTextModel.from_pretrained( + self.cfg.pretrained_model_name_or_path, subfolder="text_encoder" + ).to(self.device) + + for p in self.text_encoder.parameters(): + p.requires_grad_(False) + + def destroy_text_encoder(self) -> None: + del self.tokenizer + del self.text_encoder + cleanup() + + def get_text_embeddings( + self, prompt: Union[str, List[str]], negative_prompt: Union[str, List[str]] + ) -> Tuple[Float[Tensor, "B 77 768"], Float[Tensor, "B 77 768"]]: + if isinstance(prompt, str): + prompt = [prompt] + if isinstance(negative_prompt, str): + negative_prompt = [negative_prompt] + # Tokenize text and get embeddings + tokens = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer.model_max_length, + return_tensors="pt", + ) + uncond_tokens = self.tokenizer( + negative_prompt, + padding="max_length", + max_length=self.tokenizer.model_max_length, + return_tensors="pt", + ) + + with torch.no_grad(): + text_embeddings = self.text_encoder(tokens.input_ids.to(self.device))[0] + uncond_text_embeddings = self.text_encoder( + uncond_tokens.input_ids.to(self.device) + )[0] + + return text_embeddings, uncond_text_embeddings + + ### + + @staticmethod + def spawn_func(pretrained_model_name_or_path, prompts, cache_dir): + os.environ["TOKENIZERS_PARALLELISM"] = "false" + tokenizer = AutoTokenizer.from_pretrained( + pretrained_model_name_or_path, subfolder="tokenizer" + ) + text_encoder = CLIPTextModel.from_pretrained( + pretrained_model_name_or_path, + subfolder="text_encoder", + device_map="auto", + ) + + with torch.no_grad(): + tokens = tokenizer( + prompts, + padding="max_length", + max_length=tokenizer.model_max_length, + return_tensors="pt", + ) + text_embeddings = text_encoder(tokens.input_ids.to(text_encoder.device))[0] + + for prompt, embedding in zip(prompts, text_embeddings): + torch.save( + embedding, + os.path.join( + cache_dir, + f"{hash_prompt(pretrained_model_name_or_path, prompt)}.pt", + ), + ) + + del text_encoder diff --git a/threestudio/models/renderers/__init__.py b/threestudio/models/renderers/__init__.py new file mode 100644 index 0000000..d33e0fc --- /dev/null +++ b/threestudio/models/renderers/__init__.py @@ -0,0 +1,9 @@ +from . import ( + base, + deferred_volume_renderer, + gan_volume_renderer, + nerf_volume_renderer, + neus_volume_renderer, + nvdiff_rasterizer, + patch_renderer, +) diff --git a/threestudio/models/renderers/base.py b/threestudio/models/renderers/base.py new file mode 100644 index 0000000..fa893c8 --- /dev/null +++ b/threestudio/models/renderers/base.py @@ -0,0 +1,80 @@ +from dataclasses import dataclass + +import nerfacc +import torch +import torch.nn.functional as F + +import threestudio +from threestudio.models.background.base import BaseBackground +from threestudio.models.geometry.base import BaseImplicitGeometry +from threestudio.models.materials.base import BaseMaterial +from threestudio.utils.base import BaseModule +from threestudio.utils.typing import * + + +class Renderer(BaseModule): + @dataclass + class Config(BaseModule.Config): + radius: float = 1.0 + + cfg: Config + + def configure( + self, + geometry: BaseImplicitGeometry, + material: BaseMaterial, + background: BaseBackground, + ) -> None: + # keep references to submodules using namedtuple, avoid being registered as modules + @dataclass + class SubModules: + geometry: BaseImplicitGeometry + material: BaseMaterial + background: BaseBackground + + self.sub_modules = SubModules(geometry, material, background) + + # set up bounding box + self.bbox: Float[Tensor, "2 3"] + self.register_buffer( + "bbox", + torch.as_tensor( + [ + [-self.cfg.radius, -self.cfg.radius, -self.cfg.radius], + [self.cfg.radius, self.cfg.radius, self.cfg.radius], + ], + dtype=torch.float32, + ), + ) + + def forward(self, *args, **kwargs) -> Dict[str, Any]: + raise NotImplementedError + + @property + def geometry(self) -> BaseImplicitGeometry: + return self.sub_modules.geometry + + @property + def material(self) -> BaseMaterial: + return self.sub_modules.material + + @property + def background(self) -> BaseBackground: + return self.sub_modules.background + + def set_geometry(self, geometry: BaseImplicitGeometry) -> None: + self.sub_modules.geometry = geometry + + def set_material(self, material: BaseMaterial) -> None: + self.sub_modules.material = material + + def set_background(self, background: BaseBackground) -> None: + self.sub_modules.background = background + + +class VolumeRenderer(Renderer): + pass + + +class Rasterizer(Renderer): + pass diff --git a/threestudio/models/renderers/deferred_volume_renderer.py b/threestudio/models/renderers/deferred_volume_renderer.py new file mode 100644 index 0000000..4c8f2ac --- /dev/null +++ b/threestudio/models/renderers/deferred_volume_renderer.py @@ -0,0 +1,11 @@ +from dataclasses import dataclass + +import torch +import torch.nn.functional as F + +import threestudio +from threestudio.models.renderers.base import VolumeRenderer + + +class DeferredVolumeRenderer(VolumeRenderer): + pass diff --git a/threestudio/models/renderers/gan_volume_renderer.py b/threestudio/models/renderers/gan_volume_renderer.py new file mode 100644 index 0000000..fed55a5 --- /dev/null +++ b/threestudio/models/renderers/gan_volume_renderer.py @@ -0,0 +1,159 @@ +from dataclasses import dataclass + +import torch +import torch.nn.functional as F + +import threestudio +from threestudio.models.background.base import BaseBackground +from threestudio.models.geometry.base import BaseImplicitGeometry +from threestudio.models.materials.base import BaseMaterial +from threestudio.models.renderers.base import VolumeRenderer +from threestudio.utils.GAN.discriminator import NLayerDiscriminator, weights_init +from threestudio.utils.GAN.distribution import DiagonalGaussianDistribution +from threestudio.utils.GAN.mobilenet import MobileNetV3 as GlobalEncoder +from threestudio.utils.GAN.vae import Decoder as Generator +from threestudio.utils.GAN.vae import Encoder as LocalEncoder +from threestudio.utils.typing import * + + +@threestudio.register("gan-volume-renderer") +class GANVolumeRenderer(VolumeRenderer): + @dataclass + class Config(VolumeRenderer.Config): + base_renderer_type: str = "" + base_renderer: Optional[VolumeRenderer.Config] = None + + cfg: Config + + def configure( + self, + geometry: BaseImplicitGeometry, + material: BaseMaterial, + background: BaseBackground, + ) -> None: + self.base_renderer = threestudio.find(self.cfg.base_renderer_type)( + self.cfg.base_renderer, + geometry=geometry, + material=material, + background=background, + ) + self.ch_mult = [1, 2, 4] + self.generator = Generator( + ch=64, + out_ch=3, + ch_mult=self.ch_mult, + num_res_blocks=1, + attn_resolutions=[], + dropout=0.0, + resamp_with_conv=True, + in_channels=7, + resolution=512, + z_channels=4, + ) + self.local_encoder = LocalEncoder( + ch=32, + out_ch=3, + ch_mult=self.ch_mult, + num_res_blocks=1, + attn_resolutions=[], + dropout=0.0, + resamp_with_conv=True, + in_channels=3, + resolution=512, + z_channels=4, + ) + self.global_encoder = GlobalEncoder(n_class=64) + self.discriminator = NLayerDiscriminator( + input_nc=3, n_layers=3, use_actnorm=False, ndf=64 + ).apply(weights_init) + + def forward( + self, + rays_o: Float[Tensor, "B H W 3"], + rays_d: Float[Tensor, "B H W 3"], + light_positions: Float[Tensor, "B 3"], + bg_color: Optional[Tensor] = None, + gt_rgb: Float[Tensor, "B H W 3"] = None, + multi_level_guidance: Bool = False, + **kwargs + ) -> Dict[str, Float[Tensor, "..."]]: + B, H, W, _ = rays_o.shape + if gt_rgb is not None and multi_level_guidance: + generator_level = torch.randint(0, 3, (1,)).item() + interval_x = torch.randint(0, 8, (1,)).item() + interval_y = torch.randint(0, 8, (1,)).item() + int_rays_o = rays_o[:, interval_y::8, interval_x::8] + int_rays_d = rays_d[:, interval_y::8, interval_x::8] + out = self.base_renderer( + int_rays_o, int_rays_d, light_positions, bg_color, **kwargs + ) + comp_int_rgb = out["comp_rgb"][..., :3] + comp_gt_rgb = gt_rgb[:, interval_y::8, interval_x::8] + else: + generator_level = 0 + scale_ratio = 2 ** (len(self.ch_mult) - 1) + rays_o = torch.nn.functional.interpolate( + rays_o.permute(0, 3, 1, 2), + (H // scale_ratio, W // scale_ratio), + mode="bilinear", + ).permute(0, 2, 3, 1) + rays_d = torch.nn.functional.interpolate( + rays_d.permute(0, 3, 1, 2), + (H // scale_ratio, W // scale_ratio), + mode="bilinear", + ).permute(0, 2, 3, 1) + + out = self.base_renderer(rays_o, rays_d, light_positions, bg_color, **kwargs) + comp_rgb = out["comp_rgb"][..., :3] + latent = out["comp_rgb"][..., 3:] + out["comp_lr_rgb"] = comp_rgb.clone() + + posterior = DiagonalGaussianDistribution(latent.permute(0, 3, 1, 2)) + if multi_level_guidance: + z_map = posterior.sample() + else: + z_map = posterior.mode() + lr_rgb = comp_rgb.permute(0, 3, 1, 2) + + if generator_level == 0: + g_code_rgb = self.global_encoder(F.interpolate(lr_rgb, (224, 224))) + comp_gan_rgb = self.generator(torch.cat([lr_rgb, z_map], dim=1), g_code_rgb) + elif generator_level == 1: + g_code_rgb = self.global_encoder( + F.interpolate(gt_rgb.permute(0, 3, 1, 2), (224, 224)) + ) + comp_gan_rgb = self.generator(torch.cat([lr_rgb, z_map], dim=1), g_code_rgb) + elif generator_level == 2: + g_code_rgb = self.global_encoder( + F.interpolate(gt_rgb.permute(0, 3, 1, 2), (224, 224)) + ) + l_code_rgb = self.local_encoder(gt_rgb.permute(0, 3, 1, 2)) + posterior = DiagonalGaussianDistribution(l_code_rgb) + z_map = posterior.sample() + comp_gan_rgb = self.generator(torch.cat([lr_rgb, z_map], dim=1), g_code_rgb) + + comp_rgb = F.interpolate(comp_rgb.permute(0, 3, 1, 2), (H, W), mode="bilinear") + comp_gan_rgb = F.interpolate(comp_gan_rgb, (H, W), mode="bilinear") + out.update( + { + "posterior": posterior, + "comp_gan_rgb": comp_gan_rgb.permute(0, 2, 3, 1), + "comp_rgb": comp_rgb.permute(0, 2, 3, 1), + "generator_level": generator_level, + } + ) + + if gt_rgb is not None and multi_level_guidance: + out.update({"comp_int_rgb": comp_int_rgb, "comp_gt_rgb": comp_gt_rgb}) + return out + + def update_step( + self, epoch: int, global_step: int, on_load_weights: bool = False + ) -> None: + self.base_renderer.update_step(epoch, global_step, on_load_weights) + + def train(self, mode=True): + return self.base_renderer.train(mode) + + def eval(self): + return self.base_renderer.eval() diff --git a/threestudio/models/renderers/nerf_volume_renderer.py b/threestudio/models/renderers/nerf_volume_renderer.py new file mode 100644 index 0000000..a36769c --- /dev/null +++ b/threestudio/models/renderers/nerf_volume_renderer.py @@ -0,0 +1,470 @@ +from dataclasses import dataclass, field +from functools import partial + +import nerfacc +import torch +import torch.nn.functional as F + +import threestudio +from threestudio.models.background.base import BaseBackground +from threestudio.models.estimators import ImportanceEstimator +from threestudio.models.geometry.base import BaseImplicitGeometry +from threestudio.models.materials.base import BaseMaterial +from threestudio.models.networks import create_network_with_input_encoding +from threestudio.models.renderers.base import VolumeRenderer +from threestudio.systems.utils import parse_optimizer, parse_scheduler_to_instance +from threestudio.utils.ops import chunk_batch, get_activation, validate_empty_rays +from threestudio.utils.typing import * + + +@threestudio.register("nerf-volume-renderer") +class NeRFVolumeRenderer(VolumeRenderer): + @dataclass + class Config(VolumeRenderer.Config): + num_samples_per_ray: int = 512 + eval_chunk_size: int = 160000 + randomized: bool = True + + near_plane: float = 0.0 + far_plane: float = 1e10 + + return_comp_normal: bool = False + return_normal_perturb: bool = False + + # in ["occgrid", "proposal", "importance"] + estimator: str = "occgrid" + + # for occgrid + grid_prune: bool = True + prune_alpha_threshold: bool = True + + # for proposal + proposal_network_config: Optional[dict] = None + prop_optimizer_config: Optional[dict] = None + prop_scheduler_config: Optional[dict] = None + num_samples_per_ray_proposal: int = 64 + + # for importance + num_samples_per_ray_importance: int = 64 + + cfg: Config + + def configure( + self, + geometry: BaseImplicitGeometry, + material: BaseMaterial, + background: BaseBackground, + ) -> None: + super().configure(geometry, material, background) + if self.cfg.estimator == "occgrid": + self.estimator = nerfacc.OccGridEstimator( + roi_aabb=self.bbox.view(-1), resolution=32, levels=1 + ) + if not self.cfg.grid_prune: + self.estimator.occs.fill_(True) + self.estimator.binaries.fill_(True) + self.render_step_size = ( + 1.732 * 2 * self.cfg.radius / self.cfg.num_samples_per_ray + ) + self.randomized = self.cfg.randomized + elif self.cfg.estimator == "importance": + self.estimator = ImportanceEstimator() + elif self.cfg.estimator == "proposal": + self.prop_net = create_network_with_input_encoding( + **self.cfg.proposal_network_config + ) + self.prop_optim = parse_optimizer( + self.cfg.prop_optimizer_config, self.prop_net + ) + self.prop_scheduler = ( + parse_scheduler_to_instance( + self.cfg.prop_scheduler_config, self.prop_optim + ) + if self.cfg.prop_scheduler_config is not None + else None + ) + self.estimator = nerfacc.PropNetEstimator( + self.prop_optim, self.prop_scheduler + ) + + def get_proposal_requires_grad_fn( + target: float = 5.0, num_steps: int = 1000 + ): + schedule = lambda s: min(s / num_steps, 1.0) * target + + steps_since_last_grad = 0 + + def proposal_requires_grad_fn(step: int) -> bool: + nonlocal steps_since_last_grad + target_steps_since_last_grad = schedule(step) + requires_grad = steps_since_last_grad > target_steps_since_last_grad + if requires_grad: + steps_since_last_grad = 0 + steps_since_last_grad += 1 + return requires_grad + + return proposal_requires_grad_fn + + self.proposal_requires_grad_fn = get_proposal_requires_grad_fn() + self.randomized = self.cfg.randomized + else: + raise NotImplementedError( + "Unknown estimator, should be one of ['occgrid', 'proposal', 'importance']." + ) + + # for proposal + self.vars_in_forward = {} + + def forward( + self, + rays_o: Float[Tensor, "B H W 3"], + rays_d: Float[Tensor, "B H W 3"], + light_positions: Float[Tensor, "B 3"], + bg_color: Optional[Tensor] = None, + **kwargs + ) -> Dict[str, Float[Tensor, "..."]]: + batch_size, height, width = rays_o.shape[:3] + rays_o_flatten: Float[Tensor, "Nr 3"] = rays_o.reshape(-1, 3) + rays_d_flatten: Float[Tensor, "Nr 3"] = rays_d.reshape(-1, 3) + light_positions_flatten: Float[Tensor, "Nr 3"] = ( + light_positions.reshape(-1, 1, 1, 3) + .expand(-1, height, width, -1) + .reshape(-1, 3) + ) + n_rays = rays_o_flatten.shape[0] + + if self.cfg.estimator == "occgrid": + if not self.cfg.grid_prune: + with torch.no_grad(): + ray_indices, t_starts_, t_ends_ = self.estimator.sampling( + rays_o_flatten, + rays_d_flatten, + sigma_fn=None, + near_plane=self.cfg.near_plane, + far_plane=self.cfg.far_plane, + render_step_size=self.render_step_size, + alpha_thre=0.0, + stratified=self.randomized, + cone_angle=0.0, + early_stop_eps=0, + ) + else: + + def sigma_fn(t_starts, t_ends, ray_indices): + t_starts, t_ends = t_starts[..., None], t_ends[..., None] + t_origins = rays_o_flatten[ray_indices] + t_positions = (t_starts + t_ends) / 2.0 + t_dirs = rays_d_flatten[ray_indices] + positions = t_origins + t_dirs * t_positions + if self.training: + sigma = self.geometry.forward_density(positions)[..., 0] + else: + sigma = chunk_batch( + self.geometry.forward_density, + self.cfg.eval_chunk_size, + positions, + )[..., 0] + return sigma + + with torch.no_grad(): + ray_indices, t_starts_, t_ends_ = self.estimator.sampling( + rays_o_flatten, + rays_d_flatten, + sigma_fn=sigma_fn if self.cfg.prune_alpha_threshold else None, + near_plane=self.cfg.near_plane, + far_plane=self.cfg.far_plane, + render_step_size=self.render_step_size, + alpha_thre=0.01 if self.cfg.prune_alpha_threshold else 0.0, + stratified=self.randomized, + cone_angle=0.0, + ) + elif self.cfg.estimator == "proposal": + + def prop_sigma_fn( + t_starts: Float[Tensor, "Nr Ns"], + t_ends: Float[Tensor, "Nr Ns"], + proposal_network, + ): + t_origins: Float[Tensor, "Nr 1 3"] = rays_o_flatten.unsqueeze(-2) + t_dirs: Float[Tensor, "Nr 1 3"] = rays_d_flatten.unsqueeze(-2) + positions: Float[Tensor, "Nr Ns 3"] = ( + t_origins + t_dirs * (t_starts + t_ends)[..., None] / 2.0 + ) + aabb_min, aabb_max = self.bbox[0], self.bbox[1] + positions = (positions - aabb_min) / (aabb_max - aabb_min) + selector = ((positions > 0.0) & (positions < 1.0)).all(dim=-1) + density_before_activation = ( + proposal_network(positions.view(-1, 3)) + .view(*positions.shape[:-1], 1) + .to(positions) + ) + density: Float[Tensor, "Nr Ns 1"] = ( + get_activation("shifted_trunc_exp")(density_before_activation) + * selector[..., None] + ) + return density.squeeze(-1) + + t_starts_, t_ends_ = self.estimator.sampling( + prop_sigma_fns=[partial(prop_sigma_fn, proposal_network=self.prop_net)], + prop_samples=[self.cfg.num_samples_per_ray_proposal], + num_samples=self.cfg.num_samples_per_ray, + n_rays=n_rays, + near_plane=self.cfg.near_plane, + far_plane=self.cfg.far_plane, + sampling_type="uniform", + stratified=self.randomized, + requires_grad=self.vars_in_forward["requires_grad"], + ) + ray_indices = ( + torch.arange(n_rays, device=rays_o_flatten.device) + .unsqueeze(-1) + .expand(-1, t_starts_.shape[1]) + ) + ray_indices = ray_indices.flatten() + t_starts_ = t_starts_.flatten() + t_ends_ = t_ends_.flatten() + elif self.cfg.estimator == "importance": + + def prop_sigma_fn( + t_starts: Float[Tensor, "Nr Ns"], + t_ends: Float[Tensor, "Nr Ns"], + proposal_network, + ): + t_origins: Float[Tensor, "Nr 1 3"] = rays_o_flatten.unsqueeze(-2) + t_dirs: Float[Tensor, "Nr 1 3"] = rays_d_flatten.unsqueeze(-2) + positions: Float[Tensor, "Nr Ns 3"] = ( + t_origins + t_dirs * (t_starts + t_ends)[..., None] / 2.0 + ) + with torch.no_grad(): + geo_out = chunk_batch( + proposal_network, + self.cfg.eval_chunk_size, + positions.reshape(-1, 3), + output_normal=False, + ) + density = geo_out["density"] + return density.reshape(positions.shape[:2]) + + t_starts_, t_ends_ = self.estimator.sampling( + prop_sigma_fns=[partial(prop_sigma_fn, proposal_network=self.geometry)], + prop_samples=[self.cfg.num_samples_per_ray_importance], + num_samples=self.cfg.num_samples_per_ray, + n_rays=n_rays, + near_plane=self.cfg.near_plane, + far_plane=self.cfg.far_plane, + sampling_type="uniform", + stratified=self.randomized, + ) + ray_indices = ( + torch.arange(n_rays, device=rays_o_flatten.device) + .unsqueeze(-1) + .expand(-1, t_starts_.shape[1]) + ) + ray_indices = ray_indices.flatten() + t_starts_ = t_starts_.flatten() + t_ends_ = t_ends_.flatten() + else: + raise NotImplementedError + + ray_indices, t_starts_, t_ends_ = validate_empty_rays( + ray_indices, t_starts_, t_ends_ + ) + ray_indices = ray_indices.long() + t_starts, t_ends = t_starts_[..., None], t_ends_[..., None] + t_origins = rays_o_flatten[ray_indices] + t_dirs = rays_d_flatten[ray_indices] + t_light_positions = light_positions_flatten[ray_indices] + t_positions = (t_starts + t_ends) / 2.0 + positions = t_origins + t_dirs * t_positions + t_intervals = t_ends - t_starts + + if self.training: + geo_out = self.geometry( + positions, output_normal=self.material.requires_normal + ) + rgb_fg_all = self.material( + viewdirs=t_dirs, + positions=positions, + light_positions=t_light_positions, + **geo_out, + **kwargs + ) + comp_rgb_bg = self.background(dirs=rays_d) + else: + geo_out = chunk_batch( + self.geometry, + self.cfg.eval_chunk_size, + positions, + output_normal=self.material.requires_normal, + ) + rgb_fg_all = chunk_batch( + self.material, + self.cfg.eval_chunk_size, + viewdirs=t_dirs, + positions=positions, + light_positions=t_light_positions, + **geo_out + ) + comp_rgb_bg = chunk_batch( + self.background, self.cfg.eval_chunk_size, dirs=rays_d + ) + + weights: Float[Tensor, "Nr 1"] + weights_, trans_, _ = nerfacc.render_weight_from_density( + t_starts[..., 0], + t_ends[..., 0], + geo_out["density"][..., 0], + ray_indices=ray_indices, + n_rays=n_rays, + ) + if self.training and self.cfg.estimator == "proposal": + self.vars_in_forward["trans"] = trans_.reshape(n_rays, -1) + + weights = weights_[..., None] + opacity: Float[Tensor, "Nr 1"] = nerfacc.accumulate_along_rays( + weights[..., 0], values=None, ray_indices=ray_indices, n_rays=n_rays + ) + depth: Float[Tensor, "Nr 1"] = nerfacc.accumulate_along_rays( + weights[..., 0], values=t_positions, ray_indices=ray_indices, n_rays=n_rays + ) + comp_rgb_fg: Float[Tensor, "Nr Nc"] = nerfacc.accumulate_along_rays( + weights[..., 0], values=rgb_fg_all, ray_indices=ray_indices, n_rays=n_rays + ) + + # populate depth and opacity to each point + weights_normalized = weights / opacity.clamp(min=1e-5)[ray_indices] # num_pts + # z-variance loss from HiFA: https://hifa-team.github.io/HiFA-site/ + z_mean: Float[Tensor, "Nr 1"] = nerfacc.accumulate_along_rays( + weights_normalized[..., 0], + values=t_positions, + ray_indices=ray_indices, + n_rays=n_rays, + ) + z_variance_unmasked = nerfacc.accumulate_along_rays( + weights_normalized[..., 0], + values=(t_positions - z_mean[ray_indices]) ** 2, + ray_indices=ray_indices, + n_rays=n_rays, + ) + z_variance = z_variance_unmasked * (opacity > 0.5).float() + + if bg_color is None: + bg_color = comp_rgb_bg + else: + if bg_color.shape[:-1] == (batch_size,): + # e.g. constant random color used for Zero123 + # [bs,3] -> [bs, 1, 1, 3]): + bg_color = bg_color.unsqueeze(1).unsqueeze(1) + # -> [bs, height, width, 3]): + bg_color = bg_color.expand(-1, height, width, -1) + + if bg_color.shape[:-1] == (batch_size, height, width): + bg_color = bg_color.reshape(batch_size * height * width, -1) + + comp_rgb = comp_rgb_fg + bg_color * (1.0 - opacity) + + out = { + "comp_rgb": comp_rgb.view(batch_size, height, width, -1), + "comp_rgb_fg": comp_rgb_fg.view(batch_size, height, width, -1), + "comp_rgb_bg": comp_rgb_bg.view(batch_size, height, width, -1), + "opacity": opacity.view(batch_size, height, width, 1), + "depth": depth.view(batch_size, height, width, 1), + "z_variance": z_variance.view(batch_size, height, width, 1), + } + + if self.training: + out.update( + { + "weights": weights, + "t_points": t_positions, + "t_intervals": t_intervals, + "t_dirs": t_dirs, + "ray_indices": ray_indices, + "points": positions, + **geo_out, + } + ) + if "normal" in geo_out: + if self.cfg.return_comp_normal: + comp_normal: Float[Tensor, "Nr 3"] = nerfacc.accumulate_along_rays( + weights[..., 0], + values=geo_out["normal"], + ray_indices=ray_indices, + n_rays=n_rays, + ) + comp_normal = F.normalize(comp_normal, dim=-1) + comp_normal = ( + (comp_normal + 1.0) / 2.0 * opacity + ) # for visualization + out.update( + { + "comp_normal": comp_normal.view( + batch_size, height, width, 3 + ), + } + ) + if self.cfg.return_normal_perturb: + normal_perturb = self.geometry( + positions + torch.randn_like(positions) * 1e-2, + output_normal=self.material.requires_normal, + )["normal"] + out.update({"normal_perturb": normal_perturb}) + else: + if "normal" in geo_out: + comp_normal = nerfacc.accumulate_along_rays( + weights[..., 0], + values=geo_out["normal"], + ray_indices=ray_indices, + n_rays=n_rays, + ) + comp_normal = F.normalize(comp_normal, dim=-1) + comp_normal = (comp_normal + 1.0) / 2.0 * opacity # for visualization + out.update( + { + "comp_normal": comp_normal.view(batch_size, height, width, 3), + } + ) + + return out + + def update_step( + self, epoch: int, global_step: int, on_load_weights: bool = False + ) -> None: + if self.cfg.estimator == "occgrid": + if self.cfg.grid_prune: + + def occ_eval_fn(x): + density = self.geometry.forward_density(x) + # approximate for 1 - torch.exp(-density * self.render_step_size) based on taylor series + return density * self.render_step_size + + if self.training and not on_load_weights: + self.estimator.update_every_n_steps( + step=global_step, occ_eval_fn=occ_eval_fn + ) + elif self.cfg.estimator == "proposal": + if self.training: + requires_grad = self.proposal_requires_grad_fn(global_step) + self.vars_in_forward["requires_grad"] = requires_grad + else: + self.vars_in_forward["requires_grad"] = False + + def update_step_end(self, epoch: int, global_step: int) -> None: + if self.cfg.estimator == "proposal" and self.training: + self.estimator.update_every_n_steps( + self.vars_in_forward["trans"], + self.vars_in_forward["requires_grad"], + loss_scaler=1.0, + ) + + def train(self, mode=True): + self.randomized = mode and self.cfg.randomized + if self.cfg.estimator == "proposal": + self.prop_net.train() + return super().train(mode=mode) + + def eval(self): + self.randomized = False + if self.cfg.estimator == "proposal": + self.prop_net.eval() + return super().eval() diff --git a/threestudio/models/renderers/neus_volume_renderer.py b/threestudio/models/renderers/neus_volume_renderer.py new file mode 100644 index 0000000..0960176 --- /dev/null +++ b/threestudio/models/renderers/neus_volume_renderer.py @@ -0,0 +1,390 @@ +from dataclasses import dataclass +from functools import partial + +import nerfacc +import torch +import torch.nn as nn +import torch.nn.functional as F + +import threestudio +from threestudio.models.background.base import BaseBackground +from threestudio.models.estimators import ImportanceEstimator +from threestudio.models.geometry.base import BaseImplicitGeometry +from threestudio.models.materials.base import BaseMaterial +from threestudio.models.renderers.base import VolumeRenderer +from threestudio.utils.ops import chunk_batch, validate_empty_rays +from threestudio.utils.typing import * + + +def volsdf_density(sdf, inv_std): + inv_std = inv_std.clamp(0.0, 80.0) + beta = 1 / inv_std + alpha = inv_std + return alpha * (0.5 + 0.5 * sdf.sign() * torch.expm1(-sdf.abs() / beta)) + + +class LearnedVariance(nn.Module): + def __init__(self, init_val): + super(LearnedVariance, self).__init__() + self.register_parameter("_inv_std", nn.Parameter(torch.tensor(init_val))) + + @property + def inv_std(self): + val = torch.exp(self._inv_std * 10.0) + return val + + def forward(self, x): + return torch.ones_like(x) * self.inv_std.clamp(1.0e-6, 1.0e6) + + +@threestudio.register("neus-volume-renderer") +class NeuSVolumeRenderer(VolumeRenderer): + @dataclass + class Config(VolumeRenderer.Config): + num_samples_per_ray: int = 512 + randomized: bool = True + eval_chunk_size: int = 160000 + learned_variance_init: float = 0.3 + cos_anneal_end_steps: int = 0 + use_volsdf: bool = False + + near_plane: float = 0.0 + far_plane: float = 1e10 + + # in ['occgrid', 'importance'] + estimator: str = "occgrid" + + # for occgrid + grid_prune: bool = True + prune_alpha_threshold: bool = True + + # for importance + num_samples_per_ray_importance: int = 64 + + cfg: Config + + def configure( + self, + geometry: BaseImplicitGeometry, + material: BaseMaterial, + background: BaseBackground, + ) -> None: + super().configure(geometry, material, background) + self.variance = LearnedVariance(self.cfg.learned_variance_init) + if self.cfg.estimator == "occgrid": + self.estimator = nerfacc.OccGridEstimator( + roi_aabb=self.bbox.view(-1), resolution=32, levels=1 + ) + if not self.cfg.grid_prune: + self.estimator.occs.fill_(True) + self.estimator.binaries.fill_(True) + self.render_step_size = ( + 1.732 * 2 * self.cfg.radius / self.cfg.num_samples_per_ray + ) + self.randomized = self.cfg.randomized + elif self.cfg.estimator == "importance": + self.estimator = ImportanceEstimator() + else: + raise NotImplementedError( + "unknown estimator, should be in ['occgrid', 'importance']" + ) + self.cos_anneal_ratio = 1.0 + + def get_alpha(self, sdf, normal, dirs, dists): + inv_std = self.variance(sdf) + if self.cfg.use_volsdf: + alpha = torch.abs(dists.detach()) * volsdf_density(sdf, inv_std) + else: + true_cos = (dirs * normal).sum(-1, keepdim=True) + # "cos_anneal_ratio" grows from 0 to 1 in the beginning training iterations. The anneal strategy below makes + # the cos value "not dead" at the beginning training iterations, for better convergence. + iter_cos = -( + F.relu(-true_cos * 0.5 + 0.5) * (1.0 - self.cos_anneal_ratio) + + F.relu(-true_cos) * self.cos_anneal_ratio + ) # always non-positive + + # Estimate signed distances at section points + estimated_next_sdf = sdf + iter_cos * dists * 0.5 + estimated_prev_sdf = sdf - iter_cos * dists * 0.5 + + prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_std) + next_cdf = torch.sigmoid(estimated_next_sdf * inv_std) + + p = prev_cdf - next_cdf + c = prev_cdf + + alpha = ((p + 1e-5) / (c + 1e-5)).clip(0.0, 1.0) + return alpha + + def forward( + self, + rays_o: Float[Tensor, "B H W 3"], + rays_d: Float[Tensor, "B H W 3"], + light_positions: Float[Tensor, "B 3"], + bg_color: Optional[Tensor] = None, + **kwargs + ) -> Dict[str, Float[Tensor, "..."]]: + batch_size, height, width = rays_o.shape[:3] + rays_o_flatten: Float[Tensor, "Nr 3"] = rays_o.reshape(-1, 3) + rays_d_flatten: Float[Tensor, "Nr 3"] = rays_d.reshape(-1, 3) + light_positions_flatten: Float[Tensor, "Nr 3"] = ( + light_positions.reshape(-1, 1, 1, 3) + .expand(-1, height, width, -1) + .reshape(-1, 3) + ) + n_rays = rays_o_flatten.shape[0] + + if self.cfg.estimator == "occgrid": + + def alpha_fn(t_starts, t_ends, ray_indices): + t_starts, t_ends = t_starts[..., None], t_ends[..., None] + t_origins = rays_o_flatten[ray_indices] + t_positions = (t_starts + t_ends) / 2.0 + t_dirs = rays_d_flatten[ray_indices] + positions = t_origins + t_dirs * t_positions + if self.training: + sdf = self.geometry.forward_sdf(positions)[..., 0] + else: + sdf = chunk_batch( + self.geometry.forward_sdf, + self.cfg.eval_chunk_size, + positions, + )[..., 0] + + inv_std = self.variance(sdf) + if self.cfg.use_volsdf: + alpha = self.render_step_size * volsdf_density(sdf, inv_std) + else: + estimated_next_sdf = sdf - self.render_step_size * 0.5 + estimated_prev_sdf = sdf + self.render_step_size * 0.5 + prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_std) + next_cdf = torch.sigmoid(estimated_next_sdf * inv_std) + p = prev_cdf - next_cdf + c = prev_cdf + alpha = ((p + 1e-5) / (c + 1e-5)).clip(0.0, 1.0) + + return alpha + + if not self.cfg.grid_prune: + with torch.no_grad(): + ray_indices, t_starts_, t_ends_ = self.estimator.sampling( + rays_o_flatten, + rays_d_flatten, + alpha_fn=None, + near_plane=self.cfg.near_plane, + far_plane=self.cfg.far_plane, + render_step_size=self.render_step_size, + alpha_thre=0.0, + stratified=self.randomized, + cone_angle=0.0, + early_stop_eps=0, + ) + else: + with torch.no_grad(): + ray_indices, t_starts_, t_ends_ = self.estimator.sampling( + rays_o_flatten, + rays_d_flatten, + alpha_fn=alpha_fn if self.cfg.prune_alpha_threshold else None, + near_plane=self.cfg.near_plane, + far_plane=self.cfg.far_plane, + render_step_size=self.render_step_size, + alpha_thre=0.01 if self.cfg.prune_alpha_threshold else 0.0, + stratified=self.randomized, + cone_angle=0.0, + ) + elif self.cfg.estimator == "importance": + + def prop_sigma_fn( + t_starts: Float[Tensor, "Nr Ns"], + t_ends: Float[Tensor, "Nr Ns"], + proposal_network, + ): + if self.cfg.use_volsdf: + t_origins: Float[Tensor, "Nr 1 3"] = rays_o_flatten.unsqueeze(-2) + t_dirs: Float[Tensor, "Nr 1 3"] = rays_d_flatten.unsqueeze(-2) + positions: Float[Tensor, "Nr Ns 3"] = ( + t_origins + t_dirs * (t_starts + t_ends)[..., None] / 2.0 + ) + with torch.no_grad(): + geo_out = chunk_batch( + proposal_network, + self.cfg.eval_chunk_size, + positions.reshape(-1, 3), + output_normal=False, + ) + inv_std = self.variance(geo_out["sdf"]) + density = volsdf_density(geo_out["sdf"], inv_std) + return density.reshape(positions.shape[:2]) + else: + raise ValueError( + "Currently only VolSDF supports importance sampling." + ) + + t_starts_, t_ends_ = self.estimator.sampling( + prop_sigma_fns=[partial(prop_sigma_fn, proposal_network=self.geometry)], + prop_samples=[self.cfg.num_samples_per_ray_importance], + num_samples=self.cfg.num_samples_per_ray, + n_rays=n_rays, + near_plane=self.cfg.near_plane, + far_plane=self.cfg.far_plane, + sampling_type="uniform", + stratified=self.randomized, + ) + ray_indices = ( + torch.arange(n_rays, device=rays_o_flatten.device) + .unsqueeze(-1) + .expand(-1, t_starts_.shape[1]) + ) + ray_indices = ray_indices.flatten() + t_starts_ = t_starts_.flatten() + t_ends_ = t_ends_.flatten() + else: + raise NotImplementedError + + ray_indices, t_starts_, t_ends_ = validate_empty_rays( + ray_indices, t_starts_, t_ends_ + ) + ray_indices = ray_indices.long() + t_starts, t_ends = t_starts_[..., None], t_ends_[..., None] + t_origins = rays_o_flatten[ray_indices] + t_dirs = rays_d_flatten[ray_indices] + t_light_positions = light_positions_flatten[ray_indices] + t_positions = (t_starts + t_ends) / 2.0 + positions = t_origins + t_dirs * t_positions + t_intervals = t_ends - t_starts + + if self.training: + geo_out = self.geometry(positions, output_normal=True) + rgb_fg_all = self.material( + viewdirs=t_dirs, + positions=positions, + light_positions=t_light_positions, + **geo_out, + **kwargs + ) + comp_rgb_bg = self.background(dirs=rays_d) + else: + geo_out = chunk_batch( + self.geometry, + self.cfg.eval_chunk_size, + positions, + output_normal=True, + ) + rgb_fg_all = chunk_batch( + self.material, + self.cfg.eval_chunk_size, + viewdirs=t_dirs, + positions=positions, + light_positions=t_light_positions, + **geo_out + ) + comp_rgb_bg = chunk_batch( + self.background, self.cfg.eval_chunk_size, dirs=rays_d + ) + + # grad or normal? + alpha: Float[Tensor, "Nr 1"] = self.get_alpha( + geo_out["sdf"], geo_out["normal"], t_dirs, t_intervals + ) + + weights: Float[Tensor, "Nr 1"] + weights_, _ = nerfacc.render_weight_from_alpha( + alpha[..., 0], + ray_indices=ray_indices, + n_rays=n_rays, + ) + weights = weights_[..., None] + opacity: Float[Tensor, "Nr 1"] = nerfacc.accumulate_along_rays( + weights[..., 0], values=None, ray_indices=ray_indices, n_rays=n_rays + ) + depth: Float[Tensor, "Nr 1"] = nerfacc.accumulate_along_rays( + weights[..., 0], values=t_positions, ray_indices=ray_indices, n_rays=n_rays + ) + comp_rgb_fg: Float[Tensor, "Nr Nc"] = nerfacc.accumulate_along_rays( + weights[..., 0], values=rgb_fg_all, ray_indices=ray_indices, n_rays=n_rays + ) + + if bg_color is None: + bg_color = comp_rgb_bg + + if bg_color.shape[:-1] == (batch_size, height, width): + bg_color = bg_color.reshape(batch_size * height * width, -1) + + comp_rgb = comp_rgb_fg + bg_color * (1.0 - opacity) + + out = { + "comp_rgb": comp_rgb.view(batch_size, height, width, -1), + "comp_rgb_fg": comp_rgb_fg.view(batch_size, height, width, -1), + "comp_rgb_bg": comp_rgb_bg.view(batch_size, height, width, -1), + "opacity": opacity.view(batch_size, height, width, 1), + "depth": depth.view(batch_size, height, width, 1), + } + + if self.training: + out.update( + { + "weights": weights, + "t_points": t_positions, + "t_intervals": t_intervals, + "t_dirs": t_dirs, + "ray_indices": ray_indices, + "points": positions, + **geo_out, + } + ) + else: + if "normal" in geo_out: + comp_normal: Float[Tensor, "Nr 3"] = nerfacc.accumulate_along_rays( + weights[..., 0], + values=geo_out["normal"], + ray_indices=ray_indices, + n_rays=n_rays, + ) + comp_normal = F.normalize(comp_normal, dim=-1) + comp_normal = (comp_normal + 1.0) / 2.0 * opacity # for visualization + out.update( + { + "comp_normal": comp_normal.view(batch_size, height, width, 3), + } + ) + out.update({"inv_std": self.variance.inv_std}) + return out + + def update_step( + self, epoch: int, global_step: int, on_load_weights: bool = False + ) -> None: + self.cos_anneal_ratio = ( + 1.0 + if self.cfg.cos_anneal_end_steps == 0 + else min(1.0, global_step / self.cfg.cos_anneal_end_steps) + ) + if self.cfg.estimator == "occgrid": + if self.cfg.grid_prune: + + def occ_eval_fn(x): + sdf = self.geometry.forward_sdf(x) + inv_std = self.variance(sdf) + if self.cfg.use_volsdf: + alpha = self.render_step_size * volsdf_density(sdf, inv_std) + else: + estimated_next_sdf = sdf - self.render_step_size * 0.5 + estimated_prev_sdf = sdf + self.render_step_size * 0.5 + prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_std) + next_cdf = torch.sigmoid(estimated_next_sdf * inv_std) + p = prev_cdf - next_cdf + c = prev_cdf + alpha = ((p + 1e-5) / (c + 1e-5)).clip(0.0, 1.0) + return alpha + + if self.training and not on_load_weights: + self.estimator.update_every_n_steps( + step=global_step, occ_eval_fn=occ_eval_fn + ) + + def train(self, mode=True): + self.randomized = mode and self.cfg.randomized + return super().train(mode=mode) + + def eval(self): + self.randomized = False + return super().eval() diff --git a/threestudio/models/renderers/nvdiff_rasterizer.py b/threestudio/models/renderers/nvdiff_rasterizer.py new file mode 100644 index 0000000..9f83f7f --- /dev/null +++ b/threestudio/models/renderers/nvdiff_rasterizer.py @@ -0,0 +1,111 @@ +from dataclasses import dataclass + +import nerfacc +import torch +import torch.nn.functional as F + +import threestudio +from threestudio.models.background.base import BaseBackground +from threestudio.models.geometry.base import BaseImplicitGeometry +from threestudio.models.materials.base import BaseMaterial +from threestudio.models.renderers.base import Rasterizer, VolumeRenderer +from threestudio.utils.misc import get_device +from threestudio.utils.rasterize import NVDiffRasterizerContext +from threestudio.utils.typing import * + + +@threestudio.register("nvdiff-rasterizer") +class NVDiffRasterizer(Rasterizer): + @dataclass + class Config(VolumeRenderer.Config): + context_type: str = "gl" + + cfg: Config + + def configure( + self, + geometry: BaseImplicitGeometry, + material: BaseMaterial, + background: BaseBackground, + ) -> None: + super().configure(geometry, material, background) + self.ctx = NVDiffRasterizerContext(self.cfg.context_type, get_device()) + + def forward( + self, + mvp_mtx: Float[Tensor, "B 4 4"], + camera_positions: Float[Tensor, "B 3"], + light_positions: Float[Tensor, "B 3"], + height: int, + width: int, + render_rgb: bool = True, + **kwargs + ) -> Dict[str, Any]: + batch_size = mvp_mtx.shape[0] + mesh = self.geometry.isosurface() + + v_pos_clip: Float[Tensor, "B Nv 4"] = self.ctx.vertex_transform( + mesh.v_pos, mvp_mtx + ) + rast, _ = self.ctx.rasterize(v_pos_clip, mesh.t_pos_idx, (height, width)) + mask = rast[..., 3:] > 0 + mask_aa = self.ctx.antialias(mask.float(), rast, v_pos_clip, mesh.t_pos_idx) + + out = {"opacity": mask_aa, "mesh": mesh} + + gb_normal, _ = self.ctx.interpolate_one(mesh.v_nrm, rast, mesh.t_pos_idx) + gb_normal = F.normalize(gb_normal, dim=-1) + gb_normal_aa = torch.lerp( + torch.zeros_like(gb_normal), (gb_normal + 1.0) / 2.0, mask.float() + ) + gb_normal_aa = self.ctx.antialias( + gb_normal_aa, rast, v_pos_clip, mesh.t_pos_idx + ) + out.update({"comp_normal": gb_normal_aa}) # in [0, 1] + + # TODO: make it clear whether to compute the normal, now we compute it in all cases + # consider using: require_normal_computation = render_normal or (render_rgb and material.requires_normal) + # or + # render_normal = render_normal or (render_rgb and material.requires_normal) + + if render_rgb: + selector = mask[..., 0] + + gb_pos, _ = self.ctx.interpolate_one(mesh.v_pos, rast, mesh.t_pos_idx) + gb_viewdirs = F.normalize( + gb_pos - camera_positions[:, None, None, :], dim=-1 + ) + gb_light_positions = light_positions[:, None, None, :].expand( + -1, height, width, -1 + ) + + positions = gb_pos[selector] + geo_out = self.geometry(positions, output_normal=False) + + extra_geo_info = {} + if self.material.requires_normal: + extra_geo_info["shading_normal"] = gb_normal[selector] + if self.material.requires_tangent: + gb_tangent, _ = self.ctx.interpolate_one( + mesh.v_tng, rast, mesh.t_pos_idx + ) + gb_tangent = F.normalize(gb_tangent, dim=-1) + extra_geo_info["tangent"] = gb_tangent[selector] + + rgb_fg = self.material( + viewdirs=gb_viewdirs[selector], + positions=positions, + light_positions=gb_light_positions[selector], + **extra_geo_info, + **geo_out + ) + gb_rgb_fg = torch.zeros(batch_size, height, width, 3).to(rgb_fg) + gb_rgb_fg[selector] = rgb_fg + + gb_rgb_bg = self.background(dirs=gb_viewdirs) + gb_rgb = torch.lerp(gb_rgb_bg, gb_rgb_fg, mask.float()) + gb_rgb_aa = self.ctx.antialias(gb_rgb, rast, v_pos_clip, mesh.t_pos_idx) + + out.update({"comp_rgb": gb_rgb_aa, "comp_rgb_bg": gb_rgb_bg}) + + return out diff --git a/threestudio/models/renderers/patch_renderer.py b/threestudio/models/renderers/patch_renderer.py new file mode 100644 index 0000000..d595791 --- /dev/null +++ b/threestudio/models/renderers/patch_renderer.py @@ -0,0 +1,106 @@ +from dataclasses import dataclass + +import torch +import torch.nn.functional as F + +import threestudio +from threestudio.models.background.base import BaseBackground +from threestudio.models.geometry.base import BaseImplicitGeometry +from threestudio.models.materials.base import BaseMaterial +from threestudio.models.renderers.base import VolumeRenderer +from threestudio.utils.typing import * + + +@threestudio.register("patch-renderer") +class PatchRenderer(VolumeRenderer): + @dataclass + class Config(VolumeRenderer.Config): + patch_size: int = 128 + base_renderer_type: str = "" + base_renderer: Optional[VolumeRenderer.Config] = None + global_detach: bool = False + global_downsample: int = 4 + + cfg: Config + + def configure( + self, + geometry: BaseImplicitGeometry, + material: BaseMaterial, + background: BaseBackground, + ) -> None: + self.base_renderer = threestudio.find(self.cfg.base_renderer_type)( + self.cfg.base_renderer, + geometry=geometry, + material=material, + background=background, + ) + + def forward( + self, + rays_o: Float[Tensor, "B H W 3"], + rays_d: Float[Tensor, "B H W 3"], + light_positions: Float[Tensor, "B 3"], + bg_color: Optional[Tensor] = None, + **kwargs + ) -> Dict[str, Float[Tensor, "..."]]: + B, H, W, _ = rays_o.shape + + if self.base_renderer.training: + downsample = self.cfg.global_downsample + global_rays_o = torch.nn.functional.interpolate( + rays_o.permute(0, 3, 1, 2), + (H // downsample, W // downsample), + mode="bilinear", + ).permute(0, 2, 3, 1) + global_rays_d = torch.nn.functional.interpolate( + rays_d.permute(0, 3, 1, 2), + (H // downsample, W // downsample), + mode="bilinear", + ).permute(0, 2, 3, 1) + out_global = self.base_renderer( + global_rays_o, global_rays_d, light_positions, bg_color, **kwargs + ) + + PS = self.cfg.patch_size + patch_x = torch.randint(0, W - PS, (1,)).item() + patch_y = torch.randint(0, H - PS, (1,)).item() + patch_rays_o = rays_o[:, patch_y : patch_y + PS, patch_x : patch_x + PS] + patch_rays_d = rays_d[:, patch_y : patch_y + PS, patch_x : patch_x + PS] + out = self.base_renderer( + patch_rays_o, patch_rays_d, light_positions, bg_color, **kwargs + ) + + valid_patch_key = [] + for key in out: + if torch.is_tensor(out[key]): + if len(out[key].shape) == len(out["comp_rgb"].shape): + if out[key][..., 0].shape == out["comp_rgb"][..., 0].shape: + valid_patch_key.append(key) + for key in valid_patch_key: + out_global[key] = F.interpolate( + out_global[key].permute(0, 3, 1, 2), (H, W), mode="bilinear" + ).permute(0, 2, 3, 1) + if self.cfg.global_detach: + out_global[key] = out_global[key].detach() + out_global[key][ + :, patch_y : patch_y + PS, patch_x : patch_x + PS + ] = out[key] + out = out_global + else: + out = self.base_renderer( + rays_o, rays_d, light_positions, bg_color, **kwargs + ) + + return out + + def update_step( + self, epoch: int, global_step: int, on_load_weights: bool = False + ) -> None: + self.base_renderer.update_step(epoch, global_step, on_load_weights) + + def train(self, mode=True): + return self.base_renderer.train(mode) + + def eval(self): + return self.base_renderer.eval() diff --git a/threestudio/scripts/make_training_vid.py b/threestudio/scripts/make_training_vid.py new file mode 100644 index 0000000..2dee971 --- /dev/null +++ b/threestudio/scripts/make_training_vid.py @@ -0,0 +1,77 @@ +# make_training_vid("outputs/zero123/64_teddy_rgba.png@20230627-195615", frames_per_vid=30, fps=20, max_iters=200) +import argparse +import glob +import os + +import imageio +import numpy as np +from PIL import Image, ImageDraw +from tqdm import tqdm + + +def draw_text_in_image(img, texts): + img = Image.fromarray(img) + draw = ImageDraw.Draw(img) + black, white = (0, 0, 0), (255, 255, 255) + for i, text in enumerate(texts): + draw.text((2, (img.size[1] // len(texts)) * i + 1), f"{text}", white) + draw.text((0, (img.size[1] // len(texts)) * i + 1), f"{text}", white) + draw.text((2, (img.size[1] // len(texts)) * i - 1), f"{text}", white) + draw.text((0, (img.size[1] // len(texts)) * i - 1), f"{text}", white) + draw.text((1, (img.size[1] // len(texts)) * i), f"{text}", black) + return np.asarray(img) + + +def make_training_vid(exp, frames_per_vid=1, fps=3, max_iters=None, max_vids=None): + # exp = "/admin/home-vikram/git/threestudio/outputs/zero123/64_teddy_rgba.png@20230627-195615" + files = glob.glob(os.path.join(exp, "save", "*.mp4")) + if os.path.join(exp, "save", "training_vid.mp4") in files: + files.remove(os.path.join(exp, "save", "training_vid.mp4")) + its = [int(os.path.basename(file).split("-")[0].split("it")[-1]) for file in files] + it_sort = np.argsort(its) + files = list(np.array(files)[it_sort]) + its = list(np.array(its)[it_sort]) + max_vids = max_iters // its[0] if max_iters is not None else max_vids + files, its = files[:max_vids], its[:max_vids] + frames, i = [], 0 + for it, file in tqdm(zip(its, files), total=len(files)): + vid = imageio.mimread(file) + for _ in range(frames_per_vid): + frame = vid[i % len(vid)] + frame = draw_text_in_image(frame, [str(it)]) + frames.append(frame) + i += 1 + # Save + imageio.mimwrite(os.path.join(exp, "save", "training_vid.mp4"), frames, fps=fps) + + +def join(file1, file2, name): + # file1 = "/admin/home-vikram/git/threestudio/outputs/zero123/OLD_64_dragon2_rgba.png@20230629-023028/save/it200-val.mp4" + # file2 = "/admin/home-vikram/git/threestudio/outputs/zero123/64_dragon2_rgba.png@20230628-152734/save/it200-val.mp4" + vid1 = imageio.mimread(file1) + vid2 = imageio.mimread(file2) + frames = [] + for f1, f2 in zip(vid1, vid2): + frames.append( + np.concatenate([f1[:, : f1.shape[0]], f2[:, : f2.shape[0]]], axis=1) + ) + imageio.mimwrite(name, frames) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--exp", help="directory of experiment") + parser.add_argument( + "--frames_per_vid", type=int, default=1, help="# of frames from each val vid" + ) + parser.add_argument("--fps", type=int, help="max # of iters to save") + parser.add_argument("--max_iters", type=int, help="max # of iters to save") + parser.add_argument( + "--max_vids", + type=int, + help="max # of val videos to save. Will be overridden by max_iters", + ) + args = parser.parse_args() + make_training_vid( + args.exp, args.frames_per_vid, args.fps, args.max_iters, args.max_vids + ) diff --git a/threestudio/scripts/run_zero123.sh b/threestudio/scripts/run_zero123.sh new file mode 100755 index 0000000..6f21bd7 --- /dev/null +++ b/threestudio/scripts/run_zero123.sh @@ -0,0 +1,13 @@ +NAME="dragon2" + +# Phase 1 - 64x64 +python launch.py --config configs/zero123.yaml --train --gpu 7 data.image_path=./load/images/${NAME}_rgba.png use_timestamp=False name=${NAME} tag=Phase1 # system.freq.guidance_eval=0 system.loggers.wandb.enable=false system.loggers.wandb.project="zero123" system.loggers.wandb.name=${NAME}_Phase1 + +# Phase 1.5 - 512 refine +python launch.py --config configs/zero123-geometry.yaml --train --gpu 4 data.image_path=./load/images/${NAME}_rgba.png system.geometry_convert_from=./outputs/${NAME}/Phase1/ckpts/last.ckpt use_timestamp=False name=${NAME} tag=Phase1p5 # system.freq.guidance_eval=0 system.loggers.wandb.enable=false system.loggers.wandb.project="zero123" system.loggers.wandb.name=${NAME}_Phase1p5 + +# Phase 2 - dreamfusion +python launch.py --config configs/experimental/imagecondition_zero123nerf.yaml --train --gpu 5 data.image_path=./load/images/${NAME}_rgba.png system.prompt_processor.prompt="A 3D model of a friendly dragon" system.weights="/admin/home-vikram/git/threestudio/outputs/${NAME}/Phase1/ckpts/last.ckpt" name=${NAME} tag=Phase2 # system.freq.guidance_eval=0 system.loggers.wandb.enable=false system.loggers.wandb.project="zero123" system.loggers.wandb.name=${NAME}_Phase2 + +# Phase 2 - SDF + dreamfusion +python launch.py --config configs/experimental/imagecondition_zero123nerf_refine.yaml --train --gpu 5 data.image_path=./load/images/${NAME}_rgba.png system.prompt_processor.prompt="A 3D model of a friendly dragon" system.geometry_convert_from="/admin/home-vikram/git/threestudio/outputs/${NAME}/Phase1/ckpts/last.ckpt" name=${NAME} tag=Phase2_refine # system.freq.guidance_eval=0 system.loggers.wandb.enable=false system.loggers.wandb.project="zero123" system.loggers.wandb.name=${NAME}_Phase2_refine diff --git a/threestudio/scripts/run_zero123_comparison.sh b/threestudio/scripts/run_zero123_comparison.sh new file mode 100755 index 0000000..7f9f60a --- /dev/null +++ b/threestudio/scripts/run_zero123_comparison.sh @@ -0,0 +1,23 @@ +# with standard zero123 +threestudio/scripts/run_zero123_phase.sh 6 anya_front 105000 0 + +# with zero123XL (not released yet!) +threestudio/scripts/run_zero123_phase.sh 1 anya_front XL_20230604 0 +threestudio/scripts/run_zero123_phase.sh 2 baby_phoenix_on_ice XL_20230604 20 +threestudio/scripts/run_zero123_phase.sh 3 beach_house_1 XL_20230604 50 +threestudio/scripts/run_zero123_phase.sh 4 bollywood_actress XL_20230604 0 +threestudio/scripts/run_zero123_phase.sh 5 beach_house_2 XL_20230604 30 +threestudio/scripts/run_zero123_phase.sh 6 hamburger XL_20230604 10 +threestudio/scripts/run_zero123_phase.sh 7 cactus XL_20230604 8 +threestudio/scripts/run_zero123_phase.sh 0 catstatue XL_20230604 50 +threestudio/scripts/run_zero123_phase.sh 1 church_ruins XL_20230604 0 +threestudio/scripts/run_zero123_phase.sh 2 firekeeper XL_20230604 10 +threestudio/scripts/run_zero123_phase.sh 3 futuristic_car XL_20230604 20 +threestudio/scripts/run_zero123_phase.sh 4 mona_lisa XL_20230604 10 +threestudio/scripts/run_zero123_phase.sh 5 teddy XL_20230604 20 + +# set guidance_eval to 0, to greatly speed up training +threestudio/scripts/run_zero123_phase.sh 7 anya_front XL_20230604 0 system.freq.guidance_eval=0 + +# disable wandb for faster training (or if you don't want to use it) +threestudio/scripts/run_zero123_phase.sh 7 anya_front XL_20230604 0 system.loggers.wandb.enable=false system.freq.guidance_eval=0 diff --git a/threestudio/scripts/run_zero123_phase.sh b/threestudio/scripts/run_zero123_phase.sh new file mode 100755 index 0000000..03c1461 --- /dev/null +++ b/threestudio/scripts/run_zero123_phase.sh @@ -0,0 +1,14 @@ + +GPU_ID=$1 # e.g. 0 +IMAGE_PREFIX=$2 # e.g. "anya_front" +ZERO123_PREFIX=$3 # e.g. "zero123-xl" +ELEVATION=$4 # e.g. 0 +REST=${@:5:99} # e.g. "system.guidance.min_step_percent=0.1 system.guidance.max_step_percent=0.9" + +# change this config if you don't use wandb or want to speed up training +python launch.py --config configs/zero123.yaml --train --gpu $GPU_ID system.loggers.wandb.enable=true system.loggers.wandb.project="claforte-noise_atten" \ + system.loggers.wandb.name="${IMAGE_PREFIX}_zero123_${ZERO123_PREFIX}...fov20_${REST}" \ + data.image_path=./load/images/${IMAGE_PREFIX}_rgba.png system.freq.guidance_eval=37 \ + system.guidance.pretrained_model_name_or_path="./load/zero123/${ZERO123_PREFIX}.ckpt" \ + system.guidance.cond_elevation_deg=$ELEVATION \ + ${REST} diff --git a/threestudio/scripts/run_zero123_phase2.sh b/threestudio/scripts/run_zero123_phase2.sh new file mode 100644 index 0000000..c6b9642 --- /dev/null +++ b/threestudio/scripts/run_zero123_phase2.sh @@ -0,0 +1,5 @@ +# Reconstruct Anya using latest Zero123XL, in <2000 steps. +python launch.py --config configs/zero123.yaml --train --gpu 0 system.loggers.wandb.enable=true system.loggers.wandb.project="voletiv-anya-new" system.loggers.wandb.name="claforte_params" data.image_path=./load/images/anya_front_rgba.png system.freq.ref_or_zero123="accumulate" system.freq.guidance_eval=13 system.guidance.pretrained_model_name_or_path="./load/zero123/zero123-xl.ckpt" + +# PHASE 2 +python launch.py --config configs/experimental/imagecondition_zero123nerf.yaml --train --gpu 0 system.prompt_processor.prompt="A DSLR 3D photo of a cute anime schoolgirl stands proudly with her arms in the air, pink hair ( unreal engine 5 trending on Artstation Ghibli 4k )" system.weights=outputs/zero123/128_anya_front_rgba.png@20230623-145711/ckpts/last.ckpt system.freq.guidance_eval=13 system.loggers.wandb.enable=true system.loggers.wandb.project="voletiv-anya-new" data.image_path=./load/images/anya_front_rgba.png system.loggers.wandb.name="anya" data.random_camera.progressive_until=500 diff --git a/threestudio/scripts/run_zero123_sbatch.py b/threestudio/scripts/run_zero123_sbatch.py new file mode 100755 index 0000000..8ec2642 --- /dev/null +++ b/threestudio/scripts/run_zero123_sbatch.py @@ -0,0 +1,33 @@ +import os +import time + +files = [ + "~/git/threestudio/load/images/dog1_rgba.png", + "~/git/threestudio/load/images/dragon2_rgba.png", +] + +for file in files: + name = os.path.basename(file).split("_rgba.png")[0] + with open( + os.path.expanduser("~/git/threestudio/threestudio/scripts/zero123_sbatch.sh"), + "w", + ) as f: + f.write("#!/bin/bash\n") + f.write(f"#SBATCH --job-name=vikky_{name}\n") + f.write("#SBATCH --account=mod3d\n") + f.write("#SBATCH --partition=g40\n") + f.write("#SBATCH --gpus=1\n") + f.write("#SBATCH --time=0-00:07:00\n") + f.write("conda activate three\n") + f.write("cd ~/git/threestudio/\n") + f.write(f"NAME={name}\n") + # Phase 1 + f.write( + "python launch.py --config configs/zero123.yaml --train data.image_path=./load/images/${NAME}_rgba.png use_timestamp=true name=${NAME} tag=Phase1 system.loggers.wandb.enable=false system.loggers.wandb.project='zero123' system.loggers.wandb.name=${NAME}_Phase1\n" + ) + # # Phase 1.5 + # f.write( + # "python launch.py --config configs/zero123-geometry.yaml --train data.image_path=./load/images/${NAME}_rgba.png system.geometry_convert_from=./outputs/${NAME}/Phase1/ckpts/last.ckpt use_timestamp=False name=${NAME} tag=Phase1p5 system.loggers.wandb.enable=true system.loggers.wandb.project='zero123' system.loggers.wandb.name=${NAME}_Phase1p5\n" + # ) + os.system("sbatch ~/git/threestudio/threestudio/scripts/zero123_sbatch.sh") + time.sleep(1) diff --git a/threestudio/scripts/zero123_demo.py b/threestudio/scripts/zero123_demo.py new file mode 100644 index 0000000..03c9e5f --- /dev/null +++ b/threestudio/scripts/zero123_demo.py @@ -0,0 +1,61 @@ +# 1. Generate using StableDiffusionXL https://clipdrop.co/stable-diffusion + +# 2. Remove background https://clipdrop.co/remove-background + +# 3. Resize to 512x512 https://www.iloveimg.com/resize-image + +# (OPTIONAL) +# 4. Estimate depth and normal https://omnidata.vision/demo/ (I used Omnidata Normal (with X-TC & 3DCC), and MiDaS Depth) + + +# (OPTIONAL) +# 5. Convert depth image from RGB to greyscale +def depth_rgb_to_grey(depth_filename): + # depth_filename = "image_depth.png" + import cv2 + import numpy as np + + # import shutil + # shutil.copyfile(depth_filename, depth_filename.replace("_depth", "_depth_orig")) + depth = cv2.imread(depth_filename) + depth = cv2.cvtColor(depth, cv2.COLOR_BGR2GRAY) + mask = ( + cv2.resize( + cv2.imread(depth_filename.replace("_depth", "_rgba"), cv2.IMREAD_UNCHANGED)[ + :, :, -1 + ], + depth.shape, + ) + > 0 + ) + # depth[mask] = (depth[mask] - depth.min()) / (depth.max() - depth.min() + 1e-9) + depth = (depth - depth.min()) / (depth.max() - depth.min() + 1e-9) + depth[~mask] = 0 + depth = (depth * 255).astype(np.uint8) + cv2.imwrite(depth_filename, depth) + + +# (OPTIONAL) +# 6. Mask normal +def normal_mask(normal_filename): + # filename = "image_normal.png" + import cv2 + + # import shutil + # shutil.copyfile(normal_filename, normal_filename.replace("_normal", "_normal_orig")) + normal = cv2.imread(normal_filename) + mask = ( + cv2.resize( + cv2.imread( + normal_filename.replace("_normal", "_rgba"), cv2.IMREAD_UNCHANGED + )[:, :, -1], + normal.shape[:2], + ) + > 0 + ) + normal[~mask] = 0 + cv2.imwrite(normal_filename, normal) + + +# 5. Run Zero123 +# python launch.py --config configs/zero123.yaml --train data.image_path=./load/images/grootplant_rgba.png diff --git a/threestudio/scripts/zero123_sbatch.sh b/threestudio/scripts/zero123_sbatch.sh new file mode 100755 index 0000000..bac2341 --- /dev/null +++ b/threestudio/scripts/zero123_sbatch.sh @@ -0,0 +1,10 @@ +#!/bin/bash +#SBATCH --job-name=vikky +#SBATCH --account=mod3d +#SBATCH --partition=g40 +#SBATCH --gpus=1 +#SBATCH --time=0-00:07:00 +conda activate three +cd ~/git/threestudio/ +NAME="dog1" +python launch.py --config configs/zero123.yaml --train data.image_path=./load/images/${NAME}_rgba.png use_timestamp=False name=${NAME} tag=Phase1 system.loggers.wandb.enable=true system.loggers.wandb.project='zero123' system.loggers.wandb.name=${NAME}_Phase1 diff --git a/threestudio/systems/__init__.py b/threestudio/systems/__init__.py new file mode 100644 index 0000000..3da7dd6 --- /dev/null +++ b/threestudio/systems/__init__.py @@ -0,0 +1,16 @@ +from . import ( + control4d_multiview, + dreamfusion, + eff_dreamfusion, + fantasia3d, + imagedreamfusion, + instructnerf2nerf, + latentnerf, + magic3d, + magic123, + prolificdreamer, + sjc, + textmesh, + zero123, + zero123_simple, +) diff --git a/threestudio/systems/base.py b/threestudio/systems/base.py new file mode 100644 index 0000000..73faac6 --- /dev/null +++ b/threestudio/systems/base.py @@ -0,0 +1,402 @@ +import os +from dataclasses import dataclass, field + +import pytorch_lightning as pl +import torch.nn.functional as F + +import threestudio +from threestudio.models.exporters.base import Exporter, ExporterOutput +from threestudio.systems.utils import parse_optimizer, parse_scheduler +from threestudio.utils.base import ( + Updateable, + update_end_if_possible, + update_if_possible, +) +from threestudio.utils.config import parse_structured +from threestudio.utils.misc import ( + C, + cleanup, + find_last_path, + get_device, + load_module_weights, +) +from threestudio.utils.saving import SaverMixin +from threestudio.utils.typing import * + + +class BaseSystem(pl.LightningModule, Updateable, SaverMixin): + @dataclass + class Config: + loggers: dict = field(default_factory=dict) + loss: dict = field(default_factory=dict) + optimizer: dict = field(default_factory=dict) + scheduler: Optional[dict] = None + weights: Optional[str] = None + weights_ignore_modules: Optional[List[str]] = None + cleanup_after_validation_step: bool = False + cleanup_after_test_step: bool = False + + cfg: Config + + def __init__(self, cfg, resumed=False) -> None: + super().__init__() + self.cfg = parse_structured(self.Config, cfg) + self._save_dir: Optional[str] = None + self._resumed: bool = resumed + self._resumed_eval: bool = False + self._resumed_eval_status: dict = {"global_step": 0, "current_epoch": 0} + if "loggers" in cfg: + self.create_loggers(cfg.loggers) + + self.configure() + if self.cfg.weights is not None: + self.load_weights(self.cfg.weights, self.cfg.weights_ignore_modules) + self.post_configure() + + def load_weights(self, weights: str, ignore_modules: Optional[List[str]] = None): + state_dict, epoch, global_step = load_module_weights( + weights, ignore_modules=ignore_modules, map_location="cpu" + ) + self.load_state_dict(state_dict, strict=False) + # restore step-dependent states + self.do_update_step(epoch, global_step, on_load_weights=True) + + def set_resume_status(self, current_epoch: int, global_step: int): + # restore correct epoch and global step in eval + self._resumed_eval = True + self._resumed_eval_status["current_epoch"] = current_epoch + self._resumed_eval_status["global_step"] = global_step + + @property + def resumed(self): + # whether from resumed checkpoint + return self._resumed + + @property + def true_global_step(self): + if self._resumed_eval: + return self._resumed_eval_status["global_step"] + else: + return self.global_step + + @property + def true_current_epoch(self): + if self._resumed_eval: + return self._resumed_eval_status["current_epoch"] + else: + return self.current_epoch + + def configure(self) -> None: + pass + + def post_configure(self) -> None: + """ + executed after weights are loaded + """ + pass + + def C(self, value: Any) -> float: + return C(value, self.true_current_epoch, self.true_global_step) + + def configure_optimizers(self): + optim = parse_optimizer(self.cfg.optimizer, self) + ret = { + "optimizer": optim, + } + if self.cfg.scheduler is not None: + ret.update( + { + "lr_scheduler": parse_scheduler(self.cfg.scheduler, optim), + } + ) + return ret + + def training_step(self, batch, batch_idx): + raise NotImplementedError + + def validation_step(self, batch, batch_idx): + raise NotImplementedError + + def on_train_batch_end(self, outputs, batch, batch_idx): + self.dataset = self.trainer.train_dataloader.dataset + update_end_if_possible( + self.dataset, self.true_current_epoch, self.true_global_step + ) + self.do_update_step_end(self.true_current_epoch, self.true_global_step) + + def on_validation_batch_end(self, outputs, batch, batch_idx): + self.dataset = self.trainer.val_dataloaders.dataset + update_end_if_possible( + self.dataset, self.true_current_epoch, self.true_global_step + ) + self.do_update_step_end(self.true_current_epoch, self.true_global_step) + if self.cfg.cleanup_after_validation_step: + # cleanup to save vram + cleanup() + + def on_validation_epoch_end(self): + raise NotImplementedError + + def test_step(self, batch, batch_idx): + raise NotImplementedError + + def on_test_batch_end(self, outputs, batch, batch_idx): + self.dataset = self.trainer.test_dataloaders.dataset + update_end_if_possible( + self.dataset, self.true_current_epoch, self.true_global_step + ) + self.do_update_step_end(self.true_current_epoch, self.true_global_step) + if self.cfg.cleanup_after_test_step: + # cleanup to save vram + cleanup() + + def on_test_epoch_end(self): + pass + + def predict_step(self, batch, batch_idx): + raise NotImplementedError + + def on_predict_batch_end(self, outputs, batch, batch_idx): + self.dataset = self.trainer.predict_dataloaders.dataset + update_end_if_possible( + self.dataset, self.true_current_epoch, self.true_global_step + ) + self.do_update_step_end(self.true_current_epoch, self.true_global_step) + if self.cfg.cleanup_after_test_step: + # cleanup to save vram + cleanup() + + def on_predict_epoch_end(self): + pass + + def preprocess_data(self, batch, stage): + pass + + """ + Implementing on_after_batch_transfer of DataModule does the same. + But on_after_batch_transfer does not support DP. + """ + + def on_train_batch_start(self, batch, batch_idx, unused=0): + self.preprocess_data(batch, "train") + self.dataset = self.trainer.train_dataloader.dataset + update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step) + self.do_update_step(self.true_current_epoch, self.true_global_step) + + def on_validation_batch_start(self, batch, batch_idx, dataloader_idx=0): + self.preprocess_data(batch, "validation") + self.dataset = self.trainer.val_dataloaders.dataset + update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step) + self.do_update_step(self.true_current_epoch, self.true_global_step) + + def on_test_batch_start(self, batch, batch_idx, dataloader_idx=0): + self.preprocess_data(batch, "test") + self.dataset = self.trainer.test_dataloaders.dataset + update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step) + self.do_update_step(self.true_current_epoch, self.true_global_step) + + def on_predict_batch_start(self, batch, batch_idx, dataloader_idx=0): + self.preprocess_data(batch, "predict") + self.dataset = self.trainer.predict_dataloaders.dataset + update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step) + self.do_update_step(self.true_current_epoch, self.true_global_step) + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + pass + + def on_before_optimizer_step(self, optimizer): + """ + # some gradient-related debugging goes here, example: + from lightning.pytorch.utilities import grad_norm + norms = grad_norm(self.geometry, norm_type=2) + print(norms) + """ + pass + + +class BaseLift3DSystem(BaseSystem): + @dataclass + class Config(BaseSystem.Config): + geometry_type: str = "" + geometry: dict = field(default_factory=dict) + geometry_convert_from: Optional[str] = None + geometry_convert_inherit_texture: bool = False + # used to override configurations of the previous geometry being converted from, + # for example isosurface_threshold + geometry_convert_override: dict = field(default_factory=dict) + + material_type: str = "" + material: dict = field(default_factory=dict) + + background_type: str = "" + background: dict = field(default_factory=dict) + + renderer_type: str = "" + renderer: dict = field(default_factory=dict) + + guidance_type: str = "" + guidance: dict = field(default_factory=dict) + + prompt_processor_type: str = "" + prompt_processor: dict = field(default_factory=dict) + + # geometry export configurations, no need to specify in training + exporter_type: str = "mesh-exporter" + exporter: dict = field(default_factory=dict) + + cfg: Config + + def configure(self) -> None: + self.cfg.geometry_convert_from = find_last_path(self.cfg.geometry_convert_from) + self.cfg.weights = find_last_path(self.cfg.weights) + if ( + self.cfg.geometry_convert_from # from_coarse must be specified + and not self.cfg.weights # not initialized from coarse when weights are specified + and not self.resumed # not initialized from coarse when resumed from checkpoints + ): + threestudio.info("Initializing geometry from a given checkpoint ...") + from threestudio.utils.config import load_config, parse_structured + + prev_cfg = load_config( + os.path.join( + os.path.dirname(self.cfg.geometry_convert_from), + "../configs/parsed.yaml", + ) + ) # TODO: hard-coded relative path + prev_system_cfg: BaseLift3DSystem.Config = parse_structured( + self.Config, prev_cfg.system + ) + prev_geometry_cfg = prev_system_cfg.geometry + prev_geometry_cfg.update(self.cfg.geometry_convert_override) + prev_geometry = threestudio.find(prev_system_cfg.geometry_type)( + prev_geometry_cfg + ) + state_dict, epoch, global_step = load_module_weights( + self.cfg.geometry_convert_from, + module_name="geometry", + map_location="cpu", + ) + prev_geometry.load_state_dict(state_dict, strict=False) + # restore step-dependent states + prev_geometry.do_update_step(epoch, global_step, on_load_weights=True) + # convert from coarse stage geometry + prev_geometry = prev_geometry.to(get_device()) + self.geometry = threestudio.find(self.cfg.geometry_type).create_from( + prev_geometry, + self.cfg.geometry, + copy_net=self.cfg.geometry_convert_inherit_texture, + ) + del prev_geometry + cleanup() + else: + self.geometry = threestudio.find(self.cfg.geometry_type)(self.cfg.geometry) + + self.material = threestudio.find(self.cfg.material_type)(self.cfg.material) + self.background = threestudio.find(self.cfg.background_type)( + self.cfg.background + ) + self.renderer = threestudio.find(self.cfg.renderer_type)( + self.cfg.renderer, + geometry=self.geometry, + material=self.material, + background=self.background, + ) + + def on_fit_start(self) -> None: + if self._save_dir is not None: + threestudio.info(f"Validation results will be saved to {self._save_dir}") + else: + threestudio.warn( + f"Saving directory not set for the system, visualization results will not be saved" + ) + + def on_test_end(self) -> None: + if self._save_dir is not None: + threestudio.info(f"Test results saved to {self._save_dir}") + + def on_predict_start(self) -> None: + self.exporter: Exporter = threestudio.find(self.cfg.exporter_type)( + self.cfg.exporter, + geometry=self.geometry, + material=self.material, + background=self.background, + ) + + def predict_step(self, batch, batch_idx): + if self.exporter.cfg.save_video: + self.test_step(batch, batch_idx) + + def on_predict_epoch_end(self) -> None: + if self.exporter.cfg.save_video: + self.on_test_epoch_end() + exporter_output: List[ExporterOutput] = self.exporter() + for out in exporter_output: + save_func_name = f"save_{out.save_type}" + if not hasattr(self, save_func_name): + raise ValueError(f"{save_func_name} not supported by the SaverMixin") + save_func = getattr(self, save_func_name) + save_func(f"it{self.true_global_step}-export/{out.save_name}", **out.params) + + def on_predict_end(self) -> None: + if self._save_dir is not None: + threestudio.info(f"Export assets saved to {self._save_dir}") + + def guidance_evaluation_save(self, comp_rgb, guidance_eval_out): + B, size = comp_rgb.shape[:2] + resize = lambda x: F.interpolate( + x.permute(0, 3, 1, 2), (size, size), mode="bilinear", align_corners=False + ).permute(0, 2, 3, 1) + filename = f"it{self.true_global_step}-train.png" + + def merge12(x): + return x.reshape(-1, *x.shape[2:]) + + self.save_image_grid( + filename, + [ + { + "type": "rgb", + "img": merge12(comp_rgb), + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": merge12(resize(guidance_eval_out["imgs_noisy"])), + "kwargs": {"data_format": "HWC"}, + } + ] + ) + + ( + [ + { + "type": "rgb", + "img": merge12(resize(guidance_eval_out["imgs_1step"])), + "kwargs": {"data_format": "HWC"}, + } + ] + ) + + ( + [ + { + "type": "rgb", + "img": merge12(resize(guidance_eval_out["imgs_1orig"])), + "kwargs": {"data_format": "HWC"}, + } + ] + ) + + ( + [ + { + "type": "rgb", + "img": merge12(resize(guidance_eval_out["imgs_final"])), + "kwargs": {"data_format": "HWC"}, + } + ] + ), + name="train_step", + step=self.true_global_step, + texts=guidance_eval_out["texts"], + ) diff --git a/threestudio/systems/control4d_multiview.py b/threestudio/systems/control4d_multiview.py new file mode 100644 index 0000000..8cfd9cf --- /dev/null +++ b/threestudio/systems/control4d_multiview.py @@ -0,0 +1,286 @@ +import os +from dataclasses import dataclass, field + +import torch +import torch.nn.functional as F + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.systems.utils import parse_optimizer +from threestudio.utils.GAN.loss import discriminator_loss, generator_loss +from threestudio.utils.misc import cleanup, get_device +from threestudio.utils.ops import binary_cross_entropy, dot +from threestudio.utils.perceptual import PerceptualLoss +from threestudio.utils.typing import * + + +@threestudio.register("control4d-multiview-system") +class Control4D(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + per_editing_step: int = 20 + start_editing_step: int = 2000 + + cfg: Config + + def configure(self) -> None: + # override the default configure function + self.material = threestudio.find(self.cfg.material_type)(self.cfg.material) + self.background = threestudio.find(self.cfg.background_type)( + self.cfg.background + ) + self.geometry = threestudio.find(self.cfg.geometry_type)(self.cfg.geometry) + + self.renderer = threestudio.find(self.cfg.renderer_type)( + self.cfg.renderer, + geometry=self.geometry, + material=self.material, + background=self.background, + ) + p_config = {} + self.perceptual_loss = threestudio.find("perceptual-loss")(p_config) + self.edit_frames = {} + self.per_editing_step = self.cfg.per_editing_step + self.start_editing_step = self.cfg.start_editing_step + + self.automatic_optimization = False + + def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: + render_out = self.renderer(**batch) + return { + **render_out, + } + + def on_fit_start(self) -> None: + super().on_fit_start() + # only used in training + self.prompt_processor = threestudio.find(self.cfg.prompt_processor_type)( + self.cfg.prompt_processor + ) + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + def training_step(self, batch, batch_idx): + optimizer_g, optimizer_d = self.optimizers() + self.toggle_optimizer(optimizer_g) + + if torch.is_tensor(batch["index"]): + batch_index = batch["index"].item() + else: + batch_index = batch["index"] + batch["multi_level_guidance"] = True + + origin_gt_rgb = batch["gt_rgb"] + B, H, W, C = origin_gt_rgb.shape + if batch_index in self.edit_frames: + gt_rgb = self.edit_frames[batch_index].to(batch["gt_rgb"].device) + gt_rgb = torch.nn.functional.interpolate( + gt_rgb.permute(0, 3, 1, 2), (H, W), mode="bilinear", align_corners=False + ).permute(0, 2, 3, 1) + batch["gt_rgb"] = gt_rgb + else: + gt_rgb = origin_gt_rgb + out = self(batch) + if self.per_editing_step > 0 and self.global_step > self.start_editing_step: + prompt_utils = self.prompt_processor() + if ( + not batch_index in self.edit_frames + or self.global_step % self.per_editing_step == 0 + ): + result = self.guidance(out["comp_gan_rgb"], origin_gt_rgb, prompt_utils) + self.edit_frames[batch_index] = result["edit_images"].detach().cpu() + + loss = 0.0 + # loss of generator level 0 + loss_l1 = F.l1_loss(out["comp_int_rgb"], out["comp_gt_rgb"]) + loss_p = 0.0 + loss_kl = out["posterior"].kl().mean() + loss_G = generator_loss( + self.renderer.discriminator, + gt_rgb.permute(0, 3, 1, 2), + out["comp_gan_rgb"].permute(0, 3, 1, 2), + ) + + generator_level = out["generator_level"] + + level_ratio = 1.0 if generator_level == 2 else 0.1 + loss_l1 += F.l1_loss(out["comp_gan_rgb"], gt_rgb) * level_ratio + lr_gan_rgb = F.interpolate( + out["comp_gan_rgb"].permute(0, 3, 1, 2), (H // 4, W // 4), mode="area" + ) + lr_rgb = F.interpolate( + out["comp_rgb"].permute(0, 3, 1, 2), (H // 4, W // 4), mode="area" + ).detach() + loss_l1 += F.l1_loss(lr_gan_rgb, lr_rgb).sum() * level_ratio * 0.25 + + level_ratio = 1.0 if generator_level >= 1 else 0.1 + loss_p += ( + self.perceptual_loss( + out["comp_gan_rgb"].permute(0, 3, 1, 2).contiguous(), + gt_rgb.permute(0, 3, 1, 2).contiguous(), + ).sum() + * level_ratio + ) + + guidance_out = { + "loss_l1": loss_l1, + "loss_p": loss_p, + "loss_G": loss_G, + "loss_kl": loss_kl, + } + + for name, value in guidance_out.items(): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + loss_orient = ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() / (out["opacity"] > 0).sum() + self.log("train/loss_orient", loss_orient) + loss += loss_orient * self.C(self.cfg.loss.lambda_orient) + + loss_sparsity = (out["opacity"] ** 2 + 0.01).sqrt().mean() + self.log("train/loss_sparsity", loss_sparsity) + loss += loss_sparsity * self.C(self.cfg.loss.lambda_sparsity) + + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + loss_opaque = binary_cross_entropy(opacity_clamped, opacity_clamped) + self.log("train/loss_opaque", loss_opaque) + loss += loss_opaque * self.C(self.cfg.loss.lambda_opaque) + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + self.manual_backward(loss) + optimizer_g.step() + optimizer_g.zero_grad() + self.untoggle_optimizer(optimizer_g) + + self.toggle_optimizer(optimizer_d) + loss_D = discriminator_loss( + self.renderer.discriminator, + gt_rgb.permute(0, 3, 1, 2), + out["comp_gan_rgb"].permute(0, 3, 1, 2), + ) + loss_D *= self.C(self.cfg.loss["lambda_D"]) + self.log("train/loss_D", loss_D) + self.manual_backward(loss_D) + optimizer_d.step() + optimizer_d.zero_grad() + self.untoggle_optimizer(optimizer_d) + + def validation_step(self, batch, batch_idx): + out = self(batch) + if torch.is_tensor(batch["index"]): + batch_index = batch["index"].item() + else: + batch_index = batch["index"] + if batch_index in self.edit_frames: + B, H, W, C = batch["gt_rgb"].shape + rgb = torch.nn.functional.interpolate( + self.edit_frames[batch_index].permute(0, 3, 1, 2), (H, W) + ).permute(0, 2, 3, 1)[0] + else: + rgb = batch["gt_rgb"][0] + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}.jpg", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + [ + { + "type": "rgb", + "img": out["comp_gan_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ] + + [ + { + "type": "rgb", + "img": rgb, + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + }, + ], + name="validation_step", + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + pass + + def test_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_gan_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) + + def configure_optimizers(self): + optimizer_g = parse_optimizer(self.cfg.optimizer, self) + optimizer_d = parse_optimizer(self.cfg.optimizer.optimizer_dis, self) + return [optimizer_g, optimizer_d], [] diff --git a/threestudio/systems/dreamfusion.py b/threestudio/systems/dreamfusion.py new file mode 100644 index 0000000..4e594b6 --- /dev/null +++ b/threestudio/systems/dreamfusion.py @@ -0,0 +1,162 @@ +from dataclasses import dataclass, field + +import torch + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.ops import binary_cross_entropy, dot +from threestudio.utils.typing import * + + +@threestudio.register("dreamfusion-system") +class DreamFusion(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + pass + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + + def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: + render_out = self.renderer(**batch) + return { + **render_out, + } + + def on_fit_start(self) -> None: + super().on_fit_start() + # only used in training + self.prompt_processor = threestudio.find(self.cfg.prompt_processor_type)( + self.cfg.prompt_processor + ) + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + def training_step(self, batch, batch_idx): + out = self(batch) + prompt_utils = self.prompt_processor() + guidance_out = self.guidance( + out["comp_rgb"], prompt_utils, **batch, rgb_as_latents=False + ) + + loss = 0.0 + + for name, value in guidance_out.items(): + if not (type(value) is torch.Tensor and value.numel() > 1): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + loss_orient = ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() / (out["opacity"] > 0).sum() + self.log("train/loss_orient", loss_orient) + loss += loss_orient * self.C(self.cfg.loss.lambda_orient) + + loss_sparsity = (out["opacity"] ** 2 + 0.01).sqrt().mean() + self.log("train/loss_sparsity", loss_sparsity) + loss += loss_sparsity * self.C(self.cfg.loss.lambda_sparsity) + + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + loss_opaque = binary_cross_entropy(opacity_clamped, opacity_clamped) + self.log("train/loss_opaque", loss_opaque) + loss += loss_opaque * self.C(self.cfg.loss.lambda_opaque) + + # z-variance loss proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + if "z_variance" in out and "lambda_z_variance" in self.cfg.loss: + loss_z_variance = out["z_variance"][out["opacity"] > 0.5].mean() + self.log("train/loss_z_variance", loss_z_variance) + loss += loss_z_variance * self.C(self.cfg.loss.lambda_z_variance) + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + return {"loss": loss} + + def validation_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="validation_step", + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + pass + + def test_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) diff --git a/threestudio/systems/eff_dreamfusion.py b/threestudio/systems/eff_dreamfusion.py new file mode 100644 index 0000000..bb9db2c --- /dev/null +++ b/threestudio/systems/eff_dreamfusion.py @@ -0,0 +1,104 @@ +from .dreamfusion import * + + +@threestudio.register("efficient-dreamfusion-system") +class EffDreamFusion(DreamFusion): + @dataclass + class Config(DreamFusion.Config): + pass + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + + def unmask(self, ind, subsampled_tensor, H, W): + """ + ind: B,s_H,s_W + subsampled_tensor: B,C,s_H,s_W + """ + + # Create a grid of coordinates for the original image size + offset = [ind[0, 0] % H, ind[0, 0] // H] + indices_all = torch.meshgrid( + torch.arange(W, dtype=torch.float32, device=self.device), + torch.arange(H, dtype=torch.float32, device=self.device), + indexing="xy", + ) + + grid = torch.stack( + [ + (indices_all[0] - offset[0]) * 4 / (3 * W), + (indices_all[1] - offset[1]) * 4 / (H * 3), + ], + dim=-1, + ) + grid = grid * 2 - 1 + grid = grid.repeat(subsampled_tensor.shape[0], 1, 1, 1) + # Use grid_sample to upsample the subsampled tensor (B,C,H,W) + upsampled_tensor = torch.nn.functional.grid_sample( + subsampled_tensor, grid, mode="bilinear", align_corners=True + ) + + return upsampled_tensor.permute(0, 2, 3, 1) + + def training_step(self, batch, batch_idx): + out = self(batch) + ### using mask to create image at original resolution during training + (B, s_H, s_W, C) = out["comp_rgb"].shape + comp_rgb = out["comp_rgb"].permute(0, 3, 1, 2) + mask = batch["efficiency_mask"] + comp_rgb = self.unmask(mask, comp_rgb, batch["height"], batch["width"]) + # comp_rgb = torch.zeros(B,batch["height"],batch["width"],C,device=self.device).view(B,-1,C) + # comp_rgb[:,mask.view(-1)] = out["comp_rgb"].view(B,-1,C) + out.update( + { + "comp_rgb": comp_rgb, + } + ) + + prompt_utils = self.prompt_processor() + guidance_out = self.guidance( + out["comp_rgb"], prompt_utils, **batch, rgb_as_latents=False + ) + + loss = 0.0 + + for name, value in guidance_out.items(): + if not (type(value) is torch.Tensor and value.numel() > 1): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + loss_orient = ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() / (out["opacity"] > 0).sum() + self.log("train/loss_orient", loss_orient) + loss += loss_orient * self.C(self.cfg.loss.lambda_orient) + + loss_sparsity = (out["opacity"] ** 2 + 0.01).sqrt().mean() + self.log("train/loss_sparsity", loss_sparsity) + loss += loss_sparsity * self.C(self.cfg.loss.lambda_sparsity) + + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + loss_opaque = binary_cross_entropy(opacity_clamped, opacity_clamped) + self.log("train/loss_opaque", loss_opaque) + loss += loss_opaque * self.C(self.cfg.loss.lambda_opaque) + + # z-variance loss proposed in HiFA: https://hifa-team.github.io/HiFA-site/ + if "z_variance" in out and "lambda_z_variance" in self.cfg.loss: + loss_z_variance = out["z_variance"][out["opacity"] > 0.5].mean() + self.log("train/loss_z_variance", loss_z_variance) + loss += loss_z_variance * self.C(self.cfg.loss.lambda_z_variance) + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + return {"loss": loss} diff --git a/threestudio/systems/fantasia3d.py b/threestudio/systems/fantasia3d.py new file mode 100644 index 0000000..26d8d63 --- /dev/null +++ b/threestudio/systems/fantasia3d.py @@ -0,0 +1,168 @@ +from dataclasses import dataclass, field + +import torch +import torch.nn.functional as F + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.ops import binary_cross_entropy, dot +from threestudio.utils.typing import * + + +@threestudio.register("fantasia3d-system") +class Fantasia3D(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + latent_steps: int = 1000 + texture: bool = False + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + + def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: + render_out = self.renderer(**batch, render_rgb=self.cfg.texture) + return { + **render_out, + } + + def on_fit_start(self) -> None: + super().on_fit_start() + # only used in training + self.prompt_processor = threestudio.find(self.cfg.prompt_processor_type)( + self.cfg.prompt_processor + ) + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + if not self.cfg.texture: + # initialize SDF + # FIXME: what if using other geometry types? + self.geometry.initialize_shape() + + def training_step(self, batch, batch_idx): + loss = 0.0 + + out = self(batch) + prompt_utils = self.prompt_processor() + + if not self.cfg.texture: # geometry training + if self.true_global_step < self.cfg.latent_steps: + guidance_inp = torch.cat( + [out["comp_normal"] * 2.0 - 1.0, out["opacity"]], dim=-1 + ) + guidance_out = self.guidance( + guidance_inp, prompt_utils, **batch, rgb_as_latents=True + ) + else: + guidance_inp = out["comp_normal"] + guidance_out = self.guidance( + guidance_inp, prompt_utils, **batch, rgb_as_latents=False + ) + + loss_normal_consistency = out["mesh"].normal_consistency() + self.log("train/loss_normal_consistency", loss_normal_consistency) + loss += loss_normal_consistency * self.C( + self.cfg.loss.lambda_normal_consistency + ) + else: # texture training + guidance_inp = out["comp_rgb"] + if isinstance( + self.guidance, + threestudio.models.guidance.controlnet_guidance.ControlNetGuidance, + ): + cond_inp = out["comp_normal"] + guidance_out = self.guidance( + guidance_inp, cond_inp, prompt_utils, **batch, rgb_as_latents=False + ) + else: + guidance_out = self.guidance( + guidance_inp, prompt_utils, **batch, rgb_as_latents=False + ) + + for name, value in guidance_out.items(): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + return {"loss": loss} + + def validation_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}.png", + ( + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if self.cfg.texture + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + }, + ], + name="validation_step", + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + pass + + def test_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + ( + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if self.cfg.texture + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + }, + ], + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) diff --git a/threestudio/systems/imagedreamfusion.py b/threestudio/systems/imagedreamfusion.py new file mode 100644 index 0000000..63108a3 --- /dev/null +++ b/threestudio/systems/imagedreamfusion.py @@ -0,0 +1,387 @@ +import os +import random +import shutil +from dataclasses import dataclass, field + +import torch +import torch.nn.functional as F +from torchmetrics import PearsonCorrCoef + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.ops import binary_cross_entropy, dot +from threestudio.utils.typing import * + + +@threestudio.register("image-condition-dreamfusion-system") +class ImageConditionDreamFusion(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + freq: dict = field(default_factory=dict) + refinement: bool = False + ambient_ratio_min: float = 0.5 + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + + def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: + render_out = self.renderer(**batch) + return { + **render_out, + } + + def on_fit_start(self) -> None: + super().on_fit_start() + # only used in training + self.prompt_processor = threestudio.find(self.cfg.prompt_processor_type)( + self.cfg.prompt_processor + ) + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + # visualize all training images + all_images = self.trainer.datamodule.train_dataloader().dataset.get_all_images() + self.save_image_grid( + "all_training_images.png", + [ + {"type": "rgb", "img": image, "kwargs": {"data_format": "HWC"}} + for image in all_images + ], + name="on_fit_start", + step=self.true_global_step, + ) + + self.pearson = PearsonCorrCoef().to(self.device) + + def training_substep(self, batch, batch_idx, guidance: str): + """ + Args: + guidance: one of "ref" (reference image supervision), "guidance" + """ + if guidance == "ref": + # bg_color = torch.rand_like(batch['rays_o']) + ambient_ratio = 1.0 + shading = "diffuse" + batch["shading"] = shading + elif guidance == "guidance": + batch = batch["random_camera"] + ambient_ratio = ( + self.cfg.ambient_ratio_min + + (1 - self.cfg.ambient_ratio_min) * random.random() + ) + + batch["bg_color"] = None + batch["ambient_ratio"] = ambient_ratio + + out = self(batch) + loss_prefix = f"loss_{guidance}_" + + loss_terms = {} + + def set_loss(name, value): + loss_terms[f"{loss_prefix}{name}"] = value + + guidance_eval = ( + guidance == "guidance" + and self.cfg.freq.guidance_eval > 0 + and self.true_global_step % self.cfg.freq.guidance_eval == 0 + ) + + if guidance == "ref": + gt_mask = batch["mask"] + gt_rgb = batch["rgb"] + + # color loss + gt_rgb = gt_rgb * gt_mask.float() + out["comp_rgb_bg"] * ( + 1 - gt_mask.float() + ) + set_loss("rgb", F.mse_loss(gt_rgb, out["comp_rgb"])) + + # mask loss + set_loss("mask", F.mse_loss(gt_mask.float(), out["opacity"])) + + # depth loss + if self.C(self.cfg.loss.lambda_depth) > 0: + valid_gt_depth = batch["ref_depth"][gt_mask.squeeze(-1)].unsqueeze(1) + valid_pred_depth = out["depth"][gt_mask].unsqueeze(1) + with torch.no_grad(): + A = torch.cat( + [valid_gt_depth, torch.ones_like(valid_gt_depth)], dim=-1 + ) # [B, 2] + X = torch.linalg.lstsq(A, valid_pred_depth).solution # [2, 1] + valid_gt_depth = A @ X # [B, 1] + set_loss("depth", F.mse_loss(valid_gt_depth, valid_pred_depth)) + + # relative depth loss + if self.C(self.cfg.loss.lambda_depth_rel) > 0: + valid_gt_depth = batch["ref_depth"][gt_mask.squeeze(-1)] # [B,] + valid_pred_depth = out["depth"][gt_mask] # [B,] + set_loss( + "depth_rel", 1 - self.pearson(valid_pred_depth, valid_gt_depth) + ) + + # normal loss + if self.C(self.cfg.loss.lambda_normal) > 0: + valid_gt_normal = ( + 1 - 2 * batch["ref_normal"][gt_mask.squeeze(-1)] + ) # [B, 3] + valid_pred_normal = ( + 2 * out["comp_normal"][gt_mask.squeeze(-1)] - 1 + ) # [B, 3] + set_loss( + "normal", + 1 - F.cosine_similarity(valid_pred_normal, valid_gt_normal).mean(), + ) + elif guidance == "guidance": + self.guidance.set_min_max_steps( + self.C(self.guidance.cfg.min_step_percent), + self.C(self.guidance.cfg.max_step_percent), + ) + prompt_utils = self.prompt_processor() + guidance_out = self.guidance( + out["comp_rgb"], + prompt_utils, + **batch, + rgb_as_latents=False, + guidance_eval=guidance_eval, + ) + set_loss("sds", guidance_out["loss_sds"]) + + if self.C(self.cfg.loss.lambda_normal_smooth) > 0: + if "comp_normal" not in out: + raise ValueError( + "comp_normal is required for 2D normal smooth loss, no comp_normal is found in the output." + ) + normal = out["comp_normal"] + set_loss( + "normal_smooth", + (normal[:, 1:, :, :] - normal[:, :-1, :, :]).square().mean() + + (normal[:, :, 1:, :] - normal[:, :, :-1, :]).square().mean(), + ) + + if self.C(self.cfg.loss.lambda_3d_normal_smooth) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for normal smooth loss, no normal is found in the output." + ) + if "normal_perturb" not in out: + raise ValueError( + "normal_perturb is required for normal smooth loss, no normal_perturb is found in the output." + ) + normals = out["normal"] + normals_perturb = out["normal_perturb"] + set_loss("3d_normal_smooth", (normals - normals_perturb).abs().mean()) + + if not self.cfg.refinement: + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + set_loss( + "orient", + ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() + / (out["opacity"] > 0).sum(), + ) + + if guidance != "ref" and self.C(self.cfg.loss.lambda_sparsity) > 0: + set_loss("sparsity", (out["opacity"] ** 2 + 0.01).sqrt().mean()) + + if self.C(self.cfg.loss.lambda_opaque) > 0: + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + set_loss( + "opaque", binary_cross_entropy(opacity_clamped, opacity_clamped) + ) + else: + if self.C(self.cfg.loss.lambda_normal_consistency) > 0: + set_loss("normal_consistency", out["mesh"].normal_consistency()) + if self.C(self.cfg.loss.lambda_laplacian_smoothness) > 0: + set_loss("laplacian_smoothness", out["mesh"].laplacian()) + + loss = 0.0 + for name, value in loss_terms.items(): + self.log(f"train/{name}", value) + if name.startswith(loss_prefix): + loss_weighted = value * self.C( + self.cfg.loss[name.replace(loss_prefix, "lambda_")] + ) + self.log(f"train/{name}_w", loss_weighted) + loss += loss_weighted + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + self.log(f"train/loss_{guidance}", loss) + + if guidance_eval: + self.guidance_evaluation_save( + out["comp_rgb"].detach()[: guidance_out["eval"]["bs"]], + guidance_out["eval"], + ) + + return {"loss": loss} + + def training_step(self, batch, batch_idx): + total_loss = 0.0 + + # guidance + if self.true_global_step > self.cfg.freq.ref_only_steps: + out = self.training_substep(batch, batch_idx, guidance="guidance") + total_loss += out["loss"] + + # ref + out = self.training_substep(batch, batch_idx, guidance="ref") + total_loss += out["loss"] + + self.log("train/loss", total_loss, prog_bar=True) + + # sch = self.lr_schedulers() + # sch.step() + + return {"loss": total_loss} + + def validation_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-val/{batch['index'][0]}.png", + ( + [ + { + "type": "rgb", + "img": batch["rgb"][0], + "kwargs": {"data_format": "HWC"}, + } + ] + if "rgb" in batch + else [] + ) + + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + ( + [ + { + "type": "grayscale", + "img": out["depth"][0], + "kwargs": {}, + } + ] + if "depth" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name=f"validation_step_batchidx_{batch_idx}" + if batch_idx in [0, 7, 15, 23, 29] + else None, + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + filestem = f"it{self.true_global_step}-val" + self.save_img_sequence( + filestem, + filestem, + "(\d+)\.png", + save_format="mp4", + fps=30, + name="validation_epoch_end", + step=self.true_global_step, + ) + shutil.rmtree( + os.path.join(self.get_save_dir(), f"it{self.true_global_step}-val") + ) + + def test_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + ( + [ + { + "type": "rgb", + "img": batch["rgb"][0], + "kwargs": {"data_format": "HWC"}, + } + ] + if "rgb" in batch + else [] + ) + + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + ( + [ + { + "type": "grayscale", + "img": out["depth"][0], + "kwargs": {}, + } + ] + if "depth" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) + shutil.rmtree( + os.path.join(self.get_save_dir(), f"it{self.true_global_step}-test") + ) diff --git a/threestudio/systems/instructnerf2nerf.py b/threestudio/systems/instructnerf2nerf.py new file mode 100644 index 0000000..f6e3ecd --- /dev/null +++ b/threestudio/systems/instructnerf2nerf.py @@ -0,0 +1,213 @@ +import os +from dataclasses import dataclass, field + +import torch + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.misc import cleanup, get_device +from threestudio.utils.ops import binary_cross_entropy, dot +from threestudio.utils.perceptual import PerceptualLoss +from threestudio.utils.typing import * + + +@threestudio.register("instructnerf2nerf-system") +class Instructnerf2nerf(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + per_editing_step: int = 10 + start_editing_step: int = 1000 + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + self.edit_frames = {} + p_config = {} + self.perceptual_loss = threestudio.find("perceptual-loss")(p_config) + + def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: + render_out = self.renderer(**batch) + return { + **render_out, + } + + def on_fit_start(self) -> None: + super().on_fit_start() + # only used in training + self.prompt_processor = threestudio.find(self.cfg.prompt_processor_type)( + self.cfg.prompt_processor + ) + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + def training_step(self, batch, batch_idx): + if torch.is_tensor(batch["index"]): + batch_index = batch["index"].item() + else: + batch_index = batch["index"] + origin_gt_rgb = batch["gt_rgb"] + B, H, W, C = origin_gt_rgb.shape + if batch_index in self.edit_frames: + gt_rgb = self.edit_frames[batch_index].to(batch["gt_rgb"].device) + gt_rgb = torch.nn.functional.interpolate( + gt_rgb.permute(0, 3, 1, 2), (H, W), mode="bilinear", align_corners=False + ).permute(0, 2, 3, 1) + batch["gt_rgb"] = gt_rgb + else: + gt_rgb = origin_gt_rgb + out = self(batch) + if ( + self.cfg.per_editing_step > 0 + and self.global_step > self.cfg.start_editing_step + ): + prompt_utils = self.prompt_processor() + if ( + not batch_index in self.edit_frames + or self.global_step % self.cfg.per_editing_step == 0 + ): + self.renderer.eval() + full_out = self(batch) + self.renderer.train() + result = self.guidance( + full_out["comp_rgb"], origin_gt_rgb, prompt_utils + ) + self.edit_frames[batch_index] = result["edit_images"].detach().cpu() + + loss = 0.0 + guidance_out = { + "loss_l1": torch.nn.functional.l1_loss(out["comp_rgb"], gt_rgb), + "loss_p": self.perceptual_loss( + out["comp_rgb"].permute(0, 3, 1, 2).contiguous(), + gt_rgb.permute(0, 3, 1, 2).contiguous(), + ).sum(), + } + + for name, value in guidance_out.items(): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + loss_orient = ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() / (out["opacity"] > 0).sum() + self.log("train/loss_orient", loss_orient) + loss += loss_orient * self.C(self.cfg.loss.lambda_orient) + + loss_sparsity = (out["opacity"] ** 2 + 0.01).sqrt().mean() + self.log("train/loss_sparsity", loss_sparsity) + loss += loss_sparsity * self.C(self.cfg.loss.lambda_sparsity) + + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + loss_opaque = binary_cross_entropy(opacity_clamped, opacity_clamped) + self.log("train/loss_opaque", loss_opaque) + loss += loss_opaque * self.C(self.cfg.loss.lambda_opaque) + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + return {"loss": loss} + + def validation_step(self, batch, batch_idx): + out = self(batch) + if torch.is_tensor(batch["index"]): + batch_index = batch["index"].item() + else: + batch_index = batch["index"] + if batch_index in self.edit_frames: + B, H, W, C = batch["gt_rgb"].shape + rgb = torch.nn.functional.interpolate( + self.edit_frames[batch_index].permute(0, 3, 1, 2), (H, W) + ).permute(0, 2, 3, 1)[0] + else: + rgb = batch["gt_rgb"][0] + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ] + + [ + { + "type": "rgb", + "img": rgb, + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + }, + ], + name="validation_step", + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + pass + + def test_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) diff --git a/threestudio/systems/latentnerf.py b/threestudio/systems/latentnerf.py new file mode 100644 index 0000000..48804c2 --- /dev/null +++ b/threestudio/systems/latentnerf.py @@ -0,0 +1,181 @@ +from dataclasses import dataclass, field + +import torch + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.ops import ShapeLoss, binary_cross_entropy, dot +from threestudio.utils.typing import * + + +@threestudio.register("latentnerf-system") +class LatentNeRF(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + guide_shape: Optional[str] = None + refinement: bool = False + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + + if self.training or not self.cfg.refinement: + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + if self.cfg.guide_shape is not None: + self.shape_loss = ShapeLoss(self.cfg.guide_shape) + + def forward(self, batch: Dict[str, Any], decode: bool = False) -> Dict[str, Any]: + render_out = self.renderer(**batch) + out = { + **render_out, + } + if decode: + if self.cfg.refinement: + out["decoded_rgb"] = out["comp_rgb"] + else: + out["decoded_rgb"] = self.guidance.decode_latents( + out["comp_rgb"].permute(0, 3, 1, 2) + ).permute(0, 2, 3, 1) + return out + + def on_fit_start(self) -> None: + super().on_fit_start() + # only used in training + self.prompt_processor = threestudio.find(self.cfg.prompt_processor_type)( + self.cfg.prompt_processor + ) + + def training_step(self, batch, batch_idx): + out = self(batch) + prompt_utils = self.prompt_processor() + guidance_out = self.guidance( + out["comp_rgb"], + prompt_utils, + **batch, + rgb_as_latents=not self.cfg.refinement, + ) + + loss = 0.0 + + for name, value in guidance_out.items(): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + loss_orient = ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() / (out["opacity"] > 0).sum() + self.log("train/loss_orient", loss_orient) + loss += loss_orient * self.C(self.cfg.loss.lambda_orient) + + loss_sparsity = (out["opacity"] ** 2 + 0.01).sqrt().mean() + self.log("train/loss_sparsity", loss_sparsity) + loss += loss_sparsity * self.C(self.cfg.loss.lambda_sparsity) + + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + loss_opaque = binary_cross_entropy(opacity_clamped, opacity_clamped) + self.log("train/loss_opaque", loss_opaque) + loss += loss_opaque * self.C(self.cfg.loss.lambda_opaque) + + if ( + self.cfg.guide_shape is not None + and self.C(self.cfg.loss.lambda_shape) > 0 + and out["points"].shape[0] > 0 + ): + loss_shape = self.shape_loss(out["points"], out["density"]) + self.log("train/loss_shape", loss_shape) + loss += loss_shape * self.C(self.cfg.loss.lambda_shape) + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + return {"loss": loss} + + def validation_step(self, batch, batch_idx): + out = self(batch, decode=True) + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["decoded_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="validation_step", + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + pass + + def test_step(self, batch, batch_idx): + out = self(batch, decode=True) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["decoded_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) diff --git a/threestudio/systems/magic123.py b/threestudio/systems/magic123.py new file mode 100644 index 0000000..1255151 --- /dev/null +++ b/threestudio/systems/magic123.py @@ -0,0 +1,230 @@ +from dataclasses import dataclass, field + +import torch +import torch.nn.functional as F + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.ops import binary_cross_entropy, dot +from threestudio.utils.typing import * + + +@threestudio.register("magic123-system") +class Magic123(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + refinement: bool = False + guidance_3d_type: str = "" + guidance_3d: dict = field(default_factory=dict) + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + self.guidance_3d = threestudio.find(self.cfg.guidance_3d_type)( + self.cfg.guidance_3d + ) + + def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: + render_out = self.renderer(**batch) + return { + **render_out, + } + + def on_fit_start(self) -> None: + super().on_fit_start() + self.prompt_processor = threestudio.find(self.cfg.prompt_processor_type)( + self.cfg.prompt_processor + ) + + def training_step(self, batch, batch_idx): + out_input = self(batch) + out = self(batch["random_camera"]) + prompt_utils = self.prompt_processor() + guidance_out = self.guidance( + out["comp_rgb"], + prompt_utils, + **batch["random_camera"], + rgb_as_latents=False, + ) + guidance_3d_out = self.guidance_3d( + out["comp_rgb"], + **batch["random_camera"], + rgb_as_latents=False, + ) + + loss = 0.0 + + loss_rgb = F.mse_loss( + out_input["comp_rgb"], + batch["rgb"] * batch["mask"].float() + + out_input["comp_rgb_bg"] * (1.0 - batch["mask"].float()), + ) + self.log("train/loss_rgb", loss_rgb) + loss += loss_rgb * self.C(self.cfg.loss.lambda_rgb) + + loss_mask = F.binary_cross_entropy( + out_input["opacity"].clamp(1.0e-5, 1.0 - 1.0e-5), + batch["mask"].float(), + ) + self.log("train/loss_mask", loss_mask) + loss += loss_mask * self.C(self.cfg.loss.lambda_mask) + + for name, value in guidance_out.items(): + if not (isinstance(value, torch.Tensor) and len(value.shape) > 0): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + for name, value in guidance_3d_out.items(): + if not (isinstance(value, torch.Tensor) and len(value.shape) > 0): + self.log(f"train/{name}_3d", value) + if name.startswith("loss_"): + loss += value * self.C( + self.cfg.loss[name.replace("loss_", "lambda_3d_")] + ) + + if not self.cfg.refinement: + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + loss_orient = ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() / (out["opacity"] > 0).sum() + self.log("train/loss_orient", loss_orient) + loss += loss_orient * self.C(self.cfg.loss.lambda_orient) + + if self.C(self.cfg.loss.lambda_normal_smoothness_2d) > 0: + if "comp_normal" not in out: + raise ValueError( + "comp_normal is required for 2D normal smoothness loss, no comp_normal is found in the output." + ) + normal = out["comp_normal"] + loss_normal_smoothness_2d = ( + normal[:, 1:, :, :] - normal[:, :-1, :, :] + ).square().mean() + ( + normal[:, :, 1:, :] - normal[:, :, :-1, :] + ).square().mean() + self.log("trian/loss_normal_smoothness_2d", loss_normal_smoothness_2d) + loss += loss_normal_smoothness_2d * self.C( + self.cfg.loss.lambda_normal_smoothness_2d + ) + + loss_sparsity = (out["opacity"] ** 2 + 0.01).sqrt().mean() + self.log("train/loss_sparsity", loss_sparsity) + loss += loss_sparsity * self.C(self.cfg.loss.lambda_sparsity) + + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + loss_opaque = binary_cross_entropy(opacity_clamped, opacity_clamped) + self.log("train/loss_opaque", loss_opaque) + loss += loss_opaque * self.C(self.cfg.loss.lambda_opaque) + + # z variance loss proposed in HiFA: http://arxiv.org/abs/2305.18766 + # helps reduce floaters and produce solid geometry + if "z_variance" in out and "lambda_z_variance" in self.cfg.loss: + loss_z_variance = out["z_variance"][out["opacity"] > 0.5].mean() + self.log("train/loss_z_variance", loss_z_variance) + loss += loss_z_variance * self.C(self.cfg.loss.lambda_z_variance) + else: + loss_normal_consistency = out["mesh"].normal_consistency() + self.log("train/loss_normal_consistency", loss_normal_consistency) + loss += loss_normal_consistency * self.C( + self.cfg.loss.lambda_normal_consistency + ) + + if self.C(self.cfg.loss.lambda_laplacian_smoothness) > 0: + loss_laplacian_smoothness = out["mesh"].laplacian() + self.log("train/loss_laplacian_smoothness", loss_laplacian_smoothness) + loss += loss_laplacian_smoothness * self.C( + self.cfg.loss.lambda_laplacian_smoothness + ) + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + return {"loss": loss} + + def validation_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="validation_step", + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + pass + + def test_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) diff --git a/threestudio/systems/magic3d.py b/threestudio/systems/magic3d.py new file mode 100644 index 0000000..9b1666a --- /dev/null +++ b/threestudio/systems/magic3d.py @@ -0,0 +1,164 @@ +import os +from dataclasses import dataclass, field + +import torch + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.misc import cleanup, get_device +from threestudio.utils.ops import binary_cross_entropy, dot +from threestudio.utils.typing import * + + +@threestudio.register("magic3d-system") +class Magic3D(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + refinement: bool = False + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + + def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: + render_out = self.renderer(**batch) + return { + **render_out, + } + + def on_fit_start(self) -> None: + super().on_fit_start() + # only used in training + self.prompt_processor = threestudio.find(self.cfg.prompt_processor_type)( + self.cfg.prompt_processor + ) + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + def training_step(self, batch, batch_idx): + out = self(batch) + prompt_utils = self.prompt_processor() + guidance_out = self.guidance( + out["comp_rgb"], prompt_utils, **batch, rgb_as_latents=False + ) + + loss = 0.0 + + for name, value in guidance_out.items(): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + if not self.cfg.refinement: + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + loss_orient = ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() / (out["opacity"] > 0).sum() + self.log("train/loss_orient", loss_orient) + loss += loss_orient * self.C(self.cfg.loss.lambda_orient) + + loss_sparsity = (out["opacity"] ** 2 + 0.01).sqrt().mean() + self.log("train/loss_sparsity", loss_sparsity) + loss += loss_sparsity * self.C(self.cfg.loss.lambda_sparsity) + + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + loss_opaque = binary_cross_entropy(opacity_clamped, opacity_clamped) + self.log("train/loss_opaque", loss_opaque) + loss += loss_opaque * self.C(self.cfg.loss.lambda_opaque) + else: + loss_normal_consistency = out["mesh"].normal_consistency() + self.log("train/loss_normal_consistency", loss_normal_consistency) + loss += loss_normal_consistency * self.C( + self.cfg.loss.lambda_normal_consistency + ) + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + return {"loss": loss} + + def validation_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="validation_step", + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + pass + + def test_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) diff --git a/threestudio/systems/optimizers.py b/threestudio/systems/optimizers.py new file mode 100644 index 0000000..cfc426e --- /dev/null +++ b/threestudio/systems/optimizers.py @@ -0,0 +1,315 @@ +# Copyright 2022 Garena Online Private Limited +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import List + +import torch +from torch import Tensor +from torch.optim.optimizer import Optimizer + + +class Adan(Optimizer): + """ + Implements a pytorch variant of Adan + Adan was proposed in + Adan: Adaptive Nesterov Momentum Algorithm for + Faster Optimizing Deep Models[J].arXiv preprint arXiv:2208.06677, 2022. + https://arxiv.org/abs/2208.06677 + Arguments: + params (iterable): iterable of parameters to optimize or + dicts defining parameter groups. + lr (float, optional): learning rate. (default: 1e-3) + betas (Tuple[float, float, flot], optional): coefficients used for + first- and second-order moments. (default: (0.98, 0.92, 0.99)) + eps (float, optional): term added to the denominator to improve + numerical stability. (default: 1e-8) + weight_decay (float, optional): decoupled weight decay + (L2 penalty) (default: 0) + max_grad_norm (float, optional): value used to clip + global grad norm (default: 0.0 no clip) + no_prox (bool): how to perform the decoupled weight decay + (default: False) + foreach (bool): if True would use torch._foreach implementation. + It's faster but uses slightly more memory. (default: True) + """ + + def __init__( + self, + params, + lr=1e-3, + betas=(0.98, 0.92, 0.99), + eps=1e-8, + weight_decay=0.0, + max_grad_norm=0.0, + no_prox=False, + foreach: bool = True, + ): + if not 0.0 <= max_grad_norm: + raise ValueError("Invalid Max grad norm: {}".format(max_grad_norm)) + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + if not 0.0 <= betas[2] < 1.0: + raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2])) + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + max_grad_norm=max_grad_norm, + no_prox=no_prox, + foreach=foreach, + ) + super().__init__(params, defaults) + + def __setstate__(self, state): + super(Adan, self).__setstate__(state) + for group in self.param_groups: + group.setdefault("no_prox", False) + + @torch.no_grad() + def restart_opt(self): + for group in self.param_groups: + group["step"] = 0 + for p in group["params"]: + if p.requires_grad: + state = self.state[p] + # State initialization + + # Exponential moving average of gradient values + state["exp_avg"] = torch.zeros_like(p) + # Exponential moving average of squared gradient values + state["exp_avg_sq"] = torch.zeros_like(p) + # Exponential moving average of gradient difference + state["exp_avg_diff"] = torch.zeros_like(p) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step.""" + + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + if self.defaults["max_grad_norm"] > 0: + device = self.param_groups[0]["params"][0].device + global_grad_norm = torch.zeros(1, device=device) + + max_grad_norm = torch.tensor(self.defaults["max_grad_norm"], device=device) + for group in self.param_groups: + for p in group["params"]: + if p.grad is not None: + grad = p.grad + global_grad_norm.add_(grad.pow(2).sum()) + + global_grad_norm = torch.sqrt(global_grad_norm) + + clip_global_grad_norm = torch.clamp( + max_grad_norm / (global_grad_norm + group["eps"]), max=1.0 + ).item() + else: + clip_global_grad_norm = 1.0 + + for group in self.param_groups: + params_with_grad = [] + grads = [] + exp_avgs = [] + exp_avg_sqs = [] + exp_avg_diffs = [] + neg_pre_grads = [] + + beta1, beta2, beta3 = group["betas"] + # assume same step across group now to simplify things + # per parameter step can be easily support + # by making it tensor, or pass list into kernel + if "step" in group: + group["step"] += 1 + else: + group["step"] = 1 + + bias_correction1 = 1.0 - beta1 ** group["step"] + bias_correction2 = 1.0 - beta2 ** group["step"] + bias_correction3 = 1.0 - beta3 ** group["step"] + + for p in group["params"]: + if p.grad is None: + continue + params_with_grad.append(p) + grads.append(p.grad) + + state = self.state[p] + if len(state) == 0: + state["exp_avg"] = torch.zeros_like(p) + state["exp_avg_sq"] = torch.zeros_like(p) + state["exp_avg_diff"] = torch.zeros_like(p) + + if "neg_pre_grad" not in state or group["step"] == 1: + state["neg_pre_grad"] = p.grad.clone().mul_(-clip_global_grad_norm) + + exp_avgs.append(state["exp_avg"]) + exp_avg_sqs.append(state["exp_avg_sq"]) + exp_avg_diffs.append(state["exp_avg_diff"]) + neg_pre_grads.append(state["neg_pre_grad"]) + + kwargs = dict( + params=params_with_grad, + grads=grads, + exp_avgs=exp_avgs, + exp_avg_sqs=exp_avg_sqs, + exp_avg_diffs=exp_avg_diffs, + neg_pre_grads=neg_pre_grads, + beta1=beta1, + beta2=beta2, + beta3=beta3, + bias_correction1=bias_correction1, + bias_correction2=bias_correction2, + bias_correction3_sqrt=math.sqrt(bias_correction3), + lr=group["lr"], + weight_decay=group["weight_decay"], + eps=group["eps"], + no_prox=group["no_prox"], + clip_global_grad_norm=clip_global_grad_norm, + ) + + if group["foreach"]: + _multi_tensor_adan(**kwargs) + else: + _single_tensor_adan(**kwargs) + + return loss + + +def _single_tensor_adan( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + exp_avg_diffs: List[Tensor], + neg_pre_grads: List[Tensor], + *, + beta1: float, + beta2: float, + beta3: float, + bias_correction1: float, + bias_correction2: float, + bias_correction3_sqrt: float, + lr: float, + weight_decay: float, + eps: float, + no_prox: bool, + clip_global_grad_norm: Tensor, +): + for i, param in enumerate(params): + grad = grads[i] + exp_avg = exp_avgs[i] + exp_avg_sq = exp_avg_sqs[i] + exp_avg_diff = exp_avg_diffs[i] + neg_grad_or_diff = neg_pre_grads[i] + + grad.mul_(clip_global_grad_norm) + + # for memory saving, we use `neg_grad_or_diff` + # to get some temp variable in a inplace way + neg_grad_or_diff.add_(grad) + + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # m_t + exp_avg_diff.mul_(beta2).add_(neg_grad_or_diff, alpha=1 - beta2) # diff_t + + neg_grad_or_diff.mul_(beta2).add_(grad) + exp_avg_sq.mul_(beta3).addcmul_( + neg_grad_or_diff, neg_grad_or_diff, value=1 - beta3 + ) # n_t + + denom = ((exp_avg_sq).sqrt() / bias_correction3_sqrt).add_(eps) + step_size_diff = lr * beta2 / bias_correction2 + step_size = lr / bias_correction1 + + if no_prox: + param.mul_(1 - lr * weight_decay) + param.addcdiv_(exp_avg, denom, value=-step_size) + param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff) + else: + param.addcdiv_(exp_avg, denom, value=-step_size) + param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff) + param.div_(1 + lr * weight_decay) + + neg_grad_or_diff.zero_().add_(grad, alpha=-1.0) + + +def _multi_tensor_adan( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + exp_avg_diffs: List[Tensor], + neg_pre_grads: List[Tensor], + *, + beta1: float, + beta2: float, + beta3: float, + bias_correction1: float, + bias_correction2: float, + bias_correction3_sqrt: float, + lr: float, + weight_decay: float, + eps: float, + no_prox: bool, + clip_global_grad_norm: Tensor, +): + if len(params) == 0: + return + + torch._foreach_mul_(grads, clip_global_grad_norm) + + # for memory saving, we use `neg_pre_grads` + # to get some temp variable in a inplace way + torch._foreach_add_(neg_pre_grads, grads) + + torch._foreach_mul_(exp_avgs, beta1) + torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) # m_t + + torch._foreach_mul_(exp_avg_diffs, beta2) + torch._foreach_add_(exp_avg_diffs, neg_pre_grads, alpha=1 - beta2) # diff_t + + torch._foreach_mul_(neg_pre_grads, beta2) + torch._foreach_add_(neg_pre_grads, grads) + torch._foreach_mul_(exp_avg_sqs, beta3) + torch._foreach_addcmul_( + exp_avg_sqs, neg_pre_grads, neg_pre_grads, value=1 - beta3 + ) # n_t + + denom = torch._foreach_sqrt(exp_avg_sqs) + torch._foreach_div_(denom, bias_correction3_sqrt) + torch._foreach_add_(denom, eps) + + step_size_diff = lr * beta2 / bias_correction2 + step_size = lr / bias_correction1 + + if no_prox: + torch._foreach_mul_(params, 1 - lr * weight_decay) + torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size) + torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff) + else: + torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size) + torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff) + torch._foreach_div_(params, 1 + lr * weight_decay) + torch._foreach_zero_(neg_pre_grads) + torch._foreach_add_(neg_pre_grads, grads, alpha=-1.0) diff --git a/threestudio/systems/prolificdreamer.py b/threestudio/systems/prolificdreamer.py new file mode 100644 index 0000000..a29e9d2 --- /dev/null +++ b/threestudio/systems/prolificdreamer.py @@ -0,0 +1,234 @@ +import os +from dataclasses import dataclass, field + +import torch + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.misc import cleanup, get_device +from threestudio.utils.ops import binary_cross_entropy, dot +from threestudio.utils.typing import * + + +@threestudio.register("prolificdreamer-system") +class ProlificDreamer(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + # in ['coarse', 'geometry', 'texture'] + stage: str = "coarse" + visualize_samples: bool = False + + cfg: Config + + def configure(self) -> None: + # set up geometry, material, background, renderer + super().configure() + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + self.prompt_processor = threestudio.find(self.cfg.prompt_processor_type)( + self.cfg.prompt_processor + ) + self.prompt_utils = self.prompt_processor() + + def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: + if self.cfg.stage == "geometry": + render_out = self.renderer(**batch, render_rgb=False) + else: + render_out = self.renderer(**batch) + return { + **render_out, + } + + def on_fit_start(self) -> None: + super().on_fit_start() + + def training_step(self, batch, batch_idx): + out = self(batch) + + if self.cfg.stage == "geometry": + guidance_inp = out["comp_normal"] + guidance_out = self.guidance( + guidance_inp, self.prompt_utils, **batch, rgb_as_latents=False + ) + else: + guidance_inp = out["comp_rgb"] + guidance_out = self.guidance( + guidance_inp, self.prompt_utils, **batch, rgb_as_latents=False + ) + + loss = 0.0 + + for name, value in guidance_out.items(): + if not (type(value) is torch.Tensor and value.numel() > 1): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + if self.cfg.stage == "coarse": + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + loss_orient = ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() / (out["opacity"] > 0).sum() + self.log("train/loss_orient", loss_orient) + loss += loss_orient * self.C(self.cfg.loss.lambda_orient) + + loss_sparsity = (out["opacity"] ** 2 + 0.01).sqrt().mean() + self.log("train/loss_sparsity", loss_sparsity) + loss += loss_sparsity * self.C(self.cfg.loss.lambda_sparsity) + + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + loss_opaque = binary_cross_entropy(opacity_clamped, opacity_clamped) + self.log("train/loss_opaque", loss_opaque) + loss += loss_opaque * self.C(self.cfg.loss.lambda_opaque) + + # z variance loss proposed in HiFA: http://arxiv.org/abs/2305.18766 + # helps reduce floaters and produce solid geometry + if "z_variance" in out: + loss_z_variance = out["z_variance"][out["opacity"] > 0.5].mean() + self.log("train/loss_z_variance", loss_z_variance) + loss += loss_z_variance * self.C(self.cfg.loss.lambda_z_variance) + + # sdf loss + if "sdf_grad" in out: + loss_eikonal = ( + (torch.linalg.norm(out["sdf_grad"], ord=2, dim=-1) - 1.0) ** 2 + ).mean() + self.log("train/loss_eikonal", loss_eikonal) + loss += loss_eikonal * self.C(self.cfg.loss.lambda_eikonal) + self.log("train/inv_std", out["inv_std"], prog_bar=True) + + elif self.cfg.stage == "geometry": + loss_normal_consistency = out["mesh"].normal_consistency() + self.log("train/loss_normal_consistency", loss_normal_consistency) + loss += loss_normal_consistency * self.C( + self.cfg.loss.lambda_normal_consistency + ) + + if self.C(self.cfg.loss.lambda_laplacian_smoothness) > 0: + loss_laplacian_smoothness = out["mesh"].laplacian() + self.log("train/loss_laplacian_smoothness", loss_laplacian_smoothness) + loss += loss_laplacian_smoothness * self.C( + self.cfg.loss.lambda_laplacian_smoothness + ) + elif self.cfg.stage == "texture": + pass + else: + raise ValueError(f"Unknown stage {self.cfg.stage}") + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + return {"loss": loss} + + def validation_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}.png", + ( + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + if "comp_rgb" in out + else [] + ) + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="validation_step", + step=self.true_global_step, + ) + + if self.cfg.visualize_samples: + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}-sample.png", + [ + { + "type": "rgb", + "img": self.guidance.sample( + self.prompt_utils, **batch, seed=self.global_step + )[0], + "kwargs": {"data_format": "HWC"}, + }, + { + "type": "rgb", + "img": self.guidance.sample_lora(self.prompt_utils, **batch)[0], + "kwargs": {"data_format": "HWC"}, + }, + ], + name="validation_step_samples", + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + pass + + def test_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + ( + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + if "comp_rgb" in out + else [] + ) + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) diff --git a/threestudio/systems/sjc.py b/threestudio/systems/sjc.py new file mode 100644 index 0000000..102c86a --- /dev/null +++ b/threestudio/systems/sjc.py @@ -0,0 +1,200 @@ +from dataclasses import dataclass, field + +import numpy as np +import torch + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.typing import * + + +@threestudio.register("sjc-system") +class ScoreJacobianChaining(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + subpixel_rendering: bool = True + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + def forward(self, batch: Dict[str, Any], decode: bool = False) -> Dict[str, Any]: + render_out = self.renderer(**batch) + out = { + **render_out, + } + if decode: + if self.cfg.subpixel_rendering: + latent_height, latent_width = 128, 128 + else: + latent_height, latent_width = 64, 64 + out["decoded_rgb"] = self.guidance.decode_latents( + out["comp_rgb"].permute(0, 3, 1, 2), + latent_height=latent_height, + latent_width=latent_width, + ).permute(0, 2, 3, 1) + return out + + def on_fit_start(self) -> None: + super().on_fit_start() + # only used in training + self.prompt_processor = threestudio.find(self.cfg.prompt_processor_type)( + self.cfg.prompt_processor + ) + + def on_test_start(self) -> None: + # check if guidance is initialized, such as when loading from checkpoint + if not hasattr(self, "guidance"): + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + def training_step(self, batch, batch_idx): + out = self(batch) + prompt_utils = self.prompt_processor() + guidance_out = self.guidance( + out["comp_rgb"], prompt_utils, **batch, rgb_as_latents=True + ) + + loss = 0.0 + + for name, value in guidance_out.items(): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + loss_emptiness = ( + self.C(self.cfg.loss.lambda_emptiness) + * torch.log(1 + self.cfg.loss.emptiness_scale * out["weights"]).mean() + ) + + self.log("train/loss_emptiness", loss_emptiness) + loss += loss_emptiness + + # About the depth loss, see https://github.com/pals-ttic/sjc/issues/21 + if self.C(self.cfg.loss.lambda_depth) > 0: + _, h, w, _ = out["comp_rgb"].shape + comp_depth = (out["depth"] + 10 * (1 - out["opacity"])).squeeze(-1) + center_h = int(self.cfg.loss.center_ratio * h) + center_w = int(self.cfg.loss.center_ratio * w) + border_h = (h - center_h) // 2 + border_w = (h - center_w) // 2 + center_depth = comp_depth[ + ..., border_h : border_h + center_h, border_w : border_w + center_w + ] + center_depth_mean = center_depth.mean() + border_depth_mean = (comp_depth.sum() - center_depth.sum()) / ( + h * w - center_h * center_w + ) + log_input = center_depth_mean - border_depth_mean + 1e-12 + loss_depth = ( + torch.sign(log_input) + * torch.log(log_input) + * self.C(self.cfg.loss.lambda_depth) + ) + + self.log("train/loss_depth", loss_depth) + loss += loss_depth + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + return {"loss": loss} + + def vis_depth(self, pred_depth): + depth = pred_depth.detach().cpu().numpy() + depth = np.log(1.0 + depth + 1e-12) / np.log(1 + 10.0) + return depth + + def validation_step(self, batch, batch_idx): + out = self(batch, decode=True) + comp_depth = out["depth"] + 10 * (1 - out["opacity"]) # 10 for background + vis_depth = self.vis_depth(comp_depth.squeeze(-1)) + + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["decoded_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ] + + [ + { + "type": "grayscale", + "img": vis_depth[0], + "kwargs": {"cmap": "spectral", "data_range": (0, 1)}, + }, + ], + align=512, + name="validation_step", + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + pass + + def test_step(self, batch, batch_idx): + out = self(batch, decode=True) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["decoded_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + align=512, + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) diff --git a/threestudio/systems/textmesh.py b/threestudio/systems/textmesh.py new file mode 100644 index 0000000..d5f0d65 --- /dev/null +++ b/threestudio/systems/textmesh.py @@ -0,0 +1,160 @@ +from dataclasses import dataclass, field + +import torch + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.ops import binary_cross_entropy, dot +from threestudio.utils.typing import * + + +@threestudio.register("textmesh-system") +class TextMesh(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + pass + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + + def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: + render_out = self.renderer(**batch) + return { + **render_out, + } + + def on_fit_start(self) -> None: + super().on_fit_start() + # only used in training + self.prompt_processor = threestudio.find(self.cfg.prompt_processor_type)( + self.cfg.prompt_processor + ) + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + # initialize SDF + self.geometry.initialize_shape() + + def training_step(self, batch, batch_idx): + out = self(batch) + prompt_utils = self.prompt_processor() + guidance_out = self.guidance( + out["comp_rgb"], prompt_utils, **batch, rgb_as_latents=False + ) + + loss = 0.0 + + for name, value in guidance_out.items(): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + loss_orient = ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() / (out["opacity"] > 0).sum() + self.log("train/loss_orient", loss_orient) + loss += loss_orient * self.C(self.cfg.loss.lambda_orient) + + loss_sparsity = (out["opacity"] ** 2 + 0.01).sqrt().mean() + self.log("train/loss_sparsity", loss_sparsity) + loss += loss_sparsity * self.C(self.cfg.loss.lambda_sparsity) + + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + loss_opaque = binary_cross_entropy(opacity_clamped, opacity_clamped) + self.log("train/loss_opaque", loss_opaque) + loss += loss_opaque * self.C(self.cfg.loss.lambda_opaque) + + loss_eikonal = ( + (torch.linalg.norm(out["sdf_grad"], ord=2, dim=-1) - 1.0) ** 2 + ).mean() + self.log("train/loss_eikonal", loss_eikonal) + loss += loss_eikonal * self.C(self.cfg.loss.lambda_eikonal) + + self.log("train/inv_std", out["inv_std"], prog_bar=True) + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + return {"loss": loss} + + def validation_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + ) + + def on_validation_epoch_end(self): + pass + + def test_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + ) diff --git a/threestudio/systems/utils.py b/threestudio/systems/utils.py new file mode 100644 index 0000000..732b369 --- /dev/null +++ b/threestudio/systems/utils.py @@ -0,0 +1,104 @@ +import sys +import warnings +from bisect import bisect_right + +import torch +import torch.nn as nn +from torch.optim import lr_scheduler + +import threestudio + + +def get_scheduler(name): + if hasattr(lr_scheduler, name): + return getattr(lr_scheduler, name) + else: + raise NotImplementedError + + +def getattr_recursive(m, attr): + for name in attr.split("."): + m = getattr(m, name) + return m + + +def get_parameters(model, name): + module = getattr_recursive(model, name) + if isinstance(module, nn.Module): + return module.parameters() + elif isinstance(module, nn.Parameter): + return module + return [] + + +def parse_optimizer(config, model): + if hasattr(config, "params"): + params = [ + {"params": get_parameters(model, name), "name": name, **args} + for name, args in config.params.items() + ] + threestudio.debug(f"Specify optimizer params: {config.params}") + else: + params = model.parameters() + if config.name in ["FusedAdam"]: + import apex + + optim = getattr(apex.optimizers, config.name)(params, **config.args) + elif config.name in ["Adan"]: + from threestudio.systems import optimizers + + optim = getattr(optimizers, config.name)(params, **config.args) + else: + optim = getattr(torch.optim, config.name)(params, **config.args) + return optim + + +def parse_scheduler_to_instance(config, optimizer): + if config.name == "ChainedScheduler": + schedulers = [ + parse_scheduler_to_instance(conf, optimizer) for conf in config.schedulers + ] + scheduler = lr_scheduler.ChainedScheduler(schedulers) + elif config.name == "Sequential": + schedulers = [ + parse_scheduler_to_instance(conf, optimizer) for conf in config.schedulers + ] + scheduler = lr_scheduler.SequentialLR( + optimizer, schedulers, milestones=config.milestones + ) + else: + scheduler = getattr(lr_scheduler, config.name)(optimizer, **config.args) + return scheduler + + +def parse_scheduler(config, optimizer): + interval = config.get("interval", "epoch") + assert interval in ["epoch", "step"] + if config.name == "SequentialLR": + scheduler = { + "scheduler": lr_scheduler.SequentialLR( + optimizer, + [ + parse_scheduler(conf, optimizer)["scheduler"] + for conf in config.schedulers + ], + milestones=config.milestones, + ), + "interval": interval, + } + elif config.name == "ChainedScheduler": + scheduler = { + "scheduler": lr_scheduler.ChainedScheduler( + [ + parse_scheduler(conf, optimizer)["scheduler"] + for conf in config.schedulers + ] + ), + "interval": interval, + } + else: + scheduler = { + "scheduler": get_scheduler(config.name)(optimizer, **config.args), + "interval": interval, + } + return scheduler diff --git a/threestudio/systems/zero123.py b/threestudio/systems/zero123.py new file mode 100644 index 0000000..320b3e6 --- /dev/null +++ b/threestudio/systems/zero123.py @@ -0,0 +1,390 @@ +import os +import random +import shutil +from dataclasses import dataclass, field + +import torch +import torch.nn.functional as F +from PIL import Image, ImageDraw +from torchmetrics import PearsonCorrCoef + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.ops import binary_cross_entropy, dot +from threestudio.utils.typing import * + + +@threestudio.register("zero123-system") +class Zero123(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + freq: dict = field(default_factory=dict) + refinement: bool = False + ambient_ratio_min: float = 0.5 + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + + def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: + render_out = self.renderer(**batch) + return { + **render_out, + } + + def on_fit_start(self) -> None: + super().on_fit_start() + # no prompt processor + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + # visualize all training images + all_images = self.trainer.datamodule.train_dataloader().dataset.get_all_images() + self.save_image_grid( + "all_training_images.png", + [ + {"type": "rgb", "img": image, "kwargs": {"data_format": "HWC"}} + for image in all_images + ], + name="on_fit_start", + step=self.true_global_step, + ) + + self.pearson = PearsonCorrCoef().to(self.device) + + def training_substep(self, batch, batch_idx, guidance: str): + """ + Args: + guidance: one of "ref" (reference image supervision), "zero123" + """ + if guidance == "ref": + # bg_color = torch.rand_like(batch['rays_o']) + ambient_ratio = 1.0 + shading = "diffuse" + batch["shading"] = shading + elif guidance == "zero123": + batch = batch["random_camera"] + ambient_ratio = ( + self.cfg.ambient_ratio_min + + (1 - self.cfg.ambient_ratio_min) * random.random() + ) + + batch["bg_color"] = None + batch["ambient_ratio"] = ambient_ratio + + out = self(batch) + loss_prefix = f"loss_{guidance}_" + + loss_terms = {} + + def set_loss(name, value): + loss_terms[f"{loss_prefix}{name}"] = value + + guidance_eval = ( + guidance == "zero123" + and self.cfg.freq.guidance_eval > 0 + and self.true_global_step % self.cfg.freq.guidance_eval == 0 + ) + + if guidance == "ref": + gt_mask = batch["mask"] + gt_rgb = batch["rgb"] + + # color loss + gt_rgb = gt_rgb * gt_mask.float() + out["comp_rgb_bg"] * ( + 1 - gt_mask.float() + ) + set_loss("rgb", F.mse_loss(gt_rgb, out["comp_rgb"])) + + # mask loss + set_loss("mask", F.mse_loss(gt_mask.float(), out["opacity"])) + + # depth loss + if self.C(self.cfg.loss.lambda_depth) > 0: + valid_gt_depth = batch["ref_depth"][gt_mask.squeeze(-1)].unsqueeze(1) + valid_pred_depth = out["depth"][gt_mask].unsqueeze(1) + with torch.no_grad(): + A = torch.cat( + [valid_gt_depth, torch.ones_like(valid_gt_depth)], dim=-1 + ) # [B, 2] + X = torch.linalg.lstsq(A, valid_pred_depth).solution # [2, 1] + valid_gt_depth = A @ X # [B, 1] + set_loss("depth", F.mse_loss(valid_gt_depth, valid_pred_depth)) + + # relative depth loss + if self.C(self.cfg.loss.lambda_depth_rel) > 0: + valid_gt_depth = batch["ref_depth"][gt_mask.squeeze(-1)] # [B,] + valid_pred_depth = out["depth"][gt_mask] # [B,] + set_loss( + "depth_rel", 1 - self.pearson(valid_pred_depth, valid_gt_depth) + ) + + # normal loss + if self.C(self.cfg.loss.lambda_normal) > 0: + valid_gt_normal = ( + 1 - 2 * batch["ref_normal"][gt_mask.squeeze(-1)] + ) # [B, 3] + valid_pred_normal = ( + 2 * out["comp_normal"][gt_mask.squeeze(-1)] - 1 + ) # [B, 3] + set_loss( + "normal", + 1 - F.cosine_similarity(valid_pred_normal, valid_gt_normal).mean(), + ) + elif guidance == "zero123": + # zero123 + guidance_out = self.guidance( + out["comp_rgb"], + **batch, + rgb_as_latents=False, + guidance_eval=guidance_eval, + ) + # claforte: TODO: rename the loss_terms keys + set_loss("sds", guidance_out["loss_sds"]) + + if self.C(self.cfg.loss.lambda_normal_smooth) > 0: + if "comp_normal" not in out: + raise ValueError( + "comp_normal is required for 2D normal smooth loss, no comp_normal is found in the output." + ) + normal = out["comp_normal"] + set_loss( + "normal_smooth", + (normal[:, 1:, :, :] - normal[:, :-1, :, :]).square().mean() + + (normal[:, :, 1:, :] - normal[:, :, :-1, :]).square().mean(), + ) + + if self.C(self.cfg.loss.lambda_3d_normal_smooth) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for normal smooth loss, no normal is found in the output." + ) + if "normal_perturb" not in out: + raise ValueError( + "normal_perturb is required for normal smooth loss, no normal_perturb is found in the output." + ) + normals = out["normal"] + normals_perturb = out["normal_perturb"] + set_loss("3d_normal_smooth", (normals - normals_perturb).abs().mean()) + + if not self.cfg.refinement: + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + set_loss( + "orient", + ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() + / (out["opacity"] > 0).sum(), + ) + + if guidance != "ref" and self.C(self.cfg.loss.lambda_sparsity) > 0: + set_loss("sparsity", (out["opacity"] ** 2 + 0.01).sqrt().mean()) + + if self.C(self.cfg.loss.lambda_opaque) > 0: + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + set_loss( + "opaque", binary_cross_entropy(opacity_clamped, opacity_clamped) + ) + else: + if self.C(self.cfg.loss.lambda_normal_consistency) > 0: + set_loss("normal_consistency", out["mesh"].normal_consistency()) + if self.C(self.cfg.loss.lambda_laplacian_smoothness) > 0: + set_loss("laplacian_smoothness", out["mesh"].laplacian()) + + loss = 0.0 + for name, value in loss_terms.items(): + self.log(f"train/{name}", value) + if name.startswith(loss_prefix): + loss_weighted = value * self.C( + self.cfg.loss[name.replace(loss_prefix, "lambda_")] + ) + self.log(f"train/{name}_w", loss_weighted) + loss += loss_weighted + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + self.log(f"train/loss_{guidance}", loss) + + if guidance_eval: + self.guidance_evaluation_save( + out["comp_rgb"].detach()[: guidance_out["eval"]["bs"]], + guidance_out["eval"], + ) + + return {"loss": loss} + + def training_step(self, batch, batch_idx): + if self.cfg.freq.get("ref_or_zero123", "accumulate") == "accumulate": + do_ref = True + do_zero123 = True + elif self.cfg.freq.get("ref_or_zero123", "accumulate") == "alternate": + do_ref = ( + self.true_global_step < self.cfg.freq.ref_only_steps + or self.true_global_step % self.cfg.freq.n_ref == 0 + ) + do_zero123 = not do_ref + + total_loss = 0.0 + if do_zero123: + out = self.training_substep(batch, batch_idx, guidance="zero123") + total_loss += out["loss"] + + if do_ref: + out = self.training_substep(batch, batch_idx, guidance="ref") + total_loss += out["loss"] + + self.log("train/loss", total_loss, prog_bar=True) + + # sch = self.lr_schedulers() + # sch.step() + + return {"loss": total_loss} + + def validation_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-val/{batch['index'][0]}.png", + ( + [ + { + "type": "rgb", + "img": batch["rgb"][0], + "kwargs": {"data_format": "HWC"}, + } + ] + if "rgb" in batch + else [] + ) + + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + ( + [ + { + "type": "grayscale", + "img": out["depth"][0], + "kwargs": {}, + } + ] + if "depth" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + # claforte: TODO: don't hardcode the frame numbers to record... read them from cfg instead. + name=f"validation_step_batchidx_{batch_idx}" + if batch_idx in [0, 7, 15, 23, 29] + else None, + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + filestem = f"it{self.true_global_step}-val" + self.save_img_sequence( + filestem, + filestem, + "(\d+)\.png", + save_format="mp4", + fps=30, + name="validation_epoch_end", + step=self.true_global_step, + ) + shutil.rmtree( + os.path.join(self.get_save_dir(), f"it{self.true_global_step}-val") + ) + + def test_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + ( + [ + { + "type": "rgb", + "img": batch["rgb"][0], + "kwargs": {"data_format": "HWC"}, + } + ] + if "rgb" in batch + else [] + ) + + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + ( + [ + { + "type": "grayscale", + "img": out["depth"][0], + "kwargs": {}, + } + ] + if "depth" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) + shutil.rmtree( + os.path.join(self.get_save_dir(), f"it{self.true_global_step}-test") + ) diff --git a/threestudio/systems/zero123_simple.py b/threestudio/systems/zero123_simple.py new file mode 100644 index 0000000..f1f5d05 --- /dev/null +++ b/threestudio/systems/zero123_simple.py @@ -0,0 +1,207 @@ +from dataclasses import dataclass, field + +import torch + +import threestudio +from threestudio.systems.base import BaseLift3DSystem +from threestudio.utils.ops import binary_cross_entropy, dot +from threestudio.utils.typing import * + + +@threestudio.register("zero123-simple-system") +class Zero123Simple(BaseLift3DSystem): + @dataclass + class Config(BaseLift3DSystem.Config): + pass + + cfg: Config + + def configure(self): + # create geometry, material, background, renderer + super().configure() + self.guidance = threestudio.find(self.cfg.guidance_type)(self.cfg.guidance) + + def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: + render_out = self.renderer(**batch) + return { + **render_out, + } + + def on_fit_start(self) -> None: + super().on_fit_start() + + def training_step(self, batch, batch_idx): + out = self(batch["random_camera"]) + guidance_out = self.guidance( + out["comp_rgb"], + **batch["random_camera"], + rgb_as_latents=False, + ) + + loss = 0.0 + + for name, value in guidance_out.items(): + if not (isinstance(value, torch.Tensor) and len(value.shape) > 0): + self.log(f"train/{name}", value) + if name.startswith("loss_"): + loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")]) + + if self.C(self.cfg.loss.lambda_orient) > 0: + if "normal" not in out: + raise ValueError( + "Normal is required for orientation loss, no normal is found in the output." + ) + loss_orient = ( + out["weights"].detach() + * dot(out["normal"], out["t_dirs"]).clamp_min(0.0) ** 2 + ).sum() / (out["opacity"] > 0).sum() + self.log("train/loss_orient", loss_orient) + loss += loss_orient * self.C(self.cfg.loss.lambda_orient) + + if self.C(self.cfg.loss.lambda_normal_smoothness_2d) > 0: + if "comp_normal" not in out: + raise ValueError( + "comp_normal is required for 2D normal smoothness loss, no comp_normal is found in the output." + ) + normal = out["comp_normal"] + loss_normal_smoothness_2d = ( + normal[:, 1:, :, :] - normal[:, :-1, :, :] + ).square().mean() + ( + normal[:, :, 1:, :] - normal[:, :, :-1, :] + ).square().mean() + self.log("trian/loss_normal_smoothness_2d", loss_normal_smoothness_2d) + loss += loss_normal_smoothness_2d * self.C( + self.cfg.loss.lambda_normal_smoothness_2d + ) + + loss_sparsity = (out["opacity"] ** 2 + 0.01).sqrt().mean() + self.log("train/loss_sparsity", loss_sparsity) + loss += loss_sparsity * self.C(self.cfg.loss.lambda_sparsity) + + opacity_clamped = out["opacity"].clamp(1.0e-3, 1.0 - 1.0e-3) + loss_opaque = binary_cross_entropy(opacity_clamped, opacity_clamped) + self.log("train/loss_opaque", loss_opaque) + loss += loss_opaque * self.C(self.cfg.loss.lambda_opaque) + + for name, value in self.cfg.loss.items(): + self.log(f"train_params/{name}", self.C(value)) + + if self.true_global_step % 50 == 0: + self.save_image_grid( + f"it{self.true_global_step}-train-t{int(guidance_out['timesteps'][0])}.png", + ( + [ + { + "type": "rgb", + "img": guidance_out["rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + if "rgb" in guidance_out + else [] + ) + + ( + [ + { + "type": "rgb", + "img": guidance_out["rgb_1step_orig"][0], + "kwargs": {"data_format": "HWC"}, + } + ] + if "rgb_1step_orig" in guidance_out + else [] + ) + + ( + [ + { + "type": "rgb", + "img": guidance_out["rgb_multistep_orig"][0], + "kwargs": {"data_format": "HWC"}, + } + ] + if "rgb_multistep_orig" in guidance_out + else [] + ), + ) + + return {"loss": loss} + + def validation_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="validation_step", + step=self.true_global_step, + ) + + def on_validation_epoch_end(self): + pass + + def test_step(self, batch, batch_idx): + out = self(batch) + self.save_image_grid( + f"it{self.true_global_step}-test/{batch['index'][0]}.png", + [ + { + "type": "rgb", + "img": out["comp_rgb"][0], + "kwargs": {"data_format": "HWC"}, + }, + ] + + ( + [ + { + "type": "rgb", + "img": out["comp_normal"][0], + "kwargs": {"data_format": "HWC", "data_range": (0, 1)}, + } + ] + if "comp_normal" in out + else [] + ) + + [ + { + "type": "grayscale", + "img": out["opacity"][0, :, :, 0], + "kwargs": {"cmap": None, "data_range": (0, 1)}, + }, + ], + name="test_step", + step=self.true_global_step, + ) + + def on_test_epoch_end(self): + self.save_img_sequence( + f"it{self.true_global_step}-test", + f"it{self.true_global_step}-test", + "(\d+)\.png", + save_format="mp4", + fps=30, + name="test", + step=self.true_global_step, + ) diff --git a/threestudio/utils/GAN/__init__.py b/threestudio/utils/GAN/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/threestudio/utils/GAN/attention.py b/threestudio/utils/GAN/attention.py new file mode 100644 index 0000000..c9a1a95 --- /dev/null +++ b/threestudio/utils/GAN/attention.py @@ -0,0 +1,278 @@ +import math +from inspect import isfunction + +import torch +import torch.nn.functional as F +from einops import rearrange, repeat +from torch import einsum, nn + +from threestudio.utils.GAN.network_util import checkpoint + + +def exists(val): + return val is not None + + +def uniq(arr): + return {el: True for el in arr}.keys() + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + + +def init_(tensor): + dim = tensor.shape[-1] + std = 1 / math.sqrt(dim) + tensor.uniform_(-std, std) + return tensor + + +# feedforward +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = ( + nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) + if not glu + else GEGLU(dim, inner_dim) + ) + + self.net = nn.Sequential( + project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def Normalize(in_channels): + return torch.nn.GroupNorm( + num_groups=32, num_channels=in_channels, eps=1e-6, affine=True + ) + + +class LinearAttention(nn.Module): + def __init__(self, dim, heads=4, dim_head=32): + super().__init__() + self.heads = heads + hidden_dim = dim_head * heads + self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) + self.to_out = nn.Conv2d(hidden_dim, dim, 1) + + def forward(self, x): + b, c, h, w = x.shape + qkv = self.to_qkv(x) + q, k, v = rearrange( + qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 + ) + k = k.softmax(dim=-1) + context = torch.einsum("bhdn,bhen->bhde", k, v) + out = torch.einsum("bhde,bhdn->bhen", context, q) + out = rearrange( + out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w + ) + return self.to_out(out) + + +class SpatialSelfAttention(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = rearrange(q, "b c h w -> b (h w) c") + k = rearrange(k, "b c h w -> b c (h w)") + w_ = torch.einsum("bij,bjk->bik", q, k) + + w_ = w_ * (int(c) ** (-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = rearrange(v, "b c h w -> b c (h w)") + w_ = rearrange(w_, "b i j -> b j i") + h_ = torch.einsum("bij,bjk->bik", v, w_) + h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) + h_ = self.proj_out(h_) + + return x + h_ + + +class CrossAttention(nn.Module): + def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): + super().__init__() + inner_dim = dim_head * heads + context_dim = default(context_dim, query_dim) + + self.scale = dim_head**-0.5 + self.heads = heads + + self.to_q = nn.Linear(query_dim, inner_dim, bias=False) + self.to_k = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + + self.to_out = nn.Sequential( + nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) + ) + + def forward(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + k = self.to_k(context) + v = self.to_v(context) + + q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) + + sim = einsum("b i d, b j d -> b i j", q, k) * self.scale + + if exists(mask): + mask = rearrange(mask, "b ... -> b (...)") + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, "b j -> (b h) () j", h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + attn = sim.softmax(dim=-1) + + out = einsum("b i j, b j d -> b i d", attn, v) + out = rearrange(out, "(b h) n d -> b n (h d)", h=h) + return self.to_out(out) + + +class BasicTransformerBlock(nn.Module): + def __init__( + self, + dim, + n_heads, + d_head, + dropout=0.0, + context_dim=None, + gated_ff=True, + checkpoint=True, + ): + super().__init__() + self.attn1 = CrossAttention( + query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout + ) # is a self-attention + self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) + self.attn2 = CrossAttention( + query_dim=dim, + context_dim=context_dim, + heads=n_heads, + dim_head=d_head, + dropout=dropout, + ) # is self-attn if context is none + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + self.checkpoint = checkpoint + + def forward(self, x, context=None): + return checkpoint( + self._forward, (x, context), self.parameters(), self.checkpoint + ) + + def _forward(self, x, context=None): + x = self.attn1(self.norm1(x)) + x + x = self.attn2(self.norm2(x), context=context) + x + x = self.ff(self.norm3(x)) + x + return x + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data. + First, project the input (aka embedding) + and reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + """ + + def __init__( + self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None + ): + super().__init__() + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = Normalize(in_channels) + + self.proj_in = nn.Conv2d( + in_channels, inner_dim, kernel_size=1, stride=1, padding=0 + ) + + self.transformer_blocks = nn.ModuleList( + [ + BasicTransformerBlock( + inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim + ) + for d in range(depth) + ] + ) + + self.proj_out = zero_module( + nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) + ) + + def forward(self, x, context=None): + # note: if no context is given, cross-attention defaults to self-attention + b, c, h, w = x.shape + x_in = x + x = self.norm(x) + x = self.proj_in(x) + x = rearrange(x, "b c h w -> b (h w) c") + for block in self.transformer_blocks: + x = block(x, context=context) + x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) + x = self.proj_out(x) + return x + x_in diff --git a/threestudio/utils/GAN/discriminator.py b/threestudio/utils/GAN/discriminator.py new file mode 100644 index 0000000..d3fdfe7 --- /dev/null +++ b/threestudio/utils/GAN/discriminator.py @@ -0,0 +1,217 @@ +import functools + +import torch +import torch.nn as nn + + +def count_params(model): + total_params = sum(p.numel() for p in model.parameters()) + return total_params + + +class ActNorm(nn.Module): + def __init__( + self, num_features, logdet=False, affine=True, allow_reverse_init=False + ): + assert affine + super().__init__() + self.logdet = logdet + self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1)) + self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1)) + self.allow_reverse_init = allow_reverse_init + + self.register_buffer("initialized", torch.tensor(0, dtype=torch.uint8)) + + def initialize(self, input): + with torch.no_grad(): + flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) + mean = ( + flatten.mean(1) + .unsqueeze(1) + .unsqueeze(2) + .unsqueeze(3) + .permute(1, 0, 2, 3) + ) + std = ( + flatten.std(1) + .unsqueeze(1) + .unsqueeze(2) + .unsqueeze(3) + .permute(1, 0, 2, 3) + ) + + self.loc.data.copy_(-mean) + self.scale.data.copy_(1 / (std + 1e-6)) + + def forward(self, input, reverse=False): + if reverse: + return self.reverse(input) + if len(input.shape) == 2: + input = input[:, :, None, None] + squeeze = True + else: + squeeze = False + + _, _, height, width = input.shape + + if self.training and self.initialized.item() == 0: + self.initialize(input) + self.initialized.fill_(1) + + h = self.scale * (input + self.loc) + + if squeeze: + h = h.squeeze(-1).squeeze(-1) + + if self.logdet: + log_abs = torch.log(torch.abs(self.scale)) + logdet = height * width * torch.sum(log_abs) + logdet = logdet * torch.ones(input.shape[0]).to(input) + return h, logdet + + return h + + def reverse(self, output): + if self.training and self.initialized.item() == 0: + if not self.allow_reverse_init: + raise RuntimeError( + "Initializing ActNorm in reverse direction is " + "disabled by default. Use allow_reverse_init=True to enable." + ) + else: + self.initialize(output) + self.initialized.fill_(1) + + if len(output.shape) == 2: + output = output[:, :, None, None] + squeeze = True + else: + squeeze = False + + h = output / self.scale - self.loc + + if squeeze: + h = h.squeeze(-1).squeeze(-1) + return h + + +class AbstractEncoder(nn.Module): + def __init__(self): + super().__init__() + + def encode(self, *args, **kwargs): + raise NotImplementedError + + +class Labelator(AbstractEncoder): + """Net2Net Interface for Class-Conditional Model""" + + def __init__(self, n_classes, quantize_interface=True): + super().__init__() + self.n_classes = n_classes + self.quantize_interface = quantize_interface + + def encode(self, c): + c = c[:, None] + if self.quantize_interface: + return c, None, [None, None, c.long()] + return c + + +class SOSProvider(AbstractEncoder): + # for unconditional training + def __init__(self, sos_token, quantize_interface=True): + super().__init__() + self.sos_token = sos_token + self.quantize_interface = quantize_interface + + def encode(self, x): + # get batch size from data and replicate sos_token + c = torch.ones(x.shape[0], 1) * self.sos_token + c = c.long().to(x.device) + if self.quantize_interface: + return c, None, [None, None, c] + return c + + +def weights_init(m): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + nn.init.normal_(m.weight.data, 0.0, 0.02) + elif classname.find("BatchNorm") != -1: + nn.init.normal_(m.weight.data, 1.0, 0.02) + nn.init.constant_(m.bias.data, 0) + + +class NLayerDiscriminator(nn.Module): + """Defines a PatchGAN discriminator as in Pix2Pix + --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py + """ + + def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): + """Construct a PatchGAN discriminator + Parameters: + input_nc (int) -- the number of channels in input images + ndf (int) -- the number of filters in the last conv layer + n_layers (int) -- the number of conv layers in the discriminator + norm_layer -- normalization layer + """ + super(NLayerDiscriminator, self).__init__() + if not use_actnorm: + norm_layer = nn.BatchNorm2d + else: + norm_layer = ActNorm + if ( + type(norm_layer) == functools.partial + ): # no need to use bias as BatchNorm2d has affine parameters + use_bias = norm_layer.func != nn.BatchNorm2d + else: + use_bias = norm_layer != nn.BatchNorm2d + + kw = 4 + padw = 1 + sequence = [ + nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), + nn.LeakyReLU(0.2, True), + ] + nf_mult = 1 + nf_mult_prev = 1 + for n in range(1, n_layers): # gradually increase the number of filters + nf_mult_prev = nf_mult + nf_mult = min(2**n, 8) + sequence += [ + nn.Conv2d( + ndf * nf_mult_prev, + ndf * nf_mult, + kernel_size=kw, + stride=2, + padding=padw, + bias=use_bias, + ), + norm_layer(ndf * nf_mult), + nn.LeakyReLU(0.2, True), + ] + + nf_mult_prev = nf_mult + nf_mult = min(2**n_layers, 8) + sequence += [ + nn.Conv2d( + ndf * nf_mult_prev, + ndf * nf_mult, + kernel_size=kw, + stride=1, + padding=padw, + bias=use_bias, + ), + norm_layer(ndf * nf_mult), + nn.LeakyReLU(0.2, True), + ] + + sequence += [ + nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) + ] # output 1 channel prediction map + self.main = nn.Sequential(*sequence) + + def forward(self, input): + """Standard forward.""" + return self.main(input) diff --git a/threestudio/utils/GAN/distribution.py b/threestudio/utils/GAN/distribution.py new file mode 100644 index 0000000..016be35 --- /dev/null +++ b/threestudio/utils/GAN/distribution.py @@ -0,0 +1,102 @@ +import numpy as np +import torch + + +class AbstractDistribution: + def sample(self): + raise NotImplementedError() + + def mode(self): + raise NotImplementedError() + + +class DiracDistribution(AbstractDistribution): + def __init__(self, value): + self.value = value + + def sample(self): + return self.value + + def mode(self): + return self.value + + +class DiagonalGaussianDistribution(object): + def __init__(self, parameters, deterministic=False): + self.parameters = parameters + self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) + self.logvar = torch.clamp(self.logvar, -30.0, 20.0) + self.deterministic = deterministic + self.std = torch.exp(0.5 * self.logvar) + self.var = torch.exp(self.logvar) + if self.deterministic: + self.var = self.std = torch.zeros_like(self.mean).to( + device=self.parameters.device + ) + + def sample(self): + x = self.mean + self.std * torch.randn(self.mean.shape).to( + device=self.parameters.device + ) + return x + + def kl(self, other=None): + if self.deterministic: + return torch.Tensor([0.0]) + else: + if other is None: + return 0.5 * torch.sum( + torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, + dim=[1, 2, 3], + ) + else: + return 0.5 * torch.sum( + torch.pow(self.mean - other.mean, 2) / other.var + + self.var / other.var + - 1.0 + - self.logvar + + other.logvar, + dim=[1, 2, 3], + ) + + def nll(self, sample, dims=[1, 2, 3]): + if self.deterministic: + return torch.Tensor([0.0]) + logtwopi = np.log(2.0 * np.pi) + return 0.5 * torch.sum( + logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, + dim=dims, + ) + + def mode(self): + return self.mean + + +def normal_kl(mean1, logvar1, mean2, logvar2): + """ + source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 + Compute the KL divergence between two gaussians. + Shapes are automatically broadcasted, so batches can be compared to + scalars, among other use cases. + """ + tensor = None + for obj in (mean1, logvar1, mean2, logvar2): + if isinstance(obj, torch.Tensor): + tensor = obj + break + assert tensor is not None, "at least one argument must be a Tensor" + + # Force variances to be Tensors. Broadcasting helps convert scalars to + # Tensors, but it does not work for torch.exp(). + logvar1, logvar2 = [ + x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) + for x in (logvar1, logvar2) + ] + + return 0.5 * ( + -1.0 + + logvar2 + - logvar1 + + torch.exp(logvar1 - logvar2) + + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) + ) diff --git a/threestudio/utils/GAN/loss.py b/threestudio/utils/GAN/loss.py new file mode 100644 index 0000000..7758065 --- /dev/null +++ b/threestudio/utils/GAN/loss.py @@ -0,0 +1,35 @@ +import torch +import torch.nn.functional as F + + +def generator_loss(discriminator, inputs, reconstructions, cond=None): + if cond is None: + logits_fake = discriminator(reconstructions.contiguous()) + else: + logits_fake = discriminator( + torch.cat((reconstructions.contiguous(), cond), dim=1) + ) + g_loss = -torch.mean(logits_fake) + return g_loss + + +def hinge_d_loss(logits_real, logits_fake): + loss_real = torch.mean(F.relu(1.0 - logits_real)) + loss_fake = torch.mean(F.relu(1.0 + logits_fake)) + d_loss = 0.5 * (loss_real + loss_fake) + return d_loss + + +def discriminator_loss(discriminator, inputs, reconstructions, cond=None): + if cond is None: + logits_real = discriminator(inputs.contiguous().detach()) + logits_fake = discriminator(reconstructions.contiguous().detach()) + else: + logits_real = discriminator( + torch.cat((inputs.contiguous().detach(), cond), dim=1) + ) + logits_fake = discriminator( + torch.cat((reconstructions.contiguous().detach(), cond), dim=1) + ) + d_loss = hinge_d_loss(logits_real, logits_fake).mean() + return d_loss diff --git a/threestudio/utils/GAN/mobilenet.py b/threestudio/utils/GAN/mobilenet.py new file mode 100644 index 0000000..1f5f8ef --- /dev/null +++ b/threestudio/utils/GAN/mobilenet.py @@ -0,0 +1,254 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +__all__ = ["MobileNetV3", "mobilenetv3"] + + +def conv_bn( + inp, + oup, + stride, + conv_layer=nn.Conv2d, + norm_layer=nn.BatchNorm2d, + nlin_layer=nn.ReLU, +): + return nn.Sequential( + conv_layer(inp, oup, 3, stride, 1, bias=False), + norm_layer(oup), + nlin_layer(inplace=True), + ) + + +def conv_1x1_bn( + inp, oup, conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, nlin_layer=nn.ReLU +): + return nn.Sequential( + conv_layer(inp, oup, 1, 1, 0, bias=False), + norm_layer(oup), + nlin_layer(inplace=True), + ) + + +class Hswish(nn.Module): + def __init__(self, inplace=True): + super(Hswish, self).__init__() + self.inplace = inplace + + def forward(self, x): + return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0 + + +class Hsigmoid(nn.Module): + def __init__(self, inplace=True): + super(Hsigmoid, self).__init__() + self.inplace = inplace + + def forward(self, x): + return F.relu6(x + 3.0, inplace=self.inplace) / 6.0 + + +class SEModule(nn.Module): + def __init__(self, channel, reduction=4): + super(SEModule, self).__init__() + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Sequential( + nn.Linear(channel, channel // reduction, bias=False), + nn.ReLU(inplace=True), + nn.Linear(channel // reduction, channel, bias=False), + Hsigmoid() + # nn.Sigmoid() + ) + + def forward(self, x): + b, c, _, _ = x.size() + y = self.avg_pool(x).view(b, c) + y = self.fc(y).view(b, c, 1, 1) + return x * y.expand_as(x) + + +class Identity(nn.Module): + def __init__(self, channel): + super(Identity, self).__init__() + + def forward(self, x): + return x + + +def make_divisible(x, divisible_by=8): + import numpy as np + + return int(np.ceil(x * 1.0 / divisible_by) * divisible_by) + + +class MobileBottleneck(nn.Module): + def __init__(self, inp, oup, kernel, stride, exp, se=False, nl="RE"): + super(MobileBottleneck, self).__init__() + assert stride in [1, 2] + assert kernel in [3, 5] + padding = (kernel - 1) // 2 + self.use_res_connect = stride == 1 and inp == oup + + conv_layer = nn.Conv2d + norm_layer = nn.BatchNorm2d + if nl == "RE": + nlin_layer = nn.ReLU # or ReLU6 + elif nl == "HS": + nlin_layer = Hswish + else: + raise NotImplementedError + if se: + SELayer = SEModule + else: + SELayer = Identity + + self.conv = nn.Sequential( + # pw + conv_layer(inp, exp, 1, 1, 0, bias=False), + norm_layer(exp), + nlin_layer(inplace=True), + # dw + conv_layer(exp, exp, kernel, stride, padding, groups=exp, bias=False), + norm_layer(exp), + SELayer(exp), + nlin_layer(inplace=True), + # pw-linear + conv_layer(exp, oup, 1, 1, 0, bias=False), + norm_layer(oup), + ) + + def forward(self, x): + if self.use_res_connect: + return x + self.conv(x) + else: + return self.conv(x) + + +class MobileNetV3(nn.Module): + def __init__( + self, n_class=1000, input_size=224, dropout=0.0, mode="small", width_mult=1.0 + ): + super(MobileNetV3, self).__init__() + input_channel = 16 + last_channel = 1280 + if mode == "large": + # refer to Table 1 in paper + mobile_setting = [ + # k, exp, c, se, nl, s, + [3, 16, 16, False, "RE", 1], + [3, 64, 24, False, "RE", 2], + [3, 72, 24, False, "RE", 1], + [5, 72, 40, True, "RE", 2], + [5, 120, 40, True, "RE", 1], + [5, 120, 40, True, "RE", 1], + [3, 240, 80, False, "HS", 2], + [3, 200, 80, False, "HS", 1], + [3, 184, 80, False, "HS", 1], + [3, 184, 80, False, "HS", 1], + [3, 480, 112, True, "HS", 1], + [3, 672, 112, True, "HS", 1], + [5, 672, 160, True, "HS", 2], + [5, 960, 160, True, "HS", 1], + [5, 960, 160, True, "HS", 1], + ] + elif mode == "small": + # refer to Table 2 in paper + mobile_setting = [ + # k, exp, c, se, nl, s, + [3, 16, 16, True, "RE", 2], + [3, 72, 24, False, "RE", 2], + [3, 88, 24, False, "RE", 1], + [5, 96, 40, True, "HS", 2], + [5, 240, 40, True, "HS", 1], + [5, 240, 40, True, "HS", 1], + [5, 120, 48, True, "HS", 1], + [5, 144, 48, True, "HS", 1], + [5, 288, 96, True, "HS", 2], + [5, 576, 96, True, "HS", 1], + [5, 576, 96, True, "HS", 1], + ] + else: + raise NotImplementedError + + # building first layer + assert input_size % 32 == 0 + last_channel = ( + make_divisible(last_channel * width_mult) + if width_mult > 1.0 + else last_channel + ) + self.features = [conv_bn(3, input_channel, 2, nlin_layer=Hswish)] + self.classifier = [] + + # building mobile blocks + for k, exp, c, se, nl, s in mobile_setting: + output_channel = make_divisible(c * width_mult) + exp_channel = make_divisible(exp * width_mult) + self.features.append( + MobileBottleneck( + input_channel, output_channel, k, s, exp_channel, se, nl + ) + ) + input_channel = output_channel + + # building last several layers + if mode == "large": + last_conv = make_divisible(960 * width_mult) + self.features.append( + conv_1x1_bn(input_channel, last_conv, nlin_layer=Hswish) + ) + self.features.append(nn.AdaptiveAvgPool2d(1)) + self.features.append(nn.Conv2d(last_conv, last_channel, 1, 1, 0)) + self.features.append(Hswish(inplace=True)) + elif mode == "small": + last_conv = make_divisible(576 * width_mult) + self.features.append( + conv_1x1_bn(input_channel, last_conv, nlin_layer=Hswish) + ) + # self.features.append(SEModule(last_conv)) # refer to paper Table2, but I think this is a mistake + self.features.append(nn.AdaptiveAvgPool2d(1)) + self.features.append(nn.Conv2d(last_conv, last_channel, 1, 1, 0)) + self.features.append(Hswish(inplace=True)) + else: + raise NotImplementedError + + # make it nn.Sequential + self.features = nn.Sequential(*self.features) + + # building classifier + self.classifier = nn.Sequential( + nn.Dropout(p=dropout), # refer to paper section 6 + nn.Linear(last_channel, n_class), + ) + + self._initialize_weights() + + def forward(self, x): + x = self.features(x) + x = x.mean(3).mean(2) + x = self.classifier(x) + return x + + def _initialize_weights(self): + # weight initialization + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode="fan_out") + if m.bias is not None: + nn.init.zeros_(m.bias) + elif isinstance(m, nn.BatchNorm2d): + nn.init.ones_(m.weight) + nn.init.zeros_(m.bias) + elif isinstance(m, nn.Linear): + nn.init.normal_(m.weight, 0, 0.01) + if m.bias is not None: + nn.init.zeros_(m.bias) + + +def mobilenetv3(pretrained=False, **kwargs): + model = MobileNetV3(**kwargs) + if pretrained: + state_dict = torch.load("mobilenetv3_small_67.4.pth.tar") + model.load_state_dict(state_dict, strict=True) + # raise NotImplementedError + return model diff --git a/threestudio/utils/GAN/network_util.py b/threestudio/utils/GAN/network_util.py new file mode 100644 index 0000000..671df1b --- /dev/null +++ b/threestudio/utils/GAN/network_util.py @@ -0,0 +1,296 @@ +# adopted from +# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py +# and +# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +# and +# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py +# +# thanks! + + +import math +import os + +import numpy as np +import torch +import torch.nn as nn +from einops import repeat + +from threestudio.utils.GAN.util import instantiate_from_config + + +def make_beta_schedule( + schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3 +): + if schedule == "linear": + betas = ( + torch.linspace( + linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64 + ) + ** 2 + ) + + elif schedule == "cosine": + timesteps = ( + torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s + ) + alphas = timesteps / (1 + cosine_s) * np.pi / 2 + alphas = torch.cos(alphas).pow(2) + alphas = alphas / alphas[0] + betas = 1 - alphas[1:] / alphas[:-1] + betas = np.clip(betas, a_min=0, a_max=0.999) + + elif schedule == "sqrt_linear": + betas = torch.linspace( + linear_start, linear_end, n_timestep, dtype=torch.float64 + ) + elif schedule == "sqrt": + betas = ( + torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) + ** 0.5 + ) + else: + raise ValueError(f"schedule '{schedule}' unknown.") + return betas.numpy() + + +def make_ddim_timesteps( + ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True +): + if ddim_discr_method == "uniform": + c = num_ddpm_timesteps // num_ddim_timesteps + ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) + elif ddim_discr_method == "quad": + ddim_timesteps = ( + (np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2 + ).astype(int) + else: + raise NotImplementedError( + f'There is no ddim discretization method called "{ddim_discr_method}"' + ) + + # assert ddim_timesteps.shape[0] == num_ddim_timesteps + # add one to get the final alpha values right (the ones from first scale to data during sampling) + steps_out = ddim_timesteps + 1 + if verbose: + print(f"Selected timesteps for ddim sampler: {steps_out}") + return steps_out + + +def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): + # select alphas for computing the variance schedule + alphas = alphacums[ddim_timesteps] + alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) + + # according the the formula provided in https://arxiv.org/abs/2010.02502 + sigmas = eta * np.sqrt( + (1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev) + ) + if verbose: + print( + f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}" + ) + print( + f"For the chosen value of eta, which is {eta}, " + f"this results in the following sigma_t schedule for ddim sampler {sigmas}" + ) + return sigmas, alphas, alphas_prev + + +def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, + which defines the cumulative product of (1-beta) over time from t = [0,1]. + :param num_diffusion_timesteps: the number of betas to produce. + :param alpha_bar: a lambda that takes an argument t from 0 to 1 and + produces the cumulative product of (1-beta) up to that + part of the diffusion process. + :param max_beta: the maximum beta to use; use values lower than 1 to + prevent singularities. + """ + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return np.array(betas) + + +def extract_into_tensor(a, t, x_shape): + b, *_ = t.shape + out = a.gather(-1, t) + return out.reshape(b, *((1,) * (len(x_shape) - 1))) + + +def checkpoint(func, inputs, params, flag): + """ + Evaluate a function without caching intermediate activations, allowing for + reduced memory at the expense of extra compute in the backward pass. + :param func: the function to evaluate. + :param inputs: the argument sequence to pass to `func`. + :param params: a sequence of parameters `func` depends on but does not + explicitly take as arguments. + :param flag: if False, disable gradient checkpointing. + """ + if flag: + args = tuple(inputs) + tuple(params) + return CheckpointFunction.apply(func, len(inputs), *args) + else: + return func(*inputs) + + +class CheckpointFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, run_function, length, *args): + ctx.run_function = run_function + ctx.input_tensors = list(args[:length]) + ctx.input_params = list(args[length:]) + + with torch.no_grad(): + output_tensors = ctx.run_function(*ctx.input_tensors) + return output_tensors + + @staticmethod + def backward(ctx, *output_grads): + ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] + with torch.enable_grad(): + # Fixes a bug where the first op in run_function modifies the + # Tensor storage in place, which is not allowed for detach()'d + # Tensors. + shallow_copies = [x.view_as(x) for x in ctx.input_tensors] + output_tensors = ctx.run_function(*shallow_copies) + input_grads = torch.autograd.grad( + output_tensors, + ctx.input_tensors + ctx.input_params, + output_grads, + allow_unused=True, + ) + del ctx.input_tensors + del ctx.input_params + del output_tensors + return (None, None) + input_grads + + +def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): + """ + Create sinusoidal timestep embeddings. + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an [N x dim] Tensor of positional embeddings. + """ + if not repeat_only: + half = dim // 2 + freqs = torch.exp( + -math.log(max_period) + * torch.arange(start=0, end=half, dtype=torch.float32) + / half + ).to(device=timesteps.device) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat( + [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 + ) + else: + embedding = repeat(timesteps, "b -> b d", d=dim) + return embedding + + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + + +def scale_module(module, scale): + """ + Scale the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().mul_(scale) + return module + + +def mean_flat(tensor): + """ + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def normalization(channels): + """ + Make a standard normalization layer. + :param channels: number of input channels. + :return: an nn.Module for normalization. + """ + return GroupNorm32(32, channels) + + +# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. +class SiLU(nn.Module): + def forward(self, x): + return x * torch.sigmoid(x) + + +class GroupNorm32(nn.GroupNorm): + def forward(self, x): + return super().forward(x.float()).type(x.dtype) + + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def linear(*args, **kwargs): + """ + Create a linear module. + """ + return nn.Linear(*args, **kwargs) + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +class HybridConditioner(nn.Module): + def __init__(self, c_concat_config, c_crossattn_config): + super().__init__() + self.concat_conditioner = instantiate_from_config(c_concat_config) + self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) + + def forward(self, c_concat, c_crossattn): + c_concat = self.concat_conditioner(c_concat) + c_crossattn = self.crossattn_conditioner(c_crossattn) + return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]} + + +def noise_like(shape, device, repeat=False): + repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat( + shape[0], *((1,) * (len(shape) - 1)) + ) + noise = lambda: torch.randn(shape, device=device) + return repeat_noise() if repeat else noise() diff --git a/threestudio/utils/GAN/util.py b/threestudio/utils/GAN/util.py new file mode 100644 index 0000000..33a86d6 --- /dev/null +++ b/threestudio/utils/GAN/util.py @@ -0,0 +1,208 @@ +import importlib +import multiprocessing as mp +from collections import abc +from functools import partial +from inspect import isfunction +from queue import Queue +from threading import Thread + +import numpy as np +import torch +from einops import rearrange +from PIL import Image, ImageDraw, ImageFont + + +def log_txt_as_img(wh, xc, size=10): + # wh a tuple of (width, height) + # xc a list of captions to plot + b = len(xc) + txts = list() + for bi in range(b): + txt = Image.new("RGB", wh, color="white") + draw = ImageDraw.Draw(txt) + font = ImageFont.truetype("data/DejaVuSans.ttf", size=size) + nc = int(40 * (wh[0] / 256)) + lines = "\n".join( + xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc) + ) + + try: + draw.text((0, 0), lines, fill="black", font=font) + except UnicodeEncodeError: + print("Cant encode string for logging. Skipping.") + + txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 + txts.append(txt) + txts = np.stack(txts) + txts = torch.tensor(txts) + return txts + + +def ismap(x): + if not isinstance(x, torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] > 3) + + +def isimage(x): + if not isinstance(x, torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) + + +def exists(x): + return x is not None + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def mean_flat(tensor): + """ + https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + + +def count_params(model, verbose=False): + total_params = sum(p.numel() for p in model.parameters()) + if verbose: + print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") + return total_params + + +def instantiate_from_config(config): + if not "target" in config: + if config == "__is_first_stage__": + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False): + # create dummy dataset instance + + # run prefetching + if idx_to_fn: + res = func(data, worker_id=idx) + else: + res = func(data) + Q.put([idx, res]) + Q.put("Done") + + +def parallel_data_prefetch( + func: callable, + data, + n_proc, + target_data_type="ndarray", + cpu_intensive=True, + use_worker_id=False, +): + # if target_data_type not in ["ndarray", "list"]: + # raise ValueError( + # "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray." + # ) + if isinstance(data, np.ndarray) and target_data_type == "list": + raise ValueError("list expected but function got ndarray.") + elif isinstance(data, abc.Iterable): + if isinstance(data, dict): + print( + f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.' + ) + data = list(data.values()) + if target_data_type == "ndarray": + data = np.asarray(data) + else: + data = list(data) + else: + raise TypeError( + f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}." + ) + + if cpu_intensive: + Q = mp.Queue(1000) + proc = mp.Process + else: + Q = Queue(1000) + proc = Thread + # spawn processes + if target_data_type == "ndarray": + arguments = [ + [func, Q, part, i, use_worker_id] + for i, part in enumerate(np.array_split(data, n_proc)) + ] + else: + step = ( + int(len(data) / n_proc + 1) + if len(data) % n_proc != 0 + else int(len(data) / n_proc) + ) + arguments = [ + [func, Q, part, i, use_worker_id] + for i, part in enumerate( + [data[i : i + step] for i in range(0, len(data), step)] + ) + ] + processes = [] + for i in range(n_proc): + p = proc(target=_do_parallel_data_prefetch, args=arguments[i]) + processes += [p] + + # start processes + print(f"Start prefetching...") + import time + + start = time.time() + gather_res = [[] for _ in range(n_proc)] + try: + for p in processes: + p.start() + + k = 0 + while k < n_proc: + # get result + res = Q.get() + if res == "Done": + k += 1 + else: + gather_res[res[0]] = res[1] + + except Exception as e: + print("Exception: ", e) + for p in processes: + p.terminate() + + raise e + finally: + for p in processes: + p.join() + print(f"Prefetching complete. [{time.time() - start} sec.]") + + if target_data_type == "ndarray": + if not isinstance(gather_res[0], np.ndarray): + return np.concatenate([np.asarray(r) for r in gather_res], axis=0) + + # order outputs + return np.concatenate(gather_res, axis=0) + elif target_data_type == "list": + out = [] + for r in gather_res: + out.extend(r) + return out + else: + return gather_res diff --git a/threestudio/utils/GAN/vae.py b/threestudio/utils/GAN/vae.py new file mode 100644 index 0000000..2b4741f --- /dev/null +++ b/threestudio/utils/GAN/vae.py @@ -0,0 +1,1028 @@ +# pytorch_diffusion + derived encoder decoder +import math + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange + +from threestudio.utils.GAN.attention import LinearAttention +from threestudio.utils.GAN.util import instantiate_from_config + + +def get_timestep_embedding(timesteps, embedding_dim): + """ + This matches the implementation in Denoising Diffusion Probabilistic Models: + From Fairseq. + Build sinusoidal embeddings. + This matches the implementation in tensor2tensor, but differs slightly + from the description in Section 3.5 of "Attention Is All You Need". + """ + assert len(timesteps.shape) == 1 + + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) + emb = emb.to(device=timesteps.device) + emb = timesteps.float()[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) + return emb + + +def nonlinearity(x): + # swish + return x * torch.sigmoid(x) + + +def Normalize(in_channels, num_groups=32): + return torch.nn.BatchNorm2d(num_features=in_channels) + + +class Upsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + if self.with_conv: + x = self.conv(x) + return x + + +class Downsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + if self.with_conv: + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=3, stride=2, padding=0 + ) + + def forward(self, x): + if self.with_conv: + pad = (0, 1, 0, 1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) + return x + + +class ResnetBlock(nn.Module): + def __init__( + self, + *, + in_channels, + out_channels=None, + conv_shortcut=False, + dropout, + temb_channels=512, + ): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.norm1 = Normalize(in_channels) + self.conv1 = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if temb_channels > 0: + self.temb_proj = torch.nn.Linear(temb_channels, out_channels) + self.norm2 = Normalize(out_channels) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d( + out_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + else: + self.nin_shortcut = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = nonlinearity(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] + + h = self.norm2(h) + h = nonlinearity(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x + h + + +class LinAttnBlock(LinearAttention): + """to match AttnBlock usage""" + + def __init__(self, in_channels): + super().__init__(dim=in_channels, heads=1, dim_head=in_channels) + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = q.reshape(b, c, h * w) + q = q.permute(0, 2, 1) # b,hw,c + k = k.reshape(b, c, h * w) # b,c,hw + w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] + w_ = w_ * (int(c) ** (-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = v.reshape(b, c, h * w) + w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) + h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] + h_ = h_.reshape(b, c, h, w) + + h_ = self.proj_out(h_) + + return x + h_ + + +def make_attn(in_channels, attn_type="vanilla"): + assert attn_type in ["vanilla", "linear", "none"], f"attn_type {attn_type} unknown" + print(f"making attention of type '{attn_type}' with {in_channels} in_channels") + if attn_type == "vanilla": + return AttnBlock(in_channels) + elif attn_type == "none": + return nn.Identity(in_channels) + else: + return LinAttnBlock(in_channels) + + +class Model(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + use_timestep=True, + use_linear_attn=False, + attn_type="vanilla", + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = self.ch * 4 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + self.use_timestep = use_timestep + if self.use_timestep: + # timestep embedding + self.temb = nn.Module() + self.temb.dense = nn.ModuleList( + [ + torch.nn.Linear(self.ch, self.temb_ch), + torch.nn.Linear(self.temb_ch, self.temb_ch), + ] + ) + + # downsampling + self.conv_in = torch.nn.Conv2d( + in_channels, self.ch, kernel_size=3, stride=1, padding=1 + ) + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + skip_in = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + if i_block == self.num_res_blocks: + skip_in = ch * in_ch_mult[i_level] + block.append( + ResnetBlock( + in_channels=block_in + skip_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_ch, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x, t=None, context=None): + # assert x.shape[2] == x.shape[3] == self.resolution + if context is not None: + # assume aligned context, cat along channel axis + x = torch.cat((x, context), dim=1) + if self.use_timestep: + # timestep embedding + assert t is not None + temb = get_timestep_embedding(t, self.ch) + temb = self.temb.dense[0](temb) + temb = nonlinearity(temb) + temb = self.temb.dense[1](temb) + else: + temb = None + + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions - 1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block]( + torch.cat([h, hs.pop()], dim=1), temb + ) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + def get_last_layer(self): + return self.conv_out.weight + + +class Encoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + double_z=True, + use_linear_attn=False, + attn_type="vanilla", + **ignore_kwargs, + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.attn_resolutions = attn_resolutions + + # downsampling + self.conv_in = torch.nn.Conv2d( + in_channels, self.ch, kernel_size=3, stride=1, padding=1 + ) + + curr_res = resolution + in_ch_mult = (1,) + tuple(ch_mult) + self.in_ch_mult = in_ch_mult + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch * in_ch_mult[i_level] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions - 1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + if len(attn_resolutions) > 0: + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, + 2 * z_channels if double_z else z_channels, + kernel_size=3, + stride=1, + padding=1, + ) + + def forward(self, x): + # timestep embedding + temb = None + + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions - 1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + if len(self.attn_resolutions) > 0: + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class Decoder(nn.Module): + def __init__( + self, + *, + ch, + out_ch, + ch_mult=(1, 2, 4, 8), + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + in_channels, + resolution, + z_channels, + give_pre_end=False, + tanh_out=False, + use_linear_attn=False, + attn_type="vanilla", + **ignorekwargs, + ): + super().__init__() + if use_linear_attn: + attn_type = "linear" + self.ch = ch + # self.temb_ch = 3 + self.temb_ch = 64 + # self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.give_pre_end = give_pre_end + self.tanh_out = tanh_out + self.attn_resolutions = attn_resolutions + + # compute in_ch_mult, block_in and curr_res at lowest res + in_ch_mult = (1,) + tuple(ch_mult) + block_in = ch * ch_mult[self.num_resolutions - 1] + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.z_shape = (1, z_channels, curr_res, curr_res) + print( + "Working with z of shape {} = {} dimensions.".format( + self.z_shape, np.prod(self.z_shape) + ) + ) + + # z to block_in + self.conv_in = torch.nn.Conv2d( + z_channels, block_in, kernel_size=3, stride=1, padding=1 + ) + + self.conv_in3 = torch.nn.Conv2d( + z_channels + 3, block_in, kernel_size=3, stride=1, padding=1 + ) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock( + in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout, + ) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + up.rgb_conv = torch.nn.Conv2d( + block_in + 3, 3, kernel_size=3, stride=1, padding=1 + ) + up.rgb_cat_conv = torch.nn.Conv2d( + block_in + 3, block_in, kernel_size=3, stride=1, padding=1 + ) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_ch, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, z, temb=None): + # assert z.shape[1:] == self.z_shape[1:] + self.last_z_shape = z.shape + + # timestep embedding + # temb = None + + # z to block_in + rgb = z[:, :3] + if z.shape[1] == self.z_shape[1] + 3: + h = self.conv_in3(z) + else: + h = self.conv_in(z) + + # middle + # h = self.mid.block_1(h, temb) + # h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.up[i_level].block[i_block](h, temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + if self.give_pre_end: + return h + + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + + rgb = torch.nn.functional.interpolate(rgb, scale_factor=4.0, mode="bilinear") + rgb = torch.sigmoid(torch.logit(rgb, eps=1e-3) + h) + return rgb + + +class SimpleDecoder(nn.Module): + def __init__(self, in_channels, out_channels, *args, **kwargs): + super().__init__() + self.model = nn.ModuleList( + [ + nn.Conv2d(in_channels, in_channels, 1), + ResnetBlock( + in_channels=in_channels, + out_channels=2 * in_channels, + temb_channels=0, + dropout=0.0, + ), + ResnetBlock( + in_channels=2 * in_channels, + out_channels=4 * in_channels, + temb_channels=0, + dropout=0.0, + ), + ResnetBlock( + in_channels=4 * in_channels, + out_channels=2 * in_channels, + temb_channels=0, + dropout=0.0, + ), + nn.Conv2d(2 * in_channels, in_channels, 1), + Upsample(in_channels, with_conv=True), + ] + ) + # end + self.norm_out = Normalize(in_channels) + self.conv_out = torch.nn.Conv2d( + in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + for i, layer in enumerate(self.model): + if i in [1, 2, 3]: + x = layer(x, None) + else: + x = layer(x) + + h = self.norm_out(x) + h = nonlinearity(h) + x = self.conv_out(h) + return x + + +class UpsampleDecoder(nn.Module): + def __init__( + self, + in_channels, + out_channels, + ch, + num_res_blocks, + resolution, + ch_mult=(2, 2), + dropout=0.0, + ): + super().__init__() + # upsampling + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + block_in = in_channels + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.upsample_blocks = nn.ModuleList() + self.rgb_blocks = nn.ModuleList() + for i_level in range(self.num_resolutions): + res_block = [] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + res_block.append( + ResnetBlock( + in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout, + ) + ) + block_in = block_out + self.res_blocks.append(nn.ModuleList(res_block)) + if i_level != self.num_resolutions - 1: + self.upsample_blocks.append(Upsample(block_in, True)) + curr_res = curr_res * 2 + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d( + block_in, out_channels, kernel_size=3, stride=1, padding=1 + ) + + def forward(self, x): + # upsampling + h = x + for k, i_level in enumerate(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.res_blocks[i_level][i_block](h, None) + if i_level != self.num_resolutions - 1: + h = self.upsample_blocks[k](h) + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class LatentRescaler(nn.Module): + def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): + super().__init__() + # residual block, interpolate, residual block + self.factor = factor + self.conv_in = nn.Conv2d( + in_channels, mid_channels, kernel_size=3, stride=1, padding=1 + ) + self.res_block1 = nn.ModuleList( + [ + ResnetBlock( + in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0, + ) + for _ in range(depth) + ] + ) + self.attn = AttnBlock(mid_channels) + self.res_block2 = nn.ModuleList( + [ + ResnetBlock( + in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0, + ) + for _ in range(depth) + ] + ) + + self.conv_out = nn.Conv2d( + mid_channels, + out_channels, + kernel_size=1, + ) + + def forward(self, x): + x = self.conv_in(x) + for block in self.res_block1: + x = block(x, None) + x = torch.nn.functional.interpolate( + x, + size=( + int(round(x.shape[2] * self.factor)), + int(round(x.shape[3] * self.factor)), + ), + ) + x = self.attn(x) + for block in self.res_block2: + x = block(x, None) + x = self.conv_out(x) + return x + + +class MergedRescaleEncoder(nn.Module): + def __init__( + self, + in_channels, + ch, + resolution, + out_ch, + num_res_blocks, + attn_resolutions, + dropout=0.0, + resamp_with_conv=True, + ch_mult=(1, 2, 4, 8), + rescale_factor=1.0, + rescale_module_depth=1, + ): + super().__init__() + intermediate_chn = ch * ch_mult[-1] + self.encoder = Encoder( + in_channels=in_channels, + num_res_blocks=num_res_blocks, + ch=ch, + ch_mult=ch_mult, + z_channels=intermediate_chn, + double_z=False, + resolution=resolution, + attn_resolutions=attn_resolutions, + dropout=dropout, + resamp_with_conv=resamp_with_conv, + out_ch=None, + ) + self.rescaler = LatentRescaler( + factor=rescale_factor, + in_channels=intermediate_chn, + mid_channels=intermediate_chn, + out_channels=out_ch, + depth=rescale_module_depth, + ) + + def forward(self, x): + x = self.encoder(x) + x = self.rescaler(x) + return x + + +class MergedRescaleDecoder(nn.Module): + def __init__( + self, + z_channels, + out_ch, + resolution, + num_res_blocks, + attn_resolutions, + ch, + ch_mult=(1, 2, 4, 8), + dropout=0.0, + resamp_with_conv=True, + rescale_factor=1.0, + rescale_module_depth=1, + ): + super().__init__() + tmp_chn = z_channels * ch_mult[-1] + self.decoder = Decoder( + out_ch=out_ch, + z_channels=tmp_chn, + attn_resolutions=attn_resolutions, + dropout=dropout, + resamp_with_conv=resamp_with_conv, + in_channels=None, + num_res_blocks=num_res_blocks, + ch_mult=ch_mult, + resolution=resolution, + ch=ch, + ) + self.rescaler = LatentRescaler( + factor=rescale_factor, + in_channels=z_channels, + mid_channels=tmp_chn, + out_channels=tmp_chn, + depth=rescale_module_depth, + ) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Upsampler(nn.Module): + def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): + super().__init__() + assert out_size >= in_size + num_blocks = int(np.log2(out_size // in_size)) + 1 + factor_up = 1.0 + (out_size % in_size) + print( + f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}" + ) + self.rescaler = LatentRescaler( + factor=factor_up, + in_channels=in_channels, + mid_channels=2 * in_channels, + out_channels=in_channels, + ) + self.decoder = Decoder( + out_ch=out_channels, + resolution=out_size, + z_channels=in_channels, + num_res_blocks=2, + attn_resolutions=[], + in_channels=None, + ch=in_channels, + ch_mult=[ch_mult for _ in range(num_blocks)], + ) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Resize(nn.Module): + def __init__(self, in_channels=None, learned=False, mode="bilinear"): + super().__init__() + self.with_conv = learned + self.mode = mode + if self.with_conv: + print( + f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode" + ) + raise NotImplementedError() + assert in_channels is not None + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d( + in_channels, in_channels, kernel_size=4, stride=2, padding=1 + ) + + def forward(self, x, scale_factor=1.0): + if scale_factor == 1.0: + return x + else: + x = torch.nn.functional.interpolate( + x, mode=self.mode, align_corners=False, scale_factor=scale_factor + ) + return x + + +class FirstStagePostProcessor(nn.Module): + def __init__( + self, + ch_mult: list, + in_channels, + pretrained_model: nn.Module = None, + reshape=False, + n_channels=None, + dropout=0.0, + pretrained_config=None, + ): + super().__init__() + if pretrained_config is None: + assert ( + pretrained_model is not None + ), 'Either "pretrained_model" or "pretrained_config" must not be None' + self.pretrained_model = pretrained_model + else: + assert ( + pretrained_config is not None + ), 'Either "pretrained_model" or "pretrained_config" must not be None' + self.instantiate_pretrained(pretrained_config) + + self.do_reshape = reshape + + if n_channels is None: + n_channels = self.pretrained_model.encoder.ch + + self.proj_norm = Normalize(in_channels, num_groups=in_channels // 2) + self.proj = nn.Conv2d( + in_channels, n_channels, kernel_size=3, stride=1, padding=1 + ) + + blocks = [] + downs = [] + ch_in = n_channels + for m in ch_mult: + blocks.append( + ResnetBlock( + in_channels=ch_in, out_channels=m * n_channels, dropout=dropout + ) + ) + ch_in = m * n_channels + downs.append(Downsample(ch_in, with_conv=False)) + + self.model = nn.ModuleList(blocks) + self.downsampler = nn.ModuleList(downs) + + def instantiate_pretrained(self, config): + model = instantiate_from_config(config) + self.pretrained_model = model.eval() + # self.pretrained_model.train = False + for param in self.pretrained_model.parameters(): + param.requires_grad = False + + @torch.no_grad() + def encode_with_pretrained(self, x): + c = self.pretrained_model.encode(x) + if isinstance(c, DiagonalGaussianDistribution): + c = c.mode() + return c + + def forward(self, x): + z_fs = self.encode_with_pretrained(x) + z = self.proj_norm(z_fs) + z = self.proj(z) + z = nonlinearity(z) + + for submodel, downmodel in zip(self.model, self.downsampler): + z = submodel(z, temb=None) + z = downmodel(z) + + if self.do_reshape: + z = rearrange(z, "b c h w -> b (h w) c") + return z diff --git a/threestudio/utils/__init__.py b/threestudio/utils/__init__.py new file mode 100644 index 0000000..0e44449 --- /dev/null +++ b/threestudio/utils/__init__.py @@ -0,0 +1 @@ +from . import base diff --git a/threestudio/utils/base.py b/threestudio/utils/base.py new file mode 100644 index 0000000..97f1f66 --- /dev/null +++ b/threestudio/utils/base.py @@ -0,0 +1,118 @@ +from dataclasses import dataclass + +import torch +import torch.nn as nn + +from threestudio.utils.config import parse_structured +from threestudio.utils.misc import get_device, load_module_weights +from threestudio.utils.typing import * + + +class Configurable: + @dataclass + class Config: + pass + + def __init__(self, cfg: Optional[dict] = None) -> None: + super().__init__() + self.cfg = parse_structured(self.Config, cfg) + + +class Updateable: + def do_update_step( + self, epoch: int, global_step: int, on_load_weights: bool = False + ): + for attr in self.__dir__(): + if attr.startswith("_"): + continue + try: + module = getattr(self, attr) + except: + continue # ignore attributes like property, which can't be retrived using getattr? + if isinstance(module, Updateable): + module.do_update_step( + epoch, global_step, on_load_weights=on_load_weights + ) + self.update_step(epoch, global_step, on_load_weights=on_load_weights) + + def do_update_step_end(self, epoch: int, global_step: int): + for attr in self.__dir__(): + if attr.startswith("_"): + continue + try: + module = getattr(self, attr) + except: + continue # ignore attributes like property, which can't be retrived using getattr? + if isinstance(module, Updateable): + module.do_update_step_end(epoch, global_step) + self.update_step_end(epoch, global_step) + + def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): + # override this method to implement custom update logic + # if on_load_weights is True, you should be careful doing things related to model evaluations, + # as the models and tensors are not guarenteed to be on the same device + pass + + def update_step_end(self, epoch: int, global_step: int): + pass + + +def update_if_possible(module: Any, epoch: int, global_step: int) -> None: + if isinstance(module, Updateable): + module.do_update_step(epoch, global_step) + + +def update_end_if_possible(module: Any, epoch: int, global_step: int) -> None: + if isinstance(module, Updateable): + module.do_update_step_end(epoch, global_step) + + +class BaseObject(Updateable): + @dataclass + class Config: + pass + + cfg: Config # add this to every subclass of BaseObject to enable static type checking + + def __init__( + self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs + ) -> None: + super().__init__() + self.cfg = parse_structured(self.Config, cfg) + self.device = get_device() + self.configure(*args, **kwargs) + + def configure(self, *args, **kwargs) -> None: + pass + + +class BaseModule(nn.Module, Updateable): + @dataclass + class Config: + weights: Optional[str] = None + + cfg: Config # add this to every subclass of BaseModule to enable static type checking + + def __init__( + self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs + ) -> None: + super().__init__() + self.cfg = parse_structured(self.Config, cfg) + self.device = get_device() + self.configure(*args, **kwargs) + if self.cfg.weights is not None: + # format: path/to/weights:module_name + weights_path, module_name = self.cfg.weights.split(":") + state_dict, epoch, global_step = load_module_weights( + weights_path, module_name=module_name, map_location="cpu" + ) + self.load_state_dict(state_dict) + self.do_update_step( + epoch, global_step, on_load_weights=True + ) # restore states + # dummy tensor to indicate model state + self._dummy: Float[Tensor, "..."] + self.register_buffer("_dummy", torch.zeros(0).float(), persistent=False) + + def configure(self, *args, **kwargs) -> None: + pass diff --git a/threestudio/utils/callbacks.py b/threestudio/utils/callbacks.py new file mode 100644 index 0000000..c6a765a --- /dev/null +++ b/threestudio/utils/callbacks.py @@ -0,0 +1,156 @@ +import os +import shutil +import subprocess + +import pytorch_lightning + +from threestudio.utils.config import dump_config +from threestudio.utils.misc import parse_version + +if parse_version(pytorch_lightning.__version__) > parse_version("1.8"): + from pytorch_lightning.callbacks import Callback +else: + from pytorch_lightning.callbacks.base import Callback + +from pytorch_lightning.callbacks.progress import TQDMProgressBar +from pytorch_lightning.utilities.rank_zero import rank_zero_only, rank_zero_warn + + +class VersionedCallback(Callback): + def __init__(self, save_root, version=None, use_version=True): + self.save_root = save_root + self._version = version + self.use_version = use_version + + @property + def version(self) -> int: + """Get the experiment version. + + Returns: + The experiment version if specified else the next version. + """ + if self._version is None: + self._version = self._get_next_version() + return self._version + + def _get_next_version(self): + existing_versions = [] + if os.path.isdir(self.save_root): + for f in os.listdir(self.save_root): + bn = os.path.basename(f) + if bn.startswith("version_"): + dir_ver = os.path.splitext(bn)[0].split("_")[1].replace("/", "") + existing_versions.append(int(dir_ver)) + if len(existing_versions) == 0: + return 0 + return max(existing_versions) + 1 + + @property + def savedir(self): + if not self.use_version: + return self.save_root + return os.path.join( + self.save_root, + self.version + if isinstance(self.version, str) + else f"version_{self.version}", + ) + + +class CodeSnapshotCallback(VersionedCallback): + def __init__(self, save_root, version=None, use_version=True): + super().__init__(save_root, version, use_version) + + def get_file_list(self): + return [ + b.decode() + for b in set( + subprocess.check_output( + 'git ls-files -- ":!:load/*"', shell=True + ).splitlines() + ) + | set( # hard code, TODO: use config to exclude folders or files + subprocess.check_output( + "git ls-files --others --exclude-standard", shell=True + ).splitlines() + ) + ] + + @rank_zero_only + def save_code_snapshot(self): + os.makedirs(self.savedir, exist_ok=True) + for f in self.get_file_list(): + if not os.path.exists(f) or os.path.isdir(f): + continue + os.makedirs(os.path.join(self.savedir, os.path.dirname(f)), exist_ok=True) + shutil.copyfile(f, os.path.join(self.savedir, f)) + + def on_fit_start(self, trainer, pl_module): + try: + self.save_code_snapshot() + except: + rank_zero_warn( + "Code snapshot is not saved. Please make sure you have git installed and are in a git repository." + ) + + +class ConfigSnapshotCallback(VersionedCallback): + def __init__(self, config_path, config, save_root, version=None, use_version=True): + super().__init__(save_root, version, use_version) + self.config_path = config_path + self.config = config + + @rank_zero_only + def save_config_snapshot(self): + os.makedirs(self.savedir, exist_ok=True) + dump_config(os.path.join(self.savedir, "parsed.yaml"), self.config) + shutil.copyfile(self.config_path, os.path.join(self.savedir, "raw.yaml")) + + def on_fit_start(self, trainer, pl_module): + self.save_config_snapshot() + + +class CustomProgressBar(TQDMProgressBar): + def get_metrics(self, *args, **kwargs): + # don't show the version number + items = super().get_metrics(*args, **kwargs) + items.pop("v_num", None) + return items + + +class ProgressCallback(Callback): + def __init__(self, save_path): + super().__init__() + self.save_path = save_path + self._file_handle = None + + @property + def file_handle(self): + if self._file_handle is None: + self._file_handle = open(self.save_path, "w") + return self._file_handle + + @rank_zero_only + def write(self, msg: str) -> None: + self.file_handle.seek(0) + self.file_handle.truncate() + self.file_handle.write(msg) + self.file_handle.flush() + + @rank_zero_only + def on_train_batch_end(self, trainer, pl_module, *args, **kwargs): + self.write( + f"Generation progress: {pl_module.true_global_step / trainer.max_steps * 100:.2f}%" + ) + + @rank_zero_only + def on_validation_start(self, trainer, pl_module): + self.write(f"Rendering validation image ...") + + @rank_zero_only + def on_test_start(self, trainer, pl_module): + self.write(f"Rendering video ...") + + @rank_zero_only + def on_predict_start(self, trainer, pl_module): + self.write(f"Exporting mesh assets ...") diff --git a/threestudio/utils/config.py b/threestudio/utils/config.py new file mode 100644 index 0000000..88a7d09 --- /dev/null +++ b/threestudio/utils/config.py @@ -0,0 +1,128 @@ +import os +from dataclasses import dataclass, field +from datetime import datetime + +from omegaconf import OmegaConf + +import threestudio +from threestudio.utils.typing import * + +# ============ Register OmegaConf Recolvers ============= # +OmegaConf.register_new_resolver( + "calc_exp_lr_decay_rate", lambda factor, n: factor ** (1.0 / n) +) +OmegaConf.register_new_resolver("add", lambda a, b: a + b) +OmegaConf.register_new_resolver("sub", lambda a, b: a - b) +OmegaConf.register_new_resolver("mul", lambda a, b: a * b) +OmegaConf.register_new_resolver("div", lambda a, b: a / b) +OmegaConf.register_new_resolver("idiv", lambda a, b: a // b) +OmegaConf.register_new_resolver("basename", lambda p: os.path.basename(p)) +OmegaConf.register_new_resolver("rmspace", lambda s, sub: s.replace(" ", sub)) +OmegaConf.register_new_resolver("tuple2", lambda s: [float(s), float(s)]) +OmegaConf.register_new_resolver("gt0", lambda s: s > 0) +OmegaConf.register_new_resolver("cmaxgt0", lambda s: C_max(s) > 0) +OmegaConf.register_new_resolver("not", lambda s: not s) +OmegaConf.register_new_resolver( + "cmaxgt0orcmaxgt0", lambda a, b: C_max(a) > 0 or C_max(b) > 0 +) +# ======================================================= # + + +def C_max(value: Any) -> float: + if isinstance(value, int) or isinstance(value, float): + pass + else: + value = config_to_primitive(value) + if not isinstance(value, list): + raise TypeError("Scalar specification only supports list, got", type(value)) + if len(value) >= 6: + max_value = value[2] + for i in range(4, len(value), 2): + max_value = max(max_value, value[i]) + value = [value[0], value[1], max_value, value[3]] + if len(value) == 3: + value = [0] + value + assert len(value) == 4 + start_step, start_value, end_value, end_step = value + value = max(start_value, end_value) + return value + + +@dataclass +class ExperimentConfig: + name: str = "default" + description: str = "" + tag: str = "" + seed: int = 0 + use_timestamp: bool = True + timestamp: Optional[str] = None + exp_root_dir: str = "outputs" + + ### these shouldn't be set manually + exp_dir: str = "outputs/default" + trial_name: str = "exp" + trial_dir: str = "outputs/default/exp" + n_gpus: int = 1 + ### + + resume: Optional[str] = None + + data_type: str = "" + data: dict = field(default_factory=dict) + + system_type: str = "" + system: dict = field(default_factory=dict) + + # accept pytorch-lightning trainer parameters + # see https://lightning.ai/docs/pytorch/stable/common/trainer.html#trainer-class-api + trainer: dict = field(default_factory=dict) + + # accept pytorch-lightning checkpoint callback parameters + # see https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.callbacks.ModelCheckpoint.html#modelcheckpoint + checkpoint: dict = field(default_factory=dict) + + def __post_init__(self): + if not self.tag and not self.use_timestamp: + raise ValueError("Either tag is specified or use_timestamp is True.") + self.trial_name = self.tag + # if resume from an existing config, self.timestamp should not be None + if self.timestamp is None: + self.timestamp = "" + if self.use_timestamp: + if self.n_gpus > 1: + threestudio.warn( + "Timestamp is disabled when using multiple GPUs, please make sure you have a unique tag." + ) + else: + self.timestamp = datetime.now().strftime("@%Y%m%d-%H%M%S") + self.trial_name += self.timestamp + self.exp_dir = os.path.join(self.exp_root_dir, self.name) + self.trial_dir = os.path.join(self.exp_dir, self.trial_name) + os.makedirs(self.trial_dir, exist_ok=True) + + +def load_config(*yamls: str, cli_args: list = [], from_string=False, **kwargs) -> Any: + if from_string: + yaml_confs = [OmegaConf.create(s) for s in yamls] + else: + yaml_confs = [OmegaConf.load(f) for f in yamls] + cli_conf = OmegaConf.from_cli(cli_args) + cfg = OmegaConf.merge(*yaml_confs, cli_conf, kwargs) + OmegaConf.resolve(cfg) + assert isinstance(cfg, DictConfig) + scfg = parse_structured(ExperimentConfig, cfg) + return scfg + + +def config_to_primitive(config, resolve: bool = True) -> Any: + return OmegaConf.to_container(config, resolve=resolve) + + +def dump_config(path: str, config) -> None: + with open(path, "w") as fp: + OmegaConf.save(config=config, f=fp) + + +def parse_structured(fields: Any, cfg: Optional[Union[dict, DictConfig]] = None) -> Any: + scfg = OmegaConf.structured(fields(**cfg)) + return scfg diff --git a/threestudio/utils/loss.py b/threestudio/utils/loss.py new file mode 100644 index 0000000..eb0c725 --- /dev/null +++ b/threestudio/utils/loss.py @@ -0,0 +1,16 @@ +import torch + + +def _tensor_size(t): + return t.size()[1] * t.size()[2] * t.size()[3] + + +def tv_loss(x): + batch_size = x.size()[0] + h_x = x.size()[2] + w_x = x.size()[3] + count_h = _tensor_size(x[:, :, 1:, :]) + count_w = _tensor_size(x[:, :, :, 1:]) + h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, : h_x - 1, :]), 2).sum() + w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, : w_x - 1]), 2).sum() + return 2 * (h_tv / count_h + w_tv / count_w) / batch_size diff --git a/threestudio/utils/misc.py b/threestudio/utils/misc.py new file mode 100644 index 0000000..f2378f5 --- /dev/null +++ b/threestudio/utils/misc.py @@ -0,0 +1,161 @@ +import gc +import math +import os +import re + +import tinycudann as tcnn +import torch +from packaging import version + +from threestudio.utils.config import config_to_primitive +from threestudio.utils.typing import * + + +def parse_version(ver: str): + return version.parse(ver) + + +def get_rank(): + # SLURM_PROCID can be set even if SLURM is not managing the multiprocessing, + # therefore LOCAL_RANK needs to be checked first + rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK") + for key in rank_keys: + rank = os.environ.get(key) + if rank is not None: + return int(rank) + return 0 + + +def get_device(): + return torch.device(f"cuda:{get_rank()}") + + +def load_module_weights( + path, module_name=None, ignore_modules=None, map_location=None +) -> Tuple[dict, int, int]: + if module_name is not None and ignore_modules is not None: + raise ValueError("module_name and ignore_modules cannot be both set") + if map_location is None: + map_location = get_device() + + ckpt = torch.load(path, map_location=map_location) + state_dict = ckpt["state_dict"] + state_dict_to_load = state_dict + + if ignore_modules is not None: + state_dict_to_load = {} + for k, v in state_dict.items(): + ignore = any( + [k.startswith(ignore_module + ".") for ignore_module in ignore_modules] + ) + if ignore: + continue + state_dict_to_load[k] = v + + if module_name is not None: + state_dict_to_load = {} + for k, v in state_dict.items(): + m = re.match(rf"^{module_name}\.(.*)$", k) + if m is None: + continue + state_dict_to_load[m.group(1)] = v + + return state_dict_to_load, ckpt["epoch"], ckpt["global_step"] + + +def C(value: Any, epoch: int, global_step: int, interpolation="linear") -> float: + if isinstance(value, int) or isinstance(value, float): + pass + else: + value = config_to_primitive(value) + if not isinstance(value, list): + raise TypeError("Scalar specification only supports list, got", type(value)) + if len(value) == 3: + value = [0] + value + if len(value) >= 6: + select_i = 3 + for i in range(3, len(value) - 2, 2): + if global_step >= value[i]: + select_i = i + 2 + if select_i != 3: + start_value, start_step = value[select_i - 3], value[select_i - 2] + else: + start_step, start_value = value[:2] + end_value, end_step = value[select_i - 1], value[select_i] + value = [start_step, start_value, end_value, end_step] + assert len(value) == 4 + start_step, start_value, end_value, end_step = value + if isinstance(end_step, int): + current_step = global_step + elif isinstance(end_step, float): + current_step = epoch + t = max(min(1.0, (current_step - start_step) / (end_step - start_step)), 0.0) + if interpolation == "linear": + value = start_value + (end_value - start_value) * t + elif interpolation == "exp": + value = math.exp(math.log(start_value) * (1 - t) + math.log(end_value) * t) + else: + raise ValueError( + f"Unknown interpolation method: {interpolation}, only support linear and exp" + ) + return value + + +def cleanup(): + gc.collect() + torch.cuda.empty_cache() + tcnn.free_temporary_memory() + + +def finish_with_cleanup(func: Callable): + def wrapper(*args, **kwargs): + out = func(*args, **kwargs) + cleanup() + return out + + return wrapper + + +def _distributed_available(): + return torch.distributed.is_available() and torch.distributed.is_initialized() + + +def barrier(): + if not _distributed_available(): + return + else: + torch.distributed.barrier() + + +def broadcast(tensor, src=0): + if not _distributed_available(): + return tensor + else: + torch.distributed.broadcast(tensor, src=src) + return tensor + + +def enable_gradient(model, enabled: bool = True) -> None: + for param in model.parameters(): + param.requires_grad_(enabled) + + +def find_last_path(path: str): + if (path is not None) and ("LAST" in path): + path = path.replace(" ", "_") + base_dir_prefix, suffix = path.split("LAST", 1) + base_dir = os.path.dirname(base_dir_prefix) + prefix = os.path.split(base_dir_prefix)[-1] + base_dir_prefix = os.path.join(base_dir, prefix) + all_path = os.listdir(base_dir) + all_path = [os.path.join(base_dir, dir) for dir in all_path] + filtered_path = [dir for dir in all_path if dir.startswith(base_dir_prefix)] + filtered_path.sort(reverse=True) + last_path = filtered_path[0] + new_path = last_path + suffix + if os.path.exists(new_path): + return new_path + else: + raise FileNotFoundError(new_path) + else: + return path diff --git a/threestudio/utils/ops.py b/threestudio/utils/ops.py new file mode 100644 index 0000000..1e09e68 --- /dev/null +++ b/threestudio/utils/ops.py @@ -0,0 +1,571 @@ +import math +from collections import defaultdict + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +from igl import fast_winding_number_for_meshes, point_mesh_squared_distance, read_obj +from torch.autograd import Function +from torch.cuda.amp import custom_bwd, custom_fwd + +import threestudio +from threestudio.utils.typing import * + + +def dot(x, y): + return torch.sum(x * y, -1, keepdim=True) + + +def reflect(x, n): + return 2 * dot(x, n) * n - x + + +ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]] + + +def scale_tensor( + dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale +): + if inp_scale is None: + inp_scale = (0, 1) + if tgt_scale is None: + tgt_scale = (0, 1) + if isinstance(tgt_scale, Tensor): + assert dat.shape[-1] == tgt_scale.shape[-1] + dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0]) + dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0] + return dat + + +class _TruncExp(Function): # pylint: disable=abstract-method + # Implementation from torch-ngp: + # https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py + @staticmethod + @custom_fwd(cast_inputs=torch.float32) + def forward(ctx, x): # pylint: disable=arguments-differ + ctx.save_for_backward(x) + return torch.exp(x) + + @staticmethod + @custom_bwd + def backward(ctx, g): # pylint: disable=arguments-differ + x = ctx.saved_tensors[0] + return g * torch.exp(torch.clamp(x, max=15)) + + +class SpecifyGradient(Function): + # Implementation from stable-dreamfusion + # https://github.com/ashawkey/stable-dreamfusion + @staticmethod + @custom_fwd + def forward(ctx, input_tensor, gt_grad): + ctx.save_for_backward(gt_grad) + # we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward. + return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype) + + @staticmethod + @custom_bwd + def backward(ctx, grad_scale): + (gt_grad,) = ctx.saved_tensors + gt_grad = gt_grad * grad_scale + return gt_grad, None + + +trunc_exp = _TruncExp.apply + + +def get_activation(name) -> Callable: + if name is None: + return lambda x: x + name = name.lower() + if name == "none": + return lambda x: x + elif name == "lin2srgb": + return lambda x: torch.where( + x > 0.0031308, + torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055, + 12.92 * x, + ).clamp(0.0, 1.0) + elif name == "exp": + return lambda x: torch.exp(x) + elif name == "shifted_exp": + return lambda x: torch.exp(x - 1.0) + elif name == "trunc_exp": + return trunc_exp + elif name == "shifted_trunc_exp": + return lambda x: trunc_exp(x - 1.0) + elif name == "sigmoid": + return lambda x: torch.sigmoid(x) + elif name == "tanh": + return lambda x: torch.tanh(x) + elif name == "shifted_softplus": + return lambda x: F.softplus(x - 1.0) + elif name == "scale_-11_01": + return lambda x: x * 0.5 + 0.5 + else: + try: + return getattr(F, name) + except AttributeError: + raise ValueError(f"Unknown activation function: {name}") + + +def chunk_batch(func: Callable, chunk_size: int, *args, **kwargs) -> Any: + if chunk_size <= 0: + return func(*args, **kwargs) + B = None + for arg in list(args) + list(kwargs.values()): + if isinstance(arg, torch.Tensor): + B = arg.shape[0] + break + assert ( + B is not None + ), "No tensor found in args or kwargs, cannot determine batch size." + out = defaultdict(list) + out_type = None + # max(1, B) to support B == 0 + for i in range(0, max(1, B), chunk_size): + out_chunk = func( + *[ + arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg + for arg in args + ], + **{ + k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg + for k, arg in kwargs.items() + }, + ) + if out_chunk is None: + continue + out_type = type(out_chunk) + if isinstance(out_chunk, torch.Tensor): + out_chunk = {0: out_chunk} + elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list): + chunk_length = len(out_chunk) + out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)} + elif isinstance(out_chunk, dict): + pass + else: + print( + f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}." + ) + exit(1) + for k, v in out_chunk.items(): + v = v if torch.is_grad_enabled() else v.detach() + out[k].append(v) + + if out_type is None: + return None + + out_merged: Dict[Any, Optional[torch.Tensor]] = {} + for k, v in out.items(): + if all([vv is None for vv in v]): + # allow None in return value + out_merged[k] = None + elif all([isinstance(vv, torch.Tensor) for vv in v]): + out_merged[k] = torch.cat(v, dim=0) + else: + raise TypeError( + f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}" + ) + + if out_type is torch.Tensor: + return out_merged[0] + elif out_type in [tuple, list]: + return out_type([out_merged[i] for i in range(chunk_length)]) + elif out_type is dict: + return out_merged + + +def get_ray_directions( + H: int, + W: int, + focal: Union[float, Tuple[float, float]], + principal: Optional[Tuple[float, float]] = None, + use_pixel_centers: bool = True, +) -> Float[Tensor, "H W 3"]: + """ + Get ray directions for all pixels in camera coordinate. + Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/ + ray-tracing-generating-camera-rays/standard-coordinate-systems + + Inputs: + H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers + Outputs: + directions: (H, W, 3), the direction of the rays in camera coordinate + """ + pixel_center = 0.5 if use_pixel_centers else 0 + + if isinstance(focal, float): + fx, fy = focal, focal + cx, cy = W / 2, H / 2 + else: + fx, fy = focal + assert principal is not None + cx, cy = principal + + i, j = torch.meshgrid( + torch.arange(W, dtype=torch.float32) + pixel_center, + torch.arange(H, dtype=torch.float32) + pixel_center, + indexing="xy", + ) + + directions: Float[Tensor, "H W 3"] = torch.stack( + [(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1 + ) + + return directions + + +def mask_ray_directions(H: int, W: int, s_H: int, s_W: int) -> Float[Tensor, "s_H s_W"]: + """ + Masking the (H,W) image to (s_H,s_W), for efficient training at higher resolution image. + pixels from (s_H,s_W) are sampled more (1-aspect_ratio) than outside pixels(aspect_ratio). + the masking is deferred to before calling get_rays(). + """ + # indices_all = torch.meshgrid( + # torch.arange(W, dtype=torch.float32) , + # torch.arange(H, dtype=torch.float32) , + # indexing="xy", + # ) + + indices_inner = torch.meshgrid( + torch.linspace(0, 0.75 * W, s_W, dtype=torch.int8), + torch.linspace(0, 0.75 * H, s_H, dtype=torch.int8), + indexing="xy", + ) + offset = [torch.randint(0, W // 8 + 1, (1,)), torch.randint(0, H // 8 + 1, (1,))] + + select_ind = indices_inner[0] + offset[0] + H * (indices_inner[1] + offset[1]) + + ### removing the random sampling approach, we sample in uniform grid + # mask = torch.zeros(H,W, dtype=torch.bool) + # mask[(H-s_H)//2 : H - math.ceil((H-s_H)/2),(W-s_W)//2 : W - math.ceil((W-s_W)/2)] = True + + # in_ind_1d = (indices_all[0]+H*indices_all[1])[mask] + # out_ind_1d = (indices_all[0]+H*indices_all[1])[torch.logical_not(mask)] + # ### tried using 0.5 p ratio of sampling inside vs outside, as smaller area already + # ### leads to more samples inside anyways + + # p = 0.5#(s_H*s_W)/(H*W) + # select_ind = in_ind_1d[ + # torch.multinomial( + # torch.ones_like(in_ind_1d)*(1-p),int((1-p)*(s_H*s_W)),replacement=False)] + # select_ind = torch.concatenate( + # [select_ind, out_ind_1d[torch.multinomial( + # torch.ones_like(out_ind_1d)*(p),int((p)*(s_H*s_W)),replacement=False)] + # ], + # dim=0).to(dtype=torch.int).view(s_H,s_W) + + ### first attempt at sampling, this produces variable number of rays, + ### so 4D tensor directions cant be sampled + # mask = torch.zeros(H,W, device= directions.device) + # p = (s_H*s_W)/(H*W) + # mask += p + # mask[(H-s_H)//2 : H - math.ceil((H-s_H)/2),(W-s_W)//2 : W - math.ceil((W-s_W)/2)] = 1 - p + # ### mask contains prob of individual pixel, drawing using Bernoulli dist + # mask = torch.bernoulli(mask).to(dtype=torch.bool) + ### postponing masking before get_rays is called + # directions = directions[mask] + + return select_ind + + +def get_rays( + directions: Float[Tensor, "... 3"], + c2w: Float[Tensor, "... 4 4"], + keepdim=False, + noise_scale=0.0, + normalize=True, +) -> Tuple[Float[Tensor, "... 3"], Float[Tensor, "... 3"]]: + # Rotate ray directions from camera coordinate to the world coordinate + assert directions.shape[-1] == 3 + + if directions.ndim == 2: # (N_rays, 3) + if c2w.ndim == 2: # (4, 4) + c2w = c2w[None, :, :] + assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4) + rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3) + rays_o = c2w[:, :3, 3].expand(rays_d.shape) + elif directions.ndim == 3: # (H, W, 3) + assert c2w.ndim in [2, 3] + if c2w.ndim == 2: # (4, 4) + rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum( + -1 + ) # (H, W, 3) + rays_o = c2w[None, None, :3, 3].expand(rays_d.shape) + elif c2w.ndim == 3: # (B, 4, 4) + rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( + -1 + ) # (B, H, W, 3) + rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) + elif directions.ndim == 4: # (B, H, W, 3) + assert c2w.ndim == 3 # (B, 4, 4) + rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( + -1 + ) # (B, H, W, 3) + rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) + + # add camera noise to avoid grid-like artifect + # https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373 + if noise_scale > 0: + rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale + rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale + + if normalize: + rays_d = F.normalize(rays_d, dim=-1) + if not keepdim: + rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3) + + return rays_o, rays_d + + +def get_projection_matrix( + fovy: Float[Tensor, "B"], aspect_wh: float, near: float, far: float +) -> Float[Tensor, "B 4 4"]: + batch_size = fovy.shape[0] + proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32) + proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh) + proj_mtx[:, 1, 1] = -1.0 / torch.tan( + fovy / 2.0 + ) # add a negative sign here as the y axis is flipped in nvdiffrast output + proj_mtx[:, 2, 2] = -(far + near) / (far - near) + proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near) + proj_mtx[:, 3, 2] = -1.0 + return proj_mtx + + +def get_mvp_matrix( + c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"] +) -> Float[Tensor, "B 4 4"]: + # calculate w2c from c2w: R' = Rt, t' = -Rt * t + # mathematically equivalent to (c2w)^-1 + w2c: Float[Tensor, "B 4 4"] = torch.zeros(c2w.shape[0], 4, 4).to(c2w) + w2c[:, :3, :3] = c2w[:, :3, :3].permute(0, 2, 1) + w2c[:, :3, 3:] = -c2w[:, :3, :3].permute(0, 2, 1) @ c2w[:, :3, 3:] + w2c[:, 3, 3] = 1.0 + # calculate mvp matrix by proj_mtx @ w2c (mv_mtx) + mvp_mtx = proj_mtx @ w2c + return mvp_mtx + + +def get_full_projection_matrix( + c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"] +) -> Float[Tensor, "B 4 4"]: + return (c2w.unsqueeze(0).bmm(proj_mtx.unsqueeze(0))).squeeze(0) + + +# gaussian splatting functions +def convert_pose(C2W): + flip_yz = torch.eye(4, device=C2W.device) + flip_yz[1, 1] = -1 + flip_yz[2, 2] = -1 + C2W = torch.matmul(C2W, flip_yz) + return C2W + + +def get_projection_matrix_gaussian(znear, zfar, fovX, fovY, device="cuda"): + tanHalfFovY = math.tan((fovY / 2)) + tanHalfFovX = math.tan((fovX / 2)) + + top = tanHalfFovY * znear + bottom = -top + right = tanHalfFovX * znear + left = -right + + P = torch.zeros(4, 4, device=device) + + z_sign = 1.0 + + P[0, 0] = 2.0 * znear / (right - left) + P[1, 1] = 2.0 * znear / (top - bottom) + P[0, 2] = (right + left) / (right - left) + P[1, 2] = (top + bottom) / (top - bottom) + P[3, 2] = z_sign + P[2, 2] = z_sign * zfar / (zfar - znear) + P[2, 3] = -(zfar * znear) / (zfar - znear) + return P + + +def get_fov_gaussian(P): + tanHalfFovX = 1 / P[0, 0] + tanHalfFovY = 1 / P[1, 1] + fovY = math.atan(tanHalfFovY) * 2 + fovX = math.atan(tanHalfFovX) * 2 + return fovX, fovY + + +def get_cam_info_gaussian(c2w, fovx, fovy, znear, zfar): + c2w = convert_pose(c2w) + world_view_transform = torch.inverse(c2w) + + world_view_transform = world_view_transform.transpose(0, 1).cuda().float() + projection_matrix = ( + get_projection_matrix_gaussian(znear=znear, zfar=zfar, fovX=fovx, fovY=fovy) + .transpose(0, 1) + .cuda() + ) + full_proj_transform = ( + world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0)) + ).squeeze(0) + camera_center = world_view_transform.inverse()[3, :3] + + return world_view_transform, full_proj_transform, camera_center + + +def binary_cross_entropy(input, target): + """ + F.binary_cross_entropy is not numerically stable in mixed-precision training. + """ + return -(target * torch.log(input) + (1 - target) * torch.log(1 - input)).mean() + + +def tet_sdf_diff( + vert_sdf: Float[Tensor, "Nv 1"], tet_edges: Integer[Tensor, "Ne 2"] +) -> Float[Tensor, ""]: + sdf_f1x6x2 = vert_sdf[:, 0][tet_edges.reshape(-1)].reshape(-1, 2) + mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) + sdf_f1x6x2 = sdf_f1x6x2[mask] + sdf_diff = F.binary_cross_entropy_with_logits( + sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float() + ) + F.binary_cross_entropy_with_logits( + sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float() + ) + return sdf_diff + + +# Implementation from Latent-NeRF +# https://github.com/eladrich/latent-nerf/blob/f49ecefcd48972e69a28e3116fe95edf0fac4dc8/src/latent_nerf/models/mesh_utils.py +class MeshOBJ: + dx = torch.zeros(3).float() + dx[0] = 1 + dy, dz = dx[[1, 0, 2]], dx[[2, 1, 0]] + dx, dy, dz = dx[None, :], dy[None, :], dz[None, :] + + def __init__(self, v: np.ndarray, f: np.ndarray): + self.v = v + self.f = f + self.dx, self.dy, self.dz = MeshOBJ.dx, MeshOBJ.dy, MeshOBJ.dz + self.v_tensor = torch.from_numpy(self.v) + + vf = self.v[self.f, :] + self.f_center = vf.mean(axis=1) + self.f_center_tensor = torch.from_numpy(self.f_center).float() + + e1 = vf[:, 1, :] - vf[:, 0, :] + e2 = vf[:, 2, :] - vf[:, 0, :] + self.face_normals = np.cross(e1, e2) + self.face_normals = ( + self.face_normals / np.linalg.norm(self.face_normals, axis=-1)[:, None] + ) + self.face_normals_tensor = torch.from_numpy(self.face_normals) + + def normalize_mesh(self, target_scale=0.5): + verts = self.v + + # Compute center of bounding box + # center = torch.mean(torch.column_stack([torch.max(verts, dim=0)[0], torch.min(verts, dim=0)[0]])) + center = verts.mean(axis=0) + verts = verts - center + scale = np.max(np.linalg.norm(verts, axis=1)) + verts = (verts / scale) * target_scale + + return MeshOBJ(verts, self.f) + + def winding_number(self, query: torch.Tensor): + device = query.device + shp = query.shape + query_np = query.detach().cpu().reshape(-1, 3).numpy() + target_alphas = fast_winding_number_for_meshes( + self.v.astype(np.float32), self.f, query_np + ) + return torch.from_numpy(target_alphas).reshape(shp[:-1]).to(device) + + def gaussian_weighted_distance(self, query: torch.Tensor, sigma): + device = query.device + shp = query.shape + query_np = query.detach().cpu().reshape(-1, 3).numpy() + distances, _, _ = point_mesh_squared_distance( + query_np, self.v.astype(np.float32), self.f + ) + distances = torch.from_numpy(distances).reshape(shp[:-1]).to(device) + weight = torch.exp(-(distances / (2 * sigma**2))) + return weight + + +def ce_pq_loss(p, q, weight=None): + def clamp(v, T=0.0001): + return v.clamp(T, 1 - T) + + p = p.view(q.shape) + ce = -1 * (p * torch.log(clamp(q)) + (1 - p) * torch.log(clamp(1 - q))) + if weight is not None: + ce *= weight + return ce.sum() + + +class ShapeLoss(nn.Module): + def __init__(self, guide_shape): + super().__init__() + self.mesh_scale = 0.7 + self.proximal_surface = 0.3 + self.delta = 0.2 + self.shape_path = guide_shape + v, _, _, f, _, _ = read_obj(self.shape_path, float) + mesh = MeshOBJ(v, f) + matrix_rot = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) @ np.array( + [[0, 0, 1], [0, 1, 0], [-1, 0, 0]] + ) + self.sketchshape = mesh.normalize_mesh(self.mesh_scale) + self.sketchshape = MeshOBJ( + np.ascontiguousarray( + (matrix_rot @ self.sketchshape.v.transpose(1, 0)).transpose(1, 0) + ), + f, + ) + + def forward(self, xyzs, sigmas): + mesh_occ = self.sketchshape.winding_number(xyzs) + if self.proximal_surface > 0: + weight = 1 - self.sketchshape.gaussian_weighted_distance( + xyzs, self.proximal_surface + ) + else: + weight = None + indicator = (mesh_occ > 0.5).float() + nerf_occ = 1 - torch.exp(-self.delta * sigmas) + nerf_occ = nerf_occ.clamp(min=0, max=1.1) + loss = ce_pq_loss( + nerf_occ, indicator, weight=weight + ) # order is important for CE loss + second argument may not be optimized + return loss + + +def shifted_expotional_decay(a, b, c, r): + return a * torch.exp(-b * r) + c + + +def shifted_cosine_decay(a, b, c, r): + return a * torch.cos(b * r + c) + a + + +def perpendicular_component(x: Float[Tensor, "B C H W"], y: Float[Tensor, "B C H W"]): + # get the component of x that is perpendicular to y + eps = torch.ones_like(x[:, 0, 0, 0]) * 1e-6 + return ( + x + - ( + torch.mul(x, y).sum(dim=[1, 2, 3]) + / torch.maximum(torch.mul(y, y).sum(dim=[1, 2, 3]), eps) + ).view(-1, 1, 1, 1) + * y + ) + + +def validate_empty_rays(ray_indices, t_start, t_end): + if ray_indices.nelement() == 0: + threestudio.warn("Empty rays_indices!") + ray_indices = torch.LongTensor([0]).to(ray_indices) + t_start = torch.Tensor([0]).to(ray_indices) + t_end = torch.Tensor([0]).to(ray_indices) + return ray_indices, t_start, t_end diff --git a/threestudio/utils/perceptual/__init__.py b/threestudio/utils/perceptual/__init__.py new file mode 100644 index 0000000..a4d2c7a --- /dev/null +++ b/threestudio/utils/perceptual/__init__.py @@ -0,0 +1 @@ +from .perceptual import PerceptualLoss diff --git a/threestudio/utils/perceptual/perceptual.py b/threestudio/utils/perceptual/perceptual.py new file mode 100644 index 0000000..403d9a9 --- /dev/null +++ b/threestudio/utils/perceptual/perceptual.py @@ -0,0 +1,170 @@ +"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models""" + +from collections import namedtuple +from dataclasses import dataclass, field + +import torch +import torch.nn as nn +from torchvision import models + +import threestudio +from threestudio.utils.base import BaseObject +from threestudio.utils.perceptual.utils import get_ckpt_path +from threestudio.utils.typing import * + + +@threestudio.register("perceptual-loss") +class PerceptualLossObject(BaseObject): + @dataclass + class Config(BaseObject.Config): + use_dropout: bool = True + + cfg: Config + + def configure(self) -> None: + self.perceptual_loss = PerceptualLoss(self.cfg.use_dropout).to(self.device) + + def __call__( + self, + x: Float[Tensor, "B 3 256 256"], + y: Float[Tensor, "B 3 256 256"], + ): + return self.perceptual_loss(x, y) + + +class PerceptualLoss(nn.Module): + # Learned perceptual metric + def __init__(self, use_dropout=True): + super().__init__() + self.scaling_layer = ScalingLayer() + self.chns = [64, 128, 256, 512, 512] # vg16 features + self.net = vgg16(pretrained=True, requires_grad=False) + self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) + self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) + self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) + self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) + self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) + self.load_from_pretrained() + for param in self.parameters(): + param.requires_grad = False + + def load_from_pretrained(self, name="vgg_lpips"): + ckpt = get_ckpt_path(name, "threestudio/utils/lpips") + self.load_state_dict( + torch.load(ckpt, map_location=torch.device("cpu")), strict=False + ) + print("loaded pretrained LPIPS loss from {}".format(ckpt)) + + @classmethod + def from_pretrained(cls, name="vgg_lpips"): + if name != "vgg_lpips": + raise NotImplementedError + model = cls() + ckpt = get_ckpt_path(name) + model.load_state_dict( + torch.load(ckpt, map_location=torch.device("cpu")), strict=False + ) + return model + + def forward(self, input, target): + in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target)) + outs0, outs1 = self.net(in0_input), self.net(in1_input) + feats0, feats1, diffs = {}, {}, {} + lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] + for kk in range(len(self.chns)): + feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor( + outs1[kk] + ) + diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 + + res = [ + spatial_average(lins[kk].model(diffs[kk]), keepdim=True) + for kk in range(len(self.chns)) + ] + val = res[0] + for l in range(1, len(self.chns)): + val += res[l] + return val + + +class ScalingLayer(nn.Module): + def __init__(self): + super(ScalingLayer, self).__init__() + self.register_buffer( + "shift", torch.Tensor([-0.030, -0.088, -0.188])[None, :, None, None] + ) + self.register_buffer( + "scale", torch.Tensor([0.458, 0.448, 0.450])[None, :, None, None] + ) + + def forward(self, inp): + return (inp - self.shift) / self.scale + + +class NetLinLayer(nn.Module): + """A single linear layer which does a 1x1 conv""" + + def __init__(self, chn_in, chn_out=1, use_dropout=False): + super(NetLinLayer, self).__init__() + layers = ( + [ + nn.Dropout(), + ] + if (use_dropout) + else [] + ) + layers += [ + nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), + ] + self.model = nn.Sequential(*layers) + + +class vgg16(torch.nn.Module): + def __init__(self, requires_grad=False, pretrained=True): + super(vgg16, self).__init__() + vgg_pretrained_features = models.vgg16(pretrained=pretrained).features + self.slice1 = torch.nn.Sequential() + self.slice2 = torch.nn.Sequential() + self.slice3 = torch.nn.Sequential() + self.slice4 = torch.nn.Sequential() + self.slice5 = torch.nn.Sequential() + self.N_slices = 5 + for x in range(4): + self.slice1.add_module(str(x), vgg_pretrained_features[x]) + for x in range(4, 9): + self.slice2.add_module(str(x), vgg_pretrained_features[x]) + for x in range(9, 16): + self.slice3.add_module(str(x), vgg_pretrained_features[x]) + for x in range(16, 23): + self.slice4.add_module(str(x), vgg_pretrained_features[x]) + for x in range(23, 30): + self.slice5.add_module(str(x), vgg_pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h = self.slice1(X) + h_relu1_2 = h + h = self.slice2(h) + h_relu2_2 = h + h = self.slice3(h) + h_relu3_3 = h + h = self.slice4(h) + h_relu4_3 = h + h = self.slice5(h) + h_relu5_3 = h + vgg_outputs = namedtuple( + "VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"] + ) + out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) + return out + + +def normalize_tensor(x, eps=1e-10): + norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True)) + return x / (norm_factor + eps) + + +def spatial_average(x, keepdim=True): + return x.mean([2, 3], keepdim=keepdim) diff --git a/threestudio/utils/perceptual/utils.py b/threestudio/utils/perceptual/utils.py new file mode 100644 index 0000000..5da48b3 --- /dev/null +++ b/threestudio/utils/perceptual/utils.py @@ -0,0 +1,154 @@ +import hashlib +import os + +import requests +from tqdm import tqdm + +URL_MAP = {"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"} + +CKPT_MAP = {"vgg_lpips": "vgg.pth"} + +MD5_MAP = {"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"} + + +def download(url, local_path, chunk_size=1024): + os.makedirs(os.path.split(local_path)[0], exist_ok=True) + with requests.get(url, stream=True) as r: + total_size = int(r.headers.get("content-length", 0)) + with tqdm(total=total_size, unit="B", unit_scale=True) as pbar: + with open(local_path, "wb") as f: + for data in r.iter_content(chunk_size=chunk_size): + if data: + f.write(data) + pbar.update(chunk_size) + + +def md5_hash(path): + with open(path, "rb") as f: + content = f.read() + return hashlib.md5(content).hexdigest() + + +def get_ckpt_path(name, root, check=False): + assert name in URL_MAP + path = os.path.join(root, CKPT_MAP[name]) + if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]): + print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path)) + download(URL_MAP[name], path) + md5 = md5_hash(path) + assert md5 == MD5_MAP[name], md5 + return path + + +class KeyNotFoundError(Exception): + def __init__(self, cause, keys=None, visited=None): + self.cause = cause + self.keys = keys + self.visited = visited + messages = list() + if keys is not None: + messages.append("Key not found: {}".format(keys)) + if visited is not None: + messages.append("Visited: {}".format(visited)) + messages.append("Cause:\n{}".format(cause)) + message = "\n".join(messages) + super().__init__(message) + + +def retrieve( + list_or_dict, key, splitval="/", default=None, expand=True, pass_success=False +): + """Given a nested list or dict return the desired value at key expanding + callable nodes if necessary and :attr:`expand` is ``True``. The expansion + is done in-place. + + Parameters + ---------- + list_or_dict : list or dict + Possibly nested list or dictionary. + key : str + key/to/value, path like string describing all keys necessary to + consider to get to the desired value. List indices can also be + passed here. + splitval : str + String that defines the delimiter between keys of the + different depth levels in `key`. + default : obj + Value returned if :attr:`key` is not found. + expand : bool + Whether to expand callable nodes on the path or not. + + Returns + ------- + The desired value or if :attr:`default` is not ``None`` and the + :attr:`key` is not found returns ``default``. + + Raises + ------ + Exception if ``key`` not in ``list_or_dict`` and :attr:`default` is + ``None``. + """ + + keys = key.split(splitval) + + success = True + try: + visited = [] + parent = None + last_key = None + for key in keys: + if callable(list_or_dict): + if not expand: + raise KeyNotFoundError( + ValueError( + "Trying to get past callable node with expand=False." + ), + keys=keys, + visited=visited, + ) + list_or_dict = list_or_dict() + parent[last_key] = list_or_dict + + last_key = key + parent = list_or_dict + + try: + if isinstance(list_or_dict, dict): + list_or_dict = list_or_dict[key] + else: + list_or_dict = list_or_dict[int(key)] + except (KeyError, IndexError, ValueError) as e: + raise KeyNotFoundError(e, keys=keys, visited=visited) + + visited += [key] + # final expansion of retrieved value + if expand and callable(list_or_dict): + list_or_dict = list_or_dict() + parent[last_key] = list_or_dict + except KeyNotFoundError as e: + if default is None: + raise e + else: + list_or_dict = default + success = False + + if not pass_success: + return list_or_dict + else: + return list_or_dict, success + + +if __name__ == "__main__": + config = { + "keya": "a", + "keyb": "b", + "keyc": { + "cc1": 1, + "cc2": 2, + }, + } + from omegaconf import OmegaConf + + config = OmegaConf.create(config) + print(config) + retrieve(config, "keya") diff --git a/threestudio/utils/rasterize.py b/threestudio/utils/rasterize.py new file mode 100644 index 0000000..a174bc1 --- /dev/null +++ b/threestudio/utils/rasterize.py @@ -0,0 +1,78 @@ +import nvdiffrast.torch as dr +import torch + +from threestudio.utils.typing import * + + +class NVDiffRasterizerContext: + def __init__(self, context_type: str, device: torch.device) -> None: + self.device = device + self.ctx = self.initialize_context(context_type, device) + + def initialize_context( + self, context_type: str, device: torch.device + ) -> Union[dr.RasterizeGLContext, dr.RasterizeCudaContext]: + if context_type == "gl": + return dr.RasterizeGLContext(device=device) + elif context_type == "cuda": + return dr.RasterizeCudaContext(device=device) + else: + raise ValueError(f"Unknown rasterizer context type: {context_type}") + + def vertex_transform( + self, verts: Float[Tensor, "Nv 3"], mvp_mtx: Float[Tensor, "B 4 4"] + ) -> Float[Tensor, "B Nv 4"]: + verts_homo = torch.cat( + [verts, torch.ones([verts.shape[0], 1]).to(verts)], dim=-1 + ) + return torch.matmul(verts_homo, mvp_mtx.permute(0, 2, 1)) + + def rasterize( + self, + pos: Float[Tensor, "B Nv 4"], + tri: Integer[Tensor, "Nf 3"], + resolution: Union[int, Tuple[int, int]], + ): + # rasterize in instance mode (single topology) + return dr.rasterize(self.ctx, pos.float(), tri.int(), resolution, grad_db=True) + + def rasterize_one( + self, + pos: Float[Tensor, "Nv 4"], + tri: Integer[Tensor, "Nf 3"], + resolution: Union[int, Tuple[int, int]], + ): + # rasterize one single mesh under a single viewpoint + rast, rast_db = self.rasterize(pos[None, ...], tri, resolution) + return rast[0], rast_db[0] + + def antialias( + self, + color: Float[Tensor, "B H W C"], + rast: Float[Tensor, "B H W 4"], + pos: Float[Tensor, "B Nv 4"], + tri: Integer[Tensor, "Nf 3"], + ) -> Float[Tensor, "B H W C"]: + return dr.antialias(color.float(), rast, pos.float(), tri.int()) + + def interpolate( + self, + attr: Float[Tensor, "B Nv C"], + rast: Float[Tensor, "B H W 4"], + tri: Integer[Tensor, "Nf 3"], + rast_db=None, + diff_attrs=None, + ) -> Float[Tensor, "B H W C"]: + return dr.interpolate( + attr.float(), rast, tri.int(), rast_db=rast_db, diff_attrs=diff_attrs + ) + + def interpolate_one( + self, + attr: Float[Tensor, "Nv C"], + rast: Float[Tensor, "B H W 4"], + tri: Integer[Tensor, "Nf 3"], + rast_db=None, + diff_attrs=None, + ) -> Float[Tensor, "B H W C"]: + return self.interpolate(attr[None, ...], rast, tri, rast_db, diff_attrs) diff --git a/threestudio/utils/saving.py b/threestudio/utils/saving.py new file mode 100644 index 0000000..a9040fa --- /dev/null +++ b/threestudio/utils/saving.py @@ -0,0 +1,652 @@ +import json +import os +import re +import shutil + +import cv2 +import imageio +import matplotlib.pyplot as plt +import numpy as np +import torch +import trimesh +import wandb +from matplotlib import cm +from matplotlib.colors import LinearSegmentedColormap +from PIL import Image, ImageDraw +from pytorch_lightning.loggers import WandbLogger + +from threestudio.models.mesh import Mesh +from threestudio.utils.typing import * + + +class SaverMixin: + _save_dir: Optional[str] = None + _wandb_logger: Optional[WandbLogger] = None + + def set_save_dir(self, save_dir: str): + self._save_dir = save_dir + + def get_save_dir(self): + if self._save_dir is None: + raise ValueError("Save dir is not set") + return self._save_dir + + def convert_data(self, data): + if data is None: + return None + elif isinstance(data, np.ndarray): + return data + elif isinstance(data, torch.Tensor): + return data.detach().cpu().numpy() + elif isinstance(data, list): + return [self.convert_data(d) for d in data] + elif isinstance(data, dict): + return {k: self.convert_data(v) for k, v in data.items()} + else: + raise TypeError( + "Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting", + type(data), + ) + + def get_save_path(self, filename): + save_path = os.path.join(self.get_save_dir(), filename) + os.makedirs(os.path.dirname(save_path), exist_ok=True) + return save_path + + def create_loggers(self, cfg_loggers: DictConfig) -> None: + if "wandb" in cfg_loggers.keys() and cfg_loggers.wandb.enable: + self._wandb_logger = WandbLogger( + project=cfg_loggers.wandb.project, name=cfg_loggers.wandb.name + ) + + def get_loggers(self) -> List: + if self._wandb_logger: + return [self._wandb_logger] + else: + return [] + + DEFAULT_RGB_KWARGS = {"data_format": "HWC", "data_range": (0, 1)} + DEFAULT_UV_KWARGS = { + "data_format": "HWC", + "data_range": (0, 1), + "cmap": "checkerboard", + } + DEFAULT_GRAYSCALE_KWARGS = {"data_range": None, "cmap": "jet"} + DEFAULT_GRID_KWARGS = {"align": "max"} + + def get_rgb_image_(self, img, data_format, data_range, rgba=False): + img = self.convert_data(img) + assert data_format in ["CHW", "HWC"] + if data_format == "CHW": + img = img.transpose(1, 2, 0) + if img.dtype != np.uint8: + img = img.clip(min=data_range[0], max=data_range[1]) + img = ( + (img - data_range[0]) / (data_range[1] - data_range[0]) * 255.0 + ).astype(np.uint8) + nc = 4 if rgba else 3 + imgs = [img[..., start : start + nc] for start in range(0, img.shape[-1], nc)] + imgs = [ + img_ + if img_.shape[-1] == nc + else np.concatenate( + [ + img_, + np.zeros( + (img_.shape[0], img_.shape[1], nc - img_.shape[2]), + dtype=img_.dtype, + ), + ], + axis=-1, + ) + for img_ in imgs + ] + img = np.concatenate(imgs, axis=1) + if rgba: + img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA) + else: + img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) + return img + + def _save_rgb_image( + self, + filename, + img, + data_format, + data_range, + name: Optional[str] = None, + step: Optional[int] = None, + ): + img = self.get_rgb_image_(img, data_format, data_range) + cv2.imwrite(filename, img) + if name and self._wandb_logger: + wandb.log( + { + name: wandb.Image(self.get_save_path(filename)), + "trainer/global_step": step, + } + ) + + def save_rgb_image( + self, + filename, + img, + data_format=DEFAULT_RGB_KWARGS["data_format"], + data_range=DEFAULT_RGB_KWARGS["data_range"], + name: Optional[str] = None, + step: Optional[int] = None, + ) -> str: + save_path = self.get_save_path(filename) + self._save_rgb_image(save_path, img, data_format, data_range, name, step) + return save_path + + def get_uv_image_(self, img, data_format, data_range, cmap): + img = self.convert_data(img) + assert data_format in ["CHW", "HWC"] + if data_format == "CHW": + img = img.transpose(1, 2, 0) + img = img.clip(min=data_range[0], max=data_range[1]) + img = (img - data_range[0]) / (data_range[1] - data_range[0]) + assert cmap in ["checkerboard", "color"] + if cmap == "checkerboard": + n_grid = 64 + mask = (img * n_grid).astype(int) + mask = (mask[..., 0] + mask[..., 1]) % 2 == 0 + img = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 255 + img[mask] = np.array([255, 0, 255], dtype=np.uint8) + img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) + elif cmap == "color": + img_ = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) + img_[..., 0] = (img[..., 0] * 255).astype(np.uint8) + img_[..., 1] = (img[..., 1] * 255).astype(np.uint8) + img_ = cv2.cvtColor(img_, cv2.COLOR_RGB2BGR) + img = img_ + return img + + def save_uv_image( + self, + filename, + img, + data_format=DEFAULT_UV_KWARGS["data_format"], + data_range=DEFAULT_UV_KWARGS["data_range"], + cmap=DEFAULT_UV_KWARGS["cmap"], + ) -> str: + save_path = self.get_save_path(filename) + img = self.get_uv_image_(img, data_format, data_range, cmap) + cv2.imwrite(save_path, img) + return save_path + + def get_grayscale_image_(self, img, data_range, cmap): + img = self.convert_data(img) + img = np.nan_to_num(img) + if data_range is None: + img = (img - img.min()) / (img.max() - img.min()) + else: + img = img.clip(data_range[0], data_range[1]) + img = (img - data_range[0]) / (data_range[1] - data_range[0]) + assert cmap in [None, "jet", "magma", "spectral"] + if cmap == None: + img = (img * 255.0).astype(np.uint8) + img = np.repeat(img[..., None], 3, axis=2) + elif cmap == "jet": + img = (img * 255.0).astype(np.uint8) + img = cv2.applyColorMap(img, cv2.COLORMAP_JET) + elif cmap == "magma": + img = 1.0 - img + base = cm.get_cmap("magma") + num_bins = 256 + colormap = LinearSegmentedColormap.from_list( + f"{base.name}{num_bins}", base(np.linspace(0, 1, num_bins)), num_bins + )(np.linspace(0, 1, num_bins))[:, :3] + a = np.floor(img * 255.0) + b = (a + 1).clip(max=255.0) + f = img * 255.0 - a + a = a.astype(np.uint16).clip(0, 255) + b = b.astype(np.uint16).clip(0, 255) + img = colormap[a] + (colormap[b] - colormap[a]) * f[..., None] + img = (img * 255.0).astype(np.uint8) + elif cmap == "spectral": + colormap = plt.get_cmap("Spectral") + + def blend_rgba(image): + image = image[..., :3] * image[..., -1:] + ( + 1.0 - image[..., -1:] + ) # blend A to RGB + return image + + img = colormap(img) + img = blend_rgba(img) + img = (img * 255).astype(np.uint8) + img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) + return img + + def _save_grayscale_image( + self, + filename, + img, + data_range, + cmap, + name: Optional[str] = None, + step: Optional[int] = None, + ): + img = self.get_grayscale_image_(img, data_range, cmap) + cv2.imwrite(filename, img) + if name and self._wandb_logger: + wandb.log( + { + name: wandb.Image(self.get_save_path(filename)), + "trainer/global_step": step, + } + ) + + def save_grayscale_image( + self, + filename, + img, + data_range=DEFAULT_GRAYSCALE_KWARGS["data_range"], + cmap=DEFAULT_GRAYSCALE_KWARGS["cmap"], + name: Optional[str] = None, + step: Optional[int] = None, + ) -> str: + save_path = self.get_save_path(filename) + self._save_grayscale_image(save_path, img, data_range, cmap, name, step) + return save_path + + def get_image_grid_(self, imgs, align): + if isinstance(imgs[0], list): + return np.concatenate( + [self.get_image_grid_(row, align) for row in imgs], axis=0 + ) + cols = [] + for col in imgs: + assert col["type"] in ["rgb", "uv", "grayscale"] + if col["type"] == "rgb": + rgb_kwargs = self.DEFAULT_RGB_KWARGS.copy() + rgb_kwargs.update(col["kwargs"]) + cols.append(self.get_rgb_image_(col["img"], **rgb_kwargs)) + elif col["type"] == "uv": + uv_kwargs = self.DEFAULT_UV_KWARGS.copy() + uv_kwargs.update(col["kwargs"]) + cols.append(self.get_uv_image_(col["img"], **uv_kwargs)) + elif col["type"] == "grayscale": + grayscale_kwargs = self.DEFAULT_GRAYSCALE_KWARGS.copy() + grayscale_kwargs.update(col["kwargs"]) + cols.append(self.get_grayscale_image_(col["img"], **grayscale_kwargs)) + + if align == "max": + h = max([col.shape[0] for col in cols]) + w = max([col.shape[1] for col in cols]) + elif align == "min": + h = min([col.shape[0] for col in cols]) + w = min([col.shape[1] for col in cols]) + elif isinstance(align, int): + h = align + w = align + elif ( + isinstance(align, tuple) + and isinstance(align[0], int) + and isinstance(align[1], int) + ): + h, w = align + else: + raise ValueError( + f"Unsupported image grid align: {align}, should be min, max, int or (int, int)" + ) + + for i in range(len(cols)): + if cols[i].shape[0] != h or cols[i].shape[1] != w: + cols[i] = cv2.resize(cols[i], (w, h), interpolation=cv2.INTER_LINEAR) + return np.concatenate(cols, axis=1) + + def save_image_grid( + self, + filename, + imgs, + align=DEFAULT_GRID_KWARGS["align"], + name: Optional[str] = None, + step: Optional[int] = None, + texts: Optional[List[float]] = None, + ): + save_path = self.get_save_path(filename) + img = self.get_image_grid_(imgs, align=align) + + if texts is not None: + img = Image.fromarray(img) + draw = ImageDraw.Draw(img) + black, white = (0, 0, 0), (255, 255, 255) + for i, text in enumerate(texts): + draw.text((2, (img.size[1] // len(texts)) * i + 1), f"{text}", white) + draw.text((0, (img.size[1] // len(texts)) * i + 1), f"{text}", white) + draw.text((2, (img.size[1] // len(texts)) * i - 1), f"{text}", white) + draw.text((0, (img.size[1] // len(texts)) * i - 1), f"{text}", white) + draw.text((1, (img.size[1] // len(texts)) * i), f"{text}", black) + img = np.asarray(img) + + cv2.imwrite(save_path, img) + if name and self._wandb_logger: + wandb.log({name: wandb.Image(save_path), "trainer/global_step": step}) + return save_path + + def save_image(self, filename, img) -> str: + save_path = self.get_save_path(filename) + img = self.convert_data(img) + assert img.dtype == np.uint8 or img.dtype == np.uint16 + if img.ndim == 3 and img.shape[-1] == 3: + img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) + elif img.ndim == 3 and img.shape[-1] == 4: + img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA) + cv2.imwrite(save_path, img) + return save_path + + def save_cubemap(self, filename, img, data_range=(0, 1), rgba=False) -> str: + save_path = self.get_save_path(filename) + img = self.convert_data(img) + assert img.ndim == 4 and img.shape[0] == 6 and img.shape[1] == img.shape[2] + + imgs_full = [] + for start in range(0, img.shape[-1], 3): + img_ = img[..., start : start + 3] + img_ = np.stack( + [ + self.get_rgb_image_(img_[i], "HWC", data_range, rgba=rgba) + for i in range(img_.shape[0]) + ], + axis=0, + ) + size = img_.shape[1] + placeholder = np.zeros((size, size, 3), dtype=np.float32) + img_full = np.concatenate( + [ + np.concatenate( + [placeholder, img_[2], placeholder, placeholder], axis=1 + ), + np.concatenate([img_[1], img_[4], img_[0], img_[5]], axis=1), + np.concatenate( + [placeholder, img_[3], placeholder, placeholder], axis=1 + ), + ], + axis=0, + ) + imgs_full.append(img_full) + + imgs_full = np.concatenate(imgs_full, axis=1) + cv2.imwrite(save_path, imgs_full) + return save_path + + def save_data(self, filename, data) -> str: + data = self.convert_data(data) + if isinstance(data, dict): + if not filename.endswith(".npz"): + filename += ".npz" + save_path = self.get_save_path(filename) + np.savez(save_path, **data) + else: + if not filename.endswith(".npy"): + filename += ".npy" + save_path = self.get_save_path(filename) + np.save(save_path, data) + return save_path + + def save_state_dict(self, filename, data) -> str: + save_path = self.get_save_path(filename) + torch.save(data, save_path) + return save_path + + def save_img_sequence( + self, + filename, + img_dir, + matcher, + save_format="mp4", + fps=30, + name: Optional[str] = None, + step: Optional[int] = None, + ) -> str: + assert save_format in ["gif", "mp4"] + if not filename.endswith(save_format): + filename += f".{save_format}" + save_path = self.get_save_path(filename) + matcher = re.compile(matcher) + img_dir = os.path.join(self.get_save_dir(), img_dir) + imgs = [] + for f in os.listdir(img_dir): + if matcher.search(f): + imgs.append(f) + imgs = sorted(imgs, key=lambda f: int(matcher.search(f).groups()[0])) + imgs = [cv2.imread(os.path.join(img_dir, f)) for f in imgs] + + if save_format == "gif": + imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs] + imageio.mimsave(save_path, imgs, fps=fps, palettesize=256) + elif save_format == "mp4": + imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs] + imageio.mimsave(save_path, imgs, fps=fps) + if name and self._wandb_logger: + wandb.log( + { + name: wandb.Video(save_path, format="mp4"), + "trainer/global_step": step, + } + ) + return save_path + + def save_mesh(self, filename, v_pos, t_pos_idx, v_tex=None, t_tex_idx=None) -> str: + save_path = self.get_save_path(filename) + v_pos = self.convert_data(v_pos) + t_pos_idx = self.convert_data(t_pos_idx) + mesh = trimesh.Trimesh(vertices=v_pos, faces=t_pos_idx) + mesh.export(save_path) + return save_path + + def save_obj( + self, + filename: str, + mesh: Mesh, + save_mat: bool = False, + save_normal: bool = False, + save_uv: bool = False, + save_vertex_color: bool = False, + map_Kd: Optional[Float[Tensor, "H W 3"]] = None, + map_Ks: Optional[Float[Tensor, "H W 3"]] = None, + map_Bump: Optional[Float[Tensor, "H W 3"]] = None, + map_Pm: Optional[Float[Tensor, "H W 1"]] = None, + map_Pr: Optional[Float[Tensor, "H W 1"]] = None, + map_format: str = "jpg", + ) -> List[str]: + save_paths: List[str] = [] + if not filename.endswith(".obj"): + filename += ".obj" + v_pos, t_pos_idx = self.convert_data(mesh.v_pos), self.convert_data( + mesh.t_pos_idx + ) + v_nrm, v_tex, t_tex_idx, v_rgb = None, None, None, None + if save_normal: + v_nrm = self.convert_data(mesh.v_nrm) + if save_uv: + v_tex, t_tex_idx = self.convert_data(mesh.v_tex), self.convert_data( + mesh.t_tex_idx + ) + if save_vertex_color: + v_rgb = self.convert_data(mesh.v_rgb) + matname, mtllib = None, None + if save_mat: + matname = "default" + mtl_filename = filename.replace(".obj", ".mtl") + mtllib = os.path.basename(mtl_filename) + mtl_save_paths = self._save_mtl( + mtl_filename, + matname, + map_Kd=self.convert_data(map_Kd), + map_Ks=self.convert_data(map_Ks), + map_Bump=self.convert_data(map_Bump), + map_Pm=self.convert_data(map_Pm), + map_Pr=self.convert_data(map_Pr), + map_format=map_format, + ) + save_paths += mtl_save_paths + obj_save_path = self._save_obj( + filename, + v_pos, + t_pos_idx, + v_nrm=v_nrm, + v_tex=v_tex, + t_tex_idx=t_tex_idx, + v_rgb=v_rgb, + matname=matname, + mtllib=mtllib, + ) + save_paths.append(obj_save_path) + return save_paths + + def _save_obj( + self, + filename, + v_pos, + t_pos_idx, + v_nrm=None, + v_tex=None, + t_tex_idx=None, + v_rgb=None, + matname=None, + mtllib=None, + ) -> str: + obj_str = "" + if matname is not None: + obj_str += f"mtllib {mtllib}\n" + obj_str += f"g object\n" + obj_str += f"usemtl {matname}\n" + for i in range(len(v_pos)): + obj_str += f"v {v_pos[i][0]} {v_pos[i][1]} {v_pos[i][2]}" + if v_rgb is not None: + obj_str += f" {v_rgb[i][0]} {v_rgb[i][1]} {v_rgb[i][2]}" + obj_str += "\n" + if v_nrm is not None: + for v in v_nrm: + obj_str += f"vn {v[0]} {v[1]} {v[2]}\n" + if v_tex is not None: + for v in v_tex: + obj_str += f"vt {v[0]} {1.0 - v[1]}\n" + + for i in range(len(t_pos_idx)): + obj_str += "f" + for j in range(3): + obj_str += f" {t_pos_idx[i][j] + 1}/" + if v_tex is not None: + obj_str += f"{t_tex_idx[i][j] + 1}" + obj_str += "/" + if v_nrm is not None: + obj_str += f"{t_pos_idx[i][j] + 1}" + obj_str += "\n" + + save_path = self.get_save_path(filename) + with open(save_path, "w") as f: + f.write(obj_str) + return save_path + + def _save_mtl( + self, + filename, + matname, + Ka=(0.0, 0.0, 0.0), + Kd=(1.0, 1.0, 1.0), + Ks=(0.0, 0.0, 0.0), + map_Kd=None, + map_Ks=None, + map_Bump=None, + map_Pm=None, + map_Pr=None, + map_format="jpg", + step: Optional[int] = None, + ) -> List[str]: + mtl_save_path = self.get_save_path(filename) + save_paths = [mtl_save_path] + mtl_str = f"newmtl {matname}\n" + mtl_str += f"Ka {Ka[0]} {Ka[1]} {Ka[2]}\n" + if map_Kd is not None: + map_Kd_save_path = os.path.join( + os.path.dirname(mtl_save_path), f"texture_kd.{map_format}" + ) + mtl_str += f"map_Kd texture_kd.{map_format}\n" + self._save_rgb_image( + map_Kd_save_path, + map_Kd, + data_format="HWC", + data_range=(0, 1), + name=f"{matname}_Kd", + step=step, + ) + save_paths.append(map_Kd_save_path) + else: + mtl_str += f"Kd {Kd[0]} {Kd[1]} {Kd[2]}\n" + if map_Ks is not None: + map_Ks_save_path = os.path.join( + os.path.dirname(mtl_save_path), f"texture_ks.{map_format}" + ) + mtl_str += f"map_Ks texture_ks.{map_format}\n" + self._save_rgb_image( + map_Ks_save_path, + map_Ks, + data_format="HWC", + data_range=(0, 1), + name=f"{matname}_Ks", + step=step, + ) + save_paths.append(map_Ks_save_path) + else: + mtl_str += f"Ks {Ks[0]} {Ks[1]} {Ks[2]}\n" + if map_Bump is not None: + map_Bump_save_path = os.path.join( + os.path.dirname(mtl_save_path), f"texture_nrm.{map_format}" + ) + mtl_str += f"map_Bump texture_nrm.{map_format}\n" + self._save_rgb_image( + map_Bump_save_path, + map_Bump, + data_format="HWC", + data_range=(0, 1), + name=f"{matname}_Bump", + step=step, + ) + save_paths.append(map_Bump_save_path) + if map_Pm is not None: + map_Pm_save_path = os.path.join( + os.path.dirname(mtl_save_path), f"texture_metallic.{map_format}" + ) + mtl_str += f"map_Pm texture_metallic.{map_format}\n" + self._save_grayscale_image( + map_Pm_save_path, + map_Pm, + data_range=(0, 1), + cmap=None, + name=f"{matname}_refl", + step=step, + ) + save_paths.append(map_Pm_save_path) + if map_Pr is not None: + map_Pr_save_path = os.path.join( + os.path.dirname(mtl_save_path), f"texture_roughness.{map_format}" + ) + mtl_str += f"map_Pr texture_roughness.{map_format}\n" + self._save_grayscale_image( + map_Pr_save_path, + map_Pr, + data_range=(0, 1), + cmap=None, + name=f"{matname}_Ns", + step=step, + ) + save_paths.append(map_Pr_save_path) + with open(self.get_save_path(filename), "w") as f: + f.write(mtl_str) + return save_paths + + def save_file(self, filename, src_path) -> str: + save_path = self.get_save_path(filename) + shutil.copyfile(src_path, save_path) + return save_path + + def save_json(self, filename, payload) -> str: + save_path = self.get_save_path(filename) + with open(save_path, "w") as f: + f.write(json.dumps(payload)) + return save_path diff --git a/threestudio/utils/typing.py b/threestudio/utils/typing.py new file mode 100644 index 0000000..dee9f96 --- /dev/null +++ b/threestudio/utils/typing.py @@ -0,0 +1,40 @@ +""" +This module contains type annotations for the project, using +1. Python type hints (https://docs.python.org/3/library/typing.html) for Python objects +2. jaxtyping (https://github.com/google/jaxtyping/blob/main/API.md) for PyTorch tensors + +Two types of typing checking can be used: +1. Static type checking with mypy (install with pip and enabled as the default linter in VSCode) +2. Runtime type checking with typeguard (install with pip and triggered at runtime, mainly for tensor dtype and shape checking) +""" + +# Basic types +from typing import ( + Any, + Callable, + Dict, + Iterable, + List, + Literal, + NamedTuple, + NewType, + Optional, + Sized, + Tuple, + Type, + TypeVar, + Union, +) + +# Tensor dtype +# for jaxtyping usage, see https://github.com/google/jaxtyping/blob/main/API.md +from jaxtyping import Bool, Complex, Float, Inexact, Int, Integer, Num, Shaped, UInt + +# Config type +from omegaconf import DictConfig + +# PyTorch Tensor type +from torch import Tensor + +# Runtime type checking decorator +from typeguard import typechecked as typechecker