forked from zll17/Neural_Topic_Models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ETM_run.py
97 lines (90 loc) · 4.74 KB
/
ETM_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File : ETM_run.py
@Time : 2020/09/30 15:59:22
@Author : Leilan Zhang
@Version : 1.0
@Contact : [email protected]
@Desc : None
'''
import os
import re
import torch
import pickle
import argparse
import logging
import time
from models import ETM
from utils import *
from dataset import DocDataset
from multiprocessing import cpu_count
#from torch.utils.data import Dataset,DataLoader
parser = argparse.ArgumentParser('ETM topic model')
parser.add_argument('--taskname',type=str,default='cnews10k',help='Taskname e.g cnews10k')
parser.add_argument('--no_below',type=int,default=5,help='The lower bound of count for words to keep, e.g 10')
parser.add_argument('--no_above',type=float,default=0.005,help='The ratio of upper bound of count for words to keep, e.g 0.3')
parser.add_argument('--num_epochs',type=int,default=100,help='Number of iterations (set to 100 as default, but 1000+ is recommended.)')
parser.add_argument('--n_topic',type=int,default=20,help='Num of topics')
parser.add_argument('--bkpt_continue',type=bool,default=False,help='Whether to load a trained model as initialization and continue training.')
parser.add_argument('--use_tfidf',type=bool,default=False,help='Whether to use the tfidf feature for the BOW input')
parser.add_argument('--rebuild',type=bool,default=True,help='Whether to rebuild the corpus, such as tokenization, build dict etc.(default True)')
parser.add_argument('--batch_size',type=int,default=512,help='Batch size (default=512)')
parser.add_argument('--criterion',type=str,default='cross_entropy',help='The criterion to calculate the loss, e.g cross_entropy, bce_softmax, bce_sigmoid')
parser.add_argument('--use_fc1',action='store_true',help='Whether to use a linear layer after the reparameter trick (default:False)') #TBD_fc1
parser.add_argument('--emb_dim',type=int,default=300,help="The dimension of the latent topic vectors (default:300)")
parser.add_argument('--auto_adj',action='store_true',help='To adjust the no_above ratio automatically (default:rm top 20)')
args = parser.parse_args()
def main():
global args
taskname = args.taskname
no_below = args.no_below
no_above = args.no_above
num_epochs = args.num_epochs
n_topic = args.n_topic
n_cpu = cpu_count()-2 if cpu_count()>2 else 2
bkpt_continue = args.bkpt_continue
use_tfidf = args.use_tfidf
rebuild = args.rebuild
batch_size = args.batch_size
criterion = args.criterion
n_topic = args.n_topic
use_fc1 = args.use_fc1 #TBD_fc1
emb_dim = args.emb_dim
auto_adj = args.auto_adj
device = torch.device('cuda')
docSet = DocDataset(taskname,no_below=no_below,no_above=no_above,rebuild=rebuild,use_tfidf=False)
if auto_adj:
no_above = docSet.topk_dfs(topk=20)
docSet = DocDataset(taskname,no_below=no_below,no_above=no_above,rebuild=rebuild,use_tfidf=False)
voc_size = docSet.vocabsize
print('voc size:',voc_size)
model = ETM(bow_dim=voc_size,n_topic=n_topic,taskname=taskname,device=device,use_fc1=use_fc1,emb_dim=emb_dim) #TBD_fc1
model.train(train_data=docSet,batch_size=batch_size,test_data=docSet,num_epochs=num_epochs,log_every=10,beta=1.0,criterion=criterion)
model.evaluate(test_data=docSet)
save_name = f'./ckpt/ETM_{taskname}_tp{n_topic}_{time.strftime("%Y-%m-%d-%H-%M", time.localtime())}.ckpt'
torch.save(model.vae.state_dict(),save_name)
topic_vecs = model.vae.alpha.weight.detach().cpu().numpy()
word_vecs = model.vae.rho.weight.detach().cpu().numpy()
print('topic_vecs.shape:',topic_vecs.shape)
print('word_vecs.shape:',word_vecs.shape)
vocab = np.array([t[0] for t in sorted(list(docSet.dictionary.token2id.items()),key=lambda x: x[1])]).reshape(-1,1)
topic_ids = np.array([f'TP{i}' for i in range(n_topic)]).reshape(-1,1)
word_vecs = np.concatenate([vocab,word_vecs],axis=1)
topic_vecs = np.concatenate([topic_ids,topic_vecs],axis=1)
#save_name_tp = f'./ckpt/TpVec_ETM_{taskname}_tp{n_topic}_{time.strftime("%Y-%m-%d-%H-%M", time.localtime())}.emb'
save_name_wd = f'./ckpt/WdVec_ETM_{taskname}_tp{n_topic}_{time.strftime("%Y-%m-%d-%H-%M", time.localtime())}.emb'
n_instances = word_vecs.shape[0]+topic_vecs.shape[0]
with open(save_name_wd,'w',encoding='utf-8') as wfp:
wfp.write(f'{n_instances} {emb_dim}\n')
wfp.write('\n'.join([' '.join(e) for e in word_vecs]+[' '.join(e) for e in topic_vecs]))
from gensim.models import KeyedVectors
w2v = KeyedVectors.load_word2vec_format(save_name_wd,binary=False)
w2v.save(save_name.split('.')[0]+'.w2v')
print(w2v.vocab.keys())
#w2v.most_similar('你好')
for i in range(n_topic):
print(f'Most similar to Topic {i}')
print(w2v.most_similar(f'TP{i}'))
if __name__ == "__main__":
main()