-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautomate.py
249 lines (197 loc) · 7.7 KB
/
automate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import cv2
import numpy as np
import time
import serial
import picamera
import serial
import struct
left_motion=0 #defining the times the motion has been done to remember the state of the vehicle so that the front view can be restored
right_motion=0
camera=picamera.PiCamera()
'''
arduino_motor = serial.Serial('com3',9600,timeout=1)
arduino_servo = serial.Serial('com4',9600,timeout=1)
'''
def toilet_detection(im):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (9, 9), 0)
#gray1=cv2.bilateralFilter(gray,11,17,17)
# perform edge detection, then perform a dilation + erosion to
# close gaps in between object edges
edged = cv2.Canny(gray, 50, 100)
edged = cv2.dilate(edged, None, iterations=1)
#edged = cv2.erode(edged, None, iterations=1)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(9,9))
dilated = cv2.dilate(edged, kernel)
(cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
c = max(cnts, key = cv2.contourArea)
if c.contourArea()>1000:
return True
else:
return False
def bot_motion(contours):
if num_contours()>0:
d=distance_estimate(c)
if d>90:
move_forward(d/2)
move_forward(d/2)
else:
move_forward(d)
move_forward_incr()
move_backward()
while (num_contours()==0):
right_rotation(5)
right_motion+=1
def calcenter(contour):
cv2.moments(contour) #gives the information about centroid, moi, etc.
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
center=(cx,cy)
return center
def find_yellow(image): #returns the yellow colour stains
hsv_roi = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
mask= cv2.inRange(hsv_roi, np.array([20,150,150]), np.array([30,255,255]))
#ycr_roi=cv2.cvtColor(image,cv2.COLOR_BGR2YCrCb)
#mask_2=cv2.inRange(ycr_roi, np.array((0.,165.,165.)), np.array((255.,255.,255.)))
#mask =cv2.bitwise_or(mask_1,mask_2)
kern_dilate = np.ones((8,8),np.uint8)
kern_erode = np.ones((3,3),np.uint8)
mask= cv2.erode(mask,kern_erode) #Eroding
mask=cv2.dilate(mask,kern_dilate) #Dilating
return mask
def contourDetect(gray):
#gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
gray=cv2.GaussianBlur(gray,(9,9),0)
edge=cv2.Canny(gray,20,120)
edge=cv2.dilate(edge,None,iterations=1)
#edge=cv2.erode(edge,None,iterations=1)
(__,contours, _) = cv2.findContours(edge.copy(), mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE)
return contours
def num_contours(contours):
return str(len(contours))
def find_trash(image):
hsv_roi = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
mask= cv2.inRange(hsv_roi, np.array([150,150,150]), np.array([170,255,255]))
#ycr_roi=cv2.cvtColor(image,cv2.COLOR_BGR2YCrCb)
#mask_2=cv2.inRange(ycr_roi, np.array((0.,165.,165.)), np.array((255.,255.,255.)))
#mask =cv2.bitwise_or(mask_1,mask_2)
kern_dilate = np.ones((8,8),np.uint8)
kern_erode = np.ones((3,3),np.uint8)
mask= cv2.erode(mask,kern_erode) #Eroding
mask=cv2.dilate(mask,kern_dilate) #Dilating
return mask
# initializing the camera
def startcam():
camera.start_preview()
time.sleep(1)
'''
def right_rotation(time_rot):
arduino_motor.write(struct.pack('.2.0.0.1.'+ str(time_rot)+'.'))
def left_rotation(time_rot):
arduino_motor.write(struct.pack('.2.0.0.1.'+ str(time_rot)+'.'))
def move_forward(dist):
arduino_motor.write(struct.pack('.1.1.'+str(dist)+'.0.0.'))
def move_forward_incr():
arduino_motor.write(struct.pack('.1.2.0.0.0.'))
def move_backward(): # .1.3.0.0.0
arduino_motor.write(struct.pack('.1.3.0.0.0.'))
def lift_arm(angle):
#Start the serial port to communicate with arduino
data.write(struct.pack('>B',angle))
#code and send the angle to the Arduino through serial port
def open_flap():
pos =180 #open flap
data.write(struct.pack('>B',pos))
time.sleep(1)
pos=90 #close flap
data.write(struct.pack('>B',pos))
'''
def captureImg(): # the entire patch goes in the while loop for iteration
camera.capture('runimg.jpg')
img = cv2.imread('runimg.jpg', 1)
return img
def stopCam(): # stoping the preview of the camera
camera.stop_preview()
def open_water():
arduino_servo.write(struct.pack('0'))
def distance_estimate(contour): #takes in contours
'''
def find_marker(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 35, 125)
(cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
c = max(cnts, key = cv2.contourArea)
cv2.imshow("edged",edged)
return cv2.minAreaRect(c)
'''
def distance_to_camera(knownWidth, focalLength, perWidth):
return (knownWidth * focalLength) / perWidth
marker=cv2.minAreaRect(contour)
KNOWN_DISTANCE = 50
KNOWN_WIDTH = 50
#marker = find_marker(image) #check for the camera calibaration
focalLength = (marker[1][0] * KNOWN_DISTANCE) / KNOWN_WIDTH
#for imagePath in IMAGE_PATHS:
#image = cv2.imread(imagePath)
#marker = find_marker(image)
dist = distance_to_camera(KNOWN_WIDTH, focalLength, marker[1][0])
return dist
'''
box = np.int0(cv2.cv.BoxPoints(marker))
cv2.drawContours(image, [box], -1, (0, 255, 0), 2)
cv2.putText(image, "%.2fft" % (inches / 12),
(image.shape[1] - 200, image.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX,
2.0, (0, 255, 0), 3)
cv2.imshow("image", image)
cv2.waitKey(0)
'''
if __name__=="__main__":
start_time=time.time()
startcam() # the stains code patch will run for about 420 seconds and then the second patch will start
while ((time.time()-start_time) < 300):
im=captureImg()
#now the image has been captured which needs to be processed for the
mask=find_yellow(im) #stain detection
contours1=contourDetect(mask)
c=max(contours1,cv2.contourArea())
found=cv2.minAreaRect(c)
#box=np.int0(cv2.boxPoints(found))
bot_motion(contours)
#the contour detection
#finding the center of the object detected
while ((time.time()-start_time) < 300):
#trash picking
im=captureImg()
mask=find_trash(im)
contours=contourDetect(mask)
c=max(contours,cv2.contourArea())
found=cv2.minAreaRect(c)
#box=np.int0(cv2.boxPoints(found))
#center=calcenter(c)
bot_motion(contours)
#keep turning
#Now the object has been detected
#get the distance estimate
#open the servo flap
while ((time.time()-start_time) < 300):
#toilet detection
#find the contour of the toilet
im=captureImg()
val=toilet_detection(im)
if val:
bot_motion(contours)
else:
while True:
right_rotation(5)
right_motion+=1
im=captureImg()
if toilet_detection(im):
break
#keep turning
#Now the object has been detected
#get the distance estimate
#to return to its initial posiiton the patch would be coming back directly
#signal to take a 360degree turn and then move forward till the
#sonar tells to stop, would partially call for the return
stopCam()