forked from vincentherrmann/pytorch-wavenet
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathwavenet_model.py
348 lines (282 loc) · 12.5 KB
/
wavenet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import os
import os.path
import time
import torch.nn.functional as F
from audio_data import *
from torch import nn
from wavenet_modules import *
class WaveNetModel(nn.Module):
"""
A Complete Wavenet Model
Args:
layers (Int): Number of layers in each block
blocks (Int): Number of wavenet blocks of this model
dilation_channels (Int): Number of channels for the dilated convolution
residual_channels (Int): Number of channels for the residual connection
skip_channels (Int): Number of channels for the skip connections
classes (Int): Number of possible values each sample can have
output_length (Int): Number of samples that are generated for each input
kernel_size (Int): Size of the dilation kernel
dtype: Parameter type of this model
Shape:
- Input: :math:`(N, C_{in}, L_{in})`
- Output: :math:`()`
L should be the length of the receptive field
"""
def __init__(self,
layers=10,
blocks=4,
dilation_channels=32,
residual_channels=32,
skip_channels=256,
end_channels=256,
classes=256,
output_length=32,
kernel_size=2,
dtype=torch.FloatTensor,
bias=False):
super(WaveNetModel, self).__init__()
self.layers = layers
self.blocks = blocks
self.dilation_channels = dilation_channels
self.residual_channels = residual_channels
self.skip_channels = skip_channels
self.classes = classes
self.kernel_size = kernel_size
self.dtype = dtype
# build model
receptive_field = 1
init_dilation = 1
self.dilations = []
self.dilated_queues = []
# self.main_convs = nn.ModuleList()
self.filter_convs = nn.ModuleList()
self.gate_convs = nn.ModuleList()
self.residual_convs = nn.ModuleList()
self.skip_convs = nn.ModuleList()
# 1x1 convolution to create channels
self.start_conv = nn.Conv1d(in_channels=self.classes,
out_channels=residual_channels,
kernel_size=1,
bias=bias)
for b in range(blocks):
additional_scope = kernel_size - 1
new_dilation = 1
for i in range(layers):
# dilations of this layer
self.dilations.append((new_dilation, init_dilation))
# dilated queues for fast generation
self.dilated_queues.append(DilatedQueue(max_length=(kernel_size - 1) * new_dilation + 1,
num_channels=residual_channels,
dilation=new_dilation,
dtype=dtype))
# dilated convolutions
self.filter_convs.append(nn.Conv1d(in_channels=residual_channels,
out_channels=dilation_channels,
kernel_size=kernel_size,
bias=bias))
self.gate_convs.append(nn.Conv1d(in_channels=residual_channels,
out_channels=dilation_channels,
kernel_size=kernel_size,
bias=bias))
# 1x1 convolution for residual connection
self.residual_convs.append(nn.Conv1d(in_channels=dilation_channels,
out_channels=residual_channels,
kernel_size=1,
bias=bias))
# 1x1 convolution for skip connection
self.skip_convs.append(nn.Conv1d(in_channels=dilation_channels,
out_channels=skip_channels,
kernel_size=1,
bias=bias))
receptive_field += additional_scope
additional_scope *= 2
init_dilation = new_dilation
new_dilation *= 2
self.end_conv_1 = nn.Conv1d(in_channels=skip_channels,
out_channels=end_channels,
kernel_size=1,
bias=True)
self.end_conv_2 = nn.Conv1d(in_channels=end_channels,
out_channels=classes,
kernel_size=1,
bias=True)
# self.output_length = 2 ** (layers - 1)
self.output_length = output_length
self.receptive_field = receptive_field
def wavenet(self, input, dilation_func):
x = self.start_conv(input)
skip = 0
# WaveNet layers
for i in range(self.blocks * self.layers):
# |----------------------------------------| *residual*
# | |
# | |-- conv -- tanh --| |
# -> dilate -|----| * ----|-- 1x1 -- + --> *input*
# |-- conv -- sigm --| |
# 1x1
# |
# ---------------------------------------> + -------------> *skip*
(dilation, init_dilation) = self.dilations[i]
residual = dilation_func(x, dilation, init_dilation, i)
# dilated convolution
filter = self.filter_convs[i](residual)
filter = F.tanh(filter)
gate = self.gate_convs[i](residual)
gate = F.sigmoid(gate)
x = filter * gate
# parametrized skip connection
s = x
if x.size(2) != 1:
s = dilate(x, 1, init_dilation=dilation)
s = self.skip_convs[i](s)
try:
skip = skip[:, :, -s.size(2):]
except:
skip = 0
skip = s + skip
x = self.residual_convs[i](x)
x = x + residual[:, :, (self.kernel_size - 1):]
x = F.relu(skip)
x = F.relu(self.end_conv_1(x))
x = self.end_conv_2(x)
return x
def wavenet_dilate(self, input, dilation, init_dilation, i):
x = dilate(input, dilation, init_dilation)
return x
def queue_dilate(self, input, dilation, init_dilation, i):
queue = self.dilated_queues[i]
queue.enqueue(input.data[0])
x = queue.dequeue(num_deq=self.kernel_size,
dilation=dilation)
x = x.unsqueeze(0)
return x
def forward(self, input):
x = self.wavenet(input,
dilation_func=self.wavenet_dilate)
# reshape output
[n, c, l] = x.size()
l = self.output_length
x = x[:, :, -l:]
x = x.transpose(1, 2).contiguous()
x = x.view(n * l, c)
return x
def generate(self,
num_samples,
first_samples=None,
temperature=1.):
self.eval()
if first_samples is None:
first_samples = self.dtype(1).zero_()
generated = Variable(first_samples, volatile=True)
num_pad = self.receptive_field - generated.size(0)
if num_pad > 0:
generated = constant_pad_1d(generated, self.scope, pad_start=True)
print("pad zero")
for i in range(num_samples):
input = Variable(torch.FloatTensor(1, self.classes, self.receptive_field).zero_())
input = input.scatter_(1, generated[-self.receptive_field:].view(1, -1, self.receptive_field), 1.)
x = self.wavenet(input,
dilation_func=self.wavenet_dilate)[:, :, -1].squeeze()
if temperature > 0:
x /= temperature
prob = F.softmax(x, dim=0)
prob = prob.cpu()
np_prob = prob.data.numpy()
x = np.random.choice(self.classes, p=np_prob)
x = Variable(torch.LongTensor([x])) # np.array([x])
else:
x = torch.max(x, 0)[1].float()
generated = torch.cat((generated, x), 0)
generated = (generated / self.classes) * 2. - 1
mu_gen = mu_law_expansion(generated, self.classes)
self.train()
return mu_gen
def generate_fast(self,
num_samples,
first_samples=None,
temperature=1.,
regularize=0.,
progress_callback=None,
progress_interval=100):
self.eval()
if first_samples is None:
first_samples = torch.LongTensor(1).zero_() + (self.classes // 2)
first_samples = Variable(first_samples)
# reset queues
for queue in self.dilated_queues:
queue.reset()
num_given_samples = first_samples.size(0)
total_samples = num_given_samples + num_samples
input = Variable(torch.FloatTensor(1, self.classes, 1).zero_())
input = input.scatter_(1, first_samples[0:1].view(1, -1, 1), 1.)
# fill queues with given samples
for i in range(num_given_samples - 1):
x = self.wavenet(input,
dilation_func=self.queue_dilate)
input.zero_()
input = input.scatter_(1, first_samples[i + 1:i + 2].view(1, -1, 1), 1.).view(1, self.classes, 1)
# progress feedback
if i % progress_interval == 0:
if progress_callback is not None:
progress_callback(i, total_samples)
# generate new samples
generated = np.array([])
regularizer = torch.pow(Variable(torch.arange(self.classes)) - self.classes / 2., 2)
regularizer = regularizer.squeeze() * regularize
tic = time.time()
for i in range(num_samples):
x = self.wavenet(input,
dilation_func=self.queue_dilate).squeeze()
x -= regularizer
if temperature > 0:
# sample from softmax distribution
x /= temperature
prob = F.softmax(x, dim=0)
prob = prob.cpu()
np_prob = prob.data.numpy()
x = np.random.choice(self.classes, p=np_prob)
x = np.array([x])
else:
# convert to sample value
x = torch.max(x, 0)[1][0]
x = x.cpu()
x = x.data.numpy()
o = (x / self.classes) * 2. - 1
generated = np.append(generated, o)
# set new input
x = Variable(torch.from_numpy(x).type(torch.LongTensor))
input.zero_()
input = input.scatter_(1, x.view(1, -1, 1), 1.).view(1, self.classes, 1)
if (i + 1) == 100:
toc = time.time()
print("one generating step does take approximately " + str((toc - tic) * 0.01) + " seconds)")
# progress feedback
if (i + num_given_samples) % progress_interval == 0:
if progress_callback is not None:
progress_callback(i + num_given_samples, total_samples)
self.train()
mu_gen = mu_law_expansion(generated, self.classes)
return mu_gen
def parameter_count(self):
par = list(self.parameters())
s = sum([np.prod(list(d.size())) for d in par])
return s
def cpu(self, type=torch.FloatTensor):
self.dtype = type
for q in self.dilated_queues:
q.dtype = self.dtype
super().cpu()
def load_latest_model_from(location, use_cuda=True):
files = [location + "/" + f for f in os.listdir(location)]
newest_file = max(files, key=os.path.getctime)
print("load model " + newest_file)
if use_cuda:
model = torch.load(newest_file)
else:
model = load_to_cpu(newest_file)
return model
def load_to_cpu(path):
model = torch.load(path, map_location=lambda storage, loc: storage)
model.cpu()
return model