forked from wuzaipei/python_TensorFlow_yolov3-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
quick_train.py
103 lines (83 loc) · 4.35 KB
/
quick_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : quick_train.py
# Author : YunYang1994
# Created date: 2019-01-21 14:46:26
# Description :
#
#================================================================
import tensorflow as tf
from core import utils, yolov3
from core.dataset import dataset, Parser
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
sess = tf.Session()
IMAGE_H, IMAGE_W = 416, 416
BATCH_SIZE = 8
#迭代次数
STEPS = 1000
LR = 0.001 # if Nan, set 0.0005, 0.0001
DECAY_STEPS = 100
DECAY_RATE = 0.9
SHUFFLE_SIZE = 100
CLASSES = utils.read_coco_names('./data/coco_wzp.names')
ANCHORS = utils.get_anchors('./data/raccoon_anchors_wzp.txt', IMAGE_H, IMAGE_W)
NUM_CLASSES = len(CLASSES)
EVAL_INTERNAL = 10
SAVE_INTERNAL = 500
save_model_path = "./model/yolov3.ckpt"
train_tfrecord = "./raccoon_dataset/raccoon_train/wzp_new_train.tfrecords"
test_tfrecord = "./raccoon_dataset/raccoon_train/wzp_train.tfrecords"
parser = Parser(IMAGE_H, IMAGE_W, ANCHORS, NUM_CLASSES)
trainset = dataset(parser, train_tfrecord, BATCH_SIZE, shuffle=SHUFFLE_SIZE)
testset = dataset(parser, test_tfrecord , BATCH_SIZE, shuffle=None)
is_training = tf.placeholder(tf.bool)
example = tf.cond(is_training, lambda: trainset.get_next(), lambda: testset.get_next())
images, *y_true = example
model = yolov3.yolov3(NUM_CLASSES, ANCHORS)
with tf.variable_scope('yolov3'):
pred_feature_map = model.forward(images, is_training=is_training)
loss = model.compute_loss(pred_feature_map, y_true)
y_pred = model.predict(pred_feature_map)
tf.summary.scalar("loss/coord_loss", loss[1])
tf.summary.scalar("loss/sizes_loss", loss[2])
tf.summary.scalar("loss/confs_loss", loss[3])
tf.summary.scalar("loss/class_loss", loss[4])
global_step = tf.Variable(0, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES])
write_op = tf.summary.merge_all()
writer_train = tf.summary.FileWriter("./data/train")
writer_test = tf.summary.FileWriter("./data/test")
saver_to_restore = tf.train.Saver(var_list=tf.contrib.framework.get_variables_to_restore(include=["yolov3/darknet-53"]))
update_vars = tf.contrib.framework.get_variables_to_restore(include=["yolov3/yolo-v3"])
learning_rate = tf.train.exponential_decay(LR, global_step, decay_steps=DECAY_STEPS, decay_rate=DECAY_RATE, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate)
# set dependencies for BN ops
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss[0], var_list=update_vars, global_step=global_step)
sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
saver_to_restore.restore(sess, "./checkpoint/yolov3.ckpt") # 调用训练好的model
saver = tf.train.Saver(max_to_keep=2)
for step in range(STEPS):
run_items = sess.run([train_op, write_op, y_pred, y_true] + loss, feed_dict={is_training:True})
if (step+1) % EVAL_INTERNAL == 0:
train_rec_value, train_prec_value = utils.evaluate(run_items[2], run_items[3])
writer_train.add_summary(run_items[1], global_step=step)
writer_train.flush() # Flushes the event file to disk
if (step+1) % SAVE_INTERNAL == 0:
saver.save(sess, save_path=save_model_path, global_step=step+1)
print("=> STEP %10d [TRAIN]:\tloss_xy:%7.4f \tloss_wh:%7.4f \tloss_conf:%7.4f \tloss_class:%7.4f"
%(step+1, run_items[5], run_items[6], run_items[7], run_items[8]))
run_items = sess.run([write_op, y_pred, y_true] + loss, feed_dict={is_training:False})
if (step+1) % EVAL_INTERNAL == 0:
test_rec_value, test_prec_value = utils.evaluate(run_items[1], run_items[2])
print("\n=======================> evaluation result <================================\n")
print("=> STEP %10d [TRAIN]:\trecall:%7.4f \tprecision:%7.4f" %(step+1, train_rec_value, train_prec_value))
print("=> STEP %10d [VALID]:\trecall:%7.4f \tprecision:%7.4f" %(step+1, test_rec_value, test_prec_value))
print("\n=======================> evaluation result <================================\n")
writer_test.add_summary(run_items[0], global_step=step)
writer_test.flush() # Flushes the event file to disk