-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelgan_instructor.py
146 lines (120 loc) · 5.83 KB
/
relgan_instructor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
# @Author : William
# @Project : TextGAN-william
# @FileName : relgan_instructor.py
# @Time : Created at 2019-04-25
# @Blog : http://zhiweil.ml/
# @Description :
# Copyrights (C) 2018. All Rights Reserved.
import torch
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import config as cfg
from instructor.real_data.instructor import BasicInstructor
from models.RelGAN_D import RelGAN_D
from models.RelGAN_G import RelGAN_G
from utils.helpers import get_fixed_temperature, get_losses
class RelGANInstructor(BasicInstructor):
def __init__(self, opt):
super(RelGANInstructor, self).__init__(opt)
# generator, discriminator
self.gen = RelGAN_G(cfg.mem_slots, cfg.num_heads, cfg.head_size, cfg.gen_embed_dim, cfg.gen_hidden_dim,
cfg.vocab_size, cfg.max_seq_len, cfg.padding_idx, gpu=cfg.CUDA)
self.dis = RelGAN_D(cfg.dis_embed_dim, cfg.max_seq_len, cfg.num_rep, cfg.vocab_size, cfg.padding_idx,
gpu=cfg.CUDA)
self.init_model()
# Optimizer
self.gen_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr)
self.gen_adv_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_adv_lr)
self.dis_opt = optim.Adam(self.dis.parameters(), lr=cfg.dis_lr)
def _run(self):
# ===PRE-TRAINING (GENERATOR)===
if not cfg.gen_pretrain:
self.log.info('Starting Generator MLE Training...')
self.pretrain_generator(cfg.MLE_train_epoch)
if cfg.if_save and not cfg.if_test:
torch.save(self.gen.state_dict(), cfg.pretrained_gen_path)
print('Save pretrain_generator: {}'.format(cfg.pretrained_gen_path))
# # ===ADVERSARIAL TRAINING===
self.log.info('Starting Adversarial Training...')
progress = tqdm(range(cfg.ADV_train_epoch))
for adv_epoch in progress:
self.sig.update()
if self.sig.adv_sig:
g_loss = self.adv_train_generator(cfg.ADV_g_step) # Generator
d_loss = self.adv_train_discriminator(cfg.ADV_d_step) # Discriminator
self.update_temperature(adv_epoch, cfg.ADV_train_epoch) # update temperature
progress.set_description(
'g_loss: %.4f, d_loss: %.4f, temperature: %.4f' % (g_loss, d_loss, self.gen.temperature))
# TEST
if adv_epoch % cfg.adv_log_step == 0 or adv_epoch == cfg.ADV_train_epoch - 1:
self.log.info('[ADV] epoch %d: g_loss: %.4f, d_loss: %.4f, %s' % (
adv_epoch, g_loss, d_loss, self.cal_metrics(fmt_str=True)))
if cfg.if_save and not cfg.if_test:
self._save('ADV', adv_epoch)
else:
self.log.info('>>> Stop by adv_signal! Finishing adversarial training...')
progress.close()
break
def _test(self):
print('>>> Begin test...')
self._run()
pass
def pretrain_generator(self, epochs):
"""
Max Likelihood Pre-training for the generator
"""
for epoch in range(epochs):
self.sig.update()
if self.sig.pre_sig:
# ===Train===
pre_loss = self.train_gen_epoch(self.gen, self.train_data.loader, self.mle_criterion, self.gen_opt)
# ===Test===
if epoch % cfg.pre_log_step == 0 or epoch == epochs - 1:
self.log.info('[MLE-GEN] epoch %d : pre_loss = %.4f, %s' % (
epoch, pre_loss, self.cal_metrics(fmt_str=True)))
if cfg.if_save and not cfg.if_test:
self._save('MLE', epoch)
else:
self.log.info('>>> Stop by pre signal, skip to adversarial training...')
break
def adv_train_generator(self, g_step):
total_loss = 0
for step in range(g_step):
real_samples = self.train_data.random_batch()['target']
gen_samples = self.gen.sample(cfg.batch_size, cfg.batch_size, one_hot=True)
if cfg.CUDA:
real_samples, gen_samples = real_samples.cuda(), gen_samples.cuda()
real_samples = F.one_hot(real_samples, cfg.vocab_size).float()
# ===Train===
d_out_real = self.dis(real_samples)
d_out_fake = self.dis(gen_samples)
g_loss, _ = get_losses(d_out_real, d_out_fake, cfg.loss_type)
self.optimize(self.gen_adv_opt, g_loss, self.gen)
total_loss += g_loss.item()
return total_loss / g_step if g_step != 0 else 0
def adv_train_discriminator(self, d_step):
total_loss = 0
for step in range(d_step):
real_samples = self.train_data.random_batch()['target']
gen_samples = self.gen.sample(cfg.batch_size, cfg.batch_size, one_hot=True)
if cfg.CUDA:
real_samples, gen_samples = real_samples.cuda(), gen_samples.cuda()
real_samples = F.one_hot(real_samples, cfg.vocab_size).float()
# ===Train===
d_out_real = self.dis(real_samples)
d_out_fake = self.dis(gen_samples)
_, d_loss = get_losses(d_out_real, d_out_fake, cfg.loss_type)
self.optimize(self.dis_opt, d_loss, self.dis)
total_loss += d_loss.item()
return total_loss / d_step if d_step != 0 else 0
def update_temperature(self, i, N):
self.gen.temperature = get_fixed_temperature(cfg.temperature, i, N, cfg.temp_adpt)
@staticmethod
def optimize(opt, loss, model=None, retain_graph=False):
opt.zero_grad()
loss.backward(retain_graph=retain_graph)
if model is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), cfg.clip_norm)
opt.step()