-
Notifications
You must be signed in to change notification settings - Fork 87
/
cfg.py
207 lines (199 loc) · 6.33 KB
/
cfg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# -*- coding: utf-8 -*-
# @Date : 2019-07-25
# @Author : Xinyu Gong ([email protected])
# @Link : None
# @Version : 0.0
import argparse
def str2bool(v):
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--max_epoch", type=int, default=200, help="number of epochs of training"
)
parser.add_argument(
"--max_iter", type=int, default=None, help="set the max iteration number"
)
parser.add_argument(
"-gen_bs", "--gen_batch_size", type=int, default=64, help="size of the batches"
)
parser.add_argument(
"-dis_bs", "--dis_batch_size", type=int, default=64, help="size of the batches"
)
parser.add_argument(
"--g_lr", type=float, default=0.0002, help="adam: gen learning rate"
)
parser.add_argument(
"--d_lr", type=float, default=0.0002, help="adam: disc learning rate"
)
parser.add_argument(
"--ctrl_lr", type=float, default=3.5e-4, help="adam: ctrl learning rate"
)
parser.add_argument(
"--lr_decay", action="store_true", help="learning rate decay or not"
)
parser.add_argument(
"--beta1",
type=float,
default=0.0,
help="adam: decay of first order momentum of gradient",
)
parser.add_argument(
"--beta2",
type=float,
default=0.9,
help="adam: decay of first order momentum of gradient",
)
parser.add_argument(
"--num_workers",
type=int,
default=8,
help="number of cpu threads to use during batch generation",
)
parser.add_argument(
"--latent_dim", type=int, default=128, help="dimensionality of the latent space"
)
parser.add_argument(
"--img_size", type=int, default=32, help="size of each image dimension"
)
parser.add_argument(
"--channels", type=int, default=3, help="number of image channels"
)
parser.add_argument(
"--n_critic",
type=int,
default=1,
help="number of training steps for discriminator per iter",
)
parser.add_argument(
"--val_freq", type=int, default=20, help="interval between each validation"
)
parser.add_argument(
"--print_freq", type=int, default=100, help="interval between each verbose"
)
parser.add_argument("--load_path", type=str, help="The reload model path")
parser.add_argument("--exp_name", type=str, help="The name of exp")
parser.add_argument(
"--d_spectral_norm",
type=str2bool,
default=False,
help="add spectral_norm on discriminator?",
)
parser.add_argument(
"--g_spectral_norm",
type=str2bool,
default=False,
help="add spectral_norm on generator?",
)
parser.add_argument("--dataset", type=str, default="cifar10", help="dataset type")
parser.add_argument(
"--data_path", type=str, default="./data", help="The path of data set"
)
parser.add_argument(
"--init_type",
type=str,
default="normal",
choices=["normal", "orth", "xavier_uniform", "false"],
help="The init type",
)
parser.add_argument(
"--gf_dim", type=int, default=64, help="The base channel num of gen"
)
parser.add_argument(
"--df_dim", type=int, default=64, help="The base channel num of disc"
)
parser.add_argument(
"--gen_model", type=str, default="shared_gan", help="path of gen model"
)
parser.add_argument(
"--dis_model", type=str, default="shared_gan", help="path of dis model"
)
parser.add_argument(
"--controller", type=str, default="controller", help="path of controller"
)
parser.add_argument("--eval_batch_size", type=int, default=100)
parser.add_argument("--num_eval_imgs", type=int, default=50000)
parser.add_argument(
"--bottom_width", type=int, default=4, help="the base resolution of the GAN"
)
parser.add_argument("--random_seed", type=int, default=12345)
# search
parser.add_argument(
"--shared_epoch",
type=int,
default=15,
help="the number of epoch to train the shared gan at each search iteration",
)
parser.add_argument(
"--grow_step1",
type=int,
default=25,
help="which iteration to grow the image size from 8 to 16",
)
parser.add_argument(
"--grow_step2",
type=int,
default=55,
help="which iteration to grow the image size from 16 to 32",
)
parser.add_argument(
"--max_search_iter",
type=int,
default=90,
help="max search iterations of this algorithm",
)
parser.add_argument(
"--ctrl_step",
type=int,
default=30,
help="number of steps to train the controller at each search iteration",
)
parser.add_argument(
"--ctrl_sample_batch",
type=int,
default=1,
help="sample size of controller of each step",
)
parser.add_argument(
"--hid_size", type=int, default=100, help="the size of hidden vector"
)
parser.add_argument(
"--baseline_decay", type=float, default=0.9, help="baseline decay rate in RL"
)
parser.add_argument(
"--rl_num_eval_img",
type=int,
default=5000,
help="number of images to be sampled in order to get the reward",
)
parser.add_argument(
"--num_candidate",
type=int,
default=10,
help="number of candidate architectures to be sampled",
)
parser.add_argument(
"--topk",
type=int,
default=5,
help="preserve topk models architectures after each stage",
)
parser.add_argument(
"--entropy_coeff", type=float, default=1e-3, help="to encourage the exploration"
)
parser.add_argument(
"--dynamic_reset_threshold", type=float, default=1e-3, help="var threshold"
)
parser.add_argument(
"--dynamic_reset_window", type=int, default=500, help="the window size"
)
parser.add_argument(
"--arch", nargs="+", type=int, help="the vector of a discovered architecture"
)
opt = parser.parse_args()
return opt