-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtest.py
219 lines (204 loc) · 12.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import os
import sys
import numpy
import torch
import torchvision
import models
import dataset
import utils
from filesystem import file_utils
import supervision as L
import exporters as IO
import spherical as S360
def parse_arguments(args):
usage_text = (
"Semi-supervised Spherical Depth Estimation Testing."
)
parser = argparse.ArgumentParser(description=usage_text)
# enumerables
parser.add_argument('-b',"--batch_size", type=int, help="Test a <batch_size> number of samples each iteration.")
parser.add_argument('--save_iters', type=int, default=100, help='Maximum test iterations whose results will be saved.')
# paths
parser.add_argument("--test_path", type=str, help="Path to the testing file containing the test set file paths")
parser.add_argument("--save_path", type=str, help="Path to the folder where the models and results will be saved at.")
# model
parser.add_argument("--configuration", required=False, type=str, default='mono', help="Data loader configuration <mono>, <lr>, <ud>, <tc>", choices=['mono', 'lr', 'ud', 'tc'])
parser.add_argument('--weights', type=str, help='Path to the trained weights file.')
parser.add_argument('--model', default="default", type=str, help='Model selection argument.')
# hardware
parser.add_argument('-g','--gpu', type=str, default='0', help='The ids of the GPU(s) that will be utilized. (e.g. 0 or 0,1, or 0,2). Use -1 for CPU.')
# other
parser.add_argument('-n','--name', type=str, default='default_name', help='The name of this train/test. Used when storing information.')
parser.add_argument("--visdom", type=str, nargs='?', default=None, const="127.0.0.1", help="Visdom server IP (port defaults to 8097)")
parser.add_argument("--visdom_iters", type=int, default=400, help = "Iteration interval that results will be reported at the visdom server for visualization.")
# metrics
parser.add_argument("--depth_thres", type=float, default=20.0, help = "Depth threshold - depth clipping.")
parser.add_argument("--width", type=float, default=512, help = "Spherical image width.")
parser.add_argument("--baseline", type=float, default=0.26, help = "Stereo baseline distance (in either axis).")
parser.add_argument("--median_scale", required=False, default=False, action="store_true", help = "Perform median scaling before calculating metrics.")
parser.add_argument("--spherical_weights", required=False, default=False, action="store_true", help = "Use spherical weighting when calculating the metrics.")
parser.add_argument("--spherical_sampling", required=False, default=False, action="store_true", help = "Use spherical sampling when calculating the metrics.")
# save options
parser.add_argument("--save_recon", required=False, default=False, action="store_true", help = "Flag to toggle reconstructed result saving.")
parser.add_argument("--save_original", required=False, default=False, action="store_true", help = "Flag to toggle input (image) saving.")
parser.add_argument("--save_depth", required=False, default=False, action="store_true", help = "Flag to toggle output (depth) saving.")
return parser.parse_known_args(args)
def compute_errors(gt, pred, invalid_mask, weights, sampling, mode='cpu', median_scale=False):
b, _, __, ___ = gt.size()
scale = torch.median(gt.reshape(b, -1), dim=1)[0] / torch.median(pred.reshape(b, -1), dim=1)[0]\
if median_scale else torch.tensor(1.0).expand(b, 1, 1, 1).to(gt.device)
pred = pred * scale.reshape(b, 1, 1, 1)
valid_sum = torch.sum(~invalid_mask, dim=[1, 2, 3], keepdim=True)
gt[invalid_mask] = 0.0
pred[invalid_mask] = 0.0
thresh = torch.max((gt / pred), (pred / gt))
thresh[invalid_mask | (sampling < 0.5)] = 2.0
sum_dims = [1, 2, 3]
delta_valid_sum = torch.sum(~invalid_mask & (sampling > 0), dim=[1, 2, 3], keepdim=True)
delta1 = (thresh < 1.25 ).float().sum(dim=sum_dims, keepdim=True).float() / delta_valid_sum.float()
delta2 = (thresh < (1.25 ** 2)).float().sum(dim=sum_dims, keepdim=True).float() / delta_valid_sum.float()
delta3 = (thresh < (1.25 ** 3)).float().sum(dim=sum_dims, keepdim=True).float() / delta_valid_sum.float()
rmse = (gt - pred) ** 2
rmse[invalid_mask] = 0.0
rmse_w = rmse * weights
rmse_mean = torch.sqrt(rmse_w.sum(dim=sum_dims, keepdim=True) / valid_sum.float())
rmse_log = (torch.log(gt) - torch.log(pred)) ** 2
rmse_log[invalid_mask] = 0.0
rmse_log_w = rmse_log * weights
rmse_log_mean = torch.sqrt(rmse_log_w.sum(dim=sum_dims, keepdim=True) / valid_sum.float())
abs_rel = (torch.abs(gt - pred) / gt)
abs_rel[invalid_mask] = 0.0
abs_rel_w = abs_rel * weights
abs_rel_mean = abs_rel_w.sum(dim=sum_dims, keepdim=True) / valid_sum.float()
sq_rel = (((gt - pred)**2) / gt)
sq_rel[invalid_mask] = 0.0
sq_rel_w = sq_rel * weights
sq_rel_mean = sq_rel_w.sum(dim=sum_dims, keepdim=True) / valid_sum.float()
return (abs_rel_mean, abs_rel), (sq_rel_mean, sq_rel), (rmse_mean, rmse), \
(rmse_log_mean, rmse_log), delta1, delta2, delta3
def spiral_sampling(grid, percentage):
b, c, h, w = grid.size()
N = torch.tensor(h*w*percentage).int().float()
sampling = torch.zeros_like(grid)[:, 0, :, :].unsqueeze(1)
phi_k = torch.tensor(0.0).float()
for k in torch.arange(N - 1):
k = k.float() + 1.0
h_k = -1 + 2 * (k - 1) / (N - 1)
theta_k = torch.acos(h_k)
phi_k = phi_k + torch.tensor(3.6).float() / torch.sqrt(N) / torch.sqrt(1 - h_k * h_k) \
if k > 1.0 else torch.tensor(0.0).float()
phi_k = torch.fmod(phi_k, 2 * numpy.pi)
sampling[:, :, int(theta_k / numpy.pi * h) - 1, int(phi_k / numpy.pi / 2 * w) - 1] += 1.0
return (sampling > 0).float()
if __name__ == "__main__":
args, unknown = parse_arguments(sys.argv)
gpus = [int(id) for id in args.gpu.split(',') if int(id) >= 0]
# device & visualizers
device = torch.device("cuda:{}" .format(gpus[0])\
if torch.cuda.is_available() and len(gpus) > 0 and gpus[0] >= 0\
else "cpu")
plot_visualizer, image_visualizer = (utils.NullVisualizer(), utils.NullVisualizer())\
if args.visdom is None\
else (
utils.VisdomPlotVisualizer(args.name + "_test_plots_", args.visdom),
utils.VisdomImageVisualizer(args.name + "_test_images_", args.visdom,\
count=2 if 2 <= args.batch_size else args.batch_size)
)
image_visualizer.update_epoch(0)
# model
model_params = { 'width': 512, 'configuration': args.configuration }
model = models.get_model(args.model, model_params)
utils.init.initialize_weights(model, args.weights, pred_bias=None)
if (len(gpus) > 1):
model = torch.nn.parallel.DataParallel(model, gpus)
model = model.to(device)
# test data
width, height = args.width, args.width // 2
test_data = dataset.dataset_360D.Dataset360D(args.test_path, " ", args.configuration, [height, width])
test_data_iterator = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size,\
num_workers=args.batch_size // 4 // (2 if len(gpus) > 0 else 1), pin_memory=False, shuffle=False)
fs = file_utils.Filesystem()
fs.mkdir(args.save_path)
print("Test size : {}".format(args.batch_size * test_data_iterator.__len__()))
# params & error vars
max_save_iters = args.save_iters if args.save_iters > 0\
else args.batch_size * test_data_iterator.__len__()
errors = numpy.zeros((7, args.batch_size * test_data_iterator.__len__()), numpy.float32)
weights = S360.weights.theta_confidence(
S360.grid.create_spherical_grid(width)
).to(device) if args.spherical_weights else torch.ones(1, 1, height, width).to(device)
sampling = spiral_sampling(S360.grid.create_image_grid(width, height), 0.25).to(device) \
if args.spherical_sampling else torch.ones(1, 1, height, width).to(device)
# loop over test set
model.eval()
with torch.no_grad():
counter = 0
uvgrid = S360.grid.create_image_grid(width, height).to(device)
sgrid = S360.grid.create_spherical_grid(width).to(device)
for test_batch_id , test_batch in enumerate(test_data_iterator):
''' Data '''
left_rgb = test_batch['leftRGB'].to(device)
left_depth = test_batch['leftDepth'].to(device)
if 'rightRGB' in test_batch:
right_rgb = test_batch['rightRGB'].to(device)
mask = (left_depth > args.depth_thres)
b, c, h, w = left_rgb.size()
''' Prediction '''
left_depth_pred = torch.abs(model(left_rgb))
''' Errors '''
abs_rel_t, sq_rel_t, rmse_t, rmse_log_t, delta1, delta2, delta3\
= compute_errors(left_depth, left_depth_pred, mask, weights=weights, sampling=sampling, \
mode='gpu' if torch.cuda.is_available() and len(gpus) > 0 and gpus[0] >= 0 else "cpu", \
median_scale=args.median_scale)
''' Visualize & Append Errors '''
for i in range(b):
idx = counter + i
errors[:, idx] = abs_rel_t[0][i], sq_rel_t[0][i], rmse_t[0][i], \
rmse_log_t[0][i], delta1[i], delta2[i], delta3[i]
for j in range(7):
plot_visualizer.append_loss(1, idx, torch.tensor(errors[0, idx]), "abs_rel")
plot_visualizer.append_loss(1, idx, torch.tensor(errors[1, idx]), "sq_rel")
plot_visualizer.append_loss(1, idx, torch.tensor(errors[2, idx]), "rmse")
plot_visualizer.append_loss(1, idx, torch.tensor(errors[3, idx]), "rmse_log")
plot_visualizer.append_loss(1, idx, torch.tensor(errors[4, idx]), "delta1")
plot_visualizer.append_loss(1, idx, torch.tensor(errors[5, idx]), "delta2")
plot_visualizer.append_loss(1, idx, torch.tensor(errors[6, idx]), "delta3")
''' Store '''
if counter < args.save_iters:
if args.save_original:
IO.image.save_image(os.path.join(args.save_path,\
str(counter) + "_" + args.name + "_#_left.png"), left_rgb)
if args.save_depth:
IO.image.save_data(os.path.join(args.save_path,\
str(counter) + "_" + args.name + "_#_depth.exr"), left_depth_pred, scale=1.0)
if args.save_recon:
rads = sgrid.expand(b, -1, -1, -1)
uv = uvgrid.expand(b, -1, -1, -1)
disp = torch.cat(
(
S360.derivatives.dphi_horizontal(rads, left_depth_pred, args.baseline),
S360.derivatives.dtheta_horizontal(rads, left_depth_pred, args.baseline)
), dim=1
)
right_render_coords = uv + disp
right_render_coords[:, 0, :, :] = torch.fmod(right_render_coords[:, 0, :, :] + width, width)
right_render_coords[torch.isnan(right_render_coords)] = 0.0
right_render_coords[torch.isinf(right_render_coords)] = 0.0
right_rgb_t, right_mask_t = L.splatting.render(left_rgb, left_depth_pred, right_render_coords, max_depth=args.depth_thres)
IO.image.save_image(os.path.join(args.save_path,\
str(counter) + "_" + args.name + "_#_right_t.png"), right_rgb_t)
counter += b
''' Visualize Predictions '''
if args.visdom_iters > 0 and (counter + 1) % args.visdom_iters <= args.batch_size:
image_visualizer.show_separate_images(left_rgb, 'input')
if 'rightRGB' in test_batch:
image_visualizer.show_separate_images(right_rgb, 'target')
image_visualizer.show_map(left_depth_pred, 'depth')
if args.save_recon:
image_visualizer.show_separate_images(right_rgb_t, 'recon')
mean_errors = errors.mean(1)
error_names = ['abs_rel','sq_rel','rmse','log_rmse','delta1','delta2','delta3']
print("Results ({}): ".format(args.name))
print("\t{:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}".format(*error_names))
print("\t{:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}".format(*mean_errors))