-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathinfer.py
54 lines (50 loc) · 2.01 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import argparse
import os
import sys
import numpy
import cv2
import torch
import models
import utils
import exporters
def parse_arguments(args):
usage_text = (
"Semi-supervised Spherical Depth Estimation Testing."
)
parser = argparse.ArgumentParser(description=usage_text)
parser.add_argument("--input_path", type=str, help="Path to the input spherical panorama image.")
parser.add_argument('--weights', type=str, help='Path to the trained weights file.')
parser.add_argument('-g','--gpu', type=str, default='0', help='The ids of the GPU(s) that will be utilized. (e.g. 0 or 0,1, or 0,2). Use -1 for CPU.')
return parser.parse_known_args(args)
if __name__ == "__main__":
args, unknown = parse_arguments(sys.argv)
gpus = [int(id) for id in args.gpu.split(',') if int(id) >= 0]
# device & visualizers
device = torch.device("cuda:{}" .format(gpus[0])\
if torch.cuda.is_available() and len(gpus) > 0 and gpus[0] >= 0\
else "cpu")
# model
model = models.get_model("resnet_coord", {})
utils.init.initialize_weights(model, args.weights, pred_bias=None)
model = model.to(device)
# test data
width, height = 512, 256
if not os.path.exists(args.input_path):
print("Input image path does not exist (%s)." % args.input_path)
exit(-1)
img = cv2.imread(args.input_path)
h, w, _ = img.shape
if h != height and w != width:
img = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
img = img.transpose(2, 0, 1) / 255.0
img = torch.from_numpy(img).float().expand(1, -1, -1, -1)
model.eval()
with torch.no_grad():
left_rgb = img.to(device)
''' Prediction '''
left_depth_pred = torch.abs(model(left_rgb))
exporters.image.save_data(os.path.join(
os.path.dirname(args.input_path),
os.path.splitext(os.path.basename(
args.input_path))[0] + "_depth.exr"),
left_depth_pred, scale=1.0)