-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
284 lines (242 loc) · 11.4 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from langchain.schema import HumanMessage, AIMessage, SystemMessage
from langchain.chat_models import ChatOpenAI
import re
from fastchat import FastChatAgent
# model = ChatOpenAI(model="gpt-4-0613")
# model.temperature = 0.8
# model_name = 'Llama-2-7b-chat-hf'
# controller_address = None
# worker_address = "https://qbckrkeybocx0v-8800.proxy.runpod.net"
# temperature = 1.2
# max_new_tokens = 512
# top_p = 0.5
# model = FastChatAgent(model_name, controller_address=controller_address, worker_address=worker_address,
# temperature=temperature , max_new_tokens=max_new_tokens, top_p=top_p)
model = ChatOpenAI(model="gpt-4-0613")
model.temperature = 0.8
environment_model = ChatOpenAI(model="gpt-4-0613")
environment_model.temperature = 0.0
creator_model = ChatOpenAI(model="gpt-4-0613")
creator_model.temperature = 0.8
class NoneMessage:
def __init__(self, content=""):
# Constructor for initializing the ChatContent class
self.type = ""
self.content = content
self.is_placeholder = True
# Custom CSS for chat bubbles
bubble_style = """
<style>
.bubble {
border-radius: 20px;
padding: 10px;
margin: 10px 0;
}
.bubble.human {
background-color: #ADD8E6;
text-align: left;
}
.bubble.ai {
background-color: #90EE90;
text-align: right;
}
.button-row {
display: flex;
gap: 5px;
justify-content: flex-end;
}
</style>
"""
def read_pickle(file):
import pickle
with open(file, "rb") as file:
data = pickle.load(file)
return data
def save_json(data, file):
import json
with open(file, "w") as file:
json.dump(data, file)
def process_task_environment(data):
return (data.split("..")[0], '\n'.join(data.split("..")[1:]))
def play_from_point(st, agent_model, environment_model, conversation, index, participant):
print("\nplay_from_point\n\n")
step = 0
# first, delete conversation after current location
if conversation == "agent":
# possible values of index = [1,3, 5...]
delete_from = max(3, index)
print(f" Deleting {st.session_state['agent_messages'][delete_from+1:]}\n\n")
del st.session_state['agent_messages'][delete_from+1:]
if index <= 3:
print(f" Deleting all environment messages.\n\n")
st.session_state['environment_messages'] = []
else:
print(f" Deleting {st.session_state['environment_messages'][index - 2:]}\n\n")
del st.session_state['environment_messages'][index - 2:]
else:
# possible values of index = [1, 3, ...]
print(f" Deleting {st.session_state['environment_messages'][index - 2:]}\n\n")
print(f" Deleting {st.session_state['agent_messages'][index:]}\n\n")
del st.session_state['environment_messages'][index - 2:]
del st.session_state['agent_messages'][index:]
# replace last agent message
message = st.session_state['environment_messages'][-1].content
st.session_state['agent_messages'].append(HumanMessage(content =message))
if conversation == "agent" and index == 1:
step = 1
if conversation == "agent" and index == 3:
step = 2
if conversation == "environment" and index == 4:
step = 5
if conversation == "agent" and index > 3:
step = 4
if conversation == "environment" and index >= 4:
step = 5
print(f"\nIndex: {index} Determined Step: {step}")
if step < 3:
if st.session_state['agent_messages'][-1].type == "HumanMessage":
agent_response = agent_model.predict_messages(st.session_state['agent_messages'])
st.session_state['agent_messages'].append(agent_response)
print(agent_response.content + "\n")
if step < 4:
first_response = st.session_state['agent_messages'][3].content
first_sql_block = re.search(r"```sql(.*?)```", first_response, re.DOTALL)
if first_sql_block:
sql_code = first_sql_block.group(1).strip()
else:
sql_code = ""
task_, environment_info = process_task_environment(st.session_state['agent_messages'][2].content)
environment_prompt = db_environment_prompt_template.format(environment_info, sql_code, task_)
st.session_state['environment_messages'] = [
HumanMessage(content=environment_prompt)
]
print(environment_prompt)
environment_result = environment_model.predict_messages(st.session_state['environment_messages'])
st.session_state['environment_messages'].append(environment_result)
st.session_state['agent_messages'].append(HumanMessage(content=environment_result.content))
print(environment_result.content + "\n")
skip_once = False
if step == 4:
skip_once = True
if st.session_state['environment_messages'][-1].type == "ai":
sql_block = re.search(r"```sql(.*?)```", st.session_state['agent_messages'][-1].content, re.DOTALL)
if sql_block:
sql_code = sql_block.group(1).strip()
else:
sql_code = ""
st.session_state['environment_messages'].append(HumanMessage(content=sql_code))
print(st.session_state['environment_messages'][-1])
num_turns = 10
for i in range(num_turns):
if not skip_once:
agent_response = agent_model.predict_messages(st.session_state['agent_messages'])
print(agent_response.content)
first_sql_block = re.search(r"```sql(.*?)```", agent_response.content, re.DOTALL)
if first_sql_block:
sql_code = first_sql_block.group(1).strip()
else:
sql_code = ""
st.session_state['agent_messages'].append(agent_response)
if "Final Answer:" in agent_response.content:
break
st.session_state['environment_messages'].append(HumanMessage(content=sql_code))
else:
skip_once = False
environment_result = environment_model.predict_messages(st.session_state['environment_messages'])
st.session_state['environment_messages'].append(environment_result)
print(environment_result.content)
st.session_state['agent_messages'].append(HumanMessage(content=environment_result.content))
# DEPRECATED --- MARKED FOR DELETION
# Function to estimate the height of a chat bubble based on its content
def estimate_bubble_height(text):
# This is a simplistic approach; you might need a more sophisticated method
lines = text.count('\n') + 1
height_per_line = 10 # adjust this based on your app's styling
return lines * height_per_line + 10 # additional padding or fixed height
# DEPRECATED --- MARKED FOR DELETION
# Function to get the maximum length of both conversations
def max_conversation_length():
return max(len(st.session_state.agent_messages), len(st.session_state.environment_messages))
# Modified chat_bubble function
def chat_bubble(st, conversation, index, participant, text, is_placeholder=False):
avatar = ""
if participant is not None:
avatar = "🤖" if participant.lower() == "ai" else "🌍"
if is_placeholder:
avatar = "⚪️"
with st.container():
# Check if the message is in edit mode
if st.session_state.edit_mode[conversation].get(index, False):
# Render text input for editing
# Calculate the number of lines in the text
number_of_lines = text.count('\n') + 1 # Adding 1 for the last line if it doesn't end with a newline
# Estimate the height based on the number of lines
# You may need to adjust the multiplier based on your specific layout and font size
estimated_height_per_line = 40 # Example height in pixels per line
estimated_height = number_of_lines * estimated_height_per_line + 100
# Use st.text_area with the calculated height
st.session_state.edited_text[conversation][index] = st.text_area("Edit Message", value=text, key=f'edit_{index}', height=estimated_height)
if st.button('Save', key=f'save_{index}'):
# Save logic here
if conversation == 'agent':
st.session_state.cc.update_agent_side(st.session_state.example_index, index, st.session_state.edited_text[conversation][index])
else:
st.session_state.cc.update_environment_side(st.session_state.example_index, index, st.session_state.edited_text[conversation][index])
st.session_state.edit_mode[conversation][index] = False
st.rerun()
else:
# Render chat message
with st.chat_message(name=participant, avatar=avatar):
st.write(text)
with st.container():
col1, col2, col3, col4, col5 = st.columns([4, 1, 1, 1, 1])
with col1:
pass
with col2:
if participant.lower() == "ai":
if st.button('▶️', key=f'{conversation}_play_{index}'):
st.session_state.cc.replay_from_index(st.session_state.example_index, conversation, index)
st.rerun()
with col3:
if participant.lower() == "ai":
if st.button('🔄', key=f'{conversation}_refresh_{index}'):
st.session_state.cc.refresh_at_index(st.session_state.example_index, conversation, index)
st.rerun()
with col4:
if not is_placeholder:
if st.button('✏️', key=f'{conversation}_edit_{index}'):
# Toggle edit mode
st.session_state.edit_mode[conversation][index] = not st.session_state.edit_mode[conversation].get(index, False)
st.rerun()
with col5:
if participant.lower() == "ai":
if st.button('🗑️', key=f'{conversation}_delete_{index}'):
# Delete the message
st.session_state.cc.delete_at_index(st.session_state.example_index, conversation, index)
st.rerun()
# Function to add a message to the conversation
def add_message(st, conversation):
if conversation == "agent":
if st.session_state['agent_messages'][-1].type == "ai":
return
else:
agent_response = model.predict_messages(st.session_state['agent_messages'])
st.session_state['agent_messages'].append(agent_response)
print(agent_response.content + "\n")
sql_block = re.search(r"```sql(.*?)```", agent_response.content, re.DOTALL)
if sql_block:
sql_code = sql_block.group(1).strip()
else:
sql_code = ""
if not "Final Answer:" in agent_response.content:
st.session_state['environment_messages'].append(HumanMessage(content=sql_code))
st.rerun()
else:
if st.session_state['environment_messages'][-1].type == "ai":
return
else:
environment_result = environment_model.predict_messages(st.session_state['environment_messages'])
st.session_state['environment_messages'].append(environment_result)
print(environment_result.content)
st.session_state['agent_messages'].append(HumanMessage(content=environment_result.content))
st.rerun()